ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.41
Committed: Thu Feb 26 06:53:34 2015 UTC (9 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.40: +0 -2 lines
Log Message:
delete unused imports

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8    
9 dl 1.20 import java.io.ObjectStreamField;
10     import java.io.Serializable;
11     import java.lang.reflect.ParameterizedType;
12     import java.lang.reflect.Type;
13 dl 1.1 import java.util.Arrays;
14     import java.util.Collection;
15 dl 1.20 import java.util.ConcurrentModificationException;
16     import java.util.Enumeration;
17     import java.util.HashMap;
18 dl 1.1 import java.util.Hashtable;
19     import java.util.Iterator;
20 dl 1.20 import java.util.Map;
21 dl 1.1 import java.util.NoSuchElementException;
22 dl 1.20 import java.util.Set;
23 dl 1.1 import java.util.concurrent.ConcurrentMap;
24     import java.util.concurrent.atomic.AtomicInteger;
25 dl 1.20 import java.util.concurrent.locks.LockSupport;
26     import java.util.concurrent.locks.ReentrantLock;
27 dl 1.1
28     /**
29     * A hash table supporting full concurrency of retrievals and
30     * high expected concurrency for updates. This class obeys the
31     * same functional specification as {@link java.util.Hashtable}, and
32     * includes versions of methods corresponding to each method of
33     * {@code Hashtable}. However, even though all operations are
34     * thread-safe, retrieval operations do <em>not</em> entail locking,
35     * and there is <em>not</em> any support for locking the entire table
36     * in a way that prevents all access. This class is fully
37     * interoperable with {@code Hashtable} in programs that rely on its
38     * thread safety but not on its synchronization details.
39     *
40     * <p>Retrieval operations (including {@code get}) generally do not
41     * block, so may overlap with update operations (including {@code put}
42     * and {@code remove}). Retrievals reflect the results of the most
43     * recently <em>completed</em> update operations holding upon their
44     * onset. (More formally, an update operation for a given key bears a
45     * <em>happens-before</em> relation with any (non-null) retrieval for
46     * that key reporting the updated value.) For aggregate operations
47     * such as {@code putAll} and {@code clear}, concurrent retrievals may
48     * reflect insertion or removal of only some entries. Similarly,
49     * Iterators and Enumerations return elements reflecting the state of
50     * the hash table at some point at or since the creation of the
51     * iterator/enumeration. They do <em>not</em> throw {@link
52     * ConcurrentModificationException}. However, iterators are designed
53     * to be used by only one thread at a time. Bear in mind that the
54     * results of aggregate status methods including {@code size}, {@code
55     * isEmpty}, and {@code containsValue} are typically useful only when
56     * a map is not undergoing concurrent updates in other threads.
57     * Otherwise the results of these methods reflect transient states
58     * that may be adequate for monitoring or estimation purposes, but not
59     * for program control.
60     *
61     * <p>The table is dynamically expanded when there are too many
62     * collisions (i.e., keys that have distinct hash codes but fall into
63     * the same slot modulo the table size), with the expected average
64     * effect of maintaining roughly two bins per mapping (corresponding
65     * to a 0.75 load factor threshold for resizing). There may be much
66     * variance around this average as mappings are added and removed, but
67     * overall, this maintains a commonly accepted time/space tradeoff for
68     * hash tables. However, resizing this or any other kind of hash
69     * table may be a relatively slow operation. When possible, it is a
70     * good idea to provide a size estimate as an optional {@code
71     * initialCapacity} constructor argument. An additional optional
72     * {@code loadFactor} constructor argument provides a further means of
73     * customizing initial table capacity by specifying the table density
74     * to be used in calculating the amount of space to allocate for the
75     * given number of elements. Also, for compatibility with previous
76     * versions of this class, constructors may optionally specify an
77     * expected {@code concurrencyLevel} as an additional hint for
78     * internal sizing. Note that using many keys with exactly the same
79     * {@code hashCode()} is a sure way to slow down performance of any
80 dl 1.20 * hash table. To ameliorate impact, when keys are {@link Comparable},
81     * this class may use comparison order among keys to help break ties.
82 dl 1.1 *
83     * <p>A {@link Set} projection of a ConcurrentHashMap may be created
84     * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
85     * (using {@link #keySet(Object)} when only keys are of interest, and the
86     * mapped values are (perhaps transiently) not used or all take the
87     * same mapping value.
88     *
89     * <p>This class and its views and iterators implement all of the
90     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
91     * interfaces.
92     *
93     * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
94     * does <em>not</em> allow {@code null} to be used as a key or value.
95     *
96     * <p>This class is a member of the
97     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
98     * Java Collections Framework</a>.
99     *
100     * @since 1.5
101     * @author Doug Lea
102     * @param <K> the type of keys maintained by this map
103     * @param <V> the type of mapped values
104     */
105 dl 1.20 public class ConcurrentHashMap<K,V> implements ConcurrentMap<K,V>, Serializable {
106 dl 1.1 private static final long serialVersionUID = 7249069246763182397L;
107    
108     /*
109     * Overview:
110     *
111     * The primary design goal of this hash table is to maintain
112     * concurrent readability (typically method get(), but also
113     * iterators and related methods) while minimizing update
114     * contention. Secondary goals are to keep space consumption about
115     * the same or better than java.util.HashMap, and to support high
116     * initial insertion rates on an empty table by many threads.
117     *
118 dl 1.20 * This map usually acts as a binned (bucketed) hash table. Each
119     * key-value mapping is held in a Node. Most nodes are instances
120     * of the basic Node class with hash, key, value, and next
121     * fields. However, various subclasses exist: TreeNodes are
122     * arranged in balanced trees, not lists. TreeBins hold the roots
123     * of sets of TreeNodes. ForwardingNodes are placed at the heads
124     * of bins during resizing. ReservationNodes are used as
125     * placeholders while establishing values in computeIfAbsent and
126     * related methods. The types TreeBin, ForwardingNode, and
127     * ReservationNode do not hold normal user keys, values, or
128     * hashes, and are readily distinguishable during search etc
129     * because they have negative hash fields and null key and value
130     * fields. (These special nodes are either uncommon or transient,
131     * so the impact of carrying around some unused fields is
132 jsr166 1.28 * insignificant.)
133 dl 1.1 *
134     * The table is lazily initialized to a power-of-two size upon the
135     * first insertion. Each bin in the table normally contains a
136     * list of Nodes (most often, the list has only zero or one Node).
137     * Table accesses require volatile/atomic reads, writes, and
138     * CASes. Because there is no other way to arrange this without
139     * adding further indirections, we use intrinsics
140 dl 1.20 * (sun.misc.Unsafe) operations.
141 dl 1.1 *
142     * We use the top (sign) bit of Node hash fields for control
143     * purposes -- it is available anyway because of addressing
144 dl 1.20 * constraints. Nodes with negative hash fields are specially
145     * handled or ignored in map methods.
146 dl 1.1 *
147     * Insertion (via put or its variants) of the first node in an
148     * empty bin is performed by just CASing it to the bin. This is
149     * by far the most common case for put operations under most
150     * key/hash distributions. Other update operations (insert,
151     * delete, and replace) require locks. We do not want to waste
152     * the space required to associate a distinct lock object with
153     * each bin, so instead use the first node of a bin list itself as
154     * a lock. Locking support for these locks relies on builtin
155     * "synchronized" monitors.
156     *
157     * Using the first node of a list as a lock does not by itself
158     * suffice though: When a node is locked, any update must first
159     * validate that it is still the first node after locking it, and
160     * retry if not. Because new nodes are always appended to lists,
161     * once a node is first in a bin, it remains first until deleted
162 dl 1.20 * or the bin becomes invalidated (upon resizing).
163 dl 1.1 *
164     * The main disadvantage of per-bin locks is that other update
165     * operations on other nodes in a bin list protected by the same
166     * lock can stall, for example when user equals() or mapping
167     * functions take a long time. However, statistically, under
168     * random hash codes, this is not a common problem. Ideally, the
169     * frequency of nodes in bins follows a Poisson distribution
170     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
171     * parameter of about 0.5 on average, given the resizing threshold
172     * of 0.75, although with a large variance because of resizing
173     * granularity. Ignoring variance, the expected occurrences of
174     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
175     * first values are:
176     *
177     * 0: 0.60653066
178     * 1: 0.30326533
179     * 2: 0.07581633
180     * 3: 0.01263606
181     * 4: 0.00157952
182     * 5: 0.00015795
183     * 6: 0.00001316
184     * 7: 0.00000094
185     * 8: 0.00000006
186     * more: less than 1 in ten million
187     *
188     * Lock contention probability for two threads accessing distinct
189     * elements is roughly 1 / (8 * #elements) under random hashes.
190     *
191     * Actual hash code distributions encountered in practice
192     * sometimes deviate significantly from uniform randomness. This
193     * includes the case when N > (1<<30), so some keys MUST collide.
194     * Similarly for dumb or hostile usages in which multiple keys are
195 dl 1.20 * designed to have identical hash codes or ones that differs only
196     * in masked-out high bits. So we use a secondary strategy that
197     * applies when the number of nodes in a bin exceeds a
198     * threshold. These TreeBins use a balanced tree to hold nodes (a
199     * specialized form of red-black trees), bounding search time to
200     * O(log N). Each search step in a TreeBin is at least twice as
201 dl 1.1 * slow as in a regular list, but given that N cannot exceed
202     * (1<<64) (before running out of addresses) this bounds search
203     * steps, lock hold times, etc, to reasonable constants (roughly
204     * 100 nodes inspected per operation worst case) so long as keys
205     * are Comparable (which is very common -- String, Long, etc).
206     * TreeBin nodes (TreeNodes) also maintain the same "next"
207     * traversal pointers as regular nodes, so can be traversed in
208     * iterators in the same way.
209     *
210     * The table is resized when occupancy exceeds a percentage
211     * threshold (nominally, 0.75, but see below). Any thread
212     * noticing an overfull bin may assist in resizing after the
213 dl 1.35 * initiating thread allocates and sets up the replacement array.
214     * However, rather than stalling, these other threads may proceed
215     * with insertions etc. The use of TreeBins shields us from the
216     * worst case effects of overfilling while resizes are in
217 dl 1.1 * progress. Resizing proceeds by transferring bins, one by one,
218 dl 1.35 * from the table to the next table. However, threads claim small
219     * blocks of indices to transfer (via field transferIndex) before
220 dl 1.36 * doing so, reducing contention. A generation stamp in field
221     * sizeCtl ensures that resizings do not overlap. Because we are
222     * using power-of-two expansion, the elements from each bin must
223     * either stay at same index, or move with a power of two
224     * offset. We eliminate unnecessary node creation by catching
225     * cases where old nodes can be reused because their next fields
226     * won't change. On average, only about one-sixth of them need
227     * cloning when a table doubles. The nodes they replace will be
228     * garbage collectable as soon as they are no longer referenced by
229     * any reader thread that may be in the midst of concurrently
230     * traversing table. Upon transfer, the old table bin contains
231     * only a special forwarding node (with hash field "MOVED") that
232     * contains the next table as its key. On encountering a
233     * forwarding node, access and update operations restart, using
234     * the new table.
235 dl 1.1 *
236     * Each bin transfer requires its bin lock, which can stall
237     * waiting for locks while resizing. However, because other
238     * threads can join in and help resize rather than contend for
239     * locks, average aggregate waits become shorter as resizing
240     * progresses. The transfer operation must also ensure that all
241     * accessible bins in both the old and new table are usable by any
242 dl 1.35 * traversal. This is arranged in part by proceeding from the
243     * last bin (table.length - 1) up towards the first. Upon seeing
244     * a forwarding node, traversals (see class Traverser) arrange to
245     * move to the new table without revisiting nodes. To ensure that
246     * no intervening nodes are skipped even when moved out of order,
247     * a stack (see class TableStack) is created on first encounter of
248     * a forwarding node during a traversal, to maintain its place if
249     * later processing the current table. The need for these
250     * save/restore mechanics is relatively rare, but when one
251     * forwarding node is encountered, typically many more will be.
252     * So Traversers use a simple caching scheme to avoid creating so
253     * many new TableStack nodes. (Thanks to Peter Levart for
254     * suggesting use of a stack here.)
255 dl 1.1 *
256     * The traversal scheme also applies to partial traversals of
257     * ranges of bins (via an alternate Traverser constructor)
258     * to support partitioned aggregate operations. Also, read-only
259     * operations give up if ever forwarded to a null table, which
260     * provides support for shutdown-style clearing, which is also not
261     * currently implemented.
262     *
263     * Lazy table initialization minimizes footprint until first use,
264     * and also avoids resizings when the first operation is from a
265     * putAll, constructor with map argument, or deserialization.
266     * These cases attempt to override the initial capacity settings,
267     * but harmlessly fail to take effect in cases of races.
268     *
269     * The element count is maintained using a specialization of
270     * LongAdder. We need to incorporate a specialization rather than
271     * just use a LongAdder in order to access implicit
272     * contention-sensing that leads to creation of multiple
273     * CounterCells. The counter mechanics avoid contention on
274     * updates but can encounter cache thrashing if read too
275     * frequently during concurrent access. To avoid reading so often,
276     * resizing under contention is attempted only upon adding to a
277     * bin already holding two or more nodes. Under uniform hash
278     * distributions, the probability of this occurring at threshold
279     * is around 13%, meaning that only about 1 in 8 puts check
280 dl 1.20 * threshold (and after resizing, many fewer do so).
281     *
282     * TreeBins use a special form of comparison for search and
283     * related operations (which is the main reason we cannot use
284     * existing collections such as TreeMaps). TreeBins contain
285     * Comparable elements, but may contain others, as well as
286 dl 1.30 * elements that are Comparable but not necessarily Comparable for
287     * the same T, so we cannot invoke compareTo among them. To handle
288     * this, the tree is ordered primarily by hash value, then by
289     * Comparable.compareTo order if applicable. On lookup at a node,
290     * if elements are not comparable or compare as 0 then both left
291     * and right children may need to be searched in the case of tied
292     * hash values. (This corresponds to the full list search that
293     * would be necessary if all elements were non-Comparable and had
294     * tied hashes.) On insertion, to keep a total ordering (or as
295     * close as is required here) across rebalancings, we compare
296     * classes and identityHashCodes as tie-breakers. The red-black
297     * balancing code is updated from pre-jdk-collections
298 dl 1.20 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
299     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
300     * Algorithms" (CLR).
301     *
302     * TreeBins also require an additional locking mechanism. While
303     * list traversal is always possible by readers even during
304 jsr166 1.28 * updates, tree traversal is not, mainly because of tree-rotations
305 dl 1.20 * that may change the root node and/or its linkages. TreeBins
306     * include a simple read-write lock mechanism parasitic on the
307     * main bin-synchronization strategy: Structural adjustments
308     * associated with an insertion or removal are already bin-locked
309     * (and so cannot conflict with other writers) but must wait for
310     * ongoing readers to finish. Since there can be only one such
311     * waiter, we use a simple scheme using a single "waiter" field to
312     * block writers. However, readers need never block. If the root
313     * lock is held, they proceed along the slow traversal path (via
314     * next-pointers) until the lock becomes available or the list is
315     * exhausted, whichever comes first. These cases are not fast, but
316     * maximize aggregate expected throughput.
