ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.22
Committed: Tue Jun 18 17:57:21 2013 UTC (10 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.21: +3 -3 lines
Log Message:
rename local variable

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8    
9 dl 1.20 import java.io.ObjectStreamField;
10     import java.io.Serializable;
11     import java.lang.reflect.ParameterizedType;
12     import java.lang.reflect.Type;
13 dl 1.1 import java.util.Arrays;
14     import java.util.Collection;
15 dl 1.20 import java.util.Comparator;
16     import java.util.ConcurrentModificationException;
17     import java.util.Enumeration;
18     import java.util.HashMap;
19 dl 1.1 import java.util.Hashtable;
20     import java.util.Iterator;
21 dl 1.20 import java.util.Map;
22 dl 1.1 import java.util.NoSuchElementException;
23 dl 1.20 import java.util.Set;
24 dl 1.1 import java.util.concurrent.ConcurrentMap;
25 dl 1.20 import java.util.concurrent.ForkJoinPool;
26 dl 1.1 import java.util.concurrent.atomic.AtomicInteger;
27 dl 1.20 import java.util.concurrent.locks.LockSupport;
28     import java.util.concurrent.locks.ReentrantLock;
29 dl 1.1
30     /**
31     * A hash table supporting full concurrency of retrievals and
32     * high expected concurrency for updates. This class obeys the
33     * same functional specification as {@link java.util.Hashtable}, and
34     * includes versions of methods corresponding to each method of
35     * {@code Hashtable}. However, even though all operations are
36     * thread-safe, retrieval operations do <em>not</em> entail locking,
37     * and there is <em>not</em> any support for locking the entire table
38     * in a way that prevents all access. This class is fully
39     * interoperable with {@code Hashtable} in programs that rely on its
40     * thread safety but not on its synchronization details.
41     *
42     * <p>Retrieval operations (including {@code get}) generally do not
43     * block, so may overlap with update operations (including {@code put}
44     * and {@code remove}). Retrievals reflect the results of the most
45     * recently <em>completed</em> update operations holding upon their
46     * onset. (More formally, an update operation for a given key bears a
47     * <em>happens-before</em> relation with any (non-null) retrieval for
48     * that key reporting the updated value.) For aggregate operations
49     * such as {@code putAll} and {@code clear}, concurrent retrievals may
50     * reflect insertion or removal of only some entries. Similarly,
51     * Iterators and Enumerations return elements reflecting the state of
52     * the hash table at some point at or since the creation of the
53     * iterator/enumeration. They do <em>not</em> throw {@link
54     * ConcurrentModificationException}. However, iterators are designed
55     * to be used by only one thread at a time. Bear in mind that the
56     * results of aggregate status methods including {@code size}, {@code
57     * isEmpty}, and {@code containsValue} are typically useful only when
58     * a map is not undergoing concurrent updates in other threads.
59     * Otherwise the results of these methods reflect transient states
60     * that may be adequate for monitoring or estimation purposes, but not
61     * for program control.
62     *
63     * <p>The table is dynamically expanded when there are too many
64     * collisions (i.e., keys that have distinct hash codes but fall into
65     * the same slot modulo the table size), with the expected average
66     * effect of maintaining roughly two bins per mapping (corresponding
67     * to a 0.75 load factor threshold for resizing). There may be much
68     * variance around this average as mappings are added and removed, but
69     * overall, this maintains a commonly accepted time/space tradeoff for
70     * hash tables. However, resizing this or any other kind of hash
71     * table may be a relatively slow operation. When possible, it is a
72     * good idea to provide a size estimate as an optional {@code
73     * initialCapacity} constructor argument. An additional optional
74     * {@code loadFactor} constructor argument provides a further means of
75     * customizing initial table capacity by specifying the table density
76     * to be used in calculating the amount of space to allocate for the
77     * given number of elements. Also, for compatibility with previous
78     * versions of this class, constructors may optionally specify an
79     * expected {@code concurrencyLevel} as an additional hint for
80     * internal sizing. Note that using many keys with exactly the same
81     * {@code hashCode()} is a sure way to slow down performance of any
82 dl 1.20 * hash table. To ameliorate impact, when keys are {@link Comparable},
83     * this class may use comparison order among keys to help break ties.
84 dl 1.1 *
85     * <p>A {@link Set} projection of a ConcurrentHashMap may be created
86     * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
87     * (using {@link #keySet(Object)} when only keys are of interest, and the
88     * mapped values are (perhaps transiently) not used or all take the
89     * same mapping value.
90     *
91     * <p>This class and its views and iterators implement all of the
92     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
93     * interfaces.
94     *
95     * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
96     * does <em>not</em> allow {@code null} to be used as a key or value.
97     *
98     * <p>This class is a member of the
99     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
100     * Java Collections Framework</a>.
101     *
102     * @since 1.5
103     * @author Doug Lea
104     * @param <K> the type of keys maintained by this map
105     * @param <V> the type of mapped values
106     */
107 dl 1.20 public class ConcurrentHashMap<K,V> implements ConcurrentMap<K,V>, Serializable {
108 dl 1.1 private static final long serialVersionUID = 7249069246763182397L;
109    
110     /*
111     * Overview:
112     *
113     * The primary design goal of this hash table is to maintain
114     * concurrent readability (typically method get(), but also
115     * iterators and related methods) while minimizing update
116     * contention. Secondary goals are to keep space consumption about
117     * the same or better than java.util.HashMap, and to support high
118     * initial insertion rates on an empty table by many threads.
119     *
120 dl 1.20 * This map usually acts as a binned (bucketed) hash table. Each
121     * key-value mapping is held in a Node. Most nodes are instances
122     * of the basic Node class with hash, key, value, and next
123     * fields. However, various subclasses exist: TreeNodes are
124     * arranged in balanced trees, not lists. TreeBins hold the roots
125     * of sets of TreeNodes. ForwardingNodes are placed at the heads
126     * of bins during resizing. ReservationNodes are used as
127     * placeholders while establishing values in computeIfAbsent and
128     * related methods. The types TreeBin, ForwardingNode, and
129     * ReservationNode do not hold normal user keys, values, or
130     * hashes, and are readily distinguishable during search etc
131     * because they have negative hash fields and null key and value
132     * fields. (These special nodes are either uncommon or transient,
133     * so the impact of carrying around some unused fields is
134     * insignficant.)
135 dl 1.1 *
136     * The table is lazily initialized to a power-of-two size upon the
137     * first insertion. Each bin in the table normally contains a
138     * list of Nodes (most often, the list has only zero or one Node).
139     * Table accesses require volatile/atomic reads, writes, and
140     * CASes. Because there is no other way to arrange this without
141     * adding further indirections, we use intrinsics
142 dl 1.20 * (sun.misc.Unsafe) operations.
143 dl 1.1 *
144     * We use the top (sign) bit of Node hash fields for control
145     * purposes -- it is available anyway because of addressing
146 dl 1.20 * constraints. Nodes with negative hash fields are specially
147     * handled or ignored in map methods.
148 dl 1.1 *
149     * Insertion (via put or its variants) of the first node in an
150     * empty bin is performed by just CASing it to the bin. This is
151     * by far the most common case for put operations under most
152     * key/hash distributions. Other update operations (insert,
153     * delete, and replace) require locks. We do not want to waste
154     * the space required to associate a distinct lock object with
155     * each bin, so instead use the first node of a bin list itself as
156     * a lock. Locking support for these locks relies on builtin
157     * "synchronized" monitors.
158     *
159     * Using the first node of a list as a lock does not by itself
160     * suffice though: When a node is locked, any update must first
161     * validate that it is still the first node after locking it, and
162     * retry if not. Because new nodes are always appended to lists,
163     * once a node is first in a bin, it remains first until deleted
164 dl 1.20 * or the bin becomes invalidated (upon resizing).
165 dl 1.1 *
166     * The main disadvantage of per-bin locks is that other update
167     * operations on other nodes in a bin list protected by the same
168     * lock can stall, for example when user equals() or mapping
169     * functions take a long time. However, statistically, under
170     * random hash codes, this is not a common problem. Ideally, the
171     * frequency of nodes in bins follows a Poisson distribution
172     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
173     * parameter of about 0.5 on average, given the resizing threshold
174     * of 0.75, although with a large variance because of resizing
175     * granularity. Ignoring variance, the expected occurrences of
176     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
177     * first values are:
178     *
179     * 0: 0.60653066
180     * 1: 0.30326533
181     * 2: 0.07581633
182     * 3: 0.01263606
183     * 4: 0.00157952
184     * 5: 0.00015795
185     * 6: 0.00001316
186     * 7: 0.00000094
187     * 8: 0.00000006
188     * more: less than 1 in ten million
189     *
190     * Lock contention probability for two threads accessing distinct
191     * elements is roughly 1 / (8 * #elements) under random hashes.
192     *
193     * Actual hash code distributions encountered in practice
194     * sometimes deviate significantly from uniform randomness. This
195     * includes the case when N > (1<<30), so some keys MUST collide.
196     * Similarly for dumb or hostile usages in which multiple keys are
197 dl 1.20 * designed to have identical hash codes or ones that differs only
198     * in masked-out high bits. So we use a secondary strategy that
199     * applies when the number of nodes in a bin exceeds a
200     * threshold. These TreeBins use a balanced tree to hold nodes (a
201     * specialized form of red-black trees), bounding search time to
202     * O(log N). Each search step in a TreeBin is at least twice as
203 dl 1.1 * slow as in a regular list, but given that N cannot exceed
204     * (1<<64) (before running out of addresses) this bounds search
205     * steps, lock hold times, etc, to reasonable constants (roughly
206     * 100 nodes inspected per operation worst case) so long as keys
207     * are Comparable (which is very common -- String, Long, etc).
208     * TreeBin nodes (TreeNodes) also maintain the same "next"
209     * traversal pointers as regular nodes, so can be traversed in
210     * iterators in the same way.
211     *
212     * The table is resized when occupancy exceeds a percentage
213     * threshold (nominally, 0.75, but see below). Any thread
214     * noticing an overfull bin may assist in resizing after the
215     * initiating thread allocates and sets up the replacement
216     * array. However, rather than stalling, these other threads may
217     * proceed with insertions etc. The use of TreeBins shields us
218     * from the worst case effects of overfilling while resizes are in
219     * progress. Resizing proceeds by transferring bins, one by one,
220     * from the table to the next table. To enable concurrency, the
221     * next table must be (incrementally) prefilled with place-holders
222     * serving as reverse forwarders to the old table. Because we are
223     * using power-of-two expansion, the elements from each bin must
224     * either stay at same index, or move with a power of two
225     * offset. We eliminate unnecessary node creation by catching
226     * cases where old nodes can be reused because their next fields
227     * won't change. On average, only about one-sixth of them need
228     * cloning when a table doubles. The nodes they replace will be
229     * garbage collectable as soon as they are no longer referenced by
230     * any reader thread that may be in the midst of concurrently
231     * traversing table. Upon transfer, the old table bin contains
232     * only a special forwarding node (with hash field "MOVED") that
233     * contains the next table as its key. On encountering a
234     * forwarding node, access and update operations restart, using
235     * the new table.
236     *
237     * Each bin transfer requires its bin lock, which can stall
238     * waiting for locks while resizing. However, because other
239     * threads can join in and help resize rather than contend for
240     * locks, average aggregate waits become shorter as resizing
241     * progresses. The transfer operation must also ensure that all
242     * accessible bins in both the old and new table are usable by any
243     * traversal. This is arranged by proceeding from the last bin
244     * (table.length - 1) up towards the first. Upon seeing a
245     * forwarding node, traversals (see class Traverser) arrange to
246     * move to the new table without revisiting nodes. However, to
247     * ensure that no intervening nodes are skipped, bin splitting can
248     * only begin after the associated reverse-forwarders are in
249     * place.
250     *
251     * The traversal scheme also applies to partial traversals of
252     * ranges of bins (via an alternate Traverser constructor)
253     * to support partitioned aggregate operations. Also, read-only
254     * operations give up if ever forwarded to a null table, which
255     * provides support for shutdown-style clearing, which is also not
256     * currently implemented.
257     *
258     * Lazy table initialization minimizes footprint until first use,
259     * and also avoids resizings when the first operation is from a
260     * putAll, constructor with map argument, or deserialization.
261     * These cases attempt to override the initial capacity settings,
262     * but harmlessly fail to take effect in cases of races.
263     *
264     * The element count is maintained using a specialization of
265     * LongAdder. We need to incorporate a specialization rather than
266     * just use a LongAdder in order to access implicit
267     * contention-sensing that leads to creation of multiple
268     * CounterCells. The counter mechanics avoid contention on
269     * updates but can encounter cache thrashing if read too
270     * frequently during concurrent access. To avoid reading so often,
271     * resizing under contention is attempted only upon adding to a
272     * bin already holding two or more nodes. Under uniform hash
273     * distributions, the probability of this occurring at threshold
274     * is around 13%, meaning that only about 1 in 8 puts check
275 dl 1.20 * threshold (and after resizing, many fewer do so).
276     *
277     * TreeBins use a special form of comparison for search and
278     * related operations (which is the main reason we cannot use
279     * existing collections such as TreeMaps). TreeBins contain
280     * Comparable elements, but may contain others, as well as
281     * elements that are Comparable but not necessarily Comparable
282     * for the same T, so we cannot invoke compareTo among them. To
283     * handle this, the tree is ordered primarily by hash value, then
284     * by Comparable.compareTo order if applicable. On lookup at a
285     * node, if elements are not comparable or compare as 0 then both
286     * left and right children may need to be searched in the case of
287     * tied hash values. (This corresponds to the full list search
288     * that would be necessary if all elements were non-Comparable and
289     * had tied hashes.) The red-black balancing code is updated from
290     * pre-jdk-collections
291     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
292     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
293     * Algorithms" (CLR).
294     *
295     * TreeBins also require an additional locking mechanism. While
296     * list traversal is always possible by readers even during
297     * updates, tree traversal is not, mainly beause of tree-rotations
298     * that may change the root node and/or its linkages. TreeBins
299     * include a simple read-write lock mechanism parasitic on the
300     * main bin-synchronization strategy: Structural adjustments
301     * associated with an insertion or removal are already bin-locked
302     * (and so cannot conflict with other writers) but must wait for
303     * ongoing readers to finish. Since there can be only one such
304     * waiter, we use a simple scheme using a single "waiter" field to
305     * block writers. However, readers need never block. If the root
306     * lock is held, they proceed along the slow traversal path (via
307     * next-pointers) until the lock becomes available or the list is
308     * exhausted, whichever comes first. These cases are not fast, but
309     * maximize aggregate expected throughput.
