ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.7
Committed: Thu Jan 17 17:38:37 2013 UTC (11 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.6: +2 -0 lines
Log Message:
add serialVersionUIDs to fix javac [serial] warnings

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.ForkJoinPool;
9 import java.util.concurrent.CountedCompleter;
10
11 import java.util.Comparator;
12 import java.util.Arrays;
13 import java.util.Map;
14 import java.util.Set;
15 import java.util.Collection;
16 import java.util.AbstractMap;
17 import java.util.AbstractSet;
18 import java.util.AbstractCollection;
19 import java.util.Hashtable;
20 import java.util.HashMap;
21 import java.util.Iterator;
22 import java.util.Enumeration;
23 import java.util.ConcurrentModificationException;
24 import java.util.NoSuchElementException;
25 import java.util.concurrent.ConcurrentMap;
26 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
27 import java.util.concurrent.atomic.AtomicInteger;
28 import java.util.concurrent.atomic.AtomicReference;
29 import java.io.Serializable;
30
31 /**
32 * A hash table supporting full concurrency of retrievals and
33 * high expected concurrency for updates. This class obeys the
34 * same functional specification as {@link java.util.Hashtable}, and
35 * includes versions of methods corresponding to each method of
36 * {@code Hashtable}. However, even though all operations are
37 * thread-safe, retrieval operations do <em>not</em> entail locking,
38 * and there is <em>not</em> any support for locking the entire table
39 * in a way that prevents all access. This class is fully
40 * interoperable with {@code Hashtable} in programs that rely on its
41 * thread safety but not on its synchronization details.
42 *
43 * <p>Retrieval operations (including {@code get}) generally do not
44 * block, so may overlap with update operations (including {@code put}
45 * and {@code remove}). Retrievals reflect the results of the most
46 * recently <em>completed</em> update operations holding upon their
47 * onset. (More formally, an update operation for a given key bears a
48 * <em>happens-before</em> relation with any (non-null) retrieval for
49 * that key reporting the updated value.) For aggregate operations
50 * such as {@code putAll} and {@code clear}, concurrent retrievals may
51 * reflect insertion or removal of only some entries. Similarly,
52 * Iterators and Enumerations return elements reflecting the state of
53 * the hash table at some point at or since the creation of the
54 * iterator/enumeration. They do <em>not</em> throw {@link
55 * ConcurrentModificationException}. However, iterators are designed
56 * to be used by only one thread at a time. Bear in mind that the
57 * results of aggregate status methods including {@code size}, {@code
58 * isEmpty}, and {@code containsValue} are typically useful only when
59 * a map is not undergoing concurrent updates in other threads.
60 * Otherwise the results of these methods reflect transient states
61 * that may be adequate for monitoring or estimation purposes, but not
62 * for program control.
63 *
64 * <p>The table is dynamically expanded when there are too many
65 * collisions (i.e., keys that have distinct hash codes but fall into
66 * the same slot modulo the table size), with the expected average
67 * effect of maintaining roughly two bins per mapping (corresponding
68 * to a 0.75 load factor threshold for resizing). There may be much
69 * variance around this average as mappings are added and removed, but
70 * overall, this maintains a commonly accepted time/space tradeoff for
71 * hash tables. However, resizing this or any other kind of hash
72 * table may be a relatively slow operation. When possible, it is a
73 * good idea to provide a size estimate as an optional {@code
74 * initialCapacity} constructor argument. An additional optional
75 * {@code loadFactor} constructor argument provides a further means of
76 * customizing initial table capacity by specifying the table density
77 * to be used in calculating the amount of space to allocate for the
78 * given number of elements. Also, for compatibility with previous
79 * versions of this class, constructors may optionally specify an
80 * expected {@code concurrencyLevel} as an additional hint for
81 * internal sizing. Note that using many keys with exactly the same
82 * {@code hashCode()} is a sure way to slow down performance of any
83 * hash table.
84 *
85 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
86 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
87 * (using {@link #keySet(Object)} when only keys are of interest, and the
88 * mapped values are (perhaps transiently) not used or all take the
89 * same mapping value.
90 *
91 * <p>This class and its views and iterators implement all of the
92 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
93 * interfaces.
94 *
95 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
96 * does <em>not</em> allow {@code null} to be used as a key or value.
97 *
98 * <p>ConcurrentHashMaps support sequential and parallel operations
99 * bulk operations. (Parallel forms use the {@link
100 * ForkJoinPool#commonPool()}). Tasks that may be used in other
101 * contexts are available in class {@link ForkJoinTasks}. These
102 * operations are designed to be safely, and often sensibly, applied
103 * even with maps that are being concurrently updated by other
104 * threads; for example, when computing a snapshot summary of the
105 * values in a shared registry. There are three kinds of operation,
106 * each with four forms, accepting functions with Keys, Values,
107 * Entries, and (Key, Value) arguments and/or return values. Because
108 * the elements of a ConcurrentHashMap are not ordered in any
109 * particular way, and may be processed in different orders in
110 * different parallel executions, the correctness of supplied
111 * functions should not depend on any ordering, or on any other
112 * objects or values that may transiently change while computation is
113 * in progress; and except for forEach actions, should ideally be
114 * side-effect-free.
115 *
116 * <ul>
117 * <li> forEach: Perform a given action on each element.
118 * A variant form applies a given transformation on each element
119 * before performing the action.</li>
120 *
121 * <li> search: Return the first available non-null result of
122 * applying a given function on each element; skipping further
123 * search when a result is found.</li>
124 *
125 * <li> reduce: Accumulate each element. The supplied reduction
126 * function cannot rely on ordering (more formally, it should be
127 * both associative and commutative). There are five variants:
128 *
129 * <ul>
130 *
131 * <li> Plain reductions. (There is not a form of this method for
132 * (key, value) function arguments since there is no corresponding
133 * return type.)</li>
134 *
135 * <li> Mapped reductions that accumulate the results of a given
136 * function applied to each element.</li>
137 *
138 * <li> Reductions to scalar doubles, longs, and ints, using a
139 * given basis value.</li>
140 *
141 * </li>
142 * </ul>
143 * </ul>
144 *
145 * <p>The concurrency properties of bulk operations follow
146 * from those of ConcurrentHashMap: Any non-null result returned
147 * from {@code get(key)} and related access methods bears a
148 * happens-before relation with the associated insertion or
149 * update. The result of any bulk operation reflects the
150 * composition of these per-element relations (but is not
151 * necessarily atomic with respect to the map as a whole unless it
152 * is somehow known to be quiescent). Conversely, because keys
153 * and values in the map are never null, null serves as a reliable
154 * atomic indicator of the current lack of any result. To
155 * maintain this property, null serves as an implicit basis for
156 * all non-scalar reduction operations. For the double, long, and
157 * int versions, the basis should be one that, when combined with
158 * any other value, returns that other value (more formally, it
159 * should be the identity element for the reduction). Most common
160 * reductions have these properties; for example, computing a sum
161 * with basis 0 or a minimum with basis MAX_VALUE.
162 *
163 * <p>Search and transformation functions provided as arguments
164 * should similarly return null to indicate the lack of any result
165 * (in which case it is not used). In the case of mapped
166 * reductions, this also enables transformations to serve as
167 * filters, returning null (or, in the case of primitive
168 * specializations, the identity basis) if the element should not
169 * be combined. You can create compound transformations and
170 * filterings by composing them yourself under this "null means
171 * there is nothing there now" rule before using them in search or
172 * reduce operations.
173 *
174 * <p>Methods accepting and/or returning Entry arguments maintain
175 * key-value associations. They may be useful for example when
176 * finding the key for the greatest value. Note that "plain" Entry
177 * arguments can be supplied using {@code new
178 * AbstractMap.SimpleEntry(k,v)}.
179 *
180 * <p>Bulk operations may complete abruptly, throwing an
181 * exception encountered in the application of a supplied
182 * function. Bear in mind when handling such exceptions that other
183 * concurrently executing functions could also have thrown
184 * exceptions, or would have done so if the first exception had
185 * not occurred.
186 *
187 * <p>Speedups for parallel compared to sequential forms are common
188 * but not guaranteed. Parallel operations involving brief functions
189 * on small maps may execute more slowly than sequential forms if the
190 * underlying work to parallelize the computation is more expensive
191 * than the computation itself. Similarly, parallelization may not
192 * lead to much actual parallelism if all processors are busy
193 * performing unrelated tasks.
194 *
195 * <p>All arguments to all task methods must be non-null.
196 *
197 * <p><em>jsr166e note: During transition, this class
198 * uses nested functional interfaces with different names but the
199 * same forms as those expected for JDK8.</em>
200 *
201 * <p>This class is a member of the
202 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
203 * Java Collections Framework</a>.
204 *
205 * @since 1.5
206 * @author Doug Lea
207 * @param <K> the type of keys maintained by this map
208 * @param <V> the type of mapped values
209 */
210 public class ConcurrentHashMap<K, V>
211 implements ConcurrentMap<K, V>, Serializable {
212 private static final long serialVersionUID = 7249069246763182397L;
213
214 /**
215 * A partitionable iterator. A Spliterator can be traversed
216 * directly, but can also be partitioned (before traversal) by
217 * creating another Spliterator that covers a non-overlapping
218 * portion of the elements, and so may be amenable to parallel
219 * execution.
220 *
221 * <p>This interface exports a subset of expected JDK8
222 * functionality.
223 *
224 * <p>Sample usage: Here is one (of the several) ways to compute
225 * the sum of the values held in a map using the ForkJoin
226 * framework. As illustrated here, Spliterators are well suited to
227 * designs in which a task repeatedly splits off half its work
228 * into forked subtasks until small enough to process directly,
229 * and then joins these subtasks. Variants of this style can also
230 * be used in completion-based designs.
231 *
232 * <pre>
233 * {@code ConcurrentHashMap<String, Long> m = ...
234 * // split as if have 8 * parallelism, for load balance
235 * int n = m.size();
236 * int p = aForkJoinPool.getParallelism() * 8;
237 * int split = (n < p)? n : p;
238 * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
239 * // ...
240 * static class SumValues extends RecursiveTask<Long> {
241 * final Spliterator<Long> s;
242 * final int split; // split while > 1
243 * final SumValues nextJoin; // records forked subtasks to join
244 * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
245 * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
246 * }
247 * public Long compute() {
248 * long sum = 0;
249 * SumValues subtasks = null; // fork subtasks
250 * for (int s = split >>> 1; s > 0; s >>>= 1)
251 * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
252 * while (s.hasNext()) // directly process remaining elements
253 * sum += s.next();
254 * for (SumValues t = subtasks; t != null; t = t.nextJoin)
255 * sum += t.join(); // collect subtask results
256 * return sum;
257 * }
258 * }
259 * }</pre>
260 */
261 public static interface Spliterator<T> extends Iterator<T> {
262 /**
263 * Returns a Spliterator covering approximately half of the
264 * elements, guaranteed not to overlap with those subsequently
265 * returned by this Spliterator. After invoking this method,
266 * the current Spliterator will <em>not</em> produce any of
267 * the elements of the returned Spliterator, but the two
268 * Spliterators together will produce all of the elements that
269 * would have been produced by this Spliterator had this
270 * method not been called. The exact number of elements
271 * produced by the returned Spliterator is not guaranteed, and
272 * may be zero (i.e., with {@code hasNext()} reporting {@code
273 * false}) if this Spliterator cannot be further split.
274 *
275 * @return a Spliterator covering approximately half of the
276 * elements
277 * @throws IllegalStateException if this Spliterator has
278 * already commenced traversing elements
279 */
280 Spliterator<T> split();
281 }
282
283 /*
284 * Overview:
285 *
286 * The primary design goal of this hash table is to maintain
287 * concurrent readability (typically method get(), but also
288 * iterators and related methods) while minimizing update
289 * contention. Secondary goals are to keep space consumption about
290 * the same or better than java.util.HashMap, and to support high
291 * initial insertion rates on an empty table by many threads.
292 *
293 * Each key-value mapping is held in a Node. Because Node key
294 * fields can contain special values, they are defined using plain
295 * Object types (not type "K"). This leads to a lot of explicit
296 * casting (and many explicit warning suppressions to tell
297 * compilers not to complain about it). It also allows some of the
298 * public methods to be factored into a smaller number of internal
299 * methods (although sadly not so for the five variants of
300 * put-related operations). The validation-based approach
301 * explained below leads to a lot of code sprawl because
302 * retry-control precludes factoring into smaller methods.
303 *
304 * The table is lazily initialized to a power-of-two size upon the
305 * first insertion. Each bin in the table normally contains a
306 * list of Nodes (most often, the list has only zero or one Node).
307 * Table accesses require volatile/atomic reads, writes, and
308 * CASes. Because there is no other way to arrange this without
309 * adding further indirections, we use intrinsics
310 * (sun.misc.Unsafe) operations. The lists of nodes within bins
311 * are always accurately traversable under volatile reads, so long
312 * as lookups check hash code and non-nullness of value before
313 * checking key equality.
314 *
315 * We use the top (sign) bit of Node hash fields for control
316 * purposes -- it is available anyway because of addressing
317 * constraints. Nodes with negative hash fields are forwarding
318 * nodes to either TreeBins or resized tables. The lower 31 bits
319 * of each normal Node's hash field contain a transformation of
320 * the key's hash code.
321 *
322 * Insertion (via put or its variants) of the first node in an
323 * empty bin is performed by just CASing it to the bin. This is
324 * by far the most common case for put operations under most
325 * key/hash distributions. Other update operations (insert,
326 * delete, and replace) require locks. We do not want to waste
327 * the space required to associate a distinct lock object with
328 * each bin, so instead use the first node of a bin list itself as
329 * a lock. Locking support for these locks relies on builtin
330 * "synchronized" monitors.
331 *
332 * Using the first node of a list as a lock does not by itself
333 * suffice though: When a node is locked, any update must first
334 * validate that it is still the first node after locking it, and
335 * retry if not. Because new nodes are always appended to lists,
336 * once a node is first in a bin, it remains first until deleted
337 * or the bin becomes invalidated (upon resizing). However,
338 * operations that only conditionally update may inspect nodes
339 * until the point of update. This is a converse of sorts to the
340 * lazy locking technique described by Herlihy & Shavit.
341 *
342 * The main disadvantage of per-bin locks is that other update
343 * operations on other nodes in a bin list protected by the same
344 * lock can stall, for example when user equals() or mapping
345 * functions take a long time. However, statistically, under
346 * random hash codes, this is not a common problem. Ideally, the
347 * frequency of nodes in bins follows a Poisson distribution
348 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
349 * parameter of about 0.5 on average, given the resizing threshold
350 * of 0.75, although with a large variance because of resizing
351 * granularity. Ignoring variance, the expected occurrences of
352 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
353 * first values are:
354 *
355 * 0: 0.60653066
356 * 1: 0.30326533
357 * 2: 0.07581633
358 * 3: 0.01263606
359 * 4: 0.00157952
360 * 5: 0.00015795
361 * 6: 0.00001316
362 * 7: 0.00000094
363 * 8: 0.00000006
364 * more: less than 1 in ten million
365 *
366 * Lock contention probability for two threads accessing distinct
367 * elements is roughly 1 / (8 * #elements) under random hashes.
368 *
369 * Actual hash code distributions encountered in practice
370 * sometimes deviate significantly from uniform randomness. This
371 * includes the case when N > (1<<30), so some keys MUST collide.
372 * Similarly for dumb or hostile usages in which multiple keys are
373 * designed to have identical hash codes. Also, although we guard
374 * against the worst effects of this (see method spread), sets of
375 * hashes may differ only in bits that do not impact their bin
376 * index for a given power-of-two mask. So we use a secondary
377 * strategy that applies when the number of nodes in a bin exceeds
378 * a threshold, and at least one of the keys implements
379 * Comparable. These TreeBins use a balanced tree to hold nodes
380 * (a specialized form of red-black trees), bounding search time
381 * to O(log N). Each search step in a TreeBin is around twice as
382 * slow as in a regular list, but given that N cannot exceed
383 * (1<<64) (before running out of addresses) this bounds search
384 * steps, lock hold times, etc, to reasonable constants (roughly
385 * 100 nodes inspected per operation worst case) so long as keys
386 * are Comparable (which is very common -- String, Long, etc).
387 * TreeBin nodes (TreeNodes) also maintain the same "next"
388 * traversal pointers as regular nodes, so can be traversed in
389 * iterators in the same way.
390 *
391 * The table is resized when occupancy exceeds a percentage
392 * threshold (nominally, 0.75, but see below). Any thread
393 * noticing an overfull bin may assist in resizing after the
394 * initiating thread allocates and sets up the replacement
395 * array. However, rather than stalling, these other threads may
396 * proceed with insertions etc. The use of TreeBins shields us
397 * from the worst case effects of overfilling while resizes are in
398 * progress. Resizing proceeds by transferring bins, one by one,
399 * from the table to the next table. To enable concurrency, the
400 * next table must be (incrementally) prefilled with place-holders
401 * serving as reverse forwarders to the old table. Because we are
402 * using power-of-two expansion, the elements from each bin must
403 * either stay at same index, or move with a power of two
404 * offset. We eliminate unnecessary node creation by catching
405 * cases where old nodes can be reused because their next fields
406 * won't change. On average, only about one-sixth of them need
407 * cloning when a table doubles. The nodes they replace will be
408 * garbage collectable as soon as they are no longer referenced by
409 * any reader thread that may be in the midst of concurrently
410 * traversing table. Upon transfer, the old table bin contains
411 * only a special forwarding node (with hash field "MOVED") that
412 * contains the next table as its key. On encountering a
413 * forwarding node, access and update operations restart, using
414 * the new table.
415 *
416 * Each bin transfer requires its bin lock, which can stall
417 * waiting for locks while resizing. However, because other
418 * threads can join in and help resize rather than contend for
419 * locks, average aggregate waits become shorter as resizing
420 * progresses. The transfer operation must also ensure that all
421 * accessible bins in both the old and new table are usable by any
422 * traversal. This is arranged by proceeding from the last bin
423 * (table.length - 1) up towards the first. Upon seeing a
424 * forwarding node, traversals (see class Traverser) arrange to
425 * move to the new table without revisiting nodes. However, to
426 * ensure that no intervening nodes are skipped, bin splitting can
427 * only begin after the associated reverse-forwarders are in
428 * place.
429 *
430 * The traversal scheme also applies to partial traversals of
431 * ranges of bins (via an alternate Traverser constructor)
432 * to support partitioned aggregate operations. Also, read-only
433 * operations give up if ever forwarded to a null table, which
434 * provides support for shutdown-style clearing, which is also not
435 * currently implemented.
436 *
437 * Lazy table initialization minimizes footprint until first use,
438 * and also avoids resizings when the first operation is from a
439 * putAll, constructor with map argument, or deserialization.
440 * These cases attempt to override the initial capacity settings,
441 * but harmlessly fail to take effect in cases of races.
442 *
443 * The element count is maintained using a specialization of
444 * LongAdder. We need to incorporate a specialization rather than
445 * just use a LongAdder in order to access implicit
446 * contention-sensing that leads to creation of multiple
447 * CounterCells. The counter mechanics avoid contention on
448 * updates but can encounter cache thrashing if read too
449 * frequently during concurrent access. To avoid reading so often,
450 * resizing under contention is attempted only upon adding to a
451 * bin already holding two or more nodes. Under uniform hash
452 * distributions, the probability of this occurring at threshold
453 * is around 13%, meaning that only about 1 in 8 puts check
454 * threshold (and after resizing, many fewer do so). The bulk
455 * putAll operation further reduces contention by only committing
456 * count updates upon these size checks.
457 *
458 * Maintaining API and serialization compatibility with previous
459 * versions of this class introduces several oddities. Mainly: We
460 * leave untouched but unused constructor arguments refering to
461 * concurrencyLevel. We accept a loadFactor constructor argument,
462 * but apply it only to initial table capacity (which is the only
463 * time that we can guarantee to honor it.) We also declare an
464 * unused "Segment" class that is instantiated in minimal form
465 * only when serializing.
466 */
467
468 /* ---------------- Constants -------------- */
469
470 /**
471 * The largest possible table capacity. This value must be
472 * exactly 1<<30 to stay within Java array allocation and indexing
473 * bounds for power of two table sizes, and is further required
474 * because the top two bits of 32bit hash fields are used for
475 * control purposes.
476 */
477 private static final int MAXIMUM_CAPACITY = 1 << 30;
478
479 /**
480 * The default initial table capacity. Must be a power of 2
481 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
482 */
483 private static final int DEFAULT_CAPACITY = 16;
484
485 /**
486 * The largest possible (non-power of two) array size.
487 * Needed by toArray and related methods.
488 */
489 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
490
491 /**
492 * The default concurrency level for this table. Unused but
493 * defined for compatibility with previous versions of this class.
494 */
495 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
496
497 /**
498 * The load factor for this table. Overrides of this value in
499 * constructors affect only the initial table capacity. The
500 * actual floating point value isn't normally used -- it is
501 * simpler to use expressions such as {@code n - (n >>> 2)} for
502 * the associated resizing threshold.
503 */
504 private static final float LOAD_FACTOR = 0.75f;
505
506 /**
507 * The bin count threshold for using a tree rather than list for a
508 * bin. The value reflects the approximate break-even point for
509 * using tree-based operations.
510 */
511 private static final int TREE_THRESHOLD = 8;
512
513 /**
514 * Minimum number of rebinnings per transfer step. Ranges are
515 * subdivided to allow multiple resizer threads. This value
516 * serves as a lower bound to avoid resizers encountering
517 * excessive memory contention. The value should be at least
518 * DEFAULT_CAPACITY.
519 */
520 private static final int MIN_TRANSFER_STRIDE = 16;
521
522 /*
523 * Encodings for Node hash fields. See above for explanation.
524 */
525 static final int MOVED = 0x80000000; // hash field for forwarding nodes
526 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
527
528 /** Number of CPUS, to place bounds on some sizings */
529 static final int NCPU = Runtime.getRuntime().availableProcessors();
530
531 /* ---------------- Counters -------------- */
532
533 // Adapted from LongAdder and Striped64.
534 // See their internal docs for explanation.
535
536 // A padded cell for distributing counts
537 static final class CounterCell {
538 volatile long p0, p1, p2, p3, p4, p5, p6;
539 volatile long value;
540 volatile long q0, q1, q2, q3, q4, q5, q6;
541 CounterCell(long x) { value = x; }
542 }
543
544 /**
545 * Holder for the thread-local hash code determining which
546 * CounterCell to use. The code is initialized via the
547 * counterHashCodeGenerator, but may be moved upon collisions.
548 */
549 static final class CounterHashCode {
550 int code;
551 }
552
553 /**
554 * Generates initial value for per-thread CounterHashCodes
555 */
556 static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
557
558 /**
559 * Increment for counterHashCodeGenerator. See class ThreadLocal
560 * for explanation.
561 */
562 static final int SEED_INCREMENT = 0x61c88647;
563
564 /**
565 * Per-thread counter hash codes. Shared across all instances.
566 */
567 static final ThreadLocal<CounterHashCode> threadCounterHashCode =
568 new ThreadLocal<CounterHashCode>();
569
570 /* ---------------- Fields -------------- */
571
572 /**
573 * The array of bins. Lazily initialized upon first insertion.
574 * Size is always a power of two. Accessed directly by iterators.
575 */
576 transient volatile Node<V>[] table;
577
578 /**
579 * The next table to use; non-null only while resizing.
580 */
581 private transient volatile Node<V>[] nextTable;
582
583 /**
584 * Base counter value, used mainly when there is no contention,
585 * but also as a fallback during table initialization
586 * races. Updated via CAS.
587 */
588 private transient volatile long baseCount;
589
590 /**
591 * Table initialization and resizing control. When negative, the
592 * table is being initialized or resized: -1 for initialization,
593 * else -(1 + the number of active resizing threads). Otherwise,
594 * when table is null, holds the initial table size to use upon
595 * creation, or 0 for default. After initialization, holds the
596 * next element count value upon which to resize the table.
597 */
598 private transient volatile int sizeCtl;
599
600 /**
601 * The next table index (plus one) to split while resizing.
602 */
603 private transient volatile int transferIndex;
604
605 /**
606 * The least available table index to split while resizing.
607 */
608 private transient volatile int transferOrigin;
609
610 /**
611 * Spinlock (locked via CAS) used when resizing and/or creating Cells.
612 */
613 private transient volatile int counterBusy;
614
615 /**
616 * Table of counter cells. When non-null, size is a power of 2.
617 */
618 private transient volatile CounterCell[] counterCells;
619
620 // views
621 private transient KeySetView<K,V> keySet;
622 private transient ValuesView<K,V> values;
623 private transient EntrySetView<K,V> entrySet;
624
625 /** For serialization compatibility. Null unless serialized; see below */
626 private Segment<K,V>[] segments;
627
628 /* ---------------- Table element access -------------- */
629
630 /*
631 * Volatile access methods are used for table elements as well as
632 * elements of in-progress next table while resizing. Uses are
633 * null checked by callers, and implicitly bounds-checked, relying
634 * on the invariants that tab arrays have non-zero size, and all
635 * indices are masked with (tab.length - 1) which is never
636 * negative and always less than length. Note that, to be correct
637 * wrt arbitrary concurrency errors by users, bounds checks must
638 * operate on local variables, which accounts for some odd-looking
639 * inline assignments below.
640 */
641
642 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
643 (Node<V>[] tab, int i) { // used by Traverser
644 return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
645 }
646
647 private static final <V> boolean casTabAt
648 (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
649 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
650 }
651
652 private static final <V> void setTabAt
653 (Node<V>[] tab, int i, Node<V> v) {
654 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
655 }
656
657 /* ---------------- Nodes -------------- */
658
659 /**
660 * Key-value entry. Note that this is never exported out as a
661 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
662 * field of MOVED are special, and do not contain user keys or
663 * values. Otherwise, keys are never null, and null val fields
664 * indicate that a node is in the process of being deleted or
665 * created. For purposes of read-only access, a key may be read
666 * before a val, but can only be used after checking val to be
667 * non-null.
668 */
669 static class Node<V> {
670 final int hash;
671 final Object key;
672 volatile V val;
673 volatile Node<V> next;
674
675 Node(int hash, Object key, V val, Node<V> next) {
676 this.hash = hash;
677 this.key = key;
678 this.val = val;
679 this.next = next;
680 }
681 }
682
683 /* ---------------- TreeBins -------------- */
684
685 /**
686 * Nodes for use in TreeBins
687 */
688 static final class TreeNode<V> extends Node<V> {
689 TreeNode<V> parent; // red-black tree links
690 TreeNode<V> left;
691 TreeNode<V> right;
692 TreeNode<V> prev; // needed to unlink next upon deletion
693 boolean red;
694
695 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
696 super(hash, key, val, next);
697 this.parent = parent;
698 }
699 }
700
701 /**
702 * A specialized form of red-black tree for use in bins
703 * whose size exceeds a threshold.
704 *
705 * TreeBins use a special form of comparison for search and
706 * related operations (which is the main reason we cannot use
707 * existing collections such as TreeMaps). TreeBins contain
708 * Comparable elements, but may contain others, as well as
709 * elements that are Comparable but not necessarily Comparable<T>
710 * for the same T, so we cannot invoke compareTo among them. To
711 * handle this, the tree is ordered primarily by hash value, then
712 * by getClass().getName() order, and then by Comparator order
713 * among elements of the same class. On lookup at a node, if
714 * elements are not comparable or compare as 0, both left and
715 * right children may need to be searched in the case of tied hash
716 * values. (This corresponds to the full list search that would be
717 * necessary if all elements were non-Comparable and had tied
718 * hashes.) The red-black balancing code is updated from
719 * pre-jdk-collections
720 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
721 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
722 * Algorithms" (CLR).
723 *
724 * TreeBins also maintain a separate locking discipline than
725 * regular bins. Because they are forwarded via special MOVED
726 * nodes at bin heads (which can never change once established),
727 * we cannot use those nodes as locks. Instead, TreeBin
728 * extends AbstractQueuedSynchronizer to support a simple form of
729 * read-write lock. For update operations and table validation,
730 * the exclusive form of lock behaves in the same way as bin-head
731 * locks. However, lookups use shared read-lock mechanics to allow
732 * multiple readers in the absence of writers. Additionally,
733 * these lookups do not ever block: While the lock is not
734 * available, they proceed along the slow traversal path (via
735 * next-pointers) until the lock becomes available or the list is
736 * exhausted, whichever comes first. (These cases are not fast,
737 * but maximize aggregate expected throughput.) The AQS mechanics
738 * for doing this are straightforward. The lock state is held as
739 * AQS getState(). Read counts are negative; the write count (1)
740 * is positive. There are no signalling preferences among readers
741 * and writers. Since we don't need to export full Lock API, we
742 * just override the minimal AQS methods and use them directly.
