
Objects in Groups

Doug Lea

SUNY at Oswego / NY CASE Center

Oswego, NY, 13126, USA

(315)341-2688

dl@g.oswego.edu

December, 1993

Abstract

A group is de�ned as one or more objects bear-

ing a common abstract relation, common external

access policies, common connectivity, and common

internal policies. Groups are similar to objects, but

lack a single locus of control. They otherwise share

features analogous to object-based classes, iden-

tities, constraints, and implementations. Groups

may be used to organize, analyze, and implement

large and distributed object-oriented systems, in-

cluding those based on CORBA.

1 Introduction

An object-oriented application may consist of a sea

of objects; perhaps thousands or millions of ob-

jects. Subsets of these objects often possess dis-

cernible structure that is not well-captured by com-

mon object- and class-based concepts and nota-

tions. This paper surveys a simple unifying con-

struct, groups that meets many needs for describing

and managing the statics and dynamics of networks

of collaborating objects.

Brie
y, a group is a special kind of set, consist-

ing of one or more objects (members) bearing a

common abstract relation, common external access

policies, common connectivity, and common inter-

nal policies. In more detail:

� A group does not have a single locus of control.

� A group as a whole may provide services, de-

�ned via an interface, to clients.

� A group has an extent, a �nite collection of

members that may change over time.

� Each unique group may be ascribed a unique

identity.

� All members of a group receive the same mes-

sages from group clients.

� Group members may communicate among one

another in ways that are invisible to external

clients.

� Eligibility for membership in a group may be

restricted.

� An object may join (and leave) any group for

which it is eligible.

� An object may be a member of many groups

at the same time.

The above characterization semiformalizes the

structure apparent in many everyday real-world

groups and social organizations. Group structures

1



are equally ubiquitous in software systems. The

following examples illustrate some common usages:

Subscription Group. A group in which all mem-

bers receive the same set of messages (or mail-

ings, postings, etc), usually without any re-

quirements to act in any particular way on

those messages.

Work Group. A group (e.g., a department) in

which each member performs one or more sub-

tasks in support of one or more larger tasks.

Service Group. A group (e.g., of text format-

ters) in which any one member may handle

any service request.

Resource Group. A group of functionally iden-

tical objects (e.g., printers) that may be re-

served and released by clients.

Access Group. A group (e.g., a Unixtm login

group) in which each member has special priv-

iliges with respect to other members of that

group.

Replicate Group. A group in which each mem-

ber responds in the same way to incoming

messages, normally to obtain fault-tolerance:

Even if a member fails, at least one answer

may still be obtained.

Transaction Group. A transient work group

(e.g., of certain bank account objects) in which

each member obeys a protocol ensuring partic-

ular transaction semantics.

Property Group. A group of objects all possess-

ing a possibly transient property (e.g., a group

of visible windows).

Location Group. A group (e.g., a family) in

which all members reside at a common loca-

tion.

The concept of a group is by no means novel in

OO (see, e.g., [17]) or other accounts of system

design (see, e.g., [3]), and is in fact increasingly

widespread. The present treatment di�ers from

others mainly in attempting to integrate disparate

accounts and properties, and providing a basis

for more �rmly entrenching basic group constructs

within the OO paradigm, while avoiding premature

formalism or commitment to details of how group-

based constructs might be adopted within existing

OO languages and notations.

The remainder of this paper proceeds as follows:

Section 2 compares groups to other OO constructs.

Section 3 discusses message passing in groups. Sec-

tion 4 describes the de�nition and use of common

interfaces for groups. Group membership and ac-

cess control are discussed in Section 5. Finally,

Section 6 illustrates the use of groups in CORBA

systems.

2 Related Constructs

The concept of a group �lls a gap in the analy-

sis, design, and implementation of object systems.

Groups do not themselves solve structuring prob-

lems, but do provide a way of talking about issues

that escape the con�nes of purely class-based and

object-based concepts and notations.

Modules

A group may be seen as an extension of the no-

tion of a module (or subsystem or namespace). A

module is a grouping of related objects and/or ser-

vices under a common scope. However, modules

are too limiting to be useful in de�ning the struc-

ture of many of the above example applications.

Strict module containment results in static, \pyra-

midal" architectures, and cannot capture the 
u-

idity of most OO designs. Groups provide the re-

quired extensions. The notion of a group entails

the option that membership be dynamic. Objects

may join and leave groups, and may be members of

several groups simultaneously. Thus, group mem-

bership is not necessarily tied to static scoping.

