ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.37
Committed: Sun Dec 1 16:08:16 2013 UTC (10 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.36: +2 -1 lines
Log Message:
Don't skip elements on CAS failure

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8    
9 dl 1.20 import java.io.ObjectStreamField;
10     import java.io.Serializable;
11     import java.lang.reflect.ParameterizedType;
12     import java.lang.reflect.Type;
13 dl 1.1 import java.util.Arrays;
14     import java.util.Collection;
15 dl 1.20 import java.util.Comparator;
16     import java.util.ConcurrentModificationException;
17     import java.util.Enumeration;
18     import java.util.HashMap;
19 dl 1.1 import java.util.Hashtable;
20     import java.util.Iterator;
21 dl 1.20 import java.util.Map;
22 dl 1.1 import java.util.NoSuchElementException;
23 dl 1.20 import java.util.Set;
24 dl 1.1 import java.util.concurrent.ConcurrentMap;
25 dl 1.20 import java.util.concurrent.ForkJoinPool;
26 dl 1.1 import java.util.concurrent.atomic.AtomicInteger;
27 dl 1.20 import java.util.concurrent.locks.LockSupport;
28     import java.util.concurrent.locks.ReentrantLock;
29 dl 1.1
30     /**
31     * A hash table supporting full concurrency of retrievals and
32     * high expected concurrency for updates. This class obeys the
33     * same functional specification as {@link java.util.Hashtable}, and
34     * includes versions of methods corresponding to each method of
35     * {@code Hashtable}. However, even though all operations are
36     * thread-safe, retrieval operations do <em>not</em> entail locking,
37     * and there is <em>not</em> any support for locking the entire table
38     * in a way that prevents all access. This class is fully
39     * interoperable with {@code Hashtable} in programs that rely on its
40     * thread safety but not on its synchronization details.
41     *
42     * <p>Retrieval operations (including {@code get}) generally do not
43     * block, so may overlap with update operations (including {@code put}
44     * and {@code remove}). Retrievals reflect the results of the most
45     * recently <em>completed</em> update operations holding upon their
46     * onset. (More formally, an update operation for a given key bears a
47     * <em>happens-before</em> relation with any (non-null) retrieval for
48     * that key reporting the updated value.) For aggregate operations
49     * such as {@code putAll} and {@code clear}, concurrent retrievals may
50     * reflect insertion or removal of only some entries. Similarly,
51     * Iterators and Enumerations return elements reflecting the state of
52     * the hash table at some point at or since the creation of the
53     * iterator/enumeration. They do <em>not</em> throw {@link
54     * ConcurrentModificationException}. However, iterators are designed
55     * to be used by only one thread at a time. Bear in mind that the
56     * results of aggregate status methods including {@code size}, {@code
57     * isEmpty}, and {@code containsValue} are typically useful only when
58     * a map is not undergoing concurrent updates in other threads.
59     * Otherwise the results of these methods reflect transient states
60     * that may be adequate for monitoring or estimation purposes, but not
61     * for program control.
62     *
63     * <p>The table is dynamically expanded when there are too many
64     * collisions (i.e., keys that have distinct hash codes but fall into
65     * the same slot modulo the table size), with the expected average
66     * effect of maintaining roughly two bins per mapping (corresponding
67     * to a 0.75 load factor threshold for resizing). There may be much
68     * variance around this average as mappings are added and removed, but
69     * overall, this maintains a commonly accepted time/space tradeoff for
70     * hash tables. However, resizing this or any other kind of hash
71     * table may be a relatively slow operation. When possible, it is a
72     * good idea to provide a size estimate as an optional {@code
73     * initialCapacity} constructor argument. An additional optional
74     * {@code loadFactor} constructor argument provides a further means of
75     * customizing initial table capacity by specifying the table density
76     * to be used in calculating the amount of space to allocate for the
77     * given number of elements. Also, for compatibility with previous
78     * versions of this class, constructors may optionally specify an
79     * expected {@code concurrencyLevel} as an additional hint for
80     * internal sizing. Note that using many keys with exactly the same
81     * {@code hashCode()} is a sure way to slow down performance of any
82 dl 1.20 * hash table. To ameliorate impact, when keys are {@link Comparable},
83     * this class may use comparison order among keys to help break ties.
84 dl 1.1 *
85     * <p>A {@link Set} projection of a ConcurrentHashMap may be created
86     * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
87     * (using {@link #keySet(Object)} when only keys are of interest, and the
88     * mapped values are (perhaps transiently) not used or all take the
89     * same mapping value.
90     *
91     * <p>This class and its views and iterators implement all of the
92     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
93     * interfaces.
94     *
95     * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
96     * does <em>not</em> allow {@code null} to be used as a key or value.
97     *
98     * <p>This class is a member of the
99     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
100     * Java Collections Framework</a>.
101     *
102     * @since 1.5
103     * @author Doug Lea
104     * @param <K> the type of keys maintained by this map
105     * @param <V> the type of mapped values
106     */
107 dl 1.20 public class ConcurrentHashMap<K,V> implements ConcurrentMap<K,V>, Serializable {
108 dl 1.1 private static final long serialVersionUID = 7249069246763182397L;
109    
110     /*
111     * Overview:
112     *
113     * The primary design goal of this hash table is to maintain
114     * concurrent readability (typically method get(), but also
115     * iterators and related methods) while minimizing update
116     * contention. Secondary goals are to keep space consumption about
117     * the same or better than java.util.HashMap, and to support high
118     * initial insertion rates on an empty table by many threads.
119     *
120 dl 1.20 * This map usually acts as a binned (bucketed) hash table. Each
121     * key-value mapping is held in a Node. Most nodes are instances
122     * of the basic Node class with hash, key, value, and next
123     * fields. However, various subclasses exist: TreeNodes are
124     * arranged in balanced trees, not lists. TreeBins hold the roots
125     * of sets of TreeNodes. ForwardingNodes are placed at the heads
126     * of bins during resizing. ReservationNodes are used as
127     * placeholders while establishing values in computeIfAbsent and
128     * related methods. The types TreeBin, ForwardingNode, and
129     * ReservationNode do not hold normal user keys, values, or
130     * hashes, and are readily distinguishable during search etc
131     * because they have negative hash fields and null key and value
132     * fields. (These special nodes are either uncommon or transient,
133     * so the impact of carrying around some unused fields is
134 jsr166 1.28 * insignificant.)
135 dl 1.1 *
136     * The table is lazily initialized to a power-of-two size upon the
137     * first insertion. Each bin in the table normally contains a
138     * list of Nodes (most often, the list has only zero or one Node).
139     * Table accesses require volatile/atomic reads, writes, and
140     * CASes. Because there is no other way to arrange this without
141     * adding further indirections, we use intrinsics
142 dl 1.20 * (sun.misc.Unsafe) operations.
143 dl 1.1 *
144     * We use the top (sign) bit of Node hash fields for control
145     * purposes -- it is available anyway because of addressing
146 dl 1.20 * constraints. Nodes with negative hash fields are specially
147     * handled or ignored in map methods.
148 dl 1.1 *
149     * Insertion (via put or its variants) of the first node in an
150     * empty bin is performed by just CASing it to the bin. This is
151     * by far the most common case for put operations under most
152     * key/hash distributions. Other update operations (insert,
153     * delete, and replace) require locks. We do not want to waste
154     * the space required to associate a distinct lock object with
155     * each bin, so instead use the first node of a bin list itself as
156     * a lock. Locking support for these locks relies on builtin
157     * "synchronized" monitors.
158     *
159     * Using the first node of a list as a lock does not by itself
160     * suffice though: When a node is locked, any update must first
161     * validate that it is still the first node after locking it, and
162     * retry if not. Because new nodes are always appended to lists,
163     * once a node is first in a bin, it remains first until deleted
164 dl 1.20 * or the bin becomes invalidated (upon resizing).
165 dl 1.1 *
166     * The main disadvantage of per-bin locks is that other update
167     * operations on other nodes in a bin list protected by the same
168     * lock can stall, for example when user equals() or mapping
169     * functions take a long time. However, statistically, under
170     * random hash codes, this is not a common problem. Ideally, the
171     * frequency of nodes in bins follows a Poisson distribution
172     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
173     * parameter of about 0.5 on average, given the resizing threshold
174     * of 0.75, although with a large variance because of resizing
175     * granularity. Ignoring variance, the expected occurrences of
176     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
177     * first values are:
178     *
179     * 0: 0.60653066
180     * 1: 0.30326533
181     * 2: 0.07581633
182     * 3: 0.01263606
183     * 4: 0.00157952
184     * 5: 0.00015795
185     * 6: 0.00001316
186     * 7: 0.00000094
187     * 8: 0.00000006
188     * more: less than 1 in ten million
189     *
190     * Lock contention probability for two threads accessing distinct
191     * elements is roughly 1 / (8 * #elements) under random hashes.
192     *
193     * Actual hash code distributions encountered in practice
194     * sometimes deviate significantly from uniform randomness. This
195     * includes the case when N > (1<<30), so some keys MUST collide.
196     * Similarly for dumb or hostile usages in which multiple keys are
197 dl 1.20 * designed to have identical hash codes or ones that differs only
198     * in masked-out high bits. So we use a secondary strategy that
199     * applies when the number of nodes in a bin exceeds a
200     * threshold. These TreeBins use a balanced tree to hold nodes (a
201     * specialized form of red-black trees), bounding search time to
202     * O(log N). Each search step in a TreeBin is at least twice as
203 dl 1.1 * slow as in a regular list, but given that N cannot exceed
204     * (1<<64) (before running out of addresses) this bounds search
205     * steps, lock hold times, etc, to reasonable constants (roughly
206     * 100 nodes inspected per operation worst case) so long as keys
207     * are Comparable (which is very common -- String, Long, etc).
208     * TreeBin nodes (TreeNodes) also maintain the same "next"
209     * traversal pointers as regular nodes, so can be traversed in
210     * iterators in the same way.
211     *
212     * The table is resized when occupancy exceeds a percentage
213     * threshold (nominally, 0.75, but see below). Any thread
214     * noticing an overfull bin may assist in resizing after the
215 dl 1.35 * initiating thread allocates and sets up the replacement array.
216     * However, rather than stalling, these other threads may proceed
217     * with insertions etc. The use of TreeBins shields us from the
218     * worst case effects of overfilling while resizes are in
219 dl 1.1 * progress. Resizing proceeds by transferring bins, one by one,
220 dl 1.35 * from the table to the next table. However, threads claim small
221     * blocks of indices to transfer (via field transferIndex) before
222 dl 1.36 * doing so, reducing contention. A generation stamp in field
223     * sizeCtl ensures that resizings do not overlap. Because we are
224     * using power-of-two expansion, the elements from each bin must
225     * either stay at same index, or move with a power of two
226     * offset. We eliminate unnecessary node creation by catching
227     * cases where old nodes can be reused because their next fields
228     * won't change. On average, only about one-sixth of them need
229     * cloning when a table doubles. The nodes they replace will be
230     * garbage collectable as soon as they are no longer referenced by
231     * any reader thread that may be in the midst of concurrently
232     * traversing table. Upon transfer, the old table bin contains
233     * only a special forwarding node (with hash field "MOVED") that
234     * contains the next table as its key. On encountering a
235     * forwarding node, access and update operations restart, using
236     * the new table.
237 dl 1.1 *
238     * Each bin transfer requires its bin lock, which can stall
239     * waiting for locks while resizing. However, because other
240     * threads can join in and help resize rather than contend for
241     * locks, average aggregate waits become shorter as resizing
242     * progresses. The transfer operation must also ensure that all
243     * accessible bins in both the old and new table are usable by any
244 dl 1.35 * traversal. This is arranged in part by proceeding from the
245     * last bin (table.length - 1) up towards the first. Upon seeing
246     * a forwarding node, traversals (see class Traverser) arrange to
247     * move to the new table without revisiting nodes. To ensure that
248     * no intervening nodes are skipped even when moved out of order,
249     * a stack (see class TableStack) is created on first encounter of
250     * a forwarding node during a traversal, to maintain its place if
251     * later processing the current table. The need for these
252     * save/restore mechanics is relatively rare, but when one
253     * forwarding node is encountered, typically many more will be.
254     * So Traversers use a simple caching scheme to avoid creating so
255     * many new TableStack nodes. (Thanks to Peter Levart for
256     * suggesting use of a stack here.)
257 dl 1.1 *
258     * The traversal scheme also applies to partial traversals of
259     * ranges of bins (via an alternate Traverser constructor)
260     * to support partitioned aggregate operations. Also, read-only
261     * operations give up if ever forwarded to a null table, which
262     * provides support for shutdown-style clearing, which is also not
263     * currently implemented.
264     *
265     * Lazy table initialization minimizes footprint until first use,
266     * and also avoids resizings when the first operation is from a
267     * putAll, constructor with map argument, or deserialization.
268     * These cases attempt to override the initial capacity settings,
269     * but harmlessly fail to take effect in cases of races.
270     *
271     * The element count is maintained using a specialization of
272     * LongAdder. We need to incorporate a specialization rather than
273     * just use a LongAdder in order to access implicit
274     * contention-sensing that leads to creation of multiple
275     * CounterCells. The counter mechanics avoid contention on
276     * updates but can encounter cache thrashing if read too
277     * frequently during concurrent access. To avoid reading so often,
278     * resizing under contention is attempted only upon adding to a
279     * bin already holding two or more nodes. Under uniform hash
280     * distributions, the probability of this occurring at threshold
281     * is around 13%, meaning that only about 1 in 8 puts check
282 dl 1.20 * threshold (and after resizing, many fewer do so).
283     *
284     * TreeBins use a special form of comparison for search and
285     * related operations (which is the main reason we cannot use
286     * existing collections such as TreeMaps). TreeBins contain
287     * Comparable elements, but may contain others, as well as
288 dl 1.30 * elements that are Comparable but not necessarily Comparable for
289     * the same T, so we cannot invoke compareTo among them. To handle
290     * this, the tree is ordered primarily by hash value, then by
291     * Comparable.compareTo order if applicable. On lookup at a node,
292     * if elements are not comparable or compare as 0 then both left
293     * and right children may need to be searched in the case of tied
294     * hash values. (This corresponds to the full list search that
295     * would be necessary if all elements were non-Comparable and had
296     * tied hashes.) On insertion, to keep a total ordering (or as
297     * close as is required here) across rebalancings, we compare
298     * classes and identityHashCodes as tie-breakers. The red-black
299     * balancing code is updated from pre-jdk-collections
300 dl 1.20 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
301     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
302     * Algorithms" (CLR).
303     *
304     * TreeBins also require an additional locking mechanism. While
305     * list traversal is always possible by readers even during
306 jsr166 1.28 * updates, tree traversal is not, mainly because of tree-rotations
307 dl 1.20 * that may change the root node and/or its linkages. TreeBins
308     * include a simple read-write lock mechanism parasitic on the
309     * main bin-synchronization strategy: Structural adjustments
310     * associated with an insertion or removal are already bin-locked
311     * (and so cannot conflict with other writers) but must wait for
312     * ongoing readers to finish. Since there can be only one such
313     * waiter, we use a simple scheme using a single "waiter" field to
314     * block writers. However, readers need never block. If the root
315     * lock is held, they proceed along the slow traversal path (via
316     * next-pointers) until the lock becomes available or the list is
317     * exhausted, whichever comes first. These cases are not fast, but
318     * maximize aggregate expected throughput.
