ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/Phaser.java
Revision: 1.5
Committed: Fri Jul 15 18:49:12 2016 UTC (7 years, 10 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.4: +0 -1 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.concurrent.atomic.AtomicReference;
10 import java.util.concurrent.locks.LockSupport;
11
12 /**
13 * A reusable synchronization barrier, similar in functionality to
14 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
15 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
16 * but supporting more flexible usage.
17 *
18 * <p><b>Registration.</b> Unlike the case for other barriers, the
19 * number of parties <em>registered</em> to synchronize on a phaser
20 * may vary over time. Tasks may be registered at any time (using
21 * methods {@link #register}, {@link #bulkRegister}, or forms of
22 * constructors establishing initial numbers of parties), and
23 * optionally deregistered upon any arrival (using {@link
24 * #arriveAndDeregister}). As is the case with most basic
25 * synchronization constructs, registration and deregistration affect
26 * only internal counts; they do not establish any further internal
27 * bookkeeping, so tasks cannot query whether they are registered.
28 * (However, you can introduce such bookkeeping by subclassing this
29 * class.)
30 *
31 * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
32 * Phaser} may be repeatedly awaited. Method {@link
33 * #arriveAndAwaitAdvance} has effect analogous to {@link
34 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
35 * generation of a phaser has an associated phase number. The phase
36 * number starts at zero, and advances when all parties arrive at the
37 * phaser, wrapping around to zero after reaching {@code
38 * Integer.MAX_VALUE}. The use of phase numbers enables independent
39 * control of actions upon arrival at a phaser and upon awaiting
40 * others, via two kinds of methods that may be invoked by any
41 * registered party:
42 *
43 * <ul>
44 *
45 * <li><b>Arrival.</b> Methods {@link #arrive} and
46 * {@link #arriveAndDeregister} record arrival. These methods
47 * do not block, but return an associated <em>arrival phase
48 * number</em>; that is, the phase number of the phaser to which
49 * the arrival applied. When the final party for a given phase
50 * arrives, an optional action is performed and the phase
51 * advances. These actions are performed by the party
52 * triggering a phase advance, and are arranged by overriding
53 * method {@link #onAdvance(int, int)}, which also controls
54 * termination. Overriding this method is similar to, but more
55 * flexible than, providing a barrier action to a {@code
56 * CyclicBarrier}.
57 *
58 * <li><b>Waiting.</b> Method {@link #awaitAdvance} requires an
59 * argument indicating an arrival phase number, and returns when
60 * the phaser advances to (or is already at) a different phase.
61 * Unlike similar constructions using {@code CyclicBarrier},
62 * method {@code awaitAdvance} continues to wait even if the
63 * waiting thread is interrupted. Interruptible and timeout
64 * versions are also available, but exceptions encountered while
65 * tasks wait interruptibly or with timeout do not change the
66 * state of the phaser. If necessary, you can perform any
67 * associated recovery within handlers of those exceptions,
68 * often after invoking {@code forceTermination}. Phasers may
69 * also be used by tasks executing in a {@link ForkJoinPool},
70 * which will ensure sufficient parallelism to execute tasks
71 * when others are blocked waiting for a phase to advance.
72 *
73 * </ul>
74 *
75 * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
76 * state, that may be checked using method {@link #isTerminated}. Upon
77 * termination, all synchronization methods immediately return without
78 * waiting for advance, as indicated by a negative return value.
79 * Similarly, attempts to register upon termination have no effect.
80 * Termination is triggered when an invocation of {@code onAdvance}
81 * returns {@code true}. The default implementation returns {@code
82 * true} if a deregistration has caused the number of registered
83 * parties to become zero. As illustrated below, when phasers control
84 * actions with a fixed number of iterations, it is often convenient
85 * to override this method to cause termination when the current phase
86 * number reaches a threshold. Method {@link #forceTermination} is
87 * also available to abruptly release waiting threads and allow them
88 * to terminate.
89 *
90 * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
91 * constructed in tree structures) to reduce contention. Phasers with
92 * large numbers of parties that would otherwise experience heavy
93 * synchronization contention costs may instead be set up so that
94 * groups of sub-phasers share a common parent. This may greatly
95 * increase throughput even though it incurs greater per-operation
96 * overhead.
97 *
98 * <p>In a tree of tiered phasers, registration and deregistration of
99 * child phasers with their parent are managed automatically.
100 * Whenever the number of registered parties of a child phaser becomes
101 * non-zero (as established in the {@link #Phaser(Phaser,int)}
102 * constructor, {@link #register}, or {@link #bulkRegister}), the
103 * child phaser is registered with its parent. Whenever the number of
104 * registered parties becomes zero as the result of an invocation of
105 * {@link #arriveAndDeregister}, the child phaser is deregistered
106 * from its parent.
