ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/ForkJoinPool.java
Revision: 1.19
Committed: Mon May 20 16:23:37 2013 UTC (11 years ago) by jsr166
Branch: MAIN
Changes since 1.18: +1 -1 lines
Log Message:
whitespace

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14     import java.util.concurrent.AbstractExecutorService;
15     import java.util.concurrent.Callable;
16     import java.util.concurrent.ExecutorService;
17     import java.util.concurrent.Future;
18     import java.util.concurrent.RejectedExecutionException;
19     import java.util.concurrent.RunnableFuture;
20     import java.util.concurrent.TimeUnit;
21    
22     /**
23     * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24     * A {@code ForkJoinPool} provides the entry point for submissions
25     * from non-{@code ForkJoinTask} clients, as well as management and
26     * monitoring operations.
27     *
28     * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29     * ExecutorService} mainly by virtue of employing
30     * <em>work-stealing</em>: all threads in the pool attempt to find and
31     * execute tasks submitted to the pool and/or created by other active
32     * tasks (eventually blocking waiting for work if none exist). This
33     * enables efficient processing when most tasks spawn other subtasks
34     * (as do most {@code ForkJoinTask}s), as well as when many small
35     * tasks are submitted to the pool from external clients. Especially
36     * when setting <em>asyncMode</em> to true in constructors, {@code
37     * ForkJoinPool}s may also be appropriate for use with event-style
38     * tasks that are never joined.
39     *
40     * <p>A static {@link #commonPool()} is available and appropriate for
41     * most applications. The common pool is used by any ForkJoinTask that
42     * is not explicitly submitted to a specified pool. Using the common
43     * pool normally reduces resource usage (its threads are slowly
44     * reclaimed during periods of non-use, and reinstated upon subsequent
45     * use).
46     *
47     * <p>For applications that require separate or custom pools, a {@code
48     * ForkJoinPool} may be constructed with a given target parallelism
49     * level; by default, equal to the number of available processors. The
50     * pool attempts to maintain enough active (or available) threads by
51     * dynamically adding, suspending, or resuming internal worker
52     * threads, even if some tasks are stalled waiting to join
53     * others. However, no such adjustments are guaranteed in the face of
54     * blocked I/O or other unmanaged synchronization. The nested {@link
55     * ManagedBlocker} interface enables extension of the kinds of
56     * synchronization accommodated.
57     *
58     * <p>In addition to execution and lifecycle control methods, this
59     * class provides status check methods (for example
60     * {@link #getStealCount}) that are intended to aid in developing,
61     * tuning, and monitoring fork/join applications. Also, method
62     * {@link #toString} returns indications of pool state in a
63     * convenient form for informal monitoring.
64     *
65     * <p>As is the case with other ExecutorServices, there are three
66     * main task execution methods summarized in the following table.
67     * These are designed to be used primarily by clients not already
68     * engaged in fork/join computations in the current pool. The main
69     * forms of these methods accept instances of {@code ForkJoinTask},
70     * but overloaded forms also allow mixed execution of plain {@code
71     * Runnable}- or {@code Callable}- based activities as well. However,
72     * tasks that are already executing in a pool should normally instead
73     * use the within-computation forms listed in the table unless using
74     * async event-style tasks that are not usually joined, in which case
75     * there is little difference among choice of methods.
76     *
77     * <table BORDER CELLPADDING=3 CELLSPACING=1>
78     * <tr>
79     * <td></td>
80     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82     * </tr>
83     * <tr>
84     * <td> <b>Arrange async execution</td>
85     * <td> {@link #execute(ForkJoinTask)}</td>
86     * <td> {@link ForkJoinTask#fork}</td>
87     * </tr>
88     * <tr>
89     * <td> <b>Await and obtain result</td>
90     * <td> {@link #invoke(ForkJoinTask)}</td>
91     * <td> {@link ForkJoinTask#invoke}</td>
92     * </tr>
93     * <tr>
94     * <td> <b>Arrange exec and obtain Future</td>
95     * <td> {@link #submit(ForkJoinTask)}</td>
96     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97     * </tr>
98     * </table>
99     *
100     * <p>The common pool is by default constructed with default
101     * parameters, but these may be controlled by setting three {@link
102     * System#getProperty system properties} with prefix {@code
103     * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104     * an integer greater than zero, {@code threadFactory} -- the class
105     * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106     * exceptionHandler} -- the class name of a {@link
107     * java.lang.Thread.UncaughtExceptionHandler
108     * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109     * these settings, default parameters are used.
110     *
111     * <p><b>Implementation notes</b>: This implementation restricts the
112     * maximum number of running threads to 32767. Attempts to create
113     * pools with greater than the maximum number result in
114     * {@code IllegalArgumentException}.
115     *
116     * <p>This implementation rejects submitted tasks (that is, by throwing
117     * {@link RejectedExecutionException}) only when the pool is shut down
118     * or internal resources have been exhausted.
119     *
120     * @since 1.7
121     * @author Doug Lea
122     */
123     public class ForkJoinPool extends AbstractExecutorService {
124    
125     /*
126     * Implementation Overview
127     *
128     * This class and its nested classes provide the main
129     * functionality and control for a set of worker threads:
130     * Submissions from non-FJ threads enter into submission queues.
131     * Workers take these tasks and typically split them into subtasks
132     * that may be stolen by other workers. Preference rules give
133     * first priority to processing tasks from their own queues (LIFO
134     * or FIFO, depending on mode), then to randomized FIFO steals of
135     * tasks in other queues.
136     *
137     * WorkQueues
138     * ==========
139     *
140     * Most operations occur within work-stealing queues (in nested
141     * class WorkQueue). These are special forms of Deques that
142     * support only three of the four possible end-operations -- push,
143     * pop, and poll (aka steal), under the further constraints that
144     * push and pop are called only from the owning thread (or, as
145     * extended here, under a lock), while poll may be called from
146     * other threads. (If you are unfamiliar with them, you probably
147     * want to read Herlihy and Shavit's book "The Art of
148     * Multiprocessor programming", chapter 16 describing these in
149     * more detail before proceeding.) The main work-stealing queue
150     * design is roughly similar to those in the papers "Dynamic
151     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152     * (http://research.sun.com/scalable/pubs/index.html) and
153     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155     * The main differences ultimately stem from GC requirements that
156     * we null out taken slots as soon as we can, to maintain as small
157     * a footprint as possible even in programs generating huge
158     * numbers of tasks. To accomplish this, we shift the CAS
159     * arbitrating pop vs poll (steal) from being on the indices
160     * ("base" and "top") to the slots themselves. So, both a
161     * successful pop and poll mainly entail a CAS of a slot from
162     * non-null to null. Because we rely on CASes of references, we
163     * do not need tag bits on base or top. They are simple ints as
164     * used in any circular array-based queue (see for example
165     * ArrayDeque). Updates to the indices must still be ordered in a
166     * way that guarantees that top == base means the queue is empty,
167     * but otherwise may err on the side of possibly making the queue
168     * appear nonempty when a push, pop, or poll have not fully
169     * committed. Note that this means that the poll operation,
170     * considered individually, is not wait-free. One thief cannot
171     * successfully continue until another in-progress one (or, if
172     * previously empty, a push) completes. However, in the
173     * aggregate, we ensure at least probabilistic non-blockingness.
174     * If an attempted steal fails, a thief always chooses a different
175     * random victim target to try next. So, in order for one thief to
176     * progress, it suffices for any in-progress poll or new push on
177     * any empty queue to complete. (This is why we normally use
178     * method pollAt and its variants that try once at the apparent
179     * base index, else consider alternative actions, rather than
180     * method poll.)
181     *
182     * This approach also enables support of a user mode in which local
183     * task processing is in FIFO, not LIFO order, simply by using
184     * poll rather than pop. This can be useful in message-passing
185     * frameworks in which tasks are never joined. However neither
186     * mode considers affinities, loads, cache localities, etc, so
187     * rarely provide the best possible performance on a given
188     * machine, but portably provide good throughput by averaging over
189     * these factors. (Further, even if we did try to use such
190     * information, we do not usually have a basis for exploiting it.
191     * For example, some sets of tasks profit from cache affinities,
192     * but others are harmed by cache pollution effects.)
193     *
194     * WorkQueues are also used in a similar way for tasks submitted
195     * to the pool. We cannot mix these tasks in the same queues used
196     * for work-stealing (this would contaminate lifo/fifo
197     * processing). Instead, we randomly associate submission queues
198     * with submitting threads, using a form of hashing. The
199     * ThreadLocal Submitter class contains a value initially used as
200     * a hash code for choosing existing queues, but may be randomly
201     * repositioned upon contention with other submitters. In
202     * essence, submitters act like workers except that they are
203     * restricted to executing local tasks that they submitted (or in
204     * the case of CountedCompleters, others with the same root task).
205     * However, because most shared/external queue operations are more
206     * expensive than internal, and because, at steady state, external
207     * submitters will compete for CPU with workers, ForkJoinTask.join
208     * and related methods disable them from repeatedly helping to
209     * process tasks if all workers are active. Insertion of tasks in
210     * shared mode requires a lock (mainly to protect in the case of
211     * resizing) but we use only a simple spinlock (using bits in
212     * field qlock), because submitters encountering a busy queue move
213     * on to try or create other queues -- they block only when
214     * creating and registering new queues.
215     *
216     * Management
217     * ==========
218     *
219     * The main throughput advantages of work-stealing stem from
220     * decentralized control -- workers mostly take tasks from
221     * themselves or each other. We cannot negate this in the
222     * implementation of other management responsibilities. The main
223     * tactic for avoiding bottlenecks is packing nearly all
224     * essentially atomic control state into two volatile variables
225     * that are by far most often read (not written) as status and
226     * consistency checks.
227     *
228     * Field "ctl" contains 64 bits holding all the information needed
229     * to atomically decide to add, inactivate, enqueue (on an event
230     * queue), dequeue, and/or re-activate workers. To enable this
231     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232     * far in excess of normal operating range) to allow ids, counts,
233     * and their negations (used for thresholding) to fit into 16bit
234     * fields.
235     *
236     * Field "plock" is a form of sequence lock with a saturating
237     * shutdown bit (similarly for per-queue "qlocks"), mainly
238     * protecting updates to the workQueues array, as well as to
239     * enable shutdown. When used as a lock, it is normally only very
240     * briefly held, so is nearly always available after at most a
241     * brief spin, but we use a monitor-based backup strategy to
242     * block when needed.
243     *
244     * Recording WorkQueues. WorkQueues are recorded in the
245     * "workQueues" array that is created upon first use and expanded
246     * if necessary. Updates to the array while recording new workers
247     * and unrecording terminated ones are protected from each other
248     * by a lock but the array is otherwise concurrently readable, and
249     * accessed directly. To simplify index-based operations, the
250     * array size is always a power of two, and all readers must
251     * tolerate null slots. Worker queues are at odd indices. Shared
252     * (submission) queues are at even indices, up to a maximum of 64
253     * slots, to limit growth even if array needs to expand to add
254     * more workers. Grouping them together in this way simplifies and
255     * speeds up task scanning.
256     *
257     * All worker thread creation is on-demand, triggered by task
258     * submissions, replacement of terminated workers, and/or
259     * compensation for blocked workers. However, all other support
260     * code is set up to work with other policies. To ensure that we
261     * do not hold on to worker references that would prevent GC, ALL
262     * accesses to workQueues are via indices into the workQueues
263     * array (which is one source of some of the messy code
264     * constructions here). In essence, the workQueues array serves as
265     * a weak reference mechanism. Thus for example the wait queue
266     * field of ctl stores indices, not references. Access to the
267     * workQueues in associated methods (for example signalWork) must
268     * both index-check and null-check the IDs. All such accesses
269     * ignore bad IDs by returning out early from what they are doing,
270     * since this can only be associated with termination, in which
271     * case it is OK to give up. All uses of the workQueues array
272     * also check that it is non-null (even if previously
273     * non-null). This allows nulling during termination, which is
274     * currently not necessary, but remains an option for
275     * resource-revocation-based shutdown schemes. It also helps
276     * reduce JIT issuance of uncommon-trap code, which tends to
277     * unnecessarily complicate control flow in some methods.
278     *
279     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280     * let workers spin indefinitely scanning for tasks when none can
281     * be found immediately, and we cannot start/resume workers unless
282     * there appear to be tasks available. On the other hand, we must
283     * quickly prod them into action when new tasks are submitted or
284     * generated. In many usages, ramp-up time to activate workers is
285     * the main limiting factor in overall performance (this is
286     * compounded at program start-up by JIT compilation and
287     * allocation). So we try to streamline this as much as possible.
288     * We park/unpark workers after placing in an event wait queue
289     * when they cannot find work. This "queue" is actually a simple
290     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291     * counter value (that reflects the number of times a worker has
292     * been inactivated) to avoid ABA effects (we need only as many
293     * version numbers as worker threads). Successors are held in
294     * field WorkQueue.nextWait. Queuing deals with several intrinsic
295     * races, mainly that a task-producing thread can miss seeing (and
296     * signalling) another thread that gave up looking for work but
297     * has not yet entered the wait queue. We solve this by requiring
298     * a full sweep of all workers (via repeated calls to method
299     * scan()) both before and after a newly waiting worker is added
300     * to the wait queue. During a rescan, the worker might release
301     * some other queued worker rather than itself, which has the same
302     * net effect. Because enqueued workers may actually be rescanning
303     * rather than waiting, we set and clear the "parker" field of
304     * WorkQueues to reduce unnecessary calls to unpark. (This
305     * requires a secondary recheck to avoid missed signals.) Note
306     * the unusual conventions about Thread.interrupts surrounding
307     * parking and other blocking: Because interrupts are used solely
308     * to alert threads to check termination, which is checked anyway
309     * upon blocking, we clear status (using Thread.interrupted)
310     * before any call to park, so that park does not immediately
311     * return due to status being set via some other unrelated call to
312     * interrupt in user code.
313     *
314     * Signalling. We create or wake up workers only when there
315     * appears to be at least one task they might be able to find and
316     * execute. However, many other threads may notice the same task
317     * and each signal to wake up a thread that might take it. So in
318     * general, pools will be over-signalled. When a submission is
319     * added or another worker adds a task to a queue that has fewer
320     * than two tasks, they signal waiting workers (or trigger
321     * creation of new ones if fewer than the given parallelism level
322     * -- signalWork), and may leave a hint to the unparked worker to
323     * help signal others upon wakeup). These primary signals are
324     * buttressed by others (see method helpSignal) whenever other
325     * threads scan for work or do not have a task to process. On
326     * most platforms, signalling (unpark) overhead time is noticeably
327     * long, and the time between signalling a thread and it actually
328     * making progress can be very noticeably long, so it is worth
329     * offloading these delays from critical paths as much as
330     * possible.
331     *
332     * Trimming workers. To release resources after periods of lack of
333     * use, a worker starting to wait when the pool is quiescent will
334     * time out and terminate if the pool has remained quiescent for a
335     * given period -- a short period if there are more threads than
336     * parallelism, longer as the number of threads decreases. This
337     * will slowly propagate, eventually terminating all workers after
338     * periods of non-use.
