ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/ScheduledThreadPoolExecutor.java
Revision: 1.7
Committed: Fri Apr 11 21:28:45 2014 UTC (10 years, 1 month ago) by jsr166
Branch: MAIN
Changes since 1.6: +77 -51 lines
Log Message:
sync with src/main, fixing target 4jdk7-test-jtreg

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8     import static java.util.concurrent.TimeUnit.NANOSECONDS;
9 jsr166 1.7 import static java.util.concurrent.TimeUnit.MILLISECONDS;
10 dl 1.1 import java.util.concurrent.atomic.AtomicLong;
11     import java.util.concurrent.locks.Condition;
12     import java.util.concurrent.locks.ReentrantLock;
13     import java.util.*;
14    
15     /**
16     * A {@link ThreadPoolExecutor} that can additionally schedule
17 jsr166 1.7 * commands to run after a given delay, or to execute periodically.
18     * This class is preferable to {@link java.util.Timer} when multiple
19     * worker threads are needed, or when the additional flexibility or
20     * capabilities of {@link ThreadPoolExecutor} (which this class
21     * extends) are required.
22 dl 1.1 *
23     * <p>Delayed tasks execute no sooner than they are enabled, but
24     * without any real-time guarantees about when, after they are
25     * enabled, they will commence. Tasks scheduled for exactly the same
26     * execution time are enabled in first-in-first-out (FIFO) order of
27     * submission.
28     *
29     * <p>When a submitted task is cancelled before it is run, execution
30 jsr166 1.7 * is suppressed. By default, such a cancelled task is not
31     * automatically removed from the work queue until its delay elapses.
32     * While this enables further inspection and monitoring, it may also
33     * cause unbounded retention of cancelled tasks. To avoid this, use
34     * {@link #setRemoveOnCancelPolicy} to cause tasks to be immediately
35     * removed from the work queue at time of cancellation.
36 dl 1.1 *
37 jsr166 1.7 * <p>Successive executions of a periodic task scheduled via
38     * {@link #scheduleAtFixedRate} or
39     * {@link #scheduleWithFixedDelay} do not overlap. While different
40 dl 1.1 * executions may be performed by different threads, the effects of
41     * prior executions <a
42     * href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
43     * those of subsequent ones.
44     *
45     * <p>While this class inherits from {@link ThreadPoolExecutor}, a few
46     * of the inherited tuning methods are not useful for it. In
47     * particular, because it acts as a fixed-sized pool using
48     * {@code corePoolSize} threads and an unbounded queue, adjustments
49     * to {@code maximumPoolSize} have no useful effect. Additionally, it
50     * is almost never a good idea to set {@code corePoolSize} to zero or
51     * use {@code allowCoreThreadTimeOut} because this may leave the pool
52     * without threads to handle tasks once they become eligible to run.
53     *
54     * <p><b>Extension notes:</b> This class overrides the
55 jsr166 1.4 * {@link ThreadPoolExecutor#execute(Runnable) execute} and
56 dl 1.1 * {@link AbstractExecutorService#submit(Runnable) submit}
57     * methods to generate internal {@link ScheduledFuture} objects to
58     * control per-task delays and scheduling. To preserve
59     * functionality, any further overrides of these methods in
60     * subclasses must invoke superclass versions, which effectively
61     * disables additional task customization. However, this class
62     * provides alternative protected extension method
63     * {@code decorateTask} (one version each for {@code Runnable} and
64     * {@code Callable}) that can be used to customize the concrete task
65     * types used to execute commands entered via {@code execute},
66     * {@code submit}, {@code schedule}, {@code scheduleAtFixedRate},
67     * and {@code scheduleWithFixedDelay}. By default, a
68     * {@code ScheduledThreadPoolExecutor} uses a task type extending
69     * {@link FutureTask}. However, this may be modified or replaced using
70     * subclasses of the form:
71     *
72     * <pre> {@code
73     * public class CustomScheduledExecutor extends ScheduledThreadPoolExecutor {
74     *
75     * static class CustomTask<V> implements RunnableScheduledFuture<V> { ... }
76     *
77     * protected <V> RunnableScheduledFuture<V> decorateTask(
78     * Runnable r, RunnableScheduledFuture<V> task) {
79     * return new CustomTask<V>(r, task);
80     * }
81     *
82     * protected <V> RunnableScheduledFuture<V> decorateTask(
83     * Callable<V> c, RunnableScheduledFuture<V> task) {
84     * return new CustomTask<V>(c, task);
85     * }
86     * // ... add constructors, etc.
87     * }}</pre>
88     *
89     * @since 1.5
90     * @author Doug Lea
91     */
92     public class ScheduledThreadPoolExecutor
93     extends ThreadPoolExecutor
94     implements ScheduledExecutorService {
95    
96     /*
97     * This class specializes ThreadPoolExecutor implementation by
98     *
99     * 1. Using a custom task type, ScheduledFutureTask for
100     * tasks, even those that don't require scheduling (i.e.,
101     * those submitted using ExecutorService execute, not
102     * ScheduledExecutorService methods) which are treated as
103     * delayed tasks with a delay of zero.
104     *
105     * 2. Using a custom queue (DelayedWorkQueue), a variant of
106     * unbounded DelayQueue. The lack of capacity constraint and
107     * the fact that corePoolSize and maximumPoolSize are
108     * effectively identical simplifies some execution mechanics
109     * (see delayedExecute) compared to ThreadPoolExecutor.
110     *
111     * 3. Supporting optional run-after-shutdown parameters, which
112     * leads to overrides of shutdown methods to remove and cancel
113     * tasks that should NOT be run after shutdown, as well as
114     * different recheck logic when task (re)submission overlaps
115     * with a shutdown.
116     *
117     * 4. Task decoration methods to allow interception and
118     * instrumentation, which are needed because subclasses cannot
119     * otherwise override submit methods to get this effect. These
120     * don't have any impact on pool control logic though.