107 *
108 * <p><b>Monitoring.</b> While synchronization methods may be invoked
109 * only by registered parties, the current state of a phaser may be
110 * monitored by any caller. At any given moment there are {@link
111 * #getRegisteredParties} parties in total, of which {@link
112 * #getArrivedParties} have arrived at the current phase ({@link
113 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
114 * parties arrive, the phase advances. The values returned by these
115 * methods may reflect transient states and so are not in general
116 * useful for synchronization control. Method {@link #toString}
117 * returns snapshots of these state queries in a form convenient for
118 * informal monitoring.
119 *
120 * <p><b>Sample usages:</b>
121 *
122 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
123 * to control a one-shot action serving a variable number of parties.
124 * The typical idiom is for the method setting this up to first
125 * register, then start the actions, then deregister, as in:
126 *
127 * <pre> {@code
128 * void runTasks(List<Runnable> tasks) {
129 * final Phaser phaser = new Phaser(1); // "1" to register self
130 * // create and start threads
131 * for (final Runnable task : tasks) {
132 * phaser.register();
133 * new Thread() {
134 * public void run() {
135 * phaser.arriveAndAwaitAdvance(); // await all creation
136 * task.run();
137 * }
138 * }.start();
139 * }
140 *
141 * // allow threads to start and deregister self
142 * phaser.arriveAndDeregister();
143 * }}</pre>
144 *
145 * <p>One way to cause a set of threads to repeatedly perform actions
146 * for a given number of iterations is to override {@code onAdvance}:
147 *
148 * <pre> {@code
149 * void startTasks(List<Runnable> tasks, final int iterations) {
150 * final Phaser phaser = new Phaser() {
151 * protected boolean onAdvance(int phase, int registeredParties) {
152 * return phase >= iterations || registeredParties == 0;
153 * }
154 * };
155 * phaser.register();
156 * for (final Runnable task : tasks) {
157 * phaser.register();
158 * new Thread() {
159 * public void run() {
160 * do {
161 * task.run();
162 * phaser.arriveAndAwaitAdvance();
163 * } while (!phaser.isTerminated());
164 * }
165 * }.start();
166 * }
167 * phaser.arriveAndDeregister(); // deregister self, don't wait
168 * }}</pre>
169 *
170 * If the main task must later await termination, it
171 * may re-register and then execute a similar loop:
172 * <pre> {@code
173 * // ...
174 * phaser.register();
175 * while (!phaser.isTerminated())
176 * phaser.arriveAndAwaitAdvance();}</pre>
177 *
178 * <p>Related constructions may be used to await particular phase numbers
179 * in contexts where you are sure that the phase will never wrap around
180 * {@code Integer.MAX_VALUE}. For example:
181 *
182 * <pre> {@code
183 * void awaitPhase(Phaser phaser, int phase) {
184 * int p = phaser.register(); // assumes caller not already registered
185 * while (p < phase) {
186 * if (phaser.isTerminated())
187 * // ... deal with unexpected termination
188 * else
189 * p = phaser.arriveAndAwaitAdvance();
190 * }
191 * phaser.arriveAndDeregister();
192 * }}</pre>
193 *
194 * <p>To create a set of {@code n} tasks using a tree of phasers, you
195 * could use code of the following form, assuming a Task class with a
196 * constructor accepting a {@code Phaser} that it registers with upon
197 * construction. After invocation of {@code build(new Task[n], 0, n,
198 * new Phaser())}, these tasks could then be started, for example by
199 * submitting to a pool:
200 *
201 * <pre> {@code
202 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
203 * if (hi - lo > TASKS_PER_PHASER) {
204 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
205 * int j = Math.min(i + TASKS_PER_PHASER, hi);
206 * build(tasks, i, j, new Phaser(ph));
207 * }
208 * } else {
209 * for (int i = lo; i < hi; ++i)
210 * tasks[i] = new Task(ph);
211 * // assumes new Task(ph) performs ph.register()
212 * }
213 * }}</pre>
214 *
215 * The best value of {@code TASKS_PER_PHASER} depends mainly on
216 * expected synchronization rates. A value as low as four may
217 * be appropriate for extremely small per-phase task bodies (thus
218 * high rates), or up to hundreds for extremely large ones.
219 *
220 * <p><b>Implementation notes</b>: This implementation restricts the
221 * maximum number of parties to 65535. Attempts to register additional
222 * parties result in {@code IllegalStateException}. However, you can and
223 * should create tiered phasers to accommodate arbitrarily large sets
224 * of participants.
225 *
226 * @since 1.7
227 * @author Doug Lea
228 */
229 public class Phaser {
230 /*
231 * This class implements an extension of X10 "clocks". Thanks to
232 * Vijay Saraswat for the idea, and to Vivek Sarkar for
233 * enhancements to extend functionality.
234 */
235
236 /**
237 * Primary state representation, holding four bit-fields:
238 *
239 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
240 * parties -- the number of parties to wait (bits 16-31)
241 * phase -- the generation of the barrier (bits 32-62)
242 * terminated -- set if barrier is terminated (bit 63 / sign)
243 *
244 * Except that a phaser with no registered parties is
245 * distinguished by the otherwise illegal state of having zero
246 * parties and one unarrived parties (encoded as EMPTY below).
