ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/ArrayBlockingQueue.java
Revision: 1.7
Committed: Tue Feb 24 01:32:29 2015 UTC (9 years, 2 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.6: +65 -87 lines
Log Message:
backport from main

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.ref.WeakReference;
10 import java.util.Arrays;
11 import java.util.AbstractQueue;
12 import java.util.Collection;
13 import java.util.Iterator;
14 import java.util.NoSuchElementException;
15 import java.util.concurrent.locks.Condition;
16 import java.util.concurrent.locks.ReentrantLock;
17
18 /**
19 * A bounded {@linkplain BlockingQueue blocking queue} backed by an
20 * array. This queue orders elements FIFO (first-in-first-out). The
21 * <em>head</em> of the queue is that element that has been on the
22 * queue the longest time. The <em>tail</em> of the queue is that
23 * element that has been on the queue the shortest time. New elements
24 * are inserted at the tail of the queue, and the queue retrieval
25 * operations obtain elements at the head of the queue.
26 *
27 * <p>This is a classic &quot;bounded buffer&quot;, in which a
28 * fixed-sized array holds elements inserted by producers and
29 * extracted by consumers. Once created, the capacity cannot be
30 * changed. Attempts to {@code put} an element into a full queue
31 * will result in the operation blocking; attempts to {@code take} an
32 * element from an empty queue will similarly block.
33 *
34 * <p>This class supports an optional fairness policy for ordering
35 * waiting producer and consumer threads. By default, this ordering
36 * is not guaranteed. However, a queue constructed with fairness set
37 * to {@code true} grants threads access in FIFO order. Fairness
38 * generally decreases throughput but reduces variability and avoids
39 * starvation.
40 *
41 * <p>This class and its iterator implement all of the
42 * <em>optional</em> methods of the {@link Collection} and {@link
43 * Iterator} interfaces.
44 *
45 * <p>This class is a member of the
46 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
47 * Java Collections Framework</a>.
48 *
49 * @since 1.5
50 * @author Doug Lea
51 * @param <E> the type of elements held in this queue
52 */
53 public class ArrayBlockingQueue<E> extends AbstractQueue<E>
54 implements BlockingQueue<E>, java.io.Serializable {
55
56 /**
57 * Serialization ID. This class relies on default serialization
58 * even for the items array, which is default-serialized, even if
59 * it is empty. Otherwise it could not be declared final, which is
60 * necessary here.
61 */
62 private static final long serialVersionUID = -817911632652898426L;
63
64 /** The queued items */
65 final Object[] items;
66
67 /** items index for next take, poll, peek or remove */
68 int takeIndex;
69
70 /** items index for next put, offer, or add */
71 int putIndex;
72
73 /** Number of elements in the queue */
74 int count;
75
76 /*
77 * Concurrency control uses the classic two-condition algorithm
78 * found in any textbook.
79 */
80
81 /** Main lock guarding all access */
82 final ReentrantLock lock;
83
84 /** Condition for waiting takes */
85 private final Condition notEmpty;
86
87 /** Condition for waiting puts */
88 private final Condition notFull;
89
90 /**
91 * Shared state for currently active iterators, or null if there
92 * are known not to be any. Allows queue operations to update
93 * iterator state.
94 */
95 transient Itrs itrs = null;
96
97 // Internal helper methods
98
99 /**
100 * Circularly decrements array index i.
101 */
102 final int dec(int i) {
103 return ((i == 0) ? items.length : i) - 1;
104 }
105
106 /**
107 * Returns item at index i.
108 */
109 @SuppressWarnings("unchecked")
110 final E itemAt(int i) {
111 return (E) items[i];
112 }
113
114 /**
115 * Inserts element at current put position, advances, and signals.
116 * Call only when holding lock.
117 */
118 private void enqueue(E x) {
119 // assert lock.getHoldCount() == 1;
120 // assert items[putIndex] == null;
121 final Object[] items = this.items;
122 items[putIndex] = x;
123 if (++putIndex == items.length) putIndex = 0;
124 count++;
125 notEmpty.signal();
126 }
127
128 /**
129 * Extracts element at current take position, advances, and signals.
130 * Call only when holding lock.
131 */
132 private E dequeue() {
133 // assert lock.getHoldCount() == 1;
134 // assert items[takeIndex] != null;
135 final Object[] items = this.items;
136 @SuppressWarnings("unchecked")
137 E x = (E) items[takeIndex];
138 items[takeIndex] = null;
139 if (++takeIndex == items.length) takeIndex = 0;
140 count--;
141 if (itrs != null)
142 itrs.elementDequeued();
143 notFull.signal();
144 return x;
145 }
146
147 /**
148 * Deletes item at array index removeIndex.
149 * Utility for remove(Object) and iterator.remove.
150 * Call only when holding lock.
151 */
152 void removeAt(final int removeIndex) {
153 // assert lock.getHoldCount() == 1;
154 // assert items[removeIndex] != null;
155 // assert removeIndex >= 0 && removeIndex < items.length;
156 final Object[] items = this.items;
157 if (removeIndex == takeIndex) {
158 // removing front item; just advance
159 items[takeIndex] = null;
160 if (++takeIndex == items.length) takeIndex = 0;
161 count--;
162 if (itrs != null)
163 itrs.elementDequeued();
164 } else {
165 // an "interior" remove
166
167 // slide over all others up through putIndex.