317 dl 1.1 *
318     * Maintaining API and serialization compatibility with previous
319     * versions of this class introduces several oddities. Mainly: We
320     * leave untouched but unused constructor arguments refering to
321     * concurrencyLevel. We accept a loadFactor constructor argument,
322     * but apply it only to initial table capacity (which is the only
323     * time that we can guarantee to honor it.) We also declare an
324     * unused "Segment" class that is instantiated in minimal form
325     * only when serializing.
326 dl 1.20 *
327 dl 1.35 * Also, solely for compatibility with previous versions of this
328     * class, it extends AbstractMap, even though all of its methods
329     * are overridden, so it is just useless baggage.
330     *
331 dl 1.20 * This file is organized to make things a little easier to follow
332     * while reading than they might otherwise: First the main static
333     * declarations and utilities, then fields, then main public
334     * methods (with a few factorings of multiple public methods into
335     * internal ones), then sizing methods, trees, traversers, and
336     * bulk operations.
337 dl 1.1 */
338    
339 dl 1.35
340 dl 1.1 /* ---------------- Constants -------------- */
341    
342     /**
343     * The largest possible table capacity. This value must be
344     * exactly 1<<30 to stay within Java array allocation and indexing
345     * bounds for power of two table sizes, and is further required
346     * because the top two bits of 32bit hash fields are used for
347     * control purposes.
348     */
349     private static final int MAXIMUM_CAPACITY = 1 << 30;
350    
351     /**
352     * The default initial table capacity. Must be a power of 2
353     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
354     */
355     private static final int DEFAULT_CAPACITY = 16;
356    
357     /**
358     * The largest possible (non-power of two) array size.
359     * Needed by toArray and related methods.
360     */
361     static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
362    
363     /**
364     * The default concurrency level for this table. Unused but
365     * defined for compatibility with previous versions of this class.
366     */
367     private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
368    
369     /**
370     * The load factor for this table. Overrides of this value in
371     * constructors affect only the initial table capacity. The
372     * actual floating point value isn't normally used -- it is
373     * simpler to use expressions such as {@code n - (n >>> 2)} for
374     * the associated resizing threshold.
375     */
376     private static final float LOAD_FACTOR = 0.75f;
377    
378     /**
379     * The bin count threshold for using a tree rather than list for a
380 dl 1.20 * bin. Bins are converted to trees when adding an element to a
381     * bin with at least this many nodes. The value must be greater
382     * than 2, and should be at least 8 to mesh with assumptions in
383     * tree removal about conversion back to plain bins upon
384     * shrinkage.
385     */
386     static final int TREEIFY_THRESHOLD = 8;
387    
388     /**
389     * The bin count threshold for untreeifying a (split) bin during a
390     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
391     * most 6 to mesh with shrinkage detection under removal.
392 dl 1.1 */
393 dl 1.20 static final int UNTREEIFY_THRESHOLD = 6;
394    
395     /**
396     * The smallest table capacity for which bins may be treeified.
397     * (Otherwise the table is resized if too many nodes in a bin.)
398     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
399     * conflicts between resizing and treeification thresholds.
400     */
401     static final int MIN_TREEIFY_CAPACITY = 64;
402 dl 1.1
403     /**
404     * Minimum number of rebinnings per transfer step. Ranges are
405     * subdivided to allow multiple resizer threads. This value
406     * serves as a lower bound to avoid resizers encountering
407     * excessive memory contention. The value should be at least
408     * DEFAULT_CAPACITY.
409     */
410     private static final int MIN_TRANSFER_STRIDE = 16;
411    
412 dl 1.36 /**
413     * The number of bits used for generation stamp in sizeCtl.
414     * Must be at least 6 for 32bit arrays.
415     */
416     private static int RESIZE_STAMP_BITS = 16;
417    
418     /**
419     * The maximum number of threads that can help resize.
420     * Must fit in 32 - RESIZE_STAMP_BITS bits.
421     */
422     private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
423    
424     /**
425     * The bit shift for recording size stamp in sizeCtl.
426     */
427     private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
428    
429 dl 1.1 /*
430     * Encodings for Node hash fields. See above for explanation.
431     */
432 dl 1.20 static final int MOVED = 0x8fffffff; // (-1) hash for forwarding nodes
433 jsr166 1.28 static final int TREEBIN = 0x80000000; // hash for roots of trees
434 dl 1.20 static final int RESERVED = 0x80000001; // hash for transient reservations
435 dl 1.1 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
436    
437     /** Number of CPUS, to place bounds on some sizings */
438     static final int NCPU = Runtime.getRuntime().availableProcessors();
439    
440 dl 1.20 /** For serialization compatibility. */
441     private static final ObjectStreamField[] serialPersistentFields = {
442     new ObjectStreamField("segments", Segment[].class),
443     new ObjectStreamField("segmentMask", Integer.TYPE),
444     new ObjectStreamField("segmentShift", Integer.TYPE)
445     };
446    
447     /* ---------------- Nodes -------------- */
448    
449     /**
450     * Key-value entry. This class is never exported out as a
451     * user-mutable Map.Entry (i.e., one supporting setValue; see
452     * MapEntry below), but can be used for read-only traversals used
453 jsr166 1.28 * in bulk tasks. Subclasses of Node with a negative hash field
454 dl 1.20 * are special, and contain null keys and values (but are never
455     * exported). Otherwise, keys and vals are never null.
456     */
457     static class Node<K,V> implements Map.Entry<K,V> {
458     final int hash;
459     final K key;
460     volatile V val;
461     Node<K,V> next;
462    
463     Node(int hash, K key, V val, Node<K,V> next) {
464     this.hash = hash;
465     this.key = key;
466     this.val = val;
467     this.next = next;
468     }
469    
470     public final K getKey() { return key; }
471     public final V getValue() { return val; }
472     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
473     public final String toString(){ return key + "=" + val; }
474     public final V setValue(V value) {
475     throw new UnsupportedOperationException();
476     }
477 dl 1.1
478 dl 1.20 public final boolean equals(Object o) {
479     Object k, v, u; Map.Entry<?,?> e;
480     return ((o instanceof Map.Entry) &&
481     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
482     (v = e.getValue()) != null &&
483     (k == key || k.equals(key)) &&
484     (v == (u = val) || v.equals(u)));
485     }
486 dl 1.1
487 dl 1.20 /**
488     * Virtualized support for map.get(); overridden in subclasses.
489     */
490     Node<K,V> find(int h, Object k) {
491     Node<K,V> e = this;
492     if (k != null) {
493     do {
494     K ek;
495     if (e.hash == h &&
496     ((ek = e.key) == k || (ek != null && k.equals(ek))))
497     return e;
498     } while ((e = e.next) != null);
499     }
500     return null;
501     }
502 dl 1.1 }
503    
504 dl 1.20 /* ---------------- Static utilities -------------- */
505    
506 dl 1.1 /**
507 dl 1.20 * Spreads (XORs) higher bits of hash to lower and also forces top
508     * bit to 0. Because the table uses power-of-two masking, sets of
509     * hashes that vary only in bits above the current mask will
510     * always collide. (Among known examples are sets of Float keys
511     * holding consecutive whole numbers in small tables.) So we
512     * apply a transform that spreads the impact of higher bits
513     * downward. There is a tradeoff between speed, utility, and
514     * quality of bit-spreading. Because many common sets of hashes
515     * are already reasonably distributed (so don't benefit from
516     * spreading), and because we use trees to handle large sets of
517     * collisions in bins, we just XOR some shifted bits in the
518     * cheapest possible way to reduce systematic lossage, as well as
519     * to incorporate impact of the highest bits that would otherwise
520     * never be used in index calculations because of table bounds.
521 dl 1.1 */
522 dl 1.20 static final int spread(int h) {
523     return (h ^ (h >>> 16)) & HASH_BITS;
524 dl 1.1 }
525    
526     /**
527 dl 1.20 * Returns a power of two table size for the given desired capacity.
528     * See Hackers Delight, sec 3.2
529 dl 1.1 */
530 dl 1.20 private static final int tableSizeFor(int c) {
531     int n = c - 1;
532     n |= n >>> 1;
533     n |= n >>> 2;
534     n |= n >>> 4;
535     n |= n >>> 8;
536     n |= n >>> 16;
537     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
538     }
539 dl 1.1
540     /**
541 dl 1.20 * Returns x's Class if it is of the form "class C implements
542     * Comparable<C>", else null.
543 dl 1.1 */
544 dl 1.20 static Class<?> comparableClassFor(Object x) {
545     if (x instanceof Comparable) {
546     Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
547     if ((c = x.getClass()) == String.class) // bypass checks
548     return c;
549     if ((ts = c.getGenericInterfaces()) != null) {
550     for (int i = 0; i < ts.length; ++i) {
551     if (((t = ts[i]) instanceof ParameterizedType) &&
552     ((p = (ParameterizedType)t).getRawType() ==
553     Comparable.class) &&
554     (as = p.getActualTypeArguments()) != null &&
555     as.length == 1 && as[0] == c) // type arg is c
556     return c;
557     }
558     }
559     }
560     return null;
561     }
562 dl 1.1
563     /**
564 dl 1.20 * Returns k.compareTo(x) if x matches kc (k's screened comparable
565     * class), else 0.
566 dl 1.1 */
567 dl 1.20 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
568     static int compareComparables(Class<?> kc, Object k, Object x) {
569     return (x == null || x.getClass() != kc ? 0 :
570     ((Comparable)k).compareTo(x));
571     }
572    
573     /* ---------------- Table element access -------------- */
574    
575     /*
576     * Volatile access methods are used for table elements as well as
577     * elements of in-progress next table while resizing. All uses of
578     * the tab arguments must be null checked by callers. All callers
579     * also paranoically precheck that tab's length is not zero (or an
580     * equivalent check), thus ensuring that any index argument taking
581     * the form of a hash value anded with (length - 1) is a valid
582     * index. Note that, to be correct wrt arbitrary concurrency
583     * errors by users, these checks must operate on local variables,
584     * which accounts for some odd-looking inline assignments below.
585     * Note that calls to setTabAt always occur within locked regions,
586     * and so do not need full volatile semantics, but still require
587     * ordering to maintain concurrent readability.
588     */
589    
590     @SuppressWarnings("unchecked")
591     static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
592     return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
593     }
594    
595     static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
596     Node<K,V> c, Node<K,V> v) {
597     return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
598     }
599    
600     static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
601     U.putOrderedObject(tab, ((long)i << ASHIFT) + ABASE, v);
602     }
603 dl 1.1
604     /* ---------------- Fields -------------- */
605    
606     /**
607     * The array of bins. Lazily initialized upon first insertion.
608     * Size is always a power of two. Accessed directly by iterators.
609     */
610 dl 1.20 transient volatile Node<K,V>[] table;
611 dl 1.1
612     /**
613     * The next table to use; non-null only while resizing.
614     */
615 dl 1.20 private transient volatile Node<K,V>[] nextTable;
616 dl 1.1
617     /**
618     * Base counter value, used mainly when there is no contention,
619     * but also as a fallback during table initialization
620     * races. Updated via CAS.
621     */
622     private transient volatile long baseCount;
623    
624     /**
625     * Table initialization and resizing control. When negative, the
626     * table is being initialized or resized: -1 for initialization,
627     * else -(1 + the number of active resizing threads). Otherwise,
628     * when table is null, holds the initial table size to use upon
629     * creation, or 0 for default. After initialization, holds the
630     * next element count value upon which to resize the table.
631     */
632     private transient volatile int sizeCtl;
633    
634     /**
635     * The next table index (plus one) to split while resizing.
636     */
637     private transient volatile int transferIndex;
638    
639     /**
640 dl 1.20 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
641 dl 1.1 */
642 dl 1.20 private transient volatile int cellsBusy;
643 dl 1.1
644     /**
645     * Table of counter cells. When non-null, size is a power of 2.
646     */
647     private transient volatile CounterCell[] counterCells;
648    
649     // views
650     private transient KeySetView<K,V> keySet;
651     private transient ValuesView<K,V> values;
652     private transient EntrySetView<K,V> entrySet;
653    
654    
655 dl 1.20 /* ---------------- Public operations -------------- */
656 dl 1.1
657 dl 1.20 /**
658     * Creates a new, empty map with the default initial table size (16).
659     */
660     public ConcurrentHashMap() {
661 dl 1.1 }
662    
663 dl 1.20 /**
664     * Creates a new, empty map with an initial table size
665     * accommodating the specified number of elements without the need
666     * to dynamically resize.
667     *
668     * @param initialCapacity The implementation performs internal
669     * sizing to accommodate this many elements.
670     * @throws IllegalArgumentException if the initial capacity of
671     * elements is negative
672     */
673     public ConcurrentHashMap(int initialCapacity) {
674     if (initialCapacity < 0)
675     throw new IllegalArgumentException();
676     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
677     MAXIMUM_CAPACITY :
678     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
679     this.sizeCtl = cap;
680 dl 1.1 }
681    
682 dl 1.20 /**
683     * Creates a new map with the same mappings as the given map.
684     *
685     * @param m the map
686     */
687     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
688     this.sizeCtl = DEFAULT_CAPACITY;
689     putAll(m);
690 dl 1.1 }
691    
692 dl 1.20 /**
693     * Creates a new, empty map with an initial table size based on
694     * the given number of elements ({@code initialCapacity}) and
695     * initial table density ({@code loadFactor}).
696     *
697     * @param initialCapacity the initial capacity. The implementation
698     * performs internal sizing to accommodate this many elements,
699     * given the specified load factor.
700     * @param loadFactor the load factor (table density) for
701     * establishing the initial table size
702     * @throws IllegalArgumentException if the initial capacity of
703     * elements is negative or the load factor is nonpositive
704     *
705     * @since 1.6
706     */
707     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
708     this(initialCapacity, loadFactor, 1);
709     }
710 dl 1.1
711     /**
712 dl 1.20 * Creates a new, empty map with an initial table size based on
713     * the given number of elements ({@code initialCapacity}), table
714     * density ({@code loadFactor}), and number of concurrently
715     * updating threads ({@code concurrencyLevel}).
716     *
717     * @param initialCapacity the initial capacity. The implementation
718     * performs internal sizing to accommodate this many elements,
719     * given the specified load factor.
720     * @param loadFactor the load factor (table density) for
721     * establishing the initial table size
722     * @param concurrencyLevel the estimated number of concurrently
723     * updating threads. The implementation may use this value as
724     * a sizing hint.
725     * @throws IllegalArgumentException if the initial capacity is
726     * negative or the load factor or concurrencyLevel are
727     * nonpositive
728 dl 1.1 */
729 dl 1.20 public ConcurrentHashMap(int initialCapacity,
730     float loadFactor, int concurrencyLevel) {
731     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
732     throw new IllegalArgumentException();
733     if (initialCapacity < concurrencyLevel) // Use at least as many bins
734     initialCapacity = concurrencyLevel; // as estimated threads
735     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
736     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
737     MAXIMUM_CAPACITY : tableSizeFor((int)size);
738     this.sizeCtl = cap;
739 dl 1.1 }
740    
741 dl 1.20 // Original (since JDK1.2) Map methods
742 dl 1.1
743     /**
744 dl 1.20 * {@inheritDoc}
745 dl 1.1 */
746 dl 1.20 public int size() {
747     long n = sumCount();
748     return ((n < 0L) ? 0 :
749     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
750     (int)n);
751     }
752 dl 1.1
753 dl 1.20 /**
754     * {@inheritDoc}
755     */
756     public boolean isEmpty() {
757     return sumCount() <= 0L; // ignore transient negative values
758 dl 1.1 }
759    
760     /**
761 dl 1.20 * Returns the value to which the specified key is mapped,
762     * or {@code null} if this map contains no mapping for the key.