319 dl 1.1 *
320     * Maintaining API and serialization compatibility with previous
321     * versions of this class introduces several oddities. Mainly: We
322     * leave untouched but unused constructor arguments refering to
323     * concurrencyLevel. We accept a loadFactor constructor argument,
324     * but apply it only to initial table capacity (which is the only
325     * time that we can guarantee to honor it.) We also declare an
326     * unused "Segment" class that is instantiated in minimal form
327     * only when serializing.
328 dl 1.20 *
329 dl 1.35 * Also, solely for compatibility with previous versions of this
330     * class, it extends AbstractMap, even though all of its methods
331     * are overridden, so it is just useless baggage.
332     *
333 dl 1.20 * This file is organized to make things a little easier to follow
334     * while reading than they might otherwise: First the main static
335     * declarations and utilities, then fields, then main public
336     * methods (with a few factorings of multiple public methods into
337     * internal ones), then sizing methods, trees, traversers, and
338     * bulk operations.
339 dl 1.1 */
340    
341 dl 1.35
342 dl 1.1 /* ---------------- Constants -------------- */
343    
344     /**
345     * The largest possible table capacity. This value must be
346     * exactly 1<<30 to stay within Java array allocation and indexing
347     * bounds for power of two table sizes, and is further required
348     * because the top two bits of 32bit hash fields are used for
349     * control purposes.
350     */
351     private static final int MAXIMUM_CAPACITY = 1 << 30;
352    
353     /**
354     * The default initial table capacity. Must be a power of 2
355     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
356     */
357     private static final int DEFAULT_CAPACITY = 16;
358    
359     /**
360     * The largest possible (non-power of two) array size.
361     * Needed by toArray and related methods.
362     */
363     static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
364    
365     /**
366     * The default concurrency level for this table. Unused but
367     * defined for compatibility with previous versions of this class.
368     */
369     private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
370    
371     /**
372     * The load factor for this table. Overrides of this value in
373     * constructors affect only the initial table capacity. The
374     * actual floating point value isn't normally used -- it is
375     * simpler to use expressions such as {@code n - (n >>> 2)} for
376     * the associated resizing threshold.
377     */
378     private static final float LOAD_FACTOR = 0.75f;
379    
380     /**
381     * The bin count threshold for using a tree rather than list for a
382 dl 1.20 * bin. Bins are converted to trees when adding an element to a
383     * bin with at least this many nodes. The value must be greater
384     * than 2, and should be at least 8 to mesh with assumptions in
385     * tree removal about conversion back to plain bins upon
386     * shrinkage.
387     */
388     static final int TREEIFY_THRESHOLD = 8;
389    
390     /**
391     * The bin count threshold for untreeifying a (split) bin during a
392     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
393     * most 6 to mesh with shrinkage detection under removal.
394 dl 1.1 */
395 dl 1.20 static final int UNTREEIFY_THRESHOLD = 6;
396    
397     /**
398     * The smallest table capacity for which bins may be treeified.
399     * (Otherwise the table is resized if too many nodes in a bin.)
400     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
401     * conflicts between resizing and treeification thresholds.
402     */
403     static final int MIN_TREEIFY_CAPACITY = 64;
404 dl 1.1
405     /**
406     * Minimum number of rebinnings per transfer step. Ranges are
407     * subdivided to allow multiple resizer threads. This value
408     * serves as a lower bound to avoid resizers encountering
409     * excessive memory contention. The value should be at least
410     * DEFAULT_CAPACITY.
411     */
412     private static final int MIN_TRANSFER_STRIDE = 16;
413    
414 dl 1.36 /**
415     * The number of bits used for generation stamp in sizeCtl.
416     * Must be at least 6 for 32bit arrays.
417     */
418     private static int RESIZE_STAMP_BITS = 16;
419    
420     /**
421     * The maximum number of threads that can help resize.
422     * Must fit in 32 - RESIZE_STAMP_BITS bits.
423     */
424     private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
425    
426     /**
427     * The bit shift for recording size stamp in sizeCtl.
428     */
429     private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
430    
431 dl 1.1 /*
432     * Encodings for Node hash fields. See above for explanation.
433     */
434 dl 1.20 static final int MOVED = 0x8fffffff; // (-1) hash for forwarding nodes
435 jsr166 1.28 static final int TREEBIN = 0x80000000; // hash for roots of trees
436 dl 1.20 static final int RESERVED = 0x80000001; // hash for transient reservations
437 dl 1.1 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
438    
439     /** Number of CPUS, to place bounds on some sizings */
440     static final int NCPU = Runtime.getRuntime().availableProcessors();
441    
442 dl 1.20 /** For serialization compatibility. */
443     private static final ObjectStreamField[] serialPersistentFields = {
444     new ObjectStreamField("segments", Segment[].class),
445     new ObjectStreamField("segmentMask", Integer.TYPE),
446     new ObjectStreamField("segmentShift", Integer.TYPE)
447     };
448    
449     /* ---------------- Nodes -------------- */
450    
451     /**
452     * Key-value entry. This class is never exported out as a
453     * user-mutable Map.Entry (i.e., one supporting setValue; see
454     * MapEntry below), but can be used for read-only traversals used
455 jsr166 1.28 * in bulk tasks. Subclasses of Node with a negative hash field
456 dl 1.20 * are special, and contain null keys and values (but are never
457     * exported). Otherwise, keys and vals are never null.
458     */
459     static class Node<K,V> implements Map.Entry<K,V> {
460     final int hash;
461     final K key;
462     volatile V val;
463     Node<K,V> next;
464    
465     Node(int hash, K key, V val, Node<K,V> next) {
466     this.hash = hash;
467     this.key = key;
468     this.val = val;
469     this.next = next;
470     }
471    
472     public final K getKey() { return key; }
473     public final V getValue() { return val; }
474     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
475     public final String toString(){ return key + "=" + val; }
476     public final V setValue(V value) {
477     throw new UnsupportedOperationException();
478     }
479 dl 1.1
480 dl 1.20 public final boolean equals(Object o) {
481     Object k, v, u; Map.Entry<?,?> e;
482     return ((o instanceof Map.Entry) &&
483     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
484     (v = e.getValue()) != null &&
485     (k == key || k.equals(key)) &&
486     (v == (u = val) || v.equals(u)));
487     }
488 dl 1.1
489 dl 1.20 /**
490     * Virtualized support for map.get(); overridden in subclasses.
491     */
492     Node<K,V> find(int h, Object k) {
493     Node<K,V> e = this;
494     if (k != null) {
495     do {
496     K ek;
497     if (e.hash == h &&
498     ((ek = e.key) == k || (ek != null && k.equals(ek))))
499     return e;
500     } while ((e = e.next) != null);
501     }
502     return null;
503     }
504 dl 1.1 }
505    
506 dl 1.20 /* ---------------- Static utilities -------------- */
507    
508 dl 1.1 /**
509 dl 1.20 * Spreads (XORs) higher bits of hash to lower and also forces top
510     * bit to 0. Because the table uses power-of-two masking, sets of
511     * hashes that vary only in bits above the current mask will
512     * always collide. (Among known examples are sets of Float keys
513     * holding consecutive whole numbers in small tables.) So we
514     * apply a transform that spreads the impact of higher bits
515     * downward. There is a tradeoff between speed, utility, and
516     * quality of bit-spreading. Because many common sets of hashes
517     * are already reasonably distributed (so don't benefit from
518     * spreading), and because we use trees to handle large sets of
519     * collisions in bins, we just XOR some shifted bits in the
520     * cheapest possible way to reduce systematic lossage, as well as
521     * to incorporate impact of the highest bits that would otherwise
522     * never be used in index calculations because of table bounds.
523 dl 1.1 */
524 dl 1.20 static final int spread(int h) {
525     return (h ^ (h >>> 16)) & HASH_BITS;
526 dl 1.1 }
527    
528     /**
529 dl 1.20 * Returns a power of two table size for the given desired capacity.
530     * See Hackers Delight, sec 3.2
531 dl 1.1 */
532 dl 1.20 private static final int tableSizeFor(int c) {
533     int n = c - 1;
534     n |= n >>> 1;
535     n |= n >>> 2;
536     n |= n >>> 4;
537     n |= n >>> 8;
538     n |= n >>> 16;
539     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
540     }
541 dl 1.1
542     /**
543 dl 1.20 * Returns x's Class if it is of the form "class C implements
544     * Comparable<C>", else null.
545 dl 1.1 */
546 dl 1.20 static Class<?> comparableClassFor(Object x) {
547     if (x instanceof Comparable) {
548     Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
549     if ((c = x.getClass()) == String.class) // bypass checks
550     return c;
551     if ((ts = c.getGenericInterfaces()) != null) {
552     for (int i = 0; i < ts.length; ++i) {
553     if (((t = ts[i]) instanceof ParameterizedType) &&
554     ((p = (ParameterizedType)t).getRawType() ==
555     Comparable.class) &&
556     (as = p.getActualTypeArguments()) != null &&
557     as.length == 1 && as[0] == c) // type arg is c
558     return c;
559     }
560     }
561     }
562     return null;
563     }
564 dl 1.1
565     /**
566 dl 1.20 * Returns k.compareTo(x) if x matches kc (k's screened comparable
567     * class), else 0.
568 dl 1.1 */
569 dl 1.20 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
570     static int compareComparables(Class<?> kc, Object k, Object x) {
571     return (x == null || x.getClass() != kc ? 0 :
572     ((Comparable)k).compareTo(x));
573     }
574    
575     /* ---------------- Table element access -------------- */
576    
577     /*
578     * Volatile access methods are used for table elements as well as
579     * elements of in-progress next table while resizing. All uses of
580     * the tab arguments must be null checked by callers. All callers
581     * also paranoically precheck that tab's length is not zero (or an
582     * equivalent check), thus ensuring that any index argument taking
583     * the form of a hash value anded with (length - 1) is a valid
584     * index. Note that, to be correct wrt arbitrary concurrency
585     * errors by users, these checks must operate on local variables,
586     * which accounts for some odd-looking inline assignments below.
587     * Note that calls to setTabAt always occur within locked regions,
588     * and so do not need full volatile semantics, but still require
589     * ordering to maintain concurrent readability.
590     */
591    
592     @SuppressWarnings("unchecked")
593     static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
594     return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
595     }
596    
597     static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
598     Node<K,V> c, Node<K,V> v) {
599     return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
600     }
601    
602     static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
603     U.putOrderedObject(tab, ((long)i << ASHIFT) + ABASE, v);
604     }
605 dl 1.1
606     /* ---------------- Fields -------------- */
607    
608     /**
609     * The array of bins. Lazily initialized upon first insertion.
610     * Size is always a power of two. Accessed directly by iterators.
611     */
612 dl 1.20 transient volatile Node<K,V>[] table;
613 dl 1.1
614     /**
615     * The next table to use; non-null only while resizing.
616     */
617 dl 1.20 private transient volatile Node<K,V>[] nextTable;
618 dl 1.1
619     /**
620     * Base counter value, used mainly when there is no contention,
621     * but also as a fallback during table initialization
622     * races. Updated via CAS.
623     */
624     private transient volatile long baseCount;
625    
626     /**
627     * Table initialization and resizing control. When negative, the
628     * table is being initialized or resized: -1 for initialization,
629     * else -(1 + the number of active resizing threads). Otherwise,
630     * when table is null, holds the initial table size to use upon
631     * creation, or 0 for default. After initialization, holds the
632     * next element count value upon which to resize the table.
633     */
634     private transient volatile int sizeCtl;
635    
636     /**
637     * The next table index (plus one) to split while resizing.
638     */
639     private transient volatile int transferIndex;
640    
641     /**
642 dl 1.20 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
643 dl 1.1 */
644 dl 1.20 private transient volatile int cellsBusy;
645 dl 1.1
646     /**
647     * Table of counter cells. When non-null, size is a power of 2.
648     */
649     private transient volatile CounterCell[] counterCells;
650    
651     // views
652     private transient KeySetView<K,V> keySet;
653     private transient ValuesView<K,V> values;
654     private transient EntrySetView<K,V> entrySet;
655    
656    
657 dl 1.20 /* ---------------- Public operations -------------- */
658 dl 1.1
659 dl 1.20 /**
660     * Creates a new, empty map with the default initial table size (16).
661     */
662     public ConcurrentHashMap() {
663 dl 1.1 }
664    
665 dl 1.20 /**
666     * Creates a new, empty map with an initial table size
667     * accommodating the specified number of elements without the need
668     * to dynamically resize.
669     *
670     * @param initialCapacity The implementation performs internal
671     * sizing to accommodate this many elements.
672     * @throws IllegalArgumentException if the initial capacity of
673     * elements is negative
674     */
675     public ConcurrentHashMap(int initialCapacity) {
676     if (initialCapacity < 0)
677     throw new IllegalArgumentException();
678     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
679     MAXIMUM_CAPACITY :
680     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
681     this.sizeCtl = cap;
682 dl 1.1 }
683    
684 dl 1.20 /**
685     * Creates a new map with the same mappings as the given map.
686     *
687     * @param m the map
688     */
689     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
690     this.sizeCtl = DEFAULT_CAPACITY;
691     putAll(m);
692 dl 1.1 }
693    
694 dl 1.20 /**
695     * Creates a new, empty map with an initial table size based on
696     * the given number of elements ({@code initialCapacity}) and
697     * initial table density ({@code loadFactor}).
698     *
699     * @param initialCapacity the initial capacity. The implementation
700     * performs internal sizing to accommodate this many elements,
701     * given the specified load factor.
702     * @param loadFactor the load factor (table density) for
703     * establishing the initial table size
704     * @throws IllegalArgumentException if the initial capacity of
705     * elements is negative or the load factor is nonpositive
706     *
707     * @since 1.6
708     */
709     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
710     this(initialCapacity, loadFactor, 1);
711     }
712 dl 1.1
713     /**
714 dl 1.20 * Creates a new, empty map with an initial table size based on
715     * the given number of elements ({@code initialCapacity}), table
716     * density ({@code loadFactor}), and number of concurrently
717     * updating threads ({@code concurrencyLevel}).
718     *
719     * @param initialCapacity the initial capacity. The implementation
720     * performs internal sizing to accommodate this many elements,
721     * given the specified load factor.
722     * @param loadFactor the load factor (table density) for
723     * establishing the initial table size
724     * @param concurrencyLevel the estimated number of concurrently
725     * updating threads. The implementation may use this value as
726     * a sizing hint.
727     * @throws IllegalArgumentException if the initial capacity is
728     * negative or the load factor or concurrencyLevel are
729     * nonpositive
730 dl 1.1 */
731 dl 1.20 public ConcurrentHashMap(int initialCapacity,
732     float loadFactor, int concurrencyLevel) {
733     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
734     throw new IllegalArgumentException();
735     if (initialCapacity < concurrencyLevel) // Use at least as many bins
736     initialCapacity = concurrencyLevel; // as estimated threads
737     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
738     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
739     MAXIMUM_CAPACITY : tableSizeFor((int)size);
740     this.sizeCtl = cap;
741 dl 1.1 }
742    
743 dl 1.20 // Original (since JDK1.2) Map methods
744 dl 1.1
745     /**
746 dl 1.20 * {@inheritDoc}
747 dl 1.1 */
748 dl 1.20 public int size() {
749     long n = sumCount();
750     return ((n < 0L) ? 0 :
751     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
752     (int)n);
753     }
754 dl 1.1
755 dl 1.20 /**
756     * {@inheritDoc}
757     */
758     public boolean isEmpty() {
759     return sumCount() <= 0L; // ignore transient negative values
760 dl 1.1 }
761    
762     /**
763 dl 1.20 * Returns the value to which the specified key is mapped,
764     * or {@code null} if this map contains no mapping for the key.
