
Position Paper: Static Debugging of Programs
Using High-Level Concurrency Libraries

Philipp Haller
EPFL, Switzerland

firstname.lastname@epfl.ch

Abstract
High-level concurrency libraries, such as MapReduce and
frameworks for fork/join parallelism, are promising tools to
make parallelism available to the application developer. Op-
timizations and intrinsics provided by mainstream VM plat-
forms, as well as programming languages supporting pow-
erful means of abstraction greatly improve the performance
and use of such frameworks.

However, debugging programs using high-level concur-
rency frameworks remains very difficult. In this position pa-
per, we outline research on two approaches to improve static
debugging of programs using high-level concurrency frame-
works. The first approach provides library-specific annota-
tion checkers that can be optionally plugged into the com-
piler. The second approach uses lightweight type annotations
to adapt error messages involving implementation details of
the (high-level) programming interface.

1. Introduction
In this paper we want to focus on two approaches to make
parallelism available to the application developer. High-level
concurrency libraries, such as MapReduce [9] and fork/join
frameworks (e.g., [19]), and embedded domain-specific lan-
guages (DSLs) [5, 6, 16]. Even though the two approaches
seem to be quite different, some concurrency frameworks
can be considered embedded domain-specific languages. For
instance, Scala Actors [12] provide a syntax that appears to
extend the host language, even though the primitives are im-
plemented as a library in Scala.

For the rest of our discussion we are mostly concerned
with the programming interface of embedded DSLs, includ-
ing their syntax, operations, and types. When only consid-
ering their programming interfaces, there is virtually no dif-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SPLASH Workshop on Concurrency for the Application Programmer (CAP’10) Oc-
tober 18, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM . . . $10.00

ference between embedded DSLs and high-level libraries.
Therefore, in the following we use the expression high-
level concurrency frameworks to comprise the techniques for
building programming interfaces of both approaches.

There has been substantial progress on support for high-
level concurrency libraries, both in terms of optimizations
and intrinsics provided by VM platforms, and in terms of
high-level programming interfaces. Support for the latter
is greatly facilitated by language support for closures, as
demonstrated by languages such as X10 [22], Fortress [17],
and Scala [21].

On the other hand, debugging support for programs writ-
ten using high-level concurrency frameworks and embedded
DSLs has been lacking. Existing approaches have two im-
portant problems.

1. When compiling programs using high-level libraries the
error messages produced by the compiler can be cryptic.
The main reason is that errors often refer to constructs
used to implement the programming interface; however,
normally the programmer should not be concerned with
the implementation of the interface.

2. The compiler of the host language accepts many pro-
grams that contain severe errors in terms of how the con-
structs provided by the high-level library are used.

To illustrate the second problem, consider the following
quote taken from the Java API documentation of the jsr166y
ForkJoinPool (a lightweight execution environment sup-
porting fork/join parallelism):1

The efficiency of ForkJoinTasks stems from a set of
restrictions (that are only partially statically enforce-
able) reflecting their intended use as computational
tasks calculating pure functions or operating on purely
isolated objects.

The documentation talks about restrictions and correctness
criteria for using the ForkJoinTask class, which is the
fundamental unit for computations that are run inside a
ForkJoinPool. Two important properties that correct uses
of that class must have are: (1) each task must compute a

1 See http://gee.cs.oswego.edu/dl/concurrency-interest/.

pure function, and (2) all tasks must operate on isolated
objects. Programs that do not obey these usage restrictions
are likely to have bugs that manifest at run time, such as
data races. This is problematic, since debugging and test-
ing concurrent programs is much harder compared to se-
quential programs, because program executions are typically
not easily reproducible because of timing-dependent thread
scheduling.

2. Our Approaches
We propose two approaches addressing those issues:

1. Pluggable, library-specific (or DSL-specific) checkers.
These checkers can be shipped as part of the library, and
optionally loaded when compiling (debug) builds.

2. Lightweight type annotations to customize and adapt
(type) error messages emitted by the compiler.

The first approach is more heavyweight, but it has the poten-
tial to address both of the problems mentioned above: apart
from statically checking library usage restrictions, a checker
may post-process (low-level) error messages from the com-
piler and adapt them before presenting them to the user. In
previous work [13] we have demonstrated a compiler plug-
in to be used with Scala’s actor library for checking actor
isolation.