763     *
764     * <p>More formally, if this map contains a mapping from a key
765     * {@code k} to a value {@code v} such that {@code key.equals(k)},
766     * then this method returns {@code v}; otherwise it returns
767     * {@code null}. (There can be at most one such mapping.)
768 dl 1.1 *
769 dl 1.20 * @throws NullPointerException if the specified key is null
770     */
771     public V get(Object key) {
772     Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
773     int h = spread(key.hashCode());
774     if ((tab = table) != null && (n = tab.length) > 0 &&
775     (e = tabAt(tab, (n - 1) & h)) != null) {
776     if ((eh = e.hash) == h) {
777     if ((ek = e.key) == key || (ek != null && key.equals(ek)))
778     return e.val;
779     }
780     else if (eh < 0)
781     return (p = e.find(h, key)) != null ? p.val : null;
782     while ((e = e.next) != null) {
783     if (e.hash == h &&
784     ((ek = e.key) == key || (ek != null && key.equals(ek))))
785     return e.val;
786 dl 1.1 }
787     }
788 dl 1.20 return null;
789     }
790 dl 1.1
791 dl 1.20 /**
792     * Tests if the specified object is a key in this table.
793     *
794     * @param key possible key
795     * @return {@code true} if and only if the specified object
796     * is a key in this table, as determined by the
797     * {@code equals} method; {@code false} otherwise
798     * @throws NullPointerException if the specified key is null
799     */
800     public boolean containsKey(Object key) {
801     return get(key) != null;
802     }
803 dl 1.1
804 dl 1.20 /**
805     * Returns {@code true} if this map maps one or more keys to the
806     * specified value. Note: This method may require a full traversal
807     * of the map, and is much slower than method {@code containsKey}.
808     *
809     * @param value value whose presence in this map is to be tested
810     * @return {@code true} if this map maps one or more keys to the
811     * specified value
812     * @throws NullPointerException if the specified value is null
813     */
814     public boolean containsValue(Object value) {
815     if (value == null)
816     throw new NullPointerException();
817     Node<K,V>[] t;
818     if ((t = table) != null) {
819     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
820     for (Node<K,V> p; (p = it.advance()) != null; ) {
821     V v;
822     if ((v = p.val) == value || (v != null && value.equals(v)))
823     return true;
824 dl 1.1 }
825     }
826 dl 1.20 return false;
827     }
828 dl 1.1
829 dl 1.20 /**
830     * Maps the specified key to the specified value in this table.
831     * Neither the key nor the value can be null.
832     *
833     * <p>The value can be retrieved by calling the {@code get} method
834     * with a key that is equal to the original key.
835     *
836     * @param key key with which the specified value is to be associated
837     * @param value value to be associated with the specified key
838     * @return the previous value associated with {@code key}, or
839     * {@code null} if there was no mapping for {@code key}
840     * @throws NullPointerException if the specified key or value is null
841     */
842     public V put(K key, V value) {
843     return putVal(key, value, false);
844     }
845 dl 1.1
846 dl 1.20 /** Implementation for put and putIfAbsent */
847     final V putVal(K key, V value, boolean onlyIfAbsent) {
848     if (key == null || value == null) throw new NullPointerException();
849     int hash = spread(key.hashCode());
850     int binCount = 0;
851     for (Node<K,V>[] tab = table;;) {
852     Node<K,V> f; int n, i, fh;
853     if (tab == null || (n = tab.length) == 0)
854     tab = initTable();
855     else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
856     if (casTabAt(tab, i, null,
857     new Node<K,V>(hash, key, value, null)))
858     break; // no lock when adding to empty bin
859 dl 1.1 }
860 dl 1.20 else if ((fh = f.hash) == MOVED)
861     tab = helpTransfer(tab, f);
862 dl 1.1 else {
863 dl 1.20 V oldVal = null;
864     synchronized (f) {
865     if (tabAt(tab, i) == f) {
866     if (fh >= 0) {
867     binCount = 1;
868     for (Node<K,V> e = f;; ++binCount) {
869     K ek;
870     if (e.hash == hash &&
871     ((ek = e.key) == key ||
872     (ek != null && key.equals(ek)))) {
873     oldVal = e.val;
874     if (!onlyIfAbsent)
875     e.val = value;
876     break;
877 dl 1.1 }
878 dl 1.20 Node<K,V> pred = e;
879     if ((e = e.next) == null) {
880     pred.next = new Node<K,V>(hash, key,
881     value, null);
882     break;
883 dl 1.1 }
884     }
885     }
886 dl 1.20 else if (f instanceof TreeBin) {
887     Node<K,V> p;
888     binCount = 2;
889     if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
890     value)) != null) {
891     oldVal = p.val;
892     if (!onlyIfAbsent)
893     p.val = value;
894 dl 1.1 }
895     }
896     }
897     }
898 dl 1.20 if (binCount != 0) {
899     if (binCount >= TREEIFY_THRESHOLD)
900     treeifyBin(tab, i);
901     if (oldVal != null)
902     return oldVal;
903     break;
904     }
905 dl 1.1 }
906     }
907 dl 1.20 addCount(1L, binCount);
908     return null;
909 dl 1.1 }
910    
911     /**
912 dl 1.20 * Copies all of the mappings from the specified map to this one.
913     * These mappings replace any mappings that this map had for any of the
914     * keys currently in the specified map.
915     *
916     * @param m mappings to be stored in this map
917     */
918     public void putAll(Map<? extends K, ? extends V> m) {
919     tryPresize(m.size());
920     for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
921     putVal(e.getKey(), e.getValue(), false);
922 dl 1.1 }
923    
924     /**
925 dl 1.20 * Removes the key (and its corresponding value) from this map.
926     * This method does nothing if the key is not in the map.
927     *
928     * @param key the key that needs to be removed
929     * @return the previous value associated with {@code key}, or
930     * {@code null} if there was no mapping for {@code key}
931     * @throws NullPointerException if the specified key is null
932     */
933     public V remove(Object key) {
934     return replaceNode(key, null, null);
935 dl 1.1 }
936    
937     /**
938     * Implementation for the four public remove/replace methods:
939     * Replaces node value with v, conditional upon match of cv if
940     * non-null. If resulting value is null, delete.
941     */
942 dl 1.20 final V replaceNode(Object key, V value, Object cv) {
943     int hash = spread(key.hashCode());
944     for (Node<K,V>[] tab = table;;) {
945     Node<K,V> f; int n, i, fh;
946     if (tab == null || (n = tab.length) == 0 ||
947     (f = tabAt(tab, i = (n - 1) & hash)) == null)
948 dl 1.1 break;
949 dl 1.20 else if ((fh = f.hash) == MOVED)
950     tab = helpTransfer(tab, f);
951 dl 1.1 else {
952 dl 1.20 V oldVal = null;
953 dl 1.1 boolean validated = false;
954     synchronized (f) {
955     if (tabAt(tab, i) == f) {
956 dl 1.20 if (fh >= 0) {
957     validated = true;
958     for (Node<K,V> e = f, pred = null;;) {
959     K ek;
960     if (e.hash == hash &&
961     ((ek = e.key) == key ||
962     (ek != null && key.equals(ek)))) {
963     V ev = e.val;
964     if (cv == null || cv == ev ||
965     (ev != null && cv.equals(ev))) {
966     oldVal = ev;
967     if (value != null)
968     e.val = value;
969     else if (pred != null)
970     pred.next = e.next;
971 dl 1.1 else
972 dl 1.20 setTabAt(tab, i, e.next);
973 dl 1.1 }
974 dl 1.20 break;
975     }
976     pred = e;
977     if ((e = e.next) == null)
978     break;
979     }
980     }
981     else if (f instanceof TreeBin) {
982     validated = true;
983     TreeBin<K,V> t = (TreeBin<K,V>)f;
984     TreeNode<K,V> r, p;
985     if ((r = t.root) != null &&
986     (p = r.findTreeNode(hash, key, null)) != null) {
987     V pv = p.val;
988     if (cv == null || cv == pv ||
989     (pv != null && cv.equals(pv))) {
990     oldVal = pv;
991     if (value != null)
992     p.val = value;
993     else if (t.removeTreeNode(p))
994     setTabAt(tab, i, untreeify(t.first));
995 dl 1.1 }
996     }
997     }
998     }
999     }
1000     if (validated) {
1001 dl 1.20 if (oldVal != null) {
1002     if (value == null)
1003     addCount(-1L, -1);
1004     return oldVal;
1005 dl 1.1 }
1006     break;
1007     }
1008     }
1009     }
1010     return null;
1011     }
1012    
1013     /**
1014 dl 1.20 * Removes all of the mappings from this map.
1015 dl 1.1 */
1016 dl 1.20 public void clear() {
1017 dl 1.1 long delta = 0L; // negative number of deletions
1018     int i = 0;
1019 dl 1.20 Node<K,V>[] tab = table;
1020 dl 1.1 while (tab != null && i < tab.length) {
1021 dl 1.20 int fh;
1022     Node<K,V> f = tabAt(tab, i);
1023 dl 1.1 if (f == null)
1024     ++i;
1025 dl 1.20 else if ((fh = f.hash) == MOVED) {
1026     tab = helpTransfer(tab, f);
1027     i = 0; // restart
1028 dl 1.1 }
1029     else {
1030     synchronized (f) {
1031     if (tabAt(tab, i) == f) {
1032 dl 1.20 Node<K,V> p = (fh >= 0 ? f :
1033     (f instanceof TreeBin) ?
1034     ((TreeBin<K,V>)f).first : null);
1035     while (p != null) {
1036     --delta;
1037     p = p.next;
1038 dl 1.1 }
1039 dl 1.20 setTabAt(tab, i++, null);
1040 dl 1.1 }
1041     }
1042     }
1043     }
1044     if (delta != 0L)
1045     addCount(delta, -1);
1046     }
1047    
1048     /**
1049 dl 1.20 * Returns a {@link Set} view of the keys contained in this map.
1050     * The set is backed by the map, so changes to the map are
1051     * reflected in the set, and vice-versa. The set supports element
1052     * removal, which removes the corresponding mapping from this map,
1053     * via the {@code Iterator.remove}, {@code Set.remove},
1054     * {@code removeAll}, {@code retainAll}, and {@code clear}
1055     * operations. It does not support the {@code add} or
1056     * {@code addAll} operations.
1057     *
1058     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1059     * that will never throw {@link ConcurrentModificationException},
1060     * and guarantees to traverse elements as they existed upon
1061     * construction of the iterator, and may (but is not guaranteed to)
1062     * reflect any modifications subsequent to construction.
1063     *
1064     * @return the set view
1065 dl 1.1 */
1066 dl 1.20 public KeySetView<K,V> keySet() {
1067     KeySetView<K,V> ks;
1068     return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1069 dl 1.1 }
1070    
1071     /**
1072 dl 1.20 * Returns a {@link Collection} view of the values contained in this map.
1073     * The collection is backed by the map, so changes to the map are
1074     * reflected in the collection, and vice-versa. The collection
1075     * supports element removal, which removes the corresponding
1076     * mapping from this map, via the {@code Iterator.remove},
1077     * {@code Collection.remove}, {@code removeAll},
1078     * {@code retainAll}, and {@code clear} operations. It does not
1079     * support the {@code add} or {@code addAll} operations.
1080 dl 1.1 *
1081 dl 1.20 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1082     * that will never throw {@link ConcurrentModificationException},
1083     * and guarantees to traverse elements as they existed upon
1084     * construction of the iterator, and may (but is not guaranteed to)
1085     * reflect any modifications subsequent to construction.
1086 dl 1.1 *
1087 dl 1.20 * @return the collection view
1088 dl 1.1 */
1089 dl 1.20 public Collection<V> values() {
1090     ValuesView<K,V> vs;
1091     return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1092 dl 1.1 }
1093    
1094     /**
1095 dl 1.20 * Returns a {@link Set} view of the mappings contained in this map.
1096     * The set is backed by the map, so changes to the map are
1097     * reflected in the set, and vice-versa. The set supports element
1098     * removal, which removes the corresponding mapping from the map,
1099     * via the {@code Iterator.remove}, {@code Set.remove},
1100     * {@code removeAll}, {@code retainAll}, and {@code clear}
1101     * operations.
1102     *
1103     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1104     * that will never throw {@link ConcurrentModificationException},
1105     * and guarantees to traverse elements as they existed upon
1106     * construction of the iterator, and may (but is not guaranteed to)
1107     * reflect any modifications subsequent to construction.
1108 dl 1.1 *
1109 dl 1.20 * @return the set view
1110 dl 1.1 */
1111 dl 1.20 public Set<Map.Entry<K,V>> entrySet() {
1112     EntrySetView<K,V> es;
1113     return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1114 dl 1.1 }
1115    
1116     /**
1117     * Returns the hash code value for this {@link Map}, i.e.,
1118     * the sum of, for each key-value pair in the map,
1119     * {@code key.hashCode() ^ value.hashCode()}.
1120     *
1121     * @return the hash code value for this map
1122     */
1123     public int hashCode() {
1124     int h = 0;
1125 dl 1.20 Node<K,V>[] t;
1126     if ((t = table) != null) {
1127     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1128     for (Node<K,V> p; (p = it.advance()) != null; )
1129     h += p.key.hashCode() ^ p.val.hashCode();
1130 dl 1.1 }
1131     return h;
1132     }
1133    
1134     /**
1135     * Returns a string representation of this map. The string
1136     * representation consists of a list of key-value mappings (in no
1137     * particular order) enclosed in braces ("{@code {}}"). Adjacent
1138     * mappings are separated by the characters {@code ", "} (comma
1139     * and space). Each key-value mapping is rendered as the key
1140     * followed by an equals sign ("{@code =}") followed by the
1141     * associated value.
1142     *
1143     * @return a string representation of this map
1144     */
1145     public String toString() {
1146 dl 1.20 Node<K,V>[] t;
1147     int f = (t = table) == null ? 0 : t.length;
1148     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1149 dl 1.1 StringBuilder sb = new StringBuilder();
1150     sb.append('{');
1151 dl 1.20 Node<K,V> p;
1152     if ((p = it.advance()) != null) {
1153 dl 1.1 for (;;) {
1154 dl 1.20 K k = p.key;
1155     V v = p.val;
1156 dl 1.1 sb.append(k == this ? "(this Map)" : k);
1157     sb.append('=');
1158     sb.append(v == this ? "(this Map)" : v);
1159 dl 1.20 if ((p = it.advance()) == null)
1160 dl 1.1 break;
1161     sb.append(',').append(' ');
1162     }
1163     }
1164     return sb.append('}').toString();
1165     }
1166    
1167     /**
1168     * Compares the specified object with this map for equality.
1169     * Returns {@code true} if the given object is a map with the same
1170     * mappings as this map. This operation may return misleading
1171     * results if either map is concurrently modified during execution
1172     * of this method.
