ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/PriorityQueue.java
Revision: 1.4
Committed: Fri Apr 11 21:15:44 2014 UTC (10 years, 1 month ago) by jsr166
Branch: MAIN
Changes since 1.3: +5 -5 lines
Log Message:
remove redundant initializations to null or 0

File Contents

# Content
1 /*
2 * Copyright (c) 2003, 2006, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Sun designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Sun in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 /**
29 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
30 * The elements of the priority queue are ordered according to their
31 * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
32 * provided at queue construction time, depending on which constructor is
33 * used. A priority queue does not permit {@code null} elements.
34 * A priority queue relying on natural ordering also does not permit
35 * insertion of non-comparable objects (doing so may result in
36 * {@code ClassCastException}).
37 *
38 * <p>The <em>head</em> of this queue is the <em>least</em> element
39 * with respect to the specified ordering. If multiple elements are
40 * tied for least value, the head is one of those elements -- ties are
41 * broken arbitrarily. The queue retrieval operations {@code poll},
42 * {@code remove}, {@code peek}, and {@code element} access the
43 * element at the head of the queue.
44 *
45 * <p>A priority queue is unbounded, but has an internal
46 * <i>capacity</i> governing the size of an array used to store the
47 * elements on the queue. It is always at least as large as the queue
48 * size. As elements are added to a priority queue, its capacity
49 * grows automatically. The details of the growth policy are not
50 * specified.
51 *
52 * <p>This class and its iterator implement all of the
53 * <em>optional</em> methods of the {@link Collection} and {@link
54 * Iterator} interfaces. The Iterator provided in method {@link
55 * #iterator()} is <em>not</em> guaranteed to traverse the elements of
56 * the priority queue in any particular order. If you need ordered
57 * traversal, consider using {@code Arrays.sort(pq.toArray())}.
58 *
59 * <p><strong>Note that this implementation is not synchronized.</strong>
60 * Multiple threads should not access a {@code PriorityQueue}
61 * instance concurrently if any of the threads modifies the queue.
62 * Instead, use the thread-safe {@link
63 * java.util.concurrent.PriorityBlockingQueue} class.
64 *
65 * <p>Implementation note: this implementation provides
66 * O(log(n)) time for the enqueuing and dequeuing methods
67 * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
68 * linear time for the {@code remove(Object)} and {@code contains(Object)}
69 * methods; and constant time for the retrieval methods
70 * ({@code peek}, {@code element}, and {@code size}).
71 *
72 * <p>This class is a member of the
73 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74 * Java Collections Framework</a>.
75 *
76 * @since 1.5
77 * @author Josh Bloch, Doug Lea
78 * @param <E> the type of elements held in this collection
79 */
80 @SuppressWarnings("unchecked")
81 public class PriorityQueue<E> extends AbstractQueue<E>
82 implements java.io.Serializable {
83
84 private static final long serialVersionUID = -7720805057305804111L;
85
86 private static final int DEFAULT_INITIAL_CAPACITY = 11;
87
88 /**
89 * Priority queue represented as a balanced binary heap: the two
90 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
91 * priority queue is ordered by comparator, or by the elements'
92 * natural ordering, if comparator is null: For each node n in the
93 * heap and each descendant d of n, n <= d. The element with the
94 * lowest value is in queue[0], assuming the queue is nonempty.
95 */
96 private transient Object[] queue;
97
98 /**
99 * The number of elements in the priority queue.
100 */
101 private int size;
102
103 /**
104 * The comparator, or null if priority queue uses elements'
105 * natural ordering.
106 */
107 private final Comparator<? super E> comparator;
108
109 /**
110 * The number of times this priority queue has been
111 * <i>structurally modified</i>. See AbstractList for gory details.
112 */
113 private transient int modCount;
114
115 /**
116 * Creates a {@code PriorityQueue} with the default initial
117 * capacity (11) that orders its elements according to their
118 * {@linkplain Comparable natural ordering}.
119 */
120 public PriorityQueue() {
121 this(DEFAULT_INITIAL_CAPACITY, null);
122 }
123
124 /**
125 * Creates a {@code PriorityQueue} with the specified initial
126 * capacity that orders its elements according to their
127 * {@linkplain Comparable natural ordering}.