We intend to factor out pluggable type-and-effect sys-
tems that can be used to check the safety of several dif-
ferent concurrency libraries. This will reduce the effort re-
quired to build, test, and deploy pluggable checkers for spe-
cific concurrency libraries. For example, checking that two
references point to disjoint object graphs is useful for iso-
lating both actors and deterministic parallel computations
(e.g., [18]).

The second approach is not sufficient to check for prop-
erties like purity and isolation. On the upside, the approach
can be very lightweight: simple annotations placed on types
and constructs of the library that should not be visible to the
user can be used for adapting error messages of the compiler.
Such annotations can already improve the user experience
substantially; at the same time the approach places only a
small burden on the library author.

In fact, the latter approach is already finding its way into
Scala’s standard collections library. Scala’s collections [20]
use implicit parameters [8] to support operations on collec-
tions that are polymorphic in the type of the resulting collec-
tion. These implicit parameters should not be visible to the
application developer. However, in Scala 2.8.0, error mes-
sages when using collections incorrectly could refer to these
implicits. In Scala 2.8.1, a lightweight mechanism has been
added to adapt error messages involving implicits: by adding
an annotation to the type of the implicit parameter, a custom
error message is emitted when no implicit value of that type
can be found.

For instance, immutable maps define a transformmethod
that applies a function to the key/value pairs stored in the
map resulting in a collection containing the transformed val-
ues:

def transform[C, That]

(f: (A, B) => C)

(implicit bf

: CanBuildFrom[This, (A, C), That])

: That

This function transforms all the values of mappings con-
tained in the current map with function f. Here, This is the
type of the actual map implementation. That is the type of
the updated map. The implicit parameter ensures that there
is a builder factory that can be used to construct a collection
of type That given a collection of type This and elements
of type (A, C).

Actual implicit arguments passed to transform should
not be visible to the application developer. However, wrong
uses of maps may result in the compiler not finding con-
crete implicit arguments; this would result in confusing er-
ror messages. In Scala 2.8.1 error messages involving type
CanBuildFrom are improved using a type annotation:

@implicitNotFound(msg = "Cannot construct a

collection of type ${To} with elements of

type ${Elem} based on a collection of

type ${To}.")

trait CanBuildFrom[-From, -Elem, +To] {

// ...

}

The implicitNotFound annotation is understood by the
implicit search mechanism in Scala’s type checker. When-
ever the type checker is unable to determine an implicit
argument of type CanBuildFrom, the compiler emits the
(interpolated) error message specified as the argument of
the implicitNotFound annotation. Thereby, a low-level
implicit-not-found error message is transformed to only
mention the types From, Elem, and To, which correspond
to types occurring in user programs.

3. Related Work
There is a substantial body of literature investigating compile-
time safety checking for parallel and concurrent programs
using actors/active objects [7, 25], shared-memory concur-
rency [1, 3, 4, 18], stream-based programming [2, 10, 24],
and other concurrency models [11, 22, 23]. In our approach,
we intend to explore static checking for programs that use
multiple concurrency libraries.

There has been work on type error debugging in func-
tional languages (see, e.g., [14]), motivated by their sophis-
ticated type systems and type inference. In these approaches,
type errors are explained by collecting constraints for correct
type assignment globally, and solving these constraints sub-
sequently. While applicable in educational programming en-

vironments like Helium [15], global constraint solving is not
practical for large-scale software systems. Furthermore, pre-
vious approaches are not applicable to object-oriented lan-
guages with local type inference like Scala.

Moreover, we intend to integrate type error debugging
with library-specific annotation checkers. In addition to
annotations on the types and operations of the high-level
concurrency framework (as shown in the example in Sec-
tion 2), this will require interaction between type inference
and (pluggable) annotation checking.

4. Conclusion
We believe when using high-level concurrency libraries, new
mechanisms are needed to (a) enforce more usage restric-
tions statically (preventing hard-to-debug concurrency haz-
ards), and (b) make error messages when compiling user
programs more useful. Otherwise, powerful frameworks, al-
though providing high performance, will remain tools only
for expert programmers. In this paper we have outlined two
approaches to improve static debugging of concurrent pro-
grams based on high-level libraries and embedded DSLs.

References
[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe

locking: Static race detection for java. ACM Trans. Program.
Lang. Syst, 28(2):207–255, 2006.

