ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/ConcurrentLinkedQueue.java
Revision: 1.4
Committed: Wed Oct 29 20:23:14 2014 UTC (9 years, 7 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.3: +3 -3 lines
Log Message:
use new URL for the Micheal/Scott paper

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea and Martin Buchholz with assistance from members of
3     * JCP JSR-166 Expert Group and released to the public domain, as explained
4     * at http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.AbstractQueue;
10     import java.util.ArrayList;
11     import java.util.Collection;
12     import java.util.Iterator;
13     import java.util.NoSuchElementException;
14     import java.util.Queue;
15    
16     /**
17     * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
18     * This queue orders elements FIFO (first-in-first-out).
19     * The <em>head</em> of the queue is that element that has been on the
20     * queue the longest time.
21     * The <em>tail</em> of the queue is that element that has been on the
22     * queue the shortest time. New elements
23     * are inserted at the tail of the queue, and the queue retrieval
24     * operations obtain elements at the head of the queue.
25     * A {@code ConcurrentLinkedQueue} is an appropriate choice when
26     * many threads will share access to a common collection.
27     * Like most other concurrent collection implementations, this class
28     * does not permit the use of {@code null} elements.
29     *
30 jsr166 1.3 * <p>This implementation employs an efficient <em>non-blocking</em>
31 jsr166 1.4 * algorithm based on one described in
32     * <a href="http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf">
33     * Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue
34 dl 1.1 * Algorithms</a> by Maged M. Michael and Michael L. Scott.
35     *
36     * <p>Iterators are <i>weakly consistent</i>, returning elements
37     * reflecting the state of the queue at some point at or since the
38     * creation of the iterator. They do <em>not</em> throw {@link
39     * java.util.ConcurrentModificationException}, and may proceed concurrently
40     * with other operations. Elements contained in the queue since the creation
41     * of the iterator will be returned exactly once.
42     *
43     * <p>Beware that, unlike in most collections, the {@code size} method
44     * is <em>NOT</em> a constant-time operation. Because of the
45     * asynchronous nature of these queues, determining the current number
46     * of elements requires a traversal of the elements, and so may report
47     * inaccurate results if this collection is modified during traversal.
48     * Additionally, the bulk operations {@code addAll},
49     * {@code removeAll}, {@code retainAll}, {@code containsAll},
50     * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
51     * to be performed atomically. For example, an iterator operating
52     * concurrently with an {@code addAll} operation might view only some
53     * of the added elements.
54     *
55     * <p>This class and its iterator implement all of the <em>optional</em>
56     * methods of the {@link Queue} and {@link Iterator} interfaces.
57     *
58     * <p>Memory consistency effects: As with other concurrent
59     * collections, actions in a thread prior to placing an object into a
60     * {@code ConcurrentLinkedQueue}
61     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
62     * actions subsequent to the access or removal of that element from
63     * the {@code ConcurrentLinkedQueue} in another thread.
64     *
65     * <p>This class is a member of the
66     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
67     * Java Collections Framework</a>.
68     *
69     * @since 1.5
70     * @author Doug Lea
71     * @param <E> the type of elements held in this collection
72     */
73     public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
74     implements Queue<E>, java.io.Serializable {
75     private static final long serialVersionUID = 196745693267521676L;
76    
77     /*
78     * This is a modification of the Michael & Scott algorithm,
79     * adapted for a garbage-collected environment, with support for
80     * interior node deletion (to support remove(Object)). For
81     * explanation, read the paper.
82     *
83     * Note that like most non-blocking algorithms in this package,
84     * this implementation relies on the fact that in garbage
85     * collected systems, there is no possibility of ABA problems due
86     * to recycled nodes, so there is no need to use "counted
87     * pointers" or related techniques seen in versions used in
88     * non-GC'ed settings.
89     *
90     * The fundamental invariants are:
91     * - There is exactly one (last) Node with a null next reference,
92     * which is CASed when enqueueing. This last Node can be
93     * reached in O(1) time from tail, but tail is merely an
94     * optimization - it can always be reached in O(N) time from
95     * head as well.
96     * - The elements contained in the queue are the non-null items in
97     * Nodes that are reachable from head. CASing the item
98     * reference of a Node to null atomically removes it from the
99     * queue. Reachability of all elements from head must remain
100     * true even in the case of concurrent modifications that cause
101     * head to advance. A dequeued Node may remain in use
102     * indefinitely due to creation of an Iterator or simply a
103     * poll() that has lost its time slice.