339     *
340     * Shutdown and Termination. A call to shutdownNow atomically sets
341     * a plock bit and then (non-atomically) sets each worker's
342     * qlock status, cancels all unprocessed tasks, and wakes up
343     * all waiting workers. Detecting whether termination should
344     * commence after a non-abrupt shutdown() call requires more work
345     * and bookkeeping. We need consensus about quiescence (i.e., that
346     * there is no more work). The active count provides a primary
347     * indication but non-abrupt shutdown still requires a rechecking
348     * scan for any workers that are inactive but not queued.
349     *
350     * Joining Tasks
351     * =============
352     *
353     * Any of several actions may be taken when one worker is waiting
354     * to join a task stolen (or always held) by another. Because we
355     * are multiplexing many tasks on to a pool of workers, we can't
356     * just let them block (as in Thread.join). We also cannot just
357     * reassign the joiner's run-time stack with another and replace
358     * it later, which would be a form of "continuation", that even if
359     * possible is not necessarily a good idea since we sometimes need
360     * both an unblocked task and its continuation to progress.
361     * Instead we combine two tactics:
362     *
363     * Helping: Arranging for the joiner to execute some task that it
364     * would be running if the steal had not occurred.
365     *
366     * Compensating: Unless there are already enough live threads,
367     * method tryCompensate() may create or re-activate a spare
368     * thread to compensate for blocked joiners until they unblock.
369     *
370     * A third form (implemented in tryRemoveAndExec) amounts to
371     * helping a hypothetical compensator: If we can readily tell that
372     * a possible action of a compensator is to steal and execute the
373     * task being joined, the joining thread can do so directly,
374     * without the need for a compensation thread (although at the
375     * expense of larger run-time stacks, but the tradeoff is
376     * typically worthwhile).
377     *
378     * The ManagedBlocker extension API can't use helping so relies
379     * only on compensation in method awaitBlocker.
380     *
381     * The algorithm in tryHelpStealer entails a form of "linear"
382     * helping: Each worker records (in field currentSteal) the most
383     * recent task it stole from some other worker. Plus, it records
384     * (in field currentJoin) the task it is currently actively
385     * joining. Method tryHelpStealer uses these markers to try to
386     * find a worker to help (i.e., steal back a task from and execute
387     * it) that could hasten completion of the actively joined task.
388     * In essence, the joiner executes a task that would be on its own
389     * local deque had the to-be-joined task not been stolen. This may
390     * be seen as a conservative variant of the approach in Wagner &
391     * Calder "Leapfrogging: a portable technique for implementing
392     * efficient futures" SIGPLAN Notices, 1993
393     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
394     * that: (1) We only maintain dependency links across workers upon
395     * steals, rather than use per-task bookkeeping. This sometimes
396     * requires a linear scan of workQueues array to locate stealers,
397     * but often doesn't because stealers leave hints (that may become
398     * stale/wrong) of where to locate them. It is only a hint
399     * because a worker might have had multiple steals and the hint
400     * records only one of them (usually the most current). Hinting
401     * isolates cost to when it is needed, rather than adding to
402     * per-task overhead. (2) It is "shallow", ignoring nesting and
403     * potentially cyclic mutual steals. (3) It is intentionally
404     * racy: field currentJoin is updated only while actively joining,
405     * which means that we miss links in the chain during long-lived
406     * tasks, GC stalls etc (which is OK since blocking in such cases
407     * is usually a good idea). (4) We bound the number of attempts
408     * to find work (see MAX_HELP) and fall back to suspending the
409     * worker and if necessary replacing it with another.
410     *
411     * Helping actions for CountedCompleters are much simpler: Method
412     * helpComplete can take and execute any task with the same root
413     * as the task being waited on. However, this still entails some
414     * traversal of completer chains, so is less efficient than using
415     * CountedCompleters without explicit joins.
416     *
417     * It is impossible to keep exactly the target parallelism number
418     * of threads running at any given time. Determining the
419     * existence of conservatively safe helping targets, the
420     * availability of already-created spares, and the apparent need
421     * to create new spares are all racy, so we rely on multiple
422     * retries of each. Compensation in the apparent absence of
423     * helping opportunities is challenging to control on JVMs, where
424     * GC and other activities can stall progress of tasks that in
425     * turn stall out many other dependent tasks, without us being
426     * able to determine whether they will ever require compensation.
427     * Even though work-stealing otherwise encounters little
428     * degradation in the presence of more threads than cores,
429     * aggressively adding new threads in such cases entails risk of
430     * unwanted positive feedback control loops in which more threads
431     * cause more dependent stalls (as well as delayed progress of
432     * unblocked threads to the point that we know they are available)
433     * leading to more situations requiring more threads, and so
434     * on. This aspect of control can be seen as an (analytically
435     * intractable) game with an opponent that may choose the worst
436     * (for us) active thread to stall at any time. We take several
437     * precautions to bound losses (and thus bound gains), mainly in
438     * methods tryCompensate and awaitJoin.
439     *
440     * Common Pool
441     * ===========
442     *
443     * The static commonPool always exists after static
444     * initialization. Since it (or any other created pool) need
445     * never be used, we minimize initial construction overhead and
446     * footprint to the setup of about a dozen fields, with no nested
447     * allocation. Most bootstrapping occurs within method
448     * fullExternalPush during the first submission to the pool.
449     *
450     * When external threads submit to the common pool, they can
451     * perform some subtask processing (see externalHelpJoin and
452     * related methods). We do not need to record whether these
453     * submissions are to the common pool -- if not, externalHelpJoin
454     * returns quickly (at the most helping to signal some common pool
455     * workers). These submitters would otherwise be blocked waiting
456     * for completion, so the extra effort (with liberally sprinkled
457     * task status checks) in inapplicable cases amounts to an odd
458     * form of limited spin-wait before blocking in ForkJoinTask.join.
459     *
460     * Style notes
461     * ===========
462     *
463     * There is a lot of representation-level coupling among classes
464     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
465     * fields of WorkQueue maintain data structures managed by
466     * ForkJoinPool, so are directly accessed. There is little point
467     * trying to reduce this, since any associated future changes in
468     * representations will need to be accompanied by algorithmic
469     * changes anyway. Several methods intrinsically sprawl because
470     * they must accumulate sets of consistent reads of volatiles held
471     * in local variables. Methods signalWork() and scan() are the
472     * main bottlenecks, so are especially heavily
473     * micro-optimized/mangled. There are lots of inline assignments
474     * (of form "while ((local = field) != 0)") which are usually the
475     * simplest way to ensure the required read orderings (which are
476     * sometimes critical). This leads to a "C"-like style of listing
477     * declarations of these locals at the heads of methods or blocks.
478     * There are several occurrences of the unusual "do {} while
479     * (!cas...)" which is the simplest way to force an update of a
480     * CAS'ed variable. There are also other coding oddities (including
481     * several unnecessary-looking hoisted null checks) that help
482     * some methods perform reasonably even when interpreted (not
483     * compiled).
484     *
485     * The order of declarations in this file is:
486     * (1) Static utility functions
487     * (2) Nested (static) classes
488     * (3) Static fields
489     * (4) Fields, along with constants used when unpacking some of them
490     * (5) Internal control methods
491     * (6) Callbacks and other support for ForkJoinTask methods
492     * (7) Exported methods
493     * (8) Static block initializing statics in minimally dependent order
494     */
495    
496     // Static utilities
497    
498     /**
499     * If there is a security manager, makes sure caller has
500     * permission to modify threads.
501     */
502     private static void checkPermission() {
503     SecurityManager security = System.getSecurityManager();
504     if (security != null)
505     security.checkPermission(modifyThreadPermission);
506     }
507    
508     // Nested classes
509    
510     /**
511     * Factory for creating new {@link ForkJoinWorkerThread}s.
512     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
513     * for {@code ForkJoinWorkerThread} subclasses that extend base
514     * functionality or initialize threads with different contexts.
515     */
516     public static interface ForkJoinWorkerThreadFactory {
517     /**
518     * Returns a new worker thread operating in the given pool.
519     *
520     * @param pool the pool this thread works in
521     * @throws NullPointerException if the pool is null
522     */
523     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
524     }
525    
526     /**
527     * Default ForkJoinWorkerThreadFactory implementation; creates a
528     * new ForkJoinWorkerThread.
529     */
530     static final class DefaultForkJoinWorkerThreadFactory
531     implements ForkJoinWorkerThreadFactory {
532     public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533     return new ForkJoinWorkerThread(pool);
534     }
535     }
536    
537     /**
538     * Per-thread records for threads that submit to pools. Currently
539     * holds only pseudo-random seed / index that is used to choose
540     * submission queues in method externalPush. In the future, this may
541     * also incorporate a means to implement different task rejection
542     * and resubmission policies.
543     *
544     * Seeds for submitters and workers/workQueues work in basically
545     * the same way but are initialized and updated using slightly
546     * different mechanics. Both are initialized using the same
547     * approach as in class ThreadLocal, where successive values are
548     * unlikely to collide with previous values. Seeds are then
549     * randomly modified upon collisions using xorshifts, which
550     * requires a non-zero seed.
551     */
552     static final class Submitter {
553     int seed;
554     Submitter(int s) { seed = s; }
555     }
556    
557     /**
558     * Class for artificial tasks that are used to replace the target
559     * of local joins if they are removed from an interior queue slot
560     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
561     * actually do anything beyond having a unique identity.
562     */
563     static final class EmptyTask extends ForkJoinTask<Void> {
564     private static final long serialVersionUID = -7721805057305804111L;
565     EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
566     public final Void getRawResult() { return null; }
567     public final void setRawResult(Void x) {}
568     public final boolean exec() { return true; }
569     }
570    
571     /**
572     * Queues supporting work-stealing as well as external task
573     * submission. See above for main rationale and algorithms.
574     * Implementation relies heavily on "Unsafe" intrinsics
575     * and selective use of "volatile":
576     *
577     * Field "base" is the index (mod array.length) of the least valid
578     * queue slot, which is always the next position to steal (poll)
579     * from if nonempty. Reads and writes require volatile orderings
580     * but not CAS, because updates are only performed after slot
581     * CASes.
582     *
583     * Field "top" is the index (mod array.length) of the next queue
584     * slot to push to or pop from. It is written only by owner thread
585     * for push, or under lock for external/shared push, and accessed
586     * by other threads only after reading (volatile) base. Both top
587     * and base are allowed to wrap around on overflow, but (top -
588     * base) (or more commonly -(base - top) to force volatile read of
589     * base before top) still estimates size. The lock ("qlock") is
590     * forced to -1 on termination, causing all further lock attempts
591     * to fail. (Note: we don't need CAS for termination state because
592     * upon pool shutdown, all shared-queues will stop being used
593     * anyway.) Nearly all lock bodies are set up so that exceptions
594     * within lock bodies are "impossible" (modulo JVM errors that
595     * would cause failure anyway.)
596     *
597     * The array slots are read and written using the emulation of
598     * volatiles/atomics provided by Unsafe. Insertions must in
599     * general use putOrderedObject as a form of releasing store to
600     * ensure that all writes to the task object are ordered before
601     * its publication in the queue. All removals entail a CAS to
602     * null. The array is always a power of two. To ensure safety of
603     * Unsafe array operations, all accesses perform explicit null
604     * checks and implicit bounds checks via power-of-two masking.
605     *
606     * In addition to basic queuing support, this class contains
607     * fields described elsewhere to control execution. It turns out
608     * to work better memory-layout-wise to include them in this class
609     * rather than a separate class.
610     *
611     * Performance on most platforms is very sensitive to placement of
612     * instances of both WorkQueues and their arrays -- we absolutely
613     * do not want multiple WorkQueue instances or multiple queue
614     * arrays sharing cache lines. (It would be best for queue objects
615     * and their arrays to share, but there is nothing available to
616     * help arrange that). Unfortunately, because they are recorded
617     * in a common array, WorkQueue instances are often moved to be
618     * adjacent by garbage collectors. To reduce impact, we use field
619     * padding that works OK on common platforms; this effectively
620     * trades off slightly slower average field access for the sake of
621     * avoiding really bad worst-case access. (Until better JVM
622     * support is in place, this padding is dependent on transient
623     * properties of JVM field layout rules.) We also take care in
624     * allocating, sizing and resizing the array. Non-shared queue
625     * arrays are initialized by workers before use. Others are
626     * allocated on first use.
627     */
628     static final class WorkQueue {
629     /**
630     * Capacity of work-stealing queue array upon initialization.
631     * Must be a power of two; at least 4, but should be larger to
632     * reduce or eliminate cacheline sharing among queues.
633     * Currently, it is much larger, as a partial workaround for
634     * the fact that JVMs often place arrays in locations that
635     * share GC bookkeeping (especially cardmarks) such that
636     * per-write accesses encounter serious memory contention.
637     */
638     static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
639    
640     /**
641     * Maximum size for queue arrays. Must be a power of two less
642     * than or equal to 1 << (31 - width of array entry) to ensure
643     * lack of wraparound of index calculations, but defined to a
644     * value a bit less than this to help users trap runaway
645     * programs before saturating systems.
646     */
647     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
648    
649     // Heuristic padding to ameliorate unfortunate memory placements
650     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
651    
652     int seed; // for random scanning; initialize nonzero
653     volatile int eventCount; // encoded inactivation count; < 0 if inactive
654     int nextWait; // encoded record of next event waiter
655     int hint; // steal or signal hint (index)
656     int poolIndex; // index of this queue in pool (or 0)
657     final int mode; // 0: lifo, > 0: fifo, < 0: shared
658     int nsteals; // number of steals
659     volatile int qlock; // 1: locked, -1: terminate; else 0
660     volatile int base; // index of next slot for poll
661     int top; // index of next slot for push
662     ForkJoinTask<?>[] array; // the elements (initially unallocated)
663     final ForkJoinPool pool; // the containing pool (may be null)
664     final ForkJoinWorkerThread owner; // owning thread or null if shared
665     volatile Thread parker; // == owner during call to park; else null
666     volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
667     ForkJoinTask<?> currentSteal; // current non-local task being executed
668    
669     volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
670     volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
671    
672     WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
673     int seed) {
674     this.pool = pool;
675     this.owner = owner;
676     this.mode = mode;
677     this.seed = seed;
678     // Place indices in the center of array (that is not yet allocated)
679     base = top = INITIAL_QUEUE_CAPACITY >>> 1;
680     }
681    
682     /**
683     * Returns the approximate number of tasks in the queue.
684     */
685     final int queueSize() {
686     int n = base - top; // non-owner callers must read base first
687     return (n >= 0) ? 0 : -n; // ignore transient negative
688     }
689    
690     /**
691     * Provides a more accurate estimate of whether this queue has
692     * any tasks than does queueSize, by checking whether a
693     * near-empty queue has at least one unclaimed task.
