
Languages and Performance Engineering:
Method, Instrumentation, and Pedagogy

Doug Lea

SUNY Oswego

dl@cs.oswego.edu

David F. Bacon

IBM Research

dfb@watson.ibm.com

David Grove

IBM Research

groved@us.ibm.com

Abstract

Programs encounter increasingly complex and fragile mappings to computing platforms, resulting in
performance characteristics that are often mysterious to students, practitioners, and even researchers. We
discuss some steps toward an experimental methodology that demands and provides a deep understanding of
complete systems, the necessary instrumentation and tools to support such a methodology, and a curriculum
that teaches the methodology and tools as a fundamental part of the discipline.

Categories and Subject DescriptorsD.3.3 [Programming Languages]: Language Constructs and Features

General Terms Languages

Keywords Programming languages curriculum

1. Introduction

A developer has a task to achieve, and uses a programming language, along with available library compo-
nents and associated program development support tools, to express a solution. The language, its libraries,
and tools provide a conceptual basis for a solution. When a correct solution is readily arrived at and performs
as expected, all is well.

Different programming languages present different models of computation, that spur developers to solve
problems using the idioms, coding techniques, and design patterns they have learned for structuring program
components – traditionally: functions, data plus procedures, (passive) objects (plus threads), communicating
processes, and so on. Often enough, none of these simple models entirely fit the problem at hand. And even
more often, the resulting programs bear fragile relationships to the platforms they execute on.

The performance of two similar programs under varying mappings might differ by many orders of mag-
nitude depending on issues such as branch prediction, cache misses, cache contention, the placement of
memory fences, mappings of threads to cores or processors, OS scheduling policies, memory footprint, res-
olution of virtual dispatches, loop parallelization, SIMD or GPU parallelism, inlining, boxing of primitives,
garbage collection policies, interpretation vs machine code compilation, reflection, opportunistic synchro-
nization elimination, contention retry policies, remote messaging, load balancing, memory, file, and network
layout, and so on.

Mapping programs onto systems with increasingly complex performance characteristics forms a problem
of our own creation. More than any other field, computer science is ascience of the artificial[5]. Natural
science is primarily concerned with the study of existing systems. In contrast, computer science deals
with both the construction and the subsequent behavioral study of a limitless set of possible designs and
implementations for the solution of a given problem.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

2008 SIGPLAN Workshop on Programming Language Curriculum , May 29–30, 2008, Cambridge, MA, USA.
Copyright c© 2008 ACM [to be supplied]. . . $5.00

As systems grow in complexity, performance engineering becomes a more central area of study and
instruction in its own right. At the same time, a basic understanding of performance is becoming essential
for all computer scientists and software engineers. Lack of sufficient awareness of the phenomena listed
above (among others) limits a student’s ability to usefully employ the algorithmic complexity tools (Big-Oh
etc) taught in the CS curriculum. Without performance models describing the mapping from languages to
machines, or a systematic methodology for measuring performance, the question of whether a program runs
fast or slow does not have a defensible answer; complexity analysis is at best a rough guide. As a result,
few students are able to intentionally write efficient programs, and many students unintentionally write
incurably slow ones without understanding or even noticing the consequences. This does nothing to improve
the current situation in practical software development of many projects being delayed or scrapped due to
performance problems, and the elevation to ”star” status of those few who can predictably engineer software
with predictably good performance. Even the best researchers often have only a superficial understanding
of the systems they have built. It is all too common to read published papers with uninformative passages
such as: “our optimization produced a mean speedup of 8.3%; two benchmarks slowed down considerably,
which we suspect is due to cache effects”.

In response, the language implementation research community (and, more broadly, “systems” fields of
computing) must undertake fundamental changes in research, practice, and education, to establish:

• A methodology that demands and provides a deep understanding of complete systems.
• The necessary instrumentation and tools to support such a methodology.
• A curriculum that teaches the methodology and tools as a fundamental part of the discipline.

2. Method

The essence of building systems is abstraction and hierarchical organization. In nature, we have chemicals,
atoms, and (sub-atomic) particles. Working at one level of abstraction, one can largely treat the underlying
layers as obeying fairly simple and predictable rules. In computer science, we have machine architecture,
operating system, language run-time, network, and application. These components and the abstractions of
the underlying systems that they present have proven enormously successful for the creation of large, rich
applications. However, breakdowns in the isolation of these abstractions at the implementation level have
had a continuing impact on computing research and practice.

