
Interface-Based Protocol Specification of Open Systems using PSL

Doug Lea
SUNY at Oswego / NY CASE Center

dl@g.oswego.edu

Jos Marlowe
Sun Microsystems Laboratories
jos.marlowe@eng.sun.com

November 30, 1994

Abstract

PSL is a framework for describing dynamic and ar-
chitectural properties of open systems. PSL extends
established interface-based tactics for describing the
functional properties of open systems to the realm of
protocol description. PSL specifications consist of logi-
cal and temporal rules relating situations, each of which
describes potential states with respect to instances of in-
terfaces, their attributes, and the issuance and reception
of events. PSL accommodates refinement and exten-
sibility of specifications along the three dimensions
of interfaces, situations, and orderings. A specialized
form, PSL/IDL describes protocols in CORBA systems.

1 Introduction

An open system, in the technical sense [28, 1, 63] (not
necessarily the commercial sense) is encapsulated, re-
active, spatially extensible, and temporally extensible:

Encapsulation. An open system is composed of pos-
sibly many components, each described by one or more
public interfaces along with an otherwise inaccessible
implementation. Each component relies only on the
properties described in the interfaces of others.

Reactivity. Open systems do not just perform one ser-
vice. Functionality of an open system is ‘‘on-demand’’,
produced in reaction to a potentially endless series of
requests.

Spatial Extensibility. Open systems are potentially
distributed. Components need not bear any fixed
connectivity relations among each other. They may in-
teract via message passing mechanisms ranging from
local procedure calls to asynchronous remote commu-
nication.

Temporal Extensibility. Components and func-
tionality are not necessarily fixed across a system’s
lifetime. Typical characteristics include the ability
to add new components and new component types
(perhaps even while the system is running) as well
as the structured evolution of components to support
additional functionality.

For example, an open system supporting financial
trading might include a set of components that ‘‘pub-
lish’’ streams of stock quotes, those that gather quotes to
update models of individual companies, those serving
as traders issuing buys and sells of financial instru-
ments, and so on. Such a system relies on interfaces
(e.g., QuotePublisher) with multiple implementa-
tions. It contains reactive components handling a con-
stant influx of messages. It is intrinsically distributed
in order to deal with world-wide markets. And it may
evolve in several ways across time; for example to ac-
commodate a new company listed on an exchange, or
to replace components computing taxes with interop-
erable versions reflecting tax law changes.

1.1 Interface-Based Specification

Interfaces specify capabilities in open systems at vary-
ing levels of precision and formality. An interface
describes only those services that clients may depend
on, in terms of a set of constraints (e.g., a collection of
required operation signatures[8]) on a family of com-
ponents, not a complete or closed description of any
given component. Any implementation that provides
required functionality may be used.

Subtyping regimes over interfaces allow one inter-
face to be described as an extension, refinement, or spe-
cialization of one or more superinterfaces. Conversely
one interface may abstract a subset of the functional-
ity described in one or more subinterfaces. Typically,
base interfaces describe only those operations that are

1

involved in a set of related interactions, and ‘‘fatter’’
interfaces are derived via multiple inheritance[50]. One
interface type may describe only certain aspects of a
role listed more completely in various subinterfaces.
At an extreme, an interface might include only a single
service operation.

Roles. Interface-based specification hinges upon the
distinction between roles[64] and the objects that im-
plement those roles. This distinction is similar to that
between a role in a particular play performance (e.g.,
Hamlet) and the actor or actors playing the role (e.g.,
Richard Burton or Lawrence Olivier). In ordinary usage,
the term ‘‘role’’ is sometimes applied to a description
of a role rather than its instantiation. We reserve the
term ‘‘interface’’ for descriptions, and just ‘‘role’’, or
for emphasis, ‘‘role instance’’ for instantiations. The
concept of a role is nearly synonymous with that of a
subject in the essential sense of Harrison & Ossher[25].
A role may also be thought of as an abstract access
channel[61, 4] providing a view[59] of one or more com-
ponents, where each view is described by an interface
type that lists a set of related operations.

Implementation Objects. Interface specifications
deal only with roles, not objects. They describe prop-
erties of abstract interaction participants[33], each de-
fined via an interface that is described without com-
mitment to the computational entity or entities that
may implement it. Thus, the notion of a role is distinct
from the programming-level notion of an implemen-
tation object. In fact, components need not be con-
ceptualized as objects in the usual narrow sense of
the term. Implementation objects may also consist of
finer-grained instantiations (activations) of single pro-
cedures, or coarser-grained process-level components.

In classic modular development methods, there is
typically exactly one implementation type per interface
type and vice versa. In most object-oriented languages,
there may be multiple implementation subclasses per
interface. But in general, interface-based specification
supports a many-to-many relationship between roles
and objects, at both the type and instance level:

� One implementation object may support multi-
ple interfaces concurrently, or different interfaces
across time, and may be accessed via any of its
roles.

� One role may be implemented via a group of
otherwise unrelated objects.

For example, an OfficeWorker role might be im-
plemented using a Person object, or a Robot object,

or a set of job-sharing Persons, or even a mecha-
nism causing a new SpecialtyWorker object to be
constructed to handle each incoming service request.
A Person object might additionally play the roles
(hence ‘‘export’’ the interfaces) of Parent, Driver,
Customer, etc. Multiple interface instances, each seen
from a different client, may access the same Person
implementation.

CORBA. Systems constructed according to the
OMG[49] CORBA model are among the best exam-
ples of the interface-based approach to development. In
CORBA, component interfaces are described in CORBA
IDL, an interface description language indicating only
the functional properties of provided services in terms
of operation signatures. Implementations are often
process-level components distributed across machines,
communicating via message passing mechanisms me-
diated by an object request broker (ORB) that directs
requests to their destinations.

However, pure interface-based specification does not
assume any particular computational model or me-
chanics relating roles and objects. Descriptions of how
each instance of a role is mapped to one or more im-
plementation objects (and vice versa) lie outside of this
framework. Any number of programming constructs
and infrastructure schemes can be used to support at
least certain subsets of the possible mappings. For
example, most CORBA systems reify some aspects of
roles as ‘‘interface objects’’ that support some of the
above mappings by relaying messages to implemen-
tation objects. Other infrastructures (e.g., [9]) connect
role-based messages via channels to multiple objects
that together implement the role.

1.2 Extending Interfaces with Protocols

Common interface-based specification techniques are
limited in their ability to deal with dynamics, archi-
tecture, and quality of service. An interface alone de-
fines only ‘‘syntactic’’ conformance: Implementations
must respond to the listed operations. An interface
adorned with descriptions of the nature of operation
arguments and results defines per-operation functional
conformance. But even this does not always provide
sufficient information for designers and implementors
to ensure that components in open systems behave as
desired. For example, a new interface-compatible com-
ponent may not actually interoperate with an existing
one if it fails to send the same kinds of messages to
other components in the course of providing services.

2

Such dynamic and architecture issues often over-
whelm those surrounding service functionality. De-
scriptions of connection and communication patterns
among components are more central in the charac-
terization of many systems than are descriptions of
services[21, 20, 27]. To address such issues, PSL adds
descriptions of protocols. Protocols address the ques-
tions of who, what and when across interactions, as well
as the structural relations underlying these dynamics.
However, PSL differs from most other dynamic speci-
fication techniques (see Section 5) in order to reflect the
characteristics of open systems:

Implementation Independence. PSL specifications
describe dynamic and architectural matters without
pinning down implementations, connections or com-
munication mechanisms. PSL remains faithful to the
distinctions between interfaces versus implementations
that permit the development of open systems, while
still providing a means to specify that implementa-
tions obey necessary interoperability constraints. The
essential abstractions that support this include:

1. Separation of the notion of an instance of an inter-
face from its implementation(s).

2. Separation of the notion of descriptions of tran-
sient states (generalized as situations) from their
occurrences.

3. Separation of the notion that a message has been
issued or received from concrete communication
mechanics.

Openness. Anything that is not ruled out is assumed
to be possible. PSL specifications are always ‘‘incom-
plete’’. They document sets of properties and con-
straints without claiming that these fully describe any
component. In an open system, one cannot rule out the
existence of components, situations, and events that
are not explicitly excluded in a specification. Specifi-
cation systems based on ‘‘closed world’’ assumptions
(i.e., that the system implements only those features
specified) are uniformly more powerful in address-
ing questions about liveness, deadlock, interference,
and aliasing. Such questions often have no definitive
answer in open systems[46, 30].

Refinement. Protocol refinement is the act of intro-
ducing new rules that apply in more specific situations
than do general rules, without invalidating these more
general rules. Refinement is thus an additive process,
where rules accumulate, each adding specificity in a

narrower context. The opposite of refinement is gener-
alization. Here, a weaker set of rules is introduced in a
broader context.

There are two styles of refinement. Versioning-based
refinement is the act of inserting or extending rules
within an existing context, adding greater specificity or
enhancements in successive versions during the course
of initial development and/or system evolution. Spec-
ification frameworks themselves cannot provide di-
rect support for versioning, although compatible tools
would facilitate use. Specializations are additions that
are localized to new entities, described by new inter-
faces bearing subinterface relations to the originals. PSL
supports specialization by extending common subtype-
based tactics. New subinterfaces may extend interfaces,
new subsituations may extend situations, and new or-
dering constraints on new situations may extend those
described in existing rule sets.

