ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.4
Committed: Mon Mar 23 18:56:40 2015 UTC (9 years, 1 month ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.3: +4 -0 lines
Log Message:
JDK-8074773: Reduce the risk of rare disastrous classloading in first call to LockSupport.park

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.Collection;
11 import java.util.Iterator;
12 import java.util.NoSuchElementException;
13 import java.util.Queue;
14 import java.util.concurrent.locks.LockSupport;
15
16 /**
17 * An unbounded {@link TransferQueue} based on linked nodes.
18 * This queue orders elements FIFO (first-in-first-out) with respect
19 * to any given producer. The <em>head</em> of the queue is that
20 * element that has been on the queue the longest time for some
21 * producer. The <em>tail</em> of the queue is that element that has
22 * been on the queue the shortest time for some producer.
23 *
24 * <p>Beware that, unlike in most collections, the {@code size} method
25 * is <em>NOT</em> a constant-time operation. Because of the
26 * asynchronous nature of these queues, determining the current number
27 * of elements requires a traversal of the elements, and so may report
28 * inaccurate results if this collection is modified during traversal.
29 * Additionally, the bulk operations {@code addAll},
30 * {@code removeAll}, {@code retainAll}, {@code containsAll},
31 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
32 * to be performed atomically. For example, an iterator operating
33 * concurrently with an {@code addAll} operation might view only some
34 * of the added elements.
35 *
36 * <p>This class and its iterator implement all of the
37 * <em>optional</em> methods of the {@link Collection} and {@link
38 * Iterator} interfaces.
39 *
40 * <p>Memory consistency effects: As with other concurrent
41 * collections, actions in a thread prior to placing an object into a
42 * {@code LinkedTransferQueue}
43 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
44 * actions subsequent to the access or removal of that element from
45 * the {@code LinkedTransferQueue} in another thread.
46 *
47 * <p>This class is a member of the
48 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
49 * Java Collections Framework</a>.
50 *
51 * @since 1.7
52 * @author Doug Lea
53 * @param <E> the type of elements held in this collection
54 */
55 public class LinkedTransferQueue<E> extends AbstractQueue<E>
56 implements TransferQueue<E>, java.io.Serializable {
57 private static final long serialVersionUID = -3223113410248163686L;
58
59 /*
60 * *** Overview of Dual Queues with Slack ***
61 *
62 * Dual Queues, introduced by Scherer and Scott
63 * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
64 * (linked) queues in which nodes may represent either data or
65 * requests. When a thread tries to enqueue a data node, but
66 * encounters a request node, it instead "matches" and removes it;
67 * and vice versa for enqueuing requests. Blocking Dual Queues
68 * arrange that threads enqueuing unmatched requests block until
69 * other threads provide the match. Dual Synchronous Queues (see
70 * Scherer, Lea, & Scott
71 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
72 * additionally arrange that threads enqueuing unmatched data also
73 * block. Dual Transfer Queues support all of these modes, as
74 * dictated by callers.
75 *
76 * A FIFO dual queue may be implemented using a variation of the
77 * Michael & Scott (M&S) lock-free queue algorithm
78 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
79 * It maintains two pointer fields, "head", pointing to a
80 * (matched) node that in turn points to the first actual
81 * (unmatched) queue node (or null if empty); and "tail" that
82 * points to the last node on the queue (or again null if
83 * empty). For example, here is a possible queue with four data
84 * elements:
85 *
86 * head tail
87 * | |
88 * v v
89 * M -> U -> U -> U -> U
90 *
91 * The M&S queue algorithm is known to be prone to scalability and
92 * overhead limitations when maintaining (via CAS) these head and
93 * tail pointers. This has led to the development of
94 * contention-reducing variants such as elimination arrays (see
95 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
96 * optimistic back pointers (see Ladan-Mozes & Shavit
97 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
98 * However, the nature of dual queues enables a simpler tactic for
99 * improving M&S-style implementations when dual-ness is needed.
100 *
101 * In a dual queue, each node must atomically maintain its match
102 * status. While there are other possible variants, we implement
103 * this here as: for a data-mode node, matching entails CASing an
104 * "item" field from a non-null data value to null upon match, and
105 * vice-versa for request nodes, CASing from null to a data
106 * value. (Note that the linearization properties of this style of
107 * queue are easy to verify -- elements are made available by
108 * linking, and unavailable by matching.) Compared to plain M&S
109 * queues, this property of dual queues requires one additional
110 * successful atomic operation per enq/deq pair. But it also
111 * enables lower cost variants of queue maintenance mechanics. (A
112 * variation of this idea applies even for non-dual queues that
113 * support deletion of interior elements, such as
114 * j.u.c.ConcurrentLinkedQueue.)
115 *
116 * Once a node is matched, its match status can never again
117 * change. We may thus arrange that the linked list of them
118 * contain a prefix of zero or more matched nodes, followed by a
119 * suffix of zero or more unmatched nodes. (Note that we allow
120 * both the prefix and suffix to be zero length, which in turn
121 * means that we do not use a dummy header.) If we were not
122 * concerned with either time or space efficiency, we could
123 * correctly perform enqueue and dequeue operations by traversing
124 * from a pointer to the initial node; CASing the item of the
125 * first unmatched node on match and CASing the next field of the
126 * trailing node on appends. (Plus some special-casing when
127 * initially empty). While this would be a terrible idea in
128 * itself, it does have the benefit of not requiring ANY atomic
129 * updates on head/tail fields.
130 *
131 * We introduce here an approach that lies between the extremes of
132 * never versus always updating queue (head and tail) pointers.