Also, group descriptions are multiply instantiable,

enabling the existence of two or more discernibly

di�erent groups with the same features.

2



A

B

C

D

E

F

H

I

p

q

r

J

G

Figure 1: Some objects (A-J) in groups (p-r). Dashed lines represent group member connections; solid
lines client connections.

3



Objects

While they share many features, groups are not

themselves objects. Under any reasonable de�ni-

tion, an individual object possesses a unique lo-

cus of control. This applies even to composite

(or ensemble[7]) objects. Although a non-primitive

host object may communicate with other acquain-

tance objects in the course of processing messages,

the host remains distinct from its acquaintances.

Groups, on the other hand, have no single locus

of control or single message port. Control and func-

tionality are instead distributed across member ob-

jects. Group-like constructs have found widest ap-

plicability in distributed systems, where groups of

objects residing on di�erent machines must some-

how coordinate their e�orts to achieve tasks with-

out the bene�t of centralized controllers. Evi-

dence from over a decade of experience[3] in (non-

OO) distributed systems, especially, suggests that

groups will become central organizing constructs in

the development of large OO systems.

Groups are by no means replacements for ob-

jects. When a unique locus of control is logically

required, conceptually meaningful, and/or simpler

to design, a group-based design is inappropriate.

However, groups become central in designs favoring

cooperation over control. Groups establish a layer

of functionality without adding a layer of control.

If desired, a group may be \converted" into a

composite object by superimposing a host. Any

of the above examples of groups could be trans-

formed into collection objects by superimposing a

host controllers on the group, where the host ex-

clusively manages the group in part by intercepting

messages from foreign clients and directing them to

the members. While sometimes desirable, such de-

signs are useless, for example, in replicate groups

employed for fault tolerance { a single host repre-

sents a single point of failure, defeating the pur-

poses of replication.

There is in fact a continuum of coupling and con-

trol bordered by the members of the loosest kinds

of groups at one extreme, and acquaintances of the

most tightly coupled and controlled composites at

the other. Broad categories of members include:

� Objects that can be ascribed membership in

a particular group, but whose behavior in no

way depends on this.

� Objects that modify their behavior if and

when they are members of particular groups.

� Objects that behave di�erently depending on

the nature and presence of other group partic-

ipants.

� Objects playing particular roles in groups

(e.g., by ignoring all but a special subset of

messages).

� Objects delegated messages by possibly many

controllers.

� Objects receiving messages only from single

controllers.

Most di�erences in the design of groups versus ob-

jects are consequences of the fact that \internals"

of groups are not contained within a single ob-

ject. The state of a group is a function of the cur-

rent members and relationships among their states.

Group behavior is in part a function of its state.

This is an extreme form of the dependencies seen

in ordinary composite or delegated objects, where

proper functioning of the composite relies on in-

variant relations and contracts[12] holding among

acquaintances. It is more extreme for groups sim-

ply because there is no single controller present to

maintain and ensure these invariants.

Sets

Groups are special kinds of sets. But unlike Agha's

otherwise similar but purely intensionally-based

set-like ActorSpace[1] construct, groups have both

intensional and extensional components. Interfaces

(Section 4) describe group capabilities and mini-

mal features of members. However, two distinct

groups may be constructed, each with the same in-

terface, but with di�erent members.

4



Collections

Groups serve as an alternative to various set-

like collections entities that pervade OO systems.

Groups are used in similar ways as common OO

collections whose memberships are constrained by

interface, but otherwise de�ned circumstantially

within applications, although perhaps triggered via

evaluation of inclusion predicates. In most cases,

the notion of a group, rather than a collection ob-

ject that controls it, provides a simpler basis for

modeling and design.

Classes

A group is obviously di�erent than a class. How-

ever, all instances of a class might be de�ned as

members of a particular group. In this way those

aspects of metaclasses responsible for tracking and

managing instances of a given class may be refor-

mulated via group constructs.

3 Channels

Two di�erent groups must be considered as dis-

tinct even if both possess the same external fea-

tures. Conceptually, groups, like objects, must be

ascribed unique identities.

In the uninteresting case where group member-

ship re
ects a relation that has no consequences

with respect to sending or receiving messages, the

existence of group identities poses no further chal-

lenges { such groups serve only as labelled sets. But

most OO systems employing groups require some

means for clients to direct particular messages to

particular sets of objects, and/or for the members

of a group to interact. One way to do so within

standard OO systems where messages must be tar-

geted to particular recipients is to construct groups

so that they appear as \objects" to clients ([4]).