121     */
122    
123     /**
124     * False if should cancel/suppress periodic tasks on shutdown.
125     */
126     private volatile boolean continueExistingPeriodicTasksAfterShutdown;
127    
128     /**
129     * False if should cancel non-periodic tasks on shutdown.
130     */
131     private volatile boolean executeExistingDelayedTasksAfterShutdown = true;
132    
133     /**
134 jsr166 1.7 * True if ScheduledFutureTask.cancel should remove from queue.
135 dl 1.1 */
136     private volatile boolean removeOnCancel = false;
137    
138     /**
139     * Sequence number to break scheduling ties, and in turn to
140     * guarantee FIFO order among tied entries.
141     */
142     private static final AtomicLong sequencer = new AtomicLong();
143    
144     /**
145     * Returns current nanosecond time.
146     */
147     final long now() {
148     return System.nanoTime();
149     }
150    
151     private class ScheduledFutureTask<V>
152     extends FutureTask<V> implements RunnableScheduledFuture<V> {
153    
154     /** Sequence number to break ties FIFO */
155     private final long sequenceNumber;
156    
157     /** The time the task is enabled to execute in nanoTime units */
158     private long time;
159    
160     /**
161 jsr166 1.7 * Period in nanoseconds for repeating tasks.
162     * A positive value indicates fixed-rate execution.
163     * A negative value indicates fixed-delay execution.
164     * A value of 0 indicates a non-repeating (one-shot) task.
165 dl 1.1 */
166     private final long period;
167    
168     /** The actual task to be re-enqueued by reExecutePeriodic */
169     RunnableScheduledFuture<V> outerTask = this;
170    
171     /**
172     * Index into delay queue, to support faster cancellation.
173     */
174     int heapIndex;
175    
176     /**
177     * Creates a one-shot action with given nanoTime-based trigger time.
178     */
179 jsr166 1.7 ScheduledFutureTask(Runnable r, V result, long triggerTime) {
180 dl 1.1 super(r, result);
181 jsr166 1.7 this.time = triggerTime;
182 dl 1.1 this.period = 0;
183     this.sequenceNumber = sequencer.getAndIncrement();
184     }
185    
186     /**
187 jsr166 1.7 * Creates a periodic action with given nanoTime-based initial
188     * trigger time and period.
189 dl 1.1 */
190 jsr166 1.7 ScheduledFutureTask(Runnable r, V result, long triggerTime,
191     long period) {
192 dl 1.1 super(r, result);
193 jsr166 1.7 this.time = triggerTime;
194 dl 1.1 this.period = period;
195     this.sequenceNumber = sequencer.getAndIncrement();
196     }
197    
198     /**
199     * Creates a one-shot action with given nanoTime-based trigger time.
200     */
201 jsr166 1.7 ScheduledFutureTask(Callable<V> callable, long triggerTime) {
202 dl 1.1 super(callable);
203 jsr166 1.7 this.time = triggerTime;
204 dl 1.1 this.period = 0;
205     this.sequenceNumber = sequencer.getAndIncrement();
206     }
207    
208     public long getDelay(TimeUnit unit) {
209     return unit.convert(time - now(), NANOSECONDS);
210     }
211    
212     public int compareTo(Delayed other) {
213     if (other == this) // compare zero if same object
214     return 0;
215     if (other instanceof ScheduledFutureTask) {
216     ScheduledFutureTask<?> x = (ScheduledFutureTask<?>)other;
217     long diff = time - x.time;
218     if (diff < 0)
219     return -1;
220     else if (diff > 0)
221     return 1;
222     else if (sequenceNumber < x.sequenceNumber)
223     return -1;
224     else
225     return 1;
226     }
227     long diff = getDelay(NANOSECONDS) - other.getDelay(NANOSECONDS);
228     return (diff < 0) ? -1 : (diff > 0) ? 1 : 0;
229     }
230    
231     /**
232 jsr166 1.4 * Returns {@code true} if this is a periodic (not a one-shot) action.
233 dl 1.1 *
234 jsr166 1.4 * @return {@code true} if periodic
235 dl 1.1 */
236     public boolean isPeriodic() {
237     return period != 0;
238     }
239    
240     /**
241     * Sets the next time to run for a periodic task.
242     */
243     private void setNextRunTime() {
244     long p = period;
245     if (p > 0)
246     time += p;
247     else
248     time = triggerTime(-p);
249     }
250    
251     public boolean cancel(boolean mayInterruptIfRunning) {
252     boolean cancelled = super.cancel(mayInterruptIfRunning);
253     if (cancelled && removeOnCancel && heapIndex >= 0)
254     remove(this);
255     return cancelled;
256     }
257    
258     /**
259     * Overrides FutureTask version so as to reset/requeue if periodic.
260     */
261     public void run() {
262     boolean periodic = isPeriodic();
263     if (!canRunInCurrentRunState(periodic))
264     cancel(false);
265     else if (!periodic)
266     ScheduledFutureTask.super.run();
267     else if (ScheduledFutureTask.super.runAndReset()) {
268     setNextRunTime();
269     reExecutePeriodic(outerTask);
270     }
271     }
272     }
273    
274     /**
275     * Returns true if can run a task given current run state
276     * and run-after-shutdown parameters.
277     *
278     * @param periodic true if this task periodic, false if delayed
279     */
280     boolean canRunInCurrentRunState(boolean periodic) {
281     return isRunningOrShutdown(periodic ?
282     continueExistingPeriodicTasksAfterShutdown :
283     executeExistingDelayedTasksAfterShutdown);
284     }
285    
286     /**
287     * Main execution method for delayed or periodic tasks. If pool
288     * is shut down, rejects the task. Otherwise adds task to queue
289     * and starts a thread, if necessary, to run it. (We cannot
290     * prestart the thread to run the task because the task (probably)
291 jsr166 1.2 * shouldn't be run yet.) If the pool is shut down while the task
292 dl 1.1 * is being added, cancel and remove it if required by state and
293     * run-after-shutdown parameters.