247 *
248 * To efficiently maintain atomicity, these values are packed into
249 * a single (atomic) long. Good performance relies on keeping
250 * state decoding and encoding simple, and keeping race windows
251 * short.
252 *
253 * All state updates are performed via CAS except initial
254 * registration of a sub-phaser (i.e., one with a non-null
255 * parent). In this (relatively rare) case, we use built-in
256 * synchronization to lock while first registering with its
257 * parent.
258 *
259 * The phase of a subphaser is allowed to lag that of its
260 * ancestors until it is actually accessed -- see method
261 * reconcileState.
262 */
263 private volatile long state;
264
265 private static final int MAX_PARTIES = 0xffff;
266 private static final int MAX_PHASE = Integer.MAX_VALUE;
267 private static final int PARTIES_SHIFT = 16;
268 private static final int PHASE_SHIFT = 32;
269 private static final int UNARRIVED_MASK = 0xffff; // to mask ints
270 private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
271 private static final long COUNTS_MASK = 0xffffffffL;
272 private static final long TERMINATION_BIT = 1L << 63;
273
274 // some special values
275 private static final int ONE_ARRIVAL = 1;
276 private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
277 private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY;
278 private static final int EMPTY = 1;
279
280 // The following unpacking methods are usually manually inlined
281
282 private static int unarrivedOf(long s) {
283 int counts = (int)s;
284 return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
285 }
286
287 private static int partiesOf(long s) {
288 return (int)s >>> PARTIES_SHIFT;
289 }
290
291 private static int phaseOf(long s) {
292 return (int)(s >>> PHASE_SHIFT);
293 }
294
295 private static int arrivedOf(long s) {
296 int counts = (int)s;
297 return (counts == EMPTY) ? 0 :
298 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
299 }
300
301 /**
302 * The parent of this phaser, or null if none
303 */
304 private final Phaser parent;
305
306 /**
307 * The root of phaser tree. Equals this if not in a tree.
308 */
309 private final Phaser root;
310
311 /**
312 * Heads of Treiber stacks for waiting threads. To eliminate
313 * contention when releasing some threads while adding others, we
314 * use two of them, alternating across even and odd phases.
315 * Subphasers share queues with root to speed up releases.
316 */
317 private final AtomicReference<QNode> evenQ;
318 private final AtomicReference<QNode> oddQ;
319
320 private AtomicReference<QNode> queueFor(int phase) {
321 return ((phase & 1) == 0) ? evenQ : oddQ;
322 }
323
324 /**
325 * Returns message string for bounds exceptions on arrival.
326 */
327 private String badArrive(long s) {
328 return "Attempted arrival of unregistered party for " +
329 stateToString(s);
330 }
331
332 /**
333 * Returns message string for bounds exceptions on registration.
334 */
335 private String badRegister(long s) {
336 return "Attempt to register more than " +
337 MAX_PARTIES + " parties for " + stateToString(s);
338 }
339
340 /**
341 * Main implementation for methods arrive and arriveAndDeregister.
342 * Manually tuned to speed up and minimize race windows for the
343 * common case of just decrementing unarrived field.
344 *
345 * @param adjust value to subtract from state;
346 * ONE_ARRIVAL for arrive,
347 * ONE_DEREGISTER for arriveAndDeregister
348 */
349 private int doArrive(int adjust) {
350 final Phaser root = this.root;
351 for (;;) {
352 long s = (root == this) ? state : reconcileState();
353 int phase = (int)(s >>> PHASE_SHIFT);
354 if (phase < 0)
355 return phase;
356 int counts = (int)s;
357 int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
358 if (unarrived <= 0)
359 throw new IllegalStateException(badArrive(s));
360 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
361 if (unarrived == 1) {
362 long n = s & PARTIES_MASK; // base of next state
363 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
364 if (root == this) {
365 if (onAdvance(phase, nextUnarrived))
366 n |= TERMINATION_BIT;
367 else if (nextUnarrived == 0)
368 n |= EMPTY;
369 else
370 n |= nextUnarrived;
371 int nextPhase = (phase + 1) & MAX_PHASE;
372 n |= (long)nextPhase << PHASE_SHIFT;
373 UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
374 releaseWaiters(phase);
375 }
376 else if (nextUnarrived == 0) { // propagate deregistration
377 phase = parent.doArrive(ONE_DEREGISTER);
378 UNSAFE.compareAndSwapLong(this, stateOffset,
379 s, s | EMPTY);
380 }
381 else
382 phase = parent.doArrive(ONE_ARRIVAL);
383 }
384 return phase;
385 }
386 }
387 }
388
389 /**
390 * Implementation of register, bulkRegister
391 *
392 * @param registrations number to add to both parties and
393 * unarrived fields. Must be greater than zero.
