ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/SplittableRandom.java
Revision: 1.2
Committed: Mon Nov 14 16:49:56 2016 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.1: +13 -0 lines
Log Message:
sync from main

File Contents

# Content
1 /*
2 * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.concurrent.atomic.AtomicLong;
29 import java.util.function.DoubleConsumer;
30 import java.util.function.IntConsumer;
31 import java.util.function.LongConsumer;
32 import java.util.stream.DoubleStream;
33 import java.util.stream.IntStream;
34 import java.util.stream.LongStream;
35 import java.util.stream.StreamSupport;
36
37 /**
38 * A generator of uniform pseudorandom values applicable for use in
39 * (among other contexts) isolated parallel computations that may
40 * generate subtasks. Class {@code SplittableRandom} supports methods for
41 * producing pseudorandom numbers of type {@code int}, {@code long},
42 * and {@code double} with similar usages as for class
43 * {@link java.util.Random} but differs in the following ways:
44 *
45 * <ul>
46 *
47 * <li>Series of generated values pass the DieHarder suite testing
48 * independence and uniformity properties of random number generators.
49 * (Most recently validated with <a
50 * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
51 * 3.31.1</a>.) These tests validate only the methods for certain
52 * types and ranges, but similar properties are expected to hold, at
53 * least approximately, for others as well. The <em>period</em>
54 * (length of any series of generated values before it repeats) is at
55 * least 2<sup>64</sup>.
56 *
57 * <li>Method {@link #split} constructs and returns a new
58 * SplittableRandom instance that shares no mutable state with the
59 * current instance. However, with very high probability, the
60 * values collectively generated by the two objects have the same
61 * statistical properties as if the same quantity of values were
62 * generated by a single thread using a single {@code
63 * SplittableRandom} object.
64 *
65 * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
66 * They are designed to be split, not shared, across threads. For
67 * example, a {@link java.util.concurrent.ForkJoinTask
68 * fork/join-style} computation using random numbers might include a
69 * construction of the form {@code new
70 * Subtask(aSplittableRandom.split()).fork()}.
71 *
72 * <li>This class provides additional methods for generating random
73 * streams, that employ the above techniques when used in {@code
74 * stream.parallel()} mode.
75 *
76 * </ul>
77 *
78 * <p>Instances of {@code SplittableRandom} are not cryptographically
79 * secure. Consider instead using {@link java.security.SecureRandom}
80 * in security-sensitive applications. Additionally,
81 * default-constructed instances do not use a cryptographically random
82 * seed unless the {@linkplain System#getProperty system property}
83 * {@code java.util.secureRandomSeed} is set to {@code true}.
84 *
85 * @author Guy Steele
86 * @author Doug Lea
87 * @since 1.8
88 */
89 public final class SplittableRandom {
90
91 /*
92 * Implementation Overview.
93 *
94 * This algorithm was inspired by the "DotMix" algorithm by
95 * Leiserson, Schardl, and Sukha "Deterministic Parallel
96 * Random-Number Generation for Dynamic-Multithreading Platforms",
97 * PPoPP 2012, as well as those in "Parallel random numbers: as
98 * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011. It
99 * differs mainly in simplifying and cheapening operations.
100 *
101 * The primary update step (method nextSeed()) is to add a
102 * constant ("gamma") to the current (64 bit) seed, forming a
103 * simple sequence. The seed and the gamma values for any two
104 * SplittableRandom instances are highly likely to be different.
105 *
106 * Methods nextLong, nextInt, and derivatives do not return the
107 * sequence (seed) values, but instead a hash-like bit-mix of
108 * their bits, producing more independently distributed sequences.
109 * For nextLong, the mix64 function is based on David Stafford's
110 * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
111 * "Mix13" variant of the "64-bit finalizer" function in Austin
112 * Appleby's MurmurHash3 algorithm (see
113 * http://code.google.com/p/smhasher/wiki/MurmurHash3). The mix32
114 * function is based on Stafford's Mix04 mix function, but returns
115 * the upper 32 bits cast as int.