294     *
295     * @param task the task
296     */
297     private void delayedExecute(RunnableScheduledFuture<?> task) {
298     if (isShutdown())
299     reject(task);
300     else {
301     super.getQueue().add(task);
302     if (isShutdown() &&
303     !canRunInCurrentRunState(task.isPeriodic()) &&
304     remove(task))
305     task.cancel(false);
306     else
307     ensurePrestart();
308     }
309     }
310    
311     /**
312     * Requeues a periodic task unless current run state precludes it.
313     * Same idea as delayedExecute except drops task rather than rejecting.
314     *
315     * @param task the task
316     */
317     void reExecutePeriodic(RunnableScheduledFuture<?> task) {
318     if (canRunInCurrentRunState(true)) {
319     super.getQueue().add(task);
320     if (!canRunInCurrentRunState(true) && remove(task))
321     task.cancel(false);
322     else
323     ensurePrestart();
324     }
325     }
326    
327     /**
328     * Cancels and clears the queue of all tasks that should not be run
329     * due to shutdown policy. Invoked within super.shutdown.
330     */
331     @Override void onShutdown() {
332     BlockingQueue<Runnable> q = super.getQueue();
333     boolean keepDelayed =
334     getExecuteExistingDelayedTasksAfterShutdownPolicy();
335     boolean keepPeriodic =
336     getContinueExistingPeriodicTasksAfterShutdownPolicy();
337     if (!keepDelayed && !keepPeriodic) {
338     for (Object e : q.toArray())
339     if (e instanceof RunnableScheduledFuture<?>)
340     ((RunnableScheduledFuture<?>) e).cancel(false);
341     q.clear();
342     }
343     else {
344     // Traverse snapshot to avoid iterator exceptions
345     for (Object e : q.toArray()) {
346     if (e instanceof RunnableScheduledFuture) {
347     RunnableScheduledFuture<?> t =
348     (RunnableScheduledFuture<?>)e;
349     if ((t.isPeriodic() ? !keepPeriodic : !keepDelayed) ||
350     t.isCancelled()) { // also remove if already cancelled
351     if (q.remove(t))
352     t.cancel(false);
353     }
354     }
355     }
356     }
357     tryTerminate();
358     }
359    
360     /**
361     * Modifies or replaces the task used to execute a runnable.
362     * This method can be used to override the concrete
363     * class used for managing internal tasks.
364     * The default implementation simply returns the given task.
365     *
366     * @param runnable the submitted Runnable
367     * @param task the task created to execute the runnable
368 jsr166 1.5 * @param <V> the type of the task's result
369 dl 1.1 * @return a task that can execute the runnable
370     * @since 1.6
371     */
372     protected <V> RunnableScheduledFuture<V> decorateTask(
373     Runnable runnable, RunnableScheduledFuture<V> task) {
374     return task;
375     }
376    
377     /**
378     * Modifies or replaces the task used to execute a callable.
379     * This method can be used to override the concrete
380     * class used for managing internal tasks.
381     * The default implementation simply returns the given task.
382     *
383     * @param callable the submitted Callable
384     * @param task the task created to execute the callable
385 jsr166 1.5 * @param <V> the type of the task's result
386 dl 1.1 * @return a task that can execute the callable
387     * @since 1.6
388     */
389     protected <V> RunnableScheduledFuture<V> decorateTask(
390     Callable<V> callable, RunnableScheduledFuture<V> task) {
391     return task;
392     }
393    
394     /**
395 jsr166 1.7 * The default keep-alive time for pool threads.
396     *
397     * Normally, this value is unused because all pool threads will be
398     * core threads, but if a user creates a pool with a corePoolSize
399     * of zero (against our advice), we keep a thread alive as long as
400     * there are queued tasks. If the keep alive time is zero (the
401     * historic value), we end up hot-spinning in getTask, wasting a
402     * CPU. But on the other hand, if we set the value too high, and
403     * users create a one-shot pool which they don't cleanly shutdown,
404     * the pool's non-daemon threads will prevent JVM termination. A
405     * small but non-zero value (relative to a JVM's lifetime) seems
406     * best.
407     */
408     private static final long DEFAULT_KEEPALIVE_MILLIS = 10L;
409    
410     /**
411 dl 1.1 * Creates a new {@code ScheduledThreadPoolExecutor} with the
412     * given core pool size.
413     *
414     * @param corePoolSize the number of threads to keep in the pool, even
415     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
416     * @throws IllegalArgumentException if {@code corePoolSize < 0}
417     */
418     public ScheduledThreadPoolExecutor(int corePoolSize) {
419 jsr166 1.7 super(corePoolSize, Integer.MAX_VALUE,
420     DEFAULT_KEEPALIVE_MILLIS, MILLISECONDS,
421 dl 1.1 new DelayedWorkQueue());
422     }
423    
424     /**
425     * Creates a new {@code ScheduledThreadPoolExecutor} with the
426     * given initial parameters.
427     *
428     * @param corePoolSize the number of threads to keep in the pool, even
429     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
430     * @param threadFactory the factory to use when the executor
431     * creates a new thread
432     * @throws IllegalArgumentException if {@code corePoolSize < 0}
433     * @throws NullPointerException if {@code threadFactory} is null
434     */
435     public ScheduledThreadPoolExecutor(int corePoolSize,
436     ThreadFactory threadFactory) {
437 jsr166 1.7 super(corePoolSize, Integer.MAX_VALUE,
438     DEFAULT_KEEPALIVE_MILLIS, MILLISECONDS,
439 dl 1.1 new DelayedWorkQueue(), threadFactory);
440     }
441    
442     /**
443 jsr166 1.7 * Creates a new {@code ScheduledThreadPoolExecutor} with the
444     * given initial parameters.