A more general route is to adopt channel-based,

rather than object-ID (OID) based messaging.

A channel is an abstract transport medium that

connects possibly many objects sending and receiv-

ing messages. Channels are distinct from the ob-

jects that are connected to them, and thus readily

support messaging directed to groups and/or single

objects without requiring that clients use di�erent

forms of message addressing in the two cases. In

channel-based systems, clients may be unaware of

whether messages are being consumed by groups

or individuals (which may be construed as single-

ton groups). This in turn enables construction

of transparent service replication, e�cient service

groups, and simpler interposition and instrumen-

tation. Systems may for example split channels,

interposing other objects between senders and re-

ceivers to deal with environmental constraints; e.g.,

for performing authentication or data conversion.

An object may be connected to several chan-

nels at the same time. This may be conceptualized

and implemented by ascribing multiple mailboxes

or listening ports per object. Alternatively, a single

mailbox may be used for each object (as in Actor

systems[2]), to which messages from all connected

channels are deposited, possibly tagged by chan-

nel. Along another dimension, messages may be

processed by objects using interrupt-driven, call-

based, or polling techniques, and may establish pri-

orities to messages on certain channels.

Channels and Identities

The use of channels does not otherwise impact most

other practicalities in the design of OO systems.

For example, channel names may be passed around

in messages and used in the same way as standard

OO references and pointers for directing messages

to targets.

However, the use of channels versus OIDs repre-

sents a conceptual shift, in the direction of other

theoretical and applied models of concurrent and

distributed processing (e.g., [20, 28]). Channels

help disambiguate identity from message targeting

mechanisms. These may be collapsed in point-to-

point systems, but not with groups. The fact that

each object and group has an identity does not im-

ply that they or others \know" that identity, but

only that messages be sent along channels that are

connected in the desired fashion. Many process no-

tations do not even acknowledge identities of indi-

5



vidual processes or objects. They instead indicate

the attachment of entities and channels via static

syntactic mechanisms.

Channel-based OO systems must still employ

some kind of OIDs, even if they are not used for

message targeting. A system must track identi-

ties (although perhaps implicitly) in order to sup-

port binding operations. OO systems employing

channels require a primitive binding operation that

causes an object to start sending and/or receiving

messages along a given channel. A similar unbind-

ing primitive disconnects the object from the chan-

nel.

A channel-based OO system may also support a

dynamic binding query telling whether a given ob-

ject is attached to a given channel (i.e., whether

an object is a member of a group), and/or de-

rived operations that check to see if two channels

connect to the same object(s). Support for group

membership queries enables common OO identity-

based processing idioms, for example, those that

dynamically test for the presence of aliasing and

interference[14]. However, even with such support,

such checks can at most test \top-level" identity,

which fails to detect potential nonindependence of

composite objects sharing access to other acquain-

tances or groups. This places additional burdens

on design and implementation measures that oth-

erwise preclude unwanted interference (see Section

5.2).

Implementing Channels

The separation of channels from identities fa-

cilitates the speci�cation and implementation of

\quality of service" issues surrounding message

transport. Messages through channels connecting

groups must be multicast to all members. Multi-

cast should possess simple and predictable order-

ing semantics and be fault-tolerant. Minimally,

multicast channels should have the FIFO property

that messages are received in per-sender issued or-

der. Causal and atomic broadcast protocols may be

used to extend these guarantees to causal sequences

across multiple senders[3, 21]. The strongest possi-

ble guarantee, full synchronicity, is normally unde-

sirable since it limits parallelism and requires cen-

tralized message coordination.

In both sequential and distributed systems, un-

derlying transport mechanisms are often point-to-

point, in which case group channels and multicast

support must be fabricated on top of other primi-

tives. Multicast may be implemented through var-

ious apply-to-all constructs. This often amounts to

the arti�cial imposition of collection objects that

track and send messages to members. The trans-

parency of these mechanics is a policy decision in

any group-based programming system. Full trans-

parency maintains and enforces the desired ab-

stractions while permitting in�nite implementation

latitude.

Use of more visible implementation techniques

permits simpler accommodation of groups in stan-

dard OO frameworks. Since OIDs and channels

may be collapsed in point-to-point systems, a mes-

sage to a channel may be implemented as an or-

dinary OID-based message to an object serving as

a proxy for the channel. (In most distributed ob-

ject systems, proxies are used even to implement

point-to-point messages.) For example, a proxy

could maintain a list of member addresses, and

send point-to-point messages to each. Each pro-

cess in a system must have local proxies. Proxies

must themselves be managed, requiring additional

infrastructure to track the existence and locations

of members [27] and maintain consistency among

proxies, again with a range of transparency options.