310 dl 1.1 *
311     * Maintaining API and serialization compatibility with previous
312     * versions of this class introduces several oddities. Mainly: We
313     * leave untouched but unused constructor arguments refering to
314     * concurrencyLevel. We accept a loadFactor constructor argument,
315     * but apply it only to initial table capacity (which is the only
316     * time that we can guarantee to honor it.) We also declare an
317     * unused "Segment" class that is instantiated in minimal form
318     * only when serializing.
319 dl 1.20 *
320     * This file is organized to make things a little easier to follow
321     * while reading than they might otherwise: First the main static
322     * declarations and utilities, then fields, then main public
323     * methods (with a few factorings of multiple public methods into
324     * internal ones), then sizing methods, trees, traversers, and
325     * bulk operations.
326 dl 1.1 */
327    
328     /* ---------------- Constants -------------- */
329    
330     /**
331     * The largest possible table capacity. This value must be
332     * exactly 1<<30 to stay within Java array allocation and indexing
333     * bounds for power of two table sizes, and is further required
334     * because the top two bits of 32bit hash fields are used for
335     * control purposes.
336     */
337     private static final int MAXIMUM_CAPACITY = 1 << 30;
338    
339     /**
340     * The default initial table capacity. Must be a power of 2
341     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
342     */
343     private static final int DEFAULT_CAPACITY = 16;
344    
345     /**
346     * The largest possible (non-power of two) array size.
347     * Needed by toArray and related methods.
348     */
349     static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
350    
351     /**
352     * The default concurrency level for this table. Unused but
353     * defined for compatibility with previous versions of this class.
354     */
355     private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
356    
357     /**
358     * The load factor for this table. Overrides of this value in
359     * constructors affect only the initial table capacity. The
360     * actual floating point value isn't normally used -- it is
361     * simpler to use expressions such as {@code n - (n >>> 2)} for
362     * the associated resizing threshold.
363     */
364     private static final float LOAD_FACTOR = 0.75f;
365    
366     /**
367     * The bin count threshold for using a tree rather than list for a
368 dl 1.20 * bin. Bins are converted to trees when adding an element to a
369     * bin with at least this many nodes. The value must be greater
370     * than 2, and should be at least 8 to mesh with assumptions in
371     * tree removal about conversion back to plain bins upon
372     * shrinkage.
373     */
374     static final int TREEIFY_THRESHOLD = 8;
375    
376     /**
377     * The bin count threshold for untreeifying a (split) bin during a
378     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
379     * most 6 to mesh with shrinkage detection under removal.
380 dl 1.1 */
381 dl 1.20 static final int UNTREEIFY_THRESHOLD = 6;
382    
383     /**
384     * The smallest table capacity for which bins may be treeified.
385     * (Otherwise the table is resized if too many nodes in a bin.)
386     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
387     * conflicts between resizing and treeification thresholds.
388     */
389     static final int MIN_TREEIFY_CAPACITY = 64;
390 dl 1.1
391     /**
392     * Minimum number of rebinnings per transfer step. Ranges are
393     * subdivided to allow multiple resizer threads. This value
394     * serves as a lower bound to avoid resizers encountering
395     * excessive memory contention. The value should be at least
396     * DEFAULT_CAPACITY.
397     */
398     private static final int MIN_TRANSFER_STRIDE = 16;
399    
400     /*
401     * Encodings for Node hash fields. See above for explanation.
402     */
403 dl 1.20 static final int MOVED = 0x8fffffff; // (-1) hash for forwarding nodes
404     static final int TREEBIN = 0x80000000; // hash for heads of treea
405     static final int RESERVED = 0x80000001; // hash for transient reservations
406 dl 1.1 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
407    
408     /** Number of CPUS, to place bounds on some sizings */
409     static final int NCPU = Runtime.getRuntime().availableProcessors();
410    
411 dl 1.20 /** For serialization compatibility. */
412     private static final ObjectStreamField[] serialPersistentFields = {
413     new ObjectStreamField("segments", Segment[].class),
414     new ObjectStreamField("segmentMask", Integer.TYPE),
415     new ObjectStreamField("segmentShift", Integer.TYPE)
416     };
417    
418     /* ---------------- Nodes -------------- */
419    
420     /**
421     * Key-value entry. This class is never exported out as a
422     * user-mutable Map.Entry (i.e., one supporting setValue; see
423     * MapEntry below), but can be used for read-only traversals used
424     * in bulk tasks. Subclasses of Node with a negativehash field
425     * are special, and contain null keys and values (but are never
426     * exported). Otherwise, keys and vals are never null.
427     */
428     static class Node<K,V> implements Map.Entry<K,V> {
429     final int hash;
430     final K key;
431     volatile V val;
432     Node<K,V> next;
433    
434     Node(int hash, K key, V val, Node<K,V> next) {
435     this.hash = hash;
436     this.key = key;
437     this.val = val;
438     this.next = next;
439     }
440    
441     public final K getKey() { return key; }
442     public final V getValue() { return val; }
443     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
444     public final String toString(){ return key + "=" + val; }
445     public final V setValue(V value) {
446     throw new UnsupportedOperationException();
447     }
448 dl 1.1
449 dl 1.20 public final boolean equals(Object o) {
450     Object k, v, u; Map.Entry<?,?> e;
451     return ((o instanceof Map.Entry) &&
452     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
453     (v = e.getValue()) != null &&
454     (k == key || k.equals(key)) &&
455     (v == (u = val) || v.equals(u)));
456     }
457 dl 1.1
458 dl 1.20 /**
459     * Virtualized support for map.get(); overridden in subclasses.
460     */
461     Node<K,V> find(int h, Object k) {
462     Node<K,V> e = this;
463     if (k != null) {
464     do {
465     K ek;
466     if (e.hash == h &&
467     ((ek = e.key) == k || (ek != null && k.equals(ek))))
468     return e;
469     } while ((e = e.next) != null);
470     }
471     return null;
472     }
473 dl 1.1 }
474    
475 dl 1.20 /* ---------------- Static utilities -------------- */
476    
477 dl 1.1 /**
478 dl 1.20 * Spreads (XORs) higher bits of hash to lower and also forces top
479     * bit to 0. Because the table uses power-of-two masking, sets of
480     * hashes that vary only in bits above the current mask will
481     * always collide. (Among known examples are sets of Float keys
482     * holding consecutive whole numbers in small tables.) So we
483     * apply a transform that spreads the impact of higher bits
484     * downward. There is a tradeoff between speed, utility, and
485     * quality of bit-spreading. Because many common sets of hashes
486     * are already reasonably distributed (so don't benefit from
487     * spreading), and because we use trees to handle large sets of
488     * collisions in bins, we just XOR some shifted bits in the
489     * cheapest possible way to reduce systematic lossage, as well as
490     * to incorporate impact of the highest bits that would otherwise
491     * never be used in index calculations because of table bounds.
492 dl 1.1 */
493 dl 1.20 static final int spread(int h) {
494     return (h ^ (h >>> 16)) & HASH_BITS;
495 dl 1.1 }
496    
497     /**
498 dl 1.20 * Returns a power of two table size for the given desired capacity.
499     * See Hackers Delight, sec 3.2
500 dl 1.1 */
501 dl 1.20 private static final int tableSizeFor(int c) {
502     int n = c - 1;
503     n |= n >>> 1;
504     n |= n >>> 2;
505     n |= n >>> 4;
506     n |= n >>> 8;
507     n |= n >>> 16;
508     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
509     }
510 dl 1.1
511     /**
512 dl 1.20 * Returns x's Class if it is of the form "class C implements
513     * Comparable<C>", else null.
514 dl 1.1 */
515 dl 1.20 static Class<?> comparableClassFor(Object x) {
516     if (x instanceof Comparable) {
517     Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
518     if ((c = x.getClass()) == String.class) // bypass checks
519     return c;
520     if ((ts = c.getGenericInterfaces()) != null) {
521     for (int i = 0; i < ts.length; ++i) {
522     if (((t = ts[i]) instanceof ParameterizedType) &&
523     ((p = (ParameterizedType)t).getRawType() ==
524     Comparable.class) &&
525     (as = p.getActualTypeArguments()) != null &&
526     as.length == 1 && as[0] == c) // type arg is c
527     return c;
528     }
529     }
530     }
531     return null;
532     }
533 dl 1.1
534     /**
535 dl 1.20 * Returns k.compareTo(x) if x matches kc (k's screened comparable
536     * class), else 0.
537 dl 1.1 */
538 dl 1.20 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
539     static int compareComparables(Class<?> kc, Object k, Object x) {
540     return (x == null || x.getClass() != kc ? 0 :
541     ((Comparable)k).compareTo(x));
542     }
543    
544     /* ---------------- Table element access -------------- */
545    
546     /*
547     * Volatile access methods are used for table elements as well as
548     * elements of in-progress next table while resizing. All uses of
549     * the tab arguments must be null checked by callers. All callers
550     * also paranoically precheck that tab's length is not zero (or an
551     * equivalent check), thus ensuring that any index argument taking
552     * the form of a hash value anded with (length - 1) is a valid
553     * index. Note that, to be correct wrt arbitrary concurrency
554     * errors by users, these checks must operate on local variables,
555     * which accounts for some odd-looking inline assignments below.
556     * Note that calls to setTabAt always occur within locked regions,
557     * and so do not need full volatile semantics, but still require
558     * ordering to maintain concurrent readability.
559     */
560    
561     @SuppressWarnings("unchecked")
562     static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
563     return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
564     }
565    
566     static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
567     Node<K,V> c, Node<K,V> v) {
568     return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
569     }
570    
571     static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
572     U.putOrderedObject(tab, ((long)i << ASHIFT) + ABASE, v);
573     }
574 dl 1.1
575     /* ---------------- Fields -------------- */
576    
577     /**
578     * The array of bins. Lazily initialized upon first insertion.
579     * Size is always a power of two. Accessed directly by iterators.
580     */
581 dl 1.20 transient volatile Node<K,V>[] table;
582 dl 1.1
583     /**
584     * The next table to use; non-null only while resizing.
585     */
586 dl 1.20 private transient volatile Node<K,V>[] nextTable;
587 dl 1.1
588     /**
589     * Base counter value, used mainly when there is no contention,
590     * but also as a fallback during table initialization
591     * races. Updated via CAS.
592     */
593     private transient volatile long baseCount;
594    
595     /**
596     * Table initialization and resizing control. When negative, the
597     * table is being initialized or resized: -1 for initialization,
598     * else -(1 + the number of active resizing threads). Otherwise,
599     * when table is null, holds the initial table size to use upon
600     * creation, or 0 for default. After initialization, holds the
601     * next element count value upon which to resize the table.
602     */
603     private transient volatile int sizeCtl;
604    
605     /**
606     * The next table index (plus one) to split while resizing.
607     */
608     private transient volatile int transferIndex;
609    
610     /**
611     * The least available table index to split while resizing.
612     */
613     private transient volatile int transferOrigin;
614    
615     /**
616 dl 1.20 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
617 dl 1.1 */
618 dl 1.20 private transient volatile int cellsBusy;
619 dl 1.1
620     /**
621     * Table of counter cells. When non-null, size is a power of 2.
622     */
623     private transient volatile CounterCell[] counterCells;
624    
625     // views
626     private transient KeySetView<K,V> keySet;
627     private transient ValuesView<K,V> values;
628     private transient EntrySetView<K,V> entrySet;
629    
630    
631 dl 1.20 /* ---------------- Public operations -------------- */
632 dl 1.1
633 dl 1.20 /**
634     * Creates a new, empty map with the default initial table size (16).
635     */
636     public ConcurrentHashMap() {
637 dl 1.1 }
638    
639 dl 1.20 /**
640     * Creates a new, empty map with an initial table size
641     * accommodating the specified number of elements without the need
642     * to dynamically resize.
643     *
644     * @param initialCapacity The implementation performs internal
645     * sizing to accommodate this many elements.
646     * @throws IllegalArgumentException if the initial capacity of
647     * elements is negative
648     */
649     public ConcurrentHashMap(int initialCapacity) {
650     if (initialCapacity < 0)
651     throw new IllegalArgumentException();
652     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
653     MAXIMUM_CAPACITY :
654     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
655     this.sizeCtl = cap;
656 dl 1.1 }
657    
658 dl 1.20 /**
659     * Creates a new map with the same mappings as the given map.
660     *
661     * @param m the map
662     */
663     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
664     this.sizeCtl = DEFAULT_CAPACITY;
665     putAll(m);
666 dl 1.1 }
667    
668 dl 1.20 /**
669     * Creates a new, empty map with an initial table size based on
670     * the given number of elements ({@code initialCapacity}) and
671     * initial table density ({@code loadFactor}).
672     *
673     * @param initialCapacity the initial capacity. The implementation
674     * performs internal sizing to accommodate this many elements,
675     * given the specified load factor.
676     * @param loadFactor the load factor (table density) for
677     * establishing the initial table size
678     * @throws IllegalArgumentException if the initial capacity of
679     * elements is negative or the load factor is nonpositive
680     *
681     * @since 1.6
682     */
683     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
684     this(initialCapacity, loadFactor, 1);
685     }
686 dl 1.1
687     /**
688 dl 1.20 * Creates a new, empty map with an initial table size based on
689     * the given number of elements ({@code initialCapacity}), table
690     * density ({@code loadFactor}), and number of concurrently
691     * updating threads ({@code concurrencyLevel}).
692     *
693     * @param initialCapacity the initial capacity. The implementation
694     * performs internal sizing to accommodate this many elements,
695     * given the specified load factor.
696     * @param loadFactor the load factor (table density) for
697     * establishing the initial table size
698     * @param concurrencyLevel the estimated number of concurrently
699     * updating threads. The implementation may use this value as
700     * a sizing hint.
701     * @throws IllegalArgumentException if the initial capacity is
702     * negative or the load factor or concurrencyLevel are
703     * nonpositive
704 dl 1.1 */
705 dl 1.20 public ConcurrentHashMap(int initialCapacity,
706     float loadFactor, int concurrencyLevel) {
707     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
708     throw new IllegalArgumentException();
709     if (initialCapacity < concurrencyLevel) // Use at least as many bins
710     initialCapacity = concurrencyLevel; // as estimated threads
711     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
712     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
713     MAXIMUM_CAPACITY : tableSizeFor((int)size);
714     this.sizeCtl = cap;
715 dl 1.1 }
716    
717 dl 1.20 // Original (since JDK1.2) Map methods
718 dl 1.1
719     /**
720 dl 1.20 * {@inheritDoc}
721 dl 1.1 */
722 dl 1.20 public int size() {
723     long n = sumCount();
724     return ((n < 0L) ? 0 :
725     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
726     (int)n);
727     }
728 dl 1.1
729 dl 1.20 /**
730     * {@inheritDoc}
731     */
732     public boolean isEmpty() {
733     return sumCount() <= 0L; // ignore transient negative values
734 dl 1.1 }
735    
736     /**
737 dl 1.20 * Returns the value to which the specified key is mapped,
738     * or {@code null} if this map contains no mapping for the key.