2 PSL Concepts and Notation

In the course of defining concepts, we introduce three
notations. Our primary PSL notation helps define
basic abstractions. However, rather than establishing a
general syntax for expressions, types, interfaces, and so
on, we illustrate using PSL/IDL, a concrete syntax for
PSL using CORBA IDL value and interface types and
C/C++-style expressions, geared for use in CORBA
systems. Also, because representations of even simple
protocols stretch the limits of readability and writability
in textual form, we simultaneously define PSL/IDL-G,
a semigraphical form of PSL/IDL corresponding in
simple ways to the textual representation.

2.1 Interfaces and Roles

As a basis for specification, we assume the existence
of interface types that minimally include operation
signatures in their declarations, where signatures are
based on any reasonable type system on pure value
types such as integers, booleans, reals, records, etc. PSL
specifications provide additional constraints and rules
that hold for all instances of the associated interfaces.

Roles are instantiations of interfaces. While roles
are not the same as implementation objects, they bear
several definitional similarities in terms of identity,
state, and behavior[10, 18]:

� A role may have finite temporal existence. How-
ever, the lifetime of a role need not be coexten-
sive with that of any given implementation ob-
ject. Instead, lifetime properties are described with

3

respect to the liveness of handles used to access
instances.

� A role may be ascribed abstract attributes that pos-
sibly vary across time. However, because roles do
not necessarily bear a one-to-one relation to imple-
mentation objects, it is generally inappropriate to
ascribe ‘‘initial’’ values of attributes to roles that
hold across all instantiations. Specific operations
(e.g., ‘‘factories’’[51]) may establish instances for
which particular attribute values hold.

� A role may be said to issue and/or receive events.
These events are realized by message passing,
procedure calls, etc., among implementations.

Handles. For purposes of specification, each distinct
instance of a role is referenced via a unique handle.
Handles are an abstraction of names, pointers, static
designations, etc., used as references to abstract partic-
ipants and/or as message destinations. We assume the
existence of one or more handle types, and handle val-
ues that may be used in any value context. Handles are
not implementation-level pointers to concrete compo-
nents, although there may be a one-to-one relationship
between handles and pointers in a particular mapping
to a programming language, tool, or infrastructure.

There may be several distinct handle types in a sys-
tem. Handle types may include values that do not
provide access to instances (as in the case of ‘‘null’’
and ‘‘dangling’’ references), in which case we say
that the handle is not live. The equality operation
‘‘==’’ among handle values denotes only value equal-
ity among handles (also known as ‘‘shallow’’ equality),
not necessarily identity or equality of implementation-
level components.

Interfaces and Handles in PSL/IDL. PSL/IDL re-
quires that each role type be described by a CORBA
IDL interface. All PSL/IDL constructs appear within
protocol module declarations that have the syntac-
tic properties of IDL modules but contain only type
declarations, attribute function declarations, and/or
rules declarations. A PSL/IDL rules declaration is
an optionally named scope, parameterized over one
or more types, and containing protocol rules and/or
constraint rules.

PSL/IDL uses C/C++ expression syntax over
CORBA IDL value types. Predicates are boolean
expressions. For convenience, we add logical implica-
tion ‘‘-->’’ and its left-sided version ‘‘<--’’ to the list
of boolean operators. The fields of IDL exception,
struct and union values are referenced using dot

notation. To make them more useful in specifications,
PSL/IDL predefines common pure value functions on
the IDL sequence and string types. The functions
head, tail, empty, contains, prepend, append,
concat, equal and remove are predefined for se-
quences of all types for which there exists an equality
operation. Definitions are identical to those on parame-
terized list types in functional programming languages
such as ML[65]. PSL/IDL does not define types for
sets, multisets, or maps. Sequence types may be used
to equivalent effect.

PSL/IDL handle values are normally expressed us-
ing the syntax of IDL objrefs. These serve as both
references to instances of IDL interfaces and desti-
nations of CORBA messages. However, as discussed
in Section 2.3, PSL handle values need not bear a
one-to-one relation with objref values in CORBA im-
plementations. Also, to accommodate the range of op-
tions available in CORBA systems, PSL/IDL rules may
also be described at the level of individual activations
of individual operations. Handles of the form Inter-
faceHandle::OperationName denote abstract activations
(executing instances) of the indicated operations.

2.2 Situations

The concept of a situation extends the common notion
of abstract object state[42, 6]. Situations describe partial
views of possible system-wide states, factored with re-
spect to particular roles. Thus, a situation may describe
the abstract state of multiple components. Situations
are defined declaratively, at any level of granularity.
In PSL, situations are represented by parameterized
expressions describing ‘‘interesting’’ commonalities of
transient ‘‘possible worlds’’. These expressions classify
aspects of worlds in terms of characteristic values of
relevant attributes and event predicates with respect to
one or more roles.

In the same sense that an interface is instantiated
by a role, a situation is said to be instantiated by a
realization. And just as interfaces describe the properties
of an unbounded family of potential implementations,
situations describe the properties of an unbounded
family of potential realizations. However, realizations
are not explicitly instantiated by programmers. They
just unfold over the course of system execution. For
example, a situation might contain only the constraint
that a given File is open. The realizations of this
situation in a particular system include all ‘‘snapshots’’
of the system in which this File is open. The manner
in which such realizations are observed or inferred
in executing systems is outside the scope of PSL (see

4

Section 4).
A realization is thus a partial description of an ar-

bitrarily brief instance, an ‘‘actual world’’, in which
the predicate describing a situation holds. Realizations
represent individual observations, mappings, or infer-
ences about concrete system behavior, characterized
by expressions describing attribute and event predi-
cate values. A realization is said to match one or more
situations if all features required in the situation(s) are
present. The matching relation, s / S for realization s

and situation S, holds if the situation predicate for S
can be made true using the values in s (see [38] for de-
tails). Two or more realizations may all match the same
situation but in different ways because they differently
instantiate free parameters listed in the situation.

Situations in PSL/IDL. A situation is represented as
a parameterized predicate. We provide a full notation
in [38], but use here an abbreviated form in which
situations are defined within rules declarations as
boolean C/C++-style expressions within braces. Ex-
pressions inside situations may reference attributes and
event predicates, and may include in-line local decla-
rations and references to named message arguments.
PSL/IDL-G notation is the same except that situation
expressions are demarcated by solid rounded boxes
inside a rules declaration drawn with a dashed box
with name and parameters in the corner. For example,
the following situation describes the state of a File
being open:

rules f1(File f) {
{ isOpen(f) }

};

 isOpen(f)

rules f1(File f)

2.3 Events

An attribute is an abstract property ascribed to zero
or more role instances, and possibly assuming differ-
ent values in different realizations. In PSL, an event
predicate is a special kind of attribute representing
the issuance or reception of any kind of explicit com-
munication among participants, including operation
requests, operation replies, asynchronous messages,

exceptions, and so on. (The declaration and use of
attributes that are not directly tied to communications
events are discussed in Section 2.5.)

Messages Types. For each kind of message M pos-
sible in a system, we assume the existence of a cor-
responding record type MessageTypeM that minimally
includes fields describing the message ‘‘selector’’ (e.g.,
operation name) and arguments (if any). We will il-
lustrate PSL usage in systems of fixed message types.
However, at an extreme, all messages in a system might
have the same selector, with an argument format re-
quiring dynamic interpretation. Message types may
vary over any number of dimensions. For example,
all messages of a certain type may include fields suit-
able for use in routing over a particular topology of
distributed components.

Directed Messages. Message types (and the underly-
ing transport media) may support special ‘‘addressing
modes’’. In particular, we illustrate using systems of
handle-directed messages, where a ‘‘destination’’ handle
describing the intended receiver(s) is a required part of
any message. Similarly, the message type correspond-
ing to a procedural operation that returns a reply (or
perhaps just a ‘‘void’’ completion indication) includes
a handle describing the ‘‘return address’’ of the caller.
While the destination and return values in directed
messages normally bear a one-to-one correspondence
with actual receivers and senders, this need not be so,
for example in systems supporting implicit forwarding
of delegated messages.

We also assume an abstract function reply[msg]
that represents a reply message (not its issuance) of
the appropriate type for a given procedural request
msg, and a function throw[msg] that represents an
exception reply message for a request. As a notational
convenience, a reply or throw without a bracketed
message argument refers to the most closely associated
message whenever this is unambiguous.

Event Predicates. Messages themselves are not used
directly in PSL situation descriptions. Instead, PSL
contains two families of special attribute functions, in
and out. Inside situations, in(m) by(p) (where
m is of some type MessageTypeM , and p is a handle
value) denotes a context in which a particular message
instance m has been received by participant p, and
out(m) by(p)denotes a context in whichm has been
issued by p. The by(p) suffixes are optional. Omission
reflects lack of commitment about which participant
issues or receives a message.

5

PSL event predicates are otherwise treated as at-
tribute functions that happen to have predefined char-
acteristics. In particular, events never ‘‘unhappen’’:
Once a predicate describing the occurrence of an individual
event becomes true, it never becomes false. Event predi-
cates are monotonic attributes, behaving as persistent
‘‘latches’’. Once out(m) by(p) is true for a particu-
lar m and p, it is true forever more; and similarly for
in(m) by(p). Situations and protocol rules may thus
be phrased in terms of events that have occurred at any
time (cf., [43]).