133 * This offers a tradeoff between sometimes requiring extra
134 * traversal steps to locate the first and/or last unmatched
135 * nodes, versus the reduced overhead and contention of fewer
136 * updates to queue pointers. For example, a possible snapshot of
137 * a queue is:
138 *
139 * head tail
140 * | |
141 * v v
142 * M -> M -> U -> U -> U -> U
143 *
144 * The best value for this "slack" (the targeted maximum distance
145 * between the value of "head" and the first unmatched node, and
146 * similarly for "tail") is an empirical matter. We have found
147 * that using very small constants in the range of 1-3 work best
148 * over a range of platforms. Larger values introduce increasing
149 * costs of cache misses and risks of long traversal chains, while
150 * smaller values increase CAS contention and overhead.
151 *
152 * Dual queues with slack differ from plain M&S dual queues by
153 * virtue of only sometimes updating head or tail pointers when
154 * matching, appending, or even traversing nodes; in order to
155 * maintain a targeted slack. The idea of "sometimes" may be
156 * operationalized in several ways. The simplest is to use a
157 * per-operation counter incremented on each traversal step, and
158 * to try (via CAS) to update the associated queue pointer
159 * whenever the count exceeds a threshold. Another, that requires
160 * more overhead, is to use random number generators to update
161 * with a given probability per traversal step.
162 *
163 * In any strategy along these lines, because CASes updating
164 * fields may fail, the actual slack may exceed targeted
165 * slack. However, they may be retried at any time to maintain
166 * targets. Even when using very small slack values, this
167 * approach works well for dual queues because it allows all
168 * operations up to the point of matching or appending an item
169 * (hence potentially allowing progress by another thread) to be
170 * read-only, thus not introducing any further contention. As
171 * described below, we implement this by performing slack
172 * maintenance retries only after these points.
173 *
174 * As an accompaniment to such techniques, traversal overhead can
175 * be further reduced without increasing contention of head
176 * pointer updates: Threads may sometimes shortcut the "next" link
177 * path from the current "head" node to be closer to the currently
178 * known first unmatched node, and similarly for tail. Again, this
179 * may be triggered with using thresholds or randomization.
180 *
181 * These ideas must be further extended to avoid unbounded amounts
182 * of costly-to-reclaim garbage caused by the sequential "next"
183 * links of nodes starting at old forgotten head nodes: As first
184 * described in detail by Boehm
185 * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
186 * delays noticing that any arbitrarily old node has become
187 * garbage, all newer dead nodes will also be unreclaimed.
188 * (Similar issues arise in non-GC environments.) To cope with
189 * this in our implementation, upon CASing to advance the head
190 * pointer, we set the "next" link of the previous head to point
191 * only to itself; thus limiting the length of connected dead lists.
192 * (We also take similar care to wipe out possibly garbage
193 * retaining values held in other Node fields.) However, doing so
194 * adds some further complexity to traversal: If any "next"
195 * pointer links to itself, it indicates that the current thread
196 * has lagged behind a head-update, and so the traversal must
197 * continue from the "head". Traversals trying to find the
198 * current tail starting from "tail" may also encounter
199 * self-links, in which case they also continue at "head".
200 *
201 * It is tempting in slack-based scheme to not even use CAS for
202 * updates (similarly to Ladan-Mozes & Shavit). However, this
203 * cannot be done for head updates under the above link-forgetting
204 * mechanics because an update may leave head at a detached node.
205 * And while direct writes are possible for tail updates, they
206 * increase the risk of long retraversals, and hence long garbage
207 * chains, which can be much more costly than is worthwhile
208 * considering that the cost difference of performing a CAS vs
209 * write is smaller when they are not triggered on each operation
210 * (especially considering that writes and CASes equally require
211 * additional GC bookkeeping ("write barriers") that are sometimes
212 * more costly than the writes themselves because of contention).
213 *
214 * *** Overview of implementation ***
215 *
216 * We use a threshold-based approach to updates, with a slack
217 * threshold of two -- that is, we update head/tail when the
218 * current pointer appears to be two or more steps away from the
219 * first/last node. The slack value is hard-wired: a path greater
220 * than one is naturally implemented by checking equality of
221 * traversal pointers except when the list has only one element,
222 * in which case we keep slack threshold at one. Avoiding tracking
223 * explicit counts across method calls slightly simplifies an
224 * already-messy implementation. Using randomization would
225 * probably work better if there were a low-quality dirt-cheap
226 * per-thread one available, but even ThreadLocalRandom is too
227 * heavy for these purposes.
228 *
229 * With such a small slack threshold value, it is not worthwhile
230 * to augment this with path short-circuiting (i.e., unsplicing
231 * interior nodes) except in the case of cancellation/removal (see
232 * below).
233 *
234 * We allow both the head and tail fields to be null before any
235 * nodes are enqueued; initializing upon first append. This
236 * simplifies some other logic, as well as providing more
237 * efficient explicit control paths instead of letting JVMs insert
238 * implicit NullPointerExceptions when they are null. While not
239 * currently fully implemented, we also leave open the possibility
240 * of re-nulling these fields when empty (which is complicated to
241 * arrange, for little benefit.)
242 *
243 * All enqueue/dequeue operations are handled by the single method
244 * "xfer" with parameters indicating whether to act as some form
245 * of offer, put, poll, take, or transfer (each possibly with
246 * timeout). The relative complexity of using one monolithic
247 * method outweighs the code bulk and maintenance problems of
248 * using separate methods for each case.
249 *
250 * Operation consists of up to three phases. The first is
251 * implemented within method xfer, the second in tryAppend, and
252 * the third in method awaitMatch.
253 *
254 * 1. Try to match an existing node
255 *
256 * Starting at head, skip already-matched nodes until finding
257 * an unmatched node of opposite mode, if one exists, in which
258 * case matching it and returning, also if necessary updating
259 * head to one past the matched node (or the node itself if the
260 * list has no other unmatched nodes). If the CAS misses, then
261 * a loop retries advancing head by two steps until either
262 * success or the slack is at most two. By requiring that each
263 * attempt advances head by two (if applicable), we ensure that
264 * the slack does not grow without bound. Traversals also check
265 * if the initial head is now off-list, in which case they
266 * start at the new head.
