ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/PriorityQueue.java
Revision: 1.4
Committed: Sun Dec 18 21:53:44 2016 UTC (7 years, 4 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.3: +1 -1 lines
Log Message:
typo

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
3     * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4     *
5     * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7     * published by the Free Software Foundation. Oracle designates this
8     * particular file as subject to the "Classpath" exception as provided
9     * by Oracle in the LICENSE file that accompanied this code.
10     *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21     * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24     */
25    
26     package java.util;
27    
28     import java.util.function.Consumer;
29    
30     /**
31     * An unbounded priority {@linkplain Queue queue} based on a priority heap.
32     * The elements of the priority queue are ordered according to their
33     * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
34     * provided at queue construction time, depending on which constructor is
35     * used. A priority queue does not permit {@code null} elements.
36     * A priority queue relying on natural ordering also does not permit
37     * insertion of non-comparable objects (doing so may result in
38     * {@code ClassCastException}).
39     *
40     * <p>The <em>head</em> of this queue is the <em>least</em> element
41     * with respect to the specified ordering. If multiple elements are
42     * tied for least value, the head is one of those elements -- ties are
43     * broken arbitrarily. The queue retrieval operations {@code poll},
44     * {@code remove}, {@code peek}, and {@code element} access the
45     * element at the head of the queue.
46     *
47     * <p>A priority queue is unbounded, but has an internal
48     * <i>capacity</i> governing the size of an array used to store the
49     * elements on the queue. It is always at least as large as the queue
50     * size. As elements are added to a priority queue, its capacity
51     * grows automatically. The details of the growth policy are not
52     * specified.
53     *
54     * <p>This class and its iterator implement all of the
55     * <em>optional</em> methods of the {@link Collection} and {@link
56     * Iterator} interfaces. The Iterator provided in method {@link
57     * #iterator()} is <em>not</em> guaranteed to traverse the elements of
58     * the priority queue in any particular order. If you need ordered
59     * traversal, consider using {@code Arrays.sort(pq.toArray())}.
60     *
61     * <p><strong>Note that this implementation is not synchronized.</strong>
62     * Multiple threads should not access a {@code PriorityQueue}
63     * instance concurrently if any of the threads modifies the queue.
64     * Instead, use the thread-safe {@link
65     * java.util.concurrent.PriorityBlockingQueue} class.
66     *
67     * <p>Implementation note: this implementation provides
68     * O(log(n)) time for the enqueuing and dequeuing methods
69     * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
70     * linear time for the {@code remove(Object)} and {@code contains(Object)}
71     * methods; and constant time for the retrieval methods
72     * ({@code peek}, {@code element}, and {@code size}).
73     *
74     * <p>This class is a member of the
75     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
76     * Java Collections Framework</a>.
77     *
78     * @since 1.5
79     * @author Josh Bloch, Doug Lea
80     * @param <E> the type of elements held in this queue
81     */
82     public class PriorityQueue<E> extends AbstractQueue<E>
83     implements java.io.Serializable {
84    
85     private static final long serialVersionUID = -7720805057305804111L;
86    
87     private static final int DEFAULT_INITIAL_CAPACITY = 11;
88    
89     /**
90     * Priority queue represented as a balanced binary heap: the two
91     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
92     * priority queue is ordered by comparator, or by the elements'
93     * natural ordering, if comparator is null: For each node n in the
94     * heap and each descendant d of n, n <= d. The element with the
95     * lowest value is in queue[0], assuming the queue is nonempty.
96     */
97     transient Object[] queue; // non-private to simplify nested class access
98    
99     /**
100     * The number of elements in the priority queue.
101     */
102     int size;
103    
104     /**
105     * The comparator, or null if priority queue uses elements'
106     * natural ordering.
107     */
108     private final Comparator<? super E> comparator;
109    
110     /**
111     * The number of times this priority queue has been
112     * <i>structurally modified</i>. See AbstractList for gory details.
113     */
114     transient int modCount; // non-private to simplify nested class access
115    
116     /**
117     * Creates a {@code PriorityQueue} with the default initial
118     * capacity (11) that orders its elements according to their
119     * {@linkplain Comparable natural ordering}.
