ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/PriorityQueue.java
Revision: 1.4
Committed: Fri Apr 11 21:15:44 2014 UTC (10 years, 1 month ago) by jsr166
Branch: MAIN
Changes since 1.3: +5 -5 lines
Log Message:
remove redundant initializations to null or 0

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Copyright (c) 2003, 2006, Oracle and/or its affiliates. All rights reserved.
3     * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4     *
5     * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7     * published by the Free Software Foundation. Sun designates this
8     * particular file as subject to the "Classpath" exception as provided
9     * by Sun in the LICENSE file that accompanied this code.
10     *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21     * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24     */
25    
26     package java.util;
27    
28     /**
29     * An unbounded priority {@linkplain Queue queue} based on a priority heap.
30     * The elements of the priority queue are ordered according to their
31     * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
32     * provided at queue construction time, depending on which constructor is
33     * used. A priority queue does not permit {@code null} elements.
34     * A priority queue relying on natural ordering also does not permit
35     * insertion of non-comparable objects (doing so may result in
36     * {@code ClassCastException}).
37     *
38     * <p>The <em>head</em> of this queue is the <em>least</em> element
39     * with respect to the specified ordering. If multiple elements are
40     * tied for least value, the head is one of those elements -- ties are
41     * broken arbitrarily. The queue retrieval operations {@code poll},
42     * {@code remove}, {@code peek}, and {@code element} access the
43     * element at the head of the queue.
44     *
45     * <p>A priority queue is unbounded, but has an internal
46     * <i>capacity</i> governing the size of an array used to store the
47     * elements on the queue. It is always at least as large as the queue
48     * size. As elements are added to a priority queue, its capacity
49     * grows automatically. The details of the growth policy are not
50     * specified.
51     *
52     * <p>This class and its iterator implement all of the
53     * <em>optional</em> methods of the {@link Collection} and {@link
54     * Iterator} interfaces. The Iterator provided in method {@link
55     * #iterator()} is <em>not</em> guaranteed to traverse the elements of
56     * the priority queue in any particular order. If you need ordered
57     * traversal, consider using {@code Arrays.sort(pq.toArray())}.
58     *
59     * <p><strong>Note that this implementation is not synchronized.</strong>
60     * Multiple threads should not access a {@code PriorityQueue}
61     * instance concurrently if any of the threads modifies the queue.
62     * Instead, use the thread-safe {@link
63     * java.util.concurrent.PriorityBlockingQueue} class.
64     *
65     * <p>Implementation note: this implementation provides
66     * O(log(n)) time for the enqueuing and dequeuing methods
67     * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
68     * linear time for the {@code remove(Object)} and {@code contains(Object)}
69     * methods; and constant time for the retrieval methods
70     * ({@code peek}, {@code element}, and {@code size}).
71     *
72     * <p>This class is a member of the
73     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74     * Java Collections Framework</a>.
75     *
76     * @since 1.5
77     * @author Josh Bloch, Doug Lea
78     * @param <E> the type of elements held in this collection
79     */
80     @SuppressWarnings("unchecked")
81     public class PriorityQueue<E> extends AbstractQueue<E>
82     implements java.io.Serializable {
83    
84     private static final long serialVersionUID = -7720805057305804111L;
85    
86     private static final int DEFAULT_INITIAL_CAPACITY = 11;
87    
88     /**
89     * Priority queue represented as a balanced binary heap: the two
90     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
91     * priority queue is ordered by comparator, or by the elements'
92     * natural ordering, if comparator is null: For each node n in the
93     * heap and each descendant d of n, n <= d. The element with the
94     * lowest value is in queue[0], assuming the queue is nonempty.
95     */
96     private transient Object[] queue;
97    
98     /**
99     * The number of elements in the priority queue.
100     */
101 jsr166 1.4 private int size;
102 dl 1.1
103     /**
104     * The comparator, or null if priority queue uses elements'
105     * natural ordering.
106     */
107     private final Comparator<? super E> comparator;
108    
109     /**
110     * The number of times this priority queue has been
111     * <i>structurally modified</i>. See AbstractList for gory details.
112     */
113 jsr166 1.4 private transient int modCount;
114 dl 1.1
115     /**
116     * Creates a {@code PriorityQueue} with the default initial
117     * capacity (11) that orders its elements according to their
118     * {@linkplain Comparable natural ordering}.