739     *
740     * <p>More formally, if this map contains a mapping from a key
741     * {@code k} to a value {@code v} such that {@code key.equals(k)},
742     * then this method returns {@code v}; otherwise it returns
743     * {@code null}. (There can be at most one such mapping.)
744 dl 1.1 *
745 dl 1.20 * @throws NullPointerException if the specified key is null
746     */
747     public V get(Object key) {
748     Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
749     int h = spread(key.hashCode());
750     if ((tab = table) != null && (n = tab.length) > 0 &&
751     (e = tabAt(tab, (n - 1) & h)) != null) {
752     if ((eh = e.hash) == h) {
753     if ((ek = e.key) == key || (ek != null && key.equals(ek)))
754     return e.val;
755     }
756     else if (eh < 0)
757     return (p = e.find(h, key)) != null ? p.val : null;
758     while ((e = e.next) != null) {
759     if (e.hash == h &&
760     ((ek = e.key) == key || (ek != null && key.equals(ek))))
761     return e.val;
762 dl 1.1 }
763     }
764 dl 1.20 return null;
765     }
766 dl 1.1
767 dl 1.20 /**
768     * Tests if the specified object is a key in this table.
769     *
770     * @param key possible key
771     * @return {@code true} if and only if the specified object
772     * is a key in this table, as determined by the
773     * {@code equals} method; {@code false} otherwise
774     * @throws NullPointerException if the specified key is null
775     */
776     public boolean containsKey(Object key) {
777     return get(key) != null;
778     }
779 dl 1.1
780 dl 1.20 /**
781     * Returns {@code true} if this map maps one or more keys to the
782     * specified value. Note: This method may require a full traversal
783     * of the map, and is much slower than method {@code containsKey}.
784     *
785     * @param value value whose presence in this map is to be tested
786     * @return {@code true} if this map maps one or more keys to the
787     * specified value
788     * @throws NullPointerException if the specified value is null
789     */
790     public boolean containsValue(Object value) {
791     if (value == null)
792     throw new NullPointerException();
793     Node<K,V>[] t;
794     if ((t = table) != null) {
795     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
796     for (Node<K,V> p; (p = it.advance()) != null; ) {
797     V v;
798     if ((v = p.val) == value || (v != null && value.equals(v)))
799     return true;
800 dl 1.1 }
801     }
802 dl 1.20 return false;
803     }
804 dl 1.1
805 dl 1.20 /**
806     * Maps the specified key to the specified value in this table.
807     * Neither the key nor the value can be null.
808     *
809     * <p>The value can be retrieved by calling the {@code get} method
810     * with a key that is equal to the original key.
811     *
812     * @param key key with which the specified value is to be associated
813     * @param value value to be associated with the specified key
814     * @return the previous value associated with {@code key}, or
815     * {@code null} if there was no mapping for {@code key}
816     * @throws NullPointerException if the specified key or value is null
817     */
818     public V put(K key, V value) {
819     return putVal(key, value, false);
820     }
821 dl 1.1
822 dl 1.20 /** Implementation for put and putIfAbsent */
823     final V putVal(K key, V value, boolean onlyIfAbsent) {
824     if (key == null || value == null) throw new NullPointerException();
825     int hash = spread(key.hashCode());
826     int binCount = 0;
827     for (Node<K,V>[] tab = table;;) {
828     Node<K,V> f; int n, i, fh;
829     if (tab == null || (n = tab.length) == 0)
830     tab = initTable();
831     else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
832     if (casTabAt(tab, i, null,
833     new Node<K,V>(hash, key, value, null)))
834     break; // no lock when adding to empty bin
835 dl 1.1 }
836 dl 1.20 else if ((fh = f.hash) == MOVED)
837     tab = helpTransfer(tab, f);
838 dl 1.1 else {
839 dl 1.20 V oldVal = null;
840     synchronized (f) {
841     if (tabAt(tab, i) == f) {
842     if (fh >= 0) {
843     binCount = 1;
844     for (Node<K,V> e = f;; ++binCount) {
845     K ek;
846     if (e.hash == hash &&
847     ((ek = e.key) == key ||
848     (ek != null && key.equals(ek)))) {
849     oldVal = e.val;
850     if (!onlyIfAbsent)
851     e.val = value;
852     break;
853 dl 1.1 }
854 dl 1.20 Node<K,V> pred = e;
855     if ((e = e.next) == null) {
856     pred.next = new Node<K,V>(hash, key,
857     value, null);
858     break;
859 dl 1.1 }
860     }
861     }
862 dl 1.20 else if (f instanceof TreeBin) {
863     Node<K,V> p;
864     binCount = 2;
865     if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
866     value)) != null) {
867     oldVal = p.val;
868     if (!onlyIfAbsent)
869     p.val = value;
870 dl 1.1 }
871     }
872     }
873     }
874 dl 1.20 if (binCount != 0) {
875     if (binCount >= TREEIFY_THRESHOLD)
876     treeifyBin(tab, i);
877     if (oldVal != null)
878     return oldVal;
879     break;
880     }
881 dl 1.1 }
882     }
883 dl 1.20 addCount(1L, binCount);
884     return null;
885 dl 1.1 }
886    
887     /**
888 dl 1.20 * Copies all of the mappings from the specified map to this one.
889     * These mappings replace any mappings that this map had for any of the
890     * keys currently in the specified map.
891     *
892     * @param m mappings to be stored in this map
893     */
894     public void putAll(Map<? extends K, ? extends V> m) {
895     tryPresize(m.size());
896     for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
897     putVal(e.getKey(), e.getValue(), false);
898 dl 1.1 }
899    
900     /**
901 dl 1.20 * Removes the key (and its corresponding value) from this map.
902     * This method does nothing if the key is not in the map.
903     *
904     * @param key the key that needs to be removed
905     * @return the previous value associated with {@code key}, or
906     * {@code null} if there was no mapping for {@code key}
907     * @throws NullPointerException if the specified key is null
908     */
909     public V remove(Object key) {
910     return replaceNode(key, null, null);
911 dl 1.1 }
912    
913     /**
914     * Implementation for the four public remove/replace methods:
915     * Replaces node value with v, conditional upon match of cv if
916     * non-null. If resulting value is null, delete.
917     */
918 dl 1.20 final V replaceNode(Object key, V value, Object cv) {
919     int hash = spread(key.hashCode());
920     for (Node<K,V>[] tab = table;;) {
921     Node<K,V> f; int n, i, fh;
922     if (tab == null || (n = tab.length) == 0 ||
923     (f = tabAt(tab, i = (n - 1) & hash)) == null)
924 dl 1.1 break;
925 dl 1.20 else if ((fh = f.hash) == MOVED)
926     tab = helpTransfer(tab, f);
927 dl 1.1 else {
928 dl 1.20 V oldVal = null;
929 dl 1.1 boolean validated = false;
930     synchronized (f) {
931     if (tabAt(tab, i) == f) {
932 dl 1.20 if (fh >= 0) {
933     validated = true;
934     for (Node<K,V> e = f, pred = null;;) {
935     K ek;
936     if (e.hash == hash &&
937     ((ek = e.key) == key ||
938     (ek != null && key.equals(ek)))) {
939     V ev = e.val;
940     if (cv == null || cv == ev ||
941     (ev != null && cv.equals(ev))) {
942     oldVal = ev;
943     if (value != null)
944     e.val = value;
945     else if (pred != null)
946     pred.next = e.next;
947 dl 1.1 else
948 dl 1.20 setTabAt(tab, i, e.next);
949 dl 1.1 }
950 dl 1.20 break;
951     }
952     pred = e;
953     if ((e = e.next) == null)
954     break;
955     }
956     }
957     else if (f instanceof TreeBin) {
958     validated = true;
959     TreeBin<K,V> t = (TreeBin<K,V>)f;
960     TreeNode<K,V> r, p;
961     if ((r = t.root) != null &&
962     (p = r.findTreeNode(hash, key, null)) != null) {
963     V pv = p.val;
964     if (cv == null || cv == pv ||
965     (pv != null && cv.equals(pv))) {
966     oldVal = pv;
967     if (value != null)
968     p.val = value;
969     else if (t.removeTreeNode(p))
970     setTabAt(tab, i, untreeify(t.first));
971 dl 1.1 }
972     }
973     }
974     }
975     }
976     if (validated) {
977 dl 1.20 if (oldVal != null) {
978     if (value == null)
979     addCount(-1L, -1);
980     return oldVal;
981 dl 1.1 }
982     break;
983     }
984     }
985     }
986     return null;
987     }
988    
989     /**
990 dl 1.20 * Removes all of the mappings from this map.
991 dl 1.1 */
992 dl 1.20 public void clear() {
993 dl 1.1 long delta = 0L; // negative number of deletions
994     int i = 0;
995 dl 1.20 Node<K,V>[] tab = table;
996 dl 1.1 while (tab != null && i < tab.length) {
997 dl 1.20 int fh;
998     Node<K,V> f = tabAt(tab, i);
999 dl 1.1 if (f == null)
1000     ++i;
1001 dl 1.20 else if ((fh = f.hash) == MOVED) {
1002     tab = helpTransfer(tab, f);
1003     i = 0; // restart
1004 dl 1.1 }
1005     else {
1006     synchronized (f) {
1007     if (tabAt(tab, i) == f) {
1008 dl 1.20 Node<K,V> p = (fh >= 0 ? f :
1009     (f instanceof TreeBin) ?
1010     ((TreeBin<K,V>)f).first : null);
1011     while (p != null) {
1012     --delta;
1013     p = p.next;
1014 dl 1.1 }
1015 dl 1.20 setTabAt(tab, i++, null);
1016 dl 1.1 }
1017     }
1018     }
1019     }
1020     if (delta != 0L)
1021     addCount(delta, -1);
1022     }
1023    
1024     /**
1025 dl 1.20 * Returns a {@link Set} view of the keys contained in this map.
1026     * The set is backed by the map, so changes to the map are
1027     * reflected in the set, and vice-versa. The set supports element
1028     * removal, which removes the corresponding mapping from this map,
1029     * via the {@code Iterator.remove}, {@code Set.remove},
1030     * {@code removeAll}, {@code retainAll}, and {@code clear}
1031     * operations. It does not support the {@code add} or
1032     * {@code addAll} operations.
1033     *
1034     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1035     * that will never throw {@link ConcurrentModificationException},
1036     * and guarantees to traverse elements as they existed upon
1037     * construction of the iterator, and may (but is not guaranteed to)
1038     * reflect any modifications subsequent to construction.
1039     *
1040     * @return the set view
1041 dl 1.1 */
1042 dl 1.20 public KeySetView<K,V> keySet() {
1043     KeySetView<K,V> ks;
1044     return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1045 dl 1.1 }
1046    
1047     /**
1048 dl 1.20 * Returns a {@link Collection} view of the values contained in this map.
1049     * The collection is backed by the map, so changes to the map are
1050     * reflected in the collection, and vice-versa. The collection
1051     * supports element removal, which removes the corresponding
1052     * mapping from this map, via the {@code Iterator.remove},
1053     * {@code Collection.remove}, {@code removeAll},
1054     * {@code retainAll}, and {@code clear} operations. It does not
1055     * support the {@code add} or {@code addAll} operations.
1056 dl 1.1 *
1057 dl 1.20 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1058     * that will never throw {@link ConcurrentModificationException},
1059     * and guarantees to traverse elements as they existed upon
1060     * construction of the iterator, and may (but is not guaranteed to)
1061     * reflect any modifications subsequent to construction.
1062 dl 1.1 *
1063 dl 1.20 * @return the collection view
1064 dl 1.1 */
1065 dl 1.20 public Collection<V> values() {
1066     ValuesView<K,V> vs;
1067     return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1068 dl 1.1 }
1069    
1070     /**
1071 dl 1.20 * Returns a {@link Set} view of the mappings contained in this map.
1072     * The set is backed by the map, so changes to the map are
1073     * reflected in the set, and vice-versa. The set supports element
1074     * removal, which removes the corresponding mapping from the map,
1075     * via the {@code Iterator.remove}, {@code Set.remove},
1076     * {@code removeAll}, {@code retainAll}, and {@code clear}
1077     * operations.
1078     *
1079     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1080     * that will never throw {@link ConcurrentModificationException},
1081     * and guarantees to traverse elements as they existed upon
1082     * construction of the iterator, and may (but is not guaranteed to)
1083     * reflect any modifications subsequent to construction.
1084 dl 1.1 *
1085 dl 1.20 * @return the set view
1086 dl 1.1 */
1087 dl 1.20 public Set<Map.Entry<K,V>> entrySet() {
1088     EntrySetView<K,V> es;
1089     return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1090 dl 1.1 }
1091    
1092     /**
1093     * Returns the hash code value for this {@link Map}, i.e.,
1094     * the sum of, for each key-value pair in the map,
1095     * {@code key.hashCode() ^ value.hashCode()}.
1096     *
1097     * @return the hash code value for this map
1098     */
1099     public int hashCode() {
1100     int h = 0;
1101 dl 1.20 Node<K,V>[] t;
1102     if ((t = table) != null) {
1103     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1104     for (Node<K,V> p; (p = it.advance()) != null; )
1105     h += p.key.hashCode() ^ p.val.hashCode();
1106 dl 1.1 }
1107     return h;
1108     }
1109    
1110     /**
1111     * Returns a string representation of this map. The string
1112     * representation consists of a list of key-value mappings (in no
1113     * particular order) enclosed in braces ("{@code {}}"). Adjacent
1114     * mappings are separated by the characters {@code ", "} (comma
1115     * and space). Each key-value mapping is rendered as the key
1116     * followed by an equals sign ("{@code =}") followed by the
1117     * associated value.
1118     *
1119     * @return a string representation of this map
1120     */
1121     public String toString() {
1122 dl 1.20 Node<K,V>[] t;
1123     int f = (t = table) == null ? 0 : t.length;
1124     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1125 dl 1.1 StringBuilder sb = new StringBuilder();
1126     sb.append('{');
1127 dl 1.20 Node<K,V> p;
1128     if ((p = it.advance()) != null) {
1129 dl 1.1 for (;;) {
1130 dl 1.20 K k = p.key;
1131     V v = p.val;
1132 dl 1.1 sb.append(k == this ? "(this Map)" : k);
1133     sb.append('=');
1134     sb.append(v == this ? "(this Map)" : v);
1135 dl 1.20 if ((p = it.advance()) == null)
1136 dl 1.1 break;
1137     sb.append(',').append(' ');
1138     }
1139     }
1140     return sb.append('}').toString();
1141     }
1142    
1143     /**
1144     * Compares the specified object with this map for equality.