168 for (int i = removeIndex, putIndex = this.putIndex;;) {
169 int pred = i;
170 if (++i == items.length) i = 0;
171 if (i == putIndex) {
172 items[pred] = null;
173 this.putIndex = pred;
174 break;
175 }
176 items[pred] = items[i];
177 }
178 count--;
179 if (itrs != null)
180 itrs.removedAt(removeIndex);
181 }
182 notFull.signal();
183 }
184
185 /**
186 * Creates an {@code ArrayBlockingQueue} with the given (fixed)
187 * capacity and default access policy.
188 *
189 * @param capacity the capacity of this queue
190 * @throws IllegalArgumentException if {@code capacity < 1}
191 */
192 public ArrayBlockingQueue(int capacity) {
193 this(capacity, false);
194 }
195
196 /**
197 * Creates an {@code ArrayBlockingQueue} with the given (fixed)
198 * capacity and the specified access policy.
199 *
200 * @param capacity the capacity of this queue
201 * @param fair if {@code true} then queue accesses for threads blocked
202 * on insertion or removal, are processed in FIFO order;
203 * if {@code false} the access order is unspecified.
204 * @throws IllegalArgumentException if {@code capacity < 1}
205 */
206 public ArrayBlockingQueue(int capacity, boolean fair) {
207 if (capacity <= 0)
208 throw new IllegalArgumentException();
209 this.items = new Object[capacity];
210 lock = new ReentrantLock(fair);
211 notEmpty = lock.newCondition();
212 notFull = lock.newCondition();
213 }
214
215 /**
216 * Creates an {@code ArrayBlockingQueue} with the given (fixed)
217 * capacity, the specified access policy and initially containing the
218 * elements of the given collection,
219 * added in traversal order of the collection's iterator.
220 *
221 * @param capacity the capacity of this queue
222 * @param fair if {@code true} then queue accesses for threads blocked
223 * on insertion or removal, are processed in FIFO order;
224 * if {@code false} the access order is unspecified.
225 * @param c the collection of elements to initially contain
226 * @throws IllegalArgumentException if {@code capacity} is less than
227 * {@code c.size()}, or less than 1.
228 * @throws NullPointerException if the specified collection or any
229 * of its elements are null
230 */
231 public ArrayBlockingQueue(int capacity, boolean fair,
232 Collection<? extends E> c) {
233 this(capacity, fair);
234
235 final ReentrantLock lock = this.lock;
236 lock.lock(); // Lock only for visibility, not mutual exclusion
237 try {
238 int i = 0;
239 try {
240 for (E e : c) {
241 if (e == null) throw new NullPointerException();
242 items[i++] = e;
243 }
244 } catch (ArrayIndexOutOfBoundsException ex) {
245 throw new IllegalArgumentException();
246 }
247 count = i;
248 putIndex = (i == capacity) ? 0 : i;
249 } finally {
250 lock.unlock();
251 }
252 }
253
254 /**
255 * Inserts the specified element at the tail of this queue if it is
256 * possible to do so immediately without exceeding the queue's capacity,
257 * returning {@code true} upon success and throwing an
258 * {@code IllegalStateException} if this queue is full.
259 *
260 * @param e the element to add
261 * @return {@code true} (as specified by {@link Collection#add})
262 * @throws IllegalStateException if this queue is full
263 * @throws NullPointerException if the specified element is null
264 */
265 public boolean add(E e) {
266 return super.add(e);
267 }
268
269 /**
270 * Inserts the specified element at the tail of this queue if it is
271 * possible to do so immediately without exceeding the queue's capacity,
272 * returning {@code true} upon success and {@code false} if this queue
273 * is full. This method is generally preferable to method {@link #add},
274 * which can fail to insert an element only by throwing an exception.
275 *
276 * @throws NullPointerException if the specified element is null
277 */
278 public boolean offer(E e) {
279 if (e == null) throw new NullPointerException();
280 final ReentrantLock lock = this.lock;
281 lock.lock();
282 try {
283 if (count == items.length)
284 return false;
285 else {
286 enqueue(e);
287 return true;
288 }
289 } finally {
290 lock.unlock();
291 }
292 }
293
294 /**
295 * Inserts the specified element at the tail of this queue, waiting
296 * for space to become available if the queue is full.
297 *
298 * @throws InterruptedException {@inheritDoc}
299 * @throws NullPointerException {@inheritDoc}
300 */
301 public void put(E e) throws InterruptedException {
302 if (e == null) throw new NullPointerException();
303 final ReentrantLock lock = this.lock;
304 lock.lockInterruptibly();
305 try {
306 while (count == items.length)
307 notFull.await();
308 enqueue(e);
309 } finally {
310 lock.unlock();
311 }
312 }
313
314 /**
315 * Inserts the specified element at the tail of this queue, waiting
316 * up to the specified wait time for space to become available if
317 * the queue is full.