116 *
117 * The split operation uses the current generator to form the seed
118 * and gamma for another SplittableRandom. To conservatively
119 * avoid potential correlations between seed and value generation,
120 * gamma selection (method mixGamma) uses different
121 * (Murmurhash3's) mix constants. To avoid potential weaknesses
122 * in bit-mixing transformations, we restrict gammas to odd values
123 * with at least 24 0-1 or 1-0 bit transitions. Rather than
124 * rejecting candidates with too few or too many bits set, method
125 * mixGamma flips some bits (which has the effect of mapping at
126 * most 4 to any given gamma value). This reduces the effective
127 * set of 64bit odd gamma values by about 2%, and serves as an
128 * automated screening for sequence constant selection that is
129 * left as an empirical decision in some other hashing and crypto
130 * algorithms.
131 *
132 * The resulting generator thus transforms a sequence in which
133 * (typically) many bits change on each step, with an inexpensive
134 * mixer with good (but less than cryptographically secure)
135 * avalanching.
136 *
137 * The default (no-argument) constructor, in essence, invokes
138 * split() for a common "defaultGen" SplittableRandom. Unlike
139 * other cases, this split must be performed in a thread-safe
140 * manner, so we use an AtomicLong to represent the seed rather
141 * than use an explicit SplittableRandom. To bootstrap the
142 * defaultGen, we start off using a seed based on current time
143 * unless the java.util.secureRandomSeed property is set. This
144 * serves as a slimmed-down (and insecure) variant of SecureRandom
145 * that also avoids stalls that may occur when using /dev/random.
146 *
147 * It is a relatively simple matter to apply the basic design here
148 * to use 128 bit seeds. However, emulating 128bit arithmetic and
149 * carrying around twice the state add more overhead than appears
150 * warranted for current usages.
151 *
152 * File organization: First the non-public methods that constitute
153 * the main algorithm, then the main public methods, followed by
154 * some custom spliterator classes needed for stream methods.
155 */
156
157 /**
158 * The golden ratio scaled to 64bits, used as the initial gamma
159 * value for (unsplit) SplittableRandoms.
160 */
161 private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
162
163 /**
164 * The least non-zero value returned by nextDouble(). This value
165 * is scaled by a random value of 53 bits to produce a result.
166 */
167 private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53);
168
169 /**
170 * The seed. Updated only via method nextSeed.
171 */
172 private long seed;
173
174 /**
175 * The step value.
176 */
177 private final long gamma;
178
179 /**
180 * Internal constructor used by all others except default constructor.
181 */
182 private SplittableRandom(long seed, long gamma) {
183 this.seed = seed;
184 this.gamma = gamma;
185 }
186
187 /**
188 * Computes Stafford variant 13 of 64bit mix function.
189 */
190 private static long mix64(long z) {
191 z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
192 z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
193 return z ^ (z >>> 31);
194 }
195
196 /**
197 * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
198 */
199 private static int mix32(long z) {
200 z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
201 return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
202 }
203
204 /**
205 * Returns the gamma value to use for a new split instance.
206 */
207 private static long mixGamma(long z) {
208 z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
209 z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
210 z = (z ^ (z >>> 33)) | 1L; // force to be odd
211 int n = Long.bitCount(z ^ (z >>> 1)); // ensure enough transitions
212 return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
213 }
214
215 /**
216 * Adds gamma to seed.
217 */
218 private long nextSeed() {
219 return seed += gamma;
220 }
221
222 // IllegalArgumentException messages
223 static final String BAD_BOUND = "bound must be positive";
224 static final String BAD_RANGE = "bound must be greater than origin";
225 static final String BAD_SIZE = "size must be non-negative";
226
227 /**
228 * The seed generator for default constructors.
229 */
230 private static final AtomicLong defaultGen
231 = new AtomicLong(mix64(System.currentTimeMillis()) ^
232 mix64(System.nanoTime()));
233
234 // at end of <clinit> to survive static initialization circularity
235 static {
236 if (java.security.AccessController.doPrivileged(
237 new java.security.PrivilegedAction<Boolean>() {
238 public Boolean run() {
239 return Boolean.getBoolean("java.util.secureRandomSeed");
240 }})) {
241 byte[] seedBytes = java.security.SecureRandom.getSeed(8);
242 long s = (long)seedBytes[0] & 0xffL;
243 for (int i = 1; i < 8; ++i)
244 s = (s << 8) | ((long)seedBytes[i] & 0xffL);
245 defaultGen.set(s);
246 }
247 }
248
249 /*
250 * Internal versions of nextX methods used by streams, as well as
251 * the public nextX(origin, bound) methods. These exist mainly to
252 * avoid the need for multiple versions of stream spliterators
253 * across the different exported forms of streams.