1173     *
1174     * @param o object to be compared for equality with this map
1175     * @return {@code true} if the specified object is equal to this map
1176     */
1177     public boolean equals(Object o) {
1178     if (o != this) {
1179     if (!(o instanceof Map))
1180     return false;
1181     Map<?,?> m = (Map<?,?>) o;
1182 dl 1.20 Node<K,V>[] t;
1183     int f = (t = table) == null ? 0 : t.length;
1184     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1185     for (Node<K,V> p; (p = it.advance()) != null; ) {
1186     V val = p.val;
1187     Object v = m.get(p.key);
1188 dl 1.1 if (v == null || (v != val && !v.equals(val)))
1189     return false;
1190     }
1191     for (Map.Entry<?,?> e : m.entrySet()) {
1192     Object mk, mv, v;
1193     if ((mk = e.getKey()) == null ||
1194     (mv = e.getValue()) == null ||
1195 dl 1.20 (v = get(mk)) == null ||
1196 dl 1.1 (mv != v && !mv.equals(v)))
1197     return false;
1198     }
1199     }
1200     return true;
1201     }
1202    
1203     /**
1204     * Stripped-down version of helper class used in previous version,
1205     * declared for the sake of serialization compatibility
1206     */
1207 dl 1.20 static class Segment<K,V> extends ReentrantLock implements Serializable {
1208 dl 1.1 private static final long serialVersionUID = 2249069246763182397L;
1209     final float loadFactor;
1210     Segment(float lf) { this.loadFactor = lf; }
1211     }
1212    
1213     /**
1214     * Saves the state of the {@code ConcurrentHashMap} instance to a
1215     * stream (i.e., serializes it).
1216     * @param s the stream
1217     * @serialData
1218     * the key (Object) and value (Object)
1219     * for each key-value mapping, followed by a null pair.
1220     * The key-value mappings are emitted in no particular order.
1221     */
1222 dl 1.20 private void writeObject(java.io.ObjectOutputStream s)
1223 dl 1.1 throws java.io.IOException {
1224 dl 1.20 // For serialization compatibility
1225     // Emulate segment calculation from previous version of this class
1226     int sshift = 0;
1227     int ssize = 1;
1228     while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1229     ++sshift;
1230     ssize <<= 1;
1231     }
1232     int segmentShift = 32 - sshift;
1233     int segmentMask = ssize - 1;
1234     @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1235     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1236     for (int i = 0; i < segments.length; ++i)
1237     segments[i] = new Segment<K,V>(LOAD_FACTOR);
1238     s.putFields().put("segments", segments);
1239     s.putFields().put("segmentShift", segmentShift);
1240     s.putFields().put("segmentMask", segmentMask);
1241     s.writeFields();
1242    
1243     Node<K,V>[] t;
1244     if ((t = table) != null) {
1245     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1246     for (Node<K,V> p; (p = it.advance()) != null; ) {
1247     s.writeObject(p.key);
1248     s.writeObject(p.val);
1249     }
1250 dl 1.1 }
1251     s.writeObject(null);
1252     s.writeObject(null);
1253     segments = null; // throw away
1254     }
1255    
1256     /**
1257     * Reconstitutes the instance from a stream (that is, deserializes it).
1258     * @param s the stream
1259     */
1260 dl 1.20 private void readObject(java.io.ObjectInputStream s)
1261 dl 1.1 throws java.io.IOException, ClassNotFoundException {
1262 dl 1.20 /*
1263     * To improve performance in typical cases, we create nodes
1264     * while reading, then place in table once size is known.
1265     * However, we must also validate uniqueness and deal with
1266     * overpopulated bins while doing so, which requires
1267     * specialized versions of putVal mechanics.
1268     */
1269     sizeCtl = -1; // force exclusion for table construction
1270 dl 1.1 s.defaultReadObject();
1271     long size = 0L;
1272 dl 1.20 Node<K,V> p = null;
1273 dl 1.1 for (;;) {
1274 dl 1.20 @SuppressWarnings("unchecked") K k = (K) s.readObject();
1275     @SuppressWarnings("unchecked") V v = (V) s.readObject();
1276 dl 1.1 if (k != null && v != null) {
1277 dl 1.20 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1278 dl 1.1 ++size;
1279     }
1280     else
1281     break;
1282     }
1283 dl 1.20 if (size == 0L)
1284     sizeCtl = 0;
1285     else {
1286 dl 1.1 int n;
1287     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1288     n = MAXIMUM_CAPACITY;
1289     else {
1290     int sz = (int)size;
1291     n = tableSizeFor(sz + (sz >>> 1) + 1);
1292     }
1293 jsr166 1.33 @SuppressWarnings("unchecked")
1294     Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1295 dl 1.20 int mask = n - 1;
1296     long added = 0L;
1297     while (p != null) {
1298     boolean insertAtFront;
1299     Node<K,V> next = p.next, first;
1300     int h = p.hash, j = h & mask;
1301     if ((first = tabAt(tab, j)) == null)
1302     insertAtFront = true;
1303     else {
1304     K k = p.key;
1305     if (first.hash < 0) {
1306     TreeBin<K,V> t = (TreeBin<K,V>)first;
1307     if (t.putTreeVal(h, k, p.val) == null)
1308     ++added;
1309     insertAtFront = false;
1310 dl 1.1 }
1311 dl 1.20 else {
1312     int binCount = 0;
1313     insertAtFront = true;
1314     Node<K,V> q; K qk;
1315     for (q = first; q != null; q = q.next) {
1316     if (q.hash == h &&
1317     ((qk = q.key) == k ||
1318     (qk != null && k.equals(qk)))) {
1319     insertAtFront = false;
1320 dl 1.1 break;
1321     }
1322 dl 1.20 ++binCount;
1323     }
1324     if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1325     insertAtFront = false;
1326     ++added;
1327     p.next = first;
1328     TreeNode<K,V> hd = null, tl = null;
1329     for (q = p; q != null; q = q.next) {
1330     TreeNode<K,V> t = new TreeNode<K,V>
1331     (q.hash, q.key, q.val, null, null);
1332     if ((t.prev = tl) == null)
1333     hd = t;
1334     else
1335     tl.next = t;
1336     tl = t;
1337     }
1338     setTabAt(tab, j, new TreeBin<K,V>(hd));
1339 dl 1.1 }
1340     }
1341     }
1342 dl 1.20 if (insertAtFront) {
1343     ++added;
1344     p.next = first;
1345     setTabAt(tab, j, p);
1346 dl 1.1 }
1347 dl 1.20 p = next;
1348 dl 1.1 }
1349 dl 1.20 table = tab;
1350     sizeCtl = n - (n >>> 2);
1351     baseCount = added;
1352 dl 1.1 }
1353     }
1354    
1355 dl 1.20 // ConcurrentMap methods
1356 dl 1.1
1357     /**
1358 dl 1.20 * {@inheritDoc}
1359 dl 1.1 *
1360 dl 1.20 * @return the previous value associated with the specified key,
1361     * or {@code null} if there was no mapping for the key
1362     * @throws NullPointerException if the specified key or value is null
1363 dl 1.1 */
1364 dl 1.20 public V putIfAbsent(K key, V value) {
1365     return putVal(key, value, true);
1366 dl 1.1 }
1367    
1368     /**
1369 dl 1.20 * {@inheritDoc}
1370 dl 1.1 *
1371 dl 1.20 * @throws NullPointerException if the specified key is null
1372 dl 1.1 */
1373 dl 1.20 public boolean remove(Object key, Object value) {
1374     if (key == null)
1375     throw new NullPointerException();
1376     return value != null && replaceNode(key, null, value) != null;
1377 dl 1.1 }
1378    
1379     /**
1380 dl 1.20 * {@inheritDoc}
1381 dl 1.1 *
1382 dl 1.20 * @throws NullPointerException if any of the arguments are null
1383 dl 1.1 */
1384 dl 1.20 public boolean replace(K key, V oldValue, V newValue) {
1385     if (key == null || oldValue == null || newValue == null)
1386     throw new NullPointerException();
1387     return replaceNode(key, newValue, oldValue) != null;
1388 dl 1.1 }
1389    
1390     /**
1391 dl 1.20 * {@inheritDoc}
1392 dl 1.1 *
1393 dl 1.20 * @return the previous value associated with the specified key,
1394     * or {@code null} if there was no mapping for the key
1395     * @throws NullPointerException if the specified key or value is null
1396 dl 1.1 */
1397 dl 1.20 public V replace(K key, V value) {
1398     if (key == null || value == null)
1399     throw new NullPointerException();
1400     return replaceNode(key, value, null);
1401 dl 1.1 }
1402 dl 1.20 // Hashtable legacy methods
1403 dl 1.1
1404     /**
1405 dl 1.20 * Legacy method testing if some key maps into the specified value
1406 jsr166 1.34 * in this table.
1407     *
1408     * @deprecated This method is identical in functionality to
1409 dl 1.20 * {@link #containsValue(Object)}, and exists solely to ensure
1410     * full compatibility with class {@link java.util.Hashtable},
1411     * which supported this method prior to introduction of the
1412     * Java Collections framework.
1413 dl 1.1 *
1414 dl 1.20 * @param value a value to search for
1415     * @return {@code true} if and only if some key maps to the
1416     * {@code value} argument in this table as
1417     * determined by the {@code equals} method;
1418     * {@code false} otherwise
1419     * @throws NullPointerException if the specified value is null
1420 dl 1.1 */
1421 dl 1.20 @Deprecated public boolean contains(Object value) {
1422     return containsValue(value);
1423 dl 1.1 }
1424    
1425     /**
1426 dl 1.20 * Returns an enumeration of the keys in this table.
1427 dl 1.1 *
1428 dl 1.20 * @return an enumeration of the keys in this table
1429     * @see #keySet()
1430 dl 1.1 */
1431 dl 1.20 public Enumeration<K> keys() {
1432     Node<K,V>[] t;
1433     int f = (t = table) == null ? 0 : t.length;
1434     return new KeyIterator<K,V>(t, f, 0, f, this);
1435 dl 1.1 }
1436    
1437     /**
1438 dl 1.20 * Returns an enumeration of the values in this table.
1439 dl 1.1 *
1440 dl 1.20 * @return an enumeration of the values in this table
1441     * @see #values()
1442 dl 1.1 */
1443 dl 1.20 public Enumeration<V> elements() {
1444     Node<K,V>[] t;
1445     int f = (t = table) == null ? 0 : t.length;
1446     return new ValueIterator<K,V>(t, f, 0, f, this);
1447 dl 1.1 }
1448    
1449 dl 1.20 // ConcurrentHashMap-only methods
1450    
1451 dl 1.1 /**
1452 dl 1.20 * Returns the number of mappings. This method should be used
1453     * instead of {@link #size} because a ConcurrentHashMap may
1454     * contain more mappings than can be represented as an int. The
1455     * value returned is an estimate; the actual count may differ if
1456     * there are concurrent insertions or removals.
1457 dl 1.1 *
1458 dl 1.20 * @return the number of mappings
1459     * @since 1.8
1460 dl 1.1 */
1461 dl 1.20 public long mappingCount() {
1462     long n = sumCount();
1463     return (n < 0L) ? 0L : n; // ignore transient negative values
1464 dl 1.1 }
1465    
1466     /**
1467 dl 1.20 * Creates a new {@link Set} backed by a ConcurrentHashMap
1468     * from the given type to {@code Boolean.TRUE}.
1469 dl 1.1 *
1470 jsr166 1.31 * @param <K> the element type of the returned set
1471 dl 1.20 * @return the new set
1472     * @since 1.8
1473 dl 1.1 */
1474 dl 1.20 public static <K> KeySetView<K,Boolean> newKeySet() {
1475     return new KeySetView<K,Boolean>
1476     (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
1477 dl 1.1 }
1478    
1479     /**
1480 dl 1.20 * Creates a new {@link Set} backed by a ConcurrentHashMap
1481     * from the given type to {@code Boolean.TRUE}.
1482 dl 1.1 *
1483 dl 1.20 * @param initialCapacity The implementation performs internal
1484     * sizing to accommodate this many elements.
1485 jsr166 1.31 * @param <K> the element type of the returned set
1486 jsr166 1.29 * @return the new set
1487 dl 1.20 * @throws IllegalArgumentException if the initial capacity of
1488     * elements is negative
1489     * @since 1.8
1490 dl 1.1 */
1491 dl 1.20 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
1492     return new KeySetView<K,Boolean>
1493     (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
1494 dl 1.1 }
1495    
1496     /**
1497 dl 1.20 * Returns a {@link Set} view of the keys in this map, using the
1498     * given common mapped value for any additions (i.e., {@link
1499     * Collection#add} and {@link Collection#addAll(Collection)}).
1500     * This is of course only appropriate if it is acceptable to use
1501     * the same value for all additions from this view.
1502 dl 1.1 *
1503 dl 1.20 * @param mappedValue the mapped value to use for any additions
1504     * @return the set view
1505     * @throws NullPointerException if the mappedValue is null
1506 dl 1.1 */
1507 dl 1.20 public KeySetView<K,V> keySet(V mappedValue) {
1508     if (mappedValue == null)
1509     throw new NullPointerException();
1510     return new KeySetView<K,V>(this, mappedValue);
1511 dl 1.1 }
1512    
1513 dl 1.20 /* ---------------- Special Nodes -------------- */
1514    
1515 dl 1.1 /**
1516 dl 1.20 * A node inserted at head of bins during transfer operations.
1517 dl 1.1 */
1518 dl 1.20 static final class ForwardingNode<K,V> extends Node<K,V> {
1519     final Node<K,V>[] nextTable;
1520     ForwardingNode(Node<K,V>[] tab) {
1521     super(MOVED, null, null, null);
1522     this.nextTable = tab;
1523     }
1524    
1525     Node<K,V> find(int h, Object k) {
1526     Node<K,V> e; int n;
1527     Node<K,V>[] tab = nextTable;
1528     if (k != null && tab != null && (n = tab.length) > 0 &&
1529     (e = tabAt(tab, (n - 1) & h)) != null) {
1530     do {
1531     int eh; K ek;
1532     if ((eh = e.hash) == h &&
1533     ((ek = e.key) == k || (ek != null && k.equals(ek))))
1534     return e;
1535     if (eh < 0)
1536     return e.find(h, k);
1537     } while ((e = e.next) != null);
1538     }
1539     return null;
1540     }
1541 dl 1.1 }
1542    
1543     /**
1544 dl 1.20 * A place-holder node used in computeIfAbsent and compute
1545 dl 1.1 */
1546 dl 1.20 static final class ReservationNode<K,V> extends Node<K,V> {
1547     ReservationNode() {
1548     super(RESERVED, null, null, null);
1549     }
1550    
1551     Node<K,V> find(int h, Object k) {
1552     return null;
1553     }
1554 dl 1.1 }
1555    
1556 dl 1.20 /* ---------------- Table Initialization and Resizing -------------- */
1557    
1558 dl 1.1 /**
1559 dl 1.36 * Returns the stamp bits for resizing a table of size n.
1560     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
1561     */
1562     static final int resizeStamp(int n) {
1563 jsr166 1.38 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
1564 dl 1.36 }
1565    
1566     /**
1567 dl 1.20 * Initializes table, using the size recorded in sizeCtl.
1568 dl 1.1 */
1569 dl 1.20 private final Node<K,V>[] initTable() {
1570     Node<K,V>[] tab; int sc;
1571     while ((tab = table) == null || tab.length == 0) {
1572     if ((sc = sizeCtl) < 0)
1573     Thread.yield(); // lost initialization race; just spin
1574     else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1575     try {
1576     if ((tab = table) == null || tab.length == 0) {
1577     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1578 jsr166 1.33 @SuppressWarnings("unchecked")
1579 dl 1.36 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
1580 dl 1.20 table = tab = nt;
1581     sc = n - (n >>> 2);
1582     }
1583     } finally {
1584     sizeCtl = sc;
1585     }
1586     break;
1587     }
1588     }
1589     return tab;
1590 dl 1.1 }
1591    
1592     /**
1593 dl 1.20 * Adds to count, and if table is too small and not already
1594     * resizing, initiates transfer. If already resizing, helps
1595     * perform transfer if work is available. Rechecks occupancy
1596     * after a transfer to see if another resize is already needed
1597     * because resizings are lagging additions.