318 *
319 * @throws InterruptedException {@inheritDoc}
320 * @throws NullPointerException {@inheritDoc}
321 */
322 public boolean offer(E e, long timeout, TimeUnit unit)
323 throws InterruptedException {
324
325 if (e == null) throw new NullPointerException();
326 long nanos = unit.toNanos(timeout);
327 final ReentrantLock lock = this.lock;
328 lock.lockInterruptibly();
329 try {
330 while (count == items.length) {
331 if (nanos <= 0)
332 return false;
333 nanos = notFull.awaitNanos(nanos);
334 }
335 enqueue(e);
336 return true;
337 } finally {
338 lock.unlock();
339 }
340 }
341
342 public E poll() {
343 final ReentrantLock lock = this.lock;
344 lock.lock();
345 try {
346 return (count == 0) ? null : dequeue();
347 } finally {
348 lock.unlock();
349 }
350 }
351
352 public E take() throws InterruptedException {
353 final ReentrantLock lock = this.lock;
354 lock.lockInterruptibly();
355 try {
356 while (count == 0)
357 notEmpty.await();
358 return dequeue();
359 } finally {
360 lock.unlock();
361 }
362 }
363
364 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
365 long nanos = unit.toNanos(timeout);
366 final ReentrantLock lock = this.lock;
367 lock.lockInterruptibly();
368 try {
369 while (count == 0) {
370 if (nanos <= 0)
371 return null;
372 nanos = notEmpty.awaitNanos(nanos);
373 }
374 return dequeue();
375 } finally {
376 lock.unlock();
377 }
378 }
379
380 public E peek() {
381 final ReentrantLock lock = this.lock;
382 lock.lock();
383 try {
384 return itemAt(takeIndex); // null when queue is empty
385 } finally {
386 lock.unlock();
387 }
388 }
389
390 // this doc comment is overridden to remove the reference to collections
391 // greater in size than Integer.MAX_VALUE
392 /**
393 * Returns the number of elements in this queue.
394 *
395 * @return the number of elements in this queue
396 */
397 public int size() {
398 final ReentrantLock lock = this.lock;
399 lock.lock();
400 try {
401 return count;
402 } finally {
403 lock.unlock();
404 }
405 }
406
407 // this doc comment is a modified copy of the inherited doc comment,
408 // without the reference to unlimited queues.
409 /**
410 * Returns the number of additional elements that this queue can ideally
411 * (in the absence of memory or resource constraints) accept without
412 * blocking. This is always equal to the initial capacity of this queue
413 * less the current {@code size} of this queue.
414 *
415 * <p>Note that you <em>cannot</em> always tell if an attempt to insert
416 * an element will succeed by inspecting {@code remainingCapacity}
417 * because it may be the case that another thread is about to
418 * insert or remove an element.
419 */
420 public int remainingCapacity() {
421 final ReentrantLock lock = this.lock;
422 lock.lock();
423 try {
424 return items.length - count;
425 } finally {
426 lock.unlock();
427 }
428 }
429
430 /**
431 * Removes a single instance of the specified element from this queue,
432 * if it is present. More formally, removes an element {@code e} such
433 * that {@code o.equals(e)}, if this queue contains one or more such
434 * elements.
435 * Returns {@code true} if this queue contained the specified element
436 * (or equivalently, if this queue changed as a result of the call).
437 *
438 * <p>Removal of interior elements in circular array based queues
439 * is an intrinsically slow and disruptive operation, so should
440 * be undertaken only in exceptional circumstances, ideally
441 * only when the queue is known not to be accessible by other
442 * threads.
443 *
444 * @param o element to be removed from this queue, if present
445 * @return {@code true} if this queue changed as a result of the call
446 */
447 public boolean remove(Object o) {
448 if (o == null) return false;
449 final ReentrantLock lock = this.lock;
450 lock.lock();
451 try {
452 if (count > 0) {
453 final Object[] items = this.items;
454 final int putIndex = this.putIndex;
455 int i = takeIndex;
456 do {
457 if (o.equals(items[i])) {
458 removeAt(i);
459 return true;
460 }
461 if (++i == items.length) i = 0;
462 } while (i != putIndex);
463 }
464 return false;
465 } finally {
466 lock.unlock();
467 }
468 }
469
470 /**
471 * Returns {@code true} if this queue contains the specified element.
472 * More formally, returns {@code true} if and only if this queue contains
473 * at least one element {@code e} such that {@code o.equals(e)}.
474 *
475 * @param o object to be checked for containment in this queue
476 * @return {@code true} if this queue contains the specified element
477 */
478 public boolean contains(Object o) {
479 if (o == null) return false;
480 final ReentrantLock lock = this.lock;
481 lock.lock();
482 try {
483 if (count > 0) {
484 final Object[] items = this.items;
485 final int putIndex = this.putIndex;
486 int i = takeIndex;
487 do {
488 if (o.equals(items[i]))
489 return true;
490 if (++i == items.length) i = 0;
491 } while (i != putIndex);
492 }
493 return false;
494 } finally {
495 lock.unlock();
496 }
497 }
498
499 /**
500 * Returns an array containing all of the elements in this queue, in
501 * proper sequence.
502 *
503 * <p>The returned array will be "safe" in that no references to it are
504 * maintained by this queue. (In other words, this method must allocate
505 * a new array). The caller is thus free to modify the returned array.
506 *
507 * <p>This method acts as bridge between array-based and collection-based
508 * APIs.
509 *
510 * @return an array containing all of the elements in this queue
511 */
512 public Object[] toArray() {
513 final ReentrantLock lock = this.lock;
514 lock.lock();
515 try {
516 final Object[] items = this.items;
517 final int end = takeIndex + count;
518 final Object[] a = Arrays.copyOfRange(items, takeIndex, end);
519 if (end != putIndex)
520 System.arraycopy(items, 0, a, items.length - takeIndex, putIndex);
521 return a;
522 } finally {
523 lock.unlock();
524 }
525 }
526
527 /**
528 * Returns an array containing all of the elements in this queue, in
529 * proper sequence; the runtime type of the returned array is that of
530 * the specified array. If the queue fits in the specified array, it
531 * is returned therein. Otherwise, a new array is allocated with the
532 * runtime type of the specified array and the size of this queue.