Thirty years ago, the abstractions governing the mappings of programs to systems did a pretty good job
of insulating the upper layers of the hierarchy from their implementation. For instance, most machines had
only one processor, and transistors were scarce enough that CPUs were relatively simple, so the time it took
to execute a single instruction was highly predictable. A programmer could look at a page of assembly code
and accurately predict how long it would take to execute. Reliance on such simple leak-proof abstractions
also characterized thedescriptiveera of computer science research methodology. From roughly 1960 to
1975, papers usually described either an algorithm with a mathematical description of its performance, or a
system implementation technique with a qualitative description of its benefits.

Within some areas of computing, especially real-time systems, there have been compelling arguments
(notably by Lee [3]) that implementors must continue to provide dependable abstraction barriers that support
the reliable construction of applications. However, work in most areas of computing has long aimed to
escape the confines of the “real time means real slow” trap. As a result, once the most obvious uniform
performance enhancement techniques were exhausted, more narrow, special-case refinements proliferated,
and the limitations of mathematical modeling became apparent. This in turn led to a more empirical
approach to computer science research. In thereductionistera, roughly 1975 to 1990, experimental papers
turned to the measurement of running systems, but tended to focus on the performance of small components;
for example, PLDI papers evaluated optimizations on a few “kernels” such as the LINPACK benchmarks,
and manufacturers quoted performance in MIPS.

The reductionist approach became less tenable as even the designers of chips became increasingly unable
to account for CPU throughput. Features such as hardware multi-threading, speculative execution, and
non-uniform memory hierarchies succeeded in driving up average-case performance, but at the expense
of uniform predictability. Implementors became decreasingly able to ensure that program components are
alwaysfast, so they settled forusuallyfast, widening the gulf between typical and worst-case performance.
Thus, while functional semantics remained compositional, performance did not. Anomalies commonly seen
in practice reflect the failure to hierarchically isolate the mechanics underlying these abstractions. Around
1990, such observations led to a shift to aholistic methodology in computer science research, where
the effects of implementation techniques were evaluated by their effects on a set of (putatively) realistic
benchmarks. In programming languages, this was manifested by the preponderance of PLDI papers with
bar graphs showing end-to-end speedups for 8 or so benchmarks. This trend was paralleled in industry by
the rise of the SPEC benchmarks, which became widely used for research evaluation as well.

The products of holistic methodology now bring us to an era in which there is often an inverse relationship
between the quality and predictability of performance. As the average performance of systems improves,
the predictability of performance (i.e., the quality of its performance model) worsens. The price users pay
for usually-good performance is a complex and fragile performance model that varies over time as new
implementation techniques are discovered for both hardware and software. Performance has becomechaotic
in the technical sense of extreme sensitivity to initial conditions: The further a program is away from the
targeted design center of a system, the more the programmer must be aware of the possibilities of steep
drop-offs, and must learn to “program between the lines” [2] to cope withidiot savantcompilers, runtime
systems, and hardware employing bags of tricks that work well when they apply, but do not always apply.
These issues will move further to the forefront as platforms become even more diverse, executing programs
using combinations of multicores, multiprocessors, accelerators, FPGAs, clusters etc; each of which provide
opportunities for different kinds of narrowly targeted optimizations.

Current levels of complexity and porousness of abstraction barriers have reduced the value of a purely
holistic methodology. For a representative example, it has been observed on a number of systems that
execution time effects due to using-O3 versus-O2 compiler optimization levels in a C program can vary
by up to +20% to -11% merely by changing the length of shell environment variables [4]. The majority of
compiler optimizations presented in the literature achieve speedups of a similar or smaller magnitude. Our
confidence that such new techniques are even useful declines accordingly. The net effect is akin to that of
a chemist witnessing quantum-mechanical phenomena breaking the “abstraction barrier” of atoms, causing
molecules to fade out of existence for a while. If this were a common phenomenon, progress in chemistry
would nearly halt.

As performance variability increases, there is a consequent need for language, component, and system
designers and implementors to provide means of reducing this variability; often by providing lower-level
constructs and APIs that allow expert programmers to better control mappings onto platforms. Language
and their implementations will increasingly need to include meta facilities for automating (perhaps platform-
specific) program transformations or tunings with predictable performance outcomes.

At the same time, there is a need for methodologies closer to those of biology than of chemistry, focused
more onexplanationthan prediction. Why does a simple change to a program, or even a compiler switch
cause a dramatic change in performance? Why does a component run slower as the program using it runs
longer? Answers to these and hundreds of similar questions require advances in metrics and support tools.

3. Instrumentation

Isaac Newton said “What can be measured can be understood”. If we aspire to make computer science truly
be a science, and produce software engineers who truly perform engineering, we have a responsibility to
create the instruments with which to measure computer systems. Researchers must develop a comprehensive
methodology for instrumenting and measuring systems, and for properly performing statistical analysis on

the results of those measurements. Many of the ingredients are common to just about all empirical science.
However, a prerequisite that is often lacking in computer systems is the ability to instrument, measure and
observe systems in the first place.

