ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/Phaser.java
Revision: 1.5
Committed: Fri Jul 15 18:49:12 2016 UTC (7 years, 11 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.4: +0 -1 lines
Log Message:
whitespace

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.concurrent.atomic.AtomicReference;
10     import java.util.concurrent.locks.LockSupport;
11    
12     /**
13     * A reusable synchronization barrier, similar in functionality to
14     * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
15     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
16     * but supporting more flexible usage.
17     *
18     * <p><b>Registration.</b> Unlike the case for other barriers, the
19     * number of parties <em>registered</em> to synchronize on a phaser
20     * may vary over time. Tasks may be registered at any time (using
21     * methods {@link #register}, {@link #bulkRegister}, or forms of
22     * constructors establishing initial numbers of parties), and
23     * optionally deregistered upon any arrival (using {@link
24     * #arriveAndDeregister}). As is the case with most basic
25     * synchronization constructs, registration and deregistration affect
26     * only internal counts; they do not establish any further internal
27     * bookkeeping, so tasks cannot query whether they are registered.
28     * (However, you can introduce such bookkeeping by subclassing this
29     * class.)
30     *
31     * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
32     * Phaser} may be repeatedly awaited. Method {@link
33     * #arriveAndAwaitAdvance} has effect analogous to {@link
34     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
35     * generation of a phaser has an associated phase number. The phase
36     * number starts at zero, and advances when all parties arrive at the
37     * phaser, wrapping around to zero after reaching {@code
38     * Integer.MAX_VALUE}. The use of phase numbers enables independent
39     * control of actions upon arrival at a phaser and upon awaiting
40     * others, via two kinds of methods that may be invoked by any
41     * registered party:
42     *
43     * <ul>
44     *
45 jsr166 1.4 * <li><b>Arrival.</b> Methods {@link #arrive} and
46 dl 1.1 * {@link #arriveAndDeregister} record arrival. These methods
47     * do not block, but return an associated <em>arrival phase
48     * number</em>; that is, the phase number of the phaser to which
49     * the arrival applied. When the final party for a given phase
50     * arrives, an optional action is performed and the phase
51     * advances. These actions are performed by the party
52     * triggering a phase advance, and are arranged by overriding
53     * method {@link #onAdvance(int, int)}, which also controls
54     * termination. Overriding this method is similar to, but more
55     * flexible than, providing a barrier action to a {@code
56     * CyclicBarrier}.
57     *
58 jsr166 1.4 * <li><b>Waiting.</b> Method {@link #awaitAdvance} requires an
59 dl 1.1 * argument indicating an arrival phase number, and returns when
60     * the phaser advances to (or is already at) a different phase.
61     * Unlike similar constructions using {@code CyclicBarrier},
62     * method {@code awaitAdvance} continues to wait even if the
63     * waiting thread is interrupted. Interruptible and timeout
64     * versions are also available, but exceptions encountered while
65     * tasks wait interruptibly or with timeout do not change the
66     * state of the phaser. If necessary, you can perform any
67     * associated recovery within handlers of those exceptions,
68     * often after invoking {@code forceTermination}. Phasers may
69     * also be used by tasks executing in a {@link ForkJoinPool},
70     * which will ensure sufficient parallelism to execute tasks
71     * when others are blocked waiting for a phase to advance.
72     *
73     * </ul>
74     *
75     * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
76     * state, that may be checked using method {@link #isTerminated}. Upon
77     * termination, all synchronization methods immediately return without
78     * waiting for advance, as indicated by a negative return value.
79     * Similarly, attempts to register upon termination have no effect.
80     * Termination is triggered when an invocation of {@code onAdvance}
81     * returns {@code true}. The default implementation returns {@code
82     * true} if a deregistration has caused the number of registered
83     * parties to become zero. As illustrated below, when phasers control
84     * actions with a fixed number of iterations, it is often convenient
85     * to override this method to cause termination when the current phase
86     * number reaches a threshold. Method {@link #forceTermination} is
87     * also available to abruptly release waiting threads and allow them
88     * to terminate.
89     *
90     * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
91     * constructed in tree structures) to reduce contention. Phasers with
92     * large numbers of parties that would otherwise experience heavy
93     * synchronization contention costs may instead be set up so that
94     * groups of sub-phasers share a common parent. This may greatly
95     * increase throughput even though it incurs greater per-operation
96     * overhead.
97     *
98     * <p>In a tree of tiered phasers, registration and deregistration of
99     * child phasers with their parent are managed automatically.
100     * Whenever the number of registered parties of a child phaser becomes
101     * non-zero (as established in the {@link #Phaser(Phaser,int)}
102     * constructor, {@link #register}, or {@link #bulkRegister}), the
103     * child phaser is registered with its parent. Whenever the number of
104     * registered parties becomes zero as the result of an invocation of
105     * {@link #arriveAndDeregister}, the child phaser is deregistered
106     * from its parent.