120     */
121     public PriorityQueue() {
122     this(DEFAULT_INITIAL_CAPACITY, null);
123     }
124    
125     /**
126     * Creates a {@code PriorityQueue} with the specified initial
127     * capacity that orders its elements according to their
128     * {@linkplain Comparable natural ordering}.
129     *
130     * @param initialCapacity the initial capacity for this priority queue
131     * @throws IllegalArgumentException if {@code initialCapacity} is less
132     * than 1
133     */
134     public PriorityQueue(int initialCapacity) {
135     this(initialCapacity, null);
136     }
137    
138     /**
139     * Creates a {@code PriorityQueue} with the default initial capacity and
140     * whose elements are ordered according to the specified comparator.
141     *
142     * @param comparator the comparator that will be used to order this
143     * priority queue. If {@code null}, the {@linkplain Comparable
144     * natural ordering} of the elements will be used.
145     * @since 1.8
146     */
147     public PriorityQueue(Comparator<? super E> comparator) {
148     this(DEFAULT_INITIAL_CAPACITY, comparator);
149     }
150    
151     /**
152     * Creates a {@code PriorityQueue} with the specified initial capacity
153     * that orders its elements according to the specified comparator.
154     *
155     * @param initialCapacity the initial capacity for this priority queue
156     * @param comparator the comparator that will be used to order this
157     * priority queue. If {@code null}, the {@linkplain Comparable
158     * natural ordering} of the elements will be used.
159     * @throws IllegalArgumentException if {@code initialCapacity} is
160     * less than 1
161     */
162     public PriorityQueue(int initialCapacity,
163     Comparator<? super E> comparator) {
164     // Note: This restriction of at least one is not actually needed,
165     // but continues for 1.5 compatibility
166     if (initialCapacity < 1)
167     throw new IllegalArgumentException();
168     this.queue = new Object[initialCapacity];
169     this.comparator = comparator;
170     }
171    
172     /**
173     * Creates a {@code PriorityQueue} containing the elements in the
174     * specified collection. If the specified collection is an instance of
175     * a {@link SortedSet} or is another {@code PriorityQueue}, this
176     * priority queue will be ordered according to the same ordering.
177     * Otherwise, this priority queue will be ordered according to the
178     * {@linkplain Comparable natural ordering} of its elements.
179     *
180     * @param c the collection whose elements are to be placed
181     * into this priority queue
182     * @throws ClassCastException if elements of the specified collection
183     * cannot be compared to one another according to the priority
184     * queue's ordering
185     * @throws NullPointerException if the specified collection or any
186     * of its elements are null
187     */
188     @SuppressWarnings("unchecked")
189     public PriorityQueue(Collection<? extends E> c) {
190     if (c instanceof SortedSet<?>) {
191     SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
192     this.comparator = (Comparator<? super E>) ss.comparator();
193     initElementsFromCollection(ss);
194     }
195     else if (c instanceof PriorityQueue<?>) {
196     PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
197     this.comparator = (Comparator<? super E>) pq.comparator();
198     initFromPriorityQueue(pq);
199     }
200     else {
201     this.comparator = null;
202     initFromCollection(c);
203     }
204     }
205    
206     /**
207     * Creates a {@code PriorityQueue} containing the elements in the
208     * specified priority queue. This priority queue will be
209     * ordered according to the same ordering as the given priority
210     * queue.
211     *
212     * @param c the priority queue whose elements are to be placed
213     * into this priority queue
214     * @throws ClassCastException if elements of {@code c} cannot be
215     * compared to one another according to {@code c}'s
216     * ordering
217     * @throws NullPointerException if the specified priority queue or any
218     * of its elements are null
219     */
220     @SuppressWarnings("unchecked")
221     public PriorityQueue(PriorityQueue<? extends E> c) {
222     this.comparator = (Comparator<? super E>) c.comparator();
223     initFromPriorityQueue(c);
224     }
225    
226     /**
227     * Creates a {@code PriorityQueue} containing the elements in the
228     * specified sorted set. This priority queue will be ordered
229     * according to the same ordering as the given sorted set.