267 *
268 * If no candidates are found and the call was untimed
269 * poll/offer, (argument "how" is NOW) return.
270 *
271 * 2. Try to append a new node (method tryAppend)
272 *
273 * Starting at current tail pointer, find the actual last node
274 * and try to append a new node (or if head was null, establish
275 * the first node). Nodes can be appended only if their
276 * predecessors are either already matched or are of the same
277 * mode. If we detect otherwise, then a new node with opposite
278 * mode must have been appended during traversal, so we must
279 * restart at phase 1. The traversal and update steps are
280 * otherwise similar to phase 1: Retrying upon CAS misses and
281 * checking for staleness. In particular, if a self-link is
282 * encountered, then we can safely jump to a node on the list
283 * by continuing the traversal at current head.
284 *
285 * On successful append, if the call was ASYNC, return.
286 *
287 * 3. Await match or cancellation (method awaitMatch)
288 *
289 * Wait for another thread to match node; instead cancelling if
290 * the current thread was interrupted or the wait timed out. On
291 * multiprocessors, we use front-of-queue spinning: If a node
292 * appears to be the first unmatched node in the queue, it
293 * spins a bit before blocking. In either case, before blocking
294 * it tries to unsplice any nodes between the current "head"
295 * and the first unmatched node.
296 *
297 * Front-of-queue spinning vastly improves performance of
298 * heavily contended queues. And so long as it is relatively
299 * brief and "quiet", spinning does not much impact performance
300 * of less-contended queues. During spins threads check their
301 * interrupt status and generate a thread-local random number
302 * to decide to occasionally perform a Thread.yield. While
303 * yield has underdefined specs, we assume that it might help,
304 * and will not hurt, in limiting impact of spinning on busy
305 * systems. We also use smaller (1/2) spins for nodes that are
306 * not known to be front but whose predecessors have not
307 * blocked -- these "chained" spins avoid artifacts of
308 * front-of-queue rules which otherwise lead to alternating
309 * nodes spinning vs blocking. Further, front threads that
310 * represent phase changes (from data to request node or vice
311 * versa) compared to their predecessors receive additional
312 * chained spins, reflecting longer paths typically required to
313 * unblock threads during phase changes.
314 *
315 *
316 * ** Unlinking removed interior nodes **
317 *
318 * In addition to minimizing garbage retention via self-linking
319 * described above, we also unlink removed interior nodes. These
320 * may arise due to timed out or interrupted waits, or calls to
321 * remove(x) or Iterator.remove. Normally, given a node that was
322 * at one time known to be the predecessor of some node s that is
323 * to be removed, we can unsplice s by CASing the next field of
324 * its predecessor if it still points to s (otherwise s must
325 * already have been removed or is now offlist). But there are two
326 * situations in which we cannot guarantee to make node s
327 * unreachable in this way: (1) If s is the trailing node of list
328 * (i.e., with null next), then it is pinned as the target node
329 * for appends, so can only be removed later after other nodes are
330 * appended. (2) We cannot necessarily unlink s given a
331 * predecessor node that is matched (including the case of being
332 * cancelled): the predecessor may already be unspliced, in which
333 * case some previous reachable node may still point to s.
334 * (For further explanation see Herlihy & Shavit "The Art of
335 * Multiprocessor Programming" chapter 9). Although, in both
336 * cases, we can rule out the need for further action if either s
337 * or its predecessor are (or can be made to be) at, or fall off
338 * from, the head of list.
339 *
340 * Without taking these into account, it would be possible for an
341 * unbounded number of supposedly removed nodes to remain
342 * reachable. Situations leading to such buildup are uncommon but
343 * can occur in practice; for example when a series of short timed
344 * calls to poll repeatedly time out but never otherwise fall off
345 * the list because of an untimed call to take at the front of the
346 * queue.
347 *
348 * When these cases arise, rather than always retraversing the
349 * entire list to find an actual predecessor to unlink (which
350 * won't help for case (1) anyway), we record a conservative
351 * estimate of possible unsplice failures (in "sweepVotes").
352 * We trigger a full sweep when the estimate exceeds a threshold
353 * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
354 * removal failures to tolerate before sweeping through, unlinking
355 * cancelled nodes that were not unlinked upon initial removal.
356 * We perform sweeps by the thread hitting threshold (rather than
357 * background threads or by spreading work to other threads)
358 * because in the main contexts in which removal occurs, the
359 * caller is already timed-out, cancelled, or performing a
360 * potentially O(n) operation (e.g. remove(x)), none of which are
361 * time-critical enough to warrant the overhead that alternatives
362 * would impose on other threads.
363 *
364 * Because the sweepVotes estimate is conservative, and because
365 * nodes become unlinked "naturally" as they fall off the head of
366 * the queue, and because we allow votes to accumulate even while
367 * sweeps are in progress, there are typically significantly fewer
368 * such nodes than estimated. Choice of a threshold value
369 * balances the likelihood of wasted effort and contention, versus
370 * providing a worst-case bound on retention of interior nodes in
371 * quiescent queues. The value defined below was chosen
372 * empirically to balance these under various timeout scenarios.
373 *
374 * Note that we cannot self-link unlinked interior nodes during
375 * sweeps. However, the associated garbage chains terminate when
376 * some successor ultimately falls off the head of the list and is
377 * self-linked.
378 */
379
380 /** True if on multiprocessor */
381 private static final boolean MP =
382 Runtime.getRuntime().availableProcessors() > 1;
383
384 /**
385 * The number of times to spin (with randomly interspersed calls
386 * to Thread.yield) on multiprocessor before blocking when a node
387 * is apparently the first waiter in the queue. See above for
388 * explanation. Must be a power of two. The value is empirically
389 * derived -- it works pretty well across a variety of processors,
390 * numbers of CPUs, and OSes.