107     *
108     * <p><b>Monitoring.</b> While synchronization methods may be invoked
109     * only by registered parties, the current state of a phaser may be
110     * monitored by any caller. At any given moment there are {@link
111     * #getRegisteredParties} parties in total, of which {@link
112     * #getArrivedParties} have arrived at the current phase ({@link
113     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
114     * parties arrive, the phase advances. The values returned by these
115     * methods may reflect transient states and so are not in general
116     * useful for synchronization control. Method {@link #toString}
117     * returns snapshots of these state queries in a form convenient for
118     * informal monitoring.
119     *
120     * <p><b>Sample usages:</b>
121     *
122     * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
123     * to control a one-shot action serving a variable number of parties.
124     * The typical idiom is for the method setting this up to first
125     * register, then start the actions, then deregister, as in:
126     *
127     * <pre> {@code
128     * void runTasks(List<Runnable> tasks) {
129     * final Phaser phaser = new Phaser(1); // "1" to register self
130     * // create and start threads
131     * for (final Runnable task : tasks) {
132     * phaser.register();
133     * new Thread() {
134     * public void run() {
135     * phaser.arriveAndAwaitAdvance(); // await all creation
136     * task.run();
137     * }
138     * }.start();
139     * }
140     *
141     * // allow threads to start and deregister self
142     * phaser.arriveAndDeregister();
143     * }}</pre>
144     *
145     * <p>One way to cause a set of threads to repeatedly perform actions
146     * for a given number of iterations is to override {@code onAdvance}:
147     *
148     * <pre> {@code
149     * void startTasks(List<Runnable> tasks, final int iterations) {
150     * final Phaser phaser = new Phaser() {
151     * protected boolean onAdvance(int phase, int registeredParties) {
152     * return phase >= iterations || registeredParties == 0;
153     * }
154     * };
155     * phaser.register();
156     * for (final Runnable task : tasks) {
157     * phaser.register();
158     * new Thread() {
159     * public void run() {
160     * do {
161     * task.run();
162     * phaser.arriveAndAwaitAdvance();
163     * } while (!phaser.isTerminated());
164     * }
165     * }.start();
166     * }
167     * phaser.arriveAndDeregister(); // deregister self, don't wait
168     * }}</pre>
169     *
170     * If the main task must later await termination, it
171     * may re-register and then execute a similar loop:
172     * <pre> {@code
173     * // ...
174     * phaser.register();
175     * while (!phaser.isTerminated())
176     * phaser.arriveAndAwaitAdvance();}</pre>
177     *
178     * <p>Related constructions may be used to await particular phase numbers
179     * in contexts where you are sure that the phase will never wrap around
180     * {@code Integer.MAX_VALUE}. For example:
181     *
182     * <pre> {@code
183     * void awaitPhase(Phaser phaser, int phase) {
184     * int p = phaser.register(); // assumes caller not already registered
185     * while (p < phase) {
186     * if (phaser.isTerminated())
187     * // ... deal with unexpected termination
188     * else
189     * p = phaser.arriveAndAwaitAdvance();
190     * }
191     * phaser.arriveAndDeregister();
192     * }}</pre>
193     *
194     * <p>To create a set of {@code n} tasks using a tree of phasers, you
195     * could use code of the following form, assuming a Task class with a
196     * constructor accepting a {@code Phaser} that it registers with upon
197     * construction. After invocation of {@code build(new Task[n], 0, n,
198     * new Phaser())}, these tasks could then be started, for example by
199     * submitting to a pool:
200     *
201     * <pre> {@code
202     * void build(Task[] tasks, int lo, int hi, Phaser ph) {
203     * if (hi - lo > TASKS_PER_PHASER) {
204     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
205     * int j = Math.min(i + TASKS_PER_PHASER, hi);
206     * build(tasks, i, j, new Phaser(ph));
207     * }
208     * } else {
209     * for (int i = lo; i < hi; ++i)
210     * tasks[i] = new Task(ph);
211     * // assumes new Task(ph) performs ph.register()
212     * }
213     * }}</pre>
214     *
215     * The best value of {@code TASKS_PER_PHASER} depends mainly on
216     * expected synchronization rates. A value as low as four may
217     * be appropriate for extremely small per-phase task bodies (thus
218     * high rates), or up to hundreds for extremely large ones.
219     *
220     * <p><b>Implementation notes</b>: This implementation restricts the
221     * maximum number of parties to 65535. Attempts to register additional
222     * parties result in {@code IllegalStateException}. However, you can and
223     * should create tiered phasers to accommodate arbitrarily large sets
224     * of participants.
225     *
226     * @since 1.7
227     * @author Doug Lea
228     */
229     public class Phaser {
230     /*
231     * This class implements an extension of X10 "clocks". Thanks to
232     * Vijay Saraswat for the idea, and to Vivek Sarkar for
233     * enhancements to extend functionality.
234     */
235    
236     /**
237     * Primary state representation, holding four bit-fields:
238     *
239     * unarrived -- the number of parties yet to hit barrier (bits 0-15)
240     * parties -- the number of parties to wait (bits 16-31)
241     * phase -- the generation of the barrier (bits 32-62)
242     * terminated -- set if barrier is terminated (bit 63 / sign)
243     *
244     * Except that a phaser with no registered parties is
245     * distinguished by the otherwise illegal state of having zero
246     * parties and one unarrived parties (encoded as EMPTY below).
