ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/LinkedBlockingDeque.java
Revision: 1.1
Committed: Sun Dec 16 20:55:16 2012 UTC (11 years, 5 months ago) by dl
Branch: MAIN
CVS Tags: HEAD
Log Message:
Create src/jdk7 package

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.AbstractQueue;
10     import java.util.Collection;
11     import java.util.Iterator;
12     import java.util.NoSuchElementException;
13     import java.util.concurrent.locks.Condition;
14     import java.util.concurrent.locks.ReentrantLock;
15    
16     /**
17     * An optionally-bounded {@linkplain BlockingDeque blocking deque} based on
18     * linked nodes.
19     *
20     * <p>The optional capacity bound constructor argument serves as a
21     * way to prevent excessive expansion. The capacity, if unspecified,
22     * is equal to {@link Integer#MAX_VALUE}. Linked nodes are
23     * dynamically created upon each insertion unless this would bring the
24     * deque above capacity.
25     *
26     * <p>Most operations run in constant time (ignoring time spent
27     * blocking). Exceptions include {@link #remove(Object) remove},
28     * {@link #removeFirstOccurrence removeFirstOccurrence}, {@link
29     * #removeLastOccurrence removeLastOccurrence}, {@link #contains
30     * contains}, {@link #iterator iterator.remove()}, and the bulk
31     * operations, all of which run in linear time.
32     *
33     * <p>This class and its iterator implement all of the
34     * <em>optional</em> methods of the {@link Collection} and {@link
35     * Iterator} interfaces.
36     *
37     * <p>This class is a member of the
38     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
39     * Java Collections Framework</a>.
40     *
41     * @since 1.6
42     * @author Doug Lea
43     * @param <E> the type of elements held in this collection
44     */
45     public class LinkedBlockingDeque<E>
46     extends AbstractQueue<E>
47     implements BlockingDeque<E>, java.io.Serializable {
48    
49     /*
50     * Implemented as a simple doubly-linked list protected by a
51     * single lock and using conditions to manage blocking.
52     *
53     * To implement weakly consistent iterators, it appears we need to
54     * keep all Nodes GC-reachable from a predecessor dequeued Node.
55     * That would cause two problems:
56     * - allow a rogue Iterator to cause unbounded memory retention
57     * - cause cross-generational linking of old Nodes to new Nodes if
58     * a Node was tenured while live, which generational GCs have a
59     * hard time dealing with, causing repeated major collections.
60     * However, only non-deleted Nodes need to be reachable from
61     * dequeued Nodes, and reachability does not necessarily have to
62     * be of the kind understood by the GC. We use the trick of
63     * linking a Node that has just been dequeued to itself. Such a
64     * self-link implicitly means to jump to "first" (for next links)
65     * or "last" (for prev links).
66     */
67    
68     /*
69     * We have "diamond" multiple interface/abstract class inheritance
70     * here, and that introduces ambiguities. Often we want the
71     * BlockingDeque javadoc combined with the AbstractQueue
72     * implementation, so a lot of method specs are duplicated here.
73     */
74    
75     private static final long serialVersionUID = -387911632671998426L;
76    
77     /** Doubly-linked list node class */
78     static final class Node<E> {
79     /**
80     * The item, or null if this node has been removed.
81     */
82     E item;
83    
84     /**
85     * One of:
86     * - the real predecessor Node
87     * - this Node, meaning the predecessor is tail
88     * - null, meaning there is no predecessor
89     */
90     Node<E> prev;
91    
92     /**
93     * One of:
94     * - the real successor Node
95     * - this Node, meaning the successor is head
96     * - null, meaning there is no successor
97     */
98     Node<E> next;
99    
100     Node(E x) {
101     item = x;
102     }
103     }
104    
105     /**
106     * Pointer to first node.
107     * Invariant: (first == null && last == null) ||
108     * (first.prev == null && first.item != null)
109     */
110     transient Node<E> first;
111    
112     /**
113     * Pointer to last node.