Since several proxies could serve as channels to the

same group, or even vice-versa, identity compar-

isons among channel proxies are meaningless at the

application level.

4 Interfaces

As is the case for objects, the notion of groups in-

vites the distinction of \external" and \internal"

views of features and services. For objects, such

matters may be addressed by separating external

speci�cations of messages that may be received

from foreign clients, versus internal constraints and

6



computational descriptions of how messages are

processed. The same principles apply to groups.

The use of channels provides a basis for separat-

ing either object or group external interfaces from

internal matters. When communication occurs via

channels, the client view of a group need not dif-

fer from that of an object. In both cases, messages

must conform those supported by a channel. Thus,

the capabilities of the channel itself may be de�ned

via an interface that holds regardless of whether the

channel is bound to an individual object or a group.

However, the use of groups and channels does not

strictly require the use of types or interfaces. A

channel interface may be de�ned in an implicit or

post hocmanner, as the intersection of the messages

receivable by all potential members, or even via an

arbitrary predicate constraining membership.

A channel interface description de�nes a type.

Like object types, channel types provide a speci-

�cation of the features (e.g., operation signatures)

common to all instantiations of that type. Chan-

nel types are intrinsically bidirectional, describing

the forms of messages received by members, and

results sent back to clients. However, a channel

and/or its type may also be split into descriptions

of client-side versus member-side sending and re-

ceiving rights (cf., [28]).

A channel can represent the extension of a

group; a channel type describes its visible features.

Groups themselves do not require external inter-

faces distinct from their corresponding channels.

However, channels connecting to groups may di�er

idiomatically from those connecting to single ob-

jects. For example, multiple replies are more com-

mon. When more than one member is expected to

reply to a message, the interface may be described

in terms of multiple results, streams, collections,

or via the use of interposed �lters that reduce mes-

sages to a single reply.

A subinterface may be de�ned by subtyping an

interface, for example, to describe connections to

individuals or groups o�ering additional services.

Subinterfaces may be used in the de�nition of sub-

groups. However, the concepts of subinterfaces and

subgroups do not bear a one-to-one relation. A

subinterface is an extension of one or more base in-

terfaces. Members of subgroups need not conform

to particular subinterfaces. Subgroups may consist

merely of circumstantially selected members of a

parent group.

5 Membership

Interference (safety and/or liveness failures stem-

ming from \unanticipated" interactions) can be a

serious problem in OO systems. The best means

for preventing and coping with interference is to

control the inward reachability (fan-in), outward

reachability (fan-out), and/or the bidirectional lo-

cality or closedness of a set of objects. Module con-

structs employ static scoping mechanisms to ad-

dress such issues. Module membership is estab-

lished by declaring an entity within module scope

and external access is controlled via export con-

structs.

For groups, analogous dynamic constructs pro-

vide a basis for design policies, rules, and tools for

limiting and controlling interference. For example,

Wills [31] describes a collection of methods that

restrict external communication by individual ob-

jects to others in particular demesnes. Demesnes,

as well as the related concept of islands [13], rep-

resent formalisms of particular group-based con-

structs and policies aimed at simplifying the anal-

ysis and design of communications-closed sets of

interacting objects by imposing restrictions on the

groups with which individual objects may be mem-

bers and/or clients. Unlike ActorSpaces, groups are

not de�ned in a purely intensional manner, so en-

able/require the active control of membership. Not

all objects conforming to a given interface necessar-

ily belong to a particular group instantiation with

that interface. Instead, members must join and

leave groups explicitly.

There are two aspects of group construction, cre-

ating a group and enlisting members. Construction

of a group simply amounts to the construction of

a channel, which must be a primitive operation in

any group-based system. (Section 5.3 describes

the use of mulitple channels per group, a straight-

7



forward extension.) Destruction of a group deletes

the channel. Destruction may be automated by

garbage-collecting unreferenced channels.

The enlistment of new members into a group is

very similar to the construction of new instances

of a class (e.g., via new operators in C++ and

Smalltalk), with the obvious di�erences that a new

group member must already exist in order to join

a group, and that an object may be a member of

several groups at once and change its group mem-

bership over time.

Minimally, an object joins a group via the act

of binding (as a receiver) to the channel transport-

ing its messages, and leaves a group via unbinding.