391 */
392 private static final int FRONT_SPINS = 1 << 7;
393
394 /**
395 * The number of times to spin before blocking when a node is
396 * preceded by another node that is apparently spinning. Also
397 * serves as an increment to FRONT_SPINS on phase changes, and as
398 * base average frequency for yielding during spins. Must be a
399 * power of two.
400 */
401 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
402
403 /**
404 * The maximum number of estimated removal failures (sweepVotes)
405 * to tolerate before sweeping through the queue unlinking
406 * cancelled nodes that were not unlinked upon initial
407 * removal. See above for explanation. The value must be at least
408 * two to avoid useless sweeps when removing trailing nodes.
409 */
410 static final int SWEEP_THRESHOLD = 32;
411
412 /**
413 * Queue nodes. Uses Object, not E, for items to allow forgetting
414 * them after use. Relies heavily on Unsafe mechanics to minimize
415 * unnecessary ordering constraints: Writes that are intrinsically
416 * ordered wrt other accesses or CASes use simple relaxed forms.
417 */
418 static final class Node {
419 final boolean isData; // false if this is a request node
420 volatile Object item; // initially non-null if isData; CASed to match
421 volatile Node next;
422 volatile Thread waiter; // null until waiting
423
424 // CAS methods for fields
425 final boolean casNext(Node cmp, Node val) {
426 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
427 }
428
429 final boolean casItem(Object cmp, Object val) {
430 // assert cmp == null || cmp.getClass() != Node.class;
431 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
432 }
433
434 /**
435 * Constructs a new node. Uses relaxed write because item can
436 * only be seen after publication via casNext.
437 */
438 Node(Object item, boolean isData) {
439 UNSAFE.putObject(this, itemOffset, item); // relaxed write
440 this.isData = isData;
441 }
442
443 /**
444 * Links node to itself to avoid garbage retention. Called
445 * only after CASing head field, so uses relaxed write.
446 */
447 final void forgetNext() {
448 UNSAFE.putObject(this, nextOffset, this);
449 }
450
451 /**
452 * Sets item to self and waiter to null, to avoid garbage
453 * retention after matching or cancelling. Uses relaxed writes
454 * because order is already constrained in the only calling
455 * contexts: item is forgotten only after volatile/atomic
456 * mechanics that extract items. Similarly, clearing waiter
457 * follows either CAS or return from park (if ever parked;
458 * else we don't care).
459 */
460 final void forgetContents() {
461 UNSAFE.putObject(this, itemOffset, this);
462 UNSAFE.putObject(this, waiterOffset, null);
463 }
464
465 /**
466 * Returns true if this node has been matched, including the
467 * case of artificial matches due to cancellation.
468 */
469 final boolean isMatched() {
470 Object x = item;
471 return (x == this) || ((x == null) == isData);
472 }
473
474 /**
475 * Returns true if this is an unmatched request node.
476 */
477 final boolean isUnmatchedRequest() {
478 return !isData && item == null;
479 }
480
481 /**
482 * Returns true if a node with the given mode cannot be
483 * appended to this node because this node is unmatched and
484 * has opposite data mode.
485 */
486 final boolean cannotPrecede(boolean haveData) {
487 boolean d = isData;
488 Object x;
489 return d != haveData && (x = item) != this && (x != null) == d;
490 }
491
492 /**
493 * Tries to artificially match a data node -- used by remove.
494 */
495 final boolean tryMatchData() {
496 // assert isData;
497 Object x = item;
498 if (x != null && x != this && casItem(x, null)) {
499 LockSupport.unpark(waiter);
500 return true;
501 }
502 return false;
503 }
504
505 private static final long serialVersionUID = -3375979862319811754L;
506
507 // Unsafe mechanics
508 private static final sun.misc.Unsafe UNSAFE;
509 private static final long itemOffset;
510 private static final long nextOffset;
511 private static final long waiterOffset;
512 static {
513 try {
514 UNSAFE = sun.misc.Unsafe.getUnsafe();
515 Class<?> k = Node.class;
516 itemOffset = UNSAFE.objectFieldOffset
517 (k.getDeclaredField("item"));
518 nextOffset = UNSAFE.objectFieldOffset
519 (k.getDeclaredField("next"));
520 waiterOffset = UNSAFE.objectFieldOffset
521 (k.getDeclaredField("waiter"));
522 } catch (Exception e) {
523 throw new Error(e);
524 }
525 }
526 }
527
528 /** head of the queue; null until first enqueue */
529 transient volatile Node head;
530
531 /** tail of the queue; null until first append */
532 private transient volatile Node tail;
533
534 /** The number of apparent failures to unsplice removed nodes */
535 private transient volatile int sweepVotes;
536
537 // CAS methods for fields
538 private boolean casTail(Node cmp, Node val) {
539 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
540 }
541
542 private boolean casHead(Node cmp, Node val) {
543 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
544 }
545
546 private boolean casSweepVotes(int cmp, int val) {
547 return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
548 }
549
550 /*
551 * Possible values for "how" argument in xfer method.
552 */
553 private static final int NOW = 0; // for untimed poll, tryTransfer
554 private static final int ASYNC = 1; // for offer, put, add
555 private static final int SYNC = 2; // for transfer, take
556 private static final int TIMED = 3; // for timed poll, tryTransfer
557
558 @SuppressWarnings("unchecked")
559 static <E> E cast(Object item) {
560 // assert item == null || item.getClass() != Node.class;
561 return (E) item;
562 }
563
564 /**
565 * Implements all queuing methods. See above for explanation.