114     * Invariant: (first == null && last == null) ||
115     * (last.next == null && last.item != null)
116     */
117     transient Node<E> last;
118    
119     /** Number of items in the deque */
120     private transient int count;
121    
122     /** Maximum number of items in the deque */
123     private final int capacity;
124    
125     /** Main lock guarding all access */
126     final ReentrantLock lock = new ReentrantLock();
127    
128     /** Condition for waiting takes */
129     private final Condition notEmpty = lock.newCondition();
130    
131     /** Condition for waiting puts */
132     private final Condition notFull = lock.newCondition();
133    
134     /**
135     * Creates a {@code LinkedBlockingDeque} with a capacity of
136     * {@link Integer#MAX_VALUE}.
137     */
138     public LinkedBlockingDeque() {
139     this(Integer.MAX_VALUE);
140     }
141    
142     /**
143     * Creates a {@code LinkedBlockingDeque} with the given (fixed) capacity.
144     *
145     * @param capacity the capacity of this deque
146     * @throws IllegalArgumentException if {@code capacity} is less than 1
147     */
148     public LinkedBlockingDeque(int capacity) {
149     if (capacity <= 0) throw new IllegalArgumentException();
150     this.capacity = capacity;
151     }
152    
153     /**
154     * Creates a {@code LinkedBlockingDeque} with a capacity of
155     * {@link Integer#MAX_VALUE}, initially containing the elements of
156     * the given collection, added in traversal order of the
157     * collection's iterator.
158     *
159     * @param c the collection of elements to initially contain
160     * @throws NullPointerException if the specified collection or any
161     * of its elements are null
162     */
163     public LinkedBlockingDeque(Collection<? extends E> c) {
164     this(Integer.MAX_VALUE);
165     final ReentrantLock lock = this.lock;
166     lock.lock(); // Never contended, but necessary for visibility
167     try {
168     for (E e : c) {
169     if (e == null)
170     throw new NullPointerException();
171     if (!linkLast(new Node<E>(e)))
172     throw new IllegalStateException("Deque full");
173     }
174     } finally {
175     lock.unlock();
176     }
177     }
178    
179    
180     // Basic linking and unlinking operations, called only while holding lock
181    
182     /**
183     * Links node as first element, or returns false if full.
184     */
185     private boolean linkFirst(Node<E> node) {
186     // assert lock.isHeldByCurrentThread();
187     if (count >= capacity)
188     return false;
189     Node<E> f = first;
190     node.next = f;
191     first = node;
192     if (last == null)
193     last = node;
194     else
195     f.prev = node;
196     ++count;
197     notEmpty.signal();
198     return true;
199     }
200    
201     /**
202     * Links node as last element, or returns false if full.
203     */
204     private boolean linkLast(Node<E> node) {
205     // assert lock.isHeldByCurrentThread();
206     if (count >= capacity)
207     return false;
208     Node<E> l = last;
209     node.prev = l;
210     last = node;
211     if (first == null)
212     first = node;
213     else
214     l.next = node;
215     ++count;
216     notEmpty.signal();
217     return true;
218     }
219    
220     /**
221     * Removes and returns first element, or null if empty.
222     */
223     private E unlinkFirst() {
224     // assert lock.isHeldByCurrentThread();
225     Node<E> f = first;
226     if (f == null)
227     return null;
228     Node<E> n = f.next;
229     E item = f.item;
230     f.item = null;
231     f.next = f; // help GC
232     first = n;
233     if (n == null)
234     last = null;
235     else
236     n.prev = null;
237     --count;
238     notFull.signal();
239     return item;
240     }
241    
242     /**
243     * Removes and returns last element, or null if empty.
244     */
245     private E unlinkLast() {
246     // assert lock.isHeldByCurrentThread();
247     Node<E> l = last;
248     if (l == null)
249     return null;
250     Node<E> p = l.prev;
251     E item = l.item;
252     l.item = null;
253     l.prev = l; // help GC
254     last = p;
255     if (p == null)
256     first = null;
257     else
258     p.next = null;
259     --count;
260     notFull.signal();
261     return item;
262     }
263    
264     /**
265     * Unlinks x.
266     */
267     void unlink(Node<E> x) {
268     // assert lock.isHeldByCurrentThread();
269     Node<E> p = x.prev;
270     Node<E> n = x.next;
271     if (p == null) {
272     unlinkFirst();
273     } else if (n == null) {
274     unlinkLast();
275     } else {
276     p.next = n;
277     n.prev = p;
278     x.item = null;
279     // Don't mess with x's links. They may still be in use by
280     // an iterator.