247     *
248     * To efficiently maintain atomicity, these values are packed into
249     * a single (atomic) long. Good performance relies on keeping
250     * state decoding and encoding simple, and keeping race windows
251     * short.
252     *
253     * All state updates are performed via CAS except initial
254     * registration of a sub-phaser (i.e., one with a non-null
255     * parent). In this (relatively rare) case, we use built-in
256     * synchronization to lock while first registering with its
257     * parent.
258     *
259     * The phase of a subphaser is allowed to lag that of its
260     * ancestors until it is actually accessed -- see method
261     * reconcileState.
262     */
263     private volatile long state;
264    
265     private static final int MAX_PARTIES = 0xffff;
266     private static final int MAX_PHASE = Integer.MAX_VALUE;
267     private static final int PARTIES_SHIFT = 16;
268     private static final int PHASE_SHIFT = 32;
269     private static final int UNARRIVED_MASK = 0xffff; // to mask ints
270     private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
271     private static final long COUNTS_MASK = 0xffffffffL;
272     private static final long TERMINATION_BIT = 1L << 63;
273    
274     // some special values
275     private static final int ONE_ARRIVAL = 1;
276     private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
277     private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY;
278     private static final int EMPTY = 1;
279    
280     // The following unpacking methods are usually manually inlined
281    
282     private static int unarrivedOf(long s) {
283     int counts = (int)s;
284     return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
285     }
286    
287     private static int partiesOf(long s) {
288     return (int)s >>> PARTIES_SHIFT;
289     }
290    
291     private static int phaseOf(long s) {
292     return (int)(s >>> PHASE_SHIFT);
293     }
294    
295     private static int arrivedOf(long s) {
296     int counts = (int)s;
297     return (counts == EMPTY) ? 0 :
298     (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
299     }
300    
301     /**
302     * The parent of this phaser, or null if none
303     */
304     private final Phaser parent;
305    
306     /**
307     * The root of phaser tree. Equals this if not in a tree.
308     */
309     private final Phaser root;
310    
311     /**
312     * Heads of Treiber stacks for waiting threads. To eliminate
313     * contention when releasing some threads while adding others, we
314     * use two of them, alternating across even and odd phases.
315     * Subphasers share queues with root to speed up releases.
316     */
317     private final AtomicReference<QNode> evenQ;
318     private final AtomicReference<QNode> oddQ;
319    
320     private AtomicReference<QNode> queueFor(int phase) {
321     return ((phase & 1) == 0) ? evenQ : oddQ;
322     }
323    
324     /**
325     * Returns message string for bounds exceptions on arrival.
326     */
327     private String badArrive(long s) {
328     return "Attempted arrival of unregistered party for " +
329     stateToString(s);
330     }
331    
332     /**
333     * Returns message string for bounds exceptions on registration.
334     */
335     private String badRegister(long s) {
336     return "Attempt to register more than " +
337     MAX_PARTIES + " parties for " + stateToString(s);
338     }
339    
340     /**
341     * Main implementation for methods arrive and arriveAndDeregister.
342     * Manually tuned to speed up and minimize race windows for the
343     * common case of just decrementing unarrived field.
344     *
345     * @param adjust value to subtract from state;
346     * ONE_ARRIVAL for arrive,
347     * ONE_DEREGISTER for arriveAndDeregister
348     */
349     private int doArrive(int adjust) {
350     final Phaser root = this.root;
351     for (;;) {
352     long s = (root == this) ? state : reconcileState();
353     int phase = (int)(s >>> PHASE_SHIFT);
354     if (phase < 0)
355     return phase;
356     int counts = (int)s;
357     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
358     if (unarrived <= 0)
359     throw new IllegalStateException(badArrive(s));
360     if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
361     if (unarrived == 1) {
362     long n = s & PARTIES_MASK; // base of next state
363     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
364     if (root == this) {
365     if (onAdvance(phase, nextUnarrived))
366     n |= TERMINATION_BIT;
367     else if (nextUnarrived == 0)
368     n |= EMPTY;
369     else
370     n |= nextUnarrived;
371     int nextPhase = (phase + 1) & MAX_PHASE;
372     n |= (long)nextPhase << PHASE_SHIFT;
373     UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
374     releaseWaiters(phase);
375     }
376     else if (nextUnarrived == 0) { // propagate deregistration
377     phase = parent.doArrive(ONE_DEREGISTER);
378     UNSAFE.compareAndSwapLong(this, stateOffset,
379     s, s | EMPTY);
380     }
381     else
382     phase = parent.doArrive(ONE_ARRIVAL);
383     }
384     return phase;
385     }
386     }
387     }
388    
389     /**
390     * Implementation of register, bulkRegister
391     *
392     * @param registrations number to add to both parties and
393     * unarrived fields. Must be greater than zero.