566 *
567 * @param e the item or null for take
568 * @param haveData true if this is a put, else a take
569 * @param how NOW, ASYNC, SYNC, or TIMED
570 * @param nanos timeout in nanosecs, used only if mode is TIMED
571 * @return an item if matched, else e
572 * @throws NullPointerException if haveData mode but e is null
573 */
574 private E xfer(E e, boolean haveData, int how, long nanos) {
575 if (haveData && (e == null))
576 throw new NullPointerException();
577 Node s = null; // the node to append, if needed
578
579 retry:
580 for (;;) { // restart on append race
581
582 for (Node h = head, p = h; p != null;) { // find & match first node
583 boolean isData = p.isData;
584 Object item = p.item;
585 if (item != p && (item != null) == isData) { // unmatched
586 if (isData == haveData) // can't match
587 break;
588 if (p.casItem(item, e)) { // match
589 for (Node q = p; q != h;) {
590 Node n = q.next; // update by 2 unless singleton
591 if (head == h && casHead(h, n == null ? q : n)) {
592 h.forgetNext();
593 break;
594 } // advance and retry
595 if ((h = head) == null ||
596 (q = h.next) == null || !q.isMatched())
597 break; // unless slack < 2
598 }
599 LockSupport.unpark(p.waiter);
600 return LinkedTransferQueue.<E>cast(item);
601 }
602 }
603 Node n = p.next;
604 p = (p != n) ? n : (h = head); // Use head if p offlist
605 }
606
607 if (how != NOW) { // No matches available
608 if (s == null)
609 s = new Node(e, haveData);
610 Node pred = tryAppend(s, haveData);
611 if (pred == null)
612 continue retry; // lost race vs opposite mode
613 if (how != ASYNC)
614 return awaitMatch(s, pred, e, (how == TIMED), nanos);
615 }
616 return e; // not waiting
617 }
618 }
619
620 /**
621 * Tries to append node s as tail.
622 *
623 * @param s the node to append
624 * @param haveData true if appending in data mode
625 * @return null on failure due to losing race with append in
626 * different mode, else s's predecessor, or s itself if no
627 * predecessor
628 */
629 private Node tryAppend(Node s, boolean haveData) {
630 for (Node t = tail, p = t;;) { // move p to last node and append
631 Node n, u; // temps for reads of next & tail
632 if (p == null && (p = head) == null) {
633 if (casHead(null, s))
634 return s; // initialize
635 }
636 else if (p.cannotPrecede(haveData))
637 return null; // lost race vs opposite mode
638 else if ((n = p.next) != null) // not last; keep traversing
639 p = p != t && t != (u = tail) ? (t = u) : // stale tail
640 (p != n) ? n : null; // restart if off list
641 else if (!p.casNext(null, s))
642 p = p.next; // re-read on CAS failure
643 else {
644 if (p != t) { // update if slack now >= 2
645 while ((tail != t || !casTail(t, s)) &&
646 (t = tail) != null &&
647 (s = t.next) != null && // advance and retry
648 (s = s.next) != null && s != t);
649 }
650 return p;
651 }
652 }
653 }
654
655 /**
656 * Spins/yields/blocks until node s is matched or caller gives up.
657 *
658 * @param s the waiting node
659 * @param pred the predecessor of s, or s itself if it has no
660 * predecessor, or null if unknown (the null case does not occur
661 * in any current calls but may in possible future extensions)
662 * @param e the comparison value for checking match
663 * @param timed if true, wait only until timeout elapses
664 * @param nanos timeout in nanosecs, used only if timed is true
665 * @return matched item, or e if unmatched on interrupt or timeout
666 */
667 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
668 final long deadline = timed ? System.nanoTime() + nanos : 0L;
669 Thread w = Thread.currentThread();
670 int spins = -1; // initialized after first item and cancel checks
671 ThreadLocalRandom randomYields = null; // bound if needed
672
673 for (;;) {
674 Object item = s.item;
675 if (item != e) { // matched
676 // assert item != s;
677 s.forgetContents(); // avoid garbage
678 return LinkedTransferQueue.<E>cast(item);
679 }
680 if ((w.isInterrupted() || (timed && nanos <= 0)) &&
681 s.casItem(e, s)) { // cancel
682 unsplice(pred, s);
683 return e;
684 }
685
686 if (spins < 0) { // establish spins at/near front
687 if ((spins = spinsFor(pred, s.isData)) > 0)
688 randomYields = ThreadLocalRandom.current();
689 }
690 else if (spins > 0) { // spin
691 --spins;
692 if (randomYields.nextInt(CHAINED_SPINS) == 0)
693 Thread.yield(); // occasionally yield
694 }
695 else if (s.waiter == null) {
696 s.waiter = w; // request unpark then recheck
697 }
698 else if (timed) {
699 nanos = deadline - System.nanoTime();
700 if (nanos > 0L)
701 LockSupport.parkNanos(this, nanos);
702 }
703 else {
704 LockSupport.park(this);
705 }
706 }
707 }
708
709 /**
710 * Returns spin/yield value for a node with given predecessor and
711 * data mode. See above for explanation.
712 */
713 private static int spinsFor(Node pred, boolean haveData) {
714 if (MP && pred != null) {
715 if (pred.isData != haveData) // phase change
716 return FRONT_SPINS + CHAINED_SPINS;
717 if (pred.isMatched()) // probably at front
718 return FRONT_SPINS;
719 if (pred.waiter == null) // pred apparently spinning
720 return CHAINED_SPINS;
721 }
722 return 0;
723 }
724
725 /* -------------- Traversal methods -------------- */
726
727 /**
728 * Returns the successor of p, or the head node if p.next has been
729 * linked to self, which will only be true if traversing with a
730 * stale pointer that is now off the list.
731 */
732 final Node succ(Node p) {
733 Node next = p.next;
734 return (p == next) ? head : next;
735 }
736
737 /**
738 * Returns the first unmatched node of the given mode, or null if
739 * none. Used by methods isEmpty, hasWaitingConsumer.
740 */
741 private Node firstOfMode(boolean isData) {
742 for (Node p = head; p != null; p = succ(p)) {
743 if (!p.isMatched())
744 return (p.isData == isData) ? p : null;
745 }
746 return null;
747 }
748
749 /**
750 * Returns the item in the first unmatched node with isData; or
751 * null if none. Used by peek.