765     *
766     * <p>More formally, if this map contains a mapping from a key
767     * {@code k} to a value {@code v} such that {@code key.equals(k)},
768     * then this method returns {@code v}; otherwise it returns
769     * {@code null}. (There can be at most one such mapping.)
770 dl 1.1 *
771 dl 1.20 * @throws NullPointerException if the specified key is null
772     */
773     public V get(Object key) {
774     Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
775     int h = spread(key.hashCode());
776     if ((tab = table) != null && (n = tab.length) > 0 &&
777     (e = tabAt(tab, (n - 1) & h)) != null) {
778     if ((eh = e.hash) == h) {
779     if ((ek = e.key) == key || (ek != null && key.equals(ek)))
780     return e.val;
781     }
782     else if (eh < 0)
783     return (p = e.find(h, key)) != null ? p.val : null;
784     while ((e = e.next) != null) {
785     if (e.hash == h &&
786     ((ek = e.key) == key || (ek != null && key.equals(ek))))
787     return e.val;
788 dl 1.1 }
789     }
790 dl 1.20 return null;
791     }
792 dl 1.1
793 dl 1.20 /**
794     * Tests if the specified object is a key in this table.
795     *
796     * @param key possible key
797     * @return {@code true} if and only if the specified object
798     * is a key in this table, as determined by the
799     * {@code equals} method; {@code false} otherwise
800     * @throws NullPointerException if the specified key is null
801     */
802     public boolean containsKey(Object key) {
803     return get(key) != null;
804     }
805 dl 1.1
806 dl 1.20 /**
807     * Returns {@code true} if this map maps one or more keys to the
808     * specified value. Note: This method may require a full traversal
809     * of the map, and is much slower than method {@code containsKey}.
810     *
811     * @param value value whose presence in this map is to be tested
812     * @return {@code true} if this map maps one or more keys to the
813     * specified value
814     * @throws NullPointerException if the specified value is null
815     */
816     public boolean containsValue(Object value) {
817     if (value == null)
818     throw new NullPointerException();
819     Node<K,V>[] t;
820     if ((t = table) != null) {
821     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
822     for (Node<K,V> p; (p = it.advance()) != null; ) {
823     V v;
824     if ((v = p.val) == value || (v != null && value.equals(v)))
825     return true;
826 dl 1.1 }
827     }
828 dl 1.20 return false;
829     }
830 dl 1.1
831 dl 1.20 /**
832     * Maps the specified key to the specified value in this table.
833     * Neither the key nor the value can be null.
834     *
835     * <p>The value can be retrieved by calling the {@code get} method
836     * with a key that is equal to the original key.
837     *
838     * @param key key with which the specified value is to be associated
839     * @param value value to be associated with the specified key
840     * @return the previous value associated with {@code key}, or
841     * {@code null} if there was no mapping for {@code key}
842     * @throws NullPointerException if the specified key or value is null
843     */
844     public V put(K key, V value) {
845     return putVal(key, value, false);
846     }
847 dl 1.1
848 dl 1.20 /** Implementation for put and putIfAbsent */
849     final V putVal(K key, V value, boolean onlyIfAbsent) {
850     if (key == null || value == null) throw new NullPointerException();
851     int hash = spread(key.hashCode());
852     int binCount = 0;
853     for (Node<K,V>[] tab = table;;) {
854     Node<K,V> f; int n, i, fh;
855     if (tab == null || (n = tab.length) == 0)
856     tab = initTable();
857     else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
858     if (casTabAt(tab, i, null,
859     new Node<K,V>(hash, key, value, null)))
860     break; // no lock when adding to empty bin
861 dl 1.1 }
862 dl 1.20 else if ((fh = f.hash) == MOVED)
863     tab = helpTransfer(tab, f);
864 dl 1.1 else {
865 dl 1.20 V oldVal = null;
866     synchronized (f) {
867     if (tabAt(tab, i) == f) {
868     if (fh >= 0) {
869     binCount = 1;
870     for (Node<K,V> e = f;; ++binCount) {
871     K ek;
872     if (e.hash == hash &&
873     ((ek = e.key) == key ||
874     (ek != null && key.equals(ek)))) {
875     oldVal = e.val;
876     if (!onlyIfAbsent)
877     e.val = value;
878     break;
879 dl 1.1 }
880 dl 1.20 Node<K,V> pred = e;
881     if ((e = e.next) == null) {
882     pred.next = new Node<K,V>(hash, key,
883     value, null);
884     break;
885 dl 1.1 }
886     }
887     }
888 dl 1.20 else if (f instanceof TreeBin) {
889     Node<K,V> p;
890     binCount = 2;
891     if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
892     value)) != null) {
893     oldVal = p.val;
894     if (!onlyIfAbsent)
895     p.val = value;
896 dl 1.1 }
897     }
898     }
899     }
900 dl 1.20 if (binCount != 0) {
901     if (binCount >= TREEIFY_THRESHOLD)
902     treeifyBin(tab, i);
903     if (oldVal != null)
904     return oldVal;
905     break;
906     }
907 dl 1.1 }
908     }
909 dl 1.20 addCount(1L, binCount);
910     return null;
911 dl 1.1 }
912    
913     /**
914 dl 1.20 * Copies all of the mappings from the specified map to this one.
915     * These mappings replace any mappings that this map had for any of the
916     * keys currently in the specified map.
917     *
918     * @param m mappings to be stored in this map
919     */
920     public void putAll(Map<? extends K, ? extends V> m) {
921     tryPresize(m.size());
922     for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
923     putVal(e.getKey(), e.getValue(), false);
924 dl 1.1 }
925    
926     /**
927 dl 1.20 * Removes the key (and its corresponding value) from this map.
928     * This method does nothing if the key is not in the map.
929     *
930     * @param key the key that needs to be removed
931     * @return the previous value associated with {@code key}, or
932     * {@code null} if there was no mapping for {@code key}
933     * @throws NullPointerException if the specified key is null
934     */
935     public V remove(Object key) {
936     return replaceNode(key, null, null);
937 dl 1.1 }
938    
939     /**
940     * Implementation for the four public remove/replace methods:
941     * Replaces node value with v, conditional upon match of cv if
942     * non-null. If resulting value is null, delete.
943     */
944 dl 1.20 final V replaceNode(Object key, V value, Object cv) {
945     int hash = spread(key.hashCode());
946     for (Node<K,V>[] tab = table;;) {
947     Node<K,V> f; int n, i, fh;
948     if (tab == null || (n = tab.length) == 0 ||
949     (f = tabAt(tab, i = (n - 1) & hash)) == null)
950 dl 1.1 break;
951 dl 1.20 else if ((fh = f.hash) == MOVED)
952     tab = helpTransfer(tab, f);
953 dl 1.1 else {
954 dl 1.20 V oldVal = null;
955 dl 1.1 boolean validated = false;
956     synchronized (f) {
957     if (tabAt(tab, i) == f) {
958 dl 1.20 if (fh >= 0) {
959     validated = true;
960     for (Node<K,V> e = f, pred = null;;) {
961     K ek;
962     if (e.hash == hash &&
963     ((ek = e.key) == key ||
964     (ek != null && key.equals(ek)))) {
965     V ev = e.val;
966     if (cv == null || cv == ev ||
967     (ev != null && cv.equals(ev))) {
968     oldVal = ev;
969     if (value != null)
970     e.val = value;
971     else if (pred != null)
972     pred.next = e.next;
973 dl 1.1 else
974 dl 1.20 setTabAt(tab, i, e.next);
975 dl 1.1 }
976 dl 1.20 break;
977     }
978     pred = e;
979     if ((e = e.next) == null)
980     break;
981     }
982     }
983     else if (f instanceof TreeBin) {
984     validated = true;
985     TreeBin<K,V> t = (TreeBin<K,V>)f;
986     TreeNode<K,V> r, p;
987     if ((r = t.root) != null &&
988     (p = r.findTreeNode(hash, key, null)) != null) {
989     V pv = p.val;
990     if (cv == null || cv == pv ||
991     (pv != null && cv.equals(pv))) {
992     oldVal = pv;
993     if (value != null)
994     p.val = value;
995     else if (t.removeTreeNode(p))
996     setTabAt(tab, i, untreeify(t.first));
997 dl 1.1 }
998     }
999     }
1000     }
1001     }
1002     if (validated) {
1003 dl 1.20 if (oldVal != null) {
1004     if (value == null)
1005     addCount(-1L, -1);
1006     return oldVal;
1007 dl 1.1 }
1008     break;
1009     }
1010     }
1011     }
1012     return null;
1013     }
1014    
1015     /**
1016 dl 1.20 * Removes all of the mappings from this map.
1017 dl 1.1 */
1018 dl 1.20 public void clear() {
1019 dl 1.1 long delta = 0L; // negative number of deletions
1020     int i = 0;
1021 dl 1.20 Node<K,V>[] tab = table;
1022 dl 1.1 while (tab != null && i < tab.length) {
1023 dl 1.20 int fh;
1024     Node<K,V> f = tabAt(tab, i);
1025 dl 1.1 if (f == null)
1026     ++i;
1027 dl 1.20 else if ((fh = f.hash) == MOVED) {
1028     tab = helpTransfer(tab, f);
1029     i = 0; // restart
1030 dl 1.1 }
1031     else {
1032     synchronized (f) {
1033     if (tabAt(tab, i) == f) {
1034 dl 1.20 Node<K,V> p = (fh >= 0 ? f :
1035     (f instanceof TreeBin) ?
1036     ((TreeBin<K,V>)f).first : null);
1037     while (p != null) {
1038     --delta;
1039     p = p.next;
1040 dl 1.1 }
1041 dl 1.20 setTabAt(tab, i++, null);
1042 dl 1.1 }
1043     }
1044     }
1045     }
1046     if (delta != 0L)
1047     addCount(delta, -1);
1048     }
1049    
1050     /**
1051 dl 1.20 * Returns a {@link Set} view of the keys contained in this map.
1052     * The set is backed by the map, so changes to the map are
1053     * reflected in the set, and vice-versa. The set supports element
1054     * removal, which removes the corresponding mapping from this map,
1055     * via the {@code Iterator.remove}, {@code Set.remove},
1056     * {@code removeAll}, {@code retainAll}, and {@code clear}
1057     * operations. It does not support the {@code add} or
1058     * {@code addAll} operations.
1059     *
1060     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1061     * that will never throw {@link ConcurrentModificationException},
1062     * and guarantees to traverse elements as they existed upon
1063     * construction of the iterator, and may (but is not guaranteed to)
1064     * reflect any modifications subsequent to construction.
1065     *
1066     * @return the set view
1067 dl 1.1 */
1068 dl 1.20 public KeySetView<K,V> keySet() {
1069     KeySetView<K,V> ks;
1070     return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1071 dl 1.1 }
1072    
1073     /**
1074 dl 1.20 * Returns a {@link Collection} view of the values contained in this map.
1075     * The collection is backed by the map, so changes to the map are
1076     * reflected in the collection, and vice-versa. The collection
1077     * supports element removal, which removes the corresponding
1078     * mapping from this map, via the {@code Iterator.remove},
1079     * {@code Collection.remove}, {@code removeAll},
1080     * {@code retainAll}, and {@code clear} operations. It does not
1081     * support the {@code add} or {@code addAll} operations.
1082 dl 1.1 *
1083 dl 1.20 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1084     * that will never throw {@link ConcurrentModificationException},
1085     * and guarantees to traverse elements as they existed upon
1086     * construction of the iterator, and may (but is not guaranteed to)
1087     * reflect any modifications subsequent to construction.
1088 dl 1.1 *
1089 dl 1.20 * @return the collection view
1090 dl 1.1 */
1091 dl 1.20 public Collection<V> values() {
1092     ValuesView<K,V> vs;
1093     return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1094 dl 1.1 }
1095    
1096     /**
1097 dl 1.20 * Returns a {@link Set} view of the mappings contained in this map.
1098     * The set is backed by the map, so changes to the map are
1099     * reflected in the set, and vice-versa. The set supports element
1100     * removal, which removes the corresponding mapping from the map,
1101     * via the {@code Iterator.remove}, {@code Set.remove},
1102     * {@code removeAll}, {@code retainAll}, and {@code clear}
1103     * operations.
1104     *
1105     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1106     * that will never throw {@link ConcurrentModificationException},
1107     * and guarantees to traverse elements as they existed upon
1108     * construction of the iterator, and may (but is not guaranteed to)
1109     * reflect any modifications subsequent to construction.
1110 dl 1.1 *
1111 dl 1.20 * @return the set view
1112 dl 1.1 */
1113 dl 1.20 public Set<Map.Entry<K,V>> entrySet() {
1114     EntrySetView<K,V> es;
1115     return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1116 dl 1.1 }
1117    
1118     /**
1119     * Returns the hash code value for this {@link Map}, i.e.,
1120     * the sum of, for each key-value pair in the map,
1121     * {@code key.hashCode() ^ value.hashCode()}.
1122     *
1123     * @return the hash code value for this map
1124     */
1125     public int hashCode() {
1126     int h = 0;
1127 dl 1.20 Node<K,V>[] t;
1128     if ((t = table) != null) {
1129     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1130     for (Node<K,V> p; (p = it.advance()) != null; )
1131     h += p.key.hashCode() ^ p.val.hashCode();
1132 dl 1.1 }
1133     return h;
1134     }
1135    
1136     /**
1137     * Returns a string representation of this map. The string
1138     * representation consists of a list of key-value mappings (in no
1139     * particular order) enclosed in braces ("{@code {}}"). Adjacent
1140     * mappings are separated by the characters {@code ", "} (comma
1141     * and space). Each key-value mapping is rendered as the key
1142     * followed by an equals sign ("{@code =}") followed by the
1143     * associated value.
1144     *
1145     * @return a string representation of this map
1146     */
1147     public String toString() {
1148 dl 1.20 Node<K,V>[] t;
1149     int f = (t = table) == null ? 0 : t.length;
1150     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1151 dl 1.1 StringBuilder sb = new StringBuilder();
1152     sb.append('{');
1153 dl 1.20 Node<K,V> p;
1154     if ((p = it.advance()) != null) {
1155 dl 1.1 for (;;) {
1156 dl 1.20 K k = p.key;
1157     V v = p.val;
1158 dl 1.1 sb.append(k == this ? "(this Map)" : k);
1159     sb.append('=');
1160     sb.append(v == this ? "(this Map)" : v);
1161 dl 1.20 if ((p = it.advance()) == null)
1162 dl 1.1 break;
1163     sb.append(',').append(' ');
1164     }
1165     }
1166     return sb.append('}').toString();
1167     }
1168    
1169     /**
1170     * Compares the specified object with this map for equality.
1171     * Returns {@code true} if the given object is a map with the same
1172     * mappings as this map. This operation may return misleading
1173     * results if either map is concurrently modified during execution
1174     * of this method.