694     */
695     final boolean isEmpty() {
696     ForkJoinTask<?>[] a; int m, s;
697     int n = base - (s = top);
698     return (n >= 0 ||
699     (n == -1 &&
700     ((a = array) == null ||
701     (m = a.length - 1) < 0 ||
702     U.getObject
703     (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
704     }
705    
706     /**
707     * Pushes a task. Call only by owner in unshared queues. (The
708     * shared-queue version is embedded in method externalPush.)
709     *
710     * @param task the task. Caller must ensure non-null.
711 jsr166 1.12 * @throws RejectedExecutionException if array cannot be resized
712 dl 1.1 */
713     final void push(ForkJoinTask<?> task) {
714     ForkJoinTask<?>[] a; ForkJoinPool p;
715     int s = top, m, n;
716     if ((a = array) != null) { // ignore if queue removed
717     int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
718     U.putOrderedObject(a, j, task);
719     if ((n = (top = s + 1) - base) <= 2) {
720     if ((p = pool) != null)
721     p.signalWork(this);
722     }
723     else if (n >= m)
724     growArray();
725     }
726     }
727    
728     /**
729     * Initializes or doubles the capacity of array. Call either
730     * by owner or with lock held -- it is OK for base, but not
731     * top, to move while resizings are in progress.
732     */
733     final ForkJoinTask<?>[] growArray() {
734     ForkJoinTask<?>[] oldA = array;
735     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
736     if (size > MAXIMUM_QUEUE_CAPACITY)
737     throw new RejectedExecutionException("Queue capacity exceeded");
738     int oldMask, t, b;
739     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
740     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
741     (t = top) - (b = base) > 0) {
742     int mask = size - 1;
743     do {
744     ForkJoinTask<?> x;
745     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
746     int j = ((b & mask) << ASHIFT) + ABASE;
747     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
748     if (x != null &&
749     U.compareAndSwapObject(oldA, oldj, x, null))
750     U.putObjectVolatile(a, j, x);
751     } while (++b != t);
752     }
753     return a;
754     }
755    
756     /**
757     * Takes next task, if one exists, in LIFO order. Call only
758     * by owner in unshared queues.
759     */
760     final ForkJoinTask<?> pop() {
761     ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
762     if ((a = array) != null && (m = a.length - 1) >= 0) {
763     for (int s; (s = top - 1) - base >= 0;) {
764     long j = ((m & s) << ASHIFT) + ABASE;
765     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
766     break;
767     if (U.compareAndSwapObject(a, j, t, null)) {
768     top = s;
769     return t;
770     }
771     }
772     }
773     return null;
774     }
775    
776     /**
777     * Takes a task in FIFO order if b is base of queue and a task
778     * can be claimed without contention. Specialized versions
779     * appear in ForkJoinPool methods scan and tryHelpStealer.
780     */
781     final ForkJoinTask<?> pollAt(int b) {
782     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
783     if ((a = array) != null) {
784     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
785     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
786     base == b &&
787     U.compareAndSwapObject(a, j, t, null)) {
788     base = b + 1;
789     return t;
790     }
791     }
792     return null;
793     }
794    
795     /**
796     * Takes next task, if one exists, in FIFO order.
797     */
798     final ForkJoinTask<?> poll() {
799     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
800     while ((b = base) - top < 0 && (a = array) != null) {
801     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
802     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
803     if (t != null) {
804     if (base == b &&
805     U.compareAndSwapObject(a, j, t, null)) {
806     base = b + 1;
807     return t;
808     }
809     }
810     else if (base == b) {
811     if (b + 1 == top)
812     break;
813     Thread.yield(); // wait for lagging update (very rare)
814     }
815     }
816     return null;
817     }
818    
819     /**
820     * Takes next task, if one exists, in order specified by mode.
821     */
822     final ForkJoinTask<?> nextLocalTask() {
823     return mode == 0 ? pop() : poll();
824     }
825    
826     /**
827     * Returns next task, if one exists, in order specified by mode.
828     */
829     final ForkJoinTask<?> peek() {
830     ForkJoinTask<?>[] a = array; int m;
831     if (a == null || (m = a.length - 1) < 0)
832     return null;
833     int i = mode == 0 ? top - 1 : base;
834     int j = ((i & m) << ASHIFT) + ABASE;
835     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
836     }
837    
838     /**
839     * Pops the given task only if it is at the current top.
840     * (A shared version is available only via FJP.tryExternalUnpush)
841     */
842     final boolean tryUnpush(ForkJoinTask<?> t) {
843     ForkJoinTask<?>[] a; int s;
844     if ((a = array) != null && (s = top) != base &&
845     U.compareAndSwapObject
846     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
847     top = s;
848     return true;
849     }
850     return false;
851     }
852    
853     /**
854     * Removes and cancels all known tasks, ignoring any exceptions.
855     */
856     final void cancelAll() {
857     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
858     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
859     for (ForkJoinTask<?> t; (t = poll()) != null; )
860     ForkJoinTask.cancelIgnoringExceptions(t);
861     }
862    
863     /**
864     * Computes next value for random probes. Scans don't require
865     * a very high quality generator, but also not a crummy one.
866     * Marsaglia xor-shift is cheap and works well enough. Note:
867     * This is manually inlined in its usages in ForkJoinPool to
868     * avoid writes inside busy scan loops.
869     */
870     final int nextSeed() {
871     int r = seed;
872     r ^= r << 13;
873     r ^= r >>> 17;
874     return seed = r ^= r << 5;
875     }
876    
877     // Specialized execution methods
878    
879     /**
880     * Pops and runs tasks until empty.
881     */
882     private void popAndExecAll() {
883     // A bit faster than repeated pop calls
884     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
885     while ((a = array) != null && (m = a.length - 1) >= 0 &&
886     (s = top - 1) - base >= 0 &&
887     (t = ((ForkJoinTask<?>)
888     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
889     != null) {
890     if (U.compareAndSwapObject(a, j, t, null)) {
891     top = s;
892     t.doExec();
893     }
894     }
895     }
896    
897     /**
898     * Polls and runs tasks until empty.
899     */
900     private void pollAndExecAll() {
901     for (ForkJoinTask<?> t; (t = poll()) != null;)
902     t.doExec();
903     }
904    
905     /**
906     * If present, removes from queue and executes the given task,
907     * or any other cancelled task. Returns (true) on any CAS
908     * or consistency check failure so caller can retry.
909     *
910 jsr166 1.15 * @return false if no progress can be made, else true
911 dl 1.1 */
912     final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
913     boolean stat = true, removed = false, empty = true;
914     ForkJoinTask<?>[] a; int m, s, b, n;
915     if ((a = array) != null && (m = a.length - 1) >= 0 &&
916     (n = (s = top) - (b = base)) > 0) {
917     for (ForkJoinTask<?> t;;) { // traverse from s to b
918     int j = ((--s & m) << ASHIFT) + ABASE;
919     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
920     if (t == null) // inconsistent length
921     break;
922     else if (t == task) {
923     if (s + 1 == top) { // pop
924     if (!U.compareAndSwapObject(a, j, task, null))
925     break;
926     top = s;
927     removed = true;
928     }
929     else if (base == b) // replace with proxy
930     removed = U.compareAndSwapObject(a, j, task,
931     new EmptyTask());
932     break;
933     }
934     else if (t.status >= 0)
935     empty = false;
936     else if (s + 1 == top) { // pop and throw away
937     if (U.compareAndSwapObject(a, j, t, null))
938     top = s;
939     break;
940     }
941     if (--n == 0) {
942     if (!empty && base == b)
943     stat = false;
944     break;
945     }
946     }
947     }
948     if (removed)
949     task.doExec();
950     return stat;
951     }
952    
953     /**
954     * Polls for and executes the given task or any other task in
955 jsr166 1.14 * its CountedCompleter computation.
956 dl 1.1 */
957     final boolean pollAndExecCC(ForkJoinTask<?> root) {
958     ForkJoinTask<?>[] a; int b; Object o;
959     outer: while ((b = base) - top < 0 && (a = array) != null) {
960     long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
961     if ((o = U.getObject(a, j)) == null ||
962     !(o instanceof CountedCompleter))
963     break;
964     for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
965     if (r == root) {
966     if (base == b &&
967     U.compareAndSwapObject(a, j, t, null)) {
968     base = b + 1;
969     t.doExec();
970     return true;
971     }
972     else
973     break; // restart
974     }
975     if ((r = r.completer) == null)
976     break outer; // not part of root computation
977     }
978     }
979     return false;
980     }
981    
982     /**
983     * Executes a top-level task and any local tasks remaining
984     * after execution.
985     */
986     final void runTask(ForkJoinTask<?> t) {
987     if (t != null) {
988     (currentSteal = t).doExec();
989     currentSteal = null;
990     ++nsteals;
991     if (base - top < 0) { // process remaining local tasks
992     if (mode == 0)
993     popAndExecAll();
994     else
995     pollAndExecAll();
996     }
997     }
998     }
999    
1000     /**
1001     * Executes a non-top-level (stolen) task.
1002     */
1003     final void runSubtask(ForkJoinTask<?> t) {
1004     if (t != null) {
1005     ForkJoinTask<?> ps = currentSteal;
1006     (currentSteal = t).doExec();
1007     currentSteal = ps;
1008     }
1009     }
1010    
1011     /**
1012     * Returns true if owned and not known to be blocked.
1013     */
1014     final boolean isApparentlyUnblocked() {
1015     Thread wt; Thread.State s;
1016     return (eventCount >= 0 &&
1017     (wt = owner) != null &&
1018     (s = wt.getState()) != Thread.State.BLOCKED &&
1019     s != Thread.State.WAITING &&
1020     s != Thread.State.TIMED_WAITING);
1021     }
1022    
1023     // Unsafe mechanics
1024     private static final sun.misc.Unsafe U;
1025     private static final long QLOCK;
1026     private static final int ABASE;
1027     private static final int ASHIFT;
1028     static {
1029     try {
1030     U = sun.misc.Unsafe.getUnsafe();
1031     Class<?> k = WorkQueue.class;
1032     Class<?> ak = ForkJoinTask[].class;
1033     QLOCK = U.objectFieldOffset
1034     (k.getDeclaredField("qlock"));
1035     ABASE = U.arrayBaseOffset(ak);
1036 jsr166 1.8 int scale = U.arrayIndexScale(ak);
1037     if ((scale & (scale - 1)) != 0)
1038     throw new Error("data type scale not a power of two");
1039     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1040 dl 1.1 } catch (Exception e) {
1041     throw new Error(e);
1042     }
1043     }
1044     }
1045    
1046     // static fields (initialized in static initializer below)
1047    
1048     /**
1049     * Creates a new ForkJoinWorkerThread. This factory is used unless
1050     * overridden in ForkJoinPool constructors.
1051     */
1052     public static final ForkJoinWorkerThreadFactory
1053     defaultForkJoinWorkerThreadFactory;
1054    
1055     /**
1056     * Per-thread submission bookkeeping. Shared across all pools
1057     * to reduce ThreadLocal pollution and because random motion
1058     * to avoid contention in one pool is likely to hold for others.
1059     * Lazily initialized on first submission (but null-checked
1060     * in other contexts to avoid unnecessary initialization).
1061     */
1062     static final ThreadLocal<Submitter> submitters;
1063    
1064     /**
1065     * Permission required for callers of methods that may start or
1066     * kill threads.
1067     */
1068     private static final RuntimePermission modifyThreadPermission;
1069    
1070     /**
1071     * Common (static) pool. Non-null for public use unless a static
1072     * construction exception, but internal usages null-check on use
1073     * to paranoically avoid potential initialization circularities
1074     * as well as to simplify generated code.
1075     */
1076     static final ForkJoinPool commonPool;
1077    
1078     /**
1079     * Common pool parallelism. Must equal commonPool.parallelism.
1080     */
1081     static final int commonPoolParallelism;
1082    
1083     /**
1084     * Sequence number for creating workerNamePrefix.
1085     */
1086     private static int poolNumberSequence;
1087    
1088     /**
1089 jsr166 1.2 * Returns the next sequence number. We don't expect this to
1090     * ever contend, so use simple builtin sync.
1091 dl 1.1 */
1092     private static final synchronized int nextPoolId() {
1093     return ++poolNumberSequence;
1094     }
1095    
1096     // static constants
1097    
1098     /**
1099     * Initial timeout value (in nanoseconds) for the thread
1100     * triggering quiescence to park waiting for new work. On timeout,
1101     * the thread will instead try to shrink the number of
1102     * workers. The value should be large enough to avoid overly
1103     * aggressive shrinkage during most transient stalls (long GCs
1104     * etc).
1105     */
1106     private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1107    
1108     /**
1109     * Timeout value when there are more threads than parallelism level
1110     */
1111     private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1112    
1113     /**
1114     * Tolerance for idle timeouts, to cope with timer undershoots
1115     */
1116     private static final long TIMEOUT_SLOP = 2000000L; // 20ms
1117    
1118     /**
1119     * The maximum stolen->joining link depth allowed in method
1120     * tryHelpStealer. Must be a power of two. Depths for legitimate
1121     * chains are unbounded, but we use a fixed constant to avoid
1122     * (otherwise unchecked) cycles and to bound staleness of
1123     * traversal parameters at the expense of sometimes blocking when
1124     * we could be helping.
1125     */
1126     private static final int MAX_HELP = 64;
1127    
1128     /**
1129     * Increment for seed generators. See class ThreadLocal for
1130     * explanation.
1131     */
1132     private static final int SEED_INCREMENT = 0x61c88647;
1133    
1134 jsr166 1.17 /*
1135 dl 1.1 * Bits and masks for control variables
1136     *
1137     * Field ctl is a long packed with:
1138     * AC: Number of active running workers minus target parallelism (16 bits)
1139     * TC: Number of total workers minus target parallelism (16 bits)
1140     * ST: true if pool is terminating (1 bit)
1141     * EC: the wait count of top waiting thread (15 bits)
1142     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1143     *
1144     * When convenient, we can extract the upper 32 bits of counts and
1145     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1146     * (int)ctl. The ec field is never accessed alone, but always
1147     * together with id and st. The offsets of counts by the target
1148     * parallelism and the positionings of fields makes it possible to
1149     * perform the most common checks via sign tests of fields: When
1150     * ac is negative, there are not enough active workers, when tc is
1151     * negative, there are not enough total workers, and when e is
1152     * negative, the pool is terminating. To deal with these possibly
1153     * negative fields, we use casts in and out of "short" and/or
1154     * signed shifts to maintain signedness.
1155     *
1156     * When a thread is queued (inactivated), its eventCount field is
1157     * set negative, which is the only way to tell if a worker is
1158     * prevented from executing tasks, even though it must continue to
1159     * scan for them to avoid queuing races. Note however that
1160     * eventCount updates lag releases so usage requires care.
1161     *
1162     * Field plock is an int packed with:
1163     * SHUTDOWN: true if shutdown is enabled (1 bit)
1164     * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1165     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1166     *
1167     * The sequence number enables simple consistency checks:
1168     * Staleness of read-only operations on the workQueues array can
1169     * be checked by comparing plock before vs after the reads.