394 */
395 private int doRegister(int registrations) {
396 // adjustment to state
397 long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
398 final Phaser parent = this.parent;
399 int phase;
400 for (;;) {
401 long s = (parent == null) ? state : reconcileState();
402 int counts = (int)s;
403 int parties = counts >>> PARTIES_SHIFT;
404 int unarrived = counts & UNARRIVED_MASK;
405 if (registrations > MAX_PARTIES - parties)
406 throw new IllegalStateException(badRegister(s));
407 phase = (int)(s >>> PHASE_SHIFT);
408 if (phase < 0)
409 break;
410 if (counts != EMPTY) { // not 1st registration
411 if (parent == null || reconcileState() == s) {
412 if (unarrived == 0) // wait out advance
413 root.internalAwaitAdvance(phase, null);
414 else if (UNSAFE.compareAndSwapLong(this, stateOffset,
415 s, s + adjust))
416 break;
417 }
418 }
419 else if (parent == null) { // 1st root registration
420 long next = ((long)phase << PHASE_SHIFT) | adjust;
421 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
422 break;
423 }
424 else {
425 synchronized (this) { // 1st sub registration
426 if (state == s) { // recheck under lock
427 phase = parent.doRegister(1);
428 if (phase < 0)
429 break;
430 // finish registration whenever parent registration
431 // succeeded, even when racing with termination,
432 // since these are part of the same "transaction".
433 while (!UNSAFE.compareAndSwapLong
434 (this, stateOffset, s,
435 ((long)phase << PHASE_SHIFT) | adjust)) {
436 s = state;
437 phase = (int)(root.state >>> PHASE_SHIFT);
438 // assert (int)s == EMPTY;
439 }
440 break;
441 }
442 }
443 }
444 }
445 return phase;
446 }
447
448 /**
449 * Resolves lagged phase propagation from root if necessary.
450 * Reconciliation normally occurs when root has advanced but
451 * subphasers have not yet done so, in which case they must finish
452 * their own advance by setting unarrived to parties (or if
453 * parties is zero, resetting to unregistered EMPTY state).
454 *
455 * @return reconciled state
456 */
457 private long reconcileState() {
458 final Phaser root = this.root;
459 long s = state;
460 if (root != this) {
461 int phase, p;
462 // CAS to root phase with current parties, tripping unarrived
463 while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
464 (int)(s >>> PHASE_SHIFT) &&
465 !UNSAFE.compareAndSwapLong
466 (this, stateOffset, s,
467 s = (((long)phase << PHASE_SHIFT) |
468 ((phase < 0) ? (s & COUNTS_MASK) :
469 (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
470 ((s & PARTIES_MASK) | p))))))
471 s = state;
472 }
473 return s;
474 }
475
476 /**
477 * Creates a new phaser with no initially registered parties, no
478 * parent, and initial phase number 0. Any thread using this
479 * phaser will need to first register for it.
480 */
481 public Phaser() {
482 this(null, 0);
483 }
484
485 /**
486 * Creates a new phaser with the given number of registered
487 * unarrived parties, no parent, and initial phase number 0.
488 *
489 * @param parties the number of parties required to advance to the
490 * next phase
491 * @throws IllegalArgumentException if parties less than zero
492 * or greater than the maximum number of parties supported
493 */
494 public Phaser(int parties) {
495 this(null, parties);
496 }
497
498 /**
499 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
500 *
501 * @param parent the parent phaser
502 */
503 public Phaser(Phaser parent) {
504 this(parent, 0);
505 }
506
507 /**
508 * Creates a new phaser with the given parent and number of
509 * registered unarrived parties. When the given parent is non-null
510 * and the given number of parties is greater than zero, this
511 * child phaser is registered with its parent.
512 *
513 * @param parent the parent phaser
514 * @param parties the number of parties required to advance to the
515 * next phase
516 * @throws IllegalArgumentException if parties less than zero
517 * or greater than the maximum number of parties supported
518 */
519 public Phaser(Phaser parent, int parties) {
520 if (parties >>> PARTIES_SHIFT != 0)
521 throw new IllegalArgumentException("Illegal number of parties");
522 int phase = 0;
523 this.parent = parent;
524 if (parent != null) {
525 final Phaser root = parent.root;
526 this.root = root;
527 this.evenQ = root.evenQ;
528 this.oddQ = root.oddQ;
529 if (parties != 0)
530 phase = parent.doRegister(1);
531 }
532 else {
533 this.root = this;
534 this.evenQ = new AtomicReference<QNode>();
535 this.oddQ = new AtomicReference<QNode>();
536 }
537 this.state = (parties == 0) ? (long)EMPTY :
538 ((long)phase << PHASE_SHIFT) |
539 ((long)parties << PARTIES_SHIFT) |
540 ((long)parties);
541 }
542
543 /**
544 * Adds a new unarrived party to this phaser. If an ongoing
545 * invocation of {@link #onAdvance} is in progress, this method
546 * may await its completion before returning. If this phaser has
547 * a parent, and this phaser previously had no registered parties,
548 * this child phaser is also registered with its parent. If
549 * this phaser is terminated, the attempt to register has
550 * no effect, and a negative value is returned.
551 *
552 * @return the arrival phase number to which this registration
553 * applied. If this value is negative, then this phaser has
554 * terminated, in which case registration has no effect.