394     */
395     private int doRegister(int registrations) {
396     // adjustment to state
397     long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
398     final Phaser parent = this.parent;
399     int phase;
400     for (;;) {
401     long s = (parent == null) ? state : reconcileState();
402     int counts = (int)s;
403     int parties = counts >>> PARTIES_SHIFT;
404     int unarrived = counts & UNARRIVED_MASK;
405     if (registrations > MAX_PARTIES - parties)
406     throw new IllegalStateException(badRegister(s));
407     phase = (int)(s >>> PHASE_SHIFT);
408     if (phase < 0)
409     break;
410     if (counts != EMPTY) { // not 1st registration
411     if (parent == null || reconcileState() == s) {
412     if (unarrived == 0) // wait out advance
413     root.internalAwaitAdvance(phase, null);
414     else if (UNSAFE.compareAndSwapLong(this, stateOffset,
415     s, s + adjust))
416     break;
417     }
418     }
419     else if (parent == null) { // 1st root registration
420     long next = ((long)phase << PHASE_SHIFT) | adjust;
421     if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
422     break;
423     }
424     else {
425     synchronized (this) { // 1st sub registration
426     if (state == s) { // recheck under lock
427     phase = parent.doRegister(1);
428     if (phase < 0)
429     break;
430     // finish registration whenever parent registration
431     // succeeded, even when racing with termination,
432     // since these are part of the same "transaction".
433     while (!UNSAFE.compareAndSwapLong
434     (this, stateOffset, s,
435     ((long)phase << PHASE_SHIFT) | adjust)) {
436     s = state;
437     phase = (int)(root.state >>> PHASE_SHIFT);
438     // assert (int)s == EMPTY;
439     }
440     break;
441     }
442     }
443     }
444     }
445     return phase;
446     }
447    
448     /**
449     * Resolves lagged phase propagation from root if necessary.
450     * Reconciliation normally occurs when root has advanced but
451     * subphasers have not yet done so, in which case they must finish
452     * their own advance by setting unarrived to parties (or if
453     * parties is zero, resetting to unregistered EMPTY state).
454     *
455     * @return reconciled state
456     */
457     private long reconcileState() {
458     final Phaser root = this.root;
459     long s = state;
460     if (root != this) {
461     int phase, p;
462     // CAS to root phase with current parties, tripping unarrived
463     while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
464     (int)(s >>> PHASE_SHIFT) &&
465     !UNSAFE.compareAndSwapLong
466     (this, stateOffset, s,
467     s = (((long)phase << PHASE_SHIFT) |
468     ((phase < 0) ? (s & COUNTS_MASK) :
469     (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
470     ((s & PARTIES_MASK) | p))))))
471     s = state;
472     }
473     return s;
474     }
475    
476     /**
477     * Creates a new phaser with no initially registered parties, no
478     * parent, and initial phase number 0. Any thread using this
479     * phaser will need to first register for it.
480     */
481     public Phaser() {
482     this(null, 0);
483     }
484    
485     /**
486     * Creates a new phaser with the given number of registered
487     * unarrived parties, no parent, and initial phase number 0.
488     *
489     * @param parties the number of parties required to advance to the
490     * next phase
491     * @throws IllegalArgumentException if parties less than zero
492     * or greater than the maximum number of parties supported
493     */
494     public Phaser(int parties) {
495     this(null, parties);
496     }
497    
498     /**
499     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
500     *
501     * @param parent the parent phaser
502     */
503     public Phaser(Phaser parent) {
504     this(parent, 0);
505     }
506    
507     /**
508     * Creates a new phaser with the given parent and number of
509     * registered unarrived parties. When the given parent is non-null
510     * and the given number of parties is greater than zero, this
511     * child phaser is registered with its parent.
512     *
513     * @param parent the parent phaser
514     * @param parties the number of parties required to advance to the
515     * next phase
516     * @throws IllegalArgumentException if parties less than zero
517     * or greater than the maximum number of parties supported
518     */
519     public Phaser(Phaser parent, int parties) {
520     if (parties >>> PARTIES_SHIFT != 0)
521     throw new IllegalArgumentException("Illegal number of parties");
522     int phase = 0;
523     this.parent = parent;
524     if (parent != null) {
525     final Phaser root = parent.root;
526     this.root = root;
527     this.evenQ = root.evenQ;
528     this.oddQ = root.oddQ;
529     if (parties != 0)
530     phase = parent.doRegister(1);
531     }
532     else {
533     this.root = this;
534     this.evenQ = new AtomicReference<QNode>();
535     this.oddQ = new AtomicReference<QNode>();
536     }
537     this.state = (parties == 0) ? (long)EMPTY :
538     ((long)phase << PHASE_SHIFT) |
539     ((long)parties << PARTIES_SHIFT) |
540     ((long)parties);
541     }
542    
543     /**
544     * Adds a new unarrived party to this phaser. If an ongoing
545     * invocation of {@link #onAdvance} is in progress, this method
546     * may await its completion before returning. If this phaser has
547     * a parent, and this phaser previously had no registered parties,
548     * this child phaser is also registered with its parent. If
549     * this phaser is terminated, the attempt to register has
550     * no effect, and a negative value is returned.
551     *
552     * @return the arrival phase number to which this registration
553     * applied. If this value is negative, then this phaser has
554     * terminated, in which case registration has no effect.