281     --count;
282     notFull.signal();
283     }
284     }
285    
286     // BlockingDeque methods
287    
288     /**
289     * @throws IllegalStateException {@inheritDoc}
290     * @throws NullPointerException {@inheritDoc}
291     */
292     public void addFirst(E e) {
293     if (!offerFirst(e))
294     throw new IllegalStateException("Deque full");
295     }
296    
297     /**
298     * @throws IllegalStateException {@inheritDoc}
299     * @throws NullPointerException {@inheritDoc}
300     */
301     public void addLast(E e) {
302     if (!offerLast(e))
303     throw new IllegalStateException("Deque full");
304     }
305    
306     /**
307     * @throws NullPointerException {@inheritDoc}
308     */
309     public boolean offerFirst(E e) {
310     if (e == null) throw new NullPointerException();
311     Node<E> node = new Node<E>(e);
312     final ReentrantLock lock = this.lock;
313     lock.lock();
314     try {
315     return linkFirst(node);
316     } finally {
317     lock.unlock();
318     }
319     }
320    
321     /**
322     * @throws NullPointerException {@inheritDoc}
323     */
324     public boolean offerLast(E e) {
325     if (e == null) throw new NullPointerException();
326     Node<E> node = new Node<E>(e);
327     final ReentrantLock lock = this.lock;
328     lock.lock();
329     try {
330     return linkLast(node);
331     } finally {
332     lock.unlock();
333     }
334     }
335    
336     /**
337     * @throws NullPointerException {@inheritDoc}
338     * @throws InterruptedException {@inheritDoc}
339     */
340     public void putFirst(E e) throws InterruptedException {
341     if (e == null) throw new NullPointerException();
342     Node<E> node = new Node<E>(e);
343     final ReentrantLock lock = this.lock;
344     lock.lock();
345     try {
346     while (!linkFirst(node))
347     notFull.await();
348     } finally {
349     lock.unlock();
350     }
351     }
352    
353     /**
354     * @throws NullPointerException {@inheritDoc}
355     * @throws InterruptedException {@inheritDoc}
356     */
357     public void putLast(E e) throws InterruptedException {
358     if (e == null) throw new NullPointerException();
359     Node<E> node = new Node<E>(e);
360     final ReentrantLock lock = this.lock;
361     lock.lock();
362     try {
363     while (!linkLast(node))
364     notFull.await();
365     } finally {
366     lock.unlock();
367     }
368     }
369    
370     /**
371     * @throws NullPointerException {@inheritDoc}
372     * @throws InterruptedException {@inheritDoc}
373     */
374     public boolean offerFirst(E e, long timeout, TimeUnit unit)
375     throws InterruptedException {
376     if (e == null) throw new NullPointerException();
377     Node<E> node = new Node<E>(e);
378     long nanos = unit.toNanos(timeout);
379     final ReentrantLock lock = this.lock;
380     lock.lockInterruptibly();
381     try {
382     while (!linkFirst(node)) {
383     if (nanos <= 0)
384     return false;
385     nanos = notFull.awaitNanos(nanos);
386     }
387     return true;
388     } finally {
389     lock.unlock();
390     }
391     }
392    
393     /**
394     * @throws NullPointerException {@inheritDoc}
395     * @throws InterruptedException {@inheritDoc}
396     */
397     public boolean offerLast(E e, long timeout, TimeUnit unit)
398     throws InterruptedException {
399     if (e == null) throw new NullPointerException();
400     Node<E> node = new Node<E>(e);
401     long nanos = unit.toNanos(timeout);
402     final ReentrantLock lock = this.lock;
403     lock.lockInterruptibly();
404     try {
405     while (!linkLast(node)) {
406     if (nanos <= 0)
407     return false;
408     nanos = notFull.awaitNanos(nanos);
409     }
410     return true;
411     } finally {
412     lock.unlock();
413     }
414     }
415    
416     /**
417     * @throws NoSuchElementException {@inheritDoc}
418     */
419     public E removeFirst() {
420     E x = pollFirst();
421     if (x == null) throw new NoSuchElementException();
422     return x;
423     }
424    
425     /**
426     * @throws NoSuchElementException {@inheritDoc}
427     */
428     public E removeLast() {
429     E x = pollLast();