Messages in PSL/IDL. All messages in PSL/IDL are
handle-directed. While PSL/IDL message conventions
correspond closely to those used in CORBA, the re-
lation need not be one-to-one. Mappings between
handles and the values used in CORBA message des-
tination fields may take several forms, even within the
same CORBA implementation[53, 26]. For example,
channel-style objrefs may be used. Channel values
[61] represent ‘‘paths’’ to role instances. Two or more
messages sent with the same channel identifier reach
the same instance, but two channel values that access
the same interface instance may differ. Object-reference
style objrefs may also be used so long as messages
are always delivered to implementation objects corre-
sponding to the appropriate roles; for example when
references are routed through proxies that relay mes-
sages to the appropriate implementations.

PSL/IDL message types are abstractions of
CORBA::Request, with a shorthand handle-based
message syntax delimited by angle-brackets:
m = < dest->op(args) from(src) >

Here, m is an instance of an implicitly ‘‘pattern-
matched’’ message type corresponding to the form
of the message expression; dest is a handle indicating
the destination role instance of the message; in the
case of procedural (reply-bearing) messages, src is an
optional handle describing the destination of a reply
message; op is an operation name literal; and args are
arguments, each of some value type as defined in a
corresponding interface. Messages need not be named,
and values are referenced directly rather than through
the implicit fields of m. Examples:
in(<aFile->write(c)>)
out(reply[<aFile->read()>](c))
out(throw(exc))

The types of aFile, c, and exc would be established
within the scope of some rules declaration or in
referenced IDL interface declarations. Bindings for
arguments follow normal IDL rules. Details on how
these map to base PSL constructs may be found in [38].

If necessary, the particular role instances issu-
ing or receiving messages may be indicated using
by(Handle). For example,
in(<aFile->write(c)>)by(aFile::write w)

allows a shift to an activation-level description focused
on a single write operation.

2.4 Protocol Rules

PSL protocol rules describe conditions under which
realizations of situations occur. Rules are collections of
situations linked by temporal operators. PSL temporal
operators are defined in terms of an underlying tempo-
ral dependency relation a � b among two realizations a
and b. If a � b, then a happens no later than b. (See Sec-
tion 2.9 for a more formal characterization.) The means
by which this relation may be observed or arranged are
outside of the scope of PSL proper (see Section 4).

Since it would not be very productive to describe
protocols via orderings among individual occurrences,
PSL protocol rules are instead described at the level of
situations (classes of realizations). Each of the following
operators relates the occurrences of realizations of a
predecessor situation A and successor situation B:

A I B
def
= 8a : a / A) 9b : b / B ^ a � b

A � B
def
= 8b : b / B) 9a : a / A ^ a � b

A JIB
def
= (A IB) ^ (A �B)

Rules in PSL/IDL. In PSL/IDL-G, rules are expressed
via lines connecting situations through corresponding
symbols drawn on the outside of the predecessor sit-
uation to the same symbol drawn on the inside of the
successor situation. In PSL/IDL, these operators are
designated as |>,# and <> respectively. The ‘‘earlier’’
situation is always to the left of the ‘‘later’’ one, and the
choice of operator depends on the kind of relation.

PSL/IDL (and PSL/IDL-G) rules always lie within
the scope of a given rules declaration. PSL/IDL sit-
uations are implicitly parameterized by the arguments
listed in their rules, as well as all declarations in their
predecessor situation(s). The PSL matching relation
(‘‘/’’) requires that unambiguous names be used in
any two situations related by operators. To ensure
this, any situation expression may reference, but not
redeclare, any symbol declared in its rules and its
predecessors. Thus, all value names in a set of or-
dered situations must be unique. Details may be found
in [38]. In the remainder of this section, we usually
illustrate with isolated rule fragments, ignoring most
scoping issues. More complete examples are presented
in Section 3.

6

The I Operator. The ‘‘forward reasoning’’ operator
A IB is used for relations in which A leads to B. The
relation is akin to that of a state transition, applying
to cases in which As always precede Bs. However,
unlike a state transition, A IB does not indicate that
instances of B form the ‘‘next’’ situations after those of
A. Instead, an instance occurs at some unspecified time
after an instance of A occurs, in a manner that neither
requires nor precludes concurrency or interleavings
with respect to any other non-conflicting rules. Also,
unlike state transitions, the orderings are not explicitly
‘‘triggered’’ by events. Instead predicates on events are
considered to be aspects of the situations themselves.

For example, a protocol rule for a relay operation
that sends m2 whenever m1 is received takes the form:

{ in(m1) } |> { out(m2) }

in(m1) out(m2)

In the scope of a particular PSL/IDL protocol, we
would have to be more explicit about types and mes-
sages. For example, a relay that accepts a (where a
is a handle of a role supporting operation m2) as an
argument of m1 and then issues m2 to a:

rules r1(Relay r) {
{ in(<r->m1(a)>) } |> { out(<a->m2()>) }

};

in(<r->m1(a)>) out(<a->m2()>)

rules r1(Relay r)

This rule does not in any way imply that Relay op-
erations must be single-threaded. Because there are no
constraints that indicate otherwise, two or more differ-
ent ‘‘threads’’ of this rule may be active concurrently,
each triggered by a realization corresponding to a dif-
ferent instance of an m1 message. On the other hand,
this specification does not preclude implementation via
a single-threaded relay object either.

Once a predicate describing the occurrence of an
individual event becomes true, it never becomes false.
Thus, event predicates ‘‘latch’’ from left to right in
PSL linked situations. For any event predicate e, if
e holds in A, then it also holds in all successors of A.
(This property does not necessarily hold for expressions
on attributes that are not tied to event predicates;

see Section 2.5). For example, the first relay rule is
equivalent to one explicitly mentioning in(m1) in the
successor situation:

{ in(m1) } |> { in(m1) && out(m2) }

The � Operator. The ‘‘backward reasoning’’ opera-
tor A �B is used for relations in which A enables B,
applying to cases in which Bs are always preceded by
As (or are ‘‘caused’’ by As, under some interpretations
of this overloaded term).

For example, a desirable rule in most systems is the
no spurious replies rule; for any procedural message
req:

{ in(req) } # { out(reply[req]()) }

in(req) out(reply[req])

This rule says that replies are sent only if messages
are received. It does not say that requests always lead to
replies, only that replies are never sent unless preceded
by requests. In PSL/IDL, this rule is considered to
be predefined for all procedural requests, since it is
enforced by CORBA.

Separate rules may link multiple right-hand-sides to
the same left-hand-side to describe multiple possible
effects. For example, we could add another rule stating
that req may lead to an exception:

{ in(req) } # { out(throw[req](xcpt)) }

This may be pictured together with the first rule, re-
flecting the fact that rules are combined conjunctively
(i.e., implicitly anded via ^):

in(req)

out(throw[req](xcpt))

out(treply[req])

TheJI Operator. The A JIB operator is used for if-
and-only-if relations, in which both everyA is followed
by a B, and every B is preceded by an A. For example,
another desirable global rule is the one-to-one delivery
rule, for any m:

7

{ out(m) } <> { in(m) }

in(m1) out(m2)

This says that all and only those messages that have
been issued are ultimately received. The JI relation
may be used to provide guarantees about procedural
operations. For example:

{ in(req) } <> { out(reply[req]()) }

in(req) out(reply[req])

This strengthens the above � form to assert that a reply
to req must be issued, thus precluding the possibility
of exceptions or other non-procedural behavior.

Sequences. A single rule may include chains of sit-
uations connected by temporal operators to describe
sequencing. We express sequences of, for example, the
leads-to operator as A IB IC. This indicates (A IB)
^ (B IC) while also extending scoping so that expres-
sions in C may reference terms in A. Chains across the
other operators are expressed similarly.

For example, a special protocol in which a relay
outputs m3 after receiving the ordered fixed messages
m1 followed by m2 could include a rule of the form:

{ in(m1) } |> { in(m2) } |> { out(m3) }

in(m1) in(m2) out(m3)

If we did not care about the ordering of m1 and m2, we
would have written this using simple conjunction of
event predicates:

{ in(m1) && in(m2) } |> { out(m3) }

On the other hand, if we wanted to claim that this
m1-m2 ordering were the only one possible, we could
add the rule:

{ in(m1) } # { in(m2) }

Operator Properties. In addition to their definitions
in terms of �, the principal PSL operators may be
characterized in terms of inferences that they support.
These include, for all A, B, C containing predicates
meaningful in their scopes:

A I fTRUEg A � fFALSEg
fFALSEg IA fTRUEg �A
A IB, B IC ` A IC A �B, B �C ` A �C

A IB, B JIC ` A IC A �B, B JIC ` A �C

A JIB, B IC ` A IC A JIB, B �C ` A �C

Note that no simple relation between A and C can be
derived given only A IB and B �C or vice versa.

2.5 Attributes

So far, we have illustrated protocol rules using only
special attributes representing event reception and is-
suance. But PSL specifications may include declara-
tions of attributes of any kind. In PSL, attributes are
abstract functions of handle and/or other value type
arguments; for example function isOpen takes a File
handle as an argument.