Group-wise versions of set operations may be built

from these primitives; for example, an operation to

union all members of one group into another via

member-wise joins. One may also de�ne and con-

struct groups of groups (as opposed to groups of

individuals).

In a fully channel-based system, binding is the

only means of receiving messages of any kind, so

group joins are routinely required upon object con-

struction. These may include, for example, \meta-

class groups" containing all objects of a given class

and/or \location groups" (or clusters[7, 5]) con-

taining objects constructed on a given machine.

Also, each new object may construct and join a

singleton group. Generally, objects of a particu-

lar class may be de�ned to belong to some prede-

termined groups throughout their lifetimes, belong

to others only under certain prede�ned conditions,

and/or join and leave others opportunistically.

5.1 Eligibility

Channel interfaces impose constraints on objects

that may connect to them. All members of a group

should be able to receive messages listed in the cor-

responding channel interface, although members

playing special roles may ignore certain messages.

In a strongly typed framework, eligibility to con-

nect to a channel is statically checkable. Each

member must be of a type (class) that conforms[25]

to the interface. Interface types may be made arbi-

trarily speci�c as a means of limiting group mem-

bership, even to the extent of presenting de facto

requirements that the group be homogeneous, as is

common in fault-tolerant applications.

Membership may also be tied to contracts de-

scribing dynamic properties that escape static

checks. For example, a certain group of windows

may require that each member have its visible

attribute set to true. Implementation of this con-

straint may require the use of standard OO me-

chanics, including per-member noti�cation and up-

date mechanisms that issue group joins and leaves

upon changes in status, along with interception of

attempted binds and unbinds using group man-

agers that verify eligibility.

5.2 Management

While not all internal group matters can be as-

cribed to a single object, encapsulation goals re-

quire that matters common to all members be

somehow localized. In the same way that ob-

ject construction may be handled through the use

of metaclasses or factories/generators[8, 7], it is

pro�table to centralize (with the help of infras-

tructure and/or policy support) membership con-

trol for a group by de�ning group managers (or

metagroups[19]). A manager may be either a sep-

arate entity that is designated to handle bind-

ing, etc., or a member of the group that responds

to special join and leave messages issued upon

binding[30, 17]. In either case, managers remain

distinct from controllers of the sort described in

Section 2 since they do not intercept normal group

messages. A group manager may perform other

bookkeeping duties including:

� Screen potential members.

� Maintain membership lists.

� Periodically issue special probe messages to

discover whether members are still alive.

� Notify other group members upon member-

ship changes.

� Log group messages.

8



� Control resources shared among group mem-

bers.

Group managers may also control external ac-

cess. To become a client, an object must bind (as

a sender) to a group channel and then start issu-

ing messages through it. This provides the same

opportunities for control and management as are

available for group membership. Sometimes, client

access may be restricted through static interface

conformance checking. Most cases must be handled

dynamically. Group managers may intercept bind-

ing requests to check for client properties, check

against access control lists, engage in authorization

protocols, and so on.

5.3 Roles

A role is de�ned by a set of features and ser-

vices (or interface) employed in a particular con-

text, but without committing to any speci�c object

that must o�er them (cf., [6]). Speci�c roles for

helpers, subcomponents, or delegates of a compos-

ite object may be described in terms of constraints

and contracts between the host and the acquain-

tances. However, in group-based designs, lack of

host controllers causes the notion of a role to split

into two aspects:

Public. An object may play a particular role in

a system by virtue of being a member of a

particular group.

Private. An object may play a particular role in a

group by virtue of responding only to a certain

subset of messages to the group, and/or by

responding to them in particular ways.

In principle, this dichotomy may be transformed

into a continuum via subinterfaces and subgroups.

Conceptually, a system as a whole may be consid-

ered as a group, with subgroups serving as subsys-

tems. These may in turn be subdivided into ar-

bitrarily �ne subgroups re
ecting increasingly nar-

row roles. However, as with classes, pragmatics

dictate that subgrouping \bottom-out" in concep-

tually meaningful categories, with remaining varia-

tion handled by de�ning private roles for individual

objects.

Private Roles

The di�erence between the public and private as-

pects of individual objects may be expressed by

encapsulating local processing within the bound-

aries of these objects (usually within the \private"

parts of class descriptions). This trick doesn't work

for groups. However, purely internal group com-

munication can be segregated by establishing in-

ner channels, that transport messages from and

to members, not clients. Group members may be

connected to two channels, the outer one for \pub-

lic" messages, including those to and from clients,

and the inner for \private" messages among group

members. These e�ects may also be obtained us-

ing only one channel, tagging messages according

to whether they were issued by clients versus mem-

bers.

