ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.50 by jsr166, Sat Jul 7 13:01:53 2012 UTC vs.
Revision 1.110 by dl, Thu Jul 4 18:34:49 2013 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166e;
8 < import jsr166e.LongAdder;
8 >
9 > import jsr166e.ForkJoinPool;
10 >
11 > import java.io.ObjectStreamField;
12 > import java.io.Serializable;
13 > import java.lang.reflect.ParameterizedType;
14 > import java.lang.reflect.Type;
15   import java.util.Arrays;
10 import java.util.Map;
11 import java.util.Set;
16   import java.util.Collection;
17 < import java.util.AbstractMap;
18 < import java.util.AbstractSet;
19 < import java.util.AbstractCollection;
16 < import java.util.Hashtable;
17 > import java.util.Comparator;
18 > import java.util.ConcurrentModificationException;
19 > import java.util.Enumeration;
20   import java.util.HashMap;
21 + import java.util.Hashtable;
22   import java.util.Iterator;
23 < import java.util.Enumeration;
20 < import java.util.ConcurrentModificationException;
23 > import java.util.Map;
24   import java.util.NoSuchElementException;
25 + import java.util.Set;
26   import java.util.concurrent.ConcurrentMap;
27 < import java.util.concurrent.ThreadLocalRandom;
27 > import java.util.concurrent.atomic.AtomicReference;
28 > import java.util.concurrent.atomic.AtomicInteger;
29   import java.util.concurrent.locks.LockSupport;
30 < import java.util.concurrent.locks.AbstractQueuedSynchronizer;
26 < import java.io.Serializable;
30 > import java.util.concurrent.locks.ReentrantLock;
31  
32   /**
33   * A hash table supporting full concurrency of retrievals and
# Line 37 | Line 41 | import java.io.Serializable;
41   * interoperable with {@code Hashtable} in programs that rely on its
42   * thread safety but not on its synchronization details.
43   *
44 < * <p> Retrieval operations (including {@code get}) generally do not
44 > * <p>Retrieval operations (including {@code get}) generally do not
45   * block, so may overlap with update operations (including {@code put}
46   * and {@code remove}). Retrievals reflect the results of the most
47   * recently <em>completed</em> update operations holding upon their
48 < * onset.  For aggregate operations such as {@code putAll} and {@code
49 < * clear}, concurrent retrievals may reflect insertion or removal of
50 < * only some entries.  Similarly, Iterators and Enumerations return
51 < * elements reflecting the state of the hash table at some point at or
52 < * since the creation of the iterator/enumeration.  They do
53 < * <em>not</em> throw {@link ConcurrentModificationException}.
54 < * However, iterators are designed to be used by only one thread at a
55 < * time.  Bear in mind that the results of aggregate status methods
56 < * including {@code size}, {@code isEmpty}, and {@code containsValue}
57 < * are typically useful only when a map is not undergoing concurrent
58 < * updates in other threads.  Otherwise the results of these methods
59 < * reflect transient states that may be adequate for monitoring
60 < * or estimation purposes, but not for program control.
48 > * onset. (More formally, an update operation for a given key bears a
49 > * <em>happens-before</em> relation with any (non-null) retrieval for
50 > * that key reporting the updated value.)  For aggregate operations
51 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
52 > * reflect insertion or removal of only some entries.  Similarly,
53 > * Iterators and Enumerations return elements reflecting the state of
54 > * the hash table at some point at or since the creation of the
55 > * iterator/enumeration.  They do <em>not</em> throw {@link
56 > * ConcurrentModificationException}.  However, iterators are designed
57 > * to be used by only one thread at a time.  Bear in mind that the
58 > * results of aggregate status methods including {@code size}, {@code
59 > * isEmpty}, and {@code containsValue} are typically useful only when
60 > * a map is not undergoing concurrent updates in other threads.
61 > * Otherwise the results of these methods reflect transient states
62 > * that may be adequate for monitoring or estimation purposes, but not
63 > * for program control.
64   *
65 < * <p> The table is dynamically expanded when there are too many
65 > * <p>The table is dynamically expanded when there are too many
66   * collisions (i.e., keys that have distinct hash codes but fall into
67   * the same slot modulo the table size), with the expected average
68   * effect of maintaining roughly two bins per mapping (corresponding
# Line 74 | Line 81 | import java.io.Serializable;
81   * expected {@code concurrencyLevel} as an additional hint for
82   * internal sizing.  Note that using many keys with exactly the same
83   * {@code hashCode()} is a sure way to slow down performance of any
84 < * hash table.
84 > * hash table. To ameliorate impact, when keys are {@link Comparable},
85 > * this class may use comparison order among keys to help break ties.
86 > *
87 > * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
88 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
89 > * (using {@link #keySet(Object)} when only keys are of interest, and the
90 > * mapped values are (perhaps transiently) not used or all take the
91 > * same mapping value.
92   *
93   * <p>This class and its views and iterators implement all of the
94   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
95   * interfaces.
96   *
97 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
97 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
98   * does <em>not</em> allow {@code null} to be used as a key or value.
99   *
100 + * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
101 + * operations that are designed
102 + * to be safely, and often sensibly, applied even with maps that are
103 + * being concurrently updated by other threads; for example, when
104 + * computing a snapshot summary of the values in a shared registry.
105 + * There are three kinds of operation, each with four forms, accepting
106 + * functions with Keys, Values, Entries, and (Key, Value) arguments
107 + * and/or return values. Because the elements of a ConcurrentHashMapV8
108 + * are not ordered in any particular way, and may be processed in
109 + * different orders in different parallel executions, the correctness
110 + * of supplied functions should not depend on any ordering, or on any
111 + * other objects or values that may transiently change while
112 + * computation is in progress; and except for forEach actions, should
113 + * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
114 + * objects do not support method {@code setValue}.
115 + *
116 + * <ul>
117 + * <li> forEach: Perform a given action on each element.
118 + * A variant form applies a given transformation on each element
119 + * before performing the action.</li>
120 + *
121 + * <li> search: Return the first available non-null result of
122 + * applying a given function on each element; skipping further
123 + * search when a result is found.</li>
124 + *
125 + * <li> reduce: Accumulate each element.  The supplied reduction
126 + * function cannot rely on ordering (more formally, it should be
127 + * both associative and commutative).  There are five variants:
128 + *
129 + * <ul>
130 + *
131 + * <li> Plain reductions. (There is not a form of this method for
132 + * (key, value) function arguments since there is no corresponding
133 + * return type.)</li>
134 + *
135 + * <li> Mapped reductions that accumulate the results of a given
136 + * function applied to each element.</li>
137 + *
138 + * <li> Reductions to scalar doubles, longs, and ints, using a
139 + * given basis value.</li>
140 + *
141 + * </ul>
142 + * </li>
143 + * </ul>
144 + *
145 + * <p>These bulk operations accept a {@code parallelismThreshold}
146 + * argument. Methods proceed sequentially if the current map size is
147 + * estimated to be less than the given threshold. Using a value of
148 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
149 + * of {@code 1} results in maximal parallelism by partitioning into
150 + * enough subtasks to fully utilize the {@link
151 + * ForkJoinPool#commonPool()} that is used for all parallel
152 + * computations. Normally, you would initially choose one of these
153 + * extreme values, and then measure performance of using in-between
154 + * values that trade off overhead versus throughput.
155 + *
156 + * <p>The concurrency properties of bulk operations follow
157 + * from those of ConcurrentHashMapV8: Any non-null result returned
158 + * from {@code get(key)} and related access methods bears a
159 + * happens-before relation with the associated insertion or
160 + * update.  The result of any bulk operation reflects the
161 + * composition of these per-element relations (but is not
162 + * necessarily atomic with respect to the map as a whole unless it
163 + * is somehow known to be quiescent).  Conversely, because keys
164 + * and values in the map are never null, null serves as a reliable
165 + * atomic indicator of the current lack of any result.  To
166 + * maintain this property, null serves as an implicit basis for
167 + * all non-scalar reduction operations. For the double, long, and
168 + * int versions, the basis should be one that, when combined with
169 + * any other value, returns that other value (more formally, it
170 + * should be the identity element for the reduction). Most common
171 + * reductions have these properties; for example, computing a sum
172 + * with basis 0 or a minimum with basis MAX_VALUE.
173 + *
174 + * <p>Search and transformation functions provided as arguments
175 + * should similarly return null to indicate the lack of any result
176 + * (in which case it is not used). In the case of mapped
177 + * reductions, this also enables transformations to serve as
178 + * filters, returning null (or, in the case of primitive
179 + * specializations, the identity basis) if the element should not
180 + * be combined. You can create compound transformations and
181 + * filterings by composing them yourself under this "null means
182 + * there is nothing there now" rule before using them in search or
183 + * reduce operations.
184 + *
185 + * <p>Methods accepting and/or returning Entry arguments maintain
186 + * key-value associations. They may be useful for example when
187 + * finding the key for the greatest value. Note that "plain" Entry
188 + * arguments can be supplied using {@code new
189 + * AbstractMap.SimpleEntry(k,v)}.
190 + *
191 + * <p>Bulk operations may complete abruptly, throwing an
192 + * exception encountered in the application of a supplied
193 + * function. Bear in mind when handling such exceptions that other
194 + * concurrently executing functions could also have thrown
195 + * exceptions, or would have done so if the first exception had
196 + * not occurred.
197 + *
198 + * <p>Speedups for parallel compared to sequential forms are common
199 + * but not guaranteed.  Parallel operations involving brief functions
200 + * on small maps may execute more slowly than sequential forms if the
201 + * underlying work to parallelize the computation is more expensive
202 + * than the computation itself.  Similarly, parallelization may not
203 + * lead to much actual parallelism if all processors are busy
204 + * performing unrelated tasks.
205 + *
206 + * <p>All arguments to all task methods must be non-null.
207 + *
208 + * <p><em>jsr166e note: During transition, this class
209 + * uses nested functional interfaces with different names but the
210 + * same forms as those expected for JDK8.</em>
211 + *
212   * <p>This class is a member of the
213   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
214   * Java Collections Framework</a>.
215   *
90 * <p><em>jsr166e note: This class is a candidate replacement for
91 * java.util.concurrent.ConcurrentHashMap.<em>
92 *
216   * @since 1.5
217   * @author Doug Lea
218   * @param <K> the type of keys maintained by this map
219   * @param <V> the type of mapped values
220   */
221 < public class ConcurrentHashMapV8<K, V>
222 <        implements ConcurrentMap<K, V>, Serializable {
221 > public class ConcurrentHashMapV8<K,V>
222 >    implements ConcurrentMap<K,V>, Serializable {
223      private static final long serialVersionUID = 7249069246763182397L;
224  
225      /**
226 <     * A function computing a mapping from the given key to a value.
227 <     * This is a place-holder for an upcoming JDK8 interface.
226 >     * An object for traversing and partitioning elements of a source.
227 >     * This interface provides a subset of the functionality of JDK8
228 >     * java.util.Spliterator.
229       */
230 <    public static interface MappingFunction<K, V> {
230 >    public static interface ConcurrentHashMapSpliterator<T> {
231          /**
232 <         * Returns a value for the given key, or null if there is no mapping.
233 <         *
234 <         * @param key the (non-null) key
235 <         * @return a value for the key, or null if none
232 >         * If possible, returns a new spliterator covering
233 >         * approximately one half of the elements, which will not be
234 >         * covered by this spliterator. Returns null if cannot be
235 >         * split.
236           */
237 <        V map(K key);
114 <    }
115 <
116 <    /**
117 <     * A function computing a new mapping given a key and its current
118 <     * mapped value (or {@code null} if there is no current
119 <     * mapping). This is a place-holder for an upcoming JDK8
120 <     * interface.
121 <     */
122 <    public static interface RemappingFunction<K, V> {
237 >        ConcurrentHashMapSpliterator<T> trySplit();
238          /**
239 <         * Returns a new value given a key and its current value.
240 <         *
126 <         * @param key the (non-null) key
127 <         * @param value the current value, or null if there is no mapping
128 <         * @return a value for the key, or null if none
129 <         */
130 <        V remap(K key, V value);
131 <    }
132 <
133 <    /**
134 <     * A partitionable iterator. A Spliterator can be traversed
135 <     * directly, but can also be partitioned (before traversal) by
136 <     * creating another Spliterator that covers a non-overlapping
137 <     * portion of the elements, and so may be amenable to parallel
138 <     * execution.
139 <     *
140 <     * <p> This interface exports a subset of expected JDK8
141 <     * functionality.
142 <     *
143 <     * <p>Sample usage: Here is one (of the several) ways to compute
144 <     * the sum of the values held in a map using the ForkJoin
145 <     * framework. As illustrated here, Spliterators are well suited to
146 <     * designs in which a task repeatedly splits off half its work
147 <     * into forked subtasks until small enough to process directly,
148 <     * and then joins these subtasks. Variants of this style can also
149 <     * be used in completion-based designs.
150 <     *
151 <     * <pre>
152 <     * {@code ConcurrentHashMapV8<String, Long> m = ...
153 <     * // Uses parallel depth of log2 of size / (parallelism * slack of 8).
154 <     * int depth = 32 - Integer.numberOfLeadingZeros(m.size() / (aForkJoinPool.getParallelism() * 8));
155 <     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), depth, null));
156 <     * // ...
157 <     * static class SumValues extends RecursiveTask<Long> {
158 <     *   final Spliterator<Long> s;
159 <     *   final int depth;             // number of splits before processing
160 <     *   final SumValues nextJoin;    // records forked subtasks to join
161 <     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
162 <     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
163 <     *   }
164 <     *   public Long compute() {
165 <     *     long sum = 0;
166 <     *     SumValues subtasks = null; // fork subtasks
167 <     *     for (int d = depth - 1; d >= 0; --d)
168 <     *       (subtasks = new SumValues(s.split(), d, subtasks)).fork();
169 <     *     while (s.hasNext())        // directly process remaining elements
170 <     *       sum += s.next();
171 <     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
172 <     *       sum += t.join();         // collect subtask results
173 <     *     return sum;
174 <     *   }
175 <     * }
176 <     * }</pre>
177 <     */
178 <    public static interface Spliterator<T> extends Iterator<T> {
179 <        /**
180 <         * Returns a Spliterator covering approximately half of the
181 <         * elements, guaranteed not to overlap with those subsequently
182 <         * returned by this Spliterator.  After invoking this method,
183 <         * the current Spliterator will <em>not</em> produce any of
184 <         * the elements of the returned Spliterator, but the two
185 <         * Spliterators together will produce all of the elements that
186 <         * would have been produced by this Spliterator had this
187 <         * method not been called. The exact number of elements
188 <         * produced by the returned Spliterator is not guaranteed, and
189 <         * may be zero (i.e., with {@code hasNext()} reporting {@code
190 <         * false}) if this Spliterator cannot be further split.
191 <         *
192 <         * @return a Spliterator covering approximately half of the
193 <         * elements
194 <         * @throws IllegalStateException if this Spliterator has
195 <         * already commenced traversing elements
239 >         * Returns an estimate of the number of elements covered by
240 >         * this Spliterator.
241           */
242 <        Spliterator<T> split();
243 <    }
242 >        long estimateSize();
243 >
244 >        /** Applies the action to each untraversed element */
245 >        void forEachRemaining(Action<? super T> action);
246 >        /** If an element remains, applies the action and returns true. */
247 >        boolean tryAdvance(Action<? super T> action);
248 >    }
249 >
250 >    // Sams
251 >    /** Interface describing a void action of one argument */
252 >    public interface Action<A> { void apply(A a); }
253 >    /** Interface describing a void action of two arguments */
254 >    public interface BiAction<A,B> { void apply(A a, B b); }
255 >    /** Interface describing a function of one argument */
256 >    public interface Fun<A,T> { T apply(A a); }
257 >    /** Interface describing a function of two arguments */
258 >    public interface BiFun<A,B,T> { T apply(A a, B b); }
259 >    /** Interface describing a function mapping its argument to a double */
260 >    public interface ObjectToDouble<A> { double apply(A a); }
261 >    /** Interface describing a function mapping its argument to a long */
262 >    public interface ObjectToLong<A> { long apply(A a); }
263 >    /** Interface describing a function mapping its argument to an int */
264 >    public interface ObjectToInt<A> {int apply(A a); }
265 >    /** Interface describing a function mapping two arguments to a double */
266 >    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
267 >    /** Interface describing a function mapping two arguments to a long */
268 >    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
269 >    /** Interface describing a function mapping two arguments to an int */
270 >    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
271 >    /** Interface describing a function mapping two doubles to a double */
272 >    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
273 >    /** Interface describing a function mapping two longs to a long */
274 >    public interface LongByLongToLong { long apply(long a, long b); }
275 >    /** Interface describing a function mapping two ints to an int */
276 >    public interface IntByIntToInt { int apply(int a, int b); }
277  
278      /*
279       * Overview:
# Line 207 | Line 285 | public class ConcurrentHashMapV8<K, V>
285       * the same or better than java.util.HashMap, and to support high
286       * initial insertion rates on an empty table by many threads.
287       *
288 <     * Each key-value mapping is held in a Node.  Because Node fields
289 <     * can contain special values, they are defined using plain Object
290 <     * types. Similarly in turn, all internal methods that use them
291 <     * work off Object types. And similarly, so do the internal
292 <     * methods of auxiliary iterator and view classes.  All public
293 <     * generic typed methods relay in/out of these internal methods,
294 <     * supplying null-checks and casts as needed. This also allows
295 <     * many of the public methods to be factored into a smaller number
296 <     * of internal methods (although sadly not so for the five
297 <     * variants of put-related operations). The validation-based
298 <     * approach explained below leads to a lot of code sprawl because
299 <     * retry-control precludes factoring into smaller methods.
288 >     * This map usually acts as a binned (bucketed) hash table.  Each
289 >     * key-value mapping is held in a Node.  Most nodes are instances
290 >     * of the basic Node class with hash, key, value, and next
291 >     * fields. However, various subclasses exist: TreeNodes are
292 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
293 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
294 >     * of bins during resizing. ReservationNodes are used as
295 >     * placeholders while establishing values in computeIfAbsent and
296 >     * related methods.  The types TreeBin, ForwardingNode, and
297 >     * ReservationNode do not hold normal user keys, values, or
298 >     * hashes, and are readily distinguishable during search etc
299 >     * because they have negative hash fields and null key and value
300 >     * fields. (These special nodes are either uncommon or transient,
301 >     * so the impact of carrying around some unused fields is
302 >     * insignificant.)
303       *
304       * The table is lazily initialized to a power-of-two size upon the
305       * first insertion.  Each bin in the table normally contains a
# Line 226 | Line 307 | public class ConcurrentHashMapV8<K, V>
307       * Table accesses require volatile/atomic reads, writes, and
308       * CASes.  Because there is no other way to arrange this without
309       * adding further indirections, we use intrinsics
310 <     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
311 <     * are always accurately traversable under volatile reads, so long
312 <     * as lookups check hash code and non-nullness of value before
313 <     * checking key equality.
314 <     *
315 <     * We use the top two bits of Node hash fields for control
235 <     * purposes -- they are available anyway because of addressing
236 <     * constraints.  As explained further below, these top bits are
237 <     * used as follows:
238 <     *  00 - Normal
239 <     *  01 - Locked
240 <     *  11 - Locked and may have a thread waiting for lock
241 <     *  10 - Node is a forwarding node
242 <     *
243 <     * The lower 30 bits of each Node's hash field contain a
244 <     * transformation of the key's hash code, except for forwarding
245 <     * nodes, for which the lower bits are zero (and so always have
246 <     * hash field == MOVED).
310 >     * (sun.misc.Unsafe) operations.
311 >     *
312 >     * We use the top (sign) bit of Node hash fields for control
313 >     * purposes -- it is available anyway because of addressing
314 >     * constraints.  Nodes with negative hash fields are specially
315 >     * handled or ignored in map methods.
316       *
317       * Insertion (via put or its variants) of the first node in an
318       * empty bin is performed by just CASing it to the bin.  This is
# Line 252 | Line 321 | public class ConcurrentHashMapV8<K, V>
321       * delete, and replace) require locks.  We do not want to waste
322       * the space required to associate a distinct lock object with
323       * each bin, so instead use the first node of a bin list itself as
324 <     * a lock. Blocking support for these locks relies on the builtin
325 <     * "synchronized" monitors.  However, we also need a tryLock
257 <     * construction, so we overlay these by using bits of the Node
258 <     * hash field for lock control (see above), and so normally use
259 <     * builtin monitors only for blocking and signalling using
260 <     * wait/notifyAll constructions. See Node.tryAwaitLock.
324 >     * a lock. Locking support for these locks relies on builtin
325 >     * "synchronized" monitors.
326       *
327       * Using the first node of a list as a lock does not by itself
328       * suffice though: When a node is locked, any update must first
329       * validate that it is still the first node after locking it, and
330       * retry if not. Because new nodes are always appended to lists,
331       * once a node is first in a bin, it remains first until deleted
332 <     * or the bin becomes invalidated (upon resizing).  However,
268 <     * operations that only conditionally update may inspect nodes
269 <     * until the point of update. This is a converse of sorts to the
270 <     * lazy locking technique described by Herlihy & Shavit.
332 >     * or the bin becomes invalidated (upon resizing).
333       *
334       * The main disadvantage of per-bin locks is that other update
335       * operations on other nodes in a bin list protected by the same
# Line 300 | Line 362 | public class ConcurrentHashMapV8<K, V>
362       * sometimes deviate significantly from uniform randomness.  This
363       * includes the case when N > (1<<30), so some keys MUST collide.
364       * Similarly for dumb or hostile usages in which multiple keys are
365 <     * designed to have identical hash codes. Also, although we guard
366 <     * against the worst effects of this (see method spread), sets of
367 <     * hashes may differ only in bits that do not impact their bin
368 <     * index for a given power-of-two mask.  So we use a secondary
369 <     * strategy that applies when the number of nodes in a bin exceeds
370 <     * a threshold, and at least one of the keys implements
309 <     * Comparable.  These TreeBins use a balanced tree to hold nodes
310 <     * (a specialized form of red-black trees), bounding search time
311 <     * to O(log N).  Each search step in a TreeBin is around twice as
365 >     * designed to have identical hash codes or ones that differs only
366 >     * in masked-out high bits. So we use a secondary strategy that
367 >     * applies when the number of nodes in a bin exceeds a
368 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
369 >     * specialized form of red-black trees), bounding search time to
370 >     * O(log N).  Each search step in a TreeBin is at least twice as
371       * slow as in a regular list, but given that N cannot exceed
372       * (1<<64) (before running out of addresses) this bounds search
373       * steps, lock hold times, etc, to reasonable constants (roughly
# Line 319 | Line 378 | public class ConcurrentHashMapV8<K, V>
378       * iterators in the same way.
379       *
380       * The table is resized when occupancy exceeds a percentage
381 <     * threshold (nominally, 0.75, but see below).  Only a single
382 <     * thread performs the resize (using field "sizeCtl", to arrange
383 <     * exclusion), but the table otherwise remains usable for reads
384 <     * and updates. Resizing proceeds by transferring bins, one by
385 <     * one, from the table to the next table.  Because we are using
386 <     * power-of-two expansion, the elements from each bin must either
387 <     * stay at same index, or move with a power of two offset. We
388 <     * eliminate unnecessary node creation by catching cases where old
389 <     * nodes can be reused because their next fields won't change.  On
390 <     * average, only about one-sixth of them need cloning when a table
391 <     * doubles. The nodes they replace will be garbage collectable as
392 <     * soon as they are no longer referenced by any reader thread that
393 <     * may be in the midst of concurrently traversing table.  Upon
394 <     * transfer, the old table bin contains only a special forwarding
395 <     * node (with hash field "MOVED") that contains the next table as
396 <     * its key. On encountering a forwarding node, access and update
397 <     * operations restart, using the new table.
398 <     *
399 <     * Each bin transfer requires its bin lock. However, unlike other
400 <     * cases, a transfer can skip a bin if it fails to acquire its
401 <     * lock, and revisit it later (unless it is a TreeBin). Method
402 <     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
403 <     * have been skipped because of failure to acquire a lock, and
404 <     * blocks only if none are available (i.e., only very rarely).
405 <     * The transfer operation must also ensure that all accessible
406 <     * bins in both the old and new table are usable by any traversal.
407 <     * When there are no lock acquisition failures, this is arranged
408 <     * simply by proceeding from the last bin (table.length - 1) up
409 <     * towards the first.  Upon seeing a forwarding node, traversals
410 <     * (see class InternalIterator) arrange to move to the new table
411 <     * without revisiting nodes.  However, when any node is skipped
412 <     * during a transfer, all earlier table bins may have become
413 <     * visible, so are initialized with a reverse-forwarding node back
414 <     * to the old table until the new ones are established. (This
415 <     * sometimes requires transiently locking a forwarding node, which
416 <     * is possible under the above encoding.) These more expensive
417 <     * mechanics trigger only when necessary.
381 >     * threshold (nominally, 0.75, but see below).  Any thread
382 >     * noticing an overfull bin may assist in resizing after the
383 >     * initiating thread allocates and sets up the replacement
384 >     * array. However, rather than stalling, these other threads may
385 >     * proceed with insertions etc.  The use of TreeBins shields us
386 >     * from the worst case effects of overfilling while resizes are in
387 >     * progress.  Resizing proceeds by transferring bins, one by one,
388 >     * from the table to the next table. To enable concurrency, the
389 >     * next table must be (incrementally) prefilled with place-holders
390 >     * serving as reverse forwarders to the old table.  Because we are
391 >     * using power-of-two expansion, the elements from each bin must
392 >     * either stay at same index, or move with a power of two
393 >     * offset. We eliminate unnecessary node creation by catching
394 >     * cases where old nodes can be reused because their next fields
395 >     * won't change.  On average, only about one-sixth of them need
396 >     * cloning when a table doubles. The nodes they replace will be
397 >     * garbage collectable as soon as they are no longer referenced by
398 >     * any reader thread that may be in the midst of concurrently
399 >     * traversing table.  Upon transfer, the old table bin contains
400 >     * only a special forwarding node (with hash field "MOVED") that
401 >     * contains the next table as its key. On encountering a
402 >     * forwarding node, access and update operations restart, using
403 >     * the new table.
404 >     *
405 >     * Each bin transfer requires its bin lock, which can stall
406 >     * waiting for locks while resizing. However, because other
407 >     * threads can join in and help resize rather than contend for
408 >     * locks, average aggregate waits become shorter as resizing
409 >     * progresses.  The transfer operation must also ensure that all
410 >     * accessible bins in both the old and new table are usable by any
411 >     * traversal.  This is arranged by proceeding from the last bin
412 >     * (table.length - 1) up towards the first.  Upon seeing a
413 >     * forwarding node, traversals (see class Traverser) arrange to
414 >     * move to the new table without revisiting nodes.  However, to
415 >     * ensure that no intervening nodes are skipped, bin splitting can
416 >     * only begin after the associated reverse-forwarders are in
417 >     * place.
418       *
419       * The traversal scheme also applies to partial traversals of
420 <     * ranges of bins (via an alternate InternalIterator constructor)
420 >     * ranges of bins (via an alternate Traverser constructor)
421       * to support partitioned aggregate operations.  Also, read-only
422       * operations give up if ever forwarded to a null table, which
423       * provides support for shutdown-style clearing, which is also not
# Line 370 | Line 429 | public class ConcurrentHashMapV8<K, V>
429       * These cases attempt to override the initial capacity settings,
430       * but harmlessly fail to take effect in cases of races.
431       *
432 <     * The element count is maintained using a LongAdder, which avoids
433 <     * contention on updates but can encounter cache thrashing if read
434 <     * too frequently during concurrent access. To avoid reading so
435 <     * often, resizing is attempted either when a bin lock is
436 <     * contended, or upon adding to a bin already holding two or more
437 <     * nodes (checked before adding in the xIfAbsent methods, after
438 <     * adding in others). Under uniform hash distributions, the
439 <     * probability of this occurring at threshold is around 13%,
440 <     * meaning that only about 1 in 8 puts check threshold (and after
441 <     * resizing, many fewer do so). But this approximation has high
442 <     * variance for small table sizes, so we check on any collision
443 <     * for sizes <= 64. The bulk putAll operation further reduces
444 <     * contention by only committing count updates upon these size
445 <     * checks.
432 >     * The element count is maintained using a specialization of
433 >     * LongAdder. We need to incorporate a specialization rather than
434 >     * just use a LongAdder in order to access implicit
435 >     * contention-sensing that leads to creation of multiple
436 >     * CounterCells.  The counter mechanics avoid contention on
437 >     * updates but can encounter cache thrashing if read too
438 >     * frequently during concurrent access. To avoid reading so often,
439 >     * resizing under contention is attempted only upon adding to a
440 >     * bin already holding two or more nodes. Under uniform hash
441 >     * distributions, the probability of this occurring at threshold
442 >     * is around 13%, meaning that only about 1 in 8 puts check
443 >     * threshold (and after resizing, many fewer do so).
444 >     *
445 >     * TreeBins use a special form of comparison for search and
446 >     * related operations (which is the main reason we cannot use
447 >     * existing collections such as TreeMaps). TreeBins contain
448 >     * Comparable elements, but may contain others, as well as
449 >     * elements that are Comparable but not necessarily Comparable
450 >     * for the same T, so we cannot invoke compareTo among them. To
451 >     * handle this, the tree is ordered primarily by hash value, then
452 >     * by Comparable.compareTo order if applicable.  On lookup at a
453 >     * node, if elements are not comparable or compare as 0 then both
454 >     * left and right children may need to be searched in the case of
455 >     * tied hash values. (This corresponds to the full list search
456 >     * that would be necessary if all elements were non-Comparable and
457 >     * had tied hashes.)  The red-black balancing code is updated from
458 >     * pre-jdk-collections
459 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
460 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
461 >     * Algorithms" (CLR).
462 >     *
463 >     * TreeBins also require an additional locking mechanism.  While
464 >     * list traversal is always possible by readers even during
465 >     * updates, tree traversal is not, mainly because of tree-rotations
466 >     * that may change the root node and/or its linkages.  TreeBins
467 >     * include a simple read-write lock mechanism parasitic on the
468 >     * main bin-synchronization strategy: Structural adjustments
469 >     * associated with an insertion or removal are already bin-locked
470 >     * (and so cannot conflict with other writers) but must wait for
471 >     * ongoing readers to finish. Since there can be only one such
472 >     * waiter, we use a simple scheme using a single "waiter" field to
473 >     * block writers.  However, readers need never block.  If the root
474 >     * lock is held, they proceed along the slow traversal path (via
475 >     * next-pointers) until the lock becomes available or the list is
476 >     * exhausted, whichever comes first. These cases are not fast, but
477 >     * maximize aggregate expected throughput.
478       *
479       * Maintaining API and serialization compatibility with previous
480       * versions of this class introduces several oddities. Mainly: We
# Line 393 | Line 484 | public class ConcurrentHashMapV8<K, V>
484       * time that we can guarantee to honor it.) We also declare an
485       * unused "Segment" class that is instantiated in minimal form
486       * only when serializing.
487 +     *
488 +     * This file is organized to make things a little easier to follow
489 +     * while reading than they might otherwise: First the main static
490 +     * declarations and utilities, then fields, then main public
491 +     * methods (with a few factorings of multiple public methods into
492 +     * internal ones), then sizing methods, trees, traversers, and
493 +     * bulk operations.
494       */
495  
496      /* ---------------- Constants -------------- */
# Line 434 | Line 532 | public class ConcurrentHashMapV8<K, V>
532      private static final float LOAD_FACTOR = 0.75f;
533  
534      /**
437     * The buffer size for skipped bins during transfers. The
438     * value is arbitrary but should be large enough to avoid
439     * most locking stalls during resizes.
440     */
441    private static final int TRANSFER_BUFFER_SIZE = 32;
442
443    /**
535       * The bin count threshold for using a tree rather than list for a
536 <     * bin.  The value reflects the approximate break-even point for
537 <     * using tree-based operations.
538 <     */
539 <    private static final int TREE_THRESHOLD = 8;
540 <
450 <    /*
451 <     * Encodings for special uses of Node hash fields. See above for
452 <     * explanation.
536 >     * bin.  Bins are converted to trees when adding an element to a
537 >     * bin with at least this many nodes. The value must be greater
538 >     * than 2, and should be at least 8 to mesh with assumptions in
539 >     * tree removal about conversion back to plain bins upon
540 >     * shrinkage.
541       */
542 <    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
455 <    static final int LOCKED    = 0x40000000; // set/tested only as a bit
456 <    static final int WAITING   = 0xc0000000; // both bits set/tested together
457 <    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
458 <
459 <    /* ---------------- Fields -------------- */
542 >    static final int TREEIFY_THRESHOLD = 8;
543  
544      /**
545 <     * The array of bins. Lazily initialized upon first insertion.
546 <     * Size is always a power of two. Accessed directly by iterators.
545 >     * The bin count threshold for untreeifying a (split) bin during a
546 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
547 >     * most 6 to mesh with shrinkage detection under removal.
548       */
549 <    transient volatile Node[] table;
549 >    static final int UNTREEIFY_THRESHOLD = 6;
550  
551      /**
552 <     * The counter maintaining number of elements.
552 >     * The smallest table capacity for which bins may be treeified.
553 >     * (Otherwise the table is resized if too many nodes in a bin.)
554 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
555 >     * conflicts between resizing and treeification thresholds.
556       */
557 <    private transient final LongAdder counter;
557 >    static final int MIN_TREEIFY_CAPACITY = 64;
558  
559      /**
560 <     * Table initialization and resizing control.  When negative, the
561 <     * table is being initialized or resized. Otherwise, when table is
562 <     * null, holds the initial table size to use upon creation, or 0
563 <     * for default. After initialization, holds the next element count
564 <     * value upon which to resize the table.
560 >     * Minimum number of rebinnings per transfer step. Ranges are
561 >     * subdivided to allow multiple resizer threads.  This value
562 >     * serves as a lower bound to avoid resizers encountering
563 >     * excessive memory contention.  The value should be at least
564 >     * DEFAULT_CAPACITY.
565       */
566 <    private transient volatile int sizeCtl;
480 <
481 <    // views
482 <    private transient KeySet<K,V> keySet;
483 <    private transient Values<K,V> values;
484 <    private transient EntrySet<K,V> entrySet;
485 <
486 <    /** For serialization compatibility. Null unless serialized; see below */
487 <    private Segment<K,V>[] segments;
488 <
489 <    /* ---------------- Table element access -------------- */
566 >    private static final int MIN_TRANSFER_STRIDE = 16;
567  
568      /*
569 <     * Volatile access methods are used for table elements as well as
493 <     * elements of in-progress next table while resizing.  Uses are
494 <     * null checked by callers, and implicitly bounds-checked, relying
495 <     * on the invariants that tab arrays have non-zero size, and all
496 <     * indices are masked with (tab.length - 1) which is never
497 <     * negative and always less than length. Note that, to be correct
498 <     * wrt arbitrary concurrency errors by users, bounds checks must
499 <     * operate on local variables, which accounts for some odd-looking
500 <     * inline assignments below.
569 >     * Encodings for Node hash fields. See above for explanation.
570       */
571 <
572 <    static final Node tabAt(Node[] tab, int i) { // used by InternalIterator
573 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
574 <    }
575 <
576 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
577 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
578 <    }
579 <
580 <    private static final void setTabAt(Node[] tab, int i, Node v) {
581 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
582 <    }
571 >    static final int MOVED     = -1; // hash for forwarding nodes
572 >    static final int TREEBIN   = -2; // hash for roots of trees
573 >    static final int RESERVED  = -3; // hash for transient reservations
574 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
575 >
576 >    /** Number of CPUS, to place bounds on some sizings */
577 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
578 >
579 >    /** For serialization compatibility. */
580 >    private static final ObjectStreamField[] serialPersistentFields = {
581 >        new ObjectStreamField("segments", Segment[].class),
582 >        new ObjectStreamField("segmentMask", Integer.TYPE),
583 >        new ObjectStreamField("segmentShift", Integer.TYPE)
584 >    };
585  
586      /* ---------------- Nodes -------------- */
587  
588      /**
589 <     * Key-value entry. Note that this is never exported out as a
590 <     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
591 <     * field of MOVED are special, and do not contain user keys or
592 <     * values.  Otherwise, keys are never null, and null val fields
593 <     * indicate that a node is in the process of being deleted or
594 <     * created. For purposes of read-only access, a key may be read
595 <     * before a val, but can only be used after checking val to be
596 <     * non-null.
597 <     */
598 <    static class Node {
599 <        volatile int hash;
600 <        final Object key;
530 <        volatile Object val;
531 <        volatile Node next;
589 >     * Key-value entry.  This class is never exported out as a
590 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
591 >     * MapEntry below), but can be used for read-only traversals used
592 >     * in bulk tasks.  Subclasses of Node with a negative hash field
593 >     * are special, and contain null keys and values (but are never
594 >     * exported).  Otherwise, keys and vals are never null.
595 >     */
596 >    static class Node<K,V> implements Map.Entry<K,V> {
597 >        final int hash;
598 >        final K key;
599 >        volatile V val;
600 >        volatile Node<K,V> next;
601  
602 <        Node(int hash, Object key, Object val, Node next) {
602 >        Node(int hash, K key, V val, Node<K,V> next) {
603              this.hash = hash;
604              this.key = key;
605              this.val = val;
606              this.next = next;
607          }
608  
609 <        /** CompareAndSet the hash field */
610 <        final boolean casHash(int cmp, int val) {
611 <            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
612 <        }
613 <
614 <        /** The number of spins before blocking for a lock */
546 <        static final int MAX_SPINS =
547 <            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
548 <
549 <        /**
550 <         * Spins a while if LOCKED bit set and this node is the first
551 <         * of its bin, and then sets WAITING bits on hash field and
552 <         * blocks (once) if they are still set.  It is OK for this
553 <         * method to return even if lock is not available upon exit,
554 <         * which enables these simple single-wait mechanics.
555 <         *
556 <         * The corresponding signalling operation is performed within
557 <         * callers: Upon detecting that WAITING has been set when
558 <         * unlocking lock (via a failed CAS from non-waiting LOCKED
559 <         * state), unlockers acquire the sync lock and perform a
560 <         * notifyAll.
561 <         */
562 <        final void tryAwaitLock(Node[] tab, int i) {
563 <            if (tab != null && i >= 0 && i < tab.length) { // bounds check
564 <                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
565 <                int spins = MAX_SPINS, h;
566 <                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
567 <                    if (spins >= 0) {
568 <                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
569 <                        if (r >= 0 && --spins == 0)
570 <                            Thread.yield();  // yield before block
571 <                    }
572 <                    else if (casHash(h, h | WAITING)) {
573 <                        synchronized (this) {
574 <                            if (tabAt(tab, i) == this &&
575 <                                (hash & WAITING) == WAITING) {
576 <                                try {
577 <                                    wait();
578 <                                } catch (InterruptedException ie) {
579 <                                    Thread.currentThread().interrupt();
580 <                                }
581 <                            }
582 <                            else
583 <                                notifyAll(); // possibly won race vs signaller
584 <                        }
585 <                        break;
586 <                    }
587 <                }
588 <            }
589 <        }
590 <
591 <        // Unsafe mechanics for casHash
592 <        private static final sun.misc.Unsafe UNSAFE;
593 <        private static final long hashOffset;
594 <
595 <        static {
596 <            try {
597 <                UNSAFE = getUnsafe();
598 <                Class<?> k = Node.class;
599 <                hashOffset = UNSAFE.objectFieldOffset
600 <                    (k.getDeclaredField("hash"));
601 <            } catch (Exception e) {
602 <                throw new Error(e);
603 <            }
604 <        }
605 <    }
606 <
607 <    /* ---------------- TreeBins -------------- */
608 <
609 <    /**
610 <     * Nodes for use in TreeBins
611 <     */
612 <    static final class TreeNode extends Node {
613 <        TreeNode parent;  // red-black tree links
614 <        TreeNode left;
615 <        TreeNode right;
616 <        TreeNode prev;    // needed to unlink next upon deletion
617 <        boolean red;
618 <
619 <        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
620 <            super(hash, key, val, next);
621 <            this.parent = parent;
622 <        }
623 <    }
624 <
625 <    /**
626 <     * A specialized form of red-black tree for use in bins
627 <     * whose size exceeds a threshold.