230     *
231     * @param c the sorted set whose elements are to be placed
232     * into this priority queue
233     * @throws ClassCastException if elements of the specified sorted
234     * set cannot be compared to one another according to the
235     * sorted set's ordering
236     * @throws NullPointerException if the specified sorted set or any
237     * of its elements are null
238     */
239     @SuppressWarnings("unchecked")
240     public PriorityQueue(SortedSet<? extends E> c) {
241     this.comparator = (Comparator<? super E>) c.comparator();
242     initElementsFromCollection(c);
243     }
244    
245     private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
246     if (c.getClass() == PriorityQueue.class) {
247     this.queue = c.toArray();
248     this.size = c.size();
249     } else {
250     initFromCollection(c);
251     }
252     }
253    
254     private void initElementsFromCollection(Collection<? extends E> c) {
255     Object[] a = c.toArray();
256     // If c.toArray incorrectly doesn't return Object[], copy it.
257     if (a.getClass() != Object[].class)
258     a = Arrays.copyOf(a, a.length, Object[].class);
259     int len = a.length;
260     if (len == 1 || this.comparator != null)
261     for (Object e : a)
262     if (e == null)
263     throw new NullPointerException();
264     this.queue = a;
265     this.size = a.length;
266     }
267    
268     /**
269     * Initializes queue array with elements from the given Collection.
270     *
271     * @param c the collection
272     */
273     private void initFromCollection(Collection<? extends E> c) {
274     initElementsFromCollection(c);
275     heapify();
276     }
277    
278     /**
279     * The maximum size of array to allocate.
280     * Some VMs reserve some header words in an array.
281     * Attempts to allocate larger arrays may result in
282     * OutOfMemoryError: Requested array size exceeds VM limit
283     */
284     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
285    
286     /**
287     * Increases the capacity of the array.
288     *
289     * @param minCapacity the desired minimum capacity
290     */
291     private void grow(int minCapacity) {
292     int oldCapacity = queue.length;
293     // Double size if small; else grow by 50%
294     int newCapacity = oldCapacity + ((oldCapacity < 64) ?
295     (oldCapacity + 2) :
296     (oldCapacity >> 1));
297     // overflow-conscious code
298     if (newCapacity - MAX_ARRAY_SIZE > 0)
299     newCapacity = hugeCapacity(minCapacity);
300     queue = Arrays.copyOf(queue, newCapacity);
301     }
302    
303     private static int hugeCapacity(int minCapacity) {
304     if (minCapacity < 0) // overflow
305     throw new OutOfMemoryError();
306     return (minCapacity > MAX_ARRAY_SIZE) ?
307     Integer.MAX_VALUE :
308     MAX_ARRAY_SIZE;
309     }
310    
311     /**
312     * Inserts the specified element into this priority queue.
313     *
314     * @return {@code true} (as specified by {@link Collection#add})
315     * @throws ClassCastException if the specified element cannot be
316     * compared with elements currently in this priority queue
317     * according to the priority queue's ordering
318     * @throws NullPointerException if the specified element is null
319     */
320     public boolean add(E e) {
321     return offer(e);
322     }
323    
324     /**
325     * Inserts the specified element into this priority queue.
326     *
327     * @return {@code true} (as specified by {@link Queue#offer})
328     * @throws ClassCastException if the specified element cannot be
329     * compared with elements currently in this priority queue
330     * according to the priority queue's ordering
331     * @throws NullPointerException if the specified element is null
332     */
333     public boolean offer(E e) {
334     if (e == null)
335     throw new NullPointerException();
336     modCount++;
337     int i = size;
338     if (i >= queue.length)
339     grow(i + 1);
340 jsr166 1.2 siftUp(i, e);
341 jsr166 1.1 size = i + 1;
342     return true;
343     }
344    
345     @SuppressWarnings("unchecked")
346     public E peek() {
347     return (size == 0) ? null : (E) queue[0];
348     }
349    
350     private int indexOf(Object o) {
351     if (o != null) {
352     for (int i = 0; i < size; i++)
353     if (o.equals(queue[i]))
354     return i;
355     }
356     return -1;
357     }
358    
359     /**
360     * Removes a single instance of the specified element from this queue,
361     * if it is present. More formally, removes an element {@code e} such
362     * that {@code o.equals(e)}, if this queue contains one or more such
363     * elements. Returns {@code true} if and only if this queue contained
364     * the specified element (or equivalently, if this queue changed as a
365     * result of the call).