128 *
129 * @param initialCapacity the initial capacity for this priority queue
130 * @throws IllegalArgumentException if {@code initialCapacity} is less
131 * than 1
132 */
133 public PriorityQueue(int initialCapacity) {
134 this(initialCapacity, null);
135 }
136
137 /**
138 * Creates a {@code PriorityQueue} with the specified initial capacity
139 * that orders its elements according to the specified comparator.
140 *
141 * @param initialCapacity the initial capacity for this priority queue
142 * @param comparator the comparator that will be used to order this
143 * priority queue. If {@code null}, the {@linkplain Comparable
144 * natural ordering} of the elements will be used.
145 * @throws IllegalArgumentException if {@code initialCapacity} is
146 * less than 1
147 */
148 public PriorityQueue(int initialCapacity,
149 Comparator<? super E> comparator) {
150 // Note: This restriction of at least one is not actually needed,
151 // but continues for 1.5 compatibility
152 if (initialCapacity < 1)
153 throw new IllegalArgumentException();
154 this.queue = new Object[initialCapacity];
155 this.comparator = comparator;
156 }
157
158 /**
159 * Creates a {@code PriorityQueue} containing the elements in the
160 * specified collection. If the specified collection is an instance of
161 * a {@link SortedSet} or is another {@code PriorityQueue}, this
162 * priority queue will be ordered according to the same ordering.
163 * Otherwise, this priority queue will be ordered according to the
164 * {@linkplain Comparable natural ordering} of its elements.
165 *
166 * @param c the collection whose elements are to be placed
167 * into this priority queue
168 * @throws ClassCastException if elements of the specified collection
169 * cannot be compared to one another according to the priority
170 * queue's ordering
171 * @throws NullPointerException if the specified collection or any
172 * of its elements are null
173 */
174 @SuppressWarnings("unchecked")
175 public PriorityQueue(Collection<? extends E> c) {
176 if (c instanceof SortedSet<?>) {
177 SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
178 this.comparator = (Comparator<? super E>) ss.comparator();
179 initElementsFromCollection(ss);
180 }
181 else if (c instanceof PriorityQueue<?>) {
182 PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
183 this.comparator = (Comparator<? super E>) pq.comparator();
184 initFromPriorityQueue(pq);
185 }
186 else {
187 this.comparator = null;
188 initFromCollection(c);
189 }
190 }
191
192 /**
193 * Creates a {@code PriorityQueue} containing the elements in the
194 * specified priority queue. This priority queue will be
195 * ordered according to the same ordering as the given priority
196 * queue.
197 *
198 * @param c the priority queue whose elements are to be placed
199 * into this priority queue
200 * @throws ClassCastException if elements of {@code c} cannot be
201 * compared to one another according to {@code c}'s
202 * ordering
203 * @throws NullPointerException if the specified priority queue or any
204 * of its elements are null
205 */
206 @SuppressWarnings("unchecked")
207 public PriorityQueue(PriorityQueue<? extends E> c) {
208 this.comparator = (Comparator<? super E>) c.comparator();
209 initFromPriorityQueue(c);
210 }
211
212 /**
213 * Creates a {@code PriorityQueue} containing the elements in the
214 * specified sorted set. This priority queue will be ordered
215 * according to the same ordering as the given sorted set.
216 *
217 * @param c the sorted set whose elements are to be placed
218 * into this priority queue
219 * @throws ClassCastException if elements of the specified sorted
220 * set cannot be compared to one another according to the
221 * sorted set's ordering
222 * @throws NullPointerException if the specified sorted set or any
223 * of its elements are null
224 */
225 @SuppressWarnings("unchecked")
226 public PriorityQueue(SortedSet<? extends E> c) {
227 this.comparator = (Comparator<? super E>) c.comparator();
228 initElementsFromCollection(c);
229 }
230
231 private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
232 if (c.getClass() == PriorityQueue.class) {
233 this.queue = c.toArray();
234 this.size = c.size();
235 } else {
236 initFromCollection(c);
237 }
238 }
239
240 private void initElementsFromCollection(Collection<? extends E> c) {
241 Object[] a = c.toArray();
242 // If c.toArray incorrectly doesn't return Object[], copy it.