555     * @throws IllegalStateException if attempting to register more
556     * than the maximum supported number of parties
557     */
558     public int register() {
559     return doRegister(1);
560     }
561    
562     /**
563     * Adds the given number of new unarrived parties to this phaser.
564     * If an ongoing invocation of {@link #onAdvance} is in progress,
565     * this method may await its completion before returning. If this
566     * phaser has a parent, and the given number of parties is greater
567     * than zero, and this phaser previously had no registered
568     * parties, this child phaser is also registered with its parent.
569     * If this phaser is terminated, the attempt to register has no
570     * effect, and a negative value is returned.
571     *
572     * @param parties the number of additional parties required to
573     * advance to the next phase
574     * @return the arrival phase number to which this registration
575     * applied. If this value is negative, then this phaser has
576     * terminated, in which case registration has no effect.
577     * @throws IllegalStateException if attempting to register more
578     * than the maximum supported number of parties
579     * @throws IllegalArgumentException if {@code parties < 0}
580     */
581     public int bulkRegister(int parties) {
582     if (parties < 0)
583     throw new IllegalArgumentException();
584     if (parties == 0)
585     return getPhase();
586     return doRegister(parties);
587     }
588    
589     /**
590     * Arrives at this phaser, without waiting for others to arrive.
591     *
592     * <p>It is a usage error for an unregistered party to invoke this
593     * method. However, this error may result in an {@code
594     * IllegalStateException} only upon some subsequent operation on
595     * this phaser, if ever.
596     *
597     * @return the arrival phase number, or a negative value if terminated
598     * @throws IllegalStateException if not terminated and the number
599     * of unarrived parties would become negative
600     */
601     public int arrive() {
602     return doArrive(ONE_ARRIVAL);
603     }
604    
605     /**
606     * Arrives at this phaser and deregisters from it without waiting
607     * for others to arrive. Deregistration reduces the number of
608     * parties required to advance in future phases. If this phaser
609     * has a parent, and deregistration causes this phaser to have
610     * zero parties, this phaser is also deregistered from its parent.
611     *
612     * <p>It is a usage error for an unregistered party to invoke this
613     * method. However, this error may result in an {@code
614     * IllegalStateException} only upon some subsequent operation on
615     * this phaser, if ever.
616     *
617     * @return the arrival phase number, or a negative value if terminated
618     * @throws IllegalStateException if not terminated and the number
619     * of registered or unarrived parties would become negative
620     */
621     public int arriveAndDeregister() {
622     return doArrive(ONE_DEREGISTER);
623     }
624    
625     /**
626     * Arrives at this phaser and awaits others. Equivalent in effect
627     * to {@code awaitAdvance(arrive())}. If you need to await with
628     * interruption or timeout, you can arrange this with an analogous
629     * construction using one of the other forms of the {@code
630     * awaitAdvance} method. If instead you need to deregister upon
631     * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
632     *
633     * <p>It is a usage error for an unregistered party to invoke this
634     * method. However, this error may result in an {@code
635     * IllegalStateException} only upon some subsequent operation on
636     * this phaser, if ever.
637     *
638     * @return the arrival phase number, or the (negative)
639     * {@linkplain #getPhase() current phase} if terminated
640     * @throws IllegalStateException if not terminated and the number
641     * of unarrived parties would become negative
642     */
643     public int arriveAndAwaitAdvance() {
644     // Specialization of doArrive+awaitAdvance eliminating some reads/paths
645     final Phaser root = this.root;
646     for (;;) {
647     long s = (root == this) ? state : reconcileState();
648     int phase = (int)(s >>> PHASE_SHIFT);
649     if (phase < 0)
650     return phase;
651     int counts = (int)s;
652     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
653     if (unarrived <= 0)
654     throw new IllegalStateException(badArrive(s));
655     if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
656     s -= ONE_ARRIVAL)) {
657     if (unarrived > 1)
658     return root.internalAwaitAdvance(phase, null);
659     if (root != this)
660     return parent.arriveAndAwaitAdvance();
661     long n = s & PARTIES_MASK; // base of next state
662     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
663     if (onAdvance(phase, nextUnarrived))
664     n |= TERMINATION_BIT;
665     else if (nextUnarrived == 0)
666     n |= EMPTY;
667     else
668     n |= nextUnarrived;
669     int nextPhase = (phase + 1) & MAX_PHASE;
670     n |= (long)nextPhase << PHASE_SHIFT;
671     if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
672     return (int)(state >>> PHASE_SHIFT); // terminated
673     releaseWaiters(phase);
674     return nextPhase;
675     }
676     }
677     }
678    
679     /**
680     * Awaits the phase of this phaser to advance from the given phase
681     * value, returning immediately if the current phase is not equal
682     * to the given phase value or this phaser is terminated.
683     *
684     * @param phase an arrival phase number, or negative value if
685     * terminated; this argument is normally the value returned by a
686     * previous call to {@code arrive} or {@code arriveAndDeregister}.