430     if (x == null) throw new NoSuchElementException();
431     return x;
432     }
433    
434     public E pollFirst() {
435     final ReentrantLock lock = this.lock;
436     lock.lock();
437     try {
438     return unlinkFirst();
439     } finally {
440     lock.unlock();
441     }
442     }
443    
444     public E pollLast() {
445     final ReentrantLock lock = this.lock;
446     lock.lock();
447     try {
448     return unlinkLast();
449     } finally {
450     lock.unlock();
451     }
452     }
453    
454     public E takeFirst() throws InterruptedException {
455     final ReentrantLock lock = this.lock;
456     lock.lock();
457     try {
458     E x;
459     while ( (x = unlinkFirst()) == null)
460     notEmpty.await();
461     return x;
462     } finally {
463     lock.unlock();
464     }
465     }
466    
467     public E takeLast() throws InterruptedException {
468     final ReentrantLock lock = this.lock;
469     lock.lock();
470     try {
471     E x;
472     while ( (x = unlinkLast()) == null)
473     notEmpty.await();
474     return x;
475     } finally {
476     lock.unlock();
477     }
478     }
479    
480     public E pollFirst(long timeout, TimeUnit unit)
481     throws InterruptedException {
482     long nanos = unit.toNanos(timeout);
483     final ReentrantLock lock = this.lock;
484     lock.lockInterruptibly();
485     try {
486     E x;
487     while ( (x = unlinkFirst()) == null) {
488     if (nanos <= 0)
489     return null;
490     nanos = notEmpty.awaitNanos(nanos);
491     }
492     return x;
493     } finally {
494     lock.unlock();
495     }
496     }
497    
498     public E pollLast(long timeout, TimeUnit unit)
499     throws InterruptedException {
500     long nanos = unit.toNanos(timeout);
501     final ReentrantLock lock = this.lock;
502     lock.lockInterruptibly();
503     try {
504     E x;
505     while ( (x = unlinkLast()) == null) {
506     if (nanos <= 0)
507     return null;
508     nanos = notEmpty.awaitNanos(nanos);
509     }
510     return x;
511     } finally {
512     lock.unlock();
513     }
514     }
515    
516     /**
517     * @throws NoSuchElementException {@inheritDoc}
518     */
519     public E getFirst() {
520     E x = peekFirst();
521     if (x == null) throw new NoSuchElementException();
522     return x;
523     }
524    
525     /**
526     * @throws NoSuchElementException {@inheritDoc}
527     */
528     public E getLast() {
529     E x = peekLast();
530     if (x == null) throw new NoSuchElementException();
531     return x;
532     }
533    
534     public E peekFirst() {
535     final ReentrantLock lock = this.lock;
536     lock.lock();
537     try {
538     return (first == null) ? null : first.item;
539     } finally {
540     lock.unlock();
541     }
542     }
543    
544     public E peekLast() {
545     final ReentrantLock lock = this.lock;
546     lock.lock();
547     try {
548     return (last == null) ? null : last.item;
549     } finally {
550     lock.unlock();
551     }
552     }
553    
554     public boolean removeFirstOccurrence(Object o) {
555     if (o == null) return false;
556     final ReentrantLock lock = this.lock;
557     lock.lock();
558     try {
559     for (Node<E> p = first; p != null; p = p.next) {
560     if (o.equals(p.item)) {
561     unlink(p);
562     return true;
563     }
564     }
565     return false;
566     } finally {
567     lock.unlock();
568     }
569     }
570    
571     public boolean removeLastOccurrence(Object o) {
572     if (o == null) return false;
573     final ReentrantLock lock = this.lock;
574     lock.lock();
575     try {
576     for (Node<E> p = last; p != null; p = p.prev) {
577     if (o.equals(p.item)) {
578     unlink(p);
579     return true;
580     }
581     }
582     return false;
583     } finally {
584     lock.unlock();
585     }
586     }
587    
588     // BlockingQueue methods
589    
590     /**
591     * Inserts the specified element at the end of this deque unless it would
592     * violate capacity restrictions. When using a capacity-restricted deque,
593     * it is generally preferable to use method {@link #offer(Object) offer}.
594     *
595     * <p>This method is equivalent to {@link #addLast}.
