ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/Vector.java
Revision: 1.1
Committed: Mon May 7 23:38:48 2018 UTC (5 years, 11 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Log Message:
minimal backport to fix testReplaceAllIsNotStructuralModification failure

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Copyright (c) 1994, 2018, Oracle and/or its affiliates. All rights reserved.
3     * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4     *
5     * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7     * published by the Free Software Foundation. Oracle designates this
8     * particular file as subject to the "Classpath" exception as provided
9     * by Oracle in the LICENSE file that accompanied this code.
10     *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21     * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24     */
25    
26     package java.util;
27    
28     import java.io.IOException;
29     import java.io.ObjectInputStream;
30     import java.io.StreamCorruptedException;
31     import java.util.function.Consumer;
32     import java.util.function.Predicate;
33     import java.util.function.UnaryOperator;
34    
35     /**
36     * The {@code Vector} class implements a growable array of
37     * objects. Like an array, it contains components that can be
38     * accessed using an integer index. However, the size of a
39     * {@code Vector} can grow or shrink as needed to accommodate
40     * adding and removing items after the {@code Vector} has been created.
41     *
42     * <p>Each vector tries to optimize storage management by maintaining a
43     * {@code capacity} and a {@code capacityIncrement}. The
44     * {@code capacity} is always at least as large as the vector
45     * size; it is usually larger because as components are added to the
46     * vector, the vector's storage increases in chunks the size of
47     * {@code capacityIncrement}. An application can increase the
48     * capacity of a vector before inserting a large number of
49     * components; this reduces the amount of incremental reallocation.
50     *
51     * <p id="fail-fast">
52     * The iterators returned by this class's {@link #iterator() iterator} and
53     * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
54     * if the vector is structurally modified at any time after the iterator is
55     * created, in any way except through the iterator's own
56     * {@link ListIterator#remove() remove} or
57     * {@link ListIterator#add(Object) add} methods, the iterator will throw a
58     * {@link ConcurrentModificationException}. Thus, in the face of
59     * concurrent modification, the iterator fails quickly and cleanly, rather
60     * than risking arbitrary, non-deterministic behavior at an undetermined
61     * time in the future. The {@link Enumeration Enumerations} returned by
62     * the {@link #elements() elements} method are <em>not</em> fail-fast; if the
63     * Vector is structurally modified at any time after the enumeration is
64     * created then the results of enumerating are undefined.
65     *
66     * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
67     * as it is, generally speaking, impossible to make any hard guarantees in the
68     * presence of unsynchronized concurrent modification. Fail-fast iterators
69     * throw {@code ConcurrentModificationException} on a best-effort basis.
70     * Therefore, it would be wrong to write a program that depended on this
71     * exception for its correctness: <i>the fail-fast behavior of iterators
72     * should be used only to detect bugs.</i>
73     *
74     * <p>As of the Java 2 platform v1.2, this class was retrofitted to
75     * implement the {@link List} interface, making it a member of the
76     * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
77     * Java Collections Framework</a>. Unlike the new collection
78     * implementations, {@code Vector} is synchronized. If a thread-safe
79     * implementation is not needed, it is recommended to use {@link
80     * ArrayList} in place of {@code Vector}.
81     *
82     * @param <E> Type of component elements
83     *
84     * @author Lee Boynton
85     * @author Jonathan Payne
86     * @see Collection
87     * @see LinkedList
88     * @since 1.0
89     */
90     public class Vector<E>
91     extends AbstractList<E>
92     implements List<E>, RandomAccess, Cloneable, java.io.Serializable
93     {
94     /**
95     * The array buffer into which the components of the vector are
96     * stored. The capacity of the vector is the length of this array buffer,
97     * and is at least large enough to contain all the vector's elements.
98     *
99     * <p>Any array elements following the last element in the Vector are null.
100     *
101     * @serial
102     */
103     protected Object[] elementData;
104    
105     /**
106     * The number of valid components in this {@code Vector} object.
107     * Components {@code elementData[0]} through
108     * {@code elementData[elementCount-1]} are the actual items.
109     *
110     * @serial
111     */
112     protected int elementCount;
113    
114     /**
115     * The amount by which the capacity of the vector is automatically
116     * incremented when its size becomes greater than its capacity. If
117     * the capacity increment is less than or equal to zero, the capacity
118     * of the vector is doubled each time it needs to grow.
119     *
120     * @serial
121     */
122     protected int capacityIncrement;
123    
124     /** use serialVersionUID from JDK 1.0.2 for interoperability */
125     private static final long serialVersionUID = -2767605614048989439L;
126    
127     /**
128     * Constructs an empty vector with the specified initial capacity and
129     * capacity increment.
130     *
131     * @param initialCapacity the initial capacity of the vector
132     * @param capacityIncrement the amount by which the capacity is
133     * increased when the vector overflows
134     * @throws IllegalArgumentException if the specified initial capacity
135     * is negative
136     */
137     public Vector(int initialCapacity, int capacityIncrement) {
138     super();
139     if (initialCapacity < 0)
140     throw new IllegalArgumentException("Illegal Capacity: "+
141     initialCapacity);
142     this.elementData = new Object[initialCapacity];
143     this.capacityIncrement = capacityIncrement;
144     }
145    
146     /**
147     * Constructs an empty vector with the specified initial capacity and
148     * with its capacity increment equal to zero.
149     *
150     * @param initialCapacity the initial capacity of the vector
151     * @throws IllegalArgumentException if the specified initial capacity
152     * is negative
153     */
154     public Vector(int initialCapacity) {
155     this(initialCapacity, 0);
156     }
157    
158     /**
159     * Constructs an empty vector so that its internal data array
160     * has size {@code 10} and its standard capacity increment is
161     * zero.
162     */
163     public Vector() {
164     this(10);
165     }
166    
167     /**
168     * Constructs a vector containing the elements of the specified
169     * collection, in the order they are returned by the collection's
170     * iterator.
171     *
172     * @param c the collection whose elements are to be placed into this
173     * vector
174     * @throws NullPointerException if the specified collection is null
175     * @since 1.2
176     */
177     public Vector(Collection<? extends E> c) {
178     elementData = c.toArray();
179     elementCount = elementData.length;
180     // defend against c.toArray (incorrectly) not returning Object[]
181     // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
182     if (elementData.getClass() != Object[].class)
183     elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
184     }
185    
186     /**
187     * Copies the components of this vector into the specified array.
