ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/ForkJoinPool.java
Revision: 1.6
Committed: Fri Jan 4 18:52:18 2013 UTC (11 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.5: +2 -0 lines
Log Message:
add missing @since 1.8

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.ArrayList;
10 import java.util.Arrays;
11 import java.util.Collection;
12 import java.util.Collections;
13 import java.util.List;
14 import java.util.concurrent.AbstractExecutorService;
15 import java.util.concurrent.Callable;
16 import java.util.concurrent.ExecutorService;
17 import java.util.concurrent.Future;
18 import java.util.concurrent.RejectedExecutionException;
19 import java.util.concurrent.RunnableFuture;
20 import java.util.concurrent.TimeUnit;
21
22 /**
23 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24 * A {@code ForkJoinPool} provides the entry point for submissions
25 * from non-{@code ForkJoinTask} clients, as well as management and
26 * monitoring operations.
27 *
28 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29 * ExecutorService} mainly by virtue of employing
30 * <em>work-stealing</em>: all threads in the pool attempt to find and
31 * execute tasks submitted to the pool and/or created by other active
32 * tasks (eventually blocking waiting for work if none exist). This
33 * enables efficient processing when most tasks spawn other subtasks
34 * (as do most {@code ForkJoinTask}s), as well as when many small
35 * tasks are submitted to the pool from external clients. Especially
36 * when setting <em>asyncMode</em> to true in constructors, {@code
37 * ForkJoinPool}s may also be appropriate for use with event-style
38 * tasks that are never joined.
39 *
40 * <p>A static {@link #commonPool()} is available and appropriate for
41 * most applications. The common pool is used by any ForkJoinTask that
42 * is not explicitly submitted to a specified pool. Using the common
43 * pool normally reduces resource usage (its threads are slowly
44 * reclaimed during periods of non-use, and reinstated upon subsequent
45 * use).
46 *
47 * <p>For applications that require separate or custom pools, a {@code
48 * ForkJoinPool} may be constructed with a given target parallelism
49 * level; by default, equal to the number of available processors. The
50 * pool attempts to maintain enough active (or available) threads by
51 * dynamically adding, suspending, or resuming internal worker
52 * threads, even if some tasks are stalled waiting to join
53 * others. However, no such adjustments are guaranteed in the face of
54 * blocked I/O or other unmanaged synchronization. The nested {@link
55 * ManagedBlocker} interface enables extension of the kinds of
56 * synchronization accommodated.
57 *
58 * <p>In addition to execution and lifecycle control methods, this
59 * class provides status check methods (for example
60 * {@link #getStealCount}) that are intended to aid in developing,
61 * tuning, and monitoring fork/join applications. Also, method
62 * {@link #toString} returns indications of pool state in a
63 * convenient form for informal monitoring.
64 *
65 * <p>As is the case with other ExecutorServices, there are three
66 * main task execution methods summarized in the following table.
67 * These are designed to be used primarily by clients not already
68 * engaged in fork/join computations in the current pool. The main
69 * forms of these methods accept instances of {@code ForkJoinTask},
70 * but overloaded forms also allow mixed execution of plain {@code
71 * Runnable}- or {@code Callable}- based activities as well. However,
72 * tasks that are already executing in a pool should normally instead
73 * use the within-computation forms listed in the table unless using
74 * async event-style tasks that are not usually joined, in which case
75 * there is little difference among choice of methods.
76 *
77 * <table BORDER CELLPADDING=3 CELLSPACING=1>
78 * <tr>
79 * <td></td>
80 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82 * </tr>
83 * <tr>
84 * <td> <b>Arrange async execution</td>
85 * <td> {@link #execute(ForkJoinTask)}</td>
86 * <td> {@link ForkJoinTask#fork}</td>
87 * </tr>
88 * <tr>
89 * <td> <b>Await and obtain result</td>
90 * <td> {@link #invoke(ForkJoinTask)}</td>
91 * <td> {@link ForkJoinTask#invoke}</td>
92 * </tr>
93 * <tr>
94 * <td> <b>Arrange exec and obtain Future</td>
95 * <td> {@link #submit(ForkJoinTask)}</td>
96 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97 * </tr>
98 * </table>
99 *
100 * <p>The common pool is by default constructed with default
101 * parameters, but these may be controlled by setting three {@link
102 * System#getProperty system properties} with prefix {@code
103 * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 * an integer greater than zero, {@code threadFactory} -- the class
105 * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 * exceptionHandler} -- the class name of a {@link
107 * java.lang.Thread.UncaughtExceptionHandler
108 * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 * these settings, default parameters are used.
110 *
111 * <p><b>Implementation notes</b>: This implementation restricts the
112 * maximum number of running threads to 32767. Attempts to create
113 * pools with greater than the maximum number result in
114 * {@code IllegalArgumentException}.
115 *
116 * <p>This implementation rejects submitted tasks (that is, by throwing
117 * {@link RejectedExecutionException}) only when the pool is shut down
118 * or internal resources have been exhausted.
119 *
120 * @since 1.7
121 * @author Doug Lea
122 */
123 public class ForkJoinPool extends AbstractExecutorService {
124
125 /*
126 * Implementation Overview
127 *
128 * This class and its nested classes provide the main
129 * functionality and control for a set of worker threads:
130 * Submissions from non-FJ threads enter into submission queues.
131 * Workers take these tasks and typically split them into subtasks
132 * that may be stolen by other workers. Preference rules give
133 * first priority to processing tasks from their own queues (LIFO
134 * or FIFO, depending on mode), then to randomized FIFO steals of
135 * tasks in other queues.
136 *
137 * WorkQueues
138 * ==========
139 *
140 * Most operations occur within work-stealing queues (in nested
141 * class WorkQueue). These are special forms of Deques that
142 * support only three of the four possible end-operations -- push,
143 * pop, and poll (aka steal), under the further constraints that
144 * push and pop are called only from the owning thread (or, as
145 * extended here, under a lock), while poll may be called from
146 * other threads. (If you are unfamiliar with them, you probably
147 * want to read Herlihy and Shavit's book "The Art of
148 * Multiprocessor programming", chapter 16 describing these in
149 * more detail before proceeding.) The main work-stealing queue
150 * design is roughly similar to those in the papers "Dynamic
151 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152 * (http://research.sun.com/scalable/pubs/index.html) and
153 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155 * The main differences ultimately stem from GC requirements that
156 * we null out taken slots as soon as we can, to maintain as small
157 * a footprint as possible even in programs generating huge
158 * numbers of tasks. To accomplish this, we shift the CAS
159 * arbitrating pop vs poll (steal) from being on the indices
160 * ("base" and "top") to the slots themselves. So, both a
161 * successful pop and poll mainly entail a CAS of a slot from
162 * non-null to null. Because we rely on CASes of references, we
163 * do not need tag bits on base or top. They are simple ints as
164 * used in any circular array-based queue (see for example
165 * ArrayDeque). Updates to the indices must still be ordered in a
166 * way that guarantees that top == base means the queue is empty,
167 * but otherwise may err on the side of possibly making the queue
168 * appear nonempty when a push, pop, or poll have not fully
169 * committed. Note that this means that the poll operation,
170 * considered individually, is not wait-free. One thief cannot
171 * successfully continue until another in-progress one (or, if
172 * previously empty, a push) completes. However, in the
173 * aggregate, we ensure at least probabilistic non-blockingness.
174 * If an attempted steal fails, a thief always chooses a different
175 * random victim target to try next. So, in order for one thief to
176 * progress, it suffices for any in-progress poll or new push on
177 * any empty queue to complete. (This is why we normally use
178 * method pollAt and its variants that try once at the apparent
179 * base index, else consider alternative actions, rather than
180 * method poll.)
181 *
182 * This approach also enables support of a user mode in which local
183 * task processing is in FIFO, not LIFO order, simply by using
184 * poll rather than pop. This can be useful in message-passing
185 * frameworks in which tasks are never joined. However neither
186 * mode considers affinities, loads, cache localities, etc, so
187 * rarely provide the best possible performance on a given
188 * machine, but portably provide good throughput by averaging over
189 * these factors. (Further, even if we did try to use such
190 * information, we do not usually have a basis for exploiting it.
191 * For example, some sets of tasks profit from cache affinities,
192 * but others are harmed by cache pollution effects.)
193 *
194 * WorkQueues are also used in a similar way for tasks submitted
195 * to the pool. We cannot mix these tasks in the same queues used
196 * for work-stealing (this would contaminate lifo/fifo
197 * processing). Instead, we randomly associate submission queues
198 * with submitting threads, using a form of hashing. The
199 * ThreadLocal Submitter class contains a value initially used as
200 * a hash code for choosing existing queues, but may be randomly
201 * repositioned upon contention with other submitters. In
202 * essence, submitters act like workers except that they are
203 * restricted to executing local tasks that they submitted (or in
204 * the case of CountedCompleters, others with the same root task).
205 * However, because most shared/external queue operations are more
206 * expensive than internal, and because, at steady state, external
207 * submitters will compete for CPU with workers, ForkJoinTask.join
208 * and related methods disable them from repeatedly helping to
209 * process tasks if all workers are active. Insertion of tasks in
210 * shared mode requires a lock (mainly to protect in the case of
211 * resizing) but we use only a simple spinlock (using bits in
212 * field qlock), because submitters encountering a busy queue move
213 * on to try or create other queues -- they block only when
214 * creating and registering new queues.
215 *
216 * Management
217 * ==========
218 *
219 * The main throughput advantages of work-stealing stem from
220 * decentralized control -- workers mostly take tasks from
221 * themselves or each other. We cannot negate this in the
222 * implementation of other management responsibilities. The main
223 * tactic for avoiding bottlenecks is packing nearly all
224 * essentially atomic control state into two volatile variables
225 * that are by far most often read (not written) as status and
226 * consistency checks.
227 *
228 * Field "ctl" contains 64 bits holding all the information needed
229 * to atomically decide to add, inactivate, enqueue (on an event
230 * queue), dequeue, and/or re-activate workers. To enable this
231 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232 * far in excess of normal operating range) to allow ids, counts,
233 * and their negations (used for thresholding) to fit into 16bit
234 * fields.
235 *
236 * Field "plock" is a form of sequence lock with a saturating
237 * shutdown bit (similarly for per-queue "qlocks"), mainly
238 * protecting updates to the workQueues array, as well as to
239 * enable shutdown. When used as a lock, it is normally only very
240 * briefly held, so is nearly always available after at most a
241 * brief spin, but we use a monitor-based backup strategy to
242 * block when needed.
243 *
244 * Recording WorkQueues. WorkQueues are recorded in the
245 * "workQueues" array that is created upon first use and expanded
246 * if necessary. Updates to the array while recording new workers
247 * and unrecording terminated ones are protected from each other
248 * by a lock but the array is otherwise concurrently readable, and
249 * accessed directly. To simplify index-based operations, the
250 * array size is always a power of two, and all readers must
251 * tolerate null slots. Worker queues are at odd indices. Shared
252 * (submission) queues are at even indices, up to a maximum of 64
253 * slots, to limit growth even if array needs to expand to add
254 * more workers. Grouping them together in this way simplifies and
255 * speeds up task scanning.
256 *
257 * All worker thread creation is on-demand, triggered by task
258 * submissions, replacement of terminated workers, and/or
259 * compensation for blocked workers. However, all other support
260 * code is set up to work with other policies. To ensure that we
261 * do not hold on to worker references that would prevent GC, ALL
262 * accesses to workQueues are via indices into the workQueues
263 * array (which is one source of some of the messy code
264 * constructions here). In essence, the workQueues array serves as
265 * a weak reference mechanism. Thus for example the wait queue
266 * field of ctl stores indices, not references. Access to the
267 * workQueues in associated methods (for example signalWork) must
268 * both index-check and null-check the IDs. All such accesses
269 * ignore bad IDs by returning out early from what they are doing,
270 * since this can only be associated with termination, in which
271 * case it is OK to give up. All uses of the workQueues array
272 * also check that it is non-null (even if previously
273 * non-null). This allows nulling during termination, which is
274 * currently not necessary, but remains an option for
275 * resource-revocation-based shutdown schemes. It also helps
276 * reduce JIT issuance of uncommon-trap code, which tends to
277 * unnecessarily complicate control flow in some methods.
278 *
279 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280 * let workers spin indefinitely scanning for tasks when none can
281 * be found immediately, and we cannot start/resume workers unless
282 * there appear to be tasks available. On the other hand, we must
283 * quickly prod them into action when new tasks are submitted or
284 * generated. In many usages, ramp-up time to activate workers is
285 * the main limiting factor in overall performance (this is
286 * compounded at program start-up by JIT compilation and
287 * allocation). So we try to streamline this as much as possible.
288 * We park/unpark workers after placing in an event wait queue
289 * when they cannot find work. This "queue" is actually a simple
290 * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291 * counter value (that reflects the number of times a worker has
292 * been inactivated) to avoid ABA effects (we need only as many
293 * version numbers as worker threads). Successors are held in
294 * field WorkQueue.nextWait. Queuing deals with several intrinsic
295 * races, mainly that a task-producing thread can miss seeing (and
296 * signalling) another thread that gave up looking for work but
297 * has not yet entered the wait queue. We solve this by requiring
298 * a full sweep of all workers (via repeated calls to method
299 * scan()) both before and after a newly waiting worker is added
300 * to the wait queue. During a rescan, the worker might release
301 * some other queued worker rather than itself, which has the same
302 * net effect. Because enqueued workers may actually be rescanning
303 * rather than waiting, we set and clear the "parker" field of
304 * WorkQueues to reduce unnecessary calls to unpark. (This
305 * requires a secondary recheck to avoid missed signals.) Note
306 * the unusual conventions about Thread.interrupts surrounding
307 * parking and other blocking: Because interrupts are used solely
308 * to alert threads to check termination, which is checked anyway
309 * upon blocking, we clear status (using Thread.interrupted)
310 * before any call to park, so that park does not immediately
311 * return due to status being set via some other unrelated call to
312 * interrupt in user code.
313 *
314 * Signalling. We create or wake up workers only when there
315 * appears to be at least one task they might be able to find and
316 * execute. However, many other threads may notice the same task
317 * and each signal to wake up a thread that might take it. So in
318 * general, pools will be over-signalled. When a submission is
319 * added or another worker adds a task to a queue that has fewer
320 * than two tasks, they signal waiting workers (or trigger
321 * creation of new ones if fewer than the given parallelism level
322 * -- signalWork), and may leave a hint to the unparked worker to
323 * help signal others upon wakeup). These primary signals are
324 * buttressed by others (see method helpSignal) whenever other
325 * threads scan for work or do not have a task to process. On
326 * most platforms, signalling (unpark) overhead time is noticeably
327 * long, and the time between signalling a thread and it actually
328 * making progress can be very noticeably long, so it is worth
329 * offloading these delays from critical paths as much as
330 * possible.
