
Flattening C++ Classes�

Umesh Bellur Al Villarica Kevin Shank Imram Bashir

Doug Lea

New York CASE Center, Syracuse NY 13244

August 21, 1992

Abstract

Inheritance with derived classes and virtual functions are key design concepts in
C++. Despite this, their use can result in signi�cant degradation of run time perfor-
mance. We present a class
attening tool, which we believe will help eliminate the
overhead associated with virtual functions in C++ programs. A
attener may also
prove useful in the reuse, debugging, and understanding of C++ components. This re-
port deals with the issues associated with
attening, and then presents a detailed design
of such a tool.

�This work has been sponsored in part by a grant from Hewlett Packard to New York state CASE Center.

This report has also been submitted as NY CASE Center TR-92-23

1

Contents

1 Introduction 3

1.1 Related Work : 4
1.2 Overview : 4

2 Functionality 5

2.1 Performance : 5
2.1.1 Functional Description : 5

2.2 Empirical Results : 6
2.2.1 Timings : 7

2.3 Program Understanding : 8

3 Design of a Class Flattening Tool 10

3.1 Flattening Classes : 10
3.1.1 Stand-Alone Classes : 10
3.1.2 A Parallel-Hierarchy of Classes : 13

3.2 Flattening Variables : 15
3.2.1 Using Flat Classes : 15
3.2.2 Criteria : 15
3.2.3 Failures : 16

3.3 Client functions : 17
3.3.1 Local Variables : 18
3.3.2 Limitations : 18

4 Project History 19

4.1 Parsing : 19
4.2 Stand Alone Design : 19
4.3 Parallel Hierarchies : 20

5 Recommendations 21

5.1 Flattening Tools : 21
5.1.1 Policy Issues : 21
5.1.2 Implementation Issues : 21

5.2 Flattening Within Compilers : 22

A Source Code for Example 1 24

B Source Code for Example 2 26

2

1 Introduction

This report discusses a tool addressing with two important issues:

� Run time performance problems of C++ programs arising out of the use of virtual
functions and inheritance.

� Reuse in programming environments.

As one solution to problems in both these areas, we present a class
attener { a tool
that helps eliminate the class hierarchy in C++ programs by repackaging derived classes
as though they were base classes.

The main goal of this project is to build a stand alone facility which could be inte-
grated into a complete C++ program development environment such as the HP Soft-
Bench. Two possible bene�ts of this tool are:

1. To improve run time performance of C++ programs. In this situation the
attener
will act as a �lter between the preprocessor and the C++ compiler. The developer
can selectively
atten code to optimize the program for e�ciency.

2. To act as a useful option of a \class browsing" facility.

Additional constraints may be placed in order to maximize usability:

� It should be platform (machine and compiler) independent so that it can be made
available to a wide range of users.

� The tool itself should be optimized for e�ciency and should take up a minimum of
resources and time.

� It should be easy to use and should output clear, understandable code.

The position of the
attener in the usual process of code development is shown in
�gure 1. It serves as a �lter either between (1) the preprocessed C++ code and the
compiler, when used to optimize code, or (2) between the preprocessed code and the
display when used as an option in a browser facility.

One of the two approaches to
attening described in this technical report (the parallel
hierarchy method) does not aid in class browsing. It only helps improve the execution
performance. Conversely, the other method is aimed at generating easily readable code,
but cannot include support for the subtleties of C++ subclassing and function resolution
rules without semantic assistance from a compiler or other tool. As discussed below, we
have found that these designs have complementary strengths and weaknesses. And to
preview a conclusion, on the basis of our experience, it appears most productive to
specialize tools primarily addressing these separate roles.

3

compiler

rest of the

c++ code
preprocessor

preprocessed

c++ code flattener
flattened

c++ code

to compiler

to display

browser

window

Figure 1: An overview of the process

1.1 Related Work

There has not been much work directly related to C++ class
attening for the purpose
of achieving better performance. One approach was that of [1] wherein the authors
accomplish
attening by merging header �les. But this approach was limited in func-
tionality to exactly one level of inheritance, and the classes were written to conform to
the expectations of the tool.

Several existing browsers (e.g., [2]) include limited
attening capabilities that indicate
the presence of parent declarations, without actually reconstituting code.

1.2 Overview

The remainder of this report is organized as follows. In the next section we discuss why
and how
attening might be used, and present a high-level summary of desired func-
tionality. Following that we discuss in detail the design issues involved in constructing
a class
attener. We then report a summary of current status with a protype tool and
provide recommendations about future work.

4

2 Functionality

2.1 Performance

Inheritance and virtual functions are powerful mechanisms in any object oriented pro-
gramming language. Virtual functions enable polymorphism and enhance functionality
via inheritance and code sharing. However, the power delivered by these features is
associated with a certain cost.

Virtual functions are typically implemented as indirect function calls. The use of
indirection adds some small additional overhead to the normal cost required for non-
virtual methods and free-standing functions. When virtual functions perform nontrivial
computations, this cost becomes insigni�cant. However, for \lightweight" functions, like
those that merely return the value of a member variable, two problems emerge [3]:

� The calling overhead overwhelms computation time.