104     *
105     * The above might appear to imply that all Nodes are GC-reachable
106     * from a predecessor dequeued Node. That would cause two problems:
107     * - allow a rogue Iterator to cause unbounded memory retention
108     * - cause cross-generational linking of old Nodes to new Nodes if
109     * a Node was tenured while live, which generational GCs have a
110     * hard time dealing with, causing repeated major collections.
111     * However, only non-deleted Nodes need to be reachable from
112     * dequeued Nodes, and reachability does not necessarily have to
113     * be of the kind understood by the GC. We use the trick of
114     * linking a Node that has just been dequeued to itself. Such a
115     * self-link implicitly means to advance to head.
116     *
117     * Both head and tail are permitted to lag. In fact, failing to
118     * update them every time one could is a significant optimization
119     * (fewer CASes). As with LinkedTransferQueue (see the internal
120     * documentation for that class), we use a slack threshold of two;
121     * that is, we update head/tail when the current pointer appears
122     * to be two or more steps away from the first/last node.
123     *
124     * Since head and tail are updated concurrently and independently,
125     * it is possible for tail to lag behind head (why not)?
126     *
127     * CASing a Node's item reference to null atomically removes the
128     * element from the queue. Iterators skip over Nodes with null
129     * items. Prior implementations of this class had a race between
130     * poll() and remove(Object) where the same element would appear
131     * to be successfully removed by two concurrent operations. The
132     * method remove(Object) also lazily unlinks deleted Nodes, but
133     * this is merely an optimization.
134     *
135     * When constructing a Node (before enqueuing it) we avoid paying
136     * for a volatile write to item by using Unsafe.putObject instead
137     * of a normal write. This allows the cost of enqueue to be
138     * "one-and-a-half" CASes.
139     *
140     * Both head and tail may or may not point to a Node with a
141     * non-null item. If the queue is empty, all items must of course
142     * be null. Upon creation, both head and tail refer to a dummy
143     * Node with null item. Both head and tail are only updated using
144     * CAS, so they never regress, although again this is merely an
145     * optimization.
146     */
147    
148     private static class Node<E> {
149     volatile E item;
150     volatile Node<E> next;
151    
152     /**
153     * Constructs a new node. Uses relaxed write because item can
154     * only be seen after publication via casNext.
155     */
156     Node(E item) {
157     UNSAFE.putObject(this, itemOffset, item);
158     }
159    
160     boolean casItem(E cmp, E val) {
161     return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
162     }
163    
164     void lazySetNext(Node<E> val) {
165     UNSAFE.putOrderedObject(this, nextOffset, val);
166     }
167    
168     boolean casNext(Node<E> cmp, Node<E> val) {
169     return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
170     }
171    
172     // Unsafe mechanics
173    
174     private static final sun.misc.Unsafe UNSAFE;
175     private static final long itemOffset;
176     private static final long nextOffset;
177    
178     static {
179     try {
180     UNSAFE = sun.misc.Unsafe.getUnsafe();
181     Class<?> k = Node.class;
182     itemOffset = UNSAFE.objectFieldOffset
183     (k.getDeclaredField("item"));
184     nextOffset = UNSAFE.objectFieldOffset
185     (k.getDeclaredField("next"));
186     } catch (Exception e) {
187     throw new Error(e);
188     }
189     }
190     }
191    
192     /**
193     * A node from which the first live (non-deleted) node (if any)
194     * can be reached in O(1) time.
195     * Invariants:
196     * - all live nodes are reachable from head via succ()
197     * - head != null
198     * - (tmp = head).next != tmp || tmp != head
199     * Non-invariants:
200     * - head.item may or may not be null.
201     * - it is permitted for tail to lag behind head, that is, for tail
202     * to not be reachable from head!
203     */
204     private transient volatile Node<E> head;
205    
206     /**
207     * A node from which the last node on list (that is, the unique
208     * node with node.next == null) can be reached in O(1) time.
209     * Invariants:
210     * - the last node is always reachable from tail via succ()
211     * - tail != null
212     * Non-invariants:
213     * - tail.item may or may not be null.
214     * - it is permitted for tail to lag behind head, that is, for tail
215     * to not be reachable from head!
216     * - tail.next may or may not be self-pointing to tail.
217     */
218     private transient volatile Node<E> tail;
219    
220     /**
221     * Creates a {@code ConcurrentLinkedQueue} that is initially empty.