1175     *
1176     * @param o object to be compared for equality with this map
1177     * @return {@code true} if the specified object is equal to this map
1178     */
1179     public boolean equals(Object o) {
1180     if (o != this) {
1181     if (!(o instanceof Map))
1182     return false;
1183     Map<?,?> m = (Map<?,?>) o;
1184 dl 1.20 Node<K,V>[] t;
1185     int f = (t = table) == null ? 0 : t.length;
1186     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1187     for (Node<K,V> p; (p = it.advance()) != null; ) {
1188     V val = p.val;
1189     Object v = m.get(p.key);
1190 dl 1.1 if (v == null || (v != val && !v.equals(val)))
1191     return false;
1192     }
1193     for (Map.Entry<?,?> e : m.entrySet()) {
1194     Object mk, mv, v;
1195     if ((mk = e.getKey()) == null ||
1196     (mv = e.getValue()) == null ||
1197 dl 1.20 (v = get(mk)) == null ||
1198 dl 1.1 (mv != v && !mv.equals(v)))
1199     return false;
1200     }
1201     }
1202     return true;
1203     }
1204    
1205     /**
1206     * Stripped-down version of helper class used in previous version,
1207     * declared for the sake of serialization compatibility
1208     */
1209 dl 1.20 static class Segment<K,V> extends ReentrantLock implements Serializable {
1210 dl 1.1 private static final long serialVersionUID = 2249069246763182397L;
1211     final float loadFactor;
1212     Segment(float lf) { this.loadFactor = lf; }
1213     }
1214    
1215     /**
1216     * Saves the state of the {@code ConcurrentHashMap} instance to a
1217     * stream (i.e., serializes it).
1218     * @param s the stream
1219     * @serialData
1220     * the key (Object) and value (Object)
1221     * for each key-value mapping, followed by a null pair.
1222     * The key-value mappings are emitted in no particular order.
1223     */
1224 dl 1.20 private void writeObject(java.io.ObjectOutputStream s)
1225 dl 1.1 throws java.io.IOException {
1226 dl 1.20 // For serialization compatibility
1227     // Emulate segment calculation from previous version of this class
1228     int sshift = 0;
1229     int ssize = 1;
1230     while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1231     ++sshift;
1232     ssize <<= 1;
1233     }
1234     int segmentShift = 32 - sshift;
1235     int segmentMask = ssize - 1;
1236     @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1237     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1238     for (int i = 0; i < segments.length; ++i)
1239     segments[i] = new Segment<K,V>(LOAD_FACTOR);
1240     s.putFields().put("segments", segments);
1241     s.putFields().put("segmentShift", segmentShift);
1242     s.putFields().put("segmentMask", segmentMask);
1243     s.writeFields();
1244    
1245     Node<K,V>[] t;
1246     if ((t = table) != null) {
1247     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1248     for (Node<K,V> p; (p = it.advance()) != null; ) {
1249     s.writeObject(p.key);
1250     s.writeObject(p.val);
1251     }
1252 dl 1.1 }
1253     s.writeObject(null);
1254     s.writeObject(null);
1255     segments = null; // throw away
1256     }
1257    
1258     /**
1259     * Reconstitutes the instance from a stream (that is, deserializes it).
1260     * @param s the stream
1261     */
1262 dl 1.20 private void readObject(java.io.ObjectInputStream s)
1263 dl 1.1 throws java.io.IOException, ClassNotFoundException {
1264 dl 1.20 /*
1265     * To improve performance in typical cases, we create nodes
1266     * while reading, then place in table once size is known.
1267     * However, we must also validate uniqueness and deal with
1268     * overpopulated bins while doing so, which requires
1269     * specialized versions of putVal mechanics.
1270     */
1271     sizeCtl = -1; // force exclusion for table construction
1272 dl 1.1 s.defaultReadObject();
1273     long size = 0L;
1274 dl 1.20 Node<K,V> p = null;
1275 dl 1.1 for (;;) {
1276 dl 1.20 @SuppressWarnings("unchecked") K k = (K) s.readObject();
1277     @SuppressWarnings("unchecked") V v = (V) s.readObject();
1278 dl 1.1 if (k != null && v != null) {
1279 dl 1.20 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1280 dl 1.1 ++size;
1281     }
1282     else
1283     break;
1284     }
1285 dl 1.20 if (size == 0L)
1286     sizeCtl = 0;
1287     else {
1288 dl 1.1 int n;
1289     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1290     n = MAXIMUM_CAPACITY;
1291     else {
1292     int sz = (int)size;
1293     n = tableSizeFor(sz + (sz >>> 1) + 1);
1294     }
1295 jsr166 1.33 @SuppressWarnings("unchecked")
1296     Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1297 dl 1.20 int mask = n - 1;
1298     long added = 0L;
1299     while (p != null) {
1300     boolean insertAtFront;
1301     Node<K,V> next = p.next, first;
1302     int h = p.hash, j = h & mask;
1303     if ((first = tabAt(tab, j)) == null)
1304     insertAtFront = true;
1305     else {
1306     K k = p.key;
1307     if (first.hash < 0) {
1308     TreeBin<K,V> t = (TreeBin<K,V>)first;
1309     if (t.putTreeVal(h, k, p.val) == null)
1310     ++added;
1311     insertAtFront = false;
1312 dl 1.1 }
1313 dl 1.20 else {
1314     int binCount = 0;
1315     insertAtFront = true;
1316     Node<K,V> q; K qk;
1317     for (q = first; q != null; q = q.next) {
1318     if (q.hash == h &&
1319     ((qk = q.key) == k ||
1320     (qk != null && k.equals(qk)))) {
1321     insertAtFront = false;
1322 dl 1.1 break;
1323     }
1324 dl 1.20 ++binCount;
1325     }
1326     if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1327     insertAtFront = false;
1328     ++added;
1329     p.next = first;
1330     TreeNode<K,V> hd = null, tl = null;
1331     for (q = p; q != null; q = q.next) {
1332     TreeNode<K,V> t = new TreeNode<K,V>
1333     (q.hash, q.key, q.val, null, null);
1334     if ((t.prev = tl) == null)
1335     hd = t;
1336     else
1337     tl.next = t;
1338     tl = t;
1339     }
1340     setTabAt(tab, j, new TreeBin<K,V>(hd));
1341 dl 1.1 }
1342     }
1343     }
1344 dl 1.20 if (insertAtFront) {
1345     ++added;
1346     p.next = first;
1347     setTabAt(tab, j, p);
1348 dl 1.1 }
1349 dl 1.20 p = next;
1350 dl 1.1 }
1351 dl 1.20 table = tab;
1352     sizeCtl = n - (n >>> 2);
1353     baseCount = added;
1354 dl 1.1 }
1355     }
1356    
1357 dl 1.20 // ConcurrentMap methods
1358 dl 1.1
1359     /**
1360 dl 1.20 * {@inheritDoc}
1361 dl 1.1 *
1362 dl 1.20 * @return the previous value associated with the specified key,
1363     * or {@code null} if there was no mapping for the key
1364     * @throws NullPointerException if the specified key or value is null
1365 dl 1.1 */
1366 dl 1.20 public V putIfAbsent(K key, V value) {
1367     return putVal(key, value, true);
1368 dl 1.1 }
1369    
1370     /**
1371 dl 1.20 * {@inheritDoc}
1372 dl 1.1 *
1373 dl 1.20 * @throws NullPointerException if the specified key is null
1374 dl 1.1 */
1375 dl 1.20 public boolean remove(Object key, Object value) {
1376     if (key == null)
1377     throw new NullPointerException();
1378     return value != null && replaceNode(key, null, value) != null;
1379 dl 1.1 }
1380    
1381     /**
1382 dl 1.20 * {@inheritDoc}
1383 dl 1.1 *
1384 dl 1.20 * @throws NullPointerException if any of the arguments are null
1385 dl 1.1 */
1386 dl 1.20 public boolean replace(K key, V oldValue, V newValue) {
1387     if (key == null || oldValue == null || newValue == null)
1388     throw new NullPointerException();
1389     return replaceNode(key, newValue, oldValue) != null;
1390 dl 1.1 }
1391    
1392     /**
1393 dl 1.20 * {@inheritDoc}
1394 dl 1.1 *
1395 dl 1.20 * @return the previous value associated with the specified key,
1396     * or {@code null} if there was no mapping for the key
1397     * @throws NullPointerException if the specified key or value is null
1398 dl 1.1 */
1399 dl 1.20 public V replace(K key, V value) {
1400     if (key == null || value == null)
1401     throw new NullPointerException();
1402     return replaceNode(key, value, null);
1403 dl 1.1 }
1404 dl 1.20 // Hashtable legacy methods
1405 dl 1.1
1406     /**
1407 dl 1.20 * Legacy method testing if some key maps into the specified value
1408 jsr166 1.34 * in this table.
1409     *
1410     * @deprecated This method is identical in functionality to
1411 dl 1.20 * {@link #containsValue(Object)}, and exists solely to ensure
1412     * full compatibility with class {@link java.util.Hashtable},
1413     * which supported this method prior to introduction of the
1414     * Java Collections framework.
1415 dl 1.1 *
1416 dl 1.20 * @param value a value to search for
1417     * @return {@code true} if and only if some key maps to the
1418     * {@code value} argument in this table as
1419     * determined by the {@code equals} method;
1420     * {@code false} otherwise
1421     * @throws NullPointerException if the specified value is null
1422 dl 1.1 */
1423 dl 1.20 @Deprecated public boolean contains(Object value) {
1424     return containsValue(value);
1425 dl 1.1 }
1426    
1427     /**
1428 dl 1.20 * Returns an enumeration of the keys in this table.
1429 dl 1.1 *
1430 dl 1.20 * @return an enumeration of the keys in this table
1431     * @see #keySet()
1432 dl 1.1 */
1433 dl 1.20 public Enumeration<K> keys() {
1434     Node<K,V>[] t;
1435     int f = (t = table) == null ? 0 : t.length;
1436     return new KeyIterator<K,V>(t, f, 0, f, this);
1437 dl 1.1 }
1438    
1439     /**
1440 dl 1.20 * Returns an enumeration of the values in this table.
1441 dl 1.1 *
1442 dl 1.20 * @return an enumeration of the values in this table
1443     * @see #values()
1444 dl 1.1 */
1445 dl 1.20 public Enumeration<V> elements() {
1446     Node<K,V>[] t;
1447     int f = (t = table) == null ? 0 : t.length;
1448     return new ValueIterator<K,V>(t, f, 0, f, this);
1449 dl 1.1 }
1450    
1451 dl 1.20 // ConcurrentHashMap-only methods
1452    
1453 dl 1.1 /**
1454 dl 1.20 * Returns the number of mappings. This method should be used
1455     * instead of {@link #size} because a ConcurrentHashMap may
1456     * contain more mappings than can be represented as an int. The
1457     * value returned is an estimate; the actual count may differ if
1458     * there are concurrent insertions or removals.
1459 dl 1.1 *
1460 dl 1.20 * @return the number of mappings
1461     * @since 1.8
1462 dl 1.1 */
1463 dl 1.20 public long mappingCount() {
1464     long n = sumCount();
1465     return (n < 0L) ? 0L : n; // ignore transient negative values
1466 dl 1.1 }
1467    
1468     /**
1469 dl 1.20 * Creates a new {@link Set} backed by a ConcurrentHashMap
1470     * from the given type to {@code Boolean.TRUE}.
1471 dl 1.1 *
1472 jsr166 1.31 * @param <K> the element type of the returned set
1473 dl 1.20 * @return the new set
1474     * @since 1.8
1475 dl 1.1 */
1476 dl 1.20 public static <K> KeySetView<K,Boolean> newKeySet() {
1477     return new KeySetView<K,Boolean>
1478     (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
1479 dl 1.1 }
1480    
1481     /**
1482 dl 1.20 * Creates a new {@link Set} backed by a ConcurrentHashMap
1483     * from the given type to {@code Boolean.TRUE}.
1484 dl 1.1 *
1485 dl 1.20 * @param initialCapacity The implementation performs internal
1486     * sizing to accommodate this many elements.
1487 jsr166 1.31 * @param <K> the element type of the returned set
1488 jsr166 1.29 * @return the new set
1489 dl 1.20 * @throws IllegalArgumentException if the initial capacity of
1490     * elements is negative
1491     * @since 1.8
1492 dl 1.1 */
1493 dl 1.20 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
1494     return new KeySetView<K,Boolean>
1495     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
1496 dl 1.1 }
1497    
1498     /**
1499 dl 1.20 * Returns a {@link Set} view of the keys in this map, using the
1500     * given common mapped value for any additions (i.e., {@link
1501     * Collection#add} and {@link Collection#addAll(Collection)}).
1502     * This is of course only appropriate if it is acceptable to use
1503     * the same value for all additions from this view.
1504 dl 1.1 *
1505 dl 1.20 * @param mappedValue the mapped value to use for any additions
1506     * @return the set view
1507     * @throws NullPointerException if the mappedValue is null
1508 dl 1.1 */
1509 dl 1.20 public KeySetView<K,V> keySet(V mappedValue) {
1510     if (mappedValue == null)
1511     throw new NullPointerException();
1512     return new KeySetView<K,V>(this, mappedValue);
1513 dl 1.1 }
1514    
1515 dl 1.20 /* ---------------- Special Nodes -------------- */
1516    
1517 dl 1.1 /**
1518 dl 1.20 * A node inserted at head of bins during transfer operations.
1519 dl 1.1 */
1520 dl 1.20 static final class ForwardingNode<K,V> extends Node<K,V> {
1521     final Node<K,V>[] nextTable;
1522     ForwardingNode(Node<K,V>[] tab) {
1523     super(MOVED, null, null, null);
1524     this.nextTable = tab;
1525     }
1526    
1527     Node<K,V> find(int h, Object k) {
1528     Node<K,V> e; int n;
1529     Node<K,V>[] tab = nextTable;
1530     if (k != null && tab != null && (n = tab.length) > 0 &&
1531     (e = tabAt(tab, (n - 1) & h)) != null) {
1532     do {
1533     int eh; K ek;
1534     if ((eh = e.hash) == h &&
1535     ((ek = e.key) == k || (ek != null && k.equals(ek))))
1536     return e;
1537     if (eh < 0)
1538     return e.find(h, k);
1539     } while ((e = e.next) != null);
1540     }
1541     return null;
1542     }
1543 dl 1.1 }
1544    
1545     /**
1546 dl 1.20 * A place-holder node used in computeIfAbsent and compute
1547 dl 1.1 */
1548 dl 1.20 static final class ReservationNode<K,V> extends Node<K,V> {
1549     ReservationNode() {
1550     super(RESERVED, null, null, null);
1551     }
1552    
1553     Node<K,V> find(int h, Object k) {
1554     return null;
1555     }
1556 dl 1.1 }
1557    
1558 dl 1.20 /* ---------------- Table Initialization and Resizing -------------- */
1559    
1560 dl 1.1 /**
1561 dl 1.36 * Returns the stamp bits for resizing a table of size n.
1562     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
1563     */
1564     static final int resizeStamp(int n) {
1565     return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
1566     }
1567    
1568     /**
1569 dl 1.20 * Initializes table, using the size recorded in sizeCtl.
1570 dl 1.1 */
1571 dl 1.20 private final Node<K,V>[] initTable() {
1572     Node<K,V>[] tab; int sc;
1573     while ((tab = table) == null || tab.length == 0) {
1574     if ((sc = sizeCtl) < 0)
1575     Thread.yield(); // lost initialization race; just spin
1576     else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1577     try {
1578     if ((tab = table) == null || tab.length == 0) {
1579     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1580 jsr166 1.33 @SuppressWarnings("unchecked")
1581 dl 1.36 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
1582 dl 1.20 table = tab = nt;
1583     sc = n - (n >>> 2);
1584     }
1585     } finally {
1586     sizeCtl = sc;
1587     }
1588     break;
1589     }
1590     }
1591     return tab;
1592 dl 1.1 }
1593    
1594     /**
1595 dl 1.20 * Adds to count, and if table is too small and not already
1596     * resizing, initiates transfer. If already resizing, helps
1597     * perform transfer if work is available. Rechecks occupancy
1598     * after a transfer to see if another resize is already needed
1599     * because resizings are lagging additions.