As with other PSL constructs, the relationship be-
tween abstract attributes and their implementations (if
any) is outside the scope of the framework. For ex-
ample, the attribute isOpen is a hypothetical function
that might actually be computed (perhaps only approx-
imately; see Section 4) as a side-effect-free procedure,
a function whose value is deduced by an analytic
tool, and/or a ‘‘derived’’ function that is symbolically
definable or otherwise constrained in terms of other
attributes. The use of an attribute in PSL does not
commit implementations to ‘‘know’’ its values in any
computational sense, and even if implemented, does
not mandate that the value be computed by any com-
ponent it describes.

In PSL/IDL, attributes are declared as auxiliary func-
tions within the scope of a protocol module using
normal IDL/C++ function syntax, and where all func-
tion arguments are explicit. We use function syntax
in PSL/IDL rather than IDL attribute syntax. In
IDL, the keyword attribute is only a stylistic device
for declaring parameterless operations within interfaces.
For example, assuming existence of an IDL interface
File:

protocol module fm {
boolean isOpen(File f);
};

Among the most common forms of attributes used in
PSL are ‘‘relational’’ or ‘‘connection’’ attributes that
represent the values of handles that a role uses to
communicate with others. For example, a File might
be ascribed attribute IODevice dev(File f) repre-
senting a handle used in I/O requests. As is true for
any attribute, the values of connection attributes may
vary over time, subject to any other listed constraints.

8

2.6 Constraint Rules

Some conditions must always hold, across all possible
contexts. For a trivial example, if we declared attribute
notOpen(File f), we would want to claim that its
value is always equal to !isOpen(f).

The PSL notation for static constraints is based on the
necessity operator of temporal and modal logic[19, 62],
operator �. The expression �P indicates that P holds
for all time, over all possible worlds. In PSL/IDL
rules declarations, brace-demarcated expressions de-
scribing necessary restrictions among attribute values
are prefaced by []. In PSL/IDL-G notation, they are
listed with an unfilled box on their sides. For example:

rules f1(File f) {//...
[] { notOpen(f) == !isOpen(f) }

};

notOpen(f) ==

 !isOpen(f)

rules f1(File f)

Constraint rules limit the set of possible system states
to those in which the expressions hold. All realizations
must obey � constraints in addition to those explicitly
listed in situations. (All rules parameters implicitly
serve as universal quantifiers for the enclosed logical
expressions, and other ‘‘inline’’ declarations are implic-
itly existentially quantified.)

Relating attributes to events. One common use of
constraints is to relate non-monotonic time-varying
attributes to PSL ‘‘latching’’ event predicates. For ex-
ample, supposing that our unrealistically simple File
may be opened and closed only once, we might sup-
ply constraints indicating how attribute isOpen varies
with open and close events. Among other possi-
bilities, we could write this via the pair of constraint
expressions:

rules f1(File f) { //...

[] { isOpen(f) -->
out(reply[<f->open()>]()) }

[] { out(reply[<f->close()>]()) -->
!isOpen(f) }

};

Informally, the first constraint says that if a file is open,
then it must have at some time replied to an open
request (but not necessarily vice versa). The second
says that if the file has ever replied to a close request,
then it must not be open. These constraints might
be buttressed with a description of a FileFactory
operation that guarantees that isOpen is true upon
reply of its File handle result.

While constraints are typically used to relate concep-
tual attributes to event predicates in this manner, it is
not at all required, and sometimes not even possible to
do so. For example, if a File could be implemented by
a special kind of object that is initially open upon con-
struction without requiring an explicit open operation,
then the first constraint above would not hold. More
generally, attributes associated with ‘‘base’’ interfaces
are often only weakly constrained. They are further
constrained in declarations associated with different
subinterfaces.

While convenient, and sometimes unavoidable, the
use of unconstrained attributes is also notoriously trou-
blesome in practice[42, 11, 18], and requires care in
specification. When attributes are not tied to events,
there are no global rules stating how values change as
a function of events. Any required variation or invari-
ance in the values of unconstrained attributes across
time must be explicitly tracked in individual protocol
rules (see Section 3.4). As a matter of style, it is a good
idea to minimize use of such attributes.

Restricting events. Constraint rules may also relate
event predicates. PSL does not notationally distinguish
constraints that are ‘‘definitionally’’ true versus those
that are required to be true as a matter of system policy.
For example, to reflect the common requirement that
either a normal reply or an exceptional reply can be
issued for a procedural request req, but at most one of
these, we could (tediously) list constraints:

[] { out(reply[req]()) -->
!out(throw[req](x)) }

[] { out(throw[req](x)) -->
!out(reply[req]()) }

[] { out(r1 = reply[req]()) &&
out(r2 = reply[req]()) -->
(r1 == r2) }

[] { out(t1 = throw[req](x)) &&
out(t2 = throw[req](y)) -->
(t1 == t2) }

Because CORBA (like most systems) enforces these
conventions for all messages, such rules are predefined
for all message and exception types in PSL/IDL.

9

Uniqueness. The third and fourth rules above em-
ploy a standard logic trick for declaring uniqueness.
The third rule says that if there are two values matching
reply[req]() then they must be the same message.
This kind of constraint is common enough that we
define the PSL/IDL ‘‘macro’’ unique(expr), which is
false if there is more than one match. For example, we
could rephrase the last two rules above as:

[] { unique(reply[req]()) }
[] { unique(throw[req](x)) }

2.7 Subsituations

Like interfaces, states and classes, situations may be
specialized into subsituations that describe additional
features. Mechanics follow those for ordinary sets
defined via predicates. For example, situation Q:
f in(readrequest) && isOpen(f) g

is a subsituation of P :
f in(readrequest) g,

in which case we say that Q � P . If Q � P , then
fewer possible realizations match Q than P . Every
situation is a subsituation of the empty situation fg
(or equivalently fTRUEg), which is matched by all
realizations. The situation fFALSEg (matched by no
realizations) is a subsituation of all others.

We say that expression expr holds in situation S if
S � f expr g. Conversely, we define set-like opera-
tors A \ B and A [B in terms of the corresponding
boolean relations on their component expressions (cf.,
[18, 59]). In PSL/IDL A \ B is expressed as fexprAg
&& fexprBg, and A [B as fexprAg || fexprBg.

Subsituation relations are analogs of the subtype
relations underlying interface inheritance. The simplest
and most common means of constructing a subsituation
is to ‘‘strengthen’’ an expression by adding an and’ed
predicate p, since A\ fpg � A. Strengthening may also
occur by replacing a predicate with one that implies
it. For example, a situation including in(m) might be
strengthened by replacing it with the more committal
in(m)by(p).

Valid inferences mixing situation relations and tem-
poral operators include:

A IP \Q ` A IP A �P [Q ` A �P

P [Q IA ` P IA P \Q �A ` P �A

P IA, Q � P ` Q IA Q �A, Q � P ` P �A

A IQ, Q � P ` A IP A �P , Q � P ` A �Q

Partitioning. We do not use any special notation
to declare that one situation is a subsituation of an-
other except in the special case of disjoint union where

S = S1 � S2 � : : :� Sn. This represents a set of subsit-
uations Si that are constrained to completely partition
a situation-space S. Partitioned subsituations are mu-
tually exclusive. They cannot simultaneously hold.
Partitioning is thus one way to express the notion that
one situation ‘‘disables’’ another[66]. In PSL/IDL, par-
titioning is expressed using:
f case S1 case S2 : : :default g.

Successive cases are interpreted in the same way as
case, cond, and if : : :elsif statements in most
languages, implicitly negating the expressions in all
previous cases; default acts as a generalized else.
In PSL/IDL-G, partitioning is expressed via nested
stateChart-like [24] boxes that may contain expressions
common to all partitioned subsituations outside of the
nested boxes:

expressions common to
all partitions

partition 1 expressions

(No other partiion holds)

default

Conditionals. The most common use of partitioning
in PSL is to express conditional protocol rules. Ordering
operators ‘‘distribute’’ through situation partitionings
to describe conditional paths. For example, to indicate
that a TRUE reply is enabled for a request if some
function ok holds, and conversely for FALSE:

out(req)

default

in(req)

out(reply(TRUE))

out(reply(FALSE))

ok(req)

10

In PSL/IDL, ordering operators have lower precedence
than the && operator combining situations, and ex-
pressions common to partitions expressions must be
described using &&. Thus, the above example is ex-
pressed as:

{ out(req) }
<>
{ in(req) } && {

case { ok(req) } # { out(reply(TRUE)) }
default # { out(reply(FALSE)) }

}

2.8 Refinement and Generalization

Refinement constraints maintain consistency among
different rules and contexts. PSL protocol declara-
tions are parameterized with reference to interface
types. Specialized protocol declarations may be at-
tached to (parameterized by) instances of subinterfaces.
In PSL/IDL, when two kinds of roles differ in protocol
but not operation signatures, this may require construc-
tion of ‘‘dummy’’ IDL interface types just to give the
two types different names (cf., [5]. Attaching new rules
to subinterfaces allows commitment to more specific
protocols in special cases, without overcommitting in
the general case. Similarly, placing generalizations of
existing rules in a supercontext supports simpler high-
level views and allows other alternative specializations.