331 *
332 * Trimming workers. To release resources after periods of lack of
333 * use, a worker starting to wait when the pool is quiescent will
334 * time out and terminate if the pool has remained quiescent for a
335 * given period -- a short period if there are more threads than
336 * parallelism, longer as the number of threads decreases. This
337 * will slowly propagate, eventually terminating all workers after
338 * periods of non-use.
339 *
340 * Shutdown and Termination. A call to shutdownNow atomically sets
341 * a plock bit and then (non-atomically) sets each worker's
342 * qlock status, cancels all unprocessed tasks, and wakes up
343 * all waiting workers. Detecting whether termination should
344 * commence after a non-abrupt shutdown() call requires more work
345 * and bookkeeping. We need consensus about quiescence (i.e., that
346 * there is no more work). The active count provides a primary
347 * indication but non-abrupt shutdown still requires a rechecking
348 * scan for any workers that are inactive but not queued.
349 *
350 * Joining Tasks
351 * =============
352 *
353 * Any of several actions may be taken when one worker is waiting
354 * to join a task stolen (or always held) by another. Because we
355 * are multiplexing many tasks on to a pool of workers, we can't
356 * just let them block (as in Thread.join). We also cannot just
357 * reassign the joiner's run-time stack with another and replace
358 * it later, which would be a form of "continuation", that even if
359 * possible is not necessarily a good idea since we sometimes need
360 * both an unblocked task and its continuation to progress.
361 * Instead we combine two tactics:
362 *
363 * Helping: Arranging for the joiner to execute some task that it
364 * would be running if the steal had not occurred.
365 *
366 * Compensating: Unless there are already enough live threads,
367 * method tryCompensate() may create or re-activate a spare
368 * thread to compensate for blocked joiners until they unblock.
369 *
370 * A third form (implemented in tryRemoveAndExec) amounts to
371 * helping a hypothetical compensator: If we can readily tell that
372 * a possible action of a compensator is to steal and execute the
373 * task being joined, the joining thread can do so directly,
374 * without the need for a compensation thread (although at the
375 * expense of larger run-time stacks, but the tradeoff is
376 * typically worthwhile).
377 *
378 * The ManagedBlocker extension API can't use helping so relies
379 * only on compensation in method awaitBlocker.
380 *
381 * The algorithm in tryHelpStealer entails a form of "linear"
382 * helping: Each worker records (in field currentSteal) the most
383 * recent task it stole from some other worker. Plus, it records
384 * (in field currentJoin) the task it is currently actively
385 * joining. Method tryHelpStealer uses these markers to try to
386 * find a worker to help (i.e., steal back a task from and execute
387 * it) that could hasten completion of the actively joined task.
388 * In essence, the joiner executes a task that would be on its own
389 * local deque had the to-be-joined task not been stolen. This may
390 * be seen as a conservative variant of the approach in Wagner &
391 * Calder "Leapfrogging: a portable technique for implementing
392 * efficient futures" SIGPLAN Notices, 1993
393 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
394 * that: (1) We only maintain dependency links across workers upon
395 * steals, rather than use per-task bookkeeping. This sometimes
396 * requires a linear scan of workQueues array to locate stealers,
397 * but often doesn't because stealers leave hints (that may become
398 * stale/wrong) of where to locate them. It is only a hint
399 * because a worker might have had multiple steals and the hint
400 * records only one of them (usually the most current). Hinting
401 * isolates cost to when it is needed, rather than adding to
402 * per-task overhead. (2) It is "shallow", ignoring nesting and
403 * potentially cyclic mutual steals. (3) It is intentionally
404 * racy: field currentJoin is updated only while actively joining,
405 * which means that we miss links in the chain during long-lived
406 * tasks, GC stalls etc (which is OK since blocking in such cases
407 * is usually a good idea). (4) We bound the number of attempts
408 * to find work (see MAX_HELP) and fall back to suspending the
409 * worker and if necessary replacing it with another.
410 *
411 * Helping actions for CountedCompleters are much simpler: Method
412 * helpComplete can take and execute any task with the same root
413 * as the task being waited on. However, this still entails some
414 * traversal of completer chains, so is less efficient than using
415 * CountedCompleters without explicit joins.
416 *
417 * It is impossible to keep exactly the target parallelism number
418 * of threads running at any given time. Determining the
419 * existence of conservatively safe helping targets, the
420 * availability of already-created spares, and the apparent need
421 * to create new spares are all racy, so we rely on multiple
422 * retries of each. Compensation in the apparent absence of
423 * helping opportunities is challenging to control on JVMs, where
424 * GC and other activities can stall progress of tasks that in
425 * turn stall out many other dependent tasks, without us being
426 * able to determine whether they will ever require compensation.
427 * Even though work-stealing otherwise encounters little
428 * degradation in the presence of more threads than cores,
429 * aggressively adding new threads in such cases entails risk of
430 * unwanted positive feedback control loops in which more threads
431 * cause more dependent stalls (as well as delayed progress of
432 * unblocked threads to the point that we know they are available)
433 * leading to more situations requiring more threads, and so
434 * on. This aspect of control can be seen as an (analytically
435 * intractable) game with an opponent that may choose the worst
436 * (for us) active thread to stall at any time. We take several
437 * precautions to bound losses (and thus bound gains), mainly in
438 * methods tryCompensate and awaitJoin.
439 *
440 * Common Pool
441 * ===========
442 *
443 * The static commonPool always exists after static
444 * initialization. Since it (or any other created pool) need
445 * never be used, we minimize initial construction overhead and
446 * footprint to the setup of about a dozen fields, with no nested
447 * allocation. Most bootstrapping occurs within method
448 * fullExternalPush during the first submission to the pool.
449 *
450 * When external threads submit to the common pool, they can
451 * perform some subtask processing (see externalHelpJoin and
452 * related methods). We do not need to record whether these
453 * submissions are to the common pool -- if not, externalHelpJoin
454 * returns quickly (at the most helping to signal some common pool
455 * workers). These submitters would otherwise be blocked waiting
456 * for completion, so the extra effort (with liberally sprinkled
457 * task status checks) in inapplicable cases amounts to an odd
458 * form of limited spin-wait before blocking in ForkJoinTask.join.
459 *
460 * Style notes
461 * ===========
462 *
463 * There is a lot of representation-level coupling among classes
464 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
465 * fields of WorkQueue maintain data structures managed by
466 * ForkJoinPool, so are directly accessed. There is little point
467 * trying to reduce this, since any associated future changes in
468 * representations will need to be accompanied by algorithmic
469 * changes anyway. Several methods intrinsically sprawl because
470 * they must accumulate sets of consistent reads of volatiles held
471 * in local variables. Methods signalWork() and scan() are the
472 * main bottlenecks, so are especially heavily
473 * micro-optimized/mangled. There are lots of inline assignments
474 * (of form "while ((local = field) != 0)") which are usually the
475 * simplest way to ensure the required read orderings (which are
476 * sometimes critical). This leads to a "C"-like style of listing
477 * declarations of these locals at the heads of methods or blocks.
478 * There are several occurrences of the unusual "do {} while
479 * (!cas...)" which is the simplest way to force an update of a
480 * CAS'ed variable. There are also other coding oddities (including
481 * several unnecessary-looking hoisted null checks) that help
482 * some methods perform reasonably even when interpreted (not
483 * compiled).
484 *
485 * The order of declarations in this file is:
486 * (1) Static utility functions
487 * (2) Nested (static) classes
488 * (3) Static fields
489 * (4) Fields, along with constants used when unpacking some of them
490 * (5) Internal control methods
491 * (6) Callbacks and other support for ForkJoinTask methods
492 * (7) Exported methods
493 * (8) Static block initializing statics in minimally dependent order
494 */
495
496 // Static utilities
497
498 /**
499 * If there is a security manager, makes sure caller has
500 * permission to modify threads.
501 */
502 private static void checkPermission() {
503 SecurityManager security = System.getSecurityManager();
504 if (security != null)
505 security.checkPermission(modifyThreadPermission);
506 }
507
508 // Nested classes
509
510 /**
511 * Factory for creating new {@link ForkJoinWorkerThread}s.
512 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
513 * for {@code ForkJoinWorkerThread} subclasses that extend base
514 * functionality or initialize threads with different contexts.
515 */
516 public static interface ForkJoinWorkerThreadFactory {
517 /**
518 * Returns a new worker thread operating in the given pool.
519 *
520 * @param pool the pool this thread works in
521 * @throws NullPointerException if the pool is null
522 */
523 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
524 }
525
526 /**
527 * Default ForkJoinWorkerThreadFactory implementation; creates a
528 * new ForkJoinWorkerThread.
529 */
530 static final class DefaultForkJoinWorkerThreadFactory
531 implements ForkJoinWorkerThreadFactory {
532 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533 return new ForkJoinWorkerThread(pool);
534 }
535 }
536
537 /**
538 * Per-thread records for threads that submit to pools. Currently
539 * holds only pseudo-random seed / index that is used to choose
540 * submission queues in method externalPush. In the future, this may
541 * also incorporate a means to implement different task rejection
542 * and resubmission policies.
543 *
544 * Seeds for submitters and workers/workQueues work in basically
545 * the same way but are initialized and updated using slightly
546 * different mechanics. Both are initialized using the same
547 * approach as in class ThreadLocal, where successive values are
548 * unlikely to collide with previous values. Seeds are then
549 * randomly modified upon collisions using xorshifts, which
550 * requires a non-zero seed.
551 */
552 static final class Submitter {
553 int seed;
554 Submitter(int s) { seed = s; }
555 }
556
557 /**
558 * Class for artificial tasks that are used to replace the target
559 * of local joins if they are removed from an interior queue slot
560 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
561 * actually do anything beyond having a unique identity.
562 */
563 static final class EmptyTask extends ForkJoinTask<Void> {
564 private static final long serialVersionUID = -7721805057305804111L;
565 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
566 public final Void getRawResult() { return null; }
567 public final void setRawResult(Void x) {}
568 public final boolean exec() { return true; }
569 }
570
571 /**
572 * Queues supporting work-stealing as well as external task
573 * submission. See above for main rationale and algorithms.
574 * Implementation relies heavily on "Unsafe" intrinsics
575 * and selective use of "volatile":
576 *
577 * Field "base" is the index (mod array.length) of the least valid
578 * queue slot, which is always the next position to steal (poll)
579 * from if nonempty. Reads and writes require volatile orderings
580 * but not CAS, because updates are only performed after slot
581 * CASes.
582 *
583 * Field "top" is the index (mod array.length) of the next queue
584 * slot to push to or pop from. It is written only by owner thread
585 * for push, or under lock for external/shared push, and accessed
586 * by other threads only after reading (volatile) base. Both top
587 * and base are allowed to wrap around on overflow, but (top -
588 * base) (or more commonly -(base - top) to force volatile read of
589 * base before top) still estimates size. The lock ("qlock") is
590 * forced to -1 on termination, causing all further lock attempts
591 * to fail. (Note: we don't need CAS for termination state because
592 * upon pool shutdown, all shared-queues will stop being used
593 * anyway.) Nearly all lock bodies are set up so that exceptions
594 * within lock bodies are "impossible" (modulo JVM errors that
595 * would cause failure anyway.)
596 *
597 * The array slots are read and written using the emulation of
598 * volatiles/atomics provided by Unsafe. Insertions must in
599 * general use putOrderedObject as a form of releasing store to
600 * ensure that all writes to the task object are ordered before
601 * its publication in the queue. All removals entail a CAS to
602 * null. The array is always a power of two. To ensure safety of
603 * Unsafe array operations, all accesses perform explicit null
604 * checks and implicit bounds checks via power-of-two masking.
605 *
606 * In addition to basic queuing support, this class contains
607 * fields described elsewhere to control execution. It turns out
608 * to work better memory-layout-wise to include them in this class
609 * rather than a separate class.
610 *
611 * Performance on most platforms is very sensitive to placement of
612 * instances of both WorkQueues and their arrays -- we absolutely
613 * do not want multiple WorkQueue instances or multiple queue
614 * arrays sharing cache lines. (It would be best for queue objects
615 * and their arrays to share, but there is nothing available to
616 * help arrange that). Unfortunately, because they are recorded
617 * in a common array, WorkQueue instances are often moved to be
618 * adjacent by garbage collectors. To reduce impact, we use field
619 * padding that works OK on common platforms; this effectively
620 * trades off slightly slower average field access for the sake of
621 * avoiding really bad worst-case access. (Until better JVM
622 * support is in place, this padding is dependent on transient
623 * properties of JVM field layout rules.) We also take care in
624 * allocating, sizing and resizing the array. Non-shared queue
625 * arrays are initialized by workers before use. Others are
626 * allocated on first use.
627 */
628 static final class WorkQueue {
629 /**
630 * Capacity of work-stealing queue array upon initialization.
631 * Must be a power of two; at least 4, but should be larger to
632 * reduce or eliminate cacheline sharing among queues.
633 * Currently, it is much larger, as a partial workaround for
634 * the fact that JVMs often place arrays in locations that
635 * share GC bookkeeping (especially cardmarks) such that
636 * per-write accesses encounter serious memory contention.
637 */
638 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
639
640 /**
641 * Maximum size for queue arrays. Must be a power of two less
642 * than or equal to 1 << (31 - width of array entry) to ensure
643 * lack of wraparound of index calculations, but defined to a
644 * value a bit less than this to help users trap runaway
645 * programs before saturating systems.
646 */
647 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
648
649 // Heuristic padding to ameliorate unfortunate memory placements
650 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
651
652 int seed; // for random scanning; initialize nonzero
653 volatile int eventCount; // encoded inactivation count; < 0 if inactive
654 int nextWait; // encoded record of next event waiter
655 int hint; // steal or signal hint (index)
656 int poolIndex; // index of this queue in pool (or 0)
657 final int mode; // 0: lifo, > 0: fifo, < 0: shared
658 int nsteals; // number of steals
659 volatile int qlock; // 1: locked, -1: terminate; else 0
660 volatile int base; // index of next slot for poll
661 int top; // index of next slot for push
662 ForkJoinTask<?>[] array; // the elements (initially unallocated)
663 final ForkJoinPool pool; // the containing pool (may be null)
664 final ForkJoinWorkerThread owner; // owning thread or null if shared
665 volatile Thread parker; // == owner during call to park; else null
666 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
667 ForkJoinTask<?> currentSteal; // current non-local task being executed
668
669 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
670 volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
671
672 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
673 int seed) {
674 this.pool = pool;
675 this.owner = owner;
676 this.mode = mode;
677 this.seed = seed;
678 // Place indices in the center of array (that is not yet allocated)
679 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
680 }
681
682 /**
683 * Returns the approximate number of tasks in the queue.
684 */
685 final int queueSize() {
686 int n = base - top; // non-owner callers must read base first
687 return (n >= 0) ? 0 : -n; // ignore transient negative
688 }
689
690 /**
691 * Provides a more accurate estimate of whether this queue has
692 * any tasks than does queueSize, by checking whether a
693 * near-empty queue has at least one unclaimed task.