1598 dl 1.1 *
1599 dl 1.20 * @param x the count to add
1600     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1601 dl 1.1 */
1602 dl 1.20 private final void addCount(long x, int check) {
1603     CounterCell[] as; long b, s;
1604     if ((as = counterCells) != null ||
1605     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1606     CounterHashCode hc; CounterCell a; long v; int m;
1607     boolean uncontended = true;
1608     if ((hc = threadCounterHashCode.get()) == null ||
1609     as == null || (m = as.length - 1) < 0 ||
1610     (a = as[m & hc.code]) == null ||
1611     !(uncontended =
1612     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1613     fullAddCount(x, hc, uncontended);
1614     return;
1615     }
1616     if (check <= 1)
1617     return;
1618     s = sumCount();
1619     }
1620     if (check >= 0) {
1621 dl 1.36 Node<K,V>[] tab, nt; int n, sc;
1622 dl 1.20 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1623 dl 1.36 (n = tab.length) < MAXIMUM_CAPACITY) {
1624     int rs = resizeStamp(n);
1625 dl 1.20 if (sc < 0) {
1626 dl 1.36 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
1627 jsr166 1.38 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
1628     transferIndex <= 0)
1629 dl 1.20 break;
1630 dl 1.36 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
1631 dl 1.20 transfer(tab, nt);
1632     }
1633 dl 1.36 else if (U.compareAndSwapInt(this, SIZECTL, sc,
1634 jsr166 1.38 (rs << RESIZE_STAMP_SHIFT) + 2))
1635 dl 1.20 transfer(tab, null);
1636     s = sumCount();
1637     }
1638     }
1639 dl 1.1 }
1640    
1641     /**
1642 dl 1.20 * Helps transfer if a resize is in progress.
1643 dl 1.1 */
1644 dl 1.20 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
1645     Node<K,V>[] nextTab; int sc;
1646 dl 1.36 if (tab != null && (f instanceof ForwardingNode) &&
1647 dl 1.20 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
1648 jsr166 1.38 int rs = resizeStamp(tab.length);
1649 dl 1.36 while (nextTab == nextTable && table == tab &&
1650 jsr166 1.38 (sc = sizeCtl) < 0) {
1651     if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
1652 dl 1.36 sc == rs + MAX_RESIZERS || transferIndex <= 0)
1653 jsr166 1.38 break;
1654     if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
1655 dl 1.35 transfer(tab, nextTab);
1656     break;
1657     }
1658     }
1659 dl 1.20 return nextTab;
1660     }
1661     return table;
1662 dl 1.1 }
1663    
1664     /**
1665 dl 1.20 * Tries to presize table to accommodate the given number of elements.
1666 dl 1.1 *
1667 dl 1.20 * @param size number of elements (doesn't need to be perfectly accurate)
1668 dl 1.1 */
1669 dl 1.20 private final void tryPresize(int size) {
1670     int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1671     tableSizeFor(size + (size >>> 1) + 1);
1672     int sc;
1673     while ((sc = sizeCtl) >= 0) {
1674     Node<K,V>[] tab = table; int n;
1675     if (tab == null || (n = tab.length) == 0) {
1676     n = (sc > c) ? sc : c;
1677     if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1678     try {
1679     if (table == tab) {
1680 jsr166 1.33 @SuppressWarnings("unchecked")
1681 dl 1.36 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
1682 dl 1.20 table = nt;
1683     sc = n - (n >>> 2);
1684     }
1685     } finally {
1686     sizeCtl = sc;
1687     }
1688     }
1689     }
1690     else if (c <= sc || n >= MAXIMUM_CAPACITY)
1691     break;
1692 dl 1.36 else if (tab == table) {
1693     int rs = resizeStamp(n);
1694     if (sc < 0) {
1695 jsr166 1.38 Node<K,V>[] nt;
1696 dl 1.36 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
1697     sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
1698     transferIndex <= 0)
1699     break;
1700     if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
1701     transfer(tab, nt);
1702     }
1703     else if (U.compareAndSwapInt(this, SIZECTL, sc,
1704 jsr166 1.38 (rs << RESIZE_STAMP_SHIFT) + 2))
1705 dl 1.36 transfer(tab, null);
1706     }
1707 dl 1.20 }
1708 dl 1.1 }
1709    
1710     /**
1711 dl 1.20 * Moves and/or copies the nodes in each bin to new table. See
1712     * above for explanation.
1713 dl 1.1 */
1714 dl 1.20 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
1715     int n = tab.length, stride;
1716     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1717     stride = MIN_TRANSFER_STRIDE; // subdivide range
1718     if (nextTab == null) { // initiating
1719     try {
1720 jsr166 1.33 @SuppressWarnings("unchecked")
1721 dl 1.35 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
1722 dl 1.20 nextTab = nt;
1723     } catch (Throwable ex) { // try to cope with OOME
1724     sizeCtl = Integer.MAX_VALUE;
1725     return;
1726     }
1727     nextTable = nextTab;
1728     transferIndex = n;
1729     }
1730     int nextn = nextTab.length;
1731     ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
1732     boolean advance = true;
1733 dl 1.35 boolean finishing = false; // to ensure sweep before committing nextTab
1734 dl 1.20 for (int i = 0, bound = 0;;) {
1735 dl 1.35 Node<K,V> f; int fh;
1736 dl 1.20 while (advance) {
1737 dl 1.35 int nextIndex, nextBound;
1738     if (--i >= bound || finishing)
1739 dl 1.20 advance = false;
1740 dl 1.35 else if ((nextIndex = transferIndex) <= 0) {
1741 dl 1.20 i = -1;
1742     advance = false;
1743     }
1744     else if (U.compareAndSwapInt
1745     (this, TRANSFERINDEX, nextIndex,
1746     nextBound = (nextIndex > stride ?
1747     nextIndex - stride : 0))) {
1748     bound = nextBound;
1749     i = nextIndex - 1;
1750     advance = false;
1751     }
1752     }
1753     if (i < 0 || i >= n || i + n >= nextn) {
1754 dl 1.35 int sc;
1755     if (finishing) {
1756     nextTable = null;
1757     table = nextTab;
1758     sizeCtl = (n << 1) - (n >>> 1);
1759     return;
1760     }
1761 dl 1.36 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
1762 dl 1.39 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
1763 dl 1.20 return;
1764 dl 1.35 finishing = advance = true;
1765     i = n; // recheck before commit
1766 dl 1.20 }
1767     }
1768 dl 1.35 else if ((f = tabAt(tab, i)) == null)
1769     advance = casTabAt(tab, i, null, fwd);
1770 dl 1.20 else if ((fh = f.hash) == MOVED)
1771     advance = true; // already processed
1772     else {
1773     synchronized (f) {
1774     if (tabAt(tab, i) == f) {
1775     Node<K,V> ln, hn;
1776     if (fh >= 0) {
1777     int runBit = fh & n;
1778     Node<K,V> lastRun = f;
1779     for (Node<K,V> p = f.next; p != null; p = p.next) {
1780     int b = p.hash & n;
1781     if (b != runBit) {
1782     runBit = b;
1783     lastRun = p;
1784     }
1785     }
1786     if (runBit == 0) {
1787     ln = lastRun;
1788     hn = null;
1789     }
1790     else {
1791     hn = lastRun;
1792     ln = null;
1793     }
1794     for (Node<K,V> p = f; p != lastRun; p = p.next) {
1795     int ph = p.hash; K pk = p.key; V pv = p.val;
1796     if ((ph & n) == 0)
1797     ln = new Node<K,V>(ph, pk, pv, ln);
1798     else
1799     hn = new Node<K,V>(ph, pk, pv, hn);
1800     }
1801 dl 1.35 setTabAt(nextTab, i, ln);
1802     setTabAt(nextTab, i + n, hn);
1803     setTabAt(tab, i, fwd);
1804     advance = true;
1805 dl 1.20 }
1806     else if (f instanceof TreeBin) {
1807     TreeBin<K,V> t = (TreeBin<K,V>)f;
1808     TreeNode<K,V> lo = null, loTail = null;
1809     TreeNode<K,V> hi = null, hiTail = null;
1810     int lc = 0, hc = 0;
1811     for (Node<K,V> e = t.first; e != null; e = e.next) {
1812     int h = e.hash;
1813     TreeNode<K,V> p = new TreeNode<K,V>
1814     (h, e.key, e.val, null, null);
1815     if ((h & n) == 0) {
1816     if ((p.prev = loTail) == null)
1817     lo = p;
1818     else
1819     loTail.next = p;
1820     loTail = p;
1821     ++lc;
1822     }
1823     else {
1824     if ((p.prev = hiTail) == null)
1825     hi = p;
1826     else
1827     hiTail.next = p;
1828     hiTail = p;
1829     ++hc;
1830     }
1831     }
1832 jsr166 1.24 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
1833     (hc != 0) ? new TreeBin<K,V>(lo) : t;
1834     hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
1835     (lc != 0) ? new TreeBin<K,V>(hi) : t;
1836 dl 1.35 setTabAt(nextTab, i, ln);
1837     setTabAt(nextTab, i + n, hn);
1838     setTabAt(tab, i, fwd);
1839     advance = true;
1840 dl 1.20 }
1841     }
1842     }
1843     }
1844     }
1845 dl 1.1 }
1846    
1847 dl 1.20 /* ---------------- Conversion from/to TreeBins -------------- */
1848 dl 1.1
1849     /**
1850 dl 1.20 * Replaces all linked nodes in bin at given index unless table is
1851     * too small, in which case resizes instead.
1852 dl 1.1 */
1853 dl 1.20 private final void treeifyBin(Node<K,V>[] tab, int index) {
1854     Node<K,V> b; int n, sc;
1855     if (tab != null) {
1856 dl 1.36 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
1857     tryPresize(n << 1);
1858     else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
1859 dl 1.20 synchronized (b) {
1860     if (tabAt(tab, index) == b) {
1861     TreeNode<K,V> hd = null, tl = null;
1862     for (Node<K,V> e = b; e != null; e = e.next) {
1863     TreeNode<K,V> p =
1864     new TreeNode<K,V>(e.hash, e.key, e.val,
1865     null, null);
1866     if ((p.prev = tl) == null)
1867     hd = p;
1868     else
1869     tl.next = p;
1870     tl = p;
1871     }
1872     setTabAt(tab, index, new TreeBin<K,V>(hd));
1873     }
1874     }
1875     }
1876     }
1877 dl 1.1 }
1878    
1879     /**
1880 jsr166 1.25 * Returns a list on non-TreeNodes replacing those in given list.
1881 dl 1.1 */
1882 dl 1.20 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
1883     Node<K,V> hd = null, tl = null;
1884     for (Node<K,V> q = b; q != null; q = q.next) {
1885     Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
1886     if (tl == null)
1887     hd = p;
1888     else
1889     tl.next = p;
1890     tl = p;
1891     }
1892     return hd;
1893 dl 1.1 }
1894    
1895 dl 1.20 /* ---------------- TreeNodes -------------- */
1896 dl 1.1
1897     /**
1898 dl 1.20 * Nodes for use in TreeBins
1899 dl 1.1 */
1900 dl 1.20 static final class TreeNode<K,V> extends Node<K,V> {
1901     TreeNode<K,V> parent; // red-black tree links
1902     TreeNode<K,V> left;
1903     TreeNode<K,V> right;
1904     TreeNode<K,V> prev; // needed to unlink next upon deletion
1905     boolean red;
1906 dl 1.1
1907 dl 1.20 TreeNode(int hash, K key, V val, Node<K,V> next,
1908     TreeNode<K,V> parent) {
1909     super(hash, key, val, next);
1910     this.parent = parent;
1911     }
1912 dl 1.1
1913 dl 1.20 Node<K,V> find(int h, Object k) {
1914     return findTreeNode(h, k, null);
1915     }
1916 dl 1.1
1917 dl 1.20 /**
1918     * Returns the TreeNode (or null if not found) for the given key
1919     * starting at given root.
1920     */
1921     final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
1922     if (k != null) {
1923     TreeNode<K,V> p = this;
1924 jsr166 1.40 do {
1925 dl 1.20 int ph, dir; K pk; TreeNode<K,V> q;
1926     TreeNode<K,V> pl = p.left, pr = p.right;
1927     if ((ph = p.hash) > h)
1928     p = pl;
1929     else if (ph < h)
1930     p = pr;
1931     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
1932     return p;
1933 dl 1.30 else if (pl == null)
1934     p = pr;
1935     else if (pr == null)
1936     p = pl;
1937 jsr166 1.21 else if ((kc != null ||
1938 dl 1.20 (kc = comparableClassFor(k)) != null) &&
1939     (dir = compareComparables(kc, k, pk)) != 0)
1940     p = (dir < 0) ? pl : pr;
1941 dl 1.30 else if ((q = pr.findTreeNode(h, k, kc)) != null)
1942     return q;
1943     else
1944 dl 1.20 p = pl;
1945     } while (p != null);
1946     }
1947     return null;
1948     }
1949 dl 1.1 }
1950    
1951 dl 1.30
1952 dl 1.20 /* ---------------- TreeBins -------------- */
1953 dl 1.1
1954     /**
1955 dl 1.20 * TreeNodes used at the heads of bins. TreeBins do not hold user
1956     * keys or values, but instead point to list of TreeNodes and
1957     * their root. They also maintain a parasitic read-write lock
1958     * forcing writers (who hold bin lock) to wait for readers (who do
1959     * not) to complete before tree restructuring operations.
1960     */
1961     static final class TreeBin<K,V> extends Node<K,V> {
1962     TreeNode<K,V> root;
1963     volatile TreeNode<K,V> first;
1964     volatile Thread waiter;
1965     volatile int lockState;
1966     // values for lockState
1967     static final int WRITER = 1; // set while holding write lock
1968     static final int WAITER = 2; // set when waiting for write lock
1969     static final int READER = 4; // increment value for setting read lock
1970    
1971     /**
1972 dl 1.30 * Tie-breaking utility for ordering insertions when equal
1973     * hashCodes and non-comparable. We don't require a total
1974     * order, just a consistent insertion rule to maintain
1975     * equivalence across rebalancings. Tie-breaking further than
1976     * necessary simplifies testing a bit.
1977     */
1978     static int tieBreakOrder(Object a, Object b) {
1979     int d;
1980     if (a == null || b == null ||
1981     (d = a.getClass().getName().
1982     compareTo(b.getClass().getName())) == 0)
1983     d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
1984     -1 : 1);
1985     return d;
1986     }
1987    
1988     /**
1989 dl 1.20 * Creates bin with initial set of nodes headed by b.