1170     */
1171    
1172     // bit positions/shifts for fields
1173     private static final int AC_SHIFT = 48;
1174     private static final int TC_SHIFT = 32;
1175     private static final int ST_SHIFT = 31;
1176     private static final int EC_SHIFT = 16;
1177    
1178     // bounds
1179     private static final int SMASK = 0xffff; // short bits
1180     private static final int MAX_CAP = 0x7fff; // max #workers - 1
1181     private static final int EVENMASK = 0xfffe; // even short bits
1182     private static final int SQMASK = 0x007e; // max 64 (even) slots
1183     private static final int SHORT_SIGN = 1 << 15;
1184     private static final int INT_SIGN = 1 << 31;
1185    
1186     // masks
1187     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1188     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1189     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1190    
1191     // units for incrementing and decrementing
1192     private static final long TC_UNIT = 1L << TC_SHIFT;
1193     private static final long AC_UNIT = 1L << AC_SHIFT;
1194    
1195     // masks and units for dealing with u = (int)(ctl >>> 32)
1196     private static final int UAC_SHIFT = AC_SHIFT - 32;
1197     private static final int UTC_SHIFT = TC_SHIFT - 32;
1198     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1199     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1200     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1201     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1202    
1203     // masks and units for dealing with e = (int)ctl
1204     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1205     private static final int E_SEQ = 1 << EC_SHIFT;
1206    
1207     // plock bits
1208     private static final int SHUTDOWN = 1 << 31;
1209     private static final int PL_LOCK = 2;
1210     private static final int PL_SIGNAL = 1;
1211     private static final int PL_SPINS = 1 << 8;
1212    
1213     // access mode for WorkQueue
1214     static final int LIFO_QUEUE = 0;
1215     static final int FIFO_QUEUE = 1;
1216     static final int SHARED_QUEUE = -1;
1217    
1218     // bounds for #steps in scan loop -- must be power 2 minus 1
1219     private static final int MIN_SCAN = 0x1ff; // cover estimation slop
1220     private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1221    
1222     // Instance fields
1223    
1224     /*
1225     * Field layout of this class tends to matter more than one would
1226     * like. Runtime layout order is only loosely related to
1227     * declaration order and may differ across JVMs, but the following
1228     * empirically works OK on current JVMs.
1229     */
1230    
1231     // Heuristic padding to ameliorate unfortunate memory placements
1232     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1233    
1234     volatile long stealCount; // collects worker counts
1235     volatile long ctl; // main pool control
1236     volatile int plock; // shutdown status and seqLock
1237     volatile int indexSeed; // worker/submitter index seed
1238     final int config; // mode and parallelism level
1239     WorkQueue[] workQueues; // main registry
1240     final ForkJoinWorkerThreadFactory factory;
1241     final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1242     final String workerNamePrefix; // to create worker name string
1243    
1244     volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1245     volatile Object pad18, pad19, pad1a, pad1b;
1246    
1247 jsr166 1.11 /**
1248 dl 1.1 * Acquires the plock lock to protect worker array and related
1249     * updates. This method is called only if an initial CAS on plock
1250 jsr166 1.7 * fails. This acts as a spinlock for normal cases, but falls back
1251 dl 1.1 * to builtin monitor to block when (rarely) needed. This would be
1252     * a terrible idea for a highly contended lock, but works fine as
1253     * a more conservative alternative to a pure spinlock.
1254     */
1255     private int acquirePlock() {
1256     int spins = PL_SPINS, r = 0, ps, nps;
1257     for (;;) {
1258     if (((ps = plock) & PL_LOCK) == 0 &&
1259     U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1260     return nps;
1261     else if (r == 0) { // randomize spins if possible
1262     Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1263     if ((t instanceof ForkJoinWorkerThread) &&
1264     (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1265     r = w.seed;
1266     else if ((z = submitters.get()) != null)
1267     r = z.seed;
1268     else
1269     r = 1;
1270     }
1271     else if (spins >= 0) {
1272     r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1273     if (r >= 0)
1274     --spins;
1275     }
1276     else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1277     synchronized (this) {
1278     if ((plock & PL_SIGNAL) != 0) {
1279     try {
1280     wait();
1281     } catch (InterruptedException ie) {
1282     try {
1283     Thread.currentThread().interrupt();
1284     } catch (SecurityException ignore) {
1285     }
1286     }
1287     }
1288     else
1289     notifyAll();
1290     }
1291     }
1292     }
1293     }
1294    
1295     /**
1296     * Unlocks and signals any thread waiting for plock. Called only
1297     * when CAS of seq value for unlock fails.
1298     */
1299     private void releasePlock(int ps) {
1300     plock = ps;
1301     synchronized (this) { notifyAll(); }
1302     }
1303    
1304     /**
1305     * Performs secondary initialization, called when plock is zero.
1306     * Creates workQueue array and sets plock to a valid value. The
1307     * lock body must be exception-free (so no try/finally) so we
1308     * optimistically allocate new array outside the lock and throw
1309     * away if (very rarely) not needed. (A similar tactic is used in
1310     * fullExternalPush.) Because the plock seq value can eventually
1311     * wrap around zero, this method harmlessly fails to reinitialize
1312     * if workQueues exists, while still advancing plock.
1313     *
1314     * Additionally tries to create the first worker.
1315     */
1316     private void initWorkers() {
1317     WorkQueue[] ws, nws; int ps;
1318     int p = config & SMASK; // find power of two table size
1319     int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1320     n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1321     n = (n + 1) << 1;
1322     if ((ws = workQueues) == null || ws.length == 0)
1323     nws = new WorkQueue[n];
1324     else
1325     nws = null;
1326     if (((ps = plock) & PL_LOCK) != 0 ||
1327     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1328     ps = acquirePlock();
1329     if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1330     workQueues = nws;
1331     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1332     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1333     releasePlock(nps);
1334     tryAddWorker();
1335     }
1336    
1337     /**
1338     * Tries to create and start one worker if fewer than target
1339     * parallelism level exist. Adjusts counts etc on failure.
1340     */
1341     private void tryAddWorker() {
1342     long c; int u;
1343     while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1344     (u & SHORT_SIGN) != 0 && (int)c == 0) {
1345     long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1346     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1347     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1348     ForkJoinWorkerThreadFactory fac;
1349     Throwable ex = null;
1350     ForkJoinWorkerThread wt = null;
1351     try {
1352     if ((fac = factory) != null &&
1353     (wt = fac.newThread(this)) != null) {
1354     wt.start();
1355     break;
1356     }
1357     } catch (Throwable e) {
1358     ex = e;
1359     }
1360     deregisterWorker(wt, ex);
1361     break;
1362     }
1363     }
1364     }
1365    
1366     // Registering and deregistering workers
1367    
1368     /**
1369     * Callback from ForkJoinWorkerThread to establish and record its
1370     * WorkQueue. To avoid scanning bias due to packing entries in
1371     * front of the workQueues array, we treat the array as a simple
1372     * power-of-two hash table using per-thread seed as hash,
1373     * expanding as needed.
1374     *
1375     * @param wt the worker thread
1376     * @return the worker's queue
1377     */
1378     final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1379     Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1380     wt.setDaemon(true);
1381     if ((handler = ueh) != null)
1382     wt.setUncaughtExceptionHandler(handler);
1383     do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1384     s += SEED_INCREMENT) ||
1385     s == 0); // skip 0
1386     WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1387     if (((ps = plock) & PL_LOCK) != 0 ||
1388     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1389     ps = acquirePlock();
1390     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1391     try {
1392     if ((ws = workQueues) != null) { // skip if shutting down
1393     int n = ws.length, m = n - 1;
1394     int r = (s << 1) | 1; // use odd-numbered indices
1395     if (ws[r &= m] != null) { // collision
1396     int probes = 0; // step by approx half size
1397     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1398     while (ws[r = (r + step) & m] != null) {
1399     if (++probes >= n) {
1400     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1401     m = n - 1;
1402     probes = 0;
1403     }
1404     }
1405     }
1406     w.eventCount = w.poolIndex = r; // volatile write orders
1407     ws[r] = w;
1408     }
1409     } finally {
1410     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1411     releasePlock(nps);
1412     }
1413     wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1414     return w;
1415     }
1416    
1417     /**
1418     * Final callback from terminating worker, as well as upon failure
1419     * to construct or start a worker. Removes record of worker from
1420     * array, and adjusts counts. If pool is shutting down, tries to
1421     * complete termination.
1422     *
1423     * @param wt the worker thread or null if construction failed
1424     * @param ex the exception causing failure, or null if none
1425     */
1426     final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1427     WorkQueue w = null;
1428     if (wt != null && (w = wt.workQueue) != null) {
1429     int ps;
1430     w.qlock = -1; // ensure set
1431     long ns = w.nsteals, sc; // collect steal count
1432     do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1433     sc = stealCount, sc + ns));
1434     if (((ps = plock) & PL_LOCK) != 0 ||
1435     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1436     ps = acquirePlock();
1437     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1438     try {
1439     int idx = w.poolIndex;
1440     WorkQueue[] ws = workQueues;
1441     if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1442     ws[idx] = null;
1443     } finally {
1444     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1445     releasePlock(nps);
1446     }
1447     }
1448    
1449     long c; // adjust ctl counts
1450     do {} while (!U.compareAndSwapLong
1451     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1452     ((c - TC_UNIT) & TC_MASK) |
1453     (c & ~(AC_MASK|TC_MASK)))));
1454    
1455     if (!tryTerminate(false, false) && w != null && w.array != null) {
1456     w.cancelAll(); // cancel remaining tasks
1457     WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1458     while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1459     if (e > 0) { // activate or create replacement
1460     if ((ws = workQueues) == null ||
1461     (i = e & SMASK) >= ws.length ||
1462     (v = ws[i]) != null)
1463     break;
1464     long nc = (((long)(v.nextWait & E_MASK)) |
1465     ((long)(u + UAC_UNIT) << 32));
1466     if (v.eventCount != (e | INT_SIGN))
1467     break;
1468     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1469     v.eventCount = (e + E_SEQ) & E_MASK;
1470     if ((p = v.parker) != null)
1471     U.unpark(p);
1472     break;
1473     }
1474     }
1475     else {
1476     if ((short)u < 0)
1477     tryAddWorker();
1478     break;
1479     }
1480     }
1481     }
1482     if (ex == null) // help clean refs on way out
1483     ForkJoinTask.helpExpungeStaleExceptions();
1484     else // rethrow
1485     ForkJoinTask.rethrow(ex);
1486     }
1487    
1488     // Submissions
1489    
1490     /**
1491     * Unless shutting down, adds the given task to a submission queue
1492     * at submitter's current queue index (modulo submission
1493     * range). Only the most common path is directly handled in this
1494     * method. All others are relayed to fullExternalPush.
1495     *
1496     * @param task the task. Caller must ensure non-null.
1497     */
1498     final void externalPush(ForkJoinTask<?> task) {
1499     WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1500     if ((z = submitters.get()) != null && plock > 0 &&
1501     (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1502     (q = ws[m & z.seed & SQMASK]) != null &&
1503     U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1504     int b = q.base, s = q.top, n, an;
1505     if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1506     int j = (((an - 1) & s) << ASHIFT) + ABASE;
1507     U.putOrderedObject(a, j, task);
1508     q.top = s + 1; // push on to deque
1509     q.qlock = 0;
1510     if (n <= 2)
1511     signalWork(q);
1512     return;
1513     }
1514     q.qlock = 0;
1515     }
1516     fullExternalPush(task);
1517     }
1518    
1519     /**
1520     * Full version of externalPush. This method is called, among
1521     * other times, upon the first submission of the first task to the
1522     * pool, so must perform secondary initialization (via
1523     * initWorkers). It also detects first submission by an external
1524     * thread by looking up its ThreadLocal, and creates a new shared
1525     * queue if the one at index if empty or contended. The plock lock
1526     * body must be exception-free (so no try/finally) so we
1527     * optimistically allocate new queues outside the lock and throw
1528     * them away if (very rarely) not needed.
1529     */
1530     private void fullExternalPush(ForkJoinTask<?> task) {
1531     int r = 0; // random index seed
1532     for (Submitter z = submitters.get();;) {
1533     WorkQueue[] ws; WorkQueue q; int ps, m, k;
1534     if (z == null) {
1535     if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1536     r += SEED_INCREMENT) && r != 0)
1537     submitters.set(z = new Submitter(r));
1538     }
1539     else if (r == 0) { // move to a different index
1540     r = z.seed;
1541     r ^= r << 13; // same xorshift as WorkQueues
1542     r ^= r >>> 17;
1543     z.seed = r ^ (r << 5);
1544     }
1545     else if ((ps = plock) < 0)
1546     throw new RejectedExecutionException();
1547     else if (ps == 0 || (ws = workQueues) == null ||
1548     (m = ws.length - 1) < 0)
1549     initWorkers();
1550     else if ((q = ws[k = r & m & SQMASK]) != null) {
1551     if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1552     ForkJoinTask<?>[] a = q.array;
1553     int s = q.top;
1554     boolean submitted = false;
1555     try { // locked version of push
1556     if ((a != null && a.length > s + 1 - q.base) ||
1557     (a = q.growArray()) != null) { // must presize
1558     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1559     U.putOrderedObject(a, j, task);
1560     q.top = s + 1;
1561     submitted = true;
1562     }
1563     } finally {
1564     q.qlock = 0; // unlock
1565     }
1566     if (submitted) {
1567     signalWork(q);
1568     return;
1569     }
1570     }
1571     r = 0; // move on failure
1572     }
1573     else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1574     q = new WorkQueue(this, null, SHARED_QUEUE, r);
1575     if (((ps = plock) & PL_LOCK) != 0 ||
1576     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1577     ps = acquirePlock();
1578     if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1579     ws[k] = q;
1580     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1581     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1582     releasePlock(nps);
1583     }
1584     else
1585     r = 0; // try elsewhere while lock held
1586     }
1587     }
1588    
1589     // Maintaining ctl counts
1590    
1591     /**
1592     * Increments active count; mainly called upon return from blocking.
1593     */
1594     final void incrementActiveCount() {
1595     long c;
1596     do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1597     }
1598    
1599     /**
1600     * Tries to create or activate a worker if too few are active.
1601     *
1602     * @param q the (non-null) queue holding tasks to be signalled
1603     */
1604     final void signalWork(WorkQueue q) {
1605     int hint = q.poolIndex;
1606     long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1607     while ((u = (int)((c = ctl) >>> 32)) < 0) {
1608     if ((e = (int)c) > 0) {
1609     if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1610     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1611     long nc = (((long)(w.nextWait & E_MASK)) |
1612     ((long)(u + UAC_UNIT) << 32));
1613     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1614     w.hint = hint;
1615     w.eventCount = (e + E_SEQ) & E_MASK;
1616     if ((p = w.parker) != null)
1617     U.unpark(p);
1618     break;
1619     }
1620     if (q.top - q.base <= 0)
1621     break;
1622     }
1623     else
1624     break;
1625     }
1626     else {
1627     if ((short)u < 0)
1628     tryAddWorker();
1629     break;
1630     }
1631     }
1632     }
1633    
1634     // Scanning for tasks
1635    
1636     /**
1637     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1638     */
1639     final void runWorker(WorkQueue w) {
1640     w.growArray(); // allocate queue
1641     do { w.runTask(scan(w)); } while (w.qlock >= 0);
1642     }
1643    
1644     /**
1645     * Scans for and, if found, returns one task, else possibly
1646     * inactivates the worker. This method operates on single reads of
1647     * volatile state and is designed to be re-invoked continuously,
1648     * in part because it returns upon detecting inconsistencies,
1649     * contention, or state changes that indicate possible success on
1650     * re-invocation.