694 */
695 final boolean isEmpty() {
696 ForkJoinTask<?>[] a; int m, s;
697 int n = base - (s = top);
698 return (n >= 0 ||
699 (n == -1 &&
700 ((a = array) == null ||
701 (m = a.length - 1) < 0 ||
702 U.getObject
703 (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
704 }
705
706 /**
707 * Pushes a task. Call only by owner in unshared queues. (The
708 * shared-queue version is embedded in method externalPush.)
709 *
710 * @param task the task. Caller must ensure non-null.
711 * @throw RejectedExecutionException if array cannot be resized
712 */
713 final void push(ForkJoinTask<?> task) {
714 ForkJoinTask<?>[] a; ForkJoinPool p;
715 int s = top, m, n;
716 if ((a = array) != null) { // ignore if queue removed
717 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
718 U.putOrderedObject(a, j, task);
719 if ((n = (top = s + 1) - base) <= 2) {
720 if ((p = pool) != null)
721 p.signalWork(this);
722 }
723 else if (n >= m)
724 growArray();
725 }
726 }
727
728 /**
729 * Initializes or doubles the capacity of array. Call either
730 * by owner or with lock held -- it is OK for base, but not
731 * top, to move while resizings are in progress.
732 */
733 final ForkJoinTask<?>[] growArray() {
734 ForkJoinTask<?>[] oldA = array;
735 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
736 if (size > MAXIMUM_QUEUE_CAPACITY)
737 throw new RejectedExecutionException("Queue capacity exceeded");
738 int oldMask, t, b;
739 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
740 if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
741 (t = top) - (b = base) > 0) {
742 int mask = size - 1;
743 do {
744 ForkJoinTask<?> x;
745 int oldj = ((b & oldMask) << ASHIFT) + ABASE;
746 int j = ((b & mask) << ASHIFT) + ABASE;
747 x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
748 if (x != null &&
749 U.compareAndSwapObject(oldA, oldj, x, null))
750 U.putObjectVolatile(a, j, x);
751 } while (++b != t);
752 }
753 return a;
754 }
755
756 /**
757 * Takes next task, if one exists, in LIFO order. Call only
758 * by owner in unshared queues.
759 */
760 final ForkJoinTask<?> pop() {
761 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
762 if ((a = array) != null && (m = a.length - 1) >= 0) {
763 for (int s; (s = top - 1) - base >= 0;) {
764 long j = ((m & s) << ASHIFT) + ABASE;
765 if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
766 break;
767 if (U.compareAndSwapObject(a, j, t, null)) {
768 top = s;
769 return t;
770 }
771 }
772 }
773 return null;
774 }
775
776 /**
777 * Takes a task in FIFO order if b is base of queue and a task
778 * can be claimed without contention. Specialized versions
779 * appear in ForkJoinPool methods scan and tryHelpStealer.
780 */
781 final ForkJoinTask<?> pollAt(int b) {
782 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
783 if ((a = array) != null) {
784 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
785 if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
786 base == b &&
787 U.compareAndSwapObject(a, j, t, null)) {
788 base = b + 1;
789 return t;
790 }
791 }
792 return null;
793 }
794
795 /**
796 * Takes next task, if one exists, in FIFO order.
797 */
798 final ForkJoinTask<?> poll() {
799 ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
800 while ((b = base) - top < 0 && (a = array) != null) {
801 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
802 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
803 if (t != null) {
804 if (base == b &&
805 U.compareAndSwapObject(a, j, t, null)) {
806 base = b + 1;
807 return t;
808 }
809 }
810 else if (base == b) {
811 if (b + 1 == top)
812 break;
813 Thread.yield(); // wait for lagging update (very rare)
814 }
815 }
816 return null;
817 }
818
819 /**
820 * Takes next task, if one exists, in order specified by mode.
821 */
822 final ForkJoinTask<?> nextLocalTask() {
823 return mode == 0 ? pop() : poll();
824 }
825
826 /**
827 * Returns next task, if one exists, in order specified by mode.
828 */
829 final ForkJoinTask<?> peek() {
830 ForkJoinTask<?>[] a = array; int m;
831 if (a == null || (m = a.length - 1) < 0)
832 return null;
833 int i = mode == 0 ? top - 1 : base;
834 int j = ((i & m) << ASHIFT) + ABASE;
835 return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
836 }
837
838 /**
839 * Pops the given task only if it is at the current top.
840 * (A shared version is available only via FJP.tryExternalUnpush)
841 */
842 final boolean tryUnpush(ForkJoinTask<?> t) {
843 ForkJoinTask<?>[] a; int s;
844 if ((a = array) != null && (s = top) != base &&
845 U.compareAndSwapObject
846 (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
847 top = s;
848 return true;
849 }
850 return false;
851 }
852
853 /**
854 * Removes and cancels all known tasks, ignoring any exceptions.
855 */
856 final void cancelAll() {
857 ForkJoinTask.cancelIgnoringExceptions(currentJoin);
858 ForkJoinTask.cancelIgnoringExceptions(currentSteal);
859 for (ForkJoinTask<?> t; (t = poll()) != null; )
860 ForkJoinTask.cancelIgnoringExceptions(t);
861 }
862
863 /**
864 * Computes next value for random probes. Scans don't require
865 * a very high quality generator, but also not a crummy one.
866 * Marsaglia xor-shift is cheap and works well enough. Note:
867 * This is manually inlined in its usages in ForkJoinPool to
868 * avoid writes inside busy scan loops.
869 */
870 final int nextSeed() {
871 int r = seed;
872 r ^= r << 13;
873 r ^= r >>> 17;
874 return seed = r ^= r << 5;
875 }
876
877 // Specialized execution methods
878
879 /**
880 * Pops and runs tasks until empty.
881 */
882 private void popAndExecAll() {
883 // A bit faster than repeated pop calls
884 ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
885 while ((a = array) != null && (m = a.length - 1) >= 0 &&
886 (s = top - 1) - base >= 0 &&
887 (t = ((ForkJoinTask<?>)
888 U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
889 != null) {
890 if (U.compareAndSwapObject(a, j, t, null)) {
891 top = s;
892 t.doExec();
893 }
894 }
895 }
896
897 /**
898 * Polls and runs tasks until empty.
899 */
900 private void pollAndExecAll() {
901 for (ForkJoinTask<?> t; (t = poll()) != null;)
902 t.doExec();
903 }
904
905 /**
906 * If present, removes from queue and executes the given task,
907 * or any other cancelled task. Returns (true) on any CAS
908 * or consistency check failure so caller can retry.
909 *
910 * @return false if no progress can be made, else true;
911 */
912 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
913 boolean stat = true, removed = false, empty = true;
914 ForkJoinTask<?>[] a; int m, s, b, n;
915 if ((a = array) != null && (m = a.length - 1) >= 0 &&
916 (n = (s = top) - (b = base)) > 0) {
917 for (ForkJoinTask<?> t;;) { // traverse from s to b
918 int j = ((--s & m) << ASHIFT) + ABASE;
919 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
920 if (t == null) // inconsistent length
921 break;
922 else if (t == task) {
923 if (s + 1 == top) { // pop
924 if (!U.compareAndSwapObject(a, j, task, null))
925 break;
926 top = s;
927 removed = true;
928 }
929 else if (base == b) // replace with proxy
930 removed = U.compareAndSwapObject(a, j, task,
931 new EmptyTask());
932 break;
933 }
934 else if (t.status >= 0)
935 empty = false;
936 else if (s + 1 == top) { // pop and throw away
937 if (U.compareAndSwapObject(a, j, t, null))
938 top = s;
939 break;
940 }
941 if (--n == 0) {
942 if (!empty && base == b)
943 stat = false;
944 break;
945 }
946 }
947 }
948 if (removed)
949 task.doExec();
950 return stat;
951 }
952
953 /**
954 * Polls for and executes the given task or any other task in
955 * its CountedCompleter computation
956 */
957 final boolean pollAndExecCC(ForkJoinTask<?> root) {
958 ForkJoinTask<?>[] a; int b; Object o;
959 outer: while ((b = base) - top < 0 && (a = array) != null) {
960 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
961 if ((o = U.getObject(a, j)) == null ||
962 !(o instanceof CountedCompleter))
963 break;
964 for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
965 if (r == root) {
966 if (base == b &&
967 U.compareAndSwapObject(a, j, t, null)) {
968 base = b + 1;
969 t.doExec();
970 return true;
971 }
972 else
973 break; // restart
974 }
975 if ((r = r.completer) == null)
976 break outer; // not part of root computation
977 }
978 }
979 return false;
980 }
981
982 /**
983 * Executes a top-level task and any local tasks remaining
984 * after execution.
985 */
986 final void runTask(ForkJoinTask<?> t) {
987 if (t != null) {
988 (currentSteal = t).doExec();
989 currentSteal = null;
990 ++nsteals;
991 if (base - top < 0) { // process remaining local tasks
992 if (mode == 0)
993 popAndExecAll();
994 else
995 pollAndExecAll();
996 }
997 }
998 }
999
1000 /**
1001 * Executes a non-top-level (stolen) task.
1002 */
1003 final void runSubtask(ForkJoinTask<?> t) {
1004 if (t != null) {
1005 ForkJoinTask<?> ps = currentSteal;
1006 (currentSteal = t).doExec();
1007 currentSteal = ps;
1008 }
1009 }
1010
1011 /**
1012 * Returns true if owned and not known to be blocked.
1013 */
1014 final boolean isApparentlyUnblocked() {
1015 Thread wt; Thread.State s;
1016 return (eventCount >= 0 &&
1017 (wt = owner) != null &&
1018 (s = wt.getState()) != Thread.State.BLOCKED &&
1019 s != Thread.State.WAITING &&
1020 s != Thread.State.TIMED_WAITING);
1021 }
1022
1023 // Unsafe mechanics
1024 private static final sun.misc.Unsafe U;
1025 private static final long QLOCK;
1026 private static final int ABASE;
1027 private static final int ASHIFT;
1028 static {
1029 int s;
1030 try {
1031 U = sun.misc.Unsafe.getUnsafe();
1032 Class<?> k = WorkQueue.class;
1033 Class<?> ak = ForkJoinTask[].class;
1034 QLOCK = U.objectFieldOffset
1035 (k.getDeclaredField("qlock"));
1036 ABASE = U.arrayBaseOffset(ak);
1037 s = U.arrayIndexScale(ak);
1038 } catch (Exception e) {
1039 throw new Error(e);
1040 }
1041 if ((s & (s-1)) != 0)
1042 throw new Error("data type scale not a power of two");
1043 ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1044 }
1045 }
1046
1047 // static fields (initialized in static initializer below)
1048
1049 /**
1050 * Creates a new ForkJoinWorkerThread. This factory is used unless
1051 * overridden in ForkJoinPool constructors.
1052 */
1053 public static final ForkJoinWorkerThreadFactory
1054 defaultForkJoinWorkerThreadFactory;
1055
1056 /**
1057 * Per-thread submission bookkeeping. Shared across all pools
1058 * to reduce ThreadLocal pollution and because random motion
1059 * to avoid contention in one pool is likely to hold for others.
1060 * Lazily initialized on first submission (but null-checked
1061 * in other contexts to avoid unnecessary initialization).
1062 */
1063 static final ThreadLocal<Submitter> submitters;
1064
1065 /**
1066 * Permission required for callers of methods that may start or
1067 * kill threads.
1068 */
1069 private static final RuntimePermission modifyThreadPermission;
1070
1071 /**
1072 * Common (static) pool. Non-null for public use unless a static
1073 * construction exception, but internal usages null-check on use
1074 * to paranoically avoid potential initialization circularities
1075 * as well as to simplify generated code.
1076 */
1077 static final ForkJoinPool commonPool;
1078
1079 /**
1080 * Common pool parallelism. Must equal commonPool.parallelism.
1081 */
1082 static final int commonPoolParallelism;
1083
1084 /**
1085 * Sequence number for creating workerNamePrefix.
1086 */
1087 private static int poolNumberSequence;
1088
1089 /**
1090 * Returns the next sequence number. We don't expect this to
1091 * ever contend, so use simple builtin sync.
1092 */
1093 private static final synchronized int nextPoolId() {
1094 return ++poolNumberSequence;
1095 }
1096
1097 // static constants
1098
1099 /**
1100 * Initial timeout value (in nanoseconds) for the thread
1101 * triggering quiescence to park waiting for new work. On timeout,
1102 * the thread will instead try to shrink the number of
1103 * workers. The value should be large enough to avoid overly
1104 * aggressive shrinkage during most transient stalls (long GCs
1105 * etc).
1106 */
1107 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1108
1109 /**
1110 * Timeout value when there are more threads than parallelism level
1111 */
1112 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1113
1114 /**
1115 * Tolerance for idle timeouts, to cope with timer undershoots
1116 */
1117 private static final long TIMEOUT_SLOP = 2000000L; // 20ms
1118
1119 /**
1120 * The maximum stolen->joining link depth allowed in method
1121 * tryHelpStealer. Must be a power of two. Depths for legitimate
1122 * chains are unbounded, but we use a fixed constant to avoid
1123 * (otherwise unchecked) cycles and to bound staleness of
1124 * traversal parameters at the expense of sometimes blocking when
1125 * we could be helping.
1126 */
1127 private static final int MAX_HELP = 64;
1128
1129 /**
1130 * Increment for seed generators. See class ThreadLocal for
1131 * explanation.
1132 */
1133 private static final int SEED_INCREMENT = 0x61c88647;
1134
1135 /**
1136 * Bits and masks for control variables
1137 *
1138 * Field ctl is a long packed with:
1139 * AC: Number of active running workers minus target parallelism (16 bits)
1140 * TC: Number of total workers minus target parallelism (16 bits)
1141 * ST: true if pool is terminating (1 bit)
1142 * EC: the wait count of top waiting thread (15 bits)
1143 * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1144 *
1145 * When convenient, we can extract the upper 32 bits of counts and
1146 * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1147 * (int)ctl. The ec field is never accessed alone, but always
1148 * together with id and st. The offsets of counts by the target
1149 * parallelism and the positionings of fields makes it possible to
1150 * perform the most common checks via sign tests of fields: When
1151 * ac is negative, there are not enough active workers, when tc is
1152 * negative, there are not enough total workers, and when e is
1153 * negative, the pool is terminating. To deal with these possibly
1154 * negative fields, we use casts in and out of "short" and/or
1155 * signed shifts to maintain signedness.
1156 *
1157 * When a thread is queued (inactivated), its eventCount field is
1158 * set negative, which is the only way to tell if a worker is
1159 * prevented from executing tasks, even though it must continue to
1160 * scan for them to avoid queuing races. Note however that
1161 * eventCount updates lag releases so usage requires care.