The more quickly and accurately one can measure and evaluate a system, the more completely one
can study and improve it. This is obvious; yet the way in which this manifests in practice can be quite
surprising in terms of quality of experiment and productivity in development. While as rationalists we
tend to think of experimental factors in absolute terms (a factor either needs to be measured or it doesn’t)
the truth of the matter is that the ease with which a system can be introspected has an enormous effect
on our productivity as both developers and as scientists. To capture this we introduce a new bogometric:
hypotheses per minute(HPM), the number of hypotheses about a computer system that can be evaluated per
minute. While tongue-in-cheek, it will be familiar to anyone who has ever tried to understand the surprising
performance of a program. Many diverse factors can affect HPM: the quality of the instrumentation, the
availability of instrumentation for a particular subsystem, the ability to correlate information from different
sources, the availability of different visualizations of the data, and whether it is possible to view (and change
the view) of the data interactively. HPM provides a way for us to try to decide what to implement next from
this diverse and otherwise incomparable set of possible features.

We illustrate by way of some experiences of two of us (Bacon and Grove) developing and using the
TuningFork [1, 6] tool for the collection, visualization, and correlation of trace data from multiple levels
of a computer system. The examples below describe our use of the tool in the development of a real-time
multi-processor garbage collector in a Java virtual machine running on a NUMA multiprocessor. Our goal
here is not to advocate for TuningFork in particular, but rather to illustrate the importance of such tools and
their use as a scientific instrument for the study of total system behavior caused by complex interactions
across multiple sub-systems.

Sometimes the requirements for instrumentation are obvious. For instance, when developing a real-time
garbage collector, it is clearly important to understand the kernel’s scheduling decisions. Unfortunately,
developing such instrumentation in a way that is accurate, inexpensive, and precise (despite for instance
unsynchronized cycle timers on an SMP), is labor intensive. Developers and researchers commonly face
the question of whether it is worthwhile to spend the required effort (several person-months) to add this
capability if it is not already provided. Increasingly, the answer is yes. We were completely taken aback by
how a simple change to TuningFork’s user interface – allowing data streams to be dragged and dropped into
an existing figure – caused an enormous increase in productivity. We found that as users we simply tended
to explore more hypotheses because the user interface had made it easier to do. This feature only took a few
hours to add, but took us months to stumble upon.

A further requirement for tools isverticality, that is, the ability to collect and evaluate measurements
across the different sub-systems that make up the execution environment as a whole. As an example of how
we apply this in practice, consider Figure 1, which shows how we diagnosed an unusually longSPECjbb
transaction running on top of a real-time JVM running on top of a RHEL5 RT real-time Linux kernel
running on an 8-way NUMA LS-41 blade with 4 dual-core AMD CPUs.

In Figure 1(a) we begin by looking at the transaction data for Warehouse 2 (top row) from our application-
level trace, which shows a longStockLevelTransaction (588µs, as opposed to a norm of 350µs). Our first
hypothesis was that this was caused by some sort of interference by the garbage collector, so we included
data from the JVM trace showing GC activity on that thread (second row). We see that there is indeed some
GC activity, but it is extremely short (under 34µs) and does not account for the magnitude of the problem.
We then looked for activity by the JIT, the class loader, and the page fault handler – all of which were
negative (for brevity, they are not shown in the figure).

Our next hypothesis was that the thread is being preempted by the OS (even though it is running at
high priority), so we look at data which cross-correlates the Linux kernel trace with the JVM trace to show
exactly when the JVM’s thread was being run by the operating system (third row). This shows that the user’s

(a) A long StockLevelTransaction caused by GC activity and process migration

(b) Migration was caused by “rolling” OS timer interrupts and multiple priority-based preemptions

Figure 1. GC activity and OS scheduling for a long transaction

thread was preempted three times during the transaction. In fact, we also see that the thread was migrated
from CPU 1 to 4 to 2 to 5. Why did the OS schedule the thread so oddly? The answer can be determined
from Figure 1(b), which shows all activity on each of the 8 CPUs. From this, we can see that the thread
that runs Warehouse 2 (Java Mutator Thread 2 with OS thread id 18541), migrated in response to interrupt
servicing (irq andsoftirq – these are the 1ms OS scheduler timer interrupts). Interrupts run at priority 50,
so they preempt the Java thread running at real-time priority 10. However, because the IRQs do not occur
simultaneously, but instead in a “waterfall” about 50µs apart starting on processor 0, the Java thread is
repeatedly preempted as it migrates to a CPU which gets hit by an IRQ some tens of microseconds later.