1651     *
1652     * The scan searches for tasks across queues (starting at a random
1653     * index, and relying on registerWorker to irregularly scatter
1654     * them within array to avoid bias), checking each at least twice.
1655     * The scan terminates upon either finding a non-empty queue, or
1656     * completing the sweep. If the worker is not inactivated, it
1657     * takes and returns a task from this queue. Otherwise, if not
1658     * activated, it signals workers (that may include itself) and
1659     * returns so caller can retry. Also returns for true if the
1660     * worker array may have changed during an empty scan. On failure
1661     * to find a task, we take one of the following actions, after
1662     * which the caller will retry calling this method unless
1663     * terminated.
1664     *
1665     * * If pool is terminating, terminate the worker.
1666     *
1667     * * If not already enqueued, try to inactivate and enqueue the
1668     * worker on wait queue. Or, if inactivating has caused the pool
1669     * to be quiescent, relay to idleAwaitWork to possibly shrink
1670     * pool.
1671     *
1672     * * If already enqueued and none of the above apply, possibly
1673     * park awaiting signal, else lingering to help scan and signal.
1674     *
1675     * * If a non-empty queue discovered or left as a hint,
1676 jsr166 1.3 * help wake up other workers before return.
1677 dl 1.1 *
1678     * @param w the worker (via its WorkQueue)
1679     * @return a task or null if none found
1680     */
1681     private final ForkJoinTask<?> scan(WorkQueue w) {
1682     WorkQueue[] ws; int m;
1683     int ps = plock; // read plock before ws
1684     if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1685     int ec = w.eventCount; // ec is negative if inactive
1686     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1687     w.hint = -1; // update seed and clear hint
1688     int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1689     do {
1690     WorkQueue q; ForkJoinTask<?>[] a; int b;
1691     if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1692     (a = q.array) != null) { // probably nonempty
1693     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1694     ForkJoinTask<?> t = (ForkJoinTask<?>)
1695     U.getObjectVolatile(a, i);
1696     if (q.base == b && ec >= 0 && t != null &&
1697     U.compareAndSwapObject(a, i, t, null)) {
1698     if ((q.base = b + 1) - q.top < 0)
1699     signalWork(q);
1700     return t; // taken
1701     }
1702     else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1703     w.hint = (r + j) & m; // help signal below
1704     break; // cannot take
1705     }
1706     }
1707     } while (--j >= 0);
1708    
1709     int h, e, ns; long c, sc; WorkQueue q;
1710     if ((ns = w.nsteals) != 0) {
1711     if (U.compareAndSwapLong(this, STEALCOUNT,
1712     sc = stealCount, sc + ns))
1713     w.nsteals = 0; // collect steals and rescan
1714     }
1715     else if (plock != ps) // consistency check
1716     ; // skip
1717     else if ((e = (int)(c = ctl)) < 0)
1718     w.qlock = -1; // pool is terminating
1719     else {
1720     if ((h = w.hint) < 0) {
1721     if (ec >= 0) { // try to enqueue/inactivate
1722     long nc = (((long)ec |
1723     ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1724     w.nextWait = e; // link and mark inactive
1725     w.eventCount = ec | INT_SIGN;
1726     if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1727     w.eventCount = ec; // unmark on CAS failure
1728     else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1729     idleAwaitWork(w, nc, c);
1730     }
1731     else if (w.eventCount < 0 && !tryTerminate(false, false) &&
1732     ctl == c) { // block
1733     Thread wt = Thread.currentThread();
1734     Thread.interrupted(); // clear status
1735     U.putObject(wt, PARKBLOCKER, this);
1736     w.parker = wt; // emulate LockSupport.park
1737     if (w.eventCount < 0) // recheck
1738     U.park(false, 0L);
1739     w.parker = null;
1740     U.putObject(wt, PARKBLOCKER, null);
1741     }
1742     }
1743     if ((h >= 0 || (h = w.hint) >= 0) &&
1744     (ws = workQueues) != null && h < ws.length &&
1745     (q = ws[h]) != null) { // signal others before retry
1746     WorkQueue v; Thread p; int u, i, s;
1747     for (int n = (config & SMASK) >>> 1;;) {
1748     int idleCount = (w.eventCount < 0) ? 0 : -1;
1749     if (((s = idleCount - q.base + q.top) <= n &&
1750     (n = s) <= 0) ||
1751     (u = (int)((c = ctl) >>> 32)) >= 0 ||
1752     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1753     (v = ws[i]) == null)
1754     break;
1755     long nc = (((long)(v.nextWait & E_MASK)) |
1756     ((long)(u + UAC_UNIT) << 32));
1757     if (v.eventCount != (e | INT_SIGN) ||
1758     !U.compareAndSwapLong(this, CTL, c, nc))
1759     break;
1760     v.hint = h;
1761     v.eventCount = (e + E_SEQ) & E_MASK;
1762     if ((p = v.parker) != null)
1763     U.unpark(p);
1764     if (--n <= 0)
1765     break;
1766     }
1767     }
1768     }
1769     }
1770     return null;
1771     }
1772    
1773     /**
1774     * If inactivating worker w has caused the pool to become
1775     * quiescent, checks for pool termination, and, so long as this is
1776     * not the only worker, waits for event for up to a given
1777     * duration. On timeout, if ctl has not changed, terminates the
1778     * worker, which will in turn wake up another worker to possibly
1779     * repeat this process.
1780     *
1781     * @param w the calling worker
1782     * @param currentCtl the ctl value triggering possible quiescence
1783     * @param prevCtl the ctl value to restore if thread is terminated
1784     */
1785     private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1786     if (w != null && w.eventCount < 0 &&
1787     !tryTerminate(false, false) && (int)prevCtl != 0) {
1788     int dc = -(short)(currentCtl >>> TC_SHIFT);
1789     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1790     long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1791     Thread wt = Thread.currentThread();
1792     while (ctl == currentCtl) {
1793     Thread.interrupted(); // timed variant of version in scan()
1794     U.putObject(wt, PARKBLOCKER, this);
1795     w.parker = wt;
1796     if (ctl == currentCtl)
1797     U.park(false, parkTime);
1798     w.parker = null;
1799     U.putObject(wt, PARKBLOCKER, null);
1800     if (ctl != currentCtl)
1801     break;
1802     if (deadline - System.nanoTime() <= 0L &&
1803     U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1804     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1805     w.qlock = -1; // shrink
1806     break;
1807     }
1808     }
1809     }
1810     }
1811    
1812     /**
1813     * Scans through queues looking for work while joining a task; if
1814     * any present, signals. May return early if more signalling is
1815     * detectably unneeded.
1816     *
1817     * @param task return early if done
1818     * @param origin an index to start scan
1819     */
1820     private void helpSignal(ForkJoinTask<?> task, int origin) {
1821     WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1822     if (task != null && task.status >= 0 &&
1823     (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1824     (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1825     outer: for (int k = origin, j = m; j >= 0; --j) {
1826     WorkQueue q = ws[k++ & m];
1827     for (int n = m;;) { // limit to at most m signals
1828     if (task.status < 0)
1829     break outer;
1830     if (q == null ||
1831     ((s = -q.base + q.top) <= n && (n = s) <= 0))
1832     break;
1833     if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1834     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1835     (w = ws[i]) == null)
1836     break outer;
1837     long nc = (((long)(w.nextWait & E_MASK)) |
1838     ((long)(u + UAC_UNIT) << 32));
1839     if (w.eventCount != (e | INT_SIGN))
1840     break outer;
1841     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1842     w.eventCount = (e + E_SEQ) & E_MASK;
1843     if ((p = w.parker) != null)
1844     U.unpark(p);
1845     if (--n <= 0)
1846     break;
1847     }
1848     }
1849     }
1850     }
1851     }
1852    
1853     /**
1854     * Tries to locate and execute tasks for a stealer of the given
1855     * task, or in turn one of its stealers, Traces currentSteal ->
1856     * currentJoin links looking for a thread working on a descendant
1857     * of the given task and with a non-empty queue to steal back and
1858     * execute tasks from. The first call to this method upon a
1859     * waiting join will often entail scanning/search, (which is OK
1860     * because the joiner has nothing better to do), but this method
1861     * leaves hints in workers to speed up subsequent calls. The
1862     * implementation is very branchy to cope with potential
1863     * inconsistencies or loops encountering chains that are stale,
1864     * unknown, or so long that they are likely cyclic.
1865     *
1866     * @param joiner the joining worker
1867     * @param task the task to join
1868     * @return 0 if no progress can be made, negative if task
1869     * known complete, else positive
1870     */
1871     private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1872     int stat = 0, steps = 0; // bound to avoid cycles
1873     if (joiner != null && task != null) { // hoist null checks
1874     restart: for (;;) {
1875     ForkJoinTask<?> subtask = task; // current target
1876     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1877     WorkQueue[] ws; int m, s, h;
1878     if ((s = task.status) < 0) {
1879     stat = s;
1880     break restart;
1881     }
1882     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1883     break restart; // shutting down
1884     if ((v = ws[h = (j.hint | 1) & m]) == null ||
1885     v.currentSteal != subtask) {
1886     for (int origin = h;;) { // find stealer
1887     if (((h = (h + 2) & m) & 15) == 1 &&
1888     (subtask.status < 0 || j.currentJoin != subtask))
1889     continue restart; // occasional staleness check
1890     if ((v = ws[h]) != null &&
1891     v.currentSteal == subtask) {
1892     j.hint = h; // save hint
1893     break;
1894     }
1895     if (h == origin)
1896     break restart; // cannot find stealer
1897     }
1898     }
1899     for (;;) { // help stealer or descend to its stealer
1900     ForkJoinTask[] a; int b;
1901     if (subtask.status < 0) // surround probes with
1902     continue restart; // consistency checks
1903     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1904     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1905     ForkJoinTask<?> t =
1906     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1907     if (subtask.status < 0 || j.currentJoin != subtask ||
1908     v.currentSteal != subtask)
1909     continue restart; // stale
1910     stat = 1; // apparent progress
1911     if (t != null && v.base == b &&
1912     U.compareAndSwapObject(a, i, t, null)) {
1913     v.base = b + 1; // help stealer
1914     joiner.runSubtask(t);
1915     }
1916     else if (v.base == b && ++steps == MAX_HELP)
1917     break restart; // v apparently stalled
1918     }
1919     else { // empty -- try to descend
1920     ForkJoinTask<?> next = v.currentJoin;
1921     if (subtask.status < 0 || j.currentJoin != subtask ||
1922     v.currentSteal != subtask)
1923     continue restart; // stale
1924     else if (next == null || ++steps == MAX_HELP)
1925     break restart; // dead-end or maybe cyclic
1926     else {
1927     subtask = next;
1928     j = v;
1929     break;
1930     }
1931     }
1932     }
1933     }
1934     }
1935     }
1936     return stat;
1937     }
1938    
1939     /**
1940     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1941     * and run tasks within the target's computation.
1942     *
1943     * @param task the task to join
1944     * @param mode if shared, exit upon completing any task
1945     * if all workers are active
1946     */
1947     private int helpComplete(ForkJoinTask<?> task, int mode) {
1948     WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1949     if (task != null && (ws = workQueues) != null &&
1950     (m = ws.length - 1) >= 0) {
1951     for (int j = 1, origin = j;;) {
1952     if ((s = task.status) < 0)
1953     return s;
1954     if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1955     origin = j;
1956     if (mode == SHARED_QUEUE &&
1957     ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1958     break;
1959     }
1960     else if ((j = (j + 2) & m) == origin)
1961     break;
1962     }
1963     }
1964     return 0;
1965     }
1966    
1967     /**
1968     * Tries to decrement active count (sometimes implicitly) and
1969     * possibly release or create a compensating worker in preparation
1970     * for blocking. Fails on contention or termination. Otherwise,
1971     * adds a new thread if no idle workers are available and pool
1972     * may become starved.
1973     */
1974     final boolean tryCompensate() {
1975     int pc = config & SMASK, e, i, tc; long c;
1976     WorkQueue[] ws; WorkQueue w; Thread p;
1977     if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1978     if (e != 0 && (i = e & SMASK) < ws.length &&
1979     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1980     long nc = ((long)(w.nextWait & E_MASK) |
1981     (c & (AC_MASK|TC_MASK)));
1982     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1983     w.eventCount = (e + E_SEQ) & E_MASK;
1984     if ((p = w.parker) != null)
1985     U.unpark(p);
1986     return true; // replace with idle worker
1987     }
1988     }
1989     else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1990     (int)(c >> AC_SHIFT) + pc > 1) {
1991     long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1992     if (U.compareAndSwapLong(this, CTL, c, nc))
1993     return true; // no compensation
1994     }
1995     else if (tc + pc < MAX_CAP) {
1996     long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1997     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1998     ForkJoinWorkerThreadFactory fac;
1999     Throwable ex = null;
2000     ForkJoinWorkerThread wt = null;
2001     try {
2002     if ((fac = factory) != null &&
2003     (wt = fac.newThread(this)) != null) {
2004     wt.start();
2005     return true;
2006     }
2007     } catch (Throwable rex) {
2008     ex = rex;
2009     }
2010     deregisterWorker(wt, ex); // clean up and return false
2011     }
2012     }
2013     }
2014     return false;
2015     }
2016    
2017     /**
2018     * Helps and/or blocks until the given task is done.
2019     *
2020     * @param joiner the joining worker
2021     * @param task the task
2022     * @return task status on exit
2023     */
2024     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2025     int s = 0;
2026     if (joiner != null && task != null && (s = task.status) >= 0) {
2027     ForkJoinTask<?> prevJoin = joiner.currentJoin;
2028     joiner.currentJoin = task;
2029     do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2030     joiner.tryRemoveAndExec(task)); // process local tasks
2031     if (s >= 0 && (s = task.status) >= 0) {
2032     helpSignal(task, joiner.poolIndex);
2033     if ((s = task.status) >= 0 &&
2034     (task instanceof CountedCompleter))
2035     s = helpComplete(task, LIFO_QUEUE);
2036     }
2037     while (s >= 0 && (s = task.status) >= 0) {
2038     if ((!joiner.isEmpty() || // try helping
2039     (s = tryHelpStealer(joiner, task)) == 0) &&
2040     (s = task.status) >= 0) {
2041     helpSignal(task, joiner.poolIndex);
2042     if ((s = task.status) >= 0 && tryCompensate()) {
2043     if (task.trySetSignal() && (s = task.status) >= 0) {
2044     synchronized (task) {
2045     if (task.status >= 0) {
2046     try { // see ForkJoinTask
2047     task.wait(); // for explanation
2048     } catch (InterruptedException ie) {
2049     }
2050     }
2051     else
2052     task.notifyAll();
2053     }
2054     }
2055     long c; // re-activate
2056     do {} while (!U.compareAndSwapLong
2057     (this, CTL, c = ctl, c + AC_UNIT));
2058     }
2059     }
2060     }
2061     joiner.currentJoin = prevJoin;
2062     }
2063     return s;
2064     }
2065    
2066     /**
2067     * Stripped-down variant of awaitJoin used by timed joins. Tries
2068     * to help join only while there is continuous progress. (Caller
2069     * will then enter a timed wait.)