687     * @return the next arrival phase number, or the argument if it is
688     * negative, or the (negative) {@linkplain #getPhase() current phase}
689     * if terminated
690     */
691     public int awaitAdvance(int phase) {
692     final Phaser root = this.root;
693     long s = (root == this) ? state : reconcileState();
694     int p = (int)(s >>> PHASE_SHIFT);
695     if (phase < 0)
696     return phase;
697     if (p == phase)
698     return root.internalAwaitAdvance(phase, null);
699     return p;
700     }
701    
702     /**
703     * Awaits the phase of this phaser to advance from the given phase
704     * value, throwing {@code InterruptedException} if interrupted
705     * while waiting, or returning immediately if the current phase is
706     * not equal to the given phase value or this phaser is
707     * terminated.
708     *
709     * @param phase an arrival phase number, or negative value if
710     * terminated; this argument is normally the value returned by a
711     * previous call to {@code arrive} or {@code arriveAndDeregister}.
712     * @return the next arrival phase number, or the argument if it is
713     * negative, or the (negative) {@linkplain #getPhase() current phase}
714     * if terminated
715     * @throws InterruptedException if thread interrupted while waiting
716     */
717     public int awaitAdvanceInterruptibly(int phase)
718     throws InterruptedException {
719     final Phaser root = this.root;
720     long s = (root == this) ? state : reconcileState();
721     int p = (int)(s >>> PHASE_SHIFT);
722     if (phase < 0)
723     return phase;
724     if (p == phase) {
725     QNode node = new QNode(this, phase, true, false, 0L);
726     p = root.internalAwaitAdvance(phase, node);
727     if (node.wasInterrupted)
728     throw new InterruptedException();
729     }
730     return p;
731     }
732    
733     /**
734     * Awaits the phase of this phaser to advance from the given phase
735     * value or the given timeout to elapse, throwing {@code
736     * InterruptedException} if interrupted while waiting, or
737     * returning immediately if the current phase is not equal to the
738     * given phase value or this phaser is terminated.
739     *
740     * @param phase an arrival phase number, or negative value if
741     * terminated; this argument is normally the value returned by a
742     * previous call to {@code arrive} or {@code arriveAndDeregister}.
743     * @param timeout how long to wait before giving up, in units of
744     * {@code unit}
745     * @param unit a {@code TimeUnit} determining how to interpret the
746     * {@code timeout} parameter
747     * @return the next arrival phase number, or the argument if it is
748     * negative, or the (negative) {@linkplain #getPhase() current phase}
749     * if terminated
750     * @throws InterruptedException if thread interrupted while waiting
751     * @throws TimeoutException if timed out while waiting
752     */
753     public int awaitAdvanceInterruptibly(int phase,
754     long timeout, TimeUnit unit)
755     throws InterruptedException, TimeoutException {
756     long nanos = unit.toNanos(timeout);
757     final Phaser root = this.root;
758     long s = (root == this) ? state : reconcileState();
759     int p = (int)(s >>> PHASE_SHIFT);
760     if (phase < 0)
761     return phase;
762     if (p == phase) {
763     QNode node = new QNode(this, phase, true, true, nanos);
764     p = root.internalAwaitAdvance(phase, node);
765     if (node.wasInterrupted)
766     throw new InterruptedException();
767     else if (p == phase)
768     throw new TimeoutException();
769     }
770     return p;
771     }
772    
773     /**
774     * Forces this phaser to enter termination state. Counts of
775     * registered parties are unaffected. If this phaser is a member
776     * of a tiered set of phasers, then all of the phasers in the set
777     * are terminated. If this phaser is already terminated, this
778     * method has no effect. This method may be useful for
779     * coordinating recovery after one or more tasks encounter
780     * unexpected exceptions.
781     */
782     public void forceTermination() {
783     // Only need to change root state
784     final Phaser root = this.root;
785     long s;
786     while ((s = root.state) >= 0) {
787     if (UNSAFE.compareAndSwapLong(root, stateOffset,
788     s, s | TERMINATION_BIT)) {
789     // signal all threads
790     releaseWaiters(0); // Waiters on evenQ
791     releaseWaiters(1); // Waiters on oddQ
792     return;
793     }
794     }
795     }
796    
797     /**
798     * Returns the current phase number. The maximum phase number is
799     * {@code Integer.MAX_VALUE}, after which it restarts at
800     * zero. Upon termination, the phase number is negative,
801     * in which case the prevailing phase prior to termination
802     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
803     *
804     * @return the phase number, or a negative value if terminated
805     */
806     public final int getPhase() {
807     return (int)(root.state >>> PHASE_SHIFT);
808     }
809    
810     /**
811     * Returns the number of parties registered at this phaser.
812     *
813     * @return the number of parties
814     */
815     public int getRegisteredParties() {
816     return partiesOf(state);
817     }
818    
819     /**
820     * Returns the number of registered parties that have arrived at
821     * the current phase of this phaser. If this phaser has terminated,
822     * the returned value is meaningless and arbitrary.