366     *
367     * @param o element to be removed from this queue, if present
368     * @return {@code true} if this queue changed as a result of the call
369     */
370     public boolean remove(Object o) {
371     int i = indexOf(o);
372     if (i == -1)
373     return false;
374     else {
375     removeAt(i);
376     return true;
377     }
378     }
379    
380     /**
381     * Version of remove using reference equality, not equals.
382     * Needed by iterator.remove.
383     *
384     * @param o element to be removed from this queue, if present
385     * @return {@code true} if removed
386     */
387     boolean removeEq(Object o) {
388     for (int i = 0; i < size; i++) {
389     if (o == queue[i]) {
390     removeAt(i);
391     return true;
392     }
393     }
394     return false;
395     }
396    
397     /**
398     * Returns {@code true} if this queue contains the specified element.
399     * More formally, returns {@code true} if and only if this queue contains
400     * at least one element {@code e} such that {@code o.equals(e)}.
401     *
402     * @param o object to be checked for containment in this queue
403     * @return {@code true} if this queue contains the specified element
404     */
405     public boolean contains(Object o) {
406     return indexOf(o) >= 0;
407     }
408    
409     /**
410     * Returns an array containing all of the elements in this queue.
411     * The elements are in no particular order.
412     *
413     * <p>The returned array will be "safe" in that no references to it are
414     * maintained by this queue. (In other words, this method must allocate
415     * a new array). The caller is thus free to modify the returned array.
416     *
417     * <p>This method acts as bridge between array-based and collection-based
418     * APIs.
419     *
420     * @return an array containing all of the elements in this queue
421     */
422     public Object[] toArray() {
423     return Arrays.copyOf(queue, size);
424     }
425    
426     /**
427     * Returns an array containing all of the elements in this queue; the
428     * runtime type of the returned array is that of the specified array.
429     * The returned array elements are in no particular order.
430     * If the queue fits in the specified array, it is returned therein.
431     * Otherwise, a new array is allocated with the runtime type of the
432     * specified array and the size of this queue.
433     *
434     * <p>If the queue fits in the specified array with room to spare
435     * (i.e., the array has more elements than the queue), the element in
436     * the array immediately following the end of the collection is set to
437     * {@code null}.
438     *
439     * <p>Like the {@link #toArray()} method, this method acts as bridge between
440     * array-based and collection-based APIs. Further, this method allows
441     * precise control over the runtime type of the output array, and may,
442     * under certain circumstances, be used to save allocation costs.
443     *
444     * <p>Suppose {@code x} is a queue known to contain only strings.
445     * The following code can be used to dump the queue into a newly
446     * allocated array of {@code String}:
447     *
448     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
449     *
450     * Note that {@code toArray(new Object[0])} is identical in function to
451     * {@code toArray()}.
452     *
453     * @param a the array into which the elements of the queue are to
454     * be stored, if it is big enough; otherwise, a new array of the
455     * same runtime type is allocated for this purpose.
456     * @return an array containing all of the elements in this queue
457     * @throws ArrayStoreException if the runtime type of the specified array
458     * is not a supertype of the runtime type of every element in
459     * this queue
460     * @throws NullPointerException if the specified array is null
461     */
462     @SuppressWarnings("unchecked")
463     public <T> T[] toArray(T[] a) {
464     final int size = this.size;
465     if (a.length < size)
466     // Make a new array of a's runtime type, but my contents:
467     return (T[]) Arrays.copyOf(queue, size, a.getClass());
468     System.arraycopy(queue, 0, a, 0, size);
469     if (a.length > size)
470     a[size] = null;
471     return a;
472     }
473    
474     /**
475     * Returns an iterator over the elements in this queue. The iterator
476     * does not return the elements in any particular order.
477     *
478     * @return an iterator over the elements in this queue
479     */
480     public Iterator<E> iterator() {
481     return new Itr();
482     }
483    
484     private final class Itr implements Iterator<E> {
485     /**
486     * Index (into queue array) of element to be returned by
487     * subsequent call to next.
488     */
489     private int cursor;
490    
491     /**
492     * Index of element returned by most recent call to next,
493     * unless that element came from the forgetMeNot list.
494     * Set to -1 if element is deleted by a call to remove.