752 */
753 private E firstDataItem() {
754 for (Node p = head; p != null; p = succ(p)) {
755 Object item = p.item;
756 if (p.isData) {
757 if (item != null && item != p)
758 return LinkedTransferQueue.<E>cast(item);
759 }
760 else if (item == null)
761 return null;
762 }
763 return null;
764 }
765
766 /**
767 * Traverses and counts unmatched nodes of the given mode.
768 * Used by methods size and getWaitingConsumerCount.
769 */
770 private int countOfMode(boolean data) {
771 int count = 0;
772 for (Node p = head; p != null; ) {
773 if (!p.isMatched()) {
774 if (p.isData != data)
775 return 0;
776 if (++count == Integer.MAX_VALUE) // saturated
777 break;
778 }
779 Node n = p.next;
780 if (n != p)
781 p = n;
782 else {
783 count = 0;
784 p = head;
785 }
786 }
787 return count;
788 }
789
790 final class Itr implements Iterator<E> {
791 private Node nextNode; // next node to return item for
792 private E nextItem; // the corresponding item
793 private Node lastRet; // last returned node, to support remove
794 private Node lastPred; // predecessor to unlink lastRet
795
796 /**
797 * Moves to next node after prev, or first node if prev null.
798 */
799 private void advance(Node prev) {
800 /*
801 * To track and avoid buildup of deleted nodes in the face
802 * of calls to both Queue.remove and Itr.remove, we must
803 * include variants of unsplice and sweep upon each
804 * advance: Upon Itr.remove, we may need to catch up links
805 * from lastPred, and upon other removes, we might need to
806 * skip ahead from stale nodes and unsplice deleted ones
807 * found while advancing.
808 */
809
810 Node r, b; // reset lastPred upon possible deletion of lastRet
811 if ((r = lastRet) != null && !r.isMatched())
812 lastPred = r; // next lastPred is old lastRet
813 else if ((b = lastPred) == null || b.isMatched())
814 lastPred = null; // at start of list
815 else {
816 Node s, n; // help with removal of lastPred.next
817 while ((s = b.next) != null &&
818 s != b && s.isMatched() &&
819 (n = s.next) != null && n != s)
820 b.casNext(s, n);
821 }
822
823 this.lastRet = prev;
824
825 for (Node p = prev, s, n;;) {
826 s = (p == null) ? head : p.next;
827 if (s == null)
828 break;
829 else if (s == p) {
830 p = null;
831 continue;
832 }
833 Object item = s.item;
834 if (s.isData) {
835 if (item != null && item != s) {
836 nextItem = LinkedTransferQueue.<E>cast(item);
837 nextNode = s;
838 return;
839 }
840 }
841 else if (item == null)
842 break;
843 // assert s.isMatched();
844 if (p == null)
845 p = s;
846 else if ((n = s.next) == null)
847 break;
848 else if (s == n)
849 p = null;
850 else
851 p.casNext(s, n);
852 }
853 nextNode = null;
854 nextItem = null;
855 }
856
857 Itr() {
858 advance(null);
859 }
860
861 public final boolean hasNext() {
862 return nextNode != null;
863 }
864
865 public final E next() {
866 Node p = nextNode;
867 if (p == null) throw new NoSuchElementException();
868 E e = nextItem;
869 advance(p);
870 return e;
871 }
872
873 public final void remove() {
874 final Node lastRet = this.lastRet;
875 if (lastRet == null)
876 throw new IllegalStateException();
877 this.lastRet = null;
878 if (lastRet.tryMatchData())
879 unsplice(lastPred, lastRet);
880 }
881 }
882
883 /* -------------- Removal methods -------------- */
884
885 /**
886 * Unsplices (now or later) the given deleted/cancelled node with
887 * the given predecessor.
888 *
889 * @param pred a node that was at one time known to be the
890 * predecessor of s, or null or s itself if s is/was at head
891 * @param s the node to be unspliced
892 */
893 final void unsplice(Node pred, Node s) {
894 s.forgetContents(); // forget unneeded fields
895 /*
896 * See above for rationale. Briefly: if pred still points to
897 * s, try to unlink s. If s cannot be unlinked, because it is
898 * trailing node or pred might be unlinked, and neither pred
899 * nor s are head or offlist, add to sweepVotes, and if enough
900 * votes have accumulated, sweep.
901 */
902 if (pred != null && pred != s && pred.next == s) {
903 Node n = s.next;
904 if (n == null ||
905 (n != s && pred.casNext(s, n) && pred.isMatched())) {
906 for (;;) { // check if at, or could be, head
907 Node h = head;
908 if (h == pred || h == s || h == null)
909 return; // at head or list empty
910 if (!h.isMatched())
911 break;
912 Node hn = h.next;
913 if (hn == null)
914 return; // now empty
915 if (hn != h && casHead(h, hn))
916 h.forgetNext(); // advance head
917 }
918 if (pred.next != pred && s.next != s) { // recheck if offlist
919 for (;;) { // sweep now if enough votes
920 int v = sweepVotes;
921 if (v < SWEEP_THRESHOLD) {
922 if (casSweepVotes(v, v + 1))
923 break;
924 }
925 else if (casSweepVotes(v, 0)) {
926 sweep();
927 break;
928 }
929 }
930 }
931 }
932 }
933 }
934
935 /**
936 * Unlinks matched (typically cancelled) nodes encountered in a
937 * traversal from head.