555 * @throws IllegalStateException if attempting to register more
556 * than the maximum supported number of parties
557 */
558 public int register() {
559 return doRegister(1);
560 }
561
562 /**
563 * Adds the given number of new unarrived parties to this phaser.
564 * If an ongoing invocation of {@link #onAdvance} is in progress,
565 * this method may await its completion before returning. If this
566 * phaser has a parent, and the given number of parties is greater
567 * than zero, and this phaser previously had no registered
568 * parties, this child phaser is also registered with its parent.
569 * If this phaser is terminated, the attempt to register has no
570 * effect, and a negative value is returned.
571 *
572 * @param parties the number of additional parties required to
573 * advance to the next phase
574 * @return the arrival phase number to which this registration
575 * applied. If this value is negative, then this phaser has
576 * terminated, in which case registration has no effect.
577 * @throws IllegalStateException if attempting to register more
578 * than the maximum supported number of parties
579 * @throws IllegalArgumentException if {@code parties < 0}
580 */
581 public int bulkRegister(int parties) {
582 if (parties < 0)
583 throw new IllegalArgumentException();
584 if (parties == 0)
585 return getPhase();
586 return doRegister(parties);
587 }
588
589 /**
590 * Arrives at this phaser, without waiting for others to arrive.
591 *
592 * <p>It is a usage error for an unregistered party to invoke this
593 * method. However, this error may result in an {@code
594 * IllegalStateException} only upon some subsequent operation on
595 * this phaser, if ever.
596 *
597 * @return the arrival phase number, or a negative value if terminated
598 * @throws IllegalStateException if not terminated and the number
599 * of unarrived parties would become negative
600 */
601 public int arrive() {
602 return doArrive(ONE_ARRIVAL);
603 }
604
605 /**
606 * Arrives at this phaser and deregisters from it without waiting
607 * for others to arrive. Deregistration reduces the number of
608 * parties required to advance in future phases. If this phaser
609 * has a parent, and deregistration causes this phaser to have
610 * zero parties, this phaser is also deregistered from its parent.
611 *
612 * <p>It is a usage error for an unregistered party to invoke this
613 * method. However, this error may result in an {@code
614 * IllegalStateException} only upon some subsequent operation on
615 * this phaser, if ever.
616 *
617 * @return the arrival phase number, or a negative value if terminated
618 * @throws IllegalStateException if not terminated and the number
619 * of registered or unarrived parties would become negative
620 */
621 public int arriveAndDeregister() {
622 return doArrive(ONE_DEREGISTER);
623 }
624
625 /**
626 * Arrives at this phaser and awaits others. Equivalent in effect
627 * to {@code awaitAdvance(arrive())}. If you need to await with
628 * interruption or timeout, you can arrange this with an analogous
629 * construction using one of the other forms of the {@code
630 * awaitAdvance} method. If instead you need to deregister upon
631 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
632 *
633 * <p>It is a usage error for an unregistered party to invoke this
634 * method. However, this error may result in an {@code
635 * IllegalStateException} only upon some subsequent operation on
636 * this phaser, if ever.
637 *
638 * @return the arrival phase number, or the (negative)
639 * {@linkplain #getPhase() current phase} if terminated
640 * @throws IllegalStateException if not terminated and the number
641 * of unarrived parties would become negative
642 */
643 public int arriveAndAwaitAdvance() {
644 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
645 final Phaser root = this.root;
646 for (;;) {
647 long s = (root == this) ? state : reconcileState();
648 int phase = (int)(s >>> PHASE_SHIFT);
649 if (phase < 0)
650 return phase;
651 int counts = (int)s;
652 int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
653 if (unarrived <= 0)
654 throw new IllegalStateException(badArrive(s));
655 if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
656 s -= ONE_ARRIVAL)) {
657 if (unarrived > 1)
658 return root.internalAwaitAdvance(phase, null);
659 if (root != this)
660 return parent.arriveAndAwaitAdvance();
661 long n = s & PARTIES_MASK; // base of next state
662 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
663 if (onAdvance(phase, nextUnarrived))
664 n |= TERMINATION_BIT;
665 else if (nextUnarrived == 0)
666 n |= EMPTY;
667 else
668 n |= nextUnarrived;
669 int nextPhase = (phase + 1) & MAX_PHASE;
670 n |= (long)nextPhase << PHASE_SHIFT;
671 if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
672 return (int)(state >>> PHASE_SHIFT); // terminated
673 releaseWaiters(phase);
674 return nextPhase;
675 }
676 }
677 }
678
679 /**
680 * Awaits the phase of this phaser to advance from the given phase
681 * value, returning immediately if the current phase is not equal
682 * to the given phase value or this phaser is terminated.
683 *
684 * @param phase an arrival phase number, or negative value if
685 * terminated; this argument is normally the value returned by a
686 * previous call to {@code arrive} or {@code arriveAndDeregister}.