Of course, not all reasonable modifications are valid
refinements. For example, instances of a protocol
description could differ in that one corrects an error,
or removes unwanted behavior, or describes a subtly
different protocol, or imposes additional constraints
due to changed or overlooked requirements. Valid
refinement techniques include the following:

Adding Rules. New rules relating new situations,
as well as new constraints, may be added so long as
they do not conflict with existing ones. For exam-
ple, if ReadWriteFile is defined as a subinterface
of ReadFile, new rules applicable to write opera-
tions may be defined in rules for ReadWriteFile.
The rules for ReadFile would also still hold for all
ReadWriteFile instances.

Splicing Situations. A new situation S may be
spliced among existing ordered situations A and B,
so long as the original relation between A and B is
maintained. Thus, A IB may be extended to A IS

IB, or toAIB IS, or to the separate (AIS)^ (AIB),
and so on. Splicing allows arbitrarily complex subpro-
tocols to be inserted between specified end-points. For

example, a coarse-grained specification of a rule for a
procedural operation might list only the request and
reply:

{ in(req) } # { out(reply[req]()) }

A refinement may then specify internal structure such
as an interaction with a helper:

{ in(req) } <>
{ out(h = <helper->help()>) } #
{ in(reply[h]()) } <>
{ out(reply[req]()) }

Note that even though the �was juggled around, the
original sense of the relation is maintained. If necessary,
this may be checked formally. For example here, the
refined rule abbreviates the form (AJIB)^(B �C)^(C
JID) where A, B, C, and D represent the situations
in each line of the above PSL/IDL. From the first two
clauses we see thatA�C. Then applying the last clause,
we obtain A �D, as required by the original rule.

Subdividing Situations. A situation may be split into
subsituations, so long as all ordering relations are main-
tained across all paths along all subsituations. For
example, an initial rule for a boolean operation might
say:

{ in(req) } # { out(reply(b)) }

A refinement may split apart the conditions under
which it replies true versus false:

{ in(req) } && {
case { badstuff() } #
{ out(reply(FALSE)) }
default #
{ out(reply(TRUE)) }

}

Strengthening Relations. The relation A IB or A

�B may be strengthened to A JIB when this does
not conflict with other existing rules. For example,
a preliminary version of a rule may use � to indicate
that a particular exception may result from a certain
request in a certain condition. Assuming that no other
existing rules indicate otherwise, a refinement may
instead use JI to make the stronger claim that this
exception is always generated under this condition.
Similarly, we could strengthen the previous example
to use JI instead of � if we were sure that the listed sit-
uations represented the only ways in which the replies
could occur.

11

Weakening and Strengthening Situations. If A IB

in an original specification, a refinement may add a
new rule A0

IB0, where A � A0 and B0 � B. The
reverse relation holds for � . These are situational
analogs of type conformance[56], ensuring that rules
applying in the original versions continue to hold even
when refined. For example, consider an A IB rule for
a Relay r with attribute broken:

{ in(m1) && !broken(r) } |> { out(m2) }

In a refined version A0
IB0, we could have a weaker

left-hand-side (A � A0) and a stronger right-hand-side
(B0 � B), thus logically subsuming the original version:

{ in(m1) } |> { out(m2) by(r) }

The opposite maneuver would be either superfluous
or an error: If the second rule had been the original
specification, then it would have already covered the
first rule. And if we had wanted to restrict the second
rule to the first, the relation would not be a refinement;
we would create an unrelated (on this dimension)
protocol and/or interface.

2.9 Foundations

A more formal account of PSL constructs can be pro-
vided from the perspective of model theory [31]. Struc-
tures for possible worlds are generally of the form
< W;V;R > where W is a set of worlds. V is a
set of expressions over some basis, with an associated
function �(p; w), which is true if expression p holds in
world w.
R here stands for any number of defined relations

among the worlds in W. Chief among them is the rela-
tion generated by constraints. PSL � rules define the
set of all worlds that are possible, and a corresponding
relation containing every pair of possible worlds.

PSL situations define a another family of ‘‘static’’
equivalence relations R�. Situation S describes that
set of worlds for which its defining predicate PS holds
given the values in the world (i.e., fw j �(PS ; w)g). In
PSL this is expressed in terms of the matching relation,
/, between values holding in worlds and situation
predicates. The corresponding relationRS contains all
pairs of worlds that are members of this set.

The relationR� serves as the basis for PSL ordering
operators. This relation is simplest to describe formally
when expressions are restricted to event predicates on
fixed messages[23, 66, 55]. In this case expressions
in V are just characteristic predicates of sets of event
occurrences, and �(e; w) is true if w contains the events
of e. For example, suppose a satisfies ea = out(m1)

for some message m1, and b satisfies eb = out(m1) &&
in(m1). The relation a � b states that eb) ea. The
out(m1) event has not ‘‘gone away’’ in b. In fact, if
a � b, out(m1) holds no later than the realization in
which in(m1) holds as well.

Thus, when restricted to events, the relation R�

contains all (a; b) such that the set of events described
by ea must be be a subset of that described by eb.
When expressions are liberalized to allow reference to
arbitrary attributes, the� relation is no longer definable
in this semi-automatic manner, since it is not necessarily
the case that eb) ea. When attribute values are
unconstrained with respect to events, the relation does
not intrinsically reflect whether or how they vary.

3 Examples

3.1 Role Specifications

Even though protocols describe multi-participant inter-
actions, PSL declarations are frequently ‘‘one-sided’’,
describing a role with respect to a single interface. This
captures the modularity of protocols in which a partici-
pant’s interactions do not vary with respect to the types
or states of others that it interacts with. For example,
here is a fragment of a protocol for a simple File:

in(readreq = <f->read()>)

isOpen(f)

default

out(reply[readreq](char c))

 0 <= c && c <= 127

out(throw[readreq](NotOpen x))

rules filep(FIle f)

Here, the use of � linking the ‘‘normal’’ read reply
indicates that a situation in which a reply is generated
occurs only when a file is open and receives a read
request, but may not occur at all so far as can be deter-
mined from the perspective of the roles parameterized
within the current rules declaration. For example,
there may be ‘‘downstream’’ errors stemming from in-
ternal invocations that are not visible at this scope or

12

level of specification. However, if a reply occurs, the
return value c is subject to the listed constraints that
amount to a guarantee that the return value is a 7-bit
character value.

In contrast, the ‘‘exceptional’’ reply situation is linked
via JI , indicating that (only) when a read request is
received by a file that is not open, an exception reply to
the request is always generated. This does not indicate
that this is the only context in which the NotOpen
exception is thrown. It says instead that this is the only
context in which it is thrown as a reply to read. Had
we wanted to make the weaker claim that NotOpen
is possible but not guaranteed, we would have used
� . Had we wanted to make the differently weaker
claim that NotOpen is always issued not only here, but
perhaps also in some other context (i.e., even if the file
is open) we would have used the Ioperator.

3.2 Interactions

One-sided protocol descriptions can be useful even
when interactions are focused upon fixed sets of com-
munications partners. For example, consider the fol-
lowing fragments of a protocol for transactions in
which a Coordinator helps arrange the actions of
Transactors, with IDL interfaces:

typedef long TID;

interface Transactor {
boolean join(in TID tid);
boolean vote(in TID tid);
boolean commit(in TID tid)
void abort(in TID tid)

};

interface Coordinator : Transactor {
TID begin();
boolean add(in TID tid,in Transactor p)

raises (TransError);
};

The overall design is that Coordinators create (via
begin) transaction identifiers (TIDs) that are used to
index transactions. Each transaction consists of a group
of Transactor members, added via the add opera-
tion. The particular application operations that each
perform within transactions (perhaps bank account up-
dates) are not described in this set of interfaces. The
use of interface inheritance indicates that members may
be other Coordinators. Each Transactor may be
asked to join a transaction, and vote on whether to
commit versus abort.

To capture some of this in PSL/IDL, we first declare
a protocol module:

protocol module CoordM { // ...

Inside this module, we declare an attribute that will rep-
resent the handles of all members of a given transaction.
There may be several sets of members maintained by
each Coordinator, each referenced via its transaction
identifier (tid). PSL/IDL does not support any kind of
set construct, but we can use a sequence to equivalent
effect:

sequence<Transactor>
members(Coordinator c, TID tid);

Next is the auxiliary function validtid:
boolean validtid(Coordinator c,

TID tid);

A corresponding constraint declaration shows how
validtid is related to event predicates. A transaction
identifier tid is valid if it was created as the result of a
begin operation, but becomes invalid when the subject
of any abort or commit request. For simplicity, we
can isolate these constraints in a separately named and
scoped rules declaration:

rules valid(Coordinator c, TID tid) {
[] { validtid(c, tid) -->

out(reply[<c->begin()>](tid)) }
[] { in(<c->abort(tid)>) -->

!validtid(c, tid) }
[] { in(<c->commit(tid)>) -->

!validtid(c, tid) }
};

Two sample rules are shown in the accompanying
rules coord(Coordinator c) declaration. The
first rule says that on receiving a begin request, the
Coordinator replies with a tid value that has never
been used before. This statement, along with the
above constraints on validtid amount to a promise
that each tid value returned by begin is unique
and valid for the length of the transaction. In this way
PSL/IDL may be used to express the kinds of assertions
typically associated with operation postconditions, but
applies them to arbitrary ‘‘evaluation points’’ rather
than necessarily only upon issuance of a reply.