628 <     *
629 <     * TreeBins use a special form of comparison for search and
630 <     * related operations (which is the main reason we cannot use
631 <     * existing collections such as TreeMaps). TreeBins contain
632 <     * Comparable elements, but may contain others, as well as
633 <     * elements that are Comparable but not necessarily Comparable<T>
634 <     * for the same T, so we cannot invoke compareTo among them. To
635 <     * handle this, the tree is ordered primarily by hash value, then
636 <     * by getClass().getName() order, and then by Comparator order
637 <     * among elements of the same class.  On lookup at a node, if
638 <     * elements are not comparable or compare as 0, both left and
639 <     * right children may need to be searched in the case of tied hash
640 <     * values. (This corresponds to the full list search that would be
641 <     * necessary if all elements were non-Comparable and had tied
642 <     * hashes.)  The red-black balancing code is updated from
643 <     * pre-jdk-collections
644 <     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
645 <     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
646 <     * Algorithms" (CLR).
647 <     *
648 <     * TreeBins also maintain a separate locking discipline than
649 <     * regular bins. Because they are forwarded via special MOVED
650 <     * nodes at bin heads (which can never change once established),
651 <     * we cannot use use those nodes as locks. Instead, TreeBin
652 <     * extends AbstractQueuedSynchronizer to support a simple form of
653 <     * read-write lock. For update operations and table validation,
654 <     * the exclusive form of lock behaves in the same way as bin-head
655 <     * locks. However, lookups use shared read-lock mechanics to allow
656 <     * multiple readers in the absence of writers.  Additionally,
657 <     * these lookups do not ever block: While the lock is not
658 <     * available, they proceed along the slow traversal path (via
659 <     * next-pointers) until the lock becomes available or the list is
660 <     * exhausted, whichever comes first. (These cases are not fast,
661 <     * but maximize aggregate expected throughput.)  The AQS mechanics
662 <     * for doing this are straightforward.  The lock state is held as
663 <     * AQS getState().  Read counts are negative; the write count (1)
664 <     * is positive.  There are no signalling preferences among readers
665 <     * and writers. Since we don't need to export full Lock API, we
666 <     * just override the minimal AQS methods and use them directly.
667 <     */
668 <    static final class TreeBin extends AbstractQueuedSynchronizer {
669 <        private static final long serialVersionUID = 2249069246763182397L;
670 <        transient TreeNode root;  // root of tree
671 <        transient TreeNode first; // head of next-pointer list
672 <
673 <        /* AQS overrides */
674 <        public final boolean isHeldExclusively() { return getState() > 0; }
675 <        public final boolean tryAcquire(int ignore) {
676 <            if (compareAndSetState(0, 1)) {
677 <                setExclusiveOwnerThread(Thread.currentThread());
678 <                return true;
679 <            }
680 <            return false;
681 <        }
682 <        public final boolean tryRelease(int ignore) {
683 <            setExclusiveOwnerThread(null);
684 <            setState(0);
685 <            return true;
686 <        }
687 <        public final int tryAcquireShared(int ignore) {
688 <            for (int c;;) {
689 <                if ((c = getState()) > 0)
690 <                    return -1;
691 <                if (compareAndSetState(c, c -1))
692 <                    return 1;
693 <            }
694 <        }
695 <        public final boolean tryReleaseShared(int ignore) {
696 <            int c;
697 <            do {} while (!compareAndSetState(c = getState(), c + 1));
698 <            return c == -1;
699 <        }
700 <
701 <        /** From CLR */
702 <        private void rotateLeft(TreeNode p) {
703 <            if (p != null) {
704 <                TreeNode r = p.right, pp, rl;
705 <                if ((rl = p.right = r.left) != null)
706 <                    rl.parent = p;
707 <                if ((pp = r.parent = p.parent) == null)
708 <                    root = r;
709 <                else if (pp.left == p)
710 <                    pp.left = r;
711 <                else
712 <                    pp.right = r;
713 <                r.left = p;
714 <                p.parent = r;
715 <            }
716 <        }
717 <
718 <        /** From CLR */
719 <        private void rotateRight(TreeNode p) {
720 <            if (p != null) {
721 <                TreeNode l = p.left, pp, lr;
722 <                if ((lr = p.left = l.right) != null)
723 <                    lr.parent = p;
724 <                if ((pp = l.parent = p.parent) == null)
725 <                    root = l;
726 <                else if (pp.right == p)
727 <                    pp.right = l;
728 <                else
729 <                    pp.left = l;
730 <                l.right = p;
731 <                p.parent = l;
732 <            }
733 <        }
734 <
735 <        /**
736 <         * Return the TreeNode (or null if not found) for the given key
737 <         * starting at given root.
738 <         */
739 <        @SuppressWarnings("unchecked") // suppress Comparable cast warning
740 <        final TreeNode getTreeNode(int h, Object k, TreeNode p) {
741 <            Class<?> c = k.getClass();
742 <            while (p != null) {
743 <                int dir, ph;  Object pk; Class<?> pc;
744 <                if ((ph = p.hash) == h) {
745 <                    if ((pk = p.key) == k || k.equals(pk))
746 <                        return p;
747 <                    if (c != (pc = pk.getClass()) ||
748 <                        !(k instanceof Comparable) ||
749 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
750 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
751 <                        TreeNode r = null, s = null, pl, pr;
752 <                        if (dir >= 0) {
753 <                            if ((pl = p.left) != null && h <= pl.hash)
754 <                                s = pl;
755 <                        }
756 <                        else if ((pr = p.right) != null && h >= pr.hash)
757 <                            s = pr;
758 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
759 <                            return r;
760 <                    }
761 <                }
762 <                else
763 <                    dir = (h < ph) ? -1 : 1;
764 <                p = (dir > 0) ? p.right : p.left;
765 <            }
766 <            return null;
609 >        public final K getKey()       { return key; }
610 >        public final V getValue()     { return val; }
611 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
612 >        public final String toString(){ return key + "=" + val; }
613 >        public final V setValue(V value) {
614 >            throw new UnsupportedOperationException();
615          }
616  
617 <        /**
618 <         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
619 <         * read-lock to call getTreeNode, but during failure to get
620 <         * lock, searches along next links.
621 <         */
622 <        final Object getValue(int h, Object k) {
623 <            Node r = null;
776 <            int c = getState(); // Must read lock state first
777 <            for (Node e = first; e != null; e = e.next) {
778 <                if (c <= 0 && compareAndSetState(c, c - 1)) {
779 <                    try {
780 <                        r = getTreeNode(h, k, root);
781 <                    } finally {
782 <                        releaseShared(0);
783 <                    }
784 <                    break;
785 <                }
786 <                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
787 <                    r = e;
788 <                    break;
789 <                }
790 <                else
791 <                    c = getState();
792 <            }
793 <            return r == null ? null : r.val;
617 >        public final boolean equals(Object o) {
618 >            Object k, v, u; Map.Entry<?,?> e;
619 >            return ((o instanceof Map.Entry) &&
620 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
621 >                    (v = e.getValue()) != null &&
622 >                    (k == key || k.equals(key)) &&
623 >                    (v == (u = val) || v.equals(u)));
624          }
625  
626          /**
627 <         * Finds or adds a node.
798 <         * @return null if added
627 >         * Virtualized support for map.get(); overridden in subclasses.
628           */
629 <        @SuppressWarnings("unchecked") // suppress Comparable cast warning
630 <        final TreeNode putTreeNode(int h, Object k, Object v) {
631 <            Class<?> c = k.getClass();
632 <            TreeNode pp = root, p = null;
633 <            int dir = 0;
634 <            while (pp != null) { // find existing node or leaf to insert at
635 <                int ph;  Object pk; Class<?> pc;
636 <                p = pp;
637 <                if ((ph = p.hash) == h) {
809 <                    if ((pk = p.key) == k || k.equals(pk))
810 <                        return p;
811 <                    if (c != (pc = pk.getClass()) ||
812 <                        !(k instanceof Comparable) ||
813 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
814 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
815 <                        TreeNode r = null, s = null, pl, pr;
816 <                        if (dir >= 0) {
817 <                            if ((pl = p.left) != null && h <= pl.hash)
818 <                                s = pl;
819 <                        }
820 <                        else if ((pr = p.right) != null && h >= pr.hash)
821 <                            s = pr;
822 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
823 <                            return r;
824 <                    }
825 <                }
826 <                else
827 <                    dir = (h < ph) ? -1 : 1;
828 <                pp = (dir > 0) ? p.right : p.left;
829 <            }
830 <
831 <            TreeNode f = first;
832 <            TreeNode x = first = new TreeNode(h, k, v, f, p);
833 <            if (p == null)
834 <                root = x;
835 <            else { // attach and rebalance; adapted from CLR
836 <                TreeNode xp, xpp;
837 <                if (f != null)
838 <                    f.prev = x;
839 <                if (dir <= 0)
840 <                    p.left = x;
841 <                else
842 <                    p.right = x;
843 <                x.red = true;
844 <                while (x != null && (xp = x.parent) != null && xp.red &&
845 <                       (xpp = xp.parent) != null) {
846 <                    TreeNode xppl = xpp.left;
847 <                    if (xp == xppl) {
848 <                        TreeNode y = xpp.right;
849 <                        if (y != null && y.red) {
850 <                            y.red = false;
851 <                            xp.red = false;
852 <                            xpp.red = true;
853 <                            x = xpp;
854 <                        }
855 <                        else {
856 <                            if (x == xp.right) {
857 <                                rotateLeft(x = xp);
858 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
859 <                            }
860 <                            if (xp != null) {
861 <                                xp.red = false;
862 <                                if (xpp != null) {
863 <                                    xpp.red = true;
864 <                                    rotateRight(xpp);
865 <                                }
866 <                            }
867 <                        }
868 <                    }
869 <                    else {
870 <                        TreeNode y = xppl;
871 <                        if (y != null && y.red) {
872 <                            y.red = false;
873 <                            xp.red = false;
874 <                            xpp.red = true;
875 <                            x = xpp;
876 <                        }
877 <                        else {
878 <                            if (x == xp.left) {
879 <                                rotateRight(x = xp);
880 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
881 <                            }
882 <                            if (xp != null) {
883 <                                xp.red = false;
884 <                                if (xpp != null) {
885 <                                    xpp.red = true;
886 <                                    rotateLeft(xpp);
887 <                                }
888 <                            }
889 <                        }
890 <                    }
891 <                }
892 <                TreeNode r = root;
893 <                if (r != null && r.red)
894 <                    r.red = false;
629 >        Node<K,V> find(int h, Object k) {
630 >            Node<K,V> e = this;
631 >            if (k != null) {
632 >                do {
633 >                    K ek;
634 >                    if (e.hash == h &&
635 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
636 >                        return e;
637 >                } while ((e = e.next) != null);
638              }
639              return null;
640          }
898
899        /**
900         * Removes the given node, that must be present before this
901         * call.  This is messier than typical red-black deletion code
902         * because we cannot swap the contents of an interior node
903         * with a leaf successor that is pinned by "next" pointers
904         * that are accessible independently of lock. So instead we
905         * swap the tree linkages.
906         */
907        final void deleteTreeNode(TreeNode p) {
908            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
909            TreeNode pred = p.prev;
910            if (pred == null)
911                first = next;
912            else
913                pred.next = next;
914            if (next != null)
915                next.prev = pred;
916            TreeNode replacement;
917            TreeNode pl = p.left;
918            TreeNode pr = p.right;
919            if (pl != null && pr != null) {
920                TreeNode s = pr, sl;
921                while ((sl = s.left) != null) // find successor
922                    s = sl;
923                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
924                TreeNode sr = s.right;
925                TreeNode pp = p.parent;
926                if (s == pr) { // p was s's direct parent
927                    p.parent = s;
928                    s.right = p;
929                }
930                else {
931                    TreeNode sp = s.parent;
932                    if ((p.parent = sp) != null) {
933                        if (s == sp.left)
934                            sp.left = p;
935                        else
936                            sp.right = p;
937                    }
938                    if ((s.right = pr) != null)
939                        pr.parent = s;
940                }
941                p.left = null;
942                if ((p.right = sr) != null)
943                    sr.parent = p;
944                if ((s.left = pl) != null)
945                    pl.parent = s;
946                if ((s.parent = pp) == null)
947                    root = s;
948                else if (p == pp.left)
949                    pp.left = s;
950                else
951                    pp.right = s;
952                replacement = sr;
953            }
954            else
955                replacement = (pl != null) ? pl : pr;
956            TreeNode pp = p.parent;
957            if (replacement == null) {
958                if (pp == null) {
959                    root = null;
960                    return;
961                }
962                replacement = p;
963            }
964            else {
965                replacement.parent = pp;
966                if (pp == null)
967                    root = replacement;
968                else if (p == pp.left)
969                    pp.left = replacement;
970                else
971                    pp.right = replacement;
972                p.left = p.right = p.parent = null;
973            }
974            if (!p.red) { // rebalance, from CLR
975                TreeNode x = replacement;
976                while (x != null) {
977                    TreeNode xp, xpl;
978                    if (x.red || (xp = x.parent) == null) {
979                        x.red = false;
980                        break;
981                    }
982                    if (x == (xpl = xp.left)) {
983                        TreeNode sib = xp.right;
984                        if (sib != null && sib.red) {
985                            sib.red = false;
986                            xp.red = true;
987                            rotateLeft(xp);
988                            sib = (xp = x.parent) == null ? null : xp.right;
989                        }
990                        if (sib == null)
991                            x = xp;
992                        else {
993                            TreeNode sl = sib.left, sr = sib.right;
994                            if ((sr == null || !sr.red) &&
995                                (sl == null || !sl.red)) {
996                                sib.red = true;
997                                x = xp;
998                            }
999                            else {
1000                                if (sr == null || !sr.red) {
1001                                    if (sl != null)
1002                                        sl.red = false;
1003                                    sib.red = true;
1004                                    rotateRight(sib);
1005                                    sib = (xp = x.parent) == null ? null : xp.right;
1006                                }
1007                                if (sib != null) {
1008                                    sib.red = (xp == null) ? false : xp.red;
1009                                    if ((sr = sib.right) != null)
1010                                        sr.red = false;
1011                                }
1012                                if (xp != null) {
1013                                    xp.red = false;
1014                                    rotateLeft(xp);
1015                                }
1016                                x = root;
1017                            }
1018                        }
1019                    }
1020                    else { // symmetric
1021                        TreeNode sib = xpl;
1022                        if (sib != null && sib.red) {
1023                            sib.red = false;
1024                            xp.red = true;
1025                            rotateRight(xp);
1026                            sib = (xp = x.parent) == null ? null : xp.left;
1027                        }
1028                        if (sib == null)
1029                            x = xp;
1030                        else {
1031                            TreeNode sl = sib.left, sr = sib.right;
1032                            if ((sl == null || !sl.red) &&
1033                                (sr == null || !sr.red)) {
1034                                sib.red = true;
1035                                x = xp;
1036                            }
1037                            else {
1038                                if (sl == null || !sl.red) {
1039                                    if (sr != null)
1040                                        sr.red = false;
1041                                    sib.red = true;
1042                                    rotateLeft(sib);
1043                                    sib = (xp = x.parent) == null ? null : xp.left;
1044                                }
1045                                if (sib != null) {
1046                                    sib.red = (xp == null) ? false : xp.red;
1047                                    if ((sl = sib.left) != null)
1048                                        sl.red = false;
1049                                }
1050                                if (xp != null) {
1051                                    xp.red = false;
1052                                    rotateRight(xp);
1053                                }
1054                                x = root;
1055                            }
1056                        }
1057                    }
1058                }
1059            }
1060            if (p == replacement && (pp = p.parent) != null) {
1061                if (p == pp.left) // detach pointers
1062                    pp.left = null;
1063                else if (p == pp.right)
1064                    pp.right = null;
1065                p.parent = null;
1066            }
1067        }
641      }
642  
643 <    /* ---------------- Collision reduction methods -------------- */
643 >    /* ---------------- Static utilities -------------- */
644  
645      /**
646 <     * Spreads higher bits to lower, and also forces top 2 bits to 0.
647 <     * Because the table uses power-of-two masking, sets of hashes
648 <     * that vary only in bits above the current mask will always
649 <     * collide. (Among known examples are sets of Float keys holding
650 <     * consecutive whole numbers in small tables.)  To counter this,
651 <     * we apply a transform that spreads the impact of higher bits
646 >     * Spreads (XORs) higher bits of hash to lower and also forces top
647 >     * bit to 0. Because the table uses power-of-two masking, sets of
648 >     * hashes that vary only in bits above the current mask will
649 >     * always collide. (Among known examples are sets of Float keys
650 >     * holding consecutive whole numbers in small tables.)  So we
651 >     * apply a transform that spreads the impact of higher bits
652       * downward. There is a tradeoff between speed, utility, and
653       * quality of bit-spreading. Because many common sets of hashes
654 <     * are already reasonably distributed across bits (so don't benefit
655 <     * from spreading), and because we use trees to handle large sets
656 <     * of collisions in bins, we don't need excessively high quality.
654 >     * are already reasonably distributed (so don't benefit from
655 >     * spreading), and because we use trees to handle large sets of
656 >     * collisions in bins, we just XOR some shifted bits in the
657 >     * cheapest possible way to reduce systematic lossage, as well as
658 >     * to incorporate impact of the highest bits that would otherwise
659 >     * never be used in index calculations because of table bounds.
660       */
661 <    private static final int spread(int h) {
662 <        h ^= (h >>> 18) ^ (h >>> 12);
1087 <        return (h ^ (h >>> 10)) & HASH_BITS;
661 >    static final int spread(int h) {
662 >        return (h ^ (h >>> 16)) & HASH_BITS;
663      }
664  
665      /**
666 <     * Replaces a list bin with a tree bin. Call only when locked.
667 <     * Fails to replace if the given key is non-comparable or table
1093 <     * is, or needs, resizing.
666 >     * Returns a power of two table size for the given desired capacity.
667 >     * See Hackers Delight, sec 3.2
668       */
669 <    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
670 <        if ((key instanceof Comparable) &&
671 <            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
672 <            TreeBin t = new TreeBin();
673 <            for (Node e = tabAt(tab, index); e != null; e = e.next)
674 <                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
675 <            setTabAt(tab, index, new Node(MOVED, t, null, null));
676 <        }
669 >    private static final int tableSizeFor(int c) {
670 >        int n = c - 1;
671 >        n |= n >>> 1;
672 >        n |= n >>> 2;
673 >        n |= n >>> 4;
674 >        n |= n >>> 8;
675 >        n |= n >>> 16;
676 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
677      }
678  
679 <    /* ---------------- Internal access and update methods -------------- */
680 <
681 <    /** Implementation for get and containsKey */
682 <    private final Object internalGet(Object k) {
683 <        int h = spread(k.hashCode());
684 <        retry: for (Node[] tab = table; tab != null;) {
685 <            Node e, p; Object ek, ev; int eh;      // locals to read fields once
686 <            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
687 <                if ((eh = e.hash) == MOVED) {
688 <                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
689 <                        return ((TreeBin)ek).getValue(h, k);
690 <                    else {                        // restart with new table
691 <                        tab = (Node[])ek;
692 <                        continue retry;
693 <                    }
679 >    /**
680 >     * Returns x's Class if it is of the form "class C implements
681 >     * Comparable<C>", else null.
682 >     */
683 >    static Class<?> comparableClassFor(Object x) {
684 >        if (x instanceof Comparable) {
685 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
686 >            if ((c = x.getClass()) == String.class) // bypass checks
687 >                return c;
688 >            if ((ts = c.getGenericInterfaces()) != null) {
689 >                for (int i = 0; i < ts.length; ++i) {
690 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
691 >                        ((p = (ParameterizedType)t).getRawType() ==
692 >                         Comparable.class) &&
693 >                        (as = p.getActualTypeArguments()) != null &&
694 >                        as.length == 1 && as[0] == c) // type arg is c
695 >                        return c;
696                  }
1121                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1122                         ((ek = e.key) == k || k.equals(ek)))
1123                    return ev;
697              }
1125            break;
698          }
699          return null;
700      }
701  
702      /**
703 <     * Implementation for the four public remove/replace methods:
704 <     * Replaces node value with v, conditional upon match of cv if
1133 <     * non-null.  If resulting value is null, delete.
703 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
704 >     * class), else 0.
705       */
706 <    private final Object internalReplace(Object k, Object v, Object cv) {
707 <        int h = spread(k.hashCode());
708 <        Object oldVal = null;
709 <        for (Node[] tab = table;;) {
1139 <            Node f; int i, fh; Object fk;
1140 <            if (tab == null ||
1141 <                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1142 <                break;
1143 <            else if ((fh = f.hash) == MOVED) {
1144 <                if ((fk = f.key) instanceof TreeBin) {
1145 <                    TreeBin t = (TreeBin)fk;
1146 <                    boolean validated = false;
1147 <                    boolean deleted = false;
1148 <                    t.acquire(0);
1149 <                    try {
1150 <                        if (tabAt(tab, i) == f) {
1151 <                            validated = true;
1152 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1153 <                            if (p != null) {
1154 <                                Object pv = p.val;
1155 <                                if (cv == null || cv == pv || cv.equals(pv)) {
1156 <                                    oldVal = pv;
1157 <                                    if ((p.val = v) == null) {
1158 <                                        deleted = true;
1159 <                                        t.deleteTreeNode(p);
1160 <                                    }
1161 <                                }
1162 <                            }
1163 <                        }
1164 <                    } finally {
1165 <                        t.release(0);
1166 <                    }
1167 <                    if (validated) {
1168 <                        if (deleted)
1169 <                            counter.add(-1L);
1170 <                        break;
1171 <                    }
1172 <                }
1173 <                else
1174 <                    tab = (Node[])fk;
1175 <            }
1176 <            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1177 <                break;                          // rules out possible existence
1178 <            else if ((fh & LOCKED) != 0) {
1179 <                checkForResize();               // try resizing if can't get lock
1180 <                f.tryAwaitLock(tab, i);
1181 <            }
1182 <            else if (f.casHash(fh, fh | LOCKED)) {
1183 <                boolean validated = false;
1184 <                boolean deleted = false;
1185 <                try {
1186 <                    if (tabAt(tab, i) == f) {
1187 <                        validated = true;
1188 <                        for (Node e = f, pred = null;;) {
1189 <                            Object ek, ev;
1190 <                            if ((e.hash & HASH_BITS) == h &&
1191 <                                ((ev = e.val) != null) &&
1192 <                                ((ek = e.key) == k || k.equals(ek))) {
1193 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1194 <                                    oldVal = ev;
1195 <                                    if ((e.val = v) == null) {
1196 <                                        deleted = true;
1197 <                                        Node en = e.next;
1198 <                                        if (pred != null)
1199 <                                            pred.next = en;
1200 <                                        else
1201 <                                            setTabAt(tab, i, en);
1202 <                                    }
1203 <                                }
1204 <                                break;
1205 <                            }
1206 <                            pred = e;
1207 <                            if ((e = e.next) == null)
1208 <                                break;
1209 <                        }
1210 <                    }
1211 <                } finally {
1212 <                    if (!f.casHash(fh | LOCKED, fh)) {
1213 <                        f.hash = fh;
1214 <                        synchronized (f) { f.notifyAll(); };
1215 <                    }
1216 <                }
1217 <                if (validated) {
1218 <                    if (deleted)
1219 <                        counter.add(-1L);
1220 <                    break;
1221 <                }
1222 <            }
1223 <        }
1224 <        return oldVal;
706 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
707 >    static int compareComparables(Class<?> kc, Object k, Object x) {
708 >        return (x == null || x.getClass() != kc ? 0 :
709 >                ((Comparable)k).compareTo(x));
710      }
711  
712 <    /*
1228 <     * Internal versions of the five insertion methods, each a
1229 <     * little more complicated than the last. All have
1230 <     * the same basic structure as the first (internalPut):
1231 <     *  1. If table uninitialized, create
1232 <     *  2. If bin empty, try to CAS new node
1233 <     *  3. If bin stale, use new table
1234 <     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1235 <     *  5. Lock and validate; if valid, scan and add or update
1236 <     *
1237 <     * The others interweave other checks and/or alternative actions:
1238 <     *  * Plain put checks for and performs resize after insertion.
1239 <     *  * putIfAbsent prescans for mapping without lock (and fails to add
1240 <     *    if present), which also makes pre-emptive resize checks worthwhile.
1241 <     *  * computeIfAbsent extends form used in putIfAbsent with additional
1242 <     *    mechanics to deal with, calls, potential exceptions and null
1243 <     *    returns from function call.
1244 <     *  * compute uses the same function-call mechanics, but without
1245 <     *    the prescans
1246 <     *  * putAll attempts to pre-allocate enough table space
1247 <     *    and more lazily performs count updates and checks.
1248 <     *
1249 <     * Someday when details settle down a bit more, it might be worth
1250 <     * some factoring to reduce sprawl.
1251 <     */
1252 <
1253 <    /** Implementation for put */
1254 <    private final Object internalPut(Object k, Object v) {
1255 <        int h = spread(k.hashCode());
1256 <        int count = 0;
1257 <        for (Node[] tab = table;;) {
1258 <            int i; Node f; int fh; Object fk;
1259 <            if (tab == null)
1260 <                tab = initTable();
1261 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1262 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1263 <                    break;                   // no lock when adding to empty bin
1264 <            }
1265 <            else if ((fh = f.hash) == MOVED) {
1266 <                if ((fk = f.key) instanceof TreeBin) {
1267 <                    TreeBin t = (TreeBin)fk;
1268 <                    Object oldVal = null;
1269 <                    t.acquire(0);
1270 <                    try {
1271 <                        if (tabAt(tab, i) == f) {
1272 <                            count = 2;
1273 <                            TreeNode p = t.putTreeNode(h, k, v);
1274 <                            if (p != null) {
1275 <                                oldVal = p.val;
1276 <                                p.val = v;
1277 <                            }
1278 <                        }
1279 <                    } finally {
1280 <                        t.release(0);
1281 <                    }
1282 <                    if (count != 0) {
1283 <                        if (oldVal != null)
1284 <                            return oldVal;
1285 <                        break;
1286 <                    }
1287 <                }
1288 <                else
1289 <                    tab = (Node[])fk;
1290 <            }
1291 <            else if ((fh & LOCKED) != 0) {
1292 <                checkForResize();
1293 <                f.tryAwaitLock(tab, i);
1294 <            }
1295 <            else if (f.casHash(fh, fh | LOCKED)) {
1296 <                Object oldVal = null;
1297 <                try {                        // needed in case equals() throws
1298 <                    if (tabAt(tab, i) == f) {
1299 <                        count = 1;
1300 <                        for (Node e = f;; ++count) {
1301 <                            Object ek, ev;
1302 <                            if ((e.hash & HASH_BITS) == h &&
1303 <                                (ev = e.val) != null &&
1304 <                                ((ek = e.key) == k || k.equals(ek))) {
1305 <                                oldVal = ev;
1306 <                                e.val = v;
1307 <                                break;
1308 <                            }
1309 <                            Node last = e;
1310 <                            if ((e = e.next) == null) {
1311 <                                last.next = new Node(h, k, v, null);
1312 <                                if (count >= TREE_THRESHOLD)
1313 <                                    replaceWithTreeBin(tab, i, k);
1314 <                                break;
1315 <                            }
1316 <                        }
1317 <                    }
1318 <                } finally {                  // unlock and signal if needed
1319 <                    if (!f.casHash(fh | LOCKED, fh)) {
1320 <                        f.hash = fh;
1321 <                        synchronized (f) { f.notifyAll(); };
1322 <                    }
1323 <                }
1324 <                if (count != 0) {
1325 <                    if (oldVal != null)
1326 <                        return oldVal;
1327 <                    if (tab.length <= 64)
1328 <                        count = 2;
1329 <                    break;
1330 <                }
1331 <            }
1332 <        }
1333 <        counter.add(1L);
1334 <        if (count > 1)
1335 <            checkForResize();
1336 <        return null;
1337 <    }
712 >    /* ---------------- Table element access -------------- */
713  
714 <    /** Implementation for putIfAbsent */
715 <    private final Object internalPutIfAbsent(Object k, Object v) {
716 <        int h = spread(k.hashCode());
717 <        int count = 0;
718 <        for (Node[] tab = table;;) {
719 <            int i; Node f; int fh; Object fk, fv;
720 <            if (tab == null)
721 <                tab = initTable();
722 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
723 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
724 <                    break;
725 <            }
726 <            else if ((fh = f.hash) == MOVED) {
727 <                if ((fk = f.key) instanceof TreeBin) {
728 <                    TreeBin t = (TreeBin)fk;
1354 <                    Object oldVal = null;
1355 <                    t.acquire(0);
1356 <                    try {
1357 <                        if (tabAt(tab, i) == f) {
1358 <                            count = 2;
1359 <                            TreeNode p = t.putTreeNode(h, k, v);
1360 <                            if (p != null)
1361 <                                oldVal = p.val;
1362 <                        }
1363 <                    } finally {
1364 <                        t.release(0);
1365 <                    }
1366 <                    if (count != 0) {
1367 <                        if (oldVal != null)
1368 <                            return oldVal;
1369 <                        break;
1370 <                    }
1371 <                }
1372 <                else
1373 <                    tab = (Node[])fk;
1374 <            }
1375 <            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1376 <                     ((fk = f.key) == k || k.equals(fk)))
1377 <                return fv;
1378 <            else {
1379 <                Node g = f.next;
1380 <                if (g != null) { // at least 2 nodes -- search and maybe resize
1381 <                    for (Node e = g;;) {
1382 <                        Object ek, ev;
1383 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1384 <                            ((ek = e.key) == k || k.equals(ek)))
1385 <                            return ev;
1386 <                        if ((e = e.next) == null) {
1387 <                            checkForResize();
1388 <                            break;
1389 <                        }
1390 <                    }
1391 <                }
1392 <                if (((fh = f.hash) & LOCKED) != 0) {
1393 <                    checkForResize();
1394 <                    f.tryAwaitLock(tab, i);
1395 <                }
1396 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1397 <                    Object oldVal = null;
1398 <                    try {
1399 <                        if (tabAt(tab, i) == f) {
1400 <                            count = 1;
1401 <                            for (Node e = f;; ++count) {
1402 <                                Object ek, ev;
1403 <                                if ((e.hash & HASH_BITS) == h &&
1404 <                                    (ev = e.val) != null &&
1405 <                                    ((ek = e.key) == k || k.equals(ek))) {
1406 <                                    oldVal = ev;
1407 <                                    break;
1408 <                                }
1409 <                                Node last = e;
1410 <                                if ((e = e.next) == null) {
1411 <                                    last.next = new Node(h, k, v, null);
1412 <                                    if (count >= TREE_THRESHOLD)
1413 <                                        replaceWithTreeBin(tab, i, k);
1414 <                                    break;
1415 <                                }
1416 <                            }
1417 <                        }
1418 <                    } finally {
1419 <                        if (!f.casHash(fh | LOCKED, fh)) {
1420 <                            f.hash = fh;
1421 <                            synchronized (f) { f.notifyAll(); };
1422 <                        }
1423 <                    }
1424 <                    if (count != 0) {
1425 <                        if (oldVal != null)
1426 <                            return oldVal;
1427 <                        if (tab.length <= 64)
1428 <                            count = 2;
1429 <                        break;
1430 <                    }
1431 <                }
1432 <            }
1433 <        }
1434 <        counter.add(1L);
1435 <        if (count > 1)
1436 <            checkForResize();
1437 <        return null;
1438 <    }
714 >    /*
715 >     * Volatile access methods are used for table elements as well as
716 >     * elements of in-progress next table while resizing.  All uses of
717 >     * the tab arguments must be null checked by callers.  All callers
718 >     * also paranoically precheck that tab's length is not zero (or an
719 >     * equivalent check), thus ensuring that any index argument taking
720 >     * the form of a hash value anded with (length - 1) is a valid
721 >     * index.  Note that, to be correct wrt arbitrary concurrency
722 >     * errors by users, these checks must operate on local variables,
723 >     * which accounts for some odd-looking inline assignments below.
724 >     * Note that calls to setTabAt always occur within locked regions,
725 >     * and so in principle require only release ordering, not need
726 >     * full volatile semantics, but are currently coded as volatile
727 >     * writes to be conservative.