1600 dl 1.1 *
1601 dl 1.20 * @param x the count to add
1602     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1603 dl 1.1 */
1604 dl 1.20 private final void addCount(long x, int check) {
1605     CounterCell[] as; long b, s;
1606     if ((as = counterCells) != null ||
1607     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1608     CounterHashCode hc; CounterCell a; long v; int m;
1609     boolean uncontended = true;
1610     if ((hc = threadCounterHashCode.get()) == null ||
1611     as == null || (m = as.length - 1) < 0 ||
1612     (a = as[m & hc.code]) == null ||
1613     !(uncontended =
1614     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1615     fullAddCount(x, hc, uncontended);
1616     return;
1617     }
1618     if (check <= 1)
1619     return;
1620     s = sumCount();
1621     }
1622     if (check >= 0) {
1623 dl 1.36 Node<K,V>[] tab, nt; int n, sc;
1624 dl 1.20 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1625 dl 1.36 (n = tab.length) < MAXIMUM_CAPACITY) {
1626     int rs = resizeStamp(n);
1627 dl 1.20 if (sc < 0) {
1628 dl 1.36 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
1629     sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
1630     transferIndex <= 0)
1631 dl 1.20 break;
1632 dl 1.36 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
1633 dl 1.20 transfer(tab, nt);
1634     }
1635 dl 1.36 else if (U.compareAndSwapInt(this, SIZECTL, sc,
1636     (rs << RESIZE_STAMP_SHIFT) + 2))
1637 dl 1.20 transfer(tab, null);
1638     s = sumCount();
1639     }
1640     }
1641 dl 1.1 }
1642    
1643     /**
1644 dl 1.20 * Helps transfer if a resize is in progress.
1645 dl 1.1 */
1646 dl 1.20 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
1647     Node<K,V>[] nextTab; int sc;
1648 dl 1.36 if (tab != null && (f instanceof ForwardingNode) &&
1649 dl 1.20 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
1650 dl 1.36 int rs = resizeStamp(tab.length);
1651     while (nextTab == nextTable && table == tab &&
1652     (sc = sizeCtl) < 0) {
1653     if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
1654     sc == rs + MAX_RESIZERS || transferIndex <= 0)
1655     break;
1656     if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
1657 dl 1.35 transfer(tab, nextTab);
1658     break;
1659     }
1660     }
1661 dl 1.20 return nextTab;
1662     }
1663     return table;
1664 dl 1.1 }
1665    
1666     /**
1667 dl 1.20 * Tries to presize table to accommodate the given number of elements.
1668 dl 1.1 *
1669 dl 1.20 * @param size number of elements (doesn't need to be perfectly accurate)
1670 dl 1.1 */
1671 dl 1.20 private final void tryPresize(int size) {
1672     int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1673     tableSizeFor(size + (size >>> 1) + 1);
1674     int sc;
1675     while ((sc = sizeCtl) >= 0) {
1676     Node<K,V>[] tab = table; int n;
1677     if (tab == null || (n = tab.length) == 0) {
1678     n = (sc > c) ? sc : c;
1679     if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1680     try {
1681     if (table == tab) {
1682 jsr166 1.33 @SuppressWarnings("unchecked")
1683 dl 1.36 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
1684 dl 1.20 table = nt;
1685     sc = n - (n >>> 2);
1686     }
1687     } finally {
1688     sizeCtl = sc;
1689     }
1690     }
1691     }
1692     else if (c <= sc || n >= MAXIMUM_CAPACITY)
1693     break;
1694 dl 1.36 else if (tab == table) {
1695     int rs = resizeStamp(n);
1696     if (sc < 0) {
1697     Node<K,V>[] nt;
1698     if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
1699     sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
1700     transferIndex <= 0)
1701     break;
1702     if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
1703     transfer(tab, nt);
1704     }
1705     else if (U.compareAndSwapInt(this, SIZECTL, sc,
1706     (rs << RESIZE_STAMP_SHIFT) + 2))
1707     transfer(tab, null);
1708     }
1709 dl 1.20 }
1710 dl 1.1 }
1711    
1712     /**
1713 dl 1.20 * Moves and/or copies the nodes in each bin to new table. See
1714     * above for explanation.
1715 dl 1.1 */
1716 dl 1.20 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
1717     int n = tab.length, stride;
1718     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1719     stride = MIN_TRANSFER_STRIDE; // subdivide range
1720     if (nextTab == null) { // initiating
1721     try {
1722 jsr166 1.33 @SuppressWarnings("unchecked")
1723 dl 1.35 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
1724 dl 1.20 nextTab = nt;
1725     } catch (Throwable ex) { // try to cope with OOME
1726     sizeCtl = Integer.MAX_VALUE;
1727     return;
1728     }
1729     nextTable = nextTab;
1730     transferIndex = n;
1731     }
1732     int nextn = nextTab.length;
1733     ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
1734     boolean advance = true;
1735 dl 1.35 boolean finishing = false; // to ensure sweep before committing nextTab
1736 dl 1.20 for (int i = 0, bound = 0;;) {
1737 dl 1.35 Node<K,V> f; int fh;
1738 dl 1.20 while (advance) {
1739 dl 1.35 int nextIndex, nextBound;
1740     if (--i >= bound || finishing)
1741 dl 1.20 advance = false;
1742 dl 1.35 else if ((nextIndex = transferIndex) <= 0) {
1743 dl 1.20 i = -1;
1744     advance = false;
1745     }
1746     else if (U.compareAndSwapInt
1747     (this, TRANSFERINDEX, nextIndex,
1748     nextBound = (nextIndex > stride ?
1749     nextIndex - stride : 0))) {
1750     bound = nextBound;
1751     i = nextIndex - 1;
1752     advance = false;
1753     }
1754     }
1755     if (i < 0 || i >= n || i + n >= nextn) {
1756 dl 1.35 int sc;
1757     if (finishing) {
1758     nextTable = null;
1759     table = nextTab;
1760     sizeCtl = (n << 1) - (n >>> 1);
1761     return;
1762     }
1763 dl 1.36 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
1764     if ((sc - 2) != resizeStamp(n))
1765 dl 1.20 return;
1766 dl 1.35 finishing = advance = true;
1767     i = n; // recheck before commit
1768 dl 1.20 }
1769     }
1770 dl 1.35 else if ((f = tabAt(tab, i)) == null)
1771     advance = casTabAt(tab, i, null, fwd);
1772 dl 1.20 else if ((fh = f.hash) == MOVED)
1773     advance = true; // already processed
1774     else {
1775     synchronized (f) {
1776     if (tabAt(tab, i) == f) {
1777     Node<K,V> ln, hn;
1778     if (fh >= 0) {
1779     int runBit = fh & n;
1780     Node<K,V> lastRun = f;
1781     for (Node<K,V> p = f.next; p != null; p = p.next) {
1782     int b = p.hash & n;
1783     if (b != runBit) {
1784     runBit = b;
1785     lastRun = p;
1786     }
1787     }
1788     if (runBit == 0) {
1789     ln = lastRun;
1790     hn = null;
1791     }
1792     else {
1793     hn = lastRun;
1794     ln = null;
1795     }
1796     for (Node<K,V> p = f; p != lastRun; p = p.next) {
1797     int ph = p.hash; K pk = p.key; V pv = p.val;
1798     if ((ph & n) == 0)
1799     ln = new Node<K,V>(ph, pk, pv, ln);
1800     else
1801     hn = new Node<K,V>(ph, pk, pv, hn);
1802     }
1803 dl 1.35 setTabAt(nextTab, i, ln);
1804     setTabAt(nextTab, i + n, hn);
1805     setTabAt(tab, i, fwd);
1806     advance = true;
1807 dl 1.20 }
1808     else if (f instanceof TreeBin) {
1809     TreeBin<K,V> t = (TreeBin<K,V>)f;
1810     TreeNode<K,V> lo = null, loTail = null;
1811     TreeNode<K,V> hi = null, hiTail = null;
1812     int lc = 0, hc = 0;
1813     for (Node<K,V> e = t.first; e != null; e = e.next) {
1814     int h = e.hash;
1815     TreeNode<K,V> p = new TreeNode<K,V>
1816     (h, e.key, e.val, null, null);
1817     if ((h & n) == 0) {
1818     if ((p.prev = loTail) == null)
1819     lo = p;
1820     else
1821     loTail.next = p;
1822     loTail = p;
1823     ++lc;
1824     }
1825     else {
1826     if ((p.prev = hiTail) == null)
1827     hi = p;
1828     else
1829     hiTail.next = p;
1830     hiTail = p;
1831     ++hc;
1832     }
1833     }
1834 jsr166 1.24 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
1835     (hc != 0) ? new TreeBin<K,V>(lo) : t;
1836     hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
1837     (lc != 0) ? new TreeBin<K,V>(hi) : t;
1838 dl 1.35 setTabAt(nextTab, i, ln);
1839     setTabAt(nextTab, i + n, hn);
1840     setTabAt(tab, i, fwd);
1841     advance = true;
1842 dl 1.20 }
1843     }
1844     }
1845     }
1846     }
1847 dl 1.1 }
1848    
1849 dl 1.20 /* ---------------- Conversion from/to TreeBins -------------- */
1850 dl 1.1
1851     /**
1852 dl 1.20 * Replaces all linked nodes in bin at given index unless table is
1853     * too small, in which case resizes instead.
1854 dl 1.1 */
1855 dl 1.20 private final void treeifyBin(Node<K,V>[] tab, int index) {
1856     Node<K,V> b; int n, sc;
1857     if (tab != null) {
1858 dl 1.36 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
1859     tryPresize(n << 1);
1860     else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
1861 dl 1.20 synchronized (b) {
1862     if (tabAt(tab, index) == b) {
1863     TreeNode<K,V> hd = null, tl = null;
1864     for (Node<K,V> e = b; e != null; e = e.next) {
1865     TreeNode<K,V> p =
1866     new TreeNode<K,V>(e.hash, e.key, e.val,
1867     null, null);
1868     if ((p.prev = tl) == null)
1869     hd = p;
1870     else
1871     tl.next = p;
1872     tl = p;
1873     }
1874     setTabAt(tab, index, new TreeBin<K,V>(hd));
1875     }
1876     }
1877     }
1878     }
1879 dl 1.1 }
1880    
1881     /**
1882 jsr166 1.25 * Returns a list on non-TreeNodes replacing those in given list.
1883 dl 1.1 */
1884 dl 1.20 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
1885     Node<K,V> hd = null, tl = null;
1886     for (Node<K,V> q = b; q != null; q = q.next) {
1887     Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
1888     if (tl == null)
1889     hd = p;
1890     else
1891     tl.next = p;
1892     tl = p;
1893     }
1894     return hd;
1895 dl 1.1 }
1896    
1897 dl 1.20 /* ---------------- TreeNodes -------------- */
1898 dl 1.1
1899     /**
1900 dl 1.20 * Nodes for use in TreeBins
1901 dl 1.1 */
1902 dl 1.20 static final class TreeNode<K,V> extends Node<K,V> {
1903     TreeNode<K,V> parent; // red-black tree links
1904     TreeNode<K,V> left;
1905     TreeNode<K,V> right;
1906     TreeNode<K,V> prev; // needed to unlink next upon deletion
1907     boolean red;
1908 dl 1.1
1909 dl 1.20 TreeNode(int hash, K key, V val, Node<K,V> next,
1910     TreeNode<K,V> parent) {
1911     super(hash, key, val, next);
1912     this.parent = parent;
1913     }
1914 dl 1.1
1915 dl 1.20 Node<K,V> find(int h, Object k) {
1916     return findTreeNode(h, k, null);
1917     }
1918 dl 1.1
1919 dl 1.20 /**
1920     * Returns the TreeNode (or null if not found) for the given key
1921     * starting at given root.
1922     */
1923     final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
1924     if (k != null) {
1925     TreeNode<K,V> p = this;
1926     do {
1927     int ph, dir; K pk; TreeNode<K,V> q;
1928     TreeNode<K,V> pl = p.left, pr = p.right;
1929     if ((ph = p.hash) > h)
1930     p = pl;
1931     else if (ph < h)
1932     p = pr;
1933     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
1934     return p;
1935 dl 1.30 else if (pl == null)
1936     p = pr;
1937     else if (pr == null)
1938     p = pl;
1939 jsr166 1.21 else if ((kc != null ||
1940 dl 1.20 (kc = comparableClassFor(k)) != null) &&
1941     (dir = compareComparables(kc, k, pk)) != 0)
1942     p = (dir < 0) ? pl : pr;
1943 dl 1.30 else if ((q = pr.findTreeNode(h, k, kc)) != null)
1944     return q;
1945     else
1946 dl 1.20 p = pl;
1947     } while (p != null);
1948     }
1949     return null;
1950     }
1951 dl 1.1 }
1952    
1953 dl 1.30
1954 dl 1.20 /* ---------------- TreeBins -------------- */
1955 dl 1.1
1956     /**
1957 dl 1.20 * TreeNodes used at the heads of bins. TreeBins do not hold user
1958     * keys or values, but instead point to list of TreeNodes and
1959     * their root. They also maintain a parasitic read-write lock
1960     * forcing writers (who hold bin lock) to wait for readers (who do
1961     * not) to complete before tree restructuring operations.
1962     */
1963     static final class TreeBin<K,V> extends Node<K,V> {
1964     TreeNode<K,V> root;
1965     volatile TreeNode<K,V> first;
1966     volatile Thread waiter;
1967     volatile int lockState;
1968     // values for lockState
1969     static final int WRITER = 1; // set while holding write lock
1970     static final int WAITER = 2; // set when waiting for write lock
1971     static final int READER = 4; // increment value for setting read lock
1972    
1973     /**
1974 dl 1.30 * Tie-breaking utility for ordering insertions when equal
1975     * hashCodes and non-comparable. We don't require a total
1976     * order, just a consistent insertion rule to maintain
1977     * equivalence across rebalancings. Tie-breaking further than
1978     * necessary simplifies testing a bit.
1979     */
1980     static int tieBreakOrder(Object a, Object b) {
1981     int d;
1982     if (a == null || b == null ||
1983     (d = a.getClass().getName().
1984     compareTo(b.getClass().getName())) == 0)
1985     d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
1986     -1 : 1);
1987     return d;
1988     }
1989    
1990     /**
1991 dl 1.20 * Creates bin with initial set of nodes headed by b.