743 */
744 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
745 private static final long serialVersionUID = 2249069246763182397L;
746 transient TreeNode<V> root; // root of tree
747 transient TreeNode<V> first; // head of next-pointer list
748
749 /* AQS overrides */
750 public final boolean isHeldExclusively() { return getState() > 0; }
751 public final boolean tryAcquire(int ignore) {
752 if (compareAndSetState(0, 1)) {
753 setExclusiveOwnerThread(Thread.currentThread());
754 return true;
755 }
756 return false;
757 }
758 public final boolean tryRelease(int ignore) {
759 setExclusiveOwnerThread(null);
760 setState(0);
761 return true;
762 }
763 public final int tryAcquireShared(int ignore) {
764 for (int c;;) {
765 if ((c = getState()) > 0)
766 return -1;
767 if (compareAndSetState(c, c -1))
768 return 1;
769 }
770 }
771 public final boolean tryReleaseShared(int ignore) {
772 int c;
773 do {} while (!compareAndSetState(c = getState(), c + 1));
774 return c == -1;
775 }
776
777 /** From CLR */
778 private void rotateLeft(TreeNode<V> p) {
779 if (p != null) {
780 TreeNode<V> r = p.right, pp, rl;
781 if ((rl = p.right = r.left) != null)
782 rl.parent = p;
783 if ((pp = r.parent = p.parent) == null)
784 root = r;
785 else if (pp.left == p)
786 pp.left = r;
787 else
788 pp.right = r;
789 r.left = p;
790 p.parent = r;
791 }
792 }
793
794 /** From CLR */
795 private void rotateRight(TreeNode<V> p) {
796 if (p != null) {
797 TreeNode<V> l = p.left, pp, lr;
798 if ((lr = p.left = l.right) != null)
799 lr.parent = p;
800 if ((pp = l.parent = p.parent) == null)
801 root = l;
802 else if (pp.right == p)
803 pp.right = l;
804 else
805 pp.left = l;
806 l.right = p;
807 p.parent = l;
808 }
809 }
810
811 /**
812 * Returns the TreeNode (or null if not found) for the given key
813 * starting at given root.
814 */
815 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
816 (int h, Object k, TreeNode<V> p) {
817 Class<?> c = k.getClass();
818 while (p != null) {
819 int dir, ph; Object pk; Class<?> pc;
820 if ((ph = p.hash) == h) {
821 if ((pk = p.key) == k || k.equals(pk))
822 return p;
823 if (c != (pc = pk.getClass()) ||
824 !(k instanceof Comparable) ||
825 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
826 if ((dir = (c == pc) ? 0 :
827 c.getName().compareTo(pc.getName())) == 0) {
828 TreeNode<V> r = null, pl, pr; // check both sides
829 if ((pr = p.right) != null && h >= pr.hash &&
830 (r = getTreeNode(h, k, pr)) != null)
831 return r;
832 else if ((pl = p.left) != null && h <= pl.hash)
833 dir = -1;
834 else // nothing there
835 return null;
836 }
837 }
838 }
839 else
840 dir = (h < ph) ? -1 : 1;
841 p = (dir > 0) ? p.right : p.left;
842 }
843 return null;
844 }
845
846 /**
847 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
848 * read-lock to call getTreeNode, but during failure to get
849 * lock, searches along next links.
850 */
851 final V getValue(int h, Object k) {
852 Node<V> r = null;
853 int c = getState(); // Must read lock state first
854 for (Node<V> e = first; e != null; e = e.next) {
855 if (c <= 0 && compareAndSetState(c, c - 1)) {
856 try {
857 r = getTreeNode(h, k, root);
858 } finally {
859 releaseShared(0);
860 }
861 break;
862 }
863 else if (e.hash == h && k.equals(e.key)) {
864 r = e;
865 break;
866 }
867 else
868 c = getState();
869 }
870 return r == null ? null : r.val;
871 }
872
873 /**
874 * Finds or adds a node.
875 * @return null if added
876 */
877 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
878 (int h, Object k, V v) {
879 Class<?> c = k.getClass();
880 TreeNode<V> pp = root, p = null;
881 int dir = 0;
882 while (pp != null) { // find existing node or leaf to insert at
883 int ph; Object pk; Class<?> pc;
884 p = pp;
885 if ((ph = p.hash) == h) {
886 if ((pk = p.key) == k || k.equals(pk))
887 return p;
888 if (c != (pc = pk.getClass()) ||
889 !(k instanceof Comparable) ||
890 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
891 TreeNode<V> s = null, r = null, pr;
892 if ((dir = (c == pc) ? 0 :
893 c.getName().compareTo(pc.getName())) == 0) {
894 if ((pr = p.right) != null && h >= pr.hash &&
895 (r = getTreeNode(h, k, pr)) != null)
896 return r;
897 else // continue left
898 dir = -1;
899 }
900 else if ((pr = p.right) != null && h >= pr.hash)
901 s = pr;
902 if (s != null && (r = getTreeNode(h, k, s)) != null)
903 return r;
904 }
905 }
906 else
907 dir = (h < ph) ? -1 : 1;
908 pp = (dir > 0) ? p.right : p.left;
909 }
910
911 TreeNode<V> f = first;
912 TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
913 if (p == null)
914 root = x;
915 else { // attach and rebalance; adapted from CLR
916 TreeNode<V> xp, xpp;
917 if (f != null)
918 f.prev = x;
919 if (dir <= 0)
920 p.left = x;
921 else
922 p.right = x;
923 x.red = true;
924 while (x != null && (xp = x.parent) != null && xp.red &&
925 (xpp = xp.parent) != null) {
926 TreeNode<V> xppl = xpp.left;
927 if (xp == xppl) {
928 TreeNode<V> y = xpp.right;
929 if (y != null && y.red) {
930 y.red = false;
931 xp.red = false;
932 xpp.red = true;
933 x = xpp;
934 }
935 else {
936 if (x == xp.right) {
937 rotateLeft(x = xp);
938 xpp = (xp = x.parent) == null ? null : xp.parent;
939 }
940 if (xp != null) {
941 xp.red = false;
942 if (xpp != null) {
943 xpp.red = true;
944 rotateRight(xpp);
945 }
946 }
947 }
948 }
949 else {
950 TreeNode<V> y = xppl;
951 if (y != null && y.red) {
952 y.red = false;
953 xp.red = false;
954 xpp.red = true;
955 x = xpp;
956 }
957 else {
958 if (x == xp.left) {
959 rotateRight(x = xp);
960 xpp = (xp = x.parent) == null ? null : xp.parent;
961 }
962 if (xp != null) {
963 xp.red = false;
964 if (xpp != null) {
965 xpp.red = true;
966 rotateLeft(xpp);
967 }
968 }
969 }
970 }
971 }
972 TreeNode<V> r = root;
973 if (r != null && r.red)
974 r.red = false;
975 }
976 return null;
977 }
978
979 /**
980 * Removes the given node, that must be present before this
981 * call. This is messier than typical red-black deletion code
982 * because we cannot swap the contents of an interior node
983 * with a leaf successor that is pinned by "next" pointers
984 * that are accessible independently of lock. So instead we
985 * swap the tree linkages.
986 */
987 final void deleteTreeNode(TreeNode<V> p) {
988 TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
989 TreeNode<V> pred = p.prev;
990 if (pred == null)
991 first = next;
992 else
993 pred.next = next;
994 if (next != null)
995 next.prev = pred;
996 TreeNode<V> replacement;
997 TreeNode<V> pl = p.left;
998 TreeNode<V> pr = p.right;
999 if (pl != null && pr != null) {
1000 TreeNode<V> s = pr, sl;
1001 while ((sl = s.left) != null) // find successor
1002 s = sl;
1003 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1004 TreeNode<V> sr = s.right;
1005 TreeNode<V> pp = p.parent;
1006 if (s == pr) { // p was s's direct parent
1007 p.parent = s;
1008 s.right = p;
1009 }
1010 else {
1011 TreeNode<V> sp = s.parent;
1012 if ((p.parent = sp) != null) {
1013 if (s == sp.left)
1014 sp.left = p;
1015 else
1016 sp.right = p;
1017 }
1018 if ((s.right = pr) != null)
1019 pr.parent = s;
1020 }
1021 p.left = null;
1022 if ((p.right = sr) != null)
1023 sr.parent = p;
1024 if ((s.left = pl) != null)
1025 pl.parent = s;
1026 if ((s.parent = pp) == null)
1027 root = s;
1028 else if (p == pp.left)
1029 pp.left = s;
1030 else
1031 pp.right = s;
1032 replacement = sr;
1033 }
1034 else
1035 replacement = (pl != null) ? pl : pr;
1036 TreeNode<V> pp = p.parent;
1037 if (replacement == null) {
1038 if (pp == null) {
1039 root = null;
1040 return;
1041 }
1042 replacement = p;
1043 }
1044 else {
1045 replacement.parent = pp;
1046 if (pp == null)
1047 root = replacement;
1048 else if (p == pp.left)
1049 pp.left = replacement;
1050 else
1051 pp.right = replacement;
1052 p.left = p.right = p.parent = null;
1053 }
1054 if (!p.red) { // rebalance, from CLR
1055 TreeNode<V> x = replacement;
1056 while (x != null) {
1057 TreeNode<V> xp, xpl;
1058 if (x.red || (xp = x.parent) == null) {
1059 x.red = false;
1060 break;
1061 }
1062 if (x == (xpl = xp.left)) {
1063 TreeNode<V> sib = xp.right;
1064 if (sib != null && sib.red) {
1065 sib.red = false;
1066 xp.red = true;
1067 rotateLeft(xp);
1068 sib = (xp = x.parent) == null ? null : xp.right;
1069 }
1070 if (sib == null)
1071 x = xp;
1072 else {
1073 TreeNode<V> sl = sib.left, sr = sib.right;
1074 if ((sr == null || !sr.red) &&
1075 (sl == null || !sl.red)) {
1076 sib.red = true;
1077 x = xp;
1078 }
1079 else {
1080 if (sr == null || !sr.red) {
1081 if (sl != null)
1082 sl.red = false;
1083 sib.red = true;
1084 rotateRight(sib);
1085 sib = (xp = x.parent) == null ?
1086 null : xp.right;
1087 }
1088 if (sib != null) {
1089 sib.red = (xp == null) ? false : xp.red;
1090 if ((sr = sib.right) != null)
1091 sr.red = false;
1092 }
1093 if (xp != null) {
1094 xp.red = false;
1095 rotateLeft(xp);
1096 }
1097 x = root;
1098 }
1099 }
1100 }
1101 else { // symmetric
1102 TreeNode<V> sib = xpl;
1103 if (sib != null && sib.red) {
1104 sib.red = false;
1105 xp.red = true;
1106 rotateRight(xp);
1107 sib = (xp = x.parent) == null ? null : xp.left;
1108 }
1109 if (sib == null)
1110 x = xp;
1111 else {
1112 TreeNode<V> sl = sib.left, sr = sib.right;
1113 if ((sl == null || !sl.red) &&
1114 (sr == null || !sr.red)) {
1115 sib.red = true;
1116 x = xp;
1117 }
1118 else {
1119 if (sl == null || !sl.red) {
1120 if (sr != null)
1121 sr.red = false;
1122 sib.red = true;
1123 rotateLeft(sib);
1124 sib = (xp = x.parent) == null ?
1125 null : xp.left;
1126 }
1127 if (sib != null) {
1128 sib.red = (xp == null) ? false : xp.red;
1129 if ((sl = sib.left) != null)
1130 sl.red = false;
1131 }
1132 if (xp != null) {
1133 xp.red = false;
1134 rotateRight(xp);
1135 }
1136 x = root;
1137 }
1138 }
1139 }
1140 }
1141 }
1142 if (p == replacement && (pp = p.parent) != null) {
1143 if (p == pp.left) // detach pointers
1144 pp.left = null;
1145 else if (p == pp.right)
1146 pp.right = null;
1147 p.parent = null;
1148 }
1149 }
1150 }
1151
1152 /* ---------------- Collision reduction methods -------------- */
1153
1154 /**
1155 * Spreads higher bits to lower, and also forces top bit to 0.
1156 * Because the table uses power-of-two masking, sets of hashes
1157 * that vary only in bits above the current mask will always
1158 * collide. (Among known examples are sets of Float keys holding
1159 * consecutive whole numbers in small tables.) To counter this,
1160 * we apply a transform that spreads the impact of higher bits
1161 * downward. There is a tradeoff between speed, utility, and
1162 * quality of bit-spreading. Because many common sets of hashes
1163 * are already reasonably distributed across bits (so don't benefit
1164 * from spreading), and because we use trees to handle large sets
1165 * of collisions in bins, we don't need excessively high quality.
1166 */
1167 private static final int spread(int h) {
1168 h ^= (h >>> 18) ^ (h >>> 12);
1169 return (h ^ (h >>> 10)) & HASH_BITS;
1170 }
1171
1172 /**
1173 * Replaces a list bin with a tree bin if key is comparable. Call
1174 * only when locked.
1175 */
1176 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1177 if (key instanceof Comparable) {
1178 TreeBin<V> t = new TreeBin<V>();
1179 for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1180 t.putTreeNode(e.hash, e.key, e.val);
1181 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1182 }
1183 }
1184
1185 /* ---------------- Internal access and update methods -------------- */
1186
1187 /** Implementation for get and containsKey */
1188 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1189 int h = spread(k.hashCode());
1190 retry: for (Node<V>[] tab = table; tab != null;) {
1191 Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1192 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1193 if ((eh = e.hash) < 0) {
1194 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1195 return ((TreeBin<V>)ek).getValue(h, k);
1196 else { // restart with new table
1197 tab = (Node<V>[])ek;
1198 continue retry;
1199 }
1200 }
1201 else if (eh == h && (ev = e.val) != null &&
1202 ((ek = e.key) == k || k.equals(ek)))
1203 return ev;
1204 }
1205 break;
1206 }
1207 return null;
1208 }
1209
1210 /**
1211 * Implementation for the four public remove/replace methods:
1212 * Replaces node value with v, conditional upon match of cv if
1213 * non-null. If resulting value is null, delete.
1214 */
1215 @SuppressWarnings("unchecked") private final V internalReplace
1216 (Object k, V v, Object cv) {
1217 int h = spread(k.hashCode());
1218 V oldVal = null;
1219 for (Node<V>[] tab = table;;) {
1220 Node<V> f; int i, fh; Object fk;
1221 if (tab == null ||
1222 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1223 break;
1224 else if ((fh = f.hash) < 0) {
1225 if ((fk = f.key) instanceof TreeBin) {
1226 TreeBin<V> t = (TreeBin<V>)fk;
1227 boolean validated = false;
1228 boolean deleted = false;
1229 t.acquire(0);
1230 try {
1231 if (tabAt(tab, i) == f) {
1232 validated = true;
1233 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1234 if (p != null) {
1235 V pv = p.val;
1236 if (cv == null || cv == pv || cv.equals(pv)) {
1237 oldVal = pv;
1238 if ((p.val = v) == null) {
1239 deleted = true;
1240 t.deleteTreeNode(p);
1241 }
1242 }
1243 }
1244 }
1245 } finally {
1246 t.release(0);
1247 }
1248 if (validated) {
1249 if (deleted)
1250 addCount(-1L, -1);
1251 break;
1252 }
1253 }
1254 else
1255 tab = (Node<V>[])fk;
1256 }
1257 else if (fh != h && f.next == null) // precheck
1258 break; // rules out possible existence
1259 else {
1260 boolean validated = false;
1261 boolean deleted = false;
1262 synchronized (f) {
1263 if (tabAt(tab, i) == f) {
1264 validated = true;
1265 for (Node<V> e = f, pred = null;;) {
1266 Object ek; V ev;
1267 if (e.hash == h &&
1268 ((ev = e.val) != null) &&
1269 ((ek = e.key) == k || k.equals(ek))) {
1270 if (cv == null || cv == ev || cv.equals(ev)) {
1271 oldVal = ev;
1272 if ((e.val = v) == null) {
1273 deleted = true;
1274 Node<V> en = e.next;
1275 if (pred != null)
1276 pred.next = en;
1277 else
1278 setTabAt(tab, i, en);
1279 }
1280 }
1281 break;
1282 }
1283 pred = e;
1284 if ((e = e.next) == null)
1285 break;
1286 }
1287 }
1288 }
1289 if (validated) {
1290 if (deleted)
1291 addCount(-1L, -1);
1292 break;
1293 }
1294 }
1295 }
1296 return oldVal;
1297 }
1298
1299 /*
1300 * Internal versions of insertion methods
1301 * All have the same basic structure as the first (internalPut):
1302 * 1. If table uninitialized, create
1303 * 2. If bin empty, try to CAS new node
1304 * 3. If bin stale, use new table
1305 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1306 * 5. Lock and validate; if valid, scan and add or update
1307 *
1308 * The putAll method differs mainly in attempting to pre-allocate
1309 * enough table space, and also more lazily performs count updates
1310 * and checks.
1311 *
1312 * Most of the function-accepting methods can't be factored nicely
1313 * because they require different functional forms, so instead
1314 * sprawl out similar mechanics.
1315 */
1316
1317 /** Implementation for put and putIfAbsent */
1318 @SuppressWarnings("unchecked") private final V internalPut
1319 (K k, V v, boolean onlyIfAbsent) {
1320 if (k == null || v == null) throw new NullPointerException();
1321 int h = spread(k.hashCode());
1322 int len = 0;
1323 for (Node<V>[] tab = table;;) {
1324 int i, fh; Node<V> f; Object fk; V fv;
1325 if (tab == null)
1326 tab = initTable();
1327 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1328 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1329 break; // no lock when adding to empty bin
1330 }
1331 else if ((fh = f.hash) < 0) {
1332 if ((fk = f.key) instanceof TreeBin) {
1333 TreeBin<V> t = (TreeBin<V>)fk;
1334 V oldVal = null;
1335 t.acquire(0);
1336 try {
1337 if (tabAt(tab, i) == f) {
1338 len = 2;
1339 TreeNode<V> p = t.putTreeNode(h, k, v);
1340 if (p != null) {
1341 oldVal = p.val;
1342 if (!onlyIfAbsent)
1343 p.val = v;
1344 }
1345 }
1346 } finally {
1347 t.release(0);
1348 }
1349 if (len != 0) {
1350 if (oldVal != null)
1351 return oldVal;
1352 break;
1353 }
1354 }
1355 else
1356 tab = (Node<V>[])fk;
1357 }
1358 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1359 ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1360 return fv;
1361 else {
1362 V oldVal = null;
1363 synchronized (f) {
1364 if (tabAt(tab, i) == f) {
1365 len = 1;
1366 for (Node<V> e = f;; ++len) {
1367 Object ek; V ev;
1368 if (e.hash == h &&
1369 (ev = e.val) != null &&
1370 ((ek = e.key) == k || k.equals(ek))) {
1371 oldVal = ev;
1372 if (!onlyIfAbsent)
1373 e.val = v;
1374 break;
1375 }
1376 Node<V> last = e;
1377 if ((e = e.next) == null) {
1378 last.next = new Node<V>(h, k, v, null);
1379 if (len >= TREE_THRESHOLD)
1380 replaceWithTreeBin(tab, i, k);
1381 break;
1382 }
1383 }
1384 }
1385 }
1386 if (len != 0) {
1387 if (oldVal != null)
1388 return oldVal;
1389 break;
1390 }
1391 }
1392 }
1393 addCount(1L, len);
1394 return null;
1395 }
1396
1397 /** Implementation for computeIfAbsent */
1398 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1399 (K k, Fun<? super K, ? extends V> mf) {
1400 if (k == null || mf == null)
1401 throw new NullPointerException();
1402 int h = spread(k.hashCode());
1403 V val = null;
1404 int len = 0;
1405 for (Node<V>[] tab = table;;) {
1406 Node<V> f; int i; Object fk;
1407 if (tab == null)
1408 tab = initTable();
1409 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1410 Node<V> node = new Node<V>(h, k, null, null);
1411 synchronized (node) {
1412 if (casTabAt(tab, i, null, node)) {
1413 len = 1;
1414 try {
1415 if ((val = mf.apply(k)) != null)
1416 node.val = val;
1417 } finally {
1418 if (val == null)
1419 setTabAt(tab, i, null);
1420 }
1421 }
1422 }
1423 if (len != 0)
1424 break;
1425 }
1426 else if (f.hash < 0) {
1427 if ((fk = f.key) instanceof TreeBin) {
1428 TreeBin<V> t = (TreeBin<V>)fk;
1429 boolean added = false;
1430 t.acquire(0);
1431 try {
1432 if (tabAt(tab, i) == f) {
1433 len = 1;
1434 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1435 if (p != null)
1436 val = p.val;
1437 else if ((val = mf.apply(k)) != null) {
1438 added = true;
1439 len = 2;
1440 t.putTreeNode(h, k, val);
1441 }
1442 }
1443 } finally {
1444 t.release(0);
1445 }
1446 if (len != 0) {
1447 if (!added)
1448 return val;
1449 break;
1450 }
1451 }
1452 else
1453 tab = (Node<V>[])fk;
1454 }
1455 else {
1456 for (Node<V> e = f; e != null; e = e.next) { // prescan
1457 Object ek; V ev;
1458 if (e.hash == h && (ev = e.val) != null &&
1459 ((ek = e.key) == k || k.equals(ek)))
1460 return ev;
1461 }
1462 boolean added = false;
1463 synchronized (f) {
1464 if (tabAt(tab, i) == f) {
1465 len = 1;
1466 for (Node<V> e = f;; ++len) {
1467 Object ek; V ev;
1468 if (e.hash == h &&
1469 (ev = e.val) != null &&
1470 ((ek = e.key) == k || k.equals(ek))) {
1471 val = ev;
1472 break;
1473 }
1474 Node<V> last = e;
1475 if ((e = e.next) == null) {
1476 if ((val = mf.apply(k)) != null) {
1477 added = true;
1478 last.next = new Node<V>(h, k, val, null);
1479 if (len >= TREE_THRESHOLD)
1480 replaceWithTreeBin(tab, i, k);
1481 }
1482 break;
1483 }
1484 }
1485 }
1486 }
1487 if (len != 0) {
1488 if (!added)
1489 return val;
1490 break;
1491 }
1492 }
1493 }
1494 if (val != null)
1495 addCount(1L, len);
1496 return val;
1497 }
1498
1499 /** Implementation for compute */
1500 @SuppressWarnings("unchecked") private final V internalCompute
1501 (K k, boolean onlyIfPresent,
1502 BiFun<? super K, ? super V, ? extends V> mf) {
1503 if (k == null || mf == null)
1504 throw new NullPointerException();
1505 int h = spread(k.hashCode());
1506 V val = null;
1507 int delta = 0;
1508 int len = 0;
1509 for (Node<V>[] tab = table;;) {
1510 Node<V> f; int i, fh; Object fk;
1511 if (tab == null)
1512 tab = initTable();
1513 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1514 if (onlyIfPresent)
1515 break;
1516 Node<V> node = new Node<V>(h, k, null, null);
1517 synchronized (node) {
1518 if (casTabAt(tab, i, null, node)) {
1519 try {
1520 len = 1;
1521 if ((val = mf.apply(k, null)) != null) {
1522 node.val = val;
1523 delta = 1;
1524 }
1525 } finally {
1526 if (delta == 0)
1527 setTabAt(tab, i, null);
1528 }
1529 }
1530 }
1531 if (len != 0)
1532 break;
1533 }
1534 else if ((fh = f.hash) < 0) {
1535 if ((fk = f.key) instanceof TreeBin) {
1536 TreeBin<V> t = (TreeBin<V>)fk;
1537 t.acquire(0);
1538 try {
1539 if (tabAt(tab, i) == f) {
1540 len = 1;
1541 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1542 if (p == null && onlyIfPresent)
1543 break;
1544 V pv = (p == null) ? null : p.val;
1545 if ((val = mf.apply(k, pv)) != null) {
1546 if (p != null)
1547 p.val = val;
1548 else {
1549 len = 2;
1550 delta = 1;
1551 t.putTreeNode(h, k, val);
1552 }
1553 }
1554 else if (p != null) {
1555 delta = -1;
1556 t.deleteTreeNode(p);
1557 }
1558 }
1559 } finally {
1560 t.release(0);
1561 }
1562 if (len != 0)
1563 break;
1564 }
1565 else
1566 tab = (Node<V>[])fk;
1567 }
1568 else {
1569 synchronized (f) {
1570 if (tabAt(tab, i) == f) {
1571 len = 1;
1572 for (Node<V> e = f, pred = null;; ++len) {
1573 Object ek; V ev;
1574 if (e.hash == h &&
1575 (ev = e.val) != null &&
1576 ((ek = e.key) == k || k.equals(ek))) {
1577 val = mf.apply(k, ev);
1578 if (val != null)
1579 e.val = val;
1580 else {
1581 delta = -1;
1582 Node<V> en = e.next;
1583 if (pred != null)
1584 pred.next = en;
1585 else
1586 setTabAt(tab, i, en);
1587 }
1588 break;
1589 }
1590 pred = e;
1591 if ((e = e.next) == null) {
1592 if (!onlyIfPresent &&
1593 (val = mf.apply(k, null)) != null) {
1594 pred.next = new Node<V>(h, k, val, null);
1595 delta = 1;
1596 if (len >= TREE_THRESHOLD)
1597 replaceWithTreeBin(tab, i, k);
1598 }
1599 break;
1600 }
1601 }
1602 }
1603 }
1604 if (len != 0)
1605 break;
1606 }
1607 }
1608 if (delta != 0)
1609 addCount((long)delta, len);
1610 return val;
1611 }
1612
1613 /** Implementation for merge */
1614 @SuppressWarnings("unchecked") private final V internalMerge
1615 (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1616 if (k == null || v == null || mf == null)
1617 throw new NullPointerException();
1618 int h = spread(k.hashCode());
1619 V val = null;
1620 int delta = 0;
1621 int len = 0;
1622 for (Node<V>[] tab = table;;) {
1623 int i; Node<V> f; Object fk; V fv;
1624 if (tab == null)
1625 tab = initTable();
1626 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1627 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1628 delta = 1;
1629 val = v;
1630 break;
1631 }
1632 }
1633 else if (f.hash < 0) {
1634 if ((fk = f.key) instanceof TreeBin) {
1635 TreeBin<V> t = (TreeBin<V>)fk;
1636 t.acquire(0);
1637 try {
1638 if (tabAt(tab, i) == f) {
1639 len = 1;
1640 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1641 val = (p == null) ? v : mf.apply(p.val, v);
1642 if (val != null) {
1643 if (p != null)
1644 p.val = val;
1645 else {
1646 len = 2;
1647 delta = 1;
1648 t.putTreeNode(h, k, val);
1649 }
1650 }
1651 else if (p != null) {
1652 delta = -1;
1653 t.deleteTreeNode(p);
1654 }
1655 }
1656 } finally {
1657 t.release(0);
1658 }
1659 if (len != 0)
1660 break;
1661 }
1662 else
1663 tab = (Node<V>[])fk;
1664 }
1665 else {
1666 synchronized (f) {
1667 if (tabAt(tab, i) == f) {
1668 len = 1;
1669 for (Node<V> e = f, pred = null;; ++len) {
1670 Object ek; V ev;
1671 if (e.hash == h &&
1672 (ev = e.val) != null &&
1673 ((ek = e.key) == k || k.equals(ek))) {
1674 val = mf.apply(ev, v);
1675 if (val != null)
1676 e.val = val;
1677 else {
1678 delta = -1;
1679 Node<V> en = e.next;
1680 if (pred != null)
1681 pred.next = en;
1682 else
1683 setTabAt(tab, i, en);
1684 }
1685 break;
1686 }
1687 pred = e;
1688 if ((e = e.next) == null) {
1689 val = v;
1690 pred.next = new Node<V>(h, k, val, null);
1691 delta = 1;
1692 if (len >= TREE_THRESHOLD)
1693 replaceWithTreeBin(tab, i, k);
1694 break;
1695 }
1696 }
1697 }
1698 }
1699 if (len != 0)
1700 break;
1701 }
1702 }
1703 if (delta != 0)
1704 addCount((long)delta, len);
1705 return val;
1706 }
1707
1708 /** Implementation for putAll */
1709 @SuppressWarnings("unchecked") private final void internalPutAll
1710 (Map<? extends K, ? extends V> m) {
1711 tryPresize(m.size());
1712 long delta = 0L; // number of uncommitted additions
1713 boolean npe = false; // to throw exception on exit for nulls
1714 try { // to clean up counts on other exceptions
1715 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1716 Object k; V v;
1717 if (entry == null || (k = entry.getKey()) == null ||
1718 (v = entry.getValue()) == null) {
1719 npe = true;
1720 break;
1721 }
1722 int h = spread(k.hashCode());
1723 for (Node<V>[] tab = table;;) {
1724 int i; Node<V> f; int fh; Object fk;
1725 if (tab == null)
1726 tab = initTable();
1727 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1728 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1729 ++delta;
1730 break;
1731 }
1732 }
1733 else if ((fh = f.hash) < 0) {
1734 if ((fk = f.key) instanceof TreeBin) {
1735 TreeBin<V> t = (TreeBin<V>)fk;
1736 boolean validated = false;
1737 t.acquire(0);
1738 try {
1739 if (tabAt(tab, i) == f) {
1740 validated = true;
1741 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1742 if (p != null)
1743 p.val = v;
1744 else {
1745 t.putTreeNode(h, k, v);
1746 ++delta;
1747 }
1748 }
1749 } finally {
1750 t.release(0);
1751 }
1752 if (validated)
1753 break;
1754 }
1755 else
1756 tab = (Node<V>[])fk;
1757 }
1758 else {
1759 int len = 0;
1760 synchronized (f) {
1761 if (tabAt(tab, i) == f) {
1762 len = 1;
1763 for (Node<V> e = f;; ++len) {
1764 Object ek; V ev;
1765 if (e.hash == h &&
1766 (ev = e.val) != null &&
1767 ((ek = e.key) == k || k.equals(ek))) {
1768 e.val = v;
1769 break;
1770 }
1771 Node<V> last = e;
1772 if ((e = e.next) == null) {
1773 ++delta;
1774 last.next = new Node<V>(h, k, v, null);
1775 if (len >= TREE_THRESHOLD)
1776 replaceWithTreeBin(tab, i, k);
1777 break;
1778 }
1779 }
1780 }
1781 }
1782 if (len != 0) {
1783 if (len > 1) {
1784 addCount(delta, len);
1785 delta = 0L;
1786 }
1787 break;
1788 }
1789 }
1790 }
1791 }
1792 } finally {
1793 if (delta != 0L)
1794 addCount(delta, 2);
1795 }
1796 if (npe)
1797 throw new NullPointerException();
1798 }
1799
1800 /**
1801 * Implementation for clear. Steps through each bin, removing all
1802 * nodes.