728 >     */
729  
730 <    /** Implementation for computeIfAbsent */
731 <    private final Object internalComputeIfAbsent(K k,
732 <                                                 MappingFunction<? super K, ?> mf) {
1443 <        int h = spread(k.hashCode());
1444 <        Object val = null;
1445 <        int count = 0;
1446 <        for (Node[] tab = table;;) {
1447 <            Node f; int i, fh; Object fk, fv;
1448 <            if (tab == null)
1449 <                tab = initTable();
1450 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1451 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1452 <                if (casTabAt(tab, i, null, node)) {
1453 <                    count = 1;
1454 <                    try {
1455 <                        if ((val = mf.map(k)) != null)
1456 <                            node.val = val;
1457 <                    } finally {
1458 <                        if (val == null)
1459 <                            setTabAt(tab, i, null);
1460 <                        if (!node.casHash(fh, h)) {
1461 <                            node.hash = h;
1462 <                            synchronized (node) { node.notifyAll(); };
1463 <                        }
1464 <                    }
1465 <                }
1466 <                if (count != 0)
1467 <                    break;
1468 <            }
1469 <            else if ((fh = f.hash) == MOVED) {
1470 <                if ((fk = f.key) instanceof TreeBin) {
1471 <                    TreeBin t = (TreeBin)fk;
1472 <                    boolean added = false;
1473 <                    t.acquire(0);
1474 <                    try {
1475 <                        if (tabAt(tab, i) == f) {
1476 <                            count = 1;
1477 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1478 <                            if (p != null)
1479 <                                val = p.val;
1480 <                            else if ((val = mf.map(k)) != null) {
1481 <                                added = true;
1482 <                                count = 2;
1483 <                                t.putTreeNode(h, k, val);
1484 <                            }
1485 <                        }
1486 <                    } finally {
1487 <                        t.release(0);
1488 <                    }
1489 <                    if (count != 0) {
1490 <                        if (!added)
1491 <                            return val;
1492 <                        break;
1493 <                    }
1494 <                }
1495 <                else
1496 <                    tab = (Node[])fk;
1497 <            }
1498 <            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1499 <                     ((fk = f.key) == k || k.equals(fk)))
1500 <                return fv;
1501 <            else {
1502 <                Node g = f.next;
1503 <                if (g != null) {
1504 <                    for (Node e = g;;) {
1505 <                        Object ek, ev;
1506 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1507 <                            ((ek = e.key) == k || k.equals(ek)))
1508 <                            return ev;
1509 <                        if ((e = e.next) == null) {
1510 <                            checkForResize();
1511 <                            break;
1512 <                        }
1513 <                    }
1514 <                }
1515 <                if (((fh = f.hash) & LOCKED) != 0) {
1516 <                    checkForResize();
1517 <                    f.tryAwaitLock(tab, i);
1518 <                }
1519 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1520 <                    boolean added = false;
1521 <                    try {
1522 <                        if (tabAt(tab, i) == f) {
1523 <                            count = 1;
1524 <                            for (Node e = f;; ++count) {
1525 <                                Object ek, ev;
1526 <                                if ((e.hash & HASH_BITS) == h &&
1527 <                                    (ev = e.val) != null &&
1528 <                                    ((ek = e.key) == k || k.equals(ek))) {
1529 <                                    val = ev;
1530 <                                    break;
1531 <                                }
1532 <                                Node last = e;
1533 <                                if ((e = e.next) == null) {
1534 <                                    if ((val = mf.map(k)) != null) {
1535 <                                        added = true;
1536 <                                        last.next = new Node(h, k, val, null);
1537 <                                        if (count >= TREE_THRESHOLD)
1538 <                                            replaceWithTreeBin(tab, i, k);
1539 <                                    }
1540 <                                    break;
1541 <                                }
1542 <                            }
1543 <                        }
1544 <                    } finally {
1545 <                        if (!f.casHash(fh | LOCKED, fh)) {
1546 <                            f.hash = fh;
1547 <                            synchronized (f) { f.notifyAll(); };
1548 <                        }
1549 <                    }
1550 <                    if (count != 0) {
1551 <                        if (!added)
1552 <                            return val;
1553 <                        if (tab.length <= 64)
1554 <                            count = 2;
1555 <                        break;
1556 <                    }
1557 <                }
1558 <            }
1559 <        }
1560 <        if (val != null) {
1561 <            counter.add(1L);
1562 <            if (count > 1)
1563 <                checkForResize();
1564 <        }
1565 <        return val;
730 >    @SuppressWarnings("unchecked")
731 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
732 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
733      }
734  
735 <    /** Implementation for compute */
736 <    @SuppressWarnings("unchecked")
737 <    private final Object internalCompute(K k,
1571 <                                         RemappingFunction<? super K, V> mf) {
1572 <        int h = spread(k.hashCode());
1573 <        Object val = null;
1574 <        int delta = 0;
1575 <        int count = 0;
1576 <        for (Node[] tab = table;;) {
1577 <            Node f; int i, fh; Object fk;
1578 <            if (tab == null)
1579 <                tab = initTable();
1580 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1581 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1582 <                if (casTabAt(tab, i, null, node)) {
1583 <                    try {
1584 <                        count = 1;
1585 <                        if ((val = mf.remap(k, null)) != null) {
1586 <                            node.val = val;
1587 <                            delta = 1;
1588 <                        }
1589 <                    } finally {
1590 <                        if (delta == 0)
1591 <                            setTabAt(tab, i, null);
1592 <                        if (!node.casHash(fh, h)) {
1593 <                            node.hash = h;
1594 <                            synchronized (node) { node.notifyAll(); };
1595 <                        }
1596 <                    }
1597 <                }
1598 <                if (count != 0)
1599 <                    break;
1600 <            }
1601 <            else if ((fh = f.hash) == MOVED) {
1602 <                if ((fk = f.key) instanceof TreeBin) {
1603 <                    TreeBin t = (TreeBin)fk;
1604 <                    t.acquire(0);
1605 <                    try {
1606 <                        if (tabAt(tab, i) == f) {
1607 <                            count = 1;
1608 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1609 <                            Object pv = (p == null) ? null : p.val;
1610 <                            if ((val = mf.remap(k, (V)pv)) != null) {
1611 <                                if (p != null)
1612 <                                    p.val = val;
1613 <                                else {
1614 <                                    count = 2;
1615 <                                    delta = 1;
1616 <                                    t.putTreeNode(h, k, val);
1617 <                                }
1618 <                            }
1619 <                            else if (p != null) {
1620 <                                delta = -1;
1621 <                                t.deleteTreeNode(p);
1622 <                            }
1623 <                        }
1624 <                    } finally {
1625 <                        t.release(0);
1626 <                    }
1627 <                    if (count != 0)
1628 <                        break;
1629 <                }
1630 <                else
1631 <                    tab = (Node[])fk;
1632 <            }
1633 <            else if ((fh & LOCKED) != 0) {
1634 <                checkForResize();
1635 <                f.tryAwaitLock(tab, i);
1636 <            }
1637 <            else if (f.casHash(fh, fh | LOCKED)) {
1638 <                try {
1639 <                    if (tabAt(tab, i) == f) {
1640 <                        count = 1;
1641 <                        for (Node e = f, pred = null;; ++count) {
1642 <                            Object ek, ev;
1643 <                            if ((e.hash & HASH_BITS) == h &&
1644 <                                (ev = e.val) != null &&
1645 <                                ((ek = e.key) == k || k.equals(ek))) {
1646 <                                val = mf.remap(k, (V)ev);
1647 <                                if (val != null)
1648 <                                    e.val = val;
1649 <                                else {
1650 <                                    delta = -1;
1651 <                                    Node en = e.next;
1652 <                                    if (pred != null)
1653 <                                        pred.next = en;
1654 <                                    else
1655 <                                        setTabAt(tab, i, en);
1656 <                                }
1657 <                                break;
1658 <                            }
1659 <                            pred = e;
1660 <                            if ((e = e.next) == null) {
1661 <                                if ((val = mf.remap(k, null)) != null) {
1662 <                                    pred.next = new Node(h, k, val, null);
1663 <                                    delta = 1;
1664 <                                    if (count >= TREE_THRESHOLD)
1665 <                                        replaceWithTreeBin(tab, i, k);
1666 <                                }
1667 <                                break;
1668 <                            }
1669 <                        }
1670 <                    }
1671 <                } finally {
1672 <                    if (!f.casHash(fh | LOCKED, fh)) {
1673 <                        f.hash = fh;
1674 <                        synchronized (f) { f.notifyAll(); };
1675 <                    }
1676 <                }
1677 <                if (count != 0) {
1678 <                    if (tab.length <= 64)
1679 <                        count = 2;
1680 <                    break;
1681 <                }
1682 <            }
1683 <        }
1684 <        if (delta != 0) {
1685 <            counter.add((long)delta);
1686 <            if (count > 1)
1687 <                checkForResize();
1688 <        }
1689 <        return val;
735 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
736 >                                        Node<K,V> c, Node<K,V> v) {
737 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
738      }
739  
740 <    /** Implementation for putAll */
741 <    private final void internalPutAll(Map<?, ?> m) {
1694 <        tryPresize(m.size());
1695 <        long delta = 0L;     // number of uncommitted additions
1696 <        boolean npe = false; // to throw exception on exit for nulls
1697 <        try {                // to clean up counts on other exceptions
1698 <            for (Map.Entry<?, ?> entry : m.entrySet()) {
1699 <                Object k, v;
1700 <                if (entry == null || (k = entry.getKey()) == null ||
1701 <                    (v = entry.getValue()) == null) {
1702 <                    npe = true;
1703 <                    break;
1704 <                }
1705 <                int h = spread(k.hashCode());
1706 <                for (Node[] tab = table;;) {
1707 <                    int i; Node f; int fh; Object fk;
1708 <                    if (tab == null)
1709 <                        tab = initTable();
1710 <                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1711 <                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1712 <                            ++delta;
1713 <                            break;
1714 <                        }
1715 <                    }
1716 <                    else if ((fh = f.hash) == MOVED) {
1717 <                        if ((fk = f.key) instanceof TreeBin) {
1718 <                            TreeBin t = (TreeBin)fk;
1719 <                            boolean validated = false;
1720 <                            t.acquire(0);
1721 <                            try {
1722 <                                if (tabAt(tab, i) == f) {
1723 <                                    validated = true;
1724 <                                    TreeNode p = t.getTreeNode(h, k, t.root);
1725 <                                    if (p != null)
1726 <                                        p.val = v;
1727 <                                    else {
1728 <                                        t.putTreeNode(h, k, v);
1729 <                                        ++delta;
1730 <                                    }
1731 <                                }
1732 <                            } finally {
1733 <                                t.release(0);
1734 <                            }
1735 <                            if (validated)
1736 <                                break;
1737 <                        }
1738 <                        else
1739 <                            tab = (Node[])fk;
1740 <                    }
1741 <                    else if ((fh & LOCKED) != 0) {
1742 <                        counter.add(delta);
1743 <                        delta = 0L;
1744 <                        checkForResize();
1745 <                        f.tryAwaitLock(tab, i);
1746 <                    }
1747 <                    else if (f.casHash(fh, fh | LOCKED)) {
1748 <                        int count = 0;
1749 <                        try {
1750 <                            if (tabAt(tab, i) == f) {
1751 <                                count = 1;
1752 <                                for (Node e = f;; ++count) {
1753 <                                    Object ek, ev;
1754 <                                    if ((e.hash & HASH_BITS) == h &&
1755 <                                        (ev = e.val) != null &&
1756 <                                        ((ek = e.key) == k || k.equals(ek))) {
1757 <                                        e.val = v;
1758 <                                        break;
1759 <                                    }
1760 <                                    Node last = e;
1761 <                                    if ((e = e.next) == null) {
1762 <                                        ++delta;
1763 <                                        last.next = new Node(h, k, v, null);
1764 <                                        if (count >= TREE_THRESHOLD)
1765 <                                            replaceWithTreeBin(tab, i, k);
1766 <                                        break;
1767 <                                    }
1768 <                                }
1769 <                            }
1770 <                        } finally {
1771 <                            if (!f.casHash(fh | LOCKED, fh)) {
1772 <                                f.hash = fh;
1773 <                                synchronized (f) { f.notifyAll(); };
1774 <                            }
1775 <                        }
1776 <                        if (count != 0) {
1777 <                            if (count > 1) {
1778 <                                counter.add(delta);
1779 <                                delta = 0L;
1780 <                                checkForResize();
1781 <                            }
1782 <                            break;
1783 <                        }
1784 <                    }
1785 <                }
1786 <            }
1787 <        } finally {
1788 <            if (delta != 0)
1789 <                counter.add(delta);
1790 <        }
1791 <        if (npe)
1792 <            throw new NullPointerException();
740 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
741 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
742      }
743  
744 <    /* ---------------- Table Initialization and Resizing -------------- */
744 >    /* ---------------- Fields -------------- */
745  
746      /**
747 <     * Returns a power of two table size for the given desired capacity.
748 <     * See Hackers Delight, sec 3.2
747 >     * The array of bins. Lazily initialized upon first insertion.
748 >     * Size is always a power of two. Accessed directly by iterators.
749       */
750 <    private static final int tableSizeFor(int c) {
1802 <        int n = c - 1;
1803 <        n |= n >>> 1;
1804 <        n |= n >>> 2;
1805 <        n |= n >>> 4;
1806 <        n |= n >>> 8;
1807 <        n |= n >>> 16;
1808 <        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1809 <    }
750 >    transient volatile Node<K,V>[] table;
751  
752      /**
753 <     * Initializes table, using the size recorded in sizeCtl.
753 >     * The next table to use; non-null only while resizing.
754       */
755 <    private final Node[] initTable() {
1815 <        Node[] tab; int sc;
1816 <        while ((tab = table) == null) {
1817 <            if ((sc = sizeCtl) < 0)
1818 <                Thread.yield(); // lost initialization race; just spin
1819 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1820 <                try {
1821 <                    if ((tab = table) == null) {
1822 <                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1823 <                        tab = table = new Node[n];
1824 <                        sc = n - (n >>> 2);
1825 <                    }
1826 <                } finally {
1827 <                    sizeCtl = sc;
1828 <                }
1829 <                break;
1830 <            }
1831 <        }
1832 <        return tab;
1833 <    }
1834 <
1835 <    /**
1836 <     * If table is too small and not already resizing, creates next
1837 <     * table and transfers bins.  Rechecks occupancy after a transfer
1838 <     * to see if another resize is already needed because resizings
1839 <     * are lagging additions.
1840 <     */
1841 <    private final void checkForResize() {
1842 <        Node[] tab; int n, sc;
1843 <        while ((tab = table) != null &&
1844 <               (n = tab.length) < MAXIMUM_CAPACITY &&
1845 <               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1846 <               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1847 <            try {
1848 <                if (tab == table) {
1849 <                    table = rebuild(tab);
1850 <                    sc = (n << 1) - (n >>> 1);
1851 <                }
1852 <            } finally {
1853 <                sizeCtl = sc;
1854 <            }
1855 <        }
1856 <    }
755 >    private transient volatile Node<K,V>[] nextTable;
756  
757      /**
758 <     * Tries to presize table to accommodate the given number of elements.
759 <     *
760 <     * @param size number of elements (doesn't need to be perfectly accurate)
758 >     * Base counter value, used mainly when there is no contention,
759 >     * but also as a fallback during table initialization
760 >     * races. Updated via CAS.
761       */
762 <    private final void tryPresize(int size) {
1864 <        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1865 <            tableSizeFor(size + (size >>> 1) + 1);
1866 <        int sc;
1867 <        while ((sc = sizeCtl) >= 0) {
1868 <            Node[] tab = table; int n;
1869 <            if (tab == null || (n = tab.length) == 0) {
1870 <                n = (sc > c) ? sc : c;
1871 <                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1872 <                    try {
1873 <                        if (table == tab) {
1874 <                            table = new Node[n];
1875 <                            sc = n - (n >>> 2);
1876 <                        }
1877 <                    } finally {
1878 <                        sizeCtl = sc;
1879 <                    }
1880 <                }
1881 <            }
1882 <            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1883 <                break;
1884 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1885 <                try {
1886 <                    if (table == tab) {
1887 <                        table = rebuild(tab);
1888 <                        sc = (n << 1) - (n >>> 1);
1889 <                    }
1890 <                } finally {
1891 <                    sizeCtl = sc;
1892 <                }
1893 <            }
1894 <        }
1895 <    }
762 >    private transient volatile long baseCount;
763  
764 <    /*
765 <     * Moves and/or copies the nodes in each bin to new table. See
766 <     * above for explanation.
767 <     *
768 <     * @return the new table
764 >    /**
765 >     * Table initialization and resizing control.  When negative, the
766 >     * table is being initialized or resized: -1 for initialization,
767 >     * else -(1 + the number of active resizing threads).  Otherwise,
768 >     * when table is null, holds the initial table size to use upon
769 >     * creation, or 0 for default. After initialization, holds the
770 >     * next element count value upon which to resize the table.
771       */
772 <    private static final Node[] rebuild(Node[] tab) {
1904 <        int n = tab.length;
1905 <        Node[] nextTab = new Node[n << 1];
1906 <        Node fwd = new Node(MOVED, nextTab, null, null);
1907 <        int[] buffer = null;       // holds bins to revisit; null until needed
1908 <        Node rev = null;           // reverse forwarder; null until needed
1909 <        int nbuffered = 0;         // the number of bins in buffer list
1910 <        int bufferIndex = 0;       // buffer index of current buffered bin
1911 <        int bin = n - 1;           // current non-buffered bin or -1 if none
1912 <
1913 <        for (int i = bin;;) {      // start upwards sweep
1914 <            int fh; Node f;
1915 <            if ((f = tabAt(tab, i)) == null) {
1916 <                if (bin >= 0) {    // no lock needed (or available)
1917 <                    if (!casTabAt(tab, i, f, fwd))
1918 <                        continue;
1919 <                }
1920 <                else {             // transiently use a locked forwarding node
1921 <                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
1922 <                    if (!casTabAt(tab, i, f, g))
1923 <                        continue;
1924 <                    setTabAt(nextTab, i, null);
1925 <                    setTabAt(nextTab, i + n, null);
1926 <                    setTabAt(tab, i, fwd);
1927 <                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
1928 <                        g.hash = MOVED;
1929 <                        synchronized (g) { g.notifyAll(); }
1930 <                    }
1931 <                }
1932 <            }
1933 <            else if ((fh = f.hash) == MOVED) {
1934 <                Object fk = f.key;
1935 <                if (fk instanceof TreeBin) {
1936 <                    TreeBin t = (TreeBin)fk;
1937 <                    boolean validated = false;
1938 <                    t.acquire(0);
1939 <                    try {
1940 <                        if (tabAt(tab, i) == f) {
1941 <                            validated = true;
1942 <                            splitTreeBin(nextTab, i, t);
1943 <                            setTabAt(tab, i, fwd);
1944 <                        }
1945 <                    } finally {
1946 <                        t.release(0);
1947 <                    }
1948 <                    if (!validated)
1949 <                        continue;
1950 <                }
1951 <            }
1952 <            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
1953 <                boolean validated = false;
1954 <                try {              // split to lo and hi lists; copying as needed
1955 <                    if (tabAt(tab, i) == f) {
1956 <                        validated = true;
1957 <                        splitBin(nextTab, i, f);
1958 <                        setTabAt(tab, i, fwd);
1959 <                    }
1960 <                } finally {
1961 <                    if (!f.casHash(fh | LOCKED, fh)) {
1962 <                        f.hash = fh;
1963 <                        synchronized (f) { f.notifyAll(); };
1964 <                    }
1965 <                }
1966 <                if (!validated)
1967 <                    continue;
1968 <            }
1969 <            else {
1970 <                if (buffer == null) // initialize buffer for revisits
1971 <                    buffer = new int[TRANSFER_BUFFER_SIZE];
1972 <                if (bin < 0 && bufferIndex > 0) {
1973 <                    int j = buffer[--bufferIndex];
1974 <                    buffer[bufferIndex] = i;
1975 <                    i = j;         // swap with another bin
1976 <                    continue;
1977 <                }
1978 <                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
1979 <                    f.tryAwaitLock(tab, i);
1980 <                    continue;      // no other options -- block
1981 <                }
1982 <                if (rev == null)   // initialize reverse-forwarder
1983 <                    rev = new Node(MOVED, tab, null, null);
1984 <                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
1985 <                    continue;      // recheck before adding to list
1986 <                buffer[nbuffered++] = i;
1987 <                setTabAt(nextTab, i, rev);     // install place-holders
1988 <                setTabAt(nextTab, i + n, rev);
1989 <            }
1990 <
1991 <            if (bin > 0)
1992 <                i = --bin;
1993 <            else if (buffer != null && nbuffered > 0) {
1994 <                bin = -1;
1995 <                i = buffer[bufferIndex = --nbuffered];
1996 <            }
1997 <            else
1998 <                return nextTab;
1999 <        }
2000 <    }
772 >    private transient volatile int sizeCtl;
773  
774      /**
775 <     * Splits a normal bin with list headed by e into lo and hi parts;
2004 <     * installs in given table.
775 >     * The next table index (plus one) to split while resizing.
776       */
777 <    private static void splitBin(Node[] nextTab, int i, Node e) {
2007 <        int bit = nextTab.length >>> 1; // bit to split on
2008 <        int runBit = e.hash & bit;
2009 <        Node lastRun = e, lo = null, hi = null;
2010 <        for (Node p = e.next; p != null; p = p.next) {
2011 <            int b = p.hash & bit;
2012 <            if (b != runBit) {
2013 <                runBit = b;
2014 <                lastRun = p;
2015 <            }
2016 <        }
2017 <        if (runBit == 0)
2018 <            lo = lastRun;
2019 <        else
2020 <            hi = lastRun;
2021 <        for (Node p = e; p != lastRun; p = p.next) {
2022 <            int ph = p.hash & HASH_BITS;
2023 <            Object pk = p.key, pv = p.val;
2024 <            if ((ph & bit) == 0)
2025 <                lo = new Node(ph, pk, pv, lo);
2026 <            else
2027 <                hi = new Node(ph, pk, pv, hi);
2028 <        }
2029 <        setTabAt(nextTab, i, lo);
2030 <        setTabAt(nextTab, i + bit, hi);
2031 <    }
777 >    private transient volatile int transferIndex;
778  
779      /**
780 <     * Splits a tree bin into lo and hi parts; installs in given table.
780 >     * The least available table index to split while resizing.
781       */
782 <    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2037 <        int bit = nextTab.length >>> 1;
2038 <        TreeBin lt = new TreeBin();
2039 <        TreeBin ht = new TreeBin();
2040 <        int lc = 0, hc = 0;
2041 <        for (Node e = t.first; e != null; e = e.next) {
2042 <            int h = e.hash & HASH_BITS;
2043 <            Object k = e.key, v = e.val;
2044 <            if ((h & bit) == 0) {
2045 <                ++lc;
2046 <                lt.putTreeNode(h, k, v);
2047 <            }
2048 <            else {
2049 <                ++hc;
2050 <                ht.putTreeNode(h, k, v);
2051 <            }
2052 <        }
2053 <        Node ln, hn; // throw away trees if too small
2054 <        if (lc <= (TREE_THRESHOLD >>> 1)) {
2055 <            ln = null;
2056 <            for (Node p = lt.first; p != null; p = p.next)
2057 <                ln = new Node(p.hash, p.key, p.val, ln);
2058 <        }
2059 <        else
2060 <            ln = new Node(MOVED, lt, null, null);
2061 <        setTabAt(nextTab, i, ln);
2062 <        if (hc <= (TREE_THRESHOLD >>> 1)) {
2063 <            hn = null;
2064 <            for (Node p = ht.first; p != null; p = p.next)
2065 <                hn = new Node(p.hash, p.key, p.val, hn);
2066 <        }
2067 <        else
2068 <            hn = new Node(MOVED, ht, null, null);
2069 <        setTabAt(nextTab, i + bit, hn);
2070 <    }
782 >    private transient volatile int transferOrigin;
783  
784      /**
785 <     * Implementation for clear. Steps through each bin, removing all
2074 <     * nodes.
785 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
786       */
787 <    private final void internalClear() {
2077 <        long delta = 0L; // negative number of deletions
2078 <        int i = 0;
2079 <        Node[] tab = table;
2080 <        while (tab != null && i < tab.length) {
2081 <            int fh; Object fk;
2082 <            Node f = tabAt(tab, i);
2083 <            if (f == null)
2084 <                ++i;
2085 <            else if ((fh = f.hash) == MOVED) {
2086 <                if ((fk = f.key) instanceof TreeBin) {
2087 <                    TreeBin t = (TreeBin)fk;
2088 <                    t.acquire(0);
2089 <                    try {
2090 <                        if (tabAt(tab, i) == f) {
2091 <                            for (Node p = t.first; p != null; p = p.next) {
2092 <                                p.val = null;
2093 <                                --delta;
2094 <                            }
2095 <                            t.first = null;
2096 <                            t.root = null;
2097 <                            ++i;
2098 <                        }
2099 <                    } finally {
2100 <                        t.release(0);
2101 <                    }
2102 <                }
2103 <                else
2104 <                    tab = (Node[])fk;
2105 <            }
2106 <            else if ((fh & LOCKED) != 0) {
2107 <                counter.add(delta); // opportunistically update count
2108 <                delta = 0L;
2109 <                f.tryAwaitLock(tab, i);
2110 <            }
2111 <            else if (f.casHash(fh, fh | LOCKED)) {
2112 <                try {
2113 <                    if (tabAt(tab, i) == f) {
2114 <                        for (Node e = f; e != null; e = e.next) {
2115 <                            e.val = null;
2116 <                            --delta;
2117 <                        }
2118 <                        setTabAt(tab, i, null);
2119 <                        ++i;
2120 <                    }
2121 <                } finally {
2122 <                    if (!f.casHash(fh | LOCKED, fh)) {
2123 <                        f.hash = fh;
2124 <                        synchronized (f) { f.notifyAll(); };
2125 <                    }
2126 <                }
2127 <            }
2128 <        }
2129 <        if (delta != 0)
2130 <            counter.add(delta);
2131 <    }
2132 <
2133 <    /* ----------------Table Traversal -------------- */
787 >    private transient volatile int cellsBusy;
788  
789      /**
790 <     * Encapsulates traversal for methods such as containsValue; also
2137 <     * serves as a base class for other iterators.
2138 <     *
2139 <     * At each step, the iterator snapshots the key ("nextKey") and
2140 <     * value ("nextVal") of a valid node (i.e., one that, at point of
2141 <     * snapshot, has a non-null user value). Because val fields can
2142 <     * change (including to null, indicating deletion), field nextVal
2143 <     * might not be accurate at point of use, but still maintains the
2144 <     * weak consistency property of holding a value that was once
2145 <     * valid.
2146 <     *
2147 <     * Internal traversals directly access these fields, as in:
2148 <     * {@code while (it.advance() != null) { process(it.nextKey); }}
2149 <     *
2150 <     * Exported iterators must track whether the iterator has advanced
2151 <     * (in hasNext vs next) (by setting/checking/nulling field
2152 <     * nextVal), and then extract key, value, or key-value pairs as
2153 <     * return values of next().
2154 <     *
2155 <     * The iterator visits once each still-valid node that was
2156 <     * reachable upon iterator construction. It might miss some that
2157 <     * were added to a bin after the bin was visited, which is OK wrt
2158 <     * consistency guarantees. Maintaining this property in the face
2159 <     * of possible ongoing resizes requires a fair amount of
2160 <     * bookkeeping state that is difficult to optimize away amidst
2161 <     * volatile accesses.  Even so, traversal maintains reasonable
2162 <     * throughput.
2163 <     *
2164 <     * Normally, iteration proceeds bin-by-bin traversing lists.
2165 <     * However, if the table has been resized, then all future steps
2166 <     * must traverse both the bin at the current index as well as at
2167 <     * (index + baseSize); and so on for further resizings. To
2168 <     * paranoically cope with potential sharing by users of iterators
2169 <     * across threads, iteration terminates if a bounds checks fails
2170 <     * for a table read.
790 >     * Table of counter cells. When non-null, size is a power of 2.
791       */
792 <    static class InternalIterator<K,V> {
2173 <        final ConcurrentHashMapV8<K, V> map;
2174 <        Node next;           // the next entry to use
2175 <        Node last;           // the last entry used
2176 <        Object nextKey;      // cached key field of next
2177 <        Object nextVal;      // cached val field of next
2178 <        Node[] tab;          // current table; updated if resized
2179 <        int index;           // index of bin to use next
2180 <        int baseIndex;       // current index of initial table
2181 <        int baseLimit;       // index bound for initial table
2182 <        final int baseSize;  // initial table size
2183 <
2184 <        /** Creates iterator for all entries in the table. */
2185 <        InternalIterator(ConcurrentHashMapV8<K, V> map) {
2186 <            this.tab = (this.map = map).table;
2187 <            baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2188 <        }
2189 <
2190 <        /** Creates iterator for clone() and split() methods. */
2191 <        InternalIterator(InternalIterator<K,V> it, boolean split) {
2192 <            this.map = it.map;
2193 <            this.tab = it.tab;
2194 <            this.baseSize = it.baseSize;
2195 <            int lo = it.baseIndex;
2196 <            int hi = this.baseLimit = it.baseLimit;
2197 <            this.index = this.baseIndex =
2198 <                (split) ? (it.baseLimit = (lo + hi + 1) >>> 1) : lo;
2199 <        }
2200 <
2201 <        /**
2202 <         * Advances next; returns nextVal or null if terminated.
2203 <         * See above for explanation.
2204 <         */
2205 <        final Object advance() {
2206 <            Node e = last = next;
2207 <            Object ev = null;
2208 <            outer: do {
2209 <                if (e != null)                  // advance past used/skipped node
2210 <                    e = e.next;
2211 <                while (e == null) {             // get to next non-null bin
2212 <                    Node[] t; int b, i, n; Object ek; // checks must use locals
2213 <                    if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2214 <                        (t = tab) == null || i >= (n = t.length))
2215 <                        break outer;
2216 <                    else if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2217 <                        if ((ek = e.key) instanceof TreeBin)
2218 <                            e = ((TreeBin)ek).first;
2219 <                        else {
2220 <                            tab = (Node[])ek;
2221 <                            continue;           // restarts due to null val
2222 <                        }
2223 <                    }                           // visit upper slots if present
2224 <                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2225 <                }
2226 <                nextKey = e.key;
2227 <            } while ((ev = e.val) == null);    // skip deleted or special nodes
2228 <            next = e;
2229 <            return nextVal = ev;
2230 <        }
2231 <
2232 <        public final void remove() {
2233 <            if (nextVal == null)
2234 <                advance();
2235 <            Node e = last;
2236 <            if (e == null)
2237 <                throw new IllegalStateException();
2238 <            last = null;
2239 <            map.remove(e.key);
2240 <        }
792 >    private transient volatile CounterCell[] counterCells;
793  
794 <        public final boolean hasNext() {
795 <            return nextVal != null || advance() != null;
796 <        }
794 >    // views
795 >    private transient KeySetView<K,V> keySet;
796 >    private transient ValuesView<K,V> values;
797 >    private transient EntrySetView<K,V> entrySet;
798  
2246        public final boolean hasMoreElements() { return hasNext(); }
2247    }
799  
800      /* ---------------- Public operations -------------- */
801  
# Line 2252 | Line 803 | public class ConcurrentHashMapV8<K, V>
803       * Creates a new, empty map with the default initial table size (16).
804       */
805      public ConcurrentHashMapV8() {
2255        this.counter = new LongAdder();
806      }
807  
808      /**
# Line 2271 | Line 821 | public class ConcurrentHashMapV8<K, V>
821          int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
822                     MAXIMUM_CAPACITY :
823                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2274        this.counter = new LongAdder();
824          this.sizeCtl = cap;
825      }
826  
# Line 2281 | Line 830 | public class ConcurrentHashMapV8<K, V>
830       * @param m the map
831       */
832      public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2284        this.counter = new LongAdder();
833          this.sizeCtl = DEFAULT_CAPACITY;
834 <        internalPutAll(m);
834 >        putAll(m);
835      }
836  
837      /**
# Line 2324 | Line 872 | public class ConcurrentHashMapV8<K, V>
872       * nonpositive
873       */
874      public ConcurrentHashMapV8(int initialCapacity,
875 <                               float loadFactor, int concurrencyLevel) {
875 >                             float loadFactor, int concurrencyLevel) {
876          if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
877              throw new IllegalArgumentException();
878          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
# Line 2332 | Line 880 | public class ConcurrentHashMapV8<K, V>
880          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
881          int cap = (size >= (long)MAXIMUM_CAPACITY) ?
882              MAXIMUM_CAPACITY : tableSizeFor((int)size);
2335        this.counter = new LongAdder();
883          this.sizeCtl = cap;
884      }
885  
886 <    /**
2340 <     * {@inheritDoc}
2341 <     */
2342 <    public boolean isEmpty() {
2343 <        return counter.sum() <= 0L; // ignore transient negative values
2344 <    }
886 >    // Original (since JDK1.2) Map methods
887  
888      /**
889       * {@inheritDoc}
890       */
891      public int size() {
892 <        long n = counter.sum();
892 >        long n = sumCount();
893          return ((n < 0L) ? 0 :
894                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
895                  (int)n);
896      }
897  
898 <    final long longSize() { // accurate version of size needed for views
899 <        long n = counter.sum();
900 <        return (n < 0L) ? 0L : n;
898 >    /**
899 >     * {@inheritDoc}
900 >     */
901 >    public boolean isEmpty() {
902 >        return sumCount() <= 0L; // ignore transient negative values
903      }
904  
905      /**
# Line 2369 | Line 913 | public class ConcurrentHashMapV8<K, V>
913       *
914       * @throws NullPointerException if the specified key is null
915       */
2372    @SuppressWarnings("unchecked")
916      public V get(Object key) {
917 <        if (key == null)
918 <            throw new NullPointerException();
919 <        return (V)internalGet(key);
917 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
918 >        int h = spread(key.hashCode());
919 >        if ((tab = table) != null && (n = tab.length) > 0 &&
920 >            (e = tabAt(tab, (n - 1) & h)) != null) {
921 >            if ((eh = e.hash) == h) {
922 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
923 >                    return e.val;
924 >            }
925 >            else if (eh < 0)
926 >                return (p = e.find(h, key)) != null ? p.val : null;
927 >            while ((e = e.next) != null) {
928 >                if (e.hash == h &&
929 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
930 >                    return e.val;
931 >            }
932 >        }
933 >        return null;
934      }
935  
936      /**
937       * Tests if the specified object is a key in this table.
938       *
939 <     * @param  key   possible key
939 >     * @param  key possible key
940       * @return {@code true} if and only if the specified object
941       *         is a key in this table, as determined by the
942       *         {@code equals} method; {@code false} otherwise
943       * @throws NullPointerException if the specified key is null
944       */
945      public boolean containsKey(Object key) {
946 <        if (key == null)
2390 <            throw new NullPointerException();
2391 <        return internalGet(key) != null;
946 >        return get(key) != null;
947      }
948  
949      /**
# Line 2404 | Line 959 | public class ConcurrentHashMapV8<K, V>
959      public boolean containsValue(Object value) {
960          if (value == null)
961              throw new NullPointerException();
962 <        Object v;
963 <        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
964 <        while ((v = it.advance()) != null) {
965 <            if (v == value || value.equals(v))
966 <                return true;
962 >        Node<K,V>[] t;
963 >        if ((t = table) != null) {
964 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
965 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
966 >                V v;
967 >                if ((v = p.val) == value || (v != null && value.equals(v)))
968 >                    return true;
969 >            }
970          }
971          return false;
972      }
973  
974      /**
2417     * Legacy method testing if some key maps into the specified value
2418     * in this table.  This method is identical in functionality to
2419     * {@link #containsValue}, and exists solely to ensure
2420     * full compatibility with class {@link java.util.Hashtable},
2421     * which supported this method prior to introduction of the
2422     * Java Collections framework.
2423     *
2424     * @param  value a value to search for
2425     * @return {@code true} if and only if some key maps to the
2426     *         {@code value} argument in this table as
2427     *         determined by the {@code equals} method;
2428     *         {@code false} otherwise
2429     * @throws NullPointerException if the specified value is null
2430     */
2431    public boolean contains(Object value) {
2432        return containsValue(value);
2433    }
2434
2435    /**
975       * Maps the specified key to the specified value in this table.
976       * Neither the key nor the value can be null.
977       *
978 <     * <p> The value can be retrieved by calling the {@code get} method
978 >     * <p>The value can be retrieved by calling the {@code get} method
979       * with a key that is equal to the original key.
980       *
981       * @param key key with which the specified value is to be associated
# Line 2445 | Line 984 | public class ConcurrentHashMapV8<K, V>
984       *         {@code null} if there was no mapping for {@code key}
985       * @throws NullPointerException if the specified key or value is null
986       */
2448    @SuppressWarnings("unchecked")
987      public V put(K key, V value) {
988 <        if (key == null || value == null)
2451 <            throw new NullPointerException();
2452 <        return (V)internalPut(key, value);
988 >        return putVal(key, value, false);
989      }
990  
991 <    /**
992 <     * {@inheritDoc}
993 <     *
994 <     * @return the previous value associated with the specified key,
995 <     *         or {@code null} if there was no mapping for the key
996 <     * @throws NullPointerException if the specified key or value is null
997 <     */
998 <    @SuppressWarnings("unchecked")
999 <    public V putIfAbsent(K key, V value) {
1000 <        if (key == null || value == null)
1001 <            throw new NullPointerException();
1002 <        return (V)internalPutIfAbsent(key, value);
991 >    /** Implementation for put and putIfAbsent */
992 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
993 >        if (key == null || value == null) throw new NullPointerException();
994 >        int hash = spread(key.hashCode());
995 >        int binCount = 0;
996 >        for (Node<K,V>[] tab = table;;) {
997 >            Node<K,V> f; int n, i, fh;
998 >            if (tab == null || (n = tab.length) == 0)
999 >                tab = initTable();
1000 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1001 >                if (casTabAt(tab, i, null,
1002 >                             new Node<K,V>(hash, key, value, null)))
1003 >                    break;                   // no lock when adding to empty bin
1004 >            }
1005 >            else if ((fh = f.hash) == MOVED)
1006 >                tab = helpTransfer(tab, f);
1007 >            else {
1008 >                V oldVal = null;
1009 >                synchronized (f) {
1010 >                    if (tabAt(tab, i) == f) {
1011 >                        if (fh >= 0) {
1012 >                            binCount = 1;
1013 >                            for (Node<K,V> e = f;; ++binCount) {
1014 >                                K ek;
1015 >                                if (e.hash == hash &&
1016 >                                    ((ek = e.key) == key ||
1017 >                                     (ek != null && key.equals(ek)))) {
1018 >                                    oldVal = e.val;
1019 >                                    if (!onlyIfAbsent)
1020 >                                        e.val = value;
1021 >                                    break;
1022 >                                }
1023 >                                Node<K,V> pred = e;
1024 >                                if ((e = e.next) == null) {
1025 >                                    pred.next = new Node<K,V>(hash, key,
1026 >                                                              value, null);
1027 >                                    break;
1028 >                                }
1029 >                            }
1030 >                        }
1031 >                        else if (f instanceof TreeBin) {
1032 >                            Node<K,V> p;
1033 >                            binCount = 2;
1034 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1035 >                                                           value)) != null) {
1036 >                                oldVal = p.val;
1037 >                                if (!onlyIfAbsent)
1038 >                                    p.val = value;
1039 >                            }
1040 >                        }
1041 >                    }
1042 >                }
1043 >                if (binCount != 0) {
1044 >                    if (binCount >= TREEIFY_THRESHOLD)
1045 >                        treeifyBin(tab, i);
1046 >                    if (oldVal != null)
1047 >                        return oldVal;
1048 >                    break;
1049 >                }
1050 >            }
1051 >        }
1052 >        addCount(1L, binCount);
1053 >        return null;
1054      }
1055  
1056      /**
# Line 2474 | Line 1061 | public class ConcurrentHashMapV8<K, V>
1061       * @param m mappings to be stored in this map
1062       */
1063      public void putAll(Map<? extends K, ? extends V> m) {
1064 <        internalPutAll(m);
1065 <    }
1066 <
2480 <    /**
2481 <     * If the specified key is not already associated with a value,
2482 <     * computes its value using the given mappingFunction and enters
2483 <     * it into the map unless null.  This is equivalent to
2484 <     * <pre> {@code
2485 <     * if (map.containsKey(key))
2486 <     *   return map.get(key);
2487 <     * value = mappingFunction.map(key);
2488 <     * if (value != null)
2489 <     *   map.put(key, value);
2490 <     * return value;}</pre>
2491 <     *
2492 <     * except that the action is performed atomically.  If the
2493 <     * function returns {@code null} no mapping is recorded. If the
2494 <     * function itself throws an (unchecked) exception, the exception
2495 <     * is rethrown to its caller, and no mapping is recorded.  Some
2496 <     * attempted update operations on this map by other threads may be
2497 <     * blocked while computation is in progress, so the computation
2498 <     * should be short and simple, and must not attempt to update any
2499 <     * other mappings of this Map. The most appropriate usage is to
2500 <     * construct a new object serving as an initial mapped value, or
2501 <     * memoized result, as in:
2502 <     *
2503 <     *  <pre> {@code
2504 <     * map.computeIfAbsent(key, new MappingFunction<K, V>() {
2505 <     *   public V map(K k) { return new Value(f(k)); }});}</pre>
2506 <     *
2507 <     * @param key key with which the specified value is to be associated
2508 <     * @param mappingFunction the function to compute a value
2509 <     * @return the current (existing or computed) value associated with
2510 <     *         the specified key, or null if the computed value is null.
2511 <     * @throws NullPointerException if the specified key or mappingFunction
2512 <     *         is null
2513 <     * @throws IllegalStateException if the computation detectably
2514 <     *         attempts a recursive update to this map that would
2515 <     *         otherwise never complete
2516 <     * @throws RuntimeException or Error if the mappingFunction does so,
2517 <     *         in which case the mapping is left unestablished
2518 <     */
2519 <    @SuppressWarnings("unchecked")
2520 <    public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2521 <        if (key == null || mappingFunction == null)
2522 <            throw new NullPointerException();
2523 <        return (V)internalComputeIfAbsent(key, mappingFunction);
2524 <    }
2525 <
2526 <    /**
2527 <     * Computes a new mapping value given a key and
2528 <     * its current mapped value (or {@code null} if there is no current
2529 <     * mapping). This is equivalent to
2530 <     *  <pre> {@code
2531 <     *   value = remappingFunction.remap(key, map.get(key));
2532 <     *   if (value != null)
2533 <     *     map.put(key, value);
2534 <     *   else
2535 <     *     map.remove(key);
2536 <     * }</pre>
2537 <     *
2538 <     * except that the action is performed atomically.  If the
2539 <     * function returns {@code null}, the mapping is removed.  If the
2540 <     * function itself throws an (unchecked) exception, the exception
2541 <     * is rethrown to its caller, and the current mapping is left
2542 <     * unchanged.  Some attempted update operations on this map by
2543 <     * other threads may be blocked while computation is in progress,
2544 <     * so the computation should be short and simple, and must not
2545 <     * attempt to update any other mappings of this Map. For example,
2546 <     * to either create or append new messages to a value mapping:
2547 <     *
2548 <     * <pre> {@code
2549 <     * Map<Key, String> map = ...;
2550 <     * final String msg = ...;
2551 <     * map.compute(key, new RemappingFunction<Key, String>() {
2552 <     *   public String remap(Key k, String v) {
2553 <     *    return (v == null) ? msg : v + msg;});}}</pre>
2554 <     *
2555 <     * @param key key with which the specified value is to be associated
2556 <     * @param remappingFunction the function to compute a value
2557 <     * @return the new value associated with
2558 <     *         the specified key, or null if none.
2559 <     * @throws NullPointerException if the specified key or remappingFunction
2560 <     *         is null
2561 <     * @throws IllegalStateException if the computation detectably
2562 <     *         attempts a recursive update to this map that would
2563 <     *         otherwise never complete
2564 <     * @throws RuntimeException or Error if the remappingFunction does so,
2565 <     *         in which case the mapping is unchanged
2566 <     */
2567 <    @SuppressWarnings("unchecked")
2568 <    public V compute(K key, RemappingFunction<? super K, V> remappingFunction) {
2569 <        if (key == null || remappingFunction == null)
2570 <            throw new NullPointerException();
2571 <        return (V)internalCompute(key, remappingFunction);
1064 >        tryPresize(m.size());
1065 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1066 >            putVal(e.getKey(), e.getValue(), false);
1067      }
1068  
1069      /**
# Line 2580 | Line 1075 | public class ConcurrentHashMapV8<K, V>
1075       *         {@code null} if there was no mapping for {@code key}
1076       * @throws NullPointerException if the specified key is null
1077       */
2583    @SuppressWarnings("unchecked")
1078      public V remove(Object key) {
1079 <        if (key == null)
2586 <            throw new NullPointerException();
2587 <        return (V)internalReplace(key, null, null);
2588 <    }
2589 <
2590 <    /**
2591 <     * {@inheritDoc}
2592 <     *
2593 <     * @throws NullPointerException if the specified key is null
2594 <     */
2595 <    public boolean remove(Object key, Object value) {
2596 <        if (key == null)
2597 <            throw new NullPointerException();
2598 <        if (value == null)
2599 <            return false;
2600 <        return internalReplace(key, null, value) != null;
2601 <    }
2602 <
2603 <    /**
2604 <     * {@inheritDoc}
2605 <     *
2606 <     * @throws NullPointerException if any of the arguments are null
2607 <     */
2608 <    public boolean replace(K key, V oldValue, V newValue) {
2609 <        if (key == null || oldValue == null || newValue == null)
2610 <            throw new NullPointerException();
2611 <        return internalReplace(key, newValue, oldValue) != null;
1079 >        return replaceNode(key, null, null);
1080      }
1081  
1082      /**
1083 <     * {@inheritDoc}
1084 <     *
1085 <     * @return the previous value associated with the specified key,
2618 <     *         or {@code null} if there was no mapping for the key
2619 <     * @throws NullPointerException if the specified key or value is null
1083 >     * Implementation for the four public remove/replace methods:
1084 >     * Replaces node value with v, conditional upon match of cv if
1085 >     * non-null.  If resulting value is null, delete.
