The Geneva Convention
On The Treatment of Object Aliasing

John Hogg Doug Lea
Bell-Northern Research SUNY Oswego
Alan Wills Dennis deChampeaux
University of Manchester Hewlett-Packard

Richard Holt

University of Toronto

1 Introduction

Aliasing has been a problem in both formal verification and practical pro-
gramming for a number of years. To the formalist, it can be annoyingly
difficult to prove the simple Hoare formula {x = true} y := false {x = true}.
If x and y refer to the same boolean variable, i.e., x and y are aliased, then
the formula will not be valid, and proving that aliasing cannot occur is not
always straightforward. To the practicing programmer, aliases can result in
mysterious bugs as variables change their values seemingly on their own. A
classic example is the matrix multiply routine mult(left, right, result) which
puts the product of its first two parameters into the third. This works
perfectly well until the day some unsuspecting programmer writes the very
reasonable statement mult(a, b, a). If the implementor of the routine did
not consider the possibility that an argument may be aliased with the result,
disaster is inevitable.

Over the years, solutions or workarounds have been found for aliasing
problems in traditional languages, and the matter is seemingly under control.
Unfortunately, as described below these solutions tend to be too conservative
to be useful in object-oriented programs.

The object paradigm has been sold partly on the basis of the strong
encapsulation that it provides. This is a misleading claim. A single object
may be encapsulated, but single objects are not interesting. An object must

be part of a system to be useful, and a system of objects is not necessarily
encapsulated.

However, the picture is not entirely bleak. Some partial solutions to
the object-oriented aliasing problem have been put forward. More research
is needed to fill in the rest of the puzzle, but the future looks bright if
researchers treat the problem from a truly object-oriented perspective.

This Convention defines and explains aliasing in the object-oriented con-
text. Various approaches are described, and proposals are made as to areas
for future research.

2 Definitions

We will start by defining a few terms informally. The model of object-
oriented systems used is a very simple one with a Smalltalk flavour, and
terms that are not further defined can be assumed to have their Smalltalk
meanings. Every object is either primitive (such as an integer or boolean)
or constructed. A constructed object has a set of instance variables which
hold references to other objects. (Every variable is thus implicitly a pointer
variable.) Every object also has a set of methods that make use of instance
variables, local variables and parameters. A method is invoked by sending a
message to an object, and may in turn send other messages and set variables.

The set of (object address) values associated with variables during the
execution of a method is a context. It is only meaningful to speak of aliasing
occurring within some context; if two instance variables refer to a single
object, but one of them belongs to an object that cannot be reached from
anywhere in the system, then the aliasing is irrelevant.

In accord with Smalltalk, and with Snyder’s Abstract Object Model
[Sny91], we assume that all method argument and result passing is per-
formed in a manner classically described as “by-reference”, but perhaps
better labelled as “by-identity”.

Objects may be accessed “directly” through a bound variable or pseu-
dovariable, or “indirectly” through the instance variables of other objects.
More generally an access path is a sequence of variable names. The evalua-
tion of the first variable within the current context yields a new context that
is an object with a set of instance variable, and the evaluation of each succes-
sive variable in the path yields a further object and context. In particular,
access paths may include traversals through the objects held in “collections”.

Within any method, objects may be accessed through paths rooted at

any of:
1. self.
2. An anonymous locally constructed object.
3. A method argument.
4. A result returned by another method.
5. A (global) variable accessible from the method scope.
6. A local method variable bound to any of the above.

An object is aliased with respect to some context if two or more such
paths to it exist.

JFrom a conceptual, rather than operational stance, aliasing occurs when
one object is accessed through more than one if its possible “roles” in a
given program (where the different roles are indicated by multiple names or
access paths), and aliasing is a problem whenever these roles conflict. Such
conflicts can be as simple as trying to simultaneously serve as a source and
destination in a matrix multiplication, or as intricate as an account crediting
a payment from itself through various side channels in a complex financial
system.

Determination that an object referred to in two different roles is actually
the same can be just as surprising conceptually as it is difficult analytically;
discovering and dealing with alias conditions in a program can be a seman-
tically meaningful challenge, not merely a technical exercise in determining
correctness and safety properties. To illustrate with an ancient example,
for many centuries astronomers used the distinct terms “evening star” and
“morning star” without realizing that both referred to one object, the planet
Venus. While this is disanalogous to programming situations in that detec-
tion of aliasing is a matter of analysis rather than scientific discovery, in
large enough programs the two are difficult to distinguish.

While some aliasing problems may thus result from insufficient problem
analysis, leading to situations in which roles accidentally conflict, perhaps
they more typically arise out of class and method design and implementation
decisions that either ignore the possibility of aliasing or intentionally disallow
it without making this fact visible to clients.