1992     */
1993     TreeBin(TreeNode<K,V> b) {
1994     super(TREEBIN, null, null, null);
1995     this.first = b;
1996     TreeNode<K,V> r = null;
1997     for (TreeNode<K,V> x = b, next; x != null; x = next) {
1998     next = (TreeNode<K,V>)x.next;
1999     x.left = x.right = null;
2000     if (r == null) {
2001     x.parent = null;
2002     x.red = false;
2003     r = x;
2004     }
2005     else {
2006 dl 1.30 K k = x.key;
2007     int h = x.hash;
2008 dl 1.20 Class<?> kc = null;
2009     for (TreeNode<K,V> p = r;;) {
2010     int dir, ph;
2011 dl 1.30 K pk = p.key;
2012     if ((ph = p.hash) > h)
2013 dl 1.20 dir = -1;
2014 dl 1.30 else if (ph < h)
2015 dl 1.20 dir = 1;
2016 dl 1.30 else if ((kc == null &&
2017     (kc = comparableClassFor(k)) == null) ||
2018     (dir = compareComparables(kc, k, pk)) == 0)
2019     dir = tieBreakOrder(k, pk);
2020     TreeNode<K,V> xp = p;
2021 dl 1.20 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2022     x.parent = xp;
2023     if (dir <= 0)
2024     xp.left = x;
2025     else
2026     xp.right = x;
2027     r = balanceInsertion(r, x);
2028     break;
2029     }
2030     }
2031     }
2032     }
2033     this.root = r;
2034 dl 1.30 assert checkInvariants(root);
2035 dl 1.20 }
2036 dl 1.1
2037 dl 1.20 /**
2038 jsr166 1.25 * Acquires write lock for tree restructuring.
2039 dl 1.20 */
2040     private final void lockRoot() {
2041     if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2042     contendedLock(); // offload to separate method
2043     }
2044 dl 1.1
2045 dl 1.20 /**
2046 jsr166 1.25 * Releases write lock for tree restructuring.
2047 dl 1.20 */
2048     private final void unlockRoot() {
2049     lockState = 0;
2050     }
2051 dl 1.1
2052 dl 1.20 /**
2053 jsr166 1.25 * Possibly blocks awaiting root lock.
2054 dl 1.20 */
2055     private final void contendedLock() {
2056     boolean waiting = false;
2057     for (int s;;) {
2058 dl 1.36 if (((s = lockState) & ~WAITER) == 0) {
2059 dl 1.20 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2060     if (waiting)
2061     waiter = null;
2062     return;
2063     }
2064     }
2065 dl 1.32 else if ((s & WAITER) == 0) {
2066 dl 1.20 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2067     waiting = true;
2068     waiter = Thread.currentThread();
2069     }
2070     }
2071     else if (waiting)
2072     LockSupport.park(this);
2073     }
2074     }
2075 dl 1.1
2076 dl 1.20 /**
2077     * Returns matching node or null if none. Tries to search
2078 jsr166 1.28 * using tree comparisons from root, but continues linear
2079 dl 1.20 * search when lock not available.
2080     */
2081     final Node<K,V> find(int h, Object k) {
2082     if (k != null) {
2083 dl 1.37 for (Node<K,V> e = first; e != null; ) {
2084 dl 1.20 int s; K ek;
2085     if (((s = lockState) & (WAITER|WRITER)) != 0) {
2086     if (e.hash == h &&
2087     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2088     return e;
2089 dl 1.37 e = e.next;
2090 dl 1.20 }
2091     else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2092     s + READER)) {
2093     TreeNode<K,V> r, p;
2094     try {
2095     p = ((r = root) == null ? null :
2096     r.findTreeNode(h, k, null));
2097     } finally {
2098 jsr166 1.21
2099 dl 1.20 Thread w;
2100     int ls;
2101     do {} while (!U.compareAndSwapInt
2102     (this, LOCKSTATE,
2103     ls = lockState, ls - READER));
2104     if (ls == (READER|WAITER) && (w = waiter) != null)
2105     LockSupport.unpark(w);
2106     }
2107     return p;
2108     }
2109     }
2110     }
2111     return null;
2112     }
2113 dl 1.1
2114     /**
2115 dl 1.20 * Finds or adds a node.
2116     * @return null if added
2117 dl 1.1 */
2118 dl 1.30 /**
2119     * Finds or adds a node.
2120     * @return null if added
2121     */
2122 dl 1.20 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2123     Class<?> kc = null;
2124 dl 1.30 boolean searched = false;
2125 dl 1.20 for (TreeNode<K,V> p = root;;) {
2126 dl 1.30 int dir, ph; K pk;
2127 dl 1.20 if (p == null) {
2128     first = root = new TreeNode<K,V>(h, k, v, null, null);
2129     break;
2130     }
2131     else if ((ph = p.hash) > h)
2132     dir = -1;
2133     else if (ph < h)
2134     dir = 1;
2135     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2136     return p;
2137     else if ((kc == null &&
2138     (kc = comparableClassFor(k)) == null) ||
2139     (dir = compareComparables(kc, k, pk)) == 0) {
2140 dl 1.30 if (!searched) {
2141     TreeNode<K,V> q, ch;
2142     searched = true;
2143     if (((ch = p.left) != null &&
2144     (q = ch.findTreeNode(h, k, kc)) != null) ||
2145     ((ch = p.right) != null &&
2146     (q = ch.findTreeNode(h, k, kc)) != null))
2147     return q;
2148     }
2149     dir = tieBreakOrder(k, pk);
2150 dl 1.20 }
2151 dl 1.30
2152 dl 1.20 TreeNode<K,V> xp = p;
2153 dl 1.30 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2154 dl 1.20 TreeNode<K,V> x, f = first;
2155     first = x = new TreeNode<K,V>(h, k, v, f, xp);
2156     if (f != null)
2157     f.prev = x;
2158 dl 1.30 if (dir <= 0)
2159 dl 1.20 xp.left = x;
2160 dl 1.1 else
2161 dl 1.20 xp.right = x;
2162     if (!xp.red)
2163     x.red = true;
2164     else {
2165     lockRoot();
2166     try {
2167     root = balanceInsertion(root, x);
2168     } finally {
2169     unlockRoot();
2170     }
2171     }
2172     break;
2173 dl 1.1 }
2174     }
2175 dl 1.20 assert checkInvariants(root);
2176     return null;
2177 dl 1.1 }
2178    
2179 dl 1.20 /**
2180     * Removes the given node, that must be present before this
2181     * call. This is messier than typical red-black deletion code
2182     * because we cannot swap the contents of an interior node
2183     * with a leaf successor that is pinned by "next" pointers
2184     * that are accessible independently of lock. So instead we
2185     * swap the tree linkages.
2186     *
2187 jsr166 1.27 * @return true if now too small, so should be untreeified
2188 dl 1.20 */
2189     final boolean removeTreeNode(TreeNode<K,V> p) {
2190     TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2191     TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2192     TreeNode<K,V> r, rl;
2193     if (pred == null)
2194     first = next;
2195     else
2196     pred.next = next;
2197     if (next != null)
2198     next.prev = pred;
2199     if (first == null) {
2200     root = null;
2201     return true;
2202     }
2203     if ((r = root) == null || r.right == null || // too small
2204     (rl = r.left) == null || rl.left == null)
2205     return true;
2206     lockRoot();
2207     try {
2208     TreeNode<K,V> replacement;
2209     TreeNode<K,V> pl = p.left;
2210     TreeNode<K,V> pr = p.right;
2211     if (pl != null && pr != null) {
2212     TreeNode<K,V> s = pr, sl;
2213     while ((sl = s.left) != null) // find successor
2214     s = sl;
2215     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2216     TreeNode<K,V> sr = s.right;
2217     TreeNode<K,V> pp = p.parent;
2218     if (s == pr) { // p was s's direct parent
2219     p.parent = s;
2220     s.right = p;
2221     }
2222     else {
2223     TreeNode<K,V> sp = s.parent;
2224     if ((p.parent = sp) != null) {
2225     if (s == sp.left)
2226     sp.left = p;
2227     else
2228     sp.right = p;
2229     }
2230     if ((s.right = pr) != null)
2231     pr.parent = s;
2232     }
2233     p.left = null;
2234     if ((p.right = sr) != null)
2235     sr.parent = p;
2236     if ((s.left = pl) != null)
2237     pl.parent = s;
2238     if ((s.parent = pp) == null)
2239     r = s;
2240     else if (p == pp.left)
2241     pp.left = s;
2242     else
2243     pp.right = s;
2244     if (sr != null)
2245     replacement = sr;
2246     else
2247     replacement = p;
2248     }
2249     else if (pl != null)
2250     replacement = pl;
2251     else if (pr != null)
2252     replacement = pr;
2253     else
2254     replacement = p;
2255     if (replacement != p) {
2256     TreeNode<K,V> pp = replacement.parent = p.parent;
2257     if (pp == null)
2258     r = replacement;
2259     else if (p == pp.left)
2260     pp.left = replacement;
2261 dl 1.1 else
2262 dl 1.20 pp.right = replacement;
2263     p.left = p.right = p.parent = null;
2264     }
2265    
2266     root = (p.red) ? r : balanceDeletion(r, replacement);
2267    
2268     if (p == replacement) { // detach pointers
2269     TreeNode<K,V> pp;
2270     if ((pp = p.parent) != null) {
2271     if (p == pp.left)
2272     pp.left = null;
2273     else if (p == pp.right)
2274     pp.right = null;
2275     p.parent = null;
2276     }
2277 dl 1.1 }
2278 dl 1.20 } finally {
2279     unlockRoot();
2280 dl 1.1 }
2281 dl 1.20 assert checkInvariants(root);
2282     return false;
2283 dl 1.1 }
2284    
2285 dl 1.20 /* ------------------------------------------------------------ */
2286     // Red-black tree methods, all adapted from CLR
2287    
2288     static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2289     TreeNode<K,V> p) {
2290     TreeNode<K,V> r, pp, rl;
2291     if (p != null && (r = p.right) != null) {
2292     if ((rl = p.right = r.left) != null)
2293     rl.parent = p;
2294     if ((pp = r.parent = p.parent) == null)
2295     (root = r).red = false;
2296     else if (pp.left == p)
2297     pp.left = r;
2298     else
2299     pp.right = r;
2300     r.left = p;
2301     p.parent = r;
2302     }
2303     return root;
2304 dl 1.1 }
2305    
2306 dl 1.20 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2307     TreeNode<K,V> p) {
2308     TreeNode<K,V> l, pp, lr;
2309     if (p != null && (l = p.left) != null) {
2310     if ((lr = p.left = l.right) != null)
2311     lr.parent = p;
2312     if ((pp = l.parent = p.parent) == null)
2313     (root = l).red = false;
2314     else if (pp.right == p)
2315     pp.right = l;
2316     else
2317     pp.left = l;
2318     l.right = p;
2319     p.parent = l;
2320 dl 1.1 }
2321 dl 1.20 return root;
2322 dl 1.1 }
2323    
2324 dl 1.20 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2325     TreeNode<K,V> x) {
2326     x.red = true;
2327     for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2328     if ((xp = x.parent) == null) {
2329     x.red = false;
2330     return x;
2331     }
2332     else if (!xp.red || (xpp = xp.parent) == null)
2333     return root;
2334     if (xp == (xppl = xpp.left)) {
2335     if ((xppr = xpp.right) != null && xppr.red) {
2336     xppr.red = false;
2337     xp.red = false;
2338     xpp.red = true;
2339     x = xpp;
2340     }
2341     else {
2342     if (x == xp.right) {
2343     root = rotateLeft(root, x = xp);
2344     xpp = (xp = x.parent) == null ? null : xp.parent;
2345     }
2346     if (xp != null) {
2347     xp.red = false;
2348     if (xpp != null) {
2349     xpp.red = true;
2350     root = rotateRight(root, xpp);
2351     }
2352     }
2353     }
2354 dl 1.1 }
2355 dl 1.20 else {
2356     if (xppl != null && xppl.red) {
2357     xppl.red = false;
2358     xp.red = false;
2359     xpp.red = true;
2360     x = xpp;
2361     }
2362     else {
2363     if (x == xp.left) {
2364     root = rotateRight(root, x = xp);
2365     xpp = (xp = x.parent) == null ? null : xp.parent;
2366     }
2367     if (xp != null) {
2368     xp.red = false;
2369     if (xpp != null) {
2370     xpp.red = true;
2371     root = rotateLeft(root, xpp);
2372     }
2373     }
2374     }
2375 dl 1.1 }
2376     }
2377     }
2378    
2379 dl 1.20 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2380     TreeNode<K,V> x) {
2381     for (TreeNode<K,V> xp, xpl, xpr;;) {
2382     if (x == null || x == root)
2383     return root;
2384     else if ((xp = x.parent) == null) {
2385     x.red = false;
2386     return x;
2387     }
2388     else if (x.red) {
2389     x.red = false;
2390     return root;
2391     }
2392     else if ((xpl = xp.left) == x) {
2393     if ((xpr = xp.right) != null && xpr.red) {
2394     xpr.red = false;
2395     xp.red = true;
2396     root = rotateLeft(root, xp);
2397     xpr = (xp = x.parent) == null ? null : xp.right;
2398     }
2399     if (xpr == null)
2400     x = xp;
2401     else {
2402     TreeNode<K,V> sl = xpr.left, sr = xpr.right;
2403     if ((sr == null || !sr.red) &&
2404     (sl == null || !sl.red)) {
2405     xpr.red = true;
2406     x = xp;
2407     }
2408     else {
2409     if (sr == null || !sr.red) {
2410     if (sl != null)
2411     sl.red = false;
2412     xpr.red = true;
2413     root = rotateRight(root, xpr);
2414     xpr = (xp = x.parent) == null ?
2415     null : xp.right;
2416     }
2417     if (xpr != null) {
2418     xpr.red = (xp == null) ? false : xp.red;
2419     if ((sr = xpr.right) != null)
2420     sr.red = false;
2421     }
2422     if (xp != null) {
2423     xp.red = false;
2424     root = rotateLeft(root, xp);
2425     }
2426     x = root;
2427     }
2428     }
2429     }
2430     else { // symmetric
2431     if (xpl != null && xpl.red) {
2432     xpl.red = false;
2433     xp.red = true;
2434     root = rotateRight(root, xp);
2435     xpl = (xp = x.parent) == null ? null : xp.left;
2436     }
2437     if (xpl == null)
2438     x = xp;
2439     else {
2440     TreeNode<K,V> sl = xpl.left, sr = xpl.right;
2441     if ((sl == null || !sl.red) &&
2442     (sr == null || !sr.red)) {
2443     xpl.red = true;
2444     x = xp;
2445     }
2446     else {
2447     if (sl == null || !sl.red) {
2448     if (sr != null)
2449     sr.red = false;
2450     xpl.red = true;
2451     root = rotateLeft(root, xpl);
2452     xpl = (xp = x.parent) == null ?
2453     null : xp.left;
2454     }
2455     if (xpl != null) {
2456     xpl.red = (xp == null) ? false : xp.red;
2457     if ((sl = xpl.left) != null)
2458     sl.red = false;
2459     }
2460     if (xp != null) {
2461     xp.red = false;
2462     root = rotateRight(root, xp);
2463     }
2464     x = root;
2465     }
2466     }
2467 dl 1.1 }
2468     }
2469     }
2470 jsr166 1.21
2471 dl 1.1 /**
2472 dl 1.20 * Recursive invariant check
2473 dl 1.1 */
2474 dl 1.20 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
2475     TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
2476     tb = t.prev, tn = (TreeNode<K,V>)t.next;
2477     if (tb != null && tb.next != t)
2478     return false;
2479     if (tn != null && tn.prev != t)
2480     return false;
2481     if (tp != null && t != tp.left && t != tp.right)
2482     return false;
2483     if (tl != null && (tl.parent != t || tl.hash > t.hash))
2484     return false;
2485     if (tr != null && (tr.parent != t || tr.hash < t.hash))
2486     return false;
2487     if (t.red && tl != null && tl.red && tr != null && tr.red)
2488     return false;
2489     if (tl != null && !checkInvariants(tl))
2490     return false;
2491     if (tr != null && !checkInvariants(tr))
2492     return false;
2493     return true;
2494     }
2495 dl 1.1
2496 dl 1.20 private static final sun.misc.Unsafe U;
2497     private static final long LOCKSTATE;
2498     static {
2499     try {
2500     U = sun.misc.Unsafe.getUnsafe();
2501     Class<?> k = TreeBin.class;
2502     LOCKSTATE = U.objectFieldOffset
2503     (k.getDeclaredField("lockState"));
2504     } catch (Exception e) {
2505     throw new Error(e);
2506 dl 1.1 }
2507     }
2508     }
2509    
2510 dl 1.20 /* ----------------Table Traversal -------------- */
2511    
2512 dl 1.1 /**
2513 dl 1.35 * Records the table, its length, and current traversal index for a
2514     * traverser that must process a region of a forwarded table before
2515     * proceeding with current table.