188     * The item at index {@code k} in this vector is copied into
189     * component {@code k} of {@code anArray}.
190     *
191     * @param anArray the array into which the components get copied
192     * @throws NullPointerException if the given array is null
193     * @throws IndexOutOfBoundsException if the specified array is not
194     * large enough to hold all the components of this vector
195     * @throws ArrayStoreException if a component of this vector is not of
196     * a runtime type that can be stored in the specified array
197     * @see #toArray(Object[])
198     */
199     public synchronized void copyInto(Object[] anArray) {
200     System.arraycopy(elementData, 0, anArray, 0, elementCount);
201     }
202    
203     /**
204     * Trims the capacity of this vector to be the vector's current
205     * size. If the capacity of this vector is larger than its current
206     * size, then the capacity is changed to equal the size by replacing
207     * its internal data array, kept in the field {@code elementData},
208     * with a smaller one. An application can use this operation to
209     * minimize the storage of a vector.
210     */
211     public synchronized void trimToSize() {
212     modCount++;
213     int oldCapacity = elementData.length;
214     if (elementCount < oldCapacity) {
215     elementData = Arrays.copyOf(elementData, elementCount);
216     }
217     }
218    
219     /**
220     * Increases the capacity of this vector, if necessary, to ensure
221     * that it can hold at least the number of components specified by
222     * the minimum capacity argument.
223     *
224     * <p>If the current capacity of this vector is less than
225     * {@code minCapacity}, then its capacity is increased by replacing its
226     * internal data array, kept in the field {@code elementData}, with a
227     * larger one. The size of the new data array will be the old size plus
228     * {@code capacityIncrement}, unless the value of
229     * {@code capacityIncrement} is less than or equal to zero, in which case
230     * the new capacity will be twice the old capacity; but if this new size
231     * is still smaller than {@code minCapacity}, then the new capacity will
232     * be {@code minCapacity}.
233     *
234     * @param minCapacity the desired minimum capacity
235     */
236     public synchronized void ensureCapacity(int minCapacity) {
237     if (minCapacity > 0) {
238     modCount++;
239     if (minCapacity > elementData.length)
240     grow(minCapacity);
241     }
242     }
243    
244     /**
245     * The maximum size of array to allocate (unless necessary).
246     * Some VMs reserve some header words in an array.
247     * Attempts to allocate larger arrays may result in
248     * OutOfMemoryError: Requested array size exceeds VM limit
249     */
250     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
251    
252     /**
253     * Increases the capacity to ensure that it can hold at least the
254     * number of elements specified by the minimum capacity argument.
255     *
256     * @param minCapacity the desired minimum capacity
257     * @throws OutOfMemoryError if minCapacity is less than zero
258     */
259     private Object[] grow(int minCapacity) {
260     return elementData = Arrays.copyOf(elementData,
261     newCapacity(minCapacity));
262     }
263    
264     private Object[] grow() {
265     return grow(elementCount + 1);
266     }
267    
268     /**
269     * Returns a capacity at least as large as the given minimum capacity.
270     * Will not return a capacity greater than MAX_ARRAY_SIZE unless
271     * the given minimum capacity is greater than MAX_ARRAY_SIZE.
272     *
273     * @param minCapacity the desired minimum capacity
274     * @throws OutOfMemoryError if minCapacity is less than zero
275     */
276     private int newCapacity(int minCapacity) {
277     // overflow-conscious code
278     int oldCapacity = elementData.length;
279     int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
280     capacityIncrement : oldCapacity);
281     if (newCapacity - minCapacity <= 0) {
282     if (minCapacity < 0) // overflow
283     throw new OutOfMemoryError();
284     return minCapacity;
285     }
286     return (newCapacity - MAX_ARRAY_SIZE <= 0)
287     ? newCapacity
288     : hugeCapacity(minCapacity);
289     }
290    
291     private static int hugeCapacity(int minCapacity) {
292     if (minCapacity < 0) // overflow
293     throw new OutOfMemoryError();
294     return (minCapacity > MAX_ARRAY_SIZE) ?
295     Integer.MAX_VALUE :
296     MAX_ARRAY_SIZE;
297     }
298    
299     /**
300     * Sets the size of this vector. If the new size is greater than the
301     * current size, new {@code null} items are added to the end of
302     * the vector. If the new size is less than the current size, all
303     * components at index {@code newSize} and greater are discarded.
304     *
305     * @param newSize the new size of this vector
306     * @throws ArrayIndexOutOfBoundsException if the new size is negative
307     */
308     public synchronized void setSize(int newSize) {
309     modCount++;
310     if (newSize > elementData.length)
311     grow(newSize);
312     final Object[] es = elementData;
313     for (int to = elementCount, i = newSize; i < to; i++)
314     es[i] = null;
315     elementCount = newSize;
316     }
317    
318     /**
319     * Returns the current capacity of this vector.
320     *
321     * @return the current capacity (the length of its internal
322     * data array, kept in the field {@code elementData}
323     * of this vector)
324     */
325     public synchronized int capacity() {
326     return elementData.length;
327     }
328    
329     /**
330     * Returns the number of components in this vector.
331     *
332     * @return the number of components in this vector
333     */
334     public synchronized int size() {
335     return elementCount;
336     }
337    
338     /**
339     * Tests if this vector has no components.
340     *
341     * @return {@code true} if and only if this vector has
342     * no components, that is, its size is zero;
343     * {@code false} otherwise.
344     */
345     public synchronized boolean isEmpty() {
346     return elementCount == 0;
347     }
348    
349     /**
350     * Returns an enumeration of the components of this vector. The
351     * returned {@code Enumeration} object will generate all items in
352     * this vector. The first item generated is the item at index {@code 0},
353     * then the item at index {@code 1}, and so on. If the vector is
354     * structurally modified while enumerating over the elements then the
355     * results of enumerating are undefined.
356     *
357     * @return an enumeration of the components of this vector
358     * @see Iterator
359     */
360     public Enumeration<E> elements() {
361     return new Enumeration<E>() {
362     int count = 0;
363    
364     public boolean hasMoreElements() {
365     return count < elementCount;
366     }
367    
368     public E nextElement() {
369     synchronized (Vector.this) {
370     if (count < elementCount) {
371     return elementData(count++);
372     }
373     }
374     throw new NoSuchElementException("Vector Enumeration");
375     }
376     };
377     }
378    
379     /**
380     * Returns {@code true} if this vector contains the specified element.