938 */
939 private void sweep() {
940 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
941 if (!s.isMatched())
942 // Unmatched nodes are never self-linked
943 p = s;
944 else if ((n = s.next) == null) // trailing node is pinned
945 break;
946 else if (s == n) // stale
947 // No need to also check for p == s, since that implies s == n
948 p = head;
949 else
950 p.casNext(s, n);
951 }
952 }
953
954 /**
955 * Main implementation of remove(Object)
956 */
957 private boolean findAndRemove(Object e) {
958 if (e != null) {
959 for (Node pred = null, p = head; p != null; ) {
960 Object item = p.item;
961 if (p.isData) {
962 if (item != null && item != p && e.equals(item) &&
963 p.tryMatchData()) {
964 unsplice(pred, p);
965 return true;
966 }
967 }
968 else if (item == null)
969 break;
970 pred = p;
971 if ((p = p.next) == pred) { // stale
972 pred = null;
973 p = head;
974 }
975 }
976 }
977 return false;
978 }
979
980 /**
981 * Creates an initially empty {@code LinkedTransferQueue}.
982 */
983 public LinkedTransferQueue() {
984 }
985
986 /**
987 * Creates a {@code LinkedTransferQueue}
988 * initially containing the elements of the given collection,
989 * added in traversal order of the collection's iterator.
990 *
991 * @param c the collection of elements to initially contain
992 * @throws NullPointerException if the specified collection or any
993 * of its elements are null
994 */
995 public LinkedTransferQueue(Collection<? extends E> c) {
996 this();
997 addAll(c);
998 }
999
1000 /**
1001 * Inserts the specified element at the tail of this queue.
1002 * As the queue is unbounded, this method will never block.
1003 *
1004 * @throws NullPointerException if the specified element is null
1005 */
1006 public void put(E e) {
1007 xfer(e, true, ASYNC, 0);
1008 }
1009
1010 /**
1011 * Inserts the specified element at the tail of this queue.
1012 * As the queue is unbounded, this method will never block or
1013 * return {@code false}.
1014 *
1015 * @return {@code true} (as specified by
1016 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1017 * BlockingQueue.offer})
1018 * @throws NullPointerException if the specified element is null
1019 */
1020 public boolean offer(E e, long timeout, TimeUnit unit) {
1021 xfer(e, true, ASYNC, 0);
1022 return true;
1023 }
1024
1025 /**
1026 * Inserts the specified element at the tail of this queue.
1027 * As the queue is unbounded, this method will never return {@code false}.
1028 *
1029 * @return {@code true} (as specified by {@link Queue#offer})
1030 * @throws NullPointerException if the specified element is null
1031 */
1032 public boolean offer(E e) {
1033 xfer(e, true, ASYNC, 0);
1034 return true;
1035 }
1036
1037 /**
1038 * Inserts the specified element at the tail of this queue.
1039 * As the queue is unbounded, this method will never throw
1040 * {@link IllegalStateException} or return {@code false}.
1041 *
1042 * @return {@code true} (as specified by {@link Collection#add})
1043 * @throws NullPointerException if the specified element is null
1044 */
1045 public boolean add(E e) {
1046 xfer(e, true, ASYNC, 0);
1047 return true;
1048 }
1049
1050 /**
1051 * Transfers the element to a waiting consumer immediately, if possible.
1052 *
1053 * <p>More precisely, transfers the specified element immediately
1054 * if there exists a consumer already waiting to receive it (in
1055 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1056 * otherwise returning {@code false} without enqueuing the element.
1057 *
1058 * @throws NullPointerException if the specified element is null
1059 */
1060 public boolean tryTransfer(E e) {
1061 return xfer(e, true, NOW, 0) == null;
1062 }
1063
1064 /**
1065 * Transfers the element to a consumer, waiting if necessary to do so.
1066 *
1067 * <p>More precisely, transfers the specified element immediately
1068 * if there exists a consumer already waiting to receive it (in
1069 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1070 * else inserts the specified element at the tail of this queue
1071 * and waits until the element is received by a consumer.
1072 *
1073 * @throws NullPointerException if the specified element is null
1074 */
1075 public void transfer(E e) throws InterruptedException {
1076 if (xfer(e, true, SYNC, 0) != null) {
1077 Thread.interrupted(); // failure possible only due to interrupt
1078 throw new InterruptedException();
1079 }
1080 }
1081
1082 /**
1083 * Transfers the element to a consumer if it is possible to do so
1084 * before the timeout elapses.
1085 *
1086 * <p>More precisely, transfers the specified element immediately
1087 * if there exists a consumer already waiting to receive it (in
1088 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1089 * else inserts the specified element at the tail of this queue
1090 * and waits until the element is received by a consumer,
1091 * returning {@code false} if the specified wait time elapses
1092 * before the element can be transferred.
1093 *
1094 * @throws NullPointerException if the specified element is null
1095 */
1096 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1097 throws InterruptedException {
1098 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1099 return true;
1100 if (!Thread.interrupted())
1101 return false;
1102 throw new InterruptedException();
1103 }
1104
1105 public E take() throws InterruptedException {
1106 E e = xfer(null, false, SYNC, 0);
1107 if (e != null)
1108 return e;
1109 Thread.interrupted();
1110 throw new InterruptedException();
1111 }
1112
1113 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1114 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1115 if (e != null || !Thread.interrupted())
1116 return e;
1117 throw new InterruptedException();
1118 }
1119
1120 public E poll() {
1121 return xfer(null, false, NOW, 0);
1122 }
1123
1124 /**
1125 * @throws NullPointerException {@inheritDoc}
1126 * @throws IllegalArgumentException {@inheritDoc}
1127 */
1128 public int drainTo(Collection<? super E> c) {
1129 if (c == null)
1130 throw new NullPointerException();
1131 if (c == this)
1132 throw new IllegalArgumentException();
1133 int n = 0;
1134 for (E e; (e = poll()) != null;) {
1135 c.add(e);
1136 ++n;
1137 }
1138 return n;
1139 }
1140
1141 /**
1142 * @throws NullPointerException {@inheritDoc}
1143 * @throws IllegalArgumentException {@inheritDoc}
1144 */
1145 public int drainTo(Collection<? super E> c, int maxElements) {
1146 if (c == null)
1147 throw new NullPointerException();
1148 if (c == this)
1149 throw new IllegalArgumentException();
1150 int n = 0;
1151 for (E e; n < maxElements && (e = poll()) != null;) {
1152 c.add(e);
1153 ++n;
1154 }
1155 return n;
1156 }
1157
1158 /**
1159 * Returns an iterator over the elements in this queue in proper sequence.