1086       */
1087 <    @SuppressWarnings("unchecked")
1088 <    public V replace(K key, V value) {
1089 <        if (key == null || value == null)
1090 <            throw new NullPointerException();
1091 <        return (V)internalReplace(key, value, null);
1087 >    final V replaceNode(Object key, V value, Object cv) {
1088 >        int hash = spread(key.hashCode());
1089 >        for (Node<K,V>[] tab = table;;) {
1090 >            Node<K,V> f; int n, i, fh;
1091 >            if (tab == null || (n = tab.length) == 0 ||
1092 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1093 >                break;
1094 >            else if ((fh = f.hash) == MOVED)
1095 >                tab = helpTransfer(tab, f);
1096 >            else {
1097 >                V oldVal = null;
1098 >                boolean validated = false;
1099 >                synchronized (f) {
1100 >                    if (tabAt(tab, i) == f) {
1101 >                        if (fh >= 0) {
1102 >                            validated = true;
1103 >                            for (Node<K,V> e = f, pred = null;;) {
1104 >                                K ek;
1105 >                                if (e.hash == hash &&
1106 >                                    ((ek = e.key) == key ||
1107 >                                     (ek != null && key.equals(ek)))) {
1108 >                                    V ev = e.val;
1109 >                                    if (cv == null || cv == ev ||
1110 >                                        (ev != null && cv.equals(ev))) {
1111 >                                        oldVal = ev;
1112 >                                        if (value != null)
1113 >                                            e.val = value;
1114 >                                        else if (pred != null)
1115 >                                            pred.next = e.next;
1116 >                                        else
1117 >                                            setTabAt(tab, i, e.next);
1118 >                                    }
1119 >                                    break;
1120 >                                }
1121 >                                pred = e;
1122 >                                if ((e = e.next) == null)
1123 >                                    break;
1124 >                            }
1125 >                        }
1126 >                        else if (f instanceof TreeBin) {
1127 >                            validated = true;
1128 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1129 >                            TreeNode<K,V> r, p;
1130 >                            if ((r = t.root) != null &&
1131 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1132 >                                V pv = p.val;
1133 >                                if (cv == null || cv == pv ||
1134 >                                    (pv != null && cv.equals(pv))) {
1135 >                                    oldVal = pv;
1136 >                                    if (value != null)
1137 >                                        p.val = value;
1138 >                                    else if (t.removeTreeNode(p))
1139 >                                        setTabAt(tab, i, untreeify(t.first));
1140 >                                }
1141 >                            }
1142 >                        }
1143 >                    }
1144 >                }
1145 >                if (validated) {
1146 >                    if (oldVal != null) {
1147 >                        if (value == null)
1148 >                            addCount(-1L, -1);
1149 >                        return oldVal;
1150 >                    }
1151 >                    break;
1152 >                }
1153 >            }
1154 >        }
1155 >        return null;
1156      }
1157  
1158      /**
1159       * Removes all of the mappings from this map.
1160       */
1161      public void clear() {
1162 <        internalClear();
1162 >        long delta = 0L; // negative number of deletions
1163 >        int i = 0;
1164 >        Node<K,V>[] tab = table;
1165 >        while (tab != null && i < tab.length) {
1166 >            int fh;
1167 >            Node<K,V> f = tabAt(tab, i);
1168 >            if (f == null)
1169 >                ++i;
1170 >            else if ((fh = f.hash) == MOVED) {
1171 >                tab = helpTransfer(tab, f);
1172 >                i = 0; // restart
1173 >            }
1174 >            else {
1175 >                synchronized (f) {
1176 >                    if (tabAt(tab, i) == f) {
1177 >                        Node<K,V> p = (fh >= 0 ? f :
1178 >                                       (f instanceof TreeBin) ?
1179 >                                       ((TreeBin<K,V>)f).first : null);
1180 >                        while (p != null) {
1181 >                            --delta;
1182 >                            p = p.next;
1183 >                        }
1184 >                        setTabAt(tab, i++, null);
1185 >                    }
1186 >                }
1187 >            }
1188 >        }
1189 >        if (delta != 0L)
1190 >            addCount(delta, -1);
1191      }
1192  
1193      /**
1194       * Returns a {@link Set} view of the keys contained in this map.
1195       * The set is backed by the map, so changes to the map are
1196 <     * reflected in the set, and vice-versa.  The set supports element
1196 >     * reflected in the set, and vice-versa. The set supports element
1197       * removal, which removes the corresponding mapping from this map,
1198       * via the {@code Iterator.remove}, {@code Set.remove},
1199       * {@code removeAll}, {@code retainAll}, and {@code clear}
# Line 2647 | Line 1205 | public class ConcurrentHashMapV8<K, V>
1205       * and guarantees to traverse elements as they existed upon
1206       * construction of the iterator, and may (but is not guaranteed to)
1207       * reflect any modifications subsequent to construction.
1208 +     *
1209 +     * @return the set view
1210       */
1211 <    public Set<K> keySet() {
1212 <        KeySet<K,V> ks = keySet;
1213 <        return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
1211 >    public KeySetView<K,V> keySet() {
1212 >        KeySetView<K,V> ks;
1213 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1214      }
1215  
1216      /**
# Line 2668 | Line 1228 | public class ConcurrentHashMapV8<K, V>
1228       * and guarantees to traverse elements as they existed upon
1229       * construction of the iterator, and may (but is not guaranteed to)
1230       * reflect any modifications subsequent to construction.
1231 +     *
1232 +     * @return the collection view
1233       */
1234      public Collection<V> values() {
1235 <        Values<K,V> vs = values;
1236 <        return (vs != null) ? vs : (values = new Values<K,V>(this));
1235 >        ValuesView<K,V> vs;
1236 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1237      }
1238  
1239      /**
# Line 2681 | Line 1243 | public class ConcurrentHashMapV8<K, V>
1243       * removal, which removes the corresponding mapping from the map,
1244       * via the {@code Iterator.remove}, {@code Set.remove},
1245       * {@code removeAll}, {@code retainAll}, and {@code clear}
1246 <     * operations.  It does not support the {@code add} or
2685 <     * {@code addAll} operations.
1246 >     * operations.
1247       *
1248       * <p>The view's {@code iterator} is a "weakly consistent" iterator
1249       * that will never throw {@link ConcurrentModificationException},
1250       * and guarantees to traverse elements as they existed upon
1251       * construction of the iterator, and may (but is not guaranteed to)
1252       * reflect any modifications subsequent to construction.
2692     */
2693    public Set<Map.Entry<K,V>> entrySet() {
2694        EntrySet<K,V> es = entrySet;
2695        return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2696    }
2697
2698    /**
2699     * Returns an enumeration of the keys in this table.
2700     *
2701     * @return an enumeration of the keys in this table
2702     * @see #keySet()
2703     */
2704    public Enumeration<K> keys() {
2705        return new KeyIterator<K,V>(this);
2706    }
2707
2708    /**
2709     * Returns an enumeration of the values in this table.
2710     *
2711     * @return an enumeration of the values in this table
2712     * @see #values()
2713     */
2714    public Enumeration<V> elements() {
2715        return new ValueIterator<K,V>(this);
2716    }
2717
2718    /**
2719     * Returns a partionable iterator of the keys in this map.
2720     *
2721     * @return a partionable iterator of the keys in this map
2722     */
2723    public Spliterator<K> keySpliterator() {
2724        return new KeyIterator<K,V>(this);
2725    }
2726
2727    /**
2728     * Returns a partionable iterator of the values in this map.
2729     *
2730     * @return a partionable iterator of the values in this map
2731     */
2732    public Spliterator<V> valueSpliterator() {
2733        return new ValueIterator<K,V>(this);
2734    }
2735
2736    /**
2737     * Returns a partionable iterator of the entries in this map.
1253       *
1254 <     * @return a partionable iterator of the entries in this map
1254 >     * @return the set view
1255       */
1256 <    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
1257 <        return new EntryIterator<K,V>(this);
1256 >    public Set<Map.Entry<K,V>> entrySet() {
1257 >        EntrySetView<K,V> es;
1258 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1259      }
1260  
1261      /**
# Line 2751 | Line 1267 | public class ConcurrentHashMapV8<K, V>
1267       */
1268      public int hashCode() {
1269          int h = 0;
1270 <        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
1271 <        Object v;
1272 <        while ((v = it.advance()) != null) {
1273 <            h += it.nextKey.hashCode() ^ v.hashCode();
1270 >        Node<K,V>[] t;
1271 >        if ((t = table) != null) {
1272 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1273 >            for (Node<K,V> p; (p = it.advance()) != null; )
1274 >                h += p.key.hashCode() ^ p.val.hashCode();
1275          }
1276          return h;
1277      }
# Line 2771 | Line 1288 | public class ConcurrentHashMapV8<K, V>
1288       * @return a string representation of this map
1289       */
1290      public String toString() {
1291 <        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
1291 >        Node<K,V>[] t;
1292 >        int f = (t = table) == null ? 0 : t.length;
1293 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1294          StringBuilder sb = new StringBuilder();
1295          sb.append('{');
1296 <        Object v;
1297 <        if ((v = it.advance()) != null) {
1296 >        Node<K,V> p;
1297 >        if ((p = it.advance()) != null) {
1298              for (;;) {
1299 <                Object k = it.nextKey;
1299 >                K k = p.key;
1300 >                V v = p.val;
1301                  sb.append(k == this ? "(this Map)" : k);
1302                  sb.append('=');
1303                  sb.append(v == this ? "(this Map)" : v);
1304 <                if ((v = it.advance()) == null)
1304 >                if ((p = it.advance()) == null)
1305                      break;
1306                  sb.append(',').append(' ');
1307              }
# Line 2804 | Line 1324 | public class ConcurrentHashMapV8<K, V>
1324              if (!(o instanceof Map))
1325                  return false;
1326              Map<?,?> m = (Map<?,?>) o;
1327 <            InternalIterator<K,V> it = new InternalIterator<K,V>(this);
1328 <            Object val;
1329 <            while ((val = it.advance()) != null) {
1330 <                Object v = m.get(it.nextKey);
1327 >            Node<K,V>[] t;
1328 >            int f = (t = table) == null ? 0 : t.length;
1329 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1330 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1331 >                V val = p.val;
1332 >                Object v = m.get(p.key);
1333                  if (v == null || (v != val && !v.equals(val)))
1334                      return false;
1335              }
# Line 2815 | Line 1337 | public class ConcurrentHashMapV8<K, V>
1337                  Object mk, mv, v;
1338                  if ((mk = e.getKey()) == null ||
1339                      (mv = e.getValue()) == null ||
1340 <                    (v = internalGet(mk)) == null ||
1340 >                    (v = get(mk)) == null ||
1341                      (mv != v && !mv.equals(v)))
1342                      return false;
1343              }
# Line 2823 | Line 1345 | public class ConcurrentHashMapV8<K, V>
1345          return true;
1346      }
1347  
1348 <    /* ----------------Iterators -------------- */
1348 >    /**
1349 >     * Stripped-down version of helper class used in previous version,
1350 >     * declared for the sake of serialization compatibility
1351 >     */
1352 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1353 >        private static final long serialVersionUID = 2249069246763182397L;
1354 >        final float loadFactor;
1355 >        Segment(float lf) { this.loadFactor = lf; }
1356 >    }
1357  
1358 <    static final class KeyIterator<K,V> extends InternalIterator<K,V>
1359 <        implements Spliterator<K>, Enumeration<K> {
1360 <        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
1361 <        KeyIterator(InternalIterator<K,V> it, boolean split) {
1362 <            super(it, split);
1358 >    /**
1359 >     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1360 >     * stream (i.e., serializes it).
1361 >     * @param s the stream
1362 >     * @serialData
1363 >     * the key (Object) and value (Object)
1364 >     * for each key-value mapping, followed by a null pair.
1365 >     * The key-value mappings are emitted in no particular order.
1366 >     */
1367 >    private void writeObject(java.io.ObjectOutputStream s)
1368 >        throws java.io.IOException {
1369 >        // For serialization compatibility
1370 >        // Emulate segment calculation from previous version of this class
1371 >        int sshift = 0;
1372 >        int ssize = 1;
1373 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1374 >            ++sshift;
1375 >            ssize <<= 1;
1376 >        }
1377 >        int segmentShift = 32 - sshift;
1378 >        int segmentMask = ssize - 1;
1379 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1380 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1381 >        for (int i = 0; i < segments.length; ++i)
1382 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1383 >        s.putFields().put("segments", segments);
1384 >        s.putFields().put("segmentShift", segmentShift);
1385 >        s.putFields().put("segmentMask", segmentMask);
1386 >        s.writeFields();
1387 >
1388 >        Node<K,V>[] t;
1389 >        if ((t = table) != null) {
1390 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1391 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1392 >                s.writeObject(p.key);
1393 >                s.writeObject(p.val);
1394 >            }
1395          }
1396 <        public KeyIterator<K,V> split() {
1397 <            if (last != null || (next != null && nextVal == null))
1398 <                throw new IllegalStateException();
1399 <            return new KeyIterator<K,V>(this, true);
1396 >        s.writeObject(null);
1397 >        s.writeObject(null);
1398 >        segments = null; // throw away
1399 >    }
1400 >
1401 >    /**
1402 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1403 >     * @param s the stream
1404 >     */
1405 >    private void readObject(java.io.ObjectInputStream s)
1406 >        throws java.io.IOException, ClassNotFoundException {
1407 >        /*
1408 >         * To improve performance in typical cases, we create nodes
1409 >         * while reading, then place in table once size is known.
1410 >         * However, we must also validate uniqueness and deal with
1411 >         * overpopulated bins while doing so, which requires
1412 >         * specialized versions of putVal mechanics.
1413 >         */
1414 >        sizeCtl = -1; // force exclusion for table construction
1415 >        s.defaultReadObject();
1416 >        long size = 0L;
1417 >        Node<K,V> p = null;
1418 >        for (;;) {
1419 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1420 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1421 >            if (k != null && v != null) {
1422 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1423 >                ++size;
1424 >            }
1425 >            else
1426 >                break;
1427          }
1428 <        public KeyIterator<K,V> clone() {
1429 <            if (last != null || (next != null && nextVal == null))
1430 <                throw new IllegalStateException();
1431 <            return new KeyIterator<K,V>(this, false);
1428 >        if (size == 0L)
1429 >            sizeCtl = 0;
1430 >        else {
1431 >            int n;
1432 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1433 >                n = MAXIMUM_CAPACITY;
1434 >            else {
1435 >                int sz = (int)size;
1436 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1437 >            }
1438 >            @SuppressWarnings({"rawtypes","unchecked"})
1439 >                Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1440 >            int mask = n - 1;
1441 >            long added = 0L;
1442 >            while (p != null) {
1443 >                boolean insertAtFront;
1444 >                Node<K,V> next = p.next, first;
1445 >                int h = p.hash, j = h & mask;
1446 >                if ((first = tabAt(tab, j)) == null)
1447 >                    insertAtFront = true;
1448 >                else {
1449 >                    K k = p.key;
1450 >                    if (first.hash < 0) {
1451 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1452 >                        if (t.putTreeVal(h, k, p.val) == null)
1453 >                            ++added;
1454 >                        insertAtFront = false;
1455 >                    }
1456 >                    else {
1457 >                        int binCount = 0;
1458 >                        insertAtFront = true;
1459 >                        Node<K,V> q; K qk;
1460 >                        for (q = first; q != null; q = q.next) {
1461 >                            if (q.hash == h &&
1462 >                                ((qk = q.key) == k ||
1463 >                                 (qk != null && k.equals(qk)))) {
1464 >                                insertAtFront = false;
1465 >                                break;
1466 >                            }
1467 >                            ++binCount;
1468 >                        }
1469 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1470 >                            insertAtFront = false;
1471 >                            ++added;
1472 >                            p.next = first;
1473 >                            TreeNode<K,V> hd = null, tl = null;
1474 >                            for (q = p; q != null; q = q.next) {
1475 >                                TreeNode<K,V> t = new TreeNode<K,V>
1476 >                                    (q.hash, q.key, q.val, null, null);
1477 >                                if ((t.prev = tl) == null)
1478 >                                    hd = t;
1479 >                                else
1480 >                                    tl.next = t;
1481 >                                tl = t;
1482 >                            }
1483 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1484 >                        }
1485 >                    }
1486 >                }
1487 >                if (insertAtFront) {
1488 >                    ++added;
1489 >                    p.next = first;
1490 >                    setTabAt(tab, j, p);
1491 >                }
1492 >                p = next;
1493 >            }
1494 >            table = tab;
1495 >            sizeCtl = n - (n >>> 2);
1496 >            baseCount = added;
1497          }
1498 +    }
1499  
1500 <        @SuppressWarnings("unchecked")
1501 <        public final K next() {
1502 <            if (nextVal == null && advance() == null)
1503 <                throw new NoSuchElementException();
1504 <            Object k = nextKey;
1505 <            nextVal = null;
1506 <            return (K) k;
1500 >    // ConcurrentMap methods
1501 >
1502 >    /**
1503 >     * {@inheritDoc}
1504 >     *
1505 >     * @return the previous value associated with the specified key,
1506 >     *         or {@code null} if there was no mapping for the key
1507 >     * @throws NullPointerException if the specified key or value is null
1508 >     */
1509 >    public V putIfAbsent(K key, V value) {
1510 >        return putVal(key, value, true);
1511 >    }
1512 >
1513 >    /**
1514 >     * {@inheritDoc}
1515 >     *
1516 >     * @throws NullPointerException if the specified key is null
1517 >     */
1518 >    public boolean remove(Object key, Object value) {
1519 >        if (key == null)
1520 >            throw new NullPointerException();
1521 >        return value != null && replaceNode(key, null, value) != null;
1522 >    }
1523 >
1524 >    /**
1525 >     * {@inheritDoc}
1526 >     *
1527 >     * @throws NullPointerException if any of the arguments are null
1528 >     */
1529 >    public boolean replace(K key, V oldValue, V newValue) {
1530 >        if (key == null || oldValue == null || newValue == null)
1531 >            throw new NullPointerException();
1532 >        return replaceNode(key, newValue, oldValue) != null;
1533 >    }
1534 >
1535 >    /**
1536 >     * {@inheritDoc}
1537 >     *
1538 >     * @return the previous value associated with the specified key,
1539 >     *         or {@code null} if there was no mapping for the key
1540 >     * @throws NullPointerException if the specified key or value is null
1541 >     */
1542 >    public V replace(K key, V value) {
1543 >        if (key == null || value == null)
1544 >            throw new NullPointerException();
1545 >        return replaceNode(key, value, null);
1546 >    }
1547 >
1548 >    // Overrides of JDK8+ Map extension method defaults
1549 >
1550 >    /**
1551 >     * Returns the value to which the specified key is mapped, or the
1552 >     * given default value if this map contains no mapping for the
1553 >     * key.
1554 >     *
1555 >     * @param key the key whose associated value is to be returned
1556 >     * @param defaultValue the value to return if this map contains
1557 >     * no mapping for the given key
1558 >     * @return the mapping for the key, if present; else the default value
1559 >     * @throws NullPointerException if the specified key is null
1560 >     */
1561 >    public V getOrDefault(Object key, V defaultValue) {
1562 >        V v;
1563 >        return (v = get(key)) == null ? defaultValue : v;
1564 >    }
1565 >
1566 >    public void forEach(BiAction<? super K, ? super V> action) {
1567 >        if (action == null) throw new NullPointerException();
1568 >        Node<K,V>[] t;
1569 >        if ((t = table) != null) {
1570 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1571 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1572 >                action.apply(p.key, p.val);
1573 >            }
1574          }
1575 +    }
1576  
1577 <        public final K nextElement() { return next(); }
1577 >    public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1578 >        if (function == null) throw new NullPointerException();
1579 >        Node<K,V>[] t;
1580 >        if ((t = table) != null) {
1581 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1582 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1583 >                V oldValue = p.val;
1584 >                for (K key = p.key;;) {
1585 >                    V newValue = function.apply(key, oldValue);
1586 >                    if (newValue == null)
1587 >                        throw new NullPointerException();
1588 >                    if (replaceNode(key, newValue, oldValue) != null ||
1589 >                        (oldValue = get(key)) == null)
1590 >                        break;
1591 >                }
1592 >            }
1593 >        }
1594      }
1595  
1596 <    static final class ValueIterator<K,V> extends InternalIterator<K,V>
1597 <        implements Spliterator<V>, Enumeration<V> {
1598 <        ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
1599 <        ValueIterator(InternalIterator<K,V> it, boolean split) {
1600 <            super(it, split);
1596 >    /**
1597 >     * If the specified key is not already associated with a value,
1598 >     * attempts to compute its value using the given mapping function
1599 >     * and enters it into this map unless {@code null}.  The entire
1600 >     * method invocation is performed atomically, so the function is
1601 >     * applied at most once per key.  Some attempted update operations
1602 >     * on this map by other threads may be blocked while computation
1603 >     * is in progress, so the computation should be short and simple,
1604 >     * and must not attempt to update any other mappings of this map.
1605 >     *
1606 >     * @param key key with which the specified value is to be associated
1607 >     * @param mappingFunction the function to compute a value
1608 >     * @return the current (existing or computed) value associated with
1609 >     *         the specified key, or null if the computed value is null
1610 >     * @throws NullPointerException if the specified key or mappingFunction
1611 >     *         is null
1612 >     * @throws IllegalStateException if the computation detectably
1613 >     *         attempts a recursive update to this map that would
1614 >     *         otherwise never complete
1615 >     * @throws RuntimeException or Error if the mappingFunction does so,
1616 >     *         in which case the mapping is left unestablished
1617 >     */
1618 >    public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1619 >        if (key == null || mappingFunction == null)
1620 >            throw new NullPointerException();
1621 >        int h = spread(key.hashCode());
1622 >        V val = null;
1623 >        int binCount = 0;
1624 >        for (Node<K,V>[] tab = table;;) {
1625 >            Node<K,V> f; int n, i, fh;
1626 >            if (tab == null || (n = tab.length) == 0)
1627 >                tab = initTable();
1628 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1629 >                Node<K,V> r = new ReservationNode<K,V>();
1630 >                synchronized (r) {
1631 >                    if (casTabAt(tab, i, null, r)) {
1632 >                        binCount = 1;
1633 >                        Node<K,V> node = null;
1634 >                        try {
1635 >                            if ((val = mappingFunction.apply(key)) != null)
1636 >                                node = new Node<K,V>(h, key, val, null);
1637 >                        } finally {
1638 >                            setTabAt(tab, i, node);
1639 >                        }
1640 >                    }
1641 >                }
1642 >                if (binCount != 0)
1643 >                    break;
1644 >            }
1645 >            else if ((fh = f.hash) == MOVED)
1646 >                tab = helpTransfer(tab, f);
1647 >            else {
1648 >                boolean added = false;
1649 >                synchronized (f) {
1650 >                    if (tabAt(tab, i) == f) {
1651 >                        if (fh >= 0) {
1652 >                            binCount = 1;
1653 >                            for (Node<K,V> e = f;; ++binCount) {
1654 >                                K ek; V ev;
1655 >                                if (e.hash == h &&
1656 >                                    ((ek = e.key) == key ||
1657 >                                     (ek != null && key.equals(ek)))) {
1658 >                                    val = e.val;
1659 >                                    break;
1660 >                                }
1661 >                                Node<K,V> pred = e;
1662 >                                if ((e = e.next) == null) {
1663 >                                    if ((val = mappingFunction.apply(key)) != null) {
1664 >                                        added = true;
1665 >                                        pred.next = new Node<K,V>(h, key, val, null);
1666 >                                    }
1667 >                                    break;
1668 >                                }
1669 >                            }
1670 >                        }
1671 >                        else if (f instanceof TreeBin) {
1672 >                            binCount = 2;
1673 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1674 >                            TreeNode<K,V> r, p;
1675 >                            if ((r = t.root) != null &&
1676 >                                (p = r.findTreeNode(h, key, null)) != null)
1677 >                                val = p.val;
1678 >                            else if ((val = mappingFunction.apply(key)) != null) {
1679 >                                added = true;
1680 >                                t.putTreeVal(h, key, val);
1681 >                            }
1682 >                        }
1683 >                    }
1684 >                }
1685 >                if (binCount != 0) {
1686 >                    if (binCount >= TREEIFY_THRESHOLD)
1687 >                        treeifyBin(tab, i);
1688 >                    if (!added)
1689 >                        return val;
1690 >                    break;
1691 >                }
1692 >            }
1693          }
1694 <        public ValueIterator<K,V> split() {
1695 <            if (last != null || (next != null && nextVal == null))
1696 <                throw new IllegalStateException();
1697 <            return new ValueIterator<K,V>(this, true);
1694 >        if (val != null)
1695 >            addCount(1L, binCount);
1696 >        return val;
1697 >    }
1698 >
1699 >    /**
1700 >     * If the value for the specified key is present, attempts to
1701 >     * compute a new mapping given the key and its current mapped
1702 >     * value.  The entire method invocation is performed atomically.
1703 >     * Some attempted update operations on this map by other threads
1704 >     * may be blocked while computation is in progress, so the
1705 >     * computation should be short and simple, and must not attempt to
1706 >     * update any other mappings of this map.
1707 >     *
1708 >     * @param key key with which a value may be associated
1709 >     * @param remappingFunction the function to compute a value
1710 >     * @return the new value associated with the specified key, or null if none
1711 >     * @throws NullPointerException if the specified key or remappingFunction
1712 >     *         is null
1713 >     * @throws IllegalStateException if the computation detectably
1714 >     *         attempts a recursive update to this map that would
1715 >     *         otherwise never complete
1716 >     * @throws RuntimeException or Error if the remappingFunction does so,
1717 >     *         in which case the mapping is unchanged
1718 >     */
1719 >    public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1720 >        if (key == null || remappingFunction == null)
1721 >            throw new NullPointerException();
1722 >        int h = spread(key.hashCode());
1723 >        V val = null;
1724 >        int delta = 0;
1725 >        int binCount = 0;
1726 >        for (Node<K,V>[] tab = table;;) {
1727 >            Node<K,V> f; int n, i, fh;
1728 >            if (tab == null || (n = tab.length) == 0)
1729 >                tab = initTable();
1730 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1731 >                break;
1732 >            else if ((fh = f.hash) == MOVED)
1733 >                tab = helpTransfer(tab, f);
1734 >            else {
1735 >                synchronized (f) {
1736 >                    if (tabAt(tab, i) == f) {
1737 >                        if (fh >= 0) {
1738 >                            binCount = 1;
1739 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1740 >                                K ek;
1741 >                                if (e.hash == h &&
1742 >                                    ((ek = e.key) == key ||
1743 >                                     (ek != null && key.equals(ek)))) {
1744 >                                    val = remappingFunction.apply(key, e.val);
1745 >                                    if (val != null)
1746 >                                        e.val = val;
1747 >                                    else {
1748 >                                        delta = -1;
1749 >                                        Node<K,V> en = e.next;
1750 >                                        if (pred != null)
1751 >                                            pred.next = en;
1752 >                                        else
1753 >                                            setTabAt(tab, i, en);
1754 >                                    }
1755 >                                    break;
1756 >                                }
1757 >                                pred = e;
1758 >                                if ((e = e.next) == null)
1759 >                                    break;
1760 >                            }
1761 >                        }
1762 >                        else if (f instanceof TreeBin) {
1763 >                            binCount = 2;
1764 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1765 >                            TreeNode<K,V> r, p;
1766 >                            if ((r = t.root) != null &&
1767 >                                (p = r.findTreeNode(h, key, null)) != null) {
1768 >                                val = remappingFunction.apply(key, p.val);
1769 >                                if (val != null)
1770 >                                    p.val = val;
1771 >                                else {
1772 >                                    delta = -1;
1773 >                                    if (t.removeTreeNode(p))
1774 >                                        setTabAt(tab, i, untreeify(t.first));
1775 >                                }
1776 >                            }
1777 >                        }
1778 >                    }
1779 >                }
1780 >                if (binCount != 0)
1781 >                    break;
1782 >            }
1783 >        }
1784 >        if (delta != 0)
1785 >            addCount((long)delta, binCount);
1786 >        return val;
1787 >    }
1788 >
1789 >    /**
1790 >     * Attempts to compute a mapping for the specified key and its
1791 >     * current mapped value (or {@code null} if there is no current
1792 >     * mapping). The entire method invocation is performed atomically.
1793 >     * Some attempted update operations on this map by other threads
1794 >     * may be blocked while computation is in progress, so the
1795 >     * computation should be short and simple, and must not attempt to
1796 >     * update any other mappings of this Map.
1797 >     *
1798 >     * @param key key with which the specified value is to be associated
1799 >     * @param remappingFunction the function to compute a value
1800 >     * @return the new value associated with the specified key, or null if none
1801 >     * @throws NullPointerException if the specified key or remappingFunction
1802 >     *         is null
1803 >     * @throws IllegalStateException if the computation detectably
1804 >     *         attempts a recursive update to this map that would
1805 >     *         otherwise never complete
1806 >     * @throws RuntimeException or Error if the remappingFunction does so,
1807 >     *         in which case the mapping is unchanged
1808 >     */
1809 >    public V compute(K key,
1810 >                     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1811 >        if (key == null || remappingFunction == null)
1812 >            throw new NullPointerException();
1813 >        int h = spread(key.hashCode());
1814 >        V val = null;
1815 >        int delta = 0;
1816 >        int binCount = 0;
1817 >        for (Node<K,V>[] tab = table;;) {
1818 >            Node<K,V> f; int n, i, fh;
1819 >            if (tab == null || (n = tab.length) == 0)
1820 >                tab = initTable();
1821 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1822 >                Node<K,V> r = new ReservationNode<K,V>();
1823 >                synchronized (r) {
1824 >                    if (casTabAt(tab, i, null, r)) {
1825 >                        binCount = 1;
1826 >                        Node<K,V> node = null;
1827 >                        try {
1828 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1829 >                                delta = 1;
1830 >                                node = new Node<K,V>(h, key, val, null);
1831 >                            }
1832 >                        } finally {
1833 >                            setTabAt(tab, i, node);
1834 >                        }
1835 >                    }
1836 >                }
1837 >                if (binCount != 0)
1838 >                    break;
1839 >            }
1840 >            else if ((fh = f.hash) == MOVED)
1841 >                tab = helpTransfer(tab, f);
1842 >            else {
1843 >                synchronized (f) {
1844 >                    if (tabAt(tab, i) == f) {
1845 >                        if (fh >= 0) {
1846 >                            binCount = 1;
1847 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1848 >                                K ek;
1849 >                                if (e.hash == h &&
1850 >                                    ((ek = e.key) == key ||
1851 >                                     (ek != null && key.equals(ek)))) {
1852 >                                    val = remappingFunction.apply(key, e.val);
1853 >                                    if (val != null)
1854 >                                        e.val = val;
1855 >                                    else {
1856 >                                        delta = -1;
1857 >                                        Node<K,V> en = e.next;
1858 >                                        if (pred != null)
1859 >                                            pred.next = en;
1860 >                                        else
1861 >                                            setTabAt(tab, i, en);
1862 >                                    }
1863 >                                    break;
1864 >                                }
1865 >                                pred = e;
1866 >                                if ((e = e.next) == null) {
1867 >                                    val = remappingFunction.apply(key, null);
1868 >                                    if (val != null) {
1869 >                                        delta = 1;
1870 >                                        pred.next =
1871 >                                            new Node<K,V>(h, key, val, null);
1872 >                                    }
1873 >                                    break;
1874 >                                }
1875 >                            }
1876 >                        }
1877 >                        else if (f instanceof TreeBin) {
1878 >                            binCount = 1;
1879 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1880 >                            TreeNode<K,V> r, p;
1881 >                            if ((r = t.root) != null)
1882 >                                p = r.findTreeNode(h, key, null);
1883 >                            else
1884 >                                p = null;
1885 >                            V pv = (p == null) ? null : p.val;
1886 >                            val = remappingFunction.apply(key, pv);
1887 >                            if (val != null) {
1888 >                                if (p != null)
1889 >                                    p.val = val;
1890 >                                else {
1891 >                                    delta = 1;
1892 >                                    t.putTreeVal(h, key, val);
1893 >                                }
1894 >                            }
1895 >                            else if (p != null) {
1896 >                                delta = -1;
1897 >                                if (t.removeTreeNode(p))
1898 >                                    setTabAt(tab, i, untreeify(t.first));
1899 >                            }
1900 >                        }
1901 >                    }
1902 >                }
1903 >                if (binCount != 0) {
1904 >                    if (binCount >= TREEIFY_THRESHOLD)
1905 >                        treeifyBin(tab, i);
1906 >                    break;
1907 >                }
1908 >            }
1909 >        }
1910 >        if (delta != 0)
1911 >            addCount((long)delta, binCount);
1912 >        return val;
1913 >    }
1914 >
1915 >    /**
1916 >     * If the specified key is not already associated with a
1917 >     * (non-null) value, associates it with the given value.
1918 >     * Otherwise, replaces the value with the results of the given
1919 >     * remapping function, or removes if {@code null}. The entire
1920 >     * method invocation is performed atomically.  Some attempted
1921 >     * update operations on this map by other threads may be blocked
1922 >     * while computation is in progress, so the computation should be
1923 >     * short and simple, and must not attempt to update any other
1924 >     * mappings of this Map.
1925 >     *
1926 >     * @param key key with which the specified value is to be associated
1927 >     * @param value the value to use if absent
1928 >     * @param remappingFunction the function to recompute a value if present
1929 >     * @return the new value associated with the specified key, or null if none
1930 >     * @throws NullPointerException if the specified key or the
1931 >     *         remappingFunction is null
1932 >     * @throws RuntimeException or Error if the remappingFunction does so,
1933 >     *         in which case the mapping is unchanged
1934 >     */
1935 >    public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1936 >        if (key == null || value == null || remappingFunction == null)
1937 >            throw new NullPointerException();
1938 >        int h = spread(key.hashCode());
1939 >        V val = null;
1940 >        int delta = 0;
1941 >        int binCount = 0;
1942 >        for (Node<K,V>[] tab = table;;) {
1943 >            Node<K,V> f; int n, i, fh;
1944 >            if (tab == null || (n = tab.length) == 0)
1945 >                tab = initTable();
1946 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1947 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1948 >                    delta = 1;
1949 >                    val = value;
1950 >                    break;
1951 >                }
1952 >            }
1953 >            else if ((fh = f.hash) == MOVED)
1954 >                tab = helpTransfer(tab, f);
1955 >            else {
1956 >                synchronized (f) {
1957 >                    if (tabAt(tab, i) == f) {
1958 >                        if (fh >= 0) {
1959 >                            binCount = 1;
1960 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1961 >                                K ek;
1962 >                                if (e.hash == h &&
1963 >                                    ((ek = e.key) == key ||
1964 >                                     (ek != null && key.equals(ek)))) {
1965 >                                    val = remappingFunction.apply(e.val, value);
1966 >                                    if (val != null)
1967 >                                        e.val = val;
1968 >                                    else {
1969 >                                        delta = -1;
1970 >                                        Node<K,V> en = e.next;
1971 >                                        if (pred != null)
1972 >                                            pred.next = en;
1973 >                                        else
1974 >                                            setTabAt(tab, i, en);
1975 >                                    }
1976 >                                    break;
1977 >                                }
1978 >                                pred = e;
1979 >                                if ((e = e.next) == null) {
1980 >                                    delta = 1;
1981 >                                    val = value;
1982 >                                    pred.next =
1983 >                                        new Node<K,V>(h, key, val, null);
1984 >                                    break;
1985 >                                }
1986 >                            }
1987 >                        }
1988 >                        else if (f instanceof TreeBin) {
1989 >                            binCount = 2;
1990 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1991 >                            TreeNode<K,V> r = t.root;
1992 >                            TreeNode<K,V> p = (r == null) ? null :
1993 >                                r.findTreeNode(h, key, null);
1994 >                            val = (p == null) ? value :
1995 >                                remappingFunction.apply(p.val, value);
1996 >                            if (val != null) {
1997 >                                if (p != null)
1998 >                                    p.val = val;
1999 >                                else {
2000 >                                    delta = 1;
2001 >                                    t.putTreeVal(h, key, val);
2002 >                                }
2003 >                            }
2004 >                            else if (p != null) {
2005 >                                delta = -1;
2006 >                                if (t.removeTreeNode(p))
2007 >                                    setTabAt(tab, i, untreeify(t.first));
2008 >                            }
2009 >                        }
2010 >                    }
2011 >                }
2012 >                if (binCount != 0) {
2013 >                    if (binCount >= TREEIFY_THRESHOLD)
2014 >                        treeifyBin(tab, i);
2015 >                    break;
2016 >                }
2017 >            }
2018 >        }
2019 >        if (delta != 0)
2020 >            addCount((long)delta, binCount);
2021 >        return val;
2022 >    }
2023 >
2024 >    // Hashtable legacy methods
2025 >
2026 >    /**
2027 >     * Legacy method testing if some key maps into the specified value
2028 >     * in this table.  This method is identical in functionality to
2029 >     * {@link #containsValue(Object)}, and exists solely to ensure
2030 >     * full compatibility with class {@link java.util.Hashtable},
2031 >     * which supported this method prior to introduction of the
2032 >     * Java Collections framework.
2033 >     *
2034 >     * @param  value a value to search for
2035 >     * @return {@code true} if and only if some key maps to the
2036 >     *         {@code value} argument in this table as
2037 >     *         determined by the {@code equals} method;
2038 >     *         {@code false} otherwise
2039 >     * @throws NullPointerException if the specified value is null
2040 >     */
2041 >    @Deprecated public boolean contains(Object value) {
2042 >        return containsValue(value);
2043 >    }
2044 >
2045 >    /**
2046 >     * Returns an enumeration of the keys in this table.
2047 >     *
2048 >     * @return an enumeration of the keys in this table
2049 >     * @see #keySet()
2050 >     */
2051 >    public Enumeration<K> keys() {
2052 >        Node<K,V>[] t;
2053 >        int f = (t = table) == null ? 0 : t.length;
2054 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2055 >    }
2056 >
2057 >    /**
2058 >     * Returns an enumeration of the values in this table.
2059 >     *
2060 >     * @return an enumeration of the values in this table
2061 >     * @see #values()
2062 >     */
2063 >    public Enumeration<V> elements() {
2064 >        Node<K,V>[] t;
2065 >        int f = (t = table) == null ? 0 : t.length;
2066 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2067 >    }
2068 >
2069 >    // ConcurrentHashMapV8-only methods
2070 >
2071 >    /**
2072 >     * Returns the number of mappings. This method should be used
2073 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2074 >     * contain more mappings than can be represented as an int. The
2075 >     * value returned is an estimate; the actual count may differ if
2076 >     * there are concurrent insertions or removals.
2077 >     *
2078 >     * @return the number of mappings
2079 >     * @since 1.8
2080 >     */
2081 >    public long mappingCount() {
2082 >        long n = sumCount();
2083 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2084 >    }
2085 >
2086 >    /**
2087 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2088 >     * from the given type to {@code Boolean.TRUE}.