254 */
255
256 /**
257 * The form of nextLong used by LongStream Spliterators. If
258 * origin is greater than bound, acts as unbounded form of
259 * nextLong, else as bounded form.
260 *
261 * @param origin the least value, unless greater than bound
262 * @param bound the upper bound (exclusive), must not equal origin
263 * @return a pseudorandom value
264 */
265 final long internalNextLong(long origin, long bound) {
266 /*
267 * Four Cases:
268 *
269 * 1. If the arguments indicate unbounded form, act as
270 * nextLong().
271 *
272 * 2. If the range is an exact power of two, apply the
273 * associated bit mask.
274 *
275 * 3. If the range is positive, loop to avoid potential bias
276 * when the implicit nextLong() bound (2<sup>64</sup>) is not
277 * evenly divisible by the range. The loop rejects candidates
278 * computed from otherwise over-represented values. The
279 * expected number of iterations under an ideal generator
280 * varies from 1 to 2, depending on the bound. The loop itself
281 * takes an unlovable form. Because the first candidate is
282 * already available, we need a break-in-the-middle
283 * construction, which is concisely but cryptically performed
284 * within the while-condition of a body-less for loop.
285 *
286 * 4. Otherwise, the range cannot be represented as a positive
287 * long. The loop repeatedly generates unbounded longs until
288 * obtaining a candidate meeting constraints (with an expected
289 * number of iterations of less than two).
290 */
291
292 long r = mix64(nextSeed());
293 if (origin < bound) {
294 long n = bound - origin, m = n - 1;
295 if ((n & m) == 0L) // power of two
296 r = (r & m) + origin;
297 else if (n > 0L) { // reject over-represented candidates
298 for (long u = r >>> 1; // ensure nonnegative
299 u + m - (r = u % n) < 0L; // rejection check
300 u = mix64(nextSeed()) >>> 1) // retry
301 ;
302 r += origin;
303 }
304 else { // range not representable as long
305 while (r < origin || r >= bound)
306 r = mix64(nextSeed());
307 }
308 }
309 return r;
310 }
311
312 /**
313 * The form of nextInt used by IntStream Spliterators.
314 * Exactly the same as long version, except for types.
315 *
316 * @param origin the least value, unless greater than bound
317 * @param bound the upper bound (exclusive), must not equal origin
318 * @return a pseudorandom value
319 */
320 final int internalNextInt(int origin, int bound) {
321 int r = mix32(nextSeed());
322 if (origin < bound) {
323 int n = bound - origin, m = n - 1;
324 if ((n & m) == 0)
325 r = (r & m) + origin;
326 else if (n > 0) {
327 for (int u = r >>> 1;
328 u + m - (r = u % n) < 0;
329 u = mix32(nextSeed()) >>> 1)
330 ;
331 r += origin;
332 }
333 else {
334 while (r < origin || r >= bound)
335 r = mix32(nextSeed());
336 }
337 }
338 return r;
339 }
340
341 /**
342 * The form of nextDouble used by DoubleStream Spliterators.
343 *
344 * @param origin the least value, unless greater than bound
345 * @param bound the upper bound (exclusive), must not equal origin
346 * @return a pseudorandom value
347 */
348 final double internalNextDouble(double origin, double bound) {
349 double r = (nextLong() >>> 11) * DOUBLE_UNIT;
350 if (origin < bound) {
351 r = r * (bound - origin) + origin;
352 if (r >= bound) // correct for rounding
353 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
354 }
355 return r;
356 }
357
358 /* ---------------- public methods ---------------- */
359
360 /**
361 * Creates a new SplittableRandom instance using the specified
362 * initial seed. SplittableRandom instances created with the same
363 * seed in the same program generate identical sequences of values.
364 *
365 * @param seed the initial seed
366 */
367 public SplittableRandom(long seed) {
368 this(seed, GOLDEN_GAMMA);
369 }
370
371 /**
372 * Creates a new SplittableRandom instance that is likely to
373 * generate sequences of values that are statistically independent
374 * of those of any other instances in the current program; and
375 * may, and typically does, vary across program invocations.