243 if (a.getClass() != Object[].class)
244 a = Arrays.copyOf(a, a.length, Object[].class);
245 int len = a.length;
246 if (len == 1 || this.comparator != null)
247 for (int i = 0; i < len; i++)
248 if (a[i] == null)
249 throw new NullPointerException();
250 this.queue = a;
251 this.size = a.length;
252 }
253
254 /**
255 * Initializes queue array with elements from the given Collection.
256 *
257 * @param c the collection
258 */
259 private void initFromCollection(Collection<? extends E> c) {
260 initElementsFromCollection(c);
261 heapify();
262 }
263
264 /**
265 * The maximum size of array to allocate.
266 * Some VMs reserve some header words in an array.
267 * Attempts to allocate larger arrays may result in
268 * OutOfMemoryError: Requested array size exceeds VM limit
269 */
270 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
271
272 /**
273 * Increases the capacity of the array.
274 *
275 * @param minCapacity the desired minimum capacity
276 */
277 private void grow(int minCapacity) {
278 int oldCapacity = queue.length;
279 // Double size if small; else grow by 50%
280 int newCapacity = oldCapacity + ((oldCapacity < 64) ?
281 (oldCapacity + 2) :
282 (oldCapacity >> 1));
283 // overflow-conscious code
284 if (newCapacity - MAX_ARRAY_SIZE > 0)
285 newCapacity = hugeCapacity(minCapacity);
286 queue = Arrays.copyOf(queue, newCapacity);
287 }
288
289 private static int hugeCapacity(int minCapacity) {
290 if (minCapacity < 0) // overflow
291 throw new OutOfMemoryError();
292 return (minCapacity > MAX_ARRAY_SIZE) ?
293 Integer.MAX_VALUE :
294 MAX_ARRAY_SIZE;
295 }
296
297 /**
298 * Inserts the specified element into this priority queue.
299 *
300 * @return {@code true} (as specified by {@link Collection#add})
301 * @throws ClassCastException if the specified element cannot be
302 * compared with elements currently in this priority queue
303 * according to the priority queue's ordering
304 * @throws NullPointerException if the specified element is null
305 */
306 public boolean add(E e) {
307 return offer(e);
308 }
309
310 /**
311 * Inserts the specified element into this priority queue.
312 *
313 * @return {@code true} (as specified by {@link Queue#offer})
314 * @throws ClassCastException if the specified element cannot be
315 * compared with elements currently in this priority queue
316 * according to the priority queue's ordering
317 * @throws NullPointerException if the specified element is null
318 */
319 public boolean offer(E e) {
320 if (e == null)
321 throw new NullPointerException();
322 modCount++;
323 int i = size;
324 if (i >= queue.length)
325 grow(i + 1);
326 size = i + 1;
327 if (i == 0)
328 queue[0] = e;
329 else
330 siftUp(i, e);
331 return true;
332 }
333
334 public E peek() {
335 return (size == 0) ? null : (E) queue[0];
336 }
337
338 private int indexOf(Object o) {
339 if (o != null) {
340 for (int i = 0; i < size; i++)
341 if (o.equals(queue[i]))
342 return i;
343 }
344 return -1;
345 }
346
347 /**
348 * Removes a single instance of the specified element from this queue,
349 * if it is present. More formally, removes an element {@code e} such
350 * that {@code o.equals(e)}, if this queue contains one or more such
351 * elements. Returns {@code true} if and only if this queue contained
352 * the specified element (or equivalently, if this queue changed as a
353 * result of the call).
354 *
355 * @param o element to be removed from this queue, if present
356 * @return {@code true} if this queue changed as a result of the call
357 */
358 public boolean remove(Object o) {
359 int i = indexOf(o);
360 if (i == -1)
361 return false;
362 else {
363 removeAt(i);
364 return true;
365 }
366 }
367
368 /**
369 * Version of remove using reference equality, not equals.
370 * Needed by iterator.remove.