The main ‘‘thread’’ in the second rule says that upon
receiving an add request for a Transactor p with a
valid tid, a coordinator invokes p’s join operation.
If it then receives a TRUE reply, p is then a member
of members and the operation completes successfully.
The other cases are ‘‘error paths’’; one causing an excep-
tion, and the other a simple FALSE reply. Additional
situations and relations would surely be included in a
more realistic specification. For example, it may de-
scribe cases dealing with the possibility that !live(p)

13

default

!ok out(reply[a](FALSE)])

default

!validtid(c,tid)

contains(members(c,tid),p)

out(reply[a](TRUE)),

in(a = <c->add(tid, p)>)

in(reply[j](ok))

out(throw[a](tx))

out(j=<p->join(tid)>)

in(<c->begin()>) out(reply(tid))
empty(members(c,long tid)),

!out(reply[c->begin()](tid))

rules coord(Coordinator c)

(i.e., if p were not a live handle), the use of timeouts,
and so on.

Finally, we may add an additional constraint pre-
cluding the existence of any additional operations or
rules that cause p to become a member unless they
somehow invoke add:

rules(Coordinator c,Transactor p,TID t){
[] { contains(members(c,t), p) -->

out(reply[<c->add(p,t)>](TRUE)) }
};

3.3 Multiple participants

Parameterization is used in PSL/IDL both to fix the
frame of reference for a set of related rules, as well as
to encourage modular specification. While situations
in a given rules declaration may describe proper-
ties of any roles for which a handle is available, it is
stylistically preferable to limit attribute and event ex-

pressions to those declared as parameters to a given
rules declaration.

Parameterization over multiple participants allows
the perspectives and responsibilities of all parties need
to be taken into account simultaneously. This allows
greater precision in specification, although with a con-
comitant loss of modularity. This is especially useful in
those cases where any party responds in special ways
to another that do not apply to interactions with other
kinds of participants. Such rules may be seen as the
specification analog of multimethods[18].

For example, we may rework a more commit-
tal version of the add rule illustrated in the ac-
companying partial PSL/IDL-G declaration of rules
addp(Coordinator c, Transactor p), which
assumes for simplicity that p replies FALSE to join
only if it is already a member of the transaction.
For emphasis, situations describing the view of the
Transactor are shaded.

One sense in which this protocol is more committal

14

default

out(throw[a](TransError))!validtid(c,tid)

out(reply[a](FALSE))

in(reply[j](FALSE))in(reply[j](TRUE))

out(reply[a](TRUE)),

contains(members(c,tid), p)

out(j=<p->join(tid)>)

in(a = <c->add(tid, p)>)

rules addp(Coordinator c, Transactor p)

in(j)

default

contains(members(c,tid),p)out(reply[j](TRUE)) out(reply[j](FALSE))

is that rather than relying on a one-to-one delivery rule
to match the p->join request with its reception (and
similarly for the join reply), this version directly
connects the associated situations.

Along a different dimension, we could have pre-
sented a less committal version by omitting various
situations if we happened not to care about them for
the sake of this protocol declaration, and then perhaps
inserted them later as refinements. For example, the
join reply and its acceptance might have been elided
without changing the ordering requirements of the
remaining situations.

Also, in this particular example, there is nothing in
PSL/IDL stopping us from entering the rule in addp
directly into the coord declaration in the previous
section. Because p is available as a handle via the ar-
gument to add, we could have included the situation
descriptions directly referencing p inside the original
add rule, but with needless loss of modularity. More-
over, in any full protocol description including rules
for commit etc., in which multiple rules would need to
refer to the same p andc, we would have no alternative
to multiple parameterization.

Tools can alleviate such trade-offs between mod-
ularity and specificity. Rules in modular PSL dec-
larations often represent ‘‘snippets’’ [60] of a longer
protocol. Tools may show a more complete view
of a protocol by linking situations described in one
scope to those in others. Such tools may rely on
global axioms such as the one-to-one delivery rule when
available to match ins with outs, along with spe-
cial rules for matching the obligations and expecta-
tions of particular partners[17]. For example, a tool
might generate a multi-participant view of add given
the single-view forms of Coordinator::add and
Transactor::join. The resulting timethread[12] is
a path linking initial situations to terminal ones.

3.4 Additional Constraints

Recall the equivalence of the relay rules in Section 2.4:

{ in(m1) } |> { out(m2) }
{ in(m1) } |> { in(m1) && out(m2) }

This ‘‘latching’’ property of event predicates does not
necessarily hold for arbitrary attributes. For example, if

15

there were an unconstrained attribute ok(Relay r),
and we required that ok(r) persist as true across these
two situations, we would have to write:
{in(m1) && ok(r)} |> {out(m2) && ok(r)}

Constraint rules may be used to avoid such problems.
Constraint rules add requirements that do not other-
wise come ‘‘for free’’ in open protocol specifications.
Consider, for example, interfaces describing Accounts
that maintain balances:
interface Account { // ...
void setBalance(float b);
float getBalance();
long getSerialNo();

};

interface AccountFactory { // ...
Account makeAcc(long sn, float initbal);

};

As a start, we can declare a protocol module with
abstract attributes bal and serialNo, along with
simple postcondition-style rules stating that makeAcc
initializes bal and serialNo, getBalance ‘‘reads’’
bal, setBalance ‘‘writes’’ bal, and getSerialNo
reports serialNo:
protocol module accountm {
float bal(Account a);
long serialNo(Account a);

rules (Account a) {
{ in(<a->getBalance()>) }
<>
{ out(reply(bal(a)) }

{ in(<a->setBalance(b)>) }
<>
{ out(reply()) && bal(a) == b }

{ in(<a->getSerialNo()>) }
<>
{ out(reply(serialNo(a)) }

};
rules (AccountFactory f) {
{ in(<f->makeAcc(sn, initbal)>) }
<>
{ out(reply(a)) && live(a) &&
bal(a) == initbal &&
serialNo(a) == sn }

};
};

Encapsulation Constraints. It is useful here to add
a further constraint saying that the setBalance and
makeAcc operations are the only ones that affect the

value of attribute bal. Without such a constraint,
there is no requirement that this reasonable and often
implicitly assumed encapsulation property holds. This
may be expressed by relating bal to values associated
with replies from either of the two operations:

rules (Account a, AccountFactory f, float b){
[] { (bal(a) == b) -->

out(reply[<f->makeAcc(s, b)>](a)) ||
out(reply[<a->setBalance(b)>]()) }

};

Initialization Constraints. A similar tactic may be
used to describe attributes whose values are fixed for-
ever upon initialization. For example, to claim that the
serialNo is always the one established by the factory
operation, and further claim that initialization occurs
at most once per account:

rules (Account a, AccountFactory f, long s){
[] { (serialNo(a) == s) -->

out(reply[<f->makeAcc(s,b)>](a)) }
[] { unique(

out(reply[<f->makeAcc(s,b)>](a)) }
};

Single-Threading Constraints. We could further
require that processing of setBalance requests
is not subject to arbitrary interleavings (i.e., that
setBalance operations proceed serially), thus pre-
cluding multithreaded implementations. Again, with-
out such a constraint, there is nothing forcing this in-
terpretation. The restriction that no two setBalance
operations operate concurrently may be expressed by
saying that any message that has been received but not
replied to is unique:

rules (Account a, float b) {
[] { unique(

in(s = <a->setBalance(b)>) &&
!out(reply[s]())) }

};

Timing Constraints. The relative ordering approach
to protocol specification does not directly admit the
use of global timing constraints. However, it is very
much possible to describe constraints with respect to
one or more timers. (Although the physical/temporal
properties of timers themselves remain outside the
scope of PSL.) One way to impose such constraints
is via ‘‘client-side’’ protocol rules. For example, to
state that any client issuing a getBalance receives a
reply within N time units of some Timer with attribute
ticks:

16

rules (Object client, Account a, Timer tmr) {
{ out(m = <a->getBalance()>)

by(client) &&
long t1 == ticks(tmr) }

<>
{ in(reply[m](b)) by(client) &&
long t2 == ticks(tmr) &&
t2 - t1 <= N }

};

4 Methods and Tools

While PSL represents the core, it is only one piece of
a unified approach to the specification of open sys-
tems. A complete account requires models, languages,
and/or tools that map these abstractions to concrete
features of particular systems in order to construct
corresponding design methods and tools; for exam-
ple simulation, prototyping, verification, visualization,
testing, and monitoring. Such applications rely upon
mappings relating any given specification to code that
may conform to it. These mappings naturally vary
across the languages, tools, and infrastructures used to
implement a system:

1. Mappings between roles and implementation ob-
jects (components).

2. Mappings between expressions defining situations
and realizations observed or inferred in concrete
code and/or its execution.

3. Mappings between events and concrete communi-
cation occurrences.

Additionally, several of these applications require de-
scriptions of certain initial conditions of the system of
interest.