823     *
824     * @return the number of arrived parties
825     */
826     public int getArrivedParties() {
827     return arrivedOf(reconcileState());
828     }
829    
830     /**
831     * Returns the number of registered parties that have not yet
832     * arrived at the current phase of this phaser. If this phaser has
833     * terminated, the returned value is meaningless and arbitrary.
834     *
835     * @return the number of unarrived parties
836     */
837     public int getUnarrivedParties() {
838     return unarrivedOf(reconcileState());
839     }
840    
841     /**
842     * Returns the parent of this phaser, or {@code null} if none.
843     *
844     * @return the parent of this phaser, or {@code null} if none
845     */
846     public Phaser getParent() {
847     return parent;
848     }
849    
850     /**
851     * Returns the root ancestor of this phaser, which is the same as
852     * this phaser if it has no parent.
853     *
854     * @return the root ancestor of this phaser
855     */
856     public Phaser getRoot() {
857     return root;
858     }
859    
860     /**
861     * Returns {@code true} if this phaser has been terminated.
862     *
863     * @return {@code true} if this phaser has been terminated
864     */
865     public boolean isTerminated() {
866     return root.state < 0L;
867     }
868    
869     /**
870     * Overridable method to perform an action upon impending phase
871     * advance, and to control termination. This method is invoked
872     * upon arrival of the party advancing this phaser (when all other
873     * waiting parties are dormant). If this method returns {@code
874     * true}, this phaser will be set to a final termination state
875     * upon advance, and subsequent calls to {@link #isTerminated}
876     * will return true. Any (unchecked) Exception or Error thrown by
877     * an invocation of this method is propagated to the party
878     * attempting to advance this phaser, in which case no advance
879     * occurs.
880     *
881     * <p>The arguments to this method provide the state of the phaser
882     * prevailing for the current transition. The effects of invoking
883     * arrival, registration, and waiting methods on this phaser from
884     * within {@code onAdvance} are unspecified and should not be
885     * relied on.
886     *
887     * <p>If this phaser is a member of a tiered set of phasers, then
888     * {@code onAdvance} is invoked only for its root phaser on each
889     * advance.
890     *
891     * <p>To support the most common use cases, the default
892     * implementation of this method returns {@code true} when the
893     * number of registered parties has become zero as the result of a
894     * party invoking {@code arriveAndDeregister}. You can disable
895     * this behavior, thus enabling continuation upon future
896     * registrations, by overriding this method to always return
897     * {@code false}:
898     *
899     * <pre> {@code
900     * Phaser phaser = new Phaser() {
901     * protected boolean onAdvance(int phase, int parties) { return false; }
902     * }}</pre>
903     *
904     * @param phase the current phase number on entry to this method,
905     * before this phaser is advanced
906     * @param registeredParties the current number of registered parties
907     * @return {@code true} if this phaser should terminate
908     */
909     protected boolean onAdvance(int phase, int registeredParties) {
910     return registeredParties == 0;
911     }
912    
913     /**
914     * Returns a string identifying this phaser, as well as its
915     * state. The state, in brackets, includes the String {@code
916     * "phase = "} followed by the phase number, {@code "parties = "}
917     * followed by the number of registered parties, and {@code
918     * "arrived = "} followed by the number of arrived parties.
919     *
920     * @return a string identifying this phaser, as well as its state
921     */
922     public String toString() {
923     return stateToString(reconcileState());
924     }
925    
926     /**
927     * Implementation of toString and string-based error messages
928     */
929     private String stateToString(long s) {
930     return super.toString() +
931     "[phase = " + phaseOf(s) +
932     " parties = " + partiesOf(s) +
933     " arrived = " + arrivedOf(s) + "]";
934     }
935    
936     // Waiting mechanics
937    
938     /**
939     * Removes and signals threads from queue for phase.
940     */
941     private void releaseWaiters(int phase) {
942     QNode q; // first element of queue
943     Thread t; // its thread
944     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
945     while ((q = head.get()) != null &&
946     q.phase != (int)(root.state >>> PHASE_SHIFT)) {
947     if (head.compareAndSet(q, q.next) &&
948     (t = q.thread) != null) {
949     q.thread = null;
950     LockSupport.unpark(t);
951     }
952     }
953     }
954    
955     /**
956     * Variant of releaseWaiters that additionally tries to remove any
957     * nodes no longer waiting for advance due to timeout or
958     * interrupt. Currently, nodes are removed only if they are at
959     * head of queue, which suffices to reduce memory footprint in
960     * most usages.
961     *
962     * @return current phase on exit
963     */
964     private int abortWait(int phase) {
965     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
966     for (;;) {
967     Thread t;
968     QNode q = head.get();
969     int p = (int)(root.state >>> PHASE_SHIFT);
970     if (q == null || ((t = q.thread) != null && q.phase == p))
971     return p;
972     if (head.compareAndSet(q, q.next) && t != null) {
973     q.thread = null;
974     LockSupport.unpark(t);
975     }
976     }
977     }
978    
979     /** The number of CPUs, for spin control */
980     private static final int NCPU = Runtime.getRuntime().availableProcessors();
981    
982     /**
983     * The number of times to spin before blocking while waiting for
984     * advance, per arrival while waiting. On multiprocessors, fully
985     * blocking and waking up a large number of threads all at once is
986     * usually a very slow process, so we use rechargeable spins to
987     * avoid it when threads regularly arrive: When a thread in
988     * internalAwaitAdvance notices another arrival before blocking,
989     * and there appear to be enough CPUs available, it spins
990     * SPINS_PER_ARRIVAL more times before blocking. The value trades
991     * off good-citizenship vs big unnecessary slowdowns.