371 *
372 * @param o element to be removed from this queue, if present
373 * @return {@code true} if removed
374 */
375 boolean removeEq(Object o) {
376 for (int i = 0; i < size; i++) {
377 if (o == queue[i]) {
378 removeAt(i);
379 return true;
380 }
381 }
382 return false;
383 }
384
385 /**
386 * Returns {@code true} if this queue contains the specified element.
387 * More formally, returns {@code true} if and only if this queue contains
388 * at least one element {@code e} such that {@code o.equals(e)}.
389 *
390 * @param o object to be checked for containment in this queue
391 * @return {@code true} if this queue contains the specified element
392 */
393 public boolean contains(Object o) {
394 return indexOf(o) != -1;
395 }
396
397 /**
398 * Returns an array containing all of the elements in this queue.
399 * The elements are in no particular order.
400 *
401 * <p>The returned array will be "safe" in that no references to it are
402 * maintained by this queue. (In other words, this method must allocate
403 * a new array). The caller is thus free to modify the returned array.
404 *
405 * <p>This method acts as bridge between array-based and collection-based
406 * APIs.
407 *
408 * @return an array containing all of the elements in this queue
409 */
410 public Object[] toArray() {
411 return Arrays.copyOf(queue, size);
412 }
413
414 /**
415 * Returns an array containing all of the elements in this queue; the
416 * runtime type of the returned array is that of the specified array.
417 * The returned array elements are in no particular order.
418 * If the queue fits in the specified array, it is returned therein.
419 * Otherwise, a new array is allocated with the runtime type of the
420 * specified array and the size of this queue.
421 *
422 * <p>If the queue fits in the specified array with room to spare
423 * (i.e., the array has more elements than the queue), the element in
424 * the array immediately following the end of the collection is set to
425 * {@code null}.
426 *
427 * <p>Like the {@link #toArray()} method, this method acts as bridge between
428 * array-based and collection-based APIs. Further, this method allows
429 * precise control over the runtime type of the output array, and may,
430 * under certain circumstances, be used to save allocation costs.
431 *
432 * <p>Suppose {@code x} is a queue known to contain only strings.
433 * The following code can be used to dump the queue into a newly
434 * allocated array of {@code String}:
435 *
436 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
437 *
438 * Note that {@code toArray(new Object[0])} is identical in function to
439 * {@code toArray()}.
440 *
441 * @param a the array into which the elements of the queue are to
442 * be stored, if it is big enough; otherwise, a new array of the
443 * same runtime type is allocated for this purpose.
444 * @return an array containing all of the elements in this queue
445 * @throws ArrayStoreException if the runtime type of the specified array
446 * is not a supertype of the runtime type of every element in
447 * this queue
448 * @throws NullPointerException if the specified array is null
449 */
450 public <T> T[] toArray(T[] a) {
451 final int size = this.size;
452 if (a.length < size)
453 // Make a new array of a's runtime type, but my contents:
454 return (T[]) Arrays.copyOf(queue, size, a.getClass());
455 System.arraycopy(queue, 0, a, 0, size);
456 if (a.length > size)
457 a[size] = null;
458 return a;
459 }
460
461 /**
462 * Returns an iterator over the elements in this queue. The iterator
463 * does not return the elements in any particular order.
464 *
465 * @return an iterator over the elements in this queue
466 */
467 public Iterator<E> iterator() {
468 return new Itr();
469 }
470
471 private final class Itr implements Iterator<E> {
472 /**
473 * Index (into queue array) of element to be returned by
474 * subsequent call to next.
475 */
476 private int cursor;
477
478 /**
479 * Index of element returned by most recent call to next,
480 * unless that element came from the forgetMeNot list.
481 * Set to -1 if element is deleted by a call to remove.
482 */
483 private int lastRet = -1;
484
485 /**
486 * A queue of elements that were moved from the unvisited portion of
487 * the heap into the visited portion as a result of "unlucky" element
488 * removals during the iteration. (Unlucky element removals are those
489 * that require a siftup instead of a siftdown.) We must visit all of
490 * the elements in this list to complete the iteration. We do this
491 * after we've completed the "normal" iteration.