1162 *
1163 * Field plock is an int packed with:
1164 * SHUTDOWN: true if shutdown is enabled (1 bit)
1165 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1166 * SIGNAL: set when threads may be waiting on the lock (1 bit)
1167 *
1168 * The sequence number enables simple consistency checks:
1169 * Staleness of read-only operations on the workQueues array can
1170 * be checked by comparing plock before vs after the reads.
1171 */
1172
1173 // bit positions/shifts for fields
1174 private static final int AC_SHIFT = 48;
1175 private static final int TC_SHIFT = 32;
1176 private static final int ST_SHIFT = 31;
1177 private static final int EC_SHIFT = 16;
1178
1179 // bounds
1180 private static final int SMASK = 0xffff; // short bits
1181 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1182 private static final int EVENMASK = 0xfffe; // even short bits
1183 private static final int SQMASK = 0x007e; // max 64 (even) slots
1184 private static final int SHORT_SIGN = 1 << 15;
1185 private static final int INT_SIGN = 1 << 31;
1186
1187 // masks
1188 private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1189 private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1190 private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1191
1192 // units for incrementing and decrementing
1193 private static final long TC_UNIT = 1L << TC_SHIFT;
1194 private static final long AC_UNIT = 1L << AC_SHIFT;
1195
1196 // masks and units for dealing with u = (int)(ctl >>> 32)
1197 private static final int UAC_SHIFT = AC_SHIFT - 32;
1198 private static final int UTC_SHIFT = TC_SHIFT - 32;
1199 private static final int UAC_MASK = SMASK << UAC_SHIFT;
1200 private static final int UTC_MASK = SMASK << UTC_SHIFT;
1201 private static final int UAC_UNIT = 1 << UAC_SHIFT;
1202 private static final int UTC_UNIT = 1 << UTC_SHIFT;
1203
1204 // masks and units for dealing with e = (int)ctl
1205 private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1206 private static final int E_SEQ = 1 << EC_SHIFT;
1207
1208 // plock bits
1209 private static final int SHUTDOWN = 1 << 31;
1210 private static final int PL_LOCK = 2;
1211 private static final int PL_SIGNAL = 1;
1212 private static final int PL_SPINS = 1 << 8;
1213
1214 // access mode for WorkQueue
1215 static final int LIFO_QUEUE = 0;
1216 static final int FIFO_QUEUE = 1;
1217 static final int SHARED_QUEUE = -1;
1218
1219 // bounds for #steps in scan loop -- must be power 2 minus 1
1220 private static final int MIN_SCAN = 0x1ff; // cover estimation slop
1221 private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1222
1223 // Instance fields
1224
1225 /*
1226 * Field layout of this class tends to matter more than one would
1227 * like. Runtime layout order is only loosely related to
1228 * declaration order and may differ across JVMs, but the following
1229 * empirically works OK on current JVMs.
1230 */
1231
1232 // Heuristic padding to ameliorate unfortunate memory placements
1233 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1234
1235 volatile long stealCount; // collects worker counts
1236 volatile long ctl; // main pool control
1237 volatile int plock; // shutdown status and seqLock
1238 volatile int indexSeed; // worker/submitter index seed
1239 final int config; // mode and parallelism level
1240 WorkQueue[] workQueues; // main registry
1241 final ForkJoinWorkerThreadFactory factory;
1242 final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1243 final String workerNamePrefix; // to create worker name string
1244
1245 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1246 volatile Object pad18, pad19, pad1a, pad1b;
1247
1248 /*
1249 * Acquires the plock lock to protect worker array and related
1250 * updates. This method is called only if an initial CAS on plock
1251 * fails. This acts as a spinLock for normal cases, but falls back
1252 * to builtin monitor to block when (rarely) needed. This would be
1253 * a terrible idea for a highly contended lock, but works fine as
1254 * a more conservative alternative to a pure spinlock.
1255 */
1256 private int acquirePlock() {
1257 int spins = PL_SPINS, r = 0, ps, nps;
1258 for (;;) {
1259 if (((ps = plock) & PL_LOCK) == 0 &&
1260 U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1261 return nps;
1262 else if (r == 0) { // randomize spins if possible
1263 Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1264 if ((t instanceof ForkJoinWorkerThread) &&
1265 (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1266 r = w.seed;
1267 else if ((z = submitters.get()) != null)
1268 r = z.seed;
1269 else
1270 r = 1;
1271 }
1272 else if (spins >= 0) {
1273 r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1274 if (r >= 0)
1275 --spins;
1276 }
1277 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1278 synchronized (this) {
1279 if ((plock & PL_SIGNAL) != 0) {
1280 try {
1281 wait();
1282 } catch (InterruptedException ie) {
1283 try {
1284 Thread.currentThread().interrupt();
1285 } catch (SecurityException ignore) {
1286 }
1287 }
1288 }
1289 else
1290 notifyAll();
1291 }
1292 }
1293 }
1294 }
1295
1296 /**
1297 * Unlocks and signals any thread waiting for plock. Called only
1298 * when CAS of seq value for unlock fails.
1299 */
1300 private void releasePlock(int ps) {
1301 plock = ps;
1302 synchronized (this) { notifyAll(); }
1303 }
1304
1305 /**
1306 * Performs secondary initialization, called when plock is zero.
1307 * Creates workQueue array and sets plock to a valid value. The
1308 * lock body must be exception-free (so no try/finally) so we
1309 * optimistically allocate new array outside the lock and throw
1310 * away if (very rarely) not needed. (A similar tactic is used in
1311 * fullExternalPush.) Because the plock seq value can eventually
1312 * wrap around zero, this method harmlessly fails to reinitialize
1313 * if workQueues exists, while still advancing plock.
1314 *
1315 * Additionally tries to create the first worker.
1316 */
1317 private void initWorkers() {
1318 WorkQueue[] ws, nws; int ps;
1319 int p = config & SMASK; // find power of two table size
1320 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1321 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1322 n = (n + 1) << 1;
1323 if ((ws = workQueues) == null || ws.length == 0)
1324 nws = new WorkQueue[n];
1325 else
1326 nws = null;
1327 if (((ps = plock) & PL_LOCK) != 0 ||
1328 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1329 ps = acquirePlock();
1330 if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1331 workQueues = nws;
1332 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1333 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1334 releasePlock(nps);
1335 tryAddWorker();
1336 }
1337
1338 /**
1339 * Tries to create and start one worker if fewer than target
1340 * parallelism level exist. Adjusts counts etc on failure.
1341 */
1342 private void tryAddWorker() {
1343 long c; int u;
1344 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1345 (u & SHORT_SIGN) != 0 && (int)c == 0) {
1346 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1347 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1348 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1349 ForkJoinWorkerThreadFactory fac;
1350 Throwable ex = null;
1351 ForkJoinWorkerThread wt = null;
1352 try {
1353 if ((fac = factory) != null &&
1354 (wt = fac.newThread(this)) != null) {
1355 wt.start();
1356 break;
1357 }
1358 } catch (Throwable e) {
1359 ex = e;
1360 }
1361 deregisterWorker(wt, ex);
1362 break;
1363 }
1364 }
1365 }
1366
1367 // Registering and deregistering workers
1368
1369 /**
1370 * Callback from ForkJoinWorkerThread to establish and record its
1371 * WorkQueue. To avoid scanning bias due to packing entries in
1372 * front of the workQueues array, we treat the array as a simple
1373 * power-of-two hash table using per-thread seed as hash,
1374 * expanding as needed.
1375 *
1376 * @param wt the worker thread
1377 * @return the worker's queue
1378 */
1379 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1380 Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1381 wt.setDaemon(true);
1382 if ((handler = ueh) != null)
1383 wt.setUncaughtExceptionHandler(handler);
1384 do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1385 s += SEED_INCREMENT) ||
1386 s == 0); // skip 0
1387 WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1388 if (((ps = plock) & PL_LOCK) != 0 ||
1389 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1390 ps = acquirePlock();
1391 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1392 try {
1393 if ((ws = workQueues) != null) { // skip if shutting down
1394 int n = ws.length, m = n - 1;
1395 int r = (s << 1) | 1; // use odd-numbered indices
1396 if (ws[r &= m] != null) { // collision
1397 int probes = 0; // step by approx half size
1398 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1399 while (ws[r = (r + step) & m] != null) {
1400 if (++probes >= n) {
1401 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1402 m = n - 1;
1403 probes = 0;
1404 }
1405 }
1406 }
1407 w.eventCount = w.poolIndex = r; // volatile write orders
1408 ws[r] = w;
1409 }
1410 } finally {
1411 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1412 releasePlock(nps);
1413 }
1414 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1415 return w;
1416 }
1417
1418 /**
1419 * Final callback from terminating worker, as well as upon failure
1420 * to construct or start a worker. Removes record of worker from
1421 * array, and adjusts counts. If pool is shutting down, tries to
1422 * complete termination.
1423 *
1424 * @param wt the worker thread or null if construction failed
1425 * @param ex the exception causing failure, or null if none
1426 */
1427 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1428 WorkQueue w = null;
1429 if (wt != null && (w = wt.workQueue) != null) {
1430 int ps;
1431 w.qlock = -1; // ensure set
1432 long ns = w.nsteals, sc; // collect steal count
1433 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1434 sc = stealCount, sc + ns));
1435 if (((ps = plock) & PL_LOCK) != 0 ||
1436 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1437 ps = acquirePlock();
1438 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1439 try {
1440 int idx = w.poolIndex;
1441 WorkQueue[] ws = workQueues;
1442 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1443 ws[idx] = null;
1444 } finally {
1445 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1446 releasePlock(nps);
1447 }
1448 }
1449
1450 long c; // adjust ctl counts
1451 do {} while (!U.compareAndSwapLong
1452 (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1453 ((c - TC_UNIT) & TC_MASK) |
1454 (c & ~(AC_MASK|TC_MASK)))));
1455
1456 if (!tryTerminate(false, false) && w != null && w.array != null) {
1457 w.cancelAll(); // cancel remaining tasks
1458 WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1459 while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1460 if (e > 0) { // activate or create replacement
1461 if ((ws = workQueues) == null ||
1462 (i = e & SMASK) >= ws.length ||
1463 (v = ws[i]) != null)
1464 break;
1465 long nc = (((long)(v.nextWait & E_MASK)) |
1466 ((long)(u + UAC_UNIT) << 32));
1467 if (v.eventCount != (e | INT_SIGN))
1468 break;
1469 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1470 v.eventCount = (e + E_SEQ) & E_MASK;
1471 if ((p = v.parker) != null)
1472 U.unpark(p);
1473 break;
1474 }
1475 }
1476 else {
1477 if ((short)u < 0)
1478 tryAddWorker();
1479 break;
1480 }
1481 }
1482 }
1483 if (ex == null) // help clean refs on way out
1484 ForkJoinTask.helpExpungeStaleExceptions();
1485 else // rethrow
1486 ForkJoinTask.rethrow(ex);
1487 }
1488
1489 // Submissions
1490
1491 /**
1492 * Unless shutting down, adds the given task to a submission queue
1493 * at submitter's current queue index (modulo submission
1494 * range). Only the most common path is directly handled in this
1495 * method. All others are relayed to fullExternalPush.
1496 *
1497 * @param task the task. Caller must ensure non-null.
1498 */
1499 final void externalPush(ForkJoinTask<?> task) {
1500 WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1501 if ((z = submitters.get()) != null && plock > 0 &&
1502 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1503 (q = ws[m & z.seed & SQMASK]) != null &&
1504 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1505 int b = q.base, s = q.top, n, an;
1506 if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1507 int j = (((an - 1) & s) << ASHIFT) + ABASE;
1508 U.putOrderedObject(a, j, task);
1509 q.top = s + 1; // push on to deque
1510 q.qlock = 0;
1511 if (n <= 2)
1512 signalWork(q);
1513 return;
1514 }
1515 q.qlock = 0;
1516 }
1517 fullExternalPush(task);
1518 }
1519
1520 /**
1521 * Full version of externalPush. This method is called, among
1522 * other times, upon the first submission of the first task to the
1523 * pool, so must perform secondary initialization (via
1524 * initWorkers). It also detects first submission by an external
1525 * thread by looking up its ThreadLocal, and creates a new shared
1526 * queue if the one at index if empty or contended. The plock lock
1527 * body must be exception-free (so no try/finally) so we
1528 * optimistically allocate new queues outside the lock and throw
1529 * them away if (very rarely) not needed.
1530 */
1531 private void fullExternalPush(ForkJoinTask<?> task) {
1532 int r = 0; // random index seed
1533 for (Submitter z = submitters.get();;) {
1534 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1535 if (z == null) {
1536 if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1537 r += SEED_INCREMENT) && r != 0)
1538 submitters.set(z = new Submitter(r));
1539 }
1540 else if (r == 0) { // move to a different index
1541 r = z.seed;
1542 r ^= r << 13; // same xorshift as WorkQueues
1543 r ^= r >>> 17;
1544 z.seed = r ^ (r << 5);
1545 }
1546 else if ((ps = plock) < 0)
1547 throw new RejectedExecutionException();
1548 else if (ps == 0 || (ws = workQueues) == null ||
1549 (m = ws.length - 1) < 0)
1550 initWorkers();
1551 else if ((q = ws[k = r & m & SQMASK]) != null) {
1552 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1553 ForkJoinTask<?>[] a = q.array;
1554 int s = q.top;
1555 boolean submitted = false;
1556 try { // locked version of push
1557 if ((a != null && a.length > s + 1 - q.base) ||
1558 (a = q.growArray()) != null) { // must presize
1559 int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1560 U.putOrderedObject(a, j, task);
1561 q.top = s + 1;
1562 submitted = true;
1563 }
1564 } finally {
1565 q.qlock = 0; // unlock
1566 }
1567 if (submitted) {
1568 signalWork(q);
1569 return;
1570 }
1571 }
1572 r = 0; // move on failure
1573 }
1574 else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1575 q = new WorkQueue(this, null, SHARED_QUEUE, r);
1576 if (((ps = plock) & PL_LOCK) != 0 ||
1577 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1578 ps = acquirePlock();
1579 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1580 ws[k] = q;
1581 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1582 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1583 releasePlock(nps);
1584 }
1585 else
1586 r = 0; // try elsewhere while lock held
1587 }
1588 }
1589
1590 // Maintaining ctl counts
1591
1592 /**
1593 * Increments active count; mainly called upon return from blocking.
1594 */
1595 final void incrementActiveCount() {
1596 long c;
1597 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1598 }
1599
1600 /**
1601 * Tries to create or activate a worker if too few are active.