381     * More formally, returns {@code true} if and only if this vector
382     * contains at least one element {@code e} such that
383     * {@code Objects.equals(o, e)}.
384     *
385     * @param o element whose presence in this vector is to be tested
386     * @return {@code true} if this vector contains the specified element
387     */
388     public boolean contains(Object o) {
389     return indexOf(o, 0) >= 0;
390     }
391    
392     /**
393     * Returns the index of the first occurrence of the specified element
394     * in this vector, or -1 if this vector does not contain the element.
395     * More formally, returns the lowest index {@code i} such that
396     * {@code Objects.equals(o, get(i))},
397     * or -1 if there is no such index.
398     *
399     * @param o element to search for
400     * @return the index of the first occurrence of the specified element in
401     * this vector, or -1 if this vector does not contain the element
402     */
403     public int indexOf(Object o) {
404     return indexOf(o, 0);
405     }
406    
407     /**
408     * Returns the index of the first occurrence of the specified element in
409     * this vector, searching forwards from {@code index}, or returns -1 if
410     * the element is not found.
411     * More formally, returns the lowest index {@code i} such that
412     * {@code (i >= index && Objects.equals(o, get(i)))},
413     * or -1 if there is no such index.
414     *
415     * @param o element to search for
416     * @param index index to start searching from
417     * @return the index of the first occurrence of the element in
418     * this vector at position {@code index} or later in the vector;
419     * {@code -1} if the element is not found.
420     * @throws IndexOutOfBoundsException if the specified index is negative
421     * @see Object#equals(Object)
422     */
423     public synchronized int indexOf(Object o, int index) {
424     if (o == null) {
425     for (int i = index ; i < elementCount ; i++)
426     if (elementData[i]==null)
427     return i;
428     } else {
429     for (int i = index ; i < elementCount ; i++)
430     if (o.equals(elementData[i]))
431     return i;
432     }
433     return -1;
434     }
435    
436     /**
437     * Returns the index of the last occurrence of the specified element
438     * in this vector, or -1 if this vector does not contain the element.
439     * More formally, returns the highest index {@code i} such that
440     * {@code Objects.equals(o, get(i))},
441     * or -1 if there is no such index.
442     *
443     * @param o element to search for
444     * @return the index of the last occurrence of the specified element in
445     * this vector, or -1 if this vector does not contain the element
446     */
447     public synchronized int lastIndexOf(Object o) {
448     return lastIndexOf(o, elementCount-1);
449     }
450    
451     /**
452     * Returns the index of the last occurrence of the specified element in
453     * this vector, searching backwards from {@code index}, or returns -1 if
454     * the element is not found.
455     * More formally, returns the highest index {@code i} such that
456     * {@code (i <= index && Objects.equals(o, get(i)))},
457     * or -1 if there is no such index.
458     *
459     * @param o element to search for
460     * @param index index to start searching backwards from
461     * @return the index of the last occurrence of the element at position
462     * less than or equal to {@code index} in this vector;
463     * -1 if the element is not found.
464     * @throws IndexOutOfBoundsException if the specified index is greater
465     * than or equal to the current size of this vector
466     */
467     public synchronized int lastIndexOf(Object o, int index) {
468     if (index >= elementCount)
469     throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
470    
471     if (o == null) {
472     for (int i = index; i >= 0; i--)
473     if (elementData[i]==null)
474     return i;
475     } else {
476     for (int i = index; i >= 0; i--)
477     if (o.equals(elementData[i]))
478     return i;
479     }
480     return -1;
481     }
482    
483     /**
484     * Returns the component at the specified index.
485     *
486     * <p>This method is identical in functionality to the {@link #get(int)}
487     * method (which is part of the {@link List} interface).
488     *
489     * @param index an index into this vector
490     * @return the component at the specified index
491     * @throws ArrayIndexOutOfBoundsException if the index is out of range
492     * ({@code index < 0 || index >= size()})
493     */
494     public synchronized E elementAt(int index) {
495     if (index >= elementCount) {
496     throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
497     }
498    
499     return elementData(index);
500     }
501    
502     /**
503     * Returns the first component (the item at index {@code 0}) of
504     * this vector.
505     *
506     * @return the first component of this vector
507     * @throws NoSuchElementException if this vector has no components
508     */
509     public synchronized E firstElement() {
510     if (elementCount == 0) {
511     throw new NoSuchElementException();
512     }
513     return elementData(0);
514     }
515    
516     /**
517     * Returns the last component of the vector.
518     *
519     * @return the last component of the vector, i.e., the component at index
520     * {@code size() - 1}
521     * @throws NoSuchElementException if this vector is empty
522     */
523     public synchronized E lastElement() {
524     if (elementCount == 0) {
525     throw new NoSuchElementException();
526     }
527     return elementData(elementCount - 1);
528     }
529    
530     /**
531     * Sets the component at the specified {@code index} of this
532     * vector to be the specified object. The previous component at that
533     * position is discarded.
534     *
535     * <p>The index must be a value greater than or equal to {@code 0}
536     * and less than the current size of the vector.
537     *
538     * <p>This method is identical in functionality to the
539     * {@link #set(int, Object) set(int, E)}
540     * method (which is part of the {@link List} interface). Note that the
541     * {@code set} method reverses the order of the parameters, to more closely
542     * match array usage. Note also that the {@code set} method returns the
543     * old value that was stored at the specified position.
544     *
545     * @param obj what the component is to be set to
546     * @param index the specified index
547     * @throws ArrayIndexOutOfBoundsException if the index is out of range
548     * ({@code index < 0 || index >= size()})
549     */
550     public synchronized void setElementAt(E obj, int index) {
551     if (index >= elementCount) {
552     throw new ArrayIndexOutOfBoundsException(index + " >= " +
553     elementCount);
554     }
555     elementData[index] = obj;
556     }
557    
558     /**
559     * Deletes the component at the specified index. Each component in
560     * this vector with an index greater or equal to the specified
561     * {@code index} is shifted downward to have an index one
562     * smaller than the value it had previously. The size of this vector
563     * is decreased by {@code 1}.
564     *
565     * <p>The index must be a value greater than or equal to {@code 0}
566     * and less than the current size of the vector.
567     *
568     * <p>This method is identical in functionality to the {@link #remove(int)}
569     * method (which is part of the {@link List} interface). Note that the
570     * {@code remove} method returns the old value that was stored at the
571     * specified position.
572     *
573     * @param index the index of the object to remove
574     * @throws ArrayIndexOutOfBoundsException if the index is out of range
575     * ({@code index < 0 || index >= size()})
576     */
577     public synchronized void removeElementAt(int index) {
578     if (index >= elementCount) {
579     throw new ArrayIndexOutOfBoundsException(index + " >= " +
580     elementCount);
581     }
582     else if (index < 0) {
583     throw new ArrayIndexOutOfBoundsException(index);
584     }
585     int j = elementCount - index - 1;
586     if (j > 0) {
587     System.arraycopy(elementData, index + 1, elementData, index, j);
588     }
589     modCount++;
590     elementCount--;
591     elementData[elementCount] = null; /* to let gc do its work */
592     // checkInvariants();
593     }
594    
595     /**
596     * Inserts the specified object as a component in this vector at the
597     * specified {@code index}. Each component in this vector with
598     * an index greater or equal to the specified {@code index} is
599     * shifted upward to have an index one greater than the value it had
600     * previously.
601     *
602     * <p>The index must be a value greater than or equal to {@code 0}
603     * and less than or equal to the current size of the vector. (If the
604     * index is equal to the current size of the vector, the new element
605     * is appended to the Vector.)
606     *
607     * <p>This method is identical in functionality to the
608     * {@link #add(int, Object) add(int, E)}
609     * method (which is part of the {@link List} interface). Note that the
610     * {@code add} method reverses the order of the parameters, to more closely
611     * match array usage.
612     *
613     * @param obj the component to insert
614     * @param index where to insert the new component
615     * @throws ArrayIndexOutOfBoundsException if the index is out of range
616     * ({@code index < 0 || index > size()})
617     */
618     public synchronized void insertElementAt(E obj, int index) {
619     if (index > elementCount) {
620     throw new ArrayIndexOutOfBoundsException(index
621     + " > " + elementCount);
622     }
623     modCount++;
624     final int s = elementCount;
625     Object[] elementData = this.elementData;
626     if (s == elementData.length)
627     elementData = grow();
628     System.arraycopy(elementData, index,
629     elementData, index + 1,
630     s - index);
631     elementData[index] = obj;
632     elementCount = s + 1;
633     }
634    
635     /**
636     * Adds the specified component to the end of this vector,
637     * increasing its size by one. The capacity of this vector is
638     * increased if its size becomes greater than its capacity.
639     *
640     * <p>This method is identical in functionality to the
641     * {@link #add(Object) add(E)}
642     * method (which is part of the {@link List} interface).
643     *
644     * @param obj the component to be added
645     */
646     public synchronized void addElement(E obj) {
647     modCount++;
648     add(obj, elementData, elementCount);
649     }
650    
651     /**
652     * Removes the first (lowest-indexed) occurrence of the argument
653     * from this vector. If the object is found in this vector, each
654     * component in the vector with an index greater or equal to the
655     * object's index is shifted downward to have an index one smaller
656     * than the value it had previously.
657     *
658     * <p>This method is identical in functionality to the
659     * {@link #remove(Object)} method (which is part of the
660     * {@link List} interface).
661     *
662     * @param obj the component to be removed
663     * @return {@code true} if the argument was a component of this
664     * vector; {@code false} otherwise.
665     */
666     public synchronized boolean removeElement(Object obj) {
667     modCount++;
668     int i = indexOf(obj);
669     if (i >= 0) {
670     removeElementAt(i);
671     return true;
672     }
673     return false;
674     }
675    
676     /**
677     * Removes all components from this vector and sets its size to zero.
678     *
679     * <p>This method is identical in functionality to the {@link #clear}
680     * method (which is part of the {@link List} interface).
681     */
682     public synchronized void removeAllElements() {
683     final Object[] es = elementData;
684     for (int to = elementCount, i = elementCount = 0; i < to; i++)
685     es[i] = null;
686     modCount++;
687     }
688    
689     /**
690     * Returns a clone of this vector. The copy will contain a
691     * reference to a clone of the internal data array, not a reference
692     * to the original internal data array of this {@code Vector} object.
693     *
694     * @return a clone of this vector
695     */
696     public synchronized Object clone() {
697     try {
698     @SuppressWarnings("unchecked")
699     Vector<E> v = (Vector<E>) super.clone();
700     v.elementData = Arrays.copyOf(elementData, elementCount);
701     v.modCount = 0;
702     return v;
703     } catch (CloneNotSupportedException e) {
704     // this shouldn't happen, since we are Cloneable
705     throw new InternalError(e);
706     }
707     }
708    
709     /**
710     * Returns an array containing all of the elements in this Vector
711     * in the correct order.
712     *
713     * @since 1.2
714     */
715     public synchronized Object[] toArray() {
716     return Arrays.copyOf(elementData, elementCount);
717     }
718    
719     /**
720     * Returns an array containing all of the elements in this Vector in the
721     * correct order; the runtime type of the returned array is that of the
722     * specified array. If the Vector fits in the specified array, it is
723     * returned therein. Otherwise, a new array is allocated with the runtime
724     * type of the specified array and the size of this Vector.
725     *
726     * <p>If the Vector fits in the specified array with room to spare
727     * (i.e., the array has more elements than the Vector),
728     * the element in the array immediately following the end of the
729     * Vector is set to null. (This is useful in determining the length
730     * of the Vector <em>only</em> if the caller knows that the Vector
731     * does not contain any null elements.)
732     *
733     * @param <T> type of array elements. The same type as {@code <E>} or a
734     * supertype of {@code <E>}.
735     * @param a the array into which the elements of the Vector are to
736     * be stored, if it is big enough; otherwise, a new array of the
737     * same runtime type is allocated for this purpose.
738     * @return an array containing the elements of the Vector
739     * @throws ArrayStoreException if the runtime type of a, {@code <T>}, is not
740     * a supertype of the runtime type, {@code <E>}, of every element in this
741     * Vector
742     * @throws NullPointerException if the given array is null
743     * @since 1.2
744     */
745     @SuppressWarnings("unchecked")
746     public synchronized <T> T[] toArray(T[] a) {
747     if (a.length < elementCount)
748     return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
749    
750     System.arraycopy(elementData, 0, a, 0, elementCount);
751    
752     if (a.length > elementCount)
753     a[elementCount] = null;
754    
755     return a;
756     }
757    
758     // Positional Access Operations
759    
760     @SuppressWarnings("unchecked")
761     E elementData(int index) {
762     return (E) elementData[index];
763     }
764    
765     @SuppressWarnings("unchecked")
766     static <E> E elementAt(Object[] es, int index) {
767     return (E) es[index];
768     }
769    
770     /**
771     * Returns the element at the specified position in this Vector.
772     *
773     * @param index index of the element to return
774     * @return object at the specified index
775     * @throws ArrayIndexOutOfBoundsException if the index is out of range
776     * ({@code index < 0 || index >= size()})
777     * @since 1.2
778     */
779     public synchronized E get(int index) {
780     if (index >= elementCount)
781     throw new ArrayIndexOutOfBoundsException(index);
782    
783     return elementData(index);
784     }
785    
786     /**
787     * Replaces the element at the specified position in this Vector with the
788     * specified element.
789     *
790     * @param index index of the element to replace
791     * @param element element to be stored at the specified position
792     * @return the element previously at the specified position
793     * @throws ArrayIndexOutOfBoundsException if the index is out of range
794     * ({@code index < 0 || index >= size()})
795     * @since 1.2
796     */
797     public synchronized E set(int index, E element) {
798     if (index >= elementCount)
799     throw new ArrayIndexOutOfBoundsException(index);
800    
801     E oldValue = elementData(index);
802     elementData[index] = element;
803     return oldValue;
804     }
805    
806     /**
807     * This helper method split out from add(E) to keep method
808     * bytecode size under 35 (the -XX:MaxInlineSize default value),
809     * which helps when add(E) is called in a C1-compiled loop.
810     */
811     private void add(E e, Object[] elementData, int s) {
812     if (s == elementData.length)
813     elementData = grow();
814     elementData[s] = e;
815     elementCount = s + 1;
816     // checkInvariants();
817     }
818    
819     /**
820     * Appends the specified element to the end of this Vector.
821     *
822     * @param e element to be appended to this Vector
823     * @return {@code true} (as specified by {@link Collection#add})
824     * @since 1.2
825     */
826     public synchronized boolean add(E e) {
827     modCount++;
828     add(e, elementData, elementCount);
829     return true;
830     }
831    
832     /**
833     * Removes the first occurrence of the specified element in this Vector
834     * If the Vector does not contain the element, it is unchanged. More
835     * formally, removes the element with the lowest index i such that
836     * {@code Objects.equals(o, get(i))} (if such
837     * an element exists).
838     *
839     * @param o element to be removed from this Vector, if present
840     * @return true if the Vector contained the specified element
841     * @since 1.2
842     */
843     public boolean remove(Object o) {
844     return removeElement(o);
845     }
846    
847     /**
848     * Inserts the specified element at the specified position in this Vector.
849     * Shifts the element currently at that position (if any) and any
850     * subsequent elements to the right (adds one to their indices).
851     *
852     * @param index index at which the specified element is to be inserted
853     * @param element element to be inserted
854     * @throws ArrayIndexOutOfBoundsException if the index is out of range
855     * ({@code index < 0 || index > size()})
856     * @since 1.2
857     */
858     public void add(int index, E element) {
859     insertElementAt(element, index);
860     }
861    
862     /**
863     * Removes the element at the specified position in this Vector.
864     * Shifts any subsequent elements to the left (subtracts one from their
865     * indices). Returns the element that was removed from the Vector.
866     *
867     * @param index the index of the element to be removed
868     * @return element that was removed
869     * @throws ArrayIndexOutOfBoundsException if the index is out of range
870     * ({@code index < 0 || index >= size()})
871     * @since 1.2
872     */
873     public synchronized E remove(int index) {
874     modCount++;
875     if (index >= elementCount)
876     throw new ArrayIndexOutOfBoundsException(index);
877     E oldValue = elementData(index);
878    
879     int numMoved = elementCount - index - 1;
880     if (numMoved > 0)
881     System.arraycopy(elementData, index+1, elementData, index,
882     numMoved);
883     elementData[--elementCount] = null; // Let gc do its work
884    
885     // checkInvariants();
886     return oldValue;
887     }
888    
889     /**
890     * Removes all of the elements from this Vector. The Vector will
891     * be empty after this call returns (unless it throws an exception).
892     *
893     * @since 1.2
894     */
895     public void clear() {
896     removeAllElements();
897     }
898    
899     // Bulk Operations
900    
901     /**
902     * Returns true if this Vector contains all of the elements in the
903     * specified Collection.
904     *
905     * @param c a collection whose elements will be tested for containment
906     * in this Vector
907     * @return true if this Vector contains all of the elements in the
908     * specified collection
909     * @throws NullPointerException if the specified collection is null
910     */
911     public synchronized boolean containsAll(Collection<?> c) {
912     return super.containsAll(c);
913     }
914    
915     /**
916     * Appends all of the elements in the specified Collection to the end of
917     * this Vector, in the order that they are returned by the specified
918     * Collection's Iterator. The behavior of this operation is undefined if
919     * the specified Collection is modified while the operation is in progress.
920     * (This implies that the behavior of this call is undefined if the
921     * specified Collection is this Vector, and this Vector is nonempty.)
922     *
923     * @param c elements to be inserted into this Vector
924     * @return {@code true} if this Vector changed as a result of the call
925     * @throws NullPointerException if the specified collection is null
926     * @since 1.2
927     */
928     public boolean addAll(Collection<? extends E> c) {
929     Object[] a = c.toArray();
930     modCount++;
931     int numNew = a.length;
932     if (numNew == 0)
933     return false;
934     synchronized (this) {
935     Object[] elementData = this.elementData;
936     final int s = elementCount;
937     if (numNew > elementData.length - s)
938     elementData = grow(s + numNew);
939     System.arraycopy(a, 0, elementData, s, numNew);
940     elementCount = s + numNew;
941     // checkInvariants();
942     return true;
943     }
944     }
945    
946     /**
947     * Removes from this Vector all of its elements that are contained in the
948     * specified Collection.
949     *
950     * @param c a collection of elements to be removed from the Vector
951     * @return true if this Vector changed as a result of the call
952     * @throws ClassCastException if the types of one or more elements
953     * in this vector are incompatible with the specified
954     * collection
955     * (<a href="Collection.html#optional-restrictions">optional</a>)
956     * @throws NullPointerException if this vector contains one or more null
957     * elements and the specified collection does not support null
958     * elements
959     * (<a href="Collection.html#optional-restrictions">optional</a>),
960     * or if the specified collection is null
961     * @since 1.2
962     */
963     public boolean removeAll(Collection<?> c) {
964     Objects.requireNonNull(c);
965     return bulkRemove(e -> c.contains(e));
966     }
967    
968     /**
969     * Retains only the elements in this Vector that are contained in the
970     * specified Collection. In other words, removes from this Vector all
971     * of its elements that are not contained in the specified Collection.
972     *
973     * @param c a collection of elements to be retained in this Vector
974     * (all other elements are removed)
975     * @return true if this Vector changed as a result of the call
976     * @throws ClassCastException if the types of one or more elements
977     * in this vector are incompatible with the specified
978     * collection
979     * (<a href="Collection.html#optional-restrictions">optional</a>)
980     * @throws NullPointerException if this vector contains one or more null
981     * elements and the specified collection does not support null
982     * elements
983     * (<a href="Collection.html#optional-restrictions">optional</a>),
984     * or if the specified collection is null
985     * @since 1.2
986     */
987     public boolean retainAll(Collection<?> c) {
988     Objects.requireNonNull(c);
989     return bulkRemove(e -> !c.contains(e));
990     }
991    
992     /**
993     * @throws NullPointerException {@inheritDoc}
994     */
995     @Override
996     public boolean removeIf(Predicate<? super E> filter) {
997     Objects.requireNonNull(filter);
998     return bulkRemove(filter);
999     }
1000    
1001     // A tiny bit set implementation
1002    
1003     private static long[] nBits(int n) {
1004     return new long[((n - 1) >> 6) + 1];
1005     }
1006     private static void setBit(long[] bits, int i) {
1007     bits[i >> 6] |= 1L << i;
1008     }
1009     private static boolean isClear(long[] bits, int i) {
1010     return (bits[i >> 6] & (1L << i)) == 0;
1011     }
1012    
1013     private synchronized boolean bulkRemove(Predicate<? super E> filter) {
1014     int expectedModCount = modCount;
1015     final Object[] es = elementData;
1016     final int end = elementCount;
1017     int i;
1018     // Optimize for initial run of survivors
1019     for (i = 0; i < end && !filter.test(elementAt(es, i)); i++)
1020     ;
1021     // Tolerate predicates that reentrantly access the collection for
1022     // read (but writers still get CME), so traverse once to find
1023     // elements to delete, a second pass to physically expunge.
1024     if (i < end) {
1025     final int beg = i;
1026     final long[] deathRow = nBits(end - beg);
1027     deathRow[0] = 1L; // set bit 0
1028     for (i = beg + 1; i < end; i++)
1029     if (filter.test(elementAt(es, i)))
1030     setBit(deathRow, i - beg);
1031     if (modCount != expectedModCount)
1032     throw new ConcurrentModificationException();
1033     modCount++;
1034     int w = beg;
1035     for (i = beg; i < end; i++)
1036     if (isClear(deathRow, i - beg))
1037     es[w++] = es[i];
1038     for (i = elementCount = w; i < end; i++)
1039     es[i] = null;
1040     // checkInvariants();
1041     return true;
1042     } else {
1043     if (modCount != expectedModCount)
1044     throw new ConcurrentModificationException();
1045     // checkInvariants();
1046     return false;
1047     }
1048     }
1049    
1050     /**
1051     * Inserts all of the elements in the specified Collection into this
1052     * Vector at the specified position. Shifts the element currently at
1053     * that position (if any) and any subsequent elements to the right
1054     * (increases their indices). The new elements will appear in the Vector
1055     * in the order that they are returned by the specified Collection's
1056     * iterator.
1057     *
1058     * @param index index at which to insert the first element from the
1059     * specified collection
1060     * @param c elements to be inserted into this Vector
1061     * @return {@code true} if this Vector changed as a result of the call
1062     * @throws ArrayIndexOutOfBoundsException if the index is out of range
1063     * ({@code index < 0 || index > size()})
1064     * @throws NullPointerException if the specified collection is null
1065     * @since 1.2
1066     */
1067     public synchronized boolean addAll(int index, Collection<? extends E> c) {
1068     if (index < 0 || index > elementCount)
1069     throw new ArrayIndexOutOfBoundsException(index);
1070    
1071     Object[] a = c.toArray();
1072     modCount++;
1073     int numNew = a.length;
1074     if (numNew == 0)
1075     return false;
1076     Object[] elementData = this.elementData;
1077     final int s = elementCount;
1078     if (numNew > elementData.length - s)
1079     elementData = grow(s + numNew);
1080    
1081     int numMoved = s - index;
1082     if (numMoved > 0)
1083     System.arraycopy(elementData, index,
1084     elementData, index + numNew,
1085     numMoved);
1086     System.arraycopy(a, 0, elementData, index, numNew);
1087     elementCount = s + numNew;
1088     // checkInvariants();
1089     return true;
1090     }
1091    
1092     /**
1093     * Compares the specified Object with this Vector for equality. Returns
1094     * true if and only if the specified Object is also a List, both Lists
1095     * have the same size, and all corresponding pairs of elements in the two
1096     * Lists are <em>equal</em>. (Two elements {@code e1} and
1097     * {@code e2} are <em>equal</em> if {@code Objects.equals(e1, e2)}.)
1098     * In other words, two Lists are defined to be
1099     * equal if they contain the same elements in the same order.
1100     *
1101     * @param o the Object to be compared for equality with this Vector
1102     * @return true if the specified Object is equal to this Vector
1103     */
1104     public synchronized boolean equals(Object o) {
1105     return super.equals(o);
1106     }
1107    
1108     /**
1109     * Returns the hash code value for this Vector.
1110     */
1111     public synchronized int hashCode() {
1112     return super.hashCode();
1113     }
1114    
1115     /**
1116     * Returns a string representation of this Vector, containing
1117     * the String representation of each element.
1118     */
1119     public synchronized String toString() {
1120     return super.toString();
1121     }
1122    
1123     /**
1124     * Returns a view of the portion of this List between fromIndex,
1125     * inclusive, and toIndex, exclusive. (If fromIndex and toIndex are
1126     * equal, the returned List is empty.) The returned List is backed by this
1127     * List, so changes in the returned List are reflected in this List, and
1128     * vice-versa. The returned List supports all of the optional List
1129     * operations supported by this List.
1130     *
1131     * <p>This method eliminates the need for explicit range operations (of
1132     * the sort that commonly exist for arrays). Any operation that expects
1133     * a List can be used as a range operation by operating on a subList view
1134     * instead of a whole List. For example, the following idiom
1135     * removes a range of elements from a List:
1136     * <pre>
1137     * list.subList(from, to).clear();
1138     * </pre>
1139     * Similar idioms may be constructed for indexOf and lastIndexOf,
1140     * and all of the algorithms in the Collections class can be applied to
1141     * a subList.
1142     *
1143     * <p>The semantics of the List returned by this method become undefined if
1144     * the backing list (i.e., this List) is <i>structurally modified</i> in
1145     * any way other than via the returned List. (Structural modifications are
1146     * those that change the size of the List, or otherwise perturb it in such
1147     * a fashion that iterations in progress may yield incorrect results.)
1148     *
1149     * @param fromIndex low endpoint (inclusive) of the subList
1150     * @param toIndex high endpoint (exclusive) of the subList
1151     * @return a view of the specified range within this List
1152     * @throws IndexOutOfBoundsException if an endpoint index value is out of range
1153     * {@code (fromIndex < 0 || toIndex > size)}
1154     * @throws IllegalArgumentException if the endpoint indices are out of order
1155     * {@code (fromIndex > toIndex)}
1156     */
1157     public synchronized List<E> subList(int fromIndex, int toIndex) {
1158     return Collections.synchronizedList(super.subList(fromIndex, toIndex),
1159     this);
1160     }
1161    
1162     /**
1163     * Removes from this list all of the elements whose index is between
1164     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
1165     * Shifts any succeeding elements to the left (reduces their index).
1166     * This call shortens the list by {@code (toIndex - fromIndex)} elements.
1167     * (If {@code toIndex==fromIndex}, this operation has no effect.)
1168     */
1169     protected synchronized void removeRange(int fromIndex, int toIndex) {
1170     modCount++;
1171     shiftTailOverGap(elementData, fromIndex, toIndex);
1172     // checkInvariants();
1173     }
1174    
1175     /** Erases the gap from lo to hi, by sliding down following elements. */
1176     private void shiftTailOverGap(Object[] es, int lo, int hi) {
1177     System.arraycopy(es, hi, es, lo, elementCount - hi);
1178     for (int to = elementCount, i = (elementCount -= hi - lo); i < to; i++)
1179     es[i] = null;
1180     }
1181    
1182     /**
1183     * Loads a {@code Vector} instance from a stream
1184     * (that is, deserializes it).
1185     * This method performs checks to ensure the consistency
1186     * of the fields.
1187     *
1188     * @param in the stream
1189     * @throws java.io.IOException if an I/O error occurs
1190     * @throws ClassNotFoundException if the stream contains data
1191     * of a non-existing class
1192     */
1193     private void readObject(ObjectInputStream in)
1194     throws IOException, ClassNotFoundException {
1195     ObjectInputStream.GetField gfields = in.readFields();
1196     int count = gfields.get("elementCount", 0);
1197     Object[] data = (Object[])gfields.get("elementData", null);
1198     if (count < 0 || data == null || count > data.length) {
1199     throw new StreamCorruptedException("Inconsistent vector internals");
1200     }
1201     elementCount = count;
1202     elementData = data.clone();
1203     }
1204    
1205     /**
1206     * Saves the state of the {@code Vector} instance to a stream
1207     * (that is, serializes it).
1208     * This method performs synchronization to ensure the consistency
1209     * of the serialized data.
1210     *
1211     * @param s the stream
1212     * @throws java.io.IOException if an I/O error occurs
1213     */
1214     private void writeObject(java.io.ObjectOutputStream s)
1215     throws java.io.IOException {
1216     final java.io.ObjectOutputStream.PutField fields = s.putFields();
1217     final Object[] data;
1218     synchronized (this) {
1219     fields.put("capacityIncrement", capacityIncrement);
1220     fields.put("elementCount", elementCount);
1221     data = elementData.clone();
1222     }
1223     fields.put("elementData", data);
1224     s.writeFields();
1225     }
1226    
1227     /**
1228     * Returns a list iterator over the elements in this list (in proper
1229     * sequence), starting at the specified position in the list.
1230     * The specified index indicates the first element that would be
1231     * returned by an initial call to {@link ListIterator#next next}.
1232     * An initial call to {@link ListIterator#previous previous} would
1233     * return the element with the specified index minus one.
1234     *
1235     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1236     *
1237     * @throws IndexOutOfBoundsException {@inheritDoc}
1238     */
1239     public synchronized ListIterator<E> listIterator(int index) {
1240     if (index < 0 || index > elementCount)
1241     throw new IndexOutOfBoundsException("Index: "+index);
1242     return new ListItr(index);
1243     }
1244    
1245     /**
1246     * Returns a list iterator over the elements in this list (in proper
1247     * sequence).
1248     *
1249     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1250     *
1251     * @see #listIterator(int)
1252     */
1253     public synchronized ListIterator<E> listIterator() {
1254     return new ListItr(0);
1255     }
1256    
1257     /**
1258     * Returns an iterator over the elements in this list in proper sequence.
1259     *
1260     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1261     *
1262     * @return an iterator over the elements in this list in proper sequence
1263     */
1264     public synchronized Iterator<E> iterator() {
1265     return new Itr();
1266     }
1267    
1268     /**
1269     * An optimized version of AbstractList.Itr
1270     */
1271     private class Itr implements Iterator<E> {
1272     int cursor; // index of next element to return
1273     int lastRet = -1; // index of last element returned; -1 if no such
1274     int expectedModCount = modCount;
1275    
1276     public boolean hasNext() {
1277     // Racy but within spec, since modifications are checked
1278     // within or after synchronization in next/previous
1279     return cursor != elementCount;
1280     }
1281    
1282     public E next() {
1283     synchronized (Vector.this) {
1284     checkForComodification();
1285     int i = cursor;
1286     if (i >= elementCount)
1287     throw new NoSuchElementException();
1288     cursor = i + 1;
1289     return elementData(lastRet = i);
1290     }
1291     }
1292    
1293     public void remove() {
1294     if (lastRet == -1)
1295     throw new IllegalStateException();
1296     synchronized (Vector.this) {
1297     checkForComodification();
1298     Vector.this.remove(lastRet);
1299     expectedModCount = modCount;
1300     }
1301     cursor = lastRet;
1302     lastRet = -1;
1303     }
1304    
1305     @Override
1306     public void forEachRemaining(Consumer<? super E> action) {
1307     Objects.requireNonNull(action);
1308     synchronized (Vector.this) {
1309     final int size = elementCount;
1310     int i = cursor;
1311     if (i >= size) {
1312     return;
1313     }
1314     final Object[] es = elementData;
1315     if (i >= es.length)
1316     throw new ConcurrentModificationException();
1317     while (i < size && modCount == expectedModCount)
1318     action.accept(elementAt(es, i++));
1319     // update once at end of iteration to reduce heap write traffic
1320     cursor = i;
1321     lastRet = i - 1;
1322     checkForComodification();
1323     }
1324     }
1325    
1326     final void checkForComodification() {
1327     if (modCount != expectedModCount)
1328     throw new ConcurrentModificationException();
1329     }
1330     }
1331    
1332     /**
1333     * An optimized version of AbstractList.ListItr
1334     */
1335     final class ListItr extends Itr implements ListIterator<E> {
1336     ListItr(int index) {
1337     super();
1338     cursor = index;
1339     }
1340    
1341     public boolean hasPrevious() {
1342     return cursor != 0;
1343     }
1344    
1345     public int nextIndex() {
1346     return cursor;
1347     }
1348    
1349     public int previousIndex() {
1350     return cursor - 1;
1351     }
1352    
1353     public E previous() {
1354     synchronized (Vector.this) {
1355     checkForComodification();
1356     int i = cursor - 1;
1357     if (i < 0)
1358     throw new NoSuchElementException();
1359     cursor = i;
1360     return elementData(lastRet = i);
1361     }
1362     }
1363    
1364     public void set(E e) {
1365     if (lastRet == -1)
1366     throw new IllegalStateException();
1367     synchronized (Vector.this) {
1368     checkForComodification();
1369     Vector.this.set(lastRet, e);
1370     }
1371     }
1372    
1373     public void add(E e) {
1374     int i = cursor;
1375     synchronized (Vector.this) {
1376     checkForComodification();
1377     Vector.this.add(i, e);
1378     expectedModCount = modCount;
1379     }
1380     cursor = i + 1;
1381     lastRet = -1;
1382     }
1383     }
1384    
1385     /**
1386     * @throws NullPointerException {@inheritDoc}
1387     */
1388     @Override
1389     public synchronized void forEach(Consumer<? super E> action) {
1390     Objects.requireNonNull(action);
1391     final int expectedModCount = modCount;
1392     final Object[] es = elementData;
1393     final int size = elementCount;
1394     for (int i = 0; modCount == expectedModCount && i < size; i++)
1395     action.accept(elementAt(es, i));
1396     if (modCount != expectedModCount)
1397     throw new ConcurrentModificationException();
1398     // checkInvariants();
1399     }
1400    
1401     /**
1402     * @throws NullPointerException {@inheritDoc}
1403     */
1404     @Override
1405     public synchronized void replaceAll(UnaryOperator<E> operator) {
1406     Objects.requireNonNull(operator);
1407     final int expectedModCount = modCount;
1408     final Object[] es = elementData;
1409     final int size = elementCount;
1410     for (int i = 0; modCount == expectedModCount && i < size; i++)
1411     es[i] = operator.apply(elementAt(es, i));
1412     if (modCount != expectedModCount)
1413     throw new ConcurrentModificationException();
1414     // checkInvariants();
1415     }
1416    
1417     @SuppressWarnings("unchecked")
1418     @Override
1419     public synchronized void sort(Comparator<? super E> c) {
1420     final int expectedModCount = modCount;
1421     Arrays.sort((E[]) elementData, 0, elementCount, c);
1422     if (modCount != expectedModCount)
1423     throw new ConcurrentModificationException();
1424     modCount++;
1425     // checkInvariants();
1426     }
1427    
1428     /**
1429     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1430     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1431     * list.
1432     *
1433     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1434     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1435     * Overriding implementations should document the reporting of additional
1436     * characteristic values.
1437     *
1438     * @return a {@code Spliterator} over the elements in this list
1439     * @since 1.8
1440     */
1441     @Override
1442     public Spliterator<E> spliterator() {
1443     return new VectorSpliterator(null, 0, -1, 0);
1444     }
1445    
1446     /** Similar to ArrayList Spliterator */
1447     final class VectorSpliterator implements Spliterator<E> {
1448     private Object[] array;
1449     private int index; // current index, modified on advance/split
1450     private int fence; // -1 until used; then one past last index
1451     private int expectedModCount; // initialized when fence set
1452    
1453     /** Creates new spliterator covering the given range. */
1454     VectorSpliterator(Object[] array, int origin, int fence,
1455     int expectedModCount) {
1456     this.array = array;
1457     this.index = origin;
1458     this.fence = fence;
1459     this.expectedModCount = expectedModCount;
1460     }
1461    
1462     private int getFence() { // initialize on first use
1463     int hi;
1464     if ((hi = fence) < 0) {
1465     synchronized (Vector.this) {
1466     array = elementData;
1467     expectedModCount = modCount;
1468     hi = fence = elementCount;
1469     }
1470     }
1471     return hi;
1472     }
1473    
1474     public Spliterator<E> trySplit() {
1475     int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1476     return (lo >= mid) ? null :
1477     new VectorSpliterator(array, lo, index = mid, expectedModCount);
1478     }
1479    
1480     @SuppressWarnings("unchecked")
1481     public boolean tryAdvance(Consumer<? super E> action) {
1482     Objects.requireNonNull(action);
1483     int i;
1484     if (getFence() > (i = index)) {
1485     index = i + 1;
1486     action.accept((E)array[i]);
1487     if (modCount != expectedModCount)
1488     throw new ConcurrentModificationException();
1489     return true;
1490     }
1491     return false;
1492     }
1493    
1494     @SuppressWarnings("unchecked")
1495     public void forEachRemaining(Consumer<? super E> action) {
1496     Objects.requireNonNull(action);
1497     final int hi = getFence();
1498     final Object[] a = array;
1499     int i;
1500     for (i = index, index = hi; i < hi; i++)
1501     action.accept((E) a[i]);
1502     if (modCount != expectedModCount)
1503     throw new ConcurrentModificationException();
1504     }
1505    
1506     public long estimateSize() {
1507     return getFence() - index;
1508     }
1509    
1510     public int characteristics() {
1511     return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1512     }
1513     }
1514    
1515     void checkInvariants() {
1516     // assert elementCount >= 0;
1517     // assert elementCount == elementData.length || elementData[elementCount] == null;
1518     }
1519     }