533 *
534 * <p>If this queue fits in the specified array with room to spare
535 * (i.e., the array has more elements than this queue), the element in
536 * the array immediately following the end of the queue is set to
537 * {@code null}.
538 *
539 * <p>Like the {@link #toArray()} method, this method acts as bridge between
540 * array-based and collection-based APIs. Further, this method allows
541 * precise control over the runtime type of the output array, and may,
542 * under certain circumstances, be used to save allocation costs.
543 *
544 * <p>Suppose {@code x} is a queue known to contain only strings.
545 * The following code can be used to dump the queue into a newly
546 * allocated array of {@code String}:
547 *
548 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
549 *
550 * Note that {@code toArray(new Object[0])} is identical in function to
551 * {@code toArray()}.
552 *
553 * @param a the array into which the elements of the queue are to
554 * be stored, if it is big enough; otherwise, a new array of the
555 * same runtime type is allocated for this purpose
556 * @return an array containing all of the elements in this queue
557 * @throws ArrayStoreException if the runtime type of the specified array
558 * is not a supertype of the runtime type of every element in
559 * this queue
560 * @throws NullPointerException if the specified array is null
561 */
562 @SuppressWarnings("unchecked")
563 public <T> T[] toArray(T[] a) {
564 final ReentrantLock lock = this.lock;
565 lock.lock();
566 try {
567 final Object[] items = this.items;
568 final int count = this.count;
569 final int firstLeg = Math.min(items.length - takeIndex, count);
570 if (a.length < count) {
571 a = (T[]) Arrays.copyOfRange(items, takeIndex, takeIndex + count,
572 a.getClass());
573 } else {
574 System.arraycopy(items, takeIndex, a, 0, firstLeg);
575 if (a.length > count)
576 a[count] = null;
577 }
578 if (firstLeg < count)
579 System.arraycopy(items, 0, a, firstLeg, putIndex);
580 return a;
581 } finally {
582 lock.unlock();
583 }
584 }
585
586 public String toString() {
587 final ReentrantLock lock = this.lock;
588 lock.lock();
589 try {
590 int k = count;
591 if (k == 0)
592 return "[]";
593
594 final Object[] items = this.items;
595 StringBuilder sb = new StringBuilder();
596 sb.append('[');
597 for (int i = takeIndex; ; ) {
598 Object e = items[i];
599 sb.append(e == this ? "(this Collection)" : e);
600 if (--k == 0)
601 return sb.append(']').toString();
602 sb.append(',').append(' ');
603 if (++i == items.length) i = 0;
604 }
605 } finally {
606 lock.unlock();
607 }
608 }
609
610 /**
611 * Atomically removes all of the elements from this queue.
612 * The queue will be empty after this call returns.
613 */
614 public void clear() {
615 final Object[] items = this.items;
616 final ReentrantLock lock = this.lock;
617 lock.lock();
618 try {
619 int k = count;
620 if (k > 0) {
621 final int putIndex = this.putIndex;
622 int i = takeIndex;
623 do {
624 items[i] = null;
625 if (++i == items.length) i = 0;
626 } while (i != putIndex);
627 takeIndex = putIndex;
628 count = 0;
629 if (itrs != null)
630 itrs.queueIsEmpty();
631 for (; k > 0 && lock.hasWaiters(notFull); k--)
632 notFull.signal();
633 }
634 } finally {
635 lock.unlock();
636 }
637 }
638
639 /**
640 * @throws UnsupportedOperationException {@inheritDoc}
641 * @throws ClassCastException {@inheritDoc}
642 * @throws NullPointerException {@inheritDoc}
643 * @throws IllegalArgumentException {@inheritDoc}
644 */
645 public int drainTo(Collection<? super E> c) {
646 return drainTo(c, Integer.MAX_VALUE);
647 }
648
649 /**
650 * @throws UnsupportedOperationException {@inheritDoc}
651 * @throws ClassCastException {@inheritDoc}
652 * @throws NullPointerException {@inheritDoc}
653 * @throws IllegalArgumentException {@inheritDoc}
654 */
655 public int drainTo(Collection<? super E> c, int maxElements) {
656 if (c == null) throw new NullPointerException();
657 if (c == this)
658 throw new IllegalArgumentException();
659 if (maxElements <= 0)
660 return 0;
661 final Object[] items = this.items;
662 final ReentrantLock lock = this.lock;
663 lock.lock();
664 try {
665 int n = Math.min(maxElements, count);
666 int take = takeIndex;
667 int i = 0;
668 try {
669 while (i < n) {
670 @SuppressWarnings("unchecked")
671 E x = (E) items[take];
672 c.add(x);
673 items[take] = null;
674 if (++take == items.length) take = 0;
675 i++;
676 }
677 return n;
678 } finally {
679 // Restore invariants even if c.add() threw
680 if (i > 0) {
681 count -= i;
682 takeIndex = take;
683 if (itrs != null) {
684 if (count == 0)
685 itrs.queueIsEmpty();
686 else if (i > take)
687 itrs.takeIndexWrapped();
688 }
689 for (; i > 0 && lock.hasWaiters(notFull); i--)
690 notFull.signal();
691 }
692 }
693 } finally {
694 lock.unlock();
695 }
696 }
697
698 /**
699 * Returns an iterator over the elements in this queue in proper sequence.