We illustrate some general mapping issues with
PSL/IDL. While the use of PSL in some systems
requires development of auxiliary configuration lan-
guages and tools to establish mappings, the particular
features of PSL/IDL along with those of CORBA permit
simpler tactics:

� PSL/IDL uses the same value type system as
CORBA IDL. OMG standards in turn already map
IDL value types to those of various implementa-
tion languages (e.g., C++[52]).

� PSL/IDL message types map directly to those used
in CORBA. Observations of messages may be used
to establish instantiation of corresponding event
predicates.

� CORBA Object Request Brokers (ORBs) and repos-
itories dynamically maintain information relating
values that are used as message destinations and
the locations of concrete implementation compo-
nents. These may be relied on to maintain implicit
mappings between interface instance handles and
implementation objects.

� Typically, the initial conditions of a CORBA ap-
plication amount only to the initialization of a
small number of components, avoiding the need
for extensive description of static configuration
properties.

CORBA also supports development of the instru-
mentation needed for dynamic execution tools. Event
monitoring may be accomplished through interposi-
tioning; the placement of intercepts between commu-
nicating components to tap communication traffic[67].
However, even if attention is restricted to event pred-
icates, mapping communications to event predicates,
and in turn realizations of particular situations, and
in turn rule instantiations is not a trivial matter in
a distributed open system (see [38]). However, pro-
vided that such observational apparatus is available,
one could create, for example, a monitoring tool re-
porting whether realizations matching listed situations
occurred and whether the corresponding ordering rules
were observed.

5 Related Work

The ways in which PSL constructs support interface-
based specification of open systems distinguish it from
most other approaches to protocol specification and ar-
chitectural description. While all such approaches may
be related at some level, they differ significantly in their
theoretical bases, definitional primitives, and range of
usability. The following brief comparison with some
well-known formalisms highlights their differences.

Preconditions and Postconditions (e.g., in Hoare
Logic [29]) employ the construct fAgsfBg, asserting
that program fragment s brings a program from a state
obeying A to one obeying B. The PSL constructs A IB

and A �B have similar usages, but split the different
senses of this relation when applied to ordered events.
PSL, like most other specification systems (e.g., [35]),
does not include any language-specific operational se-
mantics, and omits reference to s. PSL additionally
differs in its scoping and parameterization of situation
predicates.

17

Abstract Data Types (ADTs) (e.g., [39, 58]) describe
functional properties of ‘‘black box’’ components (e.g.,
via preconditions, postconditions, and invariants),
without describing the nature of their dynamic depen-
dencies or interactions. PSL attributes and constraints
share a similar basis, but are used primarily to describe
interaction constraints.

Architecture Description Languages (ADLs), mod-
ule interconnection languages, and related approaches
(e.g.,[40, 4]) usually extend an ADT-style basis to de-
scribe static configuration and communication prop-
erties of sets of components. This focus on statics
varies in degree across languages. PSL may be con-
strued as variant ADL best suited for systems with few
fixed configuration properties beyond those reflecting
the general purpose communication substrate of their
infrastructures; for example, ORB-mediated communi-
cation in CORBA systems.

Object-Oriented Analysis notations, at varying de-
grees of formality (e.g., [57, 33, 18]) describe classes of
objects in terms of attributes, relations, states, opera-
tions, and messaging. PSL generalizes, extends and
reworks the dynamic aspects of such concepts to apply
to interfaces of components in open systems. Unlike
some other approaches (e.g., [2, 67]) that add protocol
specifications to object-oriented interfaces, PSL does
not assume any particular model or mechanism relat-
ing these interfaces and roles to classes and objects.

Process Calculi (e.g., CCS[45]) and specification lan-
guages based upon them (e.g., LOTOS) model systems
as collections of abstract processes communicating via
messages, where each process and communication act
obeys a particular abstract computation model. In con-
trast, PSL specifications are non-constructive. They do
not rely on a particular computational model beyond
that implied by minimal assumptions about message
passing in open systems. PSL specifications contain sets
of constraints on behavior that may be implemented by
any kind of component meeting the constraints.

History-based Frameworks (e.g., [43, 47, 32, 13, 22])
specify actions that occur under given patterns of event
histories. These patterns are most often described
in terms of regular expressions or variants thereof.
Because PSL deals with roles in potentially distributed
systems, events as seen by a given instance are not
necessarily totally orderable. They can be ordered
only by �, not the � relation that may be seen by

any particular implementation object. Thus PSL history
patterns cannot be described as languages or regular
expressions[54]. They are instead indicated by linked
situations. Also, an event occurrence is construed in
PSL as just one kind of attribute (although one with a
special interpretation) ascribable to a role. Other kinds
of attributes can be defined as well. For example, one
set of instances of a File interface may be ‘‘born’’ in
an isOpen state, while others are not.

Event-based Frameworks (e.g., [36, 54, 9]) are typ-
ically based on orderings defined over raw events.
The PSL � relation serving as the basis for proto-
col operators is defined in a fashion similar to such
orderings, but ranges over abstract instances of situa-
tions described via event predicates and other arbitrary
attributes, not instances of events themselves. When
restricted to event predicates, these are related in a sim-
ple way under the intended mapping to raw events:
If the instances of two events are ordered, then so
are the corresponding instances of event predicates.
PSL operators, situations, and partitionings are more
closely related to corresponding constructs in event
structures and its variants[66, 23, 55], as adapted for
use in interface-based specification. Derivation of more
complete ties to such frameworks remains the subject
of further study.

Temporal and Modal Logic. As discussed in Section
2.9, PSL/IDL is an application of temporal and modal
logic[19, 62], akin to other frameworks (e.g., [37, 41, 14,
34]) that adapt temporal logic for specifying possibly
distributed systems, as well as related applied temporal
reasoning systems used in AI and object-oriented logic
programming (e.g., [42, 3, 16]). While nearly all such
efforts rely on a� operator or its equivalent to describe
necessary constraints over possible worlds, there is
considerable variation in how other temporal relations
are defined and used. The choice of relational operators
I and � as a basis for PSL appears to be unique in
system specification, but has parallels in tense logic in
linguistics[62] and situation theory in philosophy[6, 7].

A notable difference between PSL and most adap-
tations of temporal logic for system specification (e.g.,
TLA[37]) is that PSL omits any kind of step operator.
In temporal logic, step asserts that one predicate occurs
at the ‘‘next time step’’ after another. The omission
of step weakens analytic properties, but makes way for
refinement and extensibility properties necessary in the
development of open systems. The lack of step is anal-
ogous to the lack of a leaf assertion for IDL interfaces
or PSL/IDL situations. A leaf directive for interfaces

18

would assert that an interface has no possible exten-
sions (i.e., can support no additional operations). A
similar directive on situations would assert that a sit-
uation has no possible subsituations (i.e., can support
no further state decomposition; hence no unmentioned
event predicates). A step operator would further assert
that there are no possible intervening situations. All
of these assertions might be useful or even necessary
when analyzing partially closed subsystems, but are at
best problematic in the description of open systems.

Acknowledgments

Thanks to the members of the Sun PrimaVera and
Vantage groups, and to Desmond D’Souza, Dennis
de Champeaux, Peter O’Hearn, Doug Schmidt, Bob
Sproull, and Carolyn Talcott for helpful discussions
and comments.

References

[1] Agha, G., ACTORS: A Model of Concurrent Computation
in Distributed Systems, MIT Press, 1986.

[2] Aksit, M., L. Bergmans, & S. Vural, ‘‘An Object-
Oriented Language - Database Integration Model: The
Composition-Filters Approach’’, Proceedings, ECOOP
’92, LNCS 615, Springer-Verlag, 1992.

[3] Alexiev, V., Mutable Object State for Object-Oriented Logic
Programming: A Survey, Technical Report TR 93-15, De-
partment of Computing Science, University of Alberta,
1993.

[4] Allen, R., & D. Garlan, ‘‘Formal Connectors’’, Technical
Report CMU-CS-94-115, Carnegie Mellon University,
1994.

[5] America, P., ‘‘A Parallel Object-Oriented Language with
Inheritance and Subtyping’’, Proceedings, OOPSLA ’90,
ACM, 1990.

[6] Barwise, J., Situations and Attitudes, MIT Press, 1983.
[7] Barwise, J., ‘‘Constraints, Channels, and the Flow of

Information’’, in j. Peters (ed.) Situation Theory and its
Applications, Volume 3, CSLI Lecture Notes, Stanford
University, 1993.

[8] Baumgartner, G., & V. Russo, ‘‘Signatures: A C++ Exten-
sion for Type Abstraction and Subtype Polymorphism’’,
Software---Practice and Experience, 1994.

[9] Birman, K., & R. Van Renesse, Reliable Distributed Com-
puting with the Isis Toolkit, IEEE Computer Society Press,
1994.

[10] Booch, G., Object-Oriented Analysis and Design, Benjamin
Cummings, 1993.

[11] Borgida, A., J. Mylopoulos, & R. Reiter, ‘‘...And nothing
else changes: The frame problem in procedure specifi-
cations’’. Proceedings Fifteenth International Conference on
Software Engineering, IEEE, 1993.

[12] Buhr, R. & R. Casselman, ‘‘Architecture with Pictures’’,
Proceedings, OOPSLA ’92, ACM, 1992.