2516     */
2517     static final class TableStack<K,V> {
2518     int length;
2519     int index;
2520     Node<K,V>[] tab;
2521     TableStack<K,V> next;
2522     }
2523    
2524     /**
2525 dl 1.20 * Encapsulates traversal for methods such as containsValue; also
2526 dl 1.35 * serves as a base class for other iterators and spliterators.
2527 dl 1.20 *
2528     * Method advance visits once each still-valid node that was
2529     * reachable upon iterator construction. It might miss some that
2530     * were added to a bin after the bin was visited, which is OK wrt
2531     * consistency guarantees. Maintaining this property in the face
2532     * of possible ongoing resizes requires a fair amount of
2533     * bookkeeping state that is difficult to optimize away amidst
2534     * volatile accesses. Even so, traversal maintains reasonable
2535     * throughput.
2536 dl 1.1 *
2537 dl 1.20 * Normally, iteration proceeds bin-by-bin traversing lists.
2538     * However, if the table has been resized, then all future steps
2539     * must traverse both the bin at the current index as well as at
2540     * (index + baseSize); and so on for further resizings. To
2541     * paranoically cope with potential sharing by users of iterators
2542     * across threads, iteration terminates if a bounds checks fails
2543     * for a table read.
2544 dl 1.1 */
2545 dl 1.20 static class Traverser<K,V> {
2546     Node<K,V>[] tab; // current table; updated if resized
2547     Node<K,V> next; // the next entry to use
2548 dl 1.35 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
2549 dl 1.20 int index; // index of bin to use next
2550     int baseIndex; // current index of initial table
2551     int baseLimit; // index bound for initial table
2552     final int baseSize; // initial table size
2553    
2554     Traverser(Node<K,V>[] tab, int size, int index, int limit) {
2555     this.tab = tab;
2556     this.baseSize = size;
2557     this.baseIndex = this.index = index;
2558     this.baseLimit = limit;
2559     this.next = null;
2560     }
2561    
2562     /**
2563     * Advances if possible, returning next valid node, or null if none.
2564     */
2565     final Node<K,V> advance() {
2566     Node<K,V> e;
2567     if ((e = next) != null)
2568     e = e.next;
2569     for (;;) {
2570 dl 1.35 Node<K,V>[] t; int i, n; // must use locals in checks
2571 dl 1.20 if (e != null)
2572     return next = e;
2573     if (baseIndex >= baseLimit || (t = tab) == null ||
2574     (n = t.length) <= (i = index) || i < 0)
2575     return next = null;
2576 dl 1.35 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2577 dl 1.20 if (e instanceof ForwardingNode) {
2578     tab = ((ForwardingNode<K,V>)e).nextTable;
2579     e = null;
2580 dl 1.35 pushState(t, i, n);
2581 dl 1.20 continue;
2582 dl 1.1 }
2583 dl 1.20 else if (e instanceof TreeBin)
2584     e = ((TreeBin<K,V>)e).first;
2585     else
2586     e = null;
2587 dl 1.1 }
2588 dl 1.35 if (stack != null)
2589     recoverState(n);
2590     else if ((index = i + baseSize) >= n)
2591     index = ++baseIndex; // visit upper slots if present
2592     }
2593     }
2594    
2595     /**
2596     * Saves traversal state upon encountering a forwarding node.
2597     */
2598     private void pushState(Node<K,V>[] t, int i, int n) {
2599     TableStack<K,V> s = spare; // reuse if possible
2600     if (s != null)
2601     spare = s.next;
2602     else
2603     s = new TableStack<K,V>();
2604     s.tab = t;
2605     s.length = n;
2606     s.index = i;
2607     s.next = stack;
2608     stack = s;
2609     }
2610    
2611     /**
2612     * Possibly pops traversal state.
2613     *
2614     * @param n length of current table
2615     */
2616     private void recoverState(int n) {
2617     TableStack<K,V> s; int len;
2618     while ((s = stack) != null && (index += (len = s.length)) >= n) {
2619     n = len;
2620     index = s.index;
2621     tab = s.tab;
2622     s.tab = null;
2623     TableStack<K,V> next = s.next;
2624     s.next = spare; // save for reuse
2625     stack = next;
2626     spare = s;
2627 dl 1.1 }
2628 dl 1.35 if (s == null && (index += baseSize) >= n)
2629     index = ++baseIndex;
2630 dl 1.1 }
2631     }
2632    
2633     /**
2634 dl 1.20 * Base of key, value, and entry Iterators. Adds fields to
2635 jsr166 1.25 * Traverser to support iterator.remove.
2636 dl 1.1 */
2637 dl 1.20 static class BaseIterator<K,V> extends Traverser<K,V> {
2638     final ConcurrentHashMap<K,V> map;
2639     Node<K,V> lastReturned;
2640     BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
2641     ConcurrentHashMap<K,V> map) {
2642     super(tab, size, index, limit);
2643     this.map = map;
2644     advance();
2645 dl 1.1 }
2646    
2647 dl 1.20 public final boolean hasNext() { return next != null; }
2648     public final boolean hasMoreElements() { return next != null; }
2649 dl 1.1
2650 dl 1.20 public final void remove() {
2651     Node<K,V> p;
2652     if ((p = lastReturned) == null)
2653     throw new IllegalStateException();
2654     lastReturned = null;
2655     map.replaceNode(p.key, null, null);
2656 dl 1.1 }
2657     }
2658    
2659 dl 1.20 static final class KeyIterator<K,V> extends BaseIterator<K,V>
2660     implements Iterator<K>, Enumeration<K> {
2661     KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
2662     ConcurrentHashMap<K,V> map) {
2663     super(tab, index, size, limit, map);
2664     }
2665 dl 1.1
2666 dl 1.20 public final K next() {
2667     Node<K,V> p;
2668     if ((p = next) == null)
2669     throw new NoSuchElementException();
2670     K k = p.key;
2671     lastReturned = p;
2672     advance();
2673     return k;
2674 dl 1.1 }
2675    
2676 dl 1.20 public final K nextElement() { return next(); }
2677     }
2678 dl 1.1
2679 dl 1.20 static final class ValueIterator<K,V> extends BaseIterator<K,V>
2680     implements Iterator<V>, Enumeration<V> {
2681     ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
2682     ConcurrentHashMap<K,V> map) {
2683     super(tab, index, size, limit, map);
2684 dl 1.1 }
2685    
2686 dl 1.20 public final V next() {
2687     Node<K,V> p;
2688     if ((p = next) == null)
2689     throw new NoSuchElementException();
2690     V v = p.val;
2691     lastReturned = p;
2692     advance();
2693     return v;
2694 dl 1.1 }
2695    
2696 dl 1.20 public final V nextElement() { return next(); }
2697     }
2698 dl 1.1
2699 dl 1.20 static final class EntryIterator<K,V> extends BaseIterator<K,V>
2700     implements Iterator<Map.Entry<K,V>> {
2701     EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
2702     ConcurrentHashMap<K,V> map) {
2703     super(tab, index, size, limit, map);
2704 dl 1.1 }
2705    
2706 dl 1.20 public final Map.Entry<K,V> next() {
2707     Node<K,V> p;
2708     if ((p = next) == null)
2709     throw new NoSuchElementException();
2710     K k = p.key;
2711     V v = p.val;
2712     lastReturned = p;
2713     advance();
2714     return new MapEntry<K,V>(k, v, map);
2715 dl 1.1 }
2716 dl 1.20 }
2717 dl 1.1
2718 dl 1.20 /**
2719     * Exported Entry for EntryIterator
2720     */
2721     static final class MapEntry<K,V> implements Map.Entry<K,V> {
2722     final K key; // non-null
2723     V val; // non-null
2724     final ConcurrentHashMap<K,V> map;
2725     MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
2726     this.key = key;
2727     this.val = val;
2728     this.map = map;
2729 dl 1.1 }
2730 dl 1.20 public K getKey() { return key; }
2731     public V getValue() { return val; }
2732     public int hashCode() { return key.hashCode() ^ val.hashCode(); }
2733     public String toString() { return key + "=" + val; }
2734 dl 1.1
2735 dl 1.20 public boolean equals(Object o) {
2736     Object k, v; Map.Entry<?,?> e;
2737     return ((o instanceof Map.Entry) &&
2738     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
2739     (v = e.getValue()) != null &&
2740     (k == key || k.equals(key)) &&
2741     (v == val || v.equals(val)));
2742 dl 1.1 }
2743    
2744     /**
2745 dl 1.20 * Sets our entry's value and writes through to the map. The
2746     * value to return is somewhat arbitrary here. Since we do not
2747     * necessarily track asynchronous changes, the most recent
2748     * "previous" value could be different from what we return (or
2749     * could even have been removed, in which case the put will
2750     * re-establish). We do not and cannot guarantee more.
2751 dl 1.1 */
2752 dl 1.20 public V setValue(V value) {
2753     if (value == null) throw new NullPointerException();
2754     V v = val;
2755     val = value;
2756     map.put(key, value);
2757     return v;
2758 dl 1.1 }
2759 dl 1.20 }
2760 dl 1.1
2761 dl 1.20 /* ----------------Views -------------- */
2762 dl 1.1
2763 dl 1.20 /**
2764     * Base class for views.
2765     */
2766     abstract static class CollectionView<K,V,E>
2767     implements Collection<E>, java.io.Serializable {
2768     private static final long serialVersionUID = 7249069246763182397L;
2769     final ConcurrentHashMap<K,V> map;
2770     CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
2771 dl 1.1
2772     /**
2773 dl 1.20 * Returns the map backing this view.
2774 dl 1.1 *
2775 dl 1.20 * @return the map backing this view
2776 dl 1.1 */
2777 dl 1.20 public ConcurrentHashMap<K,V> getMap() { return map; }
2778 dl 1.1
2779     /**
2780 dl 1.20 * Removes all of the elements from this view, by removing all
2781     * the mappings from the map backing this view.
2782 dl 1.1 */
2783 dl 1.20 public final void clear() { map.clear(); }
2784     public final int size() { return map.size(); }
2785     public final boolean isEmpty() { return map.isEmpty(); }
2786 dl 1.1
2787 dl 1.20 // implementations below rely on concrete classes supplying these
2788     // abstract methods
2789 dl 1.1 /**
2790 dl 1.20 * Returns a "weakly consistent" iterator that will never
2791     * throw {@link ConcurrentModificationException}, and
2792     * guarantees to traverse elements as they existed upon
2793     * construction of the iterator, and may (but is not
2794     * guaranteed to) reflect any modifications subsequent to
2795     * construction.
2796 dl 1.1 */
2797 dl 1.20 public abstract Iterator<E> iterator();
2798     public abstract boolean contains(Object o);
2799     public abstract boolean remove(Object o);
2800 dl 1.1
2801 dl 1.20 private static final String oomeMsg = "Required array size too large";
2802 dl 1.1
2803 dl 1.20 public final Object[] toArray() {
2804     long sz = map.mappingCount();
2805     if (sz > MAX_ARRAY_SIZE)
2806     throw new OutOfMemoryError(oomeMsg);
2807     int n = (int)sz;
2808     Object[] r = new Object[n];
2809     int i = 0;
2810     for (E e : this) {
2811     if (i == n) {
2812     if (n >= MAX_ARRAY_SIZE)
2813     throw new OutOfMemoryError(oomeMsg);
2814     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
2815     n = MAX_ARRAY_SIZE;
2816     else
2817     n += (n >>> 1) + 1;
2818     r = Arrays.copyOf(r, n);
2819     }
2820     r[i++] = e;
2821     }
2822     return (i == n) ? r : Arrays.copyOf(r, i);
2823 dl 1.1 }
2824    
2825 dl 1.20 @SuppressWarnings("unchecked")
2826     public final <T> T[] toArray(T[] a) {
2827     long sz = map.mappingCount();
2828     if (sz > MAX_ARRAY_SIZE)
2829     throw new OutOfMemoryError(oomeMsg);
2830     int m = (int)sz;
2831     T[] r = (a.length >= m) ? a :
2832     (T[])java.lang.reflect.Array
2833     .newInstance(a.getClass().getComponentType(), m);
2834     int n = r.length;
2835     int i = 0;
2836     for (E e : this) {
2837     if (i == n) {
2838     if (n >= MAX_ARRAY_SIZE)
2839     throw new OutOfMemoryError(oomeMsg);
2840     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
2841     n = MAX_ARRAY_SIZE;
2842     else
2843     n += (n >>> 1) + 1;
2844     r = Arrays.copyOf(r, n);
2845     }
2846     r[i++] = (T)e;
2847     }
2848     if (a == r && i < n) {
2849     r[i] = null; // null-terminate
2850     return r;
2851     }
2852     return (i == n) ? r : Arrays.copyOf(r, i);
2853 dl 1.1 }
2854    
2855     /**
2856 dl 1.20 * Returns a string representation of this collection.
2857     * The string representation consists of the string representations
2858     * of the collection's elements in the order they are returned by
2859     * its iterator, enclosed in square brackets ({@code "[]"}).
2860     * Adjacent elements are separated by the characters {@code ", "}
2861     * (comma and space). Elements are converted to strings as by
2862     * {@link String#valueOf(Object)}.
2863 dl 1.1 *
2864 dl 1.20 * @return a string representation of this collection
2865 dl 1.1 */
2866 dl 1.20 public final String toString() {
2867     StringBuilder sb = new StringBuilder();
2868     sb.append('[');
2869     Iterator<E> it = iterator();
2870     if (it.hasNext()) {
2871     for (;;) {
2872     Object e = it.next();
2873     sb.append(e == this ? "(this Collection)" : e);
2874     if (!it.hasNext())
2875     break;
2876     sb.append(',').append(' ');
2877     }
2878     }
2879     return sb.append(']').toString();
2880 dl 1.1 }
2881    
2882 dl 1.20 public final boolean containsAll(Collection<?> c) {
2883     if (c != this) {
2884     for (Object e : c) {
2885     if (e == null || !contains(e))
2886     return false;
2887     }
2888     }
2889     return true;
2890 dl 1.1 }
2891    
2892 dl 1.20 public final boolean removeAll(Collection<?> c) {
2893     boolean modified = false;
2894     for (Iterator<E> it = iterator(); it.hasNext();) {
2895     if (c.contains(it.next())) {
2896     it.remove();
2897     modified = true;
2898     }
2899     }
2900     return modified;
2901 dl 1.1 }
2902    
2903 dl 1.20 public final boolean retainAll(Collection<?> c) {
2904     boolean modified = false;
2905     for (Iterator<E> it = iterator(); it.hasNext();) {
2906     if (!c.contains(it.next())) {
2907     it.remove();
2908     modified = true;
2909     }
2910     }
2911     return modified;
2912 dl 1.1 }
2913    
2914 dl 1.20 }
2915 dl 1.1
2916 dl 1.20 /**
2917     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
2918     * which additions may optionally be enabled by mapping to a
2919     * common value. This class cannot be directly instantiated.