492 *
493 * We expect that most iterations, even those involving removals,
494 * will not need to store elements in this field.
495 */
496 private ArrayDeque<E> forgetMeNot;
497
498 /**
499 * Element returned by the most recent call to next iff that
500 * element was drawn from the forgetMeNot list.
501 */
502 private E lastRetElt;
503
504 /**
505 * The modCount value that the iterator believes that the backing
506 * Queue should have. If this expectation is violated, the iterator
507 * has detected concurrent modification.
508 */
509 private int expectedModCount = modCount;
510
511 public boolean hasNext() {
512 return cursor < size ||
513 (forgetMeNot != null && !forgetMeNot.isEmpty());
514 }
515
516 public E next() {
517 if (expectedModCount != modCount)
518 throw new ConcurrentModificationException();
519 if (cursor < size)
520 return (E) queue[lastRet = cursor++];
521 if (forgetMeNot != null) {
522 lastRet = -1;
523 lastRetElt = forgetMeNot.poll();
524 if (lastRetElt != null)
525 return lastRetElt;
526 }
527 throw new NoSuchElementException();
528 }
529
530 public void remove() {
531 if (expectedModCount != modCount)
532 throw new ConcurrentModificationException();
533 if (lastRet != -1) {
534 E moved = PriorityQueue.this.removeAt(lastRet);
535 lastRet = -1;
536 if (moved == null)
537 cursor--;
538 else {
539 if (forgetMeNot == null)
540 forgetMeNot = new ArrayDeque<E>();
541 forgetMeNot.add(moved);
542 }
543 } else if (lastRetElt != null) {
544 PriorityQueue.this.removeEq(lastRetElt);
545 lastRetElt = null;
546 } else {
547 throw new IllegalStateException();
548 }
549 expectedModCount = modCount;
550 }
551 }
552
553 public int size() {
554 return size;
555 }
556
557 /**
558 * Removes all of the elements from this priority queue.
559 * The queue will be empty after this call returns.
560 */
561 public void clear() {
562 modCount++;
563 for (int i = 0; i < size; i++)
564 queue[i] = null;
565 size = 0;
566 }
567
568 public E poll() {
569 if (size == 0)
570 return null;
571 int s = --size;
572 modCount++;
573 E result = (E) queue[0];
574 E x = (E) queue[s];
575 queue[s] = null;
576 if (s != 0)
577 siftDown(0, x);
578 return result;
579 }
580
581 /**
582 * Removes the ith element from queue.
583 *
584 * Normally this method leaves the elements at up to i-1,
585 * inclusive, untouched. Under these circumstances, it returns
586 * null. Occasionally, in order to maintain the heap invariant,
587 * it must swap a later element of the list with one earlier than
588 * i. Under these circumstances, this method returns the element
589 * that was previously at the end of the list and is now at some
590 * position before i. This fact is used by iterator.remove so as to
591 * avoid missing traversing elements.
592 */
593 private E removeAt(int i) {
594 // assert i >= 0 && i < size;
595 modCount++;
596 int s = --size;
597 if (s == i) // removed last element
598 queue[i] = null;
599 else {
600 E moved = (E) queue[s];
601 queue[s] = null;
602 siftDown(i, moved);
603 if (queue[i] == moved) {
604 siftUp(i, moved);
605 if (queue[i] != moved)
606 return moved;
607 }
608 }
609 return null;
610 }
611
612 /**
613 * Inserts item x at position k, maintaining heap invariant by
614 * promoting x up the tree until it is greater than or equal to
615 * its parent, or is the root.
616 *
617 * To simplify and speed up coercions and comparisons. the
618 * Comparable and Comparator versions are separated into different
619 * methods that are otherwise identical. (Similarly for siftDown.)