992     */
993     static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
994    
995     /**
996     * Possibly blocks and waits for phase to advance unless aborted.
997     * Call only on root phaser.
998     *
999     * @param phase current phase
1000     * @param node if non-null, the wait node to track interrupt and timeout;
1001     * if null, denotes noninterruptible wait
1002     * @return current phase
1003     */
1004     private int internalAwaitAdvance(int phase, QNode node) {
1005     // assert root == this;
1006     releaseWaiters(phase-1); // ensure old queue clean
1007     boolean queued = false; // true when node is enqueued
1008     int lastUnarrived = 0; // to increase spins upon change
1009     int spins = SPINS_PER_ARRIVAL;
1010     long s;
1011     int p;
1012     while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1013     if (node == null) { // spinning in noninterruptible mode
1014     int unarrived = (int)s & UNARRIVED_MASK;
1015     if (unarrived != lastUnarrived &&
1016     (lastUnarrived = unarrived) < NCPU)
1017     spins += SPINS_PER_ARRIVAL;
1018     boolean interrupted = Thread.interrupted();
1019     if (interrupted || --spins < 0) { // need node to record intr
1020     node = new QNode(this, phase, false, false, 0L);
1021     node.wasInterrupted = interrupted;
1022     }
1023     }
1024     else if (node.isReleasable()) // done or aborted
1025     break;
1026     else if (!queued) { // push onto queue
1027     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1028     QNode q = node.next = head.get();
1029     if ((q == null || q.phase == phase) &&
1030     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1031     queued = head.compareAndSet(q, node);
1032     }
1033     else {
1034     try {
1035     ForkJoinPool.managedBlock(node);
1036     } catch (InterruptedException ie) {
1037     node.wasInterrupted = true;
1038     }
1039     }
1040     }
1041    
1042     if (node != null) {
1043     if (node.thread != null)
1044     node.thread = null; // avoid need for unpark()
1045     if (node.wasInterrupted && !node.interruptible)
1046     Thread.currentThread().interrupt();
1047     if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1048     return abortWait(phase); // possibly clean up on abort
1049     }
1050     releaseWaiters(phase);
1051     return p;
1052     }
1053    
1054     /**
1055     * Wait nodes for Treiber stack representing wait queue
1056     */
1057     static final class QNode implements ForkJoinPool.ManagedBlocker {
1058     final Phaser phaser;
1059     final int phase;
1060     final boolean interruptible;
1061     final boolean timed;
1062     boolean wasInterrupted;
1063     long nanos;
1064     final long deadline;
1065     volatile Thread thread; // nulled to cancel wait
1066     QNode next;
1067    
1068     QNode(Phaser phaser, int phase, boolean interruptible,
1069     boolean timed, long nanos) {
1070     this.phaser = phaser;
1071     this.phase = phase;
1072     this.interruptible = interruptible;
1073     this.nanos = nanos;
1074     this.timed = timed;
1075     this.deadline = timed ? System.nanoTime() + nanos : 0L;
1076     thread = Thread.currentThread();
1077     }
1078    
1079     public boolean isReleasable() {
1080     if (thread == null)
1081     return true;
1082     if (phaser.getPhase() != phase) {
1083     thread = null;
1084     return true;
1085     }
1086     if (Thread.interrupted())
1087     wasInterrupted = true;
1088     if (wasInterrupted && interruptible) {
1089     thread = null;
1090     return true;
1091     }
1092     if (timed) {
1093     if (nanos > 0L) {
1094     nanos = deadline - System.nanoTime();
1095     }
1096     if (nanos <= 0L) {
1097     thread = null;
1098     return true;
1099     }
1100     }
1101     return false;
1102     }
1103    
1104     public boolean block() {
1105     if (isReleasable())
1106     return true;
1107     else if (!timed)
1108     LockSupport.park(this);
1109     else if (nanos > 0L)
1110     LockSupport.parkNanos(this, nanos);
1111     return isReleasable();
1112     }
1113     }
1114    
1115     // Unsafe mechanics
1116    
1117     private static final sun.misc.Unsafe UNSAFE;
1118     private static final long stateOffset;
1119     static {
1120     try {
1121     UNSAFE = sun.misc.Unsafe.getUnsafe();
1122     Class<?> k = Phaser.class;
1123     stateOffset = UNSAFE.objectFieldOffset
1124     (k.getDeclaredField("state"));
1125     } catch (Exception e) {
1126     throw new Error(e);
1127     }
1128 jsr166 1.3
1129     // Reduce the risk of rare disastrous classloading in first call to
1130     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1131     Class<?> ensureLoaded = LockSupport.class;
1132 dl 1.1 }
1133     }