222     */
223     public ConcurrentLinkedQueue() {
224     head = tail = new Node<E>(null);
225     }
226    
227     /**
228     * Creates a {@code ConcurrentLinkedQueue}
229     * initially containing the elements of the given collection,
230     * added in traversal order of the collection's iterator.
231     *
232     * @param c the collection of elements to initially contain
233     * @throws NullPointerException if the specified collection or any
234     * of its elements are null
235     */
236     public ConcurrentLinkedQueue(Collection<? extends E> c) {
237     Node<E> h = null, t = null;
238     for (E e : c) {
239     checkNotNull(e);
240     Node<E> newNode = new Node<E>(e);
241     if (h == null)
242     h = t = newNode;
243     else {
244     t.lazySetNext(newNode);
245     t = newNode;
246     }
247     }
248     if (h == null)
249     h = t = new Node<E>(null);
250     head = h;
251     tail = t;
252     }
253    
254     // Have to override just to update the javadoc
255    
256     /**
257     * Inserts the specified element at the tail of this queue.
258     * As the queue is unbounded, this method will never throw
259     * {@link IllegalStateException} or return {@code false}.
260     *
261     * @return {@code true} (as specified by {@link Collection#add})
262     * @throws NullPointerException if the specified element is null
263     */
264     public boolean add(E e) {
265     return offer(e);
266     }
267    
268     /**
269 jsr166 1.2 * Tries to CAS head to p. If successful, repoint old head to itself
270 dl 1.1 * as sentinel for succ(), below.
271     */
272     final void updateHead(Node<E> h, Node<E> p) {
273     if (h != p && casHead(h, p))
274     h.lazySetNext(h);
275     }
276    
277     /**
278     * Returns the successor of p, or the head node if p.next has been
279     * linked to self, which will only be true if traversing with a
280     * stale pointer that is now off the list.
281     */
282     final Node<E> succ(Node<E> p) {
283     Node<E> next = p.next;
284     return (p == next) ? head : next;
285     }
286    
287     /**
288     * Inserts the specified element at the tail of this queue.
289     * As the queue is unbounded, this method will never return {@code false}.
290     *
291     * @return {@code true} (as specified by {@link Queue#offer})
292     * @throws NullPointerException if the specified element is null
293     */
294     public boolean offer(E e) {
295     checkNotNull(e);
296     final Node<E> newNode = new Node<E>(e);
297    
298     for (Node<E> t = tail, p = t;;) {
299     Node<E> q = p.next;
300     if (q == null) {
301     // p is last node
302     if (p.casNext(null, newNode)) {
303     // Successful CAS is the linearization point
304     // for e to become an element of this queue,
305     // and for newNode to become "live".
306     if (p != t) // hop two nodes at a time
307     casTail(t, newNode); // Failure is OK.
308     return true;
309     }
310     // Lost CAS race to another thread; re-read next
311     }
312     else if (p == q)
313     // We have fallen off list. If tail is unchanged, it
314     // will also be off-list, in which case we need to
315     // jump to head, from which all live nodes are always
316     // reachable. Else the new tail is a better bet.
317     p = (t != (t = tail)) ? t : head;
318     else
319     // Check for tail updates after two hops.
320     p = (p != t && t != (t = tail)) ? t : q;
321     }
322     }
323    
324     public E poll() {
325     restartFromHead:
326     for (;;) {
327     for (Node<E> h = head, p = h, q;;) {
328     E item = p.item;
329    
330     if (item != null && p.casItem(item, null)) {
331     // Successful CAS is the linearization point
332     // for item to be removed from this queue.
333     if (p != h) // hop two nodes at a time
334     updateHead(h, ((q = p.next) != null) ? q : p);
335     return item;
336     }
337     else if ((q = p.next) == null) {
338     updateHead(h, p);
339     return null;
340     }
341     else if (p == q)
342     continue restartFromHead;
343     else
344     p = q;
345     }
346     }
347     }
348    
349     public E peek() {
350     restartFromHead:
351     for (;;) {
352     for (Node<E> h = head, p = h, q;;) {
353     E item = p.item;
354     if (item != null || (q = p.next) == null) {
355     updateHead(h, p);
356     return item;
357     }
358     else if (p == q)
359     continue restartFromHead;
360     else
361     p = q;
362     }
363     }
364     }
365    
366     /**
367     * Returns the first live (non-deleted) node on list, or null if none.