119     */
120     public PriorityQueue() {
121     this(DEFAULT_INITIAL_CAPACITY, null);
122     }
123    
124     /**
125     * Creates a {@code PriorityQueue} with the specified initial
126     * capacity that orders its elements according to their
127     * {@linkplain Comparable natural ordering}.
128     *
129     * @param initialCapacity the initial capacity for this priority queue
130     * @throws IllegalArgumentException if {@code initialCapacity} is less
131     * than 1
132     */
133     public PriorityQueue(int initialCapacity) {
134     this(initialCapacity, null);
135     }
136    
137     /**
138     * Creates a {@code PriorityQueue} with the specified initial capacity
139     * that orders its elements according to the specified comparator.
140     *
141     * @param initialCapacity the initial capacity for this priority queue
142     * @param comparator the comparator that will be used to order this
143     * priority queue. If {@code null}, the {@linkplain Comparable
144     * natural ordering} of the elements will be used.
145     * @throws IllegalArgumentException if {@code initialCapacity} is
146     * less than 1
147     */
148     public PriorityQueue(int initialCapacity,
149     Comparator<? super E> comparator) {
150     // Note: This restriction of at least one is not actually needed,
151     // but continues for 1.5 compatibility
152     if (initialCapacity < 1)
153     throw new IllegalArgumentException();
154     this.queue = new Object[initialCapacity];
155     this.comparator = comparator;
156     }
157    
158     /**
159     * Creates a {@code PriorityQueue} containing the elements in the
160     * specified collection. If the specified collection is an instance of
161     * a {@link SortedSet} or is another {@code PriorityQueue}, this
162     * priority queue will be ordered according to the same ordering.
163     * Otherwise, this priority queue will be ordered according to the
164     * {@linkplain Comparable natural ordering} of its elements.
165     *
166     * @param c the collection whose elements are to be placed
167     * into this priority queue
168     * @throws ClassCastException if elements of the specified collection
169     * cannot be compared to one another according to the priority
170     * queue's ordering
171     * @throws NullPointerException if the specified collection or any
172     * of its elements are null
173     */
174     @SuppressWarnings("unchecked")
175     public PriorityQueue(Collection<? extends E> c) {
176     if (c instanceof SortedSet<?>) {
177     SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
178     this.comparator = (Comparator<? super E>) ss.comparator();
179     initElementsFromCollection(ss);
180     }
181     else if (c instanceof PriorityQueue<?>) {
182     PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
183     this.comparator = (Comparator<? super E>) pq.comparator();
184     initFromPriorityQueue(pq);
185     }
186     else {
187     this.comparator = null;
188     initFromCollection(c);
189     }
190     }
191    
192     /**
193     * Creates a {@code PriorityQueue} containing the elements in the
194     * specified priority queue. This priority queue will be
195     * ordered according to the same ordering as the given priority
196     * queue.
197     *
198     * @param c the priority queue whose elements are to be placed
199     * into this priority queue
200     * @throws ClassCastException if elements of {@code c} cannot be
201     * compared to one another according to {@code c}'s
202     * ordering
203     * @throws NullPointerException if the specified priority queue or any
204     * of its elements are null
205     */
206     @SuppressWarnings("unchecked")
207     public PriorityQueue(PriorityQueue<? extends E> c) {
208     this.comparator = (Comparator<? super E>) c.comparator();
209     initFromPriorityQueue(c);
210     }
211    
212     /**
213     * Creates a {@code PriorityQueue} containing the elements in the
214     * specified sorted set. This priority queue will be ordered
215     * according to the same ordering as the given sorted set.
216     *
217     * @param c the sorted set whose elements are to be placed
218     * into this priority queue
219     * @throws ClassCastException if elements of the specified sorted
220     * set cannot be compared to one another according to the
221     * sorted set's ordering
222     * @throws NullPointerException if the specified sorted set or any
223     * of its elements are null
224     */
225     @SuppressWarnings("unchecked")
226     public PriorityQueue(SortedSet<? extends E> c) {
227     this.comparator = (Comparator<? super E>) c.comparator();
228     initElementsFromCollection(c);
229     }
230    
231     private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
232     if (c.getClass() == PriorityQueue.class) {
233     this.queue = c.toArray();
234     this.size = c.size();
235     } else {
236     initFromCollection(c);
237     }
238     }
239    
240     private void initElementsFromCollection(Collection<? extends E> c) {
241     Object[] a = c.toArray();
242     // If c.toArray incorrectly doesn't return Object[], copy it.