687 * @return the next arrival phase number, or the argument if it is
688 * negative, or the (negative) {@linkplain #getPhase() current phase}
689 * if terminated
690 */
691 public int awaitAdvance(int phase) {
692 final Phaser root = this.root;
693 long s = (root == this) ? state : reconcileState();
694 int p = (int)(s >>> PHASE_SHIFT);
695 if (phase < 0)
696 return phase;
697 if (p == phase)
698 return root.internalAwaitAdvance(phase, null);
699 return p;
700 }
701
702 /**
703 * Awaits the phase of this phaser to advance from the given phase
704 * value, throwing {@code InterruptedException} if interrupted
705 * while waiting, or returning immediately if the current phase is
706 * not equal to the given phase value or this phaser is
707 * terminated.
708 *
709 * @param phase an arrival phase number, or negative value if
710 * terminated; this argument is normally the value returned by a
711 * previous call to {@code arrive} or {@code arriveAndDeregister}.
712 * @return the next arrival phase number, or the argument if it is
713 * negative, or the (negative) {@linkplain #getPhase() current phase}
714 * if terminated
715 * @throws InterruptedException if thread interrupted while waiting
716 */
717 public int awaitAdvanceInterruptibly(int phase)
718 throws InterruptedException {
719 final Phaser root = this.root;
720 long s = (root == this) ? state : reconcileState();
721 int p = (int)(s >>> PHASE_SHIFT);
722 if (phase < 0)
723 return phase;
724 if (p == phase) {
725 QNode node = new QNode(this, phase, true, false, 0L);
726 p = root.internalAwaitAdvance(phase, node);
727 if (node.wasInterrupted)
728 throw new InterruptedException();
729 }
730 return p;
731 }
732
733 /**
734 * Awaits the phase of this phaser to advance from the given phase
735 * value or the given timeout to elapse, throwing {@code
736 * InterruptedException} if interrupted while waiting, or
737 * returning immediately if the current phase is not equal to the
738 * given phase value or this phaser is terminated.
739 *
740 * @param phase an arrival phase number, or negative value if
741 * terminated; this argument is normally the value returned by a
742 * previous call to {@code arrive} or {@code arriveAndDeregister}.
743 * @param timeout how long to wait before giving up, in units of
744 * {@code unit}
745 * @param unit a {@code TimeUnit} determining how to interpret the
746 * {@code timeout} parameter
747 * @return the next arrival phase number, or the argument if it is
748 * negative, or the (negative) {@linkplain #getPhase() current phase}
749 * if terminated
750 * @throws InterruptedException if thread interrupted while waiting
751 * @throws TimeoutException if timed out while waiting
752 */
753 public int awaitAdvanceInterruptibly(int phase,
754 long timeout, TimeUnit unit)
755 throws InterruptedException, TimeoutException {
756 long nanos = unit.toNanos(timeout);
757 final Phaser root = this.root;
758 long s = (root == this) ? state : reconcileState();
759 int p = (int)(s >>> PHASE_SHIFT);
760 if (phase < 0)
761 return phase;
762 if (p == phase) {
763 QNode node = new QNode(this, phase, true, true, nanos);
764 p = root.internalAwaitAdvance(phase, node);
765 if (node.wasInterrupted)
766 throw new InterruptedException();
767 else if (p == phase)
768 throw new TimeoutException();
769 }
770 return p;
771 }
772
773 /**
774 * Forces this phaser to enter termination state. Counts of
775 * registered parties are unaffected. If this phaser is a member
776 * of a tiered set of phasers, then all of the phasers in the set
777 * are terminated. If this phaser is already terminated, this
778 * method has no effect. This method may be useful for
779 * coordinating recovery after one or more tasks encounter
780 * unexpected exceptions.
781 */
782 public void forceTermination() {
783 // Only need to change root state
784 final Phaser root = this.root;
785 long s;
786 while ((s = root.state) >= 0) {
787 if (UNSAFE.compareAndSwapLong(root, stateOffset,
788 s, s | TERMINATION_BIT)) {
789 // signal all threads
790 releaseWaiters(0); // Waiters on evenQ
791 releaseWaiters(1); // Waiters on oddQ
792 return;
793 }
794 }
795 }
796
797 /**
798 * Returns the current phase number. The maximum phase number is
799 * {@code Integer.MAX_VALUE}, after which it restarts at
800 * zero. Upon termination, the phase number is negative,
801 * in which case the prevailing phase prior to termination
802 * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
803 *
804 * @return the phase number, or a negative value if terminated
805 */
806 public final int getPhase() {
807 return (int)(root.state >>> PHASE_SHIFT);
808 }
809
810 /**
811 * Returns the number of parties registered at this phaser.
812 *
813 * @return the number of parties
814 */
815 public int getRegisteredParties() {
816 return partiesOf(state);
817 }
818
819 /**
820 * Returns the number of registered parties that have arrived at
821 * the current phase of this phaser. If this phaser has terminated,
822 * the returned value is meaningless and arbitrary.