700 * The elements will be returned in order from first (head) to last (tail).
701 *
702 * <p>The returned iterator is
703 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
704 *
705 * @return an iterator over the elements in this queue in proper sequence
706 */
707 public Iterator<E> iterator() {
708 return new Itr();
709 }
710
711 /**
712 * Shared data between iterators and their queue, allowing queue
713 * modifications to update iterators when elements are removed.
714 *
715 * This adds a lot of complexity for the sake of correctly
716 * handling some uncommon operations, but the combination of
717 * circular-arrays and supporting interior removes (i.e., those
718 * not at head) would cause iterators to sometimes lose their
719 * places and/or (re)report elements they shouldn't. To avoid
720 * this, when a queue has one or more iterators, it keeps iterator
721 * state consistent by:
722 *
723 * (1) keeping track of the number of "cycles", that is, the
724 * number of times takeIndex has wrapped around to 0.
725 * (2) notifying all iterators via the callback removedAt whenever
726 * an interior element is removed (and thus other elements may
727 * be shifted).
728 *
729 * These suffice to eliminate iterator inconsistencies, but
730 * unfortunately add the secondary responsibility of maintaining
731 * the list of iterators. We track all active iterators in a
732 * simple linked list (accessed only when the queue's lock is
733 * held) of weak references to Itr. The list is cleaned up using
734 * 3 different mechanisms:
735 *
736 * (1) Whenever a new iterator is created, do some O(1) checking for
737 * stale list elements.
738 *
739 * (2) Whenever takeIndex wraps around to 0, check for iterators
740 * that have been unused for more than one wrap-around cycle.
741 *
742 * (3) Whenever the queue becomes empty, all iterators are notified
743 * and this entire data structure is discarded.
744 *
745 * So in addition to the removedAt callback that is necessary for
746 * correctness, iterators have the shutdown and takeIndexWrapped
747 * callbacks that help remove stale iterators from the list.
748 *
749 * Whenever a list element is examined, it is expunged if either
750 * the GC has determined that the iterator is discarded, or if the
751 * iterator reports that it is "detached" (does not need any
752 * further state updates). Overhead is maximal when takeIndex
753 * never advances, iterators are discarded before they are
754 * exhausted, and all removals are interior removes, in which case
755 * all stale iterators are discovered by the GC. But even in this
756 * case we don't increase the amortized complexity.
757 *
758 * Care must be taken to keep list sweeping methods from
759 * reentrantly invoking another such method, causing subtle
760 * corruption bugs.
761 */
762 class Itrs {
763
764 /**
765 * Node in a linked list of weak iterator references.
766 */
767 private class Node extends WeakReference<Itr> {
768 Node next;
769
770 Node(Itr iterator, Node next) {
771 super(iterator);
772 this.next = next;
773 }
774 }
775
776 /** Incremented whenever takeIndex wraps around to 0 */
777 int cycles;
778
779 /** Linked list of weak iterator references */
780 private Node head;
781
782 /** Used to expunge stale iterators */
783 private Node sweeper;
784
785 private static final int SHORT_SWEEP_PROBES = 4;
786 private static final int LONG_SWEEP_PROBES = 16;
787
788 Itrs(Itr initial) {
789 register(initial);
790 }
791
792 /**
793 * Sweeps itrs, looking for and expunging stale iterators.
794 * If at least one was found, tries harder to find more.
795 * Called only from iterating thread.
796 *
797 * @param tryHarder whether to start in try-harder mode, because
798 * there is known to be at least one iterator to collect
799 */
800 void doSomeSweeping(boolean tryHarder) {
801 // assert lock.getHoldCount() == 1;
802 // assert head != null;
803 int probes = tryHarder ? LONG_SWEEP_PROBES : SHORT_SWEEP_PROBES;
804 Node o, p;
805 final Node sweeper = this.sweeper;
806 boolean passedGo; // to limit search to one full sweep
807
808 if (sweeper == null) {
809 o = null;
810 p = head;
811 passedGo = true;
812 } else {
813 o = sweeper;
814 p = o.next;
815 passedGo = false;
816 }
817
818 for (; probes > 0; probes--) {
819 if (p == null) {
820 if (passedGo)
821 break;
822 o = null;
823 p = head;
824 passedGo = true;
825 }
826 final Itr it = p.get();
827 final Node next = p.next;
828 if (it == null || it.isDetached()) {
829 // found a discarded/exhausted iterator
830 probes = LONG_SWEEP_PROBES; // "try harder"
831 // unlink p
832 p.clear();
833 p.next = null;
834 if (o == null) {
835 head = next;
836 if (next == null) {
837 // We've run out of iterators to track; retire
838 itrs = null;
839 return;
840 }
841 }
842 else
843 o.next = next;
844 } else {
845 o = p;
846 }
847 p = next;
848 }
849
850 this.sweeper = (p == null) ? null : o;
851 }
852
853 /**
854 * Adds a new iterator to the linked list of tracked iterators.
855 */
856 void register(Itr itr) {
857 // assert lock.getHoldCount() == 1;
858 head = new Node(itr, head);
859 }
860
861 /**
862 * Called whenever takeIndex wraps around to 0.
863 *
864 * Notifies all iterators, and expunges any that are now stale.