243     if (a.getClass() != Object[].class)
244     a = Arrays.copyOf(a, a.length, Object[].class);
245     int len = a.length;
246     if (len == 1 || this.comparator != null)
247     for (int i = 0; i < len; i++)
248     if (a[i] == null)
249     throw new NullPointerException();
250     this.queue = a;
251     this.size = a.length;
252     }
253    
254     /**
255     * Initializes queue array with elements from the given Collection.
256     *
257     * @param c the collection
258     */
259     private void initFromCollection(Collection<? extends E> c) {
260     initElementsFromCollection(c);
261     heapify();
262     }
263    
264     /**
265     * The maximum size of array to allocate.
266     * Some VMs reserve some header words in an array.
267     * Attempts to allocate larger arrays may result in
268     * OutOfMemoryError: Requested array size exceeds VM limit
269     */
270     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
271    
272     /**
273     * Increases the capacity of the array.
274     *
275     * @param minCapacity the desired minimum capacity
276     */
277     private void grow(int minCapacity) {
278     int oldCapacity = queue.length;
279     // Double size if small; else grow by 50%
280     int newCapacity = oldCapacity + ((oldCapacity < 64) ?
281     (oldCapacity + 2) :
282     (oldCapacity >> 1));
283     // overflow-conscious code
284     if (newCapacity - MAX_ARRAY_SIZE > 0)
285     newCapacity = hugeCapacity(minCapacity);
286     queue = Arrays.copyOf(queue, newCapacity);
287     }
288    
289     private static int hugeCapacity(int minCapacity) {
290     if (minCapacity < 0) // overflow
291     throw new OutOfMemoryError();
292     return (minCapacity > MAX_ARRAY_SIZE) ?
293     Integer.MAX_VALUE :
294     MAX_ARRAY_SIZE;
295     }
296    
297     /**
298     * Inserts the specified element into this priority queue.
299     *
300     * @return {@code true} (as specified by {@link Collection#add})
301     * @throws ClassCastException if the specified element cannot be
302     * compared with elements currently in this priority queue
303     * according to the priority queue's ordering
304     * @throws NullPointerException if the specified element is null
305     */
306     public boolean add(E e) {
307     return offer(e);
308     }
309    
310     /**
311     * Inserts the specified element into this priority queue.
312     *
313     * @return {@code true} (as specified by {@link Queue#offer})
314     * @throws ClassCastException if the specified element cannot be
315     * compared with elements currently in this priority queue
316     * according to the priority queue's ordering
317     * @throws NullPointerException if the specified element is null
318     */
319     public boolean offer(E e) {
320     if (e == null)
321     throw new NullPointerException();
322     modCount++;
323     int i = size;
324     if (i >= queue.length)
325     grow(i + 1);
326     size = i + 1;
327     if (i == 0)
328     queue[0] = e;
329     else
330     siftUp(i, e);
331     return true;
332     }
333    
334     public E peek() {
335     return (size == 0) ? null : (E) queue[0];
336     }
337    
338     private int indexOf(Object o) {
339     if (o != null) {
340     for (int i = 0; i < size; i++)
341     if (o.equals(queue[i]))
342     return i;
343     }
344     return -1;
345     }
346    
347     /**
348     * Removes a single instance of the specified element from this queue,
349     * if it is present. More formally, removes an element {@code e} such
350     * that {@code o.equals(e)}, if this queue contains one or more such
351     * elements. Returns {@code true} if and only if this queue contained
352     * the specified element (or equivalently, if this queue changed as a
353     * result of the call).
354     *
355     * @param o element to be removed from this queue, if present
356     * @return {@code true} if this queue changed as a result of the call
357     */
358     public boolean remove(Object o) {
359     int i = indexOf(o);
360     if (i == -1)
361     return false;
362     else {
363     removeAt(i);
364     return true;
365     }
366     }
367    
368     /**
369     * Version of remove using reference equality, not equals.