2070     *
2071     * @param joiner the joining worker
2072     * @param task the task
2073     */
2074     final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2075     int s;
2076     if (joiner != null && task != null && (s = task.status) >= 0) {
2077     ForkJoinTask<?> prevJoin = joiner.currentJoin;
2078     joiner.currentJoin = task;
2079     do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2080     joiner.tryRemoveAndExec(task));
2081     if (s >= 0 && (s = task.status) >= 0) {
2082     helpSignal(task, joiner.poolIndex);
2083     if ((s = task.status) >= 0 &&
2084     (task instanceof CountedCompleter))
2085     s = helpComplete(task, LIFO_QUEUE);
2086     }
2087     if (s >= 0 && joiner.isEmpty()) {
2088     do {} while (task.status >= 0 &&
2089     tryHelpStealer(joiner, task) > 0);
2090     }
2091     joiner.currentJoin = prevJoin;
2092     }
2093     }
2094    
2095     /**
2096     * Returns a (probably) non-empty steal queue, if one is found
2097     * during a random, then cyclic scan, else null. This method must
2098     * be retried by caller if, by the time it tries to use the queue,
2099     * it is empty.
2100     * @param r a (random) seed for scanning
2101     */
2102     private WorkQueue findNonEmptyStealQueue(int r) {
2103     for (WorkQueue[] ws;;) {
2104     int ps = plock, m, n;
2105     if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2106     return null;
2107     for (int j = (m + 1) << 2; ;) {
2108     WorkQueue q = ws[(((r + j) << 1) | 1) & m];
2109     if (q != null && (n = q.base - q.top) < 0) {
2110     if (n < -1)
2111     signalWork(q);
2112     return q;
2113     }
2114     else if (--j < 0) {
2115     if (plock == ps)
2116     return null;
2117     break;
2118     }
2119     }
2120     }
2121     }
2122    
2123     /**
2124     * Runs tasks until {@code isQuiescent()}. We piggyback on
2125     * active count ctl maintenance, but rather than blocking
2126     * when tasks cannot be found, we rescan until all others cannot
2127     * find tasks either.
2128     */
2129     final void helpQuiescePool(WorkQueue w) {
2130     for (boolean active = true;;) {
2131     ForkJoinTask<?> localTask; // exhaust local queue
2132     while ((localTask = w.nextLocalTask()) != null)
2133     localTask.doExec();
2134     // Similar to loop in scan(), but ignoring submissions
2135     WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2136     if (q != null) {
2137     ForkJoinTask<?> t; int b;
2138     if (!active) { // re-establish active count
2139     long c;
2140     active = true;
2141     do {} while (!U.compareAndSwapLong
2142     (this, CTL, c = ctl, c + AC_UNIT));
2143     }
2144     if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2145     w.runSubtask(t);
2146     }
2147     else {
2148     long c;
2149     if (active) { // decrement active count without queuing
2150     active = false;
2151     do {} while (!U.compareAndSwapLong
2152     (this, CTL, c = ctl, c -= AC_UNIT));
2153     }
2154     else
2155     c = ctl; // re-increment on exit
2156     if ((int)(c >> AC_SHIFT) + (config & SMASK) == 0) {
2157     do {} while (!U.compareAndSwapLong
2158     (this, CTL, c = ctl, c + AC_UNIT));
2159     break;
2160     }
2161     }
2162     }
2163     }
2164    
2165     /**
2166     * Gets and removes a local or stolen task for the given worker.
2167     *
2168     * @return a task, if available
2169     */
2170     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2171     for (ForkJoinTask<?> t;;) {
2172     WorkQueue q; int b;
2173     if ((t = w.nextLocalTask()) != null)
2174     return t;
2175     if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2176     return null;
2177     if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2178     return t;
2179     }
2180     }
2181    
2182     /**
2183     * Returns a cheap heuristic guide for task partitioning when
2184     * programmers, frameworks, tools, or languages have little or no
2185     * idea about task granularity. In essence by offering this
2186     * method, we ask users only about tradeoffs in overhead vs
2187     * expected throughput and its variance, rather than how finely to
2188     * partition tasks.
2189     *
2190     * In a steady state strict (tree-structured) computation, each
2191     * thread makes available for stealing enough tasks for other
2192     * threads to remain active. Inductively, if all threads play by
2193     * the same rules, each thread should make available only a
2194     * constant number of tasks.
2195     *
2196     * The minimum useful constant is just 1. But using a value of 1
2197     * would require immediate replenishment upon each steal to
2198     * maintain enough tasks, which is infeasible. Further,
2199     * partitionings/granularities of offered tasks should minimize
2200     * steal rates, which in general means that threads nearer the top
2201     * of computation tree should generate more than those nearer the
2202     * bottom. In perfect steady state, each thread is at
2203     * approximately the same level of computation tree. However,
2204     * producing extra tasks amortizes the uncertainty of progress and
2205     * diffusion assumptions.
2206     *
2207 jsr166 1.16 * So, users will want to use values larger (but not much larger)
2208 dl 1.1 * than 1 to both smooth over transient shortages and hedge
2209     * against uneven progress; as traded off against the cost of
2210     * extra task overhead. We leave the user to pick a threshold
2211     * value to compare with the results of this call to guide
2212     * decisions, but recommend values such as 3.
2213     *
2214     * When all threads are active, it is on average OK to estimate
2215     * surplus strictly locally. In steady-state, if one thread is
2216     * maintaining say 2 surplus tasks, then so are others. So we can
2217     * just use estimated queue length. However, this strategy alone
2218     * leads to serious mis-estimates in some non-steady-state
2219     * conditions (ramp-up, ramp-down, other stalls). We can detect
2220     * many of these by further considering the number of "idle"
2221     * threads, that are known to have zero queued tasks, so
2222     * compensate by a factor of (#idle/#active) threads.
2223     *
2224     * Note: The approximation of #busy workers as #active workers is
2225     * not very good under current signalling scheme, and should be
2226     * improved.
2227     */
2228     static int getSurplusQueuedTaskCount() {
2229     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2230     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2231     int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2232     int n = (q = wt.workQueue).top - q.base;
2233     int a = (int)(pool.ctl >> AC_SHIFT) + p;
2234     return n - (a > (p >>>= 1) ? 0 :
2235     a > (p >>>= 1) ? 1 :
2236     a > (p >>>= 1) ? 2 :
2237     a > (p >>>= 1) ? 4 :
2238     8);
2239     }
2240     return 0;
2241     }
2242    
2243     // Termination
2244    
2245     /**
2246     * Possibly initiates and/or completes termination. The caller
2247     * triggering termination runs three passes through workQueues:
2248     * (0) Setting termination status, followed by wakeups of queued
2249     * workers; (1) cancelling all tasks; (2) interrupting lagging
2250     * threads (likely in external tasks, but possibly also blocked in
2251     * joins). Each pass repeats previous steps because of potential
2252     * lagging thread creation.
2253     *
2254     * @param now if true, unconditionally terminate, else only
2255     * if no work and no active workers
2256     * @param enable if true, enable shutdown when next possible
2257     * @return true if now terminating or terminated
2258     */
2259     private boolean tryTerminate(boolean now, boolean enable) {
2260     if (this == commonPool) // cannot shut down
2261     return false;
2262     for (long c;;) {
2263     if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2264     if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2265     synchronized (this) {
2266     notifyAll(); // signal when 0 workers
2267     }
2268     }
2269     return true;
2270     }
2271     if (plock >= 0) { // not yet enabled
2272     int ps;
2273     if (!enable)
2274     return false;
2275     if (((ps = plock) & PL_LOCK) != 0 ||
2276     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2277     ps = acquirePlock();
2278     if (!U.compareAndSwapInt(this, PLOCK, ps, SHUTDOWN))
2279     releasePlock(SHUTDOWN);
2280     }
2281     if (!now) { // check if idle & no tasks
2282     if ((int)(c >> AC_SHIFT) != -(config & SMASK) ||
2283     hasQueuedSubmissions())
2284     return false;
2285     // Check for unqueued inactive workers. One pass suffices.
2286     WorkQueue[] ws = workQueues; WorkQueue w;
2287     if (ws != null) {
2288     for (int i = 1; i < ws.length; i += 2) {
2289     if ((w = ws[i]) != null && w.eventCount >= 0)
2290     return false;
2291     }
2292     }
2293     }
2294     if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2295     for (int pass = 0; pass < 3; ++pass) {
2296     WorkQueue[] ws = workQueues;
2297     if (ws != null) {
2298     WorkQueue w; Thread wt;
2299     int n = ws.length;
2300     for (int i = 0; i < n; ++i) {
2301     if ((w = ws[i]) != null) {
2302     w.qlock = -1;
2303     if (pass > 0) {
2304     w.cancelAll();
2305     if (pass > 1 && (wt = w.owner) != null) {
2306     if (!wt.isInterrupted()) {
2307     try {
2308     wt.interrupt();
2309     } catch (SecurityException ignore) {
2310     }
2311     }
2312     U.unpark(wt);
2313     }
2314     }
2315     }
2316     }
2317     // Wake up workers parked on event queue
2318     int i, e; long cc; Thread p;
2319     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2320     (i = e & SMASK) < n &&
2321     (w = ws[i]) != null) {
2322     long nc = ((long)(w.nextWait & E_MASK) |
2323     ((cc + AC_UNIT) & AC_MASK) |
2324     (cc & (TC_MASK|STOP_BIT)));
2325     if (w.eventCount == (e | INT_SIGN) &&
2326     U.compareAndSwapLong(this, CTL, cc, nc)) {
2327     w.eventCount = (e + E_SEQ) & E_MASK;
2328     w.qlock = -1;
2329     if ((p = w.parker) != null)
2330     U.unpark(p);
2331     }
2332     }
2333     }
2334     }
2335     }
2336     }
2337     }
2338    
2339     // external operations on common pool
2340    
2341     /**
2342     * Returns common pool queue for a thread that has submitted at
2343     * least one task.
2344     */
2345     static WorkQueue commonSubmitterQueue() {
2346     ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2347     return ((z = submitters.get()) != null &&
2348     (p = commonPool) != null &&
2349     (ws = p.workQueues) != null &&
2350     (m = ws.length - 1) >= 0) ?
2351     ws[m & z.seed & SQMASK] : null;
2352     }
2353    
2354     /**
2355     * Tries to pop the given task from submitter's queue in common pool.
2356     */
2357     static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2358     ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2359     ForkJoinTask<?>[] a; int m, s;
2360     if (t != null &&
2361     (z = submitters.get()) != null &&
2362     (p = commonPool) != null &&
2363     (ws = p.workQueues) != null &&
2364     (m = ws.length - 1) >= 0 &&
2365     (q = ws[m & z.seed & SQMASK]) != null &&
2366     (s = q.top) != q.base &&
2367     (a = q.array) != null) {
2368     long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2369     if (U.getObject(a, j) == t &&
2370     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2371     if (q.array == a && q.top == s && // recheck
2372     U.compareAndSwapObject(a, j, t, null)) {
2373     q.top = s - 1;
2374     q.qlock = 0;
2375     return true;
2376     }
2377     q.qlock = 0;
2378     }
2379     }
2380     return false;
2381     }
2382    
2383     /**
2384     * Tries to pop and run local tasks within the same computation
2385     * as the given root. On failure, tries to help complete from
2386     * other queues via helpComplete.
2387     */
2388     private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2389     ForkJoinTask<?>[] a; int m;
2390     if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2391     root != null && root.status >= 0) {
2392     for (;;) {
2393     int s, u; Object o; CountedCompleter<?> task = null;
2394     if ((s = q.top) - q.base > 0) {
2395     long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2396     if ((o = U.getObject(a, j)) != null &&
2397     (o instanceof CountedCompleter)) {
2398     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2399     do {
2400     if (r == root) {
2401     if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2402     if (q.array == a && q.top == s &&
2403     U.compareAndSwapObject(a, j, t, null)) {
2404     q.top = s - 1;
2405     task = t;
2406     }
2407     q.qlock = 0;
2408     }
2409     break;
2410     }
2411     } while ((r = r.completer) != null);
2412     }
2413     }
2414     if (task != null)
2415     task.doExec();
2416     if (root.status < 0 ||
2417     (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2418     break;
2419     if (task == null) {
2420     helpSignal(root, q.poolIndex);
2421     if (root.status >= 0)
2422     helpComplete(root, SHARED_QUEUE);
2423     break;
2424     }
2425     }
2426     }
2427     }
2428    
2429     /**
2430     * Tries to help execute or signal availability of the given task
2431     * from submitter's queue in common pool.
2432     */
2433     static void externalHelpJoin(ForkJoinTask<?> t) {
2434     // Some hard-to-avoid overlap with tryExternalUnpush
2435     ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2436     ForkJoinTask<?>[] a; int m, s, n;
2437     if (t != null &&
2438     (z = submitters.get()) != null &&
2439     (p = commonPool) != null &&
2440     (ws = p.workQueues) != null &&
2441     (m = ws.length - 1) >= 0 &&
2442     (q = ws[m & z.seed & SQMASK]) != null &&
2443     (a = q.array) != null) {
2444     int am = a.length - 1;
2445     if ((s = q.top) != q.base) {
2446     long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2447     if (U.getObject(a, j) == t &&
2448     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2449     if (q.array == a && q.top == s &&
2450     U.compareAndSwapObject(a, j, t, null)) {
2451     q.top = s - 1;
2452     q.qlock = 0;
2453     t.doExec();
2454     }
2455     else
2456     q.qlock = 0;
2457     }
2458     }
2459     if (t.status >= 0) {
2460     if (t instanceof CountedCompleter)
2461     p.externalHelpComplete(q, t);
2462     else
2463     p.helpSignal(t, q.poolIndex);
2464     }
2465     }
2466     }
2467    
2468     /**
2469     * Restricted version of helpQuiescePool for external callers
2470     */
2471     static void externalHelpQuiescePool() {
2472     ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2473     if ((p = commonPool) != null &&
2474     (q = p.findNonEmptyStealQueue(1)) != null &&
2475     (b = q.base) - q.top < 0 &&
2476     (t = q.pollAt(b)) != null)
2477     t.doExec();
2478     }
2479    
2480     // Exported methods
2481    
2482     // Constructors
2483    
2484     /**
2485     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2486     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2487     * #defaultForkJoinWorkerThreadFactory default thread factory},
2488     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2489     *
2490     * @throws SecurityException if a security manager exists and
2491     * the caller is not permitted to modify threads
2492     * because it does not hold {@link
2493     * java.lang.RuntimePermission}{@code ("modifyThread")}
2494     */
2495     public ForkJoinPool() {
2496 jsr166 1.13 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2497 dl 1.1 defaultForkJoinWorkerThreadFactory, null, false);
2498     }
2499    
2500     /**
2501     * Creates a {@code ForkJoinPool} with the indicated parallelism
2502     * level, the {@linkplain
2503     * #defaultForkJoinWorkerThreadFactory default thread factory},
2504     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2505     *
2506     * @param parallelism the parallelism level
2507     * @throws IllegalArgumentException if parallelism less than or
2508     * equal to zero, or greater than implementation limit
2509     * @throws SecurityException if a security manager exists and
2510     * the caller is not permitted to modify threads
2511     * because it does not hold {@link
2512     * java.lang.RuntimePermission}{@code ("modifyThread")}
2513     */
2514     public ForkJoinPool(int parallelism) {
2515     this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2516     }
2517    
2518     /**
2519     * Creates a {@code ForkJoinPool} with the given parameters.