620 *
621 * @param k the position to fill
622 * @param x the item to insert
623 */
624 private void siftUp(int k, E x) {
625 if (comparator != null)
626 siftUpUsingComparator(k, x);
627 else
628 siftUpComparable(k, x);
629 }
630
631 private void siftUpComparable(int k, E x) {
632 Comparable<? super E> key = (Comparable<? super E>) x;
633 while (k > 0) {
634 int parent = (k - 1) >>> 1;
635 Object e = queue[parent];
636 if (key.compareTo((E) e) >= 0)
637 break;
638 queue[k] = e;
639 k = parent;
640 }
641 queue[k] = key;
642 }
643
644 private void siftUpUsingComparator(int k, E x) {
645 while (k > 0) {
646 int parent = (k - 1) >>> 1;
647 Object e = queue[parent];
648 if (comparator.compare(x, (E) e) >= 0)
649 break;
650 queue[k] = e;
651 k = parent;
652 }
653 queue[k] = x;
654 }
655
656 /**
657 * Inserts item x at position k, maintaining heap invariant by
658 * demoting x down the tree repeatedly until it is less than or
659 * equal to its children or is a leaf.
660 *
661 * @param k the position to fill
662 * @param x the item to insert
663 */
664 private void siftDown(int k, E x) {
665 if (comparator != null)
666 siftDownUsingComparator(k, x);
667 else
668 siftDownComparable(k, x);
669 }
670
671 private void siftDownComparable(int k, E x) {
672 Comparable<? super E> key = (Comparable<? super E>)x;
673 int half = size >>> 1; // loop while a non-leaf
674 while (k < half) {
675 int child = (k << 1) + 1; // assume left child is least
676 Object c = queue[child];
677 int right = child + 1;
678 if (right < size &&
679 ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
680 c = queue[child = right];
681 if (key.compareTo((E) c) <= 0)
682 break;
683 queue[k] = c;
684 k = child;
685 }
686 queue[k] = key;
687 }
688
689 private void siftDownUsingComparator(int k, E x) {
690 int half = size >>> 1;
691 while (k < half) {
692 int child = (k << 1) + 1;
693 Object c = queue[child];
694 int right = child + 1;
695 if (right < size &&
696 comparator.compare((E) c, (E) queue[right]) > 0)
697 c = queue[child = right];
698 if (comparator.compare(x, (E) c) <= 0)
699 break;
700 queue[k] = c;
701 k = child;
702 }
703 queue[k] = x;
704 }
705
706 /**
707 * Establishes the heap invariant (described above) in the entire tree,
708 * assuming nothing about the order of the elements prior to the call.
709 */
710 private void heapify() {
711 for (int i = (size >>> 1) - 1; i >= 0; i--)
712 siftDown(i, (E) queue[i]);
713 }
714
715 /**
716 * Returns the comparator used to order the elements in this
717 * queue, or {@code null} if this queue is sorted according to
718 * the {@linkplain Comparable natural ordering} of its elements.
719 *
720 * @return the comparator used to order this queue, or
721 * {@code null} if this queue is sorted according to the
722 * natural ordering of its elements
723 */
724 public Comparator<? super E> comparator() {
725 return comparator;
726 }
727
728 /**
729 * Saves this queue to a stream (that is, serializes it).
730 *
731 * @serialData The length of the array backing the instance is
732 * emitted (int), followed by all of its elements
733 * (each an {@code Object}) in the proper order.
734 */
735 private void writeObject(java.io.ObjectOutputStream s)
736 throws java.io.IOException {
737 // Write out element count, and any hidden stuff
738 s.defaultWriteObject();
739
740 // Write out array length, for compatibility with 1.5 version
741 s.writeInt(Math.max(2, size + 1));
742
743 // Write out all elements in the "proper order".
744 for (int i = 0; i < size; i++)
745 s.writeObject(queue[i]);
746 }
747
748 /**
749 * Reconstitutes this queue from a stream (that is, deserializes it).
750 */
751 private void readObject(java.io.ObjectInputStream s)
752 throws java.io.IOException, ClassNotFoundException {
753 // Read in size, and any hidden stuff
754 s.defaultReadObject();
755
756 // Read in (and discard) array length
757 s.readInt();
758
759 queue = new Object[size];
760
761 // Read in all elements.
762 for (int i = 0; i < size; i++)
763 queue[i] = s.readObject();
764
765 // Elements are guaranteed to be in "proper order", but the
766 // spec has never explained what that might be.
767 heapify();
768 }
769 }