596     *
597     * @throws IllegalStateException if the element cannot be added at this
598     * time due to capacity restrictions
599     * @throws NullPointerException if the specified element is null
600     */
601     public boolean add(E e) {
602     addLast(e);
603     return true;
604     }
605    
606     /**
607     * @throws NullPointerException if the specified element is null
608     */
609     public boolean offer(E e) {
610     return offerLast(e);
611     }
612    
613     /**
614     * @throws NullPointerException {@inheritDoc}
615     * @throws InterruptedException {@inheritDoc}
616     */
617     public void put(E e) throws InterruptedException {
618     putLast(e);
619     }
620    
621     /**
622     * @throws NullPointerException {@inheritDoc}
623     * @throws InterruptedException {@inheritDoc}
624     */
625     public boolean offer(E e, long timeout, TimeUnit unit)
626     throws InterruptedException {
627     return offerLast(e, timeout, unit);
628     }
629    
630     /**
631     * Retrieves and removes the head of the queue represented by this deque.
632     * This method differs from {@link #poll poll} only in that it throws an
633     * exception if this deque is empty.
634     *
635     * <p>This method is equivalent to {@link #removeFirst() removeFirst}.
636     *
637     * @return the head of the queue represented by this deque
638     * @throws NoSuchElementException if this deque is empty
639     */
640     public E remove() {
641     return removeFirst();
642     }
643    
644     public E poll() {
645     return pollFirst();
646     }
647    
648     public E take() throws InterruptedException {
649     return takeFirst();
650     }
651    
652     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
653     return pollFirst(timeout, unit);
654     }
655    
656     /**
657     * Retrieves, but does not remove, the head of the queue represented by
658     * this deque. This method differs from {@link #peek peek} only in that
659     * it throws an exception if this deque is empty.
660     *
661     * <p>This method is equivalent to {@link #getFirst() getFirst}.
662     *
663     * @return the head of the queue represented by this deque
664     * @throws NoSuchElementException if this deque is empty
665     */
666     public E element() {
667     return getFirst();
668     }
669    
670     public E peek() {
671     return peekFirst();
672     }
673    
674     /**
675     * Returns the number of additional elements that this deque can ideally
676     * (in the absence of memory or resource constraints) accept without
677     * blocking. This is always equal to the initial capacity of this deque
678     * less the current {@code size} of this deque.
679     *
680     * <p>Note that you <em>cannot</em> always tell if an attempt to insert
681     * an element will succeed by inspecting {@code remainingCapacity}
682     * because it may be the case that another thread is about to
683     * insert or remove an element.
684     */
685     public int remainingCapacity() {
686     final ReentrantLock lock = this.lock;
687     lock.lock();
688     try {
689     return capacity - count;
690     } finally {
691     lock.unlock();
692     }
693     }
694    
695     /**
696     * @throws UnsupportedOperationException {@inheritDoc}
697     * @throws ClassCastException {@inheritDoc}
698     * @throws NullPointerException {@inheritDoc}
699     * @throws IllegalArgumentException {@inheritDoc}
700     */
701     public int drainTo(Collection<? super E> c) {
702     return drainTo(c, Integer.MAX_VALUE);
703     }
704    
705     /**
706     * @throws UnsupportedOperationException {@inheritDoc}
707     * @throws ClassCastException {@inheritDoc}
708     * @throws NullPointerException {@inheritDoc}
709     * @throws IllegalArgumentException {@inheritDoc}
710     */
711     public int drainTo(Collection<? super E> c, int maxElements) {
712     if (c == null)
713     throw new NullPointerException();
714     if (c == this)
715     throw new IllegalArgumentException();
716     if (maxElements <= 0)
717     return 0;
718     final ReentrantLock lock = this.lock;
719     lock.lock();
720     try {
721     int n = Math.min(maxElements, count);
722     for (int i = 0; i < n; i++) {
723     c.add(first.item); // In this order, in case add() throws.
724     unlinkFirst();
725     }
726     return n;
727     } finally {
728     lock.unlock();
729     }
730     }
731    
732     // Stack methods
733    
734     /**
735     * @throws IllegalStateException {@inheritDoc}
736     * @throws NullPointerException {@inheritDoc}
737     */
738     public void push(E e) {
739     addFirst(e);
740     }
741    
742     /**
743     * @throws NoSuchElementException {@inheritDoc}
744     */
745     public E pop() {
746     return removeFirst();
747     }
748    
749     // Collection methods
750    
751     /**
752     * Removes the first occurrence of the specified element from this deque.