The instrumentation, visualization, and vertical cross-correlation provided by TuningFork enabled us to
diagnose this problem in under half an hour. By comparison, the “rolling irq’s” had caused a problem which
a team of 6 Linux and JVM experts worked on for several weeks before finally diagnosing it with our help.
For the time being though, our explanation remains incomplete, and a fuller account awaits the existence of
additional tools. The observed migrations preempt the thread three times for a total of 85µs plus 34µs for
GC work, leaving roughly 100µs unaccounted for. We suspect that this is due to cache effects (sic), but the
group building the hardware performance counter component has not yet finished.

4. Pedagogy

A Computer Science and/or Software Engineering curriculum should teach students not only how to reason
about the semantics of programs written in various languages or styles, but also how to predict, control,
and/or explain their performance. This is challenging even for simple C programs. As we have shown,
it becomes both more difficult and more central for languages that increase the ”semantic gap” between
code and its implementation by virtue of reliance on managed runtime systems, more ”declarative” versus

procedural constructs, and dynamic type systems. While these often offer better average performance than
C code, programs are also more likely to encounter more naively unexpected performance anomalies. In
particular, the two step mappings in Virtual Machine based languages, first from programs to bytecodes,
and then to platform-specific instructions and support code, adds a second level of potential surprise.

One impediment to teaching and learning about performance is the existence of courses that continue to
isolate language implementation topics. In light of abstraction leakage and complexity, such practices may
convey harmful misconceptions about how systems work. Moreover, the bulk of current undergraduate (and
even graduate) education is concerned with the construction of systems in the small: systems for which
specifications are concise and precise, clear optimality criteria exist, and in the absence of optimal solutions
it is possible to clearly delineate the set of acceptable solutions. Unfortunately, the bulk of useful computer
software consists of systems with diametrically opposite properties: they are large, and the specifications
are complex or in many cases even impossible to elucidate.

Some of the ingredients of performance engineering can be profitably taught in a conventional manner –
for example memory hierarchies in a Computer Architecture course, locality and scheduling in Operating
Systems, and so on. While useful, the isolated study of for example caching does not itself prepare students
to take locality into account when writing programs – this requires more integrative learning experiences
than are common in current CS and SE courses. All students should be taught the basic performance
challenges encountered by language implementors, common algorithms and heuristic techniques that cause
program components to at least sometimes be fast, their typical boundary conditions, and the consequences
for programmers using these languages. It is not hard to arrange a good sampling of such experiences by
way of assigned programming projects.

Extended coverage of these topics might form the basis for new undergraduate or graduate courses that
refactor entrenched course content boundaries to provide a more coherent picture of language support in-
frastructure and its implications for software development. While topics in programming languages, com-
pilers, operating systems, and computer architecture provide some understanding of individual components,
course modules are also needed to convey how they fit together and interact, sometimes on a microsecond-
by-microsecond basis.

The use of performance analysis tools and instrumentation will be critical for success in educating stu-
dents to investigate and quantify the complex interactions across the many layers of the computer systems
with which they work. A debugger is a much better vehicle than a quiz for removing a student’s miscon-
ceptions about program semantics. So too will be instrumentation-based tools for removing misconceptions
about the mappings from programs to systems and their performance impact. Routine use of such tools will
train students (and ourselves) to demand answers rather than to accept ignorance.

Acknowledgments

Thanks to Josh Bloch, Jim Early, and Vijay Saraswat for reading drafts and suggesting improvements.
Joshua Auerbach, Perry Cheng, Matthias Hauswirth, Daniel Frampton, and David Ungar made major
contributions to the development of the TuningFork instrumentation and visualization tools.

References
[1] David F. Bacon, Perry Cheng, and David Grove. TuningFork: a platform for visualization and analysis of complex

real-time systems. InOOPSLA 2007 Conference Companion, pages 854–855, Montreal, Quebec, 2007.

[2] Gregor Kiczales. Beyond the black box: Open implementation.IEEE Software, 13(1):8–11, 1996.

[3] Edward A. Lee. The problem with threads.IEEE Computer, 39(5):33–42, 2006.

[4] Todd Mytkowicz, Peter F. Sweeney, Matthias Hauswirth, and Amer Diwan. Observer effect and measurement
bias in performance measurement. Submitted for publication, 2008.

[5] Hebert A. Simon.The Sciences of the Artificial. MIT Press, third edition, 1996. Originally published in 1969.

[6] TuningFork Visualization Platform. http://tuningforkvp.sourceforge.net.