[13] Campbell, R. H., & A. N. Habermann, ‘‘The Specifica-
tion of Processs Synchronization by Path Expressions’’.
Lecture Notes in Computer Science 16, Springer-Verlag,
1974.

[14] Chandy, K. & J. Misra, Parallel Program Design: A Foun-
dation, Addison-Wesley, 1988.

[15] Coad, P. & E. Yourdon, Object-Oriented Analysis, Your-
don Press, Prentice-Hall, 1990.

[16] Davison, A., ‘‘A Survey of Logic Programming Based
Object-Oriented Languages’’, in G. Agha, P. Wegner,
& A. Yonezawa (eds.) Research Directions in Concurrent
Object-Oriented Programming, MIT Press, 1993.

[17] de Champeaux, D., Verification of Some Parallel Algo-
rithms, Proceedings, 7th Annual Pacific Northwest Software
Quality Conference, Portland, OR, 1989.

[18] de Champeaux, D., D. Lea., & P. Faure, Object-Oriented
System Development, Addison-Wesley, 1993.

[19] Emerson, E., ‘‘Temporal and modal logic’’. J. van
Leeuwen (ed.), Handbook of Theoretical Computer Science,
Volume B, MIT press, 1990.

[20] Gamma, E., R. Helm, R. Johnson, & J. Vlissides. Design
Patterns, Addison-Wesley, 1994.

[21] Garlan, D., & M. Shaw, ‘‘An Introduction to Software
Architecture’’. In V. Ambriola and G. Tortora (eds.)
Advances in Software and Knowledge Engineering, vol II,
World Scientific Publishing, 1993.

[22] Gatziu, S., & K. Dittrich, ‘‘Events in an Active Object-
Oriented Database System’’, Proceedings, 1st Interna-
tional Workshop on Rules in Database Systems, 1993.

[23] Gupta, V., ‘‘Concurrent Kripke Structures’’, Proceedings
of the North American Process Algebra Workshop Cornell
CS-TR-93-1369, 1993.

[24] Harel, D., ‘‘StateCharts: A Visual Formalism for Com-
plex Systems’’, Science of Computer Programming, 8, 1987.

[25] Harrison, W., & H. Ossher, ‘‘Subject-Oriented Program-
ming’’, Proceedings, OOPSLA ’93, ACM, 1993.

[26] Harrison, W., The Importance of Using Object Refer-
ences as Identifiers of Objects, Document 94.6.12, Object
Management Group, 1994.

[27] Helm, R., I. Holland, & D. Gangopadhyay, ‘‘Contracts:
Specifying Behavioral Compositions in Object-Oriented
Systems’’, Proceedings, OOPSLA ’90, ACM, 1990.

[28] Hewitt, C., P. Bishop, & R. Steiger, ‘‘A Universal Modu-
lar ACTOR Formalism for AI’’, Third International Joint
Conference on Artificial Intelligence, Stanford University,
August 1973.

[29] Hoare, C.A.R., ‘‘An Axiomatic Basis for Computer Pro-
gramming’’, Communications of the ACM, 12, 1969.

[30] Hogg, J., D. Lea, R. Holt, A. Wills, & D. de Champeaux,
‘‘The Geneva Convention on the Treatment of Object
Aliasing’’, OOPS Messenger, April 1992.

[31] Hughes, G.E., & Cresswell, M.J. An Introduction to Modal
Logic, Methuen, 1971.

19

[32] Jagadish, H., & O. Shmueli, ‘‘Composite Events in a
Distributed Object-Oriented Database’’ Distributed Ob-
ject Management, Morgan Kaufmann, 1994.

[33] Jarvinen, H., R. Kurki-Suonio, M. Sakkinnen, & K.
Systa, ‘‘Object-Oriented Specification of Reactive Sys-
tems’’. Proceedings, International Conference on Software
Engineering, IEEE, 1990.

[34] Jarvinen, H. The Design of a Specification Language for Re-
active Systems, Technical Report 95, Tampere University
of Technology, 1992.

[35] Jones, C., Systematic Software Development Using VDM,
Prentice Hall, 1986.

[36] Lamport, L., ‘‘Time, Clocks, and the Ordering of Events
in Distributed Systems’’, Communications of the ACM,
21(7), 1978.

[37] Lamport, L., The Temporal Logic of Actions SRC Research
Report 79, Digital Equipment Corp, 1991.

[38] Lea, D., & J. Marlowe, PSL: Protocols and Pragmatics
for Open Systems, Technical Report, Sun Microsystems
Laboratories, 1994.

[39] Liskov, B., & J. Guttag, Abstraction and Specification in
Program Development, MIT Press, 1986.

[40] Luckham, D., L. Augustin, J. Kenney, J. Vera, D. Bryan,
& W. Mann, ‘‘Specification and Analysis of a System Ar-
chitecture Using Rapide’’, IEEE Transactions on Software
Engineering, 1994.

[41] Manna, Z., & A. Pneulli, The Temporal Logic of Reactive
and Concurrent Systems, Springer-Verlag, 1991.

[42] McCarthy, J. & P.J. Hayes, ‘‘Some Philosophical Prob-
lems from the Standpoint of Artificial Intelligence’’, in
D. Michie and B. Meltzer (eds.), Machine Intelligence 4,
Edinburgh University Press, 1969.

[43] McCarthy, J. Elephant 2000: A Programming Language
Based on Speech Acts, Unpublished Manuscript, Stanford
University, 1994.

[44] Meseguer, J., ‘‘A Logical Theory of Concurrent Objects
and its Realization in the Maude Language’’, in G. Agha,
P. Wegner, & A. Yonezawa (eds.) Research Directions
in Concurrent Object-Oriented Programming, MIT Press,
1993.

[45] Milner, R., Communication and Concurrency, Prentice
Hall International, 1989.

[46] Mullender, S. (ed.) Distributed Systems, 2nd ed.,
Addison-Wesley, 1993.

[47] Nierstrasz, O. ‘‘Regular Types for Active Objects’’, Pro-
ceedings, OOPSLA ’93, ACM, 1993.

[48] Newmeyer, F. Linguistics: The Cambridge Survey, Cam-
bridge University Press, 1988.

[49] OMG, Common Object Request Broker Architecture and
Specification, Document 91.12.1, Object Management
Group, 1991.

[50] OMG, Response to the Object Management Group Object
Services Task Force Request for Information, Document
91.11.6. Object Management Group, 1992.

[51] OMG, Common Object Services Specification, Document
94.1.1, Object Management Group, 1994.

[52] OMG, IDL C++ Language Mapping Specification, Docu-
ment 94.8.2, Object Management Group, 1994.

[53] Powell, M., Objects, References, Identifiers and Equality,
Document 93.7.5, Object Management Group, 1993.

[54] Pratt, V.R., ‘‘Modeling Concurrency with Partial Or-
ders’’, International Journal of Parallel Programming, 15
(1), 1986.

[55] Pratt, V.R., Chu Spaces: Complementarity and Uncertainty
in Rational Mechanics. Technical Report, Stanford Uni-
versity, 1994.

[56] Raj, R., E. Tempero, H. Levy, A. Black, N. Hutchinson,
& E. Jul, ‘‘Emerald: A General Purpose Programming
Language’’, Software---Practice and Experience, 1991.

[57] Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, & W.
Lorensen, Object-Oriented Modeling and Design, Prentice
Hall, 1991.

[58] Sankar, S. & R. Hayes ‘‘ADL: An Interface Definition
Language for Specifying and Testing Software’’, in Pro-
ceedings of the Workshop on Interface Definition Languages,
ACM SIGPLAN Notices, 1994.

[59] Scholl, M., C. Laasch, & M. Tresch, ‘‘Updatable Views in
Object Oriented Databases’’, in C. Delobel, M. Kifer & Y.
Masunaga (eds.) Deductive and Object-Oriented Databases,
Springer-Verlag, 1991.

[60] Sproull, R., ‘‘Guide to the Trace Modeling Tools’’. Tech-
nical Memo, Sun Microsystems Laboratories, 1993.

[61] Strom, R., D. Bacon, A. Goldberg, A. Lowry, D. Yellin, &
S. Yemeni, Hermes: A Language for Distributed Computing,
Prentice Hall, 1991.

[62] von Benthem, J. The Logic of Time, Kluwer, 1991.
[63] Wegner, P., ‘‘Tradeoffs between Reasoning and Mod-

elling’’, in G. Agha, P. Wegner, & A. Yonezawa (eds.)
Research Directions in Concurrent Object-Oriented Pro-
gramming, MIT Press, 1993.

[64] Wieringa, R., & W. de Jonge, ‘‘The Identification of
Objects and Roles’’, Technical Report TR-267, Faculty of
Mathematics and Computer Science, Vrije Universiteit,
1993.

[65] Wikstrom, A., Functional Programming Using Standard
ML, Prentice Hall International, 1987.

[66] Winskel, G., ‘‘An Introduction to Event Structures’’,
REX’88: Linear Time, Branching Time and Partial Order
in Logics and Models for Concurrency Lecture notes in
Computer Science 354, Springer-Verlag, 1988.

[67] Yellin, D., & R. Strom. ‘‘Interfaces, Protocols, and the
Semi-Automatic Construction of Software Adaptors’’,
Proceedings, OOPSLA ’94, ACM, 1994.

20