445 dl 1.1 *
446     * @param corePoolSize the number of threads to keep in the pool, even
447     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
448     * @param handler the handler to use when execution is blocked
449     * because the thread bounds and queue capacities are reached
450     * @throws IllegalArgumentException if {@code corePoolSize < 0}
451     * @throws NullPointerException if {@code handler} is null
452     */
453     public ScheduledThreadPoolExecutor(int corePoolSize,
454     RejectedExecutionHandler handler) {
455 jsr166 1.7 super(corePoolSize, Integer.MAX_VALUE,
456     DEFAULT_KEEPALIVE_MILLIS, MILLISECONDS,
457 dl 1.1 new DelayedWorkQueue(), handler);
458     }
459    
460     /**
461 jsr166 1.7 * Creates a new {@code ScheduledThreadPoolExecutor} with the
462     * given initial parameters.
463 dl 1.1 *
464     * @param corePoolSize the number of threads to keep in the pool, even
465     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
466     * @param threadFactory the factory to use when the executor
467     * creates a new thread
468     * @param handler the handler to use when execution is blocked
469     * because the thread bounds and queue capacities are reached
470     * @throws IllegalArgumentException if {@code corePoolSize < 0}
471     * @throws NullPointerException if {@code threadFactory} or
472     * {@code handler} is null
473     */
474     public ScheduledThreadPoolExecutor(int corePoolSize,
475     ThreadFactory threadFactory,
476     RejectedExecutionHandler handler) {
477 jsr166 1.7 super(corePoolSize, Integer.MAX_VALUE,
478     DEFAULT_KEEPALIVE_MILLIS, MILLISECONDS,
479 dl 1.1 new DelayedWorkQueue(), threadFactory, handler);
480     }
481    
482     /**
483 jsr166 1.7 * Returns the nanoTime-based trigger time of a delayed action.
484 dl 1.1 */
485     private long triggerTime(long delay, TimeUnit unit) {
486     return triggerTime(unit.toNanos((delay < 0) ? 0 : delay));
487     }
488    
489     /**
490 jsr166 1.7 * Returns the nanoTime-based trigger time of a delayed action.
491 dl 1.1 */
492     long triggerTime(long delay) {
493     return now() +
494     ((delay < (Long.MAX_VALUE >> 1)) ? delay : overflowFree(delay));
495     }
496    
497     /**
498     * Constrains the values of all delays in the queue to be within
499     * Long.MAX_VALUE of each other, to avoid overflow in compareTo.
500     * This may occur if a task is eligible to be dequeued, but has
501     * not yet been, while some other task is added with a delay of
502     * Long.MAX_VALUE.
503     */
504     private long overflowFree(long delay) {
505     Delayed head = (Delayed) super.getQueue().peek();
506     if (head != null) {
507     long headDelay = head.getDelay(NANOSECONDS);
508     if (headDelay < 0 && (delay - headDelay < 0))
509     delay = Long.MAX_VALUE + headDelay;
510     }
511     return delay;
512     }
513    
514     /**
515     * @throws RejectedExecutionException {@inheritDoc}
516     * @throws NullPointerException {@inheritDoc}
517     */
518     public ScheduledFuture<?> schedule(Runnable command,
519     long delay,
520     TimeUnit unit) {
521     if (command == null || unit == null)
522     throw new NullPointerException();
523 jsr166 1.7 RunnableScheduledFuture<Void> t = decorateTask(command,
524 dl 1.1 new ScheduledFutureTask<Void>(command, null,
525     triggerTime(delay, unit)));
526     delayedExecute(t);
527     return t;
528     }
529    
530     /**
531     * @throws RejectedExecutionException {@inheritDoc}
532     * @throws NullPointerException {@inheritDoc}
533     */
534     public <V> ScheduledFuture<V> schedule(Callable<V> callable,
535     long delay,
536     TimeUnit unit) {
537     if (callable == null || unit == null)
538     throw new NullPointerException();
539     RunnableScheduledFuture<V> t = decorateTask(callable,
540     new ScheduledFutureTask<V>(callable,
541     triggerTime(delay, unit)));
542     delayedExecute(t);
543     return t;
544     }
545    
546     /**
547     * @throws RejectedExecutionException {@inheritDoc}
548     * @throws NullPointerException {@inheritDoc}
549     * @throws IllegalArgumentException {@inheritDoc}
550     */
551     public ScheduledFuture<?> scheduleAtFixedRate(Runnable command,
552     long initialDelay,
553     long period,
554     TimeUnit unit) {
555     if (command == null || unit == null)
556     throw new NullPointerException();
557     if (period <= 0)
558     throw new IllegalArgumentException();
559     ScheduledFutureTask<Void> sft =
560     new ScheduledFutureTask<Void>(command,
561     null,
562     triggerTime(initialDelay, unit),
563     unit.toNanos(period));
564     RunnableScheduledFuture<Void> t = decorateTask(command, sft);
565     sft.outerTask = t;
566     delayedExecute(t);
567     return t;
568     }
569    
570     /**
571     * @throws RejectedExecutionException {@inheritDoc}
572     * @throws NullPointerException {@inheritDoc}
573     * @throws IllegalArgumentException {@inheritDoc}
574     */
575     public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command,
576     long initialDelay,
577     long delay,
578     TimeUnit unit) {
579     if (command == null || unit == null)
580     throw new NullPointerException();
581     if (delay <= 0)
582     throw new IllegalArgumentException();
583     ScheduledFutureTask<Void> sft =
584     new ScheduledFutureTask<Void>(command,
585     null,
586     triggerTime(initialDelay, unit),
587     unit.toNanos(-delay));
588     RunnableScheduledFuture<Void> t = decorateTask(command, sft);
589     sft.outerTask = t;
590     delayedExecute(t);
591     return t;
592     }
593    
594     /**
595     * Executes {@code command} with zero required delay.