2520     *
2521     * @param parallelism the parallelism level. For default value,
2522     * use {@link java.lang.Runtime#availableProcessors}.
2523     * @param factory the factory for creating new threads. For default value,
2524     * use {@link #defaultForkJoinWorkerThreadFactory}.
2525     * @param handler the handler for internal worker threads that
2526     * terminate due to unrecoverable errors encountered while executing
2527     * tasks. For default value, use {@code null}.
2528     * @param asyncMode if true,
2529     * establishes local first-in-first-out scheduling mode for forked
2530     * tasks that are never joined. This mode may be more appropriate
2531     * than default locally stack-based mode in applications in which
2532     * worker threads only process event-style asynchronous tasks.
2533     * For default value, use {@code false}.
2534     * @throws IllegalArgumentException if parallelism less than or
2535     * equal to zero, or greater than implementation limit
2536     * @throws NullPointerException if the factory is null
2537     * @throws SecurityException if a security manager exists and
2538     * the caller is not permitted to modify threads
2539     * because it does not hold {@link
2540     * java.lang.RuntimePermission}{@code ("modifyThread")}
2541     */
2542     public ForkJoinPool(int parallelism,
2543     ForkJoinWorkerThreadFactory factory,
2544     Thread.UncaughtExceptionHandler handler,
2545     boolean asyncMode) {
2546     checkPermission();
2547     if (factory == null)
2548     throw new NullPointerException();
2549     if (parallelism <= 0 || parallelism > MAX_CAP)
2550     throw new IllegalArgumentException();
2551     this.factory = factory;
2552     this.ueh = handler;
2553     this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2554     long np = (long)(-parallelism); // offset ctl counts
2555     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2556     int pn = nextPoolId();
2557     StringBuilder sb = new StringBuilder("ForkJoinPool-");
2558     sb.append(Integer.toString(pn));
2559     sb.append("-worker-");
2560     this.workerNamePrefix = sb.toString();
2561     }
2562    
2563     /**
2564     * Constructor for common pool, suitable only for static initialization.
2565     * Basically the same as above, but uses smallest possible initial footprint.
2566     */
2567     ForkJoinPool(int parallelism, long ctl,
2568     ForkJoinWorkerThreadFactory factory,
2569     Thread.UncaughtExceptionHandler handler) {
2570     this.config = parallelism;
2571     this.ctl = ctl;
2572     this.factory = factory;
2573     this.ueh = handler;
2574     this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2575     }
2576    
2577     /**
2578     * Returns the common pool instance.
2579     *
2580     * @return the common pool instance
2581 jsr166 1.6 * @since 1.8
2582 dl 1.1 */
2583     public static ForkJoinPool commonPool() {
2584     // assert commonPool != null : "static init error";
2585     return commonPool;
2586     }
2587    
2588     // Execution methods
2589    
2590     /**
2591     * Performs the given task, returning its result upon completion.
2592     * If the computation encounters an unchecked Exception or Error,
2593     * it is rethrown as the outcome of this invocation. Rethrown
2594     * exceptions behave in the same way as regular exceptions, but,
2595     * when possible, contain stack traces (as displayed for example
2596     * using {@code ex.printStackTrace()}) of both the current thread
2597     * as well as the thread actually encountering the exception;
2598     * minimally only the latter.
2599     *
2600     * @param task the task
2601     * @return the task's result
2602     * @throws NullPointerException if the task is null
2603     * @throws RejectedExecutionException if the task cannot be
2604     * scheduled for execution
2605     */
2606     public <T> T invoke(ForkJoinTask<T> task) {
2607     if (task == null)
2608     throw new NullPointerException();
2609     externalPush(task);
2610     return task.join();
2611     }
2612    
2613     /**
2614     * Arranges for (asynchronous) execution of the given task.
2615     *
2616     * @param task the task
2617     * @throws NullPointerException if the task is null
2618     * @throws RejectedExecutionException if the task cannot be
2619     * scheduled for execution
2620     */
2621     public void execute(ForkJoinTask<?> task) {
2622     if (task == null)
2623     throw new NullPointerException();
2624     externalPush(task);
2625     }
2626    
2627     // AbstractExecutorService methods
2628    
2629     /**
2630     * @throws NullPointerException if the task is null
2631     * @throws RejectedExecutionException if the task cannot be
2632     * scheduled for execution
2633     */
2634     public void execute(Runnable task) {
2635     if (task == null)
2636     throw new NullPointerException();
2637     ForkJoinTask<?> job;
2638     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2639     job = (ForkJoinTask<?>) task;
2640     else
2641     job = new ForkJoinTask.AdaptedRunnableAction(task);
2642     externalPush(job);
2643     }
2644    
2645     /**
2646     * Submits a ForkJoinTask for execution.
2647     *
2648     * @param task the task to submit
2649     * @return the task
2650     * @throws NullPointerException if the task is null
2651     * @throws RejectedExecutionException if the task cannot be
2652     * scheduled for execution
2653     */
2654     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2655     if (task == null)
2656     throw new NullPointerException();
2657     externalPush(task);
2658     return task;
2659     }
2660    
2661     /**
2662     * @throws NullPointerException if the task is null
2663     * @throws RejectedExecutionException if the task cannot be
2664     * scheduled for execution
2665     */
2666     public <T> ForkJoinTask<T> submit(Callable<T> task) {
2667     ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2668     externalPush(job);
2669     return job;
2670     }
2671    
2672     /**
2673     * @throws NullPointerException if the task is null
2674     * @throws RejectedExecutionException if the task cannot be
2675     * scheduled for execution
2676     */
2677     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2678     ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2679     externalPush(job);
2680     return job;
2681     }
2682    
2683     /**
2684     * @throws NullPointerException if the task is null
2685     * @throws RejectedExecutionException if the task cannot be
2686     * scheduled for execution
2687     */
2688     public ForkJoinTask<?> submit(Runnable task) {
2689     if (task == null)
2690     throw new NullPointerException();
2691     ForkJoinTask<?> job;
2692     if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2693     job = (ForkJoinTask<?>) task;
2694     else
2695     job = new ForkJoinTask.AdaptedRunnableAction(task);
2696     externalPush(job);
2697     return job;
2698     }
2699    
2700     /**
2701     * @throws NullPointerException {@inheritDoc}
2702     * @throws RejectedExecutionException {@inheritDoc}
2703     */
2704     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2705     // In previous versions of this class, this method constructed
2706     // a task to run ForkJoinTask.invokeAll, but now external
2707     // invocation of multiple tasks is at least as efficient.
2708 jsr166 1.9 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2709 dl 1.1
2710     boolean done = false;
2711     try {
2712     for (Callable<T> t : tasks) {
2713     ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2714 jsr166 1.10 futures.add(f);
2715 dl 1.1 externalPush(f);
2716     }
2717 jsr166 1.9 for (int i = 0, size = futures.size(); i < size; i++)
2718     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2719 dl 1.1 done = true;
2720     return futures;
2721     } finally {
2722     if (!done)
2723 jsr166 1.9 for (int i = 0, size = futures.size(); i < size; i++)
2724     futures.get(i).cancel(false);
2725 dl 1.1 }
2726     }
2727    
2728     /**
2729     * Returns the factory used for constructing new workers.
2730     *
2731     * @return the factory used for constructing new workers
2732     */
2733     public ForkJoinWorkerThreadFactory getFactory() {
2734     return factory;
2735     }
2736    
2737     /**
2738     * Returns the handler for internal worker threads that terminate
2739     * due to unrecoverable errors encountered while executing tasks.
2740     *
2741     * @return the handler, or {@code null} if none
2742     */
2743     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2744     return ueh;
2745     }
2746    
2747     /**
2748     * Returns the targeted parallelism level of this pool.
2749     *
2750     * @return the targeted parallelism level of this pool
2751     */
2752     public int getParallelism() {
2753     return config & SMASK;
2754     }
2755    
2756     /**
2757     * Returns the targeted parallelism level of the common pool.
2758     *
2759     * @return the targeted parallelism level of the common pool
2760 jsr166 1.6 * @since 1.8
2761 dl 1.1 */
2762     public static int getCommonPoolParallelism() {
2763     return commonPoolParallelism;
2764     }
2765    
2766     /**
2767     * Returns the number of worker threads that have started but not
2768     * yet terminated. The result returned by this method may differ
2769     * from {@link #getParallelism} when threads are created to
2770     * maintain parallelism when others are cooperatively blocked.
2771     *
2772     * @return the number of worker threads
2773     */
2774     public int getPoolSize() {
2775     return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2776     }
2777    
2778     /**
2779     * Returns {@code true} if this pool uses local first-in-first-out
2780     * scheduling mode for forked tasks that are never joined.
2781     *
2782     * @return {@code true} if this pool uses async mode
2783     */
2784     public boolean getAsyncMode() {
2785     return (config >>> 16) == FIFO_QUEUE;
2786     }
2787    
2788     /**
2789     * Returns an estimate of the number of worker threads that are
2790     * not blocked waiting to join tasks or for other managed
2791     * synchronization. This method may overestimate the
2792     * number of running threads.
2793     *
2794     * @return the number of worker threads
2795     */
2796     public int getRunningThreadCount() {
2797     int rc = 0;
2798     WorkQueue[] ws; WorkQueue w;
2799     if ((ws = workQueues) != null) {
2800     for (int i = 1; i < ws.length; i += 2) {
2801     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2802     ++rc;
2803     }
2804     }
2805     return rc;
2806     }
2807    
2808     /**
2809     * Returns an estimate of the number of threads that are currently
2810     * stealing or executing tasks. This method may overestimate the
2811     * number of active threads.
2812     *
2813     * @return the number of active threads
2814     */
2815     public int getActiveThreadCount() {
2816     int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2817     return (r <= 0) ? 0 : r; // suppress momentarily negative values
2818     }
2819    
2820     /**
2821     * Returns {@code true} if all worker threads are currently idle.
2822     * An idle worker is one that cannot obtain a task to execute
2823     * because none are available to steal from other threads, and
2824     * there are no pending submissions to the pool. This method is
2825     * conservative; it might not return {@code true} immediately upon
2826     * idleness of all threads, but will eventually become true if
2827     * threads remain inactive.
2828     *
2829     * @return {@code true} if all threads are currently idle
2830     */
2831     public boolean isQuiescent() {
2832     return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2833     }
2834    
2835     /**
2836     * Returns an estimate of the total number of tasks stolen from
2837     * one thread's work queue by another. The reported value
2838     * underestimates the actual total number of steals when the pool
2839     * is not quiescent. This value may be useful for monitoring and
2840     * tuning fork/join programs: in general, steal counts should be
2841     * high enough to keep threads busy, but low enough to avoid
2842     * overhead and contention across threads.
2843     *
2844     * @return the number of steals
2845     */
2846     public long getStealCount() {
2847     long count = stealCount;
2848     WorkQueue[] ws; WorkQueue w;
2849     if ((ws = workQueues) != null) {
2850     for (int i = 1; i < ws.length; i += 2) {
2851     if ((w = ws[i]) != null)
2852     count += w.nsteals;
2853     }
2854     }
2855     return count;
2856     }
2857    
2858     /**
2859     * Returns an estimate of the total number of tasks currently held
2860     * in queues by worker threads (but not including tasks submitted
2861     * to the pool that have not begun executing). This value is only
2862     * an approximation, obtained by iterating across all threads in
2863     * the pool. This method may be useful for tuning task
2864     * granularities.
2865     *
2866     * @return the number of queued tasks
2867     */
2868     public long getQueuedTaskCount() {
2869     long count = 0;
2870     WorkQueue[] ws; WorkQueue w;
2871     if ((ws = workQueues) != null) {
2872     for (int i = 1; i < ws.length; i += 2) {
2873     if ((w = ws[i]) != null)
2874     count += w.queueSize();
2875     }
2876     }
2877     return count;
2878     }
2879    
2880     /**
2881     * Returns an estimate of the number of tasks submitted to this
2882     * pool that have not yet begun executing. This method may take
2883     * time proportional to the number of submissions.
2884     *
2885     * @return the number of queued submissions
2886     */
2887     public int getQueuedSubmissionCount() {
2888     int count = 0;
2889     WorkQueue[] ws; WorkQueue w;
2890     if ((ws = workQueues) != null) {
2891     for (int i = 0; i < ws.length; i += 2) {
2892     if ((w = ws[i]) != null)
2893     count += w.queueSize();
2894     }
2895     }
2896     return count;
2897     }
2898    
2899     /**
2900     * Returns {@code true} if there are any tasks submitted to this
2901     * pool that have not yet begun executing.
2902     *
2903     * @return {@code true} if there are any queued submissions
2904     */
2905     public boolean hasQueuedSubmissions() {
2906     WorkQueue[] ws; WorkQueue w;
2907     if ((ws = workQueues) != null) {
2908     for (int i = 0; i < ws.length; i += 2) {
2909     if ((w = ws[i]) != null && !w.isEmpty())
2910     return true;
2911     }
2912     }
2913     return false;
2914     }
2915    
2916     /**
2917     * Removes and returns the next unexecuted submission if one is
2918     * available. This method may be useful in extensions to this
2919     * class that re-assign work in systems with multiple pools.
2920     *
2921     * @return the next submission, or {@code null} if none
2922     */
2923     protected ForkJoinTask<?> pollSubmission() {
2924     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2925     if ((ws = workQueues) != null) {
2926     for (int i = 0; i < ws.length; i += 2) {
2927     if ((w = ws[i]) != null && (t = w.poll()) != null)
2928     return t;
2929     }
2930     }
2931     return null;
2932     }
2933    
2934     /**
2935     * Removes all available unexecuted submitted and forked tasks
2936     * from scheduling queues and adds them to the given collection,
2937     * without altering their execution status. These may include
2938     * artificially generated or wrapped tasks. This method is
2939     * designed to be invoked only when the pool is known to be
2940     * quiescent. Invocations at other times may not remove all
2941     * tasks. A failure encountered while attempting to add elements
2942     * to collection {@code c} may result in elements being in
2943     * neither, either or both collections when the associated
2944     * exception is thrown. The behavior of this operation is
2945     * undefined if the specified collection is modified while the
2946     * operation is in progress.