1145     * Returns {@code true} if the given object is a map with the same
1146     * mappings as this map. This operation may return misleading
1147     * results if either map is concurrently modified during execution
1148     * of this method.
1149     *
1150     * @param o object to be compared for equality with this map
1151     * @return {@code true} if the specified object is equal to this map
1152     */
1153     public boolean equals(Object o) {
1154     if (o != this) {
1155     if (!(o instanceof Map))
1156     return false;
1157     Map<?,?> m = (Map<?,?>) o;
1158 dl 1.20 Node<K,V>[] t;
1159     int f = (t = table) == null ? 0 : t.length;
1160     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1161     for (Node<K,V> p; (p = it.advance()) != null; ) {
1162     V val = p.val;
1163     Object v = m.get(p.key);
1164 dl 1.1 if (v == null || (v != val && !v.equals(val)))
1165     return false;
1166     }
1167     for (Map.Entry<?,?> e : m.entrySet()) {
1168     Object mk, mv, v;
1169     if ((mk = e.getKey()) == null ||
1170     (mv = e.getValue()) == null ||
1171 dl 1.20 (v = get(mk)) == null ||
1172 dl 1.1 (mv != v && !mv.equals(v)))
1173     return false;
1174     }
1175     }
1176     return true;
1177     }
1178    
1179     /**
1180     * Stripped-down version of helper class used in previous version,
1181     * declared for the sake of serialization compatibility
1182     */
1183 dl 1.20 static class Segment<K,V> extends ReentrantLock implements Serializable {
1184 dl 1.1 private static final long serialVersionUID = 2249069246763182397L;
1185     final float loadFactor;
1186     Segment(float lf) { this.loadFactor = lf; }
1187     }
1188    
1189     /**
1190     * Saves the state of the {@code ConcurrentHashMap} instance to a
1191     * stream (i.e., serializes it).
1192     * @param s the stream
1193     * @serialData
1194     * the key (Object) and value (Object)
1195     * for each key-value mapping, followed by a null pair.
1196     * The key-value mappings are emitted in no particular order.
1197     */
1198 dl 1.20 private void writeObject(java.io.ObjectOutputStream s)
1199 dl 1.1 throws java.io.IOException {
1200 dl 1.20 // For serialization compatibility
1201     // Emulate segment calculation from previous version of this class
1202     int sshift = 0;
1203     int ssize = 1;
1204     while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1205     ++sshift;
1206     ssize <<= 1;
1207     }
1208     int segmentShift = 32 - sshift;
1209     int segmentMask = ssize - 1;
1210     @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1211     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1212     for (int i = 0; i < segments.length; ++i)
1213     segments[i] = new Segment<K,V>(LOAD_FACTOR);
1214     s.putFields().put("segments", segments);
1215     s.putFields().put("segmentShift", segmentShift);
1216     s.putFields().put("segmentMask", segmentMask);
1217     s.writeFields();
1218    
1219     Node<K,V>[] t;
1220     if ((t = table) != null) {
1221     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1222     for (Node<K,V> p; (p = it.advance()) != null; ) {
1223     s.writeObject(p.key);
1224     s.writeObject(p.val);
1225     }
1226 dl 1.1 }
1227     s.writeObject(null);
1228     s.writeObject(null);
1229     segments = null; // throw away
1230     }
1231    
1232     /**
1233     * Reconstitutes the instance from a stream (that is, deserializes it).
1234     * @param s the stream
1235     */
1236 dl 1.20 private void readObject(java.io.ObjectInputStream s)
1237 dl 1.1 throws java.io.IOException, ClassNotFoundException {
1238 dl 1.20 /*
1239     * To improve performance in typical cases, we create nodes
1240     * while reading, then place in table once size is known.
1241     * However, we must also validate uniqueness and deal with
1242     * overpopulated bins while doing so, which requires
1243     * specialized versions of putVal mechanics.
1244     */
1245     sizeCtl = -1; // force exclusion for table construction
1246 dl 1.1 s.defaultReadObject();
1247     long size = 0L;
1248 dl 1.20 Node<K,V> p = null;
1249 dl 1.1 for (;;) {
1250 dl 1.20 @SuppressWarnings("unchecked") K k = (K) s.readObject();
1251     @SuppressWarnings("unchecked") V v = (V) s.readObject();
1252 dl 1.1 if (k != null && v != null) {
1253 dl 1.20 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1254 dl 1.1 ++size;
1255     }
1256     else
1257     break;
1258     }
1259 dl 1.20 if (size == 0L)
1260     sizeCtl = 0;
1261     else {
1262 dl 1.1 int n;
1263     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1264     n = MAXIMUM_CAPACITY;
1265     else {
1266     int sz = (int)size;
1267     n = tableSizeFor(sz + (sz >>> 1) + 1);
1268     }
1269 dl 1.20 @SuppressWarnings({"rawtypes","unchecked"})
1270     Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1271     int mask = n - 1;
1272     long added = 0L;
1273     while (p != null) {
1274     boolean insertAtFront;
1275     Node<K,V> next = p.next, first;
1276     int h = p.hash, j = h & mask;
1277     if ((first = tabAt(tab, j)) == null)
1278     insertAtFront = true;
1279     else {
1280     K k = p.key;
1281     if (first.hash < 0) {
1282     TreeBin<K,V> t = (TreeBin<K,V>)first;
1283     if (t.putTreeVal(h, k, p.val) == null)
1284     ++added;
1285     insertAtFront = false;
1286 dl 1.1 }
1287 dl 1.20 else {
1288     int binCount = 0;
1289     insertAtFront = true;
1290     Node<K,V> q; K qk;
1291     for (q = first; q != null; q = q.next) {
1292     if (q.hash == h &&
1293     ((qk = q.key) == k ||
1294     (qk != null && k.equals(qk)))) {
1295     insertAtFront = false;
1296 dl 1.1 break;
1297     }
1298 dl 1.20 ++binCount;
1299     }
1300     if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1301     insertAtFront = false;
1302     ++added;
1303     p.next = first;
1304     TreeNode<K,V> hd = null, tl = null;
1305     for (q = p; q != null; q = q.next) {
1306     TreeNode<K,V> t = new TreeNode<K,V>
1307     (q.hash, q.key, q.val, null, null);
1308     if ((t.prev = tl) == null)
1309     hd = t;
1310     else
1311     tl.next = t;
1312     tl = t;
1313     }
1314     setTabAt(tab, j, new TreeBin<K,V>(hd));
1315 dl 1.1 }
1316     }
1317     }
1318 dl 1.20 if (insertAtFront) {
1319     ++added;
1320     p.next = first;
1321     setTabAt(tab, j, p);
1322 dl 1.1 }
1323 dl 1.20 p = next;
1324 dl 1.1 }
1325 dl 1.20 table = tab;
1326     sizeCtl = n - (n >>> 2);
1327     baseCount = added;
1328 dl 1.1 }
1329     }
1330    
1331 dl 1.20 // ConcurrentMap methods
1332 dl 1.1
1333     /**
1334 dl 1.20 * {@inheritDoc}
1335 dl 1.1 *
1336 dl 1.20 * @return the previous value associated with the specified key,
1337     * or {@code null} if there was no mapping for the key
1338     * @throws NullPointerException if the specified key or value is null
1339 dl 1.1 */
1340 dl 1.20 public V putIfAbsent(K key, V value) {
1341     return putVal(key, value, true);
1342 dl 1.1 }
1343    
1344     /**
1345 dl 1.20 * {@inheritDoc}
1346 dl 1.1 *
1347 dl 1.20 * @throws NullPointerException if the specified key is null
1348 dl 1.1 */
1349 dl 1.20 public boolean remove(Object key, Object value) {
1350     if (key == null)
1351     throw new NullPointerException();
1352     return value != null && replaceNode(key, null, value) != null;
1353 dl 1.1 }
1354    
1355     /**
1356 dl 1.20 * {@inheritDoc}
1357 dl 1.1 *
1358 dl 1.20 * @throws NullPointerException if any of the arguments are null
1359 dl 1.1 */
1360 dl 1.20 public boolean replace(K key, V oldValue, V newValue) {
1361     if (key == null || oldValue == null || newValue == null)
1362     throw new NullPointerException();
1363     return replaceNode(key, newValue, oldValue) != null;
1364 dl 1.1 }
1365    
1366     /**
1367 dl 1.20 * {@inheritDoc}
1368 dl 1.1 *
1369 dl 1.20 * @return the previous value associated with the specified key,
1370     * or {@code null} if there was no mapping for the key
1371     * @throws NullPointerException if the specified key or value is null
1372 dl 1.1 */
1373 dl 1.20 public V replace(K key, V value) {
1374     if (key == null || value == null)
1375     throw new NullPointerException();
1376     return replaceNode(key, value, null);
1377 dl 1.1 }
1378 dl 1.20 // Hashtable legacy methods
1379 dl 1.1
1380     /**
1381 dl 1.20 * Legacy method testing if some key maps into the specified value
1382     * in this table. This method is identical in functionality to
1383     * {@link #containsValue(Object)}, and exists solely to ensure
1384     * full compatibility with class {@link java.util.Hashtable},
1385     * which supported this method prior to introduction of the
1386     * Java Collections framework.
1387 dl 1.1 *
1388 dl 1.20 * @param value a value to search for
1389     * @return {@code true} if and only if some key maps to the
1390     * {@code value} argument in this table as
1391     * determined by the {@code equals} method;
1392     * {@code false} otherwise
1393     * @throws NullPointerException if the specified value is null
1394 dl 1.1 */
1395 dl 1.20 @Deprecated public boolean contains(Object value) {
1396     return containsValue(value);
1397 dl 1.1 }
1398    
1399     /**
1400 dl 1.20 * Returns an enumeration of the keys in this table.
1401 dl 1.1 *
1402 dl 1.20 * @return an enumeration of the keys in this table
1403     * @see #keySet()
1404 dl 1.1 */
1405 dl 1.20 public Enumeration<K> keys() {
1406     Node<K,V>[] t;
1407     int f = (t = table) == null ? 0 : t.length;
1408     return new KeyIterator<K,V>(t, f, 0, f, this);
1409 dl 1.1 }
1410    
1411     /**
1412 dl 1.20 * Returns an enumeration of the values in this table.
1413 dl 1.1 *
1414 dl 1.20 * @return an enumeration of the values in this table
1415     * @see #values()
1416 dl 1.1 */
1417 dl 1.20 public Enumeration<V> elements() {
1418     Node<K,V>[] t;
1419     int f = (t = table) == null ? 0 : t.length;
1420     return new ValueIterator<K,V>(t, f, 0, f, this);
1421 dl 1.1 }
1422    
1423 dl 1.20 // ConcurrentHashMap-only methods
1424    
1425 dl 1.1 /**
1426 dl 1.20 * Returns the number of mappings. This method should be used
1427     * instead of {@link #size} because a ConcurrentHashMap may
1428     * contain more mappings than can be represented as an int. The
1429     * value returned is an estimate; the actual count may differ if
1430     * there are concurrent insertions or removals.
1431 dl 1.1 *
1432 dl 1.20 * @return the number of mappings
1433     * @since 1.8
1434 dl 1.1 */
1435 dl 1.20 public long mappingCount() {
1436     long n = sumCount();
1437     return (n < 0L) ? 0L : n; // ignore transient negative values
1438 dl 1.1 }
1439    
1440     /**
1441 dl 1.20 * Creates a new {@link Set} backed by a ConcurrentHashMap
1442     * from the given type to {@code Boolean.TRUE}.
1443 dl 1.1 *
1444 dl 1.20 * @return the new set
1445     * @since 1.8
1446 dl 1.1 */
1447 dl 1.20 public static <K> KeySetView<K,Boolean> newKeySet() {
1448     return new KeySetView<K,Boolean>
1449     (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
1450 dl 1.1 }
1451    
1452     /**
1453 dl 1.20 * Creates a new {@link Set} backed by a ConcurrentHashMap
1454     * from the given type to {@code Boolean.TRUE}.
1455 dl 1.1 *
1456 dl 1.20 * @param initialCapacity The implementation performs internal
1457     * sizing to accommodate this many elements.
1458     * @throws IllegalArgumentException if the initial capacity of
1459     * elements is negative
1460     * @return the new set
1461     * @since 1.8
1462 dl 1.1 */
1463 dl 1.20 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
1464     return new KeySetView<K,Boolean>
1465     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
1466 dl 1.1 }
1467    
1468     /**
1469 dl 1.20 * Returns a {@link Set} view of the keys in this map, using the
1470     * given common mapped value for any additions (i.e., {@link
1471     * Collection#add} and {@link Collection#addAll(Collection)}).
1472     * This is of course only appropriate if it is acceptable to use
1473     * the same value for all additions from this view.
1474 dl 1.1 *
1475 dl 1.20 * @param mappedValue the mapped value to use for any additions
1476     * @return the set view
1477     * @throws NullPointerException if the mappedValue is null
1478 dl 1.1 */
1479 dl 1.20 public KeySetView<K,V> keySet(V mappedValue) {
1480     if (mappedValue == null)
1481     throw new NullPointerException();
1482     return new KeySetView<K,V>(this, mappedValue);
1483 dl 1.1 }
1484    
1485 dl 1.20 /* ---------------- Special Nodes -------------- */
1486    
1487 dl 1.1 /**
1488 dl 1.20 * A node inserted at head of bins during transfer operations.
1489 dl 1.1 */
1490 dl 1.20 static final class ForwardingNode<K,V> extends Node<K,V> {
1491     final Node<K,V>[] nextTable;
1492     ForwardingNode(Node<K,V>[] tab) {
1493     super(MOVED, null, null, null);
1494     this.nextTable = tab;
1495     }
1496    
1497     Node<K,V> find(int h, Object k) {
1498     Node<K,V> e; int n;
1499     Node<K,V>[] tab = nextTable;
1500     if (k != null && tab != null && (n = tab.length) > 0 &&
1501     (e = tabAt(tab, (n - 1) & h)) != null) {
1502     do {
1503     int eh; K ek;
1504     if ((eh = e.hash) == h &&
1505     ((ek = e.key) == k || (ek != null && k.equals(ek))))
1506     return e;
1507     if (eh < 0)
1508     return e.find(h, k);
1509     } while ((e = e.next) != null);
1510     }
1511     return null;
1512     }
1513 dl 1.1 }
1514    
1515     /**
1516 dl 1.20 * A place-holder node used in computeIfAbsent and compute
1517 dl 1.1 */
1518 dl 1.20 static final class ReservationNode<K,V> extends Node<K,V> {
1519     ReservationNode() {
1520     super(RESERVED, null, null, null);
1521     }
1522    
1523     Node<K,V> find(int h, Object k) {
1524     return null;
1525     }
1526 dl 1.1 }
1527    
1528 dl 1.20 /* ---------------- Table Initialization and Resizing -------------- */
1529    
1530 dl 1.1 /**
1531 dl 1.20 * Initializes table, using the size recorded in sizeCtl.
1532 dl 1.1 */
1533 dl 1.20 private final Node<K,V>[] initTable() {
1534     Node<K,V>[] tab; int sc;
1535     while ((tab = table) == null || tab.length == 0) {
1536     if ((sc = sizeCtl) < 0)
1537     Thread.yield(); // lost initialization race; just spin
1538     else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1539     try {
1540     if ((tab = table) == null || tab.length == 0) {
1541     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1542     @SuppressWarnings({"rawtypes","unchecked"})
1543     Node<K,V>[] nt = (Node<K,V>[])new Node[n];
1544     table = tab = nt;
1545     sc = n - (n >>> 2);
1546     }
1547     } finally {
1548     sizeCtl = sc;
1549     }
1550     break;
1551     }
1552     }
1553     return tab;
1554 dl 1.1 }
1555    
1556     /**
1557 dl 1.20 * Adds to count, and if table is too small and not already
1558     * resizing, initiates transfer. If already resizing, helps
1559     * perform transfer if work is available. Rechecks occupancy
1560     * after a transfer to see if another resize is already needed
1561     * because resizings are lagging additions.
1562 dl 1.1 *
1563 dl 1.20 * @param x the count to add
1564     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1565 dl 1.1 */
1566 dl 1.20 private final void addCount(long x, int check) {
1567     CounterCell[] as; long b, s;
1568     if ((as = counterCells) != null ||
1569     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1570     CounterHashCode hc; CounterCell a; long v; int m;
1571     boolean uncontended = true;
1572     if ((hc = threadCounterHashCode.get()) == null ||
1573     as == null || (m = as.length - 1) < 0 ||
1574     (a = as[m & hc.code]) == null ||
1575     !(uncontended =
1576     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1577     fullAddCount(x, hc, uncontended);
1578     return;
1579     }
1580     if (check <= 1)
1581     return;
1582     s = sumCount();
1583     }
1584     if (check >= 0) {
1585     Node<K,V>[] tab, nt; int sc;
1586     while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1587     tab.length < MAXIMUM_CAPACITY) {
1588     if (sc < 0) {
1589     if (sc == -1 || transferIndex <= transferOrigin ||
1590     (nt = nextTable) == null)
1591     break;
1592     if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1593     transfer(tab, nt);
1594     }
1595     else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1596     transfer(tab, null);
1597     s = sumCount();
1598     }
1599     }
1600 dl 1.1 }
1601    
1602     /**
1603 dl 1.20 * Helps transfer if a resize is in progress.
1604 dl 1.1 */
1605 dl 1.20 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
1606     Node<K,V>[] nextTab; int sc;
1607     if ((f instanceof ForwardingNode) &&
1608     (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
1609     if (nextTab == nextTable && tab == table &&
1610     transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
1611     U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1612     transfer(tab, nextTab);
1613     return nextTab;
1614     }
1615     return table;
1616 dl 1.1 }
1617    
1618     /**
1619 dl 1.20 * Tries to presize table to accommodate the given number of elements.
1620 dl 1.1 *
1621 dl 1.20 * @param size number of elements (doesn't need to be perfectly accurate)
1622 dl 1.1 */
1623 dl 1.20 private final void tryPresize(int size) {
1624     int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1625     tableSizeFor(size + (size >>> 1) + 1);
1626     int sc;
1627     while ((sc = sizeCtl) >= 0) {
1628     Node<K,V>[] tab = table; int n;
1629     if (tab == null || (n = tab.length) == 0) {
1630     n = (sc > c) ? sc : c;
1631     if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1632     try {
1633     if (table == tab) {
1634     @SuppressWarnings({"rawtypes","unchecked"})
1635     Node<K,V>[] nt = (Node<K,V>[])new Node[n];
1636     table = nt;
1637     sc = n - (n >>> 2);
1638     }
1639     } finally {
1640     sizeCtl = sc;
1641     }
1642     }
1643     }
1644     else if (c <= sc || n >= MAXIMUM_CAPACITY)
1645     break;
1646     else if (tab == table &&
1647     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1648     transfer(tab, null);
1649     }
1650 dl 1.1 }
1651    
1652     /**
1653 dl 1.20 * Moves and/or copies the nodes in each bin to new table. See
1654     * above for explanation.
1655 dl 1.1 */
1656 dl 1.20 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
1657     int n = tab.length, stride;
1658     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1659     stride = MIN_TRANSFER_STRIDE; // subdivide range
1660     if (nextTab == null) { // initiating
1661     try {
1662     @SuppressWarnings({"rawtypes","unchecked"})
1663     Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
1664     nextTab = nt;
1665     } catch (Throwable ex) { // try to cope with OOME
1666     sizeCtl = Integer.MAX_VALUE;
1667     return;
1668     }
1669     nextTable = nextTab;
1670     transferOrigin = n;
1671     transferIndex = n;
1672     ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
1673     for (int k = n; k > 0;) { // progressively reveal ready slots
1674     int nextk = (k > stride) ? k - stride : 0;
1675     for (int m = nextk; m < k; ++m)
1676     nextTab[m] = rev;
1677     for (int m = n + nextk; m < n + k; ++m)
1678     nextTab[m] = rev;
1679     U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1680     }
1681     }
1682     int nextn = nextTab.length;
1683     ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
1684     boolean advance = true;
1685     for (int i = 0, bound = 0;;) {
1686     int nextIndex, nextBound, fh; Node<K,V> f;
1687     while (advance) {
1688     if (--i >= bound)
1689     advance = false;
1690     else if ((nextIndex = transferIndex) <= transferOrigin) {
1691     i = -1;
1692     advance = false;
1693     }
1694     else if (U.compareAndSwapInt
1695     (this, TRANSFERINDEX, nextIndex,
1696     nextBound = (nextIndex > stride ?
1697     nextIndex - stride : 0))) {
1698     bound = nextBound;
1699     i = nextIndex - 1;
1700     advance = false;
1701     }
1702     }
1703     if (i < 0 || i >= n || i + n >= nextn) {
1704     for (int sc;;) {
1705     if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1706     if (sc == -1) {
1707     nextTable = null;
1708     table = nextTab;
1709     sizeCtl = (n << 1) - (n >>> 1);
1710     }
1711     return;
1712     }
1713     }
1714     }
1715     else if ((f = tabAt(tab, i)) == null) {
1716     if (casTabAt(tab, i, null, fwd)) {
1717     setTabAt(nextTab, i, null);
1718     setTabAt(nextTab, i + n, null);
1719     advance = true;
1720     }
1721     }
1722     else if ((fh = f.hash) == MOVED)
1723     advance = true; // already processed
1724     else {
1725     synchronized (f) {
1726     if (tabAt(tab, i) == f) {
1727     Node<K,V> ln, hn;
1728     if (fh >= 0) {
1729     int runBit = fh & n;
1730     Node<K,V> lastRun = f;
1731     for (Node<K,V> p = f.next; p != null; p = p.next) {
1732     int b = p.hash & n;
1733     if (b != runBit) {
1734     runBit = b;
1735     lastRun = p;
1736     }
1737     }
1738     if (runBit == 0) {
1739     ln = lastRun;
1740     hn = null;
1741     }
1742     else {
1743     hn = lastRun;
1744     ln = null;
1745     }
1746     for (Node<K,V> p = f; p != lastRun; p = p.next) {
1747     int ph = p.hash; K pk = p.key; V pv = p.val;
1748     if ((ph & n) == 0)
1749     ln = new Node<K,V>(ph, pk, pv, ln);
1750     else
1751     hn = new Node<K,V>(ph, pk, pv, hn);
1752     }
1753     }
1754     else if (f instanceof TreeBin) {
1755     TreeBin<K,V> t = (TreeBin<K,V>)f;
1756     TreeNode<K,V> lo = null, loTail = null;
1757     TreeNode<K,V> hi = null, hiTail = null;
1758     int lc = 0, hc = 0;
1759     for (Node<K,V> e = t.first; e != null; e = e.next) {
1760     int h = e.hash;
1761     TreeNode<K,V> p = new TreeNode<K,V>
1762     (h, e.key, e.val, null, null);
1763     if ((h & n) == 0) {
1764     if ((p.prev = loTail) == null)
1765     lo = p;
1766     else
1767     loTail.next = p;
1768     loTail = p;
1769     ++lc;
1770     }
1771     else {
1772     if ((p.prev = hiTail) == null)
1773     hi = p;
1774     else
1775     hiTail.next = p;
1776     hiTail = p;
1777     ++hc;
1778     }
1779     }
1780     ln = (lc <= UNTREEIFY_THRESHOLD ? untreeify(lo) :
1781     (hc != 0) ? new TreeBin<K,V>(lo) : t);
1782     hn = (hc <= UNTREEIFY_THRESHOLD ? untreeify(hi) :
1783     (lc != 0) ? new TreeBin<K,V>(hi) : t);
1784     }
1785     else
1786     ln = hn = null;
1787     setTabAt(nextTab, i, ln);
1788     setTabAt(nextTab, i + n, hn);
1789     setTabAt(tab, i, fwd);
1790     advance = true;
1791     }
1792     }
1793     }
1794     }
1795 dl 1.1 }
1796    
1797 dl 1.20 /* ---------------- Conversion from/to TreeBins -------------- */
1798 dl 1.1
1799     /**
1800 dl 1.20 * Replaces all linked nodes in bin at given index unless table is
1801     * too small, in which case resizes instead.
1802 dl 1.1 */
1803 dl 1.20 private final void treeifyBin(Node<K,V>[] tab, int index) {
1804     Node<K,V> b; int n, sc;
1805     if (tab != null) {
1806     if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
1807     if (tab == table && (sc = sizeCtl) >= 0 &&
1808     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1809     transfer(tab, null);
1810     }
1811     else if ((b = tabAt(tab, index)) != null) {
1812     synchronized (b) {
1813     if (tabAt(tab, index) == b) {
1814     TreeNode<K,V> hd = null, tl = null;
1815     for (Node<K,V> e = b; e != null; e = e.next) {
1816     TreeNode<K,V> p =
1817     new TreeNode<K,V>(e.hash, e.key, e.val,
1818     null, null);
1819     if ((p.prev = tl) == null)
1820     hd = p;
1821     else
1822     tl.next = p;
1823     tl = p;
1824     }
1825     setTabAt(tab, index, new TreeBin<K,V>(hd));
1826     }
1827     }
1828     }
1829     }
1830 dl 1.1 }
1831    
1832     /**
1833 dl 1.20 * Returns a list on non-TreeNodes replacing those in given list
1834 dl 1.1 */
1835 dl 1.20 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
1836     Node<K,V> hd = null, tl = null;
1837     for (Node<K,V> q = b; q != null; q = q.next) {
1838     Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
1839     if (tl == null)
1840     hd = p;
1841     else
1842     tl.next = p;
1843     tl = p;
1844     }
1845     return hd;
1846 dl 1.1 }
1847    
1848 dl 1.20 /* ---------------- TreeNodes -------------- */
1849 dl 1.1
1850     /**
1851 dl 1.20 * Nodes for use in TreeBins
1852 dl 1.1 */
1853 dl 1.20 static final class TreeNode<K,V> extends Node<K,V> {
1854     TreeNode<K,V> parent; // red-black tree links
1855     TreeNode<K,V> left;
1856     TreeNode<K,V> right;
1857     TreeNode<K,V> prev; // needed to unlink next upon deletion
1858     boolean red;
1859 dl 1.1
1860 dl 1.20 TreeNode(int hash, K key, V val, Node<K,V> next,
1861     TreeNode<K,V> parent) {
1862     super(hash, key, val, next);
1863     this.parent = parent;
1864     }
1865 dl 1.1
1866 dl 1.20 Node<K,V> find(int h, Object k) {
1867     return findTreeNode(h, k, null);
1868     }
1869 dl 1.1
1870 dl 1.20 /**
1871     * Returns the TreeNode (or null if not found) for the given key
1872     * starting at given root.
1873     */
1874     final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
1875     if (k != null) {
1876     TreeNode<K,V> p = this;
1877     do {
1878     int ph, dir; K pk; TreeNode<K,V> q;
1879     TreeNode<K,V> pl = p.left, pr = p.right;
1880     if ((ph = p.hash) > h)
1881     p = pl;
1882     else if (ph < h)
1883     p = pr;
1884     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
1885     return p;
1886     else if (pl == null && pr == null)
1887     break;
1888 jsr166 1.21 else if ((kc != null ||
1889 dl 1.20 (kc = comparableClassFor(k)) != null) &&
1890     (dir = compareComparables(kc, k, pk)) != 0)
1891     p = (dir < 0) ? pl : pr;
1892     else if (pl == null)
1893     p = pr;
1894 jsr166 1.21 else if (pr == null ||
1895 dl 1.20 (q = pr.findTreeNode(h, k, kc)) == null)
1896     p = pl;
1897     else
1898     return q;
1899     } while (p != null);
1900     }
1901     return null;
1902     }
1903 dl 1.1 }
1904    
1905 dl 1.20 /* ---------------- TreeBins -------------- */
1906 dl 1.1
1907     /**
1908 dl 1.20 * TreeNodes used at the heads of bins. TreeBins do not hold user
1909     * keys or values, but instead point to list of TreeNodes and
1910     * their root. They also maintain a parasitic read-write lock
1911     * forcing writers (who hold bin lock) to wait for readers (who do
1912     * not) to complete before tree restructuring operations.
1913     */
1914     static final class TreeBin<K,V> extends Node<K,V> {
1915     TreeNode<K,V> root;
1916     volatile TreeNode<K,V> first;
1917     volatile Thread waiter;
1918     volatile int lockState;
1919     // values for lockState
1920     static final int WRITER = 1; // set while holding write lock
1921     static final int WAITER = 2; // set when waiting for write lock
1922     static final int READER = 4; // increment value for setting read lock
1923    
1924     /**
1925     * Creates bin with initial set of nodes headed by b.
1926     */
1927     TreeBin(TreeNode<K,V> b) {
1928     super(TREEBIN, null, null, null);
1929     this.first = b;
1930     TreeNode<K,V> r = null;
1931     for (TreeNode<K,V> x = b, next; x != null; x = next) {
1932     next = (TreeNode<K,V>)x.next;
1933     x.left = x.right = null;
1934     if (r == null) {
1935     x.parent = null;
1936     x.red = false;
1937     r = x;
1938     }
1939     else {
1940     Object key = x.key;
1941     int hash = x.hash;
1942     Class<?> kc = null;
1943     for (TreeNode<K,V> p = r;;) {
1944     int dir, ph;
1945     if ((ph = p.hash) > hash)
1946     dir = -1;
1947     else if (ph < hash)
1948     dir = 1;
1949     else if ((kc != null ||
1950     (kc = comparableClassFor(key)) != null))
1951     dir = compareComparables(kc, key, p.key);
1952     else
1953     dir = 0;
1954     TreeNode<K,V> xp = p;
1955     if ((p = (dir <= 0) ? p.left : p.right) == null) {
1956     x.parent = xp;
1957     if (dir <= 0)
1958     xp.left = x;
1959     else
1960     xp.right = x;
1961     r = balanceInsertion(r, x);
1962     break;
1963     }
1964     }
1965     }
1966     }
1967     this.root = r;
1968     }
1969 dl 1.1
1970 dl 1.20 /**
1971     * Acquires write lock for tree restructuring
1972     */
1973     private final void lockRoot() {
1974     if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
1975     contendedLock(); // offload to separate method
1976     }
1977 dl 1.1
1978 dl 1.20 /**
1979     * Releases write lock for tree restructuring
1980     */
1981     private final void unlockRoot() {
1982     lockState = 0;
1983     }
1984 dl 1.1
1985 dl 1.20 /**
1986     * Possibly blocks awaiting root lock
1987     */
1988     private final void contendedLock() {
1989     boolean waiting = false;
1990     for (int s;;) {
1991     if (((s = lockState) & WRITER) == 0) {
1992     if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
1993     if (waiting)
1994     waiter = null;
1995     return;
1996     }
1997     }
1998     else if ((s | WAITER) == 0) {
1999     if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2000     waiting = true;
2001     waiter = Thread.currentThread();
2002     }
2003     }
2004     else if (waiting)
2005     LockSupport.park(this);
2006     }
2007     }
2008 dl 1.1
2009 dl 1.20 /**
2010     * Returns matching node or null if none. Tries to search
2011     * using tree compareisons from root, but continues linear
2012     * search when lock not available.
2013     */
2014     final Node<K,V> find(int h, Object k) {
2015     if (k != null) {
2016     for (Node<K,V> e = first; e != null; e = e.next) {
2017     int s; K ek;
2018     if (((s = lockState) & (WAITER|WRITER)) != 0) {
2019     if (e.hash == h &&
2020     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2021     return e;
2022     }
2023     else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2024     s + READER)) {
2025     TreeNode<K,V> r, p;
2026     try {
2027     p = ((r = root) == null ? null :
2028     r.findTreeNode(h, k, null));
2029     } finally {
2030 jsr166 1.21
2031 dl 1.20 Thread w;
2032     int ls;
2033     do {} while (!U.compareAndSwapInt
2034     (this, LOCKSTATE,
2035     ls = lockState, ls - READER));
2036     if (ls == (READER|WAITER) && (w = waiter) != null)
2037     LockSupport.unpark(w);
2038     }
2039     return p;
2040     }
2041     }
2042     }
2043     return null;
2044     }
2045 dl 1.1
2046     /**
2047 dl 1.20 * Finds or adds a node.
2048     * @return null if added
2049 dl 1.1 */
2050 dl 1.20 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2051     Class<?> kc = null;
2052     for (TreeNode<K,V> p = root;;) {
2053     int dir, ph; K pk; TreeNode<K,V> q, pr;
2054     if (p == null) {
2055     first = root = new TreeNode<K,V>(h, k, v, null, null);
2056     break;
2057     }
2058     else if ((ph = p.hash) > h)
2059     dir = -1;
2060     else if (ph < h)
2061     dir = 1;
2062     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2063     return p;
2064     else if ((kc == null &&
2065     (kc = comparableClassFor(k)) == null) ||
2066     (dir = compareComparables(kc, k, pk)) == 0) {
2067     if (p.left == null)
2068     dir = 1;
2069     else if ((pr = p.right) == null ||
2070     (q = pr.findTreeNode(h, k, kc)) == null)
2071     dir = -1;
2072     else
2073     return q;
2074     }
2075     TreeNode<K,V> xp = p;
2076     if ((p = (dir < 0) ? p.left : p.right) == null) {
2077     TreeNode<K,V> x, f = first;
2078     first = x = new TreeNode<K,V>(h, k, v, f, xp);
2079     if (f != null)
2080     f.prev = x;
2081     if (dir < 0)
2082     xp.left = x;
2083 dl 1.1 else
2084 dl 1.20 xp.right = x;
2085     if (!xp.red)
2086     x.red = true;
2087     else {
2088     lockRoot();
2089     try {
2090     root = balanceInsertion(root, x);
2091     } finally {
2092     unlockRoot();
2093     }
2094     }
2095     break;
2096 dl 1.1 }
2097     }
2098 dl 1.20 assert checkInvariants(root);
2099     return null;
2100 dl 1.1 }
2101    
2102 dl 1.20 /**
2103     * Removes the given node, that must be present before this
2104     * call. This is messier than typical red-black deletion code
2105     * because we cannot swap the contents of an interior node
2106     * with a leaf successor that is pinned by "next" pointers
2107     * that are accessible independently of lock. So instead we
2108     * swap the tree linkages.
2109     *
2110     * @return true if now too small so should be untreeified.
2111     */
2112     final boolean removeTreeNode(TreeNode<K,V> p) {
2113     TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2114     TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2115     TreeNode<K,V> r, rl;
2116     if (pred == null)
2117     first = next;
2118     else
2119     pred.next = next;
2120     if (next != null)
2121     next.prev = pred;
2122     if (first == null) {
2123     root = null;
2124     return true;
2125     }
2126     if ((r = root) == null || r.right == null || // too small
2127     (rl = r.left) == null || rl.left == null)
2128     return true;
2129     lockRoot();
2130     try {
2131     TreeNode<K,V> replacement;
2132     TreeNode<K,V> pl = p.left;
2133     TreeNode<K,V> pr = p.right;
2134     if (pl != null && pr != null) {
2135     TreeNode<K,V> s = pr, sl;
2136     while ((sl = s.left) != null) // find successor
2137     s = sl;
2138     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2139     TreeNode<K,V> sr = s.right;
2140     TreeNode<K,V> pp = p.parent;
2141     if (s == pr) { // p was s's direct parent
2142     p.parent = s;
2143     s.right = p;
2144     }
2145     else {
2146     TreeNode<K,V> sp = s.parent;
2147     if ((p.parent = sp) != null) {
2148     if (s == sp.left)
2149     sp.left = p;
2150     else
2151     sp.right = p;
2152     }
2153     if ((s.right = pr) != null)
2154     pr.parent = s;
2155     }
2156     p.left = null;
2157     if ((p.right = sr) != null)
2158     sr.parent = p;
2159     if ((s.left = pl) != null)
2160     pl.parent = s;
2161     if ((s.parent = pp) == null)
2162     r = s;
2163     else if (p == pp.left)
2164     pp.left = s;
2165     else
2166     pp.right = s;
2167     if (sr != null)
2168     replacement = sr;
2169     else
2170     replacement = p;
2171     }
2172     else if (pl != null)
2173     replacement = pl;
2174     else if (pr != null)
2175     replacement = pr;
2176     else
2177     replacement = p;
2178     if (replacement != p) {
2179     TreeNode<K,V> pp = replacement.parent = p.parent;
2180     if (pp == null)
2181     r = replacement;
2182     else if (p == pp.left)
2183     pp.left = replacement;
2184 dl 1.1 else
2185 dl 1.20 pp.right = replacement;
2186     p.left = p.right = p.parent = null;
2187     }
2188    
2189     root = (p.red) ? r : balanceDeletion(r, replacement);
2190    
2191     if (p == replacement) { // detach pointers
2192     TreeNode<K,V> pp;
2193     if ((pp = p.parent) != null) {
2194     if (p == pp.left)
2195     pp.left = null;
2196     else if (p == pp.right)
2197     pp.right = null;
2198     p.parent = null;
2199     }
2200 dl 1.1 }
2201 dl 1.20 } finally {
2202     unlockRoot();
2203 dl 1.1 }
2204 dl 1.20 assert checkInvariants(root);
2205     return false;
2206 dl 1.1 }
2207    
2208 dl 1.20 /* ------------------------------------------------------------ */
2209     // Red-black tree methods, all adapted from CLR
2210    
2211     static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2212     TreeNode<K,V> p) {
2213     TreeNode<K,V> r, pp, rl;
2214     if (p != null && (r = p.right) != null) {
2215     if ((rl = p.right = r.left) != null)
2216     rl.parent = p;
2217     if ((pp = r.parent = p.parent) == null)
2218     (root = r).red = false;
2219     else if (pp.left == p)
2220     pp.left = r;
2221     else
2222     pp.right = r;
2223     r.left = p;
2224     p.parent = r;
2225     }
2226     return root;
2227 dl 1.1 }
2228    
2229 dl 1.20 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2230     TreeNode<K,V> p) {
2231     TreeNode<K,V> l, pp, lr;
2232     if (p != null && (l = p.left) != null) {
2233     if ((lr = p.left = l.right) != null)
2234     lr.parent = p;
2235     if ((pp = l.parent = p.parent) == null)
2236     (root = l).red = false;
2237     else if (pp.right == p)
2238     pp.right = l;
2239     else
2240     pp.left = l;
2241     l.right = p;
2242     p.parent = l;
2243 dl 1.1 }
2244 dl 1.20 return root;
2245 dl 1.1 }
2246    
2247 dl 1.20 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2248     TreeNode<K,V> x) {
2249     x.red = true;
2250     for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2251     if ((xp = x.parent) == null) {
2252     x.red = false;
2253     return x;
2254     }
2255     else if (!xp.red || (xpp = xp.parent) == null)
2256     return root;
2257     if (xp == (xppl = xpp.left)) {
2258     if ((xppr = xpp.right) != null && xppr.red) {
2259     xppr.red = false;
2260     xp.red = false;
2261     xpp.red = true;
2262     x = xpp;
2263     }
2264     else {
2265     if (x == xp.right) {
2266     root = rotateLeft(root, x = xp);
2267     xpp = (xp = x.parent) == null ? null : xp.parent;
2268     }
2269     if (xp != null) {
2270     xp.red = false;
2271     if (xpp != null) {
2272     xpp.red = true;
2273     root = rotateRight(root, xpp);
2274     }
2275     }
2276     }
2277 dl 1.1 }
2278 dl 1.20 else {
2279     if (xppl != null && xppl.red) {
2280     xppl.red = false;
2281     xp.red = false;
2282     xpp.red = true;
2283     x = xpp;
2284     }
2285     else {
2286     if (x == xp.left) {
2287     root = rotateRight(root, x = xp);
2288     xpp = (xp = x.parent) == null ? null : xp.parent;
2289     }
2290     if (xp != null) {
2291     xp.red = false;
2292     if (xpp != null) {
2293     xpp.red = true;
2294     root = rotateLeft(root, xpp);
2295     }
2296     }
2297     }
2298 dl 1.1 }
2299     }
2300     }
2301    
2302 dl 1.20 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2303     TreeNode<K,V> x) {
2304     for (TreeNode<K,V> xp, xpl, xpr;;) {
2305     if (x == null || x == root)
2306     return root;
2307     else if ((xp = x.parent) == null) {
2308     x.red = false;
2309     return x;
2310     }
2311     else if (x.red) {
2312     x.red = false;
2313     return root;
2314     }
2315     else if ((xpl = xp.left) == x) {
2316     if ((xpr = xp.right) != null && xpr.red) {
2317     xpr.red = false;
2318     xp.red = true;
2319     root = rotateLeft(root, xp);
2320     xpr = (xp = x.parent) == null ? null : xp.right;
2321     }
2322     if (xpr == null)
2323     x = xp;
2324     else {
2325     TreeNode<K,V> sl = xpr.left, sr = xpr.right;
2326     if ((sr == null || !sr.red) &&
2327     (sl == null || !sl.red)) {
2328     xpr.red = true;
2329     x = xp;
2330     }
2331     else {
2332     if (sr == null || !sr.red) {
2333     if (sl != null)
2334     sl.red = false;
2335     xpr.red = true;
2336     root = rotateRight(root, xpr);
2337     xpr = (xp = x.parent) == null ?
2338     null : xp.right;
2339     }
2340     if (xpr != null) {
2341     xpr.red = (xp == null) ? false : xp.red;
2342     if ((sr = xpr.right) != null)
2343     sr.red = false;
2344     }
2345     if (xp != null) {
2346     xp.red = false;
2347     root = rotateLeft(root, xp);
2348     }
2349     x = root;
2350     }
2351     }
2352     }
2353     else { // symmetric
2354     if (xpl != null && xpl.red) {
2355     xpl.red = false;
2356     xp.red = true;
2357     root = rotateRight(root, xp);
2358     xpl = (xp = x.parent) == null ? null : xp.left;
2359     }
2360     if (xpl == null)
2361     x = xp;
2362     else {
2363     TreeNode<K,V> sl = xpl.left, sr = xpl.right;
2364     if ((sl == null || !sl.red) &&
2365     (sr == null || !sr.red)) {
2366     xpl.red = true;
2367     x = xp;
2368     }
2369     else {
2370     if (sl == null || !sl.red) {
2371     if (sr != null)
2372     sr.red = false;
2373     xpl.red = true;
2374     root = rotateLeft(root, xpl);
2375     xpl = (xp = x.parent) == null ?
2376     null : xp.left;
2377     }
2378     if (xpl != null) {
2379     xpl.red = (xp == null) ? false : xp.red;
2380     if ((sl = xpl.left) != null)
2381     sl.red = false;
2382     }
2383     if (xp != null) {
2384     xp.red = false;
2385     root = rotateRight(root, xp);
2386     }
2387     x = root;
2388     }
2389     }
2390 dl 1.1 }
2391     }
2392     }
2393 jsr166 1.21
2394 dl 1.1 /**
2395 dl 1.20 * Recursive invariant check
2396 dl 1.1 */
2397 dl 1.20 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
2398     TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
2399     tb = t.prev, tn = (TreeNode<K,V>)t.next;
2400     if (tb != null && tb.next != t)
2401     return false;
2402     if (tn != null && tn.prev != t)
2403     return false;
2404     if (tp != null && t != tp.left && t != tp.right)
2405     return false;
2406     if (tl != null && (tl.parent != t || tl.hash > t.hash))
2407     return false;
2408     if (tr != null && (tr.parent != t || tr.hash < t.hash))
2409     return false;
2410     if (t.red && tl != null && tl.red && tr != null && tr.red)
2411     return false;
2412     if (tl != null && !checkInvariants(tl))
2413     return false;
2414     if (tr != null && !checkInvariants(tr))
2415     return false;
2416     return true;
2417     }
2418 dl 1.1
2419 dl 1.20 private static final sun.misc.Unsafe U;
2420     private static final long LOCKSTATE;
2421     static {
2422     try {
2423     U = sun.misc.Unsafe.getUnsafe();
2424     Class<?> k = TreeBin.class;
2425     LOCKSTATE = U.objectFieldOffset
2426     (k.getDeclaredField("lockState"));
2427     } catch (Exception e) {
2428     throw new Error(e);
2429 dl 1.1 }
2430     }
2431     }
2432    
2433 dl 1.20 /* ----------------Table Traversal -------------- */
2434    
2435 dl 1.1 /**
2436 dl 1.20 * Encapsulates traversal for methods such as containsValue; also
2437     * serves as a base class for other iterators.
2438     *
2439     * Method advance visits once each still-valid node that was
2440     * reachable upon iterator construction. It might miss some that
2441     * were added to a bin after the bin was visited, which is OK wrt
2442     * consistency guarantees. Maintaining this property in the face
2443     * of possible ongoing resizes requires a fair amount of
2444     * bookkeeping state that is difficult to optimize away amidst
2445     * volatile accesses. Even so, traversal maintains reasonable
2446     * throughput.
2447 dl 1.1 *
2448 dl 1.20 * Normally, iteration proceeds bin-by-bin traversing lists.
2449     * However, if the table has been resized, then all future steps
2450     * must traverse both the bin at the current index as well as at
2451     * (index + baseSize); and so on for further resizings. To
2452     * paranoically cope with potential sharing by users of iterators
2453     * across threads, iteration terminates if a bounds checks fails
2454     * for a table read.
2455 dl 1.1 */
2456 dl 1.20 static class Traverser<K,V> {
2457     Node<K,V>[] tab; // current table; updated if resized
2458     Node<K,V> next; // the next entry to use
2459     int index; // index of bin to use next
2460     int baseIndex; // current index of initial table
2461     int baseLimit; // index bound for initial table
2462     final int baseSize; // initial table size
2463    
2464     Traverser(Node<K,V>[] tab, int size, int index, int limit) {
2465     this.tab = tab;
2466     this.baseSize = size;
2467     this.baseIndex = this.index = index;
2468     this.baseLimit = limit;
2469     this.next = null;
2470     }
2471    
2472     /**
2473     * Advances if possible, returning next valid node, or null if none.
2474     */
2475     final Node<K,V> advance() {
2476     Node<K,V> e;
2477     if ((e = next) != null)
2478     e = e.next;
2479     for (;;) {
2480     Node<K,V>[] t; int i, n; K ek; // must use locals in checks
2481     if (e != null)
2482     return next = e;
2483     if (baseIndex >= baseLimit || (t = tab) == null ||
2484     (n = t.length) <= (i = index) || i < 0)
2485     return next = null;
2486     if ((e = tabAt(t, index)) != null && e.hash < 0) {
2487     if (e instanceof ForwardingNode) {
2488     tab = ((ForwardingNode<K,V>)e).nextTable;
2489     e = null;
2490     continue;
2491 dl 1.1 }
2492 dl 1.20 else if (e instanceof TreeBin)
2493     e = ((TreeBin<K,V>)e).first;
2494     else
2495     e = null;
2496 dl 1.1 }
2497 dl 1.20 if ((index += baseSize) >= n)
2498     index = ++baseIndex; // visit upper slots if present
2499 dl 1.1 }
2500     }
2501     }
2502    
2503     /**
2504 dl 1.20 * Base of key, value, and entry Iterators. Adds fields to
2505     * Traverser to support iterator.remove
2506 dl 1.1 */
2507 dl 1.20 static class BaseIterator<K,V> extends Traverser<K,V> {
2508     final ConcurrentHashMap<K,V> map;
2509     Node<K,V> lastReturned;
2510     BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
2511     ConcurrentHashMap<K,V> map) {
2512     super(tab, size, index, limit);
2513     this.map = map;
2514     advance();
2515 dl 1.1 }
2516    
2517 dl 1.20 public final boolean hasNext() { return next != null; }
2518     public final boolean hasMoreElements() { return next != null; }
2519 dl 1.1
2520 dl 1.20 public final void remove() {
2521     Node<K,V> p;
2522     if ((p = lastReturned) == null)
2523     throw new IllegalStateException();
2524     lastReturned = null;
2525     map.replaceNode(p.key, null, null);
2526 dl 1.1 }
2527     }
2528    
2529 dl 1.20 static final class KeyIterator<K,V> extends BaseIterator<K,V>
2530     implements Iterator<K>, Enumeration<K> {
2531     KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
2532     ConcurrentHashMap<K,V> map) {
2533     super(tab, index, size, limit, map);
2534     }
2535 dl 1.1
2536 dl 1.20 public final K next() {
2537     Node<K,V> p;
2538     if ((p = next) == null)
2539     throw new NoSuchElementException();
2540     K k = p.key;
2541     lastReturned = p;
2542     advance();
2543     return k;
2544 dl 1.1 }
2545    
2546 dl 1.20 public final K nextElement() { return next(); }
2547     }
2548 dl 1.1
2549 dl 1.20 static final class ValueIterator<K,V> extends BaseIterator<K,V>
2550     implements Iterator<V>, Enumeration<V> {
2551     ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
2552     ConcurrentHashMap<K,V> map) {
2553     super(tab, index, size, limit, map);
2554 dl 1.1 }
2555    
2556 dl 1.20 public final V next() {
2557     Node<K,V> p;
2558     if ((p = next) == null)
2559     throw new NoSuchElementException();
2560     V v = p.val;
2561     lastReturned = p;
2562     advance();
2563     return v;
2564 dl 1.1 }
2565    
2566 dl 1.20 public final V nextElement() { return next(); }
2567     }
2568 dl 1.1
2569 dl 1.20 static final class EntryIterator<K,V> extends BaseIterator<K,V>
2570     implements Iterator<Map.Entry<K,V>> {
2571     EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
2572     ConcurrentHashMap<K,V> map) {
2573     super(tab, index, size, limit, map);
2574 dl 1.1 }
2575    
2576 dl 1.20 public final Map.Entry<K,V> next() {
2577     Node<K,V> p;
2578     if ((p = next) == null)
2579     throw new NoSuchElementException();
2580     K k = p.key;
2581     V v = p.val;
2582     lastReturned = p;
2583     advance();
2584     return new MapEntry<K,V>(k, v, map);
2585 dl 1.1 }
2586 dl 1.20 }
2587 dl 1.1
2588 dl 1.20 /**
2589     * Exported Entry for EntryIterator
2590     */
2591     static final class MapEntry<K,V> implements Map.Entry<K,V> {
2592     final K key; // non-null
2593     V val; // non-null
2594     final ConcurrentHashMap<K,V> map;
2595     MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
2596     this.key = key;
2597     this.val = val;
2598     this.map = map;
2599 dl 1.1 }
2600 dl 1.20 public K getKey() { return key; }
2601     public V getValue() { return val; }
2602     public int hashCode() { return key.hashCode() ^ val.hashCode(); }
2603     public String toString() { return key + "=" + val; }
2604 dl 1.1
2605 dl 1.20 public boolean equals(Object o) {
2606     Object k, v; Map.Entry<?,?> e;
2607     return ((o instanceof Map.Entry) &&
2608     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
2609     (v = e.getValue()) != null &&
2610     (k == key || k.equals(key)) &&
2611     (v == val || v.equals(val)));
2612 dl 1.1 }
2613    
2614     /**
2615 dl 1.20 * Sets our entry's value and writes through to the map. The
2616     * value to return is somewhat arbitrary here. Since we do not
2617     * necessarily track asynchronous changes, the most recent
2618     * "previous" value could be different from what we return (or
2619     * could even have been removed, in which case the put will
2620     * re-establish). We do not and cannot guarantee more.
2621 dl 1.1 */
2622 dl 1.20 public V setValue(V value) {
2623     if (value == null) throw new NullPointerException();
2624     V v = val;
2625     val = value;
2626     map.put(key, value);
2627     return v;
2628 dl 1.1 }
2629 dl 1.20 }
2630 dl 1.1
2631 dl 1.20 /* ----------------Views -------------- */
2632 dl 1.1
2633 dl 1.20 /**
2634     * Base class for views.
2635     */
2636     abstract static class CollectionView<K,V,E>
2637     implements Collection<E>, java.io.Serializable {
2638     private static final long serialVersionUID = 7249069246763182397L;
2639     final ConcurrentHashMap<K,V> map;
2640     CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
2641 dl 1.1
2642     /**
2643 dl 1.20 * Returns the map backing this view.
2644 dl 1.1 *
2645 dl 1.20 * @return the map backing this view
2646 dl 1.1 */
2647 dl 1.20 public ConcurrentHashMap<K,V> getMap() { return map; }
2648 dl 1.1
2649     /**
2650 dl 1.20 * Removes all of the elements from this view, by removing all
2651     * the mappings from the map backing this view.
2652 dl 1.1 */
2653 dl 1.20 public final void clear() { map.clear(); }
2654     public final int size() { return map.size(); }
2655     public final boolean isEmpty() { return map.isEmpty(); }
2656 dl 1.1
2657 dl 1.20 // implementations below rely on concrete classes supplying these
2658     // abstract methods
2659 dl 1.1 /**
2660 dl 1.20 * Returns a "weakly consistent" iterator that will never
2661     * throw {@link ConcurrentModificationException}, and
2662     * guarantees to traverse elements as they existed upon
2663     * construction of the iterator, and may (but is not
2664     * guaranteed to) reflect any modifications subsequent to
2665     * construction.
2666 dl 1.1 */
2667 dl 1.20 public abstract Iterator<E> iterator();
2668     public abstract boolean contains(Object o);
2669     public abstract boolean remove(Object o);
2670 dl 1.1
2671 dl 1.20 private static final String oomeMsg = "Required array size too large";
2672 dl 1.1
2673 dl 1.20 public final Object[] toArray() {
2674     long sz = map.mappingCount();
2675     if (sz > MAX_ARRAY_SIZE)
2676     throw new OutOfMemoryError(oomeMsg);
2677     int n = (int)sz;
2678     Object[] r = new Object[n];
2679     int i = 0;
2680     for (E e : this) {
2681     if (i == n) {
2682     if (n >= MAX_ARRAY_SIZE)
2683     throw new OutOfMemoryError(oomeMsg);
2684     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
2685     n = MAX_ARRAY_SIZE;
2686     else
2687     n += (n >>> 1) + 1;
2688     r = Arrays.copyOf(r, n);
2689     }
2690     r[i++] = e;
2691     }
2692     return (i == n) ? r : Arrays.copyOf(r, i);
2693 dl 1.1 }
2694    
2695 dl 1.20 @SuppressWarnings("unchecked")
2696     public final <T> T[] toArray(T[] a) {
2697     long sz = map.mappingCount();
2698     if (sz > MAX_ARRAY_SIZE)
2699     throw new OutOfMemoryError(oomeMsg);
2700     int m = (int)sz;
2701     T[] r = (a.length >= m) ? a :
2702     (T[])java.lang.reflect.Array
2703     .newInstance(a.getClass().getComponentType(), m);
2704     int n = r.length;
2705     int i = 0;
2706     for (E e : this) {
2707     if (i == n) {
2708     if (n >= MAX_ARRAY_SIZE)
2709     throw new OutOfMemoryError(oomeMsg);
2710     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
2711     n = MAX_ARRAY_SIZE;
2712     else
2713     n += (n >>> 1) + 1;
2714     r = Arrays.copyOf(r, n);
2715     }
2716     r[i++] = (T)e;
2717     }
2718     if (a == r && i < n) {
2719     r[i] = null; // null-terminate
2720     return r;
2721     }
2722     return (i == n) ? r : Arrays.copyOf(r, i);
2723 dl 1.1 }
2724    
2725     /**
2726 dl 1.20 * Returns a string representation of this collection.
2727     * The string representation consists of the string representations
2728     * of the collection's elements in the order they are returned by
2729     * its iterator, enclosed in square brackets ({@code "[]"}).
2730     * Adjacent elements are separated by the characters {@code ", "}
2731     * (comma and space). Elements are converted to strings as by
2732     * {@link String#valueOf(Object)}.
2733 dl 1.1 *
2734 dl 1.20 * @return a string representation of this collection
2735 dl 1.1 */
2736 dl 1.20 public final String toString() {
2737     StringBuilder sb = new StringBuilder();
2738     sb.append('[');
2739     Iterator<E> it = iterator();
2740     if (it.hasNext()) {
2741     for (;;) {
2742     Object e = it.next();
2743     sb.append(e == this ? "(this Collection)" : e);
2744     if (!it.hasNext())
2745     break;
2746     sb.append(',').append(' ');
2747     }
2748     }
2749     return sb.append(']').toString();
2750 dl 1.1 }
2751    
2752 dl 1.20 public final boolean containsAll(Collection<?> c) {
2753     if (c != this) {
2754     for (Object e : c) {
2755     if (e == null || !contains(e))
2756     return false;
2757     }
2758     }
2759     return true;
2760 dl 1.1 }
2761    
2762 dl 1.20 public final boolean removeAll(Collection<?> c) {
2763     boolean modified = false;
2764     for (Iterator<E> it = iterator(); it.hasNext();) {
2765     if (c.contains(it.next())) {
2766     it.remove();
2767     modified = true;
2768     }
2769     }
2770     return modified;
2771 dl 1.1 }
2772    
2773 dl 1.20 public final boolean retainAll(Collection<?> c) {
2774     boolean modified = false;
2775     for (Iterator<E> it = iterator(); it.hasNext();) {
2776     if (!c.contains(it.next())) {
2777     it.remove();
2778     modified = true;
2779     }
2780     }
2781     return modified;
2782 dl 1.1 }
2783    
2784 dl 1.20 }
2785 dl 1.1
2786 dl 1.20 /**
2787     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
2788     * which additions may optionally be enabled by mapping to a
2789     * common value. This class cannot be directly instantiated.
2790     * See {@link #keySet() keySet()},
2791     * {@link #keySet(Object) keySet(V)},
2792     * {@link #newKeySet() newKeySet()},
2793     * {@link #newKeySet(int) newKeySet(int)}.
2794     *
2795     * @since 1.8
2796     */
2797     public static class KeySetView<K,V> extends CollectionView<K,V,K>
2798     implements Set<K>, java.io.Serializable {
2799     private static final long serialVersionUID = 7249069246763182397L;
2800     private final V value;
2801     KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
2802     super(map);
2803     this.value = value;
2804 dl 1.1 }
2805    
2806     /**
2807 dl 1.20 * Returns the default mapped value for additions,
2808     * or {@code null} if additions are not supported.
2809 dl 1.1 *
2810 dl 1.20 * @return the default mapped value for additions, or {@code null}
2811     * if not supported
2812 dl 1.1 */
2813 dl 1.20 public V getMappedValue() { return value; }
2814 dl 1.1
2815     /**
2816 dl 1.20 * {@inheritDoc}
2817     * @throws NullPointerException if the specified key is null
2818 dl 1.1 */
2819 dl 1.20 public boolean contains(Object o) { return map.containsKey(o); }
2820 dl 1.1
2821     /**
2822 dl 1.20 * Removes the key from this map view, by removing the key (and its
2823     * corresponding value) from the backing map. This method does
2824     * nothing if the key is not in the map.
2825 dl 1.1 *
2826 dl 1.20 * @param o the key to be removed from the backing map
2827     * @return {@code true} if the backing map contained the specified key
2828     * @throws NullPointerException if the specified key is null
2829 dl 1.1 */
2830 dl 1.20 public boolean remove(Object o) { return map.remove(o) != null; }
2831 dl 1.1
2832     /**
2833 dl 1.20 * @return an iterator over the keys of the backing map
2834 dl 1.1 */
2835 dl 1.20 public Iterator<K> iterator() {
2836     Node<K,V>[] t;
2837     ConcurrentHashMap<K,V> m = map;
2838     int f = (t = m.table) == null ? 0 : t.length;
2839     return new KeyIterator<K,V>(t, f, 0, f, m);
2840 dl 1.1 }
2841    
2842     /**
2843 dl 1.20 * Adds the specified key to this set view by mapping the key to
2844     * the default mapped value in the backing map, if defined.
2845 dl 1.1 *
2846 dl 1.20 * @param e key to be added
2847     * @return {@code true} if this set changed as a result of the call
2848     * @throws NullPointerException if the specified key is null
2849     * @throws UnsupportedOperationException if no default mapped value
2850     * for additions was provided
2851 dl 1.1 */
2852 dl 1.20 public boolean add(K e) {
2853     V v;
2854     if ((v = value) == null)
2855     throw new UnsupportedOperationException();
2856     return map.putVal(e, v, true) == null;
2857 dl 1.1 }
2858    
2859     /**
2860 dl 1.20 * Adds all of the elements in the specified collection to this set,
2861     * as if by calling {@link #add} on each one.
2862 dl 1.1 *
2863 dl 1.20 * @param c the elements to be inserted into this set
2864     * @return {@code true} if this set changed as a result of the call
2865     * @throws NullPointerException if the collection or any of its
2866     * elements are {@code null}
2867     * @throws UnsupportedOperationException if no default mapped value
2868     * for additions was provided
2869 dl 1.1 */
2870 dl 1.20 public boolean addAll(Collection<? extends K> c) {
2871     boolean added = false;
2872     V v;
2873     if ((v = value) == null)
2874     throw new UnsupportedOperationException();
2875     for (K e : c) {
2876     if (map.putVal(e, v, true) == null)
2877     added = true;
2878 dl 1.1 }
2879 dl 1.20 return added;
2880 dl 1.1 }
2881    
2882 dl 1.20 public int hashCode() {
2883     int h = 0;
2884     for (K e : this)
2885     h += e.hashCode();
2886     return h;
2887 dl 1.1 }
2888    
2889 dl 1.20 public boolean equals(Object o) {
2890     Set<?> c;
2891     return ((o instanceof Set) &&
2892     ((c = (Set<?>)o) == this ||
2893     (containsAll(c) && c.containsAll(this))));
2894 dl 1.1 }
2895 dl 1.20
2896 dl 1.1 }
2897    
2898 dl 1.20 /**
2899     * A view of a ConcurrentHashMap as a {@link Collection} of
2900     * values, in which additions are disabled. This class cannot be
2901     * directly instantiated. See {@link #values()}.
2902     */
2903     static final class ValuesView<K,V> extends CollectionView<K,V,V>
2904     implements Collection<V>, java.io.Serializable {
2905     private static final long serialVersionUID = 2249069246763182397L;
2906     ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
2907     public final boolean contains(Object o) {
2908     return map.containsValue(o);
2909 dl 1.1 }
2910    
2911 dl 1.20 public final boolean remove(Object o) {
2912     if (o != null) {
2913     for (Iterator<V> it = iterator(); it.hasNext();) {
2914     if (o.equals(it.next())) {
2915     it.remove();
2916     return true;
2917 dl 1.1 }
2918     }
2919     }
2920 dl 1.20 return false;
2921 dl 1.1 }
2922    
2923 dl 1.20 public final Iterator<V> iterator() {
2924     ConcurrentHashMap<K,V> m = map;
2925     Node<K,V>[] t;
2926     int f = (t = m.table) == null ? 0 : t.length;
2927     return new ValueIterator<K,V>(t, f, 0, f, m);
2928 dl 1.1 }
2929    
2930 dl 1.20 public final boolean add(V e) {
2931     throw new UnsupportedOperationException();
2932     }
2933     public final boolean addAll(Collection<? extends V> c) {
2934     throw new UnsupportedOperationException();
2935 dl 1.1 }
2936 dl 1.20
2937 dl 1.1 }
2938    
2939 dl 1.20 /**
2940     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
2941     * entries. This class cannot be directly instantiated. See
2942     * {@link #entrySet()}.
2943     */
2944     static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
2945     implements Set<Map.Entry<K,V>>, java.io.Serializable {
2946     private static final long serialVersionUID = 2249069246763182397L;
2947     EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
2948    
2949     public boolean contains(Object o) {
2950     Object k, v, r; Map.Entry<?,?> e;
2951     return ((o instanceof Map.Entry) &&
2952     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
2953     (r = map.get(k)) != null &&
2954     (v = e.getValue()) != null &&
2955     (v == r || v.equals(r)));
2956 dl 1.1 }
2957    
2958 dl 1.20 public boolean remove(Object o) {
2959     Object k, v; Map.Entry<?,?> e;
2960     return ((o instanceof Map.Entry) &&
2961     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
2962     (v = e.getValue()) != null &&
2963     map.remove(k, v));
2964 dl 1.1 }
2965    
2966 dl 1.20 /**
2967     * @return an iterator over the entries of the backing map
2968     */
2969     public Iterator<Map.Entry<K,V>> iterator() {
2970     ConcurrentHashMap<K,V> m = map;
2971     Node<K,V>[] t;
2972     int f = (t = m.table) == null ? 0 : t.length;
2973     return new EntryIterator<K,V>(t, f, 0, f, m);
2974 dl 1.1 }
2975    
2976 dl 1.20 public boolean add(Entry<K,V> e) {
2977     return map.putVal(e.getKey(), e.getValue(), false) == null;
2978 dl 1.1 }
2979    
2980 dl 1.20 public boolean addAll(Collection<? extends Entry<K,V>> c) {
2981     boolean added = false;
2982     for (Entry<K,V> e : c) {
2983     if (add(e))
2984     added = true;
2985 dl 1.1 }
2986 dl 1.20 return added;
2987 dl 1.1 }
2988    
2989 dl 1.20 public final int hashCode() {
2990     int h = 0;
2991     Node<K,V>[] t;
2992     if ((t = map.table) != null) {
2993     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
2994     for (Node<K,V> p; (p = it.advance()) != null; ) {
2995     h += p.hashCode();
2996 dl 1.1 }
2997     }
2998 dl 1.20 return h;
2999 dl 1.1 }
3000    
3001 dl 1.20 public final boolean equals(Object o) {
3002     Set<?> c;
3003     return ((o instanceof Set) &&
3004     ((c = (Set<?>)o) == this ||
3005     (containsAll(c) && c.containsAll(this))));
3006 dl 1.1 }
3007 dl 1.20
3008 dl 1.1 }
3009    
3010 dl 1.20
3011     /* ---------------- Counters -------------- */
3012    
3013     // Adapted from LongAdder and Striped64.
3014     // See their internal docs for explanation.
3015    
3016     // A padded cell for distributing counts
3017     static final class CounterCell {
3018     volatile long p0, p1, p2, p3, p4, p5, p6;
3019     volatile long value;
3020     volatile long q0, q1, q2, q3, q4, q5, q6;
3021     CounterCell(long x) { value = x; }
3022 dl 1.1 }
3023    
3024 dl 1.20 /**
3025     * Holder for the thread-local hash code determining which
3026     * CounterCell to use. The code is initialized via the
3027     * counterHashCodeGenerator, but may be moved upon collisions.
3028     */
3029     static final class CounterHashCode {
3030     int code;
3031 dl 1.1 }
3032    
3033 dl 1.20 /**
3034     * Generates initial value for per-thread CounterHashCodes
3035     */
3036     static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
3037    
3038     /**
3039     * Increment for counterHashCodeGenerator. See class ThreadLocal
3040     * for explanation.
3041     */
3042     static final int SEED_INCREMENT = 0x61c88647;
3043    
3044     /**
3045     * Per-thread counter hash codes. Shared across all instances.
3046     */
3047     static final ThreadLocal<CounterHashCode> threadCounterHashCode =
3048     new ThreadLocal<CounterHashCode>();
3049    
3050    
3051     final long sumCount() {
3052     CounterCell[] as = counterCells; CounterCell a;
3053     long sum = baseCount;
3054     if (as != null) {
3055     for (int i = 0; i < as.length; ++i) {
3056     if ((a = as[i]) != null)
3057     sum += a.value;
3058 dl 1.1 }
3059     }
3060 dl 1.20 return sum;
3061 dl 1.1 }
3062    
3063 dl 1.20 // See LongAdder version for explanation
3064     private final void fullAddCount(long x, CounterHashCode hc,
3065     boolean wasUncontended) {
3066     int h;
3067     if (hc == null) {
3068     hc = new CounterHashCode();
3069     int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
3070     h = hc.code = (s == 0) ? 1 : s; // Avoid zero
3071     threadCounterHashCode.set(hc);
3072     }
3073     else
3074     h = hc.code;
3075     boolean collide = false; // True if last slot nonempty
3076     for (;;) {
3077     CounterCell[] as; CounterCell a; int n; long v;
3078     if ((as = counterCells) != null && (n = as.length) > 0) {
3079     if ((a = as[(n - 1) & h]) == null) {
3080     if (cellsBusy == 0) { // Try to attach new Cell
3081     CounterCell r = new CounterCell(x); // Optimistic create
3082     if (cellsBusy == 0 &&
3083     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
3084     boolean created = false;
3085     try { // Recheck under lock
3086     CounterCell[] rs; int m, j;
3087     if ((rs = counterCells) != null &&
3088     (m = rs.length) > 0 &&
3089     rs[j = (m - 1) & h] == null) {
3090     rs[j] = r;
3091     created = true;
3092     }
3093     } finally {
3094     cellsBusy = 0;
3095     }
3096     if (created)
3097     break;
3098     continue; // Slot is now non-empty
3099     }
3100 dl 1.1 }
3101 dl 1.20 collide = false;
3102 dl 1.1 }
3103 dl 1.20 else if (!wasUncontended) // CAS already known to fail
3104     wasUncontended = true; // Continue after rehash
3105     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
3106     break;
3107     else if (counterCells != as || n >= NCPU)
3108     collide = false; // At max size or stale
3109     else if (!collide)
3110     collide = true;
3111     else if (cellsBusy == 0 &&
3112     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
3113     try {
3114     if (counterCells == as) {// Expand table unless stale
3115     CounterCell[] rs = new CounterCell[n << 1];
3116     for (int i = 0; i < n; ++i)
3117     rs[i] = as[i];
3118     counterCells = rs;
3119     }
3120     } finally {
3121     cellsBusy = 0;
3122 dl 1.1 }
3123 dl 1.20 collide = false;
3124     continue; // Retry with expanded table
3125 dl 1.1 }
3126 dl 1.20 h ^= h << 13; // Rehash
3127     h ^= h >>> 17;
3128     h ^= h << 5;
3129 dl 1.1 }
3130 dl 1.20 else if (cellsBusy == 0 && counterCells == as &&
3131     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
3132     boolean init = false;
3133     try { // Initialize table
3134     if (counterCells == as) {
3135     CounterCell[] rs = new CounterCell[2];
3136     rs[h & 1] = new CounterCell(x);
3137     counterCells = rs;
3138     init = true;
3139 dl 1.1 }
3140 dl 1.20 } finally {
3141     cellsBusy = 0;
3142 dl 1.1 }
3143 dl 1.20 if (init)
3144     break;
3145 dl 1.1 }
3146 dl 1.20 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
3147     break; // Fall back on using base
3148 dl 1.1 }
3149 dl 1.20 hc.code = h; // Record index for next time
3150 dl 1.1 }
3151    
3152     // Unsafe mechanics
3153     private static final sun.misc.Unsafe U;
3154     private static final long SIZECTL;
3155     private static final long TRANSFERINDEX;
3156     private static final long TRANSFERORIGIN;
3157     private static final long BASECOUNT;
3158 dl 1.20 private static final long CELLSBUSY;
3159 dl 1.1 private static final long CELLVALUE;
3160     private static final long ABASE;
3161     private static final int ASHIFT;
3162    
3163     static {
3164     try {
3165     U = sun.misc.Unsafe.getUnsafe();
3166     Class<?> k = ConcurrentHashMap.class;
3167     SIZECTL = U.objectFieldOffset
3168     (k.getDeclaredField("sizeCtl"));
3169     TRANSFERINDEX = U.objectFieldOffset
3170     (k.getDeclaredField("transferIndex"));
3171     TRANSFERORIGIN = U.objectFieldOffset
3172     (k.getDeclaredField("transferOrigin"));
3173     BASECOUNT = U.objectFieldOffset
3174     (k.getDeclaredField("baseCount"));
3175 dl 1.20 CELLSBUSY = U.objectFieldOffset
3176     (k.getDeclaredField("cellsBusy"));
3177 dl 1.1 Class<?> ck = CounterCell.class;
3178     CELLVALUE = U.objectFieldOffset
3179     (ck.getDeclaredField("value"));
3180 jsr166 1.22 Class<?> ak = Node[].class;
3181     ABASE = U.arrayBaseOffset(ak);
3182     int scale = U.arrayIndexScale(ak);
3183 jsr166 1.9 if ((scale & (scale - 1)) != 0)
3184     throw new Error("data type scale not a power of two");
3185     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3186 dl 1.1 } catch (Exception e) {
3187     throw new Error(e);
3188     }
3189     }
3190    
3191     }