370     * Needed by iterator.remove.
371     *
372     * @param o element to be removed from this queue, if present
373     * @return {@code true} if removed
374     */
375     boolean removeEq(Object o) {
376     for (int i = 0; i < size; i++) {
377     if (o == queue[i]) {
378     removeAt(i);
379     return true;
380     }
381     }
382     return false;
383     }
384    
385     /**
386     * Returns {@code true} if this queue contains the specified element.
387     * More formally, returns {@code true} if and only if this queue contains
388     * at least one element {@code e} such that {@code o.equals(e)}.
389     *
390     * @param o object to be checked for containment in this queue
391     * @return {@code true} if this queue contains the specified element
392     */
393     public boolean contains(Object o) {
394     return indexOf(o) != -1;
395     }
396    
397     /**
398     * Returns an array containing all of the elements in this queue.
399     * The elements are in no particular order.
400     *
401     * <p>The returned array will be "safe" in that no references to it are
402     * maintained by this queue. (In other words, this method must allocate
403     * a new array). The caller is thus free to modify the returned array.
404     *
405     * <p>This method acts as bridge between array-based and collection-based
406     * APIs.
407     *
408     * @return an array containing all of the elements in this queue
409     */
410     public Object[] toArray() {
411     return Arrays.copyOf(queue, size);
412     }
413    
414     /**
415     * Returns an array containing all of the elements in this queue; the
416     * runtime type of the returned array is that of the specified array.
417     * The returned array elements are in no particular order.
418     * If the queue fits in the specified array, it is returned therein.
419     * Otherwise, a new array is allocated with the runtime type of the
420     * specified array and the size of this queue.
421     *
422     * <p>If the queue fits in the specified array with room to spare
423     * (i.e., the array has more elements than the queue), the element in
424     * the array immediately following the end of the collection is set to
425     * {@code null}.
426     *
427     * <p>Like the {@link #toArray()} method, this method acts as bridge between
428     * array-based and collection-based APIs. Further, this method allows
429     * precise control over the runtime type of the output array, and may,
430     * under certain circumstances, be used to save allocation costs.
431     *
432 jsr166 1.2 * <p>Suppose {@code x} is a queue known to contain only strings.
433 dl 1.1 * The following code can be used to dump the queue into a newly
434 jsr166 1.2 * allocated array of {@code String}:
435 dl 1.1 *
436     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
437     *
438 jsr166 1.2 * Note that {@code toArray(new Object[0])} is identical in function to
439     * {@code toArray()}.
440 dl 1.1 *
441     * @param a the array into which the elements of the queue are to
442     * be stored, if it is big enough; otherwise, a new array of the
443     * same runtime type is allocated for this purpose.
444     * @return an array containing all of the elements in this queue
445     * @throws ArrayStoreException if the runtime type of the specified array
446     * is not a supertype of the runtime type of every element in
447     * this queue
448     * @throws NullPointerException if the specified array is null
449     */
450     public <T> T[] toArray(T[] a) {
451 jsr166 1.3 final int size = this.size;
452 dl 1.1 if (a.length < size)
453     // Make a new array of a's runtime type, but my contents:
454     return (T[]) Arrays.copyOf(queue, size, a.getClass());
455     System.arraycopy(queue, 0, a, 0, size);
456     if (a.length > size)
457     a[size] = null;
458     return a;
459     }
460    
461     /**
462     * Returns an iterator over the elements in this queue. The iterator
463     * does not return the elements in any particular order.
464     *
465     * @return an iterator over the elements in this queue
466     */
467     public Iterator<E> iterator() {
468     return new Itr();
469     }
470    
471     private final class Itr implements Iterator<E> {
472     /**
473     * Index (into queue array) of element to be returned by
474     * subsequent call to next.
475     */
476 jsr166 1.4 private int cursor;
477 dl 1.1
478     /**
479     * Index of element returned by most recent call to next,
480     * unless that element came from the forgetMeNot list.
481     * Set to -1 if element is deleted by a call to remove.
482     */
483     private int lastRet = -1;
484    
485     /**
486     * A queue of elements that were moved from the unvisited portion of
487     * the heap into the visited portion as a result of "unlucky" element
488     * removals during the iteration. (Unlucky element removals are those
489     * that require a siftup instead of a siftdown.) We must visit all of
490     * the elements in this list to complete the iteration. We do this
491     * after we've completed the "normal" iteration.