1990     */
1991     TreeBin(TreeNode<K,V> b) {
1992     super(TREEBIN, null, null, null);
1993     this.first = b;
1994     TreeNode<K,V> r = null;
1995     for (TreeNode<K,V> x = b, next; x != null; x = next) {
1996     next = (TreeNode<K,V>)x.next;
1997     x.left = x.right = null;
1998     if (r == null) {
1999     x.parent = null;
2000     x.red = false;
2001     r = x;
2002     }
2003     else {
2004 dl 1.30 K k = x.key;
2005     int h = x.hash;
2006 dl 1.20 Class<?> kc = null;
2007     for (TreeNode<K,V> p = r;;) {
2008     int dir, ph;
2009 dl 1.30 K pk = p.key;
2010     if ((ph = p.hash) > h)
2011 dl 1.20 dir = -1;
2012 dl 1.30 else if (ph < h)
2013 dl 1.20 dir = 1;
2014 dl 1.30 else if ((kc == null &&
2015     (kc = comparableClassFor(k)) == null) ||
2016     (dir = compareComparables(kc, k, pk)) == 0)
2017     dir = tieBreakOrder(k, pk);
2018     TreeNode<K,V> xp = p;
2019 dl 1.20 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2020     x.parent = xp;
2021     if (dir <= 0)
2022     xp.left = x;
2023     else
2024     xp.right = x;
2025     r = balanceInsertion(r, x);
2026     break;
2027     }
2028     }
2029     }
2030     }
2031     this.root = r;
2032 dl 1.30 assert checkInvariants(root);
2033 dl 1.20 }
2034 dl 1.1
2035 dl 1.20 /**
2036 jsr166 1.25 * Acquires write lock for tree restructuring.
2037 dl 1.20 */
2038     private final void lockRoot() {
2039     if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2040     contendedLock(); // offload to separate method
2041     }
2042 dl 1.1
2043 dl 1.20 /**
2044 jsr166 1.25 * Releases write lock for tree restructuring.
2045 dl 1.20 */
2046     private final void unlockRoot() {
2047     lockState = 0;
2048     }
2049 dl 1.1
2050 dl 1.20 /**
2051 jsr166 1.25 * Possibly blocks awaiting root lock.
2052 dl 1.20 */
2053     private final void contendedLock() {
2054     boolean waiting = false;
2055     for (int s;;) {
2056 dl 1.36 if (((s = lockState) & ~WAITER) == 0) {
2057 dl 1.20 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2058     if (waiting)
2059     waiter = null;
2060     return;
2061     }
2062     }
2063 dl 1.32 else if ((s & WAITER) == 0) {
2064 dl 1.20 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2065     waiting = true;
2066     waiter = Thread.currentThread();
2067     }
2068     }
2069     else if (waiting)
2070     LockSupport.park(this);
2071     }
2072     }
2073 dl 1.1
2074 dl 1.20 /**
2075     * Returns matching node or null if none. Tries to search
2076 jsr166 1.28 * using tree comparisons from root, but continues linear
2077 dl 1.20 * search when lock not available.
2078     */
2079     final Node<K,V> find(int h, Object k) {
2080     if (k != null) {
2081 dl 1.37 for (Node<K,V> e = first; e != null; ) {
2082 dl 1.20 int s; K ek;
2083     if (((s = lockState) & (WAITER|WRITER)) != 0) {
2084     if (e.hash == h &&
2085     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2086     return e;
2087 dl 1.37 e = e.next;
2088 dl 1.20 }
2089     else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2090     s + READER)) {
2091     TreeNode<K,V> r, p;
2092     try {
2093     p = ((r = root) == null ? null :
2094     r.findTreeNode(h, k, null));
2095     } finally {
2096 jsr166 1.21
2097 dl 1.20 Thread w;
2098     int ls;
2099     do {} while (!U.compareAndSwapInt
2100     (this, LOCKSTATE,
2101     ls = lockState, ls - READER));
2102     if (ls == (READER|WAITER) && (w = waiter) != null)
2103     LockSupport.unpark(w);
2104     }
2105     return p;
2106     }
2107     }
2108     }
2109     return null;
2110     }
2111 dl 1.1
2112     /**
2113 dl 1.20 * Finds or adds a node.
2114     * @return null if added
2115 dl 1.1 */
2116 dl 1.30 /**
2117     * Finds or adds a node.
2118     * @return null if added
2119     */
2120 dl 1.20 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2121     Class<?> kc = null;
2122 dl 1.30 boolean searched = false;
2123 dl 1.20 for (TreeNode<K,V> p = root;;) {
2124 dl 1.30 int dir, ph; K pk;
2125 dl 1.20 if (p == null) {
2126     first = root = new TreeNode<K,V>(h, k, v, null, null);
2127     break;
2128     }
2129     else if ((ph = p.hash) > h)
2130     dir = -1;
2131     else if (ph < h)
2132     dir = 1;
2133     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2134     return p;
2135     else if ((kc == null &&
2136     (kc = comparableClassFor(k)) == null) ||
2137     (dir = compareComparables(kc, k, pk)) == 0) {
2138 dl 1.30 if (!searched) {
2139     TreeNode<K,V> q, ch;
2140     searched = true;
2141     if (((ch = p.left) != null &&
2142     (q = ch.findTreeNode(h, k, kc)) != null) ||
2143     ((ch = p.right) != null &&
2144     (q = ch.findTreeNode(h, k, kc)) != null))
2145     return q;
2146     }
2147     dir = tieBreakOrder(k, pk);
2148 dl 1.20 }
2149 dl 1.30
2150 dl 1.20 TreeNode<K,V> xp = p;
2151 dl 1.30 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2152 dl 1.20 TreeNode<K,V> x, f = first;
2153     first = x = new TreeNode<K,V>(h, k, v, f, xp);
2154     if (f != null)
2155     f.prev = x;
2156 dl 1.30 if (dir <= 0)
2157 dl 1.20 xp.left = x;
2158 dl 1.1 else
2159 dl 1.20 xp.right = x;
2160     if (!xp.red)
2161     x.red = true;
2162     else {
2163     lockRoot();
2164     try {
2165     root = balanceInsertion(root, x);
2166     } finally {
2167     unlockRoot();
2168     }
2169     }
2170     break;
2171 dl 1.1 }
2172     }
2173 dl 1.20 assert checkInvariants(root);
2174     return null;
2175 dl 1.1 }
2176    
2177 dl 1.20 /**
2178     * Removes the given node, that must be present before this
2179     * call. This is messier than typical red-black deletion code
2180     * because we cannot swap the contents of an interior node
2181     * with a leaf successor that is pinned by "next" pointers
2182     * that are accessible independently of lock. So instead we
2183     * swap the tree linkages.
2184     *
2185 jsr166 1.27 * @return true if now too small, so should be untreeified
2186 dl 1.20 */
2187     final boolean removeTreeNode(TreeNode<K,V> p) {
2188     TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2189     TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2190     TreeNode<K,V> r, rl;
2191     if (pred == null)
2192     first = next;
2193     else
2194     pred.next = next;
2195     if (next != null)
2196     next.prev = pred;
2197     if (first == null) {
2198     root = null;
2199     return true;
2200     }
2201     if ((r = root) == null || r.right == null || // too small
2202     (rl = r.left) == null || rl.left == null)
2203     return true;
2204     lockRoot();
2205     try {
2206     TreeNode<K,V> replacement;
2207     TreeNode<K,V> pl = p.left;
2208     TreeNode<K,V> pr = p.right;
2209     if (pl != null && pr != null) {
2210     TreeNode<K,V> s = pr, sl;
2211     while ((sl = s.left) != null) // find successor
2212     s = sl;
2213     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2214     TreeNode<K,V> sr = s.right;
2215     TreeNode<K,V> pp = p.parent;
2216     if (s == pr) { // p was s's direct parent
2217     p.parent = s;
2218     s.right = p;
2219     }
2220     else {
2221     TreeNode<K,V> sp = s.parent;
2222     if ((p.parent = sp) != null) {
2223     if (s == sp.left)
2224     sp.left = p;
2225     else
2226     sp.right = p;
2227     }
2228     if ((s.right = pr) != null)
2229     pr.parent = s;
2230     }
2231     p.left = null;
2232     if ((p.right = sr) != null)
2233     sr.parent = p;
2234     if ((s.left = pl) != null)
2235     pl.parent = s;
2236     if ((s.parent = pp) == null)
2237     r = s;
2238     else if (p == pp.left)
2239     pp.left = s;
2240     else
2241     pp.right = s;
2242     if (sr != null)
2243     replacement = sr;
2244     else
2245     replacement = p;
2246     }
2247     else if (pl != null)
2248     replacement = pl;
2249     else if (pr != null)
2250     replacement = pr;
2251     else
2252     replacement = p;
2253     if (replacement != p) {
2254     TreeNode<K,V> pp = replacement.parent = p.parent;
2255     if (pp == null)
2256     r = replacement;
2257     else if (p == pp.left)
2258     pp.left = replacement;
2259 dl 1.1 else
2260 dl 1.20 pp.right = replacement;
2261     p.left = p.right = p.parent = null;
2262     }
2263    
2264     root = (p.red) ? r : balanceDeletion(r, replacement);
2265    
2266     if (p == replacement) { // detach pointers
2267     TreeNode<K,V> pp;
2268     if ((pp = p.parent) != null) {
2269     if (p == pp.left)
2270     pp.left = null;
2271     else if (p == pp.right)
2272     pp.right = null;
2273     p.parent = null;
2274     }
2275 dl 1.1 }
2276 dl 1.20 } finally {
2277     unlockRoot();
2278 dl 1.1 }
2279 dl 1.20 assert checkInvariants(root);
2280     return false;
2281 dl 1.1 }
2282    
2283 dl 1.20 /* ------------------------------------------------------------ */
2284     // Red-black tree methods, all adapted from CLR
2285    
2286     static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2287     TreeNode<K,V> p) {
2288     TreeNode<K,V> r, pp, rl;
2289     if (p != null && (r = p.right) != null) {
2290     if ((rl = p.right = r.left) != null)
2291     rl.parent = p;
2292     if ((pp = r.parent = p.parent) == null)
2293     (root = r).red = false;
2294     else if (pp.left == p)
2295     pp.left = r;
2296     else
2297     pp.right = r;
2298     r.left = p;
2299     p.parent = r;
2300     }
2301     return root;
2302 dl 1.1 }
2303    
2304 dl 1.20 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2305     TreeNode<K,V> p) {
2306     TreeNode<K,V> l, pp, lr;
2307     if (p != null && (l = p.left) != null) {
2308     if ((lr = p.left = l.right) != null)
2309     lr.parent = p;
2310     if ((pp = l.parent = p.parent) == null)
2311     (root = l).red = false;
2312     else if (pp.right == p)
2313     pp.right = l;
2314     else
2315     pp.left = l;
2316     l.right = p;
2317     p.parent = l;
2318 dl 1.1 }
2319 dl 1.20 return root;
2320 dl 1.1 }
2321    
2322 dl 1.20 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2323     TreeNode<K,V> x) {
2324     x.red = true;
2325     for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2326     if ((xp = x.parent) == null) {
2327     x.red = false;
2328     return x;
2329     }
2330     else if (!xp.red || (xpp = xp.parent) == null)
2331     return root;
2332     if (xp == (xppl = xpp.left)) {
2333     if ((xppr = xpp.right) != null && xppr.red) {
2334     xppr.red = false;
2335     xp.red = false;
2336     xpp.red = true;
2337     x = xpp;
2338     }
2339     else {
2340     if (x == xp.right) {
2341     root = rotateLeft(root, x = xp);
2342     xpp = (xp = x.parent) == null ? null : xp.parent;
2343     }
2344     if (xp != null) {
2345     xp.red = false;
2346     if (xpp != null) {
2347     xpp.red = true;
2348     root = rotateRight(root, xpp);
2349     }
2350     }
2351     }
2352 dl 1.1 }
2353 dl 1.20 else {
2354     if (xppl != null && xppl.red) {
2355     xppl.red = false;
2356     xp.red = false;
2357     xpp.red = true;
2358     x = xpp;
2359     }
2360     else {
2361     if (x == xp.left) {
2362     root = rotateRight(root, x = xp);
2363     xpp = (xp = x.parent) == null ? null : xp.parent;
2364     }
2365     if (xp != null) {
2366     xp.red = false;
2367     if (xpp != null) {
2368     xpp.red = true;
2369     root = rotateLeft(root, xpp);
2370     }
2371     }
2372     }
2373 dl 1.1 }
2374     }
2375     }
2376    
2377 dl 1.20 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2378     TreeNode<K,V> x) {
2379 jsr166 1.40 for (TreeNode<K,V> xp, xpl, xpr;;) {
2380 dl 1.20 if (x == null || x == root)
2381     return root;
2382     else if ((xp = x.parent) == null) {
2383     x.red = false;
2384     return x;
2385     }
2386     else if (x.red) {
2387     x.red = false;
2388     return root;
2389     }
2390     else if ((xpl = xp.left) == x) {
2391     if ((xpr = xp.right) != null && xpr.red) {
2392     xpr.red = false;
2393     xp.red = true;
2394     root = rotateLeft(root, xp);
2395     xpr = (xp = x.parent) == null ? null : xp.right;
2396     }
2397     if (xpr == null)
2398     x = xp;
2399     else {
2400     TreeNode<K,V> sl = xpr.left, sr = xpr.right;
2401     if ((sr == null || !sr.red) &&
2402     (sl == null || !sl.red)) {
2403     xpr.red = true;
2404     x = xp;
2405     }
2406     else {
2407     if (sr == null || !sr.red) {
2408     if (sl != null)
2409     sl.red = false;
2410     xpr.red = true;
2411     root = rotateRight(root, xpr);
2412     xpr = (xp = x.parent) == null ?
2413     null : xp.right;
2414     }
2415     if (xpr != null) {
2416     xpr.red = (xp == null) ? false : xp.red;
2417     if ((sr = xpr.right) != null)
2418     sr.red = false;
2419     }
2420     if (xp != null) {
2421     xp.red = false;
2422     root = rotateLeft(root, xp);
2423     }
2424     x = root;
2425     }
2426     }
2427     }
2428     else { // symmetric
2429     if (xpl != null && xpl.red) {
2430     xpl.red = false;
2431     xp.red = true;
2432     root = rotateRight(root, xp);
2433     xpl = (xp = x.parent) == null ? null : xp.left;
2434     }
2435     if (xpl == null)
2436     x = xp;
2437     else {
2438     TreeNode<K,V> sl = xpl.left, sr = xpl.right;
2439     if ((sl == null || !sl.red) &&
2440     (sr == null || !sr.red)) {
2441     xpl.red = true;
2442     x = xp;
2443     }
2444     else {
2445     if (sl == null || !sl.red) {
2446     if (sr != null)
2447     sr.red = false;
2448     xpl.red = true;
2449     root = rotateLeft(root, xpl);
2450     xpl = (xp = x.parent) == null ?
2451     null : xp.left;
2452     }
2453     if (xpl != null) {
2454     xpl.red = (xp == null) ? false : xp.red;
2455     if ((sl = xpl.left) != null)
2456     sl.red = false;
2457     }
2458     if (xp != null) {
2459     xp.red = false;
2460     root = rotateRight(root, xp);
2461     }
2462     x = root;
2463     }
2464     }
2465 dl 1.1 }
2466     }
2467     }
2468 jsr166 1.21
2469 dl 1.1 /**
2470 dl 1.20 * Recursive invariant check
2471 dl 1.1 */
2472 dl 1.20 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
2473     TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
2474     tb = t.prev, tn = (TreeNode<K,V>)t.next;
2475     if (tb != null && tb.next != t)
2476     return false;
2477     if (tn != null && tn.prev != t)
2478     return false;
2479     if (tp != null && t != tp.left && t != tp.right)
2480     return false;
2481     if (tl != null && (tl.parent != t || tl.hash > t.hash))
2482     return false;
2483     if (tr != null && (tr.parent != t || tr.hash < t.hash))
2484     return false;
2485     if (t.red && tl != null && tl.red && tr != null && tr.red)
2486     return false;
2487     if (tl != null && !checkInvariants(tl))
2488     return false;
2489     if (tr != null && !checkInvariants(tr))
2490     return false;
2491     return true;
2492     }
2493 dl 1.1
2494 dl 1.20 private static final sun.misc.Unsafe U;
2495     private static final long LOCKSTATE;
2496     static {
2497     try {
2498     U = sun.misc.Unsafe.getUnsafe();
2499     Class<?> k = TreeBin.class;
2500     LOCKSTATE = U.objectFieldOffset
2501     (k.getDeclaredField("lockState"));
2502     } catch (Exception e) {
2503     throw new Error(e);
2504 dl 1.1 }
2505     }
2506     }
2507    
2508 dl 1.20 /* ----------------Table Traversal -------------- */
2509    
2510 dl 1.1 /**
2511 dl 1.35 * Records the table, its length, and current traversal index for a
2512     * traverser that must process a region of a forwarded table before
2513     * proceeding with current table.