� Standard \backend" compiler optimizations are not possible, since the values of
returned variables and simple computations are not \visible" to the compiler, and
so cannot be simpli�ed, removed as redundant, or procedurally integrated.

Dealing with these issues are the best reasons for programmers to declare member
functions as inline. The e�ects of inlining are extremely context dependent. In the
worst cases, inlining may waste tremendous amounts of code space and (often as a
result of this) even slow down execution. In the best cases, actual space reductions and
order-of-magnitude speedups have been observed, mainly because of the downstream
optimizations that inlining enables. Because the e�ects are so application dependent,
programmers themselves are usually the best judges of when to use inlining.

However, because of the indirection involved in virtual function calls, existing C++
compilers cannot inline expand member functions declared as both inline and virtual

except perhaps in special situations. Thus programmers are not able to tune programs
involving virtual functions via selective inlining.

The simplest characterization of a
attener is that it is a tool that transforms code
so that more virtual inlines may actually be inlined.

Indeed, in order to support this kind of tuning, compilers would need to employ auto-
mated versions of the strategy used for the present compiler-independent tool. Chambers
and Ungar [4] have shown the utility of this approach (a form of \customization") in a
compiler for the object oriented language Self.

2.1.1 Functional Description

The general technique of
attening for performance is easy to describe. A
attener
accepts as input a program, along with the name of a class K (re)declaring or inheriting
at least some virtual methods from some superclass superK, as well as object declarations
that are indicated as
attenable (either through arguments to the tool or annotations

5

within the program text). It outputs (typically via a \pipe" to a C++ compiler) a
revised program identical to the input program, except

1. For every class K indicated, a new class FlatK is added. FlatK is identical to K

except that no methods are virtual. (As described in below, other classes and
methods may be added as well in order to obtain this e�ect.)

2. All indicated variable and object declarations of type K are changed to be of type
FlatK.

3. For each function f that could accept an argument of type K (as nominally indicated
via K or any ancestor thereof), a new version of f is created to accept type FlatK.

Thus, a downstream compiler will \see" flatK, with all functions non-virtual (and
possibly inlinable). The potential performance bene�ts come at the expense of the added
specialized versions of class and client code. Because both the original and
attened ver-
sions of classes will exist in a program, all cases in which objects are not transformed into

attened versions will continue to work, although not as e�ciently as those occurrences
that were
attened.

A more extensive tool would automatically detect objects that are known by the tool
to be safe for
attening. A declaration is safe if the object is never rebound to a variable
of a superclass type that is in turn sent to a function in which virtual methods are
invoked. (It is exactly and only this usage that absolutely requires support for dynamic
resolution of virtual functions.)

As described in more detail below. a full assessment of safety would require full
program-wide data
ow analysis. This is not a practical approach for such a tool, but
becomes possible if
attening were to become part of an optimization suite built within
a compiler. While this would be very desirable, simple strategies su�ce to construct a
useful tool. The tool should typically be used to avoid particular performance problems,
so manual intervention is e�ective.

The mere existence of a
attener tool can have a liberating e�ect on C++ class
design. Among other things, it encourages the good practice of declaring all members
as virtual unless there are conceptual reasons (not performance reasons) to do oth-
erwise. In those cases where full polymorphism is not needed, a
attener may remove
performance penalties.

In particular,
attening is especially useful in helping to remove performance penal-
ties in programs that make heavy use of abstract classes (classes de�ning interfaces in
terms of \pure virtual" functions). Most usages of
attening in practice should surround
such designs.

2.2 Empirical Results

Two examples demonstrate the ability of the
attener to improve runtime performance.
(The source code is shown in appendix A.)

6

Example 1 The base class has three virtual functions, that increment a member vari-
able by one, two, and three respectively. A derived class overrides the �rst two to
decrement rather than increment. A function accepts by reference two objects of
nominal base type, and invokes the three methods on each ten million times. The
driver invokes the function with two derived objects.

Example2 This is a set of matrix classes similar to those described in [3]. An abstract
base class declares pure virtual methods for determining the number of rows and
columns, and also for element extraction. A derived class implements these meth-
ods for a row-major matrix representation. The driver program computes the sum
of all elements in a 2000 X 2000 matrix.

These examples are among the best cases for
attening:

� The virtual functions are short expressions or manipulations on member variables.

� The functions are readily inlinable.

� Inlining leads to further compiler optimizations.

� The most common client applications involve derived class objects used in ways
that do not require dynamic polymorphism.

� Example2 is a classic abstract class based design where superclasses exist to de�ne
interfaces, not implementations, forcing all functions to be de�ned virtually solely
for declaration e�ects.

2.2.1 Timings

The following timings were observed on an otherwise idle HP/720 workstation using the
HP CC compiler.