1803 */
1804 @SuppressWarnings("unchecked") private final void internalClear() {
1805 long delta = 0L; // negative number of deletions
1806 int i = 0;
1807 Node<V>[] tab = table;
1808 while (tab != null && i < tab.length) {
1809 Node<V> f = tabAt(tab, i);
1810 if (f == null)
1811 ++i;
1812 else if (f.hash < 0) {
1813 Object fk;
1814 if ((fk = f.key) instanceof TreeBin) {
1815 TreeBin<V> t = (TreeBin<V>)fk;
1816 t.acquire(0);
1817 try {
1818 if (tabAt(tab, i) == f) {
1819 for (Node<V> p = t.first; p != null; p = p.next) {
1820 if (p.val != null) { // (currently always true)
1821 p.val = null;
1822 --delta;
1823 }
1824 }
1825 t.first = null;
1826 t.root = null;
1827 ++i;
1828 }
1829 } finally {
1830 t.release(0);
1831 }
1832 }
1833 else
1834 tab = (Node<V>[])fk;
1835 }
1836 else {
1837 synchronized (f) {
1838 if (tabAt(tab, i) == f) {
1839 for (Node<V> e = f; e != null; e = e.next) {
1840 if (e.val != null) { // (currently always true)
1841 e.val = null;
1842 --delta;
1843 }
1844 }
1845 setTabAt(tab, i, null);
1846 ++i;
1847 }
1848 }
1849 }
1850 }
1851 if (delta != 0L)
1852 addCount(delta, -1);
1853 }
1854
1855 /* ---------------- Table Initialization and Resizing -------------- */
1856
1857 /**
1858 * Returns a power of two table size for the given desired capacity.
1859 * See Hackers Delight, sec 3.2
1860 */
1861 private static final int tableSizeFor(int c) {
1862 int n = c - 1;
1863 n |= n >>> 1;
1864 n |= n >>> 2;
1865 n |= n >>> 4;
1866 n |= n >>> 8;
1867 n |= n >>> 16;
1868 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1869 }
1870
1871 /**
1872 * Initializes table, using the size recorded in sizeCtl.
1873 */
1874 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1875 Node<V>[] tab; int sc;
1876 while ((tab = table) == null) {
1877 if ((sc = sizeCtl) < 0)
1878 Thread.yield(); // lost initialization race; just spin
1879 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1880 try {
1881 if ((tab = table) == null) {
1882 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1883 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1884 table = tab = (Node<V>[])tb;
1885 sc = n - (n >>> 2);
1886 }
1887 } finally {
1888 sizeCtl = sc;
1889 }
1890 break;
1891 }
1892 }
1893 return tab;
1894 }
1895
1896 /**
1897 * Adds to count, and if table is too small and not already
1898 * resizing, initiates transfer. If already resizing, helps
1899 * perform transfer if work is available. Rechecks occupancy
1900 * after a transfer to see if another resize is already needed
1901 * because resizings are lagging additions.
1902 *
1903 * @param x the count to add
1904 * @param check if <0, don't check resize, if <= 1 only check if uncontended
1905 */
1906 private final void addCount(long x, int check) {
1907 CounterCell[] as; long b, s;
1908 if ((as = counterCells) != null ||
1909 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1910 CounterHashCode hc; CounterCell a; long v; int m;
1911 boolean uncontended = true;
1912 if ((hc = threadCounterHashCode.get()) == null ||
1913 as == null || (m = as.length - 1) < 0 ||
1914 (a = as[m & hc.code]) == null ||
1915 !(uncontended =
1916 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1917 fullAddCount(x, hc, uncontended);
1918 return;
1919 }
1920 if (check <= 1)
1921 return;
1922 s = sumCount();
1923 }
1924 if (check >= 0) {
1925 Node<V>[] tab, nt; int sc;
1926 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1927 tab.length < MAXIMUM_CAPACITY) {
1928 if (sc < 0) {
1929 if (sc == -1 || transferIndex <= transferOrigin ||
1930 (nt = nextTable) == null)
1931 break;
1932 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1933 transfer(tab, nt);
1934 }
1935 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1936 transfer(tab, null);
1937 s = sumCount();
1938 }
1939 }
1940 }
1941
1942 /**
1943 * Tries to presize table to accommodate the given number of elements.
1944 *
1945 * @param size number of elements (doesn't need to be perfectly accurate)
1946 */
1947 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1948 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1949 tableSizeFor(size + (size >>> 1) + 1);
1950 int sc;
1951 while ((sc = sizeCtl) >= 0) {
1952 Node<V>[] tab = table; int n;
1953 if (tab == null || (n = tab.length) == 0) {
1954 n = (sc > c) ? sc : c;
1955 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1956 try {
1957 if (table == tab) {
1958 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1959 table = (Node<V>[])tb;
1960 sc = n - (n >>> 2);
1961 }
1962 } finally {
1963 sizeCtl = sc;
1964 }
1965 }
1966 }
1967 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1968 break;
1969 else if (tab == table &&
1970 U.compareAndSwapInt(this, SIZECTL, sc, -2))
1971 transfer(tab, null);
1972 }
1973 }
1974
1975 /*
1976 * Moves and/or copies the nodes in each bin to new table. See
1977 * above for explanation.
1978 */
1979 @SuppressWarnings("unchecked") private final void transfer
1980 (Node<V>[] tab, Node<V>[] nextTab) {
1981 int n = tab.length, stride;
1982 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1983 stride = MIN_TRANSFER_STRIDE; // subdivide range
1984 if (nextTab == null) { // initiating
1985 try {
1986 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1987 nextTab = (Node<V>[])tb;
1988 } catch (Throwable ex) { // try to cope with OOME
1989 sizeCtl = Integer.MAX_VALUE;
1990 return;
1991 }
1992 nextTable = nextTab;
1993 transferOrigin = n;
1994 transferIndex = n;
1995 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1996 for (int k = n; k > 0;) { // progressively reveal ready slots
1997 int nextk = (k > stride) ? k - stride : 0;
1998 for (int m = nextk; m < k; ++m)
1999 nextTab[m] = rev;
2000 for (int m = n + nextk; m < n + k; ++m)
2001 nextTab[m] = rev;
2002 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2003 }
2004 }
2005 int nextn = nextTab.length;
2006 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
2007 boolean advance = true;
2008 for (int i = 0, bound = 0;;) {
2009 int nextIndex, nextBound; Node<V> f; Object fk;
2010 while (advance) {
2011 if (--i >= bound)
2012 advance = false;
2013 else if ((nextIndex = transferIndex) <= transferOrigin) {
2014 i = -1;
2015 advance = false;
2016 }
2017 else if (U.compareAndSwapInt
2018 (this, TRANSFERINDEX, nextIndex,
2019 nextBound = (nextIndex > stride ?
2020 nextIndex - stride : 0))) {
2021 bound = nextBound;
2022 i = nextIndex - 1;
2023 advance = false;
2024 }
2025 }
2026 if (i < 0 || i >= n || i + n >= nextn) {
2027 for (int sc;;) {
2028 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2029 if (sc == -1) {
2030 nextTable = null;
2031 table = nextTab;
2032 sizeCtl = (n << 1) - (n >>> 1);
2033 }
2034 return;
2035 }
2036 }
2037 }
2038 else if ((f = tabAt(tab, i)) == null) {
2039 if (casTabAt(tab, i, null, fwd)) {
2040 setTabAt(nextTab, i, null);
2041 setTabAt(nextTab, i + n, null);
2042 advance = true;
2043 }
2044 }
2045 else if (f.hash >= 0) {
2046 synchronized (f) {
2047 if (tabAt(tab, i) == f) {
2048 int runBit = f.hash & n;
2049 Node<V> lastRun = f, lo = null, hi = null;
2050 for (Node<V> p = f.next; p != null; p = p.next) {
2051 int b = p.hash & n;
2052 if (b != runBit) {
2053 runBit = b;
2054 lastRun = p;
2055 }
2056 }
2057 if (runBit == 0)
2058 lo = lastRun;
2059 else
2060 hi = lastRun;
2061 for (Node<V> p = f; p != lastRun; p = p.next) {
2062 int ph = p.hash;
2063 Object pk = p.key; V pv = p.val;
2064 if ((ph & n) == 0)
2065 lo = new Node<V>(ph, pk, pv, lo);
2066 else
2067 hi = new Node<V>(ph, pk, pv, hi);
2068 }
2069 setTabAt(nextTab, i, lo);
2070 setTabAt(nextTab, i + n, hi);
2071 setTabAt(tab, i, fwd);
2072 advance = true;
2073 }
2074 }
2075 }
2076 else if ((fk = f.key) instanceof TreeBin) {
2077 TreeBin<V> t = (TreeBin<V>)fk;
2078 t.acquire(0);
2079 try {
2080 if (tabAt(tab, i) == f) {
2081 TreeBin<V> lt = new TreeBin<V>();
2082 TreeBin<V> ht = new TreeBin<V>();
2083 int lc = 0, hc = 0;
2084 for (Node<V> e = t.first; e != null; e = e.next) {
2085 int h = e.hash;
2086 Object k = e.key; V v = e.val;
2087 if ((h & n) == 0) {
2088 ++lc;
2089 lt.putTreeNode(h, k, v);
2090 }
2091 else {
2092 ++hc;
2093 ht.putTreeNode(h, k, v);
2094 }
2095 }
2096 Node<V> ln, hn; // throw away trees if too small
2097 if (lc < TREE_THRESHOLD) {
2098 ln = null;
2099 for (Node<V> p = lt.first; p != null; p = p.next)
2100 ln = new Node<V>(p.hash, p.key, p.val, ln);
2101 }
2102 else
2103 ln = new Node<V>(MOVED, lt, null, null);
2104 setTabAt(nextTab, i, ln);
2105 if (hc < TREE_THRESHOLD) {
2106 hn = null;
2107 for (Node<V> p = ht.first; p != null; p = p.next)
2108 hn = new Node<V>(p.hash, p.key, p.val, hn);
2109 }
2110 else
2111 hn = new Node<V>(MOVED, ht, null, null);
2112 setTabAt(nextTab, i + n, hn);
2113 setTabAt(tab, i, fwd);
2114 advance = true;
2115 }
2116 } finally {
2117 t.release(0);
2118 }
2119 }
2120 else
2121 advance = true; // already processed
2122 }
2123 }
2124
2125 /* ---------------- Counter support -------------- */
2126
2127 final long sumCount() {
2128 CounterCell[] as = counterCells; CounterCell a;
2129 long sum = baseCount;
2130 if (as != null) {
2131 for (int i = 0; i < as.length; ++i) {
2132 if ((a = as[i]) != null)
2133 sum += a.value;
2134 }
2135 }
2136 return sum;
2137 }
2138
2139 // See LongAdder version for explanation
2140 private final void fullAddCount(long x, CounterHashCode hc,
2141 boolean wasUncontended) {
2142 int h;
2143 if (hc == null) {
2144 hc = new CounterHashCode();
2145 int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
2146 h = hc.code = (s == 0) ? 1 : s; // Avoid zero
2147 threadCounterHashCode.set(hc);
2148 }
2149 else
2150 h = hc.code;
2151 boolean collide = false; // True if last slot nonempty
2152 for (;;) {
2153 CounterCell[] as; CounterCell a; int n; long v;
2154 if ((as = counterCells) != null && (n = as.length) > 0) {
2155 if ((a = as[(n - 1) & h]) == null) {
2156 if (counterBusy == 0) { // Try to attach new Cell
2157 CounterCell r = new CounterCell(x); // Optimistic create
2158 if (counterBusy == 0 &&
2159 U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2160 boolean created = false;
2161 try { // Recheck under lock
2162 CounterCell[] rs; int m, j;
2163 if ((rs = counterCells) != null &&
2164 (m = rs.length) > 0 &&
2165 rs[j = (m - 1) & h] == null) {
2166 rs[j] = r;
2167 created = true;
2168 }
2169 } finally {
2170 counterBusy = 0;
2171 }
2172 if (created)
2173 break;
2174 continue; // Slot is now non-empty
2175 }
2176 }
2177 collide = false;
2178 }
2179 else if (!wasUncontended) // CAS already known to fail
2180 wasUncontended = true; // Continue after rehash
2181 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2182 break;
2183 else if (counterCells != as || n >= NCPU)
2184 collide = false; // At max size or stale
2185 else if (!collide)
2186 collide = true;
2187 else if (counterBusy == 0 &&
2188 U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2189 try {
2190 if (counterCells == as) {// Expand table unless stale
2191 CounterCell[] rs = new CounterCell[n << 1];
2192 for (int i = 0; i < n; ++i)
2193 rs[i] = as[i];
2194 counterCells = rs;
2195 }
2196 } finally {
2197 counterBusy = 0;
2198 }
2199 collide = false;
2200 continue; // Retry with expanded table
2201 }
2202 h ^= h << 13; // Rehash
2203 h ^= h >>> 17;
2204 h ^= h << 5;
2205 }
2206 else if (counterBusy == 0 && counterCells == as &&
2207 U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2208 boolean init = false;
2209 try { // Initialize table
2210 if (counterCells == as) {
2211 CounterCell[] rs = new CounterCell[2];
2212 rs[h & 1] = new CounterCell(x);
2213 counterCells = rs;
2214 init = true;
2215 }
2216 } finally {
2217 counterBusy = 0;
2218 }
2219 if (init)
2220 break;
2221 }
2222 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2223 break; // Fall back on using base
2224 }
2225 hc.code = h; // Record index for next time
2226 }
2227
2228 /* ----------------Table Traversal -------------- */
2229
2230 /**
2231 * Encapsulates traversal for methods such as containsValue; also
2232 * serves as a base class for other iterators and bulk tasks.
2233 *
2234 * At each step, the iterator snapshots the key ("nextKey") and
2235 * value ("nextVal") of a valid node (i.e., one that, at point of
2236 * snapshot, has a non-null user value). Because val fields can
2237 * change (including to null, indicating deletion), field nextVal
2238 * might not be accurate at point of use, but still maintains the
2239 * weak consistency property of holding a value that was once
2240 * valid. To support iterator.remove, the nextKey field is not
2241 * updated (nulled out) when the iterator cannot advance.
2242 *
2243 * Internal traversals directly access these fields, as in:
2244 * {@code while (it.advance() != null) { process(it.nextKey); }}
2245 *
2246 * Exported iterators must track whether the iterator has advanced
2247 * (in hasNext vs next) (by setting/checking/nulling field
2248 * nextVal), and then extract key, value, or key-value pairs as
2249 * return values of next().
2250 *
2251 * The iterator visits once each still-valid node that was
2252 * reachable upon iterator construction. It might miss some that
2253 * were added to a bin after the bin was visited, which is OK wrt
2254 * consistency guarantees. Maintaining this property in the face
2255 * of possible ongoing resizes requires a fair amount of
2256 * bookkeeping state that is difficult to optimize away amidst
2257 * volatile accesses. Even so, traversal maintains reasonable
2258 * throughput.
2259 *
2260 * Normally, iteration proceeds bin-by-bin traversing lists.
2261 * However, if the table has been resized, then all future steps
2262 * must traverse both the bin at the current index as well as at
2263 * (index + baseSize); and so on for further resizings. To
2264 * paranoically cope with potential sharing by users of iterators
2265 * across threads, iteration terminates if a bounds checks fails
2266 * for a table read.
2267 *
2268 * This class extends CountedCompleter to streamline parallel
2269 * iteration in bulk operations. This adds only a few fields of
2270 * space overhead, which is small enough in cases where it is not
2271 * needed to not worry about it. Because CountedCompleter is
2272 * Serializable, but iterators need not be, we need to add warning
2273 * suppressions.
2274 */
2275 @SuppressWarnings("serial") static class Traverser<K,V,R>
2276 extends CountedCompleter<R> {
2277 final ConcurrentHashMap<K, V> map;
2278 Node<V> next; // the next entry to use
2279 Object nextKey; // cached key field of next
2280 V nextVal; // cached val field of next
2281 Node<V>[] tab; // current table; updated if resized
2282 int index; // index of bin to use next
2283 int baseIndex; // current index of initial table
2284 int baseLimit; // index bound for initial table
2285 int baseSize; // initial table size
2286 int batch; // split control
2287
2288 /** Creates iterator for all entries in the table. */
2289 Traverser(ConcurrentHashMap<K, V> map) {
2290 this.map = map;
2291 }
2292
2293 /** Creates iterator for split() methods and task constructors */
2294 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2295 super(it);
2296 this.batch = batch;
2297 if ((this.map = map) != null && it != null) { // split parent
2298 Node<V>[] t;
2299 if ((t = it.tab) == null &&
2300 (t = it.tab = map.table) != null)
2301 it.baseLimit = it.baseSize = t.length;
2302 this.tab = t;
2303 this.baseSize = it.baseSize;
2304 int hi = this.baseLimit = it.baseLimit;
2305 it.baseLimit = this.index = this.baseIndex =
2306 (hi + it.baseIndex + 1) >>> 1;
2307 }
2308 }
2309
2310 /**
2311 * Advances next; returns nextVal or null if terminated.
2312 * See above for explanation.
2313 */
2314 @SuppressWarnings("unchecked") final V advance() {
2315 Node<V> e = next;
2316 V ev = null;
2317 outer: do {
2318 if (e != null) // advance past used/skipped node
2319 e = e.next;
2320 while (e == null) { // get to next non-null bin
2321 ConcurrentHashMap<K, V> m;
2322 Node<V>[] t; int b, i, n; Object ek; // must use locals
2323 if ((t = tab) != null)
2324 n = t.length;
2325 else if ((m = map) != null && (t = tab = m.table) != null)
2326 n = baseLimit = baseSize = t.length;
2327 else
2328 break outer;
2329 if ((b = baseIndex) >= baseLimit ||
2330 (i = index) < 0 || i >= n)
2331 break outer;
2332 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2333 if ((ek = e.key) instanceof TreeBin)
2334 e = ((TreeBin<V>)ek).first;
2335 else {
2336 tab = (Node<V>[])ek;
2337 continue; // restarts due to null val
2338 }
2339 } // visit upper slots if present
2340 index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2341 }
2342 nextKey = e.key;
2343 } while ((ev = e.val) == null); // skip deleted or special nodes
2344 next = e;
2345 return nextVal = ev;
2346 }
2347
2348 public final void remove() {
2349 Object k = nextKey;
2350 if (k == null && (advance() == null || (k = nextKey) == null))
2351 throw new IllegalStateException();
2352 map.internalReplace(k, null, null);
2353 }
2354
2355 public final boolean hasNext() {
2356 return nextVal != null || advance() != null;
2357 }
2358
2359 public final boolean hasMoreElements() { return hasNext(); }
2360
2361 public void compute() { } // default no-op CountedCompleter body
2362
2363 /**
2364 * Returns a batch value > 0 if this task should (and must) be
2365 * split, if so, adding to pending count, and in any case
2366 * updating batch value. The initial batch value is approx
2367 * exp2 of the number of times (minus one) to split task by
2368 * two before executing leaf action. This value is faster to
2369 * compute and more convenient to use as a guide to splitting
2370 * than is the depth, since it is used while dividing by two
2371 * anyway.
2372 */
2373 final int preSplit() {
2374 ConcurrentHashMap<K, V> m; int b; Node<V>[] t; ForkJoinPool pool;
2375 if ((b = batch) < 0 && (m = map) != null) { // force initialization
2376 if ((t = tab) == null && (t = tab = m.table) != null)
2377 baseLimit = baseSize = t.length;
2378 if (t != null) {
2379 long n = m.sumCount();
2380 int par = ((pool = getPool()) == null) ?
2381 ForkJoinPool.getCommonPoolParallelism() :
2382 pool.getParallelism();
2383 int sp = par << 3; // slack of 8
2384 b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2385 }
2386 }
2387 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2388 if ((batch = b) > 0)
2389 addToPendingCount(1);
2390 return b;
2391 }
2392
2393 }
2394
2395 /* ---------------- Public operations -------------- */
2396
2397 /**
2398 * Creates a new, empty map with the default initial table size (16).
2399 */
2400 public ConcurrentHashMap() {
2401 }
2402
2403 /**
2404 * Creates a new, empty map with an initial table size
2405 * accommodating the specified number of elements without the need
2406 * to dynamically resize.
2407 *
2408 * @param initialCapacity The implementation performs internal
2409 * sizing to accommodate this many elements.
2410 * @throws IllegalArgumentException if the initial capacity of
2411 * elements is negative
2412 */
2413 public ConcurrentHashMap(int initialCapacity) {
2414 if (initialCapacity < 0)
2415 throw new IllegalArgumentException();
2416 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2417 MAXIMUM_CAPACITY :
2418 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2419 this.sizeCtl = cap;
2420 }
2421
2422 /**
2423 * Creates a new map with the same mappings as the given map.
2424 *
2425 * @param m the map
2426 */
2427 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2428 this.sizeCtl = DEFAULT_CAPACITY;
2429 internalPutAll(m);
2430 }
2431
2432 /**
2433 * Creates a new, empty map with an initial table size based on
2434 * the given number of elements ({@code initialCapacity}) and
2435 * initial table density ({@code loadFactor}).
2436 *
2437 * @param initialCapacity the initial capacity. The implementation
2438 * performs internal sizing to accommodate this many elements,
2439 * given the specified load factor.
2440 * @param loadFactor the load factor (table density) for
2441 * establishing the initial table size
2442 * @throws IllegalArgumentException if the initial capacity of
2443 * elements is negative or the load factor is nonpositive
2444 *
2445 * @since 1.6
2446 */
2447 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2448 this(initialCapacity, loadFactor, 1);
2449 }
2450
2451 /**
2452 * Creates a new, empty map with an initial table size based on
2453 * the given number of elements ({@code initialCapacity}), table
2454 * density ({@code loadFactor}), and number of concurrently
2455 * updating threads ({@code concurrencyLevel}).
2456 *
2457 * @param initialCapacity the initial capacity. The implementation
2458 * performs internal sizing to accommodate this many elements,
2459 * given the specified load factor.
2460 * @param loadFactor the load factor (table density) for
2461 * establishing the initial table size
2462 * @param concurrencyLevel the estimated number of concurrently
2463 * updating threads. The implementation may use this value as
2464 * a sizing hint.
2465 * @throws IllegalArgumentException if the initial capacity is
2466 * negative or the load factor or concurrencyLevel are
2467 * nonpositive
2468 */
2469 public ConcurrentHashMap(int initialCapacity,
2470 float loadFactor, int concurrencyLevel) {
2471 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2472 throw new IllegalArgumentException();
2473 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2474 initialCapacity = concurrencyLevel; // as estimated threads
2475 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2476 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2477 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2478 this.sizeCtl = cap;
2479 }
2480
2481 /**
2482 * Creates a new {@link Set} backed by a ConcurrentHashMap
2483 * from the given type to {@code Boolean.TRUE}.
2484 *
2485 * @return the new set
2486 */
2487 public static <K> KeySetView<K,Boolean> newKeySet() {
2488 return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2489 Boolean.TRUE);
2490 }
2491
2492 /**
2493 * Creates a new {@link Set} backed by a ConcurrentHashMap
2494 * from the given type to {@code Boolean.TRUE}.
2495 *
2496 * @param initialCapacity The implementation performs internal
2497 * sizing to accommodate this many elements.
2498 * @throws IllegalArgumentException if the initial capacity of
2499 * elements is negative
2500 * @return the new set
2501 */
2502 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2503 return new KeySetView<K,Boolean>
2504 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2505 }
2506
2507 /**
2508 * {@inheritDoc}
2509 */
2510 public boolean isEmpty() {
2511 return sumCount() <= 0L; // ignore transient negative values
2512 }
2513
2514 /**
2515 * {@inheritDoc}
2516 */
2517 public int size() {
2518 long n = sumCount();
2519 return ((n < 0L) ? 0 :
2520 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2521 (int)n);
2522 }
2523
2524 /**
2525 * Returns the number of mappings. This method should be used
2526 * instead of {@link #size} because a ConcurrentHashMap may
2527 * contain more mappings than can be represented as an int. The
2528 * value returned is an estimate; the actual count may differ if
2529 * there are concurrent insertions or removals.
2530 *
2531 * @return the number of mappings
2532 */
2533 public long mappingCount() {
2534 long n = sumCount();
2535 return (n < 0L) ? 0L : n; // ignore transient negative values
2536 }
2537
2538 /**
2539 * Returns the value to which the specified key is mapped,
2540 * or {@code null} if this map contains no mapping for the key.
2541 *
2542 * <p>More formally, if this map contains a mapping from a key
2543 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2544 * then this method returns {@code v}; otherwise it returns
2545 * {@code null}. (There can be at most one such mapping.)
2546 *
2547 * @throws NullPointerException if the specified key is null
2548 */
2549 public V get(Object key) {
2550 return internalGet(key);
2551 }
2552
2553 /**
2554 * Returns the value to which the specified key is mapped,
2555 * or the given defaultValue if this map contains no mapping for the key.
2556 *
2557 * @param key the key
2558 * @param defaultValue the value to return if this map contains
2559 * no mapping for the given key
2560 * @return the mapping for the key, if present; else the defaultValue
2561 * @throws NullPointerException if the specified key is null
2562 */
2563 public V getValueOrDefault(Object key, V defaultValue) {
2564 V v;
2565 return (v = internalGet(key)) == null ? defaultValue : v;
2566 }
2567
2568 /**
2569 * Tests if the specified object is a key in this table.
2570 *
2571 * @param key possible key
2572 * @return {@code true} if and only if the specified object
2573 * is a key in this table, as determined by the
2574 * {@code equals} method; {@code false} otherwise
2575 * @throws NullPointerException if the specified key is null
2576 */
2577 public boolean containsKey(Object key) {
2578 return internalGet(key) != null;
2579 }
2580
2581 /**
2582 * Returns {@code true} if this map maps one or more keys to the
2583 * specified value. Note: This method may require a full traversal
2584 * of the map, and is much slower than method {@code containsKey}.
2585 *
2586 * @param value value whose presence in this map is to be tested
2587 * @return {@code true} if this map maps one or more keys to the
2588 * specified value
2589 * @throws NullPointerException if the specified value is null
2590 */
2591 public boolean containsValue(Object value) {
2592 if (value == null)
2593 throw new NullPointerException();
2594 V v;
2595 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2596 while ((v = it.advance()) != null) {
2597 if (v == value || value.equals(v))
2598 return true;
2599 }
2600 return false;
2601 }
2602
2603 /**
2604 * Legacy method testing if some key maps into the specified value
2605 * in this table. This method is identical in functionality to
2606 * {@link #containsValue}, and exists solely to ensure
2607 * full compatibility with class {@link java.util.Hashtable},
2608 * which supported this method prior to introduction of the
2609 * Java Collections framework.
2610 *
2611 * @param value a value to search for
2612 * @return {@code true} if and only if some key maps to the
2613 * {@code value} argument in this table as
2614 * determined by the {@code equals} method;
2615 * {@code false} otherwise
2616 * @throws NullPointerException if the specified value is null
2617 */
2618 @Deprecated public boolean contains(Object value) {
2619 return containsValue(value);
2620 }
2621
2622 /**
2623 * Maps the specified key to the specified value in this table.
2624 * Neither the key nor the value can be null.
2625 *
2626 * <p>The value can be retrieved by calling the {@code get} method
2627 * with a key that is equal to the original key.
2628 *
2629 * @param key key with which the specified value is to be associated
2630 * @param value value to be associated with the specified key
2631 * @return the previous value associated with {@code key}, or
2632 * {@code null} if there was no mapping for {@code key}
2633 * @throws NullPointerException if the specified key or value is null
2634 */
2635 public V put(K key, V value) {
2636 return internalPut(key, value, false);
2637 }
2638
2639 /**
2640 * {@inheritDoc}
2641 *
2642 * @return the previous value associated with the specified key,
2643 * or {@code null} if there was no mapping for the key
2644 * @throws NullPointerException if the specified key or value is null
2645 */
2646 public V putIfAbsent(K key, V value) {
2647 return internalPut(key, value, true);
2648 }
2649
2650 /**
2651 * Copies all of the mappings from the specified map to this one.