753     * If the deque does not contain the element, it is unchanged.
754     * More formally, removes the first element {@code e} such that
755     * {@code o.equals(e)} (if such an element exists).
756     * Returns {@code true} if this deque contained the specified element
757     * (or equivalently, if this deque changed as a result of the call).
758     *
759     * <p>This method is equivalent to
760     * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}.
761     *
762     * @param o element to be removed from this deque, if present
763     * @return {@code true} if this deque changed as a result of the call
764     */
765     public boolean remove(Object o) {
766     return removeFirstOccurrence(o);
767     }
768    
769     /**
770     * Returns the number of elements in this deque.
771     *
772     * @return the number of elements in this deque
773     */
774     public int size() {
775     final ReentrantLock lock = this.lock;
776     lock.lock();
777     try {
778     return count;
779     } finally {
780     lock.unlock();
781     }
782     }
783    
784     /**
785     * Returns {@code true} if this deque contains the specified element.
786     * More formally, returns {@code true} if and only if this deque contains
787     * at least one element {@code e} such that {@code o.equals(e)}.
788     *
789     * @param o object to be checked for containment in this deque
790     * @return {@code true} if this deque contains the specified element
791     */
792     public boolean contains(Object o) {
793     if (o == null) return false;
794     final ReentrantLock lock = this.lock;
795     lock.lock();
796     try {
797     for (Node<E> p = first; p != null; p = p.next)
798     if (o.equals(p.item))
799     return true;
800     return false;
801     } finally {
802     lock.unlock();
803     }
804     }
805    
806     /*
807     * TODO: Add support for more efficient bulk operations.
808     *
809     * We don't want to acquire the lock for every iteration, but we
810     * also want other threads a chance to interact with the
811     * collection, especially when count is close to capacity.
812     */
813    
814     // /**
815     // * Adds all of the elements in the specified collection to this
816     // * queue. Attempts to addAll of a queue to itself result in
817     // * {@code IllegalArgumentException}. Further, the behavior of
818     // * this operation is undefined if the specified collection is
819     // * modified while the operation is in progress.
820     // *
821     // * @param c collection containing elements to be added to this queue
822     // * @return {@code true} if this queue changed as a result of the call
823     // * @throws ClassCastException {@inheritDoc}
824     // * @throws NullPointerException {@inheritDoc}
825     // * @throws IllegalArgumentException {@inheritDoc}
826     // * @throws IllegalStateException {@inheritDoc}
827     // * @see #add(Object)
828     // */
829     // public boolean addAll(Collection<? extends E> c) {
830     // if (c == null)
831     // throw new NullPointerException();
832     // if (c == this)
833     // throw new IllegalArgumentException();
834     // final ReentrantLock lock = this.lock;
835     // lock.lock();
836     // try {
837     // boolean modified = false;
838     // for (E e : c)
839     // if (linkLast(e))
840     // modified = true;
841     // return modified;
842     // } finally {
843     // lock.unlock();
844     // }
845     // }
846    
847     /**
848     * Returns an array containing all of the elements in this deque, in
849     * proper sequence (from first to last element).
850     *
851     * <p>The returned array will be "safe" in that no references to it are
852     * maintained by this deque. (In other words, this method must allocate
853     * a new array). The caller is thus free to modify the returned array.
854     *
855     * <p>This method acts as bridge between array-based and collection-based
856     * APIs.
857     *
858     * @return an array containing all of the elements in this deque
859     */
860     @SuppressWarnings("unchecked")
861     public Object[] toArray() {
862     final ReentrantLock lock = this.lock;
863     lock.lock();
864     try {
865     Object[] a = new Object[count];
866     int k = 0;
867     for (Node<E> p = first; p != null; p = p.next)
868     a[k++] = p.item;
869     return a;
870     } finally {
871     lock.unlock();
872     }
873     }
874    
875     /**
876     * Returns an array containing all of the elements in this deque, in
877     * proper sequence; the runtime type of the returned array is that of
878     * the specified array. If the deque fits in the specified array, it
879     * is returned therein. Otherwise, a new array is allocated with the
880     * runtime type of the specified array and the size of this deque.