596     * This has effect equivalent to
597     * {@link #schedule(Runnable,long,TimeUnit) schedule(command, 0, anyUnit)}.
598     * Note that inspections of the queue and of the list returned by
599     * {@code shutdownNow} will access the zero-delayed
600     * {@link ScheduledFuture}, not the {@code command} itself.
601     *
602     * <p>A consequence of the use of {@code ScheduledFuture} objects is
603     * that {@link ThreadPoolExecutor#afterExecute afterExecute} is always
604     * called with a null second {@code Throwable} argument, even if the
605     * {@code command} terminated abruptly. Instead, the {@code Throwable}
606     * thrown by such a task can be obtained via {@link Future#get}.
607     *
608     * @throws RejectedExecutionException at discretion of
609     * {@code RejectedExecutionHandler}, if the task
610     * cannot be accepted for execution because the
611     * executor has been shut down
612     * @throws NullPointerException {@inheritDoc}
613     */
614     public void execute(Runnable command) {
615     schedule(command, 0, NANOSECONDS);
616     }
617    
618     // Override AbstractExecutorService methods
619    
620     /**
621     * @throws RejectedExecutionException {@inheritDoc}
622     * @throws NullPointerException {@inheritDoc}
623     */
624     public Future<?> submit(Runnable task) {
625     return schedule(task, 0, NANOSECONDS);
626     }
627    
628     /**
629     * @throws RejectedExecutionException {@inheritDoc}
630     * @throws NullPointerException {@inheritDoc}
631     */
632     public <T> Future<T> submit(Runnable task, T result) {
633     return schedule(Executors.callable(task, result), 0, NANOSECONDS);
634     }
635    
636     /**
637     * @throws RejectedExecutionException {@inheritDoc}
638     * @throws NullPointerException {@inheritDoc}
639     */
640     public <T> Future<T> submit(Callable<T> task) {
641     return schedule(task, 0, NANOSECONDS);
642     }
643    
644     /**
645     * Sets the policy on whether to continue executing existing
646     * periodic tasks even when this executor has been {@code shutdown}.
647     * In this case, these tasks will only terminate upon
648     * {@code shutdownNow} or after setting the policy to
649     * {@code false} when already shutdown.
650     * This value is by default {@code false}.
651     *
652 jsr166 1.3 * @param value if {@code true}, continue after shutdown, else don't
653 dl 1.1 * @see #getContinueExistingPeriodicTasksAfterShutdownPolicy
654     */
655     public void setContinueExistingPeriodicTasksAfterShutdownPolicy(boolean value) {
656     continueExistingPeriodicTasksAfterShutdown = value;
657     if (!value && isShutdown())
658     onShutdown();
659     }
660    
661     /**
662     * Gets the policy on whether to continue executing existing
663     * periodic tasks even when this executor has been {@code shutdown}.
664     * In this case, these tasks will only terminate upon
665     * {@code shutdownNow} or after setting the policy to
666     * {@code false} when already shutdown.
667     * This value is by default {@code false}.
668     *
669     * @return {@code true} if will continue after shutdown
670     * @see #setContinueExistingPeriodicTasksAfterShutdownPolicy
671     */
672     public boolean getContinueExistingPeriodicTasksAfterShutdownPolicy() {
673     return continueExistingPeriodicTasksAfterShutdown;
674     }
675    
676     /**
677     * Sets the policy on whether to execute existing delayed
678     * tasks even when this executor has been {@code shutdown}.
679     * In this case, these tasks will only terminate upon
680     * {@code shutdownNow}, or after setting the policy to
681     * {@code false} when already shutdown.
682     * This value is by default {@code true}.
683     *
684 jsr166 1.3 * @param value if {@code true}, execute after shutdown, else don't
685 dl 1.1 * @see #getExecuteExistingDelayedTasksAfterShutdownPolicy
686     */
687     public void setExecuteExistingDelayedTasksAfterShutdownPolicy(boolean value) {
688     executeExistingDelayedTasksAfterShutdown = value;
689     if (!value && isShutdown())
690     onShutdown();
691     }
692    
693     /**
694     * Gets the policy on whether to execute existing delayed
695     * tasks even when this executor has been {@code shutdown}.
696     * In this case, these tasks will only terminate upon
697     * {@code shutdownNow}, or after setting the policy to
698     * {@code false} when already shutdown.
699     * This value is by default {@code true}.
700     *
701     * @return {@code true} if will execute after shutdown
702     * @see #setExecuteExistingDelayedTasksAfterShutdownPolicy
703     */
704     public boolean getExecuteExistingDelayedTasksAfterShutdownPolicy() {
705     return executeExistingDelayedTasksAfterShutdown;
706     }
707    
708     /**
709     * Sets the policy on whether cancelled tasks should be immediately
710     * removed from the work queue at time of cancellation. This value is
711     * by default {@code false}.
712     *
713     * @param value if {@code true}, remove on cancellation, else don't
714     * @see #getRemoveOnCancelPolicy
715     * @since 1.7
716     */
717     public void setRemoveOnCancelPolicy(boolean value) {
718     removeOnCancel = value;
719     }
720    
721     /**
722     * Gets the policy on whether cancelled tasks should be immediately
723     * removed from the work queue at time of cancellation. This value is
724     * by default {@code false}.
725     *
726     * @return {@code true} if cancelled tasks are immediately removed
727     * from the queue
728     * @see #setRemoveOnCancelPolicy
729     * @since 1.7
730     */
731     public boolean getRemoveOnCancelPolicy() {
732     return removeOnCancel;
733     }
734    
735     /**
736     * Initiates an orderly shutdown in which previously submitted
737     * tasks are executed, but no new tasks will be accepted.
738     * Invocation has no additional effect if already shut down.
739     *
740     * <p>This method does not wait for previously submitted tasks to
741     * complete execution. Use {@link #awaitTermination awaitTermination}
742     * to do that.