376 */
377 public SplittableRandom() { // emulate defaultGen.split()
378 long s = defaultGen.getAndAdd(2 * GOLDEN_GAMMA);
379 this.seed = mix64(s);
380 this.gamma = mixGamma(s + GOLDEN_GAMMA);
381 }
382
383 /**
384 * Constructs and returns a new SplittableRandom instance that
385 * shares no mutable state with this instance. However, with very
386 * high probability, the set of values collectively generated by
387 * the two objects has the same statistical properties as if the
388 * same quantity of values were generated by a single thread using
389 * a single SplittableRandom object. Either or both of the two
390 * objects may be further split using the {@code split()} method,
391 * and the same expected statistical properties apply to the
392 * entire set of generators constructed by such recursive
393 * splitting.
394 *
395 * @return the new SplittableRandom instance
396 */
397 public SplittableRandom split() {
398 return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
399 }
400
401 /**
402 * Returns a pseudorandom {@code int} value.
403 *
404 * @return a pseudorandom {@code int} value
405 */
406 public int nextInt() {
407 return mix32(nextSeed());
408 }
409
410 /**
411 * Returns a pseudorandom {@code int} value between zero (inclusive)
412 * and the specified bound (exclusive).
413 *
414 * @param bound the upper bound (exclusive). Must be positive.
415 * @return a pseudorandom {@code int} value between zero
416 * (inclusive) and the bound (exclusive)
417 * @throws IllegalArgumentException if {@code bound} is not positive
418 */
419 public int nextInt(int bound) {
420 if (bound <= 0)
421 throw new IllegalArgumentException(BAD_BOUND);
422 // Specialize internalNextInt for origin 0
423 int r = mix32(nextSeed());
424 int m = bound - 1;
425 if ((bound & m) == 0) // power of two
426 r &= m;
427 else { // reject over-represented candidates
428 for (int u = r >>> 1;
429 u + m - (r = u % bound) < 0;
430 u = mix32(nextSeed()) >>> 1)
431 ;
432 }
433 return r;
434 }
435
436 /**
437 * Returns a pseudorandom {@code int} value between the specified
438 * origin (inclusive) and the specified bound (exclusive).
439 *
440 * @param origin the least value returned
441 * @param bound the upper bound (exclusive)
442 * @return a pseudorandom {@code int} value between the origin
443 * (inclusive) and the bound (exclusive)
444 * @throws IllegalArgumentException if {@code origin} is greater than
445 * or equal to {@code bound}
446 */
447 public int nextInt(int origin, int bound) {
448 if (origin >= bound)
449 throw new IllegalArgumentException(BAD_RANGE);
450 return internalNextInt(origin, bound);
451 }
452
453 /**
454 * Returns a pseudorandom {@code long} value.
455 *
456 * @return a pseudorandom {@code long} value
457 */
458 public long nextLong() {
459 return mix64(nextSeed());
460 }
461
462 /**
463 * Returns a pseudorandom {@code long} value between zero (inclusive)
464 * and the specified bound (exclusive).
465 *
466 * @param bound the upper bound (exclusive). Must be positive.
467 * @return a pseudorandom {@code long} value between zero
468 * (inclusive) and the bound (exclusive)
469 * @throws IllegalArgumentException if {@code bound} is not positive
470 */
471 public long nextLong(long bound) {
472 if (bound <= 0)
473 throw new IllegalArgumentException(BAD_BOUND);
474 // Specialize internalNextLong for origin 0
475 long r = mix64(nextSeed());
476 long m = bound - 1;
477 if ((bound & m) == 0L) // power of two
478 r &= m;
479 else { // reject over-represented candidates
480 for (long u = r >>> 1;
481 u + m - (r = u % bound) < 0L;
482 u = mix64(nextSeed()) >>> 1)
483 ;
484 }
485 return r;
486 }
487
488 /**
489 * Returns a pseudorandom {@code long} value between the specified
490 * origin (inclusive) and the specified bound (exclusive).
491 *
492 * @param origin the least value returned
493 * @param bound the upper bound (exclusive)
494 * @return a pseudorandom {@code long} value between the origin
495 * (inclusive) and the bound (exclusive)
496 * @throws IllegalArgumentException if {@code origin} is greater than
497 * or equal to {@code bound}
498 */
499 public long nextLong(long origin, long bound) {
500 if (origin >= bound)
501 throw new IllegalArgumentException(BAD_RANGE);
502 return internalNextLong(origin, bound);
503 }
504
505 /**
506 * Returns a pseudorandom {@code double} value between zero
507 * (inclusive) and one (exclusive).