1602 *
1603 * @param q the (non-null) queue holding tasks to be signalled
1604 */
1605 final void signalWork(WorkQueue q) {
1606 int hint = q.poolIndex;
1607 long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1608 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1609 if ((e = (int)c) > 0) {
1610 if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1611 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1612 long nc = (((long)(w.nextWait & E_MASK)) |
1613 ((long)(u + UAC_UNIT) << 32));
1614 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1615 w.hint = hint;
1616 w.eventCount = (e + E_SEQ) & E_MASK;
1617 if ((p = w.parker) != null)
1618 U.unpark(p);
1619 break;
1620 }
1621 if (q.top - q.base <= 0)
1622 break;
1623 }
1624 else
1625 break;
1626 }
1627 else {
1628 if ((short)u < 0)
1629 tryAddWorker();
1630 break;
1631 }
1632 }
1633 }
1634
1635 // Scanning for tasks
1636
1637 /**
1638 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1639 */
1640 final void runWorker(WorkQueue w) {
1641 w.growArray(); // allocate queue
1642 do { w.runTask(scan(w)); } while (w.qlock >= 0);
1643 }
1644
1645 /**
1646 * Scans for and, if found, returns one task, else possibly
1647 * inactivates the worker. This method operates on single reads of
1648 * volatile state and is designed to be re-invoked continuously,
1649 * in part because it returns upon detecting inconsistencies,
1650 * contention, or state changes that indicate possible success on
1651 * re-invocation.
1652 *
1653 * The scan searches for tasks across queues (starting at a random
1654 * index, and relying on registerWorker to irregularly scatter
1655 * them within array to avoid bias), checking each at least twice.
1656 * The scan terminates upon either finding a non-empty queue, or
1657 * completing the sweep. If the worker is not inactivated, it
1658 * takes and returns a task from this queue. Otherwise, if not
1659 * activated, it signals workers (that may include itself) and
1660 * returns so caller can retry. Also returns for true if the
1661 * worker array may have changed during an empty scan. On failure
1662 * to find a task, we take one of the following actions, after
1663 * which the caller will retry calling this method unless
1664 * terminated.
1665 *
1666 * * If pool is terminating, terminate the worker.
1667 *
1668 * * If not already enqueued, try to inactivate and enqueue the
1669 * worker on wait queue. Or, if inactivating has caused the pool
1670 * to be quiescent, relay to idleAwaitWork to possibly shrink
1671 * pool.
1672 *
1673 * * If already enqueued and none of the above apply, possibly
1674 * park awaiting signal, else lingering to help scan and signal.
1675 *
1676 * * If a non-empty queue discovered or left as a hint,
1677 * help wake up other workers before return.
1678 *
1679 * @param w the worker (via its WorkQueue)
1680 * @return a task or null if none found
1681 */
1682 private final ForkJoinTask<?> scan(WorkQueue w) {
1683 WorkQueue[] ws; int m;
1684 int ps = plock; // read plock before ws
1685 if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1686 int ec = w.eventCount; // ec is negative if inactive
1687 int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1688 w.hint = -1; // update seed and clear hint
1689 int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1690 do {
1691 WorkQueue q; ForkJoinTask<?>[] a; int b;
1692 if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1693 (a = q.array) != null) { // probably nonempty
1694 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1695 ForkJoinTask<?> t = (ForkJoinTask<?>)
1696 U.getObjectVolatile(a, i);
1697 if (q.base == b && ec >= 0 && t != null &&
1698 U.compareAndSwapObject(a, i, t, null)) {
1699 if ((q.base = b + 1) - q.top < 0)
1700 signalWork(q);
1701 return t; // taken
1702 }
1703 else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1704 w.hint = (r + j) & m; // help signal below
1705 break; // cannot take
1706 }
1707 }
1708 } while (--j >= 0);
1709
1710 int h, e, ns; long c, sc; WorkQueue q;
1711 if ((ns = w.nsteals) != 0) {
1712 if (U.compareAndSwapLong(this, STEALCOUNT,
1713 sc = stealCount, sc + ns))
1714 w.nsteals = 0; // collect steals and rescan
1715 }
1716 else if (plock != ps) // consistency check
1717 ; // skip
1718 else if ((e = (int)(c = ctl)) < 0)
1719 w.qlock = -1; // pool is terminating
1720 else {
1721 if ((h = w.hint) < 0) {
1722 if (ec >= 0) { // try to enqueue/inactivate
1723 long nc = (((long)ec |
1724 ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1725 w.nextWait = e; // link and mark inactive
1726 w.eventCount = ec | INT_SIGN;
1727 if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1728 w.eventCount = ec; // unmark on CAS failure
1729 else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1730 idleAwaitWork(w, nc, c);
1731 }
1732 else if (w.eventCount < 0 && !tryTerminate(false, false) &&
1733 ctl == c) { // block
1734 Thread wt = Thread.currentThread();
1735 Thread.interrupted(); // clear status
1736 U.putObject(wt, PARKBLOCKER, this);
1737 w.parker = wt; // emulate LockSupport.park
1738 if (w.eventCount < 0) // recheck
1739 U.park(false, 0L);
1740 w.parker = null;
1741 U.putObject(wt, PARKBLOCKER, null);
1742 }
1743 }
1744 if ((h >= 0 || (h = w.hint) >= 0) &&
1745 (ws = workQueues) != null && h < ws.length &&
1746 (q = ws[h]) != null) { // signal others before retry
1747 WorkQueue v; Thread p; int u, i, s;
1748 for (int n = (config & SMASK) >>> 1;;) {
1749 int idleCount = (w.eventCount < 0) ? 0 : -1;
1750 if (((s = idleCount - q.base + q.top) <= n &&
1751 (n = s) <= 0) ||
1752 (u = (int)((c = ctl) >>> 32)) >= 0 ||
1753 (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1754 (v = ws[i]) == null)
1755 break;
1756 long nc = (((long)(v.nextWait & E_MASK)) |
1757 ((long)(u + UAC_UNIT) << 32));
1758 if (v.eventCount != (e | INT_SIGN) ||
1759 !U.compareAndSwapLong(this, CTL, c, nc))
1760 break;
1761 v.hint = h;
1762 v.eventCount = (e + E_SEQ) & E_MASK;
1763 if ((p = v.parker) != null)
1764 U.unpark(p);
1765 if (--n <= 0)
1766 break;
1767 }
1768 }
1769 }
1770 }
1771 return null;
1772 }
1773
1774 /**
1775 * If inactivating worker w has caused the pool to become
1776 * quiescent, checks for pool termination, and, so long as this is
1777 * not the only worker, waits for event for up to a given
1778 * duration. On timeout, if ctl has not changed, terminates the
1779 * worker, which will in turn wake up another worker to possibly
1780 * repeat this process.
1781 *
1782 * @param w the calling worker
1783 * @param currentCtl the ctl value triggering possible quiescence
1784 * @param prevCtl the ctl value to restore if thread is terminated
1785 */
1786 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1787 if (w != null && w.eventCount < 0 &&
1788 !tryTerminate(false, false) && (int)prevCtl != 0) {
1789 int dc = -(short)(currentCtl >>> TC_SHIFT);
1790 long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1791 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1792 Thread wt = Thread.currentThread();
1793 while (ctl == currentCtl) {
1794 Thread.interrupted(); // timed variant of version in scan()
1795 U.putObject(wt, PARKBLOCKER, this);
1796 w.parker = wt;
1797 if (ctl == currentCtl)
1798 U.park(false, parkTime);
1799 w.parker = null;
1800 U.putObject(wt, PARKBLOCKER, null);
1801 if (ctl != currentCtl)
1802 break;
1803 if (deadline - System.nanoTime() <= 0L &&
1804 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1805 w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1806 w.qlock = -1; // shrink
1807 break;
1808 }
1809 }
1810 }
1811 }
1812
1813 /**
1814 * Scans through queues looking for work while joining a task; if
1815 * any present, signals. May return early if more signalling is
1816 * detectably unneeded.
1817 *
1818 * @param task return early if done
1819 * @param origin an index to start scan
1820 */
1821 private void helpSignal(ForkJoinTask<?> task, int origin) {
1822 WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1823 if (task != null && task.status >= 0 &&
1824 (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1825 (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1826 outer: for (int k = origin, j = m; j >= 0; --j) {
1827 WorkQueue q = ws[k++ & m];
1828 for (int n = m;;) { // limit to at most m signals
1829 if (task.status < 0)
1830 break outer;
1831 if (q == null ||
1832 ((s = -q.base + q.top) <= n && (n = s) <= 0))
1833 break;
1834 if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1835 (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1836 (w = ws[i]) == null)
1837 break outer;
1838 long nc = (((long)(w.nextWait & E_MASK)) |
1839 ((long)(u + UAC_UNIT) << 32));
1840 if (w.eventCount != (e | INT_SIGN))
1841 break outer;
1842 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1843 w.eventCount = (e + E_SEQ) & E_MASK;
1844 if ((p = w.parker) != null)
1845 U.unpark(p);
1846 if (--n <= 0)
1847 break;
1848 }
1849 }
1850 }
1851 }
1852 }
1853
1854 /**
1855 * Tries to locate and execute tasks for a stealer of the given
1856 * task, or in turn one of its stealers, Traces currentSteal ->
1857 * currentJoin links looking for a thread working on a descendant
1858 * of the given task and with a non-empty queue to steal back and
1859 * execute tasks from. The first call to this method upon a
1860 * waiting join will often entail scanning/search, (which is OK
1861 * because the joiner has nothing better to do), but this method
1862 * leaves hints in workers to speed up subsequent calls. The
1863 * implementation is very branchy to cope with potential
1864 * inconsistencies or loops encountering chains that are stale,
1865 * unknown, or so long that they are likely cyclic.
1866 *
1867 * @param joiner the joining worker
1868 * @param task the task to join
1869 * @return 0 if no progress can be made, negative if task
1870 * known complete, else positive
1871 */
1872 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1873 int stat = 0, steps = 0; // bound to avoid cycles
1874 if (joiner != null && task != null) { // hoist null checks
1875 restart: for (;;) {
1876 ForkJoinTask<?> subtask = task; // current target
1877 for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1878 WorkQueue[] ws; int m, s, h;
1879 if ((s = task.status) < 0) {
1880 stat = s;
1881 break restart;
1882 }
1883 if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1884 break restart; // shutting down
1885 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1886 v.currentSteal != subtask) {
1887 for (int origin = h;;) { // find stealer
1888 if (((h = (h + 2) & m) & 15) == 1 &&
1889 (subtask.status < 0 || j.currentJoin != subtask))
1890 continue restart; // occasional staleness check
1891 if ((v = ws[h]) != null &&
1892 v.currentSteal == subtask) {
1893 j.hint = h; // save hint
1894 break;
1895 }
1896 if (h == origin)
1897 break restart; // cannot find stealer
1898 }
1899 }
1900 for (;;) { // help stealer or descend to its stealer
1901 ForkJoinTask[] a; int b;
1902 if (subtask.status < 0) // surround probes with
1903 continue restart; // consistency checks
1904 if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1905 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1906 ForkJoinTask<?> t =
1907 (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1908 if (subtask.status < 0 || j.currentJoin != subtask ||
1909 v.currentSteal != subtask)
1910 continue restart; // stale
1911 stat = 1; // apparent progress
1912 if (t != null && v.base == b &&
1913 U.compareAndSwapObject(a, i, t, null)) {
1914 v.base = b + 1; // help stealer
1915 joiner.runSubtask(t);
1916 }
1917 else if (v.base == b && ++steps == MAX_HELP)
1918 break restart; // v apparently stalled
1919 }
1920 else { // empty -- try to descend
1921 ForkJoinTask<?> next = v.currentJoin;
1922 if (subtask.status < 0 || j.currentJoin != subtask ||
1923 v.currentSteal != subtask)
1924 continue restart; // stale
1925 else if (next == null || ++steps == MAX_HELP)
1926 break restart; // dead-end or maybe cyclic
1927 else {
1928 subtask = next;
1929 j = v;
1930 break;
1931 }
1932 }
1933 }
1934 }
1935 }
1936 }
1937 return stat;
1938 }
1939
1940 /**
1941 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1942 * and run tasks within the target's computation.
1943 *
1944 * @param task the task to join
1945 * @param mode if shared, exit upon completing any task
1946 * if all workers are active
1947 */
1948 private int helpComplete(ForkJoinTask<?> task, int mode) {
1949 WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1950 if (task != null && (ws = workQueues) != null &&
1951 (m = ws.length - 1) >= 0) {
1952 for (int j = 1, origin = j;;) {
1953 if ((s = task.status) < 0)
1954 return s;
1955 if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1956 origin = j;
1957 if (mode == SHARED_QUEUE &&
1958 ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1959 break;
1960 }
1961 else if ((j = (j + 2) & m) == origin)
1962 break;
1963 }
1964 }
1965 return 0;
1966 }
1967
1968 /**
1969 * Tries to decrement active count (sometimes implicitly) and
1970 * possibly release or create a compensating worker in preparation
1971 * for blocking. Fails on contention or termination. Otherwise,
1972 * adds a new thread if no idle workers are available and pool
1973 * may become starved.
1974 */
1975 final boolean tryCompensate() {
1976 int pc = config & SMASK, e, i, tc; long c;
1977 WorkQueue[] ws; WorkQueue w; Thread p;
1978 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1979 if (e != 0 && (i = e & SMASK) < ws.length &&
1980 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1981 long nc = ((long)(w.nextWait & E_MASK) |
1982 (c & (AC_MASK|TC_MASK)));
1983 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1984 w.eventCount = (e + E_SEQ) & E_MASK;
1985 if ((p = w.parker) != null)
1986 U.unpark(p);
1987 return true; // replace with idle worker
1988 }
1989 }
1990 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1991 (int)(c >> AC_SHIFT) + pc > 1) {
1992 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1993 if (U.compareAndSwapLong(this, CTL, c, nc))
1994 return true; // no compensation
1995 }
1996 else if (tc + pc < MAX_CAP) {
1997 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1998 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1999 ForkJoinWorkerThreadFactory fac;
2000 Throwable ex = null;
2001 ForkJoinWorkerThread wt = null;
2002 try {
2003 if ((fac = factory) != null &&
2004 (wt = fac.newThread(this)) != null) {
2005 wt.start();
2006 return true;
2007 }
2008 } catch (Throwable rex) {
2009 ex = rex;
2010 }
2011 deregisterWorker(wt, ex); // clean up and return false
2012 }
2013 }
2014 }
2015 return false;
2016 }
2017
2018 /**
2019 * Helps and/or blocks until the given task is done.