823 *
824 * @return the number of arrived parties
825 */
826 public int getArrivedParties() {
827 return arrivedOf(reconcileState());
828 }
829
830 /**
831 * Returns the number of registered parties that have not yet
832 * arrived at the current phase of this phaser. If this phaser has
833 * terminated, the returned value is meaningless and arbitrary.
834 *
835 * @return the number of unarrived parties
836 */
837 public int getUnarrivedParties() {
838 return unarrivedOf(reconcileState());
839 }
840
841 /**
842 * Returns the parent of this phaser, or {@code null} if none.
843 *
844 * @return the parent of this phaser, or {@code null} if none
845 */
846 public Phaser getParent() {
847 return parent;
848 }
849
850 /**
851 * Returns the root ancestor of this phaser, which is the same as
852 * this phaser if it has no parent.
853 *
854 * @return the root ancestor of this phaser
855 */
856 public Phaser getRoot() {
857 return root;
858 }
859
860 /**
861 * Returns {@code true} if this phaser has been terminated.
862 *
863 * @return {@code true} if this phaser has been terminated
864 */
865 public boolean isTerminated() {
866 return root.state < 0L;
867 }
868
869 /**
870 * Overridable method to perform an action upon impending phase
871 * advance, and to control termination. This method is invoked
872 * upon arrival of the party advancing this phaser (when all other
873 * waiting parties are dormant). If this method returns {@code
874 * true}, this phaser will be set to a final termination state
875 * upon advance, and subsequent calls to {@link #isTerminated}
876 * will return true. Any (unchecked) Exception or Error thrown by
877 * an invocation of this method is propagated to the party
878 * attempting to advance this phaser, in which case no advance
879 * occurs.
880 *
881 * <p>The arguments to this method provide the state of the phaser
882 * prevailing for the current transition. The effects of invoking
883 * arrival, registration, and waiting methods on this phaser from
884 * within {@code onAdvance} are unspecified and should not be
885 * relied on.
886 *
887 * <p>If this phaser is a member of a tiered set of phasers, then
888 * {@code onAdvance} is invoked only for its root phaser on each
889 * advance.
890 *
891 * <p>To support the most common use cases, the default
892 * implementation of this method returns {@code true} when the
893 * number of registered parties has become zero as the result of a
894 * party invoking {@code arriveAndDeregister}. You can disable
895 * this behavior, thus enabling continuation upon future
896 * registrations, by overriding this method to always return
897 * {@code false}:
898 *
899 * <pre> {@code
900 * Phaser phaser = new Phaser() {
901 * protected boolean onAdvance(int phase, int parties) { return false; }
902 * }}</pre>
903 *
904 * @param phase the current phase number on entry to this method,
905 * before this phaser is advanced
906 * @param registeredParties the current number of registered parties
907 * @return {@code true} if this phaser should terminate
908 */
909 protected boolean onAdvance(int phase, int registeredParties) {
910 return registeredParties == 0;
911 }
912
913 /**
914 * Returns a string identifying this phaser, as well as its
915 * state. The state, in brackets, includes the String {@code
916 * "phase = "} followed by the phase number, {@code "parties = "}
917 * followed by the number of registered parties, and {@code
918 * "arrived = "} followed by the number of arrived parties.
919 *
920 * @return a string identifying this phaser, as well as its state
921 */
922 public String toString() {
923 return stateToString(reconcileState());
924 }
925
926 /**
927 * Implementation of toString and string-based error messages
928 */
929 private String stateToString(long s) {
930 return super.toString() +
931 "[phase = " + phaseOf(s) +
932 " parties = " + partiesOf(s) +
933 " arrived = " + arrivedOf(s) + "]";
934 }
935
936 // Waiting mechanics
937
938 /**
939 * Removes and signals threads from queue for phase.
940 */
941 private void releaseWaiters(int phase) {
942 QNode q; // first element of queue
943 Thread t; // its thread
944 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
945 while ((q = head.get()) != null &&
946 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
947 if (head.compareAndSet(q, q.next) &&
948 (t = q.thread) != null) {
949 q.thread = null;
950 LockSupport.unpark(t);
951 }
952 }
953 }
954
955 /**
956 * Variant of releaseWaiters that additionally tries to remove any
957 * nodes no longer waiting for advance due to timeout or
958 * interrupt. Currently, nodes are removed only if they are at
959 * head of queue, which suffices to reduce memory footprint in
960 * most usages.
961 *
962 * @return current phase on exit
963 */
964 private int abortWait(int phase) {
965 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
966 for (;;) {
967 Thread t;
968 QNode q = head.get();
969 int p = (int)(root.state >>> PHASE_SHIFT);
970 if (q == null || ((t = q.thread) != null && q.phase == p))
971 return p;
972 if (head.compareAndSet(q, q.next) && t != null) {
973 q.thread = null;
974 LockSupport.unpark(t);
975 }
976 }
977 }
978
979 /** The number of CPUs, for spin control */
980 private static final int NCPU = Runtime.getRuntime().availableProcessors();
981
982 /**
983 * The number of times to spin before blocking while waiting for
984 * advance, per arrival while waiting. On multiprocessors, fully
985 * blocking and waking up a large number of threads all at once is
986 * usually a very slow process, so we use rechargeable spins to
987 * avoid it when threads regularly arrive: When a thread in
988 * internalAwaitAdvance notices another arrival before blocking,
989 * and there appear to be enough CPUs available, it spins
990 * SPINS_PER_ARRIVAL more times before blocking. The value trades
991 * off good-citizenship vs big unnecessary slowdowns.