881     *
882     * <p>If this deque fits in the specified array with room to spare
883     * (i.e., the array has more elements than this deque), the element in
884     * the array immediately following the end of the deque is set to
885     * {@code null}.
886     *
887     * <p>Like the {@link #toArray()} method, this method acts as bridge between
888     * array-based and collection-based APIs. Further, this method allows
889     * precise control over the runtime type of the output array, and may,
890     * under certain circumstances, be used to save allocation costs.
891     *
892     * <p>Suppose {@code x} is a deque known to contain only strings.
893     * The following code can be used to dump the deque into a newly
894     * allocated array of {@code String}:
895     *
896     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
897     *
898     * Note that {@code toArray(new Object[0])} is identical in function to
899     * {@code toArray()}.
900     *
901     * @param a the array into which the elements of the deque are to
902     * be stored, if it is big enough; otherwise, a new array of the
903     * same runtime type is allocated for this purpose
904     * @return an array containing all of the elements in this deque
905     * @throws ArrayStoreException if the runtime type of the specified array
906     * is not a supertype of the runtime type of every element in
907     * this deque
908     * @throws NullPointerException if the specified array is null
909     */
910     @SuppressWarnings("unchecked")
911     public <T> T[] toArray(T[] a) {
912     final ReentrantLock lock = this.lock;
913     lock.lock();
914     try {
915     if (a.length < count)
916     a = (T[])java.lang.reflect.Array.newInstance
917     (a.getClass().getComponentType(), count);
918    
919     int k = 0;
920     for (Node<E> p = first; p != null; p = p.next)
921     a[k++] = (T)p.item;
922     if (a.length > k)
923     a[k] = null;
924     return a;
925     } finally {
926     lock.unlock();
927     }
928     }
929    
930     public String toString() {
931     final ReentrantLock lock = this.lock;
932     lock.lock();
933     try {
934     Node<E> p = first;
935     if (p == null)
936     return "[]";
937    
938     StringBuilder sb = new StringBuilder();
939     sb.append('[');
940     for (;;) {
941     E e = p.item;
942     sb.append(e == this ? "(this Collection)" : e);
943     p = p.next;
944     if (p == null)
945     return sb.append(']').toString();
946     sb.append(',').append(' ');
947     }
948     } finally {
949     lock.unlock();
950     }
951     }
952    
953     /**
954     * Atomically removes all of the elements from this deque.
955     * The deque will be empty after this call returns.
956     */
957     public void clear() {
958     final ReentrantLock lock = this.lock;
959     lock.lock();
960     try {
961     for (Node<E> f = first; f != null; ) {
962     f.item = null;
963     Node<E> n = f.next;
964     f.prev = null;
965     f.next = null;
966     f = n;
967     }
968     first = last = null;
969     count = 0;
970     notFull.signalAll();
971     } finally {
972     lock.unlock();
973     }
974     }
975    
976     /**
977     * Returns an iterator over the elements in this deque in proper sequence.
978     * The elements will be returned in order from first (head) to last (tail).
979     *
980     * <p>The returned iterator is a "weakly consistent" iterator that
981     * will never throw {@link java.util.ConcurrentModificationException
982     * ConcurrentModificationException}, and guarantees to traverse
983     * elements as they existed upon construction of the iterator, and
984     * may (but is not guaranteed to) reflect any modifications
985     * subsequent to construction.
986     *
987     * @return an iterator over the elements in this deque in proper sequence
988     */
989     public Iterator<E> iterator() {
990     return new Itr();
991     }
992    
993     /**
994     * Returns an iterator over the elements in this deque in reverse
995     * sequential order. The elements will be returned in order from
996     * last (tail) to first (head).
997     *
998     * <p>The returned iterator is a "weakly consistent" iterator that
999     * will never throw {@link java.util.ConcurrentModificationException
1000     * ConcurrentModificationException}, and guarantees to traverse
1001     * elements as they existed upon construction of the iterator, and
1002     * may (but is not guaranteed to) reflect any modifications
1003     * subsequent to construction.
1004     *
1005     * @return an iterator over the elements in this deque in reverse order
1006     */
1007     public Iterator<E> descendingIterator() {
1008     return new DescendingItr();
1009     }
1010    
1011     /**
1012     * Base class for Iterators for LinkedBlockingDeque
1013     */
1014     private abstract class AbstractItr implements Iterator<E> {
1015     /**
1016     * The next node to return in next()
1017     */
1018     Node<E> next;
1019    
1020     /**
1021     * nextItem holds on to item fields because once we claim that
1022     * an element exists in hasNext(), we must return item read
1023     * under lock (in advance()) even if it was in the process of
1024     * being removed when hasNext() was called.