368     * This is yet another variant of poll/peek; here returning the
369     * first node, not element. We could make peek() a wrapper around
370     * first(), but that would cost an extra volatile read of item,
371     * and the need to add a retry loop to deal with the possibility
372     * of losing a race to a concurrent poll().
373     */
374     Node<E> first() {
375     restartFromHead:
376     for (;;) {
377     for (Node<E> h = head, p = h, q;;) {
378     boolean hasItem = (p.item != null);
379     if (hasItem || (q = p.next) == null) {
380     updateHead(h, p);
381     return hasItem ? p : null;
382     }
383     else if (p == q)
384     continue restartFromHead;
385     else
386     p = q;
387     }
388     }
389     }
390    
391     /**
392     * Returns {@code true} if this queue contains no elements.
393     *
394     * @return {@code true} if this queue contains no elements
395     */
396     public boolean isEmpty() {
397     return first() == null;
398     }
399    
400     /**
401     * Returns the number of elements in this queue. If this queue
402     * contains more than {@code Integer.MAX_VALUE} elements, returns
403     * {@code Integer.MAX_VALUE}.
404     *
405     * <p>Beware that, unlike in most collections, this method is
406     * <em>NOT</em> a constant-time operation. Because of the
407     * asynchronous nature of these queues, determining the current
408     * number of elements requires an O(n) traversal.
409     * Additionally, if elements are added or removed during execution
410     * of this method, the returned result may be inaccurate. Thus,
411     * this method is typically not very useful in concurrent
412     * applications.
413     *
414     * @return the number of elements in this queue
415     */
416     public int size() {
417     int count = 0;
418     for (Node<E> p = first(); p != null; p = succ(p))
419     if (p.item != null)
420     // Collection.size() spec says to max out
421     if (++count == Integer.MAX_VALUE)
422     break;
423     return count;
424     }
425    
426     /**
427     * Returns {@code true} if this queue contains the specified element.
428     * More formally, returns {@code true} if and only if this queue contains
429     * at least one element {@code e} such that {@code o.equals(e)}.
430     *
431     * @param o object to be checked for containment in this queue
432     * @return {@code true} if this queue contains the specified element
433     */
434     public boolean contains(Object o) {
435     if (o == null) return false;
436     for (Node<E> p = first(); p != null; p = succ(p)) {
437     E item = p.item;
438     if (item != null && o.equals(item))
439     return true;
440     }
441     return false;
442     }
443    
444     /**
445     * Removes a single instance of the specified element from this queue,
446     * if it is present. More formally, removes an element {@code e} such
447     * that {@code o.equals(e)}, if this queue contains one or more such
448     * elements.
449     * Returns {@code true} if this queue contained the specified element
450     * (or equivalently, if this queue changed as a result of the call).
451     *
452     * @param o element to be removed from this queue, if present
453     * @return {@code true} if this queue changed as a result of the call
454     */
455     public boolean remove(Object o) {
456     if (o == null) return false;
457     Node<E> pred = null;
458     for (Node<E> p = first(); p != null; p = succ(p)) {
459     E item = p.item;
460     if (item != null &&
461     o.equals(item) &&
462     p.casItem(item, null)) {
463     Node<E> next = succ(p);
464     if (pred != null && next != null)
465     pred.casNext(p, next);
466     return true;
467     }
468     pred = p;
469     }
470     return false;
471     }
472    
473     /**
474     * Appends all of the elements in the specified collection to the end of
475     * this queue, in the order that they are returned by the specified
476     * collection's iterator. Attempts to {@code addAll} of a queue to
477     * itself result in {@code IllegalArgumentException}.
478     *
479     * @param c the elements to be inserted into this queue
480     * @return {@code true} if this queue changed as a result of the call
481     * @throws NullPointerException if the specified collection or any
482     * of its elements are null
483     * @throws IllegalArgumentException if the collection is this queue
484     */
485     public boolean addAll(Collection<? extends E> c) {
486     if (c == this)
487     // As historically specified in AbstractQueue#addAll
488     throw new IllegalArgumentException();
489    
490     // Copy c into a private chain of Nodes
491     Node<E> beginningOfTheEnd = null, last = null;
492     for (E e : c) {
493     checkNotNull(e);
494     Node<E> newNode = new Node<E>(e);
495     if (beginningOfTheEnd == null)
496     beginningOfTheEnd = last = newNode;
497     else {
498     last.lazySetNext(newNode);
499     last = newNode;
500     }
501     }
502     if (beginningOfTheEnd == null)
503     return false;
504    
505     // Atomically append the chain at the tail of this collection
506     for (Node<E> t = tail, p = t;;) {
507     Node<E> q = p.next;
508     if (q == null) {
509     // p is last node
510     if (p.casNext(null, beginningOfTheEnd)) {
511     // Successful CAS is the linearization point
512     // for all elements to be added to this queue.