492     *
493     * We expect that most iterations, even those involving removals,
494     * will not need to store elements in this field.
495     */
496 jsr166 1.4 private ArrayDeque<E> forgetMeNot;
497 dl 1.1
498     /**
499     * Element returned by the most recent call to next iff that
500     * element was drawn from the forgetMeNot list.
501     */
502 jsr166 1.4 private E lastRetElt;
503 dl 1.1
504     /**
505     * The modCount value that the iterator believes that the backing
506     * Queue should have. If this expectation is violated, the iterator
507     * has detected concurrent modification.
508     */
509     private int expectedModCount = modCount;
510    
511     public boolean hasNext() {
512     return cursor < size ||
513     (forgetMeNot != null && !forgetMeNot.isEmpty());
514     }
515    
516     public E next() {
517     if (expectedModCount != modCount)
518     throw new ConcurrentModificationException();
519     if (cursor < size)
520     return (E) queue[lastRet = cursor++];
521     if (forgetMeNot != null) {
522     lastRet = -1;
523     lastRetElt = forgetMeNot.poll();
524     if (lastRetElt != null)
525     return lastRetElt;
526     }
527     throw new NoSuchElementException();
528     }
529    
530     public void remove() {
531     if (expectedModCount != modCount)
532     throw new ConcurrentModificationException();
533     if (lastRet != -1) {
534     E moved = PriorityQueue.this.removeAt(lastRet);
535     lastRet = -1;
536     if (moved == null)
537     cursor--;
538     else {
539     if (forgetMeNot == null)
540     forgetMeNot = new ArrayDeque<E>();
541     forgetMeNot.add(moved);
542     }
543     } else if (lastRetElt != null) {
544     PriorityQueue.this.removeEq(lastRetElt);
545     lastRetElt = null;
546     } else {
547     throw new IllegalStateException();
548     }
549     expectedModCount = modCount;
550     }
551     }
552    
553     public int size() {
554     return size;
555     }
556    
557     /**
558     * Removes all of the elements from this priority queue.
559     * The queue will be empty after this call returns.
560     */
561     public void clear() {
562     modCount++;
563     for (int i = 0; i < size; i++)
564     queue[i] = null;
565     size = 0;
566     }
567    
568     public E poll() {
569     if (size == 0)
570     return null;
571     int s = --size;
572     modCount++;
573     E result = (E) queue[0];
574     E x = (E) queue[s];
575     queue[s] = null;
576     if (s != 0)
577     siftDown(0, x);
578     return result;
579     }
580    
581     /**
582     * Removes the ith element from queue.
583     *
584     * Normally this method leaves the elements at up to i-1,
585     * inclusive, untouched. Under these circumstances, it returns
586     * null. Occasionally, in order to maintain the heap invariant,
587     * it must swap a later element of the list with one earlier than
588     * i. Under these circumstances, this method returns the element
589     * that was previously at the end of the list and is now at some
590     * position before i. This fact is used by iterator.remove so as to
591     * avoid missing traversing elements.
592     */
593     private E removeAt(int i) {
594     // assert i >= 0 && i < size;
595     modCount++;
596     int s = --size;
597     if (s == i) // removed last element
598     queue[i] = null;
599     else {
600     E moved = (E) queue[s];
601     queue[s] = null;
602     siftDown(i, moved);
603     if (queue[i] == moved) {
604     siftUp(i, moved);
605     if (queue[i] != moved)
606     return moved;
607     }
608     }
609     return null;
610     }
611    
612     /**
613     * Inserts item x at position k, maintaining heap invariant by
614     * promoting x up the tree until it is greater than or equal to
615     * its parent, or is the root.
616     *
617     * To simplify and speed up coercions and comparisons. the
618     * Comparable and Comparator versions are separated into different
619     * methods that are otherwise identical. (Similarly for siftDown.)