1025     */
1026     E nextItem;
1027    
1028     /**
1029     * Node returned by most recent call to next. Needed by remove.
1030     * Reset to null if this element is deleted by a call to remove.
1031     */
1032     private Node<E> lastRet;
1033    
1034     abstract Node<E> firstNode();
1035     abstract Node<E> nextNode(Node<E> n);
1036    
1037     AbstractItr() {
1038     // set to initial position
1039     final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1040     lock.lock();
1041     try {
1042     next = firstNode();
1043     nextItem = (next == null) ? null : next.item;
1044     } finally {
1045     lock.unlock();
1046     }
1047     }
1048    
1049     /**
1050     * Returns the successor node of the given non-null, but
1051     * possibly previously deleted, node.
1052     */
1053     private Node<E> succ(Node<E> n) {
1054     // Chains of deleted nodes ending in null or self-links
1055     // are possible if multiple interior nodes are removed.
1056     for (;;) {
1057     Node<E> s = nextNode(n);
1058     if (s == null)
1059     return null;
1060     else if (s.item != null)
1061     return s;
1062     else if (s == n)
1063     return firstNode();
1064     else
1065     n = s;
1066     }
1067     }
1068    
1069     /**
1070     * Advances next.
1071     */
1072     void advance() {
1073     final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1074     lock.lock();
1075     try {
1076     // assert next != null;
1077     next = succ(next);
1078     nextItem = (next == null) ? null : next.item;
1079     } finally {
1080     lock.unlock();
1081     }
1082     }
1083    
1084     public boolean hasNext() {
1085     return next != null;
1086     }
1087    
1088     public E next() {
1089     if (next == null)
1090     throw new NoSuchElementException();
1091     lastRet = next;
1092     E x = nextItem;
1093     advance();
1094     return x;
1095     }
1096    
1097     public void remove() {
1098     Node<E> n = lastRet;
1099     if (n == null)
1100     throw new IllegalStateException();
1101     lastRet = null;
1102     final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1103     lock.lock();
1104     try {
1105     if (n.item != null)
1106     unlink(n);
1107     } finally {
1108     lock.unlock();
1109     }
1110     }
1111     }
1112    
1113     /** Forward iterator */
1114     private class Itr extends AbstractItr {
1115     Node<E> firstNode() { return first; }
1116     Node<E> nextNode(Node<E> n) { return n.next; }
1117     }
1118    
1119     /** Descending iterator */
1120     private class DescendingItr extends AbstractItr {
1121     Node<E> firstNode() { return last; }
1122     Node<E> nextNode(Node<E> n) { return n.prev; }
1123     }
1124    
1125     /**
1126     * Saves this deque to a stream (that is, serializes it).
1127     *
1128     * @serialData The capacity (int), followed by elements (each an
1129     * {@code Object}) in the proper order, followed by a null
1130     */
1131     private void writeObject(java.io.ObjectOutputStream s)
1132     throws java.io.IOException {
1133     final ReentrantLock lock = this.lock;
1134     lock.lock();
1135     try {
1136     // Write out capacity and any hidden stuff
1137     s.defaultWriteObject();
1138     // Write out all elements in the proper order.
1139     for (Node<E> p = first; p != null; p = p.next)
1140     s.writeObject(p.item);
1141     // Use trailing null as sentinel
1142     s.writeObject(null);
1143     } finally {
1144     lock.unlock();
1145     }
1146     }
1147    
1148     /**
1149     * Reconstitutes this deque from a stream (that is, deserializes it).
1150     */
1151     private void readObject(java.io.ObjectInputStream s)
1152     throws java.io.IOException, ClassNotFoundException {
1153     s.defaultReadObject();
1154     count = 0;
1155     first = null;
1156     last = null;
1157     // Read in all elements and place in queue
1158     for (;;) {
1159     @SuppressWarnings("unchecked")
1160     E item = (E)s.readObject();
1161     if (item == null)
1162     break;
1163     add(item);
1164     }
1165     }
1166    
1167     }