[2] J. S. Auerbach, D. F. Bacon, R. Guerraoui, J. H. Spring, and
J. Vitek. Flexible task graphs: a unified restricted thread
programming model for Java. In Proceedings of the 2008
ACM Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES’08), pages 1–11, 2008.

[3] D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: a dialect
of Java without data races. In Proceedings of the 2000 ACM
Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA’00), pages 382–400, Oct.
2000.

[4] C. Boyapati, R. Lee, and M. C. Rinard. Ownership types for
safe programming: preventing data races and deadlocks. In
Proceedings of the 17th ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA’02), pages 211–230, 2002.

[5] J. Carette, O. Kiselyov, and C. chieh Shan. Finally tagless,
partially evaluated: Tagless staged interpreters for simpler
typed languages. J. Funct. Program, 19(5):509–543, 2009.

[6] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. Sujeeth, P. Han-
rahan, M. Odersky, and K. Olukotun. Language virtualization
for heterogeneous parallel computing, 2010.

[7] D. Clarke, T. Wrigstad, J. Östlund, and E. B. Johnsen. Min-
imal ownership for active objects. In Proceedings of the 6th
Asian Symposium on Programming Languages and Systems
(APLAS’08), pages 139–154. Springer, Dec. 2008.

[8] B. C. d. S. Oliveira, A. Moors, and M. Odersky. Type classes
as objects and implicits. In OOPSLA/SPLASH’10, 2010.

[9] J. Dean and S. Ghemawat. MapReduce: simplified data pro-
cessing on large clusters. CACM, 51(1):107–113, 2008.

[10] R. Ennals, R. Sharp, and A. Mycroft. Linear types for packet
processing. In Proceedings of the 13th European Symposium
on Programming (ESOP’04), pages 204–218. Springer, 2004.

[11] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C.
Hunt, J. R. Larus, and S. Levi. Language support for fast and
reliable message-based communication in Singularity OS. In
Proc. EuroSys, 2006.

[12] P. Haller and M. Odersky. Scala actors: Unifying thread-based
and event-based programming. Theor. Comput. Sci, 410(2-3):
202–220, 2009.

[13] P. Haller and M. Odersky. Capabilities for uniqueness and
borrowing. In Proceedings of the 24th European Conference
on Object-Oriented Programming (ECOOP’10), pages 354–
378. Springer, June 2010.

[14] B. Heeren and J. Hage. Type class directives. In PADL, pages
253–267. Springer, 2005.

[15] B. Heeren, D. Leijen, and A. van IJzendoorn. Helium, for
learning Haskell. In Proc. of the ACM Workshop on Haskell,
pages 62–71, 2003.

[16] C. Hofer, K. Ostermann, T. Rendel, and A. Moors. Polymor-
phic embedding of DSLs. In GPCE, pages 137–148. ACM,
2008.

[17] G. L. S. Jr. Parallel programming and parallel abstractions in
Fortress. In IEEE PACT, page 157. IEEE Computer Society,
2005.

[18] R. L. B. Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and
M. Vakilian. A type and effect system for deterministic paral-
lel java. In OOPSLA, pages 97–116. ACM, 2009.

[19] D. Lea. A Java fork/join framework. In Proceedings of
the ACM Java Grande Conference, pages 36–43. ACM, June
2000.

[20] M. Odersky and A. Moors. Fighting bit rot with types (ex-
perience report: Scala collections). In R. Kannan and K. N.
Kumar, editors, FSTTCS, volume 4 of LIPIcs, pages 427–451.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2009.

[21] M. Odersky, L. Spoon, and B. Venners. Programming in
Scala. Artima Press, Mountain View, CA, 2008.

[22] V. A. Saraswat, V. Sarkar, and C. von Praun. X10: concurrent
programming for modern architectures. In Proceedings of the
12th ACM Symposium on Principles and Practice of Parallel
Programming (PPOPP’07), page 271, Mar. 2007.

[23] J. Schäfer and A. Poetzsch-Heffter. JCobox: Generalizing ac-
tive objects to concurrent components. In Proceedings of the
24th European Conference on Object-Oriented Programming
(ECOOP’10), pages 275–299. Springer, June 2010.

[24] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. Streamflex:
High-throughput stream programming in Java. In Proceedings
of the 22nd ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’07),
pages 211–228, Oct. 2007.

[25] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors
for Java. In Proceedings of the 22nd European Conference on
Object-Oriented Programming (ECOOP’08), pages 104–128.
Springer, July 2008.