495     */
496     private int lastRet = -1;
497    
498     /**
499     * A queue of elements that were moved from the unvisited portion of
500     * the heap into the visited portion as a result of "unlucky" element
501     * removals during the iteration. (Unlucky element removals are those
502     * that require a siftup instead of a siftdown.) We must visit all of
503     * the elements in this list to complete the iteration. We do this
504     * after we've completed the "normal" iteration.
505     *
506     * We expect that most iterations, even those involving removals,
507     * will not need to store elements in this field.
508     */
509     private ArrayDeque<E> forgetMeNot;
510    
511     /**
512     * Element returned by the most recent call to next iff that
513     * element was drawn from the forgetMeNot list.
514     */
515     private E lastRetElt;
516    
517     /**
518     * The modCount value that the iterator believes that the backing
519     * Queue should have. If this expectation is violated, the iterator
520     * has detected concurrent modification.
521     */
522     private int expectedModCount = modCount;
523    
524     public boolean hasNext() {
525     return cursor < size ||
526     (forgetMeNot != null && !forgetMeNot.isEmpty());
527     }
528    
529     @SuppressWarnings("unchecked")
530     public E next() {
531     if (expectedModCount != modCount)
532     throw new ConcurrentModificationException();
533     if (cursor < size)
534     return (E) queue[lastRet = cursor++];
535     if (forgetMeNot != null) {
536     lastRet = -1;
537     lastRetElt = forgetMeNot.poll();
538     if (lastRetElt != null)
539     return lastRetElt;
540     }
541     throw new NoSuchElementException();
542     }
543    
544     public void remove() {
545     if (expectedModCount != modCount)
546     throw new ConcurrentModificationException();
547     if (lastRet != -1) {
548     E moved = PriorityQueue.this.removeAt(lastRet);
549     lastRet = -1;
550     if (moved == null)
551     cursor--;
552     else {
553     if (forgetMeNot == null)
554     forgetMeNot = new ArrayDeque<>();
555     forgetMeNot.add(moved);
556     }
557     } else if (lastRetElt != null) {
558     PriorityQueue.this.removeEq(lastRetElt);
559     lastRetElt = null;
560     } else {
561     throw new IllegalStateException();
562     }
563     expectedModCount = modCount;
564     }
565     }
566    
567     public int size() {
568     return size;
569     }
570    
571     /**
572     * Removes all of the elements from this priority queue.
573     * The queue will be empty after this call returns.
574     */
575     public void clear() {
576     modCount++;
577     for (int i = 0; i < size; i++)
578     queue[i] = null;
579     size = 0;
580     }
581    
582     @SuppressWarnings("unchecked")
583     public E poll() {
584     if (size == 0)
585     return null;
586     int s = --size;
587     modCount++;
588     E result = (E) queue[0];
589     E x = (E) queue[s];
590     queue[s] = null;
591     if (s != 0)
592     siftDown(0, x);
593     return result;
594     }
595    
596     /**
597     * Removes the ith element from queue.
598     *
599     * Normally this method leaves the elements at up to i-1,
600     * inclusive, untouched. Under these circumstances, it returns
601     * null. Occasionally, in order to maintain the heap invariant,
602     * it must swap a later element of the list with one earlier than
603     * i. Under these circumstances, this method returns the element
604     * that was previously at the end of the list and is now at some
605     * position before i. This fact is used by iterator.remove so as to
606     * avoid missing traversing elements.
607     */
608     @SuppressWarnings("unchecked")
609     E removeAt(int i) {
610     // assert i >= 0 && i < size;
611     modCount++;
612     int s = --size;
613     if (s == i) // removed last element
614     queue[i] = null;
615     else {
616     E moved = (E) queue[s];
617     queue[s] = null;
618     siftDown(i, moved);
619     if (queue[i] == moved) {
620     siftUp(i, moved);
621     if (queue[i] != moved)
622     return moved;
623     }
624     }
625     return null;
626     }
627    
628     /**
629     * Inserts item x at position k, maintaining heap invariant by
630     * promoting x up the tree until it is greater than or equal to
631     * its parent, or is the root.
632     *
633 jsr166 1.4 * To simplify and speed up coercions and comparisons, the
634 jsr166 1.1 * Comparable and Comparator versions are separated into different
635     * methods that are otherwise identical. (Similarly for siftDown.)
636     *
637     * @param k the position to fill
638     * @param x the item to insert
639     */
640     private void siftUp(int k, E x) {
641     if (comparator != null)
642     siftUpUsingComparator(k, x);
643     else
644     siftUpComparable(k, x);
645     }
646    
647     @SuppressWarnings("unchecked")
648     private void siftUpComparable(int k, E x) {
649     Comparable<? super E> key = (Comparable<? super E>) x;
650     while (k > 0) {
651     int parent = (k - 1) >>> 1;
652     Object e = queue[parent];
653     if (key.compareTo((E) e) >= 0)
654     break;
655     queue[k] = e;
656     k = parent;
657     }
658     queue[k] = key;
659     }
660    
661     @SuppressWarnings("unchecked")
662     private void siftUpUsingComparator(int k, E x) {
663     while (k > 0) {
664     int parent = (k - 1) >>> 1;
665     Object e = queue[parent];
666     if (comparator.compare(x, (E) e) >= 0)
667     break;
668     queue[k] = e;
669     k = parent;
670     }
671     queue[k] = x;
672     }
673    
674     /**
675     * Inserts item x at position k, maintaining heap invariant by
676     * demoting x down the tree repeatedly until it is less than or
677     * equal to its children or is a leaf.
678     *
679     * @param k the position to fill
680     * @param x the item to insert
681     */
682     private void siftDown(int k, E x) {
683     if (comparator != null)
684     siftDownUsingComparator(k, x);
685     else
686     siftDownComparable(k, x);
687     }
688    
689     @SuppressWarnings("unchecked")
690     private void siftDownComparable(int k, E x) {
691     Comparable<? super E> key = (Comparable<? super E>)x;
692     int half = size >>> 1; // loop while a non-leaf
693     while (k < half) {
694     int child = (k << 1) + 1; // assume left child is least
695     Object c = queue[child];
696     int right = child + 1;
697     if (right < size &&
698     ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
699     c = queue[child = right];
700     if (key.compareTo((E) c) <= 0)
701     break;
702     queue[k] = c;
703     k = child;
704     }
705     queue[k] = key;
706     }
707    
708     @SuppressWarnings("unchecked")
709     private void siftDownUsingComparator(int k, E x) {
710     int half = size >>> 1;
711     while (k < half) {
712     int child = (k << 1) + 1;
713     Object c = queue[child];
714     int right = child + 1;
715     if (right < size &&
716     comparator.compare((E) c, (E) queue[right]) > 0)
717     c = queue[child = right];
718     if (comparator.compare(x, (E) c) <= 0)
719     break;
720     queue[k] = c;
721     k = child;
722     }
723     queue[k] = x;
724     }
725    
726     /**
727     * Establishes the heap invariant (described above) in the entire tree,
728     * assuming nothing about the order of the elements prior to the call.
729     */
730     @SuppressWarnings("unchecked")
731     private void heapify() {
732     for (int i = (size >>> 1) - 1; i >= 0; i--)
733     siftDown(i, (E) queue[i]);
734     }
735    
736     /**
737     * Returns the comparator used to order the elements in this
738     * queue, or {@code null} if this queue is sorted according to
739     * the {@linkplain Comparable natural ordering} of its elements.
740     *
741     * @return the comparator used to order this queue, or
742     * {@code null} if this queue is sorted according to the
743     * natural ordering of its elements
744     */
745     public Comparator<? super E> comparator() {
746     return comparator;
747     }
748    
749     /**
750     * Saves this queue to a stream (that is, serializes it).
751     *
752 jsr166 1.3 * @param s the stream
753     * @throws java.io.IOException if an I/O error occurs
754 jsr166 1.1 * @serialData The length of the array backing the instance is
755     * emitted (int), followed by all of its elements
756     * (each an {@code Object}) in the proper order.
757     */
758     private void writeObject(java.io.ObjectOutputStream s)
759     throws java.io.IOException {
760     // Write out element count, and any hidden stuff
761     s.defaultWriteObject();
762    
763     // Write out array length, for compatibility with 1.5 version
764     s.writeInt(Math.max(2, size + 1));
765    
766     // Write out all elements in the "proper order".