865 */
866 void takeIndexWrapped() {
867 // assert lock.getHoldCount() == 1;
868 cycles++;
869 for (Node o = null, p = head; p != null;) {
870 final Itr it = p.get();
871 final Node next = p.next;
872 if (it == null || it.takeIndexWrapped()) {
873 // unlink p
874 // assert it == null || it.isDetached();
875 p.clear();
876 p.next = null;
877 if (o == null)
878 head = next;
879 else
880 o.next = next;
881 } else {
882 o = p;
883 }
884 p = next;
885 }
886 if (head == null) // no more iterators to track
887 itrs = null;
888 }
889
890 /**
891 * Called whenever an interior remove (not at takeIndex) occurred.
892 *
893 * Notifies all iterators, and expunges any that are now stale.
894 */
895 void removedAt(int removedIndex) {
896 for (Node o = null, p = head; p != null;) {
897 final Itr it = p.get();
898 final Node next = p.next;
899 if (it == null || it.removedAt(removedIndex)) {
900 // unlink p
901 // assert it == null || it.isDetached();
902 p.clear();
903 p.next = null;
904 if (o == null)
905 head = next;
906 else
907 o.next = next;
908 } else {
909 o = p;
910 }
911 p = next;
912 }
913 if (head == null) // no more iterators to track
914 itrs = null;
915 }
916
917 /**
918 * Called whenever the queue becomes empty.
919 *
920 * Notifies all active iterators that the queue is empty,
921 * clears all weak refs, and unlinks the itrs datastructure.
922 */
923 void queueIsEmpty() {
924 // assert lock.getHoldCount() == 1;
925 for (Node p = head; p != null; p = p.next) {
926 Itr it = p.get();
927 if (it != null) {
928 p.clear();
929 it.shutdown();
930 }
931 }
932 head = null;
933 itrs = null;
934 }
935
936 /**
937 * Called whenever an element has been dequeued (at takeIndex).
938 */
939 void elementDequeued() {
940 // assert lock.getHoldCount() == 1;
941 if (count == 0)
942 queueIsEmpty();
943 else if (takeIndex == 0)
944 takeIndexWrapped();
945 }
946 }
947
948 /**
949 * Iterator for ArrayBlockingQueue.
950 *
951 * To maintain weak consistency with respect to puts and takes, we
952 * read ahead one slot, so as to not report hasNext true but then
953 * not have an element to return.
954 *
955 * We switch into "detached" mode (allowing prompt unlinking from
956 * itrs without help from the GC) when all indices are negative, or
957 * when hasNext returns false for the first time. This allows the
958 * iterator to track concurrent updates completely accurately,
959 * except for the corner case of the user calling Iterator.remove()
960 * after hasNext() returned false. Even in this case, we ensure
961 * that we don't remove the wrong element by keeping track of the
962 * expected element to remove, in lastItem. Yes, we may fail to
963 * remove lastItem from the queue if it moved due to an interleaved
964 * interior remove while in detached mode.
965 */
966 private class Itr implements Iterator<E> {
967 /** Index to look for new nextItem; NONE at end */
968 private int cursor;
969
970 /** Element to be returned by next call to next(); null if none */
971 private E nextItem;
972
973 /** Index of nextItem; NONE if none, REMOVED if removed elsewhere */
974 private int nextIndex;
975
976 /** Last element returned; null if none or not detached. */
977 private E lastItem;
978
979 /** Index of lastItem, NONE if none, REMOVED if removed elsewhere */
980 private int lastRet;
981
982 /** Previous value of takeIndex, or DETACHED when detached */
983 private int prevTakeIndex;
984
985 /** Previous value of iters.cycles */
986 private int prevCycles;
987
988 /** Special index value indicating "not available" or "undefined" */
989 private static final int NONE = -1;
990
991 /**
992 * Special index value indicating "removed elsewhere", that is,
993 * removed by some operation other than a call to this.remove().
994 */
995 private static final int REMOVED = -2;
996
997 /** Special value for prevTakeIndex indicating "detached mode" */
998 private static final int DETACHED = -3;
999
1000 Itr() {
1001 // assert lock.getHoldCount() == 0;
1002 lastRet = NONE;
1003 final ReentrantLock lock = ArrayBlockingQueue.this.lock;
1004 lock.lock();
1005 try {
1006 if (count == 0) {
1007 // assert itrs == null;
1008 cursor = NONE;
1009 nextIndex = NONE;
1010 prevTakeIndex = DETACHED;
1011 } else {
1012 final int takeIndex = ArrayBlockingQueue.this.takeIndex;
1013 prevTakeIndex = takeIndex;
1014 nextItem = itemAt(nextIndex = takeIndex);
1015 cursor = incCursor(takeIndex);
1016 if (itrs == null) {
1017 itrs = new Itrs(this);
1018 } else {
1019 itrs.register(this); // in this order
1020 itrs.doSomeSweeping(false);
1021 }
1022 prevCycles = itrs.cycles;
1023 // assert takeIndex >= 0;
1024 // assert prevTakeIndex == takeIndex;
1025 // assert nextIndex >= 0;
1026 // assert nextItem != null;
1027 }
1028 } finally {
1029 lock.unlock();
1030 }
1031 }
1032
1033 boolean isDetached() {
1034 // assert lock.getHoldCount() == 1;
1035 return prevTakeIndex < 0;
1036 }
1037
1038 private int incCursor(int index) {
1039 // assert lock.getHoldCount() == 1;
1040 if (++index == items.length) index = 0;
1041 if (index == putIndex) index = NONE;
1042 return index;
1043 }
1044
1045 /**
1046 * Returns true if index is invalidated by the given number of
1047 * dequeues, starting from prevTakeIndex.