2089 >     *
2090 >     * @return the new set
2091 >     * @since 1.8
2092 >     */
2093 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2094 >        return new KeySetView<K,Boolean>
2095 >            (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2096 >    }
2097 >
2098 >    /**
2099 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2100 >     * from the given type to {@code Boolean.TRUE}.
2101 >     *
2102 >     * @param initialCapacity The implementation performs internal
2103 >     * sizing to accommodate this many elements.
2104 >     * @throws IllegalArgumentException if the initial capacity of
2105 >     * elements is negative
2106 >     * @return the new set
2107 >     * @since 1.8
2108 >     */
2109 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2110 >        return new KeySetView<K,Boolean>
2111 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2112 >    }
2113 >
2114 >    /**
2115 >     * Returns a {@link Set} view of the keys in this map, using the
2116 >     * given common mapped value for any additions (i.e., {@link
2117 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2118 >     * This is of course only appropriate if it is acceptable to use
2119 >     * the same value for all additions from this view.
2120 >     *
2121 >     * @param mappedValue the mapped value to use for any additions
2122 >     * @return the set view
2123 >     * @throws NullPointerException if the mappedValue is null
2124 >     */
2125 >    public KeySetView<K,V> keySet(V mappedValue) {
2126 >        if (mappedValue == null)
2127 >            throw new NullPointerException();
2128 >        return new KeySetView<K,V>(this, mappedValue);
2129 >    }
2130 >
2131 >    /* ---------------- Special Nodes -------------- */
2132 >
2133 >    /**
2134 >     * A node inserted at head of bins during transfer operations.
2135 >     */
2136 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2137 >        final Node<K,V>[] nextTable;
2138 >        ForwardingNode(Node<K,V>[] tab) {
2139 >            super(MOVED, null, null, null);
2140 >            this.nextTable = tab;
2141 >        }
2142 >
2143 >        Node<K,V> find(int h, Object k) {
2144 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2145 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2146 >                Node<K,V> e; int n;
2147 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2148 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2149 >                    return null;
2150 >                for (;;) {
2151 >                    int eh; K ek;
2152 >                    if ((eh = e.hash) == h &&
2153 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2154 >                        return e;
2155 >                    if (eh < 0) {
2156 >                        if (e instanceof ForwardingNode) {
2157 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2158 >                            continue outer;
2159 >                        }
2160 >                        else
2161 >                            return e.find(h, k);
2162 >                    }
2163 >                    if ((e = e.next) == null)
2164 >                        return null;
2165 >                }
2166 >            }
2167 >        }
2168 >    }
2169 >
2170 >    /**
2171 >     * A place-holder node used in computeIfAbsent and compute
2172 >     */
2173 >    static final class ReservationNode<K,V> extends Node<K,V> {
2174 >        ReservationNode() {
2175 >            super(RESERVED, null, null, null);
2176 >        }
2177 >
2178 >        Node<K,V> find(int h, Object k) {
2179 >            return null;
2180 >        }
2181 >    }
2182 >
2183 >    /* ---------------- Table Initialization and Resizing -------------- */
2184 >
2185 >    /**
2186 >     * Initializes table, using the size recorded in sizeCtl.
2187 >     */
2188 >    private final Node<K,V>[] initTable() {
2189 >        Node<K,V>[] tab; int sc;
2190 >        while ((tab = table) == null || tab.length == 0) {
2191 >            if ((sc = sizeCtl) < 0)
2192 >                Thread.yield(); // lost initialization race; just spin
2193 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2194 >                try {
2195 >                    if ((tab = table) == null || tab.length == 0) {
2196 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2197 >                        @SuppressWarnings({"rawtypes","unchecked"})
2198 >                            Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2199 >                        table = tab = nt;
2200 >                        sc = n - (n >>> 2);
2201 >                    }
2202 >                } finally {
2203 >                    sizeCtl = sc;
2204 >                }
2205 >                break;
2206 >            }
2207 >        }
2208 >        return tab;
2209 >    }
2210 >
2211 >    /**
2212 >     * Adds to count, and if table is too small and not already
2213 >     * resizing, initiates transfer. If already resizing, helps
2214 >     * perform transfer if work is available.  Rechecks occupancy
2215 >     * after a transfer to see if another resize is already needed
2216 >     * because resizings are lagging additions.
2217 >     *
2218 >     * @param x the count to add
2219 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2220 >     */
2221 >    private final void addCount(long x, int check) {
2222 >        CounterCell[] as; long b, s;
2223 >        if ((as = counterCells) != null ||
2224 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2225 >            CounterHashCode hc; CounterCell a; long v; int m;
2226 >            boolean uncontended = true;
2227 >            if ((hc = threadCounterHashCode.get()) == null ||
2228 >                as == null || (m = as.length - 1) < 0 ||
2229 >                (a = as[m & hc.code]) == null ||
2230 >                !(uncontended =
2231 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2232 >                fullAddCount(x, hc, uncontended);
2233 >                return;
2234 >            }
2235 >            if (check <= 1)
2236 >                return;
2237 >            s = sumCount();
2238 >        }
2239 >        if (check >= 0) {
2240 >            Node<K,V>[] tab, nt; int sc;
2241 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2242 >                   tab.length < MAXIMUM_CAPACITY) {
2243 >                if (sc < 0) {
2244 >                    if (sc == -1 || transferIndex <= transferOrigin ||
2245 >                        (nt = nextTable) == null)
2246 >                        break;
2247 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2248 >                        transfer(tab, nt);
2249 >                }
2250 >                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2251 >                    transfer(tab, null);
2252 >                s = sumCount();
2253 >            }
2254 >        }
2255 >    }
2256 >
2257 >    /**
2258 >     * Helps transfer if a resize is in progress.
2259 >     */
2260 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2261 >        Node<K,V>[] nextTab; int sc;
2262 >        if ((f instanceof ForwardingNode) &&
2263 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2264 >            if (nextTab == nextTable && tab == table &&
2265 >                transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2266 >                U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2267 >                transfer(tab, nextTab);
2268 >            return nextTab;
2269 >        }
2270 >        return table;
2271 >    }
2272 >
2273 >    /**
2274 >     * Tries to presize table to accommodate the given number of elements.
2275 >     *
2276 >     * @param size number of elements (doesn't need to be perfectly accurate)
2277 >     */
2278 >    private final void tryPresize(int size) {
2279 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2280 >            tableSizeFor(size + (size >>> 1) + 1);
2281 >        int sc;
2282 >        while ((sc = sizeCtl) >= 0) {
2283 >            Node<K,V>[] tab = table; int n;
2284 >            if (tab == null || (n = tab.length) == 0) {
2285 >                n = (sc > c) ? sc : c;
2286 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2287 >                    try {
2288 >                        if (table == tab) {
2289 >                            @SuppressWarnings({"rawtypes","unchecked"})
2290 >                                Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2291 >                            table = nt;
2292 >                            sc = n - (n >>> 2);
2293 >                        }
2294 >                    } finally {
2295 >                        sizeCtl = sc;
2296 >                    }
2297 >                }
2298 >            }
2299 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2300 >                break;
2301 >            else if (tab == table &&
2302 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2303 >                transfer(tab, null);
2304 >        }
2305 >    }
2306 >
2307 >    /**
2308 >     * Moves and/or copies the nodes in each bin to new table. See
2309 >     * above for explanation.
2310 >     */
2311 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2312 >        int n = tab.length, stride;
2313 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2314 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2315 >        if (nextTab == null) {            // initiating
2316 >            try {
2317 >                @SuppressWarnings({"rawtypes","unchecked"})
2318 >                    Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2319 >                nextTab = nt;
2320 >            } catch (Throwable ex) {      // try to cope with OOME
2321 >                sizeCtl = Integer.MAX_VALUE;
2322 >                return;
2323 >            }
2324 >            nextTable = nextTab;
2325 >            transferOrigin = n;
2326 >            transferIndex = n;
2327 >            ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2328 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
2329 >                int nextk = (k > stride) ? k - stride : 0;
2330 >                for (int m = nextk; m < k; ++m)
2331 >                    nextTab[m] = rev;
2332 >                for (int m = n + nextk; m < n + k; ++m)
2333 >                    nextTab[m] = rev;
2334 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2335 >            }
2336 >        }
2337 >        int nextn = nextTab.length;
2338 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2339 >        boolean advance = true;
2340 >        boolean finishing = false; // to ensure sweep before committing nextTab
2341 >        for (int i = 0, bound = 0;;) {
2342 >            int nextIndex, nextBound, fh; Node<K,V> f;
2343 >            while (advance) {
2344 >                if (--i >= bound || finishing)
2345 >                    advance = false;
2346 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
2347 >                    i = -1;
2348 >                    advance = false;
2349 >                }
2350 >                else if (U.compareAndSwapInt
2351 >                         (this, TRANSFERINDEX, nextIndex,
2352 >                          nextBound = (nextIndex > stride ?
2353 >                                       nextIndex - stride : 0))) {
2354 >                    bound = nextBound;
2355 >                    i = nextIndex - 1;
2356 >                    advance = false;
2357 >                }
2358 >            }
2359 >            if (i < 0 || i >= n || i + n >= nextn) {
2360 >                if (finishing) {
2361 >                    nextTable = null;
2362 >                    table = nextTab;
2363 >                    sizeCtl = (n << 1) - (n >>> 1);
2364 >                    return;
2365 >                }
2366 >                for (int sc;;) {
2367 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2368 >                        if (sc != -1)
2369 >                            return;
2370 >                        finishing = advance = true;
2371 >                        i = n; // recheck before commit
2372 >                        break;
2373 >                    }
2374 >                }
2375 >            }
2376 >            else if ((f = tabAt(tab, i)) == null) {
2377 >                if (casTabAt(tab, i, null, fwd)) {
2378 >                    setTabAt(nextTab, i, null);
2379 >                    setTabAt(nextTab, i + n, null);
2380 >                    advance = true;
2381 >                }
2382 >            }
2383 >            else if ((fh = f.hash) == MOVED)
2384 >                advance = true; // already processed
2385 >            else {
2386 >                synchronized (f) {
2387 >                    if (tabAt(tab, i) == f) {
2388 >                        Node<K,V> ln, hn;
2389 >                        if (fh >= 0) {
2390 >                            int runBit = fh & n;
2391 >                            Node<K,V> lastRun = f;
2392 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2393 >                                int b = p.hash & n;
2394 >                                if (b != runBit) {
2395 >                                    runBit = b;
2396 >                                    lastRun = p;
2397 >                                }
2398 >                            }
2399 >                            if (runBit == 0) {
2400 >                                ln = lastRun;
2401 >                                hn = null;
2402 >                            }
2403 >                            else {
2404 >                                hn = lastRun;
2405 >                                ln = null;
2406 >                            }
2407 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2408 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2409 >                                if ((ph & n) == 0)
2410 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2411 >                                else
2412 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2413 >                            }
2414 >                            setTabAt(nextTab, i, ln);
2415 >                            setTabAt(nextTab, i + n, hn);
2416 >                            setTabAt(tab, i, fwd);
2417 >                            advance = true;
2418 >                        }
2419 >                        else if (f instanceof TreeBin) {
2420 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2421 >                            TreeNode<K,V> lo = null, loTail = null;
2422 >                            TreeNode<K,V> hi = null, hiTail = null;
2423 >                            int lc = 0, hc = 0;
2424 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2425 >                                int h = e.hash;
2426 >                                TreeNode<K,V> p = new TreeNode<K,V>
2427 >                                    (h, e.key, e.val, null, null);
2428 >                                if ((h & n) == 0) {
2429 >                                    if ((p.prev = loTail) == null)
2430 >                                        lo = p;
2431 >                                    else
2432 >                                        loTail.next = p;
2433 >                                    loTail = p;
2434 >                                    ++lc;
2435 >                                }
2436 >                                else {
2437 >                                    if ((p.prev = hiTail) == null)
2438 >                                        hi = p;
2439 >                                    else
2440 >                                        hiTail.next = p;
2441 >                                    hiTail = p;
2442 >                                    ++hc;
2443 >                                }
2444 >                            }
2445 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2446 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2447 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2448 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2449 >                            setTabAt(nextTab, i, ln);
2450 >                            setTabAt(nextTab, i + n, hn);
2451 >                            setTabAt(tab, i, fwd);
2452 >                            advance = true;
2453 >                        }
2454 >                    }
2455 >                }
2456 >            }
2457 >        }
2458 >    }
2459 >
2460 >    /* ---------------- Conversion from/to TreeBins -------------- */
2461 >
2462 >    /**
2463 >     * Replaces all linked nodes in bin at given index unless table is
2464 >     * too small, in which case resizes instead.
2465 >     */
2466 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2467 >        Node<K,V> b; int n, sc;
2468 >        if (tab != null) {
2469 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2470 >                if (tab == table && (sc = sizeCtl) >= 0 &&
2471 >                    U.compareAndSwapInt(this, SIZECTL, sc, -2))
2472 >                    transfer(tab, null);
2473 >            }
2474 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2475 >                synchronized (b) {
2476 >                    if (tabAt(tab, index) == b) {
2477 >                        TreeNode<K,V> hd = null, tl = null;
2478 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2479 >                            TreeNode<K,V> p =
2480 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2481 >                                                  null, null);
2482 >                            if ((p.prev = tl) == null)
2483 >                                hd = p;
2484 >                            else
2485 >                                tl.next = p;
2486 >                            tl = p;
2487 >                        }
2488 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2489 >                    }
2490 >                }
2491 >            }
2492 >        }
2493 >    }
2494 >
2495 >    /**
2496 >     * Returns a list on non-TreeNodes replacing those in given list.
2497 >     */
2498 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2499 >        Node<K,V> hd = null, tl = null;
2500 >        for (Node<K,V> q = b; q != null; q = q.next) {
2501 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2502 >            if (tl == null)
2503 >                hd = p;
2504 >            else
2505 >                tl.next = p;
2506 >            tl = p;
2507 >        }
2508 >        return hd;
2509 >    }
2510 >
2511 >    /* ---------------- TreeNodes -------------- */
2512 >
2513 >    /**
2514 >     * Nodes for use in TreeBins
2515 >     */
2516 >    static final class TreeNode<K,V> extends Node<K,V> {
2517 >        TreeNode<K,V> parent;  // red-black tree links
2518 >        TreeNode<K,V> left;
2519 >        TreeNode<K,V> right;
2520 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2521 >        boolean red;
2522 >
2523 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2524 >                 TreeNode<K,V> parent) {
2525 >            super(hash, key, val, next);
2526 >            this.parent = parent;
2527 >        }
2528 >
2529 >        Node<K,V> find(int h, Object k) {
2530 >            return findTreeNode(h, k, null);
2531 >        }
2532 >
2533 >        /**
2534 >         * Returns the TreeNode (or null if not found) for the given key
2535 >         * starting at given root.
2536 >         */
2537 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2538 >            if (k != null) {
2539 >                TreeNode<K,V> p = this;
2540 >                do  {
2541 >                    int ph, dir; K pk; TreeNode<K,V> q;
2542 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2543 >                    if ((ph = p.hash) > h)
2544 >                        p = pl;
2545 >                    else if (ph < h)
2546 >                        p = pr;
2547 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2548 >                        return p;
2549 >                    else if (pl == null && pr == null)
2550 >                        break;
2551 >                    else if ((kc != null ||
2552 >                              (kc = comparableClassFor(k)) != null) &&
2553 >                             (dir = compareComparables(kc, k, pk)) != 0)
2554 >                        p = (dir < 0) ? pl : pr;
2555 >                    else if (pl == null)
2556 >                        p = pr;
2557 >                    else if (pr == null ||
2558 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2559 >                        p = pl;
2560 >                    else
2561 >                        return q;
2562 >                } while (p != null);
2563 >            }
2564 >            return null;
2565 >        }
2566 >    }
2567 >
2568 >    /* ---------------- TreeBins -------------- */
2569 >
2570 >    /**
2571 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2572 >     * keys or values, but instead point to list of TreeNodes and
2573 >     * their root. They also maintain a parasitic read-write lock
2574 >     * forcing writers (who hold bin lock) to wait for readers (who do
2575 >     * not) to complete before tree restructuring operations.
2576 >     */
2577 >    static final class TreeBin<K,V> extends Node<K,V> {
2578 >        TreeNode<K,V> root;
2579 >        volatile TreeNode<K,V> first;
2580 >        volatile Thread waiter;
2581 >        volatile int lockState;
2582 >        // values for lockState
2583 >        static final int WRITER = 1; // set while holding write lock
2584 >        static final int WAITER = 2; // set when waiting for write lock
2585 >        static final int READER = 4; // increment value for setting read lock
2586 >
2587 >        /**
2588 >         * Creates bin with initial set of nodes headed by b.
2589 >         */
2590 >        TreeBin(TreeNode<K,V> b) {
2591 >            super(TREEBIN, null, null, null);
2592 >            this.first = b;
2593 >            TreeNode<K,V> r = null;
2594 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2595 >                next = (TreeNode<K,V>)x.next;
2596 >                x.left = x.right = null;
2597 >                if (r == null) {
2598 >                    x.parent = null;
2599 >                    x.red = false;
2600 >                    r = x;
2601 >                }
2602 >                else {
2603 >                    Object key = x.key;
2604 >                    int hash = x.hash;
2605 >                    Class<?> kc = null;
2606 >                    for (TreeNode<K,V> p = r;;) {
2607 >                        int dir, ph;
2608 >                        if ((ph = p.hash) > hash)
2609 >                            dir = -1;
2610 >                        else if (ph < hash)
2611 >                            dir = 1;
2612 >                        else if ((kc != null ||
2613 >                                  (kc = comparableClassFor(key)) != null))
2614 >                            dir = compareComparables(kc, key, p.key);
2615 >                        else
2616 >                            dir = 0;
2617 >                        TreeNode<K,V> xp = p;
2618 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2619 >                            x.parent = xp;
2620 >                            if (dir <= 0)
2621 >                                xp.left = x;
2622 >                            else
2623 >                                xp.right = x;
2624 >                            r = balanceInsertion(r, x);
2625 >                            break;
2626 >                        }
2627 >                    }
2628 >                }
2629 >            }
2630 >            this.root = r;
2631 >        }
2632 >
2633 >        /**
2634 >         * Acquires write lock for tree restructuring.
2635 >         */
2636 >        private final void lockRoot() {
2637 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2638 >                contendedLock(); // offload to separate method
2639 >        }
2640 >
2641 >        /**
2642 >         * Releases write lock for tree restructuring.
2643 >         */
2644 >        private final void unlockRoot() {
2645 >            lockState = 0;
2646 >        }
2647 >
2648 >        /**
2649 >         * Possibly blocks awaiting root lock.
2650 >         */
2651 >        private final void contendedLock() {
2652 >            boolean waiting = false;
2653 >            for (int s;;) {
2654 >                if (((s = lockState) & WRITER) == 0) {
2655 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2656 >                        if (waiting)
2657 >                            waiter = null;
2658 >                        return;
2659 >                    }
2660 >                }
2661 >                else if ((s | WAITER) == 0) {
2662 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2663 >                        waiting = true;
2664 >                        waiter = Thread.currentThread();
2665 >                    }
2666 >                }
2667 >                else if (waiting)
2668 >                    LockSupport.park(this);
2669 >            }
2670 >        }
2671 >
2672 >        /**
2673 >         * Returns matching node or null if none. Tries to search
2674 >         * using tree comparisons from root, but continues linear
2675 >         * search when lock not available.
2676 >         */
2677 >        final Node<K,V> find(int h, Object k) {
2678 >            if (k != null) {
2679 >                for (Node<K,V> e = first; e != null; e = e.next) {
2680 >                    int s; K ek;
2681 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2682 >                        if (e.hash == h &&
2683 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2684 >                            return e;
2685 >                    }
2686 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2687 >                                                 s + READER)) {
2688 >                        TreeNode<K,V> r, p;
2689 >                        try {
2690 >                            p = ((r = root) == null ? null :
2691 >                                 r.findTreeNode(h, k, null));
2692 >                        } finally {
2693 >                            Thread w;
2694 >                            int ls;
2695 >                            do {} while (!U.compareAndSwapInt
2696 >                                         (this, LOCKSTATE,
2697 >                                          ls = lockState, ls - READER));
2698 >                            if (ls == (READER|WAITER) && (w = waiter) != null)
2699 >                                LockSupport.unpark(w);
2700 >                        }
2701 >                        return p;
2702 >                    }
2703 >                }
2704 >            }
2705 >            return null;
2706 >        }
2707 >
2708 >        /**
2709 >         * Finds or adds a node.
2710 >         * @return null if added
2711 >         */
2712 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2713 >            Class<?> kc = null;
2714 >            for (TreeNode<K,V> p = root;;) {
2715 >                int dir, ph; K pk; TreeNode<K,V> q, pr;
2716 >                if (p == null) {
2717 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2718 >                    break;
2719 >                }
2720 >                else if ((ph = p.hash) > h)
2721 >                    dir = -1;
2722 >                else if (ph < h)
2723 >                    dir = 1;
2724 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2725 >                    return p;
2726 >                else if ((kc == null &&
2727 >                          (kc = comparableClassFor(k)) == null) ||
2728 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2729 >                    if (p.left == null)
2730 >                        dir = 1;
2731 >                    else if ((pr = p.right) == null ||
2732 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2733 >                        dir = -1;
2734 >                    else
2735 >                        return q;
2736 >                }
2737 >                TreeNode<K,V> xp = p;
2738 >                if ((p = (dir < 0) ? p.left : p.right) == null) {
2739 >                    TreeNode<K,V> x, f = first;
2740 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2741 >                    if (f != null)
2742 >                        f.prev = x;
2743 >                    if (dir < 0)
2744 >                        xp.left = x;
2745 >                    else
2746 >                        xp.right = x;
2747 >                    if (!xp.red)
2748 >                        x.red = true;
2749 >                    else {
2750 >                        lockRoot();
2751 >                        try {
2752 >                            root = balanceInsertion(root, x);
2753 >                        } finally {
2754 >                            unlockRoot();
2755 >                        }
2756 >                    }
2757 >                    break;
2758 >                }
2759 >            }
2760 >            assert checkInvariants(root);
2761 >            return null;
2762          }
2763  
2764 <        public ValueIterator<K,V> clone() {
2765 <            if (last != null || (next != null && nextVal == null))
2764 >        /**
2765 >         * Removes the given node, that must be present before this
2766 >         * call.  This is messier than typical red-black deletion code
2767 >         * because we cannot swap the contents of an interior node
2768 >         * with a leaf successor that is pinned by "next" pointers
2769 >         * that are accessible independently of lock. So instead we
2770 >         * swap the tree linkages.
2771 >         *
2772 >         * @return true if now too small, so should be untreeified
2773 >         */
2774 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2775 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2776 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2777 >            TreeNode<K,V> r, rl;
2778 >            if (pred == null)
2779 >                first = next;
2780 >            else
2781 >                pred.next = next;
2782 >            if (next != null)
2783 >                next.prev = pred;
2784 >            if (first == null) {
2785 >                root = null;
2786 >                return true;
2787 >            }
2788 >            if ((r = root) == null || r.right == null || // too small
2789 >                (rl = r.left) == null || rl.left == null)
2790 >                return true;
2791 >            lockRoot();
2792 >            try {
2793 >                TreeNode<K,V> replacement;
2794 >                TreeNode<K,V> pl = p.left;
2795 >                TreeNode<K,V> pr = p.right;
2796 >                if (pl != null && pr != null) {
2797 >                    TreeNode<K,V> s = pr, sl;
2798 >                    while ((sl = s.left) != null) // find successor
2799 >                        s = sl;
2800 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2801 >                    TreeNode<K,V> sr = s.right;
2802 >                    TreeNode<K,V> pp = p.parent;
2803 >                    if (s == pr) { // p was s's direct parent
2804 >                        p.parent = s;
2805 >                        s.right = p;
2806 >                    }
2807 >                    else {
2808 >                        TreeNode<K,V> sp = s.parent;
2809 >                        if ((p.parent = sp) != null) {
2810 >                            if (s == sp.left)
2811 >                                sp.left = p;
2812 >                            else
2813 >                                sp.right = p;
2814 >                        }
2815 >                        if ((s.right = pr) != null)
2816 >                            pr.parent = s;
2817 >                    }
2818 >                    p.left = null;
2819 >                    if ((p.right = sr) != null)
2820 >                        sr.parent = p;
2821 >                    if ((s.left = pl) != null)
2822 >                        pl.parent = s;
2823 >                    if ((s.parent = pp) == null)
2824 >                        r = s;
2825 >                    else if (p == pp.left)
2826 >                        pp.left = s;
2827 >                    else
2828 >                        pp.right = s;
2829 >                    if (sr != null)
2830 >                        replacement = sr;
2831 >                    else
2832 >                        replacement = p;
2833 >                }
2834 >                else if (pl != null)
2835 >                    replacement = pl;
2836 >                else if (pr != null)
2837 >                    replacement = pr;
2838 >                else
2839 >                    replacement = p;
2840 >                if (replacement != p) {
2841 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2842 >                    if (pp == null)
2843 >                        r = replacement;
2844 >                    else if (p == pp.left)
2845 >                        pp.left = replacement;
2846 >                    else
2847 >                        pp.right = replacement;
2848 >                    p.left = p.right = p.parent = null;
2849 >                }
2850 >
2851 >                root = (p.red) ? r : balanceDeletion(r, replacement);
2852 >
2853 >                if (p == replacement) {  // detach pointers
2854 >                    TreeNode<K,V> pp;
2855 >                    if ((pp = p.parent) != null) {
2856 >                        if (p == pp.left)
2857 >                            pp.left = null;
2858 >                        else if (p == pp.right)
2859 >                            pp.right = null;
2860 >                        p.parent = null;
2861 >                    }
2862 >                }
2863 >            } finally {
2864 >                unlockRoot();
2865 >            }
2866 >            assert checkInvariants(root);
2867 >            return false;
2868 >        }
2869 >
2870 >        /* ------------------------------------------------------------ */
2871 >        // Red-black tree methods, all adapted from CLR
2872 >
2873 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2874 >                                              TreeNode<K,V> p) {
2875 >            TreeNode<K,V> r, pp, rl;
2876 >            if (p != null && (r = p.right) != null) {
2877 >                if ((rl = p.right = r.left) != null)
2878 >                    rl.parent = p;
2879 >                if ((pp = r.parent = p.parent) == null)
2880 >                    (root = r).red = false;
2881 >                else if (pp.left == p)
2882 >                    pp.left = r;
2883 >                else
2884 >                    pp.right = r;
2885 >                r.left = p;
2886 >                p.parent = r;
2887 >            }
2888 >            return root;
2889 >        }
2890 >
2891 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2892 >                                               TreeNode<K,V> p) {
2893 >            TreeNode<K,V> l, pp, lr;
2894 >            if (p != null && (l = p.left) != null) {
2895 >                if ((lr = p.left = l.right) != null)
2896 >                    lr.parent = p;
2897 >                if ((pp = l.parent = p.parent) == null)
2898 >                    (root = l).red = false;
2899 >                else if (pp.right == p)
2900 >                    pp.right = l;
2901 >                else
2902 >                    pp.left = l;
2903 >                l.right = p;
2904 >                p.parent = l;
2905 >            }
2906 >            return root;
2907 >        }
2908 >
2909 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2910 >                                                    TreeNode<K,V> x) {
2911 >            x.red = true;
2912 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2913 >                if ((xp = x.parent) == null) {
2914 >                    x.red = false;
2915 >                    return x;
2916 >                }
2917 >                else if (!xp.red || (xpp = xp.parent) == null)
2918 >                    return root;
2919 >                if (xp == (xppl = xpp.left)) {
2920 >                    if ((xppr = xpp.right) != null && xppr.red) {
2921 >                        xppr.red = false;
2922 >                        xp.red = false;
2923 >                        xpp.red = true;
2924 >                        x = xpp;
2925 >                    }
2926 >                    else {
2927 >                        if (x == xp.right) {
2928 >                            root = rotateLeft(root, x = xp);
2929 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2930 >                        }
2931 >                        if (xp != null) {
2932 >                            xp.red = false;
2933 >                            if (xpp != null) {
2934 >                                xpp.red = true;
2935 >                                root = rotateRight(root, xpp);
2936 >                            }
2937 >                        }
2938 >                    }
2939 >                }
2940 >                else {
2941 >                    if (xppl != null && xppl.red) {
2942 >                        xppl.red = false;
2943 >                        xp.red = false;
2944 >                        xpp.red = true;
2945 >                        x = xpp;
2946 >                    }
2947 >                    else {
2948 >                        if (x == xp.left) {
2949 >                            root = rotateRight(root, x = xp);
2950 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2951 >                        }
2952 >                        if (xp != null) {
2953 >                            xp.red = false;
2954 >                            if (xpp != null) {
2955 >                                xpp.red = true;
2956 >                                root = rotateLeft(root, xpp);
2957 >                            }
2958 >                        }
2959 >                    }
2960 >                }
2961 >            }
2962 >        }
2963 >
2964 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2965 >                                                   TreeNode<K,V> x) {
2966 >            for (TreeNode<K,V> xp, xpl, xpr;;)  {
2967 >                if (x == null || x == root)
2968 >                    return root;
2969 >                else if ((xp = x.parent) == null) {
2970 >                    x.red = false;
2971 >                    return x;
2972 >                }
2973 >                else if (x.red) {
2974 >                    x.red = false;
2975 >                    return root;
2976 >                }
2977 >                else if ((xpl = xp.left) == x) {
2978 >                    if ((xpr = xp.right) != null && xpr.red) {
2979 >                        xpr.red = false;
2980 >                        xp.red = true;
2981 >                        root = rotateLeft(root, xp);
2982 >                        xpr = (xp = x.parent) == null ? null : xp.right;
2983 >                    }
2984 >                    if (xpr == null)
2985 >                        x = xp;
2986 >                    else {
2987 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
2988 >                        if ((sr == null || !sr.red) &&
2989 >                            (sl == null || !sl.red)) {
2990 >                            xpr.red = true;
2991 >                            x = xp;
2992 >                        }
2993 >                        else {
2994 >                            if (sr == null || !sr.red) {
2995 >                                if (sl != null)
2996 >                                    sl.red = false;
2997 >                                xpr.red = true;
2998 >                                root = rotateRight(root, xpr);
2999 >                                xpr = (xp = x.parent) == null ?
3000 >                                    null : xp.right;
3001 >                            }
3002 >                            if (xpr != null) {
3003 >                                xpr.red = (xp == null) ? false : xp.red;
3004 >                                if ((sr = xpr.right) != null)
3005 >                                    sr.red = false;
3006 >                            }
3007 >                            if (xp != null) {
3008 >                                xp.red = false;
3009 >                                root = rotateLeft(root, xp);
3010 >                            }
3011 >                            x = root;
3012 >                        }
3013 >                    }
3014 >                }
3015 >                else { // symmetric
3016 >                    if (xpl != null && xpl.red) {
3017 >                        xpl.red = false;
3018 >                        xp.red = true;
3019 >                        root = rotateRight(root, xp);
3020 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3021 >                    }
3022 >                    if (xpl == null)
3023 >                        x = xp;
3024 >                    else {
3025 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3026 >                        if ((sl == null || !sl.red) &&
3027 >                            (sr == null || !sr.red)) {
3028 >                            xpl.red = true;
3029 >                            x = xp;
3030 >                        }
3031 >                        else {
3032 >                            if (sl == null || !sl.red) {
3033 >                                if (sr != null)
3034 >                                    sr.red = false;
3035 >                                xpl.red = true;
3036 >                                root = rotateLeft(root, xpl);
3037 >                                xpl = (xp = x.parent) == null ?
3038 >                                    null : xp.left;
3039 >                            }
3040 >                            if (xpl != null) {
3041 >                                xpl.red = (xp == null) ? false : xp.red;
3042 >                                if ((sl = xpl.left) != null)
3043 >                                    sl.red = false;
3044 >                            }
3045 >                            if (xp != null) {
3046 >                                xp.red = false;
3047 >                                root = rotateRight(root, xp);
3048 >                            }
3049 >                            x = root;
3050 >                        }
3051 >                    }
3052 >                }
3053 >            }
3054 >        }
3055 >
3056 >        /**
3057 >         * Recursive invariant check
3058 >         */
3059 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3060 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3061 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3062 >            if (tb != null && tb.next != t)
3063 >                return false;
3064 >            if (tn != null && tn.prev != t)
3065 >                return false;
3066 >            if (tp != null && t != tp.left && t != tp.right)
3067 >                return false;
3068 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3069 >                return false;
3070 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3071 >                return false;
3072 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3073 >                return false;
3074 >            if (tl != null && !checkInvariants(tl))
3075 >                return false;
3076 >            if (tr != null && !checkInvariants(tr))
3077 >                return false;
3078 >            return true;
3079 >        }
3080 >
3081 >        private static final sun.misc.Unsafe U;
3082 >        private static final long LOCKSTATE;
3083 >        static {
3084 >            try {
3085 >                U = getUnsafe();
3086 >                Class<?> k = TreeBin.class;
3087 >                LOCKSTATE = U.objectFieldOffset
3088 >                    (k.getDeclaredField("lockState"));
3089 >            } catch (Exception e) {
3090 >                throw new Error(e);
3091 >            }
3092 >        }
3093 >    }
3094 >
3095 >    /* ----------------Table Traversal -------------- */
3096 >
3097 >    /**
3098 >     * Encapsulates traversal for methods such as containsValue; also
3099 >     * serves as a base class for other iterators and spliterators.
3100 >     *
3101 >     * Method advance visits once each still-valid node that was
3102 >     * reachable upon iterator construction. It might miss some that
3103 >     * were added to a bin after the bin was visited, which is OK wrt
3104 >     * consistency guarantees. Maintaining this property in the face
3105 >     * of possible ongoing resizes requires a fair amount of
3106 >     * bookkeeping state that is difficult to optimize away amidst
3107 >     * volatile accesses.  Even so, traversal maintains reasonable
3108 >     * throughput.
3109 >     *
3110 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3111 >     * However, if the table has been resized, then all future steps
3112 >     * must traverse both the bin at the current index as well as at
3113 >     * (index + baseSize); and so on for further resizings. To
3114 >     * paranoically cope with potential sharing by users of iterators
3115 >     * across threads, iteration terminates if a bounds checks fails
3116 >     * for a table read.
3117 >     */
3118 >    static class Traverser<K,V> {
3119 >        Node<K,V>[] tab;        // current table; updated if resized
3120 >        Node<K,V> next;         // the next entry to use
3121 >        int index;              // index of bin to use next
3122 >        int baseIndex;          // current index of initial table
3123 >        int baseLimit;          // index bound for initial table
3124 >        final int baseSize;     // initial table size
3125 >
3126 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3127 >            this.tab = tab;
3128 >            this.baseSize = size;
3129 >            this.baseIndex = this.index = index;
3130 >            this.baseLimit = limit;
3131 >            this.next = null;
3132 >        }
3133 >
3134 >        /**
3135 >         * Advances if possible, returning next valid node, or null if none.
3136 >         */
3137 >        final Node<K,V> advance() {
3138 >            Node<K,V> e;
3139 >            if ((e = next) != null)
3140 >                e = e.next;
3141 >            for (;;) {
3142 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
3143 >                if (e != null)
3144 >                    return next = e;
3145 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3146 >                    (n = t.length) <= (i = index) || i < 0)
3147 >                    return next = null;
3148 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
3149 >                    if (e instanceof ForwardingNode) {
3150 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3151 >                        e = null;
3152 >                        continue;
3153 >                    }
3154 >                    else if (e instanceof TreeBin)
3155 >                        e = ((TreeBin<K,V>)e).first;
3156 >                    else
3157 >                        e = null;
3158 >                }
3159 >                if ((index += baseSize) >= n)
3160 >                    index = ++baseIndex;    // visit upper slots if present
3161 >            }
3162 >        }
3163 >    }
3164 >
3165 >    /**
3166 >     * Base of key, value, and entry Iterators. Adds fields to
3167 >     * Traverser to support iterator.remove.
3168 >     */
3169 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3170 >        final ConcurrentHashMapV8<K,V> map;
3171 >        Node<K,V> lastReturned;
3172 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3173 >                    ConcurrentHashMapV8<K,V> map) {
3174 >            super(tab, size, index, limit);
3175 >            this.map = map;
3176 >            advance();
3177 >        }
3178 >
3179 >        public final boolean hasNext() { return next != null; }
3180 >        public final boolean hasMoreElements() { return next != null; }
3181 >
3182 >        public final void remove() {
3183 >            Node<K,V> p;
3184 >            if ((p = lastReturned) == null)
3185                  throw new IllegalStateException();
3186 <            return new ValueIterator<K,V>(this, false);
3186 >            lastReturned = null;
3187 >            map.replaceNode(p.key, null, null);
3188          }
3189 +    }
3190  
3191 <        @SuppressWarnings("unchecked")
3192 <        public final V next() {
3193 <            Object v;
3194 <            if ((v = nextVal) == null && (v = advance()) == null)
3191 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3192 >        implements Iterator<K>, Enumeration<K> {
3193 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3194 >                    ConcurrentHashMapV8<K,V> map) {
3195 >            super(tab, index, size, limit, map);
3196 >        }
3197 >
3198 >        public final K next() {
3199 >            Node<K,V> p;
3200 >            if ((p = next) == null)
3201                  throw new NoSuchElementException();
3202 <            nextVal = null;
3203 <            return (V) v;
3202 >            K k = p.key;
3203 >            lastReturned = p;
3204 >            advance();
3205 >            return k;
3206          }
3207  
3208 <        public final V nextElement() { return next(); }
3208 >        public final K nextElement() { return next(); }
3209      }
3210  
3211 <    static final class EntryIterator<K,V> extends InternalIterator<K,V>
3212 <        implements Spliterator<Map.Entry<K,V>> {
3213 <        EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3214 <        EntryIterator(InternalIterator<K,V> it, boolean split) {
3215 <            super(it, split);
3211 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3212 >        implements Iterator<V>, Enumeration<V> {
3213 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3214 >                      ConcurrentHashMapV8<K,V> map) {
3215 >            super(tab, index, size, limit, map);
3216          }
3217 <        public EntryIterator<K,V> split() {
3218 <            if (last != null || (next != null && nextVal == null))
3219 <                throw new IllegalStateException();
3220 <            return new EntryIterator<K,V>(this, true);
3217 >
3218 >        public final V next() {
3219 >            Node<K,V> p;
3220 >            if ((p = next) == null)
3221 >                throw new NoSuchElementException();
3222 >            V v = p.val;
3223 >            lastReturned = p;
3224 >            advance();
3225 >            return v;
3226          }
3227 <        public EntryIterator<K,V> clone() {
3228 <            if (last != null || (next != null && nextVal == null))
3229 <                throw new IllegalStateException();
3230 <            return new EntryIterator<K,V>(this, false);
3227 >
3228 >        public final V nextElement() { return next(); }
3229 >    }
3230 >
3231 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3232 >        implements Iterator<Map.Entry<K,V>> {
3233 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3234 >                      ConcurrentHashMapV8<K,V> map) {
3235 >            super(tab, index, size, limit, map);
3236          }
3237  
2904        @SuppressWarnings("unchecked")
3238          public final Map.Entry<K,V> next() {
3239 <            Object v;
3240 <            if ((v = nextVal) == null && (v = advance()) == null)
3239 >            Node<K,V> p;
3240 >            if ((p = next) == null)
3241                  throw new NoSuchElementException();
3242 <            Object k = nextKey;
3243 <            nextVal = null;
3244 <            return new MapEntry<K,V>((K)k, (V)v, map);
3242 >            K k = p.key;
3243 >            V v = p.val;
3244 >            lastReturned = p;
3245 >            advance();
3246 >            return new MapEntry<K,V>(k, v, map);
3247          }
3248      }
3249  
3250      /**
3251 <     * Exported Entry for iterators
3251 >     * Exported Entry for EntryIterator
3252       */
3253 <    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3253 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3254          final K key; // non-null
3255          V val;       // non-null
3256 <        final ConcurrentHashMapV8<K, V> map;
3257 <        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3256 >        final ConcurrentHashMapV8<K,V> map;
3257 >        MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3258              this.key = key;
3259              this.val = val;
3260              this.map = map;
3261          }
3262 <        public final K getKey()       { return key; }
3263 <        public final V getValue()     { return val; }
3264 <        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3265 <        public final String toString(){ return key + "=" + val; }
3262 >        public K getKey()        { return key; }
3263 >        public V getValue()      { return val; }
3264 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3265 >        public String toString() { return key + "=" + val; }
3266  
3267 <        public final boolean equals(Object o) {
3267 >        public boolean equals(Object o) {
3268              Object k, v; Map.Entry<?,?> e;
3269              return ((o instanceof Map.Entry) &&
3270                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 2943 | Line 3278 | public class ConcurrentHashMapV8<K, V>
3278           * value to return is somewhat arbitrary here. Since we do not
3279           * necessarily track asynchronous changes, the most recent
3280           * "previous" value could be different from what we return (or
3281 <         * could even have been removed in which case the put will
3281 >         * could even have been removed, in which case the put will
3282           * re-establish). We do not and cannot guarantee more.