2020 *
2021 * @param joiner the joining worker
2022 * @param task the task
2023 * @return task status on exit
2024 */
2025 final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2026 int s = 0;
2027 if (joiner != null && task != null && (s = task.status) >= 0) {
2028 ForkJoinTask<?> prevJoin = joiner.currentJoin;
2029 joiner.currentJoin = task;
2030 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2031 joiner.tryRemoveAndExec(task)); // process local tasks
2032 if (s >= 0 && (s = task.status) >= 0) {
2033 helpSignal(task, joiner.poolIndex);
2034 if ((s = task.status) >= 0 &&
2035 (task instanceof CountedCompleter))
2036 s = helpComplete(task, LIFO_QUEUE);
2037 }
2038 while (s >= 0 && (s = task.status) >= 0) {
2039 if ((!joiner.isEmpty() || // try helping
2040 (s = tryHelpStealer(joiner, task)) == 0) &&
2041 (s = task.status) >= 0) {
2042 helpSignal(task, joiner.poolIndex);
2043 if ((s = task.status) >= 0 && tryCompensate()) {
2044 if (task.trySetSignal() && (s = task.status) >= 0) {
2045 synchronized (task) {
2046 if (task.status >= 0) {
2047 try { // see ForkJoinTask
2048 task.wait(); // for explanation
2049 } catch (InterruptedException ie) {
2050 }
2051 }
2052 else
2053 task.notifyAll();
2054 }
2055 }
2056 long c; // re-activate
2057 do {} while (!U.compareAndSwapLong
2058 (this, CTL, c = ctl, c + AC_UNIT));
2059 }
2060 }
2061 }
2062 joiner.currentJoin = prevJoin;
2063 }
2064 return s;
2065 }
2066
2067 /**
2068 * Stripped-down variant of awaitJoin used by timed joins. Tries
2069 * to help join only while there is continuous progress. (Caller
2070 * will then enter a timed wait.)
2071 *
2072 * @param joiner the joining worker
2073 * @param task the task
2074 */
2075 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2076 int s;
2077 if (joiner != null && task != null && (s = task.status) >= 0) {
2078 ForkJoinTask<?> prevJoin = joiner.currentJoin;
2079 joiner.currentJoin = task;
2080 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2081 joiner.tryRemoveAndExec(task));
2082 if (s >= 0 && (s = task.status) >= 0) {
2083 helpSignal(task, joiner.poolIndex);
2084 if ((s = task.status) >= 0 &&
2085 (task instanceof CountedCompleter))
2086 s = helpComplete(task, LIFO_QUEUE);
2087 }
2088 if (s >= 0 && joiner.isEmpty()) {
2089 do {} while (task.status >= 0 &&
2090 tryHelpStealer(joiner, task) > 0);
2091 }
2092 joiner.currentJoin = prevJoin;
2093 }
2094 }
2095
2096 /**
2097 * Returns a (probably) non-empty steal queue, if one is found
2098 * during a random, then cyclic scan, else null. This method must
2099 * be retried by caller if, by the time it tries to use the queue,
2100 * it is empty.
2101 * @param r a (random) seed for scanning
2102 */
2103 private WorkQueue findNonEmptyStealQueue(int r) {
2104 for (WorkQueue[] ws;;) {
2105 int ps = plock, m, n;
2106 if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2107 return null;
2108 for (int j = (m + 1) << 2; ;) {
2109 WorkQueue q = ws[(((r + j) << 1) | 1) & m];
2110 if (q != null && (n = q.base - q.top) < 0) {
2111 if (n < -1)
2112 signalWork(q);
2113 return q;
2114 }
2115 else if (--j < 0) {
2116 if (plock == ps)
2117 return null;
2118 break;
2119 }
2120 }
2121 }
2122 }
2123
2124 /**
2125 * Runs tasks until {@code isQuiescent()}. We piggyback on
2126 * active count ctl maintenance, but rather than blocking
2127 * when tasks cannot be found, we rescan until all others cannot
2128 * find tasks either.
2129 */
2130 final void helpQuiescePool(WorkQueue w) {
2131 for (boolean active = true;;) {
2132 ForkJoinTask<?> localTask; // exhaust local queue
2133 while ((localTask = w.nextLocalTask()) != null)
2134 localTask.doExec();
2135 // Similar to loop in scan(), but ignoring submissions
2136 WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2137 if (q != null) {
2138 ForkJoinTask<?> t; int b;
2139 if (!active) { // re-establish active count
2140 long c;
2141 active = true;
2142 do {} while (!U.compareAndSwapLong
2143 (this, CTL, c = ctl, c + AC_UNIT));
2144 }
2145 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2146 w.runSubtask(t);
2147 }
2148 else {
2149 long c;
2150 if (active) { // decrement active count without queuing
2151 active = false;
2152 do {} while (!U.compareAndSwapLong
2153 (this, CTL, c = ctl, c -= AC_UNIT));
2154 }
2155 else
2156 c = ctl; // re-increment on exit
2157 if ((int)(c >> AC_SHIFT) + (config & SMASK) == 0) {
2158 do {} while (!U.compareAndSwapLong
2159 (this, CTL, c = ctl, c + AC_UNIT));
2160 break;
2161 }
2162 }
2163 }
2164 }
2165
2166 /**
2167 * Gets and removes a local or stolen task for the given worker.
2168 *
2169 * @return a task, if available
2170 */
2171 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2172 for (ForkJoinTask<?> t;;) {
2173 WorkQueue q; int b;
2174 if ((t = w.nextLocalTask()) != null)
2175 return t;
2176 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2177 return null;
2178 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2179 return t;
2180 }
2181 }
2182
2183 /**
2184 * Returns a cheap heuristic guide for task partitioning when
2185 * programmers, frameworks, tools, or languages have little or no
2186 * idea about task granularity. In essence by offering this
2187 * method, we ask users only about tradeoffs in overhead vs
2188 * expected throughput and its variance, rather than how finely to
2189 * partition tasks.
2190 *
2191 * In a steady state strict (tree-structured) computation, each
2192 * thread makes available for stealing enough tasks for other
2193 * threads to remain active. Inductively, if all threads play by
2194 * the same rules, each thread should make available only a
2195 * constant number of tasks.
2196 *
2197 * The minimum useful constant is just 1. But using a value of 1
2198 * would require immediate replenishment upon each steal to
2199 * maintain enough tasks, which is infeasible. Further,
2200 * partitionings/granularities of offered tasks should minimize
2201 * steal rates, which in general means that threads nearer the top
2202 * of computation tree should generate more than those nearer the
2203 * bottom. In perfect steady state, each thread is at
2204 * approximately the same level of computation tree. However,
2205 * producing extra tasks amortizes the uncertainty of progress and
2206 * diffusion assumptions.
2207 *
2208 * So, users will want to use values larger, but not much larger
2209 * than 1 to both smooth over transient shortages and hedge
2210 * against uneven progress; as traded off against the cost of
2211 * extra task overhead. We leave the user to pick a threshold
2212 * value to compare with the results of this call to guide
2213 * decisions, but recommend values such as 3.
2214 *
2215 * When all threads are active, it is on average OK to estimate
2216 * surplus strictly locally. In steady-state, if one thread is
2217 * maintaining say 2 surplus tasks, then so are others. So we can
2218 * just use estimated queue length. However, this strategy alone
2219 * leads to serious mis-estimates in some non-steady-state
2220 * conditions (ramp-up, ramp-down, other stalls). We can detect
2221 * many of these by further considering the number of "idle"
2222 * threads, that are known to have zero queued tasks, so
2223 * compensate by a factor of (#idle/#active) threads.
2224 *
2225 * Note: The approximation of #busy workers as #active workers is
2226 * not very good under current signalling scheme, and should be
2227 * improved.
2228 */
2229 static int getSurplusQueuedTaskCount() {
2230 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2231 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2232 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2233 int n = (q = wt.workQueue).top - q.base;
2234 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2235 return n - (a > (p >>>= 1) ? 0 :
2236 a > (p >>>= 1) ? 1 :
2237 a > (p >>>= 1) ? 2 :
2238 a > (p >>>= 1) ? 4 :
2239 8);
2240 }
2241 return 0;
2242 }
2243
2244 // Termination
2245
2246 /**
2247 * Possibly initiates and/or completes termination. The caller
2248 * triggering termination runs three passes through workQueues:
2249 * (0) Setting termination status, followed by wakeups of queued
2250 * workers; (1) cancelling all tasks; (2) interrupting lagging
2251 * threads (likely in external tasks, but possibly also blocked in
2252 * joins). Each pass repeats previous steps because of potential
2253 * lagging thread creation.
2254 *
2255 * @param now if true, unconditionally terminate, else only
2256 * if no work and no active workers
2257 * @param enable if true, enable shutdown when next possible
2258 * @return true if now terminating or terminated
2259 */
2260 private boolean tryTerminate(boolean now, boolean enable) {
2261 if (this == commonPool) // cannot shut down
2262 return false;
2263 for (long c;;) {
2264 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2265 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2266 synchronized (this) {
2267 notifyAll(); // signal when 0 workers
2268 }
2269 }
2270 return true;
2271 }
2272 if (plock >= 0) { // not yet enabled
2273 int ps;
2274 if (!enable)
2275 return false;
2276 if (((ps = plock) & PL_LOCK) != 0 ||
2277 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2278 ps = acquirePlock();
2279 if (!U.compareAndSwapInt(this, PLOCK, ps, SHUTDOWN))
2280 releasePlock(SHUTDOWN);
2281 }
2282 if (!now) { // check if idle & no tasks
2283 if ((int)(c >> AC_SHIFT) != -(config & SMASK) ||
2284 hasQueuedSubmissions())
2285 return false;
2286 // Check for unqueued inactive workers. One pass suffices.
2287 WorkQueue[] ws = workQueues; WorkQueue w;
2288 if (ws != null) {
2289 for (int i = 1; i < ws.length; i += 2) {
2290 if ((w = ws[i]) != null && w.eventCount >= 0)
2291 return false;
2292 }
2293 }
2294 }
2295 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2296 for (int pass = 0; pass < 3; ++pass) {
2297 WorkQueue[] ws = workQueues;
2298 if (ws != null) {
2299 WorkQueue w; Thread wt;
2300 int n = ws.length;
2301 for (int i = 0; i < n; ++i) {
2302 if ((w = ws[i]) != null) {
2303 w.qlock = -1;
2304 if (pass > 0) {
2305 w.cancelAll();
2306 if (pass > 1 && (wt = w.owner) != null) {
2307 if (!wt.isInterrupted()) {
2308 try {
2309 wt.interrupt();
2310 } catch (SecurityException ignore) {
2311 }
2312 }
2313 U.unpark(wt);
2314 }
2315 }
2316 }
2317 }
2318 // Wake up workers parked on event queue
2319 int i, e; long cc; Thread p;
2320 while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2321 (i = e & SMASK) < n &&
2322 (w = ws[i]) != null) {
2323 long nc = ((long)(w.nextWait & E_MASK) |
2324 ((cc + AC_UNIT) & AC_MASK) |
2325 (cc & (TC_MASK|STOP_BIT)));
2326 if (w.eventCount == (e | INT_SIGN) &&
2327 U.compareAndSwapLong(this, CTL, cc, nc)) {
2328 w.eventCount = (e + E_SEQ) & E_MASK;
2329 w.qlock = -1;
2330 if ((p = w.parker) != null)
2331 U.unpark(p);
2332 }
2333 }
2334 }
2335 }
2336 }
2337 }
2338 }
2339
2340 // external operations on common pool
2341
2342 /**
2343 * Returns common pool queue for a thread that has submitted at
2344 * least one task.
2345 */
2346 static WorkQueue commonSubmitterQueue() {
2347 ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2348 return ((z = submitters.get()) != null &&
2349 (p = commonPool) != null &&
2350 (ws = p.workQueues) != null &&
2351 (m = ws.length - 1) >= 0) ?
2352 ws[m & z.seed & SQMASK] : null;
2353 }
2354
2355 /**
2356 * Tries to pop the given task from submitter's queue in common pool.
2357 */
2358 static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2359 ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2360 ForkJoinTask<?>[] a; int m, s;
2361 if (t != null &&
2362 (z = submitters.get()) != null &&
2363 (p = commonPool) != null &&
2364 (ws = p.workQueues) != null &&
2365 (m = ws.length - 1) >= 0 &&
2366 (q = ws[m & z.seed & SQMASK]) != null &&
2367 (s = q.top) != q.base &&
2368 (a = q.array) != null) {
2369 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2370 if (U.getObject(a, j) == t &&
2371 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2372 if (q.array == a && q.top == s && // recheck
2373 U.compareAndSwapObject(a, j, t, null)) {
2374 q.top = s - 1;
2375 q.qlock = 0;
2376 return true;
2377 }
2378 q.qlock = 0;
2379 }
2380 }
2381 return false;
2382 }
2383
2384 /**
2385 * Tries to pop and run local tasks within the same computation
2386 * as the given root. On failure, tries to help complete from
2387 * other queues via helpComplete.
2388 */
2389 private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2390 ForkJoinTask<?>[] a; int m;
2391 if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2392 root != null && root.status >= 0) {
2393 for (;;) {
2394 int s, u; Object o; CountedCompleter<?> task = null;
2395 if ((s = q.top) - q.base > 0) {
2396 long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2397 if ((o = U.getObject(a, j)) != null &&
2398 (o instanceof CountedCompleter)) {
2399 CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2400 do {
2401 if (r == root) {
2402 if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2403 if (q.array == a && q.top == s &&
2404 U.compareAndSwapObject(a, j, t, null)) {
2405 q.top = s - 1;
2406 task = t;
2407 }
2408 q.qlock = 0;
2409 }
2410 break;
2411 }
2412 } while ((r = r.completer) != null);
2413 }
2414 }
2415 if (task != null)
2416 task.doExec();
2417 if (root.status < 0 ||
2418 (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2419 break;
2420 if (task == null) {
2421 helpSignal(root, q.poolIndex);
2422 if (root.status >= 0)
2423 helpComplete(root, SHARED_QUEUE);
2424 break;
2425 }
2426 }
2427 }
2428 }
2429
2430 /**
2431 * Tries to help execute or signal availability of the given task
2432 * from submitter's queue in common pool.