1160 * The elements will be returned in order from first (head) to last (tail).
1161 *
1162 * <p>The returned iterator is a "weakly consistent" iterator that
1163 * will never throw {@link java.util.ConcurrentModificationException
1164 * ConcurrentModificationException}, and guarantees to traverse
1165 * elements as they existed upon construction of the iterator, and
1166 * may (but is not guaranteed to) reflect any modifications
1167 * subsequent to construction.
1168 *
1169 * @return an iterator over the elements in this queue in proper sequence
1170 */
1171 public Iterator<E> iterator() {
1172 return new Itr();
1173 }
1174
1175 public E peek() {
1176 return firstDataItem();
1177 }
1178
1179 /**
1180 * Returns {@code true} if this queue contains no elements.
1181 *
1182 * @return {@code true} if this queue contains no elements
1183 */
1184 public boolean isEmpty() {
1185 for (Node p = head; p != null; p = succ(p)) {
1186 if (!p.isMatched())
1187 return !p.isData;
1188 }
1189 return true;
1190 }
1191
1192 public boolean hasWaitingConsumer() {
1193 return firstOfMode(false) != null;
1194 }
1195
1196 /**
1197 * Returns the number of elements in this queue. If this queue
1198 * contains more than {@code Integer.MAX_VALUE} elements, returns
1199 * {@code Integer.MAX_VALUE}.
1200 *
1201 * <p>Beware that, unlike in most collections, this method is
1202 * <em>NOT</em> a constant-time operation. Because of the
1203 * asynchronous nature of these queues, determining the current
1204 * number of elements requires an O(n) traversal.
1205 *
1206 * @return the number of elements in this queue
1207 */
1208 public int size() {
1209 return countOfMode(true);
1210 }
1211
1212 public int getWaitingConsumerCount() {
1213 return countOfMode(false);
1214 }
1215
1216 /**
1217 * Removes a single instance of the specified element from this queue,
1218 * if it is present. More formally, removes an element {@code e} such
1219 * that {@code o.equals(e)}, if this queue contains one or more such
1220 * elements.
1221 * Returns {@code true} if this queue contained the specified element
1222 * (or equivalently, if this queue changed as a result of the call).
1223 *
1224 * @param o element to be removed from this queue, if present
1225 * @return {@code true} if this queue changed as a result of the call
1226 */
1227 public boolean remove(Object o) {
1228 return findAndRemove(o);
1229 }
1230
1231 /**
1232 * Returns {@code true} if this queue contains the specified element.
1233 * More formally, returns {@code true} if and only if this queue contains
1234 * at least one element {@code e} such that {@code o.equals(e)}.
1235 *
1236 * @param o object to be checked for containment in this queue
1237 * @return {@code true} if this queue contains the specified element
1238 */
1239 public boolean contains(Object o) {
1240 if (o == null) return false;
1241 for (Node p = head; p != null; p = succ(p)) {
1242 Object item = p.item;
1243 if (p.isData) {
1244 if (item != null && item != p && o.equals(item))
1245 return true;
1246 }
1247 else if (item == null)
1248 break;
1249 }
1250 return false;
1251 }
1252
1253 /**
1254 * Always returns {@code Integer.MAX_VALUE} because a
1255 * {@code LinkedTransferQueue} is not capacity constrained.
1256 *
1257 * @return {@code Integer.MAX_VALUE} (as specified by
1258 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1259 * BlockingQueue.remainingCapacity})
1260 */
1261 public int remainingCapacity() {
1262 return Integer.MAX_VALUE;
1263 }
1264
1265 /**
1266 * Saves this queue to a stream (that is, serializes it).
1267 *
1268 * @serialData All of the elements (each an {@code E}) in
1269 * the proper order, followed by a null
1270 */
1271 private void writeObject(java.io.ObjectOutputStream s)
1272 throws java.io.IOException {
1273 s.defaultWriteObject();
1274 for (E e : this)
1275 s.writeObject(e);
1276 // Use trailing null as sentinel
1277 s.writeObject(null);
1278 }
1279
1280 /**
1281 * Reconstitutes this queue from a stream (that is, deserializes it).
1282 */
1283 private void readObject(java.io.ObjectInputStream s)
1284 throws java.io.IOException, ClassNotFoundException {
1285 s.defaultReadObject();
1286 for (;;) {
1287 @SuppressWarnings("unchecked")
1288 E item = (E) s.readObject();
1289 if (item == null)
1290 break;
1291 else
1292 offer(item);
1293 }
1294 }
1295
1296 // Unsafe mechanics
1297
1298 private static final sun.misc.Unsafe UNSAFE;
1299 private static final long headOffset;
1300 private static final long tailOffset;
1301 private static final long sweepVotesOffset;
1302 static {
1303 try {
1304 UNSAFE = sun.misc.Unsafe.getUnsafe();
1305 Class<?> k = LinkedTransferQueue.class;
1306 headOffset = UNSAFE.objectFieldOffset
1307 (k.getDeclaredField("head"));
1308 tailOffset = UNSAFE.objectFieldOffset
1309 (k.getDeclaredField("tail"));
1310 sweepVotesOffset = UNSAFE.objectFieldOffset
1311 (k.getDeclaredField("sweepVotes"));
1312 } catch (Exception e) {
1313 throw new Error(e);
1314 }
1315
1316 // Reduce the risk of rare disastrous classloading in first call to
1317 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1318 Class<?> ensureLoaded = LockSupport.class;
1319 }
1320 }