743     *
744     * <p>If the {@code ExecuteExistingDelayedTasksAfterShutdownPolicy}
745     * has been set {@code false}, existing delayed tasks whose delays
746     * have not yet elapsed are cancelled. And unless the {@code
747     * ContinueExistingPeriodicTasksAfterShutdownPolicy} has been set
748     * {@code true}, future executions of existing periodic tasks will
749     * be cancelled.
750     *
751     * @throws SecurityException {@inheritDoc}
752     */
753     public void shutdown() {
754     super.shutdown();
755     }
756    
757     /**
758     * Attempts to stop all actively executing tasks, halts the
759     * processing of waiting tasks, and returns a list of the tasks
760     * that were awaiting execution.
761     *
762     * <p>This method does not wait for actively executing tasks to
763     * terminate. Use {@link #awaitTermination awaitTermination} to
764     * do that.
765     *
766     * <p>There are no guarantees beyond best-effort attempts to stop
767     * processing actively executing tasks. This implementation
768     * cancels tasks via {@link Thread#interrupt}, so any task that
769     * fails to respond to interrupts may never terminate.
770     *
771     * @return list of tasks that never commenced execution.
772 jsr166 1.7 * Each element of this list is a {@link ScheduledFuture}.
773     * For tasks submitted via one of the {@code schedule}
774     * methods, the element will be identical to the returned
775     * {@code ScheduledFuture}. For tasks submitted using
776     * {@link #execute}, the element will be a zero-delay {@code
777     * ScheduledFuture}.
778 dl 1.1 * @throws SecurityException {@inheritDoc}
779     */
780     public List<Runnable> shutdownNow() {
781     return super.shutdownNow();
782     }
783    
784     /**
785 jsr166 1.7 * Returns the task queue used by this executor.
786     * Each element of this list is a {@link ScheduledFuture}.
787     * For tasks submitted via one of the {@code schedule} methods, the
788     * element will be identical to the returned {@code ScheduledFuture}.
789     * For tasks submitted using {@link #execute}, the element will be a
790     * zero-delay {@code ScheduledFuture}.
791     *
792     * <p>Iteration over this queue is <em>not</em> guaranteed to traverse
793     * tasks in the order in which they will execute.
794 dl 1.1 *
795     * @return the task queue
796     */
797     public BlockingQueue<Runnable> getQueue() {
798     return super.getQueue();
799     }
800    
801     /**
802     * Specialized delay queue. To mesh with TPE declarations, this
803     * class must be declared as a BlockingQueue<Runnable> even though
804     * it can only hold RunnableScheduledFutures.
805     */
806     static class DelayedWorkQueue extends AbstractQueue<Runnable>
807     implements BlockingQueue<Runnable> {
808    
809     /*
810     * A DelayedWorkQueue is based on a heap-based data structure
811     * like those in DelayQueue and PriorityQueue, except that
812     * every ScheduledFutureTask also records its index into the
813     * heap array. This eliminates the need to find a task upon
814     * cancellation, greatly speeding up removal (down from O(n)
815     * to O(log n)), and reducing garbage retention that would
816     * otherwise occur by waiting for the element to rise to top
817     * before clearing. But because the queue may also hold
818     * RunnableScheduledFutures that are not ScheduledFutureTasks,
819     * we are not guaranteed to have such indices available, in
820     * which case we fall back to linear search. (We expect that
821     * most tasks will not be decorated, and that the faster cases
822     * will be much more common.)
823     *
824     * All heap operations must record index changes -- mainly
825     * within siftUp and siftDown. Upon removal, a task's
826     * heapIndex is set to -1. Note that ScheduledFutureTasks can
827     * appear at most once in the queue (this need not be true for
828     * other kinds of tasks or work queues), so are uniquely
829     * identified by heapIndex.
830     */
831    
832     private static final int INITIAL_CAPACITY = 16;
833     private RunnableScheduledFuture<?>[] queue =
834     new RunnableScheduledFuture<?>[INITIAL_CAPACITY];
835     private final ReentrantLock lock = new ReentrantLock();
836 jsr166 1.6 private int size;
837 dl 1.1
838     /**
839     * Thread designated to wait for the task at the head of the
840     * queue. This variant of the Leader-Follower pattern
841     * (http://www.cs.wustl.edu/~schmidt/POSA/POSA2/) serves to
842     * minimize unnecessary timed waiting. When a thread becomes
843     * the leader, it waits only for the next delay to elapse, but
844     * other threads await indefinitely. The leader thread must
845     * signal some other thread before returning from take() or
846     * poll(...), unless some other thread becomes leader in the
847     * interim. Whenever the head of the queue is replaced with a
848     * task with an earlier expiration time, the leader field is
849     * invalidated by being reset to null, and some waiting
850     * thread, but not necessarily the current leader, is
851     * signalled. So waiting threads must be prepared to acquire
852     * and lose leadership while waiting.
853     */
854 jsr166 1.6 private Thread leader;
855 dl 1.1
856     /**
857     * Condition signalled when a newer task becomes available at the
858     * head of the queue or a new thread may need to become leader.
859     */
860     private final Condition available = lock.newCondition();
861    
862     /**
863     * Sets f's heapIndex if it is a ScheduledFutureTask.
864     */
865     private void setIndex(RunnableScheduledFuture<?> f, int idx) {
866     if (f instanceof ScheduledFutureTask)
867     ((ScheduledFutureTask)f).heapIndex = idx;
868     }
869    
870     /**
871     * Sifts element added at bottom up to its heap-ordered spot.
872     * Call only when holding lock.
873     */
874     private void siftUp(int k, RunnableScheduledFuture<?> key) {
875     while (k > 0) {
876     int parent = (k - 1) >>> 1;
877     RunnableScheduledFuture<?> e = queue[parent];
878     if (key.compareTo(e) >= 0)
879     break;
880     queue[k] = e;
881     setIndex(e, k);
882     k = parent;
883     }
884     queue[k] = key;
885     setIndex(key, k);
886     }
887    
888     /**
889     * Sifts element added at top down to its heap-ordered spot.