2652 * These mappings replace any mappings that this map had for any of the
2653 * keys currently in the specified map.
2654 *
2655 * @param m mappings to be stored in this map
2656 */
2657 public void putAll(Map<? extends K, ? extends V> m) {
2658 internalPutAll(m);
2659 }
2660
2661 /**
2662 * If the specified key is not already associated with a value,
2663 * computes its value using the given mappingFunction and enters
2664 * it into the map unless null. This is equivalent to
2665 * <pre> {@code
2666 * if (map.containsKey(key))
2667 * return map.get(key);
2668 * value = mappingFunction.apply(key);
2669 * if (value != null)
2670 * map.put(key, value);
2671 * return value;}</pre>
2672 *
2673 * except that the action is performed atomically. If the
2674 * function returns {@code null} no mapping is recorded. If the
2675 * function itself throws an (unchecked) exception, the exception
2676 * is rethrown to its caller, and no mapping is recorded. Some
2677 * attempted update operations on this map by other threads may be
2678 * blocked while computation is in progress, so the computation
2679 * should be short and simple, and must not attempt to update any
2680 * other mappings of this Map. The most appropriate usage is to
2681 * construct a new object serving as an initial mapped value, or
2682 * memoized result, as in:
2683 *
2684 * <pre> {@code
2685 * map.computeIfAbsent(key, new Fun<K, V>() {
2686 * public V map(K k) { return new Value(f(k)); }});}</pre>
2687 *
2688 * @param key key with which the specified value is to be associated
2689 * @param mappingFunction the function to compute a value
2690 * @return the current (existing or computed) value associated with
2691 * the specified key, or null if the computed value is null
2692 * @throws NullPointerException if the specified key or mappingFunction
2693 * is null
2694 * @throws IllegalStateException if the computation detectably
2695 * attempts a recursive update to this map that would
2696 * otherwise never complete
2697 * @throws RuntimeException or Error if the mappingFunction does so,
2698 * in which case the mapping is left unestablished
2699 */
2700 public V computeIfAbsent
2701 (K key, Fun<? super K, ? extends V> mappingFunction) {
2702 return internalComputeIfAbsent(key, mappingFunction);
2703 }
2704
2705 /**
2706 * If the given key is present, computes a new mapping value given a key and
2707 * its current mapped value. This is equivalent to
2708 * <pre> {@code
2709 * if (map.containsKey(key)) {
2710 * value = remappingFunction.apply(key, map.get(key));
2711 * if (value != null)
2712 * map.put(key, value);
2713 * else
2714 * map.remove(key);
2715 * }
2716 * }</pre>
2717 *
2718 * except that the action is performed atomically. If the
2719 * function returns {@code null}, the mapping is removed. If the
2720 * function itself throws an (unchecked) exception, the exception
2721 * is rethrown to its caller, and the current mapping is left
2722 * unchanged. Some attempted update operations on this map by
2723 * other threads may be blocked while computation is in progress,
2724 * so the computation should be short and simple, and must not
2725 * attempt to update any other mappings of this Map. For example,
2726 * to either create or append new messages to a value mapping:
2727 *
2728 * @param key key with which the specified value is to be associated
2729 * @param remappingFunction the function to compute a value
2730 * @return the new value associated with the specified key, or null if none
2731 * @throws NullPointerException if the specified key or remappingFunction
2732 * is null
2733 * @throws IllegalStateException if the computation detectably
2734 * attempts a recursive update to this map that would
2735 * otherwise never complete
2736 * @throws RuntimeException or Error if the remappingFunction does so,
2737 * in which case the mapping is unchanged
2738 */
2739 public V computeIfPresent
2740 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2741 return internalCompute(key, true, remappingFunction);
2742 }
2743
2744 /**
2745 * Computes a new mapping value given a key and
2746 * its current mapped value (or {@code null} if there is no current
2747 * mapping). This is equivalent to
2748 * <pre> {@code
2749 * value = remappingFunction.apply(key, map.get(key));
2750 * if (value != null)
2751 * map.put(key, value);
2752 * else
2753 * map.remove(key);
2754 * }</pre>
2755 *
2756 * except that the action is performed atomically. If the
2757 * function returns {@code null}, the mapping is removed. If the
2758 * function itself throws an (unchecked) exception, the exception
2759 * is rethrown to its caller, and the current mapping is left
2760 * unchanged. Some attempted update operations on this map by
2761 * other threads may be blocked while computation is in progress,
2762 * so the computation should be short and simple, and must not
2763 * attempt to update any other mappings of this Map. For example,
2764 * to either create or append new messages to a value mapping:
2765 *
2766 * <pre> {@code
2767 * Map<Key, String> map = ...;
2768 * final String msg = ...;
2769 * map.compute(key, new BiFun<Key, String, String>() {
2770 * public String apply(Key k, String v) {
2771 * return (v == null) ? msg : v + msg;});}}</pre>
2772 *
2773 * @param key key with which the specified value is to be associated
2774 * @param remappingFunction the function to compute a value
2775 * @return the new value associated with the specified key, or null if none
2776 * @throws NullPointerException if the specified key or remappingFunction
2777 * is null
2778 * @throws IllegalStateException if the computation detectably
2779 * attempts a recursive update to this map that would
2780 * otherwise never complete
2781 * @throws RuntimeException or Error if the remappingFunction does so,
2782 * in which case the mapping is unchanged
2783 */
2784 public V compute
2785 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2786 return internalCompute(key, false, remappingFunction);
2787 }
2788
2789 /**
2790 * If the specified key is not already associated
2791 * with a value, associate it with the given value.
2792 * Otherwise, replace the value with the results of
2793 * the given remapping function. This is equivalent to:
2794 * <pre> {@code
2795 * if (!map.containsKey(key))
2796 * map.put(value);
2797 * else {
2798 * newValue = remappingFunction.apply(map.get(key), value);
2799 * if (value != null)
2800 * map.put(key, value);
2801 * else
2802 * map.remove(key);
2803 * }
2804 * }</pre>
2805 * except that the action is performed atomically. If the
2806 * function returns {@code null}, the mapping is removed. If the
2807 * function itself throws an (unchecked) exception, the exception
2808 * is rethrown to its caller, and the current mapping is left
2809 * unchanged. Some attempted update operations on this map by
2810 * other threads may be blocked while computation is in progress,
2811 * so the computation should be short and simple, and must not
2812 * attempt to update any other mappings of this Map.
2813 */
2814 public V merge
2815 (K key, V value,
2816 BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2817 return internalMerge(key, value, remappingFunction);
2818 }
2819
2820 /**
2821 * Removes the key (and its corresponding value) from this map.
2822 * This method does nothing if the key is not in the map.
2823 *
2824 * @param key the key that needs to be removed
2825 * @return the previous value associated with {@code key}, or
2826 * {@code null} if there was no mapping for {@code key}
2827 * @throws NullPointerException if the specified key is null
2828 */
2829 public V remove(Object key) {
2830 return internalReplace(key, null, null);
2831 }
2832
2833 /**
2834 * {@inheritDoc}
2835 *
2836 * @throws NullPointerException if the specified key is null
2837 */
2838 public boolean remove(Object key, Object value) {
2839 if (key == null)
2840 throw new NullPointerException();
2841 return value != null && internalReplace(key, null, value) != null;
2842 }
2843
2844 /**
2845 * {@inheritDoc}
2846 *
2847 * @throws NullPointerException if any of the arguments are null
2848 */
2849 public boolean replace(K key, V oldValue, V newValue) {
2850 if (key == null || oldValue == null || newValue == null)
2851 throw new NullPointerException();
2852 return internalReplace(key, newValue, oldValue) != null;
2853 }
2854
2855 /**
2856 * {@inheritDoc}
2857 *
2858 * @return the previous value associated with the specified key,
2859 * or {@code null} if there was no mapping for the key
2860 * @throws NullPointerException if the specified key or value is null
2861 */
2862 public V replace(K key, V value) {
2863 if (key == null || value == null)
2864 throw new NullPointerException();
2865 return internalReplace(key, value, null);
2866 }
2867
2868 /**
2869 * Removes all of the mappings from this map.
2870 */
2871 public void clear() {
2872 internalClear();
2873 }
2874
2875 /**
2876 * Returns a {@link Set} view of the keys contained in this map.
2877 * The set is backed by the map, so changes to the map are
2878 * reflected in the set, and vice-versa.
2879 *
2880 * @return the set view
2881 */
2882 public KeySetView<K,V> keySet() {
2883 KeySetView<K,V> ks = keySet;
2884 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2885 }
2886
2887 /**
2888 * Returns a {@link Set} view of the keys in this map, using the
2889 * given common mapped value for any additions (i.e., {@link
2890 * Collection#add} and {@link Collection#addAll}). This is of
2891 * course only appropriate if it is acceptable to use the same
2892 * value for all additions from this view.
2893 *
2894 * @param mappedValue the mapped value to use for any
2895 * additions.
2896 * @return the set view
2897 * @throws NullPointerException if the mappedValue is null
2898 */
2899 public KeySetView<K,V> keySet(V mappedValue) {
2900 if (mappedValue == null)
2901 throw new NullPointerException();
2902 return new KeySetView<K,V>(this, mappedValue);
2903 }
2904
2905 /**
2906 * Returns a {@link Collection} view of the values contained in this map.
2907 * The collection is backed by the map, so changes to the map are
2908 * reflected in the collection, and vice-versa.
2909 */
2910 public ValuesView<K,V> values() {
2911 ValuesView<K,V> vs = values;
2912 return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2913 }
2914
2915 /**
2916 * Returns a {@link Set} view of the mappings contained in this map.
2917 * The set is backed by the map, so changes to the map are
2918 * reflected in the set, and vice-versa. The set supports element
2919 * removal, which removes the corresponding mapping from the map,
2920 * via the {@code Iterator.remove}, {@code Set.remove},
2921 * {@code removeAll}, {@code retainAll}, and {@code clear}
2922 * operations. It does not support the {@code add} or
2923 * {@code addAll} operations.
2924 *
2925 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2926 * that will never throw {@link ConcurrentModificationException},
2927 * and guarantees to traverse elements as they existed upon
2928 * construction of the iterator, and may (but is not guaranteed to)
2929 * reflect any modifications subsequent to construction.
2930 */
2931 public Set<Map.Entry<K,V>> entrySet() {
2932 EntrySetView<K,V> es = entrySet;
2933 return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2934 }
2935
2936 /**
2937 * Returns an enumeration of the keys in this table.
2938 *
2939 * @return an enumeration of the keys in this table
2940 * @see #keySet()
2941 */
2942 public Enumeration<K> keys() {
2943 return new KeyIterator<K,V>(this);
2944 }
2945
2946 /**
2947 * Returns an enumeration of the values in this table.
2948 *
2949 * @return an enumeration of the values in this table
2950 * @see #values()
2951 */
2952 public Enumeration<V> elements() {
2953 return new ValueIterator<K,V>(this);
2954 }
2955
2956 /**
2957 * Returns a partitionable iterator of the keys in this map.
2958 *
2959 * @return a partitionable iterator of the keys in this map
2960 */
2961 public Spliterator<K> keySpliterator() {
2962 return new KeyIterator<K,V>(this);
2963 }
2964
2965 /**
2966 * Returns a partitionable iterator of the values in this map.
2967 *
2968 * @return a partitionable iterator of the values in this map
2969 */
2970 public Spliterator<V> valueSpliterator() {
2971 return new ValueIterator<K,V>(this);
2972 }
2973
2974 /**
2975 * Returns a partitionable iterator of the entries in this map.
2976 *
2977 * @return a partitionable iterator of the entries in this map
2978 */
2979 public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2980 return new EntryIterator<K,V>(this);
2981 }
2982
2983 /**
2984 * Returns the hash code value for this {@link Map}, i.e.,
2985 * the sum of, for each key-value pair in the map,
2986 * {@code key.hashCode() ^ value.hashCode()}.
2987 *
2988 * @return the hash code value for this map
2989 */
2990 public int hashCode() {
2991 int h = 0;
2992 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2993 V v;
2994 while ((v = it.advance()) != null) {
2995 h += it.nextKey.hashCode() ^ v.hashCode();
2996 }
2997 return h;
2998 }
2999
3000 /**
3001 * Returns a string representation of this map. The string
3002 * representation consists of a list of key-value mappings (in no
3003 * particular order) enclosed in braces ("{@code {}}"). Adjacent
3004 * mappings are separated by the characters {@code ", "} (comma
3005 * and space). Each key-value mapping is rendered as the key
3006 * followed by an equals sign ("{@code =}") followed by the
3007 * associated value.
3008 *
3009 * @return a string representation of this map
3010 */
3011 public String toString() {
3012 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3013 StringBuilder sb = new StringBuilder();
3014 sb.append('{');
3015 V v;
3016 if ((v = it.advance()) != null) {
3017 for (;;) {
3018 Object k = it.nextKey;
3019 sb.append(k == this ? "(this Map)" : k);
3020 sb.append('=');
3021 sb.append(v == this ? "(this Map)" : v);
3022 if ((v = it.advance()) == null)
3023 break;
3024 sb.append(',').append(' ');
3025 }
3026 }
3027 return sb.append('}').toString();
3028 }
3029
3030 /**
3031 * Compares the specified object with this map for equality.
3032 * Returns {@code true} if the given object is a map with the same
3033 * mappings as this map. This operation may return misleading
3034 * results if either map is concurrently modified during execution
3035 * of this method.
3036 *
3037 * @param o object to be compared for equality with this map
3038 * @return {@code true} if the specified object is equal to this map
3039 */
3040 public boolean equals(Object o) {
3041 if (o != this) {
3042 if (!(o instanceof Map))
3043 return false;
3044 Map<?,?> m = (Map<?,?>) o;
3045 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3046 V val;
3047 while ((val = it.advance()) != null) {
3048 Object v = m.get(it.nextKey);
3049 if (v == null || (v != val && !v.equals(val)))
3050 return false;
3051 }
3052 for (Map.Entry<?,?> e : m.entrySet()) {
3053 Object mk, mv, v;
3054 if ((mk = e.getKey()) == null ||
3055 (mv = e.getValue()) == null ||
3056 (v = internalGet(mk)) == null ||
3057 (mv != v && !mv.equals(v)))
3058 return false;
3059 }
3060 }
3061 return true;
3062 }
3063
3064 /* ----------------Iterators -------------- */
3065
3066 @SuppressWarnings("serial") static final class KeyIterator<K,V>
3067 extends Traverser<K,V,Object>
3068 implements Spliterator<K>, Enumeration<K> {
3069 KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
3070 KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3071 super(map, it, -1);
3072 }
3073 public KeyIterator<K,V> split() {
3074 if (nextKey != null)
3075 throw new IllegalStateException();
3076 return new KeyIterator<K,V>(map, this);
3077 }
3078 @SuppressWarnings("unchecked") public final K next() {
3079 if (nextVal == null && advance() == null)
3080 throw new NoSuchElementException();
3081 Object k = nextKey;
3082 nextVal = null;
3083 return (K) k;
3084 }
3085
3086 public final K nextElement() { return next(); }
3087 }
3088
3089 @SuppressWarnings("serial") static final class ValueIterator<K,V>
3090 extends Traverser<K,V,Object>
3091 implements Spliterator<V>, Enumeration<V> {
3092 ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
3093 ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3094 super(map, it, -1);
3095 }
3096 public ValueIterator<K,V> split() {
3097 if (nextKey != null)
3098 throw new IllegalStateException();
3099 return new ValueIterator<K,V>(map, this);
3100 }
3101
3102 public final V next() {
3103 V v;
3104 if ((v = nextVal) == null && (v = advance()) == null)
3105 throw new NoSuchElementException();
3106 nextVal = null;
3107 return v;
3108 }
3109
3110 public final V nextElement() { return next(); }
3111 }
3112
3113 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3114 extends Traverser<K,V,Object>
3115 implements Spliterator<Map.Entry<K,V>> {
3116 EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3117 EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3118 super(map, it, -1);
3119 }
3120 public EntryIterator<K,V> split() {
3121 if (nextKey != null)
3122 throw new IllegalStateException();
3123 return new EntryIterator<K,V>(map, this);
3124 }
3125
3126 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3127 V v;
3128 if ((v = nextVal) == null && (v = advance()) == null)
3129 throw new NoSuchElementException();
3130 Object k = nextKey;
3131 nextVal = null;
3132 return new MapEntry<K,V>((K)k, v, map);
3133 }
3134 }
3135
3136 /**
3137 * Exported Entry for iterators
3138 */
3139 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3140 final K key; // non-null
3141 V val; // non-null
3142 final ConcurrentHashMap<K, V> map;
3143 MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3144 this.key = key;
3145 this.val = val;
3146 this.map = map;
3147 }
3148 public final K getKey() { return key; }
3149 public final V getValue() { return val; }
3150 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3151 public final String toString(){ return key + "=" + val; }
3152
3153 public final boolean equals(Object o) {
3154 Object k, v; Map.Entry<?,?> e;
3155 return ((o instanceof Map.Entry) &&
3156 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3157 (v = e.getValue()) != null &&
3158 (k == key || k.equals(key)) &&
3159 (v == val || v.equals(val)));
3160 }
3161
3162 /**
3163 * Sets our entry's value and writes through to the map. The
3164 * value to return is somewhat arbitrary here. Since we do not
3165 * necessarily track asynchronous changes, the most recent
3166 * "previous" value could be different from what we return (or
3167 * could even have been removed in which case the put will
3168 * re-establish). We do not and cannot guarantee more.
3169 */
3170 public final V setValue(V value) {
3171 if (value == null) throw new NullPointerException();
3172 V v = val;
3173 val = value;
3174 map.put(key, value);
3175 return v;
3176 }
3177 }
3178
3179 /**
3180 * Returns exportable snapshot entry for the given key and value
3181 * when write-through can't or shouldn't be used.
3182 */
3183 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3184 return new AbstractMap.SimpleEntry<K,V>(k, v);
3185 }
3186
3187 /* ---------------- Serialization Support -------------- */
3188
3189 /**
3190 * Stripped-down version of helper class used in previous version,
3191 * declared for the sake of serialization compatibility
3192 */
3193 static class Segment<K,V> implements Serializable {
3194 private static final long serialVersionUID = 2249069246763182397L;
3195 final float loadFactor;
3196 Segment(float lf) { this.loadFactor = lf; }
3197 }
3198
3199 /**
3200 * Saves the state of the {@code ConcurrentHashMap} instance to a
3201 * stream (i.e., serializes it).
3202 * @param s the stream
3203 * @serialData
3204 * the key (Object) and value (Object)
3205 * for each key-value mapping, followed by a null pair.
3206 * The key-value mappings are emitted in no particular order.
3207 */
3208 @SuppressWarnings("unchecked") private void writeObject
3209 (java.io.ObjectOutputStream s)
3210 throws java.io.IOException {
3211 if (segments == null) { // for serialization compatibility
3212 segments = (Segment<K,V>[])
3213 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3214 for (int i = 0; i < segments.length; ++i)
3215 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3216 }
3217 s.defaultWriteObject();
3218 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3219 V v;
3220 while ((v = it.advance()) != null) {
3221 s.writeObject(it.nextKey);
3222 s.writeObject(v);
3223 }
3224 s.writeObject(null);
3225 s.writeObject(null);
3226 segments = null; // throw away
3227 }
3228
3229 /**
3230 * Reconstitutes the instance from a stream (that is, deserializes it).
3231 * @param s the stream
3232 */
3233 @SuppressWarnings("unchecked") private void readObject
3234 (java.io.ObjectInputStream s)
3235 throws java.io.IOException, ClassNotFoundException {
3236 s.defaultReadObject();
3237 this.segments = null; // unneeded
3238
3239 // Create all nodes, then place in table once size is known
3240 long size = 0L;
3241 Node<V> p = null;
3242 for (;;) {
3243 K k = (K) s.readObject();
3244 V v = (V) s.readObject();
3245 if (k != null && v != null) {
3246 int h = spread(k.hashCode());
3247 p = new Node<V>(h, k, v, p);
3248 ++size;
3249 }
3250 else
3251 break;
3252 }
3253 if (p != null) {
3254 boolean init = false;
3255 int n;
3256 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3257 n = MAXIMUM_CAPACITY;
3258 else {
3259 int sz = (int)size;
3260 n = tableSizeFor(sz + (sz >>> 1) + 1);
3261 }
3262 int sc = sizeCtl;
3263 boolean collide = false;
3264 if (n > sc &&
3265 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3266 try {
3267 if (table == null) {
3268 init = true;
3269 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3270 Node<V>[] tab = (Node<V>[])rt;
3271 int mask = n - 1;
3272 while (p != null) {
3273 int j = p.hash & mask;
3274 Node<V> next = p.next;
3275 Node<V> q = p.next = tabAt(tab, j);
3276 setTabAt(tab, j, p);
3277 if (!collide && q != null && q.hash == p.hash)
3278 collide = true;
3279 p = next;
3280 }
3281 table = tab;
3282 addCount(size, -1);
3283 sc = n - (n >>> 2);
3284 }
3285 } finally {
3286 sizeCtl = sc;
3287 }
3288 if (collide) { // rescan and convert to TreeBins
3289 Node<V>[] tab = table;
3290 for (int i = 0; i < tab.length; ++i) {
3291 int c = 0;
3292 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3293 if (++c > TREE_THRESHOLD &&
3294 (e.key instanceof Comparable)) {
3295 replaceWithTreeBin(tab, i, e.key);
3296 break;
3297 }
3298 }
3299 }
3300 }
3301 }
3302 if (!init) { // Can only happen if unsafely published.
3303 while (p != null) {
3304 internalPut((K)p.key, p.val, false);
3305 p = p.next;
3306 }
3307 }
3308 }
3309 }
3310
3311 // -------------------------------------------------------
3312
3313 // Sams
3314 /** Interface describing a void action of one argument */
3315 public interface Action<A> { void apply(A a); }
3316 /** Interface describing a void action of two arguments */
3317 public interface BiAction<A,B> { void apply(A a, B b); }
3318 /** Interface describing a function of one argument */
3319 public interface Fun<A,T> { T apply(A a); }
3320 /** Interface describing a function of two arguments */
3321 public interface BiFun<A,B,T> { T apply(A a, B b); }
3322 /** Interface describing a function of no arguments */
3323 public interface Generator<T> { T apply(); }
3324 /** Interface describing a function mapping its argument to a double */
3325 public interface ObjectToDouble<A> { double apply(A a); }
3326 /** Interface describing a function mapping its argument to a long */
3327 public interface ObjectToLong<A> { long apply(A a); }
3328 /** Interface describing a function mapping its argument to an int */
3329 public interface ObjectToInt<A> {int apply(A a); }
3330 /** Interface describing a function mapping two arguments to a double */
3331 public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3332 /** Interface describing a function mapping two arguments to a long */
3333 public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3334 /** Interface describing a function mapping two arguments to an int */
3335 public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3336 /** Interface describing a function mapping a double to a double */
3337 public interface DoubleToDouble { double apply(double a); }
3338 /** Interface describing a function mapping a long to a long */
3339 public interface LongToLong { long apply(long a); }
3340 /** Interface describing a function mapping an int to an int */
3341 public interface IntToInt { int apply(int a); }
3342 /** Interface describing a function mapping two doubles to a double */
3343 public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3344 /** Interface describing a function mapping two longs to a long */
3345 public interface LongByLongToLong { long apply(long a, long b); }
3346 /** Interface describing a function mapping two ints to an int */
3347 public interface IntByIntToInt { int apply(int a, int b); }
3348
3349
3350 // -------------------------------------------------------
3351
3352 // Sequential bulk operations
3353
3354 /**
3355 * Performs the given action for each (key, value).
3356 *
3357 * @param action the action
3358 */
3359 @SuppressWarnings("unchecked") public void forEachSequentially
3360 (BiAction<K,V> action) {
3361 if (action == null) throw new NullPointerException();
3362 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3363 V v;
3364 while ((v = it.advance()) != null)
3365 action.apply((K)it.nextKey, v);
3366 }
3367
3368 /**
3369 * Performs the given action for each non-null transformation
3370 * of each (key, value).
3371 *
3372 * @param transformer a function returning the transformation
3373 * for an element, or null of there is no transformation (in
3374 * which case the action is not applied).
3375 * @param action the action
3376 */
3377 @SuppressWarnings("unchecked") public <U> void forEachSequentially
3378 (BiFun<? super K, ? super V, ? extends U> transformer,
3379 Action<U> action) {
3380 if (transformer == null || action == null)
3381 throw new NullPointerException();
3382 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3383 V v; U u;
3384 while ((v = it.advance()) != null) {
3385 if ((u = transformer.apply((K)it.nextKey, v)) != null)
3386 action.apply(u);
3387 }
3388 }
3389
3390 /**
3391 * Returns a non-null result from applying the given search
3392 * function on each (key, value), or null if none.
3393 *
3394 * @param searchFunction a function returning a non-null
3395 * result on success, else null
3396 * @return a non-null result from applying the given search
3397 * function on each (key, value), or null if none
3398 */
3399 @SuppressWarnings("unchecked") public <U> U searchSequentially
3400 (BiFun<? super K, ? super V, ? extends U> searchFunction) {
3401 if (searchFunction == null) throw new NullPointerException();
3402 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3403 V v; U u;
3404 while ((v = it.advance()) != null) {
3405 if ((u = searchFunction.apply((K)it.nextKey, v)) != null)
3406 return u;
3407 }
3408 return null;
3409 }
3410
3411 /**
3412 * Returns the result of accumulating the given transformation
3413 * of all (key, value) pairs using the given reducer to
3414 * combine values, or null if none.
3415 *
3416 * @param transformer a function returning the transformation
3417 * for an element, or null of there is no transformation (in
3418 * which case it is not combined).
3419 * @param reducer a commutative associative combining function
3420 * @return the result of accumulating the given transformation
3421 * of all (key, value) pairs
3422 */
3423 @SuppressWarnings("unchecked") public <U> U reduceSequentially
3424 (BiFun<? super K, ? super V, ? extends U> transformer,
3425 BiFun<? super U, ? super U, ? extends U> reducer) {
3426 if (transformer == null || reducer == null)
3427 throw new NullPointerException();
3428 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3429 U r = null, u; V v;
3430 while ((v = it.advance()) != null) {
3431 if ((u = transformer.apply((K)it.nextKey, v)) != null)
3432 r = (r == null) ? u : reducer.apply(r, u);
3433 }
3434 return r;
3435 }
3436
3437 /**
3438 * Returns the result of accumulating the given transformation
3439 * of all (key, value) pairs using the given reducer to
3440 * combine values, and the given basis as an identity value.
3441 *
3442 * @param transformer a function returning the transformation
3443 * for an element
3444 * @param basis the identity (initial default value) for the reduction
3445 * @param reducer a commutative associative combining function
3446 * @return the result of accumulating the given transformation
3447 * of all (key, value) pairs
3448 */
3449 @SuppressWarnings("unchecked") public double reduceToDoubleSequentially
3450 (ObjectByObjectToDouble<? super K, ? super V> transformer,
3451 double basis,
3452 DoubleByDoubleToDouble reducer) {
3453 if (transformer == null || reducer == null)
3454 throw new NullPointerException();
3455 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3456 double r = basis; V v;
3457 while ((v = it.advance()) != null)
3458 r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3459 return r;
3460 }
3461
3462 /**
3463 * Returns the result of accumulating the given transformation
3464 * of all (key, value) pairs using the given reducer to
3465 * combine values, and the given basis as an identity value.
3466 *
3467 * @param transformer a function returning the transformation
3468 * for an element
3469 * @param basis the identity (initial default value) for the reduction
3470 * @param reducer a commutative associative combining function
3471 * @return the result of accumulating the given transformation
3472 * of all (key, value) pairs
3473 */
3474 @SuppressWarnings("unchecked") public long reduceToLongSequentially
3475 (ObjectByObjectToLong<? super K, ? super V> transformer,
3476 long basis,
3477 LongByLongToLong reducer) {
3478 if (transformer == null || reducer == null)
3479 throw new NullPointerException();
3480 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3481 long r = basis; V v;
3482 while ((v = it.advance()) != null)
3483 r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3484 return r;
3485 }
3486
3487 /**
3488 * Returns the result of accumulating the given transformation
3489 * of all (key, value) pairs using the given reducer to
3490 * combine values, and the given basis as an identity value.
3491 *
3492 * @param transformer a function returning the transformation
3493 * for an element
3494 * @param basis the identity (initial default value) for the reduction
3495 * @param reducer a commutative associative combining function
3496 * @return the result of accumulating the given transformation
3497 * of all (key, value) pairs
3498 */
3499 @SuppressWarnings("unchecked") public int reduceToIntSequentially
3500 (ObjectByObjectToInt<? super K, ? super V> transformer,
3501 int basis,
3502 IntByIntToInt reducer) {
3503 if (transformer == null || reducer == null)
3504 throw new NullPointerException();
3505 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3506 int r = basis; V v;
3507 while ((v = it.advance()) != null)
3508 r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3509 return r;
3510 }
3511
3512 /**
3513 * Performs the given action for each key.