3283           */
3284 <        public final V setValue(V value) {
3284 >        public V setValue(V value) {
3285              if (value == null) throw new NullPointerException();
3286              V v = val;
3287              val = value;
# Line 2955 | Line 3290 | public class ConcurrentHashMapV8<K, V>
3290          }
3291      }
3292  
3293 +    static final class KeySpliterator<K,V> extends Traverser<K,V>
3294 +        implements ConcurrentHashMapSpliterator<K> {
3295 +        long est;               // size estimate
3296 +        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3297 +                       long est) {
3298 +            super(tab, size, index, limit);
3299 +            this.est = est;
3300 +        }
3301 +
3302 +        public ConcurrentHashMapSpliterator<K> trySplit() {
3303 +            int i, f, h;
3304 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3305 +                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3306 +                                        f, est >>>= 1);
3307 +        }
3308 +
3309 +        public void forEachRemaining(Action<? super K> action) {
3310 +            if (action == null) throw new NullPointerException();
3311 +            for (Node<K,V> p; (p = advance()) != null;)
3312 +                action.apply(p.key);
3313 +        }
3314 +
3315 +        public boolean tryAdvance(Action<? super K> action) {
3316 +            if (action == null) throw new NullPointerException();
3317 +            Node<K,V> p;
3318 +            if ((p = advance()) == null)
3319 +                return false;
3320 +            action.apply(p.key);
3321 +            return true;
3322 +        }
3323 +
3324 +        public long estimateSize() { return est; }
3325 +
3326 +    }
3327 +
3328 +    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3329 +        implements ConcurrentHashMapSpliterator<V> {
3330 +        long est;               // size estimate
3331 +        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3332 +                         long est) {
3333 +            super(tab, size, index, limit);
3334 +            this.est = est;
3335 +        }
3336 +
3337 +        public ConcurrentHashMapSpliterator<V> trySplit() {
3338 +            int i, f, h;
3339 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3340 +                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3341 +                                          f, est >>>= 1);
3342 +        }
3343 +
3344 +        public void forEachRemaining(Action<? super V> action) {
3345 +            if (action == null) throw new NullPointerException();
3346 +            for (Node<K,V> p; (p = advance()) != null;)
3347 +                action.apply(p.val);
3348 +        }
3349 +
3350 +        public boolean tryAdvance(Action<? super V> action) {
3351 +            if (action == null) throw new NullPointerException();
3352 +            Node<K,V> p;
3353 +            if ((p = advance()) == null)
3354 +                return false;
3355 +            action.apply(p.val);
3356 +            return true;
3357 +        }
3358 +
3359 +        public long estimateSize() { return est; }
3360 +
3361 +    }
3362 +
3363 +    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3364 +        implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3365 +        final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3366 +        long est;               // size estimate
3367 +        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3368 +                         long est, ConcurrentHashMapV8<K,V> map) {
3369 +            super(tab, size, index, limit);
3370 +            this.map = map;
3371 +            this.est = est;
3372 +        }
3373 +
3374 +        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3375 +            int i, f, h;
3376 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3377 +                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3378 +                                          f, est >>>= 1, map);
3379 +        }
3380 +
3381 +        public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3382 +            if (action == null) throw new NullPointerException();
3383 +            for (Node<K,V> p; (p = advance()) != null; )
3384 +                action.apply(new MapEntry<K,V>(p.key, p.val, map));
3385 +        }
3386 +
3387 +        public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3388 +            if (action == null) throw new NullPointerException();
3389 +            Node<K,V> p;
3390 +            if ((p = advance()) == null)
3391 +                return false;
3392 +            action.apply(new MapEntry<K,V>(p.key, p.val, map));
3393 +            return true;
3394 +        }
3395 +
3396 +        public long estimateSize() { return est; }
3397 +
3398 +    }
3399 +
3400 +    // Parallel bulk operations
3401 +
3402 +    /**
3403 +     * Computes initial batch value for bulk tasks. The returned value
3404 +     * is approximately exp2 of the number of times (minus one) to
3405 +     * split task by two before executing leaf action. This value is
3406 +     * faster to compute and more convenient to use as a guide to
3407 +     * splitting than is the depth, since it is used while dividing by
3408 +     * two anyway.
3409 +     */
3410 +    final int batchFor(long b) {
3411 +        long n;
3412 +        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3413 +            return 0;
3414 +        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3415 +        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3416 +    }
3417 +
3418 +    /**
3419 +     * Performs the given action for each (key, value).
3420 +     *
3421 +     * @param parallelismThreshold the (estimated) number of elements
3422 +     * needed for this operation to be executed in parallel
3423 +     * @param action the action
3424 +     * @since 1.8
3425 +     */
3426 +    public void forEach(long parallelismThreshold,
3427 +                        BiAction<? super K,? super V> action) {
3428 +        if (action == null) throw new NullPointerException();
3429 +        new ForEachMappingTask<K,V>
3430 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3431 +             action).invoke();
3432 +    }
3433 +
3434 +    /**
3435 +     * Performs the given action for each non-null transformation
3436 +     * of each (key, value).
3437 +     *
3438 +     * @param parallelismThreshold the (estimated) number of elements
3439 +     * needed for this operation to be executed in parallel
3440 +     * @param transformer a function returning the transformation
3441 +     * for an element, or null if there is no transformation (in
3442 +     * which case the action is not applied)
3443 +     * @param action the action
3444 +     * @since 1.8
3445 +     */
3446 +    public <U> void forEach(long parallelismThreshold,
3447 +                            BiFun<? super K, ? super V, ? extends U> transformer,
3448 +                            Action<? super U> action) {
3449 +        if (transformer == null || action == null)
3450 +            throw new NullPointerException();
3451 +        new ForEachTransformedMappingTask<K,V,U>
3452 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3453 +             transformer, action).invoke();
3454 +    }
3455 +
3456 +    /**
3457 +     * Returns a non-null result from applying the given search
3458 +     * function on each (key, value), or null if none.  Upon
3459 +     * success, further element processing is suppressed and the
3460 +     * results of any other parallel invocations of the search
3461 +     * function are ignored.
3462 +     *
3463 +     * @param parallelismThreshold the (estimated) number of elements
3464 +     * needed for this operation to be executed in parallel
3465 +     * @param searchFunction a function returning a non-null
3466 +     * result on success, else null
3467 +     * @return a non-null result from applying the given search
3468 +     * function on each (key, value), or null if none
3469 +     * @since 1.8
3470 +     */
3471 +    public <U> U search(long parallelismThreshold,
3472 +                        BiFun<? super K, ? super V, ? extends U> searchFunction) {
3473 +        if (searchFunction == null) throw new NullPointerException();
3474 +        return new SearchMappingsTask<K,V,U>
3475 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3476 +             searchFunction, new AtomicReference<U>()).invoke();
3477 +    }
3478 +
3479 +    /**
3480 +     * Returns the result of accumulating the given transformation
3481 +     * of all (key, value) pairs using the given reducer to
3482 +     * combine values, or null if none.
3483 +     *
3484 +     * @param parallelismThreshold the (estimated) number of elements
3485 +     * needed for this operation to be executed in parallel
3486 +     * @param transformer a function returning the transformation
3487 +     * for an element, or null if there is no transformation (in
3488 +     * which case it is not combined)
3489 +     * @param reducer a commutative associative combining function
3490 +     * @return the result of accumulating the given transformation
3491 +     * of all (key, value) pairs
3492 +     * @since 1.8
3493 +     */
3494 +    public <U> U reduce(long parallelismThreshold,
3495 +                        BiFun<? super K, ? super V, ? extends U> transformer,
3496 +                        BiFun<? super U, ? super U, ? extends U> reducer) {
3497 +        if (transformer == null || reducer == null)
3498 +            throw new NullPointerException();
3499 +        return new MapReduceMappingsTask<K,V,U>
3500 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3501 +             null, transformer, reducer).invoke();
3502 +    }
3503 +
3504 +    /**
3505 +     * Returns the result of accumulating the given transformation
3506 +     * of all (key, value) pairs using the given reducer to
3507 +     * combine values, and the given basis as an identity value.
3508 +     *
3509 +     * @param parallelismThreshold the (estimated) number of elements
3510 +     * needed for this operation to be executed in parallel
3511 +     * @param transformer a function returning the transformation
3512 +     * for an element
3513 +     * @param basis the identity (initial default value) for the reduction
3514 +     * @param reducer a commutative associative combining function
3515 +     * @return the result of accumulating the given transformation
3516 +     * of all (key, value) pairs
3517 +     * @since 1.8
3518 +     */
3519 +    public double reduceToDouble(long parallelismThreshold,
3520 +                                 ObjectByObjectToDouble<? super K, ? super V> transformer,
3521 +                                 double basis,
3522 +                                 DoubleByDoubleToDouble reducer) {
3523 +        if (transformer == null || reducer == null)
3524 +            throw new NullPointerException();
3525 +        return new MapReduceMappingsToDoubleTask<K,V>
3526 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3527 +             null, transformer, basis, reducer).invoke();
3528 +    }
3529 +
3530 +    /**
3531 +     * Returns the result of accumulating the given transformation
3532 +     * of all (key, value) pairs using the given reducer to
3533 +     * combine values, and the given basis as an identity value.
3534 +     *
3535 +     * @param parallelismThreshold the (estimated) number of elements
3536 +     * needed for this operation to be executed in parallel
3537 +     * @param transformer a function returning the transformation
3538 +     * for an element
3539 +     * @param basis the identity (initial default value) for the reduction
3540 +     * @param reducer a commutative associative combining function
3541 +     * @return the result of accumulating the given transformation
3542 +     * of all (key, value) pairs
3543 +     * @since 1.8
3544 +     */
3545 +    public long reduceToLong(long parallelismThreshold,
3546 +                             ObjectByObjectToLong<? super K, ? super V> transformer,
3547 +                             long basis,
3548 +                             LongByLongToLong reducer) {
3549 +        if (transformer == null || reducer == null)
3550 +            throw new NullPointerException();
3551 +        return new MapReduceMappingsToLongTask<K,V>
3552 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3553 +             null, transformer, basis, reducer).invoke();
3554 +    }
3555 +
3556 +    /**
3557 +     * Returns the result of accumulating the given transformation
3558 +     * of all (key, value) pairs using the given reducer to
3559 +     * combine values, and the given basis as an identity value.
3560 +     *
3561 +     * @param parallelismThreshold the (estimated) number of elements
3562 +     * needed for this operation to be executed in parallel
3563 +     * @param transformer a function returning the transformation
3564 +     * for an element
3565 +     * @param basis the identity (initial default value) for the reduction
3566 +     * @param reducer a commutative associative combining function
3567 +     * @return the result of accumulating the given transformation
3568 +     * of all (key, value) pairs
3569 +     * @since 1.8
3570 +     */
3571 +    public int reduceToInt(long parallelismThreshold,
3572 +                           ObjectByObjectToInt<? super K, ? super V> transformer,
3573 +                           int basis,
3574 +                           IntByIntToInt reducer) {
3575 +        if (transformer == null || reducer == null)
3576 +            throw new NullPointerException();
3577 +        return new MapReduceMappingsToIntTask<K,V>
3578 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3579 +             null, transformer, basis, reducer).invoke();
3580 +    }
3581 +
3582 +    /**
3583 +     * Performs the given action for each key.
3584 +     *
3585 +     * @param parallelismThreshold the (estimated) number of elements
3586 +     * needed for this operation to be executed in parallel
3587 +     * @param action the action
3588 +     * @since 1.8
3589 +     */
3590 +    public void forEachKey(long parallelismThreshold,
3591 +                           Action<? super K> action) {
3592 +        if (action == null) throw new NullPointerException();
3593 +        new ForEachKeyTask<K,V>
3594 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3595 +             action).invoke();
3596 +    }
3597 +
3598 +    /**
3599 +     * Performs the given action for each non-null transformation
3600 +     * of each key.
3601 +     *
3602 +     * @param parallelismThreshold the (estimated) number of elements
3603 +     * needed for this operation to be executed in parallel
3604 +     * @param transformer a function returning the transformation
3605 +     * for an element, or null if there is no transformation (in
3606 +     * which case the action is not applied)
3607 +     * @param action the action
3608 +     * @since 1.8
3609 +     */
3610 +    public <U> void forEachKey(long parallelismThreshold,
3611 +                               Fun<? super K, ? extends U> transformer,
3612 +                               Action<? super U> action) {
3613 +        if (transformer == null || action == null)
3614 +            throw new NullPointerException();
3615 +        new ForEachTransformedKeyTask<K,V,U>
3616 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3617 +             transformer, action).invoke();
3618 +    }
3619 +
3620 +    /**
3621 +     * Returns a non-null result from applying the given search
3622 +     * function on each key, or null if none. Upon success,
3623 +     * further element processing is suppressed and the results of
3624 +     * any other parallel invocations of the search function are
3625 +     * ignored.
3626 +     *
3627 +     * @param parallelismThreshold the (estimated) number of elements
3628 +     * needed for this operation to be executed in parallel
3629 +     * @param searchFunction a function returning a non-null
3630 +     * result on success, else null
3631 +     * @return a non-null result from applying the given search
3632 +     * function on each key, or null if none
3633 +     * @since 1.8
3634 +     */
3635 +    public <U> U searchKeys(long parallelismThreshold,
3636 +                            Fun<? super K, ? extends U> searchFunction) {
3637 +        if (searchFunction == null) throw new NullPointerException();
3638 +        return new SearchKeysTask<K,V,U>
3639 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3640 +             searchFunction, new AtomicReference<U>()).invoke();
3641 +    }
3642 +
3643 +    /**
3644 +     * Returns the result of accumulating all keys using the given
3645 +     * reducer to combine values, or null if none.
3646 +     *
3647 +     * @param parallelismThreshold the (estimated) number of elements
3648 +     * needed for this operation to be executed in parallel
3649 +     * @param reducer a commutative associative combining function
3650 +     * @return the result of accumulating all keys using the given
3651 +     * reducer to combine values, or null if none
3652 +     * @since 1.8
3653 +     */
3654 +    public K reduceKeys(long parallelismThreshold,
3655 +                        BiFun<? super K, ? super K, ? extends K> reducer) {
3656 +        if (reducer == null) throw new NullPointerException();
3657 +        return new ReduceKeysTask<K,V>
3658 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3659 +             null, reducer).invoke();
3660 +    }
3661 +
3662 +    /**
3663 +     * Returns the result of accumulating the given transformation
3664 +     * of all keys using the given reducer to combine values, or
3665 +     * null if none.
3666 +     *
3667 +     * @param parallelismThreshold the (estimated) number of elements
3668 +     * needed for this operation to be executed in parallel
3669 +     * @param transformer a function returning the transformation
3670 +     * for an element, or null if there is no transformation (in
3671 +     * which case it is not combined)
3672 +     * @param reducer a commutative associative combining function
3673 +     * @return the result of accumulating the given transformation
3674 +     * of all keys
3675 +     * @since 1.8
3676 +     */
3677 +    public <U> U reduceKeys(long parallelismThreshold,
3678 +                            Fun<? super K, ? extends U> transformer,
3679 +         BiFun<? super U, ? super U, ? extends U> reducer) {
3680 +        if (transformer == null || reducer == null)
3681 +            throw new NullPointerException();
3682 +        return new MapReduceKeysTask<K,V,U>
3683 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3684 +             null, transformer, reducer).invoke();
3685 +    }
3686 +
3687 +    /**
3688 +     * Returns the result of accumulating the given transformation
3689 +     * of all keys using the given reducer to combine values, and
3690 +     * the given basis as an identity value.
3691 +     *
3692 +     * @param parallelismThreshold the (estimated) number of elements
3693 +     * needed for this operation to be executed in parallel
3694 +     * @param transformer a function returning the transformation
3695 +     * for an element
3696 +     * @param basis the identity (initial default value) for the reduction
3697 +     * @param reducer a commutative associative combining function
3698 +     * @return the result of accumulating the given transformation
3699 +     * of all keys
3700 +     * @since 1.8
3701 +     */
3702 +    public double reduceKeysToDouble(long parallelismThreshold,
3703 +                                     ObjectToDouble<? super K> transformer,
3704 +                                     double basis,
3705 +                                     DoubleByDoubleToDouble reducer) {
3706 +        if (transformer == null || reducer == null)
3707 +            throw new NullPointerException();
3708 +        return new MapReduceKeysToDoubleTask<K,V>
3709 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3710 +             null, transformer, basis, reducer).invoke();
3711 +    }
3712 +
3713 +    /**
3714 +     * Returns the result of accumulating the given transformation
3715 +     * of all keys using the given reducer to combine values, and
3716 +     * the given basis as an identity value.
3717 +     *
3718 +     * @param parallelismThreshold the (estimated) number of elements
3719 +     * needed for this operation to be executed in parallel
3720 +     * @param transformer a function returning the transformation
3721 +     * for an element
3722 +     * @param basis the identity (initial default value) for the reduction
3723 +     * @param reducer a commutative associative combining function
3724 +     * @return the result of accumulating the given transformation
3725 +     * of all keys
3726 +     * @since 1.8
3727 +     */
3728 +    public long reduceKeysToLong(long parallelismThreshold,
3729 +                                 ObjectToLong<? super K> transformer,
3730 +                                 long basis,
3731 +                                 LongByLongToLong reducer) {
3732 +        if (transformer == null || reducer == null)
3733 +            throw new NullPointerException();
3734 +        return new MapReduceKeysToLongTask<K,V>
3735 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3736 +             null, transformer, basis, reducer).invoke();
3737 +    }
3738 +
3739 +    /**
3740 +     * Returns the result of accumulating the given transformation
3741 +     * of all keys using the given reducer to combine values, and
3742 +     * the given basis as an identity value.
3743 +     *
3744 +     * @param parallelismThreshold the (estimated) number of elements
3745 +     * needed for this operation to be executed in parallel
3746 +     * @param transformer a function returning the transformation
3747 +     * for an element
3748 +     * @param basis the identity (initial default value) for the reduction
3749 +     * @param reducer a commutative associative combining function
3750 +     * @return the result of accumulating the given transformation
3751 +     * of all keys
3752 +     * @since 1.8
3753 +     */
3754 +    public int reduceKeysToInt(long parallelismThreshold,
3755 +                               ObjectToInt<? super K> transformer,
3756 +                               int basis,
3757 +                               IntByIntToInt reducer) {
3758 +        if (transformer == null || reducer == null)
3759 +            throw new NullPointerException();
3760 +        return new MapReduceKeysToIntTask<K,V>
3761 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3762 +             null, transformer, basis, reducer).invoke();
3763 +    }
3764 +
3765 +    /**
3766 +     * Performs the given action for each value.
3767 +     *
3768 +     * @param parallelismThreshold the (estimated) number of elements
3769 +     * needed for this operation to be executed in parallel
3770 +     * @param action the action
3771 +     * @since 1.8
3772 +     */
3773 +    public void forEachValue(long parallelismThreshold,
3774 +                             Action<? super V> action) {
3775 +        if (action == null)
3776 +            throw new NullPointerException();
3777 +        new ForEachValueTask<K,V>
3778 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3779 +             action).invoke();
3780 +    }
3781 +
3782 +    /**
3783 +     * Performs the given action for each non-null transformation
3784 +     * of each value.
3785 +     *
3786 +     * @param parallelismThreshold the (estimated) number of elements
3787 +     * needed for this operation to be executed in parallel
3788 +     * @param transformer a function returning the transformation
3789 +     * for an element, or null if there is no transformation (in
3790 +     * which case the action is not applied)
3791 +     * @param action the action
3792 +     * @since 1.8
3793 +     */
3794 +    public <U> void forEachValue(long parallelismThreshold,
3795 +                                 Fun<? super V, ? extends U> transformer,
3796 +                                 Action<? super U> action) {
3797 +        if (transformer == null || action == null)
3798 +            throw new NullPointerException();
3799 +        new ForEachTransformedValueTask<K,V,U>
3800 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3801 +             transformer, action).invoke();
3802 +    }
3803 +
3804 +    /**
3805 +     * Returns a non-null result from applying the given search
3806 +     * function on each value, or null if none.  Upon success,
3807 +     * further element processing is suppressed and the results of
3808 +     * any other parallel invocations of the search function are
3809 +     * ignored.
3810 +     *
3811 +     * @param parallelismThreshold the (estimated) number of elements
3812 +     * needed for this operation to be executed in parallel
3813 +     * @param searchFunction a function returning a non-null
3814 +     * result on success, else null
3815 +     * @return a non-null result from applying the given search
3816 +     * function on each value, or null if none
3817 +     * @since 1.8
3818 +     */
3819 +    public <U> U searchValues(long parallelismThreshold,
3820 +                              Fun<? super V, ? extends U> searchFunction) {
3821 +        if (searchFunction == null) throw new NullPointerException();
3822 +        return new SearchValuesTask<K,V,U>
3823 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3824 +             searchFunction, new AtomicReference<U>()).invoke();
3825 +    }
3826 +
3827 +    /**
3828 +     * Returns the result of accumulating all values using the
3829 +     * given reducer to combine values, or null if none.
3830 +     *
3831 +     * @param parallelismThreshold the (estimated) number of elements
3832 +     * needed for this operation to be executed in parallel
3833 +     * @param reducer a commutative associative combining function
3834 +     * @return the result of accumulating all values
3835 +     * @since 1.8
3836 +     */
3837 +    public V reduceValues(long parallelismThreshold,
3838 +                          BiFun<? super V, ? super V, ? extends V> reducer) {
3839 +        if (reducer == null) throw new NullPointerException();
3840 +        return new ReduceValuesTask<K,V>
3841 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3842 +             null, reducer).invoke();
3843 +    }
3844 +
3845 +    /**
3846 +     * Returns the result of accumulating the given transformation
3847 +     * of all values using the given reducer to combine values, or
3848 +     * null if none.
3849 +     *
3850 +     * @param parallelismThreshold the (estimated) number of elements
3851 +     * needed for this operation to be executed in parallel
3852 +     * @param transformer a function returning the transformation
3853 +     * for an element, or null if there is no transformation (in
3854 +     * which case it is not combined)
3855 +     * @param reducer a commutative associative combining function
3856 +     * @return the result of accumulating the given transformation
3857 +     * of all values
3858 +     * @since 1.8
3859 +     */
3860 +    public <U> U reduceValues(long parallelismThreshold,
3861 +                              Fun<? super V, ? extends U> transformer,
3862 +                              BiFun<? super U, ? super U, ? extends U> reducer) {
3863 +        if (transformer == null || reducer == null)
3864 +            throw new NullPointerException();
3865 +        return new MapReduceValuesTask<K,V,U>
3866 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3867 +             null, transformer, reducer).invoke();
3868 +    }
3869 +
3870 +    /**
3871 +     * Returns the result of accumulating the given transformation
3872 +     * of all values using the given reducer to combine values,
3873 +     * and the given basis as an identity value.
3874 +     *
3875 +     * @param parallelismThreshold the (estimated) number of elements
3876 +     * needed for this operation to be executed in parallel
3877 +     * @param transformer a function returning the transformation
3878 +     * for an element
3879 +     * @param basis the identity (initial default value) for the reduction
3880 +     * @param reducer a commutative associative combining function
3881 +     * @return the result of accumulating the given transformation
3882 +     * of all values
3883 +     * @since 1.8
3884 +     */
3885 +    public double reduceValuesToDouble(long parallelismThreshold,
3886 +                                       ObjectToDouble<? super V> transformer,
3887 +                                       double basis,
3888 +                                       DoubleByDoubleToDouble reducer) {
3889 +        if (transformer == null || reducer == null)
3890 +            throw new NullPointerException();
3891 +        return new MapReduceValuesToDoubleTask<K,V>
3892 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3893 +             null, transformer, basis, reducer).invoke();
3894 +    }
3895 +
3896 +    /**
3897 +     * Returns the result of accumulating the given transformation
3898 +     * of all values using the given reducer to combine values,
3899 +     * and the given basis as an identity value.
3900 +     *
3901 +     * @param parallelismThreshold the (estimated) number of elements
3902 +     * needed for this operation to be executed in parallel
3903 +     * @param transformer a function returning the transformation
3904 +     * for an element
3905 +     * @param basis the identity (initial default value) for the reduction
3906 +     * @param reducer a commutative associative combining function
3907 +     * @return the result of accumulating the given transformation
3908 +     * of all values
3909 +     * @since 1.8
3910 +     */
3911 +    public long reduceValuesToLong(long parallelismThreshold,
3912 +                                   ObjectToLong<? super V> transformer,
3913 +                                   long basis,
3914 +                                   LongByLongToLong reducer) {
3915 +        if (transformer == null || reducer == null)
3916 +            throw new NullPointerException();
3917 +        return new MapReduceValuesToLongTask<K,V>
3918 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3919 +             null, transformer, basis, reducer).invoke();
3920 +    }
3921 +
3922 +    /**
3923 +     * Returns the result of accumulating the given transformation
3924 +     * of all values using the given reducer to combine values,
3925 +     * and the given basis as an identity value.
3926 +     *
3927 +     * @param parallelismThreshold the (estimated) number of elements
3928 +     * needed for this operation to be executed in parallel
3929 +     * @param transformer a function returning the transformation
3930 +     * for an element
3931 +     * @param basis the identity (initial default value) for the reduction
3932 +     * @param reducer a commutative associative combining function
3933 +     * @return the result of accumulating the given transformation
3934 +     * of all values
3935 +     * @since 1.8
3936 +     */
3937 +    public int reduceValuesToInt(long parallelismThreshold,
3938 +                                 ObjectToInt<? super V> transformer,
3939 +                                 int basis,
3940 +                                 IntByIntToInt reducer) {
3941 +        if (transformer == null || reducer == null)
3942 +            throw new NullPointerException();
3943 +        return new MapReduceValuesToIntTask<K,V>
3944 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3945 +             null, transformer, basis, reducer).invoke();
3946 +    }
3947 +
3948 +    /**
3949 +     * Performs the given action for each entry.
3950 +     *
3951 +     * @param parallelismThreshold the (estimated) number of elements
3952 +     * needed for this operation to be executed in parallel
3953 +     * @param action the action
3954 +     * @since 1.8
3955 +     */
3956 +    public void forEachEntry(long parallelismThreshold,
3957 +                             Action<? super Map.Entry<K,V>> action) {
3958 +        if (action == null) throw new NullPointerException();
3959 +        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
3960 +                                  action).invoke();
3961 +    }
3962 +
3963 +    /**
3964 +     * Performs the given action for each non-null transformation
3965 +     * of each entry.
3966 +     *
3967 +     * @param parallelismThreshold the (estimated) number of elements
3968 +     * needed for this operation to be executed in parallel
3969 +     * @param transformer a function returning the transformation
3970 +     * for an element, or null if there is no transformation (in
3971 +     * which case the action is not applied)
3972 +     * @param action the action
3973 +     * @since 1.8
3974 +     */
3975 +    public <U> void forEachEntry(long parallelismThreshold,
3976 +                                 Fun<Map.Entry<K,V>, ? extends U> transformer,
3977 +                                 Action<? super U> action) {
3978 +        if (transformer == null || action == null)
3979 +            throw new NullPointerException();
3980 +        new ForEachTransformedEntryTask<K,V,U>
3981 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3982 +             transformer, action).invoke();
3983 +    }
3984 +
3985 +    /**
3986 +     * Returns a non-null result from applying the given search
3987 +     * function on each entry, or null if none.  Upon success,
3988 +     * further element processing is suppressed and the results of
3989 +     * any other parallel invocations of the search function are
3990 +     * ignored.
3991 +     *
3992 +     * @param parallelismThreshold the (estimated) number of elements
3993 +     * needed for this operation to be executed in parallel
3994 +     * @param searchFunction a function returning a non-null
3995 +     * result on success, else null
3996 +     * @return a non-null result from applying the given search
3997 +     * function on each entry, or null if none
3998 +     * @since 1.8
3999 +     */
4000 +    public <U> U searchEntries(long parallelismThreshold,
4001 +                               Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4002 +        if (searchFunction == null) throw new NullPointerException();
4003 +        return new SearchEntriesTask<K,V,U>
4004 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4005 +             searchFunction, new AtomicReference<U>()).invoke();
4006 +    }
4007 +
4008 +    /**
4009 +     * Returns the result of accumulating all entries using the
4010 +     * given reducer to combine values, or null if none.
4011 +     *
4012 +     * @param parallelismThreshold the (estimated) number of elements
4013 +     * needed for this operation to be executed in parallel
4014 +     * @param reducer a commutative associative combining function
4015 +     * @return the result of accumulating all entries
4016 +     * @since 1.8
4017 +     */
4018 +    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4019 +                                        BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4020 +        if (reducer == null) throw new NullPointerException();
4021 +        return new ReduceEntriesTask<K,V>
4022 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4023 +             null, reducer).invoke();
4024 +    }
4025 +
4026 +    /**
4027 +     * Returns the result of accumulating the given transformation
4028 +     * of all entries using the given reducer to combine values,
4029 +     * or null if none.
4030 +     *
4031 +     * @param parallelismThreshold the (estimated) number of elements
4032 +     * needed for this operation to be executed in parallel
4033 +     * @param transformer a function returning the transformation
4034 +     * for an element, or null if there is no transformation (in
4035 +     * which case it is not combined)
4036 +     * @param reducer a commutative associative combining function
4037 +     * @return the result of accumulating the given transformation
4038 +     * of all entries
4039 +     * @since 1.8
4040 +     */
4041 +    public <U> U reduceEntries(long parallelismThreshold,
4042 +                               Fun<Map.Entry<K,V>, ? extends U> transformer,
4043 +                               BiFun<? super U, ? super U, ? extends U> reducer) {
4044 +        if (transformer == null || reducer == null)
4045 +            throw new NullPointerException();
4046 +        return new MapReduceEntriesTask<K,V,U>
4047 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4048 +             null, transformer, reducer).invoke();
4049 +    }
4050 +
4051 +    /**
4052 +     * Returns the result of accumulating the given transformation
4053 +     * of all entries using the given reducer to combine values,
4054 +     * and the given basis as an identity value.
4055 +     *
4056 +     * @param parallelismThreshold the (estimated) number of elements
4057 +     * needed for this operation to be executed in parallel
4058 +     * @param transformer a function returning the transformation
4059 +     * for an element
4060 +     * @param basis the identity (initial default value) for the reduction
4061 +     * @param reducer a commutative associative combining function
4062 +     * @return the result of accumulating the given transformation
4063 +     * of all entries
4064 +     * @since 1.8
4065 +     */
4066 +    public double reduceEntriesToDouble(long parallelismThreshold,
4067 +                                        ObjectToDouble<Map.Entry<K,V>> transformer,
4068 +                                        double basis,
4069 +                                        DoubleByDoubleToDouble reducer) {
4070 +        if (transformer == null || reducer == null)
4071 +            throw new NullPointerException();
4072 +        return new MapReduceEntriesToDoubleTask<K,V>
4073 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4074 +             null, transformer, basis, reducer).invoke();
4075 +    }
4076 +
4077 +    /**
4078 +     * Returns the result of accumulating the given transformation
4079 +     * of all entries using the given reducer to combine values,
4080 +     * and the given basis as an identity value.
4081 +     *
4082 +     * @param parallelismThreshold the (estimated) number of elements
4083 +     * needed for this operation to be executed in parallel
4084 +     * @param transformer a function returning the transformation
4085 +     * for an element
4086 +     * @param basis the identity (initial default value) for the reduction
4087 +     * @param reducer a commutative associative combining function
4088 +     * @return the result of accumulating the given transformation
4089 +     * of all entries
4090 +     * @since 1.8
4091 +     */
4092 +    public long reduceEntriesToLong(long parallelismThreshold,
4093 +                                    ObjectToLong<Map.Entry<K,V>> transformer,
4094 +                                    long basis,
4095 +                                    LongByLongToLong reducer) {
4096 +        if (transformer == null || reducer == null)
4097 +            throw new NullPointerException();
4098 +        return new MapReduceEntriesToLongTask<K,V>
4099 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4100 +             null, transformer, basis, reducer).invoke();
4101 +    }
4102 +
4103 +    /**
4104 +     * Returns the result of accumulating the given transformation
4105 +     * of all entries using the given reducer to combine values,
4106 +     * and the given basis as an identity value.
4107 +     *
4108 +     * @param parallelismThreshold the (estimated) number of elements
4109 +     * needed for this operation to be executed in parallel
4110 +     * @param transformer a function returning the transformation
4111 +     * for an element
4112 +     * @param basis the identity (initial default value) for the reduction
4113 +     * @param reducer a commutative associative combining function
4114 +     * @return the result of accumulating the given transformation
4115 +     * of all entries
4116 +     * @since 1.8
4117 +     */
4118 +    public int reduceEntriesToInt(long parallelismThreshold,
4119 +                                  ObjectToInt<Map.Entry<K,V>> transformer,
4120 +                                  int basis,
4121 +                                  IntByIntToInt reducer) {
4122 +        if (transformer == null || reducer == null)
4123 +            throw new NullPointerException();
4124 +        return new MapReduceEntriesToIntTask<K,V>
4125 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4126 +             null, transformer, basis, reducer).invoke();
4127 +    }
4128 +
4129 +
4130      /* ----------------Views -------------- */
4131  
4132      /**
4133       * Base class for views.
4134       */
4135 <    static abstract class MapView<K, V> {
4136 <        final ConcurrentHashMapV8<K, V> map;
4137 <        MapView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
4138 <        public final int size()                 { return map.size(); }
4139 <        public final boolean isEmpty()          { return map.isEmpty(); }
4140 <        public final void clear()               { map.clear(); }
4135 >    abstract static class CollectionView<K,V,E>
4136 >        implements Collection<E>, java.io.Serializable {
4137 >        private static final long serialVersionUID = 7249069246763182397L;
4138 >        final ConcurrentHashMapV8<K,V> map;
4139 >        CollectionView(ConcurrentHashMapV8<K,V> map)  { this.map = map; }
4140 >
4141 >        /**
4142 >         * Returns the map backing this view.
4143 >         *
4144 >         * @return the map backing this view
4145 >         */
4146 >        public ConcurrentHashMapV8<K,V> getMap() { return map; }
4147 >
4148 >        /**
4149 >         * Removes all of the elements from this view, by removing all
4150 >         * the mappings from the map backing this view.
4151 >         */
4152 >        public final void clear()      { map.clear(); }
4153 >        public final int size()        { return map.size(); }
4154 >        public final boolean isEmpty() { return map.isEmpty(); }
4155  
4156          // implementations below rely on concrete classes supplying these
4157 <        abstract public Iterator<?> iterator();
4158 <        abstract public boolean contains(Object o);
4159 <        abstract public boolean remove(Object o);
4157 >        // abstract methods
4158 >        /**
4159 >         * Returns a "weakly consistent" iterator that will never
4160 >         * throw {@link ConcurrentModificationException}, and
4161 >         * guarantees to traverse elements as they existed upon
4162 >         * construction of the iterator, and may (but is not
4163 >         * guaranteed to) reflect any modifications subsequent to
4164 >         * construction.
4165 >         */
4166 >        public abstract Iterator<E> iterator();
4167 >        public abstract boolean contains(Object o);
4168 >        public abstract boolean remove(Object o);
4169  
4170          private static final String oomeMsg = "Required array size too large";
4171  
4172          public final Object[] toArray() {
4173 <            long sz = map.longSize();
4174 <            if (sz > (long)(MAX_ARRAY_SIZE))
4173 >            long sz = map.mappingCount();
4174 >            if (sz > MAX_ARRAY_SIZE)
4175                  throw new OutOfMemoryError(oomeMsg);
4176              int n = (int)sz;
4177              Object[] r = new Object[n];
4178              int i = 0;
4179 <            Iterator<?> it = iterator();
2985 <            while (it.hasNext()) {
4179 >            for (E e : this) {
4180                  if (i == n) {
4181                      if (n >= MAX_ARRAY_SIZE)
4182                          throw new OutOfMemoryError(oomeMsg);
# Line 2992 | Line 4186 | public class ConcurrentHashMapV8<K, V>
4186                          n += (n >>> 1) + 1;
4187                      r = Arrays.copyOf(r, n);
4188                  }
4189 <                r[i++] = it.next();
4189 >                r[i++] = e;
4190              }
4191              return (i == n) ? r : Arrays.copyOf(r, i);
4192          }
4193  
4194          @SuppressWarnings("unchecked")
4195          public final <T> T[] toArray(T[] a) {
4196 <            long sz = map.longSize();
4197 <            if (sz > (long)(MAX_ARRAY_SIZE))
4196 >            long sz = map.mappingCount();
4197 >            if (sz > MAX_ARRAY_SIZE)
4198                  throw new OutOfMemoryError(oomeMsg);
4199              int m = (int)sz;
4200              T[] r = (a.length >= m) ? a :
# Line 3008 | Line 4202 | public class ConcurrentHashMapV8<K, V>
4202                  .newInstance(a.getClass().getComponentType(), m);
4203              int n = r.length;
4204              int i = 0;
4205 <            Iterator<?> it = iterator();
3012 <            while (it.hasNext()) {
4205 >            for (E e : this) {
4206                  if (i == n) {
4207                      if (n >= MAX_ARRAY_SIZE)
4208                          throw new OutOfMemoryError(oomeMsg);
# Line 3019 | Line 4212 | public class ConcurrentHashMapV8<K, V>
4212                          n += (n >>> 1) + 1;
4213                      r = Arrays.copyOf(r, n);
4214                  }
4215 <                r[i++] = (T)it.next();
4215 >                r[i++] = (T)e;
4216              }
4217              if (a == r && i < n) {
4218                  r[i] = null; // null-terminate
# Line 3028 | Line 4221 | public class ConcurrentHashMapV8<K, V>
4221              return (i == n) ? r : Arrays.copyOf(r, i);
4222          }
4223  
4224 <        public final int hashCode() {
4225 <            int h = 0;
4226 <            for (Iterator<?> it = iterator(); it.hasNext();)
4227 <                h += it.next().hashCode();
4228 <            return h;
4229 <        }
4230 <
4224 >        /**
4225 >         * Returns a string representation of this collection.