Inner channels may be employed to assist in syn-

chronization and control of members. For exam-

ple, locks may be issued to all members of a group

performing an atomic transaction. Inner channels

may also support protocols among members play-

ing special within-group roles; for example:

Standby. Handling messages only if other mem-

bers cannot.

Arbiter. Maintaining consistency; resolving lack

of consensus among members.

Filter. Collating group results and submitting

replies to clients.

Task Manager. Breaking up tasks into subtasks

handled by other group members.

Of course, not all collaboration protocols can be

handled in this way. Problems requiring supervised

oversight lead to the superimposition of a single

controller to receive incoming messages and man-

age communication among group members.

9



Public Roles

A given object may play many roles in a sys-

tem, and change roles across time. While it is at

best problematic to arrange that objects change

their class membership to e�ect multiple, context-

dependent, and/or time-varying roles, such capa-

bilities are intrinsic to the notion of group mem-

bership.

The relationship between groups and channels

can be exploited notationally in OO analysis, de-

sign, and/or programming to simplify the descrip-

tion of public role-speci�c behavior. Responses

to messages de�ned in the channel interfaces of

all groups to which an object could be a member

may be segregated by channel type in its class de-

scription. When classes multiply inherit interfaces

of multiple groups, and these include overlapping

method sets, responses may be disambiguated on

the basis of channel type. However, a di�erent no-

tational ambiguity/nondeterminacy remains possi-

ble if an object is a member of more than one group

with the same channel type.

Membership and access control measures enable

the selective export of particular group interfaces

for usage by particular clients. Such channels

represent views [26] of objects, permitting role-

based, subject-oriented [11] design and program-

ming methods. Group constructs also help tame

extreme forms of object evolution encountered in

such designs when objects need to acquire roles

that were not even de�ned at the time they were

constructed. Rather than permitting arbitrary

class changes, 
exible yet more tractable policies

may be formed by restricting changes to the con-

catenation of new group interfaces to existing capa-

bilities and enlistment in groups receiving messages

on the corresponding channels.

The best-established means for supporting such

maneuvers is to de�ne all adaptable entities as spe-

cial kinds of groups. A fragmented object [18, 9]

is a group possessing an inner channel, but not

an outer channel. Fragmented objects thus lack

public group interfaces. Instead, some members

(providers) possess possibly di�erent externally ac-

cessible interfaces representing their public roles,

and communicate via the inner channel with other

group members in the course of serving client mes-

sages. A fragmented object thus appears as dif-

ferent objects to di�erent clients and may grow to

serve new roles by adding new providers with dif-

ferent external interfaces.

6 Groups in CORBA

As indicated in the course of this paper, basic def-

initions of groups (like those of classes and ob-

jects) provide great room for variation in expres-

sion, design methods, and implementation tech-

niques. One can imagine syntactic and semantic

accommodation of groups within common analy-

sis and design notations (e.g., OMT) and OO pro-

gramming language genres (e.g., CLOS, Smalltalk,

Ei�el).

As an example, this section describes the use

of groups in C++-based CORBA systems, by

way of experiences in collaborating with Isis Dis-

tributed Systems, Inc., to develop a prototype

toolkit adding basic group support to CORBA

functionality. (This prototype is currently being

transformed into an IDS product.)

The Object Management Group's CORBA

(Common Object Request Broker Architecture)

speci�cation [22] de�nes an infrastructure for

distributed object systems that is surprisingly

amenable to group constructs. Although seemingly

class-based, two key constructs (interfaces and

ObjRefs) in the CORBA Interface De�nition Lan-

guage (IDL) are de�ned in a way that apply equally

well, if not better, to groups.

IDL interfaces are very similar to C++ \ab-

stract classes" [29]. They de�ne sets of attributes,

service procedures, and oneway (resultless) meth-

ods. These features must be implemented in a

particular target language (often C++). However,

IDL interfaces are speci�cally not tied to single-

object implementations, and contain no semantic

requirements that interfere with their use as group

interfaces. Thus, like channel types, they may serve

either role. IDL contains no provisions for specify-

10



ing contractual invariants among objects or other

architectural information, so neither precludes nor

supports group-based designs.

The basic IDL reference construct, the ObjRef is

de�ned in a loose enough fashion to represent group

channels rather than, or in addition to links to ob-

jects. While the semantics of ObjRefs do not yet

appear to be completely de�ned ([24]), they bear

much similarity to channels. They are typed by in-

terface, and may be tied to distributed collections

of services rather than identi�able objects. They

also lack an intrinsic object identity test operator.