620     *
621     * @param k the position to fill
622     * @param x the item to insert
623     */
624     private void siftUp(int k, E x) {
625     if (comparator != null)
626     siftUpUsingComparator(k, x);
627     else
628     siftUpComparable(k, x);
629     }
630    
631     private void siftUpComparable(int k, E x) {
632     Comparable<? super E> key = (Comparable<? super E>) x;
633     while (k > 0) {
634     int parent = (k - 1) >>> 1;
635     Object e = queue[parent];
636     if (key.compareTo((E) e) >= 0)
637     break;
638     queue[k] = e;
639     k = parent;
640     }
641     queue[k] = key;
642     }
643    
644     private void siftUpUsingComparator(int k, E x) {
645     while (k > 0) {
646     int parent = (k - 1) >>> 1;
647     Object e = queue[parent];
648     if (comparator.compare(x, (E) e) >= 0)
649     break;
650     queue[k] = e;
651     k = parent;
652     }
653     queue[k] = x;
654     }
655    
656     /**
657     * Inserts item x at position k, maintaining heap invariant by
658     * demoting x down the tree repeatedly until it is less than or
659     * equal to its children or is a leaf.
660     *
661     * @param k the position to fill
662     * @param x the item to insert
663     */
664     private void siftDown(int k, E x) {
665     if (comparator != null)
666     siftDownUsingComparator(k, x);
667     else
668     siftDownComparable(k, x);
669     }
670    
671     private void siftDownComparable(int k, E x) {
672     Comparable<? super E> key = (Comparable<? super E>)x;
673     int half = size >>> 1; // loop while a non-leaf
674     while (k < half) {
675     int child = (k << 1) + 1; // assume left child is least
676     Object c = queue[child];
677     int right = child + 1;
678     if (right < size &&
679     ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
680     c = queue[child = right];
681     if (key.compareTo((E) c) <= 0)
682     break;
683     queue[k] = c;
684     k = child;
685     }
686     queue[k] = key;
687     }
688    
689     private void siftDownUsingComparator(int k, E x) {
690     int half = size >>> 1;
691     while (k < half) {
692     int child = (k << 1) + 1;
693     Object c = queue[child];
694     int right = child + 1;
695     if (right < size &&
696     comparator.compare((E) c, (E) queue[right]) > 0)
697     c = queue[child = right];
698     if (comparator.compare(x, (E) c) <= 0)
699     break;
700     queue[k] = c;
701     k = child;
702     }
703     queue[k] = x;
704     }
705    
706     /**
707     * Establishes the heap invariant (described above) in the entire tree,
708     * assuming nothing about the order of the elements prior to the call.
709     */
710     private void heapify() {
711     for (int i = (size >>> 1) - 1; i >= 0; i--)
712     siftDown(i, (E) queue[i]);
713     }
714    
715     /**
716     * Returns the comparator used to order the elements in this
717     * queue, or {@code null} if this queue is sorted according to
718     * the {@linkplain Comparable natural ordering} of its elements.
719     *
720     * @return the comparator used to order this queue, or
721     * {@code null} if this queue is sorted according to the
722     * natural ordering of its elements
723     */
724     public Comparator<? super E> comparator() {
725     return comparator;
726     }
727    
728     /**
729     * Saves this queue to a stream (that is, serializes it).
730     *
731     * @serialData The length of the array backing the instance is
732     * emitted (int), followed by all of its elements
733     * (each an {@code Object}) in the proper order.
734     */
735     private void writeObject(java.io.ObjectOutputStream s)
736     throws java.io.IOException {
737     // Write out element count, and any hidden stuff
738     s.defaultWriteObject();
739    
740     // Write out array length, for compatibility with 1.5 version
741     s.writeInt(Math.max(2, size + 1));
742    
743     // Write out all elements in the "proper order".
744     for (int i = 0; i < size; i++)
745     s.writeObject(queue[i]);
746     }
747    
748     /**
749     * Reconstitutes this queue from a stream (that is, deserializes it).
750     */
751     private void readObject(java.io.ObjectInputStream s)
752     throws java.io.IOException, ClassNotFoundException {
753     // Read in size, and any hidden stuff
754     s.defaultReadObject();
755    
756     // Read in (and discard) array length
757     s.readInt();
758    
759     queue = new Object[size];
760    
761     // Read in all elements.
762     for (int i = 0; i < size; i++)
763     queue[i] = s.readObject();
764    
765     // Elements are guaranteed to be in "proper order", but the
766     // spec has never explained what that might be.
767     heapify();
768     }
769     }