1048 */
1049 private boolean invalidated(int index, int prevTakeIndex,
1050 long dequeues, int length) {
1051 if (index < 0)
1052 return false;
1053 int distance = index - prevTakeIndex;
1054 if (distance < 0)
1055 distance += length;
1056 return dequeues > distance;
1057 }
1058
1059 /**
1060 * Adjusts indices to incorporate all dequeues since the last
1061 * operation on this iterator. Call only from iterating thread.
1062 */
1063 private void incorporateDequeues() {
1064 // assert lock.getHoldCount() == 1;
1065 // assert itrs != null;
1066 // assert !isDetached();
1067 // assert count > 0;
1068
1069 final int cycles = itrs.cycles;
1070 final int takeIndex = ArrayBlockingQueue.this.takeIndex;
1071 final int prevCycles = this.prevCycles;
1072 final int prevTakeIndex = this.prevTakeIndex;
1073
1074 if (cycles != prevCycles || takeIndex != prevTakeIndex) {
1075 final int len = items.length;
1076 // how far takeIndex has advanced since the previous
1077 // operation of this iterator
1078 long dequeues = (cycles - prevCycles) * len
1079 + (takeIndex - prevTakeIndex);
1080
1081 // Check indices for invalidation
1082 if (invalidated(lastRet, prevTakeIndex, dequeues, len))
1083 lastRet = REMOVED;
1084 if (invalidated(nextIndex, prevTakeIndex, dequeues, len))
1085 nextIndex = REMOVED;
1086 if (invalidated(cursor, prevTakeIndex, dequeues, len))
1087 cursor = takeIndex;
1088
1089 if (cursor < 0 && nextIndex < 0 && lastRet < 0)
1090 detach();
1091 else {
1092 this.prevCycles = cycles;
1093 this.prevTakeIndex = takeIndex;
1094 }
1095 }
1096 }
1097
1098 /**
1099 * Called when itrs should stop tracking this iterator, either
1100 * because there are no more indices to update (cursor < 0 &&
1101 * nextIndex < 0 && lastRet < 0) or as a special exception, when
1102 * lastRet >= 0, because hasNext() is about to return false for the
1103 * first time. Call only from iterating thread.
1104 */
1105 private void detach() {
1106 // Switch to detached mode
1107 // assert lock.getHoldCount() == 1;
1108 // assert cursor == NONE;
1109 // assert nextIndex < 0;
1110 // assert lastRet < 0 || nextItem == null;
1111 // assert lastRet < 0 ^ lastItem != null;
1112 if (prevTakeIndex >= 0) {
1113 // assert itrs != null;
1114 prevTakeIndex = DETACHED;
1115 // try to unlink from itrs (but not too hard)
1116 itrs.doSomeSweeping(true);
1117 }
1118 }
1119
1120 /**
1121 * For performance reasons, we would like not to acquire a lock in
1122 * hasNext in the common case. To allow for this, we only access
1123 * fields (i.e. nextItem) that are not modified by update operations
1124 * triggered by queue modifications.
1125 */
1126 public boolean hasNext() {
1127 // assert lock.getHoldCount() == 0;
1128 if (nextItem != null)
1129 return true;
1130 noNext();
1131 return false;
1132 }
1133
1134 private void noNext() {
1135 final ReentrantLock lock = ArrayBlockingQueue.this.lock;
1136 lock.lock();
1137 try {
1138 // assert cursor == NONE;
1139 // assert nextIndex == NONE;
1140 if (!isDetached()) {
1141 // assert lastRet >= 0;
1142 incorporateDequeues(); // might update lastRet
1143 if (lastRet >= 0) {
1144 lastItem = itemAt(lastRet);
1145 // assert lastItem != null;
1146 detach();
1147 }
1148 }
1149 // assert isDetached();
1150 // assert lastRet < 0 ^ lastItem != null;
1151 } finally {
1152 lock.unlock();
1153 }
1154 }
1155
1156 public E next() {
1157 // assert lock.getHoldCount() == 0;
1158 final E x = nextItem;
1159 if (x == null)
1160 throw new NoSuchElementException();
1161 final ReentrantLock lock = ArrayBlockingQueue.this.lock;
1162 lock.lock();
1163 try {
1164 if (!isDetached())
1165 incorporateDequeues();
1166 // assert nextIndex != NONE;
1167 // assert lastItem == null;
1168 lastRet = nextIndex;
1169 final int cursor = this.cursor;
1170 if (cursor >= 0) {
1171 nextItem = itemAt(nextIndex = cursor);
1172 // assert nextItem != null;
1173 this.cursor = incCursor(cursor);
1174 } else {
1175 nextIndex = NONE;
1176 nextItem = null;
1177 }
1178 } finally {
1179 lock.unlock();
1180 }
1181 return x;
1182 }
1183
1184 public void remove() {
1185 // assert lock.getHoldCount() == 0;
1186 final ReentrantLock lock = ArrayBlockingQueue.this.lock;
1187 lock.lock();
1188 try {
1189 if (!isDetached())
1190 incorporateDequeues(); // might update lastRet or detach
1191 final int lastRet = this.lastRet;
1192 this.lastRet = NONE;
1193 if (lastRet >= 0) {
1194 if (!isDetached())
1195 removeAt(lastRet);
1196 else {
1197 final E lastItem = this.lastItem;
1198 // assert lastItem != null;
1199 this.lastItem = null;
1200 if (itemAt(lastRet) == lastItem)
1201 removeAt(lastRet);
1202 }
1203 } else if (lastRet == NONE)
1204 throw new IllegalStateException();
1205 // else lastRet == REMOVED and the last returned element was
1206 // previously asynchronously removed via an operation other
1207 // than this.remove(), so nothing to do.