2433 */
2434 static void externalHelpJoin(ForkJoinTask<?> t) {
2435 // Some hard-to-avoid overlap with tryExternalUnpush
2436 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2437 ForkJoinTask<?>[] a; int m, s, n;
2438 if (t != null &&
2439 (z = submitters.get()) != null &&
2440 (p = commonPool) != null &&
2441 (ws = p.workQueues) != null &&
2442 (m = ws.length - 1) >= 0 &&
2443 (q = ws[m & z.seed & SQMASK]) != null &&
2444 (a = q.array) != null) {
2445 int am = a.length - 1;
2446 if ((s = q.top) != q.base) {
2447 long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2448 if (U.getObject(a, j) == t &&
2449 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2450 if (q.array == a && q.top == s &&
2451 U.compareAndSwapObject(a, j, t, null)) {
2452 q.top = s - 1;
2453 q.qlock = 0;
2454 t.doExec();
2455 }
2456 else
2457 q.qlock = 0;
2458 }
2459 }
2460 if (t.status >= 0) {
2461 if (t instanceof CountedCompleter)
2462 p.externalHelpComplete(q, t);
2463 else
2464 p.helpSignal(t, q.poolIndex);
2465 }
2466 }
2467 }
2468
2469 /**
2470 * Restricted version of helpQuiescePool for external callers
2471 */
2472 static void externalHelpQuiescePool() {
2473 ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2474 if ((p = commonPool) != null &&
2475 (q = p.findNonEmptyStealQueue(1)) != null &&
2476 (b = q.base) - q.top < 0 &&
2477 (t = q.pollAt(b)) != null)
2478 t.doExec();
2479 }
2480
2481 // Exported methods
2482
2483 // Constructors
2484
2485 /**
2486 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2487 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2488 * #defaultForkJoinWorkerThreadFactory default thread factory},
2489 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2490 *
2491 * @throws SecurityException if a security manager exists and
2492 * the caller is not permitted to modify threads
2493 * because it does not hold {@link
2494 * java.lang.RuntimePermission}{@code ("modifyThread")}
2495 */
2496 public ForkJoinPool() {
2497 this(Runtime.getRuntime().availableProcessors(),
2498 defaultForkJoinWorkerThreadFactory, null, false);
2499 }
2500
2501 /**
2502 * Creates a {@code ForkJoinPool} with the indicated parallelism
2503 * level, the {@linkplain
2504 * #defaultForkJoinWorkerThreadFactory default thread factory},
2505 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2506 *
2507 * @param parallelism the parallelism level
2508 * @throws IllegalArgumentException if parallelism less than or
2509 * equal to zero, or greater than implementation limit
2510 * @throws SecurityException if a security manager exists and
2511 * the caller is not permitted to modify threads
2512 * because it does not hold {@link
2513 * java.lang.RuntimePermission}{@code ("modifyThread")}
2514 */
2515 public ForkJoinPool(int parallelism) {
2516 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2517 }
2518
2519 /**
2520 * Creates a {@code ForkJoinPool} with the given parameters.
2521 *
2522 * @param parallelism the parallelism level. For default value,
2523 * use {@link java.lang.Runtime#availableProcessors}.
2524 * @param factory the factory for creating new threads. For default value,
2525 * use {@link #defaultForkJoinWorkerThreadFactory}.
2526 * @param handler the handler for internal worker threads that
2527 * terminate due to unrecoverable errors encountered while executing
2528 * tasks. For default value, use {@code null}.
2529 * @param asyncMode if true,
2530 * establishes local first-in-first-out scheduling mode for forked
2531 * tasks that are never joined. This mode may be more appropriate
2532 * than default locally stack-based mode in applications in which
2533 * worker threads only process event-style asynchronous tasks.
2534 * For default value, use {@code false}.
2535 * @throws IllegalArgumentException if parallelism less than or
2536 * equal to zero, or greater than implementation limit
2537 * @throws NullPointerException if the factory is null
2538 * @throws SecurityException if a security manager exists and
2539 * the caller is not permitted to modify threads
2540 * because it does not hold {@link
2541 * java.lang.RuntimePermission}{@code ("modifyThread")}
2542 */
2543 public ForkJoinPool(int parallelism,
2544 ForkJoinWorkerThreadFactory factory,
2545 Thread.UncaughtExceptionHandler handler,
2546 boolean asyncMode) {
2547 checkPermission();
2548 if (factory == null)
2549 throw new NullPointerException();
2550 if (parallelism <= 0 || parallelism > MAX_CAP)
2551 throw new IllegalArgumentException();
2552 this.factory = factory;
2553 this.ueh = handler;
2554 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2555 long np = (long)(-parallelism); // offset ctl counts
2556 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2557 int pn = nextPoolId();
2558 StringBuilder sb = new StringBuilder("ForkJoinPool-");
2559 sb.append(Integer.toString(pn));
2560 sb.append("-worker-");
2561 this.workerNamePrefix = sb.toString();
2562 }
2563
2564 /**
2565 * Constructor for common pool, suitable only for static initialization.
2566 * Basically the same as above, but uses smallest possible initial footprint.
2567 */
2568 ForkJoinPool(int parallelism, long ctl,
2569 ForkJoinWorkerThreadFactory factory,
2570 Thread.UncaughtExceptionHandler handler) {
2571 this.config = parallelism;
2572 this.ctl = ctl;
2573 this.factory = factory;
2574 this.ueh = handler;
2575 this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2576 }
2577
2578 /**
2579 * Returns the common pool instance.
2580 *
2581 * @return the common pool instance
2582 * @since 1.8
2583 */
2584 public static ForkJoinPool commonPool() {
2585 // assert commonPool != null : "static init error";
2586 return commonPool;
2587 }
2588
2589 // Execution methods
2590
2591 /**
2592 * Performs the given task, returning its result upon completion.
2593 * If the computation encounters an unchecked Exception or Error,
2594 * it is rethrown as the outcome of this invocation. Rethrown
2595 * exceptions behave in the same way as regular exceptions, but,
2596 * when possible, contain stack traces (as displayed for example
2597 * using {@code ex.printStackTrace()}) of both the current thread
2598 * as well as the thread actually encountering the exception;
2599 * minimally only the latter.
2600 *
2601 * @param task the task
2602 * @return the task's result
2603 * @throws NullPointerException if the task is null
2604 * @throws RejectedExecutionException if the task cannot be
2605 * scheduled for execution
2606 */
2607 public <T> T invoke(ForkJoinTask<T> task) {
2608 if (task == null)
2609 throw new NullPointerException();
2610 externalPush(task);
2611 return task.join();
2612 }
2613
2614 /**
2615 * Arranges for (asynchronous) execution of the given task.
2616 *
2617 * @param task the task
2618 * @throws NullPointerException if the task is null
2619 * @throws RejectedExecutionException if the task cannot be
2620 * scheduled for execution
2621 */
2622 public void execute(ForkJoinTask<?> task) {
2623 if (task == null)
2624 throw new NullPointerException();
2625 externalPush(task);
2626 }
2627
2628 // AbstractExecutorService methods
2629
2630 /**
2631 * @throws NullPointerException if the task is null
2632 * @throws RejectedExecutionException if the task cannot be
2633 * scheduled for execution
2634 */
2635 public void execute(Runnable task) {
2636 if (task == null)
2637 throw new NullPointerException();
2638 ForkJoinTask<?> job;
2639 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2640 job = (ForkJoinTask<?>) task;
2641 else
2642 job = new ForkJoinTask.AdaptedRunnableAction(task);
2643 externalPush(job);
2644 }
2645
2646 /**
2647 * Submits a ForkJoinTask for execution.
2648 *
2649 * @param task the task to submit
2650 * @return the task
2651 * @throws NullPointerException if the task is null
2652 * @throws RejectedExecutionException if the task cannot be
2653 * scheduled for execution
2654 */
2655 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2656 if (task == null)
2657 throw new NullPointerException();
2658 externalPush(task);
2659 return task;
2660 }
2661
2662 /**
2663 * @throws NullPointerException if the task is null
2664 * @throws RejectedExecutionException if the task cannot be
2665 * scheduled for execution
2666 */
2667 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2668 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2669 externalPush(job);
2670 return job;
2671 }
2672
2673 /**
2674 * @throws NullPointerException if the task is null
2675 * @throws RejectedExecutionException if the task cannot be
2676 * scheduled for execution
2677 */
2678 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2679 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2680 externalPush(job);
2681 return job;
2682 }
2683
2684 /**
2685 * @throws NullPointerException if the task is null
2686 * @throws RejectedExecutionException if the task cannot be
2687 * scheduled for execution
2688 */
2689 public ForkJoinTask<?> submit(Runnable task) {
2690 if (task == null)
2691 throw new NullPointerException();
2692 ForkJoinTask<?> job;
2693 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2694 job = (ForkJoinTask<?>) task;
2695 else
2696 job = new ForkJoinTask.AdaptedRunnableAction(task);
2697 externalPush(job);
2698 return job;
2699 }
2700
2701 /**
2702 * @throws NullPointerException {@inheritDoc}
2703 * @throws RejectedExecutionException {@inheritDoc}
2704 */
2705 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2706 // In previous versions of this class, this method constructed
2707 // a task to run ForkJoinTask.invokeAll, but now external
2708 // invocation of multiple tasks is at least as efficient.
2709 List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2710 // Workaround needed because method wasn't declared with
2711 // wildcards in return type but should have been.
2712 @SuppressWarnings({"unchecked", "rawtypes"})
2713 List<Future<T>> futures = (List<Future<T>>) (List) fs;
2714
2715 boolean done = false;
2716 try {
2717 for (Callable<T> t : tasks) {
2718 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2719 externalPush(f);
2720 fs.add(f);
2721 }
2722 for (ForkJoinTask<T> f : fs)
2723 f.quietlyJoin();
2724 done = true;
2725 return futures;
2726 } finally {
2727 if (!done)
2728 for (ForkJoinTask<T> f : fs)
2729 f.cancel(false);
2730 }
2731 }
2732
2733 /**
2734 * Returns the factory used for constructing new workers.
2735 *
2736 * @return the factory used for constructing new workers
2737 */
2738 public ForkJoinWorkerThreadFactory getFactory() {
2739 return factory;
2740 }
2741
2742 /**
2743 * Returns the handler for internal worker threads that terminate
2744 * due to unrecoverable errors encountered while executing tasks.
2745 *
2746 * @return the handler, or {@code null} if none
2747 */
2748 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2749 return ueh;
2750 }
2751
2752 /**
2753 * Returns the targeted parallelism level of this pool.
2754 *
2755 * @return the targeted parallelism level of this pool
2756 */
2757 public int getParallelism() {
2758 return config & SMASK;
2759 }
2760
2761 /**
2762 * Returns the targeted parallelism level of the common pool.
2763 *
2764 * @return the targeted parallelism level of the common pool
2765 * @since 1.8
2766 */
2767 public static int getCommonPoolParallelism() {
2768 return commonPoolParallelism;
2769 }
2770
2771 /**
2772 * Returns the number of worker threads that have started but not
2773 * yet terminated. The result returned by this method may differ
2774 * from {@link #getParallelism} when threads are created to
2775 * maintain parallelism when others are cooperatively blocked.
2776 *
2777 * @return the number of worker threads
2778 */
2779 public int getPoolSize() {
2780 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2781 }
2782
2783 /**
2784 * Returns {@code true} if this pool uses local first-in-first-out
2785 * scheduling mode for forked tasks that are never joined.
2786 *
2787 * @return {@code true} if this pool uses async mode
2788 */
2789 public boolean getAsyncMode() {
2790 return (config >>> 16) == FIFO_QUEUE;
2791 }
2792
2793 /**
2794 * Returns an estimate of the number of worker threads that are
2795 * not blocked waiting to join tasks or for other managed
2796 * synchronization. This method may overestimate the
2797 * number of running threads.
2798 *
2799 * @return the number of worker threads
2800 */
2801 public int getRunningThreadCount() {
2802 int rc = 0;
2803 WorkQueue[] ws; WorkQueue w;
2804 if ((ws = workQueues) != null) {
2805 for (int i = 1; i < ws.length; i += 2) {
2806 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2807 ++rc;
2808 }
2809 }
2810 return rc;
2811 }
2812
2813 /**
2814 * Returns an estimate of the number of threads that are currently
2815 * stealing or executing tasks. This method may overestimate the
2816 * number of active threads.
2817 *
2818 * @return the number of active threads
2819 */
2820 public int getActiveThreadCount() {
2821 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2822 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2823 }
2824
2825 /**
2826 * Returns {@code true} if all worker threads are currently idle.
2827 * An idle worker is one that cannot obtain a task to execute
2828 * because none are available to steal from other threads, and
2829 * there are no pending submissions to the pool. This method is
2830 * conservative; it might not return {@code true} immediately upon
2831 * idleness of all threads, but will eventually become true if
2832 * threads remain inactive.
2833 *
2834 * @return {@code true} if all threads are currently idle
2835 */
2836 public boolean isQuiescent() {
2837 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2838 }
2839
2840 /**
2841 * Returns an estimate of the total number of tasks stolen from
2842 * one thread's work queue by another. The reported value
2843 * underestimates the actual total number of steals when the pool
2844 * is not quiescent. This value may be useful for monitoring and
2845 * tuning fork/join programs: in general, steal counts should be
2846 * high enough to keep threads busy, but low enough to avoid
2847 * overhead and contention across threads.
2848 *
2849 * @return the number of steals
2850 */
2851 public long getStealCount() {
2852 long count = stealCount;
2853 WorkQueue[] ws; WorkQueue w;
2854 if ((ws = workQueues) != null) {
2855 for (int i = 1; i < ws.length; i += 2) {
2856 if ((w = ws[i]) != null)
2857 count += w.nsteals;
2858 }
2859 }
2860 return count;
2861 }
2862
2863 /**
2864 * Returns an estimate of the total number of tasks currently held
2865 * in queues by worker threads (but not including tasks submitted
2866 * to the pool that have not begun executing). This value is only
2867 * an approximation, obtained by iterating across all threads in
2868 * the pool. This method may be useful for tuning task
2869 * granularities.
2870 *
2871 * @return the number of queued tasks
2872 */
2873 public long getQueuedTaskCount() {
2874 long count = 0;
2875 WorkQueue[] ws; WorkQueue w;
2876 if ((ws = workQueues) != null) {
2877 for (int i = 1; i < ws.length; i += 2) {
2878 if ((w = ws[i]) != null)
2879 count += w.queueSize();
2880 }
2881 }
2882 return count;
2883 }
2884
2885 /**
2886 * Returns an estimate of the number of tasks submitted to this
2887 * pool that have not yet begun executing. This method may take
2888 * time proportional to the number of submissions.
2889 *
2890 * @return the number of queued submissions
2891 */
2892 public int getQueuedSubmissionCount() {
2893 int count = 0;
2894 WorkQueue[] ws; WorkQueue w;
2895 if ((ws = workQueues) != null) {
2896 for (int i = 0; i < ws.length; i += 2) {
2897 if ((w = ws[i]) != null)
2898 count += w.queueSize();
2899 }
2900 }
2901 return count;
2902 }
2903
2904 /**
2905 * Returns {@code true} if there are any tasks submitted to this
2906 * pool that have not yet begun executing.
2907 *
2908 * @return {@code true} if there are any queued submissions
2909 */
2910 public boolean hasQueuedSubmissions() {
2911 WorkQueue[] ws; WorkQueue w;
2912 if ((ws = workQueues) != null) {
2913 for (int i = 0; i < ws.length; i += 2) {
2914 if ((w = ws[i]) != null && !w.isEmpty())
2915 return true;
2916 }
2917 }
2918 return false;
2919 }
2920
2921 /**
2922 * Removes and returns the next unexecuted submission if one is
2923 * available. This method may be useful in extensions to this
2924 * class that re-assign work in systems with multiple pools.