In any case, the fact that objects are referred to by variables describing
their roles, but are actually manipulated in terms of their identities means

aliasing is essentially always present, and aliasing problems are always possi-
ble within the object-based ([Weg87]) paradigm, whether or not constructs
like inheritance, concurrency and persistence are supported. However, such
features do accentuate and complicate problems. Even simple subclass poly-
morphism can make aliasing opportunities even more difficult to notice and
appreciate, especially in statically typed languages. For example, in a C++
function f(A& a, B& b), a and b may indeed be aliased if B is a subclass of

A or vice versa.

3 Aliasing and Objects

The aspect of an object-based system that does set it apart from traditional
procedural languages is the presence of persistent local state. An object
encapsulates a set of variables which are not externally visible, yet which
retain their values between method invocations. In traditional languages,
all aliasing is dynamic in the sense that it only exists for the duration of a
particular scope entry. (Global variables exist for the duration of a global
scope.) Upon scope exit, any aliases that were created within that scope
disappear. By contrast, when a method scope is left, only the dynamic
aliases involving its parameters and temporary variables go away. Instance
variables retain their values, and this static aliasing will still be present when
the object scope is reentered.

We worry about aliasing because the execution of a method may change
the behaviour of a seemingly uninvolved object, and this may happen even
without the affected object being accessed. This is because the real state of
an object is not fully specified by just its variables, but also upon the states
of the objects to which these variables refer. The value of a predicate (in
denotational terms) or the result of a method (in operational terms) may
depend upon the states of any object that can be reached from its context,
and thus the state of an object is the state of the transitive closure of objects
that can be reached from it. Therefore, two objects are effectively aliased if
the transitive closures of the objects reachable from them have a non-empty
intersection.

For example, consider a bank object containing a number of Portfolios,
among them portl and port2. Each Portfolio has (among other attributes)
a chequingAccount of class Account. An Account instance understands the
methods debit: and credit: which decrease and increase its balance respec-
tively. These methods are also understood by a Portfolio, which will apply

them in turn to its chequingAccount. A Portfolio instance also understands
a method transferTo:amount: which will debit itself and credit its first pa-
rameter by the amount of the second parameter. Now, will portl transferTo:
port2 amount: $100.00 really decrease the amount of money in portl?

There are two ways in which this can fail to happen. First, portl and
port2 may be the same portfolio, i.e., portl and port2 are aliases. This can at
least be recognized from within the bank object: we can require that portl
port2, where # is an object identity comparator.

Unfortunately, portl will also have an unaltered final balance if portl
and port2 are different, but they share a common chequingAccount. That
is, if the chequing account is aliased with respect to the bank context, then
the two portfolios are effectively aliased. This is more difficult to deal with
because we cannot even express the idea in a programming language that
claims to provide encapsulation. When the transferTo:amount: method of
portl is entered, there is no way to refer to the Account object held by the
Portfolio first parameter.

4 The Treatment of Aliasing

While the object aliasing problem has been known for some time [Mey88],
few discussions have reached print. We broadly categorize approaches that
we are aware of in terms of:

Detection. Static or dynamic (run-time) diagnosis of potential or actual
aliasing.

Advertisement. Annotations that help modularize detection by declaring
aliasing properties of methods.

Prevention. Constructs that disallow aliasing in a statically checkable fash-
ion.

Control. Methods that isolate the effects of aliasing.

4.1 Alias Detection

Alias detection is a post hoc activity. Rather than determining beforehand
whether variables could reasonably be expected to alias the same object,
it determines those alias patterns potentially or actually present in a given
program through static (compile-time) or dynamic (run-time) techniques.

Especially in the absence of a priori information, it is useful for compilers,
static analysis tools, and programmers to detect aliasing conflicts present in
programs. Compilers can then generate more efficient code, static analyz-
ers can assist formalists in discovering cases where aliasing may invalidate
predicates, and programmers can specially deal with troublesome conflicts.

Because aliasing is usually a non-local phenomenon, static detection re-
quires NP-hard “interprocedural” analysis ([LR91]), resulting in information
about whether any two variables never, sometimes, or always alias the same
object, where sometimes-aliased refers to situations in which variables are
aliased during some invocations but not others, including paths that are not
necessarily taken during actual execution.

The never-aliased and always-aliased cases can be very useful for opti-
mization purposes. For example, two arrays that are never aliased can be
independently manipulated in vector processors, while two variables that
are always aliased can be represented by a single pointer.