508 *
509 * @return a pseudorandom {@code double} value between zero
510 * (inclusive) and one (exclusive)
511 */
512 public double nextDouble() {
513 return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
514 }
515
516 /**
517 * Returns a pseudorandom {@code double} value between 0.0
518 * (inclusive) and the specified bound (exclusive).
519 *
520 * @param bound the upper bound (exclusive). Must be positive.
521 * @return a pseudorandom {@code double} value between zero
522 * (inclusive) and the bound (exclusive)
523 * @throws IllegalArgumentException if {@code bound} is not positive
524 */
525 public double nextDouble(double bound) {
526 if (!(bound > 0.0))
527 throw new IllegalArgumentException(BAD_BOUND);
528 double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
529 return (result < bound) ? result : // correct for rounding
530 Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
531 }
532
533 /**
534 * Generates a pseudorandom number with the indicated number of
535 * low-order bits. Because this class has no subclasses, this
536 * method cannot be invoked or overridden.
537 *
538 * @param bits random bits
539 * @return the next pseudorandom value from this random number
540 * generator's sequence
541 */
542 protected int next(int bits) {
543 return nextInt() >>> (32 - bits);
544 }
545
546 /**
547 * Returns a pseudorandom {@code double} value between the specified
548 * origin (inclusive) and bound (exclusive).
549 *
550 * @param origin the least value returned
551 * @param bound the upper bound (exclusive)
552 * @return a pseudorandom {@code double} value between the origin
553 * (inclusive) and the bound (exclusive)
554 * @throws IllegalArgumentException if {@code origin} is greater than
555 * or equal to {@code bound}
556 */
557 public double nextDouble(double origin, double bound) {
558 if (!(origin < bound))
559 throw new IllegalArgumentException(BAD_RANGE);
560 return internalNextDouble(origin, bound);
561 }
562
563 /**
564 * Returns a pseudorandom {@code boolean} value.
565 *
566 * @return a pseudorandom {@code boolean} value
567 */
568 public boolean nextBoolean() {
569 return mix32(nextSeed()) < 0;
570 }
571
572 // stream methods, coded in a way intended to better isolate for
573 // maintenance purposes the small differences across forms.
574
575 /**
576 * Returns a stream producing the given {@code streamSize} number
577 * of pseudorandom {@code int} values from this generator and/or
578 * one split from it.
579 *
580 * @param streamSize the number of values to generate
581 * @return a stream of pseudorandom {@code int} values
582 * @throws IllegalArgumentException if {@code streamSize} is
583 * less than zero
584 */
585 public IntStream ints(long streamSize) {
586 if (streamSize < 0L)
587 throw new IllegalArgumentException(BAD_SIZE);
588 return StreamSupport.intStream
589 (new RandomIntsSpliterator
590 (this, 0L, streamSize, Integer.MAX_VALUE, 0),
591 false);
592 }
593
594 /**
595 * Returns an effectively unlimited stream of pseudorandom {@code int}
596 * values from this generator and/or one split from it.
597 *
598 * @implNote This method is implemented to be equivalent to {@code
599 * ints(Long.MAX_VALUE)}.
600 *
601 * @return a stream of pseudorandom {@code int} values
602 */
603 public IntStream ints() {
604 return StreamSupport.intStream
605 (new RandomIntsSpliterator
606 (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
607 false);
608 }
609
610 /**
611 * Returns a stream producing the given {@code streamSize} number
612 * of pseudorandom {@code int} values from this generator and/or one split
613 * from it; each value conforms to the given origin (inclusive) and bound
614 * (exclusive).
615 *
616 * @param streamSize the number of values to generate
617 * @param randomNumberOrigin the origin (inclusive) of each random value
618 * @param randomNumberBound the bound (exclusive) of each random value
619 * @return a stream of pseudorandom {@code int} values,
620 * each with the given origin (inclusive) and bound (exclusive)
621 * @throws IllegalArgumentException if {@code streamSize} is
622 * less than zero, or {@code randomNumberOrigin}
623 * is greater than or equal to {@code randomNumberBound}
624 */
625 public IntStream ints(long streamSize, int randomNumberOrigin,
626 int randomNumberBound) {
627 if (streamSize < 0L)
628 throw new IllegalArgumentException(BAD_SIZE);
629 if (randomNumberOrigin >= randomNumberBound)
630 throw new IllegalArgumentException(BAD_RANGE);
631 return StreamSupport.intStream
632 (new RandomIntsSpliterator
633 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
634 false);
635 }
636
637 /**
638 * Returns an effectively unlimited stream of pseudorandom {@code
639 * int} values from this generator and/or one split from it; each value
640 * conforms to the given origin (inclusive) and bound (exclusive).