1208
1209 if (cursor < 0 && nextIndex < 0)
1210 detach();
1211 } finally {
1212 lock.unlock();
1213 // assert lastRet == NONE;
1214 // assert lastItem == null;
1215 }
1216 }
1217
1218 /**
1219 * Called to notify the iterator that the queue is empty, or that it
1220 * has fallen hopelessly behind, so that it should abandon any
1221 * further iteration, except possibly to return one more element
1222 * from next(), as promised by returning true from hasNext().
1223 */
1224 void shutdown() {
1225 // assert lock.getHoldCount() == 1;
1226 cursor = NONE;
1227 if (nextIndex >= 0)
1228 nextIndex = REMOVED;
1229 if (lastRet >= 0) {
1230 lastRet = REMOVED;
1231 lastItem = null;
1232 }
1233 prevTakeIndex = DETACHED;
1234 // Don't set nextItem to null because we must continue to be
1235 // able to return it on next().
1236 //
1237 // Caller will unlink from itrs when convenient.
1238 }
1239
1240 private int distance(int index, int prevTakeIndex, int length) {
1241 int distance = index - prevTakeIndex;
1242 if (distance < 0)
1243 distance += length;
1244 return distance;
1245 }
1246
1247 /**
1248 * Called whenever an interior remove (not at takeIndex) occurred.
1249 *
1250 * @return true if this iterator should be unlinked from itrs
1251 */
1252 boolean removedAt(int removedIndex) {
1253 // assert lock.getHoldCount() == 1;
1254 if (isDetached())
1255 return true;
1256
1257 final int takeIndex = ArrayBlockingQueue.this.takeIndex;
1258 final int prevTakeIndex = this.prevTakeIndex;
1259 final int len = items.length;
1260 // distance from prevTakeIndex to removedIndex
1261 final int removedDistance =
1262 len * (itrs.cycles - this.prevCycles
1263 + ((removedIndex < takeIndex) ? 1 : 0))
1264 + (removedIndex - prevTakeIndex);
1265 // assert itrs.cycles - this.prevCycles >= 0;
1266 // assert itrs.cycles - this.prevCycles <= 1;
1267 // assert removedDistance > 0;
1268 // assert removedIndex != takeIndex;
1269 int cursor = this.cursor;
1270 if (cursor >= 0) {
1271 int x = distance(cursor, prevTakeIndex, len);
1272 if (x == removedDistance) {
1273 if (cursor == putIndex)
1274 this.cursor = cursor = NONE;
1275 }
1276 else if (x > removedDistance) {
1277 // assert cursor != prevTakeIndex;
1278 this.cursor = cursor = dec(cursor);
1279 }
1280 }
1281 int lastRet = this.lastRet;
1282 if (lastRet >= 0) {
1283 int x = distance(lastRet, prevTakeIndex, len);
1284 if (x == removedDistance)
1285 this.lastRet = lastRet = REMOVED;
1286 else if (x > removedDistance)
1287 this.lastRet = lastRet = dec(lastRet);
1288 }
1289 int nextIndex = this.nextIndex;
1290 if (nextIndex >= 0) {
1291 int x = distance(nextIndex, prevTakeIndex, len);
1292 if (x == removedDistance)
1293 this.nextIndex = nextIndex = REMOVED;
1294 else if (x > removedDistance)
1295 this.nextIndex = nextIndex = dec(nextIndex);
1296 }
1297 if (cursor < 0 && nextIndex < 0 && lastRet < 0) {
1298 this.prevTakeIndex = DETACHED;
1299 return true;
1300 }
1301 return false;
1302 }
1303
1304 /**
1305 * Called whenever takeIndex wraps around to zero.
1306 *
1307 * @return true if this iterator should be unlinked from itrs
1308 */
1309 boolean takeIndexWrapped() {
1310 // assert lock.getHoldCount() == 1;
1311 if (isDetached())
1312 return true;
1313 if (itrs.cycles - prevCycles > 1) {
1314 // All the elements that existed at the time of the last
1315 // operation are gone, so abandon further iteration.
1316 shutdown();
1317 return true;
1318 }
1319 return false;
1320 }
1321
1322 // /** Uncomment for debugging. */
1323 // public String toString() {
1324 // return ("cursor=" + cursor + " " +
1325 // "nextIndex=" + nextIndex + " " +
1326 // "lastRet=" + lastRet + " " +
1327 // "nextItem=" + nextItem + " " +
1328 // "lastItem=" + lastItem + " " +
1329 // "prevCycles=" + prevCycles + " " +
1330 // "prevTakeIndex=" + prevTakeIndex + " " +
1331 // "size()=" + size() + " " +
1332 // "remainingCapacity()=" + remainingCapacity());
1333 // }
1334 }
1335
1336 }