513     if (!casTail(t, last)) {
514     // Try a little harder to update tail,
515     // since we may be adding many elements.
516     t = tail;
517     if (last.next == null)
518     casTail(t, last);
519     }
520     return true;
521     }
522     // Lost CAS race to another thread; re-read next
523     }
524     else if (p == q)
525     // We have fallen off list. If tail is unchanged, it
526     // will also be off-list, in which case we need to
527     // jump to head, from which all live nodes are always
528     // reachable. Else the new tail is a better bet.
529     p = (t != (t = tail)) ? t : head;
530     else
531     // Check for tail updates after two hops.
532     p = (p != t && t != (t = tail)) ? t : q;
533     }
534     }
535    
536     /**
537     * Returns an array containing all of the elements in this queue, in
538     * proper sequence.
539     *
540     * <p>The returned array will be "safe" in that no references to it are
541     * maintained by this queue. (In other words, this method must allocate
542     * a new array). The caller is thus free to modify the returned array.
543     *
544     * <p>This method acts as bridge between array-based and collection-based
545     * APIs.
546     *
547     * @return an array containing all of the elements in this queue
548     */
549     public Object[] toArray() {
550     // Use ArrayList to deal with resizing.
551     ArrayList<E> al = new ArrayList<E>();
552     for (Node<E> p = first(); p != null; p = succ(p)) {
553     E item = p.item;
554     if (item != null)
555     al.add(item);
556     }
557     return al.toArray();
558     }
559    
560     /**
561     * Returns an array containing all of the elements in this queue, in
562     * proper sequence; the runtime type of the returned array is that of
563     * the specified array. If the queue fits in the specified array, it
564     * is returned therein. Otherwise, a new array is allocated with the
565     * runtime type of the specified array and the size of this queue.
566     *
567     * <p>If this queue fits in the specified array with room to spare
568     * (i.e., the array has more elements than this queue), the element in
569     * the array immediately following the end of the queue is set to
570     * {@code null}.
571     *
572     * <p>Like the {@link #toArray()} method, this method acts as bridge between
573     * array-based and collection-based APIs. Further, this method allows
574     * precise control over the runtime type of the output array, and may,
575     * under certain circumstances, be used to save allocation costs.
576     *
577     * <p>Suppose {@code x} is a queue known to contain only strings.
578     * The following code can be used to dump the queue into a newly
579     * allocated array of {@code String}:
580     *
581     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
582     *
583     * Note that {@code toArray(new Object[0])} is identical in function to
584     * {@code toArray()}.
585     *
586     * @param a the array into which the elements of the queue are to
587     * be stored, if it is big enough; otherwise, a new array of the
588     * same runtime type is allocated for this purpose
589     * @return an array containing all of the elements in this queue
590     * @throws ArrayStoreException if the runtime type of the specified array
591     * is not a supertype of the runtime type of every element in
592     * this queue
593     * @throws NullPointerException if the specified array is null
594     */
595     @SuppressWarnings("unchecked")
596     public <T> T[] toArray(T[] a) {
597     // try to use sent-in array
598     int k = 0;
599     Node<E> p;
600     for (p = first(); p != null && k < a.length; p = succ(p)) {
601     E item = p.item;
602     if (item != null)
603     a[k++] = (T)item;
604     }
605     if (p == null) {
606     if (k < a.length)
607     a[k] = null;
608     return a;
609     }
610    
611     // If won't fit, use ArrayList version
612     ArrayList<E> al = new ArrayList<E>();
613     for (Node<E> q = first(); q != null; q = succ(q)) {
614     E item = q.item;
615     if (item != null)
616     al.add(item);
617     }
618     return al.toArray(a);
619     }
620    
621     /**
622     * Returns an iterator over the elements in this queue in proper sequence.
623     * The elements will be returned in order from first (head) to last (tail).
624     *
625     * <p>The returned iterator is a "weakly consistent" iterator that
626     * will never throw {@link java.util.ConcurrentModificationException
627     * ConcurrentModificationException}, and guarantees to traverse
628     * elements as they existed upon construction of the iterator, and
629     * may (but is not guaranteed to) reflect any modifications
630     * subsequent to construction.