3514 *
3515 * @param action the action
3516 */
3517 @SuppressWarnings("unchecked") public void forEachKeySequentially
3518 (Action<K> action) {
3519 if (action == null) throw new NullPointerException();
3520 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3521 while (it.advance() != null)
3522 action.apply((K)it.nextKey);
3523 }
3524
3525 /**
3526 * Performs the given action for each non-null transformation
3527 * of each key.
3528 *
3529 * @param transformer a function returning the transformation
3530 * for an element, or null of there is no transformation (in
3531 * which case the action is not applied).
3532 * @param action the action
3533 */
3534 @SuppressWarnings("unchecked") public <U> void forEachKeySequentially
3535 (Fun<? super K, ? extends U> transformer,
3536 Action<U> action) {
3537 if (transformer == null || action == null)
3538 throw new NullPointerException();
3539 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3540 U u;
3541 while (it.advance() != null) {
3542 if ((u = transformer.apply((K)it.nextKey)) != null)
3543 action.apply(u);
3544 }
3545 ForkJoinTasks.forEachKey
3546 (this, transformer, action).invoke();
3547 }
3548
3549 /**
3550 * Returns a non-null result from applying the given search
3551 * function on each key, or null if none.
3552 *
3553 * @param searchFunction a function returning a non-null
3554 * result on success, else null
3555 * @return a non-null result from applying the given search
3556 * function on each key, or null if none
3557 */
3558 @SuppressWarnings("unchecked") public <U> U searchKeysSequentially
3559 (Fun<? super K, ? extends U> searchFunction) {
3560 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3561 U u;
3562 while (it.advance() != null) {
3563 if ((u = searchFunction.apply((K)it.nextKey)) != null)
3564 return u;
3565 }
3566 return null;
3567 }
3568
3569 /**
3570 * Returns the result of accumulating all keys using the given
3571 * reducer to combine values, or null if none.
3572 *
3573 * @param reducer a commutative associative combining function
3574 * @return the result of accumulating all keys using the given
3575 * reducer to combine values, or null if none
3576 */
3577 @SuppressWarnings("unchecked") public K reduceKeysSequentially
3578 (BiFun<? super K, ? super K, ? extends K> reducer) {
3579 if (reducer == null) throw new NullPointerException();
3580 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3581 K r = null;
3582 while (it.advance() != null) {
3583 K u = (K)it.nextKey;
3584 r = (r == null) ? u : reducer.apply(r, u);
3585 }
3586 return r;
3587 }
3588
3589 /**
3590 * Returns the result of accumulating the given transformation
3591 * of all keys using the given reducer to combine values, or
3592 * null if none.
3593 *
3594 * @param transformer a function returning the transformation
3595 * for an element, or null of there is no transformation (in
3596 * which case it is not combined).
3597 * @param reducer a commutative associative combining function
3598 * @return the result of accumulating the given transformation
3599 * of all keys
3600 */
3601 @SuppressWarnings("unchecked") public <U> U reduceKeysSequentially
3602 (Fun<? super K, ? extends U> transformer,
3603 BiFun<? super U, ? super U, ? extends U> reducer) {
3604 if (transformer == null || reducer == null)
3605 throw new NullPointerException();
3606 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3607 U r = null, u;
3608 while (it.advance() != null) {
3609 if ((u = transformer.apply((K)it.nextKey)) != null)
3610 r = (r == null) ? u : reducer.apply(r, u);
3611 }
3612 return r;
3613 }
3614
3615 /**
3616 * Returns the result of accumulating the given transformation
3617 * of all keys using the given reducer to combine values, and
3618 * the given basis as an identity value.
3619 *
3620 * @param transformer a function returning the transformation
3621 * for an element
3622 * @param basis the identity (initial default value) for the reduction
3623 * @param reducer a commutative associative combining function
3624 * @return the result of accumulating the given transformation
3625 * of all keys
3626 */
3627 @SuppressWarnings("unchecked") public double reduceKeysToDoubleSequentially
3628 (ObjectToDouble<? super K> transformer,
3629 double basis,
3630 DoubleByDoubleToDouble reducer) {
3631 if (transformer == null || reducer == null)
3632 throw new NullPointerException();
3633 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3634 double r = basis;
3635 while (it.advance() != null)
3636 r = reducer.apply(r, transformer.apply((K)it.nextKey));
3637 return r;
3638 }
3639
3640 /**
3641 * Returns the result of accumulating the given transformation
3642 * of all keys using the given reducer to combine values, and
3643 * the given basis as an identity value.
3644 *
3645 * @param transformer a function returning the transformation
3646 * for an element
3647 * @param basis the identity (initial default value) for the reduction
3648 * @param reducer a commutative associative combining function
3649 * @return the result of accumulating the given transformation
3650 * of all keys
3651 */
3652 @SuppressWarnings("unchecked") public long reduceKeysToLongSequentially
3653 (ObjectToLong<? super K> transformer,
3654 long basis,
3655 LongByLongToLong reducer) {
3656 if (transformer == null || reducer == null)
3657 throw new NullPointerException();
3658 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3659 long r = basis;
3660 while (it.advance() != null)
3661 r = reducer.apply(r, transformer.apply((K)it.nextKey));
3662 return r;
3663 }
3664
3665 /**
3666 * Returns the result of accumulating the given transformation
3667 * of all keys using the given reducer to combine values, and
3668 * the given basis as an identity value.
3669 *
3670 * @param transformer a function returning the transformation
3671 * for an element
3672 * @param basis the identity (initial default value) for the reduction
3673 * @param reducer a commutative associative combining function
3674 * @return the result of accumulating the given transformation
3675 * of all keys
3676 */
3677 @SuppressWarnings("unchecked") public int reduceKeysToIntSequentially
3678 (ObjectToInt<? super K> transformer,
3679 int basis,
3680 IntByIntToInt reducer) {
3681 if (transformer == null || reducer == null)
3682 throw new NullPointerException();
3683 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3684 int r = basis;
3685 while (it.advance() != null)
3686 r = reducer.apply(r, transformer.apply((K)it.nextKey));
3687 return r;
3688 }
3689
3690 /**
3691 * Performs the given action for each value.
3692 *
3693 * @param action the action
3694 */
3695 public void forEachValueSequentially(Action<V> action) {
3696 if (action == null) throw new NullPointerException();
3697 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3698 V v;
3699 while ((v = it.advance()) != null)
3700 action.apply(v);
3701 }
3702
3703 /**
3704 * Performs the given action for each non-null transformation
3705 * of each value.
3706 *
3707 * @param transformer a function returning the transformation
3708 * for an element, or null of there is no transformation (in
3709 * which case the action is not applied).
3710 */
3711 public <U> void forEachValueSequentially
3712 (Fun<? super V, ? extends U> transformer,
3713 Action<U> action) {
3714 if (transformer == null || action == null)
3715 throw new NullPointerException();
3716 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3717 V v; U u;
3718 while ((v = it.advance()) != null) {
3719 if ((u = transformer.apply(v)) != null)
3720 action.apply(u);
3721 }
3722 }
3723
3724 /**
3725 * Returns a non-null result from applying the given search
3726 * function on each value, or null if none.
3727 *
3728 * @param searchFunction a function returning a non-null
3729 * result on success, else null
3730 * @return a non-null result from applying the given search
3731 * function on each value, or null if none
3732 */
3733 public <U> U searchValuesSequentially
3734 (Fun<? super V, ? extends U> searchFunction) {
3735 if (searchFunction == null) throw new NullPointerException();
3736 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3737 V v; U u;
3738 while ((v = it.advance()) != null) {
3739 if ((u = searchFunction.apply(v)) != null)
3740 return u;
3741 }
3742 return null;
3743 }
3744
3745 /**
3746 * Returns the result of accumulating all values using the
3747 * given reducer to combine values, or null if none.
3748 *
3749 * @param reducer a commutative associative combining function
3750 * @return the result of accumulating all values
3751 */
3752 public V reduceValuesSequentially
3753 (BiFun<? super V, ? super V, ? extends V> reducer) {
3754 if (reducer == null) throw new NullPointerException();
3755 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3756 V r = null; V v;
3757 while ((v = it.advance()) != null)
3758 r = (r == null) ? v : reducer.apply(r, v);
3759 return r;
3760 }
3761
3762 /**
3763 * Returns the result of accumulating the given transformation
3764 * of all values using the given reducer to combine values, or
3765 * null if none.
3766 *
3767 * @param transformer a function returning the transformation
3768 * for an element, or null of there is no transformation (in
3769 * which case it is not combined).
3770 * @param reducer a commutative associative combining function
3771 * @return the result of accumulating the given transformation
3772 * of all values
3773 */
3774 public <U> U reduceValuesSequentially
3775 (Fun<? super V, ? extends U> transformer,
3776 BiFun<? super U, ? super U, ? extends U> reducer) {
3777 if (transformer == null || reducer == null)
3778 throw new NullPointerException();
3779 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3780 U r = null, u; V v;
3781 while ((v = it.advance()) != null) {
3782 if ((u = transformer.apply(v)) != null)
3783 r = (r == null) ? u : reducer.apply(r, u);
3784 }
3785 return r;
3786 }
3787
3788 /**
3789 * Returns the result of accumulating the given transformation
3790 * of all values using the given reducer to combine values,
3791 * and the given basis as an identity value.
3792 *
3793 * @param transformer a function returning the transformation
3794 * for an element
3795 * @param basis the identity (initial default value) for the reduction
3796 * @param reducer a commutative associative combining function
3797 * @return the result of accumulating the given transformation
3798 * of all values
3799 */
3800 public double reduceValuesToDoubleSequentially
3801 (ObjectToDouble<? super V> transformer,
3802 double basis,
3803 DoubleByDoubleToDouble reducer) {
3804 if (transformer == null || reducer == null)
3805 throw new NullPointerException();
3806 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3807 double r = basis; V v;
3808 while ((v = it.advance()) != null)
3809 r = reducer.apply(r, transformer.apply(v));
3810 return r;
3811 }
3812
3813 /**
3814 * Returns the result of accumulating the given transformation
3815 * of all values using the given reducer to combine values,
3816 * and the given basis as an identity value.
3817 *
3818 * @param transformer a function returning the transformation
3819 * for an element
3820 * @param basis the identity (initial default value) for the reduction
3821 * @param reducer a commutative associative combining function
3822 * @return the result of accumulating the given transformation
3823 * of all values
3824 */
3825 public long reduceValuesToLongSequentially
3826 (ObjectToLong<? super V> transformer,
3827 long basis,
3828 LongByLongToLong reducer) {
3829 if (transformer == null || reducer == null)
3830 throw new NullPointerException();
3831 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3832 long r = basis; V v;
3833 while ((v = it.advance()) != null)
3834 r = reducer.apply(r, transformer.apply(v));
3835 return r;
3836 }
3837
3838 /**
3839 * Returns the result of accumulating the given transformation
3840 * of all values using the given reducer to combine values,
3841 * and the given basis as an identity value.
3842 *
3843 * @param transformer a function returning the transformation
3844 * for an element
3845 * @param basis the identity (initial default value) for the reduction
3846 * @param reducer a commutative associative combining function
3847 * @return the result of accumulating the given transformation
3848 * of all values
3849 */
3850 public int reduceValuesToIntSequentially
3851 (ObjectToInt<? super V> transformer,
3852 int basis,
3853 IntByIntToInt reducer) {
3854 if (transformer == null || reducer == null)
3855 throw new NullPointerException();
3856 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3857 int r = basis; V v;
3858 while ((v = it.advance()) != null)
3859 r = reducer.apply(r, transformer.apply(v));
3860 return r;
3861 }
3862
3863 /**
3864 * Performs the given action for each entry.
3865 *
3866 * @param action the action
3867 */
3868 @SuppressWarnings("unchecked") public void forEachEntrySequentially
3869 (Action<Map.Entry<K,V>> action) {
3870 if (action == null) throw new NullPointerException();
3871 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3872 V v;
3873 while ((v = it.advance()) != null)
3874 action.apply(entryFor((K)it.nextKey, v));
3875 }
3876
3877 /**
3878 * Performs the given action for each non-null transformation
3879 * of each entry.
3880 *
3881 * @param transformer a function returning the transformation
3882 * for an element, or null of there is no transformation (in
3883 * which case the action is not applied).
3884 * @param action the action
3885 */
3886 @SuppressWarnings("unchecked") public <U> void forEachEntrySequentially
3887 (Fun<Map.Entry<K,V>, ? extends U> transformer,
3888 Action<U> action) {
3889 if (transformer == null || action == null)
3890 throw new NullPointerException();
3891 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3892 V v; U u;
3893 while ((v = it.advance()) != null) {
3894 if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3895 action.apply(u);
3896 }
3897 }
3898
3899 /**
3900 * Returns a non-null result from applying the given search
3901 * function on each entry, or null if none.
3902 *
3903 * @param searchFunction a function returning a non-null
3904 * result on success, else null
3905 * @return a non-null result from applying the given search
3906 * function on each entry, or null if none
3907 */
3908 @SuppressWarnings("unchecked") public <U> U searchEntriesSequentially
3909 (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3910 if (searchFunction == null) throw new NullPointerException();
3911 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3912 V v; U u;
3913 while ((v = it.advance()) != null) {
3914 if ((u = searchFunction.apply(entryFor((K)it.nextKey, v))) != null)
3915 return u;
3916 }
3917 return null;
3918 }
3919
3920 /**
3921 * Returns the result of accumulating all entries using the
3922 * given reducer to combine values, or null if none.
3923 *
3924 * @param reducer a commutative associative combining function
3925 * @return the result of accumulating all entries
3926 */
3927 @SuppressWarnings("unchecked") public Map.Entry<K,V> reduceEntriesSequentially
3928 (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3929 if (reducer == null) throw new NullPointerException();
3930 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3931 Map.Entry<K,V> r = null; V v;
3932 while ((v = it.advance()) != null) {
3933 Map.Entry<K,V> u = entryFor((K)it.nextKey, v);
3934 r = (r == null) ? u : reducer.apply(r, u);
3935 }
3936 return r;
3937 }
3938
3939 /**
3940 * Returns the result of accumulating the given transformation
3941 * of all entries using the given reducer to combine values,
3942 * or null if none.
3943 *
3944 * @param transformer a function returning the transformation
3945 * for an element, or null of there is no transformation (in
3946 * which case it is not combined).
3947 * @param reducer a commutative associative combining function
3948 * @return the result of accumulating the given transformation
3949 * of all entries
3950 */
3951 @SuppressWarnings("unchecked") public <U> U reduceEntriesSequentially
3952 (Fun<Map.Entry<K,V>, ? extends U> transformer,
3953 BiFun<? super U, ? super U, ? extends U> reducer) {
3954 if (transformer == null || reducer == null)
3955 throw new NullPointerException();
3956 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3957 U r = null, u; V v;
3958 while ((v = it.advance()) != null) {
3959 if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3960 r = (r == null) ? u : reducer.apply(r, u);
3961 }
3962 return r;
3963 }
3964
3965 /**
3966 * Returns the result of accumulating the given transformation
3967 * of all entries using the given reducer to combine values,
3968 * and the given basis as an identity value.
3969 *
3970 * @param transformer a function returning the transformation
3971 * for an element
3972 * @param basis the identity (initial default value) for the reduction
3973 * @param reducer a commutative associative combining function
3974 * @return the result of accumulating the given transformation
3975 * of all entries
3976 */
3977 @SuppressWarnings("unchecked") public double reduceEntriesToDoubleSequentially
3978 (ObjectToDouble<Map.Entry<K,V>> transformer,
3979 double basis,
3980 DoubleByDoubleToDouble reducer) {
3981 if (transformer == null || reducer == null)
3982 throw new NullPointerException();
3983 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3984 double r = basis; V v;
3985 while ((v = it.advance()) != null)
3986 r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
3987 return r;
3988 }
3989
3990 /**
3991 * Returns the result of accumulating the given transformation
3992 * of all entries using the given reducer to combine values,
3993 * and the given basis as an identity value.
3994 *
3995 * @param transformer a function returning the transformation
3996 * for an element
3997 * @param basis the identity (initial default value) for the reduction
3998 * @param reducer a commutative associative combining function
3999 * @return the result of accumulating the given transformation
4000 * of all entries
4001 */
4002 @SuppressWarnings("unchecked") public long reduceEntriesToLongSequentially
4003 (ObjectToLong<Map.Entry<K,V>> transformer,
4004 long basis,
4005 LongByLongToLong reducer) {
4006 if (transformer == null || reducer == null)
4007 throw new NullPointerException();
4008 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4009 long r = basis; V v;
4010 while ((v = it.advance()) != null)
4011 r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
4012 return r;
4013 }
4014
4015 /**
4016 * Returns the result of accumulating the given transformation
4017 * of all entries using the given reducer to combine values,
4018 * and the given basis as an identity value.
4019 *
4020 * @param transformer a function returning the transformation
4021 * for an element
4022 * @param basis the identity (initial default value) for the reduction
4023 * @param reducer a commutative associative combining function
4024 * @return the result of accumulating the given transformation
4025 * of all entries
4026 */
4027 @SuppressWarnings("unchecked") public int reduceEntriesToIntSequentially
4028 (ObjectToInt<Map.Entry<K,V>> transformer,
4029 int basis,
4030 IntByIntToInt reducer) {
4031 if (transformer == null || reducer == null)
4032 throw new NullPointerException();
4033 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4034 int r = basis; V v;
4035 while ((v = it.advance()) != null)
4036 r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
4037 return r;
4038 }
4039
4040 // Parallel bulk operations
4041
4042 /**
4043 * Performs the given action for each (key, value).
4044 *
4045 * @param action the action
4046 */
4047 public void forEachInParallel(BiAction<K,V> action) {
4048 ForkJoinTasks.forEach
4049 (this, action).invoke();
4050 }
4051
4052 /**
4053 * Performs the given action for each non-null transformation
4054 * of each (key, value).
4055 *
4056 * @param transformer a function returning the transformation
4057 * for an element, or null of there is no transformation (in
4058 * which case the action is not applied).
4059 * @param action the action
4060 */
4061 public <U> void forEachInParallel
4062 (BiFun<? super K, ? super V, ? extends U> transformer,
4063 Action<U> action) {
4064 ForkJoinTasks.forEach
4065 (this, transformer, action).invoke();
4066 }
4067
4068 /**
4069 * Returns a non-null result from applying the given search
4070 * function on each (key, value), or null if none. Upon
4071 * success, further element processing is suppressed and the
4072 * results of any other parallel invocations of the search
4073 * function are ignored.
4074 *
4075 * @param searchFunction a function returning a non-null
4076 * result on success, else null
4077 * @return a non-null result from applying the given search
4078 * function on each (key, value), or null if none
4079 */
4080 public <U> U searchInParallel
4081 (BiFun<? super K, ? super V, ? extends U> searchFunction) {
4082 return ForkJoinTasks.search
4083 (this, searchFunction).invoke();
4084 }
4085
4086 /**
4087 * Returns the result of accumulating the given transformation
4088 * of all (key, value) pairs using the given reducer to
4089 * combine values, or null if none.
4090 *
4091 * @param transformer a function returning the transformation
4092 * for an element, or null of there is no transformation (in
4093 * which case it is not combined).
4094 * @param reducer a commutative associative combining function
4095 * @return the result of accumulating the given transformation
4096 * of all (key, value) pairs
4097 */
4098 public <U> U reduceInParallel
4099 (BiFun<? super K, ? super V, ? extends U> transformer,
4100 BiFun<? super U, ? super U, ? extends U> reducer) {
4101 return ForkJoinTasks.reduce
4102 (this, transformer, reducer).invoke();
4103 }
4104
4105 /**
4106 * Returns the result of accumulating the given transformation
4107 * of all (key, value) pairs using the given reducer to
4108 * combine values, and the given basis as an identity value.
4109 *
4110 * @param transformer a function returning the transformation
4111 * for an element
4112 * @param basis the identity (initial default value) for the reduction
4113 * @param reducer a commutative associative combining function
4114 * @return the result of accumulating the given transformation
4115 * of all (key, value) pairs
4116 */
4117 public double reduceToDoubleInParallel
4118 (ObjectByObjectToDouble<? super K, ? super V> transformer,
4119 double basis,
4120 DoubleByDoubleToDouble reducer) {
4121 return ForkJoinTasks.reduceToDouble
4122 (this, transformer, basis, reducer).invoke();
4123 }
4124
4125 /**
4126 * Returns the result of accumulating the given transformation
4127 * of all (key, value) pairs using the given reducer to
4128 * combine values, and the given basis as an identity value.
4129 *
4130 * @param transformer a function returning the transformation
4131 * for an element
4132 * @param basis the identity (initial default value) for the reduction
4133 * @param reducer a commutative associative combining function
4134 * @return the result of accumulating the given transformation
4135 * of all (key, value) pairs
4136 */
4137 public long reduceToLongInParallel
4138 (ObjectByObjectToLong<? super K, ? super V> transformer,
4139 long basis,
4140 LongByLongToLong reducer) {
4141 return ForkJoinTasks.reduceToLong
4142 (this, transformer, basis, reducer).invoke();
4143 }
4144
4145 /**
4146 * Returns the result of accumulating the given transformation
4147 * of all (key, value) pairs using the given reducer to
4148 * combine values, and the given basis as an identity value.
4149 *
4150 * @param transformer a function returning the transformation
4151 * for an element
4152 * @param basis the identity (initial default value) for the reduction
4153 * @param reducer a commutative associative combining function
4154 * @return the result of accumulating the given transformation
4155 * of all (key, value) pairs
4156 */
4157 public int reduceToIntInParallel
4158 (ObjectByObjectToInt<? super K, ? super V> transformer,
4159 int basis,
4160 IntByIntToInt reducer) {
4161 return ForkJoinTasks.reduceToInt
4162 (this, transformer, basis, reducer).invoke();
4163 }
4164
4165 /**
4166 * Performs the given action for each key.
4167 *
4168 * @param action the action
4169 */
4170 public void forEachKeyInParallel(Action<K> action) {
4171 ForkJoinTasks.forEachKey
4172 (this, action).invoke();
4173 }
4174
4175 /**
4176 * Performs the given action for each non-null transformation
4177 * of each key.
4178 *
4179 * @param transformer a function returning the transformation
4180 * for an element, or null of there is no transformation (in
4181 * which case the action is not applied).
4182 * @param action the action
4183 */
4184 public <U> void forEachKeyInParallel
4185 (Fun<? super K, ? extends U> transformer,
4186 Action<U> action) {
4187 ForkJoinTasks.forEachKey
4188 (this, transformer, action).invoke();
4189 }
4190
4191 /**
4192 * Returns a non-null result from applying the given search
4193 * function on each key, or null if none. Upon success,
4194 * further element processing is suppressed and the results of
4195 * any other parallel invocations of the search function are
4196 * ignored.
4197 *
4198 * @param searchFunction a function returning a non-null
4199 * result on success, else null
4200 * @return a non-null result from applying the given search
4201 * function on each key, or null if none
4202 */
4203 public <U> U searchKeysInParallel
4204 (Fun<? super K, ? extends U> searchFunction) {
4205 return ForkJoinTasks.searchKeys
4206 (this, searchFunction).invoke();
4207 }
4208
4209 /**
4210 * Returns the result of accumulating all keys using the given
4211 * reducer to combine values, or null if none.
4212 *
4213 * @param reducer a commutative associative combining function
4214 * @return the result of accumulating all keys using the given
4215 * reducer to combine values, or null if none
4216 */
4217 public K reduceKeysInParallel
4218 (BiFun<? super K, ? super K, ? extends K> reducer) {
4219 return ForkJoinTasks.reduceKeys
4220 (this, reducer).invoke();
4221 }
4222
4223 /**
4224 * Returns the result of accumulating the given transformation
4225 * of all keys using the given reducer to combine values, or
4226 * null if none.
4227 *
4228 * @param transformer a function returning the transformation
4229 * for an element, or null of there is no transformation (in
4230 * which case it is not combined).
4231 * @param reducer a commutative associative combining function
4232 * @return the result of accumulating the given transformation
4233 * of all keys
4234 */
4235 public <U> U reduceKeysInParallel
4236 (Fun<? super K, ? extends U> transformer,
4237 BiFun<? super U, ? super U, ? extends U> reducer) {
4238 return ForkJoinTasks.reduceKeys
4239 (this, transformer, reducer).invoke();
4240 }
4241
4242 /**
4243 * Returns the result of accumulating the given transformation
4244 * of all keys using the given reducer to combine values, and
4245 * the given basis as an identity value.
4246 *
4247 * @param transformer a function returning the transformation
4248 * for an element
4249 * @param basis the identity (initial default value) for the reduction
4250 * @param reducer a commutative associative combining function
4251 * @return the result of accumulating the given transformation
4252 * of all keys
4253 */
4254 public double reduceKeysToDoubleInParallel
4255 (ObjectToDouble<? super K> transformer,
4256 double basis,
4257 DoubleByDoubleToDouble reducer) {
4258 return ForkJoinTasks.reduceKeysToDouble
4259 (this, transformer, basis, reducer).invoke();
4260 }
4261
4262 /**
4263 * Returns the result of accumulating the given transformation
4264 * of all keys using the given reducer to combine values, and
4265 * the given basis as an identity value.
4266 *
4267 * @param transformer a function returning the transformation
4268 * for an element
4269 * @param basis the identity (initial default value) for the reduction
4270 * @param reducer a commutative associative combining function
4271 * @return the result of accumulating the given transformation
4272 * of all keys
4273 */
4274 public long reduceKeysToLongInParallel
4275 (ObjectToLong<? super K> transformer,
4276 long basis,
4277 LongByLongToLong reducer) {
4278 return ForkJoinTasks.reduceKeysToLong
4279 (this, transformer, basis, reducer).invoke();
4280 }
4281
4282 /**
4283 * Returns the result of accumulating the given transformation
4284 * of all keys using the given reducer to combine values, and
4285 * the given basis as an identity value.
4286 *
4287 * @param transformer a function returning the transformation
4288 * for an element
4289 * @param basis the identity (initial default value) for the reduction
4290 * @param reducer a commutative associative combining function
4291 * @return the result of accumulating the given transformation
4292 * of all keys
4293 */
4294 public int reduceKeysToIntInParallel
4295 (ObjectToInt<? super K> transformer,
4296 int basis,
4297 IntByIntToInt reducer) {
4298 return ForkJoinTasks.reduceKeysToInt
4299 (this, transformer, basis, reducer).invoke();
4300 }
4301
4302 /**
4303 * Performs the given action for each value.
4304 *
4305 * @param action the action
4306 */
4307 public void forEachValueInParallel(Action<V> action) {
4308 ForkJoinTasks.forEachValue
4309 (this, action).invoke();
4310 }
4311
4312 /**
4313 * Performs the given action for each non-null transformation
4314 * of each value.
4315 *
4316 * @param transformer a function returning the transformation
4317 * for an element, or null of there is no transformation (in
4318 * which case the action is not applied).
4319 */
4320 public <U> void forEachValueInParallel
4321 (Fun<? super V, ? extends U> transformer,
4322 Action<U> action) {
4323 ForkJoinTasks.forEachValue
4324 (this, transformer, action).invoke();
4325 }
4326
4327 /**
4328 * Returns a non-null result from applying the given search
4329 * function on each value, or null if none. Upon success,
4330 * further element processing is suppressed and the results of
4331 * any other parallel invocations of the search function are
4332 * ignored.
4333 *
4334 * @param searchFunction a function returning a non-null
4335 * result on success, else null
4336 * @return a non-null result from applying the given search
4337 * function on each value, or null if none
4338 */
4339 public <U> U searchValuesInParallel
4340 (Fun<? super V, ? extends U> searchFunction) {
4341 return ForkJoinTasks.searchValues
4342 (this, searchFunction).invoke();
4343 }
4344
4345 /**
4346 * Returns the result of accumulating all values using the
4347 * given reducer to combine values, or null if none.
4348 *
4349 * @param reducer a commutative associative combining function
4350 * @return the result of accumulating all values
4351 */
4352 public V reduceValuesInParallel
4353 (BiFun<? super V, ? super V, ? extends V> reducer) {
4354 return ForkJoinTasks.reduceValues
4355 (this, reducer).invoke();
4356 }
4357
4358 /**
4359 * Returns the result of accumulating the given transformation
4360 * of all values using the given reducer to combine values, or
4361 * null if none.
4362 *
4363 * @param transformer a function returning the transformation
4364 * for an element, or null of there is no transformation (in
4365 * which case it is not combined).
4366 * @param reducer a commutative associative combining function
4367 * @return the result of accumulating the given transformation
4368 * of all values
4369 */
4370 public <U> U reduceValuesInParallel
4371 (Fun<? super V, ? extends U> transformer,
4372 BiFun<? super U, ? super U, ? extends U> reducer) {
4373 return ForkJoinTasks.reduceValues
4374 (this, transformer, reducer).invoke();
4375 }
4376
4377 /**
4378 * Returns the result of accumulating the given transformation
4379 * of all values using the given reducer to combine values,
4380 * and the given basis as an identity value.