2947     *
2948     * @param c the collection to transfer elements into
2949     * @return the number of elements transferred
2950     */
2951     protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2952     int count = 0;
2953     WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2954     if ((ws = workQueues) != null) {
2955     for (int i = 0; i < ws.length; ++i) {
2956     if ((w = ws[i]) != null) {
2957     while ((t = w.poll()) != null) {
2958     c.add(t);
2959     ++count;
2960     }
2961     }
2962     }
2963     }
2964     return count;
2965     }
2966    
2967     /**
2968     * Returns a string identifying this pool, as well as its state,
2969     * including indications of run state, parallelism level, and
2970     * worker and task counts.
2971     *
2972     * @return a string identifying this pool, as well as its state
2973     */
2974     public String toString() {
2975     // Use a single pass through workQueues to collect counts
2976     long qt = 0L, qs = 0L; int rc = 0;
2977     long st = stealCount;
2978     long c = ctl;
2979     WorkQueue[] ws; WorkQueue w;
2980     if ((ws = workQueues) != null) {
2981     for (int i = 0; i < ws.length; ++i) {
2982     if ((w = ws[i]) != null) {
2983     int size = w.queueSize();
2984     if ((i & 1) == 0)
2985     qs += size;
2986     else {
2987     qt += size;
2988     st += w.nsteals;
2989     if (w.isApparentlyUnblocked())
2990     ++rc;
2991     }
2992     }
2993     }
2994     }
2995     int pc = (config & SMASK);
2996     int tc = pc + (short)(c >>> TC_SHIFT);
2997     int ac = pc + (int)(c >> AC_SHIFT);
2998     if (ac < 0) // ignore transient negative
2999     ac = 0;
3000     String level;
3001     if ((c & STOP_BIT) != 0)
3002     level = (tc == 0) ? "Terminated" : "Terminating";
3003     else
3004     level = plock < 0 ? "Shutting down" : "Running";
3005     return super.toString() +
3006     "[" + level +
3007     ", parallelism = " + pc +
3008     ", size = " + tc +
3009     ", active = " + ac +
3010     ", running = " + rc +
3011     ", steals = " + st +
3012     ", tasks = " + qt +
3013     ", submissions = " + qs +
3014     "]";
3015     }
3016    
3017     /**
3018     * Possibly initiates an orderly shutdown in which previously
3019     * submitted tasks are executed, but no new tasks will be
3020     * accepted. Invocation has no effect on execution state if this
3021 jsr166 1.5 * is the {@link #commonPool()}, and no additional effect if
3022 dl 1.1 * already shut down. Tasks that are in the process of being
3023     * submitted concurrently during the course of this method may or
3024     * may not be rejected.
3025     *
3026     * @throws SecurityException if a security manager exists and
3027     * the caller is not permitted to modify threads
3028     * because it does not hold {@link
3029     * java.lang.RuntimePermission}{@code ("modifyThread")}
3030     */
3031     public void shutdown() {
3032     checkPermission();
3033     tryTerminate(false, true);
3034     }
3035    
3036     /**
3037     * Possibly attempts to cancel and/or stop all tasks, and reject
3038     * all subsequently submitted tasks. Invocation has no effect on
3039 jsr166 1.5 * execution state if this is the {@link #commonPool()}, and no
3040 dl 1.1 * additional effect if already shut down. Otherwise, tasks that
3041     * are in the process of being submitted or executed concurrently
3042     * during the course of this method may or may not be
3043     * rejected. This method cancels both existing and unexecuted
3044     * tasks, in order to permit termination in the presence of task
3045     * dependencies. So the method always returns an empty list
3046     * (unlike the case for some other Executors).
3047     *
3048     * @return an empty list
3049     * @throws SecurityException if a security manager exists and
3050     * the caller is not permitted to modify threads
3051     * because it does not hold {@link
3052     * java.lang.RuntimePermission}{@code ("modifyThread")}
3053     */
3054     public List<Runnable> shutdownNow() {
3055     checkPermission();
3056     tryTerminate(true, true);
3057     return Collections.emptyList();
3058     }
3059    
3060     /**
3061     * Returns {@code true} if all tasks have completed following shut down.
3062     *
3063     * @return {@code true} if all tasks have completed following shut down
3064     */
3065     public boolean isTerminated() {
3066     long c = ctl;
3067     return ((c & STOP_BIT) != 0L &&
3068     (short)(c >>> TC_SHIFT) == -(config & SMASK));
3069     }
3070    
3071     /**
3072     * Returns {@code true} if the process of termination has
3073     * commenced but not yet completed. This method may be useful for
3074     * debugging. A return of {@code true} reported a sufficient
3075     * period after shutdown may indicate that submitted tasks have
3076     * ignored or suppressed interruption, or are waiting for I/O,
3077     * causing this executor not to properly terminate. (See the
3078     * advisory notes for class {@link ForkJoinTask} stating that
3079     * tasks should not normally entail blocking operations. But if
3080     * they do, they must abort them on interrupt.)
3081     *
3082     * @return {@code true} if terminating but not yet terminated
3083     */
3084     public boolean isTerminating() {
3085     long c = ctl;
3086     return ((c & STOP_BIT) != 0L &&
3087     (short)(c >>> TC_SHIFT) != -(config & SMASK));
3088     }
3089    
3090     /**
3091     * Returns {@code true} if this pool has been shut down.
3092     *
3093     * @return {@code true} if this pool has been shut down
3094     */
3095     public boolean isShutdown() {
3096     return plock < 0;
3097     }
3098    
3099     /**
3100     * Blocks until all tasks have completed execution after a
3101     * shutdown request, or the timeout occurs, or the current thread
3102     * is interrupted, whichever happens first. Note that the {@link
3103     * #commonPool()} never terminates until program shutdown so
3104     * this method will always time out.
3105     *
3106     * @param timeout the maximum time to wait
3107     * @param unit the time unit of the timeout argument
3108     * @return {@code true} if this executor terminated and
3109     * {@code false} if the timeout elapsed before termination
3110     * @throws InterruptedException if interrupted while waiting
3111     */
3112     public boolean awaitTermination(long timeout, TimeUnit unit)
3113     throws InterruptedException {
3114     long nanos = unit.toNanos(timeout);
3115     if (isTerminated())
3116     return true;
3117 jsr166 1.18 if (nanos <= 0L)
3118     return false;
3119     long deadline = System.nanoTime() + nanos;
3120 dl 1.1 synchronized (this) {
3121 jsr166 1.19 for (;;) {
3122 jsr166 1.18 if (isTerminated())
3123     return true;
3124     if (nanos <= 0L)
3125     return false;
3126     long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3127     wait(millis > 0L ? millis : 1L);
3128     nanos = deadline - System.nanoTime();
3129 dl 1.1 }
3130     }
3131     }
3132    
3133     /**
3134     * Interface for extending managed parallelism for tasks running
3135     * in {@link ForkJoinPool}s.
3136     *
3137     * <p>A {@code ManagedBlocker} provides two methods. Method
3138     * {@code isReleasable} must return {@code true} if blocking is
3139     * not necessary. Method {@code block} blocks the current thread
3140     * if necessary (perhaps internally invoking {@code isReleasable}
3141     * before actually blocking). These actions are performed by any
3142     * thread invoking {@link ForkJoinPool#managedBlock}. The
3143     * unusual methods in this API accommodate synchronizers that may,
3144     * but don't usually, block for long periods. Similarly, they
3145     * allow more efficient internal handling of cases in which
3146     * additional workers may be, but usually are not, needed to
3147     * ensure sufficient parallelism. Toward this end,
3148     * implementations of method {@code isReleasable} must be amenable
3149     * to repeated invocation.
3150     *
3151     * <p>For example, here is a ManagedBlocker based on a
3152     * ReentrantLock:
3153     * <pre> {@code
3154     * class ManagedLocker implements ManagedBlocker {
3155     * final ReentrantLock lock;
3156     * boolean hasLock = false;
3157     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3158     * public boolean block() {
3159     * if (!hasLock)
3160     * lock.lock();
3161     * return true;
3162     * }
3163     * public boolean isReleasable() {
3164     * return hasLock || (hasLock = lock.tryLock());
3165     * }
3166     * }}</pre>
3167     *
3168     * <p>Here is a class that possibly blocks waiting for an
3169     * item on a given queue:
3170     * <pre> {@code
3171     * class QueueTaker<E> implements ManagedBlocker {
3172     * final BlockingQueue<E> queue;
3173     * volatile E item = null;
3174     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3175     * public boolean block() throws InterruptedException {
3176     * if (item == null)
3177     * item = queue.take();
3178     * return true;
3179     * }
3180     * public boolean isReleasable() {
3181     * return item != null || (item = queue.poll()) != null;
3182     * }
3183     * public E getItem() { // call after pool.managedBlock completes
3184     * return item;
3185     * }
3186     * }}</pre>
3187     */
3188     public static interface ManagedBlocker {
3189     /**
3190     * Possibly blocks the current thread, for example waiting for
3191     * a lock or condition.
3192     *
3193     * @return {@code true} if no additional blocking is necessary
3194     * (i.e., if isReleasable would return true)
3195     * @throws InterruptedException if interrupted while waiting
3196     * (the method is not required to do so, but is allowed to)
3197     */
3198     boolean block() throws InterruptedException;
3199    
3200     /**
3201     * Returns {@code true} if blocking is unnecessary.
3202     */
3203     boolean isReleasable();
3204     }
3205    
3206     /**
3207     * Blocks in accord with the given blocker. If the current thread
3208     * is a {@link ForkJoinWorkerThread}, this method possibly
3209     * arranges for a spare thread to be activated if necessary to
3210     * ensure sufficient parallelism while the current thread is blocked.
3211     *
3212     * <p>If the caller is not a {@link ForkJoinTask}, this method is
3213     * behaviorally equivalent to
3214     * <pre> {@code
3215     * while (!blocker.isReleasable())
3216     * if (blocker.block())
3217     * return;
3218     * }</pre>
3219     *
3220     * If the caller is a {@code ForkJoinTask}, then the pool may
3221     * first be expanded to ensure parallelism, and later adjusted.
3222     *
3223     * @param blocker the blocker
3224     * @throws InterruptedException if blocker.block did so
3225     */
3226     public static void managedBlock(ManagedBlocker blocker)
3227     throws InterruptedException {
3228     Thread t = Thread.currentThread();
3229     if (t instanceof ForkJoinWorkerThread) {
3230     ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3231     while (!blocker.isReleasable()) { // variant of helpSignal
3232     WorkQueue[] ws; WorkQueue q; int m, u;
3233     if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3234     for (int i = 0; i <= m; ++i) {
3235     if (blocker.isReleasable())
3236     return;
3237     if ((q = ws[i]) != null && q.base - q.top < 0) {
3238     p.signalWork(q);
3239     if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3240     (u >> UAC_SHIFT) >= 0)
3241     break;
3242     }
3243     }
3244     }
3245     if (p.tryCompensate()) {
3246     try {
3247     do {} while (!blocker.isReleasable() &&
3248     !blocker.block());
3249     } finally {
3250     p.incrementActiveCount();
3251     }
3252     break;
3253     }
3254     }
3255     }
3256     else {
3257     do {} while (!blocker.isReleasable() &&
3258     !blocker.block());
3259     }
3260     }
3261    
3262     // AbstractExecutorService overrides. These rely on undocumented
3263     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3264     // implement RunnableFuture.
3265    
3266     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3267     return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3268     }
3269    
3270     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3271     return new ForkJoinTask.AdaptedCallable<T>(callable);
3272     }
3273    
3274     // Unsafe mechanics
3275     private static final sun.misc.Unsafe U;
3276     private static final long CTL;
3277     private static final long PARKBLOCKER;
3278     private static final int ABASE;
3279     private static final int ASHIFT;
3280     private static final long STEALCOUNT;
3281     private static final long PLOCK;
3282     private static final long INDEXSEED;
3283     private static final long QLOCK;
3284    
3285     static {
3286 jsr166 1.8 // initialize field offsets for CAS etc
3287 dl 1.1 try {
3288     U = sun.misc.Unsafe.getUnsafe();
3289     Class<?> k = ForkJoinPool.class;
3290     CTL = U.objectFieldOffset
3291     (k.getDeclaredField("ctl"));
3292     STEALCOUNT = U.objectFieldOffset
3293     (k.getDeclaredField("stealCount"));
3294     PLOCK = U.objectFieldOffset
3295     (k.getDeclaredField("plock"));
3296     INDEXSEED = U.objectFieldOffset
3297     (k.getDeclaredField("indexSeed"));
3298     Class<?> tk = Thread.class;
3299     PARKBLOCKER = U.objectFieldOffset
3300     (tk.getDeclaredField("parkBlocker"));
3301     Class<?> wk = WorkQueue.class;
3302     QLOCK = U.objectFieldOffset
3303     (wk.getDeclaredField("qlock"));
3304     Class<?> ak = ForkJoinTask[].class;
3305     ABASE = U.arrayBaseOffset(ak);
3306 jsr166 1.8 int scale = U.arrayIndexScale(ak);
3307     if ((scale & (scale - 1)) != 0)
3308     throw new Error("data type scale not a power of two");
3309     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3310 dl 1.1 } catch (Exception e) {
3311     throw new Error(e);
3312     }
3313    
3314     submitters = new ThreadLocal<Submitter>();
3315     ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3316     new DefaultForkJoinWorkerThreadFactory();
3317     modifyThreadPermission = new RuntimePermission("modifyThread");
3318    
3319     /*
3320     * Establish common pool parameters. For extra caution,
3321     * computations to set up common pool state are here; the
3322     * constructor just assigns these values to fields.
3323     */
3324    
3325     int par = 0;
3326     Thread.UncaughtExceptionHandler handler = null;
3327     try { // TBD: limit or report ignored exceptions?
3328     String pp = System.getProperty
3329     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3330     String hp = System.getProperty
3331     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3332     String fp = System.getProperty
3333     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3334     if (fp != null)
3335     fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3336     getSystemClassLoader().loadClass(fp).newInstance());
3337     if (hp != null)
3338     handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3339     getSystemClassLoader().loadClass(hp).newInstance());
3340     if (pp != null)
3341     par = Integer.parseInt(pp);
3342     } catch (Exception ignore) {
3343     }
3344    
3345     if (par <= 0)
3346     par = Runtime.getRuntime().availableProcessors();
3347     if (par > MAX_CAP)
3348     par = MAX_CAP;
3349     commonPoolParallelism = par;
3350     long np = (long)(-par); // precompute initial ctl value
3351     long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3352    
3353     commonPool = new ForkJoinPool(par, ct, fac, handler);
3354     }
3355    
3356     }