ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/ScheduledThreadPoolExecutor.java
Revision: 1.1
Committed: Sun Dec 16 20:55:16 2012 UTC (11 years, 5 months ago) by dl
Branch: MAIN
Log Message:
Create src/jdk7 package

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import static java.util.concurrent.TimeUnit.NANOSECONDS;
9 import java.util.concurrent.atomic.AtomicLong;
10 import java.util.concurrent.locks.Condition;
11 import java.util.concurrent.locks.ReentrantLock;
12 import java.util.*;
13
14 /**
15 * A {@link ThreadPoolExecutor} that can additionally schedule
16 * commands to run after a given delay, or to execute
17 * periodically. This class is preferable to {@link java.util.Timer}
18 * when multiple worker threads are needed, or when the additional
19 * flexibility or capabilities of {@link ThreadPoolExecutor} (which
20 * this class extends) are required.
21 *
22 * <p>Delayed tasks execute no sooner than they are enabled, but
23 * without any real-time guarantees about when, after they are
24 * enabled, they will commence. Tasks scheduled for exactly the same
25 * execution time are enabled in first-in-first-out (FIFO) order of
26 * submission.
27 *
28 * <p>When a submitted task is cancelled before it is run, execution
29 * is suppressed. By default, such a cancelled task is not
30 * automatically removed from the work queue until its delay
31 * elapses. While this enables further inspection and monitoring, it
32 * may also cause unbounded retention of cancelled tasks. To avoid
33 * this, set {@link #setRemoveOnCancelPolicy} to {@code true}, which
34 * causes tasks to be immediately removed from the work queue at
35 * time of cancellation.
36 *
37 * <p>Successive executions of a task scheduled via
38 * {@code scheduleAtFixedRate} or
39 * {@code scheduleWithFixedDelay} do not overlap. While different
40 * executions may be performed by different threads, the effects of
41 * prior executions <a
42 * href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
43 * those of subsequent ones.
44 *
45 * <p>While this class inherits from {@link ThreadPoolExecutor}, a few
46 * of the inherited tuning methods are not useful for it. In
47 * particular, because it acts as a fixed-sized pool using
48 * {@code corePoolSize} threads and an unbounded queue, adjustments
49 * to {@code maximumPoolSize} have no useful effect. Additionally, it
50 * is almost never a good idea to set {@code corePoolSize} to zero or
51 * use {@code allowCoreThreadTimeOut} because this may leave the pool
52 * without threads to handle tasks once they become eligible to run.
53 *
54 * <p><b>Extension notes:</b> This class overrides the
55 * {@link ThreadPoolExecutor#execute execute} and
56 * {@link AbstractExecutorService#submit(Runnable) submit}
57 * methods to generate internal {@link ScheduledFuture} objects to
58 * control per-task delays and scheduling. To preserve
59 * functionality, any further overrides of these methods in
60 * subclasses must invoke superclass versions, which effectively
61 * disables additional task customization. However, this class
62 * provides alternative protected extension method
63 * {@code decorateTask} (one version each for {@code Runnable} and
64 * {@code Callable}) that can be used to customize the concrete task
65 * types used to execute commands entered via {@code execute},
66 * {@code submit}, {@code schedule}, {@code scheduleAtFixedRate},
67 * and {@code scheduleWithFixedDelay}. By default, a
68 * {@code ScheduledThreadPoolExecutor} uses a task type extending
69 * {@link FutureTask}. However, this may be modified or replaced using
70 * subclasses of the form:
71 *
72 * <pre> {@code
73 * public class CustomScheduledExecutor extends ScheduledThreadPoolExecutor {
74 *
75 * static class CustomTask<V> implements RunnableScheduledFuture<V> { ... }
76 *
77 * protected <V> RunnableScheduledFuture<V> decorateTask(
78 * Runnable r, RunnableScheduledFuture<V> task) {
79 * return new CustomTask<V>(r, task);
80 * }
81 *
82 * protected <V> RunnableScheduledFuture<V> decorateTask(
83 * Callable<V> c, RunnableScheduledFuture<V> task) {
84 * return new CustomTask<V>(c, task);
85 * }
86 * // ... add constructors, etc.
87 * }}</pre>
88 *
89 * @since 1.5
90 * @author Doug Lea
91 */
92 public class ScheduledThreadPoolExecutor
93 extends ThreadPoolExecutor
94 implements ScheduledExecutorService {
95
96 /*
97 * This class specializes ThreadPoolExecutor implementation by
98 *
99 * 1. Using a custom task type, ScheduledFutureTask for
100 * tasks, even those that don't require scheduling (i.e.,
101 * those submitted using ExecutorService execute, not
102 * ScheduledExecutorService methods) which are treated as
103 * delayed tasks with a delay of zero.
104 *
105 * 2. Using a custom queue (DelayedWorkQueue), a variant of
106 * unbounded DelayQueue. The lack of capacity constraint and
107 * the fact that corePoolSize and maximumPoolSize are
108 * effectively identical simplifies some execution mechanics
109 * (see delayedExecute) compared to ThreadPoolExecutor.
110 *
111 * 3. Supporting optional run-after-shutdown parameters, which
112 * leads to overrides of shutdown methods to remove and cancel
113 * tasks that should NOT be run after shutdown, as well as
114 * different recheck logic when task (re)submission overlaps
115 * with a shutdown.
116 *
117 * 4. Task decoration methods to allow interception and
118 * instrumentation, which are needed because subclasses cannot
119 * otherwise override submit methods to get this effect. These
120 * don't have any impact on pool control logic though.
121 */
122
123 /**
124 * False if should cancel/suppress periodic tasks on shutdown.
125 */
126 private volatile boolean continueExistingPeriodicTasksAfterShutdown;
127
128 /**
129 * False if should cancel non-periodic tasks on shutdown.
130 */
131 private volatile boolean executeExistingDelayedTasksAfterShutdown = true;
132
133 /**
134 * True if ScheduledFutureTask.cancel should remove from queue
135 */
136 private volatile boolean removeOnCancel = false;
137
138 /**
139 * Sequence number to break scheduling ties, and in turn to
140 * guarantee FIFO order among tied entries.
141 */
142 private static final AtomicLong sequencer = new AtomicLong();
143
144 /**
145 * Returns current nanosecond time.
146 */
147 final long now() {
148 return System.nanoTime();
149 }
150
151 private class ScheduledFutureTask<V>
152 extends FutureTask<V> implements RunnableScheduledFuture<V> {
153
154 /** Sequence number to break ties FIFO */
155 private final long sequenceNumber;
156
157 /** The time the task is enabled to execute in nanoTime units */
158 private long time;
159
160 /**
161 * Period in nanoseconds for repeating tasks. A positive
162 * value indicates fixed-rate execution. A negative value
163 * indicates fixed-delay execution. A value of 0 indicates a
164 * non-repeating task.
165 */
166 private final long period;
167
168 /** The actual task to be re-enqueued by reExecutePeriodic */
169 RunnableScheduledFuture<V> outerTask = this;
170
171 /**
172 * Index into delay queue, to support faster cancellation.
173 */
174 int heapIndex;
175
176 /**
177 * Creates a one-shot action with given nanoTime-based trigger time.
178 */
179 ScheduledFutureTask(Runnable r, V result, long ns) {
180 super(r, result);
181 this.time = ns;
182 this.period = 0;
183 this.sequenceNumber = sequencer.getAndIncrement();
184 }
185
186 /**
187 * Creates a periodic action with given nano time and period.
188 */
189 ScheduledFutureTask(Runnable r, V result, long ns, long period) {
190 super(r, result);
191 this.time = ns;
192 this.period = period;
193 this.sequenceNumber = sequencer.getAndIncrement();
194 }
195
196 /**
197 * Creates a one-shot action with given nanoTime-based trigger time.
198 */
199 ScheduledFutureTask(Callable<V> callable, long ns) {
200 super(callable);
201 this.time = ns;
202 this.period = 0;
203 this.sequenceNumber = sequencer.getAndIncrement();
204 }
205
206 public long getDelay(TimeUnit unit) {
207 return unit.convert(time - now(), NANOSECONDS);
208 }
209
210 public int compareTo(Delayed other) {
211 if (other == this) // compare zero if same object
212 return 0;
213 if (other instanceof ScheduledFutureTask) {
214 ScheduledFutureTask<?> x = (ScheduledFutureTask<?>)other;
215 long diff = time - x.time;
216 if (diff < 0)
217 return -1;
218 else if (diff > 0)
219 return 1;
220 else if (sequenceNumber < x.sequenceNumber)
221 return -1;
222 else
223 return 1;
224 }
225 long diff = getDelay(NANOSECONDS) - other.getDelay(NANOSECONDS);
226 return (diff < 0) ? -1 : (diff > 0) ? 1 : 0;
227 }
228
229 /**
230 * Returns true if this is a periodic (not a one-shot) action.
231 *
232 * @return true if periodic
233 */
234 public boolean isPeriodic() {
235 return period != 0;
236 }
237
238 /**
239 * Sets the next time to run for a periodic task.
240 */
241 private void setNextRunTime() {
242 long p = period;
243 if (p > 0)
244 time += p;
245 else
246 time = triggerTime(-p);
247 }
248
249 public boolean cancel(boolean mayInterruptIfRunning) {
250 boolean cancelled = super.cancel(mayInterruptIfRunning);
251 if (cancelled && removeOnCancel && heapIndex >= 0)
252 remove(this);
253 return cancelled;
254 }
255
256 /**
257 * Overrides FutureTask version so as to reset/requeue if periodic.
258 */
259 public void run() {
260 boolean periodic = isPeriodic();
261 if (!canRunInCurrentRunState(periodic))
262 cancel(false);
263 else if (!periodic)
264 ScheduledFutureTask.super.run();
265 else if (ScheduledFutureTask.super.runAndReset()) {
266 setNextRunTime();
267 reExecutePeriodic(outerTask);
268 }
269 }
270 }
271
272 /**
273 * Returns true if can run a task given current run state
274 * and run-after-shutdown parameters.
275 *
276 * @param periodic true if this task periodic, false if delayed
277 */
278 boolean canRunInCurrentRunState(boolean periodic) {
279 return isRunningOrShutdown(periodic ?
280 continueExistingPeriodicTasksAfterShutdown :
281 executeExistingDelayedTasksAfterShutdown);
282 }
283
284 /**
285 * Main execution method for delayed or periodic tasks. If pool
286 * is shut down, rejects the task. Otherwise adds task to queue
287 * and starts a thread, if necessary, to run it. (We cannot
288 * prestart the thread to run the task because the task (probably)
289 * shouldn't be run yet,) If the pool is shut down while the task
290 * is being added, cancel and remove it if required by state and
291 * run-after-shutdown parameters.
292 *
293 * @param task the task
294 */
295 private void delayedExecute(RunnableScheduledFuture<?> task) {
296 if (isShutdown())
297 reject(task);
298 else {
299 super.getQueue().add(task);
300 if (isShutdown() &&
301 !canRunInCurrentRunState(task.isPeriodic()) &&
302 remove(task))
303 task.cancel(false);
304 else
305 ensurePrestart();
306 }
307 }
308
309 /**
310 * Requeues a periodic task unless current run state precludes it.
311 * Same idea as delayedExecute except drops task rather than rejecting.
312 *
313 * @param task the task
314 */
315 void reExecutePeriodic(RunnableScheduledFuture<?> task) {
316 if (canRunInCurrentRunState(true)) {
317 super.getQueue().add(task);
318 if (!canRunInCurrentRunState(true) && remove(task))
319 task.cancel(false);
320 else
321 ensurePrestart();
322 }
323 }
324
325 /**
326 * Cancels and clears the queue of all tasks that should not be run
327 * due to shutdown policy. Invoked within super.shutdown.
328 */
329 @Override void onShutdown() {
330 BlockingQueue<Runnable> q = super.getQueue();
331 boolean keepDelayed =
332 getExecuteExistingDelayedTasksAfterShutdownPolicy();
333 boolean keepPeriodic =
334 getContinueExistingPeriodicTasksAfterShutdownPolicy();
335 if (!keepDelayed && !keepPeriodic) {
336 for (Object e : q.toArray())
337 if (e instanceof RunnableScheduledFuture<?>)
338 ((RunnableScheduledFuture<?>) e).cancel(false);
339 q.clear();
340 }
341 else {
342 // Traverse snapshot to avoid iterator exceptions
343 for (Object e : q.toArray()) {
344 if (e instanceof RunnableScheduledFuture) {
345 RunnableScheduledFuture<?> t =
346 (RunnableScheduledFuture<?>)e;
347 if ((t.isPeriodic() ? !keepPeriodic : !keepDelayed) ||
348 t.isCancelled()) { // also remove if already cancelled
349 if (q.remove(t))
350 t.cancel(false);
351 }
352 }
353 }
354 }
355 tryTerminate();
356 }
357
358 /**
359 * Modifies or replaces the task used to execute a runnable.
360 * This method can be used to override the concrete
361 * class used for managing internal tasks.
362 * The default implementation simply returns the given task.
363 *
364 * @param runnable the submitted Runnable
365 * @param task the task created to execute the runnable
366 * @return a task that can execute the runnable
367 * @since 1.6
368 */
369 protected <V> RunnableScheduledFuture<V> decorateTask(
370 Runnable runnable, RunnableScheduledFuture<V> task) {
371 return task;
372 }
373
374 /**
375 * Modifies or replaces the task used to execute a callable.
376 * This method can be used to override the concrete
377 * class used for managing internal tasks.
378 * The default implementation simply returns the given task.
379 *
380 * @param callable the submitted Callable
381 * @param task the task created to execute the callable
382 * @return a task that can execute the callable
383 * @since 1.6
384 */
385 protected <V> RunnableScheduledFuture<V> decorateTask(
386 Callable<V> callable, RunnableScheduledFuture<V> task) {
387 return task;
388 }
389
390 /**
391 * Creates a new {@code ScheduledThreadPoolExecutor} with the
392 * given core pool size.
393 *
394 * @param corePoolSize the number of threads to keep in the pool, even
395 * if they are idle, unless {@code allowCoreThreadTimeOut} is set
396 * @throws IllegalArgumentException if {@code corePoolSize < 0}
397 */
398 public ScheduledThreadPoolExecutor(int corePoolSize) {
399 super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
400 new DelayedWorkQueue());
401 }
402
403 /**
404 * Creates a new {@code ScheduledThreadPoolExecutor} with the
405 * given initial parameters.
406 *
407 * @param corePoolSize the number of threads to keep in the pool, even
408 * if they are idle, unless {@code allowCoreThreadTimeOut} is set
409 * @param threadFactory the factory to use when the executor
410 * creates a new thread
411 * @throws IllegalArgumentException if {@code corePoolSize < 0}
412 * @throws NullPointerException if {@code threadFactory} is null
413 */
414 public ScheduledThreadPoolExecutor(int corePoolSize,
415 ThreadFactory threadFactory) {
416 super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
417 new DelayedWorkQueue(), threadFactory);
418 }
419
420 /**
421 * Creates a new ScheduledThreadPoolExecutor with the given
422 * initial parameters.
423 *
424 * @param corePoolSize the number of threads to keep in the pool, even
425 * if they are idle, unless {@code allowCoreThreadTimeOut} is set
426 * @param handler the handler to use when execution is blocked
427 * because the thread bounds and queue capacities are reached
428 * @throws IllegalArgumentException if {@code corePoolSize < 0}
429 * @throws NullPointerException if {@code handler} is null
430 */
431 public ScheduledThreadPoolExecutor(int corePoolSize,
432 RejectedExecutionHandler handler) {
433 super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
434 new DelayedWorkQueue(), handler);
435 }
436
437 /**
438 * Creates a new ScheduledThreadPoolExecutor with the given
439 * initial parameters.
440 *
441 * @param corePoolSize the number of threads to keep in the pool, even
442 * if they are idle, unless {@code allowCoreThreadTimeOut} is set
443 * @param threadFactory the factory to use when the executor
444 * creates a new thread
445 * @param handler the handler to use when execution is blocked
446 * because the thread bounds and queue capacities are reached
447 * @throws IllegalArgumentException if {@code corePoolSize < 0}
448 * @throws NullPointerException if {@code threadFactory} or
449 * {@code handler} is null
450 */
451 public ScheduledThreadPoolExecutor(int corePoolSize,
452 ThreadFactory threadFactory,
453 RejectedExecutionHandler handler) {
454 super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
455 new DelayedWorkQueue(), threadFactory, handler);
456 }
457
458 /**
459 * Returns the trigger time of a delayed action.
460 */
461 private long triggerTime(long delay, TimeUnit unit) {
462 return triggerTime(unit.toNanos((delay < 0) ? 0 : delay));
463 }
464
465 /**
466 * Returns the trigger time of a delayed action.
467 */
468 long triggerTime(long delay) {
469 return now() +
470 ((delay < (Long.MAX_VALUE >> 1)) ? delay : overflowFree(delay));
471 }
472
473 /**
474 * Constrains the values of all delays in the queue to be within
475 * Long.MAX_VALUE of each other, to avoid overflow in compareTo.
476 * This may occur if a task is eligible to be dequeued, but has
477 * not yet been, while some other task is added with a delay of
478 * Long.MAX_VALUE.
479 */
480 private long overflowFree(long delay) {
481 Delayed head = (Delayed) super.getQueue().peek();
482 if (head != null) {
483 long headDelay = head.getDelay(NANOSECONDS);
484 if (headDelay < 0 && (delay - headDelay < 0))
485 delay = Long.MAX_VALUE + headDelay;
486 }
487 return delay;
488 }
489
490 /**
491 * @throws RejectedExecutionException {@inheritDoc}
492 * @throws NullPointerException {@inheritDoc}
493 */
494 public ScheduledFuture<?> schedule(Runnable command,
495 long delay,
496 TimeUnit unit) {
497 if (command == null || unit == null)
498 throw new NullPointerException();
499 RunnableScheduledFuture<?> t = decorateTask(command,
500 new ScheduledFutureTask<Void>(command, null,
501 triggerTime(delay, unit)));
502 delayedExecute(t);
503 return t;
504 }
505
506 /**
507 * @throws RejectedExecutionException {@inheritDoc}
508 * @throws NullPointerException {@inheritDoc}
509 */
510 public <V> ScheduledFuture<V> schedule(Callable<V> callable,
511 long delay,
512 TimeUnit unit) {
513 if (callable == null || unit == null)
514 throw new NullPointerException();
515 RunnableScheduledFuture<V> t = decorateTask(callable,
516 new ScheduledFutureTask<V>(callable,
517 triggerTime(delay, unit)));
518 delayedExecute(t);
519 return t;
520 }
521
522 /**
523 * @throws RejectedExecutionException {@inheritDoc}
524 * @throws NullPointerException {@inheritDoc}
525 * @throws IllegalArgumentException {@inheritDoc}
526 */
527 public ScheduledFuture<?> scheduleAtFixedRate(Runnable command,
528 long initialDelay,
529 long period,
530 TimeUnit unit) {
531 if (command == null || unit == null)
532 throw new NullPointerException();
533 if (period <= 0)
534 throw new IllegalArgumentException();
535 ScheduledFutureTask<Void> sft =
536 new ScheduledFutureTask<Void>(command,
537 null,
538 triggerTime(initialDelay, unit),
539 unit.toNanos(period));
540 RunnableScheduledFuture<Void> t = decorateTask(command, sft);
541 sft.outerTask = t;
542 delayedExecute(t);
543 return t;
544 }
545
546 /**
547 * @throws RejectedExecutionException {@inheritDoc}
548 * @throws NullPointerException {@inheritDoc}
549 * @throws IllegalArgumentException {@inheritDoc}
550 */
551 public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command,
552 long initialDelay,
553 long delay,
554 TimeUnit unit) {
555 if (command == null || unit == null)
556 throw new NullPointerException();
557 if (delay <= 0)
558 throw new IllegalArgumentException();
559 ScheduledFutureTask<Void> sft =
560 new ScheduledFutureTask<Void>(command,
561 null,
562 triggerTime(initialDelay, unit),
563 unit.toNanos(-delay));
564 RunnableScheduledFuture<Void> t = decorateTask(command, sft);
565 sft.outerTask = t;
566 delayedExecute(t);
567 return t;
568 }
569
570 /**
571 * Executes {@code command} with zero required delay.
572 * This has effect equivalent to
573 * {@link #schedule(Runnable,long,TimeUnit) schedule(command, 0, anyUnit)}.
574 * Note that inspections of the queue and of the list returned by
575 * {@code shutdownNow} will access the zero-delayed
576 * {@link ScheduledFuture}, not the {@code command} itself.
577 *
578 * <p>A consequence of the use of {@code ScheduledFuture} objects is
579 * that {@link ThreadPoolExecutor#afterExecute afterExecute} is always
580 * called with a null second {@code Throwable} argument, even if the
581 * {@code command} terminated abruptly. Instead, the {@code Throwable}
582 * thrown by such a task can be obtained via {@link Future#get}.
583 *
584 * @throws RejectedExecutionException at discretion of
585 * {@code RejectedExecutionHandler}, if the task
586 * cannot be accepted for execution because the
587 * executor has been shut down
588 * @throws NullPointerException {@inheritDoc}
589 */
590 public void execute(Runnable command) {
591 schedule(command, 0, NANOSECONDS);
592 }
593
594 // Override AbstractExecutorService methods
595
596 /**
597 * @throws RejectedExecutionException {@inheritDoc}
598 * @throws NullPointerException {@inheritDoc}
599 */
600 public Future<?> submit(Runnable task) {
601 return schedule(task, 0, NANOSECONDS);
602 }
603
604 /**
605 * @throws RejectedExecutionException {@inheritDoc}
606 * @throws NullPointerException {@inheritDoc}
607 */
608 public <T> Future<T> submit(Runnable task, T result) {
609 return schedule(Executors.callable(task, result), 0, NANOSECONDS);
610 }
611
612 /**
613 * @throws RejectedExecutionException {@inheritDoc}
614 * @throws NullPointerException {@inheritDoc}
615 */
616 public <T> Future<T> submit(Callable<T> task) {
617 return schedule(task, 0, NANOSECONDS);
618 }
619
620 /**
621 * Sets the policy on whether to continue executing existing
622 * periodic tasks even when this executor has been {@code shutdown}.
623 * In this case, these tasks will only terminate upon
624 * {@code shutdownNow} or after setting the policy to
625 * {@code false} when already shutdown.
626 * This value is by default {@code false}.
627 *
628 * @param value if {@code true}, continue after shutdown, else don't.
629 * @see #getContinueExistingPeriodicTasksAfterShutdownPolicy
630 */
631 public void setContinueExistingPeriodicTasksAfterShutdownPolicy(boolean value) {
632 continueExistingPeriodicTasksAfterShutdown = value;
633 if (!value && isShutdown())
634 onShutdown();
635 }
636
637 /**
638 * Gets the policy on whether to continue executing existing
639 * periodic tasks even when this executor has been {@code shutdown}.
640 * In this case, these tasks will only terminate upon
641 * {@code shutdownNow} or after setting the policy to
642 * {@code false} when already shutdown.
643 * This value is by default {@code false}.
644 *
645 * @return {@code true} if will continue after shutdown
646 * @see #setContinueExistingPeriodicTasksAfterShutdownPolicy
647 */
648 public boolean getContinueExistingPeriodicTasksAfterShutdownPolicy() {
649 return continueExistingPeriodicTasksAfterShutdown;
650 }
651
652 /**
653 * Sets the policy on whether to execute existing delayed
654 * tasks even when this executor has been {@code shutdown}.
655 * In this case, these tasks will only terminate upon
656 * {@code shutdownNow}, or after setting the policy to
657 * {@code false} when already shutdown.
658 * This value is by default {@code true}.
659 *
660 * @param value if {@code true}, execute after shutdown, else don't.
661 * @see #getExecuteExistingDelayedTasksAfterShutdownPolicy
662 */
663 public void setExecuteExistingDelayedTasksAfterShutdownPolicy(boolean value) {
664 executeExistingDelayedTasksAfterShutdown = value;
665 if (!value && isShutdown())
666 onShutdown();
667 }
668
669 /**
670 * Gets the policy on whether to execute existing delayed
671 * tasks even when this executor has been {@code shutdown}.
672 * In this case, these tasks will only terminate upon
673 * {@code shutdownNow}, or after setting the policy to
674 * {@code false} when already shutdown.
675 * This value is by default {@code true}.
676 *
677 * @return {@code true} if will execute after shutdown
678 * @see #setExecuteExistingDelayedTasksAfterShutdownPolicy
679 */
680 public boolean getExecuteExistingDelayedTasksAfterShutdownPolicy() {
681 return executeExistingDelayedTasksAfterShutdown;
682 }
683
684 /**
685 * Sets the policy on whether cancelled tasks should be immediately
686 * removed from the work queue at time of cancellation. This value is
687 * by default {@code false}.
688 *
689 * @param value if {@code true}, remove on cancellation, else don't
690 * @see #getRemoveOnCancelPolicy
691 * @since 1.7
692 */
693 public void setRemoveOnCancelPolicy(boolean value) {
694 removeOnCancel = value;
695 }
696
697 /**
698 * Gets the policy on whether cancelled tasks should be immediately
699 * removed from the work queue at time of cancellation. This value is
700 * by default {@code false}.
701 *
702 * @return {@code true} if cancelled tasks are immediately removed
703 * from the queue
704 * @see #setRemoveOnCancelPolicy
705 * @since 1.7
706 */
707 public boolean getRemoveOnCancelPolicy() {
708 return removeOnCancel;
709 }
710
711 /**
712 * Initiates an orderly shutdown in which previously submitted
713 * tasks are executed, but no new tasks will be accepted.
714 * Invocation has no additional effect if already shut down.
715 *
716 * <p>This method does not wait for previously submitted tasks to
717 * complete execution. Use {@link #awaitTermination awaitTermination}
718 * to do that.
719 *
720 * <p>If the {@code ExecuteExistingDelayedTasksAfterShutdownPolicy}
721 * has been set {@code false}, existing delayed tasks whose delays
722 * have not yet elapsed are cancelled. And unless the {@code
723 * ContinueExistingPeriodicTasksAfterShutdownPolicy} has been set
724 * {@code true}, future executions of existing periodic tasks will
725 * be cancelled.
726 *
727 * @throws SecurityException {@inheritDoc}
728 */
729 public void shutdown() {
730 super.shutdown();
731 }
732
733 /**
734 * Attempts to stop all actively executing tasks, halts the
735 * processing of waiting tasks, and returns a list of the tasks
736 * that were awaiting execution.
737 *
738 * <p>This method does not wait for actively executing tasks to
739 * terminate. Use {@link #awaitTermination awaitTermination} to
740 * do that.
741 *
742 * <p>There are no guarantees beyond best-effort attempts to stop
743 * processing actively executing tasks. This implementation
744 * cancels tasks via {@link Thread#interrupt}, so any task that
745 * fails to respond to interrupts may never terminate.
746 *
747 * @return list of tasks that never commenced execution.
748 * Each element of this list is a {@link ScheduledFuture},
749 * including those tasks submitted using {@code execute},
750 * which are for scheduling purposes used as the basis of a
751 * zero-delay {@code ScheduledFuture}.
752 * @throws SecurityException {@inheritDoc}
753 */
754 public List<Runnable> shutdownNow() {
755 return super.shutdownNow();
756 }
757
758 /**
759 * Returns the task queue used by this executor. Each element of
760 * this queue is a {@link ScheduledFuture}, including those
761 * tasks submitted using {@code execute} which are for scheduling
762 * purposes used as the basis of a zero-delay
763 * {@code ScheduledFuture}. Iteration over this queue is
764 * <em>not</em> guaranteed to traverse tasks in the order in
765 * which they will execute.
766 *
767 * @return the task queue
768 */
769 public BlockingQueue<Runnable> getQueue() {
770 return super.getQueue();
771 }
772
773 /**
774 * Specialized delay queue. To mesh with TPE declarations, this
775 * class must be declared as a BlockingQueue<Runnable> even though
776 * it can only hold RunnableScheduledFutures.
777 */
778 static class DelayedWorkQueue extends AbstractQueue<Runnable>
779 implements BlockingQueue<Runnable> {
780
781 /*
782 * A DelayedWorkQueue is based on a heap-based data structure
783 * like those in DelayQueue and PriorityQueue, except that
784 * every ScheduledFutureTask also records its index into the
785 * heap array. This eliminates the need to find a task upon
786 * cancellation, greatly speeding up removal (down from O(n)
787 * to O(log n)), and reducing garbage retention that would
788 * otherwise occur by waiting for the element to rise to top
789 * before clearing. But because the queue may also hold
790 * RunnableScheduledFutures that are not ScheduledFutureTasks,
791 * we are not guaranteed to have such indices available, in
792 * which case we fall back to linear search. (We expect that
793 * most tasks will not be decorated, and that the faster cases
794 * will be much more common.)
795 *
796 * All heap operations must record index changes -- mainly
797 * within siftUp and siftDown. Upon removal, a task's
798 * heapIndex is set to -1. Note that ScheduledFutureTasks can
799 * appear at most once in the queue (this need not be true for
800 * other kinds of tasks or work queues), so are uniquely
801 * identified by heapIndex.
802 */
803
804 private static final int INITIAL_CAPACITY = 16;
805 private RunnableScheduledFuture<?>[] queue =
806 new RunnableScheduledFuture<?>[INITIAL_CAPACITY];
807 private final ReentrantLock lock = new ReentrantLock();
808 private int size = 0;
809
810 /**
811 * Thread designated to wait for the task at the head of the
812 * queue. This variant of the Leader-Follower pattern
813 * (http://www.cs.wustl.edu/~schmidt/POSA/POSA2/) serves to
814 * minimize unnecessary timed waiting. When a thread becomes
815 * the leader, it waits only for the next delay to elapse, but
816 * other threads await indefinitely. The leader thread must
817 * signal some other thread before returning from take() or
818 * poll(...), unless some other thread becomes leader in the
819 * interim. Whenever the head of the queue is replaced with a
820 * task with an earlier expiration time, the leader field is
821 * invalidated by being reset to null, and some waiting
822 * thread, but not necessarily the current leader, is
823 * signalled. So waiting threads must be prepared to acquire
824 * and lose leadership while waiting.
825 */
826 private Thread leader = null;
827
828 /**
829 * Condition signalled when a newer task becomes available at the
830 * head of the queue or a new thread may need to become leader.
831 */
832 private final Condition available = lock.newCondition();
833
834 /**
835 * Sets f's heapIndex if it is a ScheduledFutureTask.
836 */
837 private void setIndex(RunnableScheduledFuture<?> f, int idx) {
838 if (f instanceof ScheduledFutureTask)
839 ((ScheduledFutureTask)f).heapIndex = idx;
840 }
841
842 /**
843 * Sifts element added at bottom up to its heap-ordered spot.
844 * Call only when holding lock.
845 */
846 private void siftUp(int k, RunnableScheduledFuture<?> key) {
847 while (k > 0) {
848 int parent = (k - 1) >>> 1;
849 RunnableScheduledFuture<?> e = queue[parent];
850 if (key.compareTo(e) >= 0)
851 break;
852 queue[k] = e;
853 setIndex(e, k);
854 k = parent;
855 }
856 queue[k] = key;
857 setIndex(key, k);
858 }
859
860 /**
861 * Sifts element added at top down to its heap-ordered spot.
862 * Call only when holding lock.
863 */
864 private void siftDown(int k, RunnableScheduledFuture<?> key) {
865 int half = size >>> 1;
866 while (k < half) {
867 int child = (k << 1) + 1;
868 RunnableScheduledFuture<?> c = queue[child];
869 int right = child + 1;
870 if (right < size && c.compareTo(queue[right]) > 0)
871 c = queue[child = right];
872 if (key.compareTo(c) <= 0)
873 break;
874 queue[k] = c;
875 setIndex(c, k);
876 k = child;
877 }
878 queue[k] = key;
879 setIndex(key, k);
880 }
881
882 /**
883 * Resizes the heap array. Call only when holding lock.
884 */
885 private void grow() {
886 int oldCapacity = queue.length;
887 int newCapacity = oldCapacity + (oldCapacity >> 1); // grow 50%
888 if (newCapacity < 0) // overflow
889 newCapacity = Integer.MAX_VALUE;
890 queue = Arrays.copyOf(queue, newCapacity);
891 }
892
893 /**
894 * Finds index of given object, or -1 if absent.
895 */
896 private int indexOf(Object x) {
897 if (x != null) {
898 if (x instanceof ScheduledFutureTask) {
899 int i = ((ScheduledFutureTask) x).heapIndex;
900 // Sanity check; x could conceivably be a
901 // ScheduledFutureTask from some other pool.
902 if (i >= 0 && i < size && queue[i] == x)
903 return i;
904 } else {
905 for (int i = 0; i < size; i++)
906 if (x.equals(queue[i]))
907 return i;
908 }
909 }
910 return -1;
911 }
912
913 public boolean contains(Object x) {
914 final ReentrantLock lock = this.lock;
915 lock.lock();
916 try {
917 return indexOf(x) != -1;
918 } finally {
919 lock.unlock();
920 }
921 }
922
923 public boolean remove(Object x) {
924 final ReentrantLock lock = this.lock;
925 lock.lock();
926 try {
927 int i = indexOf(x);
928 if (i < 0)
929 return false;
930
931 setIndex(queue[i], -1);
932 int s = --size;
933 RunnableScheduledFuture<?> replacement = queue[s];
934 queue[s] = null;
935 if (s != i) {
936 siftDown(i, replacement);
937 if (queue[i] == replacement)
938 siftUp(i, replacement);
939 }
940 return true;
941 } finally {
942 lock.unlock();
943 }
944 }
945
946 public int size() {
947 final ReentrantLock lock = this.lock;
948 lock.lock();
949 try {
950 return size;
951 } finally {
952 lock.unlock();
953 }
954 }
955
956 public boolean isEmpty() {
957 return size() == 0;
958 }
959
960 public int remainingCapacity() {
961 return Integer.MAX_VALUE;
962 }
963
964 public RunnableScheduledFuture<?> peek() {
965 final ReentrantLock lock = this.lock;
966 lock.lock();
967 try {
968 return queue[0];
969 } finally {
970 lock.unlock();
971 }
972 }
973
974 public boolean offer(Runnable x) {
975 if (x == null)
976 throw new NullPointerException();
977 RunnableScheduledFuture<?> e = (RunnableScheduledFuture<?>)x;
978 final ReentrantLock lock = this.lock;
979 lock.lock();
980 try {
981 int i = size;
982 if (i >= queue.length)
983 grow();
984 size = i + 1;
985 if (i == 0) {
986 queue[0] = e;
987 setIndex(e, 0);
988 } else {
989 siftUp(i, e);
990 }
991 if (queue[0] == e) {
992 leader = null;
993 available.signal();
994 }
995 } finally {
996 lock.unlock();
997 }
998 return true;
999 }
1000
1001 public void put(Runnable e) {
1002 offer(e);
1003 }
1004
1005 public boolean add(Runnable e) {
1006 return offer(e);
1007 }
1008
1009 public boolean offer(Runnable e, long timeout, TimeUnit unit) {
1010 return offer(e);
1011 }
1012
1013 /**
1014 * Performs common bookkeeping for poll and take: Replaces
1015 * first element with last and sifts it down. Call only when
1016 * holding lock.
1017 * @param f the task to remove and return
1018 */
1019 private RunnableScheduledFuture<?> finishPoll(RunnableScheduledFuture<?> f) {
1020 int s = --size;
1021 RunnableScheduledFuture<?> x = queue[s];
1022 queue[s] = null;
1023 if (s != 0)
1024 siftDown(0, x);
1025 setIndex(f, -1);
1026 return f;
1027 }
1028
1029 public RunnableScheduledFuture<?> poll() {
1030 final ReentrantLock lock = this.lock;
1031 lock.lock();
1032 try {
1033 RunnableScheduledFuture<?> first = queue[0];
1034 if (first == null || first.getDelay(NANOSECONDS) > 0)
1035 return null;
1036 else
1037 return finishPoll(first);
1038 } finally {
1039 lock.unlock();
1040 }
1041 }
1042
1043 public RunnableScheduledFuture<?> take() throws InterruptedException {
1044 final ReentrantLock lock = this.lock;
1045 lock.lockInterruptibly();
1046 try {
1047 for (;;) {
1048 RunnableScheduledFuture<?> first = queue[0];
1049 if (first == null)
1050 available.await();
1051 else {
1052 long delay = first.getDelay(NANOSECONDS);
1053 if (delay <= 0)
1054 return finishPoll(first);
1055 else if (leader != null)
1056 available.await();
1057 else {
1058 Thread thisThread = Thread.currentThread();
1059 leader = thisThread;
1060 try {
1061 available.awaitNanos(delay);
1062 } finally {
1063 if (leader == thisThread)
1064 leader = null;
1065 }
1066 }
1067 }
1068 }
1069 } finally {
1070 if (leader == null && queue[0] != null)
1071 available.signal();
1072 lock.unlock();
1073 }
1074 }
1075
1076 public RunnableScheduledFuture<?> poll(long timeout, TimeUnit unit)
1077 throws InterruptedException {
1078 long nanos = unit.toNanos(timeout);
1079 final ReentrantLock lock = this.lock;
1080 lock.lockInterruptibly();
1081 try {
1082 for (;;) {
1083 RunnableScheduledFuture<?> first = queue[0];
1084 if (first == null) {
1085 if (nanos <= 0)
1086 return null;
1087 else
1088 nanos = available.awaitNanos(nanos);
1089 } else {
1090 long delay = first.getDelay(NANOSECONDS);
1091 if (delay <= 0)
1092 return finishPoll(first);
1093 if (nanos <= 0)
1094 return null;
1095 if (nanos < delay || leader != null)
1096 nanos = available.awaitNanos(nanos);
1097 else {
1098 Thread thisThread = Thread.currentThread();
1099 leader = thisThread;
1100 try {
1101 long timeLeft = available.awaitNanos(delay);
1102 nanos -= delay - timeLeft;
1103 } finally {
1104 if (leader == thisThread)
1105 leader = null;
1106 }
1107 }
1108 }
1109 }
1110 } finally {
1111 if (leader == null && queue[0] != null)
1112 available.signal();
1113 lock.unlock();
1114 }
1115 }
1116
1117 public void clear() {
1118 final ReentrantLock lock = this.lock;
1119 lock.lock();
1120 try {
1121 for (int i = 0; i < size; i++) {
1122 RunnableScheduledFuture<?> t = queue[i];
1123 if (t != null) {
1124 queue[i] = null;
1125 setIndex(t, -1);
1126 }
1127 }
1128 size = 0;
1129 } finally {
1130 lock.unlock();
1131 }
1132 }
1133
1134 /**
1135 * Returns first element only if it is expired.
1136 * Used only by drainTo. Call only when holding lock.
1137 */
1138 private RunnableScheduledFuture<?> peekExpired() {
1139 // assert lock.isHeldByCurrentThread();
1140 RunnableScheduledFuture<?> first = queue[0];
1141 return (first == null || first.getDelay(NANOSECONDS) > 0) ?
1142 null : first;
1143 }
1144
1145 public int drainTo(Collection<? super Runnable> c) {
1146 if (c == null)
1147 throw new NullPointerException();
1148 if (c == this)
1149 throw new IllegalArgumentException();
1150 final ReentrantLock lock = this.lock;
1151 lock.lock();
1152 try {
1153 RunnableScheduledFuture<?> first;
1154 int n = 0;
1155 while ((first = peekExpired()) != null) {
1156 c.add(first); // In this order, in case add() throws.
1157 finishPoll(first);
1158 ++n;
1159 }
1160 return n;
1161 } finally {
1162 lock.unlock();
1163 }
1164 }
1165
1166 public int drainTo(Collection<? super Runnable> c, int maxElements) {
1167 if (c == null)
1168 throw new NullPointerException();
1169 if (c == this)
1170 throw new IllegalArgumentException();
1171 if (maxElements <= 0)
1172 return 0;
1173 final ReentrantLock lock = this.lock;
1174 lock.lock();
1175 try {
1176 RunnableScheduledFuture<?> first;
1177 int n = 0;
1178 while (n < maxElements && (first = peekExpired()) != null) {
1179 c.add(first); // In this order, in case add() throws.
1180 finishPoll(first);
1181 ++n;
1182 }
1183 return n;
1184 } finally {
1185 lock.unlock();
1186 }
1187 }
1188
1189 public Object[] toArray() {
1190 final ReentrantLock lock = this.lock;
1191 lock.lock();
1192 try {
1193 return Arrays.copyOf(queue, size, Object[].class);
1194 } finally {
1195 lock.unlock();
1196 }
1197 }
1198
1199 @SuppressWarnings("unchecked")
1200 public <T> T[] toArray(T[] a) {
1201 final ReentrantLock lock = this.lock;
1202 lock.lock();
1203 try {
1204 if (a.length < size)
1205 return (T[]) Arrays.copyOf(queue, size, a.getClass());
1206 System.arraycopy(queue, 0, a, 0, size);
1207 if (a.length > size)
1208 a[size] = null;
1209 return a;
1210 } finally {
1211 lock.unlock();
1212 }
1213 }
1214
1215 public Iterator<Runnable> iterator() {
1216 return new Itr(Arrays.copyOf(queue, size));
1217 }
1218
1219 /**
1220 * Snapshot iterator that works off copy of underlying q array.
1221 */
1222 private class Itr implements Iterator<Runnable> {
1223 final RunnableScheduledFuture[] array;
1224 int cursor = 0; // index of next element to return
1225 int lastRet = -1; // index of last element, or -1 if no such
1226
1227 Itr(RunnableScheduledFuture[] array) {
1228 this.array = array;
1229 }
1230
1231 public boolean hasNext() {
1232 return cursor < array.length;
1233 }
1234
1235 public Runnable next() {
1236 if (cursor >= array.length)
1237 throw new NoSuchElementException();
1238 lastRet = cursor;
1239 return array[cursor++];
1240 }
1241
1242 public void remove() {
1243 if (lastRet < 0)
1244 throw new IllegalStateException();
1245 DelayedWorkQueue.this.remove(array[lastRet]);
1246 lastRet = -1;
1247 }
1248 }
1249 }
1250 }