4381 *
4382 * @param transformer a function returning the transformation
4383 * for an element
4384 * @param basis the identity (initial default value) for the reduction
4385 * @param reducer a commutative associative combining function
4386 * @return the result of accumulating the given transformation
4387 * of all values
4388 */
4389 public double reduceValuesToDoubleInParallel
4390 (ObjectToDouble<? super V> transformer,
4391 double basis,
4392 DoubleByDoubleToDouble reducer) {
4393 return ForkJoinTasks.reduceValuesToDouble
4394 (this, transformer, basis, reducer).invoke();
4395 }
4396
4397 /**
4398 * Returns the result of accumulating the given transformation
4399 * of all values using the given reducer to combine values,
4400 * and the given basis as an identity value.
4401 *
4402 * @param transformer a function returning the transformation
4403 * for an element
4404 * @param basis the identity (initial default value) for the reduction
4405 * @param reducer a commutative associative combining function
4406 * @return the result of accumulating the given transformation
4407 * of all values
4408 */
4409 public long reduceValuesToLongInParallel
4410 (ObjectToLong<? super V> transformer,
4411 long basis,
4412 LongByLongToLong reducer) {
4413 return ForkJoinTasks.reduceValuesToLong
4414 (this, transformer, basis, reducer).invoke();
4415 }
4416
4417 /**
4418 * Returns the result of accumulating the given transformation
4419 * of all values using the given reducer to combine values,
4420 * and the given basis as an identity value.
4421 *
4422 * @param transformer a function returning the transformation
4423 * for an element
4424 * @param basis the identity (initial default value) for the reduction
4425 * @param reducer a commutative associative combining function
4426 * @return the result of accumulating the given transformation
4427 * of all values
4428 */
4429 public int reduceValuesToIntInParallel
4430 (ObjectToInt<? super V> transformer,
4431 int basis,
4432 IntByIntToInt reducer) {
4433 return ForkJoinTasks.reduceValuesToInt
4434 (this, transformer, basis, reducer).invoke();
4435 }
4436
4437 /**
4438 * Performs the given action for each entry.
4439 *
4440 * @param action the action
4441 */
4442 public void forEachEntryInParallel(Action<Map.Entry<K,V>> action) {
4443 ForkJoinTasks.forEachEntry
4444 (this, action).invoke();
4445 }
4446
4447 /**
4448 * Performs the given action for each non-null transformation
4449 * of each entry.
4450 *
4451 * @param transformer a function returning the transformation
4452 * for an element, or null of there is no transformation (in
4453 * which case the action is not applied).
4454 * @param action the action
4455 */
4456 public <U> void forEachEntryInParallel
4457 (Fun<Map.Entry<K,V>, ? extends U> transformer,
4458 Action<U> action) {
4459 ForkJoinTasks.forEachEntry
4460 (this, transformer, action).invoke();
4461 }
4462
4463 /**
4464 * Returns a non-null result from applying the given search
4465 * function on each entry, or null if none. Upon success,
4466 * further element processing is suppressed and the results of
4467 * any other parallel invocations of the search function are
4468 * ignored.
4469 *
4470 * @param searchFunction a function returning a non-null
4471 * result on success, else null
4472 * @return a non-null result from applying the given search
4473 * function on each entry, or null if none
4474 */
4475 public <U> U searchEntriesInParallel
4476 (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4477 return ForkJoinTasks.searchEntries
4478 (this, searchFunction).invoke();
4479 }
4480
4481 /**
4482 * Returns the result of accumulating all entries using the
4483 * given reducer to combine values, or null if none.
4484 *
4485 * @param reducer a commutative associative combining function
4486 * @return the result of accumulating all entries
4487 */
4488 public Map.Entry<K,V> reduceEntriesInParallel
4489 (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4490 return ForkJoinTasks.reduceEntries
4491 (this, reducer).invoke();
4492 }
4493
4494 /**
4495 * Returns the result of accumulating the given transformation
4496 * of all entries using the given reducer to combine values,
4497 * or null if none.
4498 *
4499 * @param transformer a function returning the transformation
4500 * for an element, or null of there is no transformation (in
4501 * which case it is not combined).
4502 * @param reducer a commutative associative combining function
4503 * @return the result of accumulating the given transformation
4504 * of all entries
4505 */
4506 public <U> U reduceEntriesInParallel
4507 (Fun<Map.Entry<K,V>, ? extends U> transformer,
4508 BiFun<? super U, ? super U, ? extends U> reducer) {
4509 return ForkJoinTasks.reduceEntries
4510 (this, transformer, reducer).invoke();
4511 }
4512
4513 /**
4514 * Returns the result of accumulating the given transformation
4515 * of all entries using the given reducer to combine values,
4516 * and the given basis as an identity value.
4517 *
4518 * @param transformer a function returning the transformation
4519 * for an element
4520 * @param basis the identity (initial default value) for the reduction
4521 * @param reducer a commutative associative combining function
4522 * @return the result of accumulating the given transformation
4523 * of all entries
4524 */
4525 public double reduceEntriesToDoubleInParallel
4526 (ObjectToDouble<Map.Entry<K,V>> transformer,
4527 double basis,
4528 DoubleByDoubleToDouble reducer) {
4529 return ForkJoinTasks.reduceEntriesToDouble
4530 (this, transformer, basis, reducer).invoke();
4531 }
4532
4533 /**
4534 * Returns the result of accumulating the given transformation
4535 * of all entries using the given reducer to combine values,
4536 * and the given basis as an identity value.
4537 *
4538 * @param transformer a function returning the transformation
4539 * for an element
4540 * @param basis the identity (initial default value) for the reduction
4541 * @param reducer a commutative associative combining function
4542 * @return the result of accumulating the given transformation
4543 * of all entries
4544 */
4545 public long reduceEntriesToLongInParallel
4546 (ObjectToLong<Map.Entry<K,V>> transformer,
4547 long basis,
4548 LongByLongToLong reducer) {
4549 return ForkJoinTasks.reduceEntriesToLong
4550 (this, transformer, basis, reducer).invoke();
4551 }
4552
4553 /**
4554 * Returns the result of accumulating the given transformation
4555 * of all entries using the given reducer to combine values,
4556 * and the given basis as an identity value.
4557 *
4558 * @param transformer a function returning the transformation
4559 * for an element
4560 * @param basis the identity (initial default value) for the reduction
4561 * @param reducer a commutative associative combining function
4562 * @return the result of accumulating the given transformation
4563 * of all entries
4564 */
4565 public int reduceEntriesToIntInParallel
4566 (ObjectToInt<Map.Entry<K,V>> transformer,
4567 int basis,
4568 IntByIntToInt reducer) {
4569 return ForkJoinTasks.reduceEntriesToInt
4570 (this, transformer, basis, reducer).invoke();
4571 }
4572
4573
4574 /* ----------------Views -------------- */
4575
4576 /**
4577 * Base class for views.
4578 */
4579 static abstract class CHMView<K, V> implements java.io.Serializable {
4580 private static final long serialVersionUID = 7249069246763182397L;
4581 final ConcurrentHashMap<K, V> map;
4582 CHMView(ConcurrentHashMap<K, V> map) { this.map = map; }
4583
4584 /**
4585 * Returns the map backing this view.
4586 *
4587 * @return the map backing this view
4588 */
4589 public ConcurrentHashMap<K,V> getMap() { return map; }
4590
4591 public final int size() { return map.size(); }
4592 public final boolean isEmpty() { return map.isEmpty(); }
4593 public final void clear() { map.clear(); }
4594
4595 // implementations below rely on concrete classes supplying these
4596 abstract public Iterator<?> iterator();
4597 abstract public boolean contains(Object o);
4598 abstract public boolean remove(Object o);
4599
4600 private static final String oomeMsg = "Required array size too large";
4601
4602 public final Object[] toArray() {
4603 long sz = map.mappingCount();
4604 if (sz > (long)(MAX_ARRAY_SIZE))
4605 throw new OutOfMemoryError(oomeMsg);
4606 int n = (int)sz;
4607 Object[] r = new Object[n];
4608 int i = 0;
4609 Iterator<?> it = iterator();
4610 while (it.hasNext()) {
4611 if (i == n) {
4612 if (n >= MAX_ARRAY_SIZE)
4613 throw new OutOfMemoryError(oomeMsg);
4614 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4615 n = MAX_ARRAY_SIZE;
4616 else
4617 n += (n >>> 1) + 1;
4618 r = Arrays.copyOf(r, n);
4619 }
4620 r[i++] = it.next();
4621 }
4622 return (i == n) ? r : Arrays.copyOf(r, i);
4623 }
4624
4625 @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4626 long sz = map.mappingCount();
4627 if (sz > (long)(MAX_ARRAY_SIZE))
4628 throw new OutOfMemoryError(oomeMsg);
4629 int m = (int)sz;
4630 T[] r = (a.length >= m) ? a :
4631 (T[])java.lang.reflect.Array
4632 .newInstance(a.getClass().getComponentType(), m);
4633 int n = r.length;
4634 int i = 0;
4635 Iterator<?> it = iterator();
4636 while (it.hasNext()) {
4637 if (i == n) {
4638 if (n >= MAX_ARRAY_SIZE)
4639 throw new OutOfMemoryError(oomeMsg);
4640 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4641 n = MAX_ARRAY_SIZE;
4642 else
4643 n += (n >>> 1) + 1;
4644 r = Arrays.copyOf(r, n);
4645 }
4646 r[i++] = (T)it.next();
4647 }
4648 if (a == r && i < n) {
4649 r[i] = null; // null-terminate
4650 return r;
4651 }
4652 return (i == n) ? r : Arrays.copyOf(r, i);
4653 }
4654
4655 public final int hashCode() {
4656 int h = 0;
4657 for (Iterator<?> it = iterator(); it.hasNext();)
4658 h += it.next().hashCode();
4659 return h;
4660 }
4661
4662 public final String toString() {
4663 StringBuilder sb = new StringBuilder();
4664 sb.append('[');
4665 Iterator<?> it = iterator();
4666 if (it.hasNext()) {
4667 for (;;) {
4668 Object e = it.next();
4669 sb.append(e == this ? "(this Collection)" : e);
4670 if (!it.hasNext())
4671 break;
4672 sb.append(',').append(' ');
4673 }
4674 }
4675 return sb.append(']').toString();
4676 }
4677
4678 public final boolean containsAll(Collection<?> c) {
4679 if (c != this) {
4680 for (Iterator<?> it = c.iterator(); it.hasNext();) {
4681 Object e = it.next();
4682 if (e == null || !contains(e))
4683 return false;
4684 }
4685 }
4686 return true;
4687 }
4688
4689 public final boolean removeAll(Collection<?> c) {
4690 boolean modified = false;
4691 for (Iterator<?> it = iterator(); it.hasNext();) {
4692 if (c.contains(it.next())) {
4693 it.remove();
4694 modified = true;
4695 }
4696 }
4697 return modified;
4698 }
4699
4700 public final boolean retainAll(Collection<?> c) {
4701 boolean modified = false;
4702 for (Iterator<?> it = iterator(); it.hasNext();) {
4703 if (!c.contains(it.next())) {
4704 it.remove();
4705 modified = true;
4706 }
4707 }
4708 return modified;
4709 }
4710
4711 }
4712
4713 /**
4714 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4715 * which additions may optionally be enabled by mapping to a
4716 * common value. This class cannot be directly instantiated. See
4717 * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4718 * {@link #newKeySet(int)}.
4719 */
4720 public static class KeySetView<K,V> extends CHMView<K,V>
4721 implements Set<K>, java.io.Serializable {
4722 private static final long serialVersionUID = 7249069246763182397L;
4723 private final V value;
4724 KeySetView(ConcurrentHashMap<K, V> map, V value) { // non-public
4725 super(map);
4726 this.value = value;
4727 }
4728
4729 /**
4730 * Returns the default mapped value for additions,
4731 * or {@code null} if additions are not supported.
4732 *
4733 * @return the default mapped value for additions, or {@code null}
4734 * if not supported.
4735 */
4736 public V getMappedValue() { return value; }
4737
4738 // implement Set API
4739
4740 public boolean contains(Object o) { return map.containsKey(o); }
4741 public boolean remove(Object o) { return map.remove(o) != null; }
4742
4743 /**
4744 * Returns a "weakly consistent" iterator that will never
4745 * throw {@link ConcurrentModificationException}, and
4746 * guarantees to traverse elements as they existed upon
4747 * construction of the iterator, and may (but is not
4748 * guaranteed to) reflect any modifications subsequent to
4749 * construction.
4750 *
4751 * @return an iterator over the keys of this map
4752 */
4753 public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4754 public boolean add(K e) {
4755 V v;
4756 if ((v = value) == null)
4757 throw new UnsupportedOperationException();
4758 if (e == null)
4759 throw new NullPointerException();
4760 return map.internalPut(e, v, true) == null;
4761 }
4762 public boolean addAll(Collection<? extends K> c) {
4763 boolean added = false;
4764 V v;
4765 if ((v = value) == null)
4766 throw new UnsupportedOperationException();
4767 for (K e : c) {
4768 if (e == null)
4769 throw new NullPointerException();
4770 if (map.internalPut(e, v, true) == null)
4771 added = true;
4772 }
4773 return added;
4774 }
4775 public boolean equals(Object o) {
4776 Set<?> c;
4777 return ((o instanceof Set) &&
4778 ((c = (Set<?>)o) == this ||
4779 (containsAll(c) && c.containsAll(this))));
4780 }
4781 }
4782
4783 /**
4784 * A view of a ConcurrentHashMap as a {@link Collection} of
4785 * values, in which additions are disabled. This class cannot be
4786 * directly instantiated. See {@link #values},
4787 *
4788 * <p>The view's {@code iterator} is a "weakly consistent" iterator
4789 * that will never throw {@link ConcurrentModificationException},
4790 * and guarantees to traverse elements as they existed upon
4791 * construction of the iterator, and may (but is not guaranteed to)
4792 * reflect any modifications subsequent to construction.
4793 */
4794 public static final class ValuesView<K,V> extends CHMView<K,V>
4795 implements Collection<V> {
4796 private static final long serialVersionUID = 7249069246763182397L;
4797 ValuesView(ConcurrentHashMap<K, V> map) { super(map); }
4798 public final boolean contains(Object o) { return map.containsValue(o); }
4799 public final boolean remove(Object o) {
4800 if (o != null) {
4801 Iterator<V> it = new ValueIterator<K,V>(map);
4802 while (it.hasNext()) {
4803 if (o.equals(it.next())) {
4804 it.remove();
4805 return true;
4806 }
4807 }
4808 }
4809 return false;
4810 }
4811
4812 /**
4813 * Returns a "weakly consistent" iterator that will never
4814 * throw {@link ConcurrentModificationException}, and
4815 * guarantees to traverse elements as they existed upon
4816 * construction of the iterator, and may (but is not
4817 * guaranteed to) reflect any modifications subsequent to
4818 * construction.
4819 *
4820 * @return an iterator over the values of this map
4821 */
4822 public final Iterator<V> iterator() {
4823 return new ValueIterator<K,V>(map);
4824 }
4825 public final boolean add(V e) {
4826 throw new UnsupportedOperationException();
4827 }
4828 public final boolean addAll(Collection<? extends V> c) {
4829 throw new UnsupportedOperationException();
4830 }
4831
4832 }
4833
4834 /**
4835 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4836 * entries. This class cannot be directly instantiated. See
4837 * {@link #entrySet}.
4838 */
4839 public static final class EntrySetView<K,V> extends CHMView<K,V>
4840 implements Set<Map.Entry<K,V>> {
4841 private static final long serialVersionUID = 7249069246763182397L;
4842 EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4843 public final boolean contains(Object o) {
4844 Object k, v, r; Map.Entry<?,?> e;
4845 return ((o instanceof Map.Entry) &&
4846 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4847 (r = map.get(k)) != null &&
4848 (v = e.getValue()) != null &&
4849 (v == r || v.equals(r)));
4850 }
4851 public final boolean remove(Object o) {
4852 Object k, v; Map.Entry<?,?> e;
4853 return ((o instanceof Map.Entry) &&
4854 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4855 (v = e.getValue()) != null &&
4856 map.remove(k, v));
4857 }
4858
4859 /**
4860 * Returns a "weakly consistent" iterator that will never
4861 * throw {@link ConcurrentModificationException}, and
4862 * guarantees to traverse elements as they existed upon
4863 * construction of the iterator, and may (but is not
4864 * guaranteed to) reflect any modifications subsequent to
4865 * construction.
4866 *
4867 * @return an iterator over the entries of this map
4868 */
4869 public final Iterator<Map.Entry<K,V>> iterator() {
4870 return new EntryIterator<K,V>(map);
4871 }
4872
4873 public final boolean add(Entry<K,V> e) {
4874 K key = e.getKey();
4875 V value = e.getValue();
4876 if (key == null || value == null)
4877 throw new NullPointerException();
4878 return map.internalPut(key, value, false) == null;
4879 }
4880 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4881 boolean added = false;
4882 for (Entry<K,V> e : c) {
4883 if (add(e))
4884 added = true;
4885 }
4886 return added;
4887 }
4888 public boolean equals(Object o) {
4889 Set<?> c;
4890 return ((o instanceof Set) &&
4891 ((c = (Set<?>)o) == this ||
4892 (containsAll(c) && c.containsAll(this))));
4893 }
4894 }
4895
4896 // ---------------------------------------------------------------------
4897
4898 /**
4899 * Predefined tasks for performing bulk parallel operations on
4900 * ConcurrentHashMaps. These tasks follow the forms and rules used
4901 * for bulk operations. Each method has the same name, but returns
4902 * a task rather than invoking it. These methods may be useful in
4903 * custom applications such as submitting a task without waiting
4904 * for completion, using a custom pool, or combining with other
4905 * tasks.
4906 */
4907 public static class ForkJoinTasks {
4908 private ForkJoinTasks() {}
4909
4910 /**
4911 * Returns a task that when invoked, performs the given
4912 * action for each (key, value)
4913 *
4914 * @param map the map
4915 * @param action the action
4916 * @return the task
4917 */
4918 public static <K,V> ForkJoinTask<Void> forEach
4919 (ConcurrentHashMap<K,V> map,
4920 BiAction<K,V> action) {
4921 if (action == null) throw new NullPointerException();
4922 return new ForEachMappingTask<K,V>(map, null, -1, action);
4923 }
4924
4925 /**
4926 * Returns a task that when invoked, performs the given
4927 * action for each non-null transformation of each (key, value)
4928 *
4929 * @param map the map
4930 * @param transformer a function returning the transformation
4931 * for an element, or null if there is no transformation (in
4932 * which case the action is not applied)
4933 * @param action the action
4934 * @return the task
4935 */
4936 public static <K,V,U> ForkJoinTask<Void> forEach
4937 (ConcurrentHashMap<K,V> map,
4938 BiFun<? super K, ? super V, ? extends U> transformer,
4939 Action<U> action) {
4940 if (transformer == null || action == null)
4941 throw new NullPointerException();
4942 return new ForEachTransformedMappingTask<K,V,U>
4943 (map, null, -1, transformer, action);
4944 }
4945
4946 /**
4947 * Returns a task that when invoked, returns a non-null result
4948 * from applying the given search function on each (key,
4949 * value), or null if none. Upon success, further element
4950 * processing is suppressed and the results of any other
4951 * parallel invocations of the search function are ignored.
4952 *
4953 * @param map the map
4954 * @param searchFunction a function returning a non-null
4955 * result on success, else null
4956 * @return the task
4957 */
4958 public static <K,V,U> ForkJoinTask<U> search
4959 (ConcurrentHashMap<K,V> map,
4960 BiFun<? super K, ? super V, ? extends U> searchFunction) {
4961 if (searchFunction == null) throw new NullPointerException();
4962 return new SearchMappingsTask<K,V,U>
4963 (map, null, -1, searchFunction,
4964 new AtomicReference<U>());
4965 }
4966
4967 /**
4968 * Returns a task that when invoked, returns the result of
4969 * accumulating the given transformation of all (key, value) pairs
4970 * using the given reducer to combine values, or null if none.
4971 *
4972 * @param map the map
4973 * @param transformer a function returning the transformation
4974 * for an element, or null if there is no transformation (in
4975 * which case it is not combined).
4976 * @param reducer a commutative associative combining function
4977 * @return the task
4978 */
4979 public static <K,V,U> ForkJoinTask<U> reduce
4980 (ConcurrentHashMap<K,V> map,
4981 BiFun<? super K, ? super V, ? extends U> transformer,
4982 BiFun<? super U, ? super U, ? extends U> reducer) {
4983 if (transformer == null || reducer == null)
4984 throw new NullPointerException();
4985 return new MapReduceMappingsTask<K,V,U>
4986 (map, null, -1, null, transformer, reducer);
4987 }
4988
4989 /**
4990 * Returns a task that when invoked, returns the result of
4991 * accumulating the given transformation of all (key, value) pairs
4992 * using the given reducer to combine values, and the given
4993 * basis as an identity value.
4994 *
4995 * @param map the map
4996 * @param transformer a function returning the transformation
4997 * for an element
4998 * @param basis the identity (initial default value) for the reduction
4999 * @param reducer a commutative associative combining function
5000 * @return the task
5001 */
5002 public static <K,V> ForkJoinTask<Double> reduceToDouble
5003 (ConcurrentHashMap<K,V> map,
5004 ObjectByObjectToDouble<? super K, ? super V> transformer,
5005 double basis,
5006 DoubleByDoubleToDouble reducer) {
5007 if (transformer == null || reducer == null)
5008 throw new NullPointerException();
5009 return new MapReduceMappingsToDoubleTask<K,V>
5010 (map, null, -1, null, transformer, basis, reducer);
5011 }
5012
5013 /**
5014 * Returns a task that when invoked, returns the result of
5015 * accumulating the given transformation of all (key, value) pairs
5016 * using the given reducer to combine values, and the given
5017 * basis as an identity value.
5018 *
5019 * @param map the map
5020 * @param transformer a function returning the transformation
5021 * for an element
5022 * @param basis the identity (initial default value) for the reduction
5023 * @param reducer a commutative associative combining function
5024 * @return the task
5025 */
5026 public static <K,V> ForkJoinTask<Long> reduceToLong
5027 (ConcurrentHashMap<K,V> map,
5028 ObjectByObjectToLong<? super K, ? super V> transformer,
5029 long basis,
5030 LongByLongToLong reducer) {
5031 if (transformer == null || reducer == null)
5032 throw new NullPointerException();
5033 return new MapReduceMappingsToLongTask<K,V>
5034 (map, null, -1, null, transformer, basis, reducer);
5035 }
5036
5037 /**
5038 * Returns a task that when invoked, returns the result of
5039 * accumulating the given transformation of all (key, value) pairs
5040 * using the given reducer to combine values, and the given
5041 * basis as an identity value.
5042 *
5043 * @param transformer a function returning the transformation
5044 * for an element
5045 * @param basis the identity (initial default value) for the reduction
5046 * @param reducer a commutative associative combining function
5047 * @return the task
5048 */
5049 public static <K,V> ForkJoinTask<Integer> reduceToInt
5050 (ConcurrentHashMap<K,V> map,
5051 ObjectByObjectToInt<? super K, ? super V> transformer,
5052 int basis,
5053 IntByIntToInt reducer) {
5054 if (transformer == null || reducer == null)
5055 throw new NullPointerException();
5056 return new MapReduceMappingsToIntTask<K,V>
5057 (map, null, -1, null, transformer, basis, reducer);
5058 }
5059
5060 /**
5061 * Returns a task that when invoked, performs the given action
5062 * for each key.
5063 *
5064 * @param map the map
5065 * @param action the action
5066 * @return the task
5067 */
5068 public static <K,V> ForkJoinTask<Void> forEachKey
5069 (ConcurrentHashMap<K,V> map,
5070 Action<K> action) {
5071 if (action == null) throw new NullPointerException();
5072 return new ForEachKeyTask<K,V>(map, null, -1, action);
5073 }
5074
5075 /**
5076 * Returns a task that when invoked, performs the given action
5077 * for each non-null transformation of each key.
5078 *
5079 * @param map the map
5080 * @param transformer a function returning the transformation
5081 * for an element, or null if there is no transformation (in
5082 * which case the action is not applied)
5083 * @param action the action
5084 * @return the task
5085 */
5086 public static <K,V,U> ForkJoinTask<Void> forEachKey
5087 (ConcurrentHashMap<K,V> map,
5088 Fun<? super K, ? extends U> transformer,
5089 Action<U> action) {
5090 if (transformer == null || action == null)
5091 throw new NullPointerException();
5092 return new ForEachTransformedKeyTask<K,V,U>
5093 (map, null, -1, transformer, action);
5094 }
5095
5096 /**
5097 * Returns a task that when invoked, returns a non-null result
5098 * from applying the given search function on each key, or
5099 * null if none. Upon success, further element processing is
5100 * suppressed and the results of any other parallel
5101 * invocations of the search function are ignored.
5102 *
5103 * @param map the map
5104 * @param searchFunction a function returning a non-null
5105 * result on success, else null
5106 * @return the task
5107 */
5108 public static <K,V,U> ForkJoinTask<U> searchKeys
5109 (ConcurrentHashMap<K,V> map,
5110 Fun<? super K, ? extends U> searchFunction) {
5111 if (searchFunction == null) throw new NullPointerException();
5112 return new SearchKeysTask<K,V,U>
5113 (map, null, -1, searchFunction,
5114 new AtomicReference<U>());
5115 }
5116
5117 /**
5118 * Returns a task that when invoked, returns the result of
5119 * accumulating all keys using the given reducer to combine
5120 * values, or null if none.
5121 *
5122 * @param map the map
5123 * @param reducer a commutative associative combining function
5124 * @return the task
5125 */
5126 public static <K,V> ForkJoinTask<K> reduceKeys
5127 (ConcurrentHashMap<K,V> map,
5128 BiFun<? super K, ? super K, ? extends K> reducer) {
5129 if (reducer == null) throw new NullPointerException();
5130 return new ReduceKeysTask<K,V>
5131 (map, null, -1, null, reducer);
5132 }
5133
5134 /**
5135 * Returns a task that when invoked, returns the result of
5136 * accumulating the given transformation of all keys using the given
5137 * reducer to combine values, or null if none.
5138 *
5139 * @param map the map
5140 * @param transformer a function returning the transformation
5141 * for an element, or null if there is no transformation (in
5142 * which case it is not combined).
5143 * @param reducer a commutative associative combining function
5144 * @return the task
5145 */
5146 public static <K,V,U> ForkJoinTask<U> reduceKeys
5147 (ConcurrentHashMap<K,V> map,
5148 Fun<? super K, ? extends U> transformer,
5149 BiFun<? super U, ? super U, ? extends U> reducer) {
5150 if (transformer == null || reducer == null)
5151 throw new NullPointerException();
5152 return new MapReduceKeysTask<K,V,U>
5153 (map, null, -1, null, transformer, reducer);
5154 }
5155
5156 /**
5157 * Returns a task that when invoked, returns the result of
5158 * accumulating the given transformation of all keys using the given
5159 * reducer to combine values, and the given basis as an
5160 * identity value.
5161 *
5162 * @param map the map
5163 * @param transformer a function returning the transformation
5164 * for an element
5165 * @param basis the identity (initial default value) for the reduction
5166 * @param reducer a commutative associative combining function
5167 * @return the task
5168 */
5169 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5170 (ConcurrentHashMap<K,V> map,
5171 ObjectToDouble<? super K> transformer,
5172 double basis,
5173 DoubleByDoubleToDouble reducer) {
5174 if (transformer == null || reducer == null)
5175 throw new NullPointerException();
5176 return new MapReduceKeysToDoubleTask<K,V>
5177 (map, null, -1, null, transformer, basis, reducer);
5178 }
5179
5180 /**
5181 * Returns a task that when invoked, returns the result of
5182 * accumulating the given transformation of all keys using the given
5183 * reducer to combine values, and the given basis as an
5184 * identity value.
5185 *
5186 * @param map the map
5187 * @param transformer a function returning the transformation
5188 * for an element
5189 * @param basis the identity (initial default value) for the reduction
5190 * @param reducer a commutative associative combining function
5191 * @return the task
5192 */
5193 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5194 (ConcurrentHashMap<K,V> map,
5195 ObjectToLong<? super K> transformer,
5196 long basis,
5197 LongByLongToLong reducer) {
5198 if (transformer == null || reducer == null)
5199 throw new NullPointerException();
5200 return new MapReduceKeysToLongTask<K,V>
5201 (map, null, -1, null, transformer, basis, reducer);
5202 }
5203
5204 /**
5205 * Returns a task that when invoked, returns the result of
5206 * accumulating the given transformation of all keys using the given
5207 * reducer to combine values, and the given basis as an
5208 * identity value.
5209 *
5210 * @param map the map
5211 * @param transformer a function returning the transformation
5212 * for an element
5213 * @param basis the identity (initial default value) for the reduction
5214 * @param reducer a commutative associative combining function
5215 * @return the task
5216 */
5217 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5218 (ConcurrentHashMap<K,V> map,
5219 ObjectToInt<? super K> transformer,
5220 int basis,
5221 IntByIntToInt reducer) {
5222 if (transformer == null || reducer == null)
5223 throw new NullPointerException();
5224 return new MapReduceKeysToIntTask<K,V>
5225 (map, null, -1, null, transformer, basis, reducer);
5226 }
5227
5228 /**
5229 * Returns a task that when invoked, performs the given action
5230 * for each value.