4226 >         * The string representation consists of the string representations
4227 >         * of the collection's elements in the order they are returned by
4228 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4229 >         * Adjacent elements are separated by the characters {@code ", "}
4230 >         * (comma and space).  Elements are converted to strings as by
4231 >         * {@link String#valueOf(Object)}.
4232 >         *
4233 >         * @return a string representation of this collection
4234 >         */
4235          public final String toString() {
4236              StringBuilder sb = new StringBuilder();
4237              sb.append('[');
4238 <            Iterator<?> it = iterator();
4238 >            Iterator<E> it = iterator();
4239              if (it.hasNext()) {
4240                  for (;;) {
4241                      Object e = it.next();
# Line 3053 | Line 4250 | public class ConcurrentHashMapV8<K, V>
4250  
4251          public final boolean containsAll(Collection<?> c) {
4252              if (c != this) {
4253 <                for (Iterator<?> it = c.iterator(); it.hasNext();) {
3057 <                    Object e = it.next();
4253 >                for (Object e : c) {
4254                      if (e == null || !contains(e))
4255                          return false;
4256                  }
# Line 3064 | Line 4260 | public class ConcurrentHashMapV8<K, V>
4260  
4261          public final boolean removeAll(Collection<?> c) {
4262              boolean modified = false;
4263 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4263 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4264                  if (c.contains(it.next())) {
4265                      it.remove();
4266                      modified = true;
# Line 3075 | Line 4271 | public class ConcurrentHashMapV8<K, V>
4271  
4272          public final boolean retainAll(Collection<?> c) {
4273              boolean modified = false;
4274 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4274 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4275                  if (!c.contains(it.next())) {
4276                      it.remove();
4277                      modified = true;
# Line 3086 | Line 4282 | public class ConcurrentHashMapV8<K, V>
4282  
4283      }
4284  
4285 <    static final class KeySet<K,V> extends MapView<K,V> implements Set<K> {
4286 <        KeySet(ConcurrentHashMapV8<K, V> map)   { super(map); }
4287 <        public final boolean contains(Object o) { return map.containsKey(o); }
4288 <        public final boolean remove(Object o)   { return map.remove(o) != null; }
4289 <        public final Iterator<K> iterator() {
4290 <            return new KeyIterator<K,V>(map);
4285 >    /**
4286 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4287 >     * which additions may optionally be enabled by mapping to a
4288 >     * common value.  This class cannot be directly instantiated.
4289 >     * See {@link #keySet() keySet()},
4290 >     * {@link #keySet(Object) keySet(V)},
4291 >     * {@link #newKeySet() newKeySet()},
4292 >     * {@link #newKeySet(int) newKeySet(int)}.
4293 >     *
4294 >     * @since 1.8
4295 >     */
4296 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4297 >        implements Set<K>, java.io.Serializable {
4298 >        private static final long serialVersionUID = 7249069246763182397L;
4299 >        private final V value;
4300 >        KeySetView(ConcurrentHashMapV8<K,V> map, V value) {  // non-public
4301 >            super(map);
4302 >            this.value = value;
4303          }
4304 <        public final boolean add(K e) {
4305 <            throw new UnsupportedOperationException();
4304 >
4305 >        /**
4306 >         * Returns the default mapped value for additions,
4307 >         * or {@code null} if additions are not supported.
4308 >         *
4309 >         * @return the default mapped value for additions, or {@code null}
4310 >         * if not supported
4311 >         */
4312 >        public V getMappedValue() { return value; }
4313 >
4314 >        /**
4315 >         * {@inheritDoc}
4316 >         * @throws NullPointerException if the specified key is null
4317 >         */
4318 >        public boolean contains(Object o) { return map.containsKey(o); }
4319 >
4320 >        /**
4321 >         * Removes the key from this map view, by removing the key (and its
4322 >         * corresponding value) from the backing map.  This method does
4323 >         * nothing if the key is not in the map.
4324 >         *
4325 >         * @param  o the key to be removed from the backing map
4326 >         * @return {@code true} if the backing map contained the specified key
4327 >         * @throws NullPointerException if the specified key is null
4328 >         */
4329 >        public boolean remove(Object o) { return map.remove(o) != null; }
4330 >
4331 >        /**
4332 >         * @return an iterator over the keys of the backing map
4333 >         */
4334 >        public Iterator<K> iterator() {
4335 >            Node<K,V>[] t;
4336 >            ConcurrentHashMapV8<K,V> m = map;
4337 >            int f = (t = m.table) == null ? 0 : t.length;
4338 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4339          }
4340 <        public final boolean addAll(Collection<? extends K> c) {
4341 <            throw new UnsupportedOperationException();
4340 >
4341 >        /**
4342 >         * Adds the specified key to this set view by mapping the key to
4343 >         * the default mapped value in the backing map, if defined.
4344 >         *
4345 >         * @param e key to be added
4346 >         * @return {@code true} if this set changed as a result of the call
4347 >         * @throws NullPointerException if the specified key is null
4348 >         * @throws UnsupportedOperationException if no default mapped value
4349 >         * for additions was provided
4350 >         */
4351 >        public boolean add(K e) {
4352 >            V v;
4353 >            if ((v = value) == null)
4354 >                throw new UnsupportedOperationException();
4355 >            return map.putVal(e, v, true) == null;
4356 >        }
4357 >
4358 >        /**
4359 >         * Adds all of the elements in the specified collection to this set,
4360 >         * as if by calling {@link #add} on each one.
4361 >         *
4362 >         * @param c the elements to be inserted into this set
4363 >         * @return {@code true} if this set changed as a result of the call
4364 >         * @throws NullPointerException if the collection or any of its
4365 >         * elements are {@code null}
4366 >         * @throws UnsupportedOperationException if no default mapped value
4367 >         * for additions was provided
4368 >         */
4369 >        public boolean addAll(Collection<? extends K> c) {
4370 >            boolean added = false;
4371 >            V v;
4372 >            if ((v = value) == null)
4373 >                throw new UnsupportedOperationException();
4374 >            for (K e : c) {
4375 >                if (map.putVal(e, v, true) == null)
4376 >                    added = true;
4377 >            }
4378 >            return added;
4379          }
4380 +
4381 +        public int hashCode() {
4382 +            int h = 0;
4383 +            for (K e : this)
4384 +                h += e.hashCode();
4385 +            return h;
4386 +        }
4387 +
4388          public boolean equals(Object o) {
4389              Set<?> c;
4390              return ((o instanceof Set) &&
4391                      ((c = (Set<?>)o) == this ||
4392                       (containsAll(c) && c.containsAll(this))));
4393          }
4394 +
4395 +        public ConcurrentHashMapSpliterator<K> spliterator() {
4396 +            Node<K,V>[] t;
4397 +            ConcurrentHashMapV8<K,V> m = map;
4398 +            long n = m.sumCount();
4399 +            int f = (t = m.table) == null ? 0 : t.length;
4400 +            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4401 +        }
4402 +
4403 +        public void forEach(Action<? super K> action) {
4404 +            if (action == null) throw new NullPointerException();
4405 +            Node<K,V>[] t;
4406 +            if ((t = map.table) != null) {
4407 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4408 +                for (Node<K,V> p; (p = it.advance()) != null; )
4409 +                    action.apply(p.key);
4410 +            }
4411 +        }
4412      }
4413  
4414 <    static final class Values<K,V> extends MapView<K,V>
4415 <        implements Collection<V> {
4416 <        Values(ConcurrentHashMapV8<K, V> map)   { super(map); }
4417 <        public final boolean contains(Object o) { return map.containsValue(o); }
4414 >    /**
4415 >     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4416 >     * values, in which additions are disabled. This class cannot be
4417 >     * directly instantiated. See {@link #values()}.
4418 >     */
4419 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4420 >        implements Collection<V>, java.io.Serializable {
4421 >        private static final long serialVersionUID = 2249069246763182397L;
4422 >        ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4423 >        public final boolean contains(Object o) {
4424 >            return map.containsValue(o);
4425 >        }
4426 >
4427          public final boolean remove(Object o) {
4428              if (o != null) {
4429 <                Iterator<V> it = new ValueIterator<K,V>(map);
3117 <                while (it.hasNext()) {
4429 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4430                      if (o.equals(it.next())) {
4431                          it.remove();
4432                          return true;
# Line 3123 | Line 4435 | public class ConcurrentHashMapV8<K, V>
4435              }
4436              return false;
4437          }
4438 +
4439          public final Iterator<V> iterator() {
4440 <            return new ValueIterator<K,V>(map);
4440 >            ConcurrentHashMapV8<K,V> m = map;
4441 >            Node<K,V>[] t;
4442 >            int f = (t = m.table) == null ? 0 : t.length;
4443 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4444          }
4445 +
4446          public final boolean add(V e) {
4447              throw new UnsupportedOperationException();
4448          }
4449          public final boolean addAll(Collection<? extends V> c) {
4450              throw new UnsupportedOperationException();
4451          }
4452 +
4453 +        public ConcurrentHashMapSpliterator<V> spliterator() {
4454 +            Node<K,V>[] t;
4455 +            ConcurrentHashMapV8<K,V> m = map;
4456 +            long n = m.sumCount();
4457 +            int f = (t = m.table) == null ? 0 : t.length;
4458 +            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4459 +        }
4460 +
4461 +        public void forEach(Action<? super V> action) {
4462 +            if (action == null) throw new NullPointerException();
4463 +            Node<K,V>[] t;
4464 +            if ((t = map.table) != null) {
4465 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4466 +                for (Node<K,V> p; (p = it.advance()) != null; )
4467 +                    action.apply(p.val);
4468 +            }
4469 +        }
4470      }
4471  
4472 <    static final class EntrySet<K,V> extends MapView<K,V>
4473 <        implements Set<Map.Entry<K,V>> {
4474 <        EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
4475 <        public final boolean contains(Object o) {
4472 >    /**
4473 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4474 >     * entries.  This class cannot be directly instantiated. See
4475 >     * {@link #entrySet()}.
4476 >     */
4477 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4478 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4479 >        private static final long serialVersionUID = 2249069246763182397L;
4480 >        EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4481 >
4482 >        public boolean contains(Object o) {
4483              Object k, v, r; Map.Entry<?,?> e;
4484              return ((o instanceof Map.Entry) &&
4485                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 3145 | Line 4487 | public class ConcurrentHashMapV8<K, V>
4487                      (v = e.getValue()) != null &&
4488                      (v == r || v.equals(r)));
4489          }
4490 <        public final boolean remove(Object o) {
4490 >
4491 >        public boolean remove(Object o) {
4492              Object k, v; Map.Entry<?,?> e;
4493              return ((o instanceof Map.Entry) &&
4494                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4495                      (v = e.getValue()) != null &&
4496                      map.remove(k, v));
4497          }
4498 <        public final Iterator<Map.Entry<K,V>> iterator() {
4499 <            return new EntryIterator<K,V>(map);
4498 >
4499 >        /**
4500 >         * @return an iterator over the entries of the backing map
4501 >         */
4502 >        public Iterator<Map.Entry<K,V>> iterator() {
4503 >            ConcurrentHashMapV8<K,V> m = map;
4504 >            Node<K,V>[] t;
4505 >            int f = (t = m.table) == null ? 0 : t.length;
4506 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4507          }
4508 <        public final boolean add(Entry<K,V> e) {
4509 <            throw new UnsupportedOperationException();
4508 >
4509 >        public boolean add(Entry<K,V> e) {
4510 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4511          }
4512 <        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4513 <            throw new UnsupportedOperationException();
4512 >
4513 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4514 >            boolean added = false;
4515 >            for (Entry<K,V> e : c) {
4516 >                if (add(e))
4517 >                    added = true;
4518 >            }
4519 >            return added;
4520          }
4521 <        public boolean equals(Object o) {
4521 >
4522 >        public final int hashCode() {
4523 >            int h = 0;
4524 >            Node<K,V>[] t;
4525 >            if ((t = map.table) != null) {
4526 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4527 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4528 >                    h += p.hashCode();
4529 >                }
4530 >            }
4531 >            return h;
4532 >        }
4533 >
4534 >        public final boolean equals(Object o) {
4535              Set<?> c;
4536              return ((o instanceof Set) &&
4537                      ((c = (Set<?>)o) == this ||
4538                       (containsAll(c) && c.containsAll(this))));
4539          }
4540 +
4541 +        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4542 +            Node<K,V>[] t;
4543 +            ConcurrentHashMapV8<K,V> m = map;
4544 +            long n = m.sumCount();
4545 +            int f = (t = m.table) == null ? 0 : t.length;
4546 +            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4547 +        }
4548 +
4549 +        public void forEach(Action<? super Map.Entry<K,V>> action) {
4550 +            if (action == null) throw new NullPointerException();
4551 +            Node<K,V>[] t;
4552 +            if ((t = map.table) != null) {
4553 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4554 +                for (Node<K,V> p; (p = it.advance()) != null; )
4555 +                    action.apply(new MapEntry<K,V>(p.key, p.val, map));
4556 +            }
4557 +        }
4558 +
4559      }
4560  
4561 <    /* ---------------- Serialization Support -------------- */
4561 >    // -------------------------------------------------------
4562  
4563      /**
4564 <     * Stripped-down version of helper class used in previous version,
4565 <     * declared for the sake of serialization compatibility
4564 >     * Base class for bulk tasks. Repeats some fields and code from
4565 >     * class Traverser, because we need to subclass CountedCompleter.
4566       */
4567 <    static class Segment<K,V> implements Serializable {
4568 <        private static final long serialVersionUID = 2249069246763182397L;
4569 <        final float loadFactor;
4570 <        Segment(float lf) { this.loadFactor = lf; }
4567 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4568 >        Node<K,V>[] tab;        // same as Traverser
4569 >        Node<K,V> next;
4570 >        int index;
4571 >        int baseIndex;
4572 >        int baseLimit;
4573 >        final int baseSize;
4574 >        int batch;              // split control
4575 >
4576 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4577 >            super(par);
4578 >            this.batch = b;
4579 >            this.index = this.baseIndex = i;
4580 >            if ((this.tab = t) == null)
4581 >                this.baseSize = this.baseLimit = 0;
4582 >            else if (par == null)
4583 >                this.baseSize = this.baseLimit = t.length;
4584 >            else {
4585 >                this.baseLimit = f;
4586 >                this.baseSize = par.baseSize;
4587 >            }
4588 >        }
4589 >
4590 >        /**
4591 >         * Same as Traverser version
4592 >         */
4593 >        final Node<K,V> advance() {
4594 >            Node<K,V> e;
4595 >            if ((e = next) != null)
4596 >                e = e.next;
4597 >            for (;;) {
4598 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4599 >                if (e != null)
4600 >                    return next = e;
4601 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4602 >                    (n = t.length) <= (i = index) || i < 0)
4603 >                    return next = null;
4604 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4605 >                    if (e instanceof ForwardingNode) {
4606 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4607 >                        e = null;
4608 >                        continue;
4609 >                    }
4610 >                    else if (e instanceof TreeBin)
4611 >                        e = ((TreeBin<K,V>)e).first;
4612 >                    else
4613 >                        e = null;
4614 >                }
4615 >                if ((index += baseSize) >= n)
4616 >                    index = ++baseIndex;    // visit upper slots if present
4617 >            }
4618 >        }
4619      }
4620  
4621 <    /**
4622 <     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
4623 <     * stream (i.e., serializes it).
4624 <     * @param s the stream
4625 <     * @serialData
4626 <     * the key (Object) and value (Object)
4627 <     * for each key-value mapping, followed by a null pair.
4628 <     * The key-value mappings are emitted in no particular order.
4629 <     */
4630 <    @SuppressWarnings("unchecked")
4631 <    private void writeObject(java.io.ObjectOutputStream s)
4632 <            throws java.io.IOException {
4633 <        if (segments == null) { // for serialization compatibility
4634 <            segments = (Segment<K,V>[])
4635 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
4636 <            for (int i = 0; i < segments.length; ++i)
4637 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
4638 <        }
4639 <        s.defaultWriteObject();
4640 <        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
4641 <        Object v;
4642 <        while ((v = it.advance()) != null) {
4643 <            s.writeObject(it.nextKey);
4644 <            s.writeObject(v);
4621 >    /*
4622 >     * Task classes. Coded in a regular but ugly format/style to
4623 >     * simplify checks that each variant differs in the right way from
4624 >     * others. The null screenings exist because compilers cannot tell
4625 >     * that we've already null-checked task arguments, so we force
4626 >     * simplest hoisted bypass to help avoid convoluted traps.
4627 >     */
4628 >    @SuppressWarnings("serial")
4629 >    static final class ForEachKeyTask<K,V>
4630 >        extends BulkTask<K,V,Void> {
4631 >        final Action<? super K> action;
4632 >        ForEachKeyTask
4633 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4634 >             Action<? super K> action) {
4635 >            super(p, b, i, f, t);
4636 >            this.action = action;
4637 >        }
4638 >        public final void compute() {
4639 >            final Action<? super K> action;
4640 >            if ((action = this.action) != null) {
4641 >                for (int i = baseIndex, f, h; batch > 0 &&
4642 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4643 >                    addToPendingCount(1);
4644 >                    new ForEachKeyTask<K,V>
4645 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4646 >                         action).fork();
4647 >                }
4648 >                for (Node<K,V> p; (p = advance()) != null;)
4649 >                    action.apply(p.key);
4650 >                propagateCompletion();
4651 >            }
4652 >        }
4653 >    }
4654 >
4655 >    @SuppressWarnings("serial")
4656 >    static final class ForEachValueTask<K,V>
4657 >        extends BulkTask<K,V,Void> {
4658 >        final Action<? super V> action;
4659 >        ForEachValueTask
4660 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4661 >             Action<? super V> action) {
4662 >            super(p, b, i, f, t);
4663 >            this.action = action;
4664 >        }
4665 >        public final void compute() {
4666 >            final Action<? super V> action;
4667 >            if ((action = this.action) != null) {
4668 >                for (int i = baseIndex, f, h; batch > 0 &&
4669 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4670 >                    addToPendingCount(1);
4671 >                    new ForEachValueTask<K,V>
4672 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4673 >                         action).fork();
4674 >                }
4675 >                for (Node<K,V> p; (p = advance()) != null;)
4676 >                    action.apply(p.val);
4677 >                propagateCompletion();
4678 >            }
4679 >        }
4680 >    }
4681 >
4682 >    @SuppressWarnings("serial")
4683 >    static final class ForEachEntryTask<K,V>
4684 >        extends BulkTask<K,V,Void> {
4685 >        final Action<? super Entry<K,V>> action;
4686 >        ForEachEntryTask
4687 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4688 >             Action<? super Entry<K,V>> action) {
4689 >            super(p, b, i, f, t);
4690 >            this.action = action;
4691 >        }
4692 >        public final void compute() {
4693 >            final Action<? super Entry<K,V>> action;
4694 >            if ((action = this.action) != null) {
4695 >                for (int i = baseIndex, f, h; batch > 0 &&
4696 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4697 >                    addToPendingCount(1);
4698 >                    new ForEachEntryTask<K,V>
4699 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4700 >                         action).fork();
4701 >                }
4702 >                for (Node<K,V> p; (p = advance()) != null; )
4703 >                    action.apply(p);
4704 >                propagateCompletion();
4705 >            }
4706 >        }
4707 >    }
4708 >
4709 >    @SuppressWarnings("serial")
4710 >    static final class ForEachMappingTask<K,V>
4711 >        extends BulkTask<K,V,Void> {
4712 >        final BiAction<? super K, ? super V> action;
4713 >        ForEachMappingTask
4714 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4715 >             BiAction<? super K,? super V> action) {
4716 >            super(p, b, i, f, t);
4717 >            this.action = action;
4718 >        }
4719 >        public final void compute() {
4720 >            final BiAction<? super K, ? super V> action;
4721 >            if ((action = this.action) != null) {
4722 >                for (int i = baseIndex, f, h; batch > 0 &&
4723 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4724 >                    addToPendingCount(1);
4725 >                    new ForEachMappingTask<K,V>
4726 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4727 >                         action).fork();
4728 >                }
4729 >                for (Node<K,V> p; (p = advance()) != null; )
4730 >                    action.apply(p.key, p.val);
4731 >                propagateCompletion();
4732 >            }
4733 >        }
4734 >    }
4735 >
4736 >    @SuppressWarnings("serial")
4737 >    static final class ForEachTransformedKeyTask<K,V,U>
4738 >        extends BulkTask<K,V,Void> {
4739 >        final Fun<? super K, ? extends U> transformer;
4740 >        final Action<? super U> action;
4741 >        ForEachTransformedKeyTask
4742 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4743 >             Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4744 >            super(p, b, i, f, t);
4745 >            this.transformer = transformer; this.action = action;
4746 >        }
4747 >        public final void compute() {
4748 >            final Fun<? super K, ? extends U> transformer;
4749 >            final Action<? super U> action;
4750 >            if ((transformer = this.transformer) != null &&
4751 >                (action = this.action) != null) {
4752 >                for (int i = baseIndex, f, h; batch > 0 &&
4753 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4754 >                    addToPendingCount(1);
4755 >                    new ForEachTransformedKeyTask<K,V,U>
4756 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4757 >                         transformer, action).fork();
4758 >                }
4759 >                for (Node<K,V> p; (p = advance()) != null; ) {
4760 >                    U u;
4761 >                    if ((u = transformer.apply(p.key)) != null)
4762 >                        action.apply(u);
4763 >                }
4764 >                propagateCompletion();
4765 >            }
4766 >        }
4767 >    }
4768 >
4769 >    @SuppressWarnings("serial")
4770 >    static final class ForEachTransformedValueTask<K,V,U>
4771 >        extends BulkTask<K,V,Void> {
4772 >        final Fun<? super V, ? extends U> transformer;
4773 >        final Action<? super U> action;
4774 >        ForEachTransformedValueTask
4775 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4776 >             Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4777 >            super(p, b, i, f, t);
4778 >            this.transformer = transformer; this.action = action;
4779 >        }
4780 >        public final void compute() {
4781 >            final Fun<? super V, ? extends U> transformer;
4782 >            final Action<? super U> action;
4783 >            if ((transformer = this.transformer) != null &&
4784 >                (action = this.action) != null) {
4785 >                for (int i = baseIndex, f, h; batch > 0 &&
4786 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4787 >                    addToPendingCount(1);
4788 >                    new ForEachTransformedValueTask<K,V,U>
4789 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4790 >                         transformer, action).fork();
4791 >                }
4792 >                for (Node<K,V> p; (p = advance()) != null; ) {
4793 >                    U u;
4794 >                    if ((u = transformer.apply(p.val)) != null)
4795 >                        action.apply(u);
4796 >                }
4797 >                propagateCompletion();
4798 >            }
4799 >        }
4800 >    }
4801 >
4802 >    @SuppressWarnings("serial")
4803 >    static final class ForEachTransformedEntryTask<K,V,U>
4804 >        extends BulkTask<K,V,Void> {
4805 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
4806 >        final Action<? super U> action;
4807 >        ForEachTransformedEntryTask
4808 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4809 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4810 >            super(p, b, i, f, t);
4811 >            this.transformer = transformer; this.action = action;
4812 >        }
4813 >        public final void compute() {
4814 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
4815 >            final Action<? super U> action;
4816 >            if ((transformer = this.transformer) != null &&
4817 >                (action = this.action) != null) {
4818 >                for (int i = baseIndex, f, h; batch > 0 &&
4819 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4820 >                    addToPendingCount(1);
4821 >                    new ForEachTransformedEntryTask<K,V,U>
4822 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4823 >                         transformer, action).fork();
4824 >                }
4825 >                for (Node<K,V> p; (p = advance()) != null; ) {
4826 >                    U u;
4827 >                    if ((u = transformer.apply(p)) != null)
4828 >                        action.apply(u);
4829 >                }
4830 >                propagateCompletion();
4831 >            }
4832 >        }
4833 >    }
4834 >
4835 >    @SuppressWarnings("serial")
4836 >    static final class ForEachTransformedMappingTask<K,V,U>
4837 >        extends BulkTask<K,V,Void> {
4838 >        final BiFun<? super K, ? super V, ? extends U> transformer;
4839 >        final Action<? super U> action;
4840 >        ForEachTransformedMappingTask
4841 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4842 >             BiFun<? super K, ? super V, ? extends U> transformer,
4843 >             Action<? super U> action) {
4844 >            super(p, b, i, f, t);
4845 >            this.transformer = transformer; this.action = action;
4846 >        }
4847 >        public final void compute() {
4848 >            final BiFun<? super K, ? super V, ? extends U> transformer;
4849 >            final Action<? super U> action;
4850 >            if ((transformer = this.transformer) != null &&
4851 >                (action = this.action) != null) {
4852 >                for (int i = baseIndex, f, h; batch > 0 &&
4853 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4854 >                    addToPendingCount(1);
4855 >                    new ForEachTransformedMappingTask<K,V,U>
4856 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4857 >                         transformer, action).fork();
4858 >                }
4859 >                for (Node<K,V> p; (p = advance()) != null; ) {
4860 >                    U u;
4861 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4862 >                        action.apply(u);
4863 >                }
4864 >                propagateCompletion();
4865 >            }
4866 >        }
4867 >    }
4868 >
4869 >    @SuppressWarnings("serial")
4870 >    static final class SearchKeysTask<K,V,U>
4871 >        extends BulkTask<K,V,U> {
4872 >        final Fun<? super K, ? extends U> searchFunction;
4873 >        final AtomicReference<U> result;
4874 >        SearchKeysTask
4875 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4876 >             Fun<? super K, ? extends U> searchFunction,
4877 >             AtomicReference<U> result) {
4878 >            super(p, b, i, f, t);
4879 >            this.searchFunction = searchFunction; this.result = result;
4880 >        }
4881 >        public final U getRawResult() { return result.get(); }
4882 >        public final void compute() {
4883 >            final Fun<? super K, ? extends U> searchFunction;
4884 >            final AtomicReference<U> result;
4885 >            if ((searchFunction = this.searchFunction) != null &&
4886 >                (result = this.result) != null) {
4887 >                for (int i = baseIndex, f, h; batch > 0 &&
4888 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4889 >                    if (result.get() != null)
4890 >                        return;
4891 >                    addToPendingCount(1);
4892 >                    new SearchKeysTask<K,V,U>
4893 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4894 >                         searchFunction, result).fork();
4895 >                }
4896 >                while (result.get() == null) {
4897 >                    U u;
4898 >                    Node<K,V> p;
4899 >                    if ((p = advance()) == null) {
4900 >                        propagateCompletion();
4901 >                        break;
4902 >                    }
4903 >                    if ((u = searchFunction.apply(p.key)) != null) {
4904 >                        if (result.compareAndSet(null, u))
4905 >                            quietlyCompleteRoot();
4906 >                        break;
4907 >                    }
4908 >                }
4909 >            }
4910          }
3209        s.writeObject(null);
3210        s.writeObject(null);
3211        segments = null; // throw away
4911      }
4912  
4913 <    /**
4914 <     * Reconstitutes the instance from a stream (that is, deserializes it).
4915 <     * @param s the stream
4916 <     */
4917 <    @SuppressWarnings("unchecked")
4918 <    private void readObject(java.io.ObjectInputStream s)
4919 <            throws java.io.IOException, ClassNotFoundException {
4920 <        s.defaultReadObject();
4921 <        this.segments = null; // unneeded
4922 <        // initialize transient final field
4923 <        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
4913 >    @SuppressWarnings("serial")
4914 >    static final class SearchValuesTask<K,V,U>
4915 >        extends BulkTask<K,V,U> {
4916 >        final Fun<? super V, ? extends U> searchFunction;
4917 >        final AtomicReference<U> result;
4918 >        SearchValuesTask
4919 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4920 >             Fun<? super V, ? extends U> searchFunction,
4921 >             AtomicReference<U> result) {
4922 >            super(p, b, i, f, t);
4923 >            this.searchFunction = searchFunction; this.result = result;
4924 >        }
4925 >        public final U getRawResult() { return result.get(); }
4926 >        public final void compute() {
4927 >            final Fun<? super V, ? extends U> searchFunction;
4928 >            final AtomicReference<U> result;
4929 >            if ((searchFunction = this.searchFunction) != null &&
4930 >                (result = this.result) != null) {
4931 >                for (int i = baseIndex, f, h; batch > 0 &&
4932 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4933 >                    if (result.get() != null)
4934 >                        return;
4935 >                    addToPendingCount(1);
4936 >                    new SearchValuesTask<K,V,U>
4937 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4938 >                         searchFunction, result).fork();
4939 >                }
4940 >                while (result.get() == null) {
4941 >                    U u;
4942 >                    Node<K,V> p;
4943 >                    if ((p = advance()) == null) {
4944 >                        propagateCompletion();
4945 >                        break;
4946 >                    }
4947 >                    if ((u = searchFunction.apply(p.val)) != null) {
4948 >                        if (result.compareAndSet(null, u))
4949 >                            quietlyCompleteRoot();
4950 >                        break;
4951 >                    }
4952 >                }
4953 >            }
4954 >        }
4955 >    }
4956  
4957 <        // Create all nodes, then place in table once size is known
4958 <        long size = 0L;
4959 <        Node p = null;
4960 <        for (;;) {
4961 <            K k = (K) s.readObject();
4962 <            V v = (V) s.readObject();
4963 <            if (k != null && v != null) {
4964 <                int h = spread(k.hashCode());
4965 <                p = new Node(h, k, v, p);
4966 <                ++size;
4957 >    @SuppressWarnings("serial")
4958 >    static final class SearchEntriesTask<K,V,U>
4959 >        extends BulkTask<K,V,U> {
4960 >        final Fun<Entry<K,V>, ? extends U> searchFunction;
4961 >        final AtomicReference<U> result;
4962 >        SearchEntriesTask
4963 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4964 >             Fun<Entry<K,V>, ? extends U> searchFunction,
4965 >             AtomicReference<U> result) {
4966 >            super(p, b, i, f, t);
4967 >            this.searchFunction = searchFunction; this.result = result;
4968 >        }
4969 >        public final U getRawResult() { return result.get(); }
4970 >        public final void compute() {
4971 >            final Fun<Entry<K,V>, ? extends U> searchFunction;
4972 >            final AtomicReference<U> result;
4973 >            if ((searchFunction = this.searchFunction) != null &&
4974 >                (result = this.result) != null) {
4975 >                for (int i = baseIndex, f, h; batch > 0 &&
4976 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4977 >                    if (result.get() != null)
4978 >                        return;
4979 >                    addToPendingCount(1);
4980 >                    new SearchEntriesTask<K,V,U>
4981 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4982 >                         searchFunction, result).fork();
4983 >                }
4984 >                while (result.get() == null) {
4985 >                    U u;
4986 >                    Node<K,V> p;
4987 >                    if ((p = advance()) == null) {
4988 >                        propagateCompletion();
4989 >                        break;
4990 >                    }
4991 >                    if ((u = searchFunction.apply(p)) != null) {
4992 >                        if (result.compareAndSet(null, u))
4993 >                            quietlyCompleteRoot();
4994 >                        return;
4995 >                    }
4996 >                }
4997              }
3237            else
3238                break;
4998          }
4999 <        if (p != null) {
5000 <            boolean init = false;
5001 <            int n;
5002 <            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
5003 <                n = MAXIMUM_CAPACITY;
5004 <            else {
5005 <                int sz = (int)size;
5006 <                n = tableSizeFor(sz + (sz >>> 1) + 1);
4999 >    }
5000 >
5001 >    @SuppressWarnings("serial")
5002 >    static final class SearchMappingsTask<K,V,U>
5003 >        extends BulkTask<K,V,U> {
5004 >        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5005 >        final AtomicReference<U> result;
5006 >        SearchMappingsTask
5007 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5008 >             BiFun<? super K, ? super V, ? extends U> searchFunction,
5009 >             AtomicReference<U> result) {
5010 >            super(p, b, i, f, t);
5011 >            this.searchFunction = searchFunction; this.result = result;
5012 >        }
5013 >        public final U getRawResult() { return result.get(); }
5014 >        public final void compute() {
5015 >            final BiFun<? super K, ? super V, ? extends U> searchFunction;
5016 >            final AtomicReference<U> result;
5017 >            if ((searchFunction = this.searchFunction) != null &&
5018 >                (result = this.result) != null) {
5019 >                for (int i = baseIndex, f, h; batch > 0 &&
5020 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5021 >                    if (result.get() != null)
5022 >                        return;
5023 >                    addToPendingCount(1);
5024 >                    new SearchMappingsTask<K,V,U>
5025 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5026 >                         searchFunction, result).fork();
5027 >                }
5028 >                while (result.get() == null) {
5029 >                    U u;
5030 >                    Node<K,V> p;
5031 >                    if ((p = advance()) == null) {
5032 >                        propagateCompletion();
5033 >                        break;
5034 >                    }
5035 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5036 >                        if (result.compareAndSet(null, u))
5037 >                            quietlyCompleteRoot();
5038 >                        break;
5039 >                    }
5040 >                }
5041              }
5042 <            int sc = sizeCtl;
5043 <            boolean collide = false;
5044 <            if (n > sc &&
5045 <                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
5046 <                try {
5047 <                    if (table == null) {
5048 <                        init = true;
5049 <                        Node[] tab = new Node[n];
5050 <                        int mask = n - 1;
5051 <                        while (p != null) {
5052 <                            int j = p.hash & mask;
5053 <                            Node next = p.next;
5054 <                            Node q = p.next = tabAt(tab, j);
5055 <                            setTabAt(tab, j, p);
5056 <                            if (!collide && q != null && q.hash == p.hash)
5057 <                                collide = true;
5058 <                            p = next;
5042 >        }
5043 >    }
5044 >
5045 >    @SuppressWarnings("serial")
5046 >    static final class ReduceKeysTask<K,V>
5047 >        extends BulkTask<K,V,K> {
5048 >        final BiFun<? super K, ? super K, ? extends K> reducer;
5049 >        K result;
5050 >        ReduceKeysTask<K,V> rights, nextRight;
5051 >        ReduceKeysTask
5052 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5053 >             ReduceKeysTask<K,V> nextRight,
5054 >             BiFun<? super K, ? super K, ? extends K> reducer) {
5055 >            super(p, b, i, f, t); this.nextRight = nextRight;
5056 >            this.reducer = reducer;
5057 >        }
5058 >        public final K getRawResult() { return result; }
5059 >        public final void compute() {
5060 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5061 >            if ((reducer = this.reducer) != null) {
5062 >                for (int i = baseIndex, f, h; batch > 0 &&
5063 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5064 >                    addToPendingCount(1);
5065 >                    (rights = new ReduceKeysTask<K,V>
5066 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5067 >                      rights, reducer)).fork();
5068 >                }
5069 >                K r = null;
5070 >                for (Node<K,V> p; (p = advance()) != null; ) {
5071 >                    K u = p.key;
5072 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5073 >                }
5074 >                result = r;
5075 >                CountedCompleter<?> c;
5076 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5077 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5078 >                        t = (ReduceKeysTask<K,V>)c,
5079 >                        s = t.rights;
5080 >                    while (s != null) {
5081 >                        K tr, sr;
5082 >                        if ((sr = s.result) != null)
5083 >                            t.result = (((tr = t.result) == null) ? sr :
5084 >                                        reducer.apply(tr, sr));
5085 >                        s = t.rights = s.nextRight;
5086 >                    }
5087 >                }
5088 >            }
5089 >        }
5090 >    }
5091 >
5092 >    @SuppressWarnings("serial")
5093 >    static final class ReduceValuesTask<K,V>
5094 >        extends BulkTask<K,V,V> {
5095 >        final BiFun<? super V, ? super V, ? extends V> reducer;
5096 >        V result;
5097 >        ReduceValuesTask<K,V> rights, nextRight;
5098 >        ReduceValuesTask
5099 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5100 >             ReduceValuesTask<K,V> nextRight,
5101 >             BiFun<? super V, ? super V, ? extends V> reducer) {
5102 >            super(p, b, i, f, t); this.nextRight = nextRight;
5103 >            this.reducer = reducer;
5104 >        }
5105 >        public final V getRawResult() { return result; }
5106 >        public final void compute() {
5107 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5108 >            if ((reducer = this.reducer) != null) {
5109 >                for (int i = baseIndex, f, h; batch > 0 &&
5110 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5111 >                    addToPendingCount(1);
5112 >                    (rights = new ReduceValuesTask<K,V>
5113 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5114 >                      rights, reducer)).fork();
5115 >                }
5116 >                V r = null;
5117 >                for (Node<K,V> p; (p = advance()) != null; ) {
5118 >                    V v = p.val;
5119 >                    r = (r == null) ? v : reducer.apply(r, v);
5120 >                }
5121 >                result = r;
5122 >                CountedCompleter<?> c;
5123 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5124 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5125 >                        t = (ReduceValuesTask<K,V>)c,
5126 >                        s = t.rights;
5127 >                    while (s != null) {
5128 >                        V tr, sr;
5129 >                        if ((sr = s.result) != null)
5130 >                            t.result = (((tr = t.result) == null) ? sr :
5131 >                                        reducer.apply(tr, sr));
5132 >                        s = t.rights = s.nextRight;
5133 >                    }
5134 >                }
5135 >            }
5136 >        }
5137 >    }
5138 >
5139 >    @SuppressWarnings("serial")
5140 >    static final class ReduceEntriesTask<K,V>
5141 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5142 >        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5143 >        Map.Entry<K,V> result;
5144 >        ReduceEntriesTask<K,V> rights, nextRight;
5145 >        ReduceEntriesTask
5146 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5147 >             ReduceEntriesTask<K,V> nextRight,
5148 >             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5149 >            super(p, b, i, f, t); this.nextRight = nextRight;
5150 >            this.reducer = reducer;
5151 >        }
5152 >        public final Map.Entry<K,V> getRawResult() { return result; }
5153 >        public final void compute() {
5154 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5155 >            if ((reducer = this.reducer) != null) {
5156 >                for (int i = baseIndex, f, h; batch > 0 &&
5157 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5158 >                    addToPendingCount(1);
5159 >                    (rights = new ReduceEntriesTask<K,V>
5160 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5161 >                      rights, reducer)).fork();
5162 >                }
5163 >                Map.Entry<K,V> r = null;
5164 >                for (Node<K,V> p; (p = advance()) != null; )
5165 >                    r = (r == null) ? p : reducer.apply(r, p);
5166 >                result = r;
5167 >                CountedCompleter<?> c;
5168 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5169 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5170 >                        t = (ReduceEntriesTask<K,V>)c,
5171 >                        s = t.rights;
5172 >                    while (s != null) {
5173 >                        Map.Entry<K,V> tr, sr;
5174 >                        if ((sr = s.result) != null)
5175 >                            t.result = (((tr = t.result) == null) ? sr :
5176 >                                        reducer.apply(tr, sr));
5177 >                        s = t.rights = s.nextRight;
5178 >                    }
5179 >                }
5180 >            }
5181 >        }
5182 >    }
5183 >
5184 >    @SuppressWarnings("serial")
5185 >    static final class MapReduceKeysTask<K,V,U>
5186 >        extends BulkTask<K,V,U> {
5187 >        final Fun<? super K, ? extends U> transformer;
5188 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5189 >        U result;
5190 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5191 >        MapReduceKeysTask
5192 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5193 >             MapReduceKeysTask<K,V,U> nextRight,
5194 >             Fun<? super K, ? extends U> transformer,
5195 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5196 >            super(p, b, i, f, t); this.nextRight = nextRight;
5197 >            this.transformer = transformer;
5198 >            this.reducer = reducer;
5199 >        }
5200 >        public final U getRawResult() { return result; }
5201 >        public final void compute() {
5202 >            final Fun<? super K, ? extends U> transformer;
5203 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5204 >            if ((transformer = this.transformer) != null &&
5205 >                (reducer = this.reducer) != null) {
5206 >                for (int i = baseIndex, f, h; batch > 0 &&
5207 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5208 >                    addToPendingCount(1);
5209 >                    (rights = new MapReduceKeysTask<K,V,U>