Unfortunately, given the ubiquity of aliasing opportunities in object-
oriented programs, full analyses are likely to be too slow to be practical,
and to result in the sometimes-aliased case more often than not. How-
ever, techniques like message-splitting and customization pioneered in self
([CU91]) show some promise for improving matters. For example, automati-
cally splitting off and specially generating code for aliased versus non-aliased
versions of a method may both simplify further analysis and allow further
optimizations.

Programmers themselves should write code to detect aliasing conflicts at
run-time, and take evasive action. However, this is not always possible: Run-
time alias detection via object identity comparison (#) is not fully supported
in most object oriented languages. While “pointer identity” operations can
sometimes be used for such purposes, they may not always work in all cases.
Notable examples include C++ variables where the same object is referred
to in terms of more than one of its multiply-inherited base classes, and, in
languages without full support for object persistence, identity preservation
for objects recovered from secondary storage. Also, as described above,
access protection may impede a programmer’s ability to check identities.

4.2 Alias Advertisement

Because global detection is impractical, it is important to develop methods
and constructs that can lead to more modular analysis. Both programmers
and formalists could benefit from constructs that enhance the locality of

analysis by annotating methods in terms of their resulting aliasing proper-
ties.

Without evidence to the contrary, people tend to make optimistic as-
sumptions about the aliasing properties of methods. For example, most pro-
grammers would find it very surprising if the or(arg) method of a Boolean
object were programmed to return self (if self held True) else arg. Even
though this is “correct” behaviour, programmers expect or to return a new
object that would not be aliased to either of the operands in later expres-
sions.

Yet, popular object oriented languages have no means of indicating
whether methods “capture” objects by creating access paths (instance vari-
ables, return variables, globals) that persist beyond their invocation.

Constructs or annotations indicating which object bindings are captured
by a method and/or which aliases a method is able to cope with could play a
role similar to, but independent of, qualifiers like const in C++ and related
constructs that integrate useful subsets of full behavioural specifications. As
with annotations describing mutability, “negatively” expressed qualifiers are
likely to be more useful.

Thus, in the same way qualifying a parameter with const advertises that
the argument is not modified, an uncaptured qualifier could indicate that an
object is never bound to a variable that could cause it to be further modified
via side channels after the method returns.

For example, a typical constructive implementation of or may then de-
clare that both self and arg are both const and uncaptured and that the
return variable is also uncaptured.

In addition to indicating (as a postcondition of sorts) that aliases not
be propagated, a method may similarly be advertised with the restriction
(precondition) that actual arguments never be aliased, via a construct like
noalias. This is the default restriction in Turing ([HMRC88]).

The pattern of const, noalias, uncaptured operands and uncaptured re-
sults is an object-oriented analog of “pure” functions (as opposed to pro-
cedures). As discussed in [Hog91], languages that specially mark such op-
erations in a special category (as in Turing) thereby enhance informal and
formal reasoning about program behaviour.

Actual enforcement of qualifiers like uncaptured and noalias leads to the
notion of alias prevention.

4.3 Alias Prevention

Alias prevention techniques introduce constructs that promise that aliasing
will not occur in particular contexts in ways that guarantee static checka-
bility by compilers and program analyzers.

Static checkability requires conservative definitions of constructs. For
example, a checkable version of uncaptured might prohibit «ll bindings of a
variable within a method except in calls to other methods with uncaptured
attributes. This would prohibit uses that programmers happen to know do
not propagate aliases, but cannot be syntactically determined to be safe.

A statically checkable form of noalias would be even more draconian. For
example, the rules used for aliasing prevention in Turing [HMRCS88] assume
that any change to a single entity in a collection is assumed to have affected
the entire collection. As a result, the strong aliasing protection of Turing
cannot be applied to Object Turing without losing the ability to express
common object-oriented idioms.

Conservatism is useful in that it ensures validity: the formalist will not
be able to prove formulas that could be invalid due to aliasing, and the
programmer will not be able to compile code in which aliasing could produce
surprises such as in the example above. However, valid formulas may not be
provable (i.e., the proof system is not even complete in the sense of [CooT78]),
and perfectly safe code may not compile without errors or warnings.

Thus, fine grained alias prevention constructs have limited utility. Higher
level constructs are required in order to overcome these problems.

Islands [Hog91] provide a mechanism for isolating a group of closely-
related objects. A set of syntactic mechanisms are used to ensure that no
static references can exist across the boundary of an island. An atomic
assignment operation that sets a previous reference to null allows objects to
be passed in and out across this boundary. Within an island, any system of
aliasing control can be used, but a nested island is a completely encapsulated
unit. This means that the prevention mechanism scales, and the control
strategy can therefore be confined to small groups of objects and need not
scale.

