Proposal

Proposed Book Title:

Practical Concurrency In Java


(or)

Java Concurrency In Practice

Author(s):

Brian Goetz
Tim Peierls
with Doug Lea, Joshua Bloch, David Holmes, Joseph Bowbeer

Author Biography

Why are you uniquely qualified to write this book?

The authors constitute the Expert Group for JSR 166, the Java Community Process specification committee which standardized a major upgrade to the concurrency features for Java 5.0. 

Brian Goetz has written over 50 articles on Java Development, many of which are on the topic of concurrency.

Tim Peierls is also a member of the Expert Group for JSR 201, Syntax Enhancements to the Java language.

Doug Lea has written the premier book on concurrent programming in Java.

etc.

Book Summary

Summarize what the book is about. Please imagine that this text will appear on the back cover of your book. 

JDK 5.0 is a huge step forward for the development of concurrent applications in Java. With improvements to the JVM to support high-performance, scalable concurrent classes, and a rich set of new concurrency building blocks, novices and experts alike will find that it is easier than ever to develop concurrent Java applications. 

This book offers something for everyone: Novices will learn about thread-safe, concurrent utility classes, such as collections and thread pools, which shield them from many of the complexities of synchronization and thread-safety. Experienced developers will learn about flexible concurrency building blocks which can be composed into larger concurrent applications, and how to customize them to provide enhanced reliability, manageability, and graceful degradation under load. Concurrency experts will learn about new low-level facilities for implementing high-performance, wait-free, lock-free concurrent algorithms in Java.

Technology Summary

Briefly explain the technology. Explain how it will be used and why it is important to the target audience.

Built-in support for concurrency is a major feature of the Java platform. As processors become faster, and multiprocessor systems become cheaper, the need to take advantage of multithreading in order to achieve full hardware resource utilization will only increase the importance of being able to incorporate concurrency into a wide variety of application categories. Unfortunately, using concurrency effectively is difficult and is often not adequately covered in many general texts. This book will offer techniques and examples which should be useful to a wide range of developers to help create efficient, thread-safe programs.

Audience

How many people will use this technology? Please state any applicable statistics indicating market use or market growth (i.e., IDC, Gartner, etc.) Who is the audience for the book? What does the audience need to know before they read this book?

This book will offer techniques and examples for practicing engineers, whether they have a minimal understanding of concurrency, have developed concurrent applications before, or are experts in concurrency and simply want to understand the new features for concurrency in the Java 5.0 platform.

It is worth noting that while many frameworks attempt to shield the user from the details of concurrency, it is almost always the case that developers need to understand the concurrency issues behind them anyway in order to use them effectively. This is true of Swing and Servlets, to name just two. This book will arm users with the theoretical knowledge and the specifics of the new tools for building concurrent applications provided in JDK 5.0.

Key Topic Coverage

What are the top five topics that will be covered in the book? Why are they the top five? What topics will readers get excited about? Why will readers get excited about these topics? What problem(s) does this book solve?

JDK 5.0 offers significant enhancements for developing concurrent applications:

· Thread pools: Thread pools are a powerful framework for scheduling work in a concurrent system according to a defined set of execution policies. Nearly every server application uses them, and until now, nearly every developer wrote their own, which was often difficult, inefficient, and error-prone. JDK 5.0 includes a flexible set of efficient thread pool implementations, eliminating the necessity and risk in rolling one's own.

· Concurrent collection classes: The Collections Framework, introduced in JDK 1.2, was a huge boon for developers, because developers could leverage a rich set of built-in data structures. In JDK 5.0, the Collections Framework has been extended to include a dozen new collection classes which are both thread-safe and offer high performance under heavy concurrent load. Just as the Collections Framework freed developers from having to build many common data structures themselves, the new concurrent Collections classes provide developers with a rich set of concurrent data structure which they can just use, rather than having to develop from scratch.

· Atomic variables: Nearly all modern processors have some form of atomic instruction to aid in the creation of concurrent data structures, and prior to JDK 5.0, Java classes had no way to use these. Instead of being able to use the fine-grained concurrency provided by the platform, Java developers had to fall back on the coarse-grained locking mechanism provided by the language, inhibiting the development of highly concurrent classes. With the introduction of atomic variables, JDK 5.0 offers Java developers the opportunity to write high-performance, scalable classes to a degree that was not possible before.

· The new Lock classes: While locking was built into the JVM from day 1, in the form of the synchronized keyword, the existing locking mechanism has some drawbacks. It is not possible to interrupt a thread waiting for a lock, to poll for a lock, to wait for a lock for only a specific period of time, or to use locks in a non-block-structured manner. The new Lock classes, are an “upgrade” to synchronized, which offer the same concurrency and memory semantics, but also offer new features as well as enhanced performance under contention.

· Synchronization utilities: There are a number of “concurrency patterns” which occur over and over again in concurrent applications: latches, semaphores, mutexes, barriers. JDK 5.0 includes a set of synchronization utilities that implement these and other common patterns; the book will offer explanations and examples for using them effectively.

Book Outline

Please include an extensive outline.

· Introduction

· Why threads?

· Thread safety

· Performance vs. scalability

· Accelerating concurrency: the role of CAS in java.util.concurrent

· Patterns for concurrent applications

· Producer-consumer

· Work queues/thread pool/executor

· Parallel decomposition 

· master w/multiple slaves (CountdownLatch)

· no master (CyclicBarrier)

· Co-threads / exchanger

· Types of concurrent applications

· Servers: web/mail/file/database servers

· Key goals: throughput, utilization, graceful degradation

· Combining threads and multiplexed I/O

· Example: digital map service

· GUI applications

· Key goals: responsiveness

· Using event queues with multiplexed I/O

· Example: image prefetching

· Task execution: Executor, ExecutorService, CompletionService

· Resource management techniques

· Blocking as a form of flow control

· Sizing thread pools

· Saturation policies

· Futures

· Example: dynamic proxy to thread-unsafe native libraries

· Example: pipelined execution in a database server

· Front-end threads: socket I/O and protocol framing

· Query parsing

· Query rewriting

· Query optimization and plan selection

· Execution

· Concurrent collections

· Queue, BlockingQueue, PriorityQueue

· ConcurrentHashMap

· CopyOnWriteArrayList

· ConcurrentNavigableMap and friends

· Example: double-ended A* path finder

· Synchronizers

· Semaphore

· CountdownLatch

· CyclicBarrier

· Exchanger

· Atomics

· Locks

· Lock and Condition

· ReentrantLock

· ReentrantReadWriteLock

· When to use Lock vs synchronized

· Rolling your own

· AbstractQueuedSynchronizer

Other Book Features 

Is there a CD? Is there a companion web site? If so, what makes them valuable to the reader?

CD, no; website, yes. The website will be useful to the reader because the code examples are necessarily abbreviated in book presentation. Users should be able to compile and run the examples from the book to see things work.

Competition

What books compete with this book?

This book is intended to be a “companion” book to Doug Lea's Concurrent Programming in Java, the premier book on the subject of Java concurrency. Where CPJ focuses on concepts and principles, this book will be a "user's guide" for the new concurrency features of the JDK, offering explanation, examples, and patterns for use, and referring back to principles developed in CPJ.

Other books on Java threading include:

· Java Threads, Oaks and Wong

· Java Thread Programming, Paul Hyde

· Taming Java Threads, Allen Holub