992 */
993 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
994
995 /**
996 * Possibly blocks and waits for phase to advance unless aborted.
997 * Call only on root phaser.
998 *
999 * @param phase current phase
1000 * @param node if non-null, the wait node to track interrupt and timeout;
1001 * if null, denotes noninterruptible wait
1002 * @return current phase
1003 */
1004 private int internalAwaitAdvance(int phase, QNode node) {
1005 // assert root == this;
1006 releaseWaiters(phase-1); // ensure old queue clean
1007 boolean queued = false; // true when node is enqueued
1008 int lastUnarrived = 0; // to increase spins upon change
1009 int spins = SPINS_PER_ARRIVAL;
1010 long s;
1011 int p;
1012 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1013 if (node == null) { // spinning in noninterruptible mode
1014 int unarrived = (int)s & UNARRIVED_MASK;
1015 if (unarrived != lastUnarrived &&
1016 (lastUnarrived = unarrived) < NCPU)
1017 spins += SPINS_PER_ARRIVAL;
1018 boolean interrupted = Thread.interrupted();
1019 if (interrupted || --spins < 0) { // need node to record intr
1020 node = new QNode(this, phase, false, false, 0L);
1021 node.wasInterrupted = interrupted;
1022 }
1023 }
1024 else if (node.isReleasable()) // done or aborted
1025 break;
1026 else if (!queued) { // push onto queue
1027 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1028 QNode q = node.next = head.get();
1029 if ((q == null || q.phase == phase) &&
1030 (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1031 queued = head.compareAndSet(q, node);
1032 }
1033 else {
1034 try {
1035 ForkJoinPool.managedBlock(node);
1036 } catch (InterruptedException ie) {
1037 node.wasInterrupted = true;
1038 }
1039 }
1040 }
1041
1042 if (node != null) {
1043 if (node.thread != null)
1044 node.thread = null; // avoid need for unpark()
1045 if (node.wasInterrupted && !node.interruptible)
1046 Thread.currentThread().interrupt();
1047 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1048 return abortWait(phase); // possibly clean up on abort
1049 }
1050 releaseWaiters(phase);
1051 return p;
1052 }
1053
1054 /**
1055 * Wait nodes for Treiber stack representing wait queue
1056 */
1057 static final class QNode implements ForkJoinPool.ManagedBlocker {
1058 final Phaser phaser;
1059 final int phase;
1060 final boolean interruptible;
1061 final boolean timed;
1062 boolean wasInterrupted;
1063 long nanos;
1064 final long deadline;
1065 volatile Thread thread; // nulled to cancel wait
1066 QNode next;
1067
1068 QNode(Phaser phaser, int phase, boolean interruptible,
1069 boolean timed, long nanos) {
1070 this.phaser = phaser;
1071 this.phase = phase;
1072 this.interruptible = interruptible;
1073 this.nanos = nanos;
1074 this.timed = timed;
1075 this.deadline = timed ? System.nanoTime() + nanos : 0L;
1076 thread = Thread.currentThread();
1077 }
1078
1079 public boolean isReleasable() {
1080 if (thread == null)
1081 return true;
1082 if (phaser.getPhase() != phase) {
1083 thread = null;
1084 return true;
1085 }
1086 if (Thread.interrupted())
1087 wasInterrupted = true;
1088 if (wasInterrupted && interruptible) {
1089 thread = null;
1090 return true;
1091 }
1092 if (timed) {
1093 if (nanos > 0L) {
1094 nanos = deadline - System.nanoTime();
1095 }
1096 if (nanos <= 0L) {
1097 thread = null;
1098 return true;
1099 }
1100 }
1101 return false;
1102 }
1103
1104 public boolean block() {
1105 if (isReleasable())
1106 return true;
1107 else if (!timed)
1108 LockSupport.park(this);
1109 else if (nanos > 0L)
1110 LockSupport.parkNanos(this, nanos);
1111 return isReleasable();
1112 }
1113 }
1114
1115 // Unsafe mechanics
1116
1117 private static final sun.misc.Unsafe UNSAFE;
1118 private static final long stateOffset;
1119 static {
1120 try {
1121 UNSAFE = sun.misc.Unsafe.getUnsafe();
1122 Class<?> k = Phaser.class;
1123 stateOffset = UNSAFE.objectFieldOffset
1124 (k.getDeclaredField("state"));
1125 } catch (Exception e) {
1126 throw new Error(e);
1127 }
1128
1129 // Reduce the risk of rare disastrous classloading in first call to
1130 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1131 Class<?> ensureLoaded = LockSupport.class;
1132 }
1133 }