890     * Call only when holding lock.
891     */
892     private void siftDown(int k, RunnableScheduledFuture<?> key) {
893     int half = size >>> 1;
894     while (k < half) {
895     int child = (k << 1) + 1;
896     RunnableScheduledFuture<?> c = queue[child];
897     int right = child + 1;
898     if (right < size && c.compareTo(queue[right]) > 0)
899     c = queue[child = right];
900     if (key.compareTo(c) <= 0)
901     break;
902     queue[k] = c;
903     setIndex(c, k);
904     k = child;
905     }
906     queue[k] = key;
907     setIndex(key, k);
908     }
909    
910     /**
911     * Resizes the heap array. Call only when holding lock.
912     */
913     private void grow() {
914     int oldCapacity = queue.length;
915     int newCapacity = oldCapacity + (oldCapacity >> 1); // grow 50%
916     if (newCapacity < 0) // overflow
917     newCapacity = Integer.MAX_VALUE;
918     queue = Arrays.copyOf(queue, newCapacity);
919     }
920    
921     /**
922     * Finds index of given object, or -1 if absent.
923     */
924     private int indexOf(Object x) {
925     if (x != null) {
926     if (x instanceof ScheduledFutureTask) {
927     int i = ((ScheduledFutureTask) x).heapIndex;
928     // Sanity check; x could conceivably be a
929     // ScheduledFutureTask from some other pool.
930     if (i >= 0 && i < size && queue[i] == x)
931     return i;
932     } else {
933     for (int i = 0; i < size; i++)
934     if (x.equals(queue[i]))
935     return i;
936     }
937     }
938     return -1;
939     }
940    
941     public boolean contains(Object x) {
942     final ReentrantLock lock = this.lock;
943     lock.lock();
944     try {
945     return indexOf(x) != -1;
946     } finally {
947     lock.unlock();
948     }
949     }
950    
951     public boolean remove(Object x) {
952     final ReentrantLock lock = this.lock;
953     lock.lock();
954     try {
955     int i = indexOf(x);
956     if (i < 0)
957     return false;
958    
959     setIndex(queue[i], -1);
960     int s = --size;
961     RunnableScheduledFuture<?> replacement = queue[s];
962     queue[s] = null;
963     if (s != i) {
964     siftDown(i, replacement);
965     if (queue[i] == replacement)
966     siftUp(i, replacement);
967     }
968     return true;
969     } finally {
970     lock.unlock();
971     }
972     }
973    
974     public int size() {
975     final ReentrantLock lock = this.lock;
976     lock.lock();
977     try {
978     return size;
979     } finally {
980     lock.unlock();
981     }
982     }
983    
984     public boolean isEmpty() {
985     return size() == 0;
986     }
987    
988     public int remainingCapacity() {
989     return Integer.MAX_VALUE;
990     }
991    
992     public RunnableScheduledFuture<?> peek() {
993     final ReentrantLock lock = this.lock;
994     lock.lock();
995     try {
996     return queue[0];
997     } finally {
998     lock.unlock();
999     }
1000     }
1001    
1002     public boolean offer(Runnable x) {
1003     if (x == null)
1004     throw new NullPointerException();
1005     RunnableScheduledFuture<?> e = (RunnableScheduledFuture<?>)x;
1006     final ReentrantLock lock = this.lock;
1007     lock.lock();
1008     try {
1009     int i = size;
1010     if (i >= queue.length)
1011     grow();
1012     size = i + 1;
1013     if (i == 0) {
1014     queue[0] = e;
1015     setIndex(e, 0);
1016     } else {
1017     siftUp(i, e);
1018     }
1019     if (queue[0] == e) {
1020     leader = null;
1021     available.signal();
1022     }
1023     } finally {
1024     lock.unlock();
1025     }
1026     return true;
1027     }
1028    
1029     public void put(Runnable e) {
1030     offer(e);
1031     }
1032    
1033     public boolean add(Runnable e) {
1034     return offer(e);
1035     }
1036    
1037     public boolean offer(Runnable e, long timeout, TimeUnit unit) {
1038     return offer(e);
1039     }
1040    
1041     /**
1042     * Performs common bookkeeping for poll and take: Replaces
1043     * first element with last and sifts it down. Call only when
1044     * holding lock.