Despite these correspondences, CORBA de�nes

only point-to-point message protocols, and includes

no provisions for multicast. Group-like protocols

are instead o�-loaded to the CORBA Event No-

ti�cation Service (ENS)[23] that is intended to be

layerable on top of the ORB. The ENS itself de�nes

several variants of \channels" as interfaces.

Our prototype tool, RDO/C++ (Reliable Dis-

tributed Objects in C++), re-bases basic CORBA

functionality on top of the Isistm Toolkit[15]. Isis

provides a library of implementation support (writ-

ten in C) for channels, multicast, membership

management, failure detection, fault-tolerance, and

group monitoring, along with higher-level tools

that assist in the development of group-based de-

signs involving publish-subscribe, standby, spool-

ing, and transaction protocols. Except for CORBA

compatibility, RDO/C++ shares most features

with other e�orts that have integrated Isis (or its

research follow-on, Horus[30]) into distributed OO

systems tools[10, 17], including those of a compan-

ion e�ort, RDO/ST, that uses Isis to support dis-

tributed Smalltalk programming.

The overall structure of RDO/C++ is simi-

lar to that of most C++ distribution tools (e.g.,

[18]). The RDO/C++ IDL compiler converts IDL

to C++ abstract classes and subclasses thereof.

C++-level client implementations send messages

to local proxies representing individual or group

channels (bound via proxy constructor arguments).

These proxy objects marshall arguments and trans-

port them through Isis to group members. This use

of proxy objects as channels represents one simple

and e�cient means of tying OID-based C++ con-

structs to channel-based group constructs.

Clients of services that return results may either

collect all replies in an IDL sequence or use built-

in Isis collation facilities (e.g., choosing only the

�rst response, as is typical in systems using groups

primarily for fault-tolerance) that reduce them to

a single result.

Group members are linked to dispatchers resid-

ing in Isis lightweight process entries. Messages

received at entries are unpacked and forwarded

to user-de�ned C++ implementation objects that

perform the indicated services. For procedural

operations, the dispatchers marshall and send re-

turned results back to clients.

Since IDL does not include constructs to con-

strain or implement interfaces, all group mem-

bership, monitoring, and bookkeeping operations

are performed at the C++ level by programmers,

mainly via C++ classes and utilities layered above

raw C Isis routines.

So far, user applications of RDO/C++ tend

to exploit only two strengths of groups, sub-

scription and fault-tolerance. RDO/C++ library

classes help automate usage of these common id-

iomatic constructions. This will include, for ex-

ample, support for Isis-News, a publish-subscribe

tool that is mapped onto model-view-controller[16]

style change and update methods, and also serves

as a basis for a CORBA Event Noti�cation Ser-

vice. Also, RDO/C++ simpli�es usage of the Isis

coordinator-cohort standby protocol in which only

one member of a group responds to a service re-

quest, backed up by others in case of failure.

Acknowledgements

Thanks to Robert Cooper, Gary Craig, Peter

O'Hearn, Marc Shapiro, and Paul Tymann for

commenting on drafts on very short notice. The

work reported here was supported in part by

Isis Distributed Systems, Inc., and the New York

CASE Center.

11



References

[1] Agha, G., & C. Callsen, \ActorSpace: An Open
Distributed Programming Paradigm", Proceed-

ings, Hawaii International Conference on System

Sciences, January, 1993.

[2] Agha, G., I. Mason, S. Smith, & C. Talcott, A
Foundation for Actor Computation, Technical Re-
port, University of Illinois at Urbana-Champlain,
1993.

[3] Birman, K., \The Process Group Approach to Re-
liable Distributed Computing", Communications
of the ACM, December 1993.

[4] Black, A., & M. Immel, \Encapsulating Plurality",
Proceedings, ECOOP '93, Springer-Verlag, 1993.

[5] Bellur, U., G. Craig, K. Shank, & D. Lea, \Clus-
tering: Composition Methods for Active Object
Systems", Proceedings, Hawaii International Con-
ference on System Sciences, January 1994.

[6] Casselman, R., A Role-Based Architectural Model

Applied to Object-Oriented Systems, Thesis, Dept.,
Systems and Computer Engineering, Carleton Uni-
versity, 1993.

[7] de Champeaux, D., D. Lea., & P. Faure, Object-
Oriented System Development, Addison-Wesley,
1993.