2925 *
2926 * @return the next submission, or {@code null} if none
2927 */
2928 protected ForkJoinTask<?> pollSubmission() {
2929 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2930 if ((ws = workQueues) != null) {
2931 for (int i = 0; i < ws.length; i += 2) {
2932 if ((w = ws[i]) != null && (t = w.poll()) != null)
2933 return t;
2934 }
2935 }
2936 return null;
2937 }
2938
2939 /**
2940 * Removes all available unexecuted submitted and forked tasks
2941 * from scheduling queues and adds them to the given collection,
2942 * without altering their execution status. These may include
2943 * artificially generated or wrapped tasks. This method is
2944 * designed to be invoked only when the pool is known to be
2945 * quiescent. Invocations at other times may not remove all
2946 * tasks. A failure encountered while attempting to add elements
2947 * to collection {@code c} may result in elements being in
2948 * neither, either or both collections when the associated
2949 * exception is thrown. The behavior of this operation is
2950 * undefined if the specified collection is modified while the
2951 * operation is in progress.
2952 *
2953 * @param c the collection to transfer elements into
2954 * @return the number of elements transferred
2955 */
2956 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2957 int count = 0;
2958 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2959 if ((ws = workQueues) != null) {
2960 for (int i = 0; i < ws.length; ++i) {
2961 if ((w = ws[i]) != null) {
2962 while ((t = w.poll()) != null) {
2963 c.add(t);
2964 ++count;
2965 }
2966 }
2967 }
2968 }
2969 return count;
2970 }
2971
2972 /**
2973 * Returns a string identifying this pool, as well as its state,
2974 * including indications of run state, parallelism level, and
2975 * worker and task counts.
2976 *
2977 * @return a string identifying this pool, as well as its state
2978 */
2979 public String toString() {
2980 // Use a single pass through workQueues to collect counts
2981 long qt = 0L, qs = 0L; int rc = 0;
2982 long st = stealCount;
2983 long c = ctl;
2984 WorkQueue[] ws; WorkQueue w;
2985 if ((ws = workQueues) != null) {
2986 for (int i = 0; i < ws.length; ++i) {
2987 if ((w = ws[i]) != null) {
2988 int size = w.queueSize();
2989 if ((i & 1) == 0)
2990 qs += size;
2991 else {
2992 qt += size;
2993 st += w.nsteals;
2994 if (w.isApparentlyUnblocked())
2995 ++rc;
2996 }
2997 }
2998 }
2999 }
3000 int pc = (config & SMASK);
3001 int tc = pc + (short)(c >>> TC_SHIFT);
3002 int ac = pc + (int)(c >> AC_SHIFT);
3003 if (ac < 0) // ignore transient negative
3004 ac = 0;
3005 String level;
3006 if ((c & STOP_BIT) != 0)
3007 level = (tc == 0) ? "Terminated" : "Terminating";
3008 else
3009 level = plock < 0 ? "Shutting down" : "Running";
3010 return super.toString() +
3011 "[" + level +
3012 ", parallelism = " + pc +
3013 ", size = " + tc +
3014 ", active = " + ac +
3015 ", running = " + rc +
3016 ", steals = " + st +
3017 ", tasks = " + qt +
3018 ", submissions = " + qs +
3019 "]";
3020 }
3021
3022 /**
3023 * Possibly initiates an orderly shutdown in which previously
3024 * submitted tasks are executed, but no new tasks will be
3025 * accepted. Invocation has no effect on execution state if this
3026 * is the {@link #commonPool()}, and no additional effect if
3027 * already shut down. Tasks that are in the process of being
3028 * submitted concurrently during the course of this method may or
3029 * may not be rejected.
3030 *
3031 * @throws SecurityException if a security manager exists and
3032 * the caller is not permitted to modify threads
3033 * because it does not hold {@link
3034 * java.lang.RuntimePermission}{@code ("modifyThread")}
3035 */
3036 public void shutdown() {
3037 checkPermission();
3038 tryTerminate(false, true);
3039 }
3040
3041 /**
3042 * Possibly attempts to cancel and/or stop all tasks, and reject
3043 * all subsequently submitted tasks. Invocation has no effect on
3044 * execution state if this is the {@link #commonPool()}, and no
3045 * additional effect if already shut down. Otherwise, tasks that
3046 * are in the process of being submitted or executed concurrently
3047 * during the course of this method may or may not be
3048 * rejected. This method cancels both existing and unexecuted
3049 * tasks, in order to permit termination in the presence of task
3050 * dependencies. So the method always returns an empty list
3051 * (unlike the case for some other Executors).
3052 *
3053 * @return an empty list
3054 * @throws SecurityException if a security manager exists and
3055 * the caller is not permitted to modify threads
3056 * because it does not hold {@link
3057 * java.lang.RuntimePermission}{@code ("modifyThread")}
3058 */
3059 public List<Runnable> shutdownNow() {
3060 checkPermission();
3061 tryTerminate(true, true);
3062 return Collections.emptyList();
3063 }
3064
3065 /**
3066 * Returns {@code true} if all tasks have completed following shut down.
3067 *
3068 * @return {@code true} if all tasks have completed following shut down
3069 */
3070 public boolean isTerminated() {
3071 long c = ctl;
3072 return ((c & STOP_BIT) != 0L &&
3073 (short)(c >>> TC_SHIFT) == -(config & SMASK));
3074 }
3075
3076 /**
3077 * Returns {@code true} if the process of termination has
3078 * commenced but not yet completed. This method may be useful for
3079 * debugging. A return of {@code true} reported a sufficient
3080 * period after shutdown may indicate that submitted tasks have
3081 * ignored or suppressed interruption, or are waiting for I/O,
3082 * causing this executor not to properly terminate. (See the
3083 * advisory notes for class {@link ForkJoinTask} stating that
3084 * tasks should not normally entail blocking operations. But if
3085 * they do, they must abort them on interrupt.)
3086 *
3087 * @return {@code true} if terminating but not yet terminated
3088 */
3089 public boolean isTerminating() {
3090 long c = ctl;
3091 return ((c & STOP_BIT) != 0L &&
3092 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3093 }
3094
3095 /**
3096 * Returns {@code true} if this pool has been shut down.
3097 *
3098 * @return {@code true} if this pool has been shut down
3099 */
3100 public boolean isShutdown() {
3101 return plock < 0;
3102 }
3103
3104 /**
3105 * Blocks until all tasks have completed execution after a
3106 * shutdown request, or the timeout occurs, or the current thread
3107 * is interrupted, whichever happens first. Note that the {@link
3108 * #commonPool()} never terminates until program shutdown so
3109 * this method will always time out.
3110 *
3111 * @param timeout the maximum time to wait
3112 * @param unit the time unit of the timeout argument
3113 * @return {@code true} if this executor terminated and
3114 * {@code false} if the timeout elapsed before termination
3115 * @throws InterruptedException if interrupted while waiting
3116 */
3117 public boolean awaitTermination(long timeout, TimeUnit unit)
3118 throws InterruptedException {
3119 long nanos = unit.toNanos(timeout);
3120 if (isTerminated())
3121 return true;
3122 long startTime = System.nanoTime();
3123 boolean terminated = false;
3124 synchronized (this) {
3125 for (long waitTime = nanos, millis = 0L;;) {
3126 if (terminated = isTerminated() ||
3127 waitTime <= 0L ||
3128 (millis = unit.toMillis(waitTime)) <= 0L)
3129 break;
3130 wait(millis);
3131 waitTime = nanos - (System.nanoTime() - startTime);
3132 }
3133 }
3134 return terminated;
3135 }
3136
3137 /**
3138 * Interface for extending managed parallelism for tasks running
3139 * in {@link ForkJoinPool}s.
3140 *
3141 * <p>A {@code ManagedBlocker} provides two methods. Method
3142 * {@code isReleasable} must return {@code true} if blocking is
3143 * not necessary. Method {@code block} blocks the current thread
3144 * if necessary (perhaps internally invoking {@code isReleasable}
3145 * before actually blocking). These actions are performed by any
3146 * thread invoking {@link ForkJoinPool#managedBlock}. The
3147 * unusual methods in this API accommodate synchronizers that may,
3148 * but don't usually, block for long periods. Similarly, they
3149 * allow more efficient internal handling of cases in which
3150 * additional workers may be, but usually are not, needed to
3151 * ensure sufficient parallelism. Toward this end,
3152 * implementations of method {@code isReleasable} must be amenable
3153 * to repeated invocation.
3154 *
3155 * <p>For example, here is a ManagedBlocker based on a
3156 * ReentrantLock:
3157 * <pre> {@code
3158 * class ManagedLocker implements ManagedBlocker {
3159 * final ReentrantLock lock;
3160 * boolean hasLock = false;
3161 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3162 * public boolean block() {
3163 * if (!hasLock)
3164 * lock.lock();
3165 * return true;
3166 * }
3167 * public boolean isReleasable() {
3168 * return hasLock || (hasLock = lock.tryLock());
3169 * }
3170 * }}</pre>
3171 *
3172 * <p>Here is a class that possibly blocks waiting for an
3173 * item on a given queue:
3174 * <pre> {@code
3175 * class QueueTaker<E> implements ManagedBlocker {
3176 * final BlockingQueue<E> queue;
3177 * volatile E item = null;
3178 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3179 * public boolean block() throws InterruptedException {
3180 * if (item == null)
3181 * item = queue.take();
3182 * return true;
3183 * }
3184 * public boolean isReleasable() {
3185 * return item != null || (item = queue.poll()) != null;
3186 * }
3187 * public E getItem() { // call after pool.managedBlock completes
3188 * return item;
3189 * }
3190 * }}</pre>
3191 */
3192 public static interface ManagedBlocker {
3193 /**
3194 * Possibly blocks the current thread, for example waiting for
3195 * a lock or condition.
3196 *
3197 * @return {@code true} if no additional blocking is necessary
3198 * (i.e., if isReleasable would return true)
3199 * @throws InterruptedException if interrupted while waiting
3200 * (the method is not required to do so, but is allowed to)
3201 */
3202 boolean block() throws InterruptedException;
3203
3204 /**
3205 * Returns {@code true} if blocking is unnecessary.
3206 */
3207 boolean isReleasable();
3208 }
3209
3210 /**
3211 * Blocks in accord with the given blocker. If the current thread
3212 * is a {@link ForkJoinWorkerThread}, this method possibly
3213 * arranges for a spare thread to be activated if necessary to
3214 * ensure sufficient parallelism while the current thread is blocked.
3215 *
3216 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3217 * behaviorally equivalent to
3218 * <pre> {@code
3219 * while (!blocker.isReleasable())
3220 * if (blocker.block())
3221 * return;
3222 * }</pre>
3223 *
3224 * If the caller is a {@code ForkJoinTask}, then the pool may
3225 * first be expanded to ensure parallelism, and later adjusted.
3226 *
3227 * @param blocker the blocker
3228 * @throws InterruptedException if blocker.block did so
3229 */
3230 public static void managedBlock(ManagedBlocker blocker)
3231 throws InterruptedException {
3232 Thread t = Thread.currentThread();
3233 if (t instanceof ForkJoinWorkerThread) {
3234 ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3235 while (!blocker.isReleasable()) { // variant of helpSignal
3236 WorkQueue[] ws; WorkQueue q; int m, u;
3237 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3238 for (int i = 0; i <= m; ++i) {
3239 if (blocker.isReleasable())
3240 return;
3241 if ((q = ws[i]) != null && q.base - q.top < 0) {
3242 p.signalWork(q);
3243 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3244 (u >> UAC_SHIFT) >= 0)
3245 break;
3246 }
3247 }
3248 }
3249 if (p.tryCompensate()) {
3250 try {
3251 do {} while (!blocker.isReleasable() &&
3252 !blocker.block());
3253 } finally {
3254 p.incrementActiveCount();
3255 }
3256 break;
3257 }
3258 }
3259 }
3260 else {
3261 do {} while (!blocker.isReleasable() &&
3262 !blocker.block());
3263 }
3264 }
3265
3266 // AbstractExecutorService overrides. These rely on undocumented
3267 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3268 // implement RunnableFuture.
3269
3270 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3271 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3272 }
3273
3274 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3275 return new ForkJoinTask.AdaptedCallable<T>(callable);
3276 }
3277
3278 // Unsafe mechanics
3279 private static final sun.misc.Unsafe U;
3280 private static final long CTL;
3281 private static final long PARKBLOCKER;
3282 private static final int ABASE;
3283 private static final int ASHIFT;
3284 private static final long STEALCOUNT;
3285 private static final long PLOCK;
3286 private static final long INDEXSEED;
3287 private static final long QLOCK;
3288
3289 static {
3290 int s; // initialize field offsets for CAS etc
3291 try {
3292 U = sun.misc.Unsafe.getUnsafe();
3293 Class<?> k = ForkJoinPool.class;
3294 CTL = U.objectFieldOffset
3295 (k.getDeclaredField("ctl"));
3296 STEALCOUNT = U.objectFieldOffset
3297 (k.getDeclaredField("stealCount"));
3298 PLOCK = U.objectFieldOffset
3299 (k.getDeclaredField("plock"));
3300 INDEXSEED = U.objectFieldOffset
3301 (k.getDeclaredField("indexSeed"));
3302 Class<?> tk = Thread.class;
3303 PARKBLOCKER = U.objectFieldOffset
3304 (tk.getDeclaredField("parkBlocker"));
3305 Class<?> wk = WorkQueue.class;
3306 QLOCK = U.objectFieldOffset
3307 (wk.getDeclaredField("qlock"));
3308 Class<?> ak = ForkJoinTask[].class;
3309 ABASE = U.arrayBaseOffset(ak);
3310 s = U.arrayIndexScale(ak);
3311 ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3312 } catch (Exception e) {
3313 throw new Error(e);
3314 }
3315 if ((s & (s-1)) != 0)
3316 throw new Error("data type scale not a power of two");
3317
3318 submitters = new ThreadLocal<Submitter>();
3319 ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3320 new DefaultForkJoinWorkerThreadFactory();
3321 modifyThreadPermission = new RuntimePermission("modifyThread");
3322
3323 /*
3324 * Establish common pool parameters. For extra caution,
3325 * computations to set up common pool state are here; the
3326 * constructor just assigns these values to fields.
3327 */
3328
3329 int par = 0;
3330 Thread.UncaughtExceptionHandler handler = null;
3331 try { // TBD: limit or report ignored exceptions?
3332 String pp = System.getProperty
3333 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3334 String hp = System.getProperty
3335 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3336 String fp = System.getProperty
3337 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3338 if (fp != null)
3339 fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3340 getSystemClassLoader().loadClass(fp).newInstance());
3341 if (hp != null)
3342 handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3343 getSystemClassLoader().loadClass(hp).newInstance());
3344 if (pp != null)
3345 par = Integer.parseInt(pp);
3346 } catch (Exception ignore) {
3347 }
3348
3349 if (par <= 0)
3350 par = Runtime.getRuntime().availableProcessors();
3351 if (par > MAX_CAP)
3352 par = MAX_CAP;
3353 commonPoolParallelism = par;
3354 long np = (long)(-par); // precompute initial ctl value
3355 long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3356
3357 commonPool = new ForkJoinPool(par, ct, fac, handler);
3358 }
3359
3360 }