1045     * @param f the task to remove and return
1046     */
1047     private RunnableScheduledFuture<?> finishPoll(RunnableScheduledFuture<?> f) {
1048     int s = --size;
1049     RunnableScheduledFuture<?> x = queue[s];
1050     queue[s] = null;
1051     if (s != 0)
1052     siftDown(0, x);
1053     setIndex(f, -1);
1054     return f;
1055     }
1056    
1057     public RunnableScheduledFuture<?> poll() {
1058     final ReentrantLock lock = this.lock;
1059     lock.lock();
1060     try {
1061     RunnableScheduledFuture<?> first = queue[0];
1062     if (first == null || first.getDelay(NANOSECONDS) > 0)
1063     return null;
1064     else
1065     return finishPoll(first);
1066     } finally {
1067     lock.unlock();
1068     }
1069     }
1070    
1071     public RunnableScheduledFuture<?> take() throws InterruptedException {
1072     final ReentrantLock lock = this.lock;
1073     lock.lockInterruptibly();
1074     try {
1075     for (;;) {
1076     RunnableScheduledFuture<?> first = queue[0];
1077     if (first == null)
1078     available.await();
1079     else {
1080     long delay = first.getDelay(NANOSECONDS);
1081     if (delay <= 0)
1082     return finishPoll(first);
1083 jsr166 1.4 first = null; // don't retain ref while waiting
1084     if (leader != null)
1085 dl 1.1 available.await();
1086     else {
1087     Thread thisThread = Thread.currentThread();
1088     leader = thisThread;
1089     try {
1090     available.awaitNanos(delay);
1091     } finally {
1092     if (leader == thisThread)
1093     leader = null;
1094     }
1095     }
1096     }
1097     }
1098     } finally {
1099     if (leader == null && queue[0] != null)
1100     available.signal();
1101     lock.unlock();
1102     }
1103     }
1104    
1105     public RunnableScheduledFuture<?> poll(long timeout, TimeUnit unit)
1106     throws InterruptedException {
1107     long nanos = unit.toNanos(timeout);
1108     final ReentrantLock lock = this.lock;
1109     lock.lockInterruptibly();
1110     try {
1111     for (;;) {
1112     RunnableScheduledFuture<?> first = queue[0];
1113     if (first == null) {
1114     if (nanos <= 0)
1115     return null;
1116     else
1117     nanos = available.awaitNanos(nanos);
1118     } else {
1119     long delay = first.getDelay(NANOSECONDS);
1120     if (delay <= 0)
1121     return finishPoll(first);
1122     if (nanos <= 0)
1123     return null;
1124 jsr166 1.4 first = null; // don't retain ref while waiting
1125 dl 1.1 if (nanos < delay || leader != null)
1126     nanos = available.awaitNanos(nanos);
1127     else {
1128     Thread thisThread = Thread.currentThread();
1129     leader = thisThread;
1130     try {
1131     long timeLeft = available.awaitNanos(delay);
1132     nanos -= delay - timeLeft;
1133     } finally {
1134     if (leader == thisThread)
1135     leader = null;
1136     }
1137     }
1138     }
1139     }
1140     } finally {
1141     if (leader == null && queue[0] != null)
1142     available.signal();
1143     lock.unlock();
1144     }
1145     }
1146    
1147     public void clear() {
1148     final ReentrantLock lock = this.lock;
1149     lock.lock();
1150     try {
1151     for (int i = 0; i < size; i++) {
1152     RunnableScheduledFuture<?> t = queue[i];
1153     if (t != null) {
1154     queue[i] = null;
1155     setIndex(t, -1);
1156     }
1157     }
1158     size = 0;
1159     } finally {
1160     lock.unlock();
1161     }
1162     }
1163    
1164     /**
1165     * Returns first element only if it is expired.
1166     * Used only by drainTo. Call only when holding lock.
1167     */
1168     private RunnableScheduledFuture<?> peekExpired() {
1169     // assert lock.isHeldByCurrentThread();
1170     RunnableScheduledFuture<?> first = queue[0];
1171     return (first == null || first.getDelay(NANOSECONDS) > 0) ?
1172     null : first;
1173     }
1174    
1175     public int drainTo(Collection<? super Runnable> c) {
1176     if (c == null)
1177     throw new NullPointerException();
1178     if (c == this)
1179     throw new IllegalArgumentException();
1180     final ReentrantLock lock = this.lock;
1181     lock.lock();
1182     try {
1183     RunnableScheduledFuture<?> first;
1184     int n = 0;
1185     while ((first = peekExpired()) != null) {
1186     c.add(first); // In this order, in case add() throws.
1187     finishPoll(first);
1188     ++n;
1189     }
1190     return n;
1191     } finally {
1192     lock.unlock();
1193     }
1194     }
1195    
1196     public int drainTo(Collection<? super Runnable> c, int maxElements) {
1197     if (c == null)
1198     throw new NullPointerException();
1199     if (c == this)
1200     throw new IllegalArgumentException();
1201     if (maxElements <= 0)
1202     return 0;
1203     final ReentrantLock lock = this.lock;
1204     lock.lock();
1205     try {
1206     RunnableScheduledFuture<?> first;
1207     int n = 0;
1208     while (n < maxElements && (first = peekExpired()) != null) {
1209     c.add(first); // In this order, in case add() throws.
1210     finishPoll(first);
1211     ++n;
1212     }
1213     return n;
1214     } finally {
1215     lock.unlock();
1216     }
1217     }
1218    
1219     public Object[] toArray() {
1220     final ReentrantLock lock = this.lock;
1221     lock.lock();
1222     try {
1223     return Arrays.copyOf(queue, size, Object[].class);
1224     } finally {
1225     lock.unlock();
1226     }
1227     }
1228    
1229     @SuppressWarnings("unchecked")
1230     public <T> T[] toArray(T[] a) {
1231     final ReentrantLock lock = this.lock;
1232     lock.lock();
1233     try {
1234     if (a.length < size)
1235     return (T[]) Arrays.copyOf(queue, size, a.getClass());
1236     System.arraycopy(queue, 0, a, 0, size);
1237     if (a.length > size)
1238     a[size] = null;
1239     return a;
1240     } finally {
1241     lock.unlock();
1242     }
1243     }
1244    
1245     public Iterator<Runnable> iterator() {
1246     return new Itr(Arrays.copyOf(queue, size));
1247     }
1248    
1249     /**
1250     * Snapshot iterator that works off copy of underlying q array.
1251     */
1252     private class Itr implements Iterator<Runnable> {
1253 jsr166 1.7 final RunnableScheduledFuture<?>[] array;
1254 dl 1.1 int cursor = 0; // index of next element to return
1255     int lastRet = -1; // index of last element, or -1 if no such
1256    
1257 jsr166 1.7 Itr(RunnableScheduledFuture<?>[] array) {
1258 dl 1.1 this.array = array;
1259     }
1260    
1261     public boolean hasNext() {
1262     return cursor < array.length;
1263     }
1264    
1265     public Runnable next() {
1266     if (cursor >= array.length)
1267     throw new NoSuchElementException();
1268     lastRet = cursor;
1269     return array[cursor++];
1270     }
1271    
1272     public void remove() {
1273     if (lastRet < 0)
1274     throw new IllegalStateException();
1275     DelayedWorkQueue.this.remove(array[lastRet]);
1276     lastRet = -1;
1277     }
1278     }
1279     }
1280     }