631     *
632     * @return an iterator over the elements in this queue in proper sequence
633     */
634     public Iterator<E> iterator() {
635     return new Itr();
636     }
637    
638     private class Itr implements Iterator<E> {
639     /**
640     * Next node to return item for.
641     */
642     private Node<E> nextNode;
643    
644     /**
645     * nextItem holds on to item fields because once we claim
646     * that an element exists in hasNext(), we must return it in
647     * the following next() call even if it was in the process of
648     * being removed when hasNext() was called.
649     */
650     private E nextItem;
651    
652     /**
653     * Node of the last returned item, to support remove.
654     */
655     private Node<E> lastRet;
656    
657     Itr() {
658     advance();
659     }
660    
661     /**
662     * Moves to next valid node and returns item to return for
663     * next(), or null if no such.
664     */
665     private E advance() {
666     lastRet = nextNode;
667     E x = nextItem;
668    
669     Node<E> pred, p;
670     if (nextNode == null) {
671     p = first();
672     pred = null;
673     } else {
674     pred = nextNode;
675     p = succ(nextNode);
676     }
677    
678     for (;;) {
679     if (p == null) {
680     nextNode = null;
681     nextItem = null;
682     return x;
683     }
684     E item = p.item;
685     if (item != null) {
686     nextNode = p;
687     nextItem = item;
688     return x;
689     } else {
690     // skip over nulls
691     Node<E> next = succ(p);
692     if (pred != null && next != null)
693     pred.casNext(p, next);
694     p = next;
695     }
696     }
697     }
698    
699     public boolean hasNext() {
700     return nextNode != null;
701     }
702    
703     public E next() {
704     if (nextNode == null) throw new NoSuchElementException();
705     return advance();
706     }
707    
708     public void remove() {
709     Node<E> l = lastRet;
710     if (l == null) throw new IllegalStateException();
711     // rely on a future traversal to relink.
712     l.item = null;
713     lastRet = null;
714     }
715     }
716    
717     /**
718     * Saves this queue to a stream (that is, serializes it).
719     *
720     * @serialData All of the elements (each an {@code E}) in
721     * the proper order, followed by a null
722     */
723     private void writeObject(java.io.ObjectOutputStream s)
724     throws java.io.IOException {
725    
726     // Write out any hidden stuff
727     s.defaultWriteObject();
728    
729     // Write out all elements in the proper order.
730     for (Node<E> p = first(); p != null; p = succ(p)) {
731     Object item = p.item;
732     if (item != null)
733     s.writeObject(item);
734     }
735    
736     // Use trailing null as sentinel
737     s.writeObject(null);
738     }
739    
740     /**
741     * Reconstitutes this queue from a stream (that is, deserializes it).
742     */
743     private void readObject(java.io.ObjectInputStream s)
744     throws java.io.IOException, ClassNotFoundException {
745     s.defaultReadObject();
746    
747     // Read in elements until trailing null sentinel found
748     Node<E> h = null, t = null;
749     Object item;
750     while ((item = s.readObject()) != null) {
751     @SuppressWarnings("unchecked")
752     Node<E> newNode = new Node<E>((E) item);
753     if (h == null)
754     h = t = newNode;
755     else {
756     t.lazySetNext(newNode);
757     t = newNode;
758     }
759     }
760     if (h == null)
761     h = t = new Node<E>(null);
762     head = h;
763     tail = t;
764     }
765    
766     /**
767     * Throws NullPointerException if argument is null.
768     *
769     * @param v the element
770     */
771     private static void checkNotNull(Object v) {
772     if (v == null)
773     throw new NullPointerException();
774     }
775    
776     private boolean casTail(Node<E> cmp, Node<E> val) {
777     return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
778     }
779    
780     private boolean casHead(Node<E> cmp, Node<E> val) {
781     return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
782     }
783    
784     // Unsafe mechanics
785    
786     private static final sun.misc.Unsafe UNSAFE;
787     private static final long headOffset;
788     private static final long tailOffset;
789     static {
790     try {
791     UNSAFE = sun.misc.Unsafe.getUnsafe();
792     Class<?> k = ConcurrentLinkedQueue.class;
793     headOffset = UNSAFE.objectFieldOffset
794     (k.getDeclaredField("head"));
795     tailOffset = UNSAFE.objectFieldOffset
796     (k.getDeclaredField("tail"));
797     } catch (Exception e) {
798     throw new Error(e);
799     }
800     }
801     }