767     for (int i = 0; i < size; i++)
768     s.writeObject(queue[i]);
769     }
770    
771     /**
772     * Reconstitutes the {@code PriorityQueue} instance from a stream
773     * (that is, deserializes it).
774     *
775     * @param s the stream
776     * @throws ClassNotFoundException if the class of a serialized object
777     * could not be found
778     * @throws java.io.IOException if an I/O error occurs
779     */
780     private void readObject(java.io.ObjectInputStream s)
781     throws java.io.IOException, ClassNotFoundException {
782     // Read in size, and any hidden stuff
783     s.defaultReadObject();
784    
785     // Read in (and discard) array length
786     s.readInt();
787    
788     queue = new Object[size];
789    
790     // Read in all elements.
791     for (int i = 0; i < size; i++)
792     queue[i] = s.readObject();
793    
794     // Elements are guaranteed to be in "proper order", but the
795     // spec has never explained what that might be.
796     heapify();
797     }
798    
799     /**
800     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
801     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
802     * queue.
803     *
804     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
805     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
806     * Overriding implementations should document the reporting of additional
807     * characteristic values.
808     *
809     * @return a {@code Spliterator} over the elements in this queue
810     * @since 1.8
811     */
812     public final Spliterator<E> spliterator() {
813     return new PriorityQueueSpliterator<>(this, 0, -1, 0);
814     }
815    
816     static final class PriorityQueueSpliterator<E> implements Spliterator<E> {
817     /*
818     * This is very similar to ArrayList Spliterator, except for
819     * extra null checks.
820     */
821     private final PriorityQueue<E> pq;
822     private int index; // current index, modified on advance/split
823     private int fence; // -1 until first use
824     private int expectedModCount; // initialized when fence set
825    
826     /** Creates new spliterator covering the given range. */
827     PriorityQueueSpliterator(PriorityQueue<E> pq, int origin, int fence,
828     int expectedModCount) {
829     this.pq = pq;
830     this.index = origin;
831     this.fence = fence;
832     this.expectedModCount = expectedModCount;
833     }
834    
835     private int getFence() { // initialize fence to size on first use
836     int hi;
837     if ((hi = fence) < 0) {
838     expectedModCount = pq.modCount;
839     hi = fence = pq.size;
840     }
841     return hi;
842     }
843    
844     public PriorityQueueSpliterator<E> trySplit() {
845     int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
846     return (lo >= mid) ? null :
847     new PriorityQueueSpliterator<>(pq, lo, index = mid,
848     expectedModCount);
849     }
850    
851     @SuppressWarnings("unchecked")
852     public void forEachRemaining(Consumer<? super E> action) {
853     int i, hi, mc; // hoist accesses and checks from loop
854     PriorityQueue<E> q; Object[] a;
855     if (action == null)
856     throw new NullPointerException();
857     if ((q = pq) != null && (a = q.queue) != null) {
858     if ((hi = fence) < 0) {
859     mc = q.modCount;
860     hi = q.size;
861     }
862     else
863     mc = expectedModCount;
864     if ((i = index) >= 0 && (index = hi) <= a.length) {
865     for (E e;; ++i) {
866     if (i < hi) {
867     if ((e = (E) a[i]) == null) // must be CME
868     break;
869     action.accept(e);
870     }
871     else if (q.modCount != mc)
872     break;
873     else
874     return;
875     }
876     }
877     }
878     throw new ConcurrentModificationException();
879     }
880    
881     public boolean tryAdvance(Consumer<? super E> action) {
882     if (action == null)
883     throw new NullPointerException();
884     int hi = getFence(), lo = index;
885     if (lo >= 0 && lo < hi) {
886     index = lo + 1;
887     @SuppressWarnings("unchecked") E e = (E)pq.queue[lo];
888     if (e == null)
889     throw new ConcurrentModificationException();
890     action.accept(e);
891     if (pq.modCount != expectedModCount)
892     throw new ConcurrentModificationException();
893     return true;
894     }
895     return false;
896     }
897    
898     public long estimateSize() {
899     return (long) (getFence() - index);
900     }
901    
902     public int characteristics() {
903     return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
904     }
905     }
906     }