[8] Gamma, E., R. Helm, R. Johnson, & J. Vlis-
sides. \Design Patterns: Abstraction and Reuse of
Object-Oriented Designs", Proceedings, ECOOP

'93, Springer-Verlag, 1993.

[9] Gourhant, Y., & Marc Shapiro, \FOG/C++:
a Fragmented-Object Generator", Proceedings,

USENIX C++ Conference, USENIX, 1990.

[10] Hagsand, O., H. Herzog, K. Birman, & R. Cooper,
\Object-Oriented Reliable Computing", Proceed-
ings, International Workshop on Object-Oriented

Operating Systems, IEEE, 1992.

[11] Harrison, W., & H. Ossher, \Subject-Oriented
Programming", Proceedings, OOPSLA '93, ACM,
1993.

[12] Helm, R., I. Holland, & D. Gangopadhyay, \Con-
tracts: Specifying Behavioral Compositions in
Object-Oriented Systems", Proceedings, OOPSLA
'90, ACM, 1990.

[13] Hogg, J., \Islands: Aliasing Protection In Object-
Oriented Languages", Proceedings, OOPSLA '91,
ACM, 1991.

[14] Hogg, J., D. Lea, R. Holt, A. Wills, & D. de Cham-
peaux, \The Geneva Convention on the Treatment
of Object Aliasing",OOPS Messenger, April 1992.

[15] Isis Distributed Systems, ISIS User Guide and

Reference Manual, Isis Distributed Systems, Inc,
111 South Cayuga St., Ithaca NY, 1992.

[16] Krasner, G. & S. Pope, \A Cookbook for Using the
Model View Controller User Interface Paradigm
in Smalltalk-80", Journal of Object-Oriented Pro-

gramming, August/September 1988.

[17] Ma�eis, S., \Electra: Making Distributed Pro-
grams Object-Oriented", Proceedings, Symposium
on Experiences with Distributed and Multiproces-

sor Systems, USENIX, September, 1993.

[18] Makpangou, M., Y. Gourhant, J. Le Narzul, &
M. Shapiro \Fragmented Objects for Distributed
Abstractions", inAdvances in Distributed Systems,
IEEE, 1993.

[19] Matsuoka, S., T. Watanabe, & A. Yonezawa, \Hy-
brid Group Re
ective Architecture for Object-
Oriented Concurrent Re
ective Programming", in
Proceedings, ECOOP '91, Lecture Notes in Com-
puter Science, no 512, Springer Verlag, 1991.

[20] Milner, R., Communication and Concurrency,
Prentice Hall International, 1989.

[21] Mullender, S. (Ed.) Distributed Systems, 2nd ed.,
Addison-Wesley, 1993.

[22] OMG, Common Object Request Broker Architec-

ture and Speci�cation, Document 91.12.1, Object
Management Group, 1991.

[23] OMG, Joint Object Services Submission, Docu-
ment 93.2.1, Object Management Group, 1993.

[24] Powell, M., Objects, References, Identi�ers and

Equality, Document 93.7.5, Object Management
Group, 1993.

[25] Raj, R., E. Tempero, H. Levy, A. Black, N.
Hutchinson, & E. Jul, \Emerald: A General Pur-
pose ProgrammingLanguage", Software { Practice
and Experience, 1991.

12



[26] Scholl, M., C. Laasch, & M. Tresch, \Updatable
Views in Object Oriented Databases", in C. Delo-
bel, M. Kifer & Y. Masunaga (eds.) Deductive and
Object-Oriented Databases, Springer-Verlag, 1991.

[27] Shapiro, M., P. Dickman, & D. Plainfoss�e, SSP
Chains: Robust, Distributed References Supporting

Acyclic Garbage Collection, Rapport de Recherche
INRIA 1799, 1992.

[28] Strom, R., D. Bacon, A. Goldberg, A. Lowry, D.
Yellin, & S. Yemeni, Hermes: A Language for Dis-

tributed Computing, Prentice Hall, 1991.

[29] Stroustrup, B., The C++ Programming Language,
2nd ed., Addison-Wesley, 1991.

[30] Van Renesse, R., K., Birman, R. Cooper, B.
Glade, & P. Stephenson, \Reliable Multicast Be-
tween Microkernels", Proceedings, USENIX Work-

shop on Microkernels and Other Kernel Architec-

tures, April, 1992.

[31] Wills, A., Formal Methods Applied to Object Ori-

ented Programming, Thesis, University of Manch-
ester, 1992.

13