641 *
642 * @implNote This method is implemented to be equivalent to {@code
643 * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
644 *
645 * @param randomNumberOrigin the origin (inclusive) of each random value
646 * @param randomNumberBound the bound (exclusive) of each random value
647 * @return a stream of pseudorandom {@code int} values,
648 * each with the given origin (inclusive) and bound (exclusive)
649 * @throws IllegalArgumentException if {@code randomNumberOrigin}
650 * is greater than or equal to {@code randomNumberBound}
651 */
652 public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
653 if (randomNumberOrigin >= randomNumberBound)
654 throw new IllegalArgumentException(BAD_RANGE);
655 return StreamSupport.intStream
656 (new RandomIntsSpliterator
657 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
658 false);
659 }
660
661 /**
662 * Returns a stream producing the given {@code streamSize} number
663 * of pseudorandom {@code long} values from this generator and/or
664 * one split from it.
665 *
666 * @param streamSize the number of values to generate
667 * @return a stream of pseudorandom {@code long} values
668 * @throws IllegalArgumentException if {@code streamSize} is
669 * less than zero
670 */
671 public LongStream longs(long streamSize) {
672 if (streamSize < 0L)
673 throw new IllegalArgumentException(BAD_SIZE);
674 return StreamSupport.longStream
675 (new RandomLongsSpliterator
676 (this, 0L, streamSize, Long.MAX_VALUE, 0L),
677 false);
678 }
679
680 /**
681 * Returns an effectively unlimited stream of pseudorandom {@code
682 * long} values from this generator and/or one split from it.
683 *
684 * @implNote This method is implemented to be equivalent to {@code
685 * longs(Long.MAX_VALUE)}.
686 *
687 * @return a stream of pseudorandom {@code long} values
688 */
689 public LongStream longs() {
690 return StreamSupport.longStream
691 (new RandomLongsSpliterator
692 (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
693 false);
694 }
695
696 /**
697 * Returns a stream producing the given {@code streamSize} number of
698 * pseudorandom {@code long} values from this generator and/or one split
699 * from it; each value conforms to the given origin (inclusive) and bound
700 * (exclusive).
701 *
702 * @param streamSize the number of values to generate
703 * @param randomNumberOrigin the origin (inclusive) of each random value
704 * @param randomNumberBound the bound (exclusive) of each random value
705 * @return a stream of pseudorandom {@code long} values,
706 * each with the given origin (inclusive) and bound (exclusive)
707 * @throws IllegalArgumentException if {@code streamSize} is
708 * less than zero, or {@code randomNumberOrigin}
709 * is greater than or equal to {@code randomNumberBound}
710 */
711 public LongStream longs(long streamSize, long randomNumberOrigin,
712 long randomNumberBound) {
713 if (streamSize < 0L)
714 throw new IllegalArgumentException(BAD_SIZE);
715 if (randomNumberOrigin >= randomNumberBound)
716 throw new IllegalArgumentException(BAD_RANGE);
717 return StreamSupport.longStream
718 (new RandomLongsSpliterator
719 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
720 false);
721 }
722
723 /**
724 * Returns an effectively unlimited stream of pseudorandom {@code
725 * long} values from this generator and/or one split from it; each value
726 * conforms to the given origin (inclusive) and bound (exclusive).
727 *
728 * @implNote This method is implemented to be equivalent to {@code
729 * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
730 *
731 * @param randomNumberOrigin the origin (inclusive) of each random value
732 * @param randomNumberBound the bound (exclusive) of each random value
733 * @return a stream of pseudorandom {@code long} values,
734 * each with the given origin (inclusive) and bound (exclusive)
735 * @throws IllegalArgumentException if {@code randomNumberOrigin}
736 * is greater than or equal to {@code randomNumberBound}
737 */
738 public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
739 if (randomNumberOrigin >= randomNumberBound)
740 throw new IllegalArgumentException(BAD_RANGE);
741 return StreamSupport.longStream
742 (new RandomLongsSpliterator
743 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
744 false);
745 }
746
747 /**
748 * Returns a stream producing the given {@code streamSize} number of
749 * pseudorandom {@code double} values from this generator and/or one split
750 * from it; each value is between zero (inclusive) and one (exclusive).