2920     * See {@link #keySet() keySet()},
2921     * {@link #keySet(Object) keySet(V)},
2922     * {@link #newKeySet() newKeySet()},
2923     * {@link #newKeySet(int) newKeySet(int)}.
2924     *
2925     * @since 1.8
2926     */
2927     public static class KeySetView<K,V> extends CollectionView<K,V,K>
2928     implements Set<K>, java.io.Serializable {
2929     private static final long serialVersionUID = 7249069246763182397L;
2930     private final V value;
2931     KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
2932     super(map);
2933     this.value = value;
2934 dl 1.1 }
2935    
2936     /**
2937 dl 1.20 * Returns the default mapped value for additions,
2938     * or {@code null} if additions are not supported.
2939 dl 1.1 *
2940 dl 1.20 * @return the default mapped value for additions, or {@code null}
2941     * if not supported
2942 dl 1.1 */
2943 dl 1.20 public V getMappedValue() { return value; }
2944 dl 1.1
2945     /**
2946 dl 1.20 * {@inheritDoc}
2947     * @throws NullPointerException if the specified key is null
2948 dl 1.1 */
2949 dl 1.20 public boolean contains(Object o) { return map.containsKey(o); }
2950 dl 1.1
2951     /**
2952 dl 1.20 * Removes the key from this map view, by removing the key (and its
2953     * corresponding value) from the backing map. This method does
2954     * nothing if the key is not in the map.
2955 dl 1.1 *
2956 dl 1.20 * @param o the key to be removed from the backing map
2957     * @return {@code true} if the backing map contained the specified key
2958     * @throws NullPointerException if the specified key is null
2959 dl 1.1 */
2960 dl 1.20 public boolean remove(Object o) { return map.remove(o) != null; }
2961 dl 1.1
2962     /**
2963 dl 1.20 * @return an iterator over the keys of the backing map
2964 dl 1.1 */
2965 dl 1.20 public Iterator<K> iterator() {
2966     Node<K,V>[] t;
2967     ConcurrentHashMap<K,V> m = map;
2968     int f = (t = m.table) == null ? 0 : t.length;
2969     return new KeyIterator<K,V>(t, f, 0, f, m);
2970 dl 1.1 }
2971    
2972     /**
2973 dl 1.20 * Adds the specified key to this set view by mapping the key to
2974     * the default mapped value in the backing map, if defined.
2975 dl 1.1 *
2976 dl 1.20 * @param e key to be added
2977     * @return {@code true} if this set changed as a result of the call
2978     * @throws NullPointerException if the specified key is null
2979     * @throws UnsupportedOperationException if no default mapped value
2980     * for additions was provided
2981 dl 1.1 */
2982 dl 1.20 public boolean add(K e) {
2983     V v;
2984     if ((v = value) == null)
2985     throw new UnsupportedOperationException();
2986     return map.putVal(e, v, true) == null;
2987 dl 1.1 }
2988    
2989     /**
2990 dl 1.20 * Adds all of the elements in the specified collection to this set,
2991     * as if by calling {@link #add} on each one.
2992 dl 1.1 *
2993 dl 1.20 * @param c the elements to be inserted into this set
2994     * @return {@code true} if this set changed as a result of the call
2995     * @throws NullPointerException if the collection or any of its
2996     * elements are {@code null}
2997     * @throws UnsupportedOperationException if no default mapped value
2998     * for additions was provided
2999 dl 1.1 */
3000 dl 1.20 public boolean addAll(Collection<? extends K> c) {
3001     boolean added = false;
3002     V v;
3003     if ((v = value) == null)
3004     throw new UnsupportedOperationException();
3005     for (K e : c) {
3006     if (map.putVal(e, v, true) == null)
3007     added = true;
3008 dl 1.1 }
3009 dl 1.20 return added;
3010 dl 1.1 }
3011    
3012 dl 1.20 public int hashCode() {
3013     int h = 0;
3014     for (K e : this)
3015     h += e.hashCode();
3016     return h;
3017 dl 1.1 }
3018    
3019 dl 1.20 public boolean equals(Object o) {
3020     Set<?> c;
3021     return ((o instanceof Set) &&
3022     ((c = (Set<?>)o) == this ||
3023     (containsAll(c) && c.containsAll(this))));
3024 dl 1.1 }
3025 dl 1.20
3026 dl 1.1 }
3027    
3028 dl 1.20 /**
3029     * A view of a ConcurrentHashMap as a {@link Collection} of
3030     * values, in which additions are disabled. This class cannot be
3031     * directly instantiated. See {@link #values()}.
3032     */
3033     static final class ValuesView<K,V> extends CollectionView<K,V,V>
3034     implements Collection<V>, java.io.Serializable {
3035     private static final long serialVersionUID = 2249069246763182397L;
3036     ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
3037     public final boolean contains(Object o) {
3038     return map.containsValue(o);
3039 dl 1.1 }
3040    
3041 dl 1.20 public final boolean remove(Object o) {
3042     if (o != null) {
3043     for (Iterator<V> it = iterator(); it.hasNext();) {
3044     if (o.equals(it.next())) {
3045     it.remove();
3046     return true;
3047 dl 1.1 }
3048     }
3049     }
3050 dl 1.20 return false;
3051 dl 1.1 }
3052    
3053 dl 1.20 public final Iterator<V> iterator() {
3054     ConcurrentHashMap<K,V> m = map;
3055     Node<K,V>[] t;
3056     int f = (t = m.table) == null ? 0 : t.length;
3057     return new ValueIterator<K,V>(t, f, 0, f, m);
3058 dl 1.1 }
3059    
3060 dl 1.20 public final boolean add(V e) {
3061     throw new UnsupportedOperationException();
3062     }
3063     public final boolean addAll(Collection<? extends V> c) {
3064     throw new UnsupportedOperationException();
3065 dl 1.1 }
3066 dl 1.20
3067 dl 1.1 }
3068    
3069 dl 1.20 /**
3070     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
3071     * entries. This class cannot be directly instantiated. See
3072     * {@link #entrySet()}.
3073     */
3074     static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
3075     implements Set<Map.Entry<K,V>>, java.io.Serializable {
3076     private static final long serialVersionUID = 2249069246763182397L;
3077     EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
3078    
3079     public boolean contains(Object o) {
3080     Object k, v, r; Map.Entry<?,?> e;
3081     return ((o instanceof Map.Entry) &&
3082     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3083     (r = map.get(k)) != null &&
3084     (v = e.getValue()) != null &&
3085     (v == r || v.equals(r)));
3086 dl 1.1 }
3087    
3088 dl 1.20 public boolean remove(Object o) {
3089     Object k, v; Map.Entry<?,?> e;
3090     return ((o instanceof Map.Entry) &&
3091     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3092     (v = e.getValue()) != null &&
3093     map.remove(k, v));
3094 dl 1.1 }
3095    
3096 dl 1.20 /**
3097     * @return an iterator over the entries of the backing map
3098     */
3099     public Iterator<Map.Entry<K,V>> iterator() {
3100     ConcurrentHashMap<K,V> m = map;
3101     Node<K,V>[] t;
3102     int f = (t = m.table) == null ? 0 : t.length;
3103     return new EntryIterator<K,V>(t, f, 0, f, m);
3104 dl 1.1 }
3105    
3106 dl 1.20 public boolean add(Entry<K,V> e) {
3107     return map.putVal(e.getKey(), e.getValue(), false) == null;
3108 dl 1.1 }
3109    
3110 dl 1.20 public boolean addAll(Collection<? extends Entry<K,V>> c) {
3111     boolean added = false;
3112     for (Entry<K,V> e : c) {
3113     if (add(e))
3114     added = true;
3115 dl 1.1 }
3116 dl 1.20 return added;
3117 dl 1.1 }
3118    
3119 dl 1.20 public final int hashCode() {
3120     int h = 0;
3121     Node<K,V>[] t;
3122     if ((t = map.table) != null) {
3123     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3124     for (Node<K,V> p; (p = it.advance()) != null; ) {
3125     h += p.hashCode();
3126 dl 1.1 }
3127     }
3128 dl 1.20 return h;
3129 dl 1.1 }
3130    
3131 dl 1.20 public final boolean equals(Object o) {
3132     Set<?> c;
3133     return ((o instanceof Set) &&
3134     ((c = (Set<?>)o) == this ||
3135     (containsAll(c) && c.containsAll(this))));
3136 dl 1.1 }
3137 dl 1.20
3138 dl 1.1 }
3139    
3140 dl 1.20
3141     /* ---------------- Counters -------------- */
3142    
3143     // Adapted from LongAdder and Striped64.
3144     // See their internal docs for explanation.
3145    
3146     // A padded cell for distributing counts
3147     static final class CounterCell {
3148     volatile long p0, p1, p2, p3, p4, p5, p6;
3149     volatile long value;
3150     volatile long q0, q1, q2, q3, q4, q5, q6;
3151     CounterCell(long x) { value = x; }
3152 dl 1.1 }
3153    
3154 dl 1.20 /**
3155     * Holder for the thread-local hash code determining which
3156     * CounterCell to use. The code is initialized via the
3157     * counterHashCodeGenerator, but may be moved upon collisions.
3158     */
3159     static final class CounterHashCode {
3160     int code;
3161 dl 1.1 }
3162    
3163 dl 1.20 /**
3164 jsr166 1.25 * Generates initial value for per-thread CounterHashCodes.
3165 dl 1.20 */
3166     static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
3167    
3168     /**
3169     * Increment for counterHashCodeGenerator. See class ThreadLocal
3170     * for explanation.
3171     */
3172     static final int SEED_INCREMENT = 0x61c88647;
3173    
3174     /**
3175     * Per-thread counter hash codes. Shared across all instances.
3176     */
3177     static final ThreadLocal<CounterHashCode> threadCounterHashCode =
3178     new ThreadLocal<CounterHashCode>();
3179    
3180     final long sumCount() {
3181     CounterCell[] as = counterCells; CounterCell a;
3182     long sum = baseCount;
3183     if (as != null) {
3184     for (int i = 0; i < as.length; ++i) {
3185     if ((a = as[i]) != null)
3186     sum += a.value;
3187 dl 1.1 }
3188     }
3189 dl 1.20 return sum;
3190 dl 1.1 }
3191    
3192 dl 1.20 // See LongAdder version for explanation
3193     private final void fullAddCount(long x, CounterHashCode hc,
3194     boolean wasUncontended) {
3195     int h;
3196     if (hc == null) {
3197     hc = new CounterHashCode();
3198     int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
3199     h = hc.code = (s == 0) ? 1 : s; // Avoid zero
3200     threadCounterHashCode.set(hc);
3201     }
3202     else
3203     h = hc.code;
3204     boolean collide = false; // True if last slot nonempty
3205     for (;;) {
3206     CounterCell[] as; CounterCell a; int n; long v;
3207     if ((as = counterCells) != null && (n = as.length) > 0) {
3208     if ((a = as[(n - 1) & h]) == null) {
3209     if (cellsBusy == 0) { // Try to attach new Cell
3210     CounterCell r = new CounterCell(x); // Optimistic create
3211     if (cellsBusy == 0 &&
3212     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
3213     boolean created = false;
3214     try { // Recheck under lock
3215     CounterCell[] rs; int m, j;
3216     if ((rs = counterCells) != null &&
3217     (m = rs.length) > 0 &&
3218     rs[j = (m - 1) & h] == null) {
3219     rs[j] = r;
3220     created = true;
3221     }
3222     } finally {
3223     cellsBusy = 0;
3224     }
3225     if (created)
3226     break;
3227     continue; // Slot is now non-empty
3228     }
3229 dl 1.1 }
3230 dl 1.20 collide = false;
3231 dl 1.1 }
3232 dl 1.20 else if (!wasUncontended) // CAS already known to fail
3233     wasUncontended = true; // Continue after rehash
3234     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
3235     break;
3236     else if (counterCells != as || n >= NCPU)
3237     collide = false; // At max size or stale
3238     else if (!collide)
3239     collide = true;
3240     else if (cellsBusy == 0 &&
3241     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
3242     try {
3243     if (counterCells == as) {// Expand table unless stale
3244     CounterCell[] rs = new CounterCell[n << 1];
3245     for (int i = 0; i < n; ++i)
3246     rs[i] = as[i];
3247     counterCells = rs;
3248     }
3249     } finally {
3250     cellsBusy = 0;
3251 dl 1.1 }
3252 dl 1.20 collide = false;
3253     continue; // Retry with expanded table
3254 dl 1.1 }
3255 dl 1.20 h ^= h << 13; // Rehash
3256     h ^= h >>> 17;
3257     h ^= h << 5;
3258 dl 1.1 }
3259 dl 1.20 else if (cellsBusy == 0 && counterCells == as &&
3260     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
3261     boolean init = false;
3262     try { // Initialize table
3263     if (counterCells == as) {
3264     CounterCell[] rs = new CounterCell[2];
3265     rs[h & 1] = new CounterCell(x);
3266     counterCells = rs;
3267     init = true;
3268 dl 1.1 }
3269 dl 1.20 } finally {
3270     cellsBusy = 0;
3271 dl 1.1 }
3272 dl 1.20 if (init)
3273     break;
3274 dl 1.1 }
3275 dl 1.20 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
3276     break; // Fall back on using base
3277 dl 1.1 }
3278 dl 1.20 hc.code = h; // Record index for next time
3279 dl 1.1 }
3280    
3281     // Unsafe mechanics
3282     private static final sun.misc.Unsafe U;
3283     private static final long SIZECTL;
3284     private static final long TRANSFERINDEX;
3285     private static final long BASECOUNT;
3286 dl 1.20 private static final long CELLSBUSY;
3287 dl 1.1 private static final long CELLVALUE;
3288     private static final long ABASE;
3289     private static final int ASHIFT;
3290    
3291     static {
3292     try {
3293     U = sun.misc.Unsafe.getUnsafe();
3294     Class<?> k = ConcurrentHashMap.class;
3295     SIZECTL = U.objectFieldOffset
3296     (k.getDeclaredField("sizeCtl"));
3297     TRANSFERINDEX = U.objectFieldOffset
3298     (k.getDeclaredField("transferIndex"));
3299     BASECOUNT = U.objectFieldOffset
3300     (k.getDeclaredField("baseCount"));
3301 dl 1.20 CELLSBUSY = U.objectFieldOffset
3302     (k.getDeclaredField("cellsBusy"));
3303 dl 1.1 Class<?> ck = CounterCell.class;
3304     CELLVALUE = U.objectFieldOffset
3305     (ck.getDeclaredField("value"));
3306 jsr166 1.22 Class<?> ak = Node[].class;
3307     ABASE = U.arrayBaseOffset(ak);
3308     int scale = U.arrayIndexScale(ak);
3309 jsr166 1.9 if ((scale & (scale - 1)) != 0)
3310     throw new Error("data type scale not a power of two");
3311     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3312 dl 1.1 } catch (Exception e) {
3313     throw new Error(e);
3314     }
3315     }
3316    
3317     }