5231 *
5232 * @param map the map
5233 * @param action the action
5234 */
5235 public static <K,V> ForkJoinTask<Void> forEachValue
5236 (ConcurrentHashMap<K,V> map,
5237 Action<V> action) {
5238 if (action == null) throw new NullPointerException();
5239 return new ForEachValueTask<K,V>(map, null, -1, action);
5240 }
5241
5242 /**
5243 * Returns a task that when invoked, performs the given action
5244 * for each non-null transformation of each value.
5245 *
5246 * @param map the map
5247 * @param transformer a function returning the transformation
5248 * for an element, or null if there is no transformation (in
5249 * which case the action is not applied)
5250 * @param action the action
5251 */
5252 public static <K,V,U> ForkJoinTask<Void> forEachValue
5253 (ConcurrentHashMap<K,V> map,
5254 Fun<? super V, ? extends U> transformer,
5255 Action<U> action) {
5256 if (transformer == null || action == null)
5257 throw new NullPointerException();
5258 return new ForEachTransformedValueTask<K,V,U>
5259 (map, null, -1, transformer, action);
5260 }
5261
5262 /**
5263 * Returns a task that when invoked, returns a non-null result
5264 * from applying the given search function on each value, or
5265 * null if none. Upon success, further element processing is
5266 * suppressed and the results of any other parallel
5267 * invocations of the search function are ignored.
5268 *
5269 * @param map the map
5270 * @param searchFunction a function returning a non-null
5271 * result on success, else null
5272 * @return the task
5273 */
5274 public static <K,V,U> ForkJoinTask<U> searchValues
5275 (ConcurrentHashMap<K,V> map,
5276 Fun<? super V, ? extends U> searchFunction) {
5277 if (searchFunction == null) throw new NullPointerException();
5278 return new SearchValuesTask<K,V,U>
5279 (map, null, -1, searchFunction,
5280 new AtomicReference<U>());
5281 }
5282
5283 /**
5284 * Returns a task that when invoked, returns the result of
5285 * accumulating all values using the given reducer to combine
5286 * values, or null if none.
5287 *
5288 * @param map the map
5289 * @param reducer a commutative associative combining function
5290 * @return the task
5291 */
5292 public static <K,V> ForkJoinTask<V> reduceValues
5293 (ConcurrentHashMap<K,V> map,
5294 BiFun<? super V, ? super V, ? extends V> reducer) {
5295 if (reducer == null) throw new NullPointerException();
5296 return new ReduceValuesTask<K,V>
5297 (map, null, -1, null, reducer);
5298 }
5299
5300 /**
5301 * Returns a task that when invoked, returns the result of
5302 * accumulating the given transformation of all values using the
5303 * given reducer to combine values, or null if none.
5304 *
5305 * @param map the map
5306 * @param transformer a function returning the transformation
5307 * for an element, or null if there is no transformation (in
5308 * which case it is not combined).
5309 * @param reducer a commutative associative combining function
5310 * @return the task
5311 */
5312 public static <K,V,U> ForkJoinTask<U> reduceValues
5313 (ConcurrentHashMap<K,V> map,
5314 Fun<? super V, ? extends U> transformer,
5315 BiFun<? super U, ? super U, ? extends U> reducer) {
5316 if (transformer == null || reducer == null)
5317 throw new NullPointerException();
5318 return new MapReduceValuesTask<K,V,U>
5319 (map, null, -1, null, transformer, reducer);
5320 }
5321
5322 /**
5323 * Returns a task that when invoked, returns the result of
5324 * accumulating the given transformation of all values using the
5325 * given reducer to combine values, and the given basis as an
5326 * identity value.
5327 *
5328 * @param map the map
5329 * @param transformer a function returning the transformation
5330 * for an element
5331 * @param basis the identity (initial default value) for the reduction
5332 * @param reducer a commutative associative combining function
5333 * @return the task
5334 */
5335 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5336 (ConcurrentHashMap<K,V> map,
5337 ObjectToDouble<? super V> transformer,
5338 double basis,
5339 DoubleByDoubleToDouble reducer) {
5340 if (transformer == null || reducer == null)
5341 throw new NullPointerException();
5342 return new MapReduceValuesToDoubleTask<K,V>
5343 (map, null, -1, null, transformer, basis, reducer);
5344 }
5345
5346 /**
5347 * Returns a task that when invoked, returns the result of
5348 * accumulating the given transformation of all values using the
5349 * given reducer to combine values, and the given basis as an
5350 * identity value.
5351 *
5352 * @param map the map
5353 * @param transformer a function returning the transformation
5354 * for an element
5355 * @param basis the identity (initial default value) for the reduction
5356 * @param reducer a commutative associative combining function
5357 * @return the task
5358 */
5359 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5360 (ConcurrentHashMap<K,V> map,
5361 ObjectToLong<? super V> transformer,
5362 long basis,
5363 LongByLongToLong reducer) {
5364 if (transformer == null || reducer == null)
5365 throw new NullPointerException();
5366 return new MapReduceValuesToLongTask<K,V>
5367 (map, null, -1, null, transformer, basis, reducer);
5368 }
5369
5370 /**
5371 * Returns a task that when invoked, returns the result of
5372 * accumulating the given transformation of all values using the
5373 * given reducer to combine values, and the given basis as an
5374 * identity value.
5375 *
5376 * @param map the map
5377 * @param transformer a function returning the transformation
5378 * for an element
5379 * @param basis the identity (initial default value) for the reduction
5380 * @param reducer a commutative associative combining function
5381 * @return the task
5382 */
5383 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5384 (ConcurrentHashMap<K,V> map,
5385 ObjectToInt<? super V> transformer,
5386 int basis,
5387 IntByIntToInt reducer) {
5388 if (transformer == null || reducer == null)
5389 throw new NullPointerException();
5390 return new MapReduceValuesToIntTask<K,V>
5391 (map, null, -1, null, transformer, basis, reducer);
5392 }
5393
5394 /**
5395 * Returns a task that when invoked, perform the given action
5396 * for each entry.
5397 *
5398 * @param map the map
5399 * @param action the action
5400 */
5401 public static <K,V> ForkJoinTask<Void> forEachEntry
5402 (ConcurrentHashMap<K,V> map,
5403 Action<Map.Entry<K,V>> action) {
5404 if (action == null) throw new NullPointerException();
5405 return new ForEachEntryTask<K,V>(map, null, -1, action);
5406 }
5407
5408 /**
5409 * Returns a task that when invoked, perform the given action
5410 * for each non-null transformation of each entry.
5411 *
5412 * @param map the map
5413 * @param transformer a function returning the transformation
5414 * for an element, or null if there is no transformation (in
5415 * which case the action is not applied)
5416 * @param action the action
5417 */
5418 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5419 (ConcurrentHashMap<K,V> map,
5420 Fun<Map.Entry<K,V>, ? extends U> transformer,
5421 Action<U> action) {
5422 if (transformer == null || action == null)
5423 throw new NullPointerException();
5424 return new ForEachTransformedEntryTask<K,V,U>
5425 (map, null, -1, transformer, action);
5426 }
5427
5428 /**
5429 * Returns a task that when invoked, returns a non-null result
5430 * from applying the given search function on each entry, or
5431 * null if none. Upon success, further element processing is
5432 * suppressed and the results of any other parallel
5433 * invocations of the search function are ignored.
5434 *
5435 * @param map the map
5436 * @param searchFunction a function returning a non-null
5437 * result on success, else null
5438 * @return the task
5439 */
5440 public static <K,V,U> ForkJoinTask<U> searchEntries
5441 (ConcurrentHashMap<K,V> map,
5442 Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5443 if (searchFunction == null) throw new NullPointerException();
5444 return new SearchEntriesTask<K,V,U>
5445 (map, null, -1, searchFunction,
5446 new AtomicReference<U>());
5447 }
5448
5449 /**
5450 * Returns a task that when invoked, returns the result of
5451 * accumulating all entries using the given reducer to combine
5452 * values, or null if none.
5453 *
5454 * @param map the map
5455 * @param reducer a commutative associative combining function
5456 * @return the task
5457 */
5458 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5459 (ConcurrentHashMap<K,V> map,
5460 BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5461 if (reducer == null) throw new NullPointerException();
5462 return new ReduceEntriesTask<K,V>
5463 (map, null, -1, null, reducer);
5464 }
5465
5466 /**
5467 * Returns a task that when invoked, returns the result of
5468 * accumulating the given transformation of all entries using the
5469 * given reducer to combine values, or null if none.
5470 *
5471 * @param map the map
5472 * @param transformer a function returning the transformation
5473 * for an element, or null if there is no transformation (in
5474 * which case it is not combined).
5475 * @param reducer a commutative associative combining function
5476 * @return the task
5477 */
5478 public static <K,V,U> ForkJoinTask<U> reduceEntries
5479 (ConcurrentHashMap<K,V> map,
5480 Fun<Map.Entry<K,V>, ? extends U> transformer,
5481 BiFun<? super U, ? super U, ? extends U> reducer) {
5482 if (transformer == null || reducer == null)
5483 throw new NullPointerException();
5484 return new MapReduceEntriesTask<K,V,U>
5485 (map, null, -1, null, transformer, reducer);
5486 }
5487
5488 /**
5489 * Returns a task that when invoked, returns the result of
5490 * accumulating the given transformation of all entries using the
5491 * given reducer to combine values, and the given basis as an
5492 * identity value.
5493 *
5494 * @param map the map
5495 * @param transformer a function returning the transformation
5496 * for an element
5497 * @param basis the identity (initial default value) for the reduction
5498 * @param reducer a commutative associative combining function
5499 * @return the task
5500 */
5501 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5502 (ConcurrentHashMap<K,V> map,
5503 ObjectToDouble<Map.Entry<K,V>> transformer,
5504 double basis,
5505 DoubleByDoubleToDouble reducer) {
5506 if (transformer == null || reducer == null)
5507 throw new NullPointerException();
5508 return new MapReduceEntriesToDoubleTask<K,V>
5509 (map, null, -1, null, transformer, basis, reducer);
5510 }
5511
5512 /**
5513 * Returns a task that when invoked, returns the result of
5514 * accumulating the given transformation of all entries using the
5515 * given reducer to combine values, and the given basis as an
5516 * identity value.
5517 *
5518 * @param map the map
5519 * @param transformer a function returning the transformation
5520 * for an element
5521 * @param basis the identity (initial default value) for the reduction
5522 * @param reducer a commutative associative combining function
5523 * @return the task
5524 */
5525 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5526 (ConcurrentHashMap<K,V> map,
5527 ObjectToLong<Map.Entry<K,V>> transformer,
5528 long basis,
5529 LongByLongToLong reducer) {
5530 if (transformer == null || reducer == null)
5531 throw new NullPointerException();
5532 return new MapReduceEntriesToLongTask<K,V>
5533 (map, null, -1, null, transformer, basis, reducer);
5534 }
5535
5536 /**
5537 * Returns a task that when invoked, returns the result of
5538 * accumulating the given transformation of all entries using the
5539 * given reducer to combine values, and the given basis as an
5540 * identity value.
5541 *
5542 * @param map the map
5543 * @param transformer a function returning the transformation
5544 * for an element
5545 * @param basis the identity (initial default value) for the reduction
5546 * @param reducer a commutative associative combining function
5547 * @return the task
5548 */
5549 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5550 (ConcurrentHashMap<K,V> map,
5551 ObjectToInt<Map.Entry<K,V>> transformer,
5552 int basis,
5553 IntByIntToInt reducer) {
5554 if (transformer == null || reducer == null)
5555 throw new NullPointerException();
5556 return new MapReduceEntriesToIntTask<K,V>
5557 (map, null, -1, null, transformer, basis, reducer);
5558 }
5559 }
5560
5561 // -------------------------------------------------------
5562
5563 /*
5564 * Task classes. Coded in a regular but ugly format/style to
5565 * simplify checks that each variant differs in the right way from
5566 * others. The null screenings exist because compilers cannot tell
5567 * that we've already null-checked task arguments, so we force
5568 * simplest hoisted bypass to help avoid convoluted traps.
5569 */
5570
5571 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5572 extends Traverser<K,V,Void> {
5573 final Action<K> action;
5574 ForEachKeyTask
5575 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5576 Action<K> action) {
5577 super(m, p, b);
5578 this.action = action;
5579 }
5580 @SuppressWarnings("unchecked") public final void compute() {
5581 final Action<K> action;
5582 if ((action = this.action) != null) {
5583 for (int b; (b = preSplit()) > 0;)
5584 new ForEachKeyTask<K,V>(map, this, b, action).fork();
5585 while (advance() != null)
5586 action.apply((K)nextKey);
5587 propagateCompletion();
5588 }
5589 }
5590 }
5591
5592 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5593 extends Traverser<K,V,Void> {
5594 final Action<V> action;
5595 ForEachValueTask
5596 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5597 Action<V> action) {
5598 super(m, p, b);
5599 this.action = action;
5600 }
5601 @SuppressWarnings("unchecked") public final void compute() {
5602 final Action<V> action;
5603 if ((action = this.action) != null) {
5604 for (int b; (b = preSplit()) > 0;)
5605 new ForEachValueTask<K,V>(map, this, b, action).fork();
5606 V v;
5607 while ((v = advance()) != null)
5608 action.apply(v);
5609 propagateCompletion();
5610 }
5611 }
5612 }
5613
5614 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5615 extends Traverser<K,V,Void> {
5616 final Action<Entry<K,V>> action;
5617 ForEachEntryTask
5618 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5619 Action<Entry<K,V>> action) {
5620 super(m, p, b);
5621 this.action = action;
5622 }
5623 @SuppressWarnings("unchecked") public final void compute() {
5624 final Action<Entry<K,V>> action;
5625 if ((action = this.action) != null) {
5626 for (int b; (b = preSplit()) > 0;)
5627 new ForEachEntryTask<K,V>(map, this, b, action).fork();
5628 V v;
5629 while ((v = advance()) != null)
5630 action.apply(entryFor((K)nextKey, v));
5631 propagateCompletion();
5632 }
5633 }
5634 }
5635
5636 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5637 extends Traverser<K,V,Void> {
5638 final BiAction<K,V> action;
5639 ForEachMappingTask
5640 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5641 BiAction<K,V> action) {
5642 super(m, p, b);
5643 this.action = action;
5644 }
5645 @SuppressWarnings("unchecked") public final void compute() {
5646 final BiAction<K,V> action;
5647 if ((action = this.action) != null) {
5648 for (int b; (b = preSplit()) > 0;)
5649 new ForEachMappingTask<K,V>(map, this, b, action).fork();
5650 V v;
5651 while ((v = advance()) != null)
5652 action.apply((K)nextKey, v);
5653 propagateCompletion();
5654 }
5655 }
5656 }
5657
5658 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5659 extends Traverser<K,V,Void> {
5660 final Fun<? super K, ? extends U> transformer;
5661 final Action<U> action;
5662 ForEachTransformedKeyTask
5663 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5664 Fun<? super K, ? extends U> transformer, Action<U> action) {
5665 super(m, p, b);
5666 this.transformer = transformer; this.action = action;
5667 }
5668 @SuppressWarnings("unchecked") public final void compute() {
5669 final Fun<? super K, ? extends U> transformer;
5670 final Action<U> action;
5671 if ((transformer = this.transformer) != null &&
5672 (action = this.action) != null) {
5673 for (int b; (b = preSplit()) > 0;)
5674 new ForEachTransformedKeyTask<K,V,U>
5675 (map, this, b, transformer, action).fork();
5676 U u;
5677 while (advance() != null) {
5678 if ((u = transformer.apply((K)nextKey)) != null)
5679 action.apply(u);
5680 }
5681 propagateCompletion();
5682 }
5683 }
5684 }
5685
5686 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5687 extends Traverser<K,V,Void> {
5688 final Fun<? super V, ? extends U> transformer;
5689 final Action<U> action;
5690 ForEachTransformedValueTask
5691 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5692 Fun<? super V, ? extends U> transformer, Action<U> action) {
5693 super(m, p, b);
5694 this.transformer = transformer; this.action = action;
5695 }
5696 @SuppressWarnings("unchecked") public final void compute() {
5697 final Fun<? super V, ? extends U> transformer;
5698 final Action<U> action;
5699 if ((transformer = this.transformer) != null &&
5700 (action = this.action) != null) {
5701 for (int b; (b = preSplit()) > 0;)
5702 new ForEachTransformedValueTask<K,V,U>
5703 (map, this, b, transformer, action).fork();
5704 V v; U u;
5705 while ((v = advance()) != null) {
5706 if ((u = transformer.apply(v)) != null)
5707 action.apply(u);
5708 }
5709 propagateCompletion();
5710 }
5711 }
5712 }
5713
5714 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5715 extends Traverser<K,V,Void> {
5716 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5717 final Action<U> action;
5718 ForEachTransformedEntryTask
5719 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5720 Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
5721 super(m, p, b);
5722 this.transformer = transformer; this.action = action;
5723 }
5724 @SuppressWarnings("unchecked") public final void compute() {
5725 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5726 final Action<U> action;
5727 if ((transformer = this.transformer) != null &&
5728 (action = this.action) != null) {
5729 for (int b; (b = preSplit()) > 0;)
5730 new ForEachTransformedEntryTask<K,V,U>
5731 (map, this, b, transformer, action).fork();
5732 V v; U u;
5733 while ((v = advance()) != null) {
5734 if ((u = transformer.apply(entryFor((K)nextKey,
5735 v))) != null)
5736 action.apply(u);
5737 }
5738 propagateCompletion();
5739 }
5740 }
5741 }
5742
5743 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5744 extends Traverser<K,V,Void> {
5745 final BiFun<? super K, ? super V, ? extends U> transformer;
5746 final Action<U> action;
5747 ForEachTransformedMappingTask
5748 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5749 BiFun<? super K, ? super V, ? extends U> transformer,
5750 Action<U> action) {
5751 super(m, p, b);
5752 this.transformer = transformer; this.action = action;
5753 }
5754 @SuppressWarnings("unchecked") public final void compute() {
5755 final BiFun<? super K, ? super V, ? extends U> transformer;
5756 final Action<U> action;
5757 if ((transformer = this.transformer) != null &&
5758 (action = this.action) != null) {
5759 for (int b; (b = preSplit()) > 0;)
5760 new ForEachTransformedMappingTask<K,V,U>
5761 (map, this, b, transformer, action).fork();
5762 V v; U u;
5763 while ((v = advance()) != null) {
5764 if ((u = transformer.apply((K)nextKey, v)) != null)
5765 action.apply(u);
5766 }
5767 propagateCompletion();
5768 }
5769 }
5770 }
5771
5772 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5773 extends Traverser<K,V,U> {
5774 final Fun<? super K, ? extends U> searchFunction;
5775 final AtomicReference<U> result;
5776 SearchKeysTask
5777 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5778 Fun<? super K, ? extends U> searchFunction,
5779 AtomicReference<U> result) {
5780 super(m, p, b);
5781 this.searchFunction = searchFunction; this.result = result;
5782 }
5783 public final U getRawResult() { return result.get(); }
5784 @SuppressWarnings("unchecked") public final void compute() {
5785 final Fun<? super K, ? extends U> searchFunction;
5786 final AtomicReference<U> result;
5787 if ((searchFunction = this.searchFunction) != null &&
5788 (result = this.result) != null) {
5789 for (int b;;) {
5790 if (result.get() != null)
5791 return;
5792 if ((b = preSplit()) <= 0)
5793 break;
5794 new SearchKeysTask<K,V,U>
5795 (map, this, b, searchFunction, result).fork();
5796 }
5797 while (result.get() == null) {
5798 U u;
5799 if (advance() == null) {
5800 propagateCompletion();
5801 break;
5802 }
5803 if ((u = searchFunction.apply((K)nextKey)) != null) {
5804 if (result.compareAndSet(null, u))
5805 quietlyCompleteRoot();
5806 break;
5807 }
5808 }
5809 }
5810 }
5811 }
5812
5813 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5814 extends Traverser<K,V,U> {
5815 final Fun<? super V, ? extends U> searchFunction;
5816 final AtomicReference<U> result;
5817 SearchValuesTask
5818 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5819 Fun<? super V, ? extends U> searchFunction,
5820 AtomicReference<U> result) {
5821 super(m, p, b);
5822 this.searchFunction = searchFunction; this.result = result;
5823 }
5824 public final U getRawResult() { return result.get(); }
5825 @SuppressWarnings("unchecked") public final void compute() {
5826 final Fun<? super V, ? extends U> searchFunction;
5827 final AtomicReference<U> result;
5828 if ((searchFunction = this.searchFunction) != null &&
5829 (result = this.result) != null) {
5830 for (int b;;) {
5831 if (result.get() != null)
5832 return;
5833 if ((b = preSplit()) <= 0)
5834 break;
5835 new SearchValuesTask<K,V,U>
5836 (map, this, b, searchFunction, result).fork();
5837 }
5838 while (result.get() == null) {
5839 V v; U u;
5840 if ((v = advance()) == null) {
5841 propagateCompletion();
5842 break;
5843 }
5844 if ((u = searchFunction.apply(v)) != null) {
5845 if (result.compareAndSet(null, u))
5846 quietlyCompleteRoot();
5847 break;
5848 }
5849 }
5850 }
5851 }
5852 }
5853
5854 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5855 extends Traverser<K,V,U> {
5856 final Fun<Entry<K,V>, ? extends U> searchFunction;
5857 final AtomicReference<U> result;
5858 SearchEntriesTask
5859 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5860 Fun<Entry<K,V>, ? extends U> searchFunction,
5861 AtomicReference<U> result) {
5862 super(m, p, b);
5863 this.searchFunction = searchFunction; this.result = result;
5864 }
5865 public final U getRawResult() { return result.get(); }
5866 @SuppressWarnings("unchecked") public final void compute() {
5867 final Fun<Entry<K,V>, ? extends U> searchFunction;
5868 final AtomicReference<U> result;
5869 if ((searchFunction = this.searchFunction) != null &&
5870 (result = this.result) != null) {
5871 for (int b;;) {
5872 if (result.get() != null)
5873 return;
5874 if ((b = preSplit()) <= 0)
5875 break;
5876 new SearchEntriesTask<K,V,U>
5877 (map, this, b, searchFunction, result).fork();
5878 }
5879 while (result.get() == null) {
5880 V v; U u;
5881 if ((v = advance()) == null) {
5882 propagateCompletion();
5883 break;
5884 }
5885 if ((u = searchFunction.apply(entryFor((K)nextKey,
5886 v))) != null) {
5887 if (result.compareAndSet(null, u))
5888 quietlyCompleteRoot();
5889 return;
5890 }
5891 }
5892 }
5893 }
5894 }
5895
5896 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5897 extends Traverser<K,V,U> {
5898 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5899 final AtomicReference<U> result;
5900 SearchMappingsTask
5901 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5902 BiFun<? super K, ? super V, ? extends U> searchFunction,
5903 AtomicReference<U> result) {
5904 super(m, p, b);
5905 this.searchFunction = searchFunction; this.result = result;
5906 }
5907 public final U getRawResult() { return result.get(); }
5908 @SuppressWarnings("unchecked") public final void compute() {
5909 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5910 final AtomicReference<U> result;
5911 if ((searchFunction = this.searchFunction) != null &&
5912 (result = this.result) != null) {
5913 for (int b;;) {
5914 if (result.get() != null)
5915 return;
5916 if ((b = preSplit()) <= 0)
5917 break;
5918 new SearchMappingsTask<K,V,U>
5919 (map, this, b, searchFunction, result).fork();
5920 }
5921 while (result.get() == null) {
5922 V v; U u;
5923 if ((v = advance()) == null) {
5924 propagateCompletion();
5925 break;
5926 }
5927 if ((u = searchFunction.apply((K)nextKey, v)) != null) {
5928 if (result.compareAndSet(null, u))
5929 quietlyCompleteRoot();
5930 break;
5931 }
5932 }
5933 }
5934 }
5935 }
5936
5937 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5938 extends Traverser<K,V,K> {
5939 final BiFun<? super K, ? super K, ? extends K> reducer;
5940 K result;
5941 ReduceKeysTask<K,V> rights, nextRight;
5942 ReduceKeysTask
5943 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5944 ReduceKeysTask<K,V> nextRight,
5945 BiFun<? super K, ? super K, ? extends K> reducer) {
5946 super(m, p, b); this.nextRight = nextRight;
5947 this.reducer = reducer;
5948 }
5949 public final K getRawResult() { return result; }
5950 @SuppressWarnings("unchecked") public final void compute() {
5951 final BiFun<? super K, ? super K, ? extends K> reducer;
5952 if ((reducer = this.reducer) != null) {
5953 for (int b; (b = preSplit()) > 0;)
5954 (rights = new ReduceKeysTask<K,V>
5955 (map, this, b, rights, reducer)).fork();
5956 K r = null;
5957 while (advance() != null) {
5958 K u = (K)nextKey;
5959 r = (r == null) ? u : reducer.apply(r, u);
5960 }
5961 result = r;
5962 CountedCompleter<?> c;
5963 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5964 ReduceKeysTask<K,V>
5965 t = (ReduceKeysTask<K,V>)c,
5966 s = t.rights;
5967 while (s != null) {
5968 K tr, sr;
5969 if ((sr = s.result) != null)
5970 t.result = (((tr = t.result) == null) ? sr :
5971 reducer.apply(tr, sr));
5972 s = t.rights = s.nextRight;
5973 }
5974 }
5975 }
5976 }
5977 }
5978
5979 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5980 extends Traverser<K,V,V> {
5981 final BiFun<? super V, ? super V, ? extends V> reducer;
5982 V result;
5983 ReduceValuesTask<K,V> rights, nextRight;
5984 ReduceValuesTask
5985 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5986 ReduceValuesTask<K,V> nextRight,
5987 BiFun<? super V, ? super V, ? extends V> reducer) {
5988 super(m, p, b); this.nextRight = nextRight;
5989 this.reducer = reducer;
5990 }
5991 public final V getRawResult() { return result; }
5992 @SuppressWarnings("unchecked") public final void compute() {
5993 final BiFun<? super V, ? super V, ? extends V> reducer;
5994 if ((reducer = this.reducer) != null) {
5995 for (int b; (b = preSplit()) > 0;)
5996 (rights = new ReduceValuesTask<K,V>
5997 (map, this, b, rights, reducer)).fork();
5998 V r = null;
5999 V v;
6000 while ((v = advance()) != null) {
6001 V u = v;
6002 r = (r == null) ? u : reducer.apply(r, u);
6003 }
6004 result = r;
6005 CountedCompleter<?> c;
6006 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6007 ReduceValuesTask<K,V>
6008 t = (ReduceValuesTask<K,V>)c,
6009 s = t.rights;
6010 while (s != null) {
6011 V tr, sr;
6012 if ((sr = s.result) != null)
6013 t.result = (((tr = t.result) == null) ? sr :
6014 reducer.apply(tr, sr));
6015 s = t.rights = s.nextRight;
6016 }
6017 }
6018 }
6019 }
6020 }
6021
6022 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6023 extends Traverser<K,V,Map.Entry<K,V>> {
6024 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6025 Map.Entry<K,V> result;
6026 ReduceEntriesTask<K,V> rights, nextRight;
6027 ReduceEntriesTask
6028 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6029 ReduceEntriesTask<K,V> nextRight,
6030 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6031 super(m, p, b); this.nextRight = nextRight;
6032 this.reducer = reducer;
6033 }
6034 public final Map.Entry<K,V> getRawResult() { return result; }
6035 @SuppressWarnings("unchecked") public final void compute() {
6036 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6037 if ((reducer = this.reducer) != null) {
6038 for (int b; (b = preSplit()) > 0;)
6039 (rights = new ReduceEntriesTask<K,V>
6040 (map, this, b, rights, reducer)).fork();