File Time Flat Time Speedup Slowdown
(secs) (secs) (%) (times)

Example1 66.3 11.88 82.10 5.58
Example2 8.22 1.93 76.52 4.25

Speedup = 1� (FlatT ime=NonFlatT ime) (1)

Slowdown = NonFlatT ime=FlatT ime (2)

These �gures demonstrate the bene�ts of
attening; for example, the
attened Ex-
ample1 executes 82.1% faster than the original. Slowdowns, describe these from the

7

opposite viewpoint, in terms of the \penalty" for declaring functions virtual; for exam-
ple, introducing virtualness in Example1 causes it to run 5.58 times more slowly.

To demonstrate that this pattern of e�ects is generally machine and compiler inde-
pendent, the following results were collected on a Sun Sparc1+ workstation using the
GNU g++ compiler:

File Time(secs) Flat Time Speedup Slowdown
(secs) (secs) (%) (times)

Example1 66.5 23.20 64.00 2.83
Example2 8.34 3.66 56.11 2.27

Flattening can only provide backend optimizers with the raw material for further
program analysis. It was apparent while running these examples that extremely diligent
compilers might have further optimized these programs. For example, some array index
bounds checks that could be statically deduced to never trigger were not removed by
either compiler. As an experiment, a carefully hand optimized version of the matrix
sum function in Example2 was written, and found to have execution time of 0.43sec
on the HP720 showing that speedups of up to 97.7% (slowdown factor 44.2) might in
principle be attainable with
attening if compilers fully exploited all of the opportunities

attening may provide.

On the other hand,
attening is typically useful only for specially selected \bottle-
neck" classes and functions. The e�ects of
attening on larger programs in which these
components play lesser roles will be less dramatic.

2.3 Program Understanding

One of the obstacles to reuse in programming environments is that it is often extremely
di�cult to just locate all the classes that one needs to use [5]. Extensive use of inheritance
can make it more di�cult to track down all the methods of a class derived from several
parents. Class browsers with the
attening option will allow a developer to view members
of the base classes in addition to the class being investigated.

Developers have often complained about the di�culty of tracing the execution of code
with inheritance, since invocations often
ip back and forth between base and derived
class de�nitions of methods [6]. Debugging
attened code is simpler due to the lack of a
hierarchy; execution of the program conforms with the intuitive view of the programmer.
For example:

Class A {

8

public:

void a() { /* code for A::a */ }

virtual void f() { /* code for A:f */ }

}

class B : public A {

public:

void b() { /* code for B::b */ }

void f() { /* code for B::f (overriding A::f) */ }

}

can be
attened into a stand alone, single class something like:

class FlatB {

public:

void a() { /* code for A::a */ }

void b() { /* code for B::b */ }

void f() { /* code for B::f (overriding A::f) */ }

}

A programmer who wants to reuse class B now need look only at FlatB rather
than go through both class B and class A. The
attened class also has no virtual
functions and is a stand alone class (base class). Any uses of class B type objects will
now be
attened to FlatB. For example void foo(B& b); will be
attened into void

foo(FlatB& b);

9

3 Design of a Class Flattening Tool

The process of
attening may be divided into three separate issues, described in more
detail below.

Class Flattening: Creation of the principle
attened class(es).

Variable Flattening: Substitution of selected variable declarations and object con-
structions with
attened versions.

Client Function Flattening: Creation of functions accepting
attened versions of
classes as arguments, corresponding to each original function accepting the original
classes.

The design of a
attener is driven by the necessity to parse, store, transform, modify,
and output C++ code without altering the semantic structure in any way. It shares a
number of assumptions held in common across many such tools:

1. The original code passes successfully through a C++ compiler. Therefore, the

attener itself does no checking.

2. Since relevant declarations and usages may occur within any �le of a multi-�le
program, the entire program is put through the
attener at once. Alternatively, a
programmer may submit a segment of a program known to be entirely self contained
with respect to the
attened classes. (Note however that if source code for any
relevant class or method de�nition is not available, the tool may fail.)

3. Unless otherwise directed, the
attener may only add new declarations and de�ni-
tions, not alter existing ones.

3.1 Flattening Classes

There are two principle design alternatives for approaching the elimination of virtual
function calls from class hierarchies. The �rst is to create a stand alone class for each
derived class, that encapsulates all of the functions and data of the classes within the
hierarchy. We will refer to this alternative as the stand-alone approach in subsequent
discussions. The second path is to create a second class hierarchy, paralleling the original,
but in which all virtual functions are transformed into non-virtual ones. We will refer
to this approach as the parallel-hierarchy.

3.1.1 Stand-Alone Classes

A stand-alone class is a
attened class which is not a part of the inheritance hierarchy
of the program. An indicated (derived) class is used as the basis for constructing a (co-
existing)
attened version. For each selected class, a new
at class is created by including
all relevant members of each of the base classes. This inclusion is done recursively by

10

considering the parents of each of the immediate parents and so on until the
at class
being formed is truly stand-alone.

The essence of
attening is a weak form of symbolic execution. All operational
class relations, invocations, etc., in the original version must appear in the
attened
version. Because of the large number of C++ constructs available to de�ne subclasses
and their relations to others, there are a large number of corresponding issues, including
the following:

Name mangling: Since it is possible for both the base and derived classes to have
identically named members (data and methods) we need to \mangle" the names
of the base class members included in the
at class, and to track these names
throughout all other methods. For example:

class A{

int x;

void m() { ++x; }

};

class B : public A{

int x;

};

class flatB{

int x;

int FlatAx;

void m() { ++FlatAx; }

};

Type Of Inheritance: There are three ways in which a class can be used as a base
class for a derived class:

1. Public: No special actions.

2. Private: All inherited data and functions are retained. Even though inherited
members need not be not accessible from clients of the derived class, they may
still be invoked internally.

3. Virtual: The data representations of common bases must be included exactly
once.

Constructors and Destructors Both constructors and destructors are not inherited
at all. But to deal with situations wherein the constructor of a base class is called
in the initialization list of the derived class constructor we need to include the con-
structors of the base class in the
at class. One way to do this is by treating the
constructors as normal methods in the
at class. Other initializations (e.g., refer-

11

ences and constants) in the base must be transfered to the initialization sections
of the
attened derived. For example:

class A { class B : public A{

public: public:

int x; const int y; B(int i, int j) : A(i,j){ }

A(int m, int n) :y(n) { ~B() {B's destructor code;}

x = m; } };

A() { }

~A(){A's destructor code;}

};

class flatB {

public:

int FlatAx; const int FLatAy;

FlatAA(int m, int n) { FlatAx = m; }

B(int i, int j) :FlatAy(j) { FlatAA(i,j);}

~B() {

B's destructor code;

A's destructor code;

}

};

As here, we do not include the destructors of the base class in the
at class. since
these members are never explicitly called for the base class. However the nature in
which they are called implicitly requires that for a stand alone class the destructor
code of the base class be included after the destructor code of the derived class in
the destructor of the
at class. In case of multiple inheritance it is required to add
the destructor code of the base classes in the reverse order of their declaration as
parents of the derived class.

Propagated Declarations Typedefs and enumerations in the base class are inherited
and have to be included in the
atclass. But they need not be mangled in any way.

Static Methods Operator new is a good example. It is inherited, but the inherited
form can only be invoked using the scope resolution operator. Since it cannot be
included as operator new it must be included as a new member function of the
at
class rather than as an operator. (Other operator-syntax methods require similar
treatmnent.) For example:

class base {

public:

12

void* operator new(size_t t) { }

...

};

class derived : public base {

public:

void* operator new(size_t t) { }

};

class flatderived {

public:

void* operator new(size_t t){ ... } // Derived class's version.

void* Flatbasenew(size_t t){....} // Base class's version.

};

Friends Due to our assumption that the code input into the tool doesn't have any
access violations, \friends" declarations are made unnecessary by making all data
members and functions public. Thus, they may safely be ignored.

Self Clients Methods and operators that take other objects of the same class as argu-
ments are special cases of client functions, discussed below.

Assessment. The main problem with the stand-alone approach is its extreme sen-
sitivity to details in C++ \static semantics". While this need not be a di�cult issue
in itself1, it is a serious limitation that the tool cannot simply adapt to changes in the
language and re�nements in compilers as C++ becomes standardized.

3.1.2 A Parallel-Hierarchy of Classes

The parallel-hierarchy approach to
attening classes addresses some of the problems
associated with the stand-alone approach. A parallel hierarchy may be generated to
co-exist with an original hierarchy. Each class di�ers from its corresponding original
class only in that all virtual functions are made non-virtual. Of course, the names of
the classes are appropriately adjusted to re
ect that they are
at classes. For example,
given the following hierarchy:

class A {

public:

virtual f();

1But usually is. Given that no two existing C++ compilers currently agree on their interpretation and

implementation of some such details, the chances that a separate tool would be compatible with any one of

them appears remote.

13

virtual g();

h();

};

class B : public A {

public:

virtual f();

virtual g();

h();

};

This would be
attened into a co-exisisting parallel hirarchy:

class FlatA {

public:

f();

g();

h();

};

class FlatB : public FlatA {

public:

f();

g();

h();

};

Assessment. This approach does not address class browsing applications, since it
does nothing to move all de�ntions to a single view. Another de�ciency is that many
additional intermediary classes must be generated. This can add to the \code bloat"
already associated with the tool.

However, this approach is signi�cantly better for
attening for performance. The
most important design advantage is simplicity. All subclass, resolution, and access con-
trol rules in C++ work the same whether member functions are declared as virtual,
non-virtual, and/or inline. Thus, the
attener itself need not even be aware of such
rules, at least for purposes of
attened class generation. It may simply rely on the
downstream compiler to handle these issues. This also enhances maintainability. The

attener need not be reworked to comply with evolving C++ semantics rules.

14

3.2 Flattening Variables

3.2.1 Using Flat Classes

Regardless of which of the above approaches is chosen, there are three ways of using
at
classes in other parts of a program. The �rst method is to
atten some classes and use
these
at classes with knowledge about how the
attener produced them. Programmers
can, for example,
atten a speci�c derived Matrix class and begin using that
attened
class in their new code (for speed). The drawbacks of this approach are that an intimate
knowledge of how the
attener works is required, changes in the code in any part of
the Matrix hierarchy won't be automatically propagated to the
attened classes. Also,
changes in
attener requires that the programmer be up to date on the way it works,
etc.

The more interesting way is the automatic method. In this method, the
attener goes
through the source code of a program and changes the type of certain variables from
\Type" to \FlatType". Only a restricted set of variables can be safely converted to use

at classes. The disadvantage of this approach is that without prohibitively expensive
analysis, the
attener has to be conservative about what it can
atten. There are some
cases where the
attener might be able to use
at classes but doesn't because the code
broke one of the (simple) rules that the
attener didn't consider safe, even though a
human might be able to determine that it is safe. Of course, the automatic method has
the obvious advantage thatprogrammers do not need to know how the
attener works;
code can experience a speed-up as a result of blindly using the
attener.

The last method is a combination of the �rst two. The
attener performs certain
substitutions automatically, but programmers are allowed to sprinkle source code or
otherwise indicate directives to the
attener. For purposes of generating a practical
tool, this appears to be the best alternative.

In the remainder of this section, we assume use of the parallel-hierarchy approach
with respect to method names, etc.

3.2.2 Criteria

It is possible to de�ne various criteria for dealing with variables of
at classes instead
of their corresponding classes in programs (global variables), functions (local variables),
and classes (class members). It is generally safe to
atten declarations of the forms:

1. ClassName var1;

2. ClassName& var2 = x; where x is of the
attened type.

3. const ClassName* var3 = y; where y is an address of the
attened type.

In all these forms, the types of the variables are known and �xed. That is, var1,
var2, and var3 are all bound to objects whose types are �xed while the variables exist.
Since the types are known and �xed, there is no need to use the dynamic dispatching
facilities of C++.

15

It is not always possible to
atten regular pointers to objects (ClassName* var4 =
...) because di�erent objects may be bound to those pointers at di�erent times during
the execution of the program. If it were feasible to do a full data
ow analysis of the
entire C++ program, it would then be possible to
atten pointers which are known to
only point to a certain type of object throughout the program's execution (that is, the
pointer isn't used polymorphically). Of course, there is a very high cost associated with
performing this kind of static analysis (if it is possible at all).

3.2.3 Failures

If the address of a potentially
attenable object is taken (directly, by using the & op-
erator; or indirectly, by assigning it to a reference or by passing it by reference to a
function), the object cannot always be
attened. Although the object's type will not
change, the pointer to the object may be assigned to more basic pointers. In that case,
since the
attened object is not in the inheritance hierarchy anymore, this would cause
a type con
ict and will make the C++ compiler fail.

Consider this code fragment, assuming base class A, subclass B, and
attening on B:

f() {

B d; // the flattener would make this statement ``FlatB d;''

B* dp = &d;

B& dr = d;

A* bp = dp; // this is allowed by C++

}

In this small example, d should not be
attened. The assignment \A* bp = &d;",
where d had been
attened, would not be allowed by the C++ compiler (since d's

attened type FlatB is not derived from A). Changing bp to match the type of d is not
allowed. This is because bp might later be used to hold other derived objects of A.2

This analysis is di�cult to automate. Once all of the variables are pre-screened (using
the preliminary selection criteria discussed above), it is then necessary to examine the
usages of those variables in the scopes in which the variables are accessible. For global
variables, the entire programmust be examined. For class member variables all methods,
friend functions, and methods of friendly classes must be examined. For local variables,
only the function containing the local variable needs to be examined.

If one could trace the use of the variables passed by reference or pointer, more
constructs would be automatically
attenable. But because the most conservative rules

2An alternative strategy would be to automatically de�ne conversion operators between
attened and

original classes. However, this would almost always sign�cantly change the semantics between original and

attened versions of the program.

16

fail in many, many common situations, explicit indication of to-be-
attened variables is
a better alternative.

A few intrinsic safeguards help make manual indication of
attenable variables less
dangerous than it might be otherwise. In many cases, the tool will generate illegal
C++ code (caught as such by a downstream compiler) when
attening is not possible.
For example, if a programmer erroneously indicated that d in the above example were

attenable, the illegal code generated by the A* bp = dp statement would cause the

attened program not to compile. (This fact suggests a naive, time-consuming, but gen-
erally e�ective tuning strategy for users: Start by assuming that all object declarations
are
attenable, and then revise downward (or perhaps revise overly broad pointer and
reference variable declarations) on compilation failures.)

3.3 Client functions

A \client function" of a
attened class is any function that takes as an argument any
instance of the
attened class or one of its ancestors. An important special case of a
client function is a client member function that takes such arguments. Client functions
are those where almost all virtuality-based performance hits actually occur, since they
are the sites where most virtual calls would otherwise be made.

Client functions may themselves be
attened via duplication, using the same basic
idea used in parallel-hierarchy generation. For example, assuming the declarations in
the previous section, if there were originally:

void c(A* a) { a->f(); a->g(); }

void d(B* b) { b->f(); b->h(); }

Assuming
attening on class B,
attened versions of clients may be added to the code
stream:

void c(FlatB* a) { a->f(); a->g(); }

void d(FlatB* b) { b->f(); b->h(); }

In these examples, nothing at all was altered except the function declarations them-
selves. All references to B's and ancestors thereof were converted to FlatB's.3 As with
parallel-hierarchy generation, the original versions coexist in the code stream. C++
function call resolution mechanics within a C++ compiler will choose the appropriate
version.

Functions with multiple arguments of relevant classes may require multiple
attened
versions, corresponding to all ways in which the
attened version may occur.

3In a stand-alone approach, other name-mangling conventions must also be adhered to.

17

3.3.1 Local Variables

When client functions include declarations of new variables, a combination of the dupli-
cation and variable-
attening strategies must be employed. But here, variable-
attening
need not be so conservative. A simple `universal demotion' strategy is attractive. Here,
all occurences (variables, objects) of the original class or its ancestors are transformed
into the
attened version. For example:

void e(A* a) { A* p = a; p->f(); p->g(); }

transforms to

void e(FlatB* a) { FlatB* p = a; p->f(); p->g(); }

Demotion does not extend to scope designators. For example, any occurence of
A::f() inside a
attenedB is simply converted to FlatA::f() (using the parallel-hierarchy
method) or FlatAf() (using the stand-alone method).

3.3.2 Limitations

As mentioned above,
attening is generally most attractive and e�ective when super-
classes are abstract. In these cases, since abstract classes may not be instantiated, client
functions will not include constructions of superclass objects, and no further considera-
tions apply.

But uniform demotion can change semantics in the case where superclass objects are
created within client functions. For example:

void v(A* a) { A x; x.f(); x.g(); }

transforms to

void v(FlatB* a) { FlatB x; x.f(); x.g(); }

The object x was a base object in the original, but a derived object in the transformed
code. The e�ects of this transform are always safe and not incorrect, but cannot be
guaranteed to be desired. While experience shows that these modi�cations produce code
deemed acceptable by programmers, they do re
ect a certain arbitrariness owing to the
fact that there is no way to automatically assess desirablity. Because failure to generate

attened code in these situations would substantially limit the utility of the tool, the
only pragmatic solution is to make these transformations anyway. Users of a
attening
tool must be informed that these kinds of modi�cations will occur and/or be allowed to
prevent them on a case-by-case basis. Many further re�nements are possible.

18

4 Project History

The current prototype version bears many scars from its development history, as de-
scribed in this section.

4.1 Parsing

In summer/fall 1991, the
attener was undertaken as one of several projects that could be
used in order to simultaneously gain experience with relatively \shallow" preprocessor-
based (annotated C++ code in, pure C++ code out) tools while also producing software
of practical value.

Initial e�orts surrounded examination of existing C++ parsers and related front-
end utilities. We chose to base these upon a yacc-based grammar designed by James
Roskind.4 At the time, the reasons appeared compelling:

� Developing our own parser would have taken too long, and diverted e�orts from
tool building to parser building.

� The grammar accepted most constructs then accepted by most C++ compilers.
No other available choice came as close.

� Several other ad hoc tools based on this grammar were in development elsewhere.

In retrospect, this was not the best decision. The grammar is not readily extensible,
and has not been updated to re
ect the range of constructs currently accepted by most
compilers (including especially templates).

Also, most early work surrounded the construction of minimal support structures
required by any such tool. Because of the limitations of yacc-based LALR actions (even
within allegedly C++-friendly modi�cations), most internal programming could only
use aspects of C++ that remained close to C. We have often witnessed �rsthand the
well-known di�erences in extensibility of procedurally-based just-barely-C++ code sur-
rounding the parser and the few parts of the tool that have followed standard OO design
principles.

4.2 Stand Alone Design

We �rst tried a version that could serve both browsing and optimization roles, using
the stand-alone strategy, along with highly conservative variable-
attening rules. This
design was partially completed. (It successfully passed a number of small test cases.) It
was reported upon at the C++ At Work Technical Sessions in November 1991.

However we became increasingly concerned about some of the limitations noted
above. To recap and emphasize:

4We gratefully acknowledge the help given to us by James Roskind.

19

1. The tool was becoming too intimately tied with C++ semantic details. Maintaining
total correctness across the range of possible C++ constructs was becoming too
expensive for an allegedly \lightweight" tool. Too much e�ort was involved in
attaining correctness across the range of all possible C++ constructs. Repairing
this in the right way would require a commitment to a better internal representation
of semantics, which is itself a controversial area.

2. Increased coupling with detailed semantics makes the tool di�cult to maintain and
to evolve so as to correspond to changes in standard compilers and to the language.

3. Conservative variable-
attening rules caused the tool to fail to e�ectively
atten
many (actually most) common designs.

4.3 Parallel Hierarchies

The above version was modi�ed during spring/summer 1992 to implement the basic
features of the parallel hierarchy design. As described above, this modi�cation is more
successful in decoupling the tool from C++ details. This substantially enhances output
code correctness, compatibility and maintainability.

We simultaneously began revising some of the support for our revised strategies
involving manual indication of variable-
attening in conjunction with a slightly more
agressive client-function variable rule (uniform demotion). These eliminate several lim-
itations in the previous version at the expense of manual intervention.

Together, these modi�cations have led to a fairly successful model of how to construct
a simple, usable
attening tool.

Unfortunately, the current version does not well-re
ect these properties. Between
the di�culties of dealing with the yacc grammar and surrounding support code, and the
fact the many internals were radically altered between versions (as well as numerous
fumblings while in the midst of each), the current code must be considered in the same
light as most other \experimental" software e�orts. While it successfully passes some
test cases, it is not of production quality.

Also, the current version does not implement all of the described design features.
Most of conservative variable substitution rules implemented in the stand-alone version
are still used, and the tool is not fully interactive. It uses some pragmas to describe
class
attening targets, and does not support manual indication of variables to
atten.
It currently passes only those tests that do not require intervention or full local variable
demotion rules.

The main rationale for leaving the prototype in this state is that it has served its
purposes in revealing the utility, design options and principles, and feasibility of
at-
tening. Like many other recent e�orts to build C++ tools, our experiences have shown
that is surprisingly di�cult and unproductive to construct systems that take it upon
themselves to parse and represent C++ source code, even for simple purposes. Tools
like this become practical only when built upon a common infrastructure performing
these tasks.

20

5 Recommendations

5.1 Flattening Tools

Construction of a production-quality version of a
attening tool would involve a series
of policy and implementation issues.

5.1.1 Policy Issues

The goal of producing browsable
attened versions of classes should be separated from
that of performance improvement. Browsable versions should be produced via di�erent
tools or toolsets that emphasize readability over adherence to detailed semantics. Given
this, there seems no question that the parallel-hierarchy approach should be adopted for
class
attening.

The tool should be interactive, and have a full menu-driven graphical interface. This
will allow programmers to more simply and e�ectively indicate which classes and espe-
cially which variables/objects to
atten.

The tool should either use a well-maintained front-end that forms a common basis
for a variety of tools, or become integrated into a compiler itself. Given the unlikelihood
of interactive compilers, the former appears to be the only serious option for a tool (but
see below about other options.)

No attempt to further automate detection of
attenable entities should be made until
compilers or static analyzers with full high-level data
ow capabilities are constructed.
However, variants and improvements of local variable handling strategies within client
functions should be further explored.

5.1.2 Implementation Issues

Re-basing the tool on an existing syntax and semantics framework would radically sim-
plify internal design. The vast majority of the code in the current version has little to
do with
attening. In fact, we believe that the current parsing and syntactic represen-
tation code should simply be scrapped and replaced with an interface to a multipurpose
semantically oriented front-end (or server).

The internal architecture of any such front-end would govern most design details.
However, with such links, there remains only the support for the three basic transfor-
mation functions within the
attener proper:

1. Echoing
attened versions of each class in a hierarchy.

2. Generating
attened client functions.

3. Recasting variable declarations and object constructions into
attened form.

(Recall that this is a functional description, not a design; also recall the three cases may
interact, e.g., in the case of client member functions appearing in
attened classes.)

21

The basic requirements for (1) and (2) are remarkably similar to those for dealing
with C++ templates. De�nitions must be stored and then output in transformed form.
It appears very likely that any available existing mechanisms that perform template
expansion could be generalized to also perform
attening.

5.2 Flattening Within Compilers

If the constraints that lead
attening to be performed within a separate tool are re-
laxed, di�erent options become available for providing at least some of the performance
enhancment functionality of
attening within C++ compilers.

As described in section 2, the basic idea of
attening is to arrange that virtual

inlines actually get inlined. A
attening tool transforms C++ code in ways that allow
standard C++ compilers to do just that. Construction of
attened classes and variables
is the best (perhaps only) path to this. However the real improvements come within
client function code. Flattened clients are presented to a compiler in such a way that
there is no compile-time uncertainty about which version of a function to call.

There are other routes to uncertainty reduction that could be pursued within a
compiler rather than a tool. The most feasible strategy appears to be leaf class cus-
tomization. Leaf classes are those classes that have no subclasses. They are, by far, the
most common targets for
attening. They are also mechanically discernible.

The idea is to

1. Detect leaf classes.

2. For each of these, generate
attened versions of each original client function ac-
cepting them as arguments (as in section 3).

3. Within each
attened client function, consider all virtual calls to be preresolved
to the target leaf class. (The same rule applies to all self invocations within all
methods of the leaf class.)

4. For each invocation of a
attened client function, insert code to (dynamically)
dispatch to
attened versions if the arguments match the special versions.

The main logistic problem is in keeping track of leaf classes, their ancestries, and
clients. Since these could appear in almost any order within the source text, and may
extend across compilation units, this appears feasible only if such optimizations were
performed only when this information were made available to a compiler before scanning
source code (e.g., via tool and environment support in the style of the previous section.)

Step (4) is made practical only if the compiler already supports some form of run-
time type information scheme. Dispatching to
attened clients in the case of leaf classes
may be performed via `type tests' that invoke
attened versions only if the classes are
indeed the target leaf classes. Note that within clients, invocations of other
attened
client functions need not be conditionally dispatched for objects whose type is �xed
within argument lists.

22

This framework need not deal with the local variable problem within client functions
to remain an e�ective optimization strategy. Locals within clients will not necessarily
always enjoy all the results of
attening. However, in practice, these cases do not appear
to represent the bulk of real bottlenecks.

Anything beyond this appears infeasible in C++. Flattening of \intermediate", non-
leaf classes would require much additional analysis, and would provide diminishing re-
turns with respect to performance since, as mentioned above, most
attening opportu-
nities involve leaf classes.

23

A Source Code for Example 1

#include <stream.h>

#include <builtin.h>

class Base{

protected:

int size;

public:

Base(){}

virtual void vf1(){size++;}

virtual void vf2(){size+=2;}

virtual void vf3(){size+=3;}

};

class Derived:public Base{

public:

Derived(){}

void vf1() {size--;}

void vf2(){size-= 2;}

};

void test(Base& d1, Base& d2)

{

for(int j=0; j < 10000000; j++)

{

d1.vf1();

d2.vf1();

d1.vf2();

d2.vf2();

d1.vf3();

d2.vf3();

}

}

main()

{

double t;

Derived d1;

Derived d2;

// timer is used to compare the timings for the

24

// original versus flattened versions of this program

start_timer();

test(d1, d2);

t = return_elapsed_time(0.0);

cout << "Time = " << t << "\n";

}

25

B Source Code for Example 2

#include <stream.h>

#include <builtin.h>

class Matrix

{

public:

virtual ~Matrix() {}

virtual int rows() const = 0;

virtual int cols() const = 0;

virtual float elem(int i, int j) const = 0;

int size() { return rows() * cols(); }

};

float sum(const Matrix& m)

{

float s = 0;

for (int i = 0; i < m.rows(); ++i)

for (int j = 0; j < m.cols(); ++j)

s += m.elem(i, j);

return s;

}

class DenseMatrix : public Matrix

{

public:

virtual float& operator () (int i, int j) = 0;

};

class RowMajorMatrix: public DenseMatrix

{

private:

friend float fastsum(const RowMajorMatrix&);

int r; int c; float* d;

public:

RowMajorMatrix(int m, int n) :r(m), c(n), d(new float[m * n]) {}

~RowMajorMatrix() { delete d; }

int rows() const { return r; }

int cols() const { return c; }

float& operator () (int i, int j)

26

{

if (i < 0 || i >= rows() || j < 0 || j >= cols())

abort();

else

;

return d[i * cols() + j];

}

float elem(int i, int j) const { return (*((RowMajorMatrix*)(this)))(i, j); }

};

float fastsum(const RowMajorMatrix& m)

{

float s = 0;

float* p = &(m.d[0]);

float* fence = &(m.d[m.r * m.c]);

while (p < fence) s += *p++;

return s;

}

#define N 1000

main()

{

RowMajorMatrix m(N,N);

for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)

m(i, j) = 1.0;

double s;

double t;

start_timer();

s = sum(m);

t = return_elapsed_time(0.0);

cout << " sum: ";

cout << "sum = " << s << " Time = " << t << "\n";

start_timer();

s = fastsum(m);

t = return_elapsed_time(0.0);

27

cout << " fastsum: ";

cout << "sum = " << s << " Time = " << t << "\n";

}

28

References

[1] D.Hahn B.Cohen and N.Soi�er. Pragmatic Issues in the Implementation of Flexible
Libraries for C++. In USENIX C++ Conference, 1991.

[2] Eli Charne. Lessons learned implementing a browser for c++. In C++ At Work

Conference, 1991.

[3] Doug Lea. Customization in C++. In Proceedings Usenix C++ Conference, 1990.

[4] Craig Chambers and David Ungar. Making Pure Object-Oriented Languages prac-
tica. In Proceedings OOPSLA, 1991.

[5] Mary Fontana and Martin Neath. Checked out and long overdue: Experiences in
the design of a C++ class library. In USENIX C++ Conference, 1991.

[6] Scott Meyers. Working with object-oriented programs: The view from the trenches
is not always pretty. In Symposium on Object Oriented Programming Emphasizing

Practical Applications, 1990.

[7] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley, 1991.

[8] M.Ellis and B.Stroustrup. The Annotated C++ Reference Manual. Addison Wesley,
1990.

[9] Stanley B Lippman. C++ Primer. Addison Wesley, 1989.

[10] James Roskind. A YACC-able C++ 2.0 grammar, and the Resulting Ambiguities.
(Publically available software.).

[11] David S. Rosenblum and Alexander L. Wolf. Representing Semantically Analyzed
C++ code With Reprise. In Proceedings, USENIX C++ Conference, 1991.

29