751 *
752 * @param streamSize the number of values to generate
753 * @return a stream of {@code double} values
754 * @throws IllegalArgumentException if {@code streamSize} is
755 * less than zero
756 */
757 public DoubleStream doubles(long streamSize) {
758 if (streamSize < 0L)
759 throw new IllegalArgumentException(BAD_SIZE);
760 return StreamSupport.doubleStream
761 (new RandomDoublesSpliterator
762 (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
763 false);
764 }
765
766 /**
767 * Returns an effectively unlimited stream of pseudorandom {@code
768 * double} values from this generator and/or one split from it; each value
769 * is between zero (inclusive) and one (exclusive).
770 *
771 * @implNote This method is implemented to be equivalent to {@code
772 * doubles(Long.MAX_VALUE)}.
773 *
774 * @return a stream of pseudorandom {@code double} values
775 */
776 public DoubleStream doubles() {
777 return StreamSupport.doubleStream
778 (new RandomDoublesSpliterator
779 (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
780 false);
781 }
782
783 /**
784 * Returns a stream producing the given {@code streamSize} number of
785 * pseudorandom {@code double} values from this generator and/or one split
786 * from it; each value conforms to the given origin (inclusive) and bound
787 * (exclusive).
788 *
789 * @param streamSize the number of values to generate
790 * @param randomNumberOrigin the origin (inclusive) of each random value
791 * @param randomNumberBound the bound (exclusive) of each random value
792 * @return a stream of pseudorandom {@code double} values,
793 * each with the given origin (inclusive) and bound (exclusive)
794 * @throws IllegalArgumentException if {@code streamSize} is
795 * less than zero
796 * @throws IllegalArgumentException if {@code randomNumberOrigin}
797 * is greater than or equal to {@code randomNumberBound}
798 */
799 public DoubleStream doubles(long streamSize, double randomNumberOrigin,
800 double randomNumberBound) {
801 if (streamSize < 0L)
802 throw new IllegalArgumentException(BAD_SIZE);
803 if (!(randomNumberOrigin < randomNumberBound))
804 throw new IllegalArgumentException(BAD_RANGE);
805 return StreamSupport.doubleStream
806 (new RandomDoublesSpliterator
807 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
808 false);
809 }
810
811 /**
812 * Returns an effectively unlimited stream of pseudorandom {@code
813 * double} values from this generator and/or one split from it; each value
814 * conforms to the given origin (inclusive) and bound (exclusive).
815 *
816 * @implNote This method is implemented to be equivalent to {@code
817 * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
818 *
819 * @param randomNumberOrigin the origin (inclusive) of each random value
820 * @param randomNumberBound the bound (exclusive) of each random value
821 * @return a stream of pseudorandom {@code double} values,
822 * each with the given origin (inclusive) and bound (exclusive)
823 * @throws IllegalArgumentException if {@code randomNumberOrigin}
824 * is greater than or equal to {@code randomNumberBound}
825 */
826 public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
827 if (!(randomNumberOrigin < randomNumberBound))
828 throw new IllegalArgumentException(BAD_RANGE);
829 return StreamSupport.doubleStream
830 (new RandomDoublesSpliterator
831 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
832 false);
833 }
834
835 /**
836 * Spliterator for int streams. We multiplex the four int
837 * versions into one class by treating a bound less than origin as
838 * unbounded, and also by treating "infinite" as equivalent to
839 * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
840 * approach. The long and double versions of this class are
841 * identical except for types.