A more radical approach is that of [HW91], in which the traditional
assignment operator that copies its right side to its left is replaced by a
swapping operator that exchanges the bindings of its two sides. By avoid-
ing reference copying, aliasing is also avoided, and its problems disappear.
Naturally, the programmer must learn a different paradigm. It is unclear
whether this paradigm can mesh well with mainstream object oriented pro-

gramming techniques.

4.4 Alias Control

Aliasing prevention is not sufficient in itself because aliasing is not avoidable
under the conventional object-oriented paradigm. There will remain cases
in which the effects of aliasing cannot be determined without taking into
account the runtime state of a system. Under these circumstances, aliasing
control must be applied. The programmer must determine that the system
will never reach a state in which there will be unexpected aliasing, even
though this is not precluded by an examination of the code components in
isolation. The formalist must show that no predicate is affected by being
effectively aliased with the left side of any assignment statement. Control is
thus based on some analysis of state reachability.

A proof system for an object-oriented language (SPOOL) is given in
[AdB90]. This uses aliasing control exclusively; there is no prevention com-
ponent to the management strategy. The predicate language is an ex-
tension to the programming language in which encapsulation is removed.
Within some context, variables in other objects can be referred to using
variable paths as defined earlier. In the example above, we could assert
that portl:chequingAccount # port2:chequingAccount from the context of the
bank. This approach is impractical in anything but the smallest application,
but it forms the foundation for future work.

In [Wil91] an approach to aliasing control based on demesnes is pro-
posed. This concept is related to the reaches of [LG88]. A demesne is a
set of objects which participate in the representation of a given value. The
programmer defines for each class a demesne-function, which yields a union
of the singleton set containing self, and the demesnes of some or all of the in-
stance variables. ‘Backward’ pointers and cache variables would be amongst
those omitted. Several named demesnes may be provided for one class. The
functions need not be implemented, but are used to reason about a pro-
gram. For example, statements can be made about whether the demesnes
of two parameters are allowed to intersect. Statements about framing (what
objects may be changed by a method) made in terms of demesnes preserve
encapsulation, since the detailed definition of the demesnes is made within
their own classes.

5 Conclusion

The aliasing problem is attracting an increasing amount of attention. Com-

ponent reuse requires adequate description of component behaviour, and

this can only be given if components are sufficiently encapsulated for their

behaviours to be predictable. To ensure this, aliasing must be detected when

it occurs, advertised when it is possible, prevented where it is not wanted,
and controlled where it is needed.

References

[AdB90]

[CU91]

[CooT8]

[HMRCSS]

[Hog91]

[HW91]

[LRO1]

[LGSS]

Pierre America and Frank de Boer. A sound and complete proof
system for SPOOL. Technical Report 505, Philips Research Lab-
oratories, May 1990.

Craig Chambers and David Ungar. Making pure object-oriented
languages practical. In OOPSLA "91 Proceedings, October 1991.

Stephen A. Cook. Soundness and completeness of an axiom
system for program verification. SIAM Journal of Computing,
7(1):70-90, February 1978.

Richard C. Holt, Philip A. Matthews, J. Alan Rosselet, and
James R. Cordy. The Turing Language: Design and Definition.
Prentice-Hall, 1988.

John Hogg. Islands: Aliasing protection in object-oriented lan-
guages. In OOPSLA 91 Proceedings, October 1991.

D.E. Harms and B.W. Weide. Copying and swapping: Influences
on the design of reusable software components. IEFE Transac-
tions on Software Engineering, 17(5):424-435, May 1991.

William Landi and Barbara Ryder. Pointer-induced aliasing: A
Problem taxonomy. In Proceedings of the Fighteenth Annual
ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, pages 93-103, January 1991.

John M. Lucassen and David K. Gifford. Polymorphic ef-
fect systems. In Proceedings of the Fifteenth Annual ACM
SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pages 47-57, January 1988.

10

[Mey88]

[Sny91]

[WegR7]

[Wil91]

Bertrand Meyer. Object-Oriented Software Construction.
Prentice-Hall, 1988.

Alan Snyder. Modelling the C4++4 object model: An Applica-
tion of an abstract object Model In FCOOP 91 Proceedings
(Springer-Verlag LNCS 512), pages 1-20, July 1991.

Peter Wegner. Dimensions of object-based language design. In
OOPSLA ’87 Proceedings, October 1987.

Alan Wills. Capsules and types in Fresco: Program verification
in Smalltalk. In FCOOP °91 Proceedings (Springer-Verlag LNCS
512), pages 59-76, July 1991.

11