2514     */
2515     static final class TableStack<K,V> {
2516     int length;
2517     int index;
2518     Node<K,V>[] tab;
2519     TableStack<K,V> next;
2520     }
2521    
2522     /**
2523 dl 1.20 * Encapsulates traversal for methods such as containsValue; also
2524 dl 1.35 * serves as a base class for other iterators and spliterators.
2525 dl 1.20 *
2526     * Method advance visits once each still-valid node that was
2527     * reachable upon iterator construction. It might miss some that
2528     * were added to a bin after the bin was visited, which is OK wrt
2529     * consistency guarantees. Maintaining this property in the face
2530     * of possible ongoing resizes requires a fair amount of
2531     * bookkeeping state that is difficult to optimize away amidst
2532     * volatile accesses. Even so, traversal maintains reasonable
2533     * throughput.
2534 dl 1.1 *
2535 dl 1.20 * Normally, iteration proceeds bin-by-bin traversing lists.
2536     * However, if the table has been resized, then all future steps
2537     * must traverse both the bin at the current index as well as at
2538     * (index + baseSize); and so on for further resizings. To
2539     * paranoically cope with potential sharing by users of iterators
2540     * across threads, iteration terminates if a bounds checks fails
2541     * for a table read.
2542 dl 1.1 */
2543 dl 1.20 static class Traverser<K,V> {
2544     Node<K,V>[] tab; // current table; updated if resized
2545     Node<K,V> next; // the next entry to use
2546 dl 1.35 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
2547 dl 1.20 int index; // index of bin to use next
2548     int baseIndex; // current index of initial table
2549     int baseLimit; // index bound for initial table
2550     final int baseSize; // initial table size
2551    
2552     Traverser(Node<K,V>[] tab, int size, int index, int limit) {
2553     this.tab = tab;
2554     this.baseSize = size;
2555     this.baseIndex = this.index = index;
2556     this.baseLimit = limit;
2557     this.next = null;
2558     }
2559    
2560     /**
2561     * Advances if possible, returning next valid node, or null if none.
2562     */
2563     final Node<K,V> advance() {
2564     Node<K,V> e;
2565     if ((e = next) != null)
2566     e = e.next;
2567     for (;;) {
2568 dl 1.35 Node<K,V>[] t; int i, n; // must use locals in checks
2569 dl 1.20 if (e != null)
2570     return next = e;
2571     if (baseIndex >= baseLimit || (t = tab) == null ||
2572     (n = t.length) <= (i = index) || i < 0)
2573     return next = null;
2574 dl 1.35 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2575 dl 1.20 if (e instanceof ForwardingNode) {
2576     tab = ((ForwardingNode<K,V>)e).nextTable;
2577     e = null;
2578 dl 1.35 pushState(t, i, n);
2579 dl 1.20 continue;
2580 dl 1.1 }
2581 dl 1.20 else if (e instanceof TreeBin)
2582     e = ((TreeBin<K,V>)e).first;
2583     else
2584     e = null;
2585 dl 1.1 }
2586 dl 1.35 if (stack != null)
2587     recoverState(n);
2588     else if ((index = i + baseSize) >= n)
2589     index = ++baseIndex; // visit upper slots if present
2590     }
2591     }
2592    
2593     /**
2594     * Saves traversal state upon encountering a forwarding node.
2595     */
2596     private void pushState(Node<K,V>[] t, int i, int n) {
2597     TableStack<K,V> s = spare; // reuse if possible
2598     if (s != null)
2599     spare = s.next;
2600     else
2601     s = new TableStack<K,V>();
2602     s.tab = t;
2603     s.length = n;
2604     s.index = i;
2605     s.next = stack;
2606     stack = s;
2607     }
2608    
2609     /**
2610     * Possibly pops traversal state.
2611     *
2612     * @param n length of current table
2613     */
2614     private void recoverState(int n) {
2615     TableStack<K,V> s; int len;
2616     while ((s = stack) != null && (index += (len = s.length)) >= n) {
2617     n = len;
2618     index = s.index;
2619     tab = s.tab;
2620     s.tab = null;
2621     TableStack<K,V> next = s.next;
2622     s.next = spare; // save for reuse
2623     stack = next;
2624     spare = s;
2625 dl 1.1 }
2626 dl 1.35 if (s == null && (index += baseSize) >= n)
2627     index = ++baseIndex;
2628 dl 1.1 }
2629     }
2630    
2631     /**
2632 dl 1.20 * Base of key, value, and entry Iterators. Adds fields to
2633 jsr166 1.25 * Traverser to support iterator.remove.
2634 dl 1.1 */
2635 dl 1.20 static class BaseIterator<K,V> extends Traverser<K,V> {
2636     final ConcurrentHashMap<K,V> map;
2637     Node<K,V> lastReturned;
2638     BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
2639     ConcurrentHashMap<K,V> map) {
2640     super(tab, size, index, limit);
2641     this.map = map;
2642     advance();
2643 dl 1.1 }
2644    
2645 dl 1.20 public final boolean hasNext() { return next != null; }
2646     public final boolean hasMoreElements() { return next != null; }
2647 dl 1.1
2648 dl 1.20 public final void remove() {
2649     Node<K,V> p;
2650     if ((p = lastReturned) == null)
2651     throw new IllegalStateException();
2652     lastReturned = null;
2653     map.replaceNode(p.key, null, null);
2654 dl 1.1 }
2655     }
2656    
2657 dl 1.20 static final class KeyIterator<K,V> extends BaseIterator<K,V>
2658     implements Iterator<K>, Enumeration<K> {
2659     KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
2660     ConcurrentHashMap<K,V> map) {
2661     super(tab, index, size, limit, map);
2662     }
2663 dl 1.1
2664 dl 1.20 public final K next() {
2665     Node<K,V> p;
2666     if ((p = next) == null)
2667     throw new NoSuchElementException();
2668     K k = p.key;
2669     lastReturned = p;
2670     advance();
2671     return k;
2672 dl 1.1 }
2673    
2674 dl 1.20 public final K nextElement() { return next(); }
2675     }
2676 dl 1.1
2677 dl 1.20 static final class ValueIterator<K,V> extends BaseIterator<K,V>
2678     implements Iterator<V>, Enumeration<V> {
2679     ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
2680     ConcurrentHashMap<K,V> map) {
2681     super(tab, index, size, limit, map);
2682 dl 1.1 }
2683    
2684 dl 1.20 public final V next() {
2685     Node<K,V> p;
2686     if ((p = next) == null)
2687     throw new NoSuchElementException();
2688     V v = p.val;
2689     lastReturned = p;
2690     advance();
2691     return v;
2692 dl 1.1 }
2693    
2694 dl 1.20 public final V nextElement() { return next(); }
2695     }
2696 dl 1.1
2697 dl 1.20 static final class EntryIterator<K,V> extends BaseIterator<K,V>
2698     implements Iterator<Map.Entry<K,V>> {
2699     EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
2700     ConcurrentHashMap<K,V> map) {
2701     super(tab, index, size, limit, map);
2702 dl 1.1 }
2703    
2704 dl 1.20 public final Map.Entry<K,V> next() {
2705     Node<K,V> p;
2706     if ((p = next) == null)
2707     throw new NoSuchElementException();
2708     K k = p.key;
2709     V v = p.val;
2710     lastReturned = p;
2711     advance();
2712     return new MapEntry<K,V>(k, v, map);
2713 dl 1.1 }
2714 dl 1.20 }
2715 dl 1.1
2716 dl 1.20 /**
2717     * Exported Entry for EntryIterator
2718     */
2719     static final class MapEntry<K,V> implements Map.Entry<K,V> {
2720     final K key; // non-null
2721     V val; // non-null
2722     final ConcurrentHashMap<K,V> map;
2723     MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
2724     this.key = key;
2725     this.val = val;
2726     this.map = map;
2727 dl 1.1 }
2728 dl 1.20 public K getKey() { return key; }
2729     public V getValue() { return val; }
2730     public int hashCode() { return key.hashCode() ^ val.hashCode(); }
2731     public String toString() { return key + "=" + val; }
2732 dl 1.1
2733 dl 1.20 public boolean equals(Object o) {
2734     Object k, v; Map.Entry<?,?> e;
2735     return ((o instanceof Map.Entry) &&
2736     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
2737     (v = e.getValue()) != null &&
2738     (k == key || k.equals(key)) &&
2739     (v == val || v.equals(val)));
2740 dl 1.1 }
2741    
2742     /**
2743 dl 1.20 * Sets our entry's value and writes through to the map. The
2744     * value to return is somewhat arbitrary here. Since we do not
2745     * necessarily track asynchronous changes, the most recent
2746     * "previous" value could be different from what we return (or
2747     * could even have been removed, in which case the put will
2748     * re-establish). We do not and cannot guarantee more.
2749 dl 1.1 */
2750 dl 1.20 public V setValue(V value) {
2751     if (value == null) throw new NullPointerException();
2752     V v = val;
2753     val = value;
2754     map.put(key, value);
2755     return v;
2756 dl 1.1 }
2757 dl 1.20 }
2758 dl 1.1
2759 dl 1.20 /* ----------------Views -------------- */
2760 dl 1.1
2761 dl 1.20 /**
2762     * Base class for views.
2763     */
2764     abstract static class CollectionView<K,V,E>
2765     implements Collection<E>, java.io.Serializable {
2766     private static final long serialVersionUID = 7249069246763182397L;
2767     final ConcurrentHashMap<K,V> map;
2768     CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
2769 dl 1.1
2770     /**
2771 dl 1.20 * Returns the map backing this view.
2772 dl 1.1 *
2773 dl 1.20 * @return the map backing this view
2774 dl 1.1 */
2775 dl 1.20 public ConcurrentHashMap<K,V> getMap() { return map; }
2776 dl 1.1
2777     /**
2778 dl 1.20 * Removes all of the elements from this view, by removing all
2779     * the mappings from the map backing this view.
2780 dl 1.1 */
2781 dl 1.20 public final void clear() { map.clear(); }
2782     public final int size() { return map.size(); }
2783     public final boolean isEmpty() { return map.isEmpty(); }
2784 dl 1.1
2785 dl 1.20 // implementations below rely on concrete classes supplying these
2786     // abstract methods
2787 dl 1.1 /**
2788 dl 1.20 * Returns a "weakly consistent" iterator that will never
2789     * throw {@link ConcurrentModificationException}, and
2790     * guarantees to traverse elements as they existed upon
2791     * construction of the iterator, and may (but is not
2792     * guaranteed to) reflect any modifications subsequent to
2793     * construction.
2794 dl 1.1 */
2795 dl 1.20 public abstract Iterator<E> iterator();
2796     public abstract boolean contains(Object o);
2797     public abstract boolean remove(Object o);
2798 dl 1.1
2799 dl 1.20 private static final String oomeMsg = "Required array size too large";
2800 dl 1.1
2801 dl 1.20 public final Object[] toArray() {
2802     long sz = map.mappingCount();
2803     if (sz > MAX_ARRAY_SIZE)
2804     throw new OutOfMemoryError(oomeMsg);
2805     int n = (int)sz;
2806     Object[] r = new Object[n];
2807     int i = 0;
2808     for (E e : this) {
2809     if (i == n) {
2810     if (n >= MAX_ARRAY_SIZE)
2811     throw new OutOfMemoryError(oomeMsg);
2812     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
2813     n = MAX_ARRAY_SIZE;
2814     else
2815     n += (n >>> 1) + 1;
2816     r = Arrays.copyOf(r, n);
2817     }
2818     r[i++] = e;
2819     }
2820     return (i == n) ? r : Arrays.copyOf(r, i);
2821 dl 1.1 }
2822    
2823 dl 1.20 @SuppressWarnings("unchecked")
2824     public final <T> T[] toArray(T[] a) {
2825     long sz = map.mappingCount();
2826     if (sz > MAX_ARRAY_SIZE)
2827     throw new OutOfMemoryError(oomeMsg);
2828     int m = (int)sz;
2829     T[] r = (a.length >= m) ? a :
2830     (T[])java.lang.reflect.Array
2831     .newInstance(a.getClass().getComponentType(), m);
2832     int n = r.length;
2833     int i = 0;
2834     for (E e : this) {
2835     if (i == n) {
2836     if (n >= MAX_ARRAY_SIZE)
2837     throw new OutOfMemoryError(oomeMsg);
2838     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
2839     n = MAX_ARRAY_SIZE;
2840     else
2841     n += (n >>> 1) + 1;
2842     r = Arrays.copyOf(r, n);
2843     }
2844     r[i++] = (T)e;
2845     }
2846     if (a == r && i < n) {
2847     r[i] = null; // null-terminate
2848     return r;
2849     }
2850     return (i == n) ? r : Arrays.copyOf(r, i);
2851 dl 1.1 }
2852    
2853     /**
2854 dl 1.20 * Returns a string representation of this collection.
2855     * The string representation consists of the string representations
2856     * of the collection's elements in the order they are returned by
2857     * its iterator, enclosed in square brackets ({@code "[]"}).
2858     * Adjacent elements are separated by the characters {@code ", "}
2859     * (comma and space). Elements are converted to strings as by
2860     * {@link String#valueOf(Object)}.
2861 dl 1.1 *
2862 dl 1.20 * @return a string representation of this collection
2863 dl 1.1 */
2864 dl 1.20 public final String toString() {
2865     StringBuilder sb = new StringBuilder();
2866     sb.append('[');
2867     Iterator<E> it = iterator();
2868     if (it.hasNext()) {
2869     for (;;) {
2870     Object e = it.next();
2871     sb.append(e == this ? "(this Collection)" : e);
2872     if (!it.hasNext())
2873     break;
2874     sb.append(',').append(' ');
2875     }
2876     }
2877     return sb.append(']').toString();
2878 dl 1.1 }
2879    
2880 dl 1.20 public final boolean containsAll(Collection<?> c) {
2881     if (c != this) {
2882     for (Object e : c) {
2883     if (e == null || !contains(e))
2884     return false;
2885     }
2886     }
2887     return true;
2888 dl 1.1 }
2889    
2890 dl 1.20 public final boolean removeAll(Collection<?> c) {
2891     boolean modified = false;
2892     for (Iterator<E> it = iterator(); it.hasNext();) {
2893     if (c.contains(it.next())) {
2894     it.remove();
2895     modified = true;
2896     }
2897     }
2898     return modified;
2899 dl 1.1 }
2900    
2901 dl 1.20 public final boolean retainAll(Collection<?> c) {
2902     boolean modified = false;
2903     for (Iterator<E> it = iterator(); it.hasNext();) {
2904     if (!c.contains(it.next())) {
2905     it.remove();
2906     modified = true;
2907     }
2908     }
2909     return modified;
2910 dl 1.1 }
2911    
2912 dl 1.20 }
2913 dl 1.1
2914 dl 1.20 /**
2915     * A view of a ConcurrentHashMap as a {@link Set} of keys, in
2916     * which additions may optionally be enabled by mapping to a
2917     * common value. This class cannot be directly instantiated.
2918     * See {@link #keySet() keySet()},
2919     * {@link #keySet(Object) keySet(V)},
2920     * {@link #newKeySet() newKeySet()},
2921     * {@link #newKeySet(int) newKeySet(int)}.
2922     *
2923     * @since 1.8
2924     */
2925     public static class KeySetView<K,V> extends CollectionView<K,V,K>
2926     implements Set<K>, java.io.Serializable {
2927     private static final long serialVersionUID = 7249069246763182397L;
2928     private final V value;
2929     KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
2930     super(map);
2931     this.value = value;
2932 dl 1.1 }
2933    
2934     /**
2935 dl 1.20 * Returns the default mapped value for additions,
2936     * or {@code null} if additions are not supported.
2937 dl 1.1 *
2938 dl 1.20 * @return the default mapped value for additions, or {@code null}
2939     * if not supported
2940 dl 1.1 */
2941 dl 1.20 public V getMappedValue() { return value; }
2942 dl 1.1
2943     /**
2944 dl 1.20 * {@inheritDoc}
2945     * @throws NullPointerException if the specified key is null
2946 dl 1.1 */
2947 dl 1.20 public boolean contains(Object o) { return map.containsKey(o); }
2948 dl 1.1
2949     /**
2950 dl 1.20 * Removes the key from this map view, by removing the key (and its
2951     * corresponding value) from the backing map. This method does
2952     * nothing if the key is not in the map.
2953 dl 1.1 *
2954 dl 1.20 * @param o the key to be removed from the backing map
2955     * @return {@code true} if the backing map contained the specified key
2956     * @throws NullPointerException if the specified key is null
2957 dl 1.1 */
2958 dl 1.20 public boolean remove(Object o) { return map.remove(o) != null; }
2959 dl 1.1
2960     /**
2961 dl 1.20 * @return an iterator over the keys of the backing map
2962 dl 1.1 */
2963 dl 1.20 public Iterator<K> iterator() {
2964     Node<K,V>[] t;
2965     ConcurrentHashMap<K,V> m = map;
2966     int f = (t = m.table) == null ? 0 : t.length;
2967     return new KeyIterator<K,V>(t, f, 0, f, m);
2968 dl 1.1 }
2969    
2970     /**
2971 dl 1.20 * Adds the specified key to this set view by mapping the key to
2972     * the default mapped value in the backing map, if defined.
2973 dl 1.1 *
2974 dl 1.20 * @param e key to be added
2975     * @return {@code true} if this set changed as a result of the call
2976     * @throws NullPointerException if the specified key is null
2977     * @throws UnsupportedOperationException if no default mapped value
2978     * for additions was provided
2979 dl 1.1 */
2980 dl 1.20 public boolean add(K e) {
2981     V v;
2982     if ((v = value) == null)
2983     throw new UnsupportedOperationException();
2984     return map.putVal(e, v, true) == null;
2985 dl 1.1 }
2986    
2987     /**
2988 dl 1.20 * Adds all of the elements in the specified collection to this set,
2989     * as if by calling {@link #add} on each one.
2990 dl 1.1 *
2991 dl 1.20 * @param c the elements to be inserted into this set
2992     * @return {@code true} if this set changed as a result of the call
2993     * @throws NullPointerException if the collection or any of its
2994     * elements are {@code null}
2995     * @throws UnsupportedOperationException if no default mapped value
2996     * for additions was provided
2997 dl 1.1 */
2998 dl 1.20 public boolean addAll(Collection<? extends K> c) {
2999     boolean added = false;
3000     V v;
3001     if ((v = value) == null)
3002     throw new UnsupportedOperationException();
3003     for (K e : c) {
3004     if (map.putVal(e, v, true) == null)
3005     added = true;
3006 dl 1.1 }
3007 dl 1.20 return added;
3008 dl 1.1 }
3009    
3010 dl 1.20 public int hashCode() {
3011     int h = 0;
3012     for (K e : this)
3013     h += e.hashCode();
3014     return h;
3015 dl 1.1 }
3016    
3017 dl 1.20 public boolean equals(Object o) {
3018     Set<?> c;
3019     return ((o instanceof Set) &&
3020     ((c = (Set<?>)o) == this ||
3021     (containsAll(c) && c.containsAll(this))));
3022 dl 1.1 }
3023 dl 1.20
3024 dl 1.1 }
3025    
3026 dl 1.20 /**
3027     * A view of a ConcurrentHashMap as a {@link Collection} of
3028     * values, in which additions are disabled. This class cannot be
3029     * directly instantiated. See {@link #values()}.
3030     */
3031     static final class ValuesView<K,V> extends CollectionView<K,V,V>
3032     implements Collection<V>, java.io.Serializable {
3033     private static final long serialVersionUID = 2249069246763182397L;
3034     ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
3035     public final boolean contains(Object o) {
3036     return map.containsValue(o);
3037 dl 1.1 }
3038    
3039 dl 1.20 public final boolean remove(Object o) {
3040     if (o != null) {
3041     for (Iterator<V> it = iterator(); it.hasNext();) {
3042     if (o.equals(it.next())) {
3043     it.remove();
3044     return true;
3045 dl 1.1 }
3046     }
3047     }
3048 dl 1.20 return false;
3049 dl 1.1 }
3050    
3051 dl 1.20 public final Iterator<V> iterator() {
3052     ConcurrentHashMap<K,V> m = map;
3053     Node<K,V>[] t;
3054     int f = (t = m.table) == null ? 0 : t.length;
3055     return new ValueIterator<K,V>(t, f, 0, f, m);
3056 dl 1.1 }
3057    
3058 dl 1.20 public final boolean add(V e) {
3059     throw new UnsupportedOperationException();
3060     }
3061     public final boolean addAll(Collection<? extends V> c) {
3062     throw new UnsupportedOperationException();
3063 dl 1.1 }
3064 dl 1.20
3065 dl 1.1 }
3066    
3067 dl 1.20 /**
3068     * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
3069     * entries. This class cannot be directly instantiated. See
3070     * {@link #entrySet()}.
3071     */
3072     static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
3073     implements Set<Map.Entry<K,V>>, java.io.Serializable {
3074     private static final long serialVersionUID = 2249069246763182397L;
3075     EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
3076    
3077     public boolean contains(Object o) {
3078     Object k, v, r; Map.Entry<?,?> e;
3079     return ((o instanceof Map.Entry) &&
3080     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3081     (r = map.get(k)) != null &&
3082     (v = e.getValue()) != null &&
3083     (v == r || v.equals(r)));
3084 dl 1.1 }
3085    
3086 dl 1.20 public boolean remove(Object o) {
3087     Object k, v; Map.Entry<?,?> e;
3088     return ((o instanceof Map.Entry) &&
3089     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3090     (v = e.getValue()) != null &&
3091     map.remove(k, v));
3092 dl 1.1 }
3093    
3094 dl 1.20 /**
3095     * @return an iterator over the entries of the backing map
3096     */
3097     public Iterator<Map.Entry<K,V>> iterator() {
3098     ConcurrentHashMap<K,V> m = map;
3099     Node<K,V>[] t;
3100     int f = (t = m.table) == null ? 0 : t.length;
3101     return new EntryIterator<K,V>(t, f, 0, f, m);
3102 dl 1.1 }
3103    
3104 dl 1.20 public boolean add(Entry<K,V> e) {
3105     return map.putVal(e.getKey(), e.getValue(), false) == null;
3106 dl 1.1 }
3107    
3108 dl 1.20 public boolean addAll(Collection<? extends Entry<K,V>> c) {
3109     boolean added = false;
3110     for (Entry<K,V> e : c) {
3111     if (add(e))
3112     added = true;
3113 dl 1.1 }
3114 dl 1.20 return added;
3115 dl 1.1 }
3116    
3117 dl 1.20 public final int hashCode() {
3118     int h = 0;
3119     Node<K,V>[] t;
3120     if ((t = map.table) != null) {
3121     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3122     for (Node<K,V> p; (p = it.advance()) != null; ) {
3123     h += p.hashCode();
3124 dl 1.1 }
3125     }
3126 dl 1.20 return h;
3127 dl 1.1 }
3128    
3129 dl 1.20 public final boolean equals(Object o) {
3130     Set<?> c;
3131     return ((o instanceof Set) &&
3132     ((c = (Set<?>)o) == this ||
3133     (containsAll(c) && c.containsAll(this))));
3134 dl 1.1 }
3135 dl 1.20
3136 dl 1.1 }
3137    
3138 dl 1.20
3139     /* ---------------- Counters -------------- */
3140    
3141     // Adapted from LongAdder and Striped64.
3142     // See their internal docs for explanation.
3143    
3144     // A padded cell for distributing counts
3145     static final class CounterCell {
3146     volatile long p0, p1, p2, p3, p4, p5, p6;
3147     volatile long value;
3148     volatile long q0, q1, q2, q3, q4, q5, q6;
3149     CounterCell(long x) { value = x; }
3150 dl 1.1 }
3151    
3152 dl 1.20 /**
3153     * Holder for the thread-local hash code determining which
3154     * CounterCell to use. The code is initialized via the
3155     * counterHashCodeGenerator, but may be moved upon collisions.
3156     */
3157     static final class CounterHashCode {
3158     int code;
3159 dl 1.1 }
3160    
3161 dl 1.20 /**
3162 jsr166 1.25 * Generates initial value for per-thread CounterHashCodes.
3163 dl 1.20 */
3164     static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
3165    
3166     /**
3167     * Increment for counterHashCodeGenerator. See class ThreadLocal
3168     * for explanation.
3169     */
3170     static final int SEED_INCREMENT = 0x61c88647;
3171    
3172     /**
3173     * Per-thread counter hash codes. Shared across all instances.
3174     */
3175     static final ThreadLocal<CounterHashCode> threadCounterHashCode =
3176     new ThreadLocal<CounterHashCode>();
3177    
3178     final long sumCount() {
3179     CounterCell[] as = counterCells; CounterCell a;
3180     long sum = baseCount;
3181     if (as != null) {
3182     for (int i = 0; i < as.length; ++i) {
3183     if ((a = as[i]) != null)
3184     sum += a.value;
3185 dl 1.1 }
3186     }
3187 dl 1.20 return sum;
3188 dl 1.1 }
3189    
3190 dl 1.20 // See LongAdder version for explanation
3191     private final void fullAddCount(long x, CounterHashCode hc,
3192     boolean wasUncontended) {
3193     int h;
3194     if (hc == null) {
3195     hc = new CounterHashCode();
3196     int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
3197     h = hc.code = (s == 0) ? 1 : s; // Avoid zero
3198     threadCounterHashCode.set(hc);
3199     }
3200     else
3201     h = hc.code;
3202     boolean collide = false; // True if last slot nonempty
3203     for (;;) {
3204     CounterCell[] as; CounterCell a; int n; long v;
3205     if ((as = counterCells) != null && (n = as.length) > 0) {
3206     if ((a = as[(n - 1) & h]) == null) {
3207     if (cellsBusy == 0) { // Try to attach new Cell
3208     CounterCell r = new CounterCell(x); // Optimistic create
3209     if (cellsBusy == 0 &&
3210     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
3211     boolean created = false;
3212     try { // Recheck under lock
3213     CounterCell[] rs; int m, j;
3214     if ((rs = counterCells) != null &&
3215     (m = rs.length) > 0 &&
3216     rs[j = (m - 1) & h] == null) {
3217     rs[j] = r;
3218     created = true;
3219     }
3220     } finally {
3221     cellsBusy = 0;
3222     }
3223     if (created)
3224     break;
3225     continue; // Slot is now non-empty
3226     }
3227 dl 1.1 }
3228 dl 1.20 collide = false;
3229 dl 1.1 }
3230 dl 1.20 else if (!wasUncontended) // CAS already known to fail
3231     wasUncontended = true; // Continue after rehash
3232     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
3233     break;
3234     else if (counterCells != as || n >= NCPU)
3235     collide = false; // At max size or stale
3236     else if (!collide)
3237     collide = true;
3238     else if (cellsBusy == 0 &&
3239     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
3240     try {
3241     if (counterCells == as) {// Expand table unless stale
3242     CounterCell[] rs = new CounterCell[n << 1];
3243     for (int i = 0; i < n; ++i)
3244     rs[i] = as[i];
3245     counterCells = rs;
3246     }
3247     } finally {
3248     cellsBusy = 0;
3249 dl 1.1 }
3250 dl 1.20 collide = false;
3251     continue; // Retry with expanded table
3252 dl 1.1 }
3253 dl 1.20 h ^= h << 13; // Rehash
3254     h ^= h >>> 17;
3255     h ^= h << 5;
3256 dl 1.1 }
3257 dl 1.20 else if (cellsBusy == 0 && counterCells == as &&
3258     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
3259     boolean init = false;
3260     try { // Initialize table
3261     if (counterCells == as) {
3262     CounterCell[] rs = new CounterCell[2];
3263     rs[h & 1] = new CounterCell(x);
3264     counterCells = rs;
3265     init = true;
3266 dl 1.1 }
3267 dl 1.20 } finally {
3268     cellsBusy = 0;
3269 dl 1.1 }
3270 dl 1.20 if (init)
3271     break;
3272 dl 1.1 }
3273 dl 1.20 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
3274     break; // Fall back on using base
3275 dl 1.1 }
3276 dl 1.20 hc.code = h; // Record index for next time
3277 dl 1.1 }
3278    
3279     // Unsafe mechanics
3280     private static final sun.misc.Unsafe U;
3281     private static final long SIZECTL;
3282     private static final long TRANSFERINDEX;
3283     private static final long BASECOUNT;
3284 dl 1.20 private static final long CELLSBUSY;
3285 dl 1.1 private static final long CELLVALUE;
3286     private static final long ABASE;
3287     private static final int ASHIFT;
3288    
3289     static {
3290     try {
3291     U = sun.misc.Unsafe.getUnsafe();
3292     Class<?> k = ConcurrentHashMap.class;
3293     SIZECTL = U.objectFieldOffset
3294     (k.getDeclaredField("sizeCtl"));
3295     TRANSFERINDEX = U.objectFieldOffset
3296     (k.getDeclaredField("transferIndex"));
3297     BASECOUNT = U.objectFieldOffset
3298     (k.getDeclaredField("baseCount"));
3299 dl 1.20 CELLSBUSY = U.objectFieldOffset
3300     (k.getDeclaredField("cellsBusy"));
3301 dl 1.1 Class<?> ck = CounterCell.class;
3302     CELLVALUE = U.objectFieldOffset
3303     (ck.getDeclaredField("value"));
3304 jsr166 1.22 Class<?> ak = Node[].class;
3305     ABASE = U.arrayBaseOffset(ak);
3306     int scale = U.arrayIndexScale(ak);
3307 jsr166 1.9 if ((scale & (scale - 1)) != 0)
3308     throw new Error("data type scale not a power of two");
3309     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3310 dl 1.1 } catch (Exception e) {
3311     throw new Error(e);
3312     }
3313     }
3314    
3315     }