842 */
843 private static final class RandomIntsSpliterator
844 implements Spliterator.OfInt {
845 final SplittableRandom rng;
846 long index;
847 final long fence;
848 final int origin;
849 final int bound;
850 RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
851 int origin, int bound) {
852 this.rng = rng; this.index = index; this.fence = fence;
853 this.origin = origin; this.bound = bound;
854 }
855
856 public RandomIntsSpliterator trySplit() {
857 long i = index, m = (i + fence) >>> 1;
858 return (m <= i) ? null :
859 new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
860 }
861
862 public long estimateSize() {
863 return fence - index;
864 }
865
866 public int characteristics() {
867 return (Spliterator.SIZED | Spliterator.SUBSIZED |
868 Spliterator.NONNULL | Spliterator.IMMUTABLE);
869 }
870
871 public boolean tryAdvance(IntConsumer consumer) {
872 if (consumer == null) throw new NullPointerException();
873 long i = index, f = fence;
874 if (i < f) {
875 consumer.accept(rng.internalNextInt(origin, bound));
876 index = i + 1;
877 return true;
878 }
879 return false;
880 }
881
882 public void forEachRemaining(IntConsumer consumer) {
883 if (consumer == null) throw new NullPointerException();
884 long i = index, f = fence;
885 if (i < f) {
886 index = f;
887 SplittableRandom r = rng;
888 int o = origin, b = bound;
889 do {
890 consumer.accept(r.internalNextInt(o, b));
891 } while (++i < f);
892 }
893 }
894 }
895
896 /**
897 * Spliterator for long streams.
898 */
899 private static final class RandomLongsSpliterator
900 implements Spliterator.OfLong {
901 final SplittableRandom rng;
902 long index;
903 final long fence;
904 final long origin;
905 final long bound;
906 RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
907 long origin, long bound) {
908 this.rng = rng; this.index = index; this.fence = fence;
909 this.origin = origin; this.bound = bound;
910 }
911
912 public RandomLongsSpliterator trySplit() {
913 long i = index, m = (i + fence) >>> 1;
914 return (m <= i) ? null :
915 new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
916 }
917
918 public long estimateSize() {
919 return fence - index;
920 }
921
922 public int characteristics() {
923 return (Spliterator.SIZED | Spliterator.SUBSIZED |
924 Spliterator.NONNULL | Spliterator.IMMUTABLE);
925 }
926
927 public boolean tryAdvance(LongConsumer consumer) {
928 if (consumer == null) throw new NullPointerException();
929 long i = index, f = fence;
930 if (i < f) {
931 consumer.accept(rng.internalNextLong(origin, bound));
932 index = i + 1;
933 return true;
934 }
935 return false;
936 }
937
938 public void forEachRemaining(LongConsumer consumer) {
939 if (consumer == null) throw new NullPointerException();
940 long i = index, f = fence;
941 if (i < f) {
942 index = f;
943 SplittableRandom r = rng;
944 long o = origin, b = bound;
945 do {
946 consumer.accept(r.internalNextLong(o, b));
947 } while (++i < f);
948 }
949 }
950
951 }
952
953 /**
954 * Spliterator for double streams.
955 */
956 private static final class RandomDoublesSpliterator
957 implements Spliterator.OfDouble {
958 final SplittableRandom rng;
959 long index;
960 final long fence;
961 final double origin;
962 final double bound;
963 RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
964 double origin, double bound) {
965 this.rng = rng; this.index = index; this.fence = fence;
966 this.origin = origin; this.bound = bound;
967 }
968
969 public RandomDoublesSpliterator trySplit() {
970 long i = index, m = (i + fence) >>> 1;
971 return (m <= i) ? null :
972 new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
973 }
974
975 public long estimateSize() {
976 return fence - index;
977 }
978
979 public int characteristics() {
980 return (Spliterator.SIZED | Spliterator.SUBSIZED |
981 Spliterator.NONNULL | Spliterator.IMMUTABLE);
982 }
983
984 public boolean tryAdvance(DoubleConsumer consumer) {
985 if (consumer == null) throw new NullPointerException();
986 long i = index, f = fence;
987 if (i < f) {
988 consumer.accept(rng.internalNextDouble(origin, bound));
989 index = i + 1;
990 return true;
991 }
992 return false;
993 }
994
995 public void forEachRemaining(DoubleConsumer consumer) {
996 if (consumer == null) throw new NullPointerException();
997 long i = index, f = fence;
998 if (i < f) {
999 index = f;
1000 SplittableRandom r = rng;
1001 double o = origin, b = bound;
1002 do {
1003 consumer.accept(r.internalNextDouble(o, b));
1004 } while (++i < f);
1005 }
1006 }
1007 }
1008
1009 }