6041 Map.Entry<K,V> r = null;
6042 V v;
6043 while ((v = advance()) != null) {
6044 Map.Entry<K,V> u = entryFor((K)nextKey, v);
6045 r = (r == null) ? u : reducer.apply(r, u);
6046 }
6047 result = r;
6048 CountedCompleter<?> c;
6049 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6050 ReduceEntriesTask<K,V>
6051 t = (ReduceEntriesTask<K,V>)c,
6052 s = t.rights;
6053 while (s != null) {
6054 Map.Entry<K,V> tr, sr;
6055 if ((sr = s.result) != null)
6056 t.result = (((tr = t.result) == null) ? sr :
6057 reducer.apply(tr, sr));
6058 s = t.rights = s.nextRight;
6059 }
6060 }
6061 }
6062 }
6063 }
6064
6065 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6066 extends Traverser<K,V,U> {
6067 final Fun<? super K, ? extends U> transformer;
6068 final BiFun<? super U, ? super U, ? extends U> reducer;
6069 U result;
6070 MapReduceKeysTask<K,V,U> rights, nextRight;
6071 MapReduceKeysTask
6072 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6073 MapReduceKeysTask<K,V,U> nextRight,
6074 Fun<? super K, ? extends U> transformer,
6075 BiFun<? super U, ? super U, ? extends U> reducer) {
6076 super(m, p, b); this.nextRight = nextRight;
6077 this.transformer = transformer;
6078 this.reducer = reducer;
6079 }
6080 public final U getRawResult() { return result; }
6081 @SuppressWarnings("unchecked") public final void compute() {
6082 final Fun<? super K, ? extends U> transformer;
6083 final BiFun<? super U, ? super U, ? extends U> reducer;
6084 if ((transformer = this.transformer) != null &&
6085 (reducer = this.reducer) != null) {
6086 for (int b; (b = preSplit()) > 0;)
6087 (rights = new MapReduceKeysTask<K,V,U>
6088 (map, this, b, rights, transformer, reducer)).fork();
6089 U r = null, u;
6090 while (advance() != null) {
6091 if ((u = transformer.apply((K)nextKey)) != null)
6092 r = (r == null) ? u : reducer.apply(r, u);
6093 }
6094 result = r;
6095 CountedCompleter<?> c;
6096 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6097 MapReduceKeysTask<K,V,U>
6098 t = (MapReduceKeysTask<K,V,U>)c,
6099 s = t.rights;
6100 while (s != null) {
6101 U tr, sr;
6102 if ((sr = s.result) != null)
6103 t.result = (((tr = t.result) == null) ? sr :
6104 reducer.apply(tr, sr));
6105 s = t.rights = s.nextRight;
6106 }
6107 }
6108 }
6109 }
6110 }
6111
6112 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6113 extends Traverser<K,V,U> {
6114 final Fun<? super V, ? extends U> transformer;
6115 final BiFun<? super U, ? super U, ? extends U> reducer;
6116 U result;
6117 MapReduceValuesTask<K,V,U> rights, nextRight;
6118 MapReduceValuesTask
6119 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6120 MapReduceValuesTask<K,V,U> nextRight,
6121 Fun<? super V, ? extends U> transformer,
6122 BiFun<? super U, ? super U, ? extends U> reducer) {
6123 super(m, p, b); this.nextRight = nextRight;
6124 this.transformer = transformer;
6125 this.reducer = reducer;
6126 }
6127 public final U getRawResult() { return result; }
6128 @SuppressWarnings("unchecked") public final void compute() {
6129 final Fun<? super V, ? extends U> transformer;
6130 final BiFun<? super U, ? super U, ? extends U> reducer;
6131 if ((transformer = this.transformer) != null &&
6132 (reducer = this.reducer) != null) {
6133 for (int b; (b = preSplit()) > 0;)
6134 (rights = new MapReduceValuesTask<K,V,U>
6135 (map, this, b, rights, transformer, reducer)).fork();
6136 U r = null, u;
6137 V v;
6138 while ((v = advance()) != null) {
6139 if ((u = transformer.apply(v)) != null)
6140 r = (r == null) ? u : reducer.apply(r, u);
6141 }
6142 result = r;
6143 CountedCompleter<?> c;
6144 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6145 MapReduceValuesTask<K,V,U>
6146 t = (MapReduceValuesTask<K,V,U>)c,
6147 s = t.rights;
6148 while (s != null) {
6149 U tr, sr;
6150 if ((sr = s.result) != null)
6151 t.result = (((tr = t.result) == null) ? sr :
6152 reducer.apply(tr, sr));
6153 s = t.rights = s.nextRight;
6154 }
6155 }
6156 }
6157 }
6158 }
6159
6160 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6161 extends Traverser<K,V,U> {
6162 final Fun<Map.Entry<K,V>, ? extends U> transformer;
6163 final BiFun<? super U, ? super U, ? extends U> reducer;
6164 U result;
6165 MapReduceEntriesTask<K,V,U> rights, nextRight;
6166 MapReduceEntriesTask
6167 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6168 MapReduceEntriesTask<K,V,U> nextRight,
6169 Fun<Map.Entry<K,V>, ? extends U> transformer,
6170 BiFun<? super U, ? super U, ? extends U> reducer) {
6171 super(m, p, b); this.nextRight = nextRight;
6172 this.transformer = transformer;
6173 this.reducer = reducer;
6174 }
6175 public final U getRawResult() { return result; }
6176 @SuppressWarnings("unchecked") public final void compute() {
6177 final Fun<Map.Entry<K,V>, ? extends U> transformer;
6178 final BiFun<? super U, ? super U, ? extends U> reducer;
6179 if ((transformer = this.transformer) != null &&
6180 (reducer = this.reducer) != null) {
6181 for (int b; (b = preSplit()) > 0;)
6182 (rights = new MapReduceEntriesTask<K,V,U>
6183 (map, this, b, rights, transformer, reducer)).fork();
6184 U r = null, u;
6185 V v;
6186 while ((v = advance()) != null) {
6187 if ((u = transformer.apply(entryFor((K)nextKey,
6188 v))) != null)
6189 r = (r == null) ? u : reducer.apply(r, u);
6190 }
6191 result = r;
6192 CountedCompleter<?> c;
6193 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6194 MapReduceEntriesTask<K,V,U>
6195 t = (MapReduceEntriesTask<K,V,U>)c,
6196 s = t.rights;
6197 while (s != null) {
6198 U tr, sr;
6199 if ((sr = s.result) != null)
6200 t.result = (((tr = t.result) == null) ? sr :
6201 reducer.apply(tr, sr));
6202 s = t.rights = s.nextRight;
6203 }
6204 }
6205 }
6206 }
6207 }
6208
6209 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6210 extends Traverser<K,V,U> {
6211 final BiFun<? super K, ? super V, ? extends U> transformer;
6212 final BiFun<? super U, ? super U, ? extends U> reducer;
6213 U result;
6214 MapReduceMappingsTask<K,V,U> rights, nextRight;
6215 MapReduceMappingsTask
6216 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6217 MapReduceMappingsTask<K,V,U> nextRight,
6218 BiFun<? super K, ? super V, ? extends U> transformer,
6219 BiFun<? super U, ? super U, ? extends U> reducer) {
6220 super(m, p, b); this.nextRight = nextRight;
6221 this.transformer = transformer;
6222 this.reducer = reducer;
6223 }
6224 public final U getRawResult() { return result; }
6225 @SuppressWarnings("unchecked") public final void compute() {
6226 final BiFun<? super K, ? super V, ? extends U> transformer;
6227 final BiFun<? super U, ? super U, ? extends U> reducer;
6228 if ((transformer = this.transformer) != null &&
6229 (reducer = this.reducer) != null) {
6230 for (int b; (b = preSplit()) > 0;)
6231 (rights = new MapReduceMappingsTask<K,V,U>
6232 (map, this, b, rights, transformer, reducer)).fork();
6233 U r = null, u;
6234 V v;
6235 while ((v = advance()) != null) {
6236 if ((u = transformer.apply((K)nextKey, v)) != null)
6237 r = (r == null) ? u : reducer.apply(r, u);
6238 }
6239 result = r;
6240 CountedCompleter<?> c;
6241 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6242 MapReduceMappingsTask<K,V,U>
6243 t = (MapReduceMappingsTask<K,V,U>)c,
6244 s = t.rights;
6245 while (s != null) {
6246 U tr, sr;
6247 if ((sr = s.result) != null)
6248 t.result = (((tr = t.result) == null) ? sr :
6249 reducer.apply(tr, sr));
6250 s = t.rights = s.nextRight;
6251 }
6252 }
6253 }
6254 }
6255 }
6256
6257 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6258 extends Traverser<K,V,Double> {
6259 final ObjectToDouble<? super K> transformer;
6260 final DoubleByDoubleToDouble reducer;
6261 final double basis;
6262 double result;
6263 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6264 MapReduceKeysToDoubleTask
6265 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6266 MapReduceKeysToDoubleTask<K,V> nextRight,
6267 ObjectToDouble<? super K> transformer,
6268 double basis,
6269 DoubleByDoubleToDouble reducer) {
6270 super(m, p, b); this.nextRight = nextRight;
6271 this.transformer = transformer;
6272 this.basis = basis; this.reducer = reducer;
6273 }
6274 public final Double getRawResult() { return result; }
6275 @SuppressWarnings("unchecked") public final void compute() {
6276 final ObjectToDouble<? super K> transformer;
6277 final DoubleByDoubleToDouble reducer;
6278 if ((transformer = this.transformer) != null &&
6279 (reducer = this.reducer) != null) {
6280 double r = this.basis;
6281 for (int b; (b = preSplit()) > 0;)
6282 (rights = new MapReduceKeysToDoubleTask<K,V>
6283 (map, this, b, rights, transformer, r, reducer)).fork();
6284 while (advance() != null)
6285 r = reducer.apply(r, transformer.apply((K)nextKey));
6286 result = r;
6287 CountedCompleter<?> c;
6288 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6289 MapReduceKeysToDoubleTask<K,V>
6290 t = (MapReduceKeysToDoubleTask<K,V>)c,
6291 s = t.rights;
6292 while (s != null) {
6293 t.result = reducer.apply(t.result, s.result);
6294 s = t.rights = s.nextRight;
6295 }
6296 }
6297 }
6298 }
6299 }
6300
6301 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6302 extends Traverser<K,V,Double> {
6303 final ObjectToDouble<? super V> transformer;
6304 final DoubleByDoubleToDouble reducer;
6305 final double basis;
6306 double result;
6307 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6308 MapReduceValuesToDoubleTask
6309 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6310 MapReduceValuesToDoubleTask<K,V> nextRight,
6311 ObjectToDouble<? super V> transformer,
6312 double basis,
6313 DoubleByDoubleToDouble reducer) {
6314 super(m, p, b); this.nextRight = nextRight;
6315 this.transformer = transformer;
6316 this.basis = basis; this.reducer = reducer;
6317 }
6318 public final Double getRawResult() { return result; }
6319 @SuppressWarnings("unchecked") public final void compute() {
6320 final ObjectToDouble<? super V> transformer;
6321 final DoubleByDoubleToDouble reducer;
6322 if ((transformer = this.transformer) != null &&
6323 (reducer = this.reducer) != null) {
6324 double r = this.basis;
6325 for (int b; (b = preSplit()) > 0;)
6326 (rights = new MapReduceValuesToDoubleTask<K,V>
6327 (map, this, b, rights, transformer, r, reducer)).fork();
6328 V v;
6329 while ((v = advance()) != null)
6330 r = reducer.apply(r, transformer.apply(v));
6331 result = r;
6332 CountedCompleter<?> c;
6333 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6334 MapReduceValuesToDoubleTask<K,V>
6335 t = (MapReduceValuesToDoubleTask<K,V>)c,
6336 s = t.rights;
6337 while (s != null) {
6338 t.result = reducer.apply(t.result, s.result);
6339 s = t.rights = s.nextRight;
6340 }
6341 }
6342 }
6343 }
6344 }
6345
6346 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6347 extends Traverser<K,V,Double> {
6348 final ObjectToDouble<Map.Entry<K,V>> transformer;
6349 final DoubleByDoubleToDouble reducer;
6350 final double basis;
6351 double result;
6352 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6353 MapReduceEntriesToDoubleTask
6354 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6355 MapReduceEntriesToDoubleTask<K,V> nextRight,
6356 ObjectToDouble<Map.Entry<K,V>> transformer,
6357 double basis,
6358 DoubleByDoubleToDouble reducer) {
6359 super(m, p, b); this.nextRight = nextRight;
6360 this.transformer = transformer;
6361 this.basis = basis; this.reducer = reducer;
6362 }
6363 public final Double getRawResult() { return result; }
6364 @SuppressWarnings("unchecked") public final void compute() {
6365 final ObjectToDouble<Map.Entry<K,V>> transformer;
6366 final DoubleByDoubleToDouble reducer;
6367 if ((transformer = this.transformer) != null &&
6368 (reducer = this.reducer) != null) {
6369 double r = this.basis;
6370 for (int b; (b = preSplit()) > 0;)
6371 (rights = new MapReduceEntriesToDoubleTask<K,V>
6372 (map, this, b, rights, transformer, r, reducer)).fork();
6373 V v;
6374 while ((v = advance()) != null)
6375 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6376 v)));
6377 result = r;
6378 CountedCompleter<?> c;
6379 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6380 MapReduceEntriesToDoubleTask<K,V>
6381 t = (MapReduceEntriesToDoubleTask<K,V>)c,
6382 s = t.rights;
6383 while (s != null) {
6384 t.result = reducer.apply(t.result, s.result);
6385 s = t.rights = s.nextRight;
6386 }
6387 }
6388 }
6389 }
6390 }
6391
6392 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6393 extends Traverser<K,V,Double> {
6394 final ObjectByObjectToDouble<? super K, ? super V> transformer;
6395 final DoubleByDoubleToDouble reducer;
6396 final double basis;
6397 double result;
6398 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6399 MapReduceMappingsToDoubleTask
6400 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6401 MapReduceMappingsToDoubleTask<K,V> nextRight,
6402 ObjectByObjectToDouble<? super K, ? super V> transformer,
6403 double basis,
6404 DoubleByDoubleToDouble reducer) {
6405 super(m, p, b); this.nextRight = nextRight;
6406 this.transformer = transformer;
6407 this.basis = basis; this.reducer = reducer;
6408 }
6409 public final Double getRawResult() { return result; }
6410 @SuppressWarnings("unchecked") public final void compute() {
6411 final ObjectByObjectToDouble<? super K, ? super V> transformer;
6412 final DoubleByDoubleToDouble reducer;
6413 if ((transformer = this.transformer) != null &&
6414 (reducer = this.reducer) != null) {
6415 double r = this.basis;
6416 for (int b; (b = preSplit()) > 0;)
6417 (rights = new MapReduceMappingsToDoubleTask<K,V>
6418 (map, this, b, rights, transformer, r, reducer)).fork();
6419 V v;
6420 while ((v = advance()) != null)
6421 r = reducer.apply(r, transformer.apply((K)nextKey, v));
6422 result = r;
6423 CountedCompleter<?> c;
6424 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6425 MapReduceMappingsToDoubleTask<K,V>
6426 t = (MapReduceMappingsToDoubleTask<K,V>)c,
6427 s = t.rights;
6428 while (s != null) {
6429 t.result = reducer.apply(t.result, s.result);
6430 s = t.rights = s.nextRight;
6431 }
6432 }
6433 }
6434 }
6435 }
6436
6437 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6438 extends Traverser<K,V,Long> {
6439 final ObjectToLong<? super K> transformer;
6440 final LongByLongToLong reducer;
6441 final long basis;
6442 long result;
6443 MapReduceKeysToLongTask<K,V> rights, nextRight;
6444 MapReduceKeysToLongTask
6445 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6446 MapReduceKeysToLongTask<K,V> nextRight,
6447 ObjectToLong<? super K> transformer,
6448 long basis,
6449 LongByLongToLong reducer) {
6450 super(m, p, b); this.nextRight = nextRight;
6451 this.transformer = transformer;
6452 this.basis = basis; this.reducer = reducer;
6453 }
6454 public final Long getRawResult() { return result; }
6455 @SuppressWarnings("unchecked") public final void compute() {
6456 final ObjectToLong<? super K> transformer;
6457 final LongByLongToLong reducer;
6458 if ((transformer = this.transformer) != null &&
6459 (reducer = this.reducer) != null) {
6460 long r = this.basis;
6461 for (int b; (b = preSplit()) > 0;)
6462 (rights = new MapReduceKeysToLongTask<K,V>
6463 (map, this, b, rights, transformer, r, reducer)).fork();
6464 while (advance() != null)
6465 r = reducer.apply(r, transformer.apply((K)nextKey));
6466 result = r;
6467 CountedCompleter<?> c;
6468 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6469 MapReduceKeysToLongTask<K,V>
6470 t = (MapReduceKeysToLongTask<K,V>)c,
6471 s = t.rights;
6472 while (s != null) {
6473 t.result = reducer.apply(t.result, s.result);
6474 s = t.rights = s.nextRight;
6475 }
6476 }
6477 }
6478 }
6479 }
6480
6481 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6482 extends Traverser<K,V,Long> {
6483 final ObjectToLong<? super V> transformer;
6484 final LongByLongToLong reducer;
6485 final long basis;
6486 long result;
6487 MapReduceValuesToLongTask<K,V> rights, nextRight;
6488 MapReduceValuesToLongTask
6489 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6490 MapReduceValuesToLongTask<K,V> nextRight,
6491 ObjectToLong<? super V> transformer,
6492 long basis,
6493 LongByLongToLong reducer) {
6494 super(m, p, b); this.nextRight = nextRight;
6495 this.transformer = transformer;
6496 this.basis = basis; this.reducer = reducer;
6497 }
6498 public final Long getRawResult() { return result; }
6499 @SuppressWarnings("unchecked") public final void compute() {
6500 final ObjectToLong<? super V> transformer;
6501 final LongByLongToLong reducer;
6502 if ((transformer = this.transformer) != null &&
6503 (reducer = this.reducer) != null) {
6504 long r = this.basis;
6505 for (int b; (b = preSplit()) > 0;)
6506 (rights = new MapReduceValuesToLongTask<K,V>
6507 (map, this, b, rights, transformer, r, reducer)).fork();
6508 V v;
6509 while ((v = advance()) != null)
6510 r = reducer.apply(r, transformer.apply(v));
6511 result = r;
6512 CountedCompleter<?> c;
6513 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6514 MapReduceValuesToLongTask<K,V>
6515 t = (MapReduceValuesToLongTask<K,V>)c,
6516 s = t.rights;
6517 while (s != null) {
6518 t.result = reducer.apply(t.result, s.result);
6519 s = t.rights = s.nextRight;
6520 }
6521 }
6522 }
6523 }
6524 }
6525
6526 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6527 extends Traverser<K,V,Long> {
6528 final ObjectToLong<Map.Entry<K,V>> transformer;
6529 final LongByLongToLong reducer;
6530 final long basis;
6531 long result;
6532 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6533 MapReduceEntriesToLongTask
6534 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6535 MapReduceEntriesToLongTask<K,V> nextRight,
6536 ObjectToLong<Map.Entry<K,V>> transformer,
6537 long basis,
6538 LongByLongToLong reducer) {
6539 super(m, p, b); this.nextRight = nextRight;
6540 this.transformer = transformer;
6541 this.basis = basis; this.reducer = reducer;
6542 }
6543 public final Long getRawResult() { return result; }
6544 @SuppressWarnings("unchecked") public final void compute() {
6545 final ObjectToLong<Map.Entry<K,V>> transformer;
6546 final LongByLongToLong reducer;
6547 if ((transformer = this.transformer) != null &&
6548 (reducer = this.reducer) != null) {
6549 long r = this.basis;
6550 for (int b; (b = preSplit()) > 0;)
6551 (rights = new MapReduceEntriesToLongTask<K,V>
6552 (map, this, b, rights, transformer, r, reducer)).fork();
6553 V v;
6554 while ((v = advance()) != null)
6555 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6556 v)));
6557 result = r;
6558 CountedCompleter<?> c;
6559 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6560 MapReduceEntriesToLongTask<K,V>
6561 t = (MapReduceEntriesToLongTask<K,V>)c,
6562 s = t.rights;
6563 while (s != null) {
6564 t.result = reducer.apply(t.result, s.result);
6565 s = t.rights = s.nextRight;
6566 }
6567 }
6568 }
6569 }
6570 }
6571
6572 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6573 extends Traverser<K,V,Long> {
6574 final ObjectByObjectToLong<? super K, ? super V> transformer;
6575 final LongByLongToLong reducer;
6576 final long basis;
6577 long result;
6578 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6579 MapReduceMappingsToLongTask
6580 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6581 MapReduceMappingsToLongTask<K,V> nextRight,
6582 ObjectByObjectToLong<? super K, ? super V> transformer,
6583 long basis,
6584 LongByLongToLong reducer) {
6585 super(m, p, b); this.nextRight = nextRight;
6586 this.transformer = transformer;
6587 this.basis = basis; this.reducer = reducer;
6588 }
6589 public final Long getRawResult() { return result; }
6590 @SuppressWarnings("unchecked") public final void compute() {
6591 final ObjectByObjectToLong<? super K, ? super V> transformer;
6592 final LongByLongToLong reducer;
6593 if ((transformer = this.transformer) != null &&
6594 (reducer = this.reducer) != null) {
6595 long r = this.basis;
6596 for (int b; (b = preSplit()) > 0;)
6597 (rights = new MapReduceMappingsToLongTask<K,V>
6598 (map, this, b, rights, transformer, r, reducer)).fork();
6599 V v;
6600 while ((v = advance()) != null)
6601 r = reducer.apply(r, transformer.apply((K)nextKey, v));
6602 result = r;
6603 CountedCompleter<?> c;
6604 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6605 MapReduceMappingsToLongTask<K,V>
6606 t = (MapReduceMappingsToLongTask<K,V>)c,
6607 s = t.rights;
6608 while (s != null) {
6609 t.result = reducer.apply(t.result, s.result);
6610 s = t.rights = s.nextRight;
6611 }
6612 }
6613 }
6614 }
6615 }
6616
6617 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6618 extends Traverser<K,V,Integer> {
6619 final ObjectToInt<? super K> transformer;
6620 final IntByIntToInt reducer;
6621 final int basis;
6622 int result;
6623 MapReduceKeysToIntTask<K,V> rights, nextRight;
6624 MapReduceKeysToIntTask
6625 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6626 MapReduceKeysToIntTask<K,V> nextRight,
6627 ObjectToInt<? super K> transformer,
6628 int basis,
6629 IntByIntToInt reducer) {
6630 super(m, p, b); this.nextRight = nextRight;
6631 this.transformer = transformer;
6632 this.basis = basis; this.reducer = reducer;
6633 }
6634 public final Integer getRawResult() { return result; }
6635 @SuppressWarnings("unchecked") public final void compute() {
6636 final ObjectToInt<? super K> transformer;
6637 final IntByIntToInt reducer;
6638 if ((transformer = this.transformer) != null &&
6639 (reducer = this.reducer) != null) {
6640 int r = this.basis;
6641 for (int b; (b = preSplit()) > 0;)
6642 (rights = new MapReduceKeysToIntTask<K,V>
6643 (map, this, b, rights, transformer, r, reducer)).fork();
6644 while (advance() != null)
6645 r = reducer.apply(r, transformer.apply((K)nextKey));
6646 result = r;
6647 CountedCompleter<?> c;
6648 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6649 MapReduceKeysToIntTask<K,V>
6650 t = (MapReduceKeysToIntTask<K,V>)c,
6651 s = t.rights;
6652 while (s != null) {
6653 t.result = reducer.apply(t.result, s.result);
6654 s = t.rights = s.nextRight;
6655 }
6656 }
6657 }
6658 }
6659 }
6660
6661 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6662 extends Traverser<K,V,Integer> {
6663 final ObjectToInt<? super V> transformer;
6664 final IntByIntToInt reducer;
6665 final int basis;
6666 int result;
6667 MapReduceValuesToIntTask<K,V> rights, nextRight;
6668 MapReduceValuesToIntTask
6669 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6670 MapReduceValuesToIntTask<K,V> nextRight,
6671 ObjectToInt<? super V> transformer,
6672 int basis,
6673 IntByIntToInt reducer) {
6674 super(m, p, b); this.nextRight = nextRight;
6675 this.transformer = transformer;
6676 this.basis = basis; this.reducer = reducer;
6677 }
6678 public final Integer getRawResult() { return result; }
6679 @SuppressWarnings("unchecked") public final void compute() {
6680 final ObjectToInt<? super V> transformer;
6681 final IntByIntToInt reducer;
6682 if ((transformer = this.transformer) != null &&
6683 (reducer = this.reducer) != null) {
6684 int r = this.basis;
6685 for (int b; (b = preSplit()) > 0;)
6686 (rights = new MapReduceValuesToIntTask<K,V>
6687 (map, this, b, rights, transformer, r, reducer)).fork();
6688 V v;
6689 while ((v = advance()) != null)
6690 r = reducer.apply(r, transformer.apply(v));
6691 result = r;
6692 CountedCompleter<?> c;
6693 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6694 MapReduceValuesToIntTask<K,V>
6695 t = (MapReduceValuesToIntTask<K,V>)c,
6696 s = t.rights;
6697 while (s != null) {
6698 t.result = reducer.apply(t.result, s.result);
6699 s = t.rights = s.nextRight;
6700 }
6701 }
6702 }
6703 }
6704 }
6705
6706 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6707 extends Traverser<K,V,Integer> {
6708 final ObjectToInt<Map.Entry<K,V>> transformer;
6709 final IntByIntToInt reducer;
6710 final int basis;
6711 int result;
6712 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6713 MapReduceEntriesToIntTask
6714 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6715 MapReduceEntriesToIntTask<K,V> nextRight,
6716 ObjectToInt<Map.Entry<K,V>> transformer,
6717 int basis,
6718 IntByIntToInt reducer) {
6719 super(m, p, b); this.nextRight = nextRight;
6720 this.transformer = transformer;
6721 this.basis = basis; this.reducer = reducer;
6722 }
6723 public final Integer getRawResult() { return result; }
6724 @SuppressWarnings("unchecked") public final void compute() {
6725 final ObjectToInt<Map.Entry<K,V>> transformer;
6726 final IntByIntToInt reducer;
6727 if ((transformer = this.transformer) != null &&
6728 (reducer = this.reducer) != null) {
6729 int r = this.basis;
6730 for (int b; (b = preSplit()) > 0;)
6731 (rights = new MapReduceEntriesToIntTask<K,V>
6732 (map, this, b, rights, transformer, r, reducer)).fork();
6733 V v;
6734 while ((v = advance()) != null)
6735 r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6736 v)));
6737 result = r;
6738 CountedCompleter<?> c;
6739 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6740 MapReduceEntriesToIntTask<K,V>
6741 t = (MapReduceEntriesToIntTask<K,V>)c,
6742 s = t.rights;
6743 while (s != null) {
6744 t.result = reducer.apply(t.result, s.result);
6745 s = t.rights = s.nextRight;
6746 }
6747 }
6748 }
6749 }
6750 }
6751
6752 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6753 extends Traverser<K,V,Integer> {
6754 final ObjectByObjectToInt<? super K, ? super V> transformer;
6755 final IntByIntToInt reducer;
6756 final int basis;
6757 int result;
6758 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6759 MapReduceMappingsToIntTask
6760 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6761 MapReduceMappingsToIntTask<K,V> nextRight,
6762 ObjectByObjectToInt<? super K, ? super V> transformer,
6763 int basis,
6764 IntByIntToInt reducer) {
6765 super(m, p, b); this.nextRight = nextRight;
6766 this.transformer = transformer;
6767 this.basis = basis; this.reducer = reducer;
6768 }
6769 public final Integer getRawResult() { return result; }
6770 @SuppressWarnings("unchecked") public final void compute() {
6771 final ObjectByObjectToInt<? super K, ? super V> transformer;
6772 final IntByIntToInt reducer;
6773 if ((transformer = this.transformer) != null &&
6774 (reducer = this.reducer) != null) {
6775 int r = this.basis;
6776 for (int b; (b = preSplit()) > 0;)
6777 (rights = new MapReduceMappingsToIntTask<K,V>
6778 (map, this, b, rights, transformer, r, reducer)).fork();
6779 V v;
6780 while ((v = advance()) != null)
6781 r = reducer.apply(r, transformer.apply((K)nextKey, v));
6782 result = r;
6783 CountedCompleter<?> c;
6784 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6785 MapReduceMappingsToIntTask<K,V>
6786 t = (MapReduceMappingsToIntTask<K,V>)c,
6787 s = t.rights;
6788 while (s != null) {
6789 t.result = reducer.apply(t.result, s.result);
6790 s = t.rights = s.nextRight;
6791 }
6792 }
6793 }
6794 }
6795 }
6796
6797 // Unsafe mechanics
6798 private static final sun.misc.Unsafe U;
6799 private static final long SIZECTL;
6800 private static final long TRANSFERINDEX;
6801 private static final long TRANSFERORIGIN;
6802 private static final long BASECOUNT;
6803 private static final long COUNTERBUSY;
6804 private static final long CELLVALUE;
6805 private static final long ABASE;
6806 private static final int ASHIFT;
6807
6808 static {
6809 int ss;
6810 try {
6811 U = sun.misc.Unsafe.getUnsafe();
6812 Class<?> k = ConcurrentHashMap.class;
6813 SIZECTL = U.objectFieldOffset
6814 (k.getDeclaredField("sizeCtl"));
6815 TRANSFERINDEX = U.objectFieldOffset
6816 (k.getDeclaredField("transferIndex"));
6817 TRANSFERORIGIN = U.objectFieldOffset
6818 (k.getDeclaredField("transferOrigin"));
6819 BASECOUNT = U.objectFieldOffset
6820 (k.getDeclaredField("baseCount"));
6821 COUNTERBUSY = U.objectFieldOffset
6822 (k.getDeclaredField("counterBusy"));
6823 Class<?> ck = CounterCell.class;
6824 CELLVALUE = U.objectFieldOffset
6825 (ck.getDeclaredField("value"));
6826 Class<?> sc = Node[].class;
6827 ABASE = U.arrayBaseOffset(sc);
6828 ss = U.arrayIndexScale(sc);
6829 ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6830 } catch (Exception e) {
6831 throw new Error(e);
6832 }
6833 if ((ss & (ss-1)) != 0)
6834 throw new Error("data type scale not a power of two");
6835 }
6836
6837 }