5210 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5211 >                      rights, transformer, reducer)).fork();
5212 >                }
5213 >                U r = null;
5214 >                for (Node<K,V> p; (p = advance()) != null; ) {
5215 >                    U u;
5216 >                    if ((u = transformer.apply(p.key)) != null)
5217 >                        r = (r == null) ? u : reducer.apply(r, u);
5218 >                }
5219 >                result = r;
5220 >                CountedCompleter<?> c;
5221 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5222 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5223 >                        t = (MapReduceKeysTask<K,V,U>)c,
5224 >                        s = t.rights;
5225 >                    while (s != null) {
5226 >                        U tr, sr;
5227 >                        if ((sr = s.result) != null)
5228 >                            t.result = (((tr = t.result) == null) ? sr :
5229 >                                        reducer.apply(tr, sr));
5230 >                        s = t.rights = s.nextRight;
5231 >                    }
5232 >                }
5233 >            }
5234 >        }
5235 >    }
5236 >
5237 >    @SuppressWarnings("serial")
5238 >    static final class MapReduceValuesTask<K,V,U>
5239 >        extends BulkTask<K,V,U> {
5240 >        final Fun<? super V, ? extends U> transformer;
5241 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5242 >        U result;
5243 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5244 >        MapReduceValuesTask
5245 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5246 >             MapReduceValuesTask<K,V,U> nextRight,
5247 >             Fun<? super V, ? extends U> transformer,
5248 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5249 >            super(p, b, i, f, t); this.nextRight = nextRight;
5250 >            this.transformer = transformer;
5251 >            this.reducer = reducer;
5252 >        }
5253 >        public final U getRawResult() { return result; }
5254 >        public final void compute() {
5255 >            final Fun<? super V, ? extends U> transformer;
5256 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5257 >            if ((transformer = this.transformer) != null &&
5258 >                (reducer = this.reducer) != null) {
5259 >                for (int i = baseIndex, f, h; batch > 0 &&
5260 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5261 >                    addToPendingCount(1);
5262 >                    (rights = new MapReduceValuesTask<K,V,U>
5263 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5264 >                      rights, transformer, reducer)).fork();
5265 >                }
5266 >                U r = null;
5267 >                for (Node<K,V> p; (p = advance()) != null; ) {
5268 >                    U u;
5269 >                    if ((u = transformer.apply(p.val)) != null)
5270 >                        r = (r == null) ? u : reducer.apply(r, u);
5271 >                }
5272 >                result = r;
5273 >                CountedCompleter<?> c;
5274 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5275 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5276 >                        t = (MapReduceValuesTask<K,V,U>)c,
5277 >                        s = t.rights;
5278 >                    while (s != null) {
5279 >                        U tr, sr;
5280 >                        if ((sr = s.result) != null)
5281 >                            t.result = (((tr = t.result) == null) ? sr :
5282 >                                        reducer.apply(tr, sr));
5283 >                        s = t.rights = s.nextRight;
5284 >                    }
5285 >                }
5286 >            }
5287 >        }
5288 >    }
5289 >
5290 >    @SuppressWarnings("serial")
5291 >    static final class MapReduceEntriesTask<K,V,U>
5292 >        extends BulkTask<K,V,U> {
5293 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5294 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5295 >        U result;
5296 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5297 >        MapReduceEntriesTask
5298 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5299 >             MapReduceEntriesTask<K,V,U> nextRight,
5300 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5301 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5302 >            super(p, b, i, f, t); this.nextRight = nextRight;
5303 >            this.transformer = transformer;
5304 >            this.reducer = reducer;
5305 >        }
5306 >        public final U getRawResult() { return result; }
5307 >        public final void compute() {
5308 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5309 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5310 >            if ((transformer = this.transformer) != null &&
5311 >                (reducer = this.reducer) != null) {
5312 >                for (int i = baseIndex, f, h; batch > 0 &&
5313 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5314 >                    addToPendingCount(1);
5315 >                    (rights = new MapReduceEntriesTask<K,V,U>
5316 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5317 >                      rights, transformer, reducer)).fork();
5318 >                }
5319 >                U r = null;
5320 >                for (Node<K,V> p; (p = advance()) != null; ) {
5321 >                    U u;
5322 >                    if ((u = transformer.apply(p)) != null)
5323 >                        r = (r == null) ? u : reducer.apply(r, u);
5324 >                }
5325 >                result = r;
5326 >                CountedCompleter<?> c;
5327 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5328 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5329 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5330 >                        s = t.rights;
5331 >                    while (s != null) {
5332 >                        U tr, sr;
5333 >                        if ((sr = s.result) != null)
5334 >                            t.result = (((tr = t.result) == null) ? sr :
5335 >                                        reducer.apply(tr, sr));
5336 >                        s = t.rights = s.nextRight;
5337 >                    }
5338 >                }
5339 >            }
5340 >        }
5341 >    }
5342 >
5343 >    @SuppressWarnings("serial")
5344 >    static final class MapReduceMappingsTask<K,V,U>
5345 >        extends BulkTask<K,V,U> {
5346 >        final BiFun<? super K, ? super V, ? extends U> transformer;
5347 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5348 >        U result;
5349 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5350 >        MapReduceMappingsTask
5351 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5352 >             MapReduceMappingsTask<K,V,U> nextRight,
5353 >             BiFun<? super K, ? super V, ? extends U> transformer,
5354 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5355 >            super(p, b, i, f, t); this.nextRight = nextRight;
5356 >            this.transformer = transformer;
5357 >            this.reducer = reducer;
5358 >        }
5359 >        public final U getRawResult() { return result; }
5360 >        public final void compute() {
5361 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5362 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5363 >            if ((transformer = this.transformer) != null &&
5364 >                (reducer = this.reducer) != null) {
5365 >                for (int i = baseIndex, f, h; batch > 0 &&
5366 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5367 >                    addToPendingCount(1);
5368 >                    (rights = new MapReduceMappingsTask<K,V,U>
5369 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5370 >                      rights, transformer, reducer)).fork();
5371 >                }
5372 >                U r = null;
5373 >                for (Node<K,V> p; (p = advance()) != null; ) {
5374 >                    U u;
5375 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5376 >                        r = (r == null) ? u : reducer.apply(r, u);
5377 >                }
5378 >                result = r;
5379 >                CountedCompleter<?> c;
5380 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5381 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5382 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5383 >                        s = t.rights;
5384 >                    while (s != null) {
5385 >                        U tr, sr;
5386 >                        if ((sr = s.result) != null)
5387 >                            t.result = (((tr = t.result) == null) ? sr :
5388 >                                        reducer.apply(tr, sr));
5389 >                        s = t.rights = s.nextRight;
5390 >                    }
5391 >                }
5392 >            }
5393 >        }
5394 >    }
5395 >
5396 >    @SuppressWarnings("serial")
5397 >    static final class MapReduceKeysToDoubleTask<K,V>
5398 >        extends BulkTask<K,V,Double> {
5399 >        final ObjectToDouble<? super K> transformer;
5400 >        final DoubleByDoubleToDouble reducer;
5401 >        final double basis;
5402 >        double result;
5403 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5404 >        MapReduceKeysToDoubleTask
5405 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5406 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5407 >             ObjectToDouble<? super K> transformer,
5408 >             double basis,
5409 >             DoubleByDoubleToDouble reducer) {
5410 >            super(p, b, i, f, t); this.nextRight = nextRight;
5411 >            this.transformer = transformer;
5412 >            this.basis = basis; this.reducer = reducer;
5413 >        }
5414 >        public final Double getRawResult() { return result; }
5415 >        public final void compute() {
5416 >            final ObjectToDouble<? super K> transformer;
5417 >            final DoubleByDoubleToDouble reducer;
5418 >            if ((transformer = this.transformer) != null &&
5419 >                (reducer = this.reducer) != null) {
5420 >                double r = this.basis;
5421 >                for (int i = baseIndex, f, h; batch > 0 &&
5422 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5423 >                    addToPendingCount(1);
5424 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5425 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5426 >                      rights, transformer, r, reducer)).fork();
5427 >                }
5428 >                for (Node<K,V> p; (p = advance()) != null; )
5429 >                    r = reducer.apply(r, transformer.apply(p.key));
5430 >                result = r;
5431 >                CountedCompleter<?> c;
5432 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5433 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5434 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5435 >                        s = t.rights;
5436 >                    while (s != null) {
5437 >                        t.result = reducer.apply(t.result, s.result);
5438 >                        s = t.rights = s.nextRight;
5439 >                    }
5440 >                }
5441 >            }
5442 >        }
5443 >    }
5444 >
5445 >    @SuppressWarnings("serial")
5446 >    static final class MapReduceValuesToDoubleTask<K,V>
5447 >        extends BulkTask<K,V,Double> {
5448 >        final ObjectToDouble<? super V> transformer;
5449 >        final DoubleByDoubleToDouble reducer;
5450 >        final double basis;
5451 >        double result;
5452 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5453 >        MapReduceValuesToDoubleTask
5454 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5455 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5456 >             ObjectToDouble<? super V> transformer,
5457 >             double basis,
5458 >             DoubleByDoubleToDouble reducer) {
5459 >            super(p, b, i, f, t); this.nextRight = nextRight;
5460 >            this.transformer = transformer;
5461 >            this.basis = basis; this.reducer = reducer;
5462 >        }
5463 >        public final Double getRawResult() { return result; }
5464 >        public final void compute() {
5465 >            final ObjectToDouble<? super V> transformer;
5466 >            final DoubleByDoubleToDouble reducer;
5467 >            if ((transformer = this.transformer) != null &&
5468 >                (reducer = this.reducer) != null) {
5469 >                double r = this.basis;
5470 >                for (int i = baseIndex, f, h; batch > 0 &&
5471 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5472 >                    addToPendingCount(1);
5473 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5474 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5475 >                      rights, transformer, r, reducer)).fork();
5476 >                }
5477 >                for (Node<K,V> p; (p = advance()) != null; )
5478 >                    r = reducer.apply(r, transformer.apply(p.val));
5479 >                result = r;
5480 >                CountedCompleter<?> c;
5481 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5482 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5483 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5484 >                        s = t.rights;
5485 >                    while (s != null) {
5486 >                        t.result = reducer.apply(t.result, s.result);
5487 >                        s = t.rights = s.nextRight;
5488 >                    }
5489 >                }
5490 >            }
5491 >        }
5492 >    }
5493 >
5494 >    @SuppressWarnings("serial")
5495 >    static final class MapReduceEntriesToDoubleTask<K,V>
5496 >        extends BulkTask<K,V,Double> {
5497 >        final ObjectToDouble<Map.Entry<K,V>> transformer;
5498 >        final DoubleByDoubleToDouble reducer;
5499 >        final double basis;
5500 >        double result;
5501 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5502 >        MapReduceEntriesToDoubleTask
5503 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5504 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5505 >             ObjectToDouble<Map.Entry<K,V>> transformer,
5506 >             double basis,
5507 >             DoubleByDoubleToDouble reducer) {
5508 >            super(p, b, i, f, t); this.nextRight = nextRight;
5509 >            this.transformer = transformer;
5510 >            this.basis = basis; this.reducer = reducer;
5511 >        }
5512 >        public final Double getRawResult() { return result; }
5513 >        public final void compute() {
5514 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
5515 >            final DoubleByDoubleToDouble reducer;
5516 >            if ((transformer = this.transformer) != null &&
5517 >                (reducer = this.reducer) != null) {
5518 >                double r = this.basis;
5519 >                for (int i = baseIndex, f, h; batch > 0 &&
5520 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5521 >                    addToPendingCount(1);
5522 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5523 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5524 >                      rights, transformer, r, reducer)).fork();
5525 >                }
5526 >                for (Node<K,V> p; (p = advance()) != null; )
5527 >                    r = reducer.apply(r, transformer.apply(p));
5528 >                result = r;
5529 >                CountedCompleter<?> c;
5530 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5531 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5532 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5533 >                        s = t.rights;
5534 >                    while (s != null) {
5535 >                        t.result = reducer.apply(t.result, s.result);
5536 >                        s = t.rights = s.nextRight;
5537 >                    }
5538 >                }
5539 >            }
5540 >        }
5541 >    }
5542 >
5543 >    @SuppressWarnings("serial")
5544 >    static final class MapReduceMappingsToDoubleTask<K,V>
5545 >        extends BulkTask<K,V,Double> {
5546 >        final ObjectByObjectToDouble<? super K, ? super V> transformer;
5547 >        final DoubleByDoubleToDouble reducer;
5548 >        final double basis;
5549 >        double result;
5550 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5551 >        MapReduceMappingsToDoubleTask
5552 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5553 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5554 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
5555 >             double basis,
5556 >             DoubleByDoubleToDouble reducer) {
5557 >            super(p, b, i, f, t); this.nextRight = nextRight;
5558 >            this.transformer = transformer;
5559 >            this.basis = basis; this.reducer = reducer;
5560 >        }
5561 >        public final Double getRawResult() { return result; }
5562 >        public final void compute() {
5563 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
5564 >            final DoubleByDoubleToDouble reducer;
5565 >            if ((transformer = this.transformer) != null &&
5566 >                (reducer = this.reducer) != null) {
5567 >                double r = this.basis;
5568 >                for (int i = baseIndex, f, h; batch > 0 &&
5569 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5570 >                    addToPendingCount(1);
5571 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5572 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5573 >                      rights, transformer, r, reducer)).fork();
5574 >                }
5575 >                for (Node<K,V> p; (p = advance()) != null; )
5576 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5577 >                result = r;
5578 >                CountedCompleter<?> c;
5579 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5580 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5581 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5582 >                        s = t.rights;
5583 >                    while (s != null) {
5584 >                        t.result = reducer.apply(t.result, s.result);
5585 >                        s = t.rights = s.nextRight;
5586 >                    }
5587 >                }
5588 >            }
5589 >        }
5590 >    }
5591 >
5592 >    @SuppressWarnings("serial")
5593 >    static final class MapReduceKeysToLongTask<K,V>
5594 >        extends BulkTask<K,V,Long> {
5595 >        final ObjectToLong<? super K> transformer;
5596 >        final LongByLongToLong reducer;
5597 >        final long basis;
5598 >        long result;
5599 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5600 >        MapReduceKeysToLongTask
5601 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5602 >             MapReduceKeysToLongTask<K,V> nextRight,
5603 >             ObjectToLong<? super K> transformer,
5604 >             long basis,
5605 >             LongByLongToLong reducer) {
5606 >            super(p, b, i, f, t); this.nextRight = nextRight;
5607 >            this.transformer = transformer;
5608 >            this.basis = basis; this.reducer = reducer;
5609 >        }
5610 >        public final Long getRawResult() { return result; }
5611 >        public final void compute() {
5612 >            final ObjectToLong<? super K> transformer;
5613 >            final LongByLongToLong reducer;
5614 >            if ((transformer = this.transformer) != null &&
5615 >                (reducer = this.reducer) != null) {
5616 >                long r = this.basis;
5617 >                for (int i = baseIndex, f, h; batch > 0 &&
5618 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5619 >                    addToPendingCount(1);
5620 >                    (rights = new MapReduceKeysToLongTask<K,V>
5621 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5622 >                      rights, transformer, r, reducer)).fork();
5623 >                }
5624 >                for (Node<K,V> p; (p = advance()) != null; )
5625 >                    r = reducer.apply(r, transformer.apply(p.key));
5626 >                result = r;
5627 >                CountedCompleter<?> c;
5628 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5629 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5630 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5631 >                        s = t.rights;
5632 >                    while (s != null) {
5633 >                        t.result = reducer.apply(t.result, s.result);
5634 >                        s = t.rights = s.nextRight;
5635 >                    }
5636 >                }
5637 >            }
5638 >        }
5639 >    }
5640 >
5641 >    @SuppressWarnings("serial")
5642 >    static final class MapReduceValuesToLongTask<K,V>
5643 >        extends BulkTask<K,V,Long> {
5644 >        final ObjectToLong<? super V> transformer;
5645 >        final LongByLongToLong reducer;
5646 >        final long basis;
5647 >        long result;
5648 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5649 >        MapReduceValuesToLongTask
5650 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5651 >             MapReduceValuesToLongTask<K,V> nextRight,
5652 >             ObjectToLong<? super V> transformer,
5653 >             long basis,
5654 >             LongByLongToLong reducer) {
5655 >            super(p, b, i, f, t); this.nextRight = nextRight;
5656 >            this.transformer = transformer;
5657 >            this.basis = basis; this.reducer = reducer;
5658 >        }
5659 >        public final Long getRawResult() { return result; }
5660 >        public final void compute() {
5661 >            final ObjectToLong<? super V> transformer;
5662 >            final LongByLongToLong reducer;
5663 >            if ((transformer = this.transformer) != null &&
5664 >                (reducer = this.reducer) != null) {
5665 >                long r = this.basis;
5666 >                for (int i = baseIndex, f, h; batch > 0 &&
5667 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5668 >                    addToPendingCount(1);
5669 >                    (rights = new MapReduceValuesToLongTask<K,V>
5670 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5671 >                      rights, transformer, r, reducer)).fork();
5672 >                }
5673 >                for (Node<K,V> p; (p = advance()) != null; )
5674 >                    r = reducer.apply(r, transformer.apply(p.val));
5675 >                result = r;
5676 >                CountedCompleter<?> c;
5677 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5678 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5679 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5680 >                        s = t.rights;
5681 >                    while (s != null) {
5682 >                        t.result = reducer.apply(t.result, s.result);
5683 >                        s = t.rights = s.nextRight;
5684 >                    }
5685 >                }
5686 >            }
5687 >        }
5688 >    }
5689 >
5690 >    @SuppressWarnings("serial")
5691 >    static final class MapReduceEntriesToLongTask<K,V>
5692 >        extends BulkTask<K,V,Long> {
5693 >        final ObjectToLong<Map.Entry<K,V>> transformer;
5694 >        final LongByLongToLong reducer;
5695 >        final long basis;
5696 >        long result;
5697 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
5698 >        MapReduceEntriesToLongTask
5699 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5700 >             MapReduceEntriesToLongTask<K,V> nextRight,
5701 >             ObjectToLong<Map.Entry<K,V>> transformer,
5702 >             long basis,
5703 >             LongByLongToLong reducer) {
5704 >            super(p, b, i, f, t); this.nextRight = nextRight;
5705 >            this.transformer = transformer;
5706 >            this.basis = basis; this.reducer = reducer;
5707 >        }
5708 >        public final Long getRawResult() { return result; }
5709 >        public final void compute() {
5710 >            final ObjectToLong<Map.Entry<K,V>> transformer;
5711 >            final LongByLongToLong reducer;
5712 >            if ((transformer = this.transformer) != null &&
5713 >                (reducer = this.reducer) != null) {
5714 >                long r = this.basis;
5715 >                for (int i = baseIndex, f, h; batch > 0 &&
5716 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5717 >                    addToPendingCount(1);
5718 >                    (rights = new MapReduceEntriesToLongTask<K,V>
5719 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5720 >                      rights, transformer, r, reducer)).fork();
5721 >                }
5722 >                for (Node<K,V> p; (p = advance()) != null; )
5723 >                    r = reducer.apply(r, transformer.apply(p));
5724 >                result = r;
5725 >                CountedCompleter<?> c;
5726 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5727 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5728 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5729 >                        s = t.rights;
5730 >                    while (s != null) {
5731 >                        t.result = reducer.apply(t.result, s.result);
5732 >                        s = t.rights = s.nextRight;
5733 >                    }
5734 >                }
5735 >            }
5736 >        }
5737 >    }
5738 >
5739 >    @SuppressWarnings("serial")
5740 >    static final class MapReduceMappingsToLongTask<K,V>
5741 >        extends BulkTask<K,V,Long> {
5742 >        final ObjectByObjectToLong<? super K, ? super V> transformer;
5743 >        final LongByLongToLong reducer;
5744 >        final long basis;
5745 >        long result;
5746 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
5747 >        MapReduceMappingsToLongTask
5748 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5749 >             MapReduceMappingsToLongTask<K,V> nextRight,
5750 >             ObjectByObjectToLong<? super K, ? super V> transformer,
5751 >             long basis,
5752 >             LongByLongToLong reducer) {
5753 >            super(p, b, i, f, t); this.nextRight = nextRight;
5754 >            this.transformer = transformer;
5755 >            this.basis = basis; this.reducer = reducer;
5756 >        }
5757 >        public final Long getRawResult() { return result; }
5758 >        public final void compute() {
5759 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
5760 >            final LongByLongToLong reducer;
5761 >            if ((transformer = this.transformer) != null &&
5762 >                (reducer = this.reducer) != null) {
5763 >                long r = this.basis;
5764 >                for (int i = baseIndex, f, h; batch > 0 &&
5765 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5766 >                    addToPendingCount(1);
5767 >                    (rights = new MapReduceMappingsToLongTask<K,V>
5768 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5769 >                      rights, transformer, r, reducer)).fork();
5770 >                }
5771 >                for (Node<K,V> p; (p = advance()) != null; )
5772 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5773 >                result = r;
5774 >                CountedCompleter<?> c;
5775 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5776 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5777 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
5778 >                        s = t.rights;
5779 >                    while (s != null) {
5780 >                        t.result = reducer.apply(t.result, s.result);
5781 >                        s = t.rights = s.nextRight;
5782 >                    }
5783 >                }
5784 >            }
5785 >        }
5786 >    }
5787 >
5788 >    @SuppressWarnings("serial")
5789 >    static final class MapReduceKeysToIntTask<K,V>
5790 >        extends BulkTask<K,V,Integer> {
5791 >        final ObjectToInt<? super K> transformer;
5792 >        final IntByIntToInt reducer;
5793 >        final int basis;
5794 >        int result;
5795 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
5796 >        MapReduceKeysToIntTask
5797 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5798 >             MapReduceKeysToIntTask<K,V> nextRight,
5799 >             ObjectToInt<? super K> transformer,
5800 >             int basis,
5801 >             IntByIntToInt reducer) {
5802 >            super(p, b, i, f, t); this.nextRight = nextRight;
5803 >            this.transformer = transformer;
5804 >            this.basis = basis; this.reducer = reducer;
5805 >        }
5806 >        public final Integer getRawResult() { return result; }
5807 >        public final void compute() {
5808 >            final ObjectToInt<? super K> transformer;
5809 >            final IntByIntToInt reducer;
5810 >            if ((transformer = this.transformer) != null &&
5811 >                (reducer = this.reducer) != null) {
5812 >                int r = this.basis;
5813 >                for (int i = baseIndex, f, h; batch > 0 &&
5814 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5815 >                    addToPendingCount(1);
5816 >                    (rights = new MapReduceKeysToIntTask<K,V>
5817 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5818 >                      rights, transformer, r, reducer)).fork();
5819 >                }
5820 >                for (Node<K,V> p; (p = advance()) != null; )
5821 >                    r = reducer.apply(r, transformer.apply(p.key));
5822 >                result = r;
5823 >                CountedCompleter<?> c;
5824 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5825 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5826 >                        t = (MapReduceKeysToIntTask<K,V>)c,
5827 >                        s = t.rights;
5828 >                    while (s != null) {
5829 >                        t.result = reducer.apply(t.result, s.result);
5830 >                        s = t.rights = s.nextRight;
5831 >                    }
5832 >                }
5833 >            }
5834 >        }
5835 >    }
5836 >
5837 >    @SuppressWarnings("serial")
5838 >    static final class MapReduceValuesToIntTask<K,V>
5839 >        extends BulkTask<K,V,Integer> {
5840 >        final ObjectToInt<? super V> transformer;
5841 >        final IntByIntToInt reducer;
5842 >        final int basis;
5843 >        int result;
5844 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
5845 >        MapReduceValuesToIntTask
5846 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5847 >             MapReduceValuesToIntTask<K,V> nextRight,
5848 >             ObjectToInt<? super V> transformer,
5849 >             int basis,
5850 >             IntByIntToInt reducer) {
5851 >            super(p, b, i, f, t); this.nextRight = nextRight;
5852 >            this.transformer = transformer;
5853 >            this.basis = basis; this.reducer = reducer;
5854 >        }
5855 >        public final Integer getRawResult() { return result; }
5856 >        public final void compute() {
5857 >            final ObjectToInt<? super V> transformer;
5858 >            final IntByIntToInt reducer;
5859 >            if ((transformer = this.transformer) != null &&
5860 >                (reducer = this.reducer) != null) {
5861 >                int r = this.basis;
5862 >                for (int i = baseIndex, f, h; batch > 0 &&
5863 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5864 >                    addToPendingCount(1);
5865 >                    (rights = new MapReduceValuesToIntTask<K,V>
5866 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5867 >                      rights, transformer, r, reducer)).fork();
5868 >                }
5869 >                for (Node<K,V> p; (p = advance()) != null; )
5870 >                    r = reducer.apply(r, transformer.apply(p.val));
5871 >                result = r;
5872 >                CountedCompleter<?> c;
5873 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5874 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5875 >                        t = (MapReduceValuesToIntTask<K,V>)c,
5876 >                        s = t.rights;
5877 >                    while (s != null) {
5878 >                        t.result = reducer.apply(t.result, s.result);
5879 >                        s = t.rights = s.nextRight;
5880 >                    }
5881 >                }
5882 >            }
5883 >        }
5884 >    }
5885 >
5886 >    @SuppressWarnings("serial")
5887 >    static final class MapReduceEntriesToIntTask<K,V>
5888 >        extends BulkTask<K,V,Integer> {
5889 >        final ObjectToInt<Map.Entry<K,V>> transformer;
5890 >        final IntByIntToInt reducer;
5891 >        final int basis;
5892 >        int result;
5893 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
5894 >        MapReduceEntriesToIntTask
5895 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5896 >             MapReduceEntriesToIntTask<K,V> nextRight,
5897 >             ObjectToInt<Map.Entry<K,V>> transformer,
5898 >             int basis,
5899 >             IntByIntToInt reducer) {
5900 >            super(p, b, i, f, t); this.nextRight = nextRight;
5901 >            this.transformer = transformer;
5902 >            this.basis = basis; this.reducer = reducer;
5903 >        }
5904 >        public final Integer getRawResult() { return result; }
5905 >        public final void compute() {
5906 >            final ObjectToInt<Map.Entry<K,V>> transformer;
5907 >            final IntByIntToInt reducer;
5908 >            if ((transformer = this.transformer) != null &&
5909 >                (reducer = this.reducer) != null) {
5910 >                int r = this.basis;
5911 >                for (int i = baseIndex, f, h; batch > 0 &&
5912 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5913 >                    addToPendingCount(1);
5914 >                    (rights = new MapReduceEntriesToIntTask<K,V>
5915 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5916 >                      rights, transformer, r, reducer)).fork();
5917 >                }
5918 >                for (Node<K,V> p; (p = advance()) != null; )
5919 >                    r = reducer.apply(r, transformer.apply(p));
5920 >                result = r;
5921 >                CountedCompleter<?> c;
5922 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5923 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5924 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
5925 >                        s = t.rights;
5926 >                    while (s != null) {
5927 >                        t.result = reducer.apply(t.result, s.result);
5928 >                        s = t.rights = s.nextRight;
5929 >                    }
5930 >                }
5931 >            }
5932 >        }
5933 >    }
5934 >
5935 >    @SuppressWarnings("serial")
5936 >    static final class MapReduceMappingsToIntTask<K,V>
5937 >        extends BulkTask<K,V,Integer> {
5938 >        final ObjectByObjectToInt<? super K, ? super V> transformer;
5939 >        final IntByIntToInt reducer;
5940 >        final int basis;
5941 >        int result;
5942 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
5943 >        MapReduceMappingsToIntTask
5944 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5945 >             MapReduceMappingsToIntTask<K,V> nextRight,
5946 >             ObjectByObjectToInt<? super K, ? super V> transformer,
5947 >             int basis,
5948 >             IntByIntToInt reducer) {
5949 >            super(p, b, i, f, t); this.nextRight = nextRight;
5950 >            this.transformer = transformer;
5951 >            this.basis = basis; this.reducer = reducer;
5952 >        }
5953 >        public final Integer getRawResult() { return result; }
5954 >        public final void compute() {
5955 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
5956 >            final IntByIntToInt reducer;
5957 >            if ((transformer = this.transformer) != null &&
5958 >                (reducer = this.reducer) != null) {
5959 >                int r = this.basis;
5960 >                for (int i = baseIndex, f, h; batch > 0 &&
5961 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5962 >                    addToPendingCount(1);
5963 >                    (rights = new MapReduceMappingsToIntTask<K,V>
5964 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5965 >                      rights, transformer, r, reducer)).fork();
5966 >                }
5967 >                for (Node<K,V> p; (p = advance()) != null; )
5968 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5969 >                result = r;
5970 >                CountedCompleter<?> c;
5971 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5972 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
5973 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
5974 >                        s = t.rights;
5975 >                    while (s != null) {
5976 >                        t.result = reducer.apply(t.result, s.result);
5977 >                        s = t.rights = s.nextRight;
5978 >                    }
5979 >                }
5980 >            }
5981 >        }
5982 >    }
5983 >
5984 >    /* ---------------- Counters -------------- */
5985 >
5986 >    // Adapted from LongAdder and Striped64.
5987 >    // See their internal docs for explanation.
5988 >
5989 >    // A padded cell for distributing counts
5990 >    static final class CounterCell {
5991 >        volatile long p0, p1, p2, p3, p4, p5, p6;
5992 >        volatile long value;
5993 >        volatile long q0, q1, q2, q3, q4, q5, q6;
5994 >        CounterCell(long x) { value = x; }
5995 >    }
5996 >
5997 >    /**
5998 >     * Holder for the thread-local hash code determining which
5999 >     * CounterCell to use. The code is initialized via the
6000 >     * counterHashCodeGenerator, but may be moved upon collisions.
6001 >     */
6002 >    static final class CounterHashCode {
6003 >        int code;
6004 >    }
6005 >
6006 >    /**
6007 >     * Generates initial value for per-thread CounterHashCodes.
6008 >     */
6009 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6010 >
6011 >    /**
6012 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
6013 >     * for explanation.
6014 >     */
6015 >    static final int SEED_INCREMENT = 0x61c88647;
6016 >
6017 >    /**
6018 >     * Per-thread counter hash codes. Shared across all instances.
6019 >     */
6020 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6021 >        new ThreadLocal<CounterHashCode>();
6022 >
6023 >
6024 >    final long sumCount() {
6025 >        CounterCell[] as = counterCells; CounterCell a;
6026 >        long sum = baseCount;
6027 >        if (as != null) {
6028 >            for (int i = 0; i < as.length; ++i) {
6029 >                if ((a = as[i]) != null)
6030 >                    sum += a.value;
6031 >            }
6032 >        }
6033 >        return sum;
6034 >    }
6035 >
6036 >    // See LongAdder version for explanation
6037 >    private final void fullAddCount(long x, CounterHashCode hc,
6038 >                                    boolean wasUncontended) {
6039 >        int h;
6040 >        if (hc == null) {
6041 >            hc = new CounterHashCode();
6042 >            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6043 >            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6044 >            threadCounterHashCode.set(hc);
6045 >        }
6046 >        else
6047 >            h = hc.code;
6048 >        boolean collide = false;                // True if last slot nonempty
6049 >        for (;;) {
6050 >            CounterCell[] as; CounterCell a; int n; long v;
6051 >            if ((as = counterCells) != null && (n = as.length) > 0) {
6052 >                if ((a = as[(n - 1) & h]) == null) {
6053 >                    if (cellsBusy == 0) {            // Try to attach new Cell
6054 >                        CounterCell r = new CounterCell(x); // Optimistic create
6055 >                        if (cellsBusy == 0 &&
6056 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6057 >                            boolean created = false;
6058 >                            try {               // Recheck under lock
6059 >                                CounterCell[] rs; int m, j;
6060 >                                if ((rs = counterCells) != null &&
6061 >                                    (m = rs.length) > 0 &&
6062 >                                    rs[j = (m - 1) & h] == null) {
6063 >                                    rs[j] = r;
6064 >                                    created = true;
6065 >                                }
6066 >                            } finally {
6067 >                                cellsBusy = 0;
6068 >                            }
6069 >                            if (created)
6070 >                                break;
6071 >                            continue;           // Slot is now non-empty
6072                          }
3267                        table = tab;
3268                        counter.add(size);
3269                        sc = n - (n >>> 2);
6073                      }
6074 <                } finally {
3272 <                    sizeCtl = sc;
6074 >                    collide = false;
6075                  }
6076 <                if (collide) { // rescan and convert to TreeBins
6077 <                    Node[] tab = table;
6078 <                    for (int i = 0; i < tab.length; ++i) {
6079 <                        int c = 0;
6080 <                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
6081 <                            if (++c > TREE_THRESHOLD &&
6082 <                                (e.key instanceof Comparable)) {
6083 <                                replaceWithTreeBin(tab, i, e.key);
6084 <                                break;
6085 <                            }
6076 >                else if (!wasUncontended)       // CAS already known to fail
6077 >                    wasUncontended = true;      // Continue after rehash
6078 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6079 >                    break;
6080 >                else if (counterCells != as || n >= NCPU)
6081 >                    collide = false;            // At max size or stale
6082 >                else if (!collide)
6083 >                    collide = true;
6084 >                else if (cellsBusy == 0 &&
6085 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6086 >                    try {
6087 >                        if (counterCells == as) {// Expand table unless stale
6088 >                            CounterCell[] rs = new CounterCell[n << 1];
6089 >                            for (int i = 0; i < n; ++i)
6090 >                                rs[i] = as[i];
6091 >                            counterCells = rs;
6092                          }
6093 +                    } finally {
6094 +                        cellsBusy = 0;
6095                      }
6096 +                    collide = false;
6097 +                    continue;                   // Retry with expanded table
6098                  }
6099 <            }
6100 <            if (!init) { // Can only happen if unsafely published.
6101 <                while (p != null) {
6102 <                    internalPut(p.key, p.val);
6103 <                    p = p.next;
6099 >                h ^= h << 13;                   // Rehash
6100 >                h ^= h >>> 17;
6101 >                h ^= h << 5;
6102 >            }
6103 >            else if (cellsBusy == 0 && counterCells == as &&
6104 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6105 >                boolean init = false;
6106 >                try {                           // Initialize table
6107 >                    if (counterCells == as) {
6108 >                        CounterCell[] rs = new CounterCell[2];
6109 >                        rs[h & 1] = new CounterCell(x);
6110 >                        counterCells = rs;
6111 >                        init = true;
6112 >                    }
6113 >                } finally {
6114 >                    cellsBusy = 0;
6115                  }
6116 +                if (init)
6117 +                    break;
6118              }
6119 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6120 +                break;                          // Fall back on using base
6121          }
6122 +        hc.code = h;                            // Record index for next time
6123      }
6124  
6125      // Unsafe mechanics
6126 <    private static final sun.misc.Unsafe UNSAFE;
6127 <    private static final long counterOffset;
6128 <    private static final long sizeCtlOffset;
6126 >    private static final sun.misc.Unsafe U;
6127 >    private static final long SIZECTL;
6128 >    private static final long TRANSFERINDEX;
6129 >    private static final long TRANSFERORIGIN;
6130 >    private static final long BASECOUNT;
6131 >    private static final long CELLSBUSY;
6132 >    private static final long CELLVALUE;
6133      private static final long ABASE;
6134      private static final int ASHIFT;
6135  
6136      static {
3305        int ss;
6137          try {
6138 <            UNSAFE = getUnsafe();
6138 >            U = getUnsafe();
6139              Class<?> k = ConcurrentHashMapV8.class;
6140 <            counterOffset = UNSAFE.objectFieldOffset
3310 <                (k.getDeclaredField("counter"));
3311 <            sizeCtlOffset = UNSAFE.objectFieldOffset
6140 >            SIZECTL = U.objectFieldOffset
6141                  (k.getDeclaredField("sizeCtl"));
6142 <            Class<?> sc = Node[].class;
6143 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6144 <            ss = UNSAFE.arrayIndexScale(sc);
6142 >            TRANSFERINDEX = U.objectFieldOffset
6143 >                (k.getDeclaredField("transferIndex"));
6144 >            TRANSFERORIGIN = U.objectFieldOffset
6145 >                (k.getDeclaredField("transferOrigin"));
6146 >            BASECOUNT = U.objectFieldOffset
6147 >                (k.getDeclaredField("baseCount"));
6148 >            CELLSBUSY = U.objectFieldOffset
6149 >                (k.getDeclaredField("cellsBusy"));
6150 >            Class<?> ck = CounterCell.class;
6151 >            CELLVALUE = U.objectFieldOffset
6152 >                (ck.getDeclaredField("value"));
6153 >            Class<?> ak = Node[].class;
6154 >            ABASE = U.arrayBaseOffset(ak);
6155 >            int scale = U.arrayIndexScale(ak);
6156 >            if ((scale & (scale - 1)) != 0)
6157 >                throw new Error("data type scale not a power of two");
6158 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6159          } catch (Exception e) {
6160              throw new Error(e);
6161          }
3319        if ((ss & (ss-1)) != 0)
3320            throw new Error("data type scale not a power of two");
3321        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6162      }
6163  
6164      /**
# Line 3331 | Line 6171 | public class ConcurrentHashMapV8<K, V>
6171      private static sun.misc.Unsafe getUnsafe() {
6172          try {
6173              return sun.misc.Unsafe.getUnsafe();
6174 <        } catch (SecurityException se) {
6175 <            try {
6176 <                return java.security.AccessController.doPrivileged
6177 <                    (new java.security
6178 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6179 <                        public sun.misc.Unsafe run() throws Exception {
6180 <                            java.lang.reflect.Field f = sun.misc
6181 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6182 <                            f.setAccessible(true);
6183 <                            return (sun.misc.Unsafe) f.get(null);
6184 <                        }});
6185 <            } catch (java.security.PrivilegedActionException e) {
6186 <                throw new RuntimeException("Could not initialize intrinsics",
6187 <                                           e.getCause());
6188 <            }
6174 >        } catch (SecurityException tryReflectionInstead) {}
6175 >        try {
6176 >            return java.security.AccessController.doPrivileged
6177 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6178 >                public sun.misc.Unsafe run() throws Exception {
6179 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6180 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6181 >                        f.setAccessible(true);
6182 >                        Object x = f.get(null);
6183 >                        if (k.isInstance(x))
6184 >                            return k.cast(x);
6185 >                    }
6186 >                    throw new NoSuchFieldError("the Unsafe");
6187 >                }});
6188 >        } catch (java.security.PrivilegedActionException e) {
6189 >            throw new RuntimeException("Could not initialize intrinsics",
6190 >                                       e.getCause());
6191          }
6192      }
3351
6193   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines