ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.80 by jsr166, Sat Nov 24 03:46:28 2012 UTC vs.
Revision 1.116 by dl, Wed Sep 11 14:53:38 2013 UTC

# Line 6 | Line 6
6  
7   package jsr166e;
8  
9 < import java.util.Comparator;
10 < import java.util.Arrays;
11 < import java.util.Map;
12 < import java.util.Set;
13 < import java.util.Collection;
14 < import java.util.AbstractMap;
15 < import java.util.AbstractSet;
16 < import java.util.AbstractCollection;
17 < import java.util.Hashtable;
18 < import java.util.HashMap;
19 < import java.util.Iterator;
20 < import java.util.Enumeration;
21 < import java.util.ConcurrentModificationException;
22 < import java.util.NoSuchElementException;
23 < import java.util.concurrent.ConcurrentMap;
24 < import java.util.concurrent.ThreadLocalRandom;
25 < import java.util.concurrent.locks.LockSupport;
26 < import java.util.concurrent.locks.AbstractQueuedSynchronizer;
27 < import java.util.concurrent.atomic.AtomicReference;
9 > import jsr166e.ForkJoinPool;
10  
11 + import java.io.ObjectStreamField;
12   import java.io.Serializable;
13 <
14 < import java.util.Comparator;
13 > import java.lang.reflect.ParameterizedType;
14 > import java.lang.reflect.Type;
15 > import java.util.AbstractMap;
16   import java.util.Arrays;
33 import java.util.Map;
34 import java.util.Set;
17   import java.util.Collection;
18 < import java.util.AbstractMap;
19 < import java.util.AbstractSet;
20 < import java.util.AbstractCollection;
39 < import java.util.Hashtable;
18 > import java.util.Comparator;
19 > import java.util.ConcurrentModificationException;
20 > import java.util.Enumeration;
21   import java.util.HashMap;
22 + import java.util.Hashtable;
23   import java.util.Iterator;
24 < import java.util.Enumeration;
43 < import java.util.ConcurrentModificationException;
24 > import java.util.Map;
25   import java.util.NoSuchElementException;
26 + import java.util.Set;
27   import java.util.concurrent.ConcurrentMap;
46 import java.util.concurrent.ThreadLocalRandom;
47 import java.util.concurrent.locks.LockSupport;
48 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
28   import java.util.concurrent.atomic.AtomicReference;
29 <
30 < import java.io.Serializable;
29 > import java.util.concurrent.atomic.AtomicInteger;
30 > import java.util.concurrent.locks.LockSupport;
31 > import java.util.concurrent.locks.ReentrantLock;
32  
33   /**
34   * A hash table supporting full concurrency of retrievals and
# Line 102 | Line 82 | import java.io.Serializable;
82   * expected {@code concurrencyLevel} as an additional hint for
83   * internal sizing.  Note that using many keys with exactly the same
84   * {@code hashCode()} is a sure way to slow down performance of any
85 < * hash table.
85 > * hash table. To ameliorate impact, when keys are {@link Comparable},
86 > * this class may use comparison order among keys to help break ties.
87   *
88   * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
89   * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
# Line 110 | Line 91 | import java.io.Serializable;
91   * mapped values are (perhaps transiently) not used or all take the
92   * same mapping value.
93   *
113 * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
114 * form of histogram or multiset) by using {@link LongAdder} values
115 * and initializing via {@link #computeIfAbsent}. For example, to add
116 * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
117 * can use {@code freqs.computeIfAbsent(k -> new
118 * LongAdder()).increment();}
119 *
94   * <p>This class and its views and iterators implement all of the
95   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
96   * interfaces.
# Line 124 | Line 98 | import java.io.Serializable;
98   * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
99   * does <em>not</em> allow {@code null} to be used as a key or value.
100   *
101 < * <p>ConcurrentHashMapV8s support parallel operations using the {@link
102 < * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
103 < * are available in class {@link ForkJoinTasks}). These operations are
104 < * designed to be safely, and often sensibly, applied even with maps
105 < * that are being concurrently updated by other threads; for example,
106 < * when computing a snapshot summary of the values in a shared
107 < * registry.  There are three kinds of operation, each with four
108 < * forms, accepting functions with Keys, Values, Entries, and (Key,
109 < * Value) arguments and/or return values. (The first three forms are
110 < * also available via the {@link #keySet()}, {@link #values()} and
111 < * {@link #entrySet()} views). Because the elements of a
112 < * ConcurrentHashMapV8 are not ordered in any particular way, and may be
113 < * processed in different orders in different parallel executions, the
114 < * correctness of supplied functions should not depend on any
115 < * ordering, or on any other objects or values that may transiently
142 < * change while computation is in progress; and except for forEach
143 < * actions, should ideally be side-effect-free.
101 > * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
102 > * operations that are designed
103 > * to be safely, and often sensibly, applied even with maps that are
104 > * being concurrently updated by other threads; for example, when
105 > * computing a snapshot summary of the values in a shared registry.
106 > * There are three kinds of operation, each with four forms, accepting
107 > * functions with Keys, Values, Entries, and (Key, Value) arguments
108 > * and/or return values. Because the elements of a ConcurrentHashMapV8
109 > * are not ordered in any particular way, and may be processed in
110 > * different orders in different parallel executions, the correctness
111 > * of supplied functions should not depend on any ordering, or on any
112 > * other objects or values that may transiently change while
113 > * computation is in progress; and except for forEach actions, should
114 > * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
115 > * objects do not support method {@code setValue}.
116   *
117   * <ul>
118   * <li> forEach: Perform a given action on each element.
# Line 167 | Line 139 | import java.io.Serializable;
139   * <li> Reductions to scalar doubles, longs, and ints, using a
140   * given basis value.</li>
141   *
170 * </li>
142   * </ul>
143 + * </li>
144   * </ul>
145   *
146 + * <p>These bulk operations accept a {@code parallelismThreshold}
147 + * argument. Methods proceed sequentially if the current map size is
148 + * estimated to be less than the given threshold. Using a value of
149 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
150 + * of {@code 1} results in maximal parallelism by partitioning into
151 + * enough subtasks to fully utilize the {@link
152 + * ForkJoinPool#commonPool()} that is used for all parallel
153 + * computations. Normally, you would initially choose one of these
154 + * extreme values, and then measure performance of using in-between
155 + * values that trade off overhead versus throughput.
156 + *
157   * <p>The concurrency properties of bulk operations follow
158   * from those of ConcurrentHashMapV8: Any non-null result returned
159   * from {@code get(key)} and related access methods bears a
# Line 213 | Line 196 | import java.io.Serializable;
196   * exceptions, or would have done so if the first exception had
197   * not occurred.
198   *
199 < * <p>Parallel speedups for bulk operations compared to sequential
200 < * processing are common but not guaranteed.  Operations involving
201 < * brief functions on small maps may execute more slowly than
202 < * sequential loops if the underlying work to parallelize the
203 < * computation is more expensive than the computation itself.
204 < * Similarly, parallelization may not lead to much actual parallelism
205 < * if all processors are busy performing unrelated tasks.
199 > * <p>Speedups for parallel compared to sequential forms are common
200 > * but not guaranteed.  Parallel operations involving brief functions
201 > * on small maps may execute more slowly than sequential forms if the
202 > * underlying work to parallelize the computation is more expensive
203 > * than the computation itself.  Similarly, parallelization may not
204 > * lead to much actual parallelism if all processors are busy
205 > * performing unrelated tasks.
206   *
207   * <p>All arguments to all task methods must be non-null.
208   *
# Line 236 | Line 219 | import java.io.Serializable;
219   * @param <K> the type of keys maintained by this map
220   * @param <V> the type of mapped values
221   */
222 < public class ConcurrentHashMapV8<K, V>
223 <    implements ConcurrentMap<K, V>, Serializable {
222 > public class ConcurrentHashMapV8<K,V> extends AbstractMap<K,V>
223 >    implements ConcurrentMap<K,V>, Serializable {
224      private static final long serialVersionUID = 7249069246763182397L;
225  
226      /**
227 <     * A partitionable iterator. A Spliterator can be traversed
228 <     * directly, but can also be partitioned (before traversal) by
229 <     * creating another Spliterator that covers a non-overlapping
247 <     * portion of the elements, and so may be amenable to parallel
248 <     * execution.
249 <     *
250 <     * <p>This interface exports a subset of expected JDK8
251 <     * functionality.
252 <     *
253 <     * <p>Sample usage: Here is one (of the several) ways to compute
254 <     * the sum of the values held in a map using the ForkJoin
255 <     * framework. As illustrated here, Spliterators are well suited to
256 <     * designs in which a task repeatedly splits off half its work
257 <     * into forked subtasks until small enough to process directly,
258 <     * and then joins these subtasks. Variants of this style can also
259 <     * be used in completion-based designs.
260 <     *
261 <     * <pre>
262 <     * {@code ConcurrentHashMapV8<String, Long> m = ...
263 <     * // split as if have 8 * parallelism, for load balance
264 <     * int n = m.size();
265 <     * int p = aForkJoinPool.getParallelism() * 8;
266 <     * int split = (n < p)? n : p;
267 <     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
268 <     * // ...
269 <     * static class SumValues extends RecursiveTask<Long> {
270 <     *   final Spliterator<Long> s;
271 <     *   final int split;             // split while > 1
272 <     *   final SumValues nextJoin;    // records forked subtasks to join
273 <     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
274 <     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
275 <     *   }
276 <     *   public Long compute() {
277 <     *     long sum = 0;
278 <     *     SumValues subtasks = null; // fork subtasks
279 <     *     for (int s = split >>> 1; s > 0; s >>>= 1)
280 <     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
281 <     *     while (s.hasNext())        // directly process remaining elements
282 <     *       sum += s.next();
283 <     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
284 <     *       sum += t.join();         // collect subtask results
285 <     *     return sum;
286 <     *   }
287 <     * }
288 <     * }</pre>
227 >     * An object for traversing and partitioning elements of a source.
228 >     * This interface provides a subset of the functionality of JDK8
229 >     * java.util.Spliterator.
230       */
231 <    public static interface Spliterator<T> extends Iterator<T> {
231 >    public static interface ConcurrentHashMapSpliterator<T> {
232          /**
233 <         * Returns a Spliterator covering approximately half of the
234 <         * elements, guaranteed not to overlap with those subsequently
235 <         * returned by this Spliterator.  After invoking this method,
236 <         * the current Spliterator will <em>not</em> produce any of
296 <         * the elements of the returned Spliterator, but the two
297 <         * Spliterators together will produce all of the elements that
298 <         * would have been produced by this Spliterator had this
299 <         * method not been called. The exact number of elements
300 <         * produced by the returned Spliterator is not guaranteed, and
301 <         * may be zero (i.e., with {@code hasNext()} reporting {@code
302 <         * false}) if this Spliterator cannot be further split.
303 <         *
304 <         * @return a Spliterator covering approximately half of the
305 <         * elements
306 <         * @throws IllegalStateException if this Spliterator has
307 <         * already commenced traversing elements
233 >         * If possible, returns a new spliterator covering
234 >         * approximately one half of the elements, which will not be
235 >         * covered by this spliterator. Returns null if cannot be
236 >         * split.
237           */
238 <        Spliterator<T> split();
238 >        ConcurrentHashMapSpliterator<T> trySplit();
239 >        /**
240 >         * Returns an estimate of the number of elements covered by
241 >         * this Spliterator.
242 >         */
243 >        long estimateSize();
244 >
245 >        /** Applies the action to each untraversed element */
246 >        void forEachRemaining(Action<? super T> action);
247 >        /** If an element remains, applies the action and returns true. */
248 >        boolean tryAdvance(Action<? super T> action);
249      }
250  
251 +    // Sams
252 +    /** Interface describing a void action of one argument */
253 +    public interface Action<A> { void apply(A a); }
254 +    /** Interface describing a void action of two arguments */
255 +    public interface BiAction<A,B> { void apply(A a, B b); }
256 +    /** Interface describing a function of one argument */
257 +    public interface Fun<A,T> { T apply(A a); }
258 +    /** Interface describing a function of two arguments */
259 +    public interface BiFun<A,B,T> { T apply(A a, B b); }
260 +    /** Interface describing a function mapping its argument to a double */
261 +    public interface ObjectToDouble<A> { double apply(A a); }
262 +    /** Interface describing a function mapping its argument to a long */
263 +    public interface ObjectToLong<A> { long apply(A a); }
264 +    /** Interface describing a function mapping its argument to an int */
265 +    public interface ObjectToInt<A> {int apply(A a); }
266 +    /** Interface describing a function mapping two arguments to a double */
267 +    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
268 +    /** Interface describing a function mapping two arguments to a long */
269 +    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
270 +    /** Interface describing a function mapping two arguments to an int */
271 +    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
272 +    /** Interface describing a function mapping two doubles to a double */
273 +    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
274 +    /** Interface describing a function mapping two longs to a long */
275 +    public interface LongByLongToLong { long apply(long a, long b); }
276 +    /** Interface describing a function mapping two ints to an int */
277 +    public interface IntByIntToInt { int apply(int a, int b); }
278 +
279  
280      /*
281       * Overview:
# Line 320 | Line 287 | public class ConcurrentHashMapV8<K, V>
287       * the same or better than java.util.HashMap, and to support high
288       * initial insertion rates on an empty table by many threads.
289       *
290 <     * Each key-value mapping is held in a Node.  Because Node fields
291 <     * can contain special values, they are defined using plain Object
292 <     * types. Similarly in turn, all internal methods that use them
293 <     * work off Object types. And similarly, so do the internal
294 <     * methods of auxiliary iterator and view classes.  All public
295 <     * generic typed methods relay in/out of these internal methods,
296 <     * supplying null-checks and casts as needed. This also allows
297 <     * many of the public methods to be factored into a smaller number
298 <     * of internal methods (although sadly not so for the five
299 <     * variants of put-related operations). The validation-based
300 <     * approach explained below leads to a lot of code sprawl because
301 <     * retry-control precludes factoring into smaller methods.
290 >     * This map usually acts as a binned (bucketed) hash table.  Each
291 >     * key-value mapping is held in a Node.  Most nodes are instances
292 >     * of the basic Node class with hash, key, value, and next
293 >     * fields. However, various subclasses exist: TreeNodes are
294 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
295 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
296 >     * of bins during resizing. ReservationNodes are used as
297 >     * placeholders while establishing values in computeIfAbsent and
298 >     * related methods.  The types TreeBin, ForwardingNode, and
299 >     * ReservationNode do not hold normal user keys, values, or
300 >     * hashes, and are readily distinguishable during search etc
301 >     * because they have negative hash fields and null key and value
302 >     * fields. (These special nodes are either uncommon or transient,
303 >     * so the impact of carrying around some unused fields is
304 >     * insignificant.)
305       *
306       * The table is lazily initialized to a power-of-two size upon the
307       * first insertion.  Each bin in the table normally contains a
# Line 339 | Line 309 | public class ConcurrentHashMapV8<K, V>
309       * Table accesses require volatile/atomic reads, writes, and
310       * CASes.  Because there is no other way to arrange this without
311       * adding further indirections, we use intrinsics
312 <     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
313 <     * are always accurately traversable under volatile reads, so long
314 <     * as lookups check hash code and non-nullness of value before
315 <     * checking key equality.
316 <     *
317 <     * We use the top two bits of Node hash fields for control
348 <     * purposes -- they are available anyway because of addressing
349 <     * constraints.  As explained further below, these top bits are
350 <     * used as follows:
351 <     *  00 - Normal
352 <     *  01 - Locked
353 <     *  11 - Locked and may have a thread waiting for lock
354 <     *  10 - Node is a forwarding node
355 <     *
356 <     * The lower 30 bits of each Node's hash field contain a
357 <     * transformation of the key's hash code, except for forwarding
358 <     * nodes, for which the lower bits are zero (and so always have
359 <     * hash field == MOVED).
312 >     * (sun.misc.Unsafe) operations.
313 >     *
314 >     * We use the top (sign) bit of Node hash fields for control
315 >     * purposes -- it is available anyway because of addressing
316 >     * constraints.  Nodes with negative hash fields are specially
317 >     * handled or ignored in map methods.
318       *
319       * Insertion (via put or its variants) of the first node in an
320       * empty bin is performed by just CASing it to the bin.  This is
# Line 365 | Line 323 | public class ConcurrentHashMapV8<K, V>
323       * delete, and replace) require locks.  We do not want to waste
324       * the space required to associate a distinct lock object with
325       * each bin, so instead use the first node of a bin list itself as
326 <     * a lock. Blocking support for these locks relies on the builtin
327 <     * "synchronized" monitors.  However, we also need a tryLock
370 <     * construction, so we overlay these by using bits of the Node
371 <     * hash field for lock control (see above), and so normally use
372 <     * builtin monitors only for blocking and signalling using
373 <     * wait/notifyAll constructions. See Node.tryAwaitLock.
326 >     * a lock. Locking support for these locks relies on builtin
327 >     * "synchronized" monitors.
328       *
329       * Using the first node of a list as a lock does not by itself
330       * suffice though: When a node is locked, any update must first
331       * validate that it is still the first node after locking it, and
332       * retry if not. Because new nodes are always appended to lists,
333       * once a node is first in a bin, it remains first until deleted
334 <     * or the bin becomes invalidated (upon resizing).  However,
381 <     * operations that only conditionally update may inspect nodes
382 <     * until the point of update. This is a converse of sorts to the
383 <     * lazy locking technique described by Herlihy & Shavit.
334 >     * or the bin becomes invalidated (upon resizing).
335       *
336       * The main disadvantage of per-bin locks is that other update
337       * operations on other nodes in a bin list protected by the same
# Line 413 | Line 364 | public class ConcurrentHashMapV8<K, V>
364       * sometimes deviate significantly from uniform randomness.  This
365       * includes the case when N > (1<<30), so some keys MUST collide.
366       * Similarly for dumb or hostile usages in which multiple keys are
367 <     * designed to have identical hash codes. Also, although we guard
368 <     * against the worst effects of this (see method spread), sets of
369 <     * hashes may differ only in bits that do not impact their bin
370 <     * index for a given power-of-two mask.  So we use a secondary
371 <     * strategy that applies when the number of nodes in a bin exceeds
372 <     * a threshold, and at least one of the keys implements
422 <     * Comparable.  These TreeBins use a balanced tree to hold nodes
423 <     * (a specialized form of red-black trees), bounding search time
424 <     * to O(log N).  Each search step in a TreeBin is around twice as
367 >     * designed to have identical hash codes or ones that differs only
368 >     * in masked-out high bits. So we use a secondary strategy that
369 >     * applies when the number of nodes in a bin exceeds a
370 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
371 >     * specialized form of red-black trees), bounding search time to
372 >     * O(log N).  Each search step in a TreeBin is at least twice as
373       * slow as in a regular list, but given that N cannot exceed
374       * (1<<64) (before running out of addresses) this bounds search
375       * steps, lock hold times, etc, to reasonable constants (roughly
# Line 432 | Line 380 | public class ConcurrentHashMapV8<K, V>
380       * iterators in the same way.
381       *
382       * The table is resized when occupancy exceeds a percentage
383 <     * threshold (nominally, 0.75, but see below).  Only a single
384 <     * thread performs the resize (using field "sizeCtl", to arrange
385 <     * exclusion), but the table otherwise remains usable for reads
386 <     * and updates. Resizing proceeds by transferring bins, one by
387 <     * one, from the table to the next table.  Because we are using
383 >     * threshold (nominally, 0.75, but see below).  Any thread
384 >     * noticing an overfull bin may assist in resizing after the
385 >     * initiating thread allocates and sets up the replacement array.
386 >     * However, rather than stalling, these other threads may proceed
387 >     * with insertions etc.  The use of TreeBins shields us from the
388 >     * worst case effects of overfilling while resizes are in
389 >     * progress.  Resizing proceeds by transferring bins, one by one,
390 >     * from the table to the next table. However, threads claim small
391 >     * blocks of indices to transfer (via field transferIndex) before
392 >     * doing so, reducing contention.  Because we are using
393       * power-of-two expansion, the elements from each bin must either
394       * stay at same index, or move with a power of two offset. We
395       * eliminate unnecessary node creation by catching cases where old
# Line 450 | Line 403 | public class ConcurrentHashMapV8<K, V>
403       * its key. On encountering a forwarding node, access and update
404       * operations restart, using the new table.
405       *
406 <     * Each bin transfer requires its bin lock. However, unlike other
407 <     * cases, a transfer can skip a bin if it fails to acquire its
408 <     * lock, and revisit it later (unless it is a TreeBin). Method
409 <     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
410 <     * have been skipped because of failure to acquire a lock, and
411 <     * blocks only if none are available (i.e., only very rarely).
412 <     * The transfer operation must also ensure that all accessible
413 <     * bins in both the old and new table are usable by any traversal.
414 <     * When there are no lock acquisition failures, this is arranged
415 <     * simply by proceeding from the last bin (table.length - 1) up
416 <     * towards the first.  Upon seeing a forwarding node, traversals
417 <     * (see class Iter) arrange to move to the new table
418 <     * without revisiting nodes.  However, when any node is skipped
419 <     * during a transfer, all earlier table bins may have become
420 <     * visible, so are initialized with a reverse-forwarding node back
421 <     * to the old table until the new ones are established. (This
422 <     * sometimes requires transiently locking a forwarding node, which
423 <     * is possible under the above encoding.) These more expensive
424 <     * mechanics trigger only when necessary.
406 >     * Each bin transfer requires its bin lock, which can stall
407 >     * waiting for locks while resizing. However, because other
408 >     * threads can join in and help resize rather than contend for
409 >     * locks, average aggregate waits become shorter as resizing
410 >     * progresses.  The transfer operation must also ensure that all
411 >     * accessible bins in both the old and new table are usable by any
412 >     * traversal.  This is arranged in part by proceeding from the
413 >     * last bin (table.length - 1) up towards the first.  Upon seeing
414 >     * a forwarding node, traversals (see class Traverser) arrange to
415 >     * move to the new table without revisiting nodes.  To ensure that
416 >     * no intervening nodes are skipped even when moved out of order,
417 >     * a stack (see class TableStack) is created on first encounter of
418 >     * a forwarding node during a traversal, to maintain its place if
419 >     * later processing the current table. The need for these
420 >     * save/restore mechanics is relatively rare, but when one
421 >     * forwarding node is encountered, typically many more will be.
422 >     * So Traversers use a simple caching scheme to avoid creating so
423 >     * many new TableStack nodes. (Thanks to Peter Levart for
424 >     * suggesting use of a stack here.)
425       *
426       * The traversal scheme also applies to partial traversals of
427       * ranges of bins (via an alternate Traverser constructor)
# Line 483 | Line 436 | public class ConcurrentHashMapV8<K, V>
436       * These cases attempt to override the initial capacity settings,
437       * but harmlessly fail to take effect in cases of races.
438       *
439 <     * The element count is maintained using a LongAdder, which avoids
440 <     * contention on updates but can encounter cache thrashing if read
441 <     * too frequently during concurrent access. To avoid reading so
442 <     * often, resizing is attempted either when a bin lock is
443 <     * contended, or upon adding to a bin already holding two or more
444 <     * nodes (checked before adding in the xIfAbsent methods, after
445 <     * adding in others). Under uniform hash distributions, the
446 <     * probability of this occurring at threshold is around 13%,
447 <     * meaning that only about 1 in 8 puts check threshold (and after
448 <     * resizing, many fewer do so). But this approximation has high
449 <     * variance for small table sizes, so we check on any collision
450 <     * for sizes <= 64. The bulk putAll operation further reduces
451 <     * contention by only committing count updates upon these size
452 <     * checks.
439 >     * The element count is maintained using a specialization of
440 >     * LongAdder. We need to incorporate a specialization rather than
441 >     * just use a LongAdder in order to access implicit
442 >     * contention-sensing that leads to creation of multiple
443 >     * CounterCells.  The counter mechanics avoid contention on
444 >     * updates but can encounter cache thrashing if read too
445 >     * frequently during concurrent access. To avoid reading so often,
446 >     * resizing under contention is attempted only upon adding to a
447 >     * bin already holding two or more nodes. Under uniform hash
448 >     * distributions, the probability of this occurring at threshold
449 >     * is around 13%, meaning that only about 1 in 8 puts check
450 >     * threshold (and after resizing, many fewer do so).
451 >     *
452 >     * TreeBins use a special form of comparison for search and
453 >     * related operations (which is the main reason we cannot use
454 >     * existing collections such as TreeMaps). TreeBins contain
455 >     * Comparable elements, but may contain others, as well as
456 >     * elements that are Comparable but not necessarily Comparable for
457 >     * the same T, so we cannot invoke compareTo among them. To handle
458 >     * this, the tree is ordered primarily by hash value, then by
459 >     * Comparable.compareTo order if applicable.  On lookup at a node,
460 >     * if elements are not comparable or compare as 0 then both left
461 >     * and right children may need to be searched in the case of tied
462 >     * hash values. (This corresponds to the full list search that
463 >     * would be necessary if all elements were non-Comparable and had
464 >     * tied hashes.) On insertion, to keep a total ordering (or as
465 >     * close as is required here) across rebalancings, we compare
466 >     * classes and identityHashCodes as tie-breakers. The red-black
467 >     * balancing code is updated from pre-jdk-collections
468 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
469 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
470 >     * Algorithms" (CLR).
471 >     *
472 >     * TreeBins also require an additional locking mechanism.  While
473 >     * list traversal is always possible by readers even during
474 >     * updates, tree traversal is not, mainly because of tree-rotations
475 >     * that may change the root node and/or its linkages.  TreeBins
476 >     * include a simple read-write lock mechanism parasitic on the
477 >     * main bin-synchronization strategy: Structural adjustments
478 >     * associated with an insertion or removal are already bin-locked
479 >     * (and so cannot conflict with other writers) but must wait for
480 >     * ongoing readers to finish. Since there can be only one such
481 >     * waiter, we use a simple scheme using a single "waiter" field to
482 >     * block writers.  However, readers need never block.  If the root
483 >     * lock is held, they proceed along the slow traversal path (via
484 >     * next-pointers) until the lock becomes available or the list is
485 >     * exhausted, whichever comes first. These cases are not fast, but
486 >     * maximize aggregate expected throughput.
487       *
488       * Maintaining API and serialization compatibility with previous
489       * versions of this class introduces several oddities. Mainly: We
# Line 506 | Line 493 | public class ConcurrentHashMapV8<K, V>
493       * time that we can guarantee to honor it.) We also declare an
494       * unused "Segment" class that is instantiated in minimal form
495       * only when serializing.
496 +     *
497 +     * Also, solely for compatibility with previous versions of this
498 +     * class, it extends AbstractMap, even though all of its methods
499 +     * are overridden, so it is just useless baggage.
500 +     *
501 +     * This file is organized to make things a little easier to follow
502 +     * while reading than they might otherwise: First the main static
503 +     * declarations and utilities, then fields, then main public
504 +     * methods (with a few factorings of multiple public methods into
505 +     * internal ones), then sizing methods, trees, traversers, and
506 +     * bulk operations.
507       */
508  
509      /* ---------------- Constants -------------- */
# Line 547 | Line 545 | public class ConcurrentHashMapV8<K, V>
545      private static final float LOAD_FACTOR = 0.75f;
546  
547      /**
550     * The buffer size for skipped bins during transfers. The
551     * value is arbitrary but should be large enough to avoid
552     * most locking stalls during resizes.
553     */
554    private static final int TRANSFER_BUFFER_SIZE = 32;
555
556    /**
548       * The bin count threshold for using a tree rather than list for a
549 <     * bin.  The value reflects the approximate break-even point for
550 <     * using tree-based operations.
551 <     */
552 <    private static final int TREE_THRESHOLD = 8;
553 <
563 <    /*
564 <     * Encodings for special uses of Node hash fields. See above for
565 <     * explanation.
549 >     * bin.  Bins are converted to trees when adding an element to a
550 >     * bin with at least this many nodes. The value must be greater
551 >     * than 2, and should be at least 8 to mesh with assumptions in
552 >     * tree removal about conversion back to plain bins upon
553 >     * shrinkage.
554       */
555 <    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
568 <    static final int LOCKED    = 0x40000000; // set/tested only as a bit
569 <    static final int WAITING   = 0xc0000000; // both bits set/tested together
570 <    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
571 <
572 <    /* ---------------- Fields -------------- */
555 >    static final int TREEIFY_THRESHOLD = 8;
556  
557      /**
558 <     * The array of bins. Lazily initialized upon first insertion.
559 <     * Size is always a power of two. Accessed directly by iterators.
558 >     * The bin count threshold for untreeifying a (split) bin during a
559 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
560 >     * most 6 to mesh with shrinkage detection under removal.
561       */
562 <    transient volatile Node[] table;
562 >    static final int UNTREEIFY_THRESHOLD = 6;
563  
564      /**
565 <     * The counter maintaining number of elements.
565 >     * The smallest table capacity for which bins may be treeified.
566 >     * (Otherwise the table is resized if too many nodes in a bin.)
567 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
568 >     * conflicts between resizing and treeification thresholds.
569       */
570 <    private transient final LongAdder counter;
570 >    static final int MIN_TREEIFY_CAPACITY = 64;
571  
572      /**
573 <     * Table initialization and resizing control.  When negative, the
574 <     * table is being initialized or resized. Otherwise, when table is
575 <     * null, holds the initial table size to use upon creation, or 0
576 <     * for default. After initialization, holds the next element count
577 <     * value upon which to resize the table.
573 >     * Minimum number of rebinnings per transfer step. Ranges are
574 >     * subdivided to allow multiple resizer threads.  This value
575 >     * serves as a lower bound to avoid resizers encountering
576 >     * excessive memory contention.  The value should be at least
577 >     * DEFAULT_CAPACITY.
578       */
579 <    private transient volatile int sizeCtl;
593 <
594 <    // views
595 <    private transient KeySetView<K,V> keySet;
596 <    private transient ValuesView<K,V> values;
597 <    private transient EntrySetView<K,V> entrySet;
598 <
599 <    /** For serialization compatibility. Null unless serialized; see below */
600 <    private Segment<K,V>[] segments;
601 <
602 <    /* ---------------- Table element access -------------- */
579 >    private static final int MIN_TRANSFER_STRIDE = 16;
580  
581      /*
582 <     * Volatile access methods are used for table elements as well as
606 <     * elements of in-progress next table while resizing.  Uses are
607 <     * null checked by callers, and implicitly bounds-checked, relying
608 <     * on the invariants that tab arrays have non-zero size, and all
609 <     * indices are masked with (tab.length - 1) which is never
610 <     * negative and always less than length. Note that, to be correct
611 <     * wrt arbitrary concurrency errors by users, bounds checks must
612 <     * operate on local variables, which accounts for some odd-looking
613 <     * inline assignments below.
582 >     * Encodings for Node hash fields. See above for explanation.
583       */
584 <
585 <    static final Node tabAt(Node[] tab, int i) { // used by Iter
586 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
587 <    }
588 <
589 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
590 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
591 <    }
592 <
593 <    private static final void setTabAt(Node[] tab, int i, Node v) {
594 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
595 <    }
584 >    static final int MOVED     = -1; // hash for forwarding nodes
585 >    static final int TREEBIN   = -2; // hash for roots of trees
586 >    static final int RESERVED  = -3; // hash for transient reservations
587 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
588 >
589 >    /** Number of CPUS, to place bounds on some sizings */
590 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
591 >
592 >    /** For serialization compatibility. */
593 >    private static final ObjectStreamField[] serialPersistentFields = {
594 >        new ObjectStreamField("segments", Segment[].class),
595 >        new ObjectStreamField("segmentMask", Integer.TYPE),
596 >        new ObjectStreamField("segmentShift", Integer.TYPE)
597 >    };
598  
599      /* ---------------- Nodes -------------- */
600  
601      /**
602 <     * Key-value entry. Note that this is never exported out as a
603 <     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
604 <     * field of MOVED are special, and do not contain user keys or
605 <     * values.  Otherwise, keys are never null, and null val fields
606 <     * indicate that a node is in the process of being deleted or
607 <     * created. For purposes of read-only access, a key may be read
608 <     * before a val, but can only be used after checking val to be
609 <     * non-null.
610 <     */
611 <    static class Node {
612 <        volatile int hash;
613 <        final Object key;
643 <        volatile Object val;
644 <        volatile Node next;
602 >     * Key-value entry.  This class is never exported out as a
603 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
604 >     * MapEntry below), but can be used for read-only traversals used
605 >     * in bulk tasks.  Subclasses of Node with a negative hash field
606 >     * are special, and contain null keys and values (but are never
607 >     * exported).  Otherwise, keys and vals are never null.
608 >     */
609 >    static class Node<K,V> implements Map.Entry<K,V> {
610 >        final int hash;
611 >        final K key;
612 >        volatile V val;
613 >        volatile Node<K,V> next;
614  
615 <        Node(int hash, Object key, Object val, Node next) {
615 >        Node(int hash, K key, V val, Node<K,V> next) {
616              this.hash = hash;
617              this.key = key;
618              this.val = val;
619              this.next = next;
620          }
621  
622 <        /** CompareAndSet the hash field */
623 <        final boolean casHash(int cmp, int val) {
624 <            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
625 <        }
626 <
627 <        /** The number of spins before blocking for a lock */
659 <        static final int MAX_SPINS =
660 <            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
661 <
662 <        /**
663 <         * Spins a while if LOCKED bit set and this node is the first
664 <         * of its bin, and then sets WAITING bits on hash field and
665 <         * blocks (once) if they are still set.  It is OK for this
666 <         * method to return even if lock is not available upon exit,
667 <         * which enables these simple single-wait mechanics.
668 <         *
669 <         * The corresponding signalling operation is performed within
670 <         * callers: Upon detecting that WAITING has been set when
671 <         * unlocking lock (via a failed CAS from non-waiting LOCKED
672 <         * state), unlockers acquire the sync lock and perform a
673 <         * notifyAll.
674 <         *
675 <         * The initial sanity check on tab and bounds is not currently
676 <         * necessary in the only usages of this method, but enables
677 <         * use in other future contexts.
678 <         */
679 <        final void tryAwaitLock(Node[] tab, int i) {
680 <            if (tab != null && i >= 0 && i < tab.length) { // sanity check
681 <                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
682 <                int spins = MAX_SPINS, h;
683 <                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
684 <                    if (spins >= 0) {
685 <                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
686 <                        if (r >= 0 && --spins == 0)
687 <                            Thread.yield();  // yield before block
688 <                    }
689 <                    else if (casHash(h, h | WAITING)) {
690 <                        synchronized (this) {
691 <                            if (tabAt(tab, i) == this &&
692 <                                (hash & WAITING) == WAITING) {
693 <                                try {
694 <                                    wait();
695 <                                } catch (InterruptedException ie) {
696 <                                    try {
697 <                                        Thread.currentThread().interrupt();
698 <                                    } catch (SecurityException ignore) {
699 <                                    }
700 <                                }
701 <                            }
702 <                            else
703 <                                notifyAll(); // possibly won race vs signaller
704 <                        }
705 <                        break;
706 <                    }
707 <                }
708 <            }
709 <        }
710 <
711 <        // Unsafe mechanics for casHash
712 <        private static final sun.misc.Unsafe UNSAFE;
713 <        private static final long hashOffset;
714 <
715 <        static {
716 <            try {
717 <                UNSAFE = getUnsafe();
718 <                Class<?> k = Node.class;
719 <                hashOffset = UNSAFE.objectFieldOffset
720 <                    (k.getDeclaredField("hash"));
721 <            } catch (Exception e) {
722 <                throw new Error(e);
723 <            }
724 <        }
725 <    }
726 <
727 <    /* ---------------- TreeBins -------------- */
728 <
729 <    /**
730 <     * Nodes for use in TreeBins
731 <     */
732 <    static final class TreeNode extends Node {
733 <        TreeNode parent;  // red-black tree links
734 <        TreeNode left;
735 <        TreeNode right;
736 <        TreeNode prev;    // needed to unlink next upon deletion
737 <        boolean red;
738 <
739 <        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
740 <            super(hash, key, val, next);
741 <            this.parent = parent;
742 <        }
743 <    }
744 <
745 <    /**
746 <     * A specialized form of red-black tree for use in bins
747 <     * whose size exceeds a threshold.
748 <     *
749 <     * TreeBins use a special form of comparison for search and
750 <     * related operations (which is the main reason we cannot use
751 <     * existing collections such as TreeMaps). TreeBins contain
752 <     * Comparable elements, but may contain others, as well as
753 <     * elements that are Comparable but not necessarily Comparable<T>
754 <     * for the same T, so we cannot invoke compareTo among them. To
755 <     * handle this, the tree is ordered primarily by hash value, then
756 <     * by getClass().getName() order, and then by Comparator order
757 <     * among elements of the same class.  On lookup at a node, if
758 <     * elements are not comparable or compare as 0, both left and
759 <     * right children may need to be searched in the case of tied hash
760 <     * values. (This corresponds to the full list search that would be
761 <     * necessary if all elements were non-Comparable and had tied
762 <     * hashes.)  The red-black balancing code is updated from
763 <     * pre-jdk-collections
764 <     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
765 <     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
766 <     * Algorithms" (CLR).
767 <     *
768 <     * TreeBins also maintain a separate locking discipline than
769 <     * regular bins. Because they are forwarded via special MOVED
770 <     * nodes at bin heads (which can never change once established),
771 <     * we cannot use those nodes as locks. Instead, TreeBin
772 <     * extends AbstractQueuedSynchronizer to support a simple form of
773 <     * read-write lock. For update operations and table validation,
774 <     * the exclusive form of lock behaves in the same way as bin-head
775 <     * locks. However, lookups use shared read-lock mechanics to allow
776 <     * multiple readers in the absence of writers.  Additionally,
777 <     * these lookups do not ever block: While the lock is not
778 <     * available, they proceed along the slow traversal path (via
779 <     * next-pointers) until the lock becomes available or the list is
780 <     * exhausted, whichever comes first. (These cases are not fast,
781 <     * but maximize aggregate expected throughput.)  The AQS mechanics
782 <     * for doing this are straightforward.  The lock state is held as
783 <     * AQS getState().  Read counts are negative; the write count (1)
784 <     * is positive.  There are no signalling preferences among readers
785 <     * and writers. Since we don't need to export full Lock API, we
786 <     * just override the minimal AQS methods and use them directly.
787 <     */
788 <    static final class TreeBin extends AbstractQueuedSynchronizer {
789 <        private static final long serialVersionUID = 2249069246763182397L;
790 <        transient TreeNode root;  // root of tree
791 <        transient TreeNode first; // head of next-pointer list
792 <
793 <        /* AQS overrides */
794 <        public final boolean isHeldExclusively() { return getState() > 0; }
795 <        public final boolean tryAcquire(int ignore) {
796 <            if (compareAndSetState(0, 1)) {
797 <                setExclusiveOwnerThread(Thread.currentThread());
798 <                return true;
799 <            }
800 <            return false;
801 <        }
802 <        public final boolean tryRelease(int ignore) {
803 <            setExclusiveOwnerThread(null);
804 <            setState(0);
805 <            return true;
806 <        }
807 <        public final int tryAcquireShared(int ignore) {
808 <            for (int c;;) {
809 <                if ((c = getState()) > 0)
810 <                    return -1;
811 <                if (compareAndSetState(c, c -1))
812 <                    return 1;
813 <            }
814 <        }
815 <        public final boolean tryReleaseShared(int ignore) {
816 <            int c;
817 <            do {} while (!compareAndSetState(c = getState(), c + 1));
818 <            return c == -1;
819 <        }
820 <
821 <        /** From CLR */
822 <        private void rotateLeft(TreeNode p) {
823 <            if (p != null) {
824 <                TreeNode r = p.right, pp, rl;
825 <                if ((rl = p.right = r.left) != null)
826 <                    rl.parent = p;
827 <                if ((pp = r.parent = p.parent) == null)
828 <                    root = r;
829 <                else if (pp.left == p)
830 <                    pp.left = r;
831 <                else
832 <                    pp.right = r;
833 <                r.left = p;
834 <                p.parent = r;
835 <            }
836 <        }
837 <
838 <        /** From CLR */
839 <        private void rotateRight(TreeNode p) {
840 <            if (p != null) {
841 <                TreeNode l = p.left, pp, lr;
842 <                if ((lr = p.left = l.right) != null)
843 <                    lr.parent = p;
844 <                if ((pp = l.parent = p.parent) == null)
845 <                    root = l;
846 <                else if (pp.right == p)
847 <                    pp.right = l;
848 <                else
849 <                    pp.left = l;
850 <                l.right = p;
851 <                p.parent = l;
852 <            }
853 <        }
854 <
855 <        /**
856 <         * Returns the TreeNode (or null if not found) for the given key
857 <         * starting at given root.
858 <         */
859 <        @SuppressWarnings("unchecked") final TreeNode getTreeNode
860 <            (int h, Object k, TreeNode p) {
861 <            Class<?> c = k.getClass();
862 <            while (p != null) {
863 <                int dir, ph;  Object pk; Class<?> pc;
864 <                if ((ph = p.hash) == h) {
865 <                    if ((pk = p.key) == k || k.equals(pk))
866 <                        return p;
867 <                    if (c != (pc = pk.getClass()) ||
868 <                        !(k instanceof Comparable) ||
869 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
870 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
871 <                        TreeNode r = null, s = null, pl, pr;
872 <                        if (dir >= 0) {
873 <                            if ((pl = p.left) != null && h <= pl.hash)
874 <                                s = pl;
875 <                        }
876 <                        else if ((pr = p.right) != null && h >= pr.hash)
877 <                            s = pr;
878 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
879 <                            return r;
880 <                    }
881 <                }
882 <                else
883 <                    dir = (h < ph) ? -1 : 1;
884 <                p = (dir > 0) ? p.right : p.left;
885 <            }
886 <            return null;
622 >        public final K getKey()       { return key; }
623 >        public final V getValue()     { return val; }
624 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
625 >        public final String toString(){ return key + "=" + val; }
626 >        public final V setValue(V value) {
627 >            throw new UnsupportedOperationException();
628          }
629  
630 <        /**
631 <         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
632 <         * read-lock to call getTreeNode, but during failure to get
633 <         * lock, searches along next links.
634 <         */
635 <        final Object getValue(int h, Object k) {
636 <            Node r = null;
896 <            int c = getState(); // Must read lock state first
897 <            for (Node e = first; e != null; e = e.next) {
898 <                if (c <= 0 && compareAndSetState(c, c - 1)) {
899 <                    try {
900 <                        r = getTreeNode(h, k, root);
901 <                    } finally {
902 <                        releaseShared(0);
903 <                    }
904 <                    break;
905 <                }
906 <                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
907 <                    r = e;
908 <                    break;
909 <                }
910 <                else
911 <                    c = getState();
912 <            }
913 <            return r == null ? null : r.val;
630 >        public final boolean equals(Object o) {
631 >            Object k, v, u; Map.Entry<?,?> e;
632 >            return ((o instanceof Map.Entry) &&
633 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
634 >                    (v = e.getValue()) != null &&
635 >                    (k == key || k.equals(key)) &&
636 >                    (v == (u = val) || v.equals(u)));
637          }
638  
639          /**
640 <         * Finds or adds a node.
918 <         * @return null if added
640 >         * Virtualized support for map.get(); overridden in subclasses.
641           */
642 <        @SuppressWarnings("unchecked") final TreeNode putTreeNode
643 <            (int h, Object k, Object v) {
644 <            Class<?> c = k.getClass();
645 <            TreeNode pp = root, p = null;
646 <            int dir = 0;
647 <            while (pp != null) { // find existing node or leaf to insert at
648 <                int ph;  Object pk; Class<?> pc;
649 <                p = pp;
650 <                if ((ph = p.hash) == h) {
929 <                    if ((pk = p.key) == k || k.equals(pk))
930 <                        return p;
931 <                    if (c != (pc = pk.getClass()) ||
932 <                        !(k instanceof Comparable) ||
933 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
934 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
935 <                        TreeNode r = null, s = null, pl, pr;
936 <                        if (dir >= 0) {
937 <                            if ((pl = p.left) != null && h <= pl.hash)
938 <                                s = pl;
939 <                        }
940 <                        else if ((pr = p.right) != null && h >= pr.hash)
941 <                            s = pr;
942 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
943 <                            return r;
944 <                    }
945 <                }
946 <                else
947 <                    dir = (h < ph) ? -1 : 1;
948 <                pp = (dir > 0) ? p.right : p.left;
949 <            }
950 <
951 <            TreeNode f = first;
952 <            TreeNode x = first = new TreeNode(h, k, v, f, p);
953 <            if (p == null)
954 <                root = x;
955 <            else { // attach and rebalance; adapted from CLR
956 <                TreeNode xp, xpp;
957 <                if (f != null)
958 <                    f.prev = x;
959 <                if (dir <= 0)
960 <                    p.left = x;
961 <                else
962 <                    p.right = x;
963 <                x.red = true;
964 <                while (x != null && (xp = x.parent) != null && xp.red &&
965 <                       (xpp = xp.parent) != null) {
966 <                    TreeNode xppl = xpp.left;
967 <                    if (xp == xppl) {
968 <                        TreeNode y = xpp.right;
969 <                        if (y != null && y.red) {
970 <                            y.red = false;
971 <                            xp.red = false;
972 <                            xpp.red = true;
973 <                            x = xpp;
974 <                        }
975 <                        else {
976 <                            if (x == xp.right) {
977 <                                rotateLeft(x = xp);
978 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
979 <                            }
980 <                            if (xp != null) {
981 <                                xp.red = false;
982 <                                if (xpp != null) {
983 <                                    xpp.red = true;
984 <                                    rotateRight(xpp);
985 <                                }
986 <                            }
987 <                        }
988 <                    }
989 <                    else {
990 <                        TreeNode y = xppl;
991 <                        if (y != null && y.red) {
992 <                            y.red = false;
993 <                            xp.red = false;
994 <                            xpp.red = true;
995 <                            x = xpp;
996 <                        }
997 <                        else {
998 <                            if (x == xp.left) {
999 <                                rotateRight(x = xp);
1000 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
1001 <                            }
1002 <                            if (xp != null) {
1003 <                                xp.red = false;
1004 <                                if (xpp != null) {
1005 <                                    xpp.red = true;
1006 <                                    rotateLeft(xpp);
1007 <                                }
1008 <                            }
1009 <                        }
1010 <                    }
1011 <                }
1012 <                TreeNode r = root;
1013 <                if (r != null && r.red)
1014 <                    r.red = false;
642 >        Node<K,V> find(int h, Object k) {
643 >            Node<K,V> e = this;
644 >            if (k != null) {
645 >                do {
646 >                    K ek;
647 >                    if (e.hash == h &&
648 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
649 >                        return e;
650 >                } while ((e = e.next) != null);
651              }
652              return null;
653          }
1018
1019        /**
1020         * Removes the given node, that must be present before this
1021         * call.  This is messier than typical red-black deletion code
1022         * because we cannot swap the contents of an interior node
1023         * with a leaf successor that is pinned by "next" pointers
1024         * that are accessible independently of lock. So instead we
1025         * swap the tree linkages.
1026         */
1027        final void deleteTreeNode(TreeNode p) {
1028            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
1029            TreeNode pred = p.prev;
1030            if (pred == null)
1031                first = next;
1032            else
1033                pred.next = next;
1034            if (next != null)
1035                next.prev = pred;
1036            TreeNode replacement;
1037            TreeNode pl = p.left;
1038            TreeNode pr = p.right;
1039            if (pl != null && pr != null) {
1040                TreeNode s = pr, sl;
1041                while ((sl = s.left) != null) // find successor
1042                    s = sl;
1043                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1044                TreeNode sr = s.right;
1045                TreeNode pp = p.parent;
1046                if (s == pr) { // p was s's direct parent
1047                    p.parent = s;
1048                    s.right = p;
1049                }
1050                else {
1051                    TreeNode sp = s.parent;
1052                    if ((p.parent = sp) != null) {
1053                        if (s == sp.left)
1054                            sp.left = p;
1055                        else
1056                            sp.right = p;
1057                    }
1058                    if ((s.right = pr) != null)
1059                        pr.parent = s;
1060                }
1061                p.left = null;
1062                if ((p.right = sr) != null)
1063                    sr.parent = p;
1064                if ((s.left = pl) != null)
1065                    pl.parent = s;
1066                if ((s.parent = pp) == null)
1067                    root = s;
1068                else if (p == pp.left)
1069                    pp.left = s;
1070                else
1071                    pp.right = s;
1072                replacement = sr;
1073            }
1074            else
1075                replacement = (pl != null) ? pl : pr;
1076            TreeNode pp = p.parent;
1077            if (replacement == null) {
1078                if (pp == null) {
1079                    root = null;
1080                    return;
1081                }
1082                replacement = p;
1083            }
1084            else {
1085                replacement.parent = pp;
1086                if (pp == null)
1087                    root = replacement;
1088                else if (p == pp.left)
1089                    pp.left = replacement;
1090                else
1091                    pp.right = replacement;
1092                p.left = p.right = p.parent = null;
1093            }
1094            if (!p.red) { // rebalance, from CLR
1095                TreeNode x = replacement;
1096                while (x != null) {
1097                    TreeNode xp, xpl;
1098                    if (x.red || (xp = x.parent) == null) {
1099                        x.red = false;
1100                        break;
1101                    }
1102                    if (x == (xpl = xp.left)) {
1103                        TreeNode sib = xp.right;
1104                        if (sib != null && sib.red) {
1105                            sib.red = false;
1106                            xp.red = true;
1107                            rotateLeft(xp);
1108                            sib = (xp = x.parent) == null ? null : xp.right;
1109                        }
1110                        if (sib == null)
1111                            x = xp;
1112                        else {
1113                            TreeNode sl = sib.left, sr = sib.right;
1114                            if ((sr == null || !sr.red) &&
1115                                (sl == null || !sl.red)) {
1116                                sib.red = true;
1117                                x = xp;
1118                            }
1119                            else {
1120                                if (sr == null || !sr.red) {
1121                                    if (sl != null)
1122                                        sl.red = false;
1123                                    sib.red = true;
1124                                    rotateRight(sib);
1125                                    sib = (xp = x.parent) == null ? null : xp.right;
1126                                }
1127                                if (sib != null) {
1128                                    sib.red = (xp == null) ? false : xp.red;
1129                                    if ((sr = sib.right) != null)
1130                                        sr.red = false;
1131                                }
1132                                if (xp != null) {
1133                                    xp.red = false;
1134                                    rotateLeft(xp);
1135                                }
1136                                x = root;
1137                            }
1138                        }
1139                    }
1140                    else { // symmetric
1141                        TreeNode sib = xpl;
1142                        if (sib != null && sib.red) {
1143                            sib.red = false;
1144                            xp.red = true;
1145                            rotateRight(xp);
1146                            sib = (xp = x.parent) == null ? null : xp.left;
1147                        }
1148                        if (sib == null)
1149                            x = xp;
1150                        else {
1151                            TreeNode sl = sib.left, sr = sib.right;
1152                            if ((sl == null || !sl.red) &&
1153                                (sr == null || !sr.red)) {
1154                                sib.red = true;
1155                                x = xp;
1156                            }
1157                            else {
1158                                if (sl == null || !sl.red) {
1159                                    if (sr != null)
1160                                        sr.red = false;
1161                                    sib.red = true;
1162                                    rotateLeft(sib);
1163                                    sib = (xp = x.parent) == null ? null : xp.left;
1164                                }
1165                                if (sib != null) {
1166                                    sib.red = (xp == null) ? false : xp.red;
1167                                    if ((sl = sib.left) != null)
1168                                        sl.red = false;
1169                                }
1170                                if (xp != null) {
1171                                    xp.red = false;
1172                                    rotateRight(xp);
1173                                }
1174                                x = root;
1175                            }
1176                        }
1177                    }
1178                }
1179            }
1180            if (p == replacement && (pp = p.parent) != null) {
1181                if (p == pp.left) // detach pointers
1182                    pp.left = null;
1183                else if (p == pp.right)
1184                    pp.right = null;
1185                p.parent = null;
1186            }
1187        }
654      }
655  
656 <    /* ---------------- Collision reduction methods -------------- */
656 >    /* ---------------- Static utilities -------------- */
657  
658      /**
659 <     * Spreads higher bits to lower, and also forces top 2 bits to 0.
660 <     * Because the table uses power-of-two masking, sets of hashes
661 <     * that vary only in bits above the current mask will always
662 <     * collide. (Among known examples are sets of Float keys holding
663 <     * consecutive whole numbers in small tables.)  To counter this,
664 <     * we apply a transform that spreads the impact of higher bits
659 >     * Spreads (XORs) higher bits of hash to lower and also forces top
660 >     * bit to 0. Because the table uses power-of-two masking, sets of
661 >     * hashes that vary only in bits above the current mask will
662 >     * always collide. (Among known examples are sets of Float keys
663 >     * holding consecutive whole numbers in small tables.)  So we
664 >     * apply a transform that spreads the impact of higher bits
665       * downward. There is a tradeoff between speed, utility, and
666       * quality of bit-spreading. Because many common sets of hashes
667 <     * are already reasonably distributed across bits (so don't benefit
668 <     * from spreading), and because we use trees to handle large sets
669 <     * of collisions in bins, we don't need excessively high quality.
670 <     */
671 <    private static final int spread(int h) {
672 <        h ^= (h >>> 18) ^ (h >>> 12);
1207 <        return (h ^ (h >>> 10)) & HASH_BITS;
1208 <    }
1209 <
1210 <    /**
1211 <     * Replaces a list bin with a tree bin. Call only when locked.
1212 <     * Fails to replace if the given key is non-comparable or table
1213 <     * is, or needs, resizing.
667 >     * are already reasonably distributed (so don't benefit from
668 >     * spreading), and because we use trees to handle large sets of
669 >     * collisions in bins, we just XOR some shifted bits in the
670 >     * cheapest possible way to reduce systematic lossage, as well as
671 >     * to incorporate impact of the highest bits that would otherwise
672 >     * never be used in index calculations because of table bounds.
673       */
674 <    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
675 <        if ((key instanceof Comparable) &&
1217 <            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1218 <            TreeBin t = new TreeBin();
1219 <            for (Node e = tabAt(tab, index); e != null; e = e.next)
1220 <                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1221 <            setTabAt(tab, index, new Node(MOVED, t, null, null));
1222 <        }
1223 <    }
1224 <
1225 <    /* ---------------- Internal access and update methods -------------- */
1226 <
1227 <    /** Implementation for get and containsKey */
1228 <    private final Object internalGet(Object k) {
1229 <        int h = spread(k.hashCode());
1230 <        retry: for (Node[] tab = table; tab != null;) {
1231 <            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1232 <            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1233 <                if ((eh = e.hash) == MOVED) {
1234 <                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1235 <                        return ((TreeBin)ek).getValue(h, k);
1236 <                    else {                        // restart with new table
1237 <                        tab = (Node[])ek;
1238 <                        continue retry;
1239 <                    }
1240 <                }
1241 <                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1242 <                         ((ek = e.key) == k || k.equals(ek)))
1243 <                    return ev;
1244 <            }
1245 <            break;
1246 <        }
1247 <        return null;
674 >    static final int spread(int h) {
675 >        return (h ^ (h >>> 16)) & HASH_BITS;
676      }
677  
678      /**
1251     * Implementation for the four public remove/replace methods:
1252     * Replaces node value with v, conditional upon match of cv if
1253     * non-null.  If resulting value is null, delete.
1254     */
1255    private final Object internalReplace(Object k, Object v, Object cv) {
1256        int h = spread(k.hashCode());
1257        Object oldVal = null;
1258        for (Node[] tab = table;;) {
1259            Node f; int i, fh; Object fk;
1260            if (tab == null ||
1261                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1262                break;
1263            else if ((fh = f.hash) == MOVED) {
1264                if ((fk = f.key) instanceof TreeBin) {
1265                    TreeBin t = (TreeBin)fk;
1266                    boolean validated = false;
1267                    boolean deleted = false;
1268                    t.acquire(0);
1269                    try {
1270                        if (tabAt(tab, i) == f) {
1271                            validated = true;
1272                            TreeNode p = t.getTreeNode(h, k, t.root);
1273                            if (p != null) {
1274                                Object pv = p.val;
1275                                if (cv == null || cv == pv || cv.equals(pv)) {
1276                                    oldVal = pv;
1277                                    if ((p.val = v) == null) {
1278                                        deleted = true;
1279                                        t.deleteTreeNode(p);
1280                                    }
1281                                }
1282                            }
1283                        }
1284                    } finally {
1285                        t.release(0);
1286                    }
1287                    if (validated) {
1288                        if (deleted)
1289                            counter.add(-1L);
1290                        break;
1291                    }
1292                }
1293                else
1294                    tab = (Node[])fk;
1295            }
1296            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1297                break;                          // rules out possible existence
1298            else if ((fh & LOCKED) != 0) {
1299                checkForResize();               // try resizing if can't get lock
1300                f.tryAwaitLock(tab, i);
1301            }
1302            else if (f.casHash(fh, fh | LOCKED)) {
1303                boolean validated = false;
1304                boolean deleted = false;
1305                try {
1306                    if (tabAt(tab, i) == f) {
1307                        validated = true;
1308                        for (Node e = f, pred = null;;) {
1309                            Object ek, ev;
1310                            if ((e.hash & HASH_BITS) == h &&
1311                                ((ev = e.val) != null) &&
1312                                ((ek = e.key) == k || k.equals(ek))) {
1313                                if (cv == null || cv == ev || cv.equals(ev)) {
1314                                    oldVal = ev;
1315                                    if ((e.val = v) == null) {
1316                                        deleted = true;
1317                                        Node en = e.next;
1318                                        if (pred != null)
1319                                            pred.next = en;
1320                                        else
1321                                            setTabAt(tab, i, en);
1322                                    }
1323                                }
1324                                break;
1325                            }
1326                            pred = e;
1327                            if ((e = e.next) == null)
1328                                break;
1329                        }
1330                    }
1331                } finally {
1332                    if (!f.casHash(fh | LOCKED, fh)) {
1333                        f.hash = fh;
1334                        synchronized (f) { f.notifyAll(); };
1335                    }
1336                }
1337                if (validated) {
1338                    if (deleted)
1339                        counter.add(-1L);
1340                    break;
1341                }
1342            }
1343        }
1344        return oldVal;
1345    }
1346
1347    /*
1348     * Internal versions of the six insertion methods, each a
1349     * little more complicated than the last. All have
1350     * the same basic structure as the first (internalPut):
1351     *  1. If table uninitialized, create
1352     *  2. If bin empty, try to CAS new node
1353     *  3. If bin stale, use new table
1354     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1355     *  5. Lock and validate; if valid, scan and add or update
1356     *
1357     * The others interweave other checks and/or alternative actions:
1358     *  * Plain put checks for and performs resize after insertion.
1359     *  * putIfAbsent prescans for mapping without lock (and fails to add
1360     *    if present), which also makes pre-emptive resize checks worthwhile.
1361     *  * computeIfAbsent extends form used in putIfAbsent with additional
1362     *    mechanics to deal with, calls, potential exceptions and null
1363     *    returns from function call.
1364     *  * compute uses the same function-call mechanics, but without
1365     *    the prescans
1366     *  * merge acts as putIfAbsent in the absent case, but invokes the
1367     *    update function if present
1368     *  * putAll attempts to pre-allocate enough table space
1369     *    and more lazily performs count updates and checks.
1370     *
1371     * Someday when details settle down a bit more, it might be worth
1372     * some factoring to reduce sprawl.
1373     */
1374
1375    /** Implementation for put */
1376    private final Object internalPut(Object k, Object v) {
1377        int h = spread(k.hashCode());
1378        int count = 0;
1379        for (Node[] tab = table;;) {
1380            int i; Node f; int fh; Object fk;
1381            if (tab == null)
1382                tab = initTable();
1383            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1384                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1385                    break;                   // no lock when adding to empty bin
1386            }
1387            else if ((fh = f.hash) == MOVED) {
1388                if ((fk = f.key) instanceof TreeBin) {
1389                    TreeBin t = (TreeBin)fk;
1390                    Object oldVal = null;
1391                    t.acquire(0);
1392                    try {
1393                        if (tabAt(tab, i) == f) {
1394                            count = 2;
1395                            TreeNode p = t.putTreeNode(h, k, v);
1396                            if (p != null) {
1397                                oldVal = p.val;
1398                                p.val = v;
1399                            }
1400                        }
1401                    } finally {
1402                        t.release(0);
1403                    }
1404                    if (count != 0) {
1405                        if (oldVal != null)
1406                            return oldVal;
1407                        break;
1408                    }
1409                }
1410                else
1411                    tab = (Node[])fk;
1412            }
1413            else if ((fh & LOCKED) != 0) {
1414                checkForResize();
1415                f.tryAwaitLock(tab, i);
1416            }
1417            else if (f.casHash(fh, fh | LOCKED)) {
1418                Object oldVal = null;
1419                try {                        // needed in case equals() throws
1420                    if (tabAt(tab, i) == f) {
1421                        count = 1;
1422                        for (Node e = f;; ++count) {
1423                            Object ek, ev;
1424                            if ((e.hash & HASH_BITS) == h &&
1425                                (ev = e.val) != null &&
1426                                ((ek = e.key) == k || k.equals(ek))) {
1427                                oldVal = ev;
1428                                e.val = v;
1429                                break;
1430                            }
1431                            Node last = e;
1432                            if ((e = e.next) == null) {
1433                                last.next = new Node(h, k, v, null);
1434                                if (count >= TREE_THRESHOLD)
1435                                    replaceWithTreeBin(tab, i, k);
1436                                break;
1437                            }
1438                        }
1439                    }
1440                } finally {                  // unlock and signal if needed
1441                    if (!f.casHash(fh | LOCKED, fh)) {
1442                        f.hash = fh;
1443                        synchronized (f) { f.notifyAll(); };
1444                    }
1445                }
1446                if (count != 0) {
1447                    if (oldVal != null)
1448                        return oldVal;
1449                    if (tab.length <= 64)
1450                        count = 2;
1451                    break;
1452                }
1453            }
1454        }
1455        counter.add(1L);
1456        if (count > 1)
1457            checkForResize();
1458        return null;
1459    }
1460
1461    /** Implementation for putIfAbsent */
1462    private final Object internalPutIfAbsent(Object k, Object v) {
1463        int h = spread(k.hashCode());
1464        int count = 0;
1465        for (Node[] tab = table;;) {
1466            int i; Node f; int fh; Object fk, fv;
1467            if (tab == null)
1468                tab = initTable();
1469            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1470                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1471                    break;
1472            }
1473            else if ((fh = f.hash) == MOVED) {
1474                if ((fk = f.key) instanceof TreeBin) {
1475                    TreeBin t = (TreeBin)fk;
1476                    Object oldVal = null;
1477                    t.acquire(0);
1478                    try {
1479                        if (tabAt(tab, i) == f) {
1480                            count = 2;
1481                            TreeNode p = t.putTreeNode(h, k, v);
1482                            if (p != null)
1483                                oldVal = p.val;
1484                        }
1485                    } finally {
1486                        t.release(0);
1487                    }
1488                    if (count != 0) {
1489                        if (oldVal != null)
1490                            return oldVal;
1491                        break;
1492                    }
1493                }
1494                else
1495                    tab = (Node[])fk;
1496            }
1497            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1498                     ((fk = f.key) == k || k.equals(fk)))
1499                return fv;
1500            else {
1501                Node g = f.next;
1502                if (g != null) { // at least 2 nodes -- search and maybe resize
1503                    for (Node e = g;;) {
1504                        Object ek, ev;
1505                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1506                            ((ek = e.key) == k || k.equals(ek)))
1507                            return ev;
1508                        if ((e = e.next) == null) {
1509                            checkForResize();
1510                            break;
1511                        }
1512                    }
1513                }
1514                if (((fh = f.hash) & LOCKED) != 0) {
1515                    checkForResize();
1516                    f.tryAwaitLock(tab, i);
1517                }
1518                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1519                    Object oldVal = null;
1520                    try {
1521                        if (tabAt(tab, i) == f) {
1522                            count = 1;
1523                            for (Node e = f;; ++count) {
1524                                Object ek, ev;
1525                                if ((e.hash & HASH_BITS) == h &&
1526                                    (ev = e.val) != null &&
1527                                    ((ek = e.key) == k || k.equals(ek))) {
1528                                    oldVal = ev;
1529                                    break;
1530                                }
1531                                Node last = e;
1532                                if ((e = e.next) == null) {
1533                                    last.next = new Node(h, k, v, null);
1534                                    if (count >= TREE_THRESHOLD)
1535                                        replaceWithTreeBin(tab, i, k);
1536                                    break;
1537                                }
1538                            }
1539                        }
1540                    } finally {
1541                        if (!f.casHash(fh | LOCKED, fh)) {
1542                            f.hash = fh;
1543                            synchronized (f) { f.notifyAll(); };
1544                        }
1545                    }
1546                    if (count != 0) {
1547                        if (oldVal != null)
1548                            return oldVal;
1549                        if (tab.length <= 64)
1550                            count = 2;
1551                        break;
1552                    }
1553                }
1554            }
1555        }
1556        counter.add(1L);
1557        if (count > 1)
1558            checkForResize();
1559        return null;
1560    }
1561
1562    /** Implementation for computeIfAbsent */
1563    private final Object internalComputeIfAbsent(K k,
1564                                                 Fun<? super K, ?> mf) {
1565        int h = spread(k.hashCode());
1566        Object val = null;
1567        int count = 0;
1568        for (Node[] tab = table;;) {
1569            Node f; int i, fh; Object fk, fv;
1570            if (tab == null)
1571                tab = initTable();
1572            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1573                Node node = new Node(fh = h | LOCKED, k, null, null);
1574                if (casTabAt(tab, i, null, node)) {
1575                    count = 1;
1576                    try {
1577                        if ((val = mf.apply(k)) != null)
1578                            node.val = val;
1579                    } finally {
1580                        if (val == null)
1581                            setTabAt(tab, i, null);
1582                        if (!node.casHash(fh, h)) {
1583                            node.hash = h;
1584                            synchronized (node) { node.notifyAll(); };
1585                        }
1586                    }
1587                }
1588                if (count != 0)
1589                    break;
1590            }
1591            else if ((fh = f.hash) == MOVED) {
1592                if ((fk = f.key) instanceof TreeBin) {
1593                    TreeBin t = (TreeBin)fk;
1594                    boolean added = false;
1595                    t.acquire(0);
1596                    try {
1597                        if (tabAt(tab, i) == f) {
1598                            count = 1;
1599                            TreeNode p = t.getTreeNode(h, k, t.root);
1600                            if (p != null)
1601                                val = p.val;
1602                            else if ((val = mf.apply(k)) != null) {
1603                                added = true;
1604                                count = 2;
1605                                t.putTreeNode(h, k, val);
1606                            }
1607                        }
1608                    } finally {
1609                        t.release(0);
1610                    }
1611                    if (count != 0) {
1612                        if (!added)
1613                            return val;
1614                        break;
1615                    }
1616                }
1617                else
1618                    tab = (Node[])fk;
1619            }
1620            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1621                     ((fk = f.key) == k || k.equals(fk)))
1622                return fv;
1623            else {
1624                Node g = f.next;
1625                if (g != null) {
1626                    for (Node e = g;;) {
1627                        Object ek, ev;
1628                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1629                            ((ek = e.key) == k || k.equals(ek)))
1630                            return ev;
1631                        if ((e = e.next) == null) {
1632                            checkForResize();
1633                            break;
1634                        }
1635                    }
1636                }
1637                if (((fh = f.hash) & LOCKED) != 0) {
1638                    checkForResize();
1639                    f.tryAwaitLock(tab, i);
1640                }
1641                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1642                    boolean added = false;
1643                    try {
1644                        if (tabAt(tab, i) == f) {
1645                            count = 1;
1646                            for (Node e = f;; ++count) {
1647                                Object ek, ev;
1648                                if ((e.hash & HASH_BITS) == h &&
1649                                    (ev = e.val) != null &&
1650                                    ((ek = e.key) == k || k.equals(ek))) {
1651                                    val = ev;
1652                                    break;
1653                                }
1654                                Node last = e;
1655                                if ((e = e.next) == null) {
1656                                    if ((val = mf.apply(k)) != null) {
1657                                        added = true;
1658                                        last.next = new Node(h, k, val, null);
1659                                        if (count >= TREE_THRESHOLD)
1660                                            replaceWithTreeBin(tab, i, k);
1661                                    }
1662                                    break;
1663                                }
1664                            }
1665                        }
1666                    } finally {
1667                        if (!f.casHash(fh | LOCKED, fh)) {
1668                            f.hash = fh;
1669                            synchronized (f) { f.notifyAll(); };
1670                        }
1671                    }
1672                    if (count != 0) {
1673                        if (!added)
1674                            return val;
1675                        if (tab.length <= 64)
1676                            count = 2;
1677                        break;
1678                    }
1679                }
1680            }
1681        }
1682        if (val != null) {
1683            counter.add(1L);
1684            if (count > 1)
1685                checkForResize();
1686        }
1687        return val;
1688    }
1689
1690    /** Implementation for compute */
1691    @SuppressWarnings("unchecked") private final Object internalCompute
1692        (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1693        int h = spread(k.hashCode());
1694        Object val = null;
1695        int delta = 0;
1696        int count = 0;
1697        for (Node[] tab = table;;) {
1698            Node f; int i, fh; Object fk;
1699            if (tab == null)
1700                tab = initTable();
1701            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1702                if (onlyIfPresent)
1703                    break;
1704                Node node = new Node(fh = h | LOCKED, k, null, null);
1705                if (casTabAt(tab, i, null, node)) {
1706                    try {
1707                        count = 1;
1708                        if ((val = mf.apply(k, null)) != null) {
1709                            node.val = val;
1710                            delta = 1;
1711                        }
1712                    } finally {
1713                        if (delta == 0)
1714                            setTabAt(tab, i, null);
1715                        if (!node.casHash(fh, h)) {
1716                            node.hash = h;
1717                            synchronized (node) { node.notifyAll(); };
1718                        }
1719                    }
1720                }
1721                if (count != 0)
1722                    break;
1723            }
1724            else if ((fh = f.hash) == MOVED) {
1725                if ((fk = f.key) instanceof TreeBin) {
1726                    TreeBin t = (TreeBin)fk;
1727                    t.acquire(0);
1728                    try {
1729                        if (tabAt(tab, i) == f) {
1730                            count = 1;
1731                            TreeNode p = t.getTreeNode(h, k, t.root);
1732                            Object pv = (p == null) ? null : p.val;
1733                            if ((val = mf.apply(k, (V)pv)) != null) {
1734                                if (p != null)
1735                                    p.val = val;
1736                                else {
1737                                    count = 2;
1738                                    delta = 1;
1739                                    t.putTreeNode(h, k, val);
1740                                }
1741                            }
1742                            else if (p != null) {
1743                                delta = -1;
1744                                t.deleteTreeNode(p);
1745                            }
1746                        }
1747                    } finally {
1748                        t.release(0);
1749                    }
1750                    if (count != 0)
1751                        break;
1752                }
1753                else
1754                    tab = (Node[])fk;
1755            }
1756            else if ((fh & LOCKED) != 0) {
1757                checkForResize();
1758                f.tryAwaitLock(tab, i);
1759            }
1760            else if (f.casHash(fh, fh | LOCKED)) {
1761                try {
1762                    if (tabAt(tab, i) == f) {
1763                        count = 1;
1764                        for (Node e = f, pred = null;; ++count) {
1765                            Object ek, ev;
1766                            if ((e.hash & HASH_BITS) == h &&
1767                                (ev = e.val) != null &&
1768                                ((ek = e.key) == k || k.equals(ek))) {
1769                                val = mf.apply(k, (V)ev);
1770                                if (val != null)
1771                                    e.val = val;
1772                                else {
1773                                    delta = -1;
1774                                    Node en = e.next;
1775                                    if (pred != null)
1776                                        pred.next = en;
1777                                    else
1778                                        setTabAt(tab, i, en);
1779                                }
1780                                break;
1781                            }
1782                            pred = e;
1783                            if ((e = e.next) == null) {
1784                                if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1785                                    pred.next = new Node(h, k, val, null);
1786                                    delta = 1;
1787                                    if (count >= TREE_THRESHOLD)
1788                                        replaceWithTreeBin(tab, i, k);
1789                                }
1790                                break;
1791                            }
1792                        }
1793                    }
1794                } finally {
1795                    if (!f.casHash(fh | LOCKED, fh)) {
1796                        f.hash = fh;
1797                        synchronized (f) { f.notifyAll(); };
1798                    }
1799                }
1800                if (count != 0) {
1801                    if (tab.length <= 64)
1802                        count = 2;
1803                    break;
1804                }
1805            }
1806        }
1807        if (delta != 0) {
1808            counter.add((long)delta);
1809            if (count > 1)
1810                checkForResize();
1811        }
1812        return val;
1813    }
1814
1815    /** Implementation for merge */
1816    @SuppressWarnings("unchecked") private final Object internalMerge
1817        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1818        int h = spread(k.hashCode());
1819        Object val = null;
1820        int delta = 0;
1821        int count = 0;
1822        for (Node[] tab = table;;) {
1823            int i; Node f; int fh; Object fk, fv;
1824            if (tab == null)
1825                tab = initTable();
1826            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1827                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1828                    delta = 1;
1829                    val = v;
1830                    break;
1831                }
1832            }
1833            else if ((fh = f.hash) == MOVED) {
1834                if ((fk = f.key) instanceof TreeBin) {
1835                    TreeBin t = (TreeBin)fk;
1836                    t.acquire(0);
1837                    try {
1838                        if (tabAt(tab, i) == f) {
1839                            count = 1;
1840                            TreeNode p = t.getTreeNode(h, k, t.root);
1841                            val = (p == null) ? v : mf.apply((V)p.val, v);
1842                            if (val != null) {
1843                                if (p != null)
1844                                    p.val = val;
1845                                else {
1846                                    count = 2;
1847                                    delta = 1;
1848                                    t.putTreeNode(h, k, val);
1849                                }
1850                            }
1851                            else if (p != null) {
1852                                delta = -1;
1853                                t.deleteTreeNode(p);
1854                            }
1855                        }
1856                    } finally {
1857                        t.release(0);
1858                    }
1859                    if (count != 0)
1860                        break;
1861                }
1862                else
1863                    tab = (Node[])fk;
1864            }
1865            else if ((fh & LOCKED) != 0) {
1866                checkForResize();
1867                f.tryAwaitLock(tab, i);
1868            }
1869            else if (f.casHash(fh, fh | LOCKED)) {
1870                try {
1871                    if (tabAt(tab, i) == f) {
1872                        count = 1;
1873                        for (Node e = f, pred = null;; ++count) {
1874                            Object ek, ev;
1875                            if ((e.hash & HASH_BITS) == h &&
1876                                (ev = e.val) != null &&
1877                                ((ek = e.key) == k || k.equals(ek))) {
1878                                val = mf.apply(v, (V)ev);
1879                                if (val != null)
1880                                    e.val = val;
1881                                else {
1882                                    delta = -1;
1883                                    Node en = e.next;
1884                                    if (pred != null)
1885                                        pred.next = en;
1886                                    else
1887                                        setTabAt(tab, i, en);
1888                                }
1889                                break;
1890                            }
1891                            pred = e;
1892                            if ((e = e.next) == null) {
1893                                val = v;
1894                                pred.next = new Node(h, k, val, null);
1895                                delta = 1;
1896                                if (count >= TREE_THRESHOLD)
1897                                    replaceWithTreeBin(tab, i, k);
1898                                break;
1899                            }
1900                        }
1901                    }
1902                } finally {
1903                    if (!f.casHash(fh | LOCKED, fh)) {
1904                        f.hash = fh;
1905                        synchronized (f) { f.notifyAll(); };
1906                    }
1907                }
1908                if (count != 0) {
1909                    if (tab.length <= 64)
1910                        count = 2;
1911                    break;
1912                }
1913            }
1914        }
1915        if (delta != 0) {
1916            counter.add((long)delta);
1917            if (count > 1)
1918                checkForResize();
1919        }
1920        return val;
1921    }
1922
1923    /** Implementation for putAll */
1924    private final void internalPutAll(Map<?, ?> m) {
1925        tryPresize(m.size());
1926        long delta = 0L;     // number of uncommitted additions
1927        boolean npe = false; // to throw exception on exit for nulls
1928        try {                // to clean up counts on other exceptions
1929            for (Map.Entry<?, ?> entry : m.entrySet()) {
1930                Object k, v;
1931                if (entry == null || (k = entry.getKey()) == null ||
1932                    (v = entry.getValue()) == null) {
1933                    npe = true;
1934                    break;
1935                }
1936                int h = spread(k.hashCode());
1937                for (Node[] tab = table;;) {
1938                    int i; Node f; int fh; Object fk;
1939                    if (tab == null)
1940                        tab = initTable();
1941                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1942                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1943                            ++delta;
1944                            break;
1945                        }
1946                    }
1947                    else if ((fh = f.hash) == MOVED) {
1948                        if ((fk = f.key) instanceof TreeBin) {
1949                            TreeBin t = (TreeBin)fk;
1950                            boolean validated = false;
1951                            t.acquire(0);
1952                            try {
1953                                if (tabAt(tab, i) == f) {
1954                                    validated = true;
1955                                    TreeNode p = t.getTreeNode(h, k, t.root);
1956                                    if (p != null)
1957                                        p.val = v;
1958                                    else {
1959                                        t.putTreeNode(h, k, v);
1960                                        ++delta;
1961                                    }
1962                                }
1963                            } finally {
1964                                t.release(0);
1965                            }
1966                            if (validated)
1967                                break;
1968                        }
1969                        else
1970                            tab = (Node[])fk;
1971                    }
1972                    else if ((fh & LOCKED) != 0) {
1973                        counter.add(delta);
1974                        delta = 0L;
1975                        checkForResize();
1976                        f.tryAwaitLock(tab, i);
1977                    }
1978                    else if (f.casHash(fh, fh | LOCKED)) {
1979                        int count = 0;
1980                        try {
1981                            if (tabAt(tab, i) == f) {
1982                                count = 1;
1983                                for (Node e = f;; ++count) {
1984                                    Object ek, ev;
1985                                    if ((e.hash & HASH_BITS) == h &&
1986                                        (ev = e.val) != null &&
1987                                        ((ek = e.key) == k || k.equals(ek))) {
1988                                        e.val = v;
1989                                        break;
1990                                    }
1991                                    Node last = e;
1992                                    if ((e = e.next) == null) {
1993                                        ++delta;
1994                                        last.next = new Node(h, k, v, null);
1995                                        if (count >= TREE_THRESHOLD)
1996                                            replaceWithTreeBin(tab, i, k);
1997                                        break;
1998                                    }
1999                                }
2000                            }
2001                        } finally {
2002                            if (!f.casHash(fh | LOCKED, fh)) {
2003                                f.hash = fh;
2004                                synchronized (f) { f.notifyAll(); };
2005                            }
2006                        }
2007                        if (count != 0) {
2008                            if (count > 1) {
2009                                counter.add(delta);
2010                                delta = 0L;
2011                                checkForResize();
2012                            }
2013                            break;
2014                        }
2015                    }
2016                }
2017            }
2018        } finally {
2019            if (delta != 0)
2020                counter.add(delta);
2021        }
2022        if (npe)
2023            throw new NullPointerException();
2024    }
2025
2026    /* ---------------- Table Initialization and Resizing -------------- */
2027
2028    /**
679       * Returns a power of two table size for the given desired capacity.
680       * See Hackers Delight, sec 3.2
681       */
# Line 2040 | Line 690 | public class ConcurrentHashMapV8<K, V>
690      }
691  
692      /**
693 <     * Initializes table, using the size recorded in sizeCtl.
693 >     * Returns x's Class if it is of the form "class C implements
694 >     * Comparable<C>", else null.
695       */
696 <    private final Node[] initTable() {
697 <        Node[] tab; int sc;
698 <        while ((tab = table) == null) {
699 <            if ((sc = sizeCtl) < 0)
700 <                Thread.yield(); // lost initialization race; just spin
701 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
702 <                try {
703 <                    if ((tab = table) == null) {
704 <                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
705 <                        tab = table = new Node[n];
706 <                        sc = n - (n >>> 2);
707 <                    }
708 <                } finally {
2058 <                    sizeCtl = sc;
2059 <                }
2060 <                break;
2061 <            }
2062 <        }
2063 <        return tab;
2064 <    }
2065 <
2066 <    /**
2067 <     * If table is too small and not already resizing, creates next
2068 <     * table and transfers bins.  Rechecks occupancy after a transfer
2069 <     * to see if another resize is already needed because resizings
2070 <     * are lagging additions.
2071 <     */
2072 <    private final void checkForResize() {
2073 <        Node[] tab; int n, sc;
2074 <        while ((tab = table) != null &&
2075 <               (n = tab.length) < MAXIMUM_CAPACITY &&
2076 <               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
2077 <               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2078 <            try {
2079 <                if (tab == table) {
2080 <                    table = rebuild(tab);
2081 <                    sc = (n << 1) - (n >>> 1);
696 >    static Class<?> comparableClassFor(Object x) {
697 >        if (x instanceof Comparable) {
698 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
699 >            if ((c = x.getClass()) == String.class) // bypass checks
700 >                return c;
701 >            if ((ts = c.getGenericInterfaces()) != null) {
702 >                for (int i = 0; i < ts.length; ++i) {
703 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
704 >                        ((p = (ParameterizedType)t).getRawType() ==
705 >                         Comparable.class) &&
706 >                        (as = p.getActualTypeArguments()) != null &&
707 >                        as.length == 1 && as[0] == c) // type arg is c
708 >                        return c;
709                  }
2083            } finally {
2084                sizeCtl = sc;
710              }
711          }
712 +        return null;
713      }
714  
715      /**
716 <     * Tries to presize table to accommodate the given number of elements.
717 <     *
2092 <     * @param size number of elements (doesn't need to be perfectly accurate)
716 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
717 >     * class), else 0.
718       */
719 <    private final void tryPresize(int size) {
720 <        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
721 <            tableSizeFor(size + (size >>> 1) + 1);
722 <        int sc;
2098 <        while ((sc = sizeCtl) >= 0) {
2099 <            Node[] tab = table; int n;
2100 <            if (tab == null || (n = tab.length) == 0) {
2101 <                n = (sc > c) ? sc : c;
2102 <                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2103 <                    try {
2104 <                        if (table == tab) {
2105 <                            table = new Node[n];
2106 <                            sc = n - (n >>> 2);
2107 <                        }
2108 <                    } finally {
2109 <                        sizeCtl = sc;
2110 <                    }
2111 <                }
2112 <            }
2113 <            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2114 <                break;
2115 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2116 <                try {
2117 <                    if (table == tab) {
2118 <                        table = rebuild(tab);
2119 <                        sc = (n << 1) - (n >>> 1);
2120 <                    }
2121 <                } finally {
2122 <                    sizeCtl = sc;
2123 <                }
2124 <            }
2125 <        }
719 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
720 >    static int compareComparables(Class<?> kc, Object k, Object x) {
721 >        return (x == null || x.getClass() != kc ? 0 :
722 >                ((Comparable)k).compareTo(x));
723      }
724  
725 +    /* ---------------- Table element access -------------- */
726 +
727      /*
728 <     * Moves and/or copies the nodes in each bin to new table. See
729 <     * above for explanation.
730 <     *
731 <     * @return the new table
732 <     */
733 <    private static final Node[] rebuild(Node[] tab) {
734 <        int n = tab.length;
735 <        Node[] nextTab = new Node[n << 1];
736 <        Node fwd = new Node(MOVED, nextTab, null, null);
737 <        int[] buffer = null;       // holds bins to revisit; null until needed
738 <        Node rev = null;           // reverse forwarder; null until needed
739 <        int nbuffered = 0;         // the number of bins in buffer list
740 <        int bufferIndex = 0;       // buffer index of current buffered bin
741 <        int bin = n - 1;           // current non-buffered bin or -1 if none
742 <
743 <        for (int i = bin;;) {      // start upwards sweep
744 <            int fh; Node f;
745 <            if ((f = tabAt(tab, i)) == null) {
746 <                if (bin >= 0) {    // Unbuffered; no lock needed (or available)
747 <                    if (!casTabAt(tab, i, f, fwd))
748 <                        continue;
749 <                }
750 <                else {             // transiently use a locked forwarding node
2152 <                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2153 <                    if (!casTabAt(tab, i, f, g))
2154 <                        continue;
2155 <                    setTabAt(nextTab, i, null);
2156 <                    setTabAt(nextTab, i + n, null);
2157 <                    setTabAt(tab, i, fwd);
2158 <                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
2159 <                        g.hash = MOVED;
2160 <                        synchronized (g) { g.notifyAll(); }
2161 <                    }
2162 <                }
2163 <            }
2164 <            else if ((fh = f.hash) == MOVED) {
2165 <                Object fk = f.key;
2166 <                if (fk instanceof TreeBin) {
2167 <                    TreeBin t = (TreeBin)fk;
2168 <                    boolean validated = false;
2169 <                    t.acquire(0);
2170 <                    try {
2171 <                        if (tabAt(tab, i) == f) {
2172 <                            validated = true;
2173 <                            splitTreeBin(nextTab, i, t);
2174 <                            setTabAt(tab, i, fwd);
2175 <                        }
2176 <                    } finally {
2177 <                        t.release(0);
2178 <                    }
2179 <                    if (!validated)
2180 <                        continue;
2181 <                }
2182 <            }
2183 <            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2184 <                boolean validated = false;
2185 <                try {              // split to lo and hi lists; copying as needed
2186 <                    if (tabAt(tab, i) == f) {
2187 <                        validated = true;
2188 <                        splitBin(nextTab, i, f);
2189 <                        setTabAt(tab, i, fwd);
2190 <                    }
2191 <                } finally {
2192 <                    if (!f.casHash(fh | LOCKED, fh)) {
2193 <                        f.hash = fh;
2194 <                        synchronized (f) { f.notifyAll(); };
2195 <                    }
2196 <                }
2197 <                if (!validated)
2198 <                    continue;
2199 <            }
2200 <            else {
2201 <                if (buffer == null) // initialize buffer for revisits
2202 <                    buffer = new int[TRANSFER_BUFFER_SIZE];
2203 <                if (bin < 0 && bufferIndex > 0) {
2204 <                    int j = buffer[--bufferIndex];
2205 <                    buffer[bufferIndex] = i;
2206 <                    i = j;         // swap with another bin
2207 <                    continue;
2208 <                }
2209 <                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2210 <                    f.tryAwaitLock(tab, i);
2211 <                    continue;      // no other options -- block
2212 <                }
2213 <                if (rev == null)   // initialize reverse-forwarder
2214 <                    rev = new Node(MOVED, tab, null, null);
2215 <                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2216 <                    continue;      // recheck before adding to list
2217 <                buffer[nbuffered++] = i;
2218 <                setTabAt(nextTab, i, rev);     // install place-holders
2219 <                setTabAt(nextTab, i + n, rev);
2220 <            }
2221 <
2222 <            if (bin > 0)
2223 <                i = --bin;
2224 <            else if (buffer != null && nbuffered > 0) {
2225 <                bin = -1;
2226 <                i = buffer[bufferIndex = --nbuffered];
2227 <            }
2228 <            else
2229 <                return nextTab;
2230 <        }
728 >     * Volatile access methods are used for table elements as well as
729 >     * elements of in-progress next table while resizing.  All uses of
730 >     * the tab arguments must be null checked by callers.  All callers
731 >     * also paranoically precheck that tab's length is not zero (or an
732 >     * equivalent check), thus ensuring that any index argument taking
733 >     * the form of a hash value anded with (length - 1) is a valid
734 >     * index.  Note that, to be correct wrt arbitrary concurrency
735 >     * errors by users, these checks must operate on local variables,
736 >     * which accounts for some odd-looking inline assignments below.
737 >     * Note that calls to setTabAt always occur within locked regions,
738 >     * and so in principle require only release ordering, not need
739 >     * full volatile semantics, but are currently coded as volatile
740 >     * writes to be conservative.
741 >     */
742 >
743 >    @SuppressWarnings("unchecked")
744 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
745 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
746 >    }
747 >
748 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
749 >                                        Node<K,V> c, Node<K,V> v) {
750 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
751      }
752  
753 <    /**
754 <     * Splits a normal bin with list headed by e into lo and hi parts;
2235 <     * installs in given table.
2236 <     */
2237 <    private static void splitBin(Node[] nextTab, int i, Node e) {
2238 <        int bit = nextTab.length >>> 1; // bit to split on
2239 <        int runBit = e.hash & bit;
2240 <        Node lastRun = e, lo = null, hi = null;
2241 <        for (Node p = e.next; p != null; p = p.next) {
2242 <            int b = p.hash & bit;
2243 <            if (b != runBit) {
2244 <                runBit = b;
2245 <                lastRun = p;
2246 <            }
2247 <        }
2248 <        if (runBit == 0)
2249 <            lo = lastRun;
2250 <        else
2251 <            hi = lastRun;
2252 <        for (Node p = e; p != lastRun; p = p.next) {
2253 <            int ph = p.hash & HASH_BITS;
2254 <            Object pk = p.key, pv = p.val;
2255 <            if ((ph & bit) == 0)
2256 <                lo = new Node(ph, pk, pv, lo);
2257 <            else
2258 <                hi = new Node(ph, pk, pv, hi);
2259 <        }
2260 <        setTabAt(nextTab, i, lo);
2261 <        setTabAt(nextTab, i + bit, hi);
753 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
754 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
755      }
756  
757 +    /* ---------------- Fields -------------- */
758 +
759      /**
760 <     * Splits a tree bin into lo and hi parts; installs in given table.
760 >     * The array of bins. Lazily initialized upon first insertion.
761 >     * Size is always a power of two. Accessed directly by iterators.
762       */
763 <    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2268 <        int bit = nextTab.length >>> 1;
2269 <        TreeBin lt = new TreeBin();
2270 <        TreeBin ht = new TreeBin();
2271 <        int lc = 0, hc = 0;
2272 <        for (Node e = t.first; e != null; e = e.next) {
2273 <            int h = e.hash & HASH_BITS;
2274 <            Object k = e.key, v = e.val;
2275 <            if ((h & bit) == 0) {
2276 <                ++lc;
2277 <                lt.putTreeNode(h, k, v);
2278 <            }
2279 <            else {
2280 <                ++hc;
2281 <                ht.putTreeNode(h, k, v);
2282 <            }
2283 <        }
2284 <        Node ln, hn; // throw away trees if too small
2285 <        if (lc <= (TREE_THRESHOLD >>> 1)) {
2286 <            ln = null;
2287 <            for (Node p = lt.first; p != null; p = p.next)
2288 <                ln = new Node(p.hash, p.key, p.val, ln);
2289 <        }
2290 <        else
2291 <            ln = new Node(MOVED, lt, null, null);
2292 <        setTabAt(nextTab, i, ln);
2293 <        if (hc <= (TREE_THRESHOLD >>> 1)) {
2294 <            hn = null;
2295 <            for (Node p = ht.first; p != null; p = p.next)
2296 <                hn = new Node(p.hash, p.key, p.val, hn);
2297 <        }
2298 <        else
2299 <            hn = new Node(MOVED, ht, null, null);
2300 <        setTabAt(nextTab, i + bit, hn);
2301 <    }
763 >    transient volatile Node<K,V>[] table;
764  
765      /**
766 <     * Implementation for clear. Steps through each bin, removing all
2305 <     * nodes.
766 >     * The next table to use; non-null only while resizing.
767       */
768 <    private final void internalClear() {
2308 <        long delta = 0L; // negative number of deletions
2309 <        int i = 0;
2310 <        Node[] tab = table;
2311 <        while (tab != null && i < tab.length) {
2312 <            int fh; Object fk;
2313 <            Node f = tabAt(tab, i);
2314 <            if (f == null)
2315 <                ++i;
2316 <            else if ((fh = f.hash) == MOVED) {
2317 <                if ((fk = f.key) instanceof TreeBin) {
2318 <                    TreeBin t = (TreeBin)fk;
2319 <                    t.acquire(0);
2320 <                    try {
2321 <                        if (tabAt(tab, i) == f) {
2322 <                            for (Node p = t.first; p != null; p = p.next) {
2323 <                                if (p.val != null) { // (currently always true)
2324 <                                    p.val = null;
2325 <                                    --delta;
2326 <                                }
2327 <                            }
2328 <                            t.first = null;
2329 <                            t.root = null;
2330 <                            ++i;
2331 <                        }
2332 <                    } finally {
2333 <                        t.release(0);
2334 <                    }
2335 <                }
2336 <                else
2337 <                    tab = (Node[])fk;
2338 <            }
2339 <            else if ((fh & LOCKED) != 0) {
2340 <                counter.add(delta); // opportunistically update count
2341 <                delta = 0L;
2342 <                f.tryAwaitLock(tab, i);
2343 <            }
2344 <            else if (f.casHash(fh, fh | LOCKED)) {
2345 <                try {
2346 <                    if (tabAt(tab, i) == f) {
2347 <                        for (Node e = f; e != null; e = e.next) {
2348 <                            if (e.val != null) {  // (currently always true)
2349 <                                e.val = null;
2350 <                                --delta;
2351 <                            }
2352 <                        }
2353 <                        setTabAt(tab, i, null);
2354 <                        ++i;
2355 <                    }
2356 <                } finally {
2357 <                    if (!f.casHash(fh | LOCKED, fh)) {
2358 <                        f.hash = fh;
2359 <                        synchronized (f) { f.notifyAll(); };
2360 <                    }
2361 <                }
2362 <            }
2363 <        }
2364 <        if (delta != 0)
2365 <            counter.add(delta);
2366 <    }
2367 <
2368 <    /* ----------------Table Traversal -------------- */
768 >    private transient volatile Node<K,V>[] nextTable;
769  
770      /**
771 <     * Encapsulates traversal for methods such as containsValue; also
772 <     * serves as a base class for other iterators and bulk tasks.
773 <     *
774 <     * At each step, the iterator snapshots the key ("nextKey") and
775 <     * value ("nextVal") of a valid node (i.e., one that, at point of
2376 <     * snapshot, has a non-null user value). Because val fields can
2377 <     * change (including to null, indicating deletion), field nextVal
2378 <     * might not be accurate at point of use, but still maintains the
2379 <     * weak consistency property of holding a value that was once
2380 <     * valid. To support iterator.remove, the nextKey field is not
2381 <     * updated (nulled out) when the iterator cannot advance.
2382 <     *
2383 <     * Internal traversals directly access these fields, as in:
2384 <     * {@code while (it.advance() != null) { process(it.nextKey); }}
2385 <     *
2386 <     * Exported iterators must track whether the iterator has advanced
2387 <     * (in hasNext vs next) (by setting/checking/nulling field
2388 <     * nextVal), and then extract key, value, or key-value pairs as
2389 <     * return values of next().
2390 <     *
2391 <     * The iterator visits once each still-valid node that was
2392 <     * reachable upon iterator construction. It might miss some that
2393 <     * were added to a bin after the bin was visited, which is OK wrt
2394 <     * consistency guarantees. Maintaining this property in the face
2395 <     * of possible ongoing resizes requires a fair amount of
2396 <     * bookkeeping state that is difficult to optimize away amidst
2397 <     * volatile accesses.  Even so, traversal maintains reasonable
2398 <     * throughput.
2399 <     *
2400 <     * Normally, iteration proceeds bin-by-bin traversing lists.
2401 <     * However, if the table has been resized, then all future steps
2402 <     * must traverse both the bin at the current index as well as at
2403 <     * (index + baseSize); and so on for further resizings. To
2404 <     * paranoically cope with potential sharing by users of iterators
2405 <     * across threads, iteration terminates if a bounds checks fails
2406 <     * for a table read.
2407 <     *
2408 <     * This class extends CountedCompleter to streamline parallel
2409 <     * iteration in bulk operations. This adds only a few fields of
2410 <     * space overhead, which is small enough in cases where it is not
2411 <     * needed to not worry about it.  Because CountedCompleter is
2412 <     * Serializable, but iterators need not be, we need to add warning
2413 <     * suppressions.
2414 <     */
2415 <    @SuppressWarnings("serial") static class Traverser<K,V,R> extends CountedCompleter<R> {
2416 <        final ConcurrentHashMapV8<K, V> map;
2417 <        Node next;           // the next entry to use
2418 <        Object nextKey;      // cached key field of next
2419 <        Object nextVal;      // cached val field of next
2420 <        Node[] tab;          // current table; updated if resized
2421 <        int index;           // index of bin to use next
2422 <        int baseIndex;       // current index of initial table
2423 <        int baseLimit;       // index bound for initial table
2424 <        int baseSize;        // initial table size
2425 <        int batch;           // split control
2426 <
2427 <        /** Creates iterator for all entries in the table. */
2428 <        Traverser(ConcurrentHashMapV8<K, V> map) {
2429 <            this.map = map;
2430 <        }
2431 <
2432 <        /** Creates iterator for split() methods and task constructors */
2433 <        Traverser(ConcurrentHashMapV8<K,V> map, Traverser<K,V,?> it, int batch) {
2434 <            super(it);
2435 <            this.batch = batch;
2436 <            if ((this.map = map) != null && it != null) { // split parent
2437 <                Node[] t;
2438 <                if ((t = it.tab) == null &&
2439 <                    (t = it.tab = map.table) != null)
2440 <                    it.baseLimit = it.baseSize = t.length;
2441 <                this.tab = t;
2442 <                this.baseSize = it.baseSize;
2443 <                int hi = this.baseLimit = it.baseLimit;
2444 <                it.baseLimit = this.index = this.baseIndex =
2445 <                    (hi + it.baseIndex + 1) >>> 1;
2446 <            }
2447 <        }
2448 <
2449 <        /**
2450 <         * Advances next; returns nextVal or null if terminated.
2451 <         * See above for explanation.
2452 <         */
2453 <        final Object advance() {
2454 <            Node e = next;
2455 <            Object ev = null;
2456 <            outer: do {
2457 <                if (e != null)                  // advance past used/skipped node
2458 <                    e = e.next;
2459 <                while (e == null) {             // get to next non-null bin
2460 <                    ConcurrentHashMapV8<K, V> m;
2461 <                    Node[] t; int b, i, n; Object ek; // checks must use locals
2462 <                    if ((t = tab) != null)
2463 <                        n = t.length;
2464 <                    else if ((m = map) != null && (t = tab = m.table) != null)
2465 <                        n = baseLimit = baseSize = t.length;
2466 <                    else
2467 <                        break outer;
2468 <                    if ((b = baseIndex) >= baseLimit ||
2469 <                        (i = index) < 0 || i >= n)
2470 <                        break outer;
2471 <                    if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2472 <                        if ((ek = e.key) instanceof TreeBin)
2473 <                            e = ((TreeBin)ek).first;
2474 <                        else {
2475 <                            tab = (Node[])ek;
2476 <                            continue;           // restarts due to null val
2477 <                        }
2478 <                    }                           // visit upper slots if present
2479 <                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2480 <                }
2481 <                nextKey = e.key;
2482 <            } while ((ev = e.val) == null);    // skip deleted or special nodes
2483 <            next = e;
2484 <            return nextVal = ev;
2485 <        }
771 >     * Base counter value, used mainly when there is no contention,
772 >     * but also as a fallback during table initialization
773 >     * races. Updated via CAS.
774 >     */
775 >    private transient volatile long baseCount;
776  
777 <        public final void remove() {
778 <            Object k = nextKey;
779 <            if (k == null && (advance() == null || (k = nextKey) == null))
780 <                throw new IllegalStateException();
781 <            map.internalReplace(k, null, null);
782 <        }
777 >    /**
778 >     * Table initialization and resizing control.  When negative, the
779 >     * table is being initialized or resized: -1 for initialization,
780 >     * else -(1 + the number of active resizing threads).  Otherwise,
781 >     * when table is null, holds the initial table size to use upon
782 >     * creation, or 0 for default. After initialization, holds the
783 >     * next element count value upon which to resize the table.
784 >     */
785 >    private transient volatile int sizeCtl;
786  
787 <        public final boolean hasNext() {
788 <            return nextVal != null || advance() != null;
789 <        }
787 >    /**
788 >     * The next table index (plus one) to split while resizing.
789 >     */
790 >    private transient volatile int transferIndex;
791  
792 <        public final boolean hasMoreElements() { return hasNext(); }
792 >    /**
793 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
794 >     */
795 >    private transient volatile int cellsBusy;
796  
797 <        public void compute() { } // default no-op CountedCompleter body
797 >    /**
798 >     * Table of counter cells. When non-null, size is a power of 2.
799 >     */
800 >    private transient volatile CounterCell[] counterCells;
801  
802 <        /**
803 <         * Returns a batch value > 0 if this task should (and must) be
804 <         * split, if so, adding to pending count, and in any case
805 <         * updating batch value. The initial batch value is approx
2506 <         * exp2 of the number of times (minus one) to split task by
2507 <         * two before executing leaf action. This value is faster to
2508 <         * compute and more convenient to use as a guide to splitting
2509 <         * than is the depth, since it is used while dividing by two
2510 <         * anyway.
2511 <         */
2512 <        final int preSplit() {
2513 <            ConcurrentHashMapV8<K, V> m; int b; Node[] t;  ForkJoinPool pool;
2514 <            if ((b = batch) < 0 && (m = map) != null) { // force initialization
2515 <                if ((t = tab) == null && (t = tab = m.table) != null)
2516 <                    baseLimit = baseSize = t.length;
2517 <                if (t != null) {
2518 <                    long n = m.counter.sum();
2519 <                    int par = ((pool = getPool()) == null) ?
2520 <                        ForkJoinPool.getCommonPoolParallelism() :
2521 <                        pool.getParallelism();
2522 <                    int sp = par << 3; // slack of 8
2523 <                    b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2524 <                }
2525 <            }
2526 <            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2527 <            if ((batch = b) > 0)
2528 <                addToPendingCount(1);
2529 <            return b;
2530 <        }
802 >    // views
803 >    private transient KeySetView<K,V> keySet;
804 >    private transient ValuesView<K,V> values;
805 >    private transient EntrySetView<K,V> entrySet;
806  
2532    }
807  
808      /* ---------------- Public operations -------------- */
809  
# Line 2537 | Line 811 | public class ConcurrentHashMapV8<K, V>
811       * Creates a new, empty map with the default initial table size (16).
812       */
813      public ConcurrentHashMapV8() {
2540        this.counter = new LongAdder();
814      }
815  
816      /**
# Line 2556 | Line 829 | public class ConcurrentHashMapV8<K, V>
829          int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
830                     MAXIMUM_CAPACITY :
831                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2559        this.counter = new LongAdder();
832          this.sizeCtl = cap;
833      }
834  
# Line 2566 | Line 838 | public class ConcurrentHashMapV8<K, V>
838       * @param m the map
839       */
840      public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2569        this.counter = new LongAdder();
841          this.sizeCtl = DEFAULT_CAPACITY;
842 <        internalPutAll(m);
842 >        putAll(m);
843      }
844  
845      /**
# Line 2609 | Line 880 | public class ConcurrentHashMapV8<K, V>
880       * nonpositive
881       */
882      public ConcurrentHashMapV8(int initialCapacity,
883 <                               float loadFactor, int concurrencyLevel) {
883 >                             float loadFactor, int concurrencyLevel) {
884          if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
885              throw new IllegalArgumentException();
886          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
# Line 2617 | Line 888 | public class ConcurrentHashMapV8<K, V>
888          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
889          int cap = (size >= (long)MAXIMUM_CAPACITY) ?
890              MAXIMUM_CAPACITY : tableSizeFor((int)size);
2620        this.counter = new LongAdder();
891          this.sizeCtl = cap;
892      }
893  
894 <    /**
2625 <     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2626 <     * from the given type to {@code Boolean.TRUE}.
2627 <     *
2628 <     * @return the new set
2629 <     */
2630 <    public static <K> KeySetView<K,Boolean> newKeySet() {
2631 <        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2632 <                                      Boolean.TRUE);
2633 <    }
2634 <
2635 <    /**
2636 <     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2637 <     * from the given type to {@code Boolean.TRUE}.
2638 <     *
2639 <     * @param initialCapacity The implementation performs internal
2640 <     * sizing to accommodate this many elements.
2641 <     * @throws IllegalArgumentException if the initial capacity of
2642 <     * elements is negative
2643 <     * @return the new set
2644 <     */
2645 <    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2646 <        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(initialCapacity),
2647 <                                      Boolean.TRUE);
2648 <    }
2649 <
2650 <    /**
2651 <     * {@inheritDoc}
2652 <     */
2653 <    public boolean isEmpty() {
2654 <        return counter.sum() <= 0L; // ignore transient negative values
2655 <    }
894 >    // Original (since JDK1.2) Map methods
895  
896      /**
897       * {@inheritDoc}
898       */
899      public int size() {
900 <        long n = counter.sum();
900 >        long n = sumCount();
901          return ((n < 0L) ? 0 :
902                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
903                  (int)n);
904      }
905  
906      /**
907 <     * Returns the number of mappings. This method should be used
2669 <     * instead of {@link #size} because a ConcurrentHashMapV8 may
2670 <     * contain more mappings than can be represented as an int. The
2671 <     * value returned is an estimate; the actual count may differ if
2672 <     * there are concurrent insertions or removals.
2673 <     *
2674 <     * @return the number of mappings
907 >     * {@inheritDoc}
908       */
909 <    public long mappingCount() {
910 <        long n = counter.sum();
2678 <        return (n < 0L) ? 0L : n; // ignore transient negative values
909 >    public boolean isEmpty() {
910 >        return sumCount() <= 0L; // ignore transient negative values
911      }
912  
913      /**
# Line 2689 | Line 921 | public class ConcurrentHashMapV8<K, V>
921       *
922       * @throws NullPointerException if the specified key is null
923       */
924 <    @SuppressWarnings("unchecked") public V get(Object key) {
925 <        if (key == null)
926 <            throw new NullPointerException();
927 <        return (V)internalGet(key);
928 <    }
929 <
930 <    /**
931 <     * Returns the value to which the specified key is mapped,
932 <     * or the given defaultValue if this map contains no mapping for the key.
933 <     *
934 <     * @param key the key
935 <     * @param defaultValue the value to return if this map contains
936 <     * no mapping for the given key
937 <     * @return the mapping for the key, if present; else the defaultValue
938 <     * @throws NullPointerException if the specified key is null
939 <     */
940 <    @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
941 <        if (key == null)
2710 <            throw new NullPointerException();
2711 <        V v = (V) internalGet(key);
2712 <        return v == null ? defaultValue : v;
924 >    public V get(Object key) {
925 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
926 >        int h = spread(key.hashCode());
927 >        if ((tab = table) != null && (n = tab.length) > 0 &&
928 >            (e = tabAt(tab, (n - 1) & h)) != null) {
929 >            if ((eh = e.hash) == h) {
930 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
931 >                    return e.val;
932 >            }
933 >            else if (eh < 0)
934 >                return (p = e.find(h, key)) != null ? p.val : null;
935 >            while ((e = e.next) != null) {
936 >                if (e.hash == h &&
937 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
938 >                    return e.val;
939 >            }
940 >        }
941 >        return null;
942      }
943  
944      /**
945       * Tests if the specified object is a key in this table.
946       *
947 <     * @param  key   possible key
947 >     * @param  key possible key
948       * @return {@code true} if and only if the specified object
949       *         is a key in this table, as determined by the
950       *         {@code equals} method; {@code false} otherwise
951       * @throws NullPointerException if the specified key is null
952       */
953      public boolean containsKey(Object key) {
954 <        if (key == null)
2726 <            throw new NullPointerException();
2727 <        return internalGet(key) != null;
954 >        return get(key) != null;
955      }
956  
957      /**
# Line 2740 | Line 967 | public class ConcurrentHashMapV8<K, V>
967      public boolean containsValue(Object value) {
968          if (value == null)
969              throw new NullPointerException();
970 <        Object v;
971 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
972 <        while ((v = it.advance()) != null) {
973 <            if (v == value || value.equals(v))
974 <                return true;
970 >        Node<K,V>[] t;
971 >        if ((t = table) != null) {
972 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
973 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
974 >                V v;
975 >                if ((v = p.val) == value || (v != null && value.equals(v)))
976 >                    return true;
977 >            }
978          }
979          return false;
980      }
981  
982      /**
2753     * Legacy method testing if some key maps into the specified value
2754     * in this table.  This method is identical in functionality to
2755     * {@link #containsValue}, and exists solely to ensure
2756     * full compatibility with class {@link java.util.Hashtable},
2757     * which supported this method prior to introduction of the
2758     * Java Collections framework.
2759     *
2760     * @param  value a value to search for
2761     * @return {@code true} if and only if some key maps to the
2762     *         {@code value} argument in this table as
2763     *         determined by the {@code equals} method;
2764     *         {@code false} otherwise
2765     * @throws NullPointerException if the specified value is null
2766     */
2767    public boolean contains(Object value) {
2768        return containsValue(value);
2769    }
2770
2771    /**
983       * Maps the specified key to the specified value in this table.
984       * Neither the key nor the value can be null.
985       *
# Line 2781 | Line 992 | public class ConcurrentHashMapV8<K, V>
992       *         {@code null} if there was no mapping for {@code key}
993       * @throws NullPointerException if the specified key or value is null
994       */
995 <    @SuppressWarnings("unchecked") public V put(K key, V value) {
996 <        if (key == null || value == null)
995 >    public V put(K key, V value) {
996 >        return putVal(key, value, false);
997 >    }
998 >
999 >    /** Implementation for put and putIfAbsent */
1000 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
1001 >        if (key == null || value == null) throw new NullPointerException();
1002 >        int hash = spread(key.hashCode());
1003 >        int binCount = 0;
1004 >        for (Node<K,V>[] tab = table;;) {
1005 >            Node<K,V> f; int n, i, fh;
1006 >            if (tab == null || (n = tab.length) == 0)
1007 >                tab = initTable();
1008 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1009 >                if (casTabAt(tab, i, null,
1010 >                             new Node<K,V>(hash, key, value, null)))
1011 >                    break;                   // no lock when adding to empty bin
1012 >            }
1013 >            else if ((fh = f.hash) == MOVED)
1014 >                tab = helpTransfer(tab, f);
1015 >            else {
1016 >                V oldVal = null;
1017 >                synchronized (f) {
1018 >                    if (tabAt(tab, i) == f) {
1019 >                        if (fh >= 0) {
1020 >                            binCount = 1;
1021 >                            for (Node<K,V> e = f;; ++binCount) {
1022 >                                K ek;
1023 >                                if (e.hash == hash &&
1024 >                                    ((ek = e.key) == key ||
1025 >                                     (ek != null && key.equals(ek)))) {
1026 >                                    oldVal = e.val;
1027 >                                    if (!onlyIfAbsent)
1028 >                                        e.val = value;
1029 >                                    break;
1030 >                                }
1031 >                                Node<K,V> pred = e;
1032 >                                if ((e = e.next) == null) {
1033 >                                    pred.next = new Node<K,V>(hash, key,
1034 >                                                              value, null);
1035 >                                    break;
1036 >                                }
1037 >                            }
1038 >                        }
1039 >                        else if (f instanceof TreeBin) {
1040 >                            Node<K,V> p;
1041 >                            binCount = 2;
1042 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1043 >                                                           value)) != null) {
1044 >                                oldVal = p.val;
1045 >                                if (!onlyIfAbsent)
1046 >                                    p.val = value;
1047 >                            }
1048 >                        }
1049 >                    }
1050 >                }
1051 >                if (binCount != 0) {
1052 >                    if (binCount >= TREEIFY_THRESHOLD)
1053 >                        treeifyBin(tab, i);
1054 >                    if (oldVal != null)
1055 >                        return oldVal;
1056 >                    break;
1057 >                }
1058 >            }
1059 >        }
1060 >        addCount(1L, binCount);
1061 >        return null;
1062 >    }
1063 >
1064 >    /**
1065 >     * Copies all of the mappings from the specified map to this one.
1066 >     * These mappings replace any mappings that this map had for any of the
1067 >     * keys currently in the specified map.
1068 >     *
1069 >     * @param m mappings to be stored in this map
1070 >     */
1071 >    public void putAll(Map<? extends K, ? extends V> m) {
1072 >        tryPresize(m.size());
1073 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1074 >            putVal(e.getKey(), e.getValue(), false);
1075 >    }
1076 >
1077 >    /**
1078 >     * Removes the key (and its corresponding value) from this map.
1079 >     * This method does nothing if the key is not in the map.
1080 >     *
1081 >     * @param  key the key that needs to be removed
1082 >     * @return the previous value associated with {@code key}, or
1083 >     *         {@code null} if there was no mapping for {@code key}
1084 >     * @throws NullPointerException if the specified key is null
1085 >     */
1086 >    public V remove(Object key) {
1087 >        return replaceNode(key, null, null);
1088 >    }
1089 >
1090 >    /**
1091 >     * Implementation for the four public remove/replace methods:
1092 >     * Replaces node value with v, conditional upon match of cv if
1093 >     * non-null.  If resulting value is null, delete.
1094 >     */
1095 >    final V replaceNode(Object key, V value, Object cv) {
1096 >        int hash = spread(key.hashCode());
1097 >        for (Node<K,V>[] tab = table;;) {
1098 >            Node<K,V> f; int n, i, fh;
1099 >            if (tab == null || (n = tab.length) == 0 ||
1100 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1101 >                break;
1102 >            else if ((fh = f.hash) == MOVED)
1103 >                tab = helpTransfer(tab, f);
1104 >            else {
1105 >                V oldVal = null;
1106 >                boolean validated = false;
1107 >                synchronized (f) {
1108 >                    if (tabAt(tab, i) == f) {
1109 >                        if (fh >= 0) {
1110 >                            validated = true;
1111 >                            for (Node<K,V> e = f, pred = null;;) {
1112 >                                K ek;
1113 >                                if (e.hash == hash &&
1114 >                                    ((ek = e.key) == key ||
1115 >                                     (ek != null && key.equals(ek)))) {
1116 >                                    V ev = e.val;
1117 >                                    if (cv == null || cv == ev ||
1118 >                                        (ev != null && cv.equals(ev))) {
1119 >                                        oldVal = ev;
1120 >                                        if (value != null)
1121 >                                            e.val = value;
1122 >                                        else if (pred != null)
1123 >                                            pred.next = e.next;
1124 >                                        else
1125 >                                            setTabAt(tab, i, e.next);
1126 >                                    }
1127 >                                    break;
1128 >                                }
1129 >                                pred = e;
1130 >                                if ((e = e.next) == null)
1131 >                                    break;
1132 >                            }
1133 >                        }
1134 >                        else if (f instanceof TreeBin) {
1135 >                            validated = true;
1136 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1137 >                            TreeNode<K,V> r, p;
1138 >                            if ((r = t.root) != null &&
1139 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1140 >                                V pv = p.val;
1141 >                                if (cv == null || cv == pv ||
1142 >                                    (pv != null && cv.equals(pv))) {
1143 >                                    oldVal = pv;
1144 >                                    if (value != null)
1145 >                                        p.val = value;
1146 >                                    else if (t.removeTreeNode(p))
1147 >                                        setTabAt(tab, i, untreeify(t.first));
1148 >                                }
1149 >                            }
1150 >                        }
1151 >                    }
1152 >                }
1153 >                if (validated) {
1154 >                    if (oldVal != null) {
1155 >                        if (value == null)
1156 >                            addCount(-1L, -1);
1157 >                        return oldVal;
1158 >                    }
1159 >                    break;
1160 >                }
1161 >            }
1162 >        }
1163 >        return null;
1164 >    }
1165 >
1166 >    /**
1167 >     * Removes all of the mappings from this map.
1168 >     */
1169 >    public void clear() {
1170 >        long delta = 0L; // negative number of deletions
1171 >        int i = 0;
1172 >        Node<K,V>[] tab = table;
1173 >        while (tab != null && i < tab.length) {
1174 >            int fh;
1175 >            Node<K,V> f = tabAt(tab, i);
1176 >            if (f == null)
1177 >                ++i;
1178 >            else if ((fh = f.hash) == MOVED) {
1179 >                tab = helpTransfer(tab, f);
1180 >                i = 0; // restart
1181 >            }
1182 >            else {
1183 >                synchronized (f) {
1184 >                    if (tabAt(tab, i) == f) {
1185 >                        Node<K,V> p = (fh >= 0 ? f :
1186 >                                       (f instanceof TreeBin) ?
1187 >                                       ((TreeBin<K,V>)f).first : null);
1188 >                        while (p != null) {
1189 >                            --delta;
1190 >                            p = p.next;
1191 >                        }
1192 >                        setTabAt(tab, i++, null);
1193 >                    }
1194 >                }
1195 >            }
1196 >        }
1197 >        if (delta != 0L)
1198 >            addCount(delta, -1);
1199 >    }
1200 >
1201 >    /**
1202 >     * Returns a {@link Set} view of the keys contained in this map.
1203 >     * The set is backed by the map, so changes to the map are
1204 >     * reflected in the set, and vice-versa. The set supports element
1205 >     * removal, which removes the corresponding mapping from this map,
1206 >     * via the {@code Iterator.remove}, {@code Set.remove},
1207 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1208 >     * operations.  It does not support the {@code add} or
1209 >     * {@code addAll} operations.
1210 >     *
1211 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1212 >     * that will never throw {@link ConcurrentModificationException},
1213 >     * and guarantees to traverse elements as they existed upon
1214 >     * construction of the iterator, and may (but is not guaranteed to)
1215 >     * reflect any modifications subsequent to construction.
1216 >     *
1217 >     * @return the set view
1218 >     */
1219 >    public KeySetView<K,V> keySet() {
1220 >        KeySetView<K,V> ks;
1221 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1222 >    }
1223 >
1224 >    /**
1225 >     * Returns a {@link Collection} view of the values contained in this map.
1226 >     * The collection is backed by the map, so changes to the map are
1227 >     * reflected in the collection, and vice-versa.  The collection
1228 >     * supports element removal, which removes the corresponding
1229 >     * mapping from this map, via the {@code Iterator.remove},
1230 >     * {@code Collection.remove}, {@code removeAll},
1231 >     * {@code retainAll}, and {@code clear} operations.  It does not
1232 >     * support the {@code add} or {@code addAll} operations.
1233 >     *
1234 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1235 >     * that will never throw {@link ConcurrentModificationException},
1236 >     * and guarantees to traverse elements as they existed upon
1237 >     * construction of the iterator, and may (but is not guaranteed to)
1238 >     * reflect any modifications subsequent to construction.
1239 >     *
1240 >     * @return the collection view
1241 >     */
1242 >    public Collection<V> values() {
1243 >        ValuesView<K,V> vs;
1244 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1245 >    }
1246 >
1247 >    /**
1248 >     * Returns a {@link Set} view of the mappings contained in this map.
1249 >     * The set is backed by the map, so changes to the map are
1250 >     * reflected in the set, and vice-versa.  The set supports element
1251 >     * removal, which removes the corresponding mapping from the map,
1252 >     * via the {@code Iterator.remove}, {@code Set.remove},
1253 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1254 >     * operations.
1255 >     *
1256 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1257 >     * that will never throw {@link ConcurrentModificationException},
1258 >     * and guarantees to traverse elements as they existed upon
1259 >     * construction of the iterator, and may (but is not guaranteed to)
1260 >     * reflect any modifications subsequent to construction.
1261 >     *
1262 >     * @return the set view
1263 >     */
1264 >    public Set<Map.Entry<K,V>> entrySet() {
1265 >        EntrySetView<K,V> es;
1266 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1267 >    }
1268 >
1269 >    /**
1270 >     * Returns the hash code value for this {@link Map}, i.e.,
1271 >     * the sum of, for each key-value pair in the map,
1272 >     * {@code key.hashCode() ^ value.hashCode()}.
1273 >     *
1274 >     * @return the hash code value for this map
1275 >     */
1276 >    public int hashCode() {
1277 >        int h = 0;
1278 >        Node<K,V>[] t;
1279 >        if ((t = table) != null) {
1280 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1281 >            for (Node<K,V> p; (p = it.advance()) != null; )
1282 >                h += p.key.hashCode() ^ p.val.hashCode();
1283 >        }
1284 >        return h;
1285 >    }
1286 >
1287 >    /**
1288 >     * Returns a string representation of this map.  The string
1289 >     * representation consists of a list of key-value mappings (in no
1290 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1291 >     * mappings are separated by the characters {@code ", "} (comma
1292 >     * and space).  Each key-value mapping is rendered as the key
1293 >     * followed by an equals sign ("{@code =}") followed by the
1294 >     * associated value.
1295 >     *
1296 >     * @return a string representation of this map
1297 >     */
1298 >    public String toString() {
1299 >        Node<K,V>[] t;
1300 >        int f = (t = table) == null ? 0 : t.length;
1301 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1302 >        StringBuilder sb = new StringBuilder();
1303 >        sb.append('{');
1304 >        Node<K,V> p;
1305 >        if ((p = it.advance()) != null) {
1306 >            for (;;) {
1307 >                K k = p.key;
1308 >                V v = p.val;
1309 >                sb.append(k == this ? "(this Map)" : k);
1310 >                sb.append('=');
1311 >                sb.append(v == this ? "(this Map)" : v);
1312 >                if ((p = it.advance()) == null)
1313 >                    break;
1314 >                sb.append(',').append(' ');
1315 >            }
1316 >        }
1317 >        return sb.append('}').toString();
1318 >    }
1319 >
1320 >    /**
1321 >     * Compares the specified object with this map for equality.
1322 >     * Returns {@code true} if the given object is a map with the same
1323 >     * mappings as this map.  This operation may return misleading
1324 >     * results if either map is concurrently modified during execution
1325 >     * of this method.
1326 >     *
1327 >     * @param o object to be compared for equality with this map
1328 >     * @return {@code true} if the specified object is equal to this map
1329 >     */
1330 >    public boolean equals(Object o) {
1331 >        if (o != this) {
1332 >            if (!(o instanceof Map))
1333 >                return false;
1334 >            Map<?,?> m = (Map<?,?>) o;
1335 >            Node<K,V>[] t;
1336 >            int f = (t = table) == null ? 0 : t.length;
1337 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1338 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1339 >                V val = p.val;
1340 >                Object v = m.get(p.key);
1341 >                if (v == null || (v != val && !v.equals(val)))
1342 >                    return false;
1343 >            }
1344 >            for (Map.Entry<?,?> e : m.entrySet()) {
1345 >                Object mk, mv, v;
1346 >                if ((mk = e.getKey()) == null ||
1347 >                    (mv = e.getValue()) == null ||
1348 >                    (v = get(mk)) == null ||
1349 >                    (mv != v && !mv.equals(v)))
1350 >                    return false;
1351 >            }
1352 >        }
1353 >        return true;
1354 >    }
1355 >
1356 >    /**
1357 >     * Stripped-down version of helper class used in previous version,
1358 >     * declared for the sake of serialization compatibility
1359 >     */
1360 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1361 >        private static final long serialVersionUID = 2249069246763182397L;
1362 >        final float loadFactor;
1363 >        Segment(float lf) { this.loadFactor = lf; }
1364 >    }
1365 >
1366 >    /**
1367 >     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1368 >     * stream (i.e., serializes it).
1369 >     * @param s the stream
1370 >     * @throws java.io.IOException if an I/O error occurs
1371 >     * @serialData
1372 >     * the key (Object) and value (Object)
1373 >     * for each key-value mapping, followed by a null pair.
1374 >     * The key-value mappings are emitted in no particular order.
1375 >     */
1376 >    private void writeObject(java.io.ObjectOutputStream s)
1377 >        throws java.io.IOException {
1378 >        // For serialization compatibility
1379 >        // Emulate segment calculation from previous version of this class
1380 >        int sshift = 0;
1381 >        int ssize = 1;
1382 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1383 >            ++sshift;
1384 >            ssize <<= 1;
1385 >        }
1386 >        int segmentShift = 32 - sshift;
1387 >        int segmentMask = ssize - 1;
1388 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1389 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1390 >        for (int i = 0; i < segments.length; ++i)
1391 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1392 >        s.putFields().put("segments", segments);
1393 >        s.putFields().put("segmentShift", segmentShift);
1394 >        s.putFields().put("segmentMask", segmentMask);
1395 >        s.writeFields();
1396 >
1397 >        Node<K,V>[] t;
1398 >        if ((t = table) != null) {
1399 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1400 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1401 >                s.writeObject(p.key);
1402 >                s.writeObject(p.val);
1403 >            }
1404 >        }
1405 >        s.writeObject(null);
1406 >        s.writeObject(null);
1407 >        segments = null; // throw away
1408 >    }
1409 >
1410 >    /**
1411 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1412 >     * @param s the stream
1413 >     * @throws ClassNotFoundException if the class of a serialized object
1414 >     *         could not be found
1415 >     * @throws java.io.IOException if an I/O error occurs
1416 >     */
1417 >    private void readObject(java.io.ObjectInputStream s)
1418 >        throws java.io.IOException, ClassNotFoundException {
1419 >        /*
1420 >         * To improve performance in typical cases, we create nodes
1421 >         * while reading, then place in table once size is known.
1422 >         * However, we must also validate uniqueness and deal with
1423 >         * overpopulated bins while doing so, which requires
1424 >         * specialized versions of putVal mechanics.
1425 >         */
1426 >        sizeCtl = -1; // force exclusion for table construction
1427 >        s.defaultReadObject();
1428 >        long size = 0L;
1429 >        Node<K,V> p = null;
1430 >        for (;;) {
1431 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1432 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1433 >            if (k != null && v != null) {
1434 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1435 >                ++size;
1436 >            }
1437 >            else
1438 >                break;
1439 >        }
1440 >        if (size == 0L)
1441 >            sizeCtl = 0;
1442 >        else {
1443 >            int n;
1444 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1445 >                n = MAXIMUM_CAPACITY;
1446 >            else {
1447 >                int sz = (int)size;
1448 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1449 >            }
1450 >            @SuppressWarnings("unchecked")
1451 >                Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1452 >            int mask = n - 1;
1453 >            long added = 0L;
1454 >            while (p != null) {
1455 >                boolean insertAtFront;
1456 >                Node<K,V> next = p.next, first;
1457 >                int h = p.hash, j = h & mask;
1458 >                if ((first = tabAt(tab, j)) == null)
1459 >                    insertAtFront = true;
1460 >                else {
1461 >                    K k = p.key;
1462 >                    if (first.hash < 0) {
1463 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1464 >                        if (t.putTreeVal(h, k, p.val) == null)
1465 >                            ++added;
1466 >                        insertAtFront = false;
1467 >                    }
1468 >                    else {
1469 >                        int binCount = 0;
1470 >                        insertAtFront = true;
1471 >                        Node<K,V> q; K qk;
1472 >                        for (q = first; q != null; q = q.next) {
1473 >                            if (q.hash == h &&
1474 >                                ((qk = q.key) == k ||
1475 >                                 (qk != null && k.equals(qk)))) {
1476 >                                insertAtFront = false;
1477 >                                break;
1478 >                            }
1479 >                            ++binCount;
1480 >                        }
1481 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1482 >                            insertAtFront = false;
1483 >                            ++added;
1484 >                            p.next = first;
1485 >                            TreeNode<K,V> hd = null, tl = null;
1486 >                            for (q = p; q != null; q = q.next) {
1487 >                                TreeNode<K,V> t = new TreeNode<K,V>
1488 >                                    (q.hash, q.key, q.val, null, null);
1489 >                                if ((t.prev = tl) == null)
1490 >                                    hd = t;
1491 >                                else
1492 >                                    tl.next = t;
1493 >                                tl = t;
1494 >                            }
1495 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1496 >                        }
1497 >                    }
1498 >                }
1499 >                if (insertAtFront) {
1500 >                    ++added;
1501 >                    p.next = first;
1502 >                    setTabAt(tab, j, p);
1503 >                }
1504 >                p = next;
1505 >            }
1506 >            table = tab;
1507 >            sizeCtl = n - (n >>> 2);
1508 >            baseCount = added;
1509 >        }
1510 >    }
1511 >
1512 >    // ConcurrentMap methods
1513 >
1514 >    /**
1515 >     * {@inheritDoc}
1516 >     *
1517 >     * @return the previous value associated with the specified key,
1518 >     *         or {@code null} if there was no mapping for the key
1519 >     * @throws NullPointerException if the specified key or value is null
1520 >     */
1521 >    public V putIfAbsent(K key, V value) {
1522 >        return putVal(key, value, true);
1523 >    }
1524 >
1525 >    /**
1526 >     * {@inheritDoc}
1527 >     *
1528 >     * @throws NullPointerException if the specified key is null
1529 >     */
1530 >    public boolean remove(Object key, Object value) {
1531 >        if (key == null)
1532              throw new NullPointerException();
1533 <        return (V)internalPut(key, value);
1533 >        return value != null && replaceNode(key, null, value) != null;
1534 >    }
1535 >
1536 >    /**
1537 >     * {@inheritDoc}
1538 >     *
1539 >     * @throws NullPointerException if any of the arguments are null
1540 >     */
1541 >    public boolean replace(K key, V oldValue, V newValue) {
1542 >        if (key == null || oldValue == null || newValue == null)
1543 >            throw new NullPointerException();
1544 >        return replaceNode(key, newValue, oldValue) != null;
1545      }
1546  
1547      /**
# Line 2794 | Line 1551 | public class ConcurrentHashMapV8<K, V>
1551       *         or {@code null} if there was no mapping for the key
1552       * @throws NullPointerException if the specified key or value is null
1553       */
1554 <    @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
1554 >    public V replace(K key, V value) {
1555          if (key == null || value == null)
1556              throw new NullPointerException();
1557 <        return (V)internalPutIfAbsent(key, value);
1557 >        return replaceNode(key, value, null);
1558      }
1559  
1560 +    // Overrides of JDK8+ Map extension method defaults
1561 +
1562      /**
1563 <     * Copies all of the mappings from the specified map to this one.
1564 <     * These mappings replace any mappings that this map had for any of the
1565 <     * keys currently in the specified map.
1563 >     * Returns the value to which the specified key is mapped, or the
1564 >     * given default value if this map contains no mapping for the
1565 >     * key.
1566       *
1567 <     * @param m mappings to be stored in this map
1567 >     * @param key the key whose associated value is to be returned
1568 >     * @param defaultValue the value to return if this map contains
1569 >     * no mapping for the given key
1570 >     * @return the mapping for the key, if present; else the default value
1571 >     * @throws NullPointerException if the specified key is null
1572       */
1573 <    public void putAll(Map<? extends K, ? extends V> m) {
1574 <        internalPutAll(m);
1573 >    public V getOrDefault(Object key, V defaultValue) {
1574 >        V v;
1575 >        return (v = get(key)) == null ? defaultValue : v;
1576 >    }
1577 >
1578 >    public void forEach(BiAction<? super K, ? super V> action) {
1579 >        if (action == null) throw new NullPointerException();
1580 >        Node<K,V>[] t;
1581 >        if ((t = table) != null) {
1582 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1583 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1584 >                action.apply(p.key, p.val);
1585 >            }
1586 >        }
1587 >    }
1588 >
1589 >    public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1590 >        if (function == null) throw new NullPointerException();
1591 >        Node<K,V>[] t;
1592 >        if ((t = table) != null) {
1593 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1594 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1595 >                V oldValue = p.val;
1596 >                for (K key = p.key;;) {
1597 >                    V newValue = function.apply(key, oldValue);
1598 >                    if (newValue == null)
1599 >                        throw new NullPointerException();
1600 >                    if (replaceNode(key, newValue, oldValue) != null ||
1601 >                        (oldValue = get(key)) == null)
1602 >                        break;
1603 >                }
1604 >            }
1605 >        }
1606      }
1607  
1608      /**
1609       * If the specified key is not already associated with a value,
1610 <     * computes its value using the given mappingFunction and enters
1611 <     * it into the map unless null.  This is equivalent to
1612 <     * <pre> {@code
1613 <     * if (map.containsKey(key))
1614 <     *   return map.get(key);
1615 <     * value = mappingFunction.apply(key);
1616 <     * if (value != null)
2823 <     *   map.put(key, value);
2824 <     * return value;}</pre>
2825 <     *
2826 <     * except that the action is performed atomically.  If the
2827 <     * function returns {@code null} no mapping is recorded. If the
2828 <     * function itself throws an (unchecked) exception, the exception
2829 <     * is rethrown to its caller, and no mapping is recorded.  Some
2830 <     * attempted update operations on this map by other threads may be
2831 <     * blocked while computation is in progress, so the computation
2832 <     * should be short and simple, and must not attempt to update any
2833 <     * other mappings of this Map. The most appropriate usage is to
2834 <     * construct a new object serving as an initial mapped value, or
2835 <     * memoized result, as in:
2836 <     *
2837 <     *  <pre> {@code
2838 <     * map.computeIfAbsent(key, new Fun<K, V>() {
2839 <     *   public V map(K k) { return new Value(f(k)); }});}</pre>
1610 >     * attempts to compute its value using the given mapping function
1611 >     * and enters it into this map unless {@code null}.  The entire
1612 >     * method invocation is performed atomically, so the function is
1613 >     * applied at most once per key.  Some attempted update operations
1614 >     * on this map by other threads may be blocked while computation
1615 >     * is in progress, so the computation should be short and simple,
1616 >     * and must not attempt to update any other mappings of this map.
1617       *
1618       * @param key key with which the specified value is to be associated
1619       * @param mappingFunction the function to compute a value
# Line 2850 | Line 1627 | public class ConcurrentHashMapV8<K, V>
1627       * @throws RuntimeException or Error if the mappingFunction does so,
1628       *         in which case the mapping is left unestablished
1629       */
1630 <    @SuppressWarnings("unchecked") public V computeIfAbsent
2854 <        (K key, Fun<? super K, ? extends V> mappingFunction) {
1630 >    public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1631          if (key == null || mappingFunction == null)
1632              throw new NullPointerException();
1633 <        return (V)internalComputeIfAbsent(key, mappingFunction);
1633 >        int h = spread(key.hashCode());
1634 >        V val = null;
1635 >        int binCount = 0;
1636 >        for (Node<K,V>[] tab = table;;) {
1637 >            Node<K,V> f; int n, i, fh;
1638 >            if (tab == null || (n = tab.length) == 0)
1639 >                tab = initTable();
1640 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1641 >                Node<K,V> r = new ReservationNode<K,V>();
1642 >                synchronized (r) {
1643 >                    if (casTabAt(tab, i, null, r)) {
1644 >                        binCount = 1;
1645 >                        Node<K,V> node = null;
1646 >                        try {
1647 >                            if ((val = mappingFunction.apply(key)) != null)
1648 >                                node = new Node<K,V>(h, key, val, null);
1649 >                        } finally {
1650 >                            setTabAt(tab, i, node);
1651 >                        }
1652 >                    }
1653 >                }
1654 >                if (binCount != 0)
1655 >                    break;
1656 >            }
1657 >            else if ((fh = f.hash) == MOVED)
1658 >                tab = helpTransfer(tab, f);
1659 >            else {
1660 >                boolean added = false;
1661 >                synchronized (f) {
1662 >                    if (tabAt(tab, i) == f) {
1663 >                        if (fh >= 0) {
1664 >                            binCount = 1;
1665 >                            for (Node<K,V> e = f;; ++binCount) {
1666 >                                K ek; V ev;
1667 >                                if (e.hash == h &&
1668 >                                    ((ek = e.key) == key ||
1669 >                                     (ek != null && key.equals(ek)))) {
1670 >                                    val = e.val;
1671 >                                    break;
1672 >                                }
1673 >                                Node<K,V> pred = e;
1674 >                                if ((e = e.next) == null) {
1675 >                                    if ((val = mappingFunction.apply(key)) != null) {
1676 >                                        added = true;
1677 >                                        pred.next = new Node<K,V>(h, key, val, null);
1678 >                                    }
1679 >                                    break;
1680 >                                }
1681 >                            }
1682 >                        }
1683 >                        else if (f instanceof TreeBin) {
1684 >                            binCount = 2;
1685 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1686 >                            TreeNode<K,V> r, p;
1687 >                            if ((r = t.root) != null &&
1688 >                                (p = r.findTreeNode(h, key, null)) != null)
1689 >                                val = p.val;
1690 >                            else if ((val = mappingFunction.apply(key)) != null) {
1691 >                                added = true;
1692 >                                t.putTreeVal(h, key, val);
1693 >                            }
1694 >                        }
1695 >                    }
1696 >                }
1697 >                if (binCount != 0) {
1698 >                    if (binCount >= TREEIFY_THRESHOLD)
1699 >                        treeifyBin(tab, i);
1700 >                    if (!added)
1701 >                        return val;
1702 >                    break;
1703 >                }
1704 >            }
1705 >        }
1706 >        if (val != null)
1707 >            addCount(1L, binCount);
1708 >        return val;
1709      }
1710  
1711      /**
1712 <     * If the given key is present, computes a new mapping value given a key and
1713 <     * its current mapped value. This is equivalent to
1714 <     *  <pre> {@code
1715 <     *   if (map.containsKey(key)) {
1716 <     *     value = remappingFunction.apply(key, map.get(key));
1717 <     *     if (value != null)
1718 <     *       map.put(key, value);
2868 <     *     else
2869 <     *       map.remove(key);
2870 <     *   }
2871 <     * }</pre>
2872 <     *
2873 <     * except that the action is performed atomically.  If the
2874 <     * function returns {@code null}, the mapping is removed.  If the
2875 <     * function itself throws an (unchecked) exception, the exception
2876 <     * is rethrown to its caller, and the current mapping is left
2877 <     * unchanged.  Some attempted update operations on this map by
2878 <     * other threads may be blocked while computation is in progress,
2879 <     * so the computation should be short and simple, and must not
2880 <     * attempt to update any other mappings of this Map. For example,
2881 <     * to either create or append new messages to a value mapping:
1712 >     * If the value for the specified key is present, attempts to
1713 >     * compute a new mapping given the key and its current mapped
1714 >     * value.  The entire method invocation is performed atomically.
1715 >     * Some attempted update operations on this map by other threads
1716 >     * may be blocked while computation is in progress, so the
1717 >     * computation should be short and simple, and must not attempt to
1718 >     * update any other mappings of this map.
1719       *
1720 <     * @param key key with which the specified value is to be associated
1720 >     * @param key key with which a value may be associated
1721       * @param remappingFunction the function to compute a value
1722       * @return the new value associated with the specified key, or null if none
1723       * @throws NullPointerException if the specified key or remappingFunction
# Line 2891 | Line 1728 | public class ConcurrentHashMapV8<K, V>
1728       * @throws RuntimeException or Error if the remappingFunction does so,
1729       *         in which case the mapping is unchanged
1730       */
1731 <    @SuppressWarnings("unchecked") public V computeIfPresent
2895 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1731 >    public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1732          if (key == null || remappingFunction == null)
1733              throw new NullPointerException();
1734 <        return (V)internalCompute(key, true, remappingFunction);
1734 >        int h = spread(key.hashCode());
1735 >        V val = null;
1736 >        int delta = 0;
1737 >        int binCount = 0;
1738 >        for (Node<K,V>[] tab = table;;) {
1739 >            Node<K,V> f; int n, i, fh;
1740 >            if (tab == null || (n = tab.length) == 0)
1741 >                tab = initTable();
1742 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1743 >                break;
1744 >            else if ((fh = f.hash) == MOVED)
1745 >                tab = helpTransfer(tab, f);
1746 >            else {
1747 >                synchronized (f) {
1748 >                    if (tabAt(tab, i) == f) {
1749 >                        if (fh >= 0) {
1750 >                            binCount = 1;
1751 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1752 >                                K ek;
1753 >                                if (e.hash == h &&
1754 >                                    ((ek = e.key) == key ||
1755 >                                     (ek != null && key.equals(ek)))) {
1756 >                                    val = remappingFunction.apply(key, e.val);
1757 >                                    if (val != null)
1758 >                                        e.val = val;
1759 >                                    else {
1760 >                                        delta = -1;
1761 >                                        Node<K,V> en = e.next;
1762 >                                        if (pred != null)
1763 >                                            pred.next = en;
1764 >                                        else
1765 >                                            setTabAt(tab, i, en);
1766 >                                    }
1767 >                                    break;
1768 >                                }
1769 >                                pred = e;
1770 >                                if ((e = e.next) == null)
1771 >                                    break;
1772 >                            }
1773 >                        }
1774 >                        else if (f instanceof TreeBin) {
1775 >                            binCount = 2;
1776 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1777 >                            TreeNode<K,V> r, p;
1778 >                            if ((r = t.root) != null &&
1779 >                                (p = r.findTreeNode(h, key, null)) != null) {
1780 >                                val = remappingFunction.apply(key, p.val);
1781 >                                if (val != null)
1782 >                                    p.val = val;
1783 >                                else {
1784 >                                    delta = -1;
1785 >                                    if (t.removeTreeNode(p))
1786 >                                        setTabAt(tab, i, untreeify(t.first));
1787 >                                }
1788 >                            }
1789 >                        }
1790 >                    }
1791 >                }
1792 >                if (binCount != 0)
1793 >                    break;
1794 >            }
1795 >        }
1796 >        if (delta != 0)
1797 >            addCount((long)delta, binCount);
1798 >        return val;
1799      }
1800  
1801      /**
1802 <     * Computes a new mapping value given a key and
1803 <     * its current mapped value (or {@code null} if there is no current
1804 <     * mapping). This is equivalent to
1805 <     *  <pre> {@code
1806 <     *   value = remappingFunction.apply(key, map.get(key));
1807 <     *   if (value != null)
1808 <     *     map.put(key, value);
2909 <     *   else
2910 <     *     map.remove(key);
2911 <     * }</pre>
2912 <     *
2913 <     * except that the action is performed atomically.  If the
2914 <     * function returns {@code null}, the mapping is removed.  If the
2915 <     * function itself throws an (unchecked) exception, the exception
2916 <     * is rethrown to its caller, and the current mapping is left
2917 <     * unchanged.  Some attempted update operations on this map by
2918 <     * other threads may be blocked while computation is in progress,
2919 <     * so the computation should be short and simple, and must not
2920 <     * attempt to update any other mappings of this Map. For example,
2921 <     * to either create or append new messages to a value mapping:
2922 <     *
2923 <     * <pre> {@code
2924 <     * Map<Key, String> map = ...;
2925 <     * final String msg = ...;
2926 <     * map.compute(key, new BiFun<Key, String, String>() {
2927 <     *   public String apply(Key k, String v) {
2928 <     *    return (v == null) ? msg : v + msg;});}}</pre>
1802 >     * Attempts to compute a mapping for the specified key and its
1803 >     * current mapped value (or {@code null} if there is no current
1804 >     * mapping). The entire method invocation is performed atomically.
1805 >     * Some attempted update operations on this map by other threads
1806 >     * may be blocked while computation is in progress, so the
1807 >     * computation should be short and simple, and must not attempt to
1808 >     * update any other mappings of this Map.
1809       *
1810       * @param key key with which the specified value is to be associated
1811       * @param remappingFunction the function to compute a value
# Line 2938 | Line 1818 | public class ConcurrentHashMapV8<K, V>
1818       * @throws RuntimeException or Error if the remappingFunction does so,
1819       *         in which case the mapping is unchanged
1820       */
1821 <    @SuppressWarnings("unchecked") public V compute
1822 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1821 >    public V compute(K key,
1822 >                     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1823          if (key == null || remappingFunction == null)
1824              throw new NullPointerException();
1825 <        return (V)internalCompute(key, false, remappingFunction);
1825 >        int h = spread(key.hashCode());
1826 >        V val = null;
1827 >        int delta = 0;
1828 >        int binCount = 0;
1829 >        for (Node<K,V>[] tab = table;;) {
1830 >            Node<K,V> f; int n, i, fh;
1831 >            if (tab == null || (n = tab.length) == 0)
1832 >                tab = initTable();
1833 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1834 >                Node<K,V> r = new ReservationNode<K,V>();
1835 >                synchronized (r) {
1836 >                    if (casTabAt(tab, i, null, r)) {
1837 >                        binCount = 1;
1838 >                        Node<K,V> node = null;
1839 >                        try {
1840 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1841 >                                delta = 1;
1842 >                                node = new Node<K,V>(h, key, val, null);
1843 >                            }
1844 >                        } finally {
1845 >                            setTabAt(tab, i, node);
1846 >                        }
1847 >                    }
1848 >                }
1849 >                if (binCount != 0)
1850 >                    break;
1851 >            }
1852 >            else if ((fh = f.hash) == MOVED)
1853 >                tab = helpTransfer(tab, f);
1854 >            else {
1855 >                synchronized (f) {
1856 >                    if (tabAt(tab, i) == f) {
1857 >                        if (fh >= 0) {
1858 >                            binCount = 1;
1859 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1860 >                                K ek;
1861 >                                if (e.hash == h &&
1862 >                                    ((ek = e.key) == key ||
1863 >                                     (ek != null && key.equals(ek)))) {
1864 >                                    val = remappingFunction.apply(key, e.val);
1865 >                                    if (val != null)
1866 >                                        e.val = val;
1867 >                                    else {
1868 >                                        delta = -1;
1869 >                                        Node<K,V> en = e.next;
1870 >                                        if (pred != null)
1871 >                                            pred.next = en;
1872 >                                        else
1873 >                                            setTabAt(tab, i, en);
1874 >                                    }
1875 >                                    break;
1876 >                                }
1877 >                                pred = e;
1878 >                                if ((e = e.next) == null) {
1879 >                                    val = remappingFunction.apply(key, null);
1880 >                                    if (val != null) {
1881 >                                        delta = 1;
1882 >                                        pred.next =
1883 >                                            new Node<K,V>(h, key, val, null);
1884 >                                    }
1885 >                                    break;
1886 >                                }
1887 >                            }
1888 >                        }
1889 >                        else if (f instanceof TreeBin) {
1890 >                            binCount = 1;
1891 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1892 >                            TreeNode<K,V> r, p;
1893 >                            if ((r = t.root) != null)
1894 >                                p = r.findTreeNode(h, key, null);
1895 >                            else
1896 >                                p = null;
1897 >                            V pv = (p == null) ? null : p.val;
1898 >                            val = remappingFunction.apply(key, pv);
1899 >                            if (val != null) {
1900 >                                if (p != null)
1901 >                                    p.val = val;
1902 >                                else {
1903 >                                    delta = 1;
1904 >                                    t.putTreeVal(h, key, val);
1905 >                                }
1906 >                            }
1907 >                            else if (p != null) {
1908 >                                delta = -1;
1909 >                                if (t.removeTreeNode(p))
1910 >                                    setTabAt(tab, i, untreeify(t.first));
1911 >                            }
1912 >                        }
1913 >                    }
1914 >                }
1915 >                if (binCount != 0) {
1916 >                    if (binCount >= TREEIFY_THRESHOLD)
1917 >                        treeifyBin(tab, i);
1918 >                    break;
1919 >                }
1920 >            }
1921 >        }
1922 >        if (delta != 0)
1923 >            addCount((long)delta, binCount);
1924 >        return val;
1925      }
1926  
1927      /**
1928 <     * If the specified key is not already associated
1929 <     * with a value, associate it with the given value.
1930 <     * Otherwise, replace the value with the results of
1931 <     * the given remapping function. This is equivalent to:
1932 <     *  <pre> {@code
1933 <     *   if (!map.containsKey(key))
1934 <     *     map.put(value);
1935 <     *   else {
1936 <     *     newValue = remappingFunction.apply(map.get(key), value);
1937 <     *     if (value != null)
1938 <     *       map.put(key, value);
1939 <     *     else
1940 <     *       map.remove(key);
1941 <     *   }
1942 <     * }</pre>
1943 <     * except that the action is performed atomically.  If the
1944 <     * function returns {@code null}, the mapping is removed.  If the
1945 <     * function itself throws an (unchecked) exception, the exception
2967 <     * is rethrown to its caller, and the current mapping is left
2968 <     * unchanged.  Some attempted update operations on this map by
2969 <     * other threads may be blocked while computation is in progress,
2970 <     * so the computation should be short and simple, and must not
2971 <     * attempt to update any other mappings of this Map.
1928 >     * If the specified key is not already associated with a
1929 >     * (non-null) value, associates it with the given value.
1930 >     * Otherwise, replaces the value with the results of the given
1931 >     * remapping function, or removes if {@code null}. The entire
1932 >     * method invocation is performed atomically.  Some attempted
1933 >     * update operations on this map by other threads may be blocked
1934 >     * while computation is in progress, so the computation should be
1935 >     * short and simple, and must not attempt to update any other
1936 >     * mappings of this Map.
1937 >     *
1938 >     * @param key key with which the specified value is to be associated
1939 >     * @param value the value to use if absent
1940 >     * @param remappingFunction the function to recompute a value if present
1941 >     * @return the new value associated with the specified key, or null if none
1942 >     * @throws NullPointerException if the specified key or the
1943 >     *         remappingFunction is null
1944 >     * @throws RuntimeException or Error if the remappingFunction does so,
1945 >     *         in which case the mapping is unchanged
1946       */
1947 <    @SuppressWarnings("unchecked") public V merge
2974 <        (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1947 >    public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1948          if (key == null || value == null || remappingFunction == null)
1949              throw new NullPointerException();
1950 <        return (V)internalMerge(key, value, remappingFunction);
1950 >        int h = spread(key.hashCode());
1951 >        V val = null;
1952 >        int delta = 0;
1953 >        int binCount = 0;
1954 >        for (Node<K,V>[] tab = table;;) {
1955 >            Node<K,V> f; int n, i, fh;
1956 >            if (tab == null || (n = tab.length) == 0)
1957 >                tab = initTable();
1958 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1959 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1960 >                    delta = 1;
1961 >                    val = value;
1962 >                    break;
1963 >                }
1964 >            }
1965 >            else if ((fh = f.hash) == MOVED)
1966 >                tab = helpTransfer(tab, f);
1967 >            else {
1968 >                synchronized (f) {
1969 >                    if (tabAt(tab, i) == f) {
1970 >                        if (fh >= 0) {
1971 >                            binCount = 1;
1972 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1973 >                                K ek;
1974 >                                if (e.hash == h &&
1975 >                                    ((ek = e.key) == key ||
1976 >                                     (ek != null && key.equals(ek)))) {
1977 >                                    val = remappingFunction.apply(e.val, value);
1978 >                                    if (val != null)
1979 >                                        e.val = val;
1980 >                                    else {
1981 >                                        delta = -1;
1982 >                                        Node<K,V> en = e.next;
1983 >                                        if (pred != null)
1984 >                                            pred.next = en;
1985 >                                        else
1986 >                                            setTabAt(tab, i, en);
1987 >                                    }
1988 >                                    break;
1989 >                                }
1990 >                                pred = e;
1991 >                                if ((e = e.next) == null) {
1992 >                                    delta = 1;
1993 >                                    val = value;
1994 >                                    pred.next =
1995 >                                        new Node<K,V>(h, key, val, null);
1996 >                                    break;
1997 >                                }
1998 >                            }
1999 >                        }
2000 >                        else if (f instanceof TreeBin) {
2001 >                            binCount = 2;
2002 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2003 >                            TreeNode<K,V> r = t.root;
2004 >                            TreeNode<K,V> p = (r == null) ? null :
2005 >                                r.findTreeNode(h, key, null);
2006 >                            val = (p == null) ? value :
2007 >                                remappingFunction.apply(p.val, value);
2008 >                            if (val != null) {
2009 >                                if (p != null)
2010 >                                    p.val = val;
2011 >                                else {
2012 >                                    delta = 1;
2013 >                                    t.putTreeVal(h, key, val);
2014 >                                }
2015 >                            }
2016 >                            else if (p != null) {
2017 >                                delta = -1;
2018 >                                if (t.removeTreeNode(p))
2019 >                                    setTabAt(tab, i, untreeify(t.first));
2020 >                            }
2021 >                        }
2022 >                    }
2023 >                }
2024 >                if (binCount != 0) {
2025 >                    if (binCount >= TREEIFY_THRESHOLD)
2026 >                        treeifyBin(tab, i);
2027 >                    break;
2028 >                }
2029 >            }
2030 >        }
2031 >        if (delta != 0)
2032 >            addCount((long)delta, binCount);
2033 >        return val;
2034      }
2035  
2036 +    // Hashtable legacy methods
2037 +
2038      /**
2039 <     * Removes the key (and its corresponding value) from this map.
2040 <     * This method does nothing if the key is not in the map.
2039 >     * Legacy method testing if some key maps into the specified value
2040 >     * in this table.  This method is identical in functionality to
2041 >     * {@link #containsValue(Object)}, and exists solely to ensure
2042 >     * full compatibility with class {@link java.util.Hashtable},
2043 >     * which supported this method prior to introduction of the
2044 >     * Java Collections framework.
2045       *
2046 <     * @param  key the key that needs to be removed
2047 <     * @return the previous value associated with {@code key}, or
2048 <     *         {@code null} if there was no mapping for {@code key}
2049 <     * @throws NullPointerException if the specified key is null
2046 >     * @param  value a value to search for
2047 >     * @return {@code true} if and only if some key maps to the
2048 >     *         {@code value} argument in this table as
2049 >     *         determined by the {@code equals} method;
2050 >     *         {@code false} otherwise
2051 >     * @throws NullPointerException if the specified value is null
2052       */
2053 <    @SuppressWarnings("unchecked") public V remove(Object key) {
2054 <        if (key == null)
2991 <            throw new NullPointerException();
2992 <        return (V)internalReplace(key, null, null);
2053 >    @Deprecated public boolean contains(Object value) {
2054 >        return containsValue(value);
2055      }
2056  
2057      /**
2058 <     * {@inheritDoc}
2058 >     * Returns an enumeration of the keys in this table.
2059       *
2060 <     * @throws NullPointerException if the specified key is null
2060 >     * @return an enumeration of the keys in this table
2061 >     * @see #keySet()
2062       */
2063 <    public boolean remove(Object key, Object value) {
2064 <        if (key == null)
2065 <            throw new NullPointerException();
2066 <        if (value == null)
3004 <            return false;
3005 <        return internalReplace(key, null, value) != null;
2063 >    public Enumeration<K> keys() {
2064 >        Node<K,V>[] t;
2065 >        int f = (t = table) == null ? 0 : t.length;
2066 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2067      }
2068  
2069      /**
2070 <     * {@inheritDoc}
2070 >     * Returns an enumeration of the values in this table.
2071       *
2072 <     * @throws NullPointerException if any of the arguments are null
2072 >     * @return an enumeration of the values in this table
2073 >     * @see #values()
2074       */
2075 <    public boolean replace(K key, V oldValue, V newValue) {
2076 <        if (key == null || oldValue == null || newValue == null)
2077 <            throw new NullPointerException();
2078 <        return internalReplace(key, newValue, oldValue) != null;
2075 >    public Enumeration<V> elements() {
2076 >        Node<K,V>[] t;
2077 >        int f = (t = table) == null ? 0 : t.length;
2078 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2079      }
2080  
2081 +    // ConcurrentHashMapV8-only methods
2082 +
2083      /**
2084 <     * {@inheritDoc}
2084 >     * Returns the number of mappings. This method should be used
2085 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2086 >     * contain more mappings than can be represented as an int. The
2087 >     * value returned is an estimate; the actual count may differ if
2088 >     * there are concurrent insertions or removals.
2089       *
2090 <     * @return the previous value associated with the specified key,
2091 <     *         or {@code null} if there was no mapping for the key
3024 <     * @throws NullPointerException if the specified key or value is null
2090 >     * @return the number of mappings
2091 >     * @since 1.8
2092       */
2093 <    @SuppressWarnings("unchecked") public V replace(K key, V value) {
2094 <        if (key == null || value == null)
2095 <            throw new NullPointerException();
3029 <        return (V)internalReplace(key, value, null);
2093 >    public long mappingCount() {
2094 >        long n = sumCount();
2095 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2096      }
2097  
2098      /**
2099 <     * Removes all of the mappings from this map.
2099 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2100 >     * from the given type to {@code Boolean.TRUE}.
2101 >     *
2102 >     * @return the new set
2103 >     * @since 1.8
2104       */
2105 <    public void clear() {
2106 <        internalClear();
2105 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2106 >        return new KeySetView<K,Boolean>
2107 >            (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2108      }
2109  
2110      /**
2111 <     * Returns a {@link Set} view of the keys contained in this map.
2112 <     * The set is backed by the map, so changes to the map are
3042 <     * reflected in the set, and vice-versa.
2111 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2112 >     * from the given type to {@code Boolean.TRUE}.
2113       *
2114 <     * @return the set view
2114 >     * @param initialCapacity The implementation performs internal
2115 >     * sizing to accommodate this many elements.
2116 >     * @return the new set
2117 >     * @throws IllegalArgumentException if the initial capacity of
2118 >     * elements is negative
2119 >     * @since 1.8
2120       */
2121 <    public KeySetView<K,V> keySet() {
2122 <        KeySetView<K,V> ks = keySet;
2123 <        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2121 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2122 >        return new KeySetView<K,Boolean>
2123 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2124      }
2125  
2126      /**
2127       * Returns a {@link Set} view of the keys in this map, using the
2128       * given common mapped value for any additions (i.e., {@link
2129 <     * Collection#add} and {@link Collection#addAll}). This is of
2130 <     * course only appropriate if it is acceptable to use the same
2131 <     * value for all additions from this view.
2129 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2130 >     * This is of course only appropriate if it is acceptable to use
2131 >     * the same value for all additions from this view.
2132       *
2133 <     * @param mappedValue the mapped value to use for any
3059 <     * additions.
2133 >     * @param mappedValue the mapped value to use for any additions
2134       * @return the set view
2135       * @throws NullPointerException if the mappedValue is null
2136       */
# Line 3066 | Line 2140 | public class ConcurrentHashMapV8<K, V>
2140          return new KeySetView<K,V>(this, mappedValue);
2141      }
2142  
2143 +    /* ---------------- Special Nodes -------------- */
2144 +
2145      /**
2146 <     * Returns a {@link Collection} view of the values contained in this map.
3071 <     * The collection is backed by the map, so changes to the map are
3072 <     * reflected in the collection, and vice-versa.
2146 >     * A node inserted at head of bins during transfer operations.
2147       */
2148 <    public ValuesView<K,V> values() {
2149 <        ValuesView<K,V> vs = values;
2150 <        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2148 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2149 >        final Node<K,V>[] nextTable;
2150 >        ForwardingNode(Node<K,V>[] tab) {
2151 >            super(MOVED, null, null, null);
2152 >            this.nextTable = tab;
2153 >        }
2154 >
2155 >        Node<K,V> find(int h, Object k) {
2156 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2157 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2158 >                Node<K,V> e; int n;
2159 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2160 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2161 >                    return null;
2162 >                for (;;) {
2163 >                    int eh; K ek;
2164 >                    if ((eh = e.hash) == h &&
2165 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2166 >                        return e;
2167 >                    if (eh < 0) {
2168 >                        if (e instanceof ForwardingNode) {
2169 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2170 >                            continue outer;
2171 >                        }
2172 >                        else
2173 >                            return e.find(h, k);
2174 >                    }
2175 >                    if ((e = e.next) == null)
2176 >                        return null;
2177 >                }
2178 >            }
2179 >        }
2180      }
2181  
2182      /**
2183 <     * Returns a {@link Set} view of the mappings contained in this map.
3081 <     * The set is backed by the map, so changes to the map are
3082 <     * reflected in the set, and vice-versa.  The set supports element
3083 <     * removal, which removes the corresponding mapping from the map,
3084 <     * via the {@code Iterator.remove}, {@code Set.remove},
3085 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
3086 <     * operations.  It does not support the {@code add} or
3087 <     * {@code addAll} operations.
3088 <     *
3089 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
3090 <     * that will never throw {@link ConcurrentModificationException},
3091 <     * and guarantees to traverse elements as they existed upon
3092 <     * construction of the iterator, and may (but is not guaranteed to)
3093 <     * reflect any modifications subsequent to construction.
2183 >     * A place-holder node used in computeIfAbsent and compute
2184       */
2185 <    public Set<Map.Entry<K,V>> entrySet() {
2186 <        EntrySetView<K,V> es = entrySet;
2187 <        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2185 >    static final class ReservationNode<K,V> extends Node<K,V> {
2186 >        ReservationNode() {
2187 >            super(RESERVED, null, null, null);
2188 >        }
2189 >
2190 >        Node<K,V> find(int h, Object k) {
2191 >            return null;
2192 >        }
2193      }
2194  
2195 +    /* ---------------- Table Initialization and Resizing -------------- */
2196 +
2197      /**
2198 <     * Returns an enumeration of the keys in this table.
3102 <     *
3103 <     * @return an enumeration of the keys in this table
3104 <     * @see #keySet()
2198 >     * Initializes table, using the size recorded in sizeCtl.
2199       */
2200 <    public Enumeration<K> keys() {
2201 <        return new KeyIterator<K,V>(this);
2200 >    private final Node<K,V>[] initTable() {
2201 >        Node<K,V>[] tab; int sc;
2202 >        while ((tab = table) == null || tab.length == 0) {
2203 >            if ((sc = sizeCtl) < 0)
2204 >                Thread.yield(); // lost initialization race; just spin
2205 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2206 >                try {
2207 >                    if ((tab = table) == null || tab.length == 0) {
2208 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2209 >                        @SuppressWarnings("unchecked")
2210 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2211 >                        table = tab = nt;
2212 >                        sc = n - (n >>> 2);
2213 >                    }
2214 >                } finally {
2215 >                    sizeCtl = sc;
2216 >                }
2217 >                break;
2218 >            }
2219 >        }
2220 >        return tab;
2221      }
2222  
2223      /**
2224 <     * Returns an enumeration of the values in this table.
2225 <     *
2226 <     * @return an enumeration of the values in this table
2227 <     * @see #values()
2224 >     * Adds to count, and if table is too small and not already
2225 >     * resizing, initiates transfer. If already resizing, helps
2226 >     * perform transfer if work is available.  Rechecks occupancy
2227 >     * after a transfer to see if another resize is already needed
2228 >     * because resizings are lagging additions.
2229 >     *
2230 >     * @param x the count to add
2231 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2232 >     */
2233 >    private final void addCount(long x, int check) {
2234 >        CounterCell[] as; long b, s;
2235 >        if ((as = counterCells) != null ||
2236 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2237 >            CounterHashCode hc; CounterCell a; long v; int m;
2238 >            boolean uncontended = true;
2239 >            if ((hc = threadCounterHashCode.get()) == null ||
2240 >                as == null || (m = as.length - 1) < 0 ||
2241 >                (a = as[m & hc.code]) == null ||
2242 >                !(uncontended =
2243 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2244 >                fullAddCount(x, hc, uncontended);
2245 >                return;
2246 >            }
2247 >            if (check <= 1)
2248 >                return;
2249 >            s = sumCount();
2250 >        }
2251 >        if (check >= 0) {
2252 >            Node<K,V>[] tab, nt; int sc;
2253 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2254 >                   tab.length < MAXIMUM_CAPACITY) {
2255 >                if (sc < 0) {
2256 >                    if (sc == -1 || transferIndex <= 0 ||
2257 >                        (nt = nextTable) == null)
2258 >                        break;
2259 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2260 >                        transfer(tab, nt);
2261 >                }
2262 >                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2263 >                    transfer(tab, null);
2264 >                s = sumCount();
2265 >            }
2266 >        }
2267 >    }
2268 >
2269 >    /**
2270 >     * Helps transfer if a resize is in progress.
2271       */
2272 <    public Enumeration<V> elements() {
2273 <        return new ValueIterator<K,V>(this);
2272 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2273 >        Node<K,V>[] nextTab; int sc;
2274 >        if ((f instanceof ForwardingNode) &&
2275 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2276 >            while (transferIndex > 0 && nextTab == nextTable &&
2277 >                   (sc = sizeCtl) < -1) {
2278 >                if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1)) {
2279 >                    transfer(tab, nextTab);
2280 >                    break;
2281 >                }
2282 >            }
2283 >            return nextTab;
2284 >        }
2285 >        return table;
2286      }
2287  
2288      /**
2289 <     * Returns a partitionable iterator of the keys in this map.
2289 >     * Tries to presize table to accommodate the given number of elements.
2290       *
2291 <     * @return a partitionable iterator of the keys in this map
2291 >     * @param size number of elements (doesn't need to be perfectly accurate)
2292       */
2293 <    public Spliterator<K> keySpliterator() {
2294 <        return new KeyIterator<K,V>(this);
2293 >    private final void tryPresize(int size) {
2294 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2295 >            tableSizeFor(size + (size >>> 1) + 1);
2296 >        int sc;
2297 >        while ((sc = sizeCtl) >= 0) {
2298 >            Node<K,V>[] tab = table; int n;
2299 >            if (tab == null || (n = tab.length) == 0) {
2300 >                n = (sc > c) ? sc : c;
2301 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2302 >                    try {
2303 >                        if (table == tab) {
2304 >                            @SuppressWarnings("unchecked")
2305 >                                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2306 >                            table = nt;
2307 >                            sc = n - (n >>> 2);
2308 >                        }
2309 >                    } finally {
2310 >                        sizeCtl = sc;
2311 >                    }
2312 >                }
2313 >            }
2314 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2315 >                break;
2316 >            else if (tab == table &&
2317 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2318 >                transfer(tab, null);
2319 >        }
2320      }
2321  
2322      /**
2323 <     * Returns a partitionable iterator of the values in this map.
2324 <     *
3132 <     * @return a partitionable iterator of the values in this map
2323 >     * Moves and/or copies the nodes in each bin to new table. See
2324 >     * above for explanation.
2325       */
2326 <    public Spliterator<V> valueSpliterator() {
2327 <        return new ValueIterator<K,V>(this);
2326 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2327 >        int n = tab.length, stride;
2328 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2329 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2330 >        if (nextTab == null) {            // initiating
2331 >            try {
2332 >                @SuppressWarnings("unchecked")
2333 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2334 >                nextTab = nt;
2335 >            } catch (Throwable ex) {      // try to cope with OOME
2336 >                sizeCtl = Integer.MAX_VALUE;
2337 >                return;
2338 >            }
2339 >            nextTable = nextTab;
2340 >            transferIndex = n;
2341 >        }
2342 >        int nextn = nextTab.length;
2343 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2344 >        boolean advance = true;
2345 >        boolean finishing = false; // to ensure sweep before committing nextTab
2346 >        for (int i = 0, bound = 0;;) {
2347 >            Node<K,V> f; int fh;
2348 >            while (advance) {
2349 >                int nextIndex, nextBound;
2350 >                if (--i >= bound || finishing)
2351 >                    advance = false;
2352 >                else if ((nextIndex = transferIndex) <= 0) {
2353 >                    i = -1;
2354 >                    advance = false;
2355 >                }
2356 >                else if (U.compareAndSwapInt
2357 >                         (this, TRANSFERINDEX, nextIndex,
2358 >                          nextBound = (nextIndex > stride ?
2359 >                                       nextIndex - stride : 0))) {
2360 >                    bound = nextBound;
2361 >                    i = nextIndex - 1;
2362 >                    advance = false;
2363 >                }
2364 >            }
2365 >            if (i < 0 || i >= n || i + n >= nextn) {
2366 >                int sc;
2367 >                if (finishing) {
2368 >                    nextTable = null;
2369 >                    table = nextTab;
2370 >                    sizeCtl = (n << 1) - (n >>> 1);
2371 >                    return;
2372 >                }
2373 >                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2374 >                    if (sc != -1)
2375 >                        return;
2376 >                    finishing = advance = true;
2377 >                    i = n; // recheck before commit
2378 >                }
2379 >            }
2380 >            else if ((f = tabAt(tab, i)) == null)
2381 >                advance = casTabAt(tab, i, null, fwd);
2382 >            else if ((fh = f.hash) == MOVED)
2383 >                advance = true; // already processed
2384 >            else {
2385 >                synchronized (f) {
2386 >                    if (tabAt(tab, i) == f) {
2387 >                        Node<K,V> ln, hn;
2388 >                        if (fh >= 0) {
2389 >                            int runBit = fh & n;
2390 >                            Node<K,V> lastRun = f;
2391 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2392 >                                int b = p.hash & n;
2393 >                                if (b != runBit) {
2394 >                                    runBit = b;
2395 >                                    lastRun = p;
2396 >                                }
2397 >                            }
2398 >                            if (runBit == 0) {
2399 >                                ln = lastRun;
2400 >                                hn = null;
2401 >                            }
2402 >                            else {
2403 >                                hn = lastRun;
2404 >                                ln = null;
2405 >                            }
2406 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2407 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2408 >                                if ((ph & n) == 0)
2409 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2410 >                                else
2411 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2412 >                            }
2413 >                            setTabAt(nextTab, i, ln);
2414 >                            setTabAt(nextTab, i + n, hn);
2415 >                            setTabAt(tab, i, fwd);
2416 >                            advance = true;
2417 >                        }
2418 >                        else if (f instanceof TreeBin) {
2419 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2420 >                            TreeNode<K,V> lo = null, loTail = null;
2421 >                            TreeNode<K,V> hi = null, hiTail = null;
2422 >                            int lc = 0, hc = 0;
2423 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2424 >                                int h = e.hash;
2425 >                                TreeNode<K,V> p = new TreeNode<K,V>
2426 >                                    (h, e.key, e.val, null, null);
2427 >                                if ((h & n) == 0) {
2428 >                                    if ((p.prev = loTail) == null)
2429 >                                        lo = p;
2430 >                                    else
2431 >                                        loTail.next = p;
2432 >                                    loTail = p;
2433 >                                    ++lc;
2434 >                                }
2435 >                                else {
2436 >                                    if ((p.prev = hiTail) == null)
2437 >                                        hi = p;
2438 >                                    else
2439 >                                        hiTail.next = p;
2440 >                                    hiTail = p;
2441 >                                    ++hc;
2442 >                                }
2443 >                            }
2444 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2445 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2446 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2447 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2448 >                            setTabAt(nextTab, i, ln);
2449 >                            setTabAt(nextTab, i + n, hn);
2450 >                            setTabAt(tab, i, fwd);
2451 >                            advance = true;
2452 >                        }
2453 >                    }
2454 >                }
2455 >            }
2456 >        }
2457      }
2458  
2459 +    /* ---------------- Conversion from/to TreeBins -------------- */
2460 +
2461      /**
2462 <     * Returns a partitionable iterator of the entries in this map.
2463 <     *
3141 <     * @return a partitionable iterator of the entries in this map
2462 >     * Replaces all linked nodes in bin at given index unless table is
2463 >     * too small, in which case resizes instead.
2464       */
2465 <    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2466 <        return new EntryIterator<K,V>(this);
2465 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2466 >        Node<K,V> b; int n, sc;
2467 >        if (tab != null) {
2468 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2469 >                if (tab == table && (sc = sizeCtl) >= 0 &&
2470 >                    U.compareAndSwapInt(this, SIZECTL, sc, -2))
2471 >                    transfer(tab, null);
2472 >            }
2473 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2474 >                synchronized (b) {
2475 >                    if (tabAt(tab, index) == b) {
2476 >                        TreeNode<K,V> hd = null, tl = null;
2477 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2478 >                            TreeNode<K,V> p =
2479 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2480 >                                                  null, null);
2481 >                            if ((p.prev = tl) == null)
2482 >                                hd = p;
2483 >                            else
2484 >                                tl.next = p;
2485 >                            tl = p;
2486 >                        }
2487 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2488 >                    }
2489 >                }
2490 >            }
2491 >        }
2492      }
2493  
2494      /**
2495 <     * Returns the hash code value for this {@link Map}, i.e.,
3149 <     * the sum of, for each key-value pair in the map,
3150 <     * {@code key.hashCode() ^ value.hashCode()}.
3151 <     *
3152 <     * @return the hash code value for this map
2495 >     * Returns a list on non-TreeNodes replacing those in given list.
2496       */
2497 <    public int hashCode() {
2498 <        int h = 0;
2499 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2500 <        Object v;
2501 <        while ((v = it.advance()) != null) {
2502 <            h += it.nextKey.hashCode() ^ v.hashCode();
2497 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2498 >        Node<K,V> hd = null, tl = null;
2499 >        for (Node<K,V> q = b; q != null; q = q.next) {
2500 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2501 >            if (tl == null)
2502 >                hd = p;
2503 >            else
2504 >                tl.next = p;
2505 >            tl = p;
2506          }
2507 <        return h;
2507 >        return hd;
2508      }
2509  
2510 +    /* ---------------- TreeNodes -------------- */
2511 +
2512      /**
2513 <     * Returns a string representation of this map.  The string
3166 <     * representation consists of a list of key-value mappings (in no
3167 <     * particular order) enclosed in braces ("{@code {}}").  Adjacent
3168 <     * mappings are separated by the characters {@code ", "} (comma
3169 <     * and space).  Each key-value mapping is rendered as the key
3170 <     * followed by an equals sign ("{@code =}") followed by the
3171 <     * associated value.
3172 <     *
3173 <     * @return a string representation of this map
2513 >     * Nodes for use in TreeBins
2514       */
2515 <    public String toString() {
2516 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2517 <        StringBuilder sb = new StringBuilder();
2518 <        sb.append('{');
2519 <        Object v;
2520 <        if ((v = it.advance()) != null) {
2521 <            for (;;) {
2522 <                Object k = it.nextKey;
2523 <                sb.append(k == this ? "(this Map)" : k);
2524 <                sb.append('=');
2525 <                sb.append(v == this ? "(this Map)" : v);
2526 <                if ((v = it.advance()) == null)
2515 >    static final class TreeNode<K,V> extends Node<K,V> {
2516 >        TreeNode<K,V> parent;  // red-black tree links
2517 >        TreeNode<K,V> left;
2518 >        TreeNode<K,V> right;
2519 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2520 >        boolean red;
2521 >
2522 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2523 >                 TreeNode<K,V> parent) {
2524 >            super(hash, key, val, next);
2525 >            this.parent = parent;
2526 >        }
2527 >
2528 >        Node<K,V> find(int h, Object k) {
2529 >            return findTreeNode(h, k, null);
2530 >        }
2531 >
2532 >        /**
2533 >         * Returns the TreeNode (or null if not found) for the given key
2534 >         * starting at given root.
2535 >         */
2536 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2537 >            if (k != null) {
2538 >                TreeNode<K,V> p = this;
2539 >                do  {
2540 >                    int ph, dir; K pk; TreeNode<K,V> q;
2541 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2542 >                    if ((ph = p.hash) > h)
2543 >                        p = pl;
2544 >                    else if (ph < h)
2545 >                        p = pr;
2546 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2547 >                        return p;
2548 >                    else if (pl == null)
2549 >                        p = pr;
2550 >                    else if (pr == null)
2551 >                        p = pl;
2552 >                    else if ((kc != null ||
2553 >                              (kc = comparableClassFor(k)) != null) &&
2554 >                             (dir = compareComparables(kc, k, pk)) != 0)
2555 >                        p = (dir < 0) ? pl : pr;
2556 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2557 >                        return q;
2558 >                    else
2559 >                        p = pl;
2560 >                } while (p != null);
2561 >            }
2562 >            return null;
2563 >        }
2564 >    }
2565 >
2566 >    /* ---------------- TreeBins -------------- */
2567 >
2568 >    /**
2569 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2570 >     * keys or values, but instead point to list of TreeNodes and
2571 >     * their root. They also maintain a parasitic read-write lock
2572 >     * forcing writers (who hold bin lock) to wait for readers (who do
2573 >     * not) to complete before tree restructuring operations.
2574 >     */
2575 >    static final class TreeBin<K,V> extends Node<K,V> {
2576 >        TreeNode<K,V> root;
2577 >        volatile TreeNode<K,V> first;
2578 >        volatile Thread waiter;
2579 >        volatile int lockState;
2580 >        // values for lockState
2581 >        static final int WRITER = 1; // set while holding write lock
2582 >        static final int WAITER = 2; // set when waiting for write lock
2583 >        static final int READER = 4; // increment value for setting read lock
2584 >
2585 >        /**
2586 >         * Tie-breaking utility for ordering insertions when equal
2587 >         * hashCodes and non-comparable. We don't require a total
2588 >         * order, just a consistent insertion rule to maintain
2589 >         * equivalence across rebalancings. Tie-breaking further than
2590 >         * necessary simplifies testing a bit.
2591 >         */
2592 >        static int tieBreakOrder(Object a, Object b) {
2593 >            int d;
2594 >            if (a == null || b == null ||
2595 >                (d = a.getClass().getName().
2596 >                 compareTo(b.getClass().getName())) == 0)
2597 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2598 >                     -1 : 1);
2599 >            return d;
2600 >        }
2601 >
2602 >        /**
2603 >         * Creates bin with initial set of nodes headed by b.
2604 >         */
2605 >        TreeBin(TreeNode<K,V> b) {
2606 >            super(TREEBIN, null, null, null);
2607 >            this.first = b;
2608 >            TreeNode<K,V> r = null;
2609 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2610 >                next = (TreeNode<K,V>)x.next;
2611 >                x.left = x.right = null;
2612 >                if (r == null) {
2613 >                    x.parent = null;
2614 >                    x.red = false;
2615 >                    r = x;
2616 >                }
2617 >                else {
2618 >                    K k = x.key;
2619 >                    int h = x.hash;
2620 >                    Class<?> kc = null;
2621 >                    for (TreeNode<K,V> p = r;;) {
2622 >                        int dir, ph;
2623 >                        K pk = p.key;
2624 >                        if ((ph = p.hash) > h)
2625 >                            dir = -1;
2626 >                        else if (ph < h)
2627 >                            dir = 1;
2628 >                        else if ((kc == null &&
2629 >                                  (kc = comparableClassFor(k)) == null) ||
2630 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2631 >                            dir = tieBreakOrder(k, pk);
2632 >                            TreeNode<K,V> xp = p;
2633 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2634 >                            x.parent = xp;
2635 >                            if (dir <= 0)
2636 >                                xp.left = x;
2637 >                            else
2638 >                                xp.right = x;
2639 >                            r = balanceInsertion(r, x);
2640 >                            break;
2641 >                        }
2642 >                    }
2643 >                }
2644 >            }
2645 >            this.root = r;
2646 >            assert checkInvariants(root);
2647 >        }
2648 >
2649 >        /**
2650 >         * Acquires write lock for tree restructuring.
2651 >         */
2652 >        private final void lockRoot() {
2653 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2654 >                contendedLock(); // offload to separate method
2655 >        }
2656 >
2657 >        /**
2658 >         * Releases write lock for tree restructuring.
2659 >         */
2660 >        private final void unlockRoot() {
2661 >            lockState = 0;
2662 >        }
2663 >
2664 >        /**
2665 >         * Possibly blocks awaiting root lock.
2666 >         */
2667 >        private final void contendedLock() {
2668 >            boolean waiting = false;
2669 >            for (int s;;) {
2670 >                if (((s = lockState) & WRITER) == 0) {
2671 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2672 >                        if (waiting)
2673 >                            waiter = null;
2674 >                        return;
2675 >                    }
2676 >                }
2677 >                else if ((s & WAITER) == 0) {
2678 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2679 >                        waiting = true;
2680 >                        waiter = Thread.currentThread();
2681 >                    }
2682 >                }
2683 >                else if (waiting)
2684 >                    LockSupport.park(this);
2685 >            }
2686 >        }
2687 >
2688 >        /**
2689 >         * Returns matching node or null if none. Tries to search
2690 >         * using tree comparisons from root, but continues linear
2691 >         * search when lock not available.
2692 >         */
2693 > final Node<K,V> find(int h, Object k) {
2694 >            if (k != null) {
2695 >                for (Node<K,V> e = first; e != null; e = e.next) {
2696 >                    int s; K ek;
2697 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2698 >                        if (e.hash == h &&
2699 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2700 >                            return e;
2701 >                    }
2702 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2703 >                                                 s + READER)) {
2704 >                        TreeNode<K,V> r, p;
2705 >                        try {
2706 >                            p = ((r = root) == null ? null :
2707 >                                 r.findTreeNode(h, k, null));
2708 >                        } finally {
2709 >                            Thread w;
2710 >                            int ls;
2711 >                            do {} while (!U.compareAndSwapInt
2712 >                                         (this, LOCKSTATE,
2713 >                                          ls = lockState, ls - READER));
2714 >                            if (ls == (READER|WAITER) && (w = waiter) != null)
2715 >                                LockSupport.unpark(w);
2716 >                        }
2717 >                        return p;
2718 >                    }
2719 >                }
2720 >            }
2721 >            return null;
2722 >        }
2723 >
2724 >        /**
2725 >         * Finds or adds a node.
2726 >         * @return null if added
2727 >         */
2728 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2729 >            Class<?> kc = null;
2730 >            boolean searched = false;
2731 >            for (TreeNode<K,V> p = root;;) {
2732 >                int dir, ph; K pk;
2733 >                if (p == null) {
2734 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2735                      break;
2736 <                sb.append(',').append(' ');
2736 >                }
2737 >                else if ((ph = p.hash) > h)
2738 >                    dir = -1;
2739 >                else if (ph < h)
2740 >                    dir = 1;
2741 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2742 >                    return p;
2743 >                else if ((kc == null &&
2744 >                          (kc = comparableClassFor(k)) == null) ||
2745 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2746 >                    if (!searched) {
2747 >                        TreeNode<K,V> q, ch;
2748 >                        searched = true;
2749 >                        if (((ch = p.left) != null &&
2750 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2751 >                            ((ch = p.right) != null &&
2752 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2753 >                            return q;
2754 >                    }
2755 >                    dir = tieBreakOrder(k, pk);
2756 >                }
2757 >
2758 >                TreeNode<K,V> xp = p;
2759 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2760 >                    TreeNode<K,V> x, f = first;
2761 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2762 >                    if (f != null)
2763 >                        f.prev = x;
2764 >                    if (dir <= 0)
2765 >                        xp.left = x;
2766 >                    else
2767 >                        xp.right = x;
2768 >                    if (!xp.red)
2769 >                        x.red = true;
2770 >                    else {
2771 >                        lockRoot();
2772 >                        try {
2773 >                            root = balanceInsertion(root, x);
2774 >                        } finally {
2775 >                            unlockRoot();
2776 >                        }
2777 >                    }
2778 >                    break;
2779 >                }
2780 >            }
2781 >            assert checkInvariants(root);
2782 >            return null;
2783 >        }
2784 >
2785 >        /**
2786 >         * Removes the given node, that must be present before this
2787 >         * call.  This is messier than typical red-black deletion code
2788 >         * because we cannot swap the contents of an interior node
2789 >         * with a leaf successor that is pinned by "next" pointers
2790 >         * that are accessible independently of lock. So instead we
2791 >         * swap the tree linkages.
2792 >         *
2793 >         * @return true if now too small, so should be untreeified
2794 >         */
2795 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2796 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2797 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2798 >            TreeNode<K,V> r, rl;
2799 >            if (pred == null)
2800 >                first = next;
2801 >            else
2802 >                pred.next = next;
2803 >            if (next != null)
2804 >                next.prev = pred;
2805 >            if (first == null) {
2806 >                root = null;
2807 >                return true;
2808 >            }
2809 >            if ((r = root) == null || r.right == null || // too small
2810 >                (rl = r.left) == null || rl.left == null)
2811 >                return true;
2812 >            lockRoot();
2813 >            try {
2814 >                TreeNode<K,V> replacement;
2815 >                TreeNode<K,V> pl = p.left;
2816 >                TreeNode<K,V> pr = p.right;
2817 >                if (pl != null && pr != null) {
2818 >                    TreeNode<K,V> s = pr, sl;
2819 >                    while ((sl = s.left) != null) // find successor
2820 >                        s = sl;
2821 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2822 >                    TreeNode<K,V> sr = s.right;
2823 >                    TreeNode<K,V> pp = p.parent;
2824 >                    if (s == pr) { // p was s's direct parent
2825 >                        p.parent = s;
2826 >                        s.right = p;
2827 >                    }
2828 >                    else {
2829 >                        TreeNode<K,V> sp = s.parent;
2830 >                        if ((p.parent = sp) != null) {
2831 >                            if (s == sp.left)
2832 >                                sp.left = p;
2833 >                            else
2834 >                                sp.right = p;
2835 >                        }
2836 >                        if ((s.right = pr) != null)
2837 >                            pr.parent = s;
2838 >                    }
2839 >                    p.left = null;
2840 >                    if ((p.right = sr) != null)
2841 >                        sr.parent = p;
2842 >                    if ((s.left = pl) != null)
2843 >                        pl.parent = s;
2844 >                    if ((s.parent = pp) == null)
2845 >                        r = s;
2846 >                    else if (p == pp.left)
2847 >                        pp.left = s;
2848 >                    else
2849 >                        pp.right = s;
2850 >                    if (sr != null)
2851 >                        replacement = sr;
2852 >                    else
2853 >                        replacement = p;
2854 >                }
2855 >                else if (pl != null)
2856 >                    replacement = pl;
2857 >                else if (pr != null)
2858 >                    replacement = pr;
2859 >                else
2860 >                    replacement = p;
2861 >                if (replacement != p) {
2862 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2863 >                    if (pp == null)
2864 >                        r = replacement;
2865 >                    else if (p == pp.left)
2866 >                        pp.left = replacement;
2867 >                    else
2868 >                        pp.right = replacement;
2869 >                    p.left = p.right = p.parent = null;
2870 >                }
2871 >
2872 >                root = (p.red) ? r : balanceDeletion(r, replacement);
2873 >
2874 >                if (p == replacement) {  // detach pointers
2875 >                    TreeNode<K,V> pp;
2876 >                    if ((pp = p.parent) != null) {
2877 >                        if (p == pp.left)
2878 >                            pp.left = null;
2879 >                        else if (p == pp.right)
2880 >                            pp.right = null;
2881 >                        p.parent = null;
2882 >                    }
2883 >                }
2884 >            } finally {
2885 >                unlockRoot();
2886 >            }
2887 >            assert checkInvariants(root);
2888 >            return false;
2889 >        }
2890 >
2891 >        /* ------------------------------------------------------------ */
2892 >        // Red-black tree methods, all adapted from CLR
2893 >
2894 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2895 >                                              TreeNode<K,V> p) {
2896 >            TreeNode<K,V> r, pp, rl;
2897 >            if (p != null && (r = p.right) != null) {
2898 >                if ((rl = p.right = r.left) != null)
2899 >                    rl.parent = p;
2900 >                if ((pp = r.parent = p.parent) == null)
2901 >                    (root = r).red = false;
2902 >                else if (pp.left == p)
2903 >                    pp.left = r;
2904 >                else
2905 >                    pp.right = r;
2906 >                r.left = p;
2907 >                p.parent = r;
2908 >            }
2909 >            return root;
2910 >        }
2911 >
2912 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2913 >                                               TreeNode<K,V> p) {
2914 >            TreeNode<K,V> l, pp, lr;
2915 >            if (p != null && (l = p.left) != null) {
2916 >                if ((lr = p.left = l.right) != null)
2917 >                    lr.parent = p;
2918 >                if ((pp = l.parent = p.parent) == null)
2919 >                    (root = l).red = false;
2920 >                else if (pp.right == p)
2921 >                    pp.right = l;
2922 >                else
2923 >                    pp.left = l;
2924 >                l.right = p;
2925 >                p.parent = l;
2926 >            }
2927 >            return root;
2928 >        }
2929 >
2930 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2931 >                                                    TreeNode<K,V> x) {
2932 >            x.red = true;
2933 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2934 >                if ((xp = x.parent) == null) {
2935 >                    x.red = false;
2936 >                    return x;
2937 >                }
2938 >                else if (!xp.red || (xpp = xp.parent) == null)
2939 >                    return root;
2940 >                if (xp == (xppl = xpp.left)) {
2941 >                    if ((xppr = xpp.right) != null && xppr.red) {
2942 >                        xppr.red = false;
2943 >                        xp.red = false;
2944 >                        xpp.red = true;
2945 >                        x = xpp;
2946 >                    }
2947 >                    else {
2948 >                        if (x == xp.right) {
2949 >                            root = rotateLeft(root, x = xp);
2950 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2951 >                        }
2952 >                        if (xp != null) {
2953 >                            xp.red = false;
2954 >                            if (xpp != null) {
2955 >                                xpp.red = true;
2956 >                                root = rotateRight(root, xpp);
2957 >                            }
2958 >                        }
2959 >                    }
2960 >                }
2961 >                else {
2962 >                    if (xppl != null && xppl.red) {
2963 >                        xppl.red = false;
2964 >                        xp.red = false;
2965 >                        xpp.red = true;
2966 >                        x = xpp;
2967 >                    }
2968 >                    else {
2969 >                        if (x == xp.left) {
2970 >                            root = rotateRight(root, x = xp);
2971 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2972 >                        }
2973 >                        if (xp != null) {
2974 >                            xp.red = false;
2975 >                            if (xpp != null) {
2976 >                                xpp.red = true;
2977 >                                root = rotateLeft(root, xpp);
2978 >                            }
2979 >                        }
2980 >                    }
2981 >                }
2982 >            }
2983 >        }
2984 >
2985 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2986 >                                                   TreeNode<K,V> x) {
2987 >            for (TreeNode<K,V> xp, xpl, xpr;;)  {
2988 >                if (x == null || x == root)
2989 >                    return root;
2990 >                else if ((xp = x.parent) == null) {
2991 >                    x.red = false;
2992 >                    return x;
2993 >                }
2994 >                else if (x.red) {
2995 >                    x.red = false;
2996 >                    return root;
2997 >                }
2998 >                else if ((xpl = xp.left) == x) {
2999 >                    if ((xpr = xp.right) != null && xpr.red) {
3000 >                        xpr.red = false;
3001 >                        xp.red = true;
3002 >                        root = rotateLeft(root, xp);
3003 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3004 >                    }
3005 >                    if (xpr == null)
3006 >                        x = xp;
3007 >                    else {
3008 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3009 >                        if ((sr == null || !sr.red) &&
3010 >                            (sl == null || !sl.red)) {
3011 >                            xpr.red = true;
3012 >                            x = xp;
3013 >                        }
3014 >                        else {
3015 >                            if (sr == null || !sr.red) {
3016 >                                if (sl != null)
3017 >                                    sl.red = false;
3018 >                                xpr.red = true;
3019 >                                root = rotateRight(root, xpr);
3020 >                                xpr = (xp = x.parent) == null ?
3021 >                                    null : xp.right;
3022 >                            }
3023 >                            if (xpr != null) {
3024 >                                xpr.red = (xp == null) ? false : xp.red;
3025 >                                if ((sr = xpr.right) != null)
3026 >                                    sr.red = false;
3027 >                            }
3028 >                            if (xp != null) {
3029 >                                xp.red = false;
3030 >                                root = rotateLeft(root, xp);
3031 >                            }
3032 >                            x = root;
3033 >                        }
3034 >                    }
3035 >                }
3036 >                else { // symmetric
3037 >                    if (xpl != null && xpl.red) {
3038 >                        xpl.red = false;
3039 >                        xp.red = true;
3040 >                        root = rotateRight(root, xp);
3041 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3042 >                    }
3043 >                    if (xpl == null)
3044 >                        x = xp;
3045 >                    else {
3046 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3047 >                        if ((sl == null || !sl.red) &&
3048 >                            (sr == null || !sr.red)) {
3049 >                            xpl.red = true;
3050 >                            x = xp;
3051 >                        }
3052 >                        else {
3053 >                            if (sl == null || !sl.red) {
3054 >                                if (sr != null)
3055 >                                    sr.red = false;
3056 >                                xpl.red = true;
3057 >                                root = rotateLeft(root, xpl);
3058 >                                xpl = (xp = x.parent) == null ?
3059 >                                    null : xp.left;
3060 >                            }
3061 >                            if (xpl != null) {
3062 >                                xpl.red = (xp == null) ? false : xp.red;
3063 >                                if ((sl = xpl.left) != null)
3064 >                                    sl.red = false;
3065 >                            }
3066 >                            if (xp != null) {
3067 >                                xp.red = false;
3068 >                                root = rotateRight(root, xp);
3069 >                            }
3070 >                            x = root;
3071 >                        }
3072 >                    }
3073 >                }
3074 >            }
3075 >        }
3076 >
3077 >        /**
3078 >         * Recursive invariant check
3079 >         */
3080 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3081 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3082 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3083 >            if (tb != null && tb.next != t)
3084 >                return false;
3085 >            if (tn != null && tn.prev != t)
3086 >                return false;
3087 >            if (tp != null && t != tp.left && t != tp.right)
3088 >                return false;
3089 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3090 >                return false;
3091 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3092 >                return false;
3093 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3094 >                return false;
3095 >            if (tl != null && !checkInvariants(tl))
3096 >                return false;
3097 >            if (tr != null && !checkInvariants(tr))
3098 >                return false;
3099 >            return true;
3100 >        }
3101 >
3102 >        private static final sun.misc.Unsafe U;
3103 >        private static final long LOCKSTATE;
3104 >        static {
3105 >            try {
3106 >                U = getUnsafe();
3107 >                Class<?> k = TreeBin.class;
3108 >                LOCKSTATE = U.objectFieldOffset
3109 >                    (k.getDeclaredField("lockState"));
3110 >            } catch (Exception e) {
3111 >                throw new Error(e);
3112              }
3113          }
3191        return sb.append('}').toString();
3114      }
3115  
3116 +    /* ----------------Table Traversal -------------- */
3117 +
3118      /**
3119 <     * Compares the specified object with this map for equality.
3120 <     * Returns {@code true} if the given object is a map with the same
3121 <     * mappings as this map.  This operation may return misleading
3122 <     * results if either map is concurrently modified during execution
3123 <     * of this method.
3119 >     * Records the table, its length, and current traversal index for a
3120 >     * traverser that must process a region of a forwarded table before
3121 >     * proceeding with current table.
3122 >     */
3123 >    static final class TableStack<K,V> {
3124 >        int length;
3125 >        int index;
3126 >        Node<K,V>[] tab;
3127 >        TableStack<K,V> next;
3128 >    }
3129 >
3130 >    /**
3131 >     * Encapsulates traversal for methods such as containsValue; also
3132 >     * serves as a base class for other iterators and spliterators.
3133       *
3134 <     * @param o object to be compared for equality with this map
3135 <     * @return {@code true} if the specified object is equal to this map
3134 >     * Method advance visits once each still-valid node that was
3135 >     * reachable upon iterator construction. It might miss some that
3136 >     * were added to a bin after the bin was visited, which is OK wrt
3137 >     * consistency guarantees. Maintaining this property in the face
3138 >     * of possible ongoing resizes requires a fair amount of
3139 >     * bookkeeping state that is difficult to optimize away amidst
3140 >     * volatile accesses.  Even so, traversal maintains reasonable
3141 >     * throughput.
3142 >     *
3143 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3144 >     * However, if the table has been resized, then all future steps
3145 >     * must traverse both the bin at the current index as well as at
3146 >     * (index + baseSize); and so on for further resizings. To
3147 >     * paranoically cope with potential sharing by users of iterators
3148 >     * across threads, iteration terminates if a bounds checks fails
3149 >     * for a table read.
3150       */
3151 <    public boolean equals(Object o) {
3152 <        if (o != this) {
3153 <            if (!(o instanceof Map))
3154 <                return false;
3155 <            Map<?,?> m = (Map<?,?>) o;
3156 <            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3157 <            Object val;
3158 <            while ((val = it.advance()) != null) {
3159 <                Object v = m.get(it.nextKey);
3160 <                if (v == null || (v != val && !v.equals(val)))
3161 <                    return false;
3151 >    static class Traverser<K,V> {
3152 >        Node<K,V>[] tab;        // current table; updated if resized
3153 >        Node<K,V> next;         // the next entry to use
3154 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3155 >        int index;              // index of bin to use next
3156 >        int baseIndex;          // current index of initial table
3157 >        int baseLimit;          // index bound for initial table
3158 >        final int baseSize;     // initial table size
3159 >
3160 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3161 >            this.tab = tab;
3162 >            this.baseSize = size;
3163 >            this.baseIndex = this.index = index;
3164 >            this.baseLimit = limit;
3165 >            this.next = null;
3166 >        }
3167 >
3168 >        /**
3169 >         * Advances if possible, returning next valid node, or null if none.
3170 >         */
3171 >        final Node<K,V> advance() {
3172 >            Node<K,V> e;
3173 >            if ((e = next) != null)
3174 >                e = e.next;
3175 >            for (;;) {
3176 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3177 >                if (e != null)
3178 >                    return next = e;
3179 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3180 >                    (n = t.length) <= (i = index) || i < 0)
3181 >                    return next = null;
3182 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3183 >                    if (e instanceof ForwardingNode) {
3184 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3185 >                        e = null;
3186 >                        pushState(t, i, n);
3187 >                        continue;
3188 >                    }
3189 >                    else if (e instanceof TreeBin)
3190 >                        e = ((TreeBin<K,V>)e).first;
3191 >                    else
3192 >                        e = null;
3193 >                }
3194 >                if (stack != null)
3195 >                    recoverState(n);
3196 >                else if ((index = i + baseSize) >= n)
3197 >                    index = ++baseIndex; // visit upper slots if present
3198              }
3199 <            for (Map.Entry<?,?> e : m.entrySet()) {
3200 <                Object mk, mv, v;
3201 <                if ((mk = e.getKey()) == null ||
3202 <                    (mv = e.getValue()) == null ||
3203 <                    (v = internalGet(mk)) == null ||
3204 <                    (mv != v && !mv.equals(v)))
3205 <                    return false;
3199 >        }
3200 >
3201 >        /**
3202 >         * Saves traversal state upon encountering a forwarding node.
3203 >         */
3204 >        private void pushState(Node<K,V>[] t, int i, int n) {
3205 >            TableStack<K,V> s = spare;  // reuse if possible
3206 >            if (s != null)
3207 >                spare = s.next;
3208 >            else
3209 >                s = new TableStack<K,V>();
3210 >            s.tab = t;
3211 >            s.length = n;
3212 >            s.index = i;
3213 >            s.next = stack;
3214 >            stack = s;
3215 >        }
3216 >
3217 >        /**
3218 >         * Possibly pops traversal state.
3219 >         *
3220 >         * @param n length of current table
3221 >         */
3222 >        private void recoverState(int n) {
3223 >            TableStack<K,V> s; int len;
3224 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3225 >                n = len;
3226 >                index = s.index;
3227 >                tab = s.tab;
3228 >                s.tab = null;
3229 >                TableStack<K,V> next = s.next;
3230 >                s.next = spare; // save for reuse
3231 >                stack = next;
3232 >                spare = s;
3233              }
3234 +            if (s == null && (index += baseSize) >= n)
3235 +                index = ++baseIndex;
3236          }
3225        return true;
3237      }
3238  
3239 <    /* ----------------Iterators -------------- */
3240 <
3241 <    @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3242 <        implements Spliterator<K>, Enumeration<K> {
3243 <        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3244 <        KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3245 <            super(map, it, -1);
3239 >    /**
3240 >     * Base of key, value, and entry Iterators. Adds fields to
3241 >     * Traverser to support iterator.remove.
3242 >     */
3243 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3244 >        final ConcurrentHashMapV8<K,V> map;
3245 >        Node<K,V> lastReturned;
3246 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3247 >                    ConcurrentHashMapV8<K,V> map) {
3248 >            super(tab, size, index, limit);
3249 >            this.map = map;
3250 >            advance();
3251          }
3252 <        public KeyIterator<K,V> split() {
3253 <            if (nextKey != null)
3252 >
3253 >        public final boolean hasNext() { return next != null; }
3254 >        public final boolean hasMoreElements() { return next != null; }
3255 >
3256 >        public final void remove() {
3257 >            Node<K,V> p;
3258 >            if ((p = lastReturned) == null)
3259                  throw new IllegalStateException();
3260 <            return new KeyIterator<K,V>(map, this);
3260 >            lastReturned = null;
3261 >            map.replaceNode(p.key, null, null);
3262          }
3263 <        @SuppressWarnings("unchecked") public final K next() {
3264 <            if (nextVal == null && advance() == null)
3263 >    }
3264 >
3265 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3266 >        implements Iterator<K>, Enumeration<K> {
3267 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3268 >                    ConcurrentHashMapV8<K,V> map) {
3269 >            super(tab, index, size, limit, map);
3270 >        }
3271 >
3272 >        public final K next() {
3273 >            Node<K,V> p;
3274 >            if ((p = next) == null)
3275                  throw new NoSuchElementException();
3276 <            Object k = nextKey;
3277 <            nextVal = null;
3278 <            return (K) k;
3276 >            K k = p.key;
3277 >            lastReturned = p;
3278 >            advance();
3279 >            return k;
3280          }
3281  
3282          public final K nextElement() { return next(); }
3283      }
3284  
3285 <    @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3286 <        implements Spliterator<V>, Enumeration<V> {
3287 <        ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3288 <        ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3289 <            super(map, it, -1);
3257 <        }
3258 <        public ValueIterator<K,V> split() {
3259 <            if (nextKey != null)
3260 <                throw new IllegalStateException();
3261 <            return new ValueIterator<K,V>(map, this);
3285 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3286 >        implements Iterator<V>, Enumeration<V> {
3287 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3288 >                      ConcurrentHashMapV8<K,V> map) {
3289 >            super(tab, index, size, limit, map);
3290          }
3291  
3292 <        @SuppressWarnings("unchecked") public final V next() {
3293 <            Object v;
3294 <            if ((v = nextVal) == null && (v = advance()) == null)
3292 >        public final V next() {
3293 >            Node<K,V> p;
3294 >            if ((p = next) == null)
3295                  throw new NoSuchElementException();
3296 <            nextVal = null;
3297 <            return (V) v;
3296 >            V v = p.val;
3297 >            lastReturned = p;
3298 >            advance();
3299 >            return v;
3300          }
3301  
3302          public final V nextElement() { return next(); }
3303      }
3304  
3305 <    @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3306 <        implements Spliterator<Map.Entry<K,V>> {
3307 <        EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3308 <        EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3309 <            super(map, it, -1);
3280 <        }
3281 <        public EntryIterator<K,V> split() {
3282 <            if (nextKey != null)
3283 <                throw new IllegalStateException();
3284 <            return new EntryIterator<K,V>(map, this);
3305 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3306 >        implements Iterator<Map.Entry<K,V>> {
3307 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3308 >                      ConcurrentHashMapV8<K,V> map) {
3309 >            super(tab, index, size, limit, map);
3310          }
3311  
3312 <        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3313 <            Object v;
3314 <            if ((v = nextVal) == null && (v = advance()) == null)
3312 >        public final Map.Entry<K,V> next() {
3313 >            Node<K,V> p;
3314 >            if ((p = next) == null)
3315                  throw new NoSuchElementException();
3316 <            Object k = nextKey;
3317 <            nextVal = null;
3318 <            return new MapEntry<K,V>((K)k, (V)v, map);
3316 >            K k = p.key;
3317 >            V v = p.val;
3318 >            lastReturned = p;
3319 >            advance();
3320 >            return new MapEntry<K,V>(k, v, map);
3321          }
3322      }
3323  
3324      /**
3325 <     * Exported Entry for iterators
3325 >     * Exported Entry for EntryIterator
3326       */
3327 <    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3327 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3328          final K key; // non-null
3329          V val;       // non-null
3330 <        final ConcurrentHashMapV8<K, V> map;
3331 <        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3330 >        final ConcurrentHashMapV8<K,V> map;
3331 >        MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3332              this.key = key;
3333              this.val = val;
3334              this.map = map;
3335          }
3336 <        public final K getKey()       { return key; }
3337 <        public final V getValue()     { return val; }
3338 <        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3339 <        public final String toString(){ return key + "=" + val; }
3336 >        public K getKey()        { return key; }
3337 >        public V getValue()      { return val; }
3338 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3339 >        public String toString() { return key + "=" + val; }
3340  
3341 <        public final boolean equals(Object o) {
3341 >        public boolean equals(Object o) {
3342              Object k, v; Map.Entry<?,?> e;
3343              return ((o instanceof Map.Entry) &&
3344                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 3325 | Line 3352 | public class ConcurrentHashMapV8<K, V>
3352           * value to return is somewhat arbitrary here. Since we do not
3353           * necessarily track asynchronous changes, the most recent
3354           * "previous" value could be different from what we return (or
3355 <         * could even have been removed in which case the put will
3355 >         * could even have been removed, in which case the put will
3356           * re-establish). We do not and cannot guarantee more.
3357           */
3358 <        public final V setValue(V value) {
3358 >        public V setValue(V value) {
3359              if (value == null) throw new NullPointerException();
3360              V v = val;
3361              val = value;
# Line 3337 | Line 3364 | public class ConcurrentHashMapV8<K, V>
3364          }
3365      }
3366  
3367 <    /**
3368 <     * Returns exportable snapshot entry for the given key and value
3369 <     * when write-through can't or shouldn't be used.
3370 <     */
3371 <    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3372 <        return new AbstractMap.SimpleEntry<K,V>(k, v);
3373 <    }
3367 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3368 >        implements ConcurrentHashMapSpliterator<K> {
3369 >        long est;               // size estimate
3370 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3371 >                       long est) {
3372 >            super(tab, size, index, limit);
3373 >            this.est = est;
3374 >        }
3375 >
3376 >        public ConcurrentHashMapSpliterator<K> trySplit() {
3377 >            int i, f, h;
3378 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3379 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3380 >                                        f, est >>>= 1);
3381 >        }
3382  
3383 <    /* ---------------- Serialization Support -------------- */
3383 >        public void forEachRemaining(Action<? super K> action) {
3384 >            if (action == null) throw new NullPointerException();
3385 >            for (Node<K,V> p; (p = advance()) != null;)
3386 >                action.apply(p.key);
3387 >        }
3388 >
3389 >        public boolean tryAdvance(Action<? super K> action) {
3390 >            if (action == null) throw new NullPointerException();
3391 >            Node<K,V> p;
3392 >            if ((p = advance()) == null)
3393 >                return false;
3394 >            action.apply(p.key);
3395 >            return true;
3396 >        }
3397 >
3398 >        public long estimateSize() { return est; }
3399  
3350    /**
3351     * Stripped-down version of helper class used in previous version,
3352     * declared for the sake of serialization compatibility
3353     */
3354    static class Segment<K,V> implements Serializable {
3355        private static final long serialVersionUID = 2249069246763182397L;
3356        final float loadFactor;
3357        Segment(float lf) { this.loadFactor = lf; }
3400      }
3401  
3402 <    /**
3403 <     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3404 <     * stream (i.e., serializes it).
3405 <     * @param s the stream
3406 <     * @serialData
3407 <     * the key (Object) and value (Object)
3408 <     * for each key-value mapping, followed by a null pair.
3367 <     * The key-value mappings are emitted in no particular order.
3368 <     */
3369 <    @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3370 <        throws java.io.IOException {
3371 <        if (segments == null) { // for serialization compatibility
3372 <            segments = (Segment<K,V>[])
3373 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3374 <            for (int i = 0; i < segments.length; ++i)
3375 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3376 <        }
3377 <        s.defaultWriteObject();
3378 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3379 <        Object v;
3380 <        while ((v = it.advance()) != null) {
3381 <            s.writeObject(it.nextKey);
3382 <            s.writeObject(v);
3402 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3403 >        implements ConcurrentHashMapSpliterator<V> {
3404 >        long est;               // size estimate
3405 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3406 >                         long est) {
3407 >            super(tab, size, index, limit);
3408 >            this.est = est;
3409          }
3384        s.writeObject(null);
3385        s.writeObject(null);
3386        segments = null; // throw away
3387    }
3410  
3411 <    /**
3412 <     * Reconstitutes the instance from a stream (that is, deserializes it).
3413 <     * @param s the stream
3414 <     */
3415 <    @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3416 <        throws java.io.IOException, ClassNotFoundException {
3395 <        s.defaultReadObject();
3396 <        this.segments = null; // unneeded
3397 <        // initialize transient final field
3398 <        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3411 >        public ConcurrentHashMapSpliterator<V> trySplit() {
3412 >            int i, f, h;
3413 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3414 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3415 >                                          f, est >>>= 1);
3416 >        }
3417  
3418 <        // Create all nodes, then place in table once size is known
3419 <        long size = 0L;
3420 <        Node p = null;
3421 <        for (;;) {
3404 <            K k = (K) s.readObject();
3405 <            V v = (V) s.readObject();
3406 <            if (k != null && v != null) {
3407 <                int h = spread(k.hashCode());
3408 <                p = new Node(h, k, v, p);
3409 <                ++size;
3410 <            }
3411 <            else
3412 <                break;
3418 >        public void forEachRemaining(Action<? super V> action) {
3419 >            if (action == null) throw new NullPointerException();
3420 >            for (Node<K,V> p; (p = advance()) != null;)
3421 >                action.apply(p.val);
3422          }
3423 <        if (p != null) {
3424 <            boolean init = false;
3425 <            int n;
3426 <            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3427 <                n = MAXIMUM_CAPACITY;
3428 <            else {
3429 <                int sz = (int)size;
3430 <                n = tableSizeFor(sz + (sz >>> 1) + 1);
3422 <            }
3423 <            int sc = sizeCtl;
3424 <            boolean collide = false;
3425 <            if (n > sc &&
3426 <                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3427 <                try {
3428 <                    if (table == null) {
3429 <                        init = true;
3430 <                        Node[] tab = new Node[n];
3431 <                        int mask = n - 1;
3432 <                        while (p != null) {
3433 <                            int j = p.hash & mask;
3434 <                            Node next = p.next;
3435 <                            Node q = p.next = tabAt(tab, j);
3436 <                            setTabAt(tab, j, p);
3437 <                            if (!collide && q != null && q.hash == p.hash)
3438 <                                collide = true;
3439 <                            p = next;
3440 <                        }
3441 <                        table = tab;
3442 <                        counter.add(size);
3443 <                        sc = n - (n >>> 2);
3444 <                    }
3445 <                } finally {
3446 <                    sizeCtl = sc;
3447 <                }
3448 <                if (collide) { // rescan and convert to TreeBins
3449 <                    Node[] tab = table;
3450 <                    for (int i = 0; i < tab.length; ++i) {
3451 <                        int c = 0;
3452 <                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3453 <                            if (++c > TREE_THRESHOLD &&
3454 <                                (e.key instanceof Comparable)) {
3455 <                                replaceWithTreeBin(tab, i, e.key);
3456 <                                break;
3457 <                            }
3458 <                        }
3459 <                    }
3460 <                }
3461 <            }
3462 <            if (!init) { // Can only happen if unsafely published.
3463 <                while (p != null) {
3464 <                    internalPut(p.key, p.val);
3465 <                    p = p.next;
3466 <                }
3467 <            }
3423 >
3424 >        public boolean tryAdvance(Action<? super V> action) {
3425 >            if (action == null) throw new NullPointerException();
3426 >            Node<K,V> p;
3427 >            if ((p = advance()) == null)
3428 >                return false;
3429 >            action.apply(p.val);
3430 >            return true;
3431          }
3432 +
3433 +        public long estimateSize() { return est; }
3434 +
3435      }
3436  
3437 +    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3438 +        implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3439 +        final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3440 +        long est;               // size estimate
3441 +        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3442 +                         long est, ConcurrentHashMapV8<K,V> map) {
3443 +            super(tab, size, index, limit);
3444 +            this.map = map;
3445 +            this.est = est;
3446 +        }
3447  
3448 <    // -------------------------------------------------------
3448 >        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3449 >            int i, f, h;
3450 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3451 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3452 >                                          f, est >>>= 1, map);
3453 >        }
3454  
3455 <    // Sams
3456 <    /** Interface describing a void action of one argument */
3457 <    public interface Action<A> { void apply(A a); }
3458 <    /** Interface describing a void action of two arguments */
3459 <    public interface BiAction<A,B> { void apply(A a, B b); }
3460 <    /** Interface describing a function of one argument */
3461 <    public interface Fun<A,T> { T apply(A a); }
3462 <    /** Interface describing a function of two arguments */
3463 <    public interface BiFun<A,B,T> { T apply(A a, B b); }
3464 <    /** Interface describing a function of no arguments */
3465 <    public interface Generator<T> { T apply(); }
3466 <    /** Interface describing a function mapping its argument to a double */
3467 <    public interface ObjectToDouble<A> { double apply(A a); }
3468 <    /** Interface describing a function mapping its argument to a long */
3488 <    public interface ObjectToLong<A> { long apply(A a); }
3489 <    /** Interface describing a function mapping its argument to an int */
3490 <    public interface ObjectToInt<A> {int apply(A a); }
3491 <    /** Interface describing a function mapping two arguments to a double */
3492 <    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3493 <    /** Interface describing a function mapping two arguments to a long */
3494 <    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3495 <    /** Interface describing a function mapping two arguments to an int */
3496 <    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3497 <    /** Interface describing a function mapping a double to a double */
3498 <    public interface DoubleToDouble { double apply(double a); }
3499 <    /** Interface describing a function mapping a long to a long */
3500 <    public interface LongToLong { long apply(long a); }
3501 <    /** Interface describing a function mapping an int to an int */
3502 <    public interface IntToInt { int apply(int a); }
3503 <    /** Interface describing a function mapping two doubles to a double */
3504 <    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3505 <    /** Interface describing a function mapping two longs to a long */
3506 <    public interface LongByLongToLong { long apply(long a, long b); }
3507 <    /** Interface describing a function mapping two ints to an int */
3508 <    public interface IntByIntToInt { int apply(int a, int b); }
3455 >        public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3456 >            if (action == null) throw new NullPointerException();
3457 >            for (Node<K,V> p; (p = advance()) != null; )
3458 >                action.apply(new MapEntry<K,V>(p.key, p.val, map));
3459 >        }
3460 >
3461 >        public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3462 >            if (action == null) throw new NullPointerException();
3463 >            Node<K,V> p;
3464 >            if ((p = advance()) == null)
3465 >                return false;
3466 >            action.apply(new MapEntry<K,V>(p.key, p.val, map));
3467 >            return true;
3468 >        }
3469  
3470 +        public long estimateSize() { return est; }
3471  
3472 <    // -------------------------------------------------------
3472 >    }
3473 >
3474 >    // Parallel bulk operations
3475 >
3476 >    /**
3477 >     * Computes initial batch value for bulk tasks. The returned value
3478 >     * is approximately exp2 of the number of times (minus one) to
3479 >     * split task by two before executing leaf action. This value is
3480 >     * faster to compute and more convenient to use as a guide to
3481 >     * splitting than is the depth, since it is used while dividing by
3482 >     * two anyway.
3483 >     */
3484 >    final int batchFor(long b) {
3485 >        long n;
3486 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3487 >            return 0;
3488 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3489 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3490 >    }
3491  
3492      /**
3493       * Performs the given action for each (key, value).
3494       *
3495 +     * @param parallelismThreshold the (estimated) number of elements
3496 +     * needed for this operation to be executed in parallel
3497       * @param action the action
3498 +     * @since 1.8
3499       */
3500 <    public void forEach(BiAction<K,V> action) {
3501 <        ForkJoinTasks.forEach
3502 <            (this, action).invoke();
3500 >    public void forEach(long parallelismThreshold,
3501 >                        BiAction<? super K,? super V> action) {
3502 >        if (action == null) throw new NullPointerException();
3503 >        new ForEachMappingTask<K,V>
3504 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3505 >             action).invoke();
3506      }
3507  
3508      /**
3509       * Performs the given action for each non-null transformation
3510       * of each (key, value).
3511       *
3512 +     * @param parallelismThreshold the (estimated) number of elements
3513 +     * needed for this operation to be executed in parallel
3514       * @param transformer a function returning the transformation
3515 <     * for an element, or null of there is no transformation (in
3516 <     * which case the action is not applied).
3515 >     * for an element, or null if there is no transformation (in
3516 >     * which case the action is not applied)
3517       * @param action the action
3518 +     * @since 1.8
3519       */
3520 <    public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3521 <                            Action<U> action) {
3522 <        ForkJoinTasks.forEach
3523 <            (this, transformer, action).invoke();
3520 >    public <U> void forEach(long parallelismThreshold,
3521 >                            BiFun<? super K, ? super V, ? extends U> transformer,
3522 >                            Action<? super U> action) {
3523 >        if (transformer == null || action == null)
3524 >            throw new NullPointerException();
3525 >        new ForEachTransformedMappingTask<K,V,U>
3526 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3527 >             transformer, action).invoke();
3528      }
3529  
3530      /**
# Line 3542 | Line 3534 | public class ConcurrentHashMapV8<K, V>
3534       * results of any other parallel invocations of the search
3535       * function are ignored.
3536       *
3537 +     * @param parallelismThreshold the (estimated) number of elements
3538 +     * needed for this operation to be executed in parallel
3539       * @param searchFunction a function returning a non-null
3540       * result on success, else null
3541       * @return a non-null result from applying the given search
3542       * function on each (key, value), or null if none
3543 +     * @since 1.8
3544       */
3545 <    public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3546 <        return ForkJoinTasks.search
3547 <            (this, searchFunction).invoke();
3545 >    public <U> U search(long parallelismThreshold,
3546 >                        BiFun<? super K, ? super V, ? extends U> searchFunction) {
3547 >        if (searchFunction == null) throw new NullPointerException();
3548 >        return new SearchMappingsTask<K,V,U>
3549 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3550 >             searchFunction, new AtomicReference<U>()).invoke();
3551      }
3552  
3553      /**
# Line 3557 | Line 3555 | public class ConcurrentHashMapV8<K, V>
3555       * of all (key, value) pairs using the given reducer to
3556       * combine values, or null if none.
3557       *
3558 +     * @param parallelismThreshold the (estimated) number of elements
3559 +     * needed for this operation to be executed in parallel
3560       * @param transformer a function returning the transformation
3561 <     * for an element, or null of there is no transformation (in
3562 <     * which case it is not combined).
3561 >     * for an element, or null if there is no transformation (in
3562 >     * which case it is not combined)
3563       * @param reducer a commutative associative combining function
3564       * @return the result of accumulating the given transformation
3565       * of all (key, value) pairs
3566 +     * @since 1.8
3567       */
3568 <    public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3568 >    public <U> U reduce(long parallelismThreshold,
3569 >                        BiFun<? super K, ? super V, ? extends U> transformer,
3570                          BiFun<? super U, ? super U, ? extends U> reducer) {
3571 <        return ForkJoinTasks.reduce
3572 <            (this, transformer, reducer).invoke();
3571 >        if (transformer == null || reducer == null)
3572 >            throw new NullPointerException();
3573 >        return new MapReduceMappingsTask<K,V,U>
3574 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3575 >             null, transformer, reducer).invoke();
3576      }
3577  
3578      /**
# Line 3575 | Line 3580 | public class ConcurrentHashMapV8<K, V>
3580       * of all (key, value) pairs using the given reducer to
3581       * combine values, and the given basis as an identity value.
3582       *
3583 +     * @param parallelismThreshold the (estimated) number of elements
3584 +     * needed for this operation to be executed in parallel
3585       * @param transformer a function returning the transformation
3586       * for an element
3587       * @param basis the identity (initial default value) for the reduction
3588       * @param reducer a commutative associative combining function
3589       * @return the result of accumulating the given transformation
3590       * of all (key, value) pairs
3591 +     * @since 1.8
3592       */
3593 <    public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3593 >    public double reduceToDouble(long parallelismThreshold,
3594 >                                 ObjectByObjectToDouble<? super K, ? super V> transformer,
3595                                   double basis,
3596                                   DoubleByDoubleToDouble reducer) {
3597 <        return ForkJoinTasks.reduceToDouble
3598 <            (this, transformer, basis, reducer).invoke();
3597 >        if (transformer == null || reducer == null)
3598 >            throw new NullPointerException();
3599 >        return new MapReduceMappingsToDoubleTask<K,V>
3600 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3601 >             null, transformer, basis, reducer).invoke();
3602      }
3603  
3604      /**
# Line 3594 | Line 3606 | public class ConcurrentHashMapV8<K, V>
3606       * of all (key, value) pairs using the given reducer to
3607       * combine values, and the given basis as an identity value.
3608       *
3609 +     * @param parallelismThreshold the (estimated) number of elements
3610 +     * needed for this operation to be executed in parallel
3611       * @param transformer a function returning the transformation
3612       * for an element
3613       * @param basis the identity (initial default value) for the reduction
3614       * @param reducer a commutative associative combining function
3615       * @return the result of accumulating the given transformation
3616       * of all (key, value) pairs
3617 +     * @since 1.8
3618       */
3619 <    public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3619 >    public long reduceToLong(long parallelismThreshold,
3620 >                             ObjectByObjectToLong<? super K, ? super V> transformer,
3621                               long basis,
3622                               LongByLongToLong reducer) {
3623 <        return ForkJoinTasks.reduceToLong
3624 <            (this, transformer, basis, reducer).invoke();
3623 >        if (transformer == null || reducer == null)
3624 >            throw new NullPointerException();
3625 >        return new MapReduceMappingsToLongTask<K,V>
3626 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3627 >             null, transformer, basis, reducer).invoke();
3628      }
3629  
3630      /**
# Line 3613 | Line 3632 | public class ConcurrentHashMapV8<K, V>
3632       * of all (key, value) pairs using the given reducer to
3633       * combine values, and the given basis as an identity value.
3634       *
3635 +     * @param parallelismThreshold the (estimated) number of elements
3636 +     * needed for this operation to be executed in parallel
3637       * @param transformer a function returning the transformation
3638       * for an element
3639       * @param basis the identity (initial default value) for the reduction
3640       * @param reducer a commutative associative combining function
3641       * @return the result of accumulating the given transformation
3642       * of all (key, value) pairs
3643 +     * @since 1.8
3644       */
3645 <    public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3645 >    public int reduceToInt(long parallelismThreshold,
3646 >                           ObjectByObjectToInt<? super K, ? super V> transformer,
3647                             int basis,
3648                             IntByIntToInt reducer) {
3649 <        return ForkJoinTasks.reduceToInt
3650 <            (this, transformer, basis, reducer).invoke();
3649 >        if (transformer == null || reducer == null)
3650 >            throw new NullPointerException();
3651 >        return new MapReduceMappingsToIntTask<K,V>
3652 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3653 >             null, transformer, basis, reducer).invoke();
3654      }
3655  
3656      /**
3657       * Performs the given action for each key.
3658       *
3659 +     * @param parallelismThreshold the (estimated) number of elements
3660 +     * needed for this operation to be executed in parallel
3661       * @param action the action
3662 +     * @since 1.8
3663       */
3664 <    public void forEachKey(Action<K> action) {
3665 <        ForkJoinTasks.forEachKey
3666 <            (this, action).invoke();
3664 >    public void forEachKey(long parallelismThreshold,
3665 >                           Action<? super K> action) {
3666 >        if (action == null) throw new NullPointerException();
3667 >        new ForEachKeyTask<K,V>
3668 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3669 >             action).invoke();
3670      }
3671  
3672      /**
3673       * Performs the given action for each non-null transformation
3674       * of each key.
3675       *
3676 +     * @param parallelismThreshold the (estimated) number of elements
3677 +     * needed for this operation to be executed in parallel
3678       * @param transformer a function returning the transformation
3679 <     * for an element, or null of there is no transformation (in
3680 <     * which case the action is not applied).
3679 >     * for an element, or null if there is no transformation (in
3680 >     * which case the action is not applied)
3681       * @param action the action
3682 +     * @since 1.8
3683       */
3684 <    public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3685 <                               Action<U> action) {
3686 <        ForkJoinTasks.forEachKey
3687 <            (this, transformer, action).invoke();
3684 >    public <U> void forEachKey(long parallelismThreshold,
3685 >                               Fun<? super K, ? extends U> transformer,
3686 >                               Action<? super U> action) {
3687 >        if (transformer == null || action == null)
3688 >            throw new NullPointerException();
3689 >        new ForEachTransformedKeyTask<K,V,U>
3690 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3691 >             transformer, action).invoke();
3692      }
3693  
3694      /**
# Line 3659 | Line 3698 | public class ConcurrentHashMapV8<K, V>
3698       * any other parallel invocations of the search function are
3699       * ignored.
3700       *
3701 +     * @param parallelismThreshold the (estimated) number of elements
3702 +     * needed for this operation to be executed in parallel
3703       * @param searchFunction a function returning a non-null
3704       * result on success, else null
3705       * @return a non-null result from applying the given search
3706       * function on each key, or null if none
3707 +     * @since 1.8
3708       */
3709 <    public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3710 <        return ForkJoinTasks.searchKeys
3711 <            (this, searchFunction).invoke();
3709 >    public <U> U searchKeys(long parallelismThreshold,
3710 >                            Fun<? super K, ? extends U> searchFunction) {
3711 >        if (searchFunction == null) throw new NullPointerException();
3712 >        return new SearchKeysTask<K,V,U>
3713 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3714 >             searchFunction, new AtomicReference<U>()).invoke();
3715      }
3716  
3717      /**
3718       * Returns the result of accumulating all keys using the given
3719       * reducer to combine values, or null if none.
3720       *
3721 +     * @param parallelismThreshold the (estimated) number of elements
3722 +     * needed for this operation to be executed in parallel
3723       * @param reducer a commutative associative combining function
3724       * @return the result of accumulating all keys using the given
3725       * reducer to combine values, or null if none
3726 +     * @since 1.8
3727       */
3728 <    public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3729 <        return ForkJoinTasks.reduceKeys
3730 <            (this, reducer).invoke();
3728 >    public K reduceKeys(long parallelismThreshold,
3729 >                        BiFun<? super K, ? super K, ? extends K> reducer) {
3730 >        if (reducer == null) throw new NullPointerException();
3731 >        return new ReduceKeysTask<K,V>
3732 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3733 >             null, reducer).invoke();
3734      }
3735  
3736      /**
# Line 3687 | Line 3738 | public class ConcurrentHashMapV8<K, V>
3738       * of all keys using the given reducer to combine values, or
3739       * null if none.
3740       *
3741 +     * @param parallelismThreshold the (estimated) number of elements
3742 +     * needed for this operation to be executed in parallel
3743       * @param transformer a function returning the transformation
3744 <     * for an element, or null of there is no transformation (in
3745 <     * which case it is not combined).
3744 >     * for an element, or null if there is no transformation (in
3745 >     * which case it is not combined)
3746       * @param reducer a commutative associative combining function
3747       * @return the result of accumulating the given transformation
3748       * of all keys
3749 +     * @since 1.8
3750       */
3751 <    public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3752 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
3753 <        return ForkJoinTasks.reduceKeys
3754 <            (this, transformer, reducer).invoke();
3751 >    public <U> U reduceKeys(long parallelismThreshold,
3752 >                            Fun<? super K, ? extends U> transformer,
3753 >         BiFun<? super U, ? super U, ? extends U> reducer) {
3754 >        if (transformer == null || reducer == null)
3755 >            throw new NullPointerException();
3756 >        return new MapReduceKeysTask<K,V,U>
3757 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3758 >             null, transformer, reducer).invoke();
3759      }
3760  
3761      /**
# Line 3705 | Line 3763 | public class ConcurrentHashMapV8<K, V>
3763       * of all keys using the given reducer to combine values, and
3764       * the given basis as an identity value.
3765       *
3766 +     * @param parallelismThreshold the (estimated) number of elements
3767 +     * needed for this operation to be executed in parallel
3768       * @param transformer a function returning the transformation
3769       * for an element
3770       * @param basis the identity (initial default value) for the reduction
3771       * @param reducer a commutative associative combining function
3772 <     * @return  the result of accumulating the given transformation
3772 >     * @return the result of accumulating the given transformation
3773       * of all keys
3774 +     * @since 1.8
3775       */
3776 <    public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3776 >    public double reduceKeysToDouble(long parallelismThreshold,
3777 >                                     ObjectToDouble<? super K> transformer,
3778                                       double basis,
3779                                       DoubleByDoubleToDouble reducer) {
3780 <        return ForkJoinTasks.reduceKeysToDouble
3781 <            (this, transformer, basis, reducer).invoke();
3780 >        if (transformer == null || reducer == null)
3781 >            throw new NullPointerException();
3782 >        return new MapReduceKeysToDoubleTask<K,V>
3783 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3784 >             null, transformer, basis, reducer).invoke();
3785      }
3786  
3787      /**
# Line 3724 | Line 3789 | public class ConcurrentHashMapV8<K, V>
3789       * of all keys using the given reducer to combine values, and
3790       * the given basis as an identity value.
3791       *
3792 +     * @param parallelismThreshold the (estimated) number of elements
3793 +     * needed for this operation to be executed in parallel
3794       * @param transformer a function returning the transformation
3795       * for an element
3796       * @param basis the identity (initial default value) for the reduction
3797       * @param reducer a commutative associative combining function
3798       * @return the result of accumulating the given transformation
3799       * of all keys
3800 +     * @since 1.8
3801       */
3802 <    public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3802 >    public long reduceKeysToLong(long parallelismThreshold,
3803 >                                 ObjectToLong<? super K> transformer,
3804                                   long basis,
3805                                   LongByLongToLong reducer) {
3806 <        return ForkJoinTasks.reduceKeysToLong
3807 <            (this, transformer, basis, reducer).invoke();
3806 >        if (transformer == null || reducer == null)
3807 >            throw new NullPointerException();
3808 >        return new MapReduceKeysToLongTask<K,V>
3809 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3810 >             null, transformer, basis, reducer).invoke();
3811      }
3812  
3813      /**
# Line 3743 | Line 3815 | public class ConcurrentHashMapV8<K, V>
3815       * of all keys using the given reducer to combine values, and
3816       * the given basis as an identity value.
3817       *
3818 +     * @param parallelismThreshold the (estimated) number of elements
3819 +     * needed for this operation to be executed in parallel
3820       * @param transformer a function returning the transformation
3821       * for an element
3822       * @param basis the identity (initial default value) for the reduction
3823       * @param reducer a commutative associative combining function
3824       * @return the result of accumulating the given transformation
3825       * of all keys
3826 +     * @since 1.8
3827       */
3828 <    public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3828 >    public int reduceKeysToInt(long parallelismThreshold,
3829 >                               ObjectToInt<? super K> transformer,
3830                                 int basis,
3831                                 IntByIntToInt reducer) {
3832 <        return ForkJoinTasks.reduceKeysToInt
3833 <            (this, transformer, basis, reducer).invoke();
3832 >        if (transformer == null || reducer == null)
3833 >            throw new NullPointerException();
3834 >        return new MapReduceKeysToIntTask<K,V>
3835 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3836 >             null, transformer, basis, reducer).invoke();
3837      }
3838  
3839      /**
3840       * Performs the given action for each value.
3841       *
3842 +     * @param parallelismThreshold the (estimated) number of elements
3843 +     * needed for this operation to be executed in parallel
3844       * @param action the action
3845 +     * @since 1.8
3846       */
3847 <    public void forEachValue(Action<V> action) {
3848 <        ForkJoinTasks.forEachValue
3849 <            (this, action).invoke();
3847 >    public void forEachValue(long parallelismThreshold,
3848 >                             Action<? super V> action) {
3849 >        if (action == null)
3850 >            throw new NullPointerException();
3851 >        new ForEachValueTask<K,V>
3852 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3853 >             action).invoke();
3854      }
3855  
3856      /**
3857       * Performs the given action for each non-null transformation
3858       * of each value.
3859       *
3860 +     * @param parallelismThreshold the (estimated) number of elements
3861 +     * needed for this operation to be executed in parallel
3862       * @param transformer a function returning the transformation
3863 <     * for an element, or null of there is no transformation (in
3864 <     * which case the action is not applied).
3863 >     * for an element, or null if there is no transformation (in
3864 >     * which case the action is not applied)
3865 >     * @param action the action
3866 >     * @since 1.8
3867       */
3868 <    public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3869 <                                 Action<U> action) {
3870 <        ForkJoinTasks.forEachValue
3871 <            (this, transformer, action).invoke();
3868 >    public <U> void forEachValue(long parallelismThreshold,
3869 >                                 Fun<? super V, ? extends U> transformer,
3870 >                                 Action<? super U> action) {
3871 >        if (transformer == null || action == null)
3872 >            throw new NullPointerException();
3873 >        new ForEachTransformedValueTask<K,V,U>
3874 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3875 >             transformer, action).invoke();
3876      }
3877  
3878      /**
# Line 3788 | Line 3882 | public class ConcurrentHashMapV8<K, V>
3882       * any other parallel invocations of the search function are
3883       * ignored.
3884       *
3885 +     * @param parallelismThreshold the (estimated) number of elements
3886 +     * needed for this operation to be executed in parallel
3887       * @param searchFunction a function returning a non-null
3888       * result on success, else null
3889       * @return a non-null result from applying the given search
3890       * function on each value, or null if none
3891 <     *
3891 >     * @since 1.8
3892       */
3893 <    public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3894 <        return ForkJoinTasks.searchValues
3895 <            (this, searchFunction).invoke();
3893 >    public <U> U searchValues(long parallelismThreshold,
3894 >                              Fun<? super V, ? extends U> searchFunction) {
3895 >        if (searchFunction == null) throw new NullPointerException();
3896 >        return new SearchValuesTask<K,V,U>
3897 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3898 >             searchFunction, new AtomicReference<U>()).invoke();
3899      }
3900  
3901      /**
3902       * Returns the result of accumulating all values using the
3903       * given reducer to combine values, or null if none.
3904       *
3905 +     * @param parallelismThreshold the (estimated) number of elements
3906 +     * needed for this operation to be executed in parallel
3907       * @param reducer a commutative associative combining function
3908 <     * @return  the result of accumulating all values
3908 >     * @return the result of accumulating all values
3909 >     * @since 1.8
3910       */
3911 <    public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3912 <        return ForkJoinTasks.reduceValues
3913 <            (this, reducer).invoke();
3911 >    public V reduceValues(long parallelismThreshold,
3912 >                          BiFun<? super V, ? super V, ? extends V> reducer) {
3913 >        if (reducer == null) throw new NullPointerException();
3914 >        return new ReduceValuesTask<K,V>
3915 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3916 >             null, reducer).invoke();
3917      }
3918  
3919      /**
# Line 3816 | Line 3921 | public class ConcurrentHashMapV8<K, V>
3921       * of all values using the given reducer to combine values, or
3922       * null if none.
3923       *
3924 +     * @param parallelismThreshold the (estimated) number of elements
3925 +     * needed for this operation to be executed in parallel
3926       * @param transformer a function returning the transformation
3927 <     * for an element, or null of there is no transformation (in
3928 <     * which case it is not combined).
3927 >     * for an element, or null if there is no transformation (in
3928 >     * which case it is not combined)
3929       * @param reducer a commutative associative combining function
3930       * @return the result of accumulating the given transformation
3931       * of all values
3932 +     * @since 1.8
3933       */
3934 <    public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3934 >    public <U> U reduceValues(long parallelismThreshold,
3935 >                              Fun<? super V, ? extends U> transformer,
3936                                BiFun<? super U, ? super U, ? extends U> reducer) {
3937 <        return ForkJoinTasks.reduceValues
3938 <            (this, transformer, reducer).invoke();
3937 >        if (transformer == null || reducer == null)
3938 >            throw new NullPointerException();
3939 >        return new MapReduceValuesTask<K,V,U>
3940 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3941 >             null, transformer, reducer).invoke();
3942      }
3943  
3944      /**
# Line 3834 | Line 3946 | public class ConcurrentHashMapV8<K, V>
3946       * of all values using the given reducer to combine values,
3947       * and the given basis as an identity value.
3948       *
3949 +     * @param parallelismThreshold the (estimated) number of elements
3950 +     * needed for this operation to be executed in parallel
3951       * @param transformer a function returning the transformation
3952       * for an element
3953       * @param basis the identity (initial default value) for the reduction
3954       * @param reducer a commutative associative combining function
3955       * @return the result of accumulating the given transformation
3956       * of all values
3957 +     * @since 1.8
3958       */
3959 <    public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3959 >    public double reduceValuesToDouble(long parallelismThreshold,
3960 >                                       ObjectToDouble<? super V> transformer,
3961                                         double basis,
3962                                         DoubleByDoubleToDouble reducer) {
3963 <        return ForkJoinTasks.reduceValuesToDouble
3964 <            (this, transformer, basis, reducer).invoke();
3963 >        if (transformer == null || reducer == null)
3964 >            throw new NullPointerException();
3965 >        return new MapReduceValuesToDoubleTask<K,V>
3966 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3967 >             null, transformer, basis, reducer).invoke();
3968      }
3969  
3970      /**
# Line 3853 | Line 3972 | public class ConcurrentHashMapV8<K, V>
3972       * of all values using the given reducer to combine values,
3973       * and the given basis as an identity value.
3974       *
3975 +     * @param parallelismThreshold the (estimated) number of elements
3976 +     * needed for this operation to be executed in parallel
3977       * @param transformer a function returning the transformation
3978       * for an element
3979       * @param basis the identity (initial default value) for the reduction
3980       * @param reducer a commutative associative combining function
3981       * @return the result of accumulating the given transformation
3982       * of all values
3983 +     * @since 1.8
3984       */
3985 <    public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3985 >    public long reduceValuesToLong(long parallelismThreshold,
3986 >                                   ObjectToLong<? super V> transformer,
3987                                     long basis,
3988                                     LongByLongToLong reducer) {
3989 <        return ForkJoinTasks.reduceValuesToLong
3990 <            (this, transformer, basis, reducer).invoke();
3989 >        if (transformer == null || reducer == null)
3990 >            throw new NullPointerException();
3991 >        return new MapReduceValuesToLongTask<K,V>
3992 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3993 >             null, transformer, basis, reducer).invoke();
3994      }
3995  
3996      /**
# Line 3872 | Line 3998 | public class ConcurrentHashMapV8<K, V>
3998       * of all values using the given reducer to combine values,
3999       * and the given basis as an identity value.
4000       *
4001 +     * @param parallelismThreshold the (estimated) number of elements
4002 +     * needed for this operation to be executed in parallel
4003       * @param transformer a function returning the transformation
4004       * for an element
4005       * @param basis the identity (initial default value) for the reduction
4006       * @param reducer a commutative associative combining function
4007       * @return the result of accumulating the given transformation
4008       * of all values
4009 +     * @since 1.8
4010       */
4011 <    public int reduceValuesToInt(ObjectToInt<? super V> transformer,
4011 >    public int reduceValuesToInt(long parallelismThreshold,
4012 >                                 ObjectToInt<? super V> transformer,
4013                                   int basis,
4014                                   IntByIntToInt reducer) {
4015 <        return ForkJoinTasks.reduceValuesToInt
4016 <            (this, transformer, basis, reducer).invoke();
4015 >        if (transformer == null || reducer == null)
4016 >            throw new NullPointerException();
4017 >        return new MapReduceValuesToIntTask<K,V>
4018 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4019 >             null, transformer, basis, reducer).invoke();
4020      }
4021  
4022      /**
4023       * Performs the given action for each entry.
4024       *
4025 +     * @param parallelismThreshold the (estimated) number of elements
4026 +     * needed for this operation to be executed in parallel
4027       * @param action the action
4028 +     * @since 1.8
4029       */
4030 <    public void forEachEntry(Action<Map.Entry<K,V>> action) {
4031 <        ForkJoinTasks.forEachEntry
4032 <            (this, action).invoke();
4030 >    public void forEachEntry(long parallelismThreshold,
4031 >                             Action<? super Map.Entry<K,V>> action) {
4032 >        if (action == null) throw new NullPointerException();
4033 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4034 >                                  action).invoke();
4035      }
4036  
4037      /**
4038       * Performs the given action for each non-null transformation
4039       * of each entry.
4040       *
4041 +     * @param parallelismThreshold the (estimated) number of elements
4042 +     * needed for this operation to be executed in parallel
4043       * @param transformer a function returning the transformation
4044 <     * for an element, or null of there is no transformation (in
4045 <     * which case the action is not applied).
4044 >     * for an element, or null if there is no transformation (in
4045 >     * which case the action is not applied)
4046       * @param action the action
4047 +     * @since 1.8
4048       */
4049 <    public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4050 <                                 Action<U> action) {
4051 <        ForkJoinTasks.forEachEntry
4052 <            (this, transformer, action).invoke();
4049 >    public <U> void forEachEntry(long parallelismThreshold,
4050 >                                 Fun<Map.Entry<K,V>, ? extends U> transformer,
4051 >                                 Action<? super U> action) {
4052 >        if (transformer == null || action == null)
4053 >            throw new NullPointerException();
4054 >        new ForEachTransformedEntryTask<K,V,U>
4055 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4056 >             transformer, action).invoke();
4057      }
4058  
4059      /**
# Line 3918 | Line 4063 | public class ConcurrentHashMapV8<K, V>
4063       * any other parallel invocations of the search function are
4064       * ignored.
4065       *
4066 +     * @param parallelismThreshold the (estimated) number of elements
4067 +     * needed for this operation to be executed in parallel
4068       * @param searchFunction a function returning a non-null
4069       * result on success, else null
4070       * @return a non-null result from applying the given search
4071       * function on each entry, or null if none
4072 +     * @since 1.8
4073       */
4074 <    public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4075 <        return ForkJoinTasks.searchEntries
4076 <            (this, searchFunction).invoke();
4074 >    public <U> U searchEntries(long parallelismThreshold,
4075 >                               Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4076 >        if (searchFunction == null) throw new NullPointerException();
4077 >        return new SearchEntriesTask<K,V,U>
4078 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4079 >             searchFunction, new AtomicReference<U>()).invoke();
4080      }
4081  
4082      /**
4083       * Returns the result of accumulating all entries using the
4084       * given reducer to combine values, or null if none.
4085       *
4086 +     * @param parallelismThreshold the (estimated) number of elements
4087 +     * needed for this operation to be executed in parallel
4088       * @param reducer a commutative associative combining function
4089       * @return the result of accumulating all entries
4090 +     * @since 1.8
4091       */
4092 <    public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4093 <        return ForkJoinTasks.reduceEntries
4094 <            (this, reducer).invoke();
4092 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4093 >                                        BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4094 >        if (reducer == null) throw new NullPointerException();
4095 >        return new ReduceEntriesTask<K,V>
4096 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4097 >             null, reducer).invoke();
4098      }
4099  
4100      /**
# Line 3945 | Line 4102 | public class ConcurrentHashMapV8<K, V>
4102       * of all entries using the given reducer to combine values,
4103       * or null if none.
4104       *
4105 +     * @param parallelismThreshold the (estimated) number of elements
4106 +     * needed for this operation to be executed in parallel
4107       * @param transformer a function returning the transformation
4108 <     * for an element, or null of there is no transformation (in
4109 <     * which case it is not combined).
4108 >     * for an element, or null if there is no transformation (in
4109 >     * which case it is not combined)
4110       * @param reducer a commutative associative combining function
4111       * @return the result of accumulating the given transformation
4112       * of all entries
4113 +     * @since 1.8
4114       */
4115 <    public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4115 >    public <U> U reduceEntries(long parallelismThreshold,
4116 >                               Fun<Map.Entry<K,V>, ? extends U> transformer,
4117                                 BiFun<? super U, ? super U, ? extends U> reducer) {
4118 <        return ForkJoinTasks.reduceEntries
4119 <            (this, transformer, reducer).invoke();
4118 >        if (transformer == null || reducer == null)
4119 >            throw new NullPointerException();
4120 >        return new MapReduceEntriesTask<K,V,U>
4121 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4122 >             null, transformer, reducer).invoke();
4123      }
4124  
4125      /**
# Line 3963 | Line 4127 | public class ConcurrentHashMapV8<K, V>
4127       * of all entries using the given reducer to combine values,
4128       * and the given basis as an identity value.
4129       *
4130 +     * @param parallelismThreshold the (estimated) number of elements
4131 +     * needed for this operation to be executed in parallel
4132       * @param transformer a function returning the transformation
4133       * for an element
4134       * @param basis the identity (initial default value) for the reduction
4135       * @param reducer a commutative associative combining function
4136       * @return the result of accumulating the given transformation
4137       * of all entries
4138 +     * @since 1.8
4139       */
4140 <    public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4140 >    public double reduceEntriesToDouble(long parallelismThreshold,
4141 >                                        ObjectToDouble<Map.Entry<K,V>> transformer,
4142                                          double basis,
4143                                          DoubleByDoubleToDouble reducer) {
4144 <        return ForkJoinTasks.reduceEntriesToDouble
4145 <            (this, transformer, basis, reducer).invoke();
4144 >        if (transformer == null || reducer == null)
4145 >            throw new NullPointerException();
4146 >        return new MapReduceEntriesToDoubleTask<K,V>
4147 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4148 >             null, transformer, basis, reducer).invoke();
4149      }
4150  
4151      /**
# Line 3982 | Line 4153 | public class ConcurrentHashMapV8<K, V>
4153       * of all entries using the given reducer to combine values,
4154       * and the given basis as an identity value.
4155       *
4156 +     * @param parallelismThreshold the (estimated) number of elements
4157 +     * needed for this operation to be executed in parallel
4158       * @param transformer a function returning the transformation
4159       * for an element
4160       * @param basis the identity (initial default value) for the reduction
4161       * @param reducer a commutative associative combining function
4162 <     * @return  the result of accumulating the given transformation
4162 >     * @return the result of accumulating the given transformation
4163       * of all entries
4164 +     * @since 1.8
4165       */
4166 <    public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4166 >    public long reduceEntriesToLong(long parallelismThreshold,
4167 >                                    ObjectToLong<Map.Entry<K,V>> transformer,
4168                                      long basis,
4169                                      LongByLongToLong reducer) {
4170 <        return ForkJoinTasks.reduceEntriesToLong
4171 <            (this, transformer, basis, reducer).invoke();
4170 >        if (transformer == null || reducer == null)
4171 >            throw new NullPointerException();
4172 >        return new MapReduceEntriesToLongTask<K,V>
4173 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4174 >             null, transformer, basis, reducer).invoke();
4175      }
4176  
4177      /**
# Line 4001 | Line 4179 | public class ConcurrentHashMapV8<K, V>
4179       * of all entries using the given reducer to combine values,
4180       * and the given basis as an identity value.
4181       *
4182 +     * @param parallelismThreshold the (estimated) number of elements
4183 +     * needed for this operation to be executed in parallel
4184       * @param transformer a function returning the transformation
4185       * for an element
4186       * @param basis the identity (initial default value) for the reduction
4187       * @param reducer a commutative associative combining function
4188       * @return the result of accumulating the given transformation
4189       * of all entries
4190 +     * @since 1.8
4191       */
4192 <    public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4192 >    public int reduceEntriesToInt(long parallelismThreshold,
4193 >                                  ObjectToInt<Map.Entry<K,V>> transformer,
4194                                    int basis,
4195                                    IntByIntToInt reducer) {
4196 <        return ForkJoinTasks.reduceEntriesToInt
4197 <            (this, transformer, basis, reducer).invoke();
4196 >        if (transformer == null || reducer == null)
4197 >            throw new NullPointerException();
4198 >        return new MapReduceEntriesToIntTask<K,V>
4199 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4200 >             null, transformer, basis, reducer).invoke();
4201      }
4202  
4203 +
4204      /* ----------------Views -------------- */
4205  
4206      /**
4207       * Base class for views.
4208       */
4209 <    static abstract class CHMView<K, V> {
4210 <        final ConcurrentHashMapV8<K, V> map;
4211 <        CHMView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
4209 >    abstract static class CollectionView<K,V,E>
4210 >        implements Collection<E>, java.io.Serializable {
4211 >        private static final long serialVersionUID = 7249069246763182397L;
4212 >        final ConcurrentHashMapV8<K,V> map;
4213 >        CollectionView(ConcurrentHashMapV8<K,V> map)  { this.map = map; }
4214  
4215          /**
4216           * Returns the map backing this view.
# Line 4031 | Line 4219 | public class ConcurrentHashMapV8<K, V>
4219           */
4220          public ConcurrentHashMapV8<K,V> getMap() { return map; }
4221  
4222 <        public final int size()                 { return map.size(); }
4223 <        public final boolean isEmpty()          { return map.isEmpty(); }
4224 <        public final void clear()               { map.clear(); }
4222 >        /**
4223 >         * Removes all of the elements from this view, by removing all
4224 >         * the mappings from the map backing this view.
4225 >         */
4226 >        public final void clear()      { map.clear(); }
4227 >        public final int size()        { return map.size(); }
4228 >        public final boolean isEmpty() { return map.isEmpty(); }
4229  
4230          // implementations below rely on concrete classes supplying these
4231 <        abstract public Iterator<?> iterator();
4232 <        abstract public boolean contains(Object o);
4233 <        abstract public boolean remove(Object o);
4231 >        // abstract methods
4232 >        /**
4233 >         * Returns a "weakly consistent" iterator that will never
4234 >         * throw {@link ConcurrentModificationException}, and
4235 >         * guarantees to traverse elements as they existed upon
4236 >         * construction of the iterator, and may (but is not
4237 >         * guaranteed to) reflect any modifications subsequent to
4238 >         * construction.
4239 >         */
4240 >        public abstract Iterator<E> iterator();
4241 >        public abstract boolean contains(Object o);
4242 >        public abstract boolean remove(Object o);
4243  
4244          private static final String oomeMsg = "Required array size too large";
4245  
4246          public final Object[] toArray() {
4247              long sz = map.mappingCount();
4248 <            if (sz > (long)(MAX_ARRAY_SIZE))
4248 >            if (sz > MAX_ARRAY_SIZE)
4249                  throw new OutOfMemoryError(oomeMsg);
4250              int n = (int)sz;
4251              Object[] r = new Object[n];
4252              int i = 0;
4253 <            Iterator<?> it = iterator();
4053 <            while (it.hasNext()) {
4253 >            for (E e : this) {
4254                  if (i == n) {
4255                      if (n >= MAX_ARRAY_SIZE)
4256                          throw new OutOfMemoryError(oomeMsg);
# Line 4060 | Line 4260 | public class ConcurrentHashMapV8<K, V>
4260                          n += (n >>> 1) + 1;
4261                      r = Arrays.copyOf(r, n);
4262                  }
4263 <                r[i++] = it.next();
4263 >                r[i++] = e;
4264              }
4265              return (i == n) ? r : Arrays.copyOf(r, i);
4266          }
4267  
4268 <        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4268 >        @SuppressWarnings("unchecked")
4269 >        public final <T> T[] toArray(T[] a) {
4270              long sz = map.mappingCount();
4271 <            if (sz > (long)(MAX_ARRAY_SIZE))
4271 >            if (sz > MAX_ARRAY_SIZE)
4272                  throw new OutOfMemoryError(oomeMsg);
4273              int m = (int)sz;
4274              T[] r = (a.length >= m) ? a :
# Line 4075 | Line 4276 | public class ConcurrentHashMapV8<K, V>
4276                  .newInstance(a.getClass().getComponentType(), m);
4277              int n = r.length;
4278              int i = 0;
4279 <            Iterator<?> it = iterator();
4079 <            while (it.hasNext()) {
4279 >            for (E e : this) {
4280                  if (i == n) {
4281                      if (n >= MAX_ARRAY_SIZE)
4282                          throw new OutOfMemoryError(oomeMsg);
# Line 4086 | Line 4286 | public class ConcurrentHashMapV8<K, V>
4286                          n += (n >>> 1) + 1;
4287                      r = Arrays.copyOf(r, n);
4288                  }
4289 <                r[i++] = (T)it.next();
4289 >                r[i++] = (T)e;
4290              }
4291              if (a == r && i < n) {
4292                  r[i] = null; // null-terminate
# Line 4095 | Line 4295 | public class ConcurrentHashMapV8<K, V>
4295              return (i == n) ? r : Arrays.copyOf(r, i);
4296          }
4297  
4298 <        public final int hashCode() {
4299 <            int h = 0;
4300 <            for (Iterator<?> it = iterator(); it.hasNext();)
4301 <                h += it.next().hashCode();
4302 <            return h;
4303 <        }
4304 <
4298 >        /**
4299 >         * Returns a string representation of this collection.
4300 >         * The string representation consists of the string representations
4301 >         * of the collection's elements in the order they are returned by
4302 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4303 >         * Adjacent elements are separated by the characters {@code ", "}
4304 >         * (comma and space).  Elements are converted to strings as by
4305 >         * {@link String#valueOf(Object)}.
4306 >         *
4307 >         * @return a string representation of this collection
4308 >         */
4309          public final String toString() {
4310              StringBuilder sb = new StringBuilder();
4311              sb.append('[');
4312 <            Iterator<?> it = iterator();
4312 >            Iterator<E> it = iterator();
4313              if (it.hasNext()) {
4314                  for (;;) {
4315                      Object e = it.next();
# Line 4120 | Line 4324 | public class ConcurrentHashMapV8<K, V>
4324  
4325          public final boolean containsAll(Collection<?> c) {
4326              if (c != this) {
4327 <                for (Iterator<?> it = c.iterator(); it.hasNext();) {
4124 <                    Object e = it.next();
4327 >                for (Object e : c) {
4328                      if (e == null || !contains(e))
4329                          return false;
4330                  }
# Line 4131 | Line 4334 | public class ConcurrentHashMapV8<K, V>
4334  
4335          public final boolean removeAll(Collection<?> c) {
4336              boolean modified = false;
4337 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4337 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4338                  if (c.contains(it.next())) {
4339                      it.remove();
4340                      modified = true;
# Line 4142 | Line 4345 | public class ConcurrentHashMapV8<K, V>
4345  
4346          public final boolean retainAll(Collection<?> c) {
4347              boolean modified = false;
4348 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4348 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4349                  if (!c.contains(it.next())) {
4350                      it.remove();
4351                      modified = true;
# Line 4156 | Line 4359 | public class ConcurrentHashMapV8<K, V>
4359      /**
4360       * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4361       * which additions may optionally be enabled by mapping to a
4362 <     * common value.  This class cannot be directly instantiated. See
4363 <     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4364 <     * {@link #newKeySet(int)}.
4362 >     * common value.  This class cannot be directly instantiated.
4363 >     * See {@link #keySet() keySet()},
4364 >     * {@link #keySet(Object) keySet(V)},
4365 >     * {@link #newKeySet() newKeySet()},
4366 >     * {@link #newKeySet(int) newKeySet(int)}.
4367 >     *
4368 >     * @since 1.8
4369       */
4370 <    public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
4370 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4371 >        implements Set<K>, java.io.Serializable {
4372          private static final long serialVersionUID = 7249069246763182397L;
4373          private final V value;
4374 <        KeySetView(ConcurrentHashMapV8<K, V> map, V value) {  // non-public
4374 >        KeySetView(ConcurrentHashMapV8<K,V> map, V value) {  // non-public
4375              super(map);
4376              this.value = value;
4377          }
# Line 4173 | Line 4381 | public class ConcurrentHashMapV8<K, V>
4381           * or {@code null} if additions are not supported.
4382           *
4383           * @return the default mapped value for additions, or {@code null}
4384 <         * if not supported.
4384 >         * if not supported
4385           */
4386          public V getMappedValue() { return value; }
4387  
4388 <        // implement Set API
4389 <
4388 >        /**
4389 >         * {@inheritDoc}
4390 >         * @throws NullPointerException if the specified key is null
4391 >         */
4392          public boolean contains(Object o) { return map.containsKey(o); }
4183        public boolean remove(Object o)   { return map.remove(o) != null; }
4393  
4394          /**
4395 <         * Returns a "weakly consistent" iterator that will never
4396 <         * throw {@link ConcurrentModificationException}, and
4397 <         * guarantees to traverse elements as they existed upon
4189 <         * construction of the iterator, and may (but is not
4190 <         * guaranteed to) reflect any modifications subsequent to
4191 <         * construction.
4395 >         * Removes the key from this map view, by removing the key (and its
4396 >         * corresponding value) from the backing map.  This method does
4397 >         * nothing if the key is not in the map.
4398           *
4399 <         * @return an iterator over the keys of this map
4399 >         * @param  o the key to be removed from the backing map
4400 >         * @return {@code true} if the backing map contained the specified key
4401 >         * @throws NullPointerException if the specified key is null
4402 >         */
4403 >        public boolean remove(Object o) { return map.remove(o) != null; }
4404 >
4405 >        /**
4406 >         * @return an iterator over the keys of the backing map
4407 >         */
4408 >        public Iterator<K> iterator() {
4409 >            Node<K,V>[] t;
4410 >            ConcurrentHashMapV8<K,V> m = map;
4411 >            int f = (t = m.table) == null ? 0 : t.length;
4412 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4413 >        }
4414 >
4415 >        /**
4416 >         * Adds the specified key to this set view by mapping the key to
4417 >         * the default mapped value in the backing map, if defined.
4418 >         *
4419 >         * @param e key to be added
4420 >         * @return {@code true} if this set changed as a result of the call
4421 >         * @throws NullPointerException if the specified key is null
4422 >         * @throws UnsupportedOperationException if no default mapped value
4423 >         * for additions was provided
4424           */
4195        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4425          public boolean add(K e) {
4426              V v;
4427              if ((v = value) == null)
4428                  throw new UnsupportedOperationException();
4429 <            if (e == null)
4201 <                throw new NullPointerException();
4202 <            return map.internalPutIfAbsent(e, v) == null;
4429 >            return map.putVal(e, v, true) == null;
4430          }
4431 +
4432 +        /**
4433 +         * Adds all of the elements in the specified collection to this set,
4434 +         * as if by calling {@link #add} on each one.
4435 +         *
4436 +         * @param c the elements to be inserted into this set
4437 +         * @return {@code true} if this set changed as a result of the call
4438 +         * @throws NullPointerException if the collection or any of its
4439 +         * elements are {@code null}
4440 +         * @throws UnsupportedOperationException if no default mapped value
4441 +         * for additions was provided
4442 +         */
4443          public boolean addAll(Collection<? extends K> c) {
4444              boolean added = false;
4445              V v;
4446              if ((v = value) == null)
4447                  throw new UnsupportedOperationException();
4448              for (K e : c) {
4449 <                if (e == null)
4211 <                    throw new NullPointerException();
4212 <                if (map.internalPutIfAbsent(e, v) == null)
4449 >                if (map.putVal(e, v, true) == null)
4450                      added = true;
4451              }
4452              return added;
4453          }
4454 +
4455 +        public int hashCode() {
4456 +            int h = 0;
4457 +            for (K e : this)
4458 +                h += e.hashCode();
4459 +            return h;
4460 +        }
4461 +
4462          public boolean equals(Object o) {
4463              Set<?> c;
4464              return ((o instanceof Set) &&
# Line 4221 | Line 4466 | public class ConcurrentHashMapV8<K, V>
4466                       (containsAll(c) && c.containsAll(this))));
4467          }
4468  
4469 <        /**
4470 <         * Performs the given action for each key.
4471 <         *
4472 <         * @param action the action
4473 <         */
4474 <        public void forEach(Action<K> action) {
4230 <            ForkJoinTasks.forEachKey
4231 <                (map, action).invoke();
4232 <        }
4233 <
4234 <        /**
4235 <         * Performs the given action for each non-null transformation
4236 <         * of each key.
4237 <         *
4238 <         * @param transformer a function returning the transformation
4239 <         * for an element, or null of there is no transformation (in
4240 <         * which case the action is not applied).
4241 <         * @param action the action
4242 <         */
4243 <        public <U> void forEach(Fun<? super K, ? extends U> transformer,
4244 <                                Action<U> action) {
4245 <            ForkJoinTasks.forEachKey
4246 <                (map, transformer, action).invoke();
4247 <        }
4248 <
4249 <        /**
4250 <         * Returns a non-null result from applying the given search
4251 <         * function on each key, or null if none. Upon success,
4252 <         * further element processing is suppressed and the results of
4253 <         * any other parallel invocations of the search function are
4254 <         * ignored.
4255 <         *
4256 <         * @param searchFunction a function returning a non-null
4257 <         * result on success, else null
4258 <         * @return a non-null result from applying the given search
4259 <         * function on each key, or null if none
4260 <         */
4261 <        public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4262 <            return ForkJoinTasks.searchKeys
4263 <                (map, searchFunction).invoke();
4264 <        }
4265 <
4266 <        /**
4267 <         * Returns the result of accumulating all keys using the given
4268 <         * reducer to combine values, or null if none.
4269 <         *
4270 <         * @param reducer a commutative associative combining function
4271 <         * @return the result of accumulating all keys using the given
4272 <         * reducer to combine values, or null if none
4273 <         */
4274 <        public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4275 <            return ForkJoinTasks.reduceKeys
4276 <                (map, reducer).invoke();
4277 <        }
4278 <
4279 <        /**
4280 <         * Returns the result of accumulating the given transformation
4281 <         * of all keys using the given reducer to combine values, and
4282 <         * the given basis as an identity value.
4283 <         *
4284 <         * @param transformer a function returning the transformation
4285 <         * for an element
4286 <         * @param basis the identity (initial default value) for the reduction
4287 <         * @param reducer a commutative associative combining function
4288 <         * @return  the result of accumulating the given transformation
4289 <         * of all keys
4290 <         */
4291 <        public double reduceToDouble(ObjectToDouble<? super K> transformer,
4292 <                                     double basis,
4293 <                                     DoubleByDoubleToDouble reducer) {
4294 <            return ForkJoinTasks.reduceKeysToDouble
4295 <                (map, transformer, basis, reducer).invoke();
4296 <        }
4297 <
4298 <
4299 <        /**
4300 <         * Returns the result of accumulating the given transformation
4301 <         * of all keys using the given reducer to combine values, and
4302 <         * the given basis as an identity value.
4303 <         *
4304 <         * @param transformer a function returning the transformation
4305 <         * for an element
4306 <         * @param basis the identity (initial default value) for the reduction
4307 <         * @param reducer a commutative associative combining function
4308 <         * @return the result of accumulating the given transformation
4309 <         * of all keys
4310 <         */
4311 <        public long reduceToLong(ObjectToLong<? super K> transformer,
4312 <                                 long basis,
4313 <                                 LongByLongToLong reducer) {
4314 <            return ForkJoinTasks.reduceKeysToLong
4315 <                (map, transformer, basis, reducer).invoke();
4469 >        public ConcurrentHashMapSpliterator<K> spliterator() {
4470 >            Node<K,V>[] t;
4471 >            ConcurrentHashMapV8<K,V> m = map;
4472 >            long n = m.sumCount();
4473 >            int f = (t = m.table) == null ? 0 : t.length;
4474 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4475          }
4476  
4477 <        /**
4478 <         * Returns the result of accumulating the given transformation
4479 <         * of all keys using the given reducer to combine values, and
4480 <         * the given basis as an identity value.
4481 <         *
4482 <         * @param transformer a function returning the transformation
4483 <         * for an element
4484 <         * @param basis the identity (initial default value) for the reduction
4326 <         * @param reducer a commutative associative combining function
4327 <         * @return the result of accumulating the given transformation
4328 <         * of all keys
4329 <         */
4330 <        public int reduceToInt(ObjectToInt<? super K> transformer,
4331 <                               int basis,
4332 <                               IntByIntToInt reducer) {
4333 <            return ForkJoinTasks.reduceKeysToInt
4334 <                (map, transformer, basis, reducer).invoke();
4477 >        public void forEach(Action<? super K> action) {
4478 >            if (action == null) throw new NullPointerException();
4479 >            Node<K,V>[] t;
4480 >            if ((t = map.table) != null) {
4481 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4482 >                for (Node<K,V> p; (p = it.advance()) != null; )
4483 >                    action.apply(p.key);
4484 >            }
4485          }
4336
4486      }
4487  
4488      /**
4489       * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4490       * values, in which additions are disabled. This class cannot be
4491 <     * directly instantiated. See {@link #values},
4343 <     *
4344 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4345 <     * that will never throw {@link ConcurrentModificationException},
4346 <     * and guarantees to traverse elements as they existed upon
4347 <     * construction of the iterator, and may (but is not guaranteed to)
4348 <     * reflect any modifications subsequent to construction.
4491 >     * directly instantiated. See {@link #values()}.
4492       */
4493 <    public static final class ValuesView<K,V> extends CHMView<K,V>
4494 <        implements Collection<V> {
4495 <        ValuesView(ConcurrentHashMapV8<K, V> map)   { super(map); }
4496 <        public final boolean contains(Object o) { return map.containsValue(o); }
4493 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4494 >        implements Collection<V>, java.io.Serializable {
4495 >        private static final long serialVersionUID = 2249069246763182397L;
4496 >        ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4497 >        public final boolean contains(Object o) {
4498 >            return map.containsValue(o);
4499 >        }
4500 >
4501          public final boolean remove(Object o) {
4502              if (o != null) {
4503 <                Iterator<V> it = new ValueIterator<K,V>(map);
4357 <                while (it.hasNext()) {
4503 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4504                      if (o.equals(it.next())) {
4505                          it.remove();
4506                          return true;
# Line 4364 | Line 4510 | public class ConcurrentHashMapV8<K, V>
4510              return false;
4511          }
4512  
4367        /**
4368         * Returns a "weakly consistent" iterator that will never
4369         * throw {@link ConcurrentModificationException}, and
4370         * guarantees to traverse elements as they existed upon
4371         * construction of the iterator, and may (but is not
4372         * guaranteed to) reflect any modifications subsequent to
4373         * construction.
4374         *
4375         * @return an iterator over the values of this map
4376         */
4513          public final Iterator<V> iterator() {
4514 <            return new ValueIterator<K,V>(map);
4514 >            ConcurrentHashMapV8<K,V> m = map;
4515 >            Node<K,V>[] t;
4516 >            int f = (t = m.table) == null ? 0 : t.length;
4517 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4518          }
4519 +
4520          public final boolean add(V e) {
4521              throw new UnsupportedOperationException();
4522          }
# Line 4384 | Line 4524 | public class ConcurrentHashMapV8<K, V>
4524              throw new UnsupportedOperationException();
4525          }
4526  
4527 <        /**
4528 <         * Performs the given action for each value.
4529 <         *
4530 <         * @param action the action
4531 <         */
4532 <        public void forEach(Action<V> action) {
4393 <            ForkJoinTasks.forEachValue
4394 <                (map, action).invoke();
4395 <        }
4396 <
4397 <        /**
4398 <         * Performs the given action for each non-null transformation
4399 <         * of each value.
4400 <         *
4401 <         * @param transformer a function returning the transformation
4402 <         * for an element, or null of there is no transformation (in
4403 <         * which case the action is not applied).
4404 <         */
4405 <        public <U> void forEach(Fun<? super V, ? extends U> transformer,
4406 <                                     Action<U> action) {
4407 <            ForkJoinTasks.forEachValue
4408 <                (map, transformer, action).invoke();
4527 >        public ConcurrentHashMapSpliterator<V> spliterator() {
4528 >            Node<K,V>[] t;
4529 >            ConcurrentHashMapV8<K,V> m = map;
4530 >            long n = m.sumCount();
4531 >            int f = (t = m.table) == null ? 0 : t.length;
4532 >            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4533          }
4534  
4535 <        /**
4536 <         * Returns a non-null result from applying the given search
4537 <         * function on each value, or null if none.  Upon success,
4538 <         * further element processing is suppressed and the results of
4539 <         * any other parallel invocations of the search function are
4540 <         * ignored.
4541 <         *
4542 <         * @param searchFunction a function returning a non-null
4419 <         * result on success, else null
4420 <         * @return a non-null result from applying the given search
4421 <         * function on each value, or null if none
4422 <         *
4423 <         */
4424 <        public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4425 <            return ForkJoinTasks.searchValues
4426 <                (map, searchFunction).invoke();
4427 <        }
4428 <
4429 <        /**
4430 <         * Returns the result of accumulating all values using the
4431 <         * given reducer to combine values, or null if none.
4432 <         *
4433 <         * @param reducer a commutative associative combining function
4434 <         * @return  the result of accumulating all values
4435 <         */
4436 <        public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4437 <            return ForkJoinTasks.reduceValues
4438 <                (map, reducer).invoke();
4439 <        }
4440 <
4441 <        /**
4442 <         * Returns the result of accumulating the given transformation
4443 <         * of all values using the given reducer to combine values, or
4444 <         * null if none.
4445 <         *
4446 <         * @param transformer a function returning the transformation
4447 <         * for an element, or null of there is no transformation (in
4448 <         * which case it is not combined).
4449 <         * @param reducer a commutative associative combining function
4450 <         * @return the result of accumulating the given transformation
4451 <         * of all values
4452 <         */
4453 <        public <U> U reduce(Fun<? super V, ? extends U> transformer,
4454 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
4455 <            return ForkJoinTasks.reduceValues
4456 <                (map, transformer, reducer).invoke();
4457 <        }
4458 <
4459 <        /**
4460 <         * Returns the result of accumulating the given transformation
4461 <         * of all values using the given reducer to combine values,
4462 <         * and the given basis as an identity value.
4463 <         *
4464 <         * @param transformer a function returning the transformation
4465 <         * for an element
4466 <         * @param basis the identity (initial default value) for the reduction
4467 <         * @param reducer a commutative associative combining function
4468 <         * @return the result of accumulating the given transformation
4469 <         * of all values
4470 <         */
4471 <        public double reduceToDouble(ObjectToDouble<? super V> transformer,
4472 <                                     double basis,
4473 <                                     DoubleByDoubleToDouble reducer) {
4474 <            return ForkJoinTasks.reduceValuesToDouble
4475 <                (map, transformer, basis, reducer).invoke();
4476 <        }
4477 <
4478 <        /**
4479 <         * Returns the result of accumulating the given transformation
4480 <         * of all values using the given reducer to combine values,
4481 <         * and the given basis as an identity value.
4482 <         *
4483 <         * @param transformer a function returning the transformation
4484 <         * for an element
4485 <         * @param basis the identity (initial default value) for the reduction
4486 <         * @param reducer a commutative associative combining function
4487 <         * @return the result of accumulating the given transformation
4488 <         * of all values
4489 <         */
4490 <        public long reduceToLong(ObjectToLong<? super V> transformer,
4491 <                                 long basis,
4492 <                                 LongByLongToLong reducer) {
4493 <            return ForkJoinTasks.reduceValuesToLong
4494 <                (map, transformer, basis, reducer).invoke();
4495 <        }
4496 <
4497 <        /**
4498 <         * Returns the result of accumulating the given transformation
4499 <         * of all values using the given reducer to combine values,
4500 <         * and the given basis as an identity value.
4501 <         *
4502 <         * @param transformer a function returning the transformation
4503 <         * for an element
4504 <         * @param basis the identity (initial default value) for the reduction
4505 <         * @param reducer a commutative associative combining function
4506 <         * @return the result of accumulating the given transformation
4507 <         * of all values
4508 <         */
4509 <        public int reduceToInt(ObjectToInt<? super V> transformer,
4510 <                               int basis,
4511 <                               IntByIntToInt reducer) {
4512 <            return ForkJoinTasks.reduceValuesToInt
4513 <                (map, transformer, basis, reducer).invoke();
4535 >        public void forEach(Action<? super V> action) {
4536 >            if (action == null) throw new NullPointerException();
4537 >            Node<K,V>[] t;
4538 >            if ((t = map.table) != null) {
4539 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4540 >                for (Node<K,V> p; (p = it.advance()) != null; )
4541 >                    action.apply(p.val);
4542 >            }
4543          }
4515
4544      }
4545  
4546      /**
4547       * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4548       * entries.  This class cannot be directly instantiated. See
4549 <     * {@link #entrySet}.
4549 >     * {@link #entrySet()}.
4550       */
4551 <    public static final class EntrySetView<K,V> extends CHMView<K,V>
4552 <        implements Set<Map.Entry<K,V>> {
4553 <        EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4554 <        public final boolean contains(Object o) {
4551 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4552 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4553 >        private static final long serialVersionUID = 2249069246763182397L;
4554 >        EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4555 >
4556 >        public boolean contains(Object o) {
4557              Object k, v, r; Map.Entry<?,?> e;
4558              return ((o instanceof Map.Entry) &&
4559                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4531 | Line 4561 | public class ConcurrentHashMapV8<K, V>
4561                      (v = e.getValue()) != null &&
4562                      (v == r || v.equals(r)));
4563          }
4564 <        public final boolean remove(Object o) {
4564 >
4565 >        public boolean remove(Object o) {
4566              Object k, v; Map.Entry<?,?> e;
4567              return ((o instanceof Map.Entry) &&
4568                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4540 | Line 4571 | public class ConcurrentHashMapV8<K, V>
4571          }
4572  
4573          /**
4574 <         * Returns a "weakly consistent" iterator that will never
4544 <         * throw {@link ConcurrentModificationException}, and
4545 <         * guarantees to traverse elements as they existed upon
4546 <         * construction of the iterator, and may (but is not
4547 <         * guaranteed to) reflect any modifications subsequent to
4548 <         * construction.
4549 <         *
4550 <         * @return an iterator over the entries of this map
4574 >         * @return an iterator over the entries of the backing map
4575           */
4576 <        public final Iterator<Map.Entry<K,V>> iterator() {
4577 <            return new EntryIterator<K,V>(map);
4576 >        public Iterator<Map.Entry<K,V>> iterator() {
4577 >            ConcurrentHashMapV8<K,V> m = map;
4578 >            Node<K,V>[] t;
4579 >            int f = (t = m.table) == null ? 0 : t.length;
4580 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4581          }
4582  
4583 <        public final boolean add(Entry<K,V> e) {
4584 <            K key = e.getKey();
4558 <            V value = e.getValue();
4559 <            if (key == null || value == null)
4560 <                throw new NullPointerException();
4561 <            return map.internalPut(key, value) == null;
4583 >        public boolean add(Entry<K,V> e) {
4584 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4585          }
4586 <        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4586 >
4587 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4588              boolean added = false;
4589              for (Entry<K,V> e : c) {
4590                  if (add(e))
# Line 4568 | Line 4592 | public class ConcurrentHashMapV8<K, V>
4592              }
4593              return added;
4594          }
4595 <        public boolean equals(Object o) {
4595 >
4596 >        public final int hashCode() {
4597 >            int h = 0;
4598 >            Node<K,V>[] t;
4599 >            if ((t = map.table) != null) {
4600 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4601 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4602 >                    h += p.hashCode();
4603 >                }
4604 >            }
4605 >            return h;
4606 >        }
4607 >
4608 >        public final boolean equals(Object o) {
4609              Set<?> c;
4610              return ((o instanceof Set) &&
4611                      ((c = (Set<?>)o) == this ||
4612                       (containsAll(c) && c.containsAll(this))));
4613          }
4614  
4615 <        /**
4616 <         * Performs the given action for each entry.
4617 <         *
4618 <         * @param action the action
4619 <         */
4620 <        public void forEach(Action<Map.Entry<K,V>> action) {
4584 <            ForkJoinTasks.forEachEntry
4585 <                (map, action).invoke();
4586 <        }
4587 <
4588 <        /**
4589 <         * Performs the given action for each non-null transformation
4590 <         * of each entry.
4591 <         *
4592 <         * @param transformer a function returning the transformation
4593 <         * for an element, or null of there is no transformation (in
4594 <         * which case the action is not applied).
4595 <         * @param action the action
4596 <         */
4597 <        public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4598 <                                Action<U> action) {
4599 <            ForkJoinTasks.forEachEntry
4600 <                (map, transformer, action).invoke();
4601 <        }
4602 <
4603 <        /**
4604 <         * Returns a non-null result from applying the given search
4605 <         * function on each entry, or null if none.  Upon success,
4606 <         * further element processing is suppressed and the results of
4607 <         * any other parallel invocations of the search function are
4608 <         * ignored.
4609 <         *
4610 <         * @param searchFunction a function returning a non-null
4611 <         * result on success, else null
4612 <         * @return a non-null result from applying the given search
4613 <         * function on each entry, or null if none
4614 <         */
4615 <        public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4616 <            return ForkJoinTasks.searchEntries
4617 <                (map, searchFunction).invoke();
4618 <        }
4619 <
4620 <        /**
4621 <         * Returns the result of accumulating all entries using the
4622 <         * given reducer to combine values, or null if none.
4623 <         *
4624 <         * @param reducer a commutative associative combining function
4625 <         * @return the result of accumulating all entries
4626 <         */
4627 <        public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4628 <            return ForkJoinTasks.reduceEntries
4629 <                (map, reducer).invoke();
4630 <        }
4631 <
4632 <        /**
4633 <         * Returns the result of accumulating the given transformation
4634 <         * of all entries using the given reducer to combine values,
4635 <         * or null if none.
4636 <         *
4637 <         * @param transformer a function returning the transformation
4638 <         * for an element, or null of there is no transformation (in
4639 <         * which case it is not combined).
4640 <         * @param reducer a commutative associative combining function
4641 <         * @return the result of accumulating the given transformation
4642 <         * of all entries
4643 <         */
4644 <        public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4645 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
4646 <            return ForkJoinTasks.reduceEntries
4647 <                (map, transformer, reducer).invoke();
4615 >        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4616 >            Node<K,V>[] t;
4617 >            ConcurrentHashMapV8<K,V> m = map;
4618 >            long n = m.sumCount();
4619 >            int f = (t = m.table) == null ? 0 : t.length;
4620 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4621          }
4622  
4623 <        /**
4624 <         * Returns the result of accumulating the given transformation
4625 <         * of all entries using the given reducer to combine values,
4626 <         * and the given basis as an identity value.
4627 <         *
4628 <         * @param transformer a function returning the transformation
4629 <         * for an element
4630 <         * @param basis the identity (initial default value) for the reduction
4658 <         * @param reducer a commutative associative combining function
4659 <         * @return the result of accumulating the given transformation
4660 <         * of all entries
4661 <         */
4662 <        public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4663 <                                     double basis,
4664 <                                     DoubleByDoubleToDouble reducer) {
4665 <            return ForkJoinTasks.reduceEntriesToDouble
4666 <                (map, transformer, basis, reducer).invoke();
4667 <        }
4668 <
4669 <        /**
4670 <         * Returns the result of accumulating the given transformation
4671 <         * of all entries using the given reducer to combine values,
4672 <         * and the given basis as an identity value.
4673 <         *
4674 <         * @param transformer a function returning the transformation
4675 <         * for an element
4676 <         * @param basis the identity (initial default value) for the reduction
4677 <         * @param reducer a commutative associative combining function
4678 <         * @return  the result of accumulating the given transformation
4679 <         * of all entries
4680 <         */
4681 <        public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4682 <                                 long basis,
4683 <                                 LongByLongToLong reducer) {
4684 <            return ForkJoinTasks.reduceEntriesToLong
4685 <                (map, transformer, basis, reducer).invoke();
4686 <        }
4687 <
4688 <        /**
4689 <         * Returns the result of accumulating the given transformation
4690 <         * of all entries using the given reducer to combine values,
4691 <         * and the given basis as an identity value.
4692 <         *
4693 <         * @param transformer a function returning the transformation
4694 <         * for an element
4695 <         * @param basis the identity (initial default value) for the reduction
4696 <         * @param reducer a commutative associative combining function
4697 <         * @return the result of accumulating the given transformation
4698 <         * of all entries
4699 <         */
4700 <        public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4701 <                               int basis,
4702 <                               IntByIntToInt reducer) {
4703 <            return ForkJoinTasks.reduceEntriesToInt
4704 <                (map, transformer, basis, reducer).invoke();
4623 >        public void forEach(Action<? super Map.Entry<K,V>> action) {
4624 >            if (action == null) throw new NullPointerException();
4625 >            Node<K,V>[] t;
4626 >            if ((t = map.table) != null) {
4627 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4628 >                for (Node<K,V> p; (p = it.advance()) != null; )
4629 >                    action.apply(new MapEntry<K,V>(p.key, p.val, map));
4630 >            }
4631          }
4632  
4633      }
4634  
4635 <    // ---------------------------------------------------------------------
4635 >    // -------------------------------------------------------
4636  
4637      /**
4638 <     * Predefined tasks for performing bulk parallel operations on
4639 <     * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4714 <     * for bulk operations. Each method has the same name, but returns
4715 <     * a task rather than invoking it. These methods may be useful in
4716 <     * custom applications such as submitting a task without waiting
4717 <     * for completion, using a custom pool, or combining with other
4718 <     * tasks.
4638 >     * Base class for bulk tasks. Repeats some fields and code from
4639 >     * class Traverser, because we need to subclass CountedCompleter.
4640       */
4641 <    public static class ForkJoinTasks {
4642 <        private ForkJoinTasks() {}
4643 <
4644 <        /**
4645 <         * Returns a task that when invoked, performs the given
4646 <         * action for each (key, value)
4647 <         *
4648 <         * @param map the map
4649 <         * @param action the action
4650 <         * @return the task
4651 <         */
4652 <        public static <K,V> ForkJoinTask<Void> forEach
4653 <            (ConcurrentHashMapV8<K,V> map,
4654 <             BiAction<K,V> action) {
4655 <            if (action == null) throw new NullPointerException();
4656 <            return new ForEachMappingTask<K,V>(map, null, -1, action);
4657 <        }
4658 <
4659 <        /**
4660 <         * Returns a task that when invoked, performs the given
4661 <         * action for each non-null transformation of each (key, value)
4741 <         *
4742 <         * @param map the map
4743 <         * @param transformer a function returning the transformation
4744 <         * for an element, or null if there is no transformation (in
4745 <         * which case the action is not applied)
4746 <         * @param action the action
4747 <         * @return the task
4748 <         */
4749 <        public static <K,V,U> ForkJoinTask<Void> forEach
4750 <            (ConcurrentHashMapV8<K,V> map,
4751 <             BiFun<? super K, ? super V, ? extends U> transformer,
4752 <             Action<U> action) {
4753 <            if (transformer == null || action == null)
4754 <                throw new NullPointerException();
4755 <            return new ForEachTransformedMappingTask<K,V,U>
4756 <                (map, null, -1, transformer, action);
4757 <        }
4758 <
4759 <        /**
4760 <         * Returns a task that when invoked, returns a non-null result
4761 <         * from applying the given search function on each (key,
4762 <         * value), or null if none. Upon success, further element
4763 <         * processing is suppressed and the results of any other
4764 <         * parallel invocations of the search function are ignored.
4765 <         *
4766 <         * @param map the map
4767 <         * @param searchFunction a function returning a non-null
4768 <         * result on success, else null
4769 <         * @return the task
4770 <         */
4771 <        public static <K,V,U> ForkJoinTask<U> search
4772 <            (ConcurrentHashMapV8<K,V> map,
4773 <             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4774 <            if (searchFunction == null) throw new NullPointerException();
4775 <            return new SearchMappingsTask<K,V,U>
4776 <                (map, null, -1, searchFunction,
4777 <                 new AtomicReference<U>());
4778 <        }
4779 <
4780 <        /**
4781 <         * Returns a task that when invoked, returns the result of
4782 <         * accumulating the given transformation of all (key, value) pairs
4783 <         * using the given reducer to combine values, or null if none.
4784 <         *
4785 <         * @param map the map
4786 <         * @param transformer a function returning the transformation
4787 <         * for an element, or null if there is no transformation (in
4788 <         * which case it is not combined).
4789 <         * @param reducer a commutative associative combining function
4790 <         * @return the task
4791 <         */
4792 <        public static <K,V,U> ForkJoinTask<U> reduce
4793 <            (ConcurrentHashMapV8<K,V> map,
4794 <             BiFun<? super K, ? super V, ? extends U> transformer,
4795 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4796 <            if (transformer == null || reducer == null)
4797 <                throw new NullPointerException();
4798 <            return new MapReduceMappingsTask<K,V,U>
4799 <                (map, null, -1, null, transformer, reducer);
4800 <        }
4801 <
4802 <        /**
4803 <         * Returns a task that when invoked, returns the result of
4804 <         * accumulating the given transformation of all (key, value) pairs
4805 <         * using the given reducer to combine values, and the given
4806 <         * basis as an identity value.
4807 <         *
4808 <         * @param map the map
4809 <         * @param transformer a function returning the transformation
4810 <         * for an element
4811 <         * @param basis the identity (initial default value) for the reduction
4812 <         * @param reducer a commutative associative combining function
4813 <         * @return the task
4814 <         */
4815 <        public static <K,V> ForkJoinTask<Double> reduceToDouble
4816 <            (ConcurrentHashMapV8<K,V> map,
4817 <             ObjectByObjectToDouble<? super K, ? super V> transformer,
4818 <             double basis,
4819 <             DoubleByDoubleToDouble reducer) {
4820 <            if (transformer == null || reducer == null)
4821 <                throw new NullPointerException();
4822 <            return new MapReduceMappingsToDoubleTask<K,V>
4823 <                (map, null, -1, null, transformer, basis, reducer);
4824 <        }
4825 <
4826 <        /**
4827 <         * Returns a task that when invoked, returns the result of
4828 <         * accumulating the given transformation of all (key, value) pairs
4829 <         * using the given reducer to combine values, and the given
4830 <         * basis as an identity value.
4831 <         *
4832 <         * @param map the map
4833 <         * @param transformer a function returning the transformation
4834 <         * for an element
4835 <         * @param basis the identity (initial default value) for the reduction
4836 <         * @param reducer a commutative associative combining function
4837 <         * @return the task
4838 <         */
4839 <        public static <K,V> ForkJoinTask<Long> reduceToLong
4840 <            (ConcurrentHashMapV8<K,V> map,
4841 <             ObjectByObjectToLong<? super K, ? super V> transformer,
4842 <             long basis,
4843 <             LongByLongToLong reducer) {
4844 <            if (transformer == null || reducer == null)
4845 <                throw new NullPointerException();
4846 <            return new MapReduceMappingsToLongTask<K,V>
4847 <                (map, null, -1, null, transformer, basis, reducer);
4848 <        }
4849 <
4850 <        /**
4851 <         * Returns a task that when invoked, returns the result of
4852 <         * accumulating the given transformation of all (key, value) pairs
4853 <         * using the given reducer to combine values, and the given
4854 <         * basis as an identity value.
4855 <         *
4856 <         * @param transformer a function returning the transformation
4857 <         * for an element
4858 <         * @param basis the identity (initial default value) for the reduction
4859 <         * @param reducer a commutative associative combining function
4860 <         * @return the task
4861 <         */
4862 <        public static <K,V> ForkJoinTask<Integer> reduceToInt
4863 <            (ConcurrentHashMapV8<K,V> map,
4864 <             ObjectByObjectToInt<? super K, ? super V> transformer,
4865 <             int basis,
4866 <             IntByIntToInt reducer) {
4867 <            if (transformer == null || reducer == null)
4868 <                throw new NullPointerException();
4869 <            return new MapReduceMappingsToIntTask<K,V>
4870 <                (map, null, -1, null, transformer, basis, reducer);
4871 <        }
4872 <
4873 <        /**
4874 <         * Returns a task that when invoked, performs the given action
4875 <         * for each key.
4876 <         *
4877 <         * @param map the map
4878 <         * @param action the action
4879 <         * @return the task
4880 <         */
4881 <        public static <K,V> ForkJoinTask<Void> forEachKey
4882 <            (ConcurrentHashMapV8<K,V> map,
4883 <             Action<K> action) {
4884 <            if (action == null) throw new NullPointerException();
4885 <            return new ForEachKeyTask<K,V>(map, null, -1, action);
4886 <        }
4887 <
4888 <        /**
4889 <         * Returns a task that when invoked, performs the given action
4890 <         * for each non-null transformation of each key.
4891 <         *
4892 <         * @param map the map
4893 <         * @param transformer a function returning the transformation
4894 <         * for an element, or null if there is no transformation (in
4895 <         * which case the action is not applied)
4896 <         * @param action the action
4897 <         * @return the task
4898 <         */
4899 <        public static <K,V,U> ForkJoinTask<Void> forEachKey
4900 <            (ConcurrentHashMapV8<K,V> map,
4901 <             Fun<? super K, ? extends U> transformer,
4902 <             Action<U> action) {
4903 <            if (transformer == null || action == null)
4904 <                throw new NullPointerException();
4905 <            return new ForEachTransformedKeyTask<K,V,U>
4906 <                (map, null, -1, transformer, action);
4907 <        }
4908 <
4909 <        /**
4910 <         * Returns a task that when invoked, returns a non-null result
4911 <         * from applying the given search function on each key, or
4912 <         * null if none.  Upon success, further element processing is
4913 <         * suppressed and the results of any other parallel
4914 <         * invocations of the search function are ignored.
4915 <         *
4916 <         * @param map the map
4917 <         * @param searchFunction a function returning a non-null
4918 <         * result on success, else null
4919 <         * @return the task
4920 <         */
4921 <        public static <K,V,U> ForkJoinTask<U> searchKeys
4922 <            (ConcurrentHashMapV8<K,V> map,
4923 <             Fun<? super K, ? extends U> searchFunction) {
4924 <            if (searchFunction == null) throw new NullPointerException();
4925 <            return new SearchKeysTask<K,V,U>
4926 <                (map, null, -1, searchFunction,
4927 <                 new AtomicReference<U>());
4928 <        }
4929 <
4930 <        /**
4931 <         * Returns a task that when invoked, returns the result of
4932 <         * accumulating all keys using the given reducer to combine
4933 <         * values, or null if none.
4934 <         *
4935 <         * @param map the map
4936 <         * @param reducer a commutative associative combining function
4937 <         * @return the task
4938 <         */
4939 <        public static <K,V> ForkJoinTask<K> reduceKeys
4940 <            (ConcurrentHashMapV8<K,V> map,
4941 <             BiFun<? super K, ? super K, ? extends K> reducer) {
4942 <            if (reducer == null) throw new NullPointerException();
4943 <            return new ReduceKeysTask<K,V>
4944 <                (map, null, -1, null, reducer);
4945 <        }
4946 <
4947 <        /**
4948 <         * Returns a task that when invoked, returns the result of
4949 <         * accumulating the given transformation of all keys using the given
4950 <         * reducer to combine values, or null if none.
4951 <         *
4952 <         * @param map the map
4953 <         * @param transformer a function returning the transformation
4954 <         * for an element, or null if there is no transformation (in
4955 <         * which case it is not combined).
4956 <         * @param reducer a commutative associative combining function
4957 <         * @return the task
4958 <         */
4959 <        public static <K,V,U> ForkJoinTask<U> reduceKeys
4960 <            (ConcurrentHashMapV8<K,V> map,
4961 <             Fun<? super K, ? extends U> transformer,
4962 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4963 <            if (transformer == null || reducer == null)
4964 <                throw new NullPointerException();
4965 <            return new MapReduceKeysTask<K,V,U>
4966 <                (map, null, -1, null, transformer, reducer);
4967 <        }
4968 <
4969 <        /**
4970 <         * Returns a task that when invoked, returns the result of
4971 <         * accumulating the given transformation of all keys using the given
4972 <         * reducer to combine values, and the given basis as an
4973 <         * identity value.
4974 <         *
4975 <         * @param map the map
4976 <         * @param transformer a function returning the transformation
4977 <         * for an element
4978 <         * @param basis the identity (initial default value) for the reduction
4979 <         * @param reducer a commutative associative combining function
4980 <         * @return the task
4981 <         */
4982 <        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4983 <            (ConcurrentHashMapV8<K,V> map,
4984 <             ObjectToDouble<? super K> transformer,
4985 <             double basis,
4986 <             DoubleByDoubleToDouble reducer) {
4987 <            if (transformer == null || reducer == null)
4988 <                throw new NullPointerException();
4989 <            return new MapReduceKeysToDoubleTask<K,V>
4990 <                (map, null, -1, null, transformer, basis, reducer);
4991 <        }
4992 <
4993 <        /**
4994 <         * Returns a task that when invoked, returns the result of
4995 <         * accumulating the given transformation of all keys using the given
4996 <         * reducer to combine values, and the given basis as an
4997 <         * identity value.
4998 <         *
4999 <         * @param map the map
5000 <         * @param transformer a function returning the transformation
5001 <         * for an element
5002 <         * @param basis the identity (initial default value) for the reduction
5003 <         * @param reducer a commutative associative combining function
5004 <         * @return the task
5005 <         */
5006 <        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5007 <            (ConcurrentHashMapV8<K,V> map,
5008 <             ObjectToLong<? super K> transformer,
5009 <             long basis,
5010 <             LongByLongToLong reducer) {
5011 <            if (transformer == null || reducer == null)
5012 <                throw new NullPointerException();
5013 <            return new MapReduceKeysToLongTask<K,V>
5014 <                (map, null, -1, null, transformer, basis, reducer);
5015 <        }
5016 <
5017 <        /**
5018 <         * Returns a task that when invoked, returns the result of
5019 <         * accumulating the given transformation of all keys using the given
5020 <         * reducer to combine values, and the given basis as an
5021 <         * identity value.
5022 <         *
5023 <         * @param map the map
5024 <         * @param transformer a function returning the transformation
5025 <         * for an element
5026 <         * @param basis the identity (initial default value) for the reduction
5027 <         * @param reducer a commutative associative combining function
5028 <         * @return the task
5029 <         */
5030 <        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5031 <            (ConcurrentHashMapV8<K,V> map,
5032 <             ObjectToInt<? super K> transformer,
5033 <             int basis,
5034 <             IntByIntToInt reducer) {
5035 <            if (transformer == null || reducer == null)
5036 <                throw new NullPointerException();
5037 <            return new MapReduceKeysToIntTask<K,V>
5038 <                (map, null, -1, null, transformer, basis, reducer);
5039 <        }
5040 <
5041 <        /**
5042 <         * Returns a task that when invoked, performs the given action
5043 <         * for each value.
5044 <         *
5045 <         * @param map the map
5046 <         * @param action the action
5047 <         */
5048 <        public static <K,V> ForkJoinTask<Void> forEachValue
5049 <            (ConcurrentHashMapV8<K,V> map,
5050 <             Action<V> action) {
5051 <            if (action == null) throw new NullPointerException();
5052 <            return new ForEachValueTask<K,V>(map, null, -1, action);
5053 <        }
5054 <
5055 <        /**
5056 <         * Returns a task that when invoked, performs the given action
5057 <         * for each non-null transformation of each value.
5058 <         *
5059 <         * @param map the map
5060 <         * @param transformer a function returning the transformation
5061 <         * for an element, or null if there is no transformation (in
5062 <         * which case the action is not applied)
5063 <         * @param action the action
5064 <         */
5065 <        public static <K,V,U> ForkJoinTask<Void> forEachValue
5066 <            (ConcurrentHashMapV8<K,V> map,
5067 <             Fun<? super V, ? extends U> transformer,
5068 <             Action<U> action) {
5069 <            if (transformer == null || action == null)
5070 <                throw new NullPointerException();
5071 <            return new ForEachTransformedValueTask<K,V,U>
5072 <                (map, null, -1, transformer, action);
5073 <        }
5074 <
5075 <        /**
5076 <         * Returns a task that when invoked, returns a non-null result
5077 <         * from applying the given search function on each value, or
5078 <         * null if none.  Upon success, further element processing is
5079 <         * suppressed and the results of any other parallel
5080 <         * invocations of the search function are ignored.
5081 <         *
5082 <         * @param map the map
5083 <         * @param searchFunction a function returning a non-null
5084 <         * result on success, else null
5085 <         * @return the task
5086 <         */
5087 <        public static <K,V,U> ForkJoinTask<U> searchValues
5088 <            (ConcurrentHashMapV8<K,V> map,
5089 <             Fun<? super V, ? extends U> searchFunction) {
5090 <            if (searchFunction == null) throw new NullPointerException();
5091 <            return new SearchValuesTask<K,V,U>
5092 <                (map, null, -1, searchFunction,
5093 <                 new AtomicReference<U>());
5094 <        }
5095 <
5096 <        /**
5097 <         * Returns a task that when invoked, returns the result of
5098 <         * accumulating all values using the given reducer to combine
5099 <         * values, or null if none.
5100 <         *
5101 <         * @param map the map
5102 <         * @param reducer a commutative associative combining function
5103 <         * @return the task
5104 <         */
5105 <        public static <K,V> ForkJoinTask<V> reduceValues
5106 <            (ConcurrentHashMapV8<K,V> map,
5107 <             BiFun<? super V, ? super V, ? extends V> reducer) {
5108 <            if (reducer == null) throw new NullPointerException();
5109 <            return new ReduceValuesTask<K,V>
5110 <                (map, null, -1, null, reducer);
5111 <        }
5112 <
5113 <        /**
5114 <         * Returns a task that when invoked, returns the result of
5115 <         * accumulating the given transformation of all values using the
5116 <         * given reducer to combine values, or null if none.
5117 <         *
5118 <         * @param map the map
5119 <         * @param transformer a function returning the transformation
5120 <         * for an element, or null if there is no transformation (in
5121 <         * which case it is not combined).
5122 <         * @param reducer a commutative associative combining function
5123 <         * @return the task
5124 <         */
5125 <        public static <K,V,U> ForkJoinTask<U> reduceValues
5126 <            (ConcurrentHashMapV8<K,V> map,
5127 <             Fun<? super V, ? extends U> transformer,
5128 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5129 <            if (transformer == null || reducer == null)
5130 <                throw new NullPointerException();
5131 <            return new MapReduceValuesTask<K,V,U>
5132 <                (map, null, -1, null, transformer, reducer);
5133 <        }
5134 <
5135 <        /**
5136 <         * Returns a task that when invoked, returns the result of
5137 <         * accumulating the given transformation of all values using the
5138 <         * given reducer to combine values, and the given basis as an
5139 <         * identity value.
5140 <         *
5141 <         * @param map the map
5142 <         * @param transformer a function returning the transformation
5143 <         * for an element
5144 <         * @param basis the identity (initial default value) for the reduction
5145 <         * @param reducer a commutative associative combining function
5146 <         * @return the task
5147 <         */
5148 <        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5149 <            (ConcurrentHashMapV8<K,V> map,
5150 <             ObjectToDouble<? super V> transformer,
5151 <             double basis,
5152 <             DoubleByDoubleToDouble reducer) {
5153 <            if (transformer == null || reducer == null)
5154 <                throw new NullPointerException();
5155 <            return new MapReduceValuesToDoubleTask<K,V>
5156 <                (map, null, -1, null, transformer, basis, reducer);
5157 <        }
5158 <
5159 <        /**
5160 <         * Returns a task that when invoked, returns the result of
5161 <         * accumulating the given transformation of all values using the
5162 <         * given reducer to combine values, and the given basis as an
5163 <         * identity value.
5164 <         *
5165 <         * @param map the map
5166 <         * @param transformer a function returning the transformation
5167 <         * for an element
5168 <         * @param basis the identity (initial default value) for the reduction
5169 <         * @param reducer a commutative associative combining function
5170 <         * @return the task
5171 <         */
5172 <        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5173 <            (ConcurrentHashMapV8<K,V> map,
5174 <             ObjectToLong<? super V> transformer,
5175 <             long basis,
5176 <             LongByLongToLong reducer) {
5177 <            if (transformer == null || reducer == null)
5178 <                throw new NullPointerException();
5179 <            return new MapReduceValuesToLongTask<K,V>
5180 <                (map, null, -1, null, transformer, basis, reducer);
5181 <        }
5182 <
5183 <        /**
5184 <         * Returns a task that when invoked, returns the result of
5185 <         * accumulating the given transformation of all values using the
5186 <         * given reducer to combine values, and the given basis as an
5187 <         * identity value.
5188 <         *
5189 <         * @param map the map
5190 <         * @param transformer a function returning the transformation
5191 <         * for an element
5192 <         * @param basis the identity (initial default value) for the reduction
5193 <         * @param reducer a commutative associative combining function
5194 <         * @return the task
5195 <         */
5196 <        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5197 <            (ConcurrentHashMapV8<K,V> map,
5198 <             ObjectToInt<? super V> transformer,
5199 <             int basis,
5200 <             IntByIntToInt reducer) {
5201 <            if (transformer == null || reducer == null)
5202 <                throw new NullPointerException();
5203 <            return new MapReduceValuesToIntTask<K,V>
5204 <                (map, null, -1, null, transformer, basis, reducer);
5205 <        }
5206 <
5207 <        /**
5208 <         * Returns a task that when invoked, perform the given action
5209 <         * for each entry.
5210 <         *
5211 <         * @param map the map
5212 <         * @param action the action
5213 <         */
5214 <        public static <K,V> ForkJoinTask<Void> forEachEntry
5215 <            (ConcurrentHashMapV8<K,V> map,
5216 <             Action<Map.Entry<K,V>> action) {
5217 <            if (action == null) throw new NullPointerException();
5218 <            return new ForEachEntryTask<K,V>(map, null, -1, action);
5219 <        }
5220 <
5221 <        /**
5222 <         * Returns a task that when invoked, perform the given action
5223 <         * for each non-null transformation of each entry.
5224 <         *
5225 <         * @param map the map
5226 <         * @param transformer a function returning the transformation
5227 <         * for an element, or null if there is no transformation (in
5228 <         * which case the action is not applied)
5229 <         * @param action the action
5230 <         */
5231 <        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5232 <            (ConcurrentHashMapV8<K,V> map,
5233 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5234 <             Action<U> action) {
5235 <            if (transformer == null || action == null)
5236 <                throw new NullPointerException();
5237 <            return new ForEachTransformedEntryTask<K,V,U>
5238 <                (map, null, -1, transformer, action);
5239 <        }
5240 <
5241 <        /**
5242 <         * Returns a task that when invoked, returns a non-null result
5243 <         * from applying the given search function on each entry, or
5244 <         * null if none.  Upon success, further element processing is
5245 <         * suppressed and the results of any other parallel
5246 <         * invocations of the search function are ignored.
5247 <         *
5248 <         * @param map the map
5249 <         * @param searchFunction a function returning a non-null
5250 <         * result on success, else null
5251 <         * @return the task
5252 <         */
5253 <        public static <K,V,U> ForkJoinTask<U> searchEntries
5254 <            (ConcurrentHashMapV8<K,V> map,
5255 <             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5256 <            if (searchFunction == null) throw new NullPointerException();
5257 <            return new SearchEntriesTask<K,V,U>
5258 <                (map, null, -1, searchFunction,
5259 <                 new AtomicReference<U>());
5260 <        }
5261 <
5262 <        /**
5263 <         * Returns a task that when invoked, returns the result of
5264 <         * accumulating all entries using the given reducer to combine
5265 <         * values, or null if none.
5266 <         *
5267 <         * @param map the map
5268 <         * @param reducer a commutative associative combining function
5269 <         * @return the task
5270 <         */
5271 <        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5272 <            (ConcurrentHashMapV8<K,V> map,
5273 <             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5274 <            if (reducer == null) throw new NullPointerException();
5275 <            return new ReduceEntriesTask<K,V>
5276 <                (map, null, -1, null, reducer);
5277 <        }
5278 <
5279 <        /**
5280 <         * Returns a task that when invoked, returns the result of
5281 <         * accumulating the given transformation of all entries using the
5282 <         * given reducer to combine values, or null if none.
5283 <         *
5284 <         * @param map the map
5285 <         * @param transformer a function returning the transformation
5286 <         * for an element, or null if there is no transformation (in
5287 <         * which case it is not combined).
5288 <         * @param reducer a commutative associative combining function
5289 <         * @return the task
5290 <         */
5291 <        public static <K,V,U> ForkJoinTask<U> reduceEntries
5292 <            (ConcurrentHashMapV8<K,V> map,
5293 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5294 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5295 <            if (transformer == null || reducer == null)
5296 <                throw new NullPointerException();
5297 <            return new MapReduceEntriesTask<K,V,U>
5298 <                (map, null, -1, null, transformer, reducer);
5299 <        }
5300 <
5301 <        /**
5302 <         * Returns a task that when invoked, returns the result of
5303 <         * accumulating the given transformation of all entries using the
5304 <         * given reducer to combine values, and the given basis as an
5305 <         * identity value.
5306 <         *
5307 <         * @param map the map
5308 <         * @param transformer a function returning the transformation
5309 <         * for an element
5310 <         * @param basis the identity (initial default value) for the reduction
5311 <         * @param reducer a commutative associative combining function
5312 <         * @return the task
5313 <         */
5314 <        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5315 <            (ConcurrentHashMapV8<K,V> map,
5316 <             ObjectToDouble<Map.Entry<K,V>> transformer,
5317 <             double basis,
5318 <             DoubleByDoubleToDouble reducer) {
5319 <            if (transformer == null || reducer == null)
5320 <                throw new NullPointerException();
5321 <            return new MapReduceEntriesToDoubleTask<K,V>
5322 <                (map, null, -1, null, transformer, basis, reducer);
5323 <        }
5324 <
5325 <        /**
5326 <         * Returns a task that when invoked, returns the result of
5327 <         * accumulating the given transformation of all entries using the
5328 <         * given reducer to combine values, and the given basis as an
5329 <         * identity value.
5330 <         *
5331 <         * @param map the map
5332 <         * @param transformer a function returning the transformation
5333 <         * for an element
5334 <         * @param basis the identity (initial default value) for the reduction
5335 <         * @param reducer a commutative associative combining function
5336 <         * @return the task
5337 <         */
5338 <        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5339 <            (ConcurrentHashMapV8<K,V> map,
5340 <             ObjectToLong<Map.Entry<K,V>> transformer,
5341 <             long basis,
5342 <             LongByLongToLong reducer) {
5343 <            if (transformer == null || reducer == null)
5344 <                throw new NullPointerException();
5345 <            return new MapReduceEntriesToLongTask<K,V>
5346 <                (map, null, -1, null, transformer, basis, reducer);
4641 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4642 >        Node<K,V>[] tab;        // same as Traverser
4643 >        Node<K,V> next;
4644 >        int index;
4645 >        int baseIndex;
4646 >        int baseLimit;
4647 >        final int baseSize;
4648 >        int batch;              // split control
4649 >
4650 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4651 >            super(par);
4652 >            this.batch = b;
4653 >            this.index = this.baseIndex = i;
4654 >            if ((this.tab = t) == null)
4655 >                this.baseSize = this.baseLimit = 0;
4656 >            else if (par == null)
4657 >                this.baseSize = this.baseLimit = t.length;
4658 >            else {
4659 >                this.baseLimit = f;
4660 >                this.baseSize = par.baseSize;
4661 >            }
4662          }
4663  
4664          /**
4665 <         * Returns a task that when invoked, returns the result of
5351 <         * accumulating the given transformation of all entries using the
5352 <         * given reducer to combine values, and the given basis as an
5353 <         * identity value.
5354 <         *
5355 <         * @param map the map
5356 <         * @param transformer a function returning the transformation
5357 <         * for an element
5358 <         * @param basis the identity (initial default value) for the reduction
5359 <         * @param reducer a commutative associative combining function
5360 <         * @return the task
4665 >         * Same as Traverser version
4666           */
4667 <        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4668 <            (ConcurrentHashMapV8<K,V> map,
4669 <             ObjectToInt<Map.Entry<K,V>> transformer,
4670 <             int basis,
4671 <             IntByIntToInt reducer) {
4672 <            if (transformer == null || reducer == null)
4673 <                throw new NullPointerException();
4674 <            return new MapReduceEntriesToIntTask<K,V>
4675 <                (map, null, -1, null, transformer, basis, reducer);
4667 >        final Node<K,V> advance() {
4668 >            Node<K,V> e;
4669 >            if ((e = next) != null)
4670 >                e = e.next;
4671 >            for (;;) {
4672 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4673 >                if (e != null)
4674 >                    return next = e;
4675 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4676 >                    (n = t.length) <= (i = index) || i < 0)
4677 >                    return next = null;
4678 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4679 >                    if (e instanceof ForwardingNode) {
4680 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4681 >                        e = null;
4682 >                        continue;
4683 >                    }
4684 >                    else if (e instanceof TreeBin)
4685 >                        e = ((TreeBin<K,V>)e).first;
4686 >                    else
4687 >                        e = null;
4688 >                }
4689 >                if ((index += baseSize) >= n)
4690 >                    index = ++baseIndex;    // visit upper slots if present
4691 >            }
4692          }
4693      }
4694  
5374    // -------------------------------------------------------
5375
4695      /*
4696       * Task classes. Coded in a regular but ugly format/style to
4697       * simplify checks that each variant differs in the right way from
4698 <     * others.
4699 <     */
4700 <
4701 <    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
4702 <        extends Traverser<K,V,Void> {
4703 <        final Action<K> action;
4698 >     * others. The null screenings exist because compilers cannot tell
4699 >     * that we've already null-checked task arguments, so we force
4700 >     * simplest hoisted bypass to help avoid convoluted traps.
4701 >     */
4702 >    @SuppressWarnings("serial")
4703 >    static final class ForEachKeyTask<K,V>
4704 >        extends BulkTask<K,V,Void> {
4705 >        final Action<? super K> action;
4706          ForEachKeyTask
4707 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4708 <             Action<K> action) {
4709 <            super(m, p, b);
4707 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4708 >             Action<? super K> action) {
4709 >            super(p, b, i, f, t);
4710              this.action = action;
4711          }
4712 <        @SuppressWarnings("unchecked") public final void compute() {
4713 <            final Action<K> action;
4714 <            if ((action = this.action) == null)
4715 <                throw new NullPointerException();
4716 <            for (int b; (b = preSplit()) > 0;)
4717 <                new ForEachKeyTask<K,V>(map, this, b, action).fork();
4718 <            while (advance() != null)
4719 <                action.apply((K)nextKey);
4720 <            propagateCompletion();
4712 >        public final void compute() {
4713 >            final Action<? super K> action;
4714 >            if ((action = this.action) != null) {
4715 >                for (int i = baseIndex, f, h; batch > 0 &&
4716 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4717 >                    addToPendingCount(1);
4718 >                    new ForEachKeyTask<K,V>
4719 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4720 >                         action).fork();
4721 >                }
4722 >                for (Node<K,V> p; (p = advance()) != null;)
4723 >                    action.apply(p.key);
4724 >                propagateCompletion();
4725 >            }
4726          }
4727      }
4728  
4729 <    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
4730 <        extends Traverser<K,V,Void> {
4731 <        final Action<V> action;
4729 >    @SuppressWarnings("serial")
4730 >    static final class ForEachValueTask<K,V>
4731 >        extends BulkTask<K,V,Void> {
4732 >        final Action<? super V> action;
4733          ForEachValueTask
4734 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4735 <             Action<V> action) {
4736 <            super(m, p, b);
4734 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4735 >             Action<? super V> action) {
4736 >            super(p, b, i, f, t);
4737              this.action = action;
4738          }
4739 <        @SuppressWarnings("unchecked") public final void compute() {
4740 <            final Action<V> action;
4741 <            if ((action = this.action) == null)
4742 <                throw new NullPointerException();
4743 <            for (int b; (b = preSplit()) > 0;)
4744 <                new ForEachValueTask<K,V>(map, this, b, action).fork();
4745 <            Object v;
4746 <            while ((v = advance()) != null)
4747 <                action.apply((V)v);
4748 <            propagateCompletion();
4739 >        public final void compute() {
4740 >            final Action<? super V> action;
4741 >            if ((action = this.action) != null) {
4742 >                for (int i = baseIndex, f, h; batch > 0 &&
4743 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4744 >                    addToPendingCount(1);
4745 >                    new ForEachValueTask<K,V>
4746 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4747 >                         action).fork();
4748 >                }
4749 >                for (Node<K,V> p; (p = advance()) != null;)
4750 >                    action.apply(p.val);
4751 >                propagateCompletion();
4752 >            }
4753          }
4754      }
4755  
4756 <    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
4757 <        extends Traverser<K,V,Void> {
4758 <        final Action<Entry<K,V>> action;
4756 >    @SuppressWarnings("serial")
4757 >    static final class ForEachEntryTask<K,V>
4758 >        extends BulkTask<K,V,Void> {
4759 >        final Action<? super Entry<K,V>> action;
4760          ForEachEntryTask
4761 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4762 <             Action<Entry<K,V>> action) {
4763 <            super(m, p, b);
4761 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4762 >             Action<? super Entry<K,V>> action) {
4763 >            super(p, b, i, f, t);
4764              this.action = action;
4765          }
4766 <        @SuppressWarnings("unchecked") public final void compute() {
4767 <            final Action<Entry<K,V>> action;
4768 <            if ((action = this.action) == null)
4769 <                throw new NullPointerException();
4770 <            for (int b; (b = preSplit()) > 0;)
4771 <                new ForEachEntryTask<K,V>(map, this, b, action).fork();
4772 <            Object v;
4773 <            while ((v = advance()) != null)
4774 <                action.apply(entryFor((K)nextKey, (V)v));
4775 <            propagateCompletion();
4766 >        public final void compute() {
4767 >            final Action<? super Entry<K,V>> action;
4768 >            if ((action = this.action) != null) {
4769 >                for (int i = baseIndex, f, h; batch > 0 &&
4770 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4771 >                    addToPendingCount(1);
4772 >                    new ForEachEntryTask<K,V>
4773 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4774 >                         action).fork();
4775 >                }
4776 >                for (Node<K,V> p; (p = advance()) != null; )
4777 >                    action.apply(p);
4778 >                propagateCompletion();
4779 >            }
4780          }
4781      }
4782  
4783 <    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
4784 <        extends Traverser<K,V,Void> {
4785 <        final BiAction<K,V> action;
4783 >    @SuppressWarnings("serial")
4784 >    static final class ForEachMappingTask<K,V>
4785 >        extends BulkTask<K,V,Void> {
4786 >        final BiAction<? super K, ? super V> action;
4787          ForEachMappingTask
4788 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4789 <             BiAction<K,V> action) {
4790 <            super(m, p, b);
4788 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4789 >             BiAction<? super K,? super V> action) {
4790 >            super(p, b, i, f, t);
4791              this.action = action;
4792          }
4793 <        @SuppressWarnings("unchecked") public final void compute() {
4794 <            final BiAction<K,V> action;
4795 <            if ((action = this.action) == null)
4796 <                throw new NullPointerException();
4797 <            for (int b; (b = preSplit()) > 0;)
4798 <                new ForEachMappingTask<K,V>(map, this, b, action).fork();
4799 <            Object v;
4800 <            while ((v = advance()) != null)
4801 <                action.apply((K)nextKey, (V)v);
4802 <            propagateCompletion();
4793 >        public final void compute() {
4794 >            final BiAction<? super K, ? super V> action;
4795 >            if ((action = this.action) != null) {
4796 >                for (int i = baseIndex, f, h; batch > 0 &&
4797 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4798 >                    addToPendingCount(1);
4799 >                    new ForEachMappingTask<K,V>
4800 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4801 >                         action).fork();
4802 >                }
4803 >                for (Node<K,V> p; (p = advance()) != null; )
4804 >                    action.apply(p.key, p.val);
4805 >                propagateCompletion();
4806 >            }
4807          }
4808      }
4809  
4810 <    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
4811 <        extends Traverser<K,V,Void> {
4810 >    @SuppressWarnings("serial")
4811 >    static final class ForEachTransformedKeyTask<K,V,U>
4812 >        extends BulkTask<K,V,Void> {
4813          final Fun<? super K, ? extends U> transformer;
4814 <        final Action<U> action;
4814 >        final Action<? super U> action;
4815          ForEachTransformedKeyTask
4816 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4817 <             Fun<? super K, ? extends U> transformer, Action<U> action) {
4818 <            super(m, p, b);
4816 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4817 >             Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4818 >            super(p, b, i, f, t);
4819              this.transformer = transformer; this.action = action;
4820          }
4821 <        @SuppressWarnings("unchecked") public final void compute() {
4821 >        public final void compute() {
4822              final Fun<? super K, ? extends U> transformer;
4823 <            final Action<U> action;
4824 <            if ((transformer = this.transformer) == null ||
4825 <                (action = this.action) == null)
4826 <                throw new NullPointerException();
4827 <            for (int b; (b = preSplit()) > 0;)
4828 <                new ForEachTransformedKeyTask<K,V,U>
4829 <                     (map, this, b, transformer, action).fork();
4830 <            U u;
4831 <            while (advance() != null) {
4832 <                if ((u = transformer.apply((K)nextKey)) != null)
4833 <                    action.apply(u);
4823 >            final Action<? super U> action;
4824 >            if ((transformer = this.transformer) != null &&
4825 >                (action = this.action) != null) {
4826 >                for (int i = baseIndex, f, h; batch > 0 &&
4827 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4828 >                    addToPendingCount(1);
4829 >                    new ForEachTransformedKeyTask<K,V,U>
4830 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4831 >                         transformer, action).fork();
4832 >                }
4833 >                for (Node<K,V> p; (p = advance()) != null; ) {
4834 >                    U u;
4835 >                    if ((u = transformer.apply(p.key)) != null)
4836 >                        action.apply(u);
4837 >                }
4838 >                propagateCompletion();
4839              }
5493            propagateCompletion();
4840          }
4841      }
4842  
4843 <    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
4844 <        extends Traverser<K,V,Void> {
4843 >    @SuppressWarnings("serial")
4844 >    static final class ForEachTransformedValueTask<K,V,U>
4845 >        extends BulkTask<K,V,Void> {
4846          final Fun<? super V, ? extends U> transformer;
4847 <        final Action<U> action;
4847 >        final Action<? super U> action;
4848          ForEachTransformedValueTask
4849 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4850 <             Fun<? super V, ? extends U> transformer, Action<U> action) {
4851 <            super(m, p, b);
4849 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4850 >             Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4851 >            super(p, b, i, f, t);
4852              this.transformer = transformer; this.action = action;
4853          }
4854 <        @SuppressWarnings("unchecked") public final void compute() {
4854 >        public final void compute() {
4855              final Fun<? super V, ? extends U> transformer;
4856 <            final Action<U> action;
4857 <            if ((transformer = this.transformer) == null ||
4858 <                (action = this.action) == null)
4859 <                throw new NullPointerException();
4860 <            for (int b; (b = preSplit()) > 0;)
4861 <                new ForEachTransformedValueTask<K,V,U>
4862 <                    (map, this, b, transformer, action).fork();
4863 <            Object v; U u;
4864 <            while ((v = advance()) != null) {
4865 <                if ((u = transformer.apply((V)v)) != null)
4866 <                    action.apply(u);
4856 >            final Action<? super U> action;
4857 >            if ((transformer = this.transformer) != null &&
4858 >                (action = this.action) != null) {
4859 >                for (int i = baseIndex, f, h; batch > 0 &&
4860 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4861 >                    addToPendingCount(1);
4862 >                    new ForEachTransformedValueTask<K,V,U>
4863 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4864 >                         transformer, action).fork();
4865 >                }
4866 >                for (Node<K,V> p; (p = advance()) != null; ) {
4867 >                    U u;
4868 >                    if ((u = transformer.apply(p.val)) != null)
4869 >                        action.apply(u);
4870 >                }
4871 >                propagateCompletion();
4872              }
5521            propagateCompletion();
4873          }
4874      }
4875  
4876 <    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
4877 <        extends Traverser<K,V,Void> {
4876 >    @SuppressWarnings("serial")
4877 >    static final class ForEachTransformedEntryTask<K,V,U>
4878 >        extends BulkTask<K,V,Void> {
4879          final Fun<Map.Entry<K,V>, ? extends U> transformer;
4880 <        final Action<U> action;
4880 >        final Action<? super U> action;
4881          ForEachTransformedEntryTask
4882 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4883 <             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
4884 <            super(m, p, b);
4882 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4883 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4884 >            super(p, b, i, f, t);
4885              this.transformer = transformer; this.action = action;
4886          }
4887 <        @SuppressWarnings("unchecked") public final void compute() {
4887 >        public final void compute() {
4888              final Fun<Map.Entry<K,V>, ? extends U> transformer;
4889 <            final Action<U> action;
4890 <            if ((transformer = this.transformer) == null ||
4891 <                (action = this.action) == null)
4892 <                throw new NullPointerException();
4893 <            for (int b; (b = preSplit()) > 0;)
4894 <                new ForEachTransformedEntryTask<K,V,U>
4895 <                    (map, this, b, transformer, action).fork();
4896 <            Object v; U u;
4897 <            while ((v = advance()) != null) {
4898 <                if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
4899 <                    action.apply(u);
4889 >            final Action<? super U> action;
4890 >            if ((transformer = this.transformer) != null &&
4891 >                (action = this.action) != null) {
4892 >                for (int i = baseIndex, f, h; batch > 0 &&
4893 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4894 >                    addToPendingCount(1);
4895 >                    new ForEachTransformedEntryTask<K,V,U>
4896 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4897 >                         transformer, action).fork();
4898 >                }
4899 >                for (Node<K,V> p; (p = advance()) != null; ) {
4900 >                    U u;
4901 >                    if ((u = transformer.apply(p)) != null)
4902 >                        action.apply(u);
4903 >                }
4904 >                propagateCompletion();
4905              }
5549            propagateCompletion();
4906          }
4907      }
4908  
4909 <    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
4910 <        extends Traverser<K,V,Void> {
4909 >    @SuppressWarnings("serial")
4910 >    static final class ForEachTransformedMappingTask<K,V,U>
4911 >        extends BulkTask<K,V,Void> {
4912          final BiFun<? super K, ? super V, ? extends U> transformer;
4913 <        final Action<U> action;
4913 >        final Action<? super U> action;
4914          ForEachTransformedMappingTask
4915 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4915 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4916               BiFun<? super K, ? super V, ? extends U> transformer,
4917 <             Action<U> action) {
4918 <            super(m, p, b);
4917 >             Action<? super U> action) {
4918 >            super(p, b, i, f, t);
4919              this.transformer = transformer; this.action = action;
4920          }
4921 <        @SuppressWarnings("unchecked") public final void compute() {
4921 >        public final void compute() {
4922              final BiFun<? super K, ? super V, ? extends U> transformer;
4923 <            final Action<U> action;
4924 <            if ((transformer = this.transformer) == null ||
4925 <                (action = this.action) == null)
4926 <                throw new NullPointerException();
4927 <            for (int b; (b = preSplit()) > 0;)
4928 <                new ForEachTransformedMappingTask<K,V,U>
4929 <                    (map, this, b, transformer, action).fork();
4930 <            Object v; U u;
4931 <            while ((v = advance()) != null) {
4932 <                if ((u = transformer.apply((K)nextKey, (V)v)) != null)
4933 <                    action.apply(u);
4923 >            final Action<? super U> action;
4924 >            if ((transformer = this.transformer) != null &&
4925 >                (action = this.action) != null) {
4926 >                for (int i = baseIndex, f, h; batch > 0 &&
4927 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4928 >                    addToPendingCount(1);
4929 >                    new ForEachTransformedMappingTask<K,V,U>
4930 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4931 >                         transformer, action).fork();
4932 >                }
4933 >                for (Node<K,V> p; (p = advance()) != null; ) {
4934 >                    U u;
4935 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4936 >                        action.apply(u);
4937 >                }
4938 >                propagateCompletion();
4939              }
5578            propagateCompletion();
4940          }
4941      }
4942  
4943 <    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
4944 <        extends Traverser<K,V,U> {
4943 >    @SuppressWarnings("serial")
4944 >    static final class SearchKeysTask<K,V,U>
4945 >        extends BulkTask<K,V,U> {
4946          final Fun<? super K, ? extends U> searchFunction;
4947          final AtomicReference<U> result;
4948          SearchKeysTask
4949 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4949 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4950               Fun<? super K, ? extends U> searchFunction,
4951               AtomicReference<U> result) {
4952 <            super(m, p, b);
4952 >            super(p, b, i, f, t);
4953              this.searchFunction = searchFunction; this.result = result;
4954          }
4955          public final U getRawResult() { return result.get(); }
4956 <        @SuppressWarnings("unchecked") public final void compute() {
4956 >        public final void compute() {
4957              final Fun<? super K, ? extends U> searchFunction;
4958              final AtomicReference<U> result;
4959 <            if ((searchFunction = this.searchFunction) == null ||
4960 <                (result = this.result) == null)
4961 <                throw new NullPointerException();
4962 <            for (int b;;) {
4963 <                if (result.get() != null)
4964 <                    return;
4965 <                if ((b = preSplit()) <= 0)
4966 <                    break;
4967 <                new SearchKeysTask<K,V,U>
4968 <                    (map, this, b, searchFunction, result).fork();
4969 <            }
4970 <            while (result.get() == null) {
4971 <                U u;
4972 <                if (advance() == null) {
4973 <                    propagateCompletion();
4974 <                    break;
4975 <                }
4976 <                if ((u = searchFunction.apply((K)nextKey)) != null) {
4977 <                    if (result.compareAndSet(null, u))
4978 <                        quietlyCompleteRoot();
4979 <                    break;
4959 >            if ((searchFunction = this.searchFunction) != null &&
4960 >                (result = this.result) != null) {
4961 >                for (int i = baseIndex, f, h; batch > 0 &&
4962 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4963 >                    if (result.get() != null)
4964 >                        return;
4965 >                    addToPendingCount(1);
4966 >                    new SearchKeysTask<K,V,U>
4967 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4968 >                         searchFunction, result).fork();
4969 >                }
4970 >                while (result.get() == null) {
4971 >                    U u;
4972 >                    Node<K,V> p;
4973 >                    if ((p = advance()) == null) {
4974 >                        propagateCompletion();
4975 >                        break;
4976 >                    }
4977 >                    if ((u = searchFunction.apply(p.key)) != null) {
4978 >                        if (result.compareAndSet(null, u))
4979 >                            quietlyCompleteRoot();
4980 >                        break;
4981 >                    }
4982                  }
4983              }
4984          }
4985      }
4986  
4987 <    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
4988 <        extends Traverser<K,V,U> {
4987 >    @SuppressWarnings("serial")
4988 >    static final class SearchValuesTask<K,V,U>
4989 >        extends BulkTask<K,V,U> {
4990          final Fun<? super V, ? extends U> searchFunction;
4991          final AtomicReference<U> result;
4992          SearchValuesTask
4993 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4993 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4994               Fun<? super V, ? extends U> searchFunction,
4995               AtomicReference<U> result) {
4996 <            super(m, p, b);
4996 >            super(p, b, i, f, t);
4997              this.searchFunction = searchFunction; this.result = result;
4998          }
4999          public final U getRawResult() { return result.get(); }
5000 <        @SuppressWarnings("unchecked") public final void compute() {
5000 >        public final void compute() {
5001              final Fun<? super V, ? extends U> searchFunction;
5002              final AtomicReference<U> result;
5003 <            if ((searchFunction = this.searchFunction) == null ||
5004 <                (result = this.result) == null)
5005 <                throw new NullPointerException();
5006 <            for (int b;;) {
5007 <                if (result.get() != null)
5008 <                    return;
5009 <                if ((b = preSplit()) <= 0)
5010 <                    break;
5011 <                new SearchValuesTask<K,V,U>
5012 <                    (map, this, b, searchFunction, result).fork();
5013 <            }
5014 <            while (result.get() == null) {
5015 <                Object v; U u;
5016 <                if ((v = advance()) == null) {
5017 <                    propagateCompletion();
5018 <                    break;
5019 <                }
5020 <                if ((u = searchFunction.apply((V)v)) != null) {
5021 <                    if (result.compareAndSet(null, u))
5022 <                        quietlyCompleteRoot();
5023 <                    break;
5003 >            if ((searchFunction = this.searchFunction) != null &&
5004 >                (result = this.result) != null) {
5005 >                for (int i = baseIndex, f, h; batch > 0 &&
5006 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5007 >                    if (result.get() != null)
5008 >                        return;
5009 >                    addToPendingCount(1);
5010 >                    new SearchValuesTask<K,V,U>
5011 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5012 >                         searchFunction, result).fork();
5013 >                }
5014 >                while (result.get() == null) {
5015 >                    U u;
5016 >                    Node<K,V> p;
5017 >                    if ((p = advance()) == null) {
5018 >                        propagateCompletion();
5019 >                        break;
5020 >                    }
5021 >                    if ((u = searchFunction.apply(p.val)) != null) {
5022 >                        if (result.compareAndSet(null, u))
5023 >                            quietlyCompleteRoot();
5024 >                        break;
5025 >                    }
5026                  }
5027              }
5028          }
5029      }
5030  
5031 <    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5032 <        extends Traverser<K,V,U> {
5031 >    @SuppressWarnings("serial")
5032 >    static final class SearchEntriesTask<K,V,U>
5033 >        extends BulkTask<K,V,U> {
5034          final Fun<Entry<K,V>, ? extends U> searchFunction;
5035          final AtomicReference<U> result;
5036          SearchEntriesTask
5037 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5037 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5038               Fun<Entry<K,V>, ? extends U> searchFunction,
5039               AtomicReference<U> result) {
5040 <            super(m, p, b);
5040 >            super(p, b, i, f, t);
5041              this.searchFunction = searchFunction; this.result = result;
5042          }
5043          public final U getRawResult() { return result.get(); }
5044 <        @SuppressWarnings("unchecked") public final void compute() {
5044 >        public final void compute() {
5045              final Fun<Entry<K,V>, ? extends U> searchFunction;
5046              final AtomicReference<U> result;
5047 <            if ((searchFunction = this.searchFunction) == null ||
5048 <                (result = this.result) == null)
5049 <                throw new NullPointerException();
5050 <            for (int b;;) {
5051 <                if (result.get() != null)
5052 <                    return;
5053 <                if ((b = preSplit()) <= 0)
5054 <                    break;
5055 <                new SearchEntriesTask<K,V,U>
5056 <                    (map, this, b, searchFunction, result).fork();
5057 <            }
5058 <            while (result.get() == null) {
5059 <                Object v; U u;
5060 <                if ((v = advance()) == null) {
5061 <                    propagateCompletion();
5062 <                    break;
5063 <                }
5064 <                if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5065 <                    if (result.compareAndSet(null, u))
5066 <                        quietlyCompleteRoot();
5067 <                    return;
5047 >            if ((searchFunction = this.searchFunction) != null &&
5048 >                (result = this.result) != null) {
5049 >                for (int i = baseIndex, f, h; batch > 0 &&
5050 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5051 >                    if (result.get() != null)
5052 >                        return;
5053 >                    addToPendingCount(1);
5054 >                    new SearchEntriesTask<K,V,U>
5055 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5056 >                         searchFunction, result).fork();
5057 >                }
5058 >                while (result.get() == null) {
5059 >                    U u;
5060 >                    Node<K,V> p;
5061 >                    if ((p = advance()) == null) {
5062 >                        propagateCompletion();
5063 >                        break;
5064 >                    }
5065 >                    if ((u = searchFunction.apply(p)) != null) {
5066 >                        if (result.compareAndSet(null, u))
5067 >                            quietlyCompleteRoot();
5068 >                        return;
5069 >                    }
5070                  }
5071              }
5072          }
5073      }
5074  
5075 <    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5076 <        extends Traverser<K,V,U> {
5075 >    @SuppressWarnings("serial")
5076 >    static final class SearchMappingsTask<K,V,U>
5077 >        extends BulkTask<K,V,U> {
5078          final BiFun<? super K, ? super V, ? extends U> searchFunction;
5079          final AtomicReference<U> result;
5080          SearchMappingsTask
5081 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5081 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5082               BiFun<? super K, ? super V, ? extends U> searchFunction,
5083               AtomicReference<U> result) {
5084 <            super(m, p, b);
5084 >            super(p, b, i, f, t);
5085              this.searchFunction = searchFunction; this.result = result;
5086          }
5087          public final U getRawResult() { return result.get(); }
5088 <        @SuppressWarnings("unchecked") public final void compute() {
5088 >        public final void compute() {
5089              final BiFun<? super K, ? super V, ? extends U> searchFunction;
5090              final AtomicReference<U> result;
5091 <            if ((searchFunction = this.searchFunction) == null ||
5092 <                (result = this.result) == null)
5093 <                throw new NullPointerException();
5094 <            for (int b;;) {
5095 <                if (result.get() != null)
5096 <                    return;
5097 <                if ((b = preSplit()) <= 0)
5098 <                    break;
5099 <                new SearchMappingsTask<K,V,U>
5100 <                    (map, this, b, searchFunction, result).fork();
5101 <            }
5102 <            while (result.get() == null) {
5103 <                Object v; U u;
5104 <                if ((v = advance()) == null) {
5105 <                    propagateCompletion();
5106 <                    break;
5107 <                }
5108 <                if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5109 <                    if (result.compareAndSet(null, u))
5110 <                        quietlyCompleteRoot();
5111 <                    break;
5091 >            if ((searchFunction = this.searchFunction) != null &&
5092 >                (result = this.result) != null) {
5093 >                for (int i = baseIndex, f, h; batch > 0 &&
5094 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5095 >                    if (result.get() != null)
5096 >                        return;
5097 >                    addToPendingCount(1);
5098 >                    new SearchMappingsTask<K,V,U>
5099 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5100 >                         searchFunction, result).fork();
5101 >                }
5102 >                while (result.get() == null) {
5103 >                    U u;
5104 >                    Node<K,V> p;
5105 >                    if ((p = advance()) == null) {
5106 >                        propagateCompletion();
5107 >                        break;
5108 >                    }
5109 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5110 >                        if (result.compareAndSet(null, u))
5111 >                            quietlyCompleteRoot();
5112 >                        break;
5113 >                    }
5114                  }
5115              }
5116          }
5117      }
5118  
5119 <    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5120 <        extends Traverser<K,V,K> {
5119 >    @SuppressWarnings("serial")
5120 >    static final class ReduceKeysTask<K,V>
5121 >        extends BulkTask<K,V,K> {
5122          final BiFun<? super K, ? super K, ? extends K> reducer;
5123          K result;
5124          ReduceKeysTask<K,V> rights, nextRight;
5125          ReduceKeysTask
5126 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5126 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5127               ReduceKeysTask<K,V> nextRight,
5128               BiFun<? super K, ? super K, ? extends K> reducer) {
5129 <            super(m, p, b); this.nextRight = nextRight;
5129 >            super(p, b, i, f, t); this.nextRight = nextRight;
5130              this.reducer = reducer;
5131          }
5132          public final K getRawResult() { return result; }
5133 <        @SuppressWarnings("unchecked") public final void compute() {
5134 <            final BiFun<? super K, ? super K, ? extends K> reducer =
5135 <                this.reducer;
5136 <            if (reducer == null)
5137 <                throw new NullPointerException();
5138 <            for (int b; (b = preSplit()) > 0;)
5139 <                (rights = new ReduceKeysTask<K,V>
5140 <                 (map, this, b, rights, reducer)).fork();
5141 <            K r = null;
5142 <            while (advance() != null) {
5143 <                K u = (K)nextKey;
5144 <                r = (r == null) ? u : reducer.apply(r, u);
5145 <            }
5146 <            result = r;
5147 <            CountedCompleter<?> c;
5148 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5149 <                ReduceKeysTask<K,V>
5150 <                    t = (ReduceKeysTask<K,V>)c,
5151 <                    s = t.rights;
5152 <                while (s != null) {
5153 <                    K tr, sr;
5154 <                    if ((sr = s.result) != null)
5155 <                        t.result = (((tr = t.result) == null) ? sr :
5156 <                                    reducer.apply(tr, sr));
5157 <                    s = t.rights = s.nextRight;
5133 >        public final void compute() {
5134 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5135 >            if ((reducer = this.reducer) != null) {
5136 >                for (int i = baseIndex, f, h; batch > 0 &&
5137 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5138 >                    addToPendingCount(1);
5139 >                    (rights = new ReduceKeysTask<K,V>
5140 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5141 >                      rights, reducer)).fork();
5142 >                }
5143 >                K r = null;
5144 >                for (Node<K,V> p; (p = advance()) != null; ) {
5145 >                    K u = p.key;
5146 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5147 >                }
5148 >                result = r;
5149 >                CountedCompleter<?> c;
5150 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5151 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5152 >                        t = (ReduceKeysTask<K,V>)c,
5153 >                        s = t.rights;
5154 >                    while (s != null) {
5155 >                        K tr, sr;
5156 >                        if ((sr = s.result) != null)
5157 >                            t.result = (((tr = t.result) == null) ? sr :
5158 >                                        reducer.apply(tr, sr));
5159 >                        s = t.rights = s.nextRight;
5160 >                    }
5161                  }
5162              }
5163          }
5164      }
5165  
5166 <    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5167 <        extends Traverser<K,V,V> {
5166 >    @SuppressWarnings("serial")
5167 >    static final class ReduceValuesTask<K,V>
5168 >        extends BulkTask<K,V,V> {
5169          final BiFun<? super V, ? super V, ? extends V> reducer;
5170          V result;
5171          ReduceValuesTask<K,V> rights, nextRight;
5172          ReduceValuesTask
5173 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5173 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5174               ReduceValuesTask<K,V> nextRight,
5175               BiFun<? super V, ? super V, ? extends V> reducer) {
5176 <            super(m, p, b); this.nextRight = nextRight;
5176 >            super(p, b, i, f, t); this.nextRight = nextRight;
5177              this.reducer = reducer;
5178          }
5179          public final V getRawResult() { return result; }
5180 <        @SuppressWarnings("unchecked") public final void compute() {
5181 <            final BiFun<? super V, ? super V, ? extends V> reducer =
5182 <                this.reducer;
5183 <            if (reducer == null)
5184 <                throw new NullPointerException();
5185 <            for (int b; (b = preSplit()) > 0;)
5186 <                (rights = new ReduceValuesTask<K,V>
5187 <                 (map, this, b, rights, reducer)).fork();
5188 <            V r = null;
5189 <            Object v;
5190 <            while ((v = advance()) != null) {
5191 <                V u = (V)v;
5192 <                r = (r == null) ? u : reducer.apply(r, u);
5193 <            }
5194 <            result = r;
5195 <            CountedCompleter<?> c;
5196 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5197 <                ReduceValuesTask<K,V>
5198 <                    t = (ReduceValuesTask<K,V>)c,
5199 <                    s = t.rights;
5200 <                while (s != null) {
5201 <                    V tr, sr;
5202 <                    if ((sr = s.result) != null)
5203 <                        t.result = (((tr = t.result) == null) ? sr :
5204 <                                    reducer.apply(tr, sr));
5205 <                    s = t.rights = s.nextRight;
5180 >        public final void compute() {
5181 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5182 >            if ((reducer = this.reducer) != null) {
5183 >                for (int i = baseIndex, f, h; batch > 0 &&
5184 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5185 >                    addToPendingCount(1);
5186 >                    (rights = new ReduceValuesTask<K,V>
5187 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5188 >                      rights, reducer)).fork();
5189 >                }
5190 >                V r = null;
5191 >                for (Node<K,V> p; (p = advance()) != null; ) {
5192 >                    V v = p.val;
5193 >                    r = (r == null) ? v : reducer.apply(r, v);
5194 >                }
5195 >                result = r;
5196 >                CountedCompleter<?> c;
5197 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5198 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5199 >                        t = (ReduceValuesTask<K,V>)c,
5200 >                        s = t.rights;
5201 >                    while (s != null) {
5202 >                        V tr, sr;
5203 >                        if ((sr = s.result) != null)
5204 >                            t.result = (((tr = t.result) == null) ? sr :
5205 >                                        reducer.apply(tr, sr));
5206 >                        s = t.rights = s.nextRight;
5207 >                    }
5208                  }
5209              }
5210          }
5211      }
5212  
5213 <    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5214 <        extends Traverser<K,V,Map.Entry<K,V>> {
5213 >    @SuppressWarnings("serial")
5214 >    static final class ReduceEntriesTask<K,V>
5215 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5216          final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5217          Map.Entry<K,V> result;
5218          ReduceEntriesTask<K,V> rights, nextRight;
5219          ReduceEntriesTask
5220 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5220 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5221               ReduceEntriesTask<K,V> nextRight,
5222               BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5223 <            super(m, p, b); this.nextRight = nextRight;
5223 >            super(p, b, i, f, t); this.nextRight = nextRight;
5224              this.reducer = reducer;
5225          }
5226          public final Map.Entry<K,V> getRawResult() { return result; }
5227 <        @SuppressWarnings("unchecked") public final void compute() {
5228 <            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5229 <                this.reducer;
5230 <            if (reducer == null)
5231 <                throw new NullPointerException();
5232 <            for (int b; (b = preSplit()) > 0;)
5233 <                (rights = new ReduceEntriesTask<K,V>
5234 <                 (map, this, b, rights, reducer)).fork();
5235 <            Map.Entry<K,V> r = null;
5236 <            Object v;
5237 <            while ((v = advance()) != null) {
5238 <                Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5239 <                r = (r == null) ? u : reducer.apply(r, u);
5240 <            }
5241 <            result = r;
5242 <            CountedCompleter<?> c;
5243 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5244 <                ReduceEntriesTask<K,V>
5245 <                    t = (ReduceEntriesTask<K,V>)c,
5246 <                    s = t.rights;
5247 <                while (s != null) {
5248 <                    Map.Entry<K,V> tr, sr;
5249 <                    if ((sr = s.result) != null)
5250 <                        t.result = (((tr = t.result) == null) ? sr :
5251 <                                    reducer.apply(tr, sr));
5252 <                    s = t.rights = s.nextRight;
5227 >        public final void compute() {
5228 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5229 >            if ((reducer = this.reducer) != null) {
5230 >                for (int i = baseIndex, f, h; batch > 0 &&
5231 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5232 >                    addToPendingCount(1);
5233 >                    (rights = new ReduceEntriesTask<K,V>
5234 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5235 >                      rights, reducer)).fork();
5236 >                }
5237 >                Map.Entry<K,V> r = null;
5238 >                for (Node<K,V> p; (p = advance()) != null; )
5239 >                    r = (r == null) ? p : reducer.apply(r, p);
5240 >                result = r;
5241 >                CountedCompleter<?> c;
5242 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5243 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5244 >                        t = (ReduceEntriesTask<K,V>)c,
5245 >                        s = t.rights;
5246 >                    while (s != null) {
5247 >                        Map.Entry<K,V> tr, sr;
5248 >                        if ((sr = s.result) != null)
5249 >                            t.result = (((tr = t.result) == null) ? sr :
5250 >                                        reducer.apply(tr, sr));
5251 >                        s = t.rights = s.nextRight;
5252 >                    }
5253                  }
5254              }
5255          }
5256      }
5257  
5258 <    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5259 <        extends Traverser<K,V,U> {
5258 >    @SuppressWarnings("serial")
5259 >    static final class MapReduceKeysTask<K,V,U>
5260 >        extends BulkTask<K,V,U> {
5261          final Fun<? super K, ? extends U> transformer;
5262          final BiFun<? super U, ? super U, ? extends U> reducer;
5263          U result;
5264          MapReduceKeysTask<K,V,U> rights, nextRight;
5265          MapReduceKeysTask
5266 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5266 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5267               MapReduceKeysTask<K,V,U> nextRight,
5268               Fun<? super K, ? extends U> transformer,
5269               BiFun<? super U, ? super U, ? extends U> reducer) {
5270 <            super(m, p, b); this.nextRight = nextRight;
5270 >            super(p, b, i, f, t); this.nextRight = nextRight;
5271              this.transformer = transformer;
5272              this.reducer = reducer;
5273          }
5274          public final U getRawResult() { return result; }
5275 <        @SuppressWarnings("unchecked") public final void compute() {
5276 <            final Fun<? super K, ? extends U> transformer =
5277 <                this.transformer;
5278 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5279 <                this.reducer;
5280 <            if (transformer == null || reducer == null)
5281 <                throw new NullPointerException();
5282 <            for (int b; (b = preSplit()) > 0;)
5283 <                (rights = new MapReduceKeysTask<K,V,U>
5284 <                 (map, this, b, rights, transformer, reducer)).fork();
5285 <            U r = null, u;
5286 <            while (advance() != null) {
5287 <                if ((u = transformer.apply((K)nextKey)) != null)
5288 <                    r = (r == null) ? u : reducer.apply(r, u);
5289 <            }
5290 <            result = r;
5291 <            CountedCompleter<?> c;
5292 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5293 <                MapReduceKeysTask<K,V,U>
5294 <                    t = (MapReduceKeysTask<K,V,U>)c,
5295 <                    s = t.rights;
5296 <                while (s != null) {
5297 <                    U tr, sr;
5298 <                    if ((sr = s.result) != null)
5299 <                        t.result = (((tr = t.result) == null) ? sr :
5300 <                                    reducer.apply(tr, sr));
5301 <                    s = t.rights = s.nextRight;
5275 >        public final void compute() {
5276 >            final Fun<? super K, ? extends U> transformer;
5277 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5278 >            if ((transformer = this.transformer) != null &&
5279 >                (reducer = this.reducer) != null) {
5280 >                for (int i = baseIndex, f, h; batch > 0 &&
5281 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5282 >                    addToPendingCount(1);
5283 >                    (rights = new MapReduceKeysTask<K,V,U>
5284 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5285 >                      rights, transformer, reducer)).fork();
5286 >                }
5287 >                U r = null;
5288 >                for (Node<K,V> p; (p = advance()) != null; ) {
5289 >                    U u;
5290 >                    if ((u = transformer.apply(p.key)) != null)
5291 >                        r = (r == null) ? u : reducer.apply(r, u);
5292 >                }
5293 >                result = r;
5294 >                CountedCompleter<?> c;
5295 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5296 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5297 >                        t = (MapReduceKeysTask<K,V,U>)c,
5298 >                        s = t.rights;
5299 >                    while (s != null) {
5300 >                        U tr, sr;
5301 >                        if ((sr = s.result) != null)
5302 >                            t.result = (((tr = t.result) == null) ? sr :
5303 >                                        reducer.apply(tr, sr));
5304 >                        s = t.rights = s.nextRight;
5305 >                    }
5306                  }
5307              }
5308          }
5309      }
5310  
5311 <    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5312 <        extends Traverser<K,V,U> {
5311 >    @SuppressWarnings("serial")
5312 >    static final class MapReduceValuesTask<K,V,U>
5313 >        extends BulkTask<K,V,U> {
5314          final Fun<? super V, ? extends U> transformer;
5315          final BiFun<? super U, ? super U, ? extends U> reducer;
5316          U result;
5317          MapReduceValuesTask<K,V,U> rights, nextRight;
5318          MapReduceValuesTask
5319 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5319 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5320               MapReduceValuesTask<K,V,U> nextRight,
5321               Fun<? super V, ? extends U> transformer,
5322               BiFun<? super U, ? super U, ? extends U> reducer) {
5323 <            super(m, p, b); this.nextRight = nextRight;
5323 >            super(p, b, i, f, t); this.nextRight = nextRight;
5324              this.transformer = transformer;
5325              this.reducer = reducer;
5326          }
5327          public final U getRawResult() { return result; }
5328 <        @SuppressWarnings("unchecked") public final void compute() {
5329 <            final Fun<? super V, ? extends U> transformer =
5330 <                this.transformer;
5331 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5332 <                this.reducer;
5333 <            if (transformer == null || reducer == null)
5334 <                throw new NullPointerException();
5335 <            for (int b; (b = preSplit()) > 0;)
5336 <                (rights = new MapReduceValuesTask<K,V,U>
5337 <                 (map, this, b, rights, transformer, reducer)).fork();
5338 <            U r = null, u;
5339 <            Object v;
5340 <            while ((v = advance()) != null) {
5341 <                if ((u = transformer.apply((V)v)) != null)
5342 <                    r = (r == null) ? u : reducer.apply(r, u);
5343 <            }
5344 <            result = r;
5345 <            CountedCompleter<?> c;
5346 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5347 <                MapReduceValuesTask<K,V,U>
5348 <                    t = (MapReduceValuesTask<K,V,U>)c,
5349 <                    s = t.rights;
5350 <                while (s != null) {
5351 <                    U tr, sr;
5352 <                    if ((sr = s.result) != null)
5353 <                        t.result = (((tr = t.result) == null) ? sr :
5354 <                                    reducer.apply(tr, sr));
5355 <                    s = t.rights = s.nextRight;
5328 >        public final void compute() {
5329 >            final Fun<? super V, ? extends U> transformer;
5330 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5331 >            if ((transformer = this.transformer) != null &&
5332 >                (reducer = this.reducer) != null) {
5333 >                for (int i = baseIndex, f, h; batch > 0 &&
5334 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5335 >                    addToPendingCount(1);
5336 >                    (rights = new MapReduceValuesTask<K,V,U>
5337 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5338 >                      rights, transformer, reducer)).fork();
5339 >                }
5340 >                U r = null;
5341 >                for (Node<K,V> p; (p = advance()) != null; ) {
5342 >                    U u;
5343 >                    if ((u = transformer.apply(p.val)) != null)
5344 >                        r = (r == null) ? u : reducer.apply(r, u);
5345 >                }
5346 >                result = r;
5347 >                CountedCompleter<?> c;
5348 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5349 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5350 >                        t = (MapReduceValuesTask<K,V,U>)c,
5351 >                        s = t.rights;
5352 >                    while (s != null) {
5353 >                        U tr, sr;
5354 >                        if ((sr = s.result) != null)
5355 >                            t.result = (((tr = t.result) == null) ? sr :
5356 >                                        reducer.apply(tr, sr));
5357 >                        s = t.rights = s.nextRight;
5358 >                    }
5359                  }
5360              }
5361          }
5362      }
5363  
5364 <    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5365 <        extends Traverser<K,V,U> {
5364 >    @SuppressWarnings("serial")
5365 >    static final class MapReduceEntriesTask<K,V,U>
5366 >        extends BulkTask<K,V,U> {
5367          final Fun<Map.Entry<K,V>, ? extends U> transformer;
5368          final BiFun<? super U, ? super U, ? extends U> reducer;
5369          U result;
5370          MapReduceEntriesTask<K,V,U> rights, nextRight;
5371          MapReduceEntriesTask
5372 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5372 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5373               MapReduceEntriesTask<K,V,U> nextRight,
5374               Fun<Map.Entry<K,V>, ? extends U> transformer,
5375               BiFun<? super U, ? super U, ? extends U> reducer) {
5376 <            super(m, p, b); this.nextRight = nextRight;
5376 >            super(p, b, i, f, t); this.nextRight = nextRight;
5377              this.transformer = transformer;
5378              this.reducer = reducer;
5379          }
5380          public final U getRawResult() { return result; }
5381 <        @SuppressWarnings("unchecked") public final void compute() {
5382 <            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5383 <                this.transformer;
5384 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5385 <                this.reducer;
5386 <            if (transformer == null || reducer == null)
5387 <                throw new NullPointerException();
5388 <            for (int b; (b = preSplit()) > 0;)
5389 <                (rights = new MapReduceEntriesTask<K,V,U>
5390 <                 (map, this, b, rights, transformer, reducer)).fork();
5391 <            U r = null, u;
5392 <            Object v;
5393 <            while ((v = advance()) != null) {
5394 <                if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5395 <                    r = (r == null) ? u : reducer.apply(r, u);
5396 <            }
5397 <            result = r;
5398 <            CountedCompleter<?> c;
5399 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5400 <                MapReduceEntriesTask<K,V,U>
5401 <                    t = (MapReduceEntriesTask<K,V,U>)c,
5402 <                    s = t.rights;
5403 <                while (s != null) {
5404 <                    U tr, sr;
5405 <                    if ((sr = s.result) != null)
5406 <                        t.result = (((tr = t.result) == null) ? sr :
5407 <                                    reducer.apply(tr, sr));
5408 <                    s = t.rights = s.nextRight;
5381 >        public final void compute() {
5382 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5383 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5384 >            if ((transformer = this.transformer) != null &&
5385 >                (reducer = this.reducer) != null) {
5386 >                for (int i = baseIndex, f, h; batch > 0 &&
5387 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5388 >                    addToPendingCount(1);
5389 >                    (rights = new MapReduceEntriesTask<K,V,U>
5390 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5391 >                      rights, transformer, reducer)).fork();
5392 >                }
5393 >                U r = null;
5394 >                for (Node<K,V> p; (p = advance()) != null; ) {
5395 >                    U u;
5396 >                    if ((u = transformer.apply(p)) != null)
5397 >                        r = (r == null) ? u : reducer.apply(r, u);
5398 >                }
5399 >                result = r;
5400 >                CountedCompleter<?> c;
5401 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5402 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5403 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5404 >                        s = t.rights;
5405 >                    while (s != null) {
5406 >                        U tr, sr;
5407 >                        if ((sr = s.result) != null)
5408 >                            t.result = (((tr = t.result) == null) ? sr :
5409 >                                        reducer.apply(tr, sr));
5410 >                        s = t.rights = s.nextRight;
5411 >                    }
5412                  }
5413              }
5414          }
5415      }
5416  
5417 <    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5418 <        extends Traverser<K,V,U> {
5417 >    @SuppressWarnings("serial")
5418 >    static final class MapReduceMappingsTask<K,V,U>
5419 >        extends BulkTask<K,V,U> {
5420          final BiFun<? super K, ? super V, ? extends U> transformer;
5421          final BiFun<? super U, ? super U, ? extends U> reducer;
5422          U result;
5423          MapReduceMappingsTask<K,V,U> rights, nextRight;
5424          MapReduceMappingsTask
5425 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5425 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5426               MapReduceMappingsTask<K,V,U> nextRight,
5427               BiFun<? super K, ? super V, ? extends U> transformer,
5428               BiFun<? super U, ? super U, ? extends U> reducer) {
5429 <            super(m, p, b); this.nextRight = nextRight;
5429 >            super(p, b, i, f, t); this.nextRight = nextRight;
5430              this.transformer = transformer;
5431              this.reducer = reducer;
5432          }
5433          public final U getRawResult() { return result; }
5434 <        @SuppressWarnings("unchecked") public final void compute() {
5435 <            final BiFun<? super K, ? super V, ? extends U> transformer =
5436 <                this.transformer;
5437 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5438 <                this.reducer;
5439 <            if (transformer == null || reducer == null)
5440 <                throw new NullPointerException();
5441 <            for (int b; (b = preSplit()) > 0;)
5442 <                (rights = new MapReduceMappingsTask<K,V,U>
5443 <                 (map, this, b, rights, transformer, reducer)).fork();
5444 <            U r = null, u;
5445 <            Object v;
5446 <            while ((v = advance()) != null) {
5447 <                if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5448 <                    r = (r == null) ? u : reducer.apply(r, u);
5449 <            }
5450 <            result = r;
5451 <            CountedCompleter<?> c;
5452 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5453 <                MapReduceMappingsTask<K,V,U>
5454 <                    t = (MapReduceMappingsTask<K,V,U>)c,
5455 <                    s = t.rights;
5456 <                while (s != null) {
5457 <                    U tr, sr;
5458 <                    if ((sr = s.result) != null)
5459 <                        t.result = (((tr = t.result) == null) ? sr :
5460 <                                    reducer.apply(tr, sr));
5461 <                    s = t.rights = s.nextRight;
5434 >        public final void compute() {
5435 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5436 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5437 >            if ((transformer = this.transformer) != null &&
5438 >                (reducer = this.reducer) != null) {
5439 >                for (int i = baseIndex, f, h; batch > 0 &&
5440 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5441 >                    addToPendingCount(1);
5442 >                    (rights = new MapReduceMappingsTask<K,V,U>
5443 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5444 >                      rights, transformer, reducer)).fork();
5445 >                }
5446 >                U r = null;
5447 >                for (Node<K,V> p; (p = advance()) != null; ) {
5448 >                    U u;
5449 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5450 >                        r = (r == null) ? u : reducer.apply(r, u);
5451 >                }
5452 >                result = r;
5453 >                CountedCompleter<?> c;
5454 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5455 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5456 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5457 >                        s = t.rights;
5458 >                    while (s != null) {
5459 >                        U tr, sr;
5460 >                        if ((sr = s.result) != null)
5461 >                            t.result = (((tr = t.result) == null) ? sr :
5462 >                                        reducer.apply(tr, sr));
5463 >                        s = t.rights = s.nextRight;
5464 >                    }
5465                  }
5466              }
5467          }
5468      }
5469  
5470 <    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5471 <        extends Traverser<K,V,Double> {
5470 >    @SuppressWarnings("serial")
5471 >    static final class MapReduceKeysToDoubleTask<K,V>
5472 >        extends BulkTask<K,V,Double> {
5473          final ObjectToDouble<? super K> transformer;
5474          final DoubleByDoubleToDouble reducer;
5475          final double basis;
5476          double result;
5477          MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5478          MapReduceKeysToDoubleTask
5479 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5479 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5480               MapReduceKeysToDoubleTask<K,V> nextRight,
5481               ObjectToDouble<? super K> transformer,
5482               double basis,
5483               DoubleByDoubleToDouble reducer) {
5484 <            super(m, p, b); this.nextRight = nextRight;
5484 >            super(p, b, i, f, t); this.nextRight = nextRight;
5485              this.transformer = transformer;
5486              this.basis = basis; this.reducer = reducer;
5487          }
5488          public final Double getRawResult() { return result; }
5489 <        @SuppressWarnings("unchecked") public final void compute() {
5490 <            final ObjectToDouble<? super K> transformer =
5491 <                this.transformer;
5492 <            final DoubleByDoubleToDouble reducer = this.reducer;
5493 <            if (transformer == null || reducer == null)
5494 <                throw new NullPointerException();
5495 <            double r = this.basis;
5496 <            for (int b; (b = preSplit()) > 0;)
5497 <                (rights = new MapReduceKeysToDoubleTask<K,V>
5498 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5499 <            while (advance() != null)
5500 <                r = reducer.apply(r, transformer.apply((K)nextKey));
5501 <            result = r;
5502 <            CountedCompleter<?> c;
5503 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5504 <                MapReduceKeysToDoubleTask<K,V>
5505 <                    t = (MapReduceKeysToDoubleTask<K,V>)c,
5506 <                    s = t.rights;
5507 <                while (s != null) {
5508 <                    t.result = reducer.apply(t.result, s.result);
5509 <                    s = t.rights = s.nextRight;
5489 >        public final void compute() {
5490 >            final ObjectToDouble<? super K> transformer;
5491 >            final DoubleByDoubleToDouble reducer;
5492 >            if ((transformer = this.transformer) != null &&
5493 >                (reducer = this.reducer) != null) {
5494 >                double r = this.basis;
5495 >                for (int i = baseIndex, f, h; batch > 0 &&
5496 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5497 >                    addToPendingCount(1);
5498 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5499 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5500 >                      rights, transformer, r, reducer)).fork();
5501 >                }
5502 >                for (Node<K,V> p; (p = advance()) != null; )
5503 >                    r = reducer.apply(r, transformer.apply(p.key));
5504 >                result = r;
5505 >                CountedCompleter<?> c;
5506 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5507 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5508 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5509 >                        s = t.rights;
5510 >                    while (s != null) {
5511 >                        t.result = reducer.apply(t.result, s.result);
5512 >                        s = t.rights = s.nextRight;
5513 >                    }
5514                  }
5515              }
5516          }
5517      }
5518  
5519 <    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5520 <        extends Traverser<K,V,Double> {
5519 >    @SuppressWarnings("serial")
5520 >    static final class MapReduceValuesToDoubleTask<K,V>
5521 >        extends BulkTask<K,V,Double> {
5522          final ObjectToDouble<? super V> transformer;
5523          final DoubleByDoubleToDouble reducer;
5524          final double basis;
5525          double result;
5526          MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5527          MapReduceValuesToDoubleTask
5528 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5528 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5529               MapReduceValuesToDoubleTask<K,V> nextRight,
5530               ObjectToDouble<? super V> transformer,
5531               double basis,
5532               DoubleByDoubleToDouble reducer) {
5533 <            super(m, p, b); this.nextRight = nextRight;
5533 >            super(p, b, i, f, t); this.nextRight = nextRight;
5534              this.transformer = transformer;
5535              this.basis = basis; this.reducer = reducer;
5536          }
5537          public final Double getRawResult() { return result; }
5538 <        @SuppressWarnings("unchecked") public final void compute() {
5539 <            final ObjectToDouble<? super V> transformer =
5540 <                this.transformer;
5541 <            final DoubleByDoubleToDouble reducer = this.reducer;
5542 <            if (transformer == null || reducer == null)
5543 <                throw new NullPointerException();
5544 <            double r = this.basis;
5545 <            for (int b; (b = preSplit()) > 0;)
5546 <                (rights = new MapReduceValuesToDoubleTask<K,V>
5547 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5548 <            Object v;
5549 <            while ((v = advance()) != null)
5550 <                r = reducer.apply(r, transformer.apply((V)v));
5551 <            result = r;
5552 <            CountedCompleter<?> c;
5553 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5554 <                MapReduceValuesToDoubleTask<K,V>
5555 <                    t = (MapReduceValuesToDoubleTask<K,V>)c,
5556 <                    s = t.rights;
5557 <                while (s != null) {
5558 <                    t.result = reducer.apply(t.result, s.result);
5559 <                    s = t.rights = s.nextRight;
5538 >        public final void compute() {
5539 >            final ObjectToDouble<? super V> transformer;
5540 >            final DoubleByDoubleToDouble reducer;
5541 >            if ((transformer = this.transformer) != null &&
5542 >                (reducer = this.reducer) != null) {
5543 >                double r = this.basis;
5544 >                for (int i = baseIndex, f, h; batch > 0 &&
5545 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5546 >                    addToPendingCount(1);
5547 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5548 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5549 >                      rights, transformer, r, reducer)).fork();
5550 >                }
5551 >                for (Node<K,V> p; (p = advance()) != null; )
5552 >                    r = reducer.apply(r, transformer.apply(p.val));
5553 >                result = r;
5554 >                CountedCompleter<?> c;
5555 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5556 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5557 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5558 >                        s = t.rights;
5559 >                    while (s != null) {
5560 >                        t.result = reducer.apply(t.result, s.result);
5561 >                        s = t.rights = s.nextRight;
5562 >                    }
5563                  }
5564              }
5565          }
5566      }
5567  
5568 <    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
5569 <        extends Traverser<K,V,Double> {
5568 >    @SuppressWarnings("serial")
5569 >    static final class MapReduceEntriesToDoubleTask<K,V>
5570 >        extends BulkTask<K,V,Double> {
5571          final ObjectToDouble<Map.Entry<K,V>> transformer;
5572          final DoubleByDoubleToDouble reducer;
5573          final double basis;
5574          double result;
5575          MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5576          MapReduceEntriesToDoubleTask
5577 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5577 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5578               MapReduceEntriesToDoubleTask<K,V> nextRight,
5579               ObjectToDouble<Map.Entry<K,V>> transformer,
5580               double basis,
5581               DoubleByDoubleToDouble reducer) {
5582 <            super(m, p, b); this.nextRight = nextRight;
5582 >            super(p, b, i, f, t); this.nextRight = nextRight;
5583              this.transformer = transformer;
5584              this.basis = basis; this.reducer = reducer;
5585          }
5586          public final Double getRawResult() { return result; }
5587 <        @SuppressWarnings("unchecked") public final void compute() {
5588 <            final ObjectToDouble<Map.Entry<K,V>> transformer =
5589 <                this.transformer;
5590 <            final DoubleByDoubleToDouble reducer = this.reducer;
5591 <            if (transformer == null || reducer == null)
5592 <                throw new NullPointerException();
5593 <            double r = this.basis;
5594 <            for (int b; (b = preSplit()) > 0;)
5595 <                (rights = new MapReduceEntriesToDoubleTask<K,V>
5596 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5597 <            Object v;
5598 <            while ((v = advance()) != null)
5599 <                r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5600 <            result = r;
5601 <            CountedCompleter<?> c;
5602 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5603 <                MapReduceEntriesToDoubleTask<K,V>
5604 <                    t = (MapReduceEntriesToDoubleTask<K,V>)c,
5605 <                    s = t.rights;
5606 <                while (s != null) {
5607 <                    t.result = reducer.apply(t.result, s.result);
5608 <                    s = t.rights = s.nextRight;
5587 >        public final void compute() {
5588 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
5589 >            final DoubleByDoubleToDouble reducer;
5590 >            if ((transformer = this.transformer) != null &&
5591 >                (reducer = this.reducer) != null) {
5592 >                double r = this.basis;
5593 >                for (int i = baseIndex, f, h; batch > 0 &&
5594 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5595 >                    addToPendingCount(1);
5596 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5597 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5598 >                      rights, transformer, r, reducer)).fork();
5599 >                }
5600 >                for (Node<K,V> p; (p = advance()) != null; )
5601 >                    r = reducer.apply(r, transformer.apply(p));
5602 >                result = r;
5603 >                CountedCompleter<?> c;
5604 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5605 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5606 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5607 >                        s = t.rights;
5608 >                    while (s != null) {
5609 >                        t.result = reducer.apply(t.result, s.result);
5610 >                        s = t.rights = s.nextRight;
5611 >                    }
5612                  }
5613              }
5614          }
5615      }
5616  
5617 <    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
5618 <        extends Traverser<K,V,Double> {
5617 >    @SuppressWarnings("serial")
5618 >    static final class MapReduceMappingsToDoubleTask<K,V>
5619 >        extends BulkTask<K,V,Double> {
5620          final ObjectByObjectToDouble<? super K, ? super V> transformer;
5621          final DoubleByDoubleToDouble reducer;
5622          final double basis;
5623          double result;
5624          MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5625          MapReduceMappingsToDoubleTask
5626 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5626 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5627               MapReduceMappingsToDoubleTask<K,V> nextRight,
5628               ObjectByObjectToDouble<? super K, ? super V> transformer,
5629               double basis,
5630               DoubleByDoubleToDouble reducer) {
5631 <            super(m, p, b); this.nextRight = nextRight;
5631 >            super(p, b, i, f, t); this.nextRight = nextRight;
5632              this.transformer = transformer;
5633              this.basis = basis; this.reducer = reducer;
5634          }
5635          public final Double getRawResult() { return result; }
5636 <        @SuppressWarnings("unchecked") public final void compute() {
5637 <            final ObjectByObjectToDouble<? super K, ? super V> transformer =
5638 <                this.transformer;
5639 <            final DoubleByDoubleToDouble reducer = this.reducer;
5640 <            if (transformer == null || reducer == null)
5641 <                throw new NullPointerException();
5642 <            double r = this.basis;
5643 <            for (int b; (b = preSplit()) > 0;)
5644 <                (rights = new MapReduceMappingsToDoubleTask<K,V>
5645 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5646 <            Object v;
5647 <            while ((v = advance()) != null)
5648 <                r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
5649 <            result = r;
5650 <            CountedCompleter<?> c;
5651 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5652 <                MapReduceMappingsToDoubleTask<K,V>
5653 <                    t = (MapReduceMappingsToDoubleTask<K,V>)c,
5654 <                    s = t.rights;
5655 <                while (s != null) {
5656 <                    t.result = reducer.apply(t.result, s.result);
5657 <                    s = t.rights = s.nextRight;
5636 >        public final void compute() {
5637 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
5638 >            final DoubleByDoubleToDouble reducer;
5639 >            if ((transformer = this.transformer) != null &&
5640 >                (reducer = this.reducer) != null) {
5641 >                double r = this.basis;
5642 >                for (int i = baseIndex, f, h; batch > 0 &&
5643 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5644 >                    addToPendingCount(1);
5645 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5646 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5647 >                      rights, transformer, r, reducer)).fork();
5648 >                }
5649 >                for (Node<K,V> p; (p = advance()) != null; )
5650 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5651 >                result = r;
5652 >                CountedCompleter<?> c;
5653 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5654 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5655 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5656 >                        s = t.rights;
5657 >                    while (s != null) {
5658 >                        t.result = reducer.apply(t.result, s.result);
5659 >                        s = t.rights = s.nextRight;
5660 >                    }
5661                  }
5662              }
5663          }
5664      }
5665  
5666 <    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
5667 <        extends Traverser<K,V,Long> {
5666 >    @SuppressWarnings("serial")
5667 >    static final class MapReduceKeysToLongTask<K,V>
5668 >        extends BulkTask<K,V,Long> {
5669          final ObjectToLong<? super K> transformer;
5670          final LongByLongToLong reducer;
5671          final long basis;
5672          long result;
5673          MapReduceKeysToLongTask<K,V> rights, nextRight;
5674          MapReduceKeysToLongTask
5675 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5675 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5676               MapReduceKeysToLongTask<K,V> nextRight,
5677               ObjectToLong<? super K> transformer,
5678               long basis,
5679               LongByLongToLong reducer) {
5680 <            super(m, p, b); this.nextRight = nextRight;
5680 >            super(p, b, i, f, t); this.nextRight = nextRight;
5681              this.transformer = transformer;
5682              this.basis = basis; this.reducer = reducer;
5683          }
5684          public final Long getRawResult() { return result; }
5685 <        @SuppressWarnings("unchecked") public final void compute() {
5686 <            final ObjectToLong<? super K> transformer =
5687 <                this.transformer;
5688 <            final LongByLongToLong reducer = this.reducer;
5689 <            if (transformer == null || reducer == null)
5690 <                throw new NullPointerException();
5691 <            long r = this.basis;
5692 <            for (int b; (b = preSplit()) > 0;)
5693 <                (rights = new MapReduceKeysToLongTask<K,V>
5694 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5695 <            while (advance() != null)
5696 <                r = reducer.apply(r, transformer.apply((K)nextKey));
5697 <            result = r;
5698 <            CountedCompleter<?> c;
5699 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5700 <                MapReduceKeysToLongTask<K,V>
5701 <                    t = (MapReduceKeysToLongTask<K,V>)c,
5702 <                    s = t.rights;
5703 <                while (s != null) {
5704 <                    t.result = reducer.apply(t.result, s.result);
5705 <                    s = t.rights = s.nextRight;
5685 >        public final void compute() {
5686 >            final ObjectToLong<? super K> transformer;
5687 >            final LongByLongToLong reducer;
5688 >            if ((transformer = this.transformer) != null &&
5689 >                (reducer = this.reducer) != null) {
5690 >                long r = this.basis;
5691 >                for (int i = baseIndex, f, h; batch > 0 &&
5692 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5693 >                    addToPendingCount(1);
5694 >                    (rights = new MapReduceKeysToLongTask<K,V>
5695 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5696 >                      rights, transformer, r, reducer)).fork();
5697 >                }
5698 >                for (Node<K,V> p; (p = advance()) != null; )
5699 >                    r = reducer.apply(r, transformer.apply(p.key));
5700 >                result = r;
5701 >                CountedCompleter<?> c;
5702 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5703 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5704 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5705 >                        s = t.rights;
5706 >                    while (s != null) {
5707 >                        t.result = reducer.apply(t.result, s.result);
5708 >                        s = t.rights = s.nextRight;
5709 >                    }
5710                  }
5711              }
5712          }
5713      }
5714  
5715 <    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
5716 <        extends Traverser<K,V,Long> {
5715 >    @SuppressWarnings("serial")
5716 >    static final class MapReduceValuesToLongTask<K,V>
5717 >        extends BulkTask<K,V,Long> {
5718          final ObjectToLong<? super V> transformer;
5719          final LongByLongToLong reducer;
5720          final long basis;
5721          long result;
5722          MapReduceValuesToLongTask<K,V> rights, nextRight;
5723          MapReduceValuesToLongTask
5724 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5724 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5725               MapReduceValuesToLongTask<K,V> nextRight,
5726               ObjectToLong<? super V> transformer,
5727               long basis,
5728               LongByLongToLong reducer) {
5729 <            super(m, p, b); this.nextRight = nextRight;
5729 >            super(p, b, i, f, t); this.nextRight = nextRight;
5730              this.transformer = transformer;
5731              this.basis = basis; this.reducer = reducer;
5732          }
5733          public final Long getRawResult() { return result; }
5734 <        @SuppressWarnings("unchecked") public final void compute() {
5735 <            final ObjectToLong<? super V> transformer =
5736 <                this.transformer;
5737 <            final LongByLongToLong reducer = this.reducer;
5738 <            if (transformer == null || reducer == null)
5739 <                throw new NullPointerException();
5740 <            long r = this.basis;
5741 <            for (int b; (b = preSplit()) > 0;)
5742 <                (rights = new MapReduceValuesToLongTask<K,V>
5743 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5744 <            Object v;
5745 <            while ((v = advance()) != null)
5746 <                r = reducer.apply(r, transformer.apply((V)v));
5747 <            result = r;
5748 <            CountedCompleter<?> c;
5749 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5750 <                MapReduceValuesToLongTask<K,V>
5751 <                    t = (MapReduceValuesToLongTask<K,V>)c,
5752 <                    s = t.rights;
5753 <                while (s != null) {
5754 <                    t.result = reducer.apply(t.result, s.result);
5755 <                    s = t.rights = s.nextRight;
5734 >        public final void compute() {
5735 >            final ObjectToLong<? super V> transformer;
5736 >            final LongByLongToLong reducer;
5737 >            if ((transformer = this.transformer) != null &&
5738 >                (reducer = this.reducer) != null) {
5739 >                long r = this.basis;
5740 >                for (int i = baseIndex, f, h; batch > 0 &&
5741 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5742 >                    addToPendingCount(1);
5743 >                    (rights = new MapReduceValuesToLongTask<K,V>
5744 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5745 >                      rights, transformer, r, reducer)).fork();
5746 >                }
5747 >                for (Node<K,V> p; (p = advance()) != null; )
5748 >                    r = reducer.apply(r, transformer.apply(p.val));
5749 >                result = r;
5750 >                CountedCompleter<?> c;
5751 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5752 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5753 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5754 >                        s = t.rights;
5755 >                    while (s != null) {
5756 >                        t.result = reducer.apply(t.result, s.result);
5757 >                        s = t.rights = s.nextRight;
5758 >                    }
5759                  }
5760              }
5761          }
5762      }
5763  
5764 <    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
5765 <        extends Traverser<K,V,Long> {
5764 >    @SuppressWarnings("serial")
5765 >    static final class MapReduceEntriesToLongTask<K,V>
5766 >        extends BulkTask<K,V,Long> {
5767          final ObjectToLong<Map.Entry<K,V>> transformer;
5768          final LongByLongToLong reducer;
5769          final long basis;
5770          long result;
5771          MapReduceEntriesToLongTask<K,V> rights, nextRight;
5772          MapReduceEntriesToLongTask
5773 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5773 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5774               MapReduceEntriesToLongTask<K,V> nextRight,
5775               ObjectToLong<Map.Entry<K,V>> transformer,
5776               long basis,
5777               LongByLongToLong reducer) {
5778 <            super(m, p, b); this.nextRight = nextRight;
5778 >            super(p, b, i, f, t); this.nextRight = nextRight;
5779              this.transformer = transformer;
5780              this.basis = basis; this.reducer = reducer;
5781          }
5782          public final Long getRawResult() { return result; }
5783 <        @SuppressWarnings("unchecked") public final void compute() {
5784 <            final ObjectToLong<Map.Entry<K,V>> transformer =
5785 <                this.transformer;
5786 <            final LongByLongToLong reducer = this.reducer;
5787 <            if (transformer == null || reducer == null)
5788 <                throw new NullPointerException();
5789 <            long r = this.basis;
5790 <            for (int b; (b = preSplit()) > 0;)
5791 <                (rights = new MapReduceEntriesToLongTask<K,V>
5792 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5793 <            Object v;
5794 <            while ((v = advance()) != null)
5795 <                r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5796 <            result = r;
5797 <            CountedCompleter<?> c;
5798 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5799 <                MapReduceEntriesToLongTask<K,V>
5800 <                    t = (MapReduceEntriesToLongTask<K,V>)c,
5801 <                    s = t.rights;
5802 <                while (s != null) {
5803 <                    t.result = reducer.apply(t.result, s.result);
5804 <                    s = t.rights = s.nextRight;
5783 >        public final void compute() {
5784 >            final ObjectToLong<Map.Entry<K,V>> transformer;
5785 >            final LongByLongToLong reducer;
5786 >            if ((transformer = this.transformer) != null &&
5787 >                (reducer = this.reducer) != null) {
5788 >                long r = this.basis;
5789 >                for (int i = baseIndex, f, h; batch > 0 &&
5790 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5791 >                    addToPendingCount(1);
5792 >                    (rights = new MapReduceEntriesToLongTask<K,V>
5793 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5794 >                      rights, transformer, r, reducer)).fork();
5795 >                }
5796 >                for (Node<K,V> p; (p = advance()) != null; )
5797 >                    r = reducer.apply(r, transformer.apply(p));
5798 >                result = r;
5799 >                CountedCompleter<?> c;
5800 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5801 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5802 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5803 >                        s = t.rights;
5804 >                    while (s != null) {
5805 >                        t.result = reducer.apply(t.result, s.result);
5806 >                        s = t.rights = s.nextRight;
5807 >                    }
5808                  }
5809              }
5810          }
5811      }
5812  
5813 <    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
5814 <        extends Traverser<K,V,Long> {
5813 >    @SuppressWarnings("serial")
5814 >    static final class MapReduceMappingsToLongTask<K,V>
5815 >        extends BulkTask<K,V,Long> {
5816          final ObjectByObjectToLong<? super K, ? super V> transformer;
5817          final LongByLongToLong reducer;
5818          final long basis;
5819          long result;
5820          MapReduceMappingsToLongTask<K,V> rights, nextRight;
5821          MapReduceMappingsToLongTask
5822 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5822 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5823               MapReduceMappingsToLongTask<K,V> nextRight,
5824               ObjectByObjectToLong<? super K, ? super V> transformer,
5825               long basis,
5826               LongByLongToLong reducer) {
5827 <            super(m, p, b); this.nextRight = nextRight;
5827 >            super(p, b, i, f, t); this.nextRight = nextRight;
5828              this.transformer = transformer;
5829              this.basis = basis; this.reducer = reducer;
5830          }
5831          public final Long getRawResult() { return result; }
5832 <        @SuppressWarnings("unchecked") public final void compute() {
5833 <            final ObjectByObjectToLong<? super K, ? super V> transformer =
5834 <                this.transformer;
5835 <            final LongByLongToLong reducer = this.reducer;
5836 <            if (transformer == null || reducer == null)
5837 <                throw new NullPointerException();
5838 <            long r = this.basis;
5839 <            for (int b; (b = preSplit()) > 0;)
5840 <                (rights = new MapReduceMappingsToLongTask<K,V>
5841 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5842 <            Object v;
5843 <            while ((v = advance()) != null)
5844 <                r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
5845 <            result = r;
5846 <            CountedCompleter<?> c;
5847 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5848 <                MapReduceMappingsToLongTask<K,V>
5849 <                    t = (MapReduceMappingsToLongTask<K,V>)c,
5850 <                    s = t.rights;
5851 <                while (s != null) {
5852 <                    t.result = reducer.apply(t.result, s.result);
5853 <                    s = t.rights = s.nextRight;
5832 >        public final void compute() {
5833 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
5834 >            final LongByLongToLong reducer;
5835 >            if ((transformer = this.transformer) != null &&
5836 >                (reducer = this.reducer) != null) {
5837 >                long r = this.basis;
5838 >                for (int i = baseIndex, f, h; batch > 0 &&
5839 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5840 >                    addToPendingCount(1);
5841 >                    (rights = new MapReduceMappingsToLongTask<K,V>
5842 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5843 >                      rights, transformer, r, reducer)).fork();
5844 >                }
5845 >                for (Node<K,V> p; (p = advance()) != null; )
5846 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5847 >                result = r;
5848 >                CountedCompleter<?> c;
5849 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5850 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5851 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
5852 >                        s = t.rights;
5853 >                    while (s != null) {
5854 >                        t.result = reducer.apply(t.result, s.result);
5855 >                        s = t.rights = s.nextRight;
5856 >                    }
5857                  }
5858              }
5859          }
5860      }
5861  
5862 <    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
5863 <        extends Traverser<K,V,Integer> {
5862 >    @SuppressWarnings("serial")
5863 >    static final class MapReduceKeysToIntTask<K,V>
5864 >        extends BulkTask<K,V,Integer> {
5865          final ObjectToInt<? super K> transformer;
5866          final IntByIntToInt reducer;
5867          final int basis;
5868          int result;
5869          MapReduceKeysToIntTask<K,V> rights, nextRight;
5870          MapReduceKeysToIntTask
5871 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5871 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5872               MapReduceKeysToIntTask<K,V> nextRight,
5873               ObjectToInt<? super K> transformer,
5874               int basis,
5875               IntByIntToInt reducer) {
5876 <            super(m, p, b); this.nextRight = nextRight;
5876 >            super(p, b, i, f, t); this.nextRight = nextRight;
5877              this.transformer = transformer;
5878              this.basis = basis; this.reducer = reducer;
5879          }
5880          public final Integer getRawResult() { return result; }
5881 <        @SuppressWarnings("unchecked") public final void compute() {
5882 <            final ObjectToInt<? super K> transformer =
5883 <                this.transformer;
5884 <            final IntByIntToInt reducer = this.reducer;
5885 <            if (transformer == null || reducer == null)
5886 <                throw new NullPointerException();
5887 <            int r = this.basis;
5888 <            for (int b; (b = preSplit()) > 0;)
5889 <                (rights = new MapReduceKeysToIntTask<K,V>
5890 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5891 <            while (advance() != null)
5892 <                r = reducer.apply(r, transformer.apply((K)nextKey));
5893 <            result = r;
5894 <            CountedCompleter<?> c;
5895 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5896 <                MapReduceKeysToIntTask<K,V>
5897 <                    t = (MapReduceKeysToIntTask<K,V>)c,
5898 <                    s = t.rights;
5899 <                while (s != null) {
5900 <                    t.result = reducer.apply(t.result, s.result);
5901 <                    s = t.rights = s.nextRight;
5881 >        public final void compute() {
5882 >            final ObjectToInt<? super K> transformer;
5883 >            final IntByIntToInt reducer;
5884 >            if ((transformer = this.transformer) != null &&
5885 >                (reducer = this.reducer) != null) {
5886 >                int r = this.basis;
5887 >                for (int i = baseIndex, f, h; batch > 0 &&
5888 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5889 >                    addToPendingCount(1);
5890 >                    (rights = new MapReduceKeysToIntTask<K,V>
5891 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5892 >                      rights, transformer, r, reducer)).fork();
5893 >                }
5894 >                for (Node<K,V> p; (p = advance()) != null; )
5895 >                    r = reducer.apply(r, transformer.apply(p.key));
5896 >                result = r;
5897 >                CountedCompleter<?> c;
5898 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5899 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5900 >                        t = (MapReduceKeysToIntTask<K,V>)c,
5901 >                        s = t.rights;
5902 >                    while (s != null) {
5903 >                        t.result = reducer.apply(t.result, s.result);
5904 >                        s = t.rights = s.nextRight;
5905 >                    }
5906                  }
5907              }
5908          }
5909      }
5910  
5911 <    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
5912 <        extends Traverser<K,V,Integer> {
5911 >    @SuppressWarnings("serial")
5912 >    static final class MapReduceValuesToIntTask<K,V>
5913 >        extends BulkTask<K,V,Integer> {
5914          final ObjectToInt<? super V> transformer;
5915          final IntByIntToInt reducer;
5916          final int basis;
5917          int result;
5918          MapReduceValuesToIntTask<K,V> rights, nextRight;
5919          MapReduceValuesToIntTask
5920 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5920 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5921               MapReduceValuesToIntTask<K,V> nextRight,
5922               ObjectToInt<? super V> transformer,
5923               int basis,
5924               IntByIntToInt reducer) {
5925 <            super(m, p, b); this.nextRight = nextRight;
5925 >            super(p, b, i, f, t); this.nextRight = nextRight;
5926              this.transformer = transformer;
5927              this.basis = basis; this.reducer = reducer;
5928          }
5929          public final Integer getRawResult() { return result; }
5930 <        @SuppressWarnings("unchecked") public final void compute() {
5931 <            final ObjectToInt<? super V> transformer =
5932 <                this.transformer;
5933 <            final IntByIntToInt reducer = this.reducer;
5934 <            if (transformer == null || reducer == null)
5935 <                throw new NullPointerException();
5936 <            int r = this.basis;
5937 <            for (int b; (b = preSplit()) > 0;)
5938 <                (rights = new MapReduceValuesToIntTask<K,V>
5939 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5940 <            Object v;
5941 <            while ((v = advance()) != null)
5942 <                r = reducer.apply(r, transformer.apply((V)v));
5943 <            result = r;
5944 <            CountedCompleter<?> c;
5945 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5946 <                MapReduceValuesToIntTask<K,V>
5947 <                    t = (MapReduceValuesToIntTask<K,V>)c,
5948 <                    s = t.rights;
5949 <                while (s != null) {
5950 <                    t.result = reducer.apply(t.result, s.result);
5951 <                    s = t.rights = s.nextRight;
5930 >        public final void compute() {
5931 >            final ObjectToInt<? super V> transformer;
5932 >            final IntByIntToInt reducer;
5933 >            if ((transformer = this.transformer) != null &&
5934 >                (reducer = this.reducer) != null) {
5935 >                int r = this.basis;
5936 >                for (int i = baseIndex, f, h; batch > 0 &&
5937 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5938 >                    addToPendingCount(1);
5939 >                    (rights = new MapReduceValuesToIntTask<K,V>
5940 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5941 >                      rights, transformer, r, reducer)).fork();
5942 >                }
5943 >                for (Node<K,V> p; (p = advance()) != null; )
5944 >                    r = reducer.apply(r, transformer.apply(p.val));
5945 >                result = r;
5946 >                CountedCompleter<?> c;
5947 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5948 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5949 >                        t = (MapReduceValuesToIntTask<K,V>)c,
5950 >                        s = t.rights;
5951 >                    while (s != null) {
5952 >                        t.result = reducer.apply(t.result, s.result);
5953 >                        s = t.rights = s.nextRight;
5954 >                    }
5955                  }
5956              }
5957          }
5958      }
5959  
5960 <    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
5961 <        extends Traverser<K,V,Integer> {
5960 >    @SuppressWarnings("serial")
5961 >    static final class MapReduceEntriesToIntTask<K,V>
5962 >        extends BulkTask<K,V,Integer> {
5963          final ObjectToInt<Map.Entry<K,V>> transformer;
5964          final IntByIntToInt reducer;
5965          final int basis;
5966          int result;
5967          MapReduceEntriesToIntTask<K,V> rights, nextRight;
5968          MapReduceEntriesToIntTask
5969 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5969 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5970               MapReduceEntriesToIntTask<K,V> nextRight,
5971               ObjectToInt<Map.Entry<K,V>> transformer,
5972               int basis,
5973               IntByIntToInt reducer) {
5974 <            super(m, p, b); this.nextRight = nextRight;
5974 >            super(p, b, i, f, t); this.nextRight = nextRight;
5975              this.transformer = transformer;
5976              this.basis = basis; this.reducer = reducer;
5977          }
5978          public final Integer getRawResult() { return result; }
5979 <        @SuppressWarnings("unchecked") public final void compute() {
5980 <            final ObjectToInt<Map.Entry<K,V>> transformer =
5981 <                this.transformer;
5982 <            final IntByIntToInt reducer = this.reducer;
5983 <            if (transformer == null || reducer == null)
5984 <                throw new NullPointerException();
5985 <            int r = this.basis;
5986 <            for (int b; (b = preSplit()) > 0;)
5987 <                (rights = new MapReduceEntriesToIntTask<K,V>
5988 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5989 <            Object v;
5990 <            while ((v = advance()) != null)
5991 <                r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5992 <            result = r;
5993 <            CountedCompleter<?> c;
5994 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5995 <                MapReduceEntriesToIntTask<K,V>
5996 <                    t = (MapReduceEntriesToIntTask<K,V>)c,
5997 <                    s = t.rights;
5998 <                while (s != null) {
5999 <                    t.result = reducer.apply(t.result, s.result);
6000 <                    s = t.rights = s.nextRight;
5979 >        public final void compute() {
5980 >            final ObjectToInt<Map.Entry<K,V>> transformer;
5981 >            final IntByIntToInt reducer;
5982 >            if ((transformer = this.transformer) != null &&
5983 >                (reducer = this.reducer) != null) {
5984 >                int r = this.basis;
5985 >                for (int i = baseIndex, f, h; batch > 0 &&
5986 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5987 >                    addToPendingCount(1);
5988 >                    (rights = new MapReduceEntriesToIntTask<K,V>
5989 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5990 >                      rights, transformer, r, reducer)).fork();
5991 >                }
5992 >                for (Node<K,V> p; (p = advance()) != null; )
5993 >                    r = reducer.apply(r, transformer.apply(p));
5994 >                result = r;
5995 >                CountedCompleter<?> c;
5996 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5997 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5998 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
5999 >                        s = t.rights;
6000 >                    while (s != null) {
6001 >                        t.result = reducer.apply(t.result, s.result);
6002 >                        s = t.rights = s.nextRight;
6003 >                    }
6004                  }
6005              }
6006          }
6007      }
6008  
6009 <    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6010 <        extends Traverser<K,V,Integer> {
6009 >    @SuppressWarnings("serial")
6010 >    static final class MapReduceMappingsToIntTask<K,V>
6011 >        extends BulkTask<K,V,Integer> {
6012          final ObjectByObjectToInt<? super K, ? super V> transformer;
6013          final IntByIntToInt reducer;
6014          final int basis;
6015          int result;
6016          MapReduceMappingsToIntTask<K,V> rights, nextRight;
6017          MapReduceMappingsToIntTask
6018 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6018 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6019               MapReduceMappingsToIntTask<K,V> nextRight,
6020               ObjectByObjectToInt<? super K, ? super V> transformer,
6021               int basis,
6022               IntByIntToInt reducer) {
6023 <            super(m, p, b); this.nextRight = nextRight;
6023 >            super(p, b, i, f, t); this.nextRight = nextRight;
6024              this.transformer = transformer;
6025              this.basis = basis; this.reducer = reducer;
6026          }
6027          public final Integer getRawResult() { return result; }
6028 <        @SuppressWarnings("unchecked") public final void compute() {
6029 <            final ObjectByObjectToInt<? super K, ? super V> transformer =
6030 <                this.transformer;
6031 <            final IntByIntToInt reducer = this.reducer;
6032 <            if (transformer == null || reducer == null)
6033 <                throw new NullPointerException();
6034 <            int r = this.basis;
6035 <            for (int b; (b = preSplit()) > 0;)
6036 <                (rights = new MapReduceMappingsToIntTask<K,V>
6037 <                 (map, this, b, rights, transformer, r, reducer)).fork();
6038 <            Object v;
6039 <            while ((v = advance()) != null)
6040 <                r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6041 <            result = r;
6042 <            CountedCompleter<?> c;
6043 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6044 <                MapReduceMappingsToIntTask<K,V>
6045 <                    t = (MapReduceMappingsToIntTask<K,V>)c,
6046 <                    s = t.rights;
6047 <                while (s != null) {
6048 <                    t.result = reducer.apply(t.result, s.result);
6049 <                    s = t.rights = s.nextRight;
6028 >        public final void compute() {
6029 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
6030 >            final IntByIntToInt reducer;
6031 >            if ((transformer = this.transformer) != null &&
6032 >                (reducer = this.reducer) != null) {
6033 >                int r = this.basis;
6034 >                for (int i = baseIndex, f, h; batch > 0 &&
6035 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6036 >                    addToPendingCount(1);
6037 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6038 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6039 >                      rights, transformer, r, reducer)).fork();
6040 >                }
6041 >                for (Node<K,V> p; (p = advance()) != null; )
6042 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
6043 >                result = r;
6044 >                CountedCompleter<?> c;
6045 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6046 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6047 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6048 >                        s = t.rights;
6049 >                    while (s != null) {
6050 >                        t.result = reducer.apply(t.result, s.result);
6051 >                        s = t.rights = s.nextRight;
6052 >                    }
6053 >                }
6054 >            }
6055 >        }
6056 >    }
6057 >
6058 >    /* ---------------- Counters -------------- */
6059 >
6060 >    // Adapted from LongAdder and Striped64.
6061 >    // See their internal docs for explanation.
6062 >
6063 >    // A padded cell for distributing counts
6064 >    static final class CounterCell {
6065 >        volatile long p0, p1, p2, p3, p4, p5, p6;
6066 >        volatile long value;
6067 >        volatile long q0, q1, q2, q3, q4, q5, q6;
6068 >        CounterCell(long x) { value = x; }
6069 >    }
6070 >
6071 >    /**
6072 >     * Holder for the thread-local hash code determining which
6073 >     * CounterCell to use. The code is initialized via the
6074 >     * counterHashCodeGenerator, but may be moved upon collisions.
6075 >     */
6076 >    static final class CounterHashCode {
6077 >        int code;
6078 >    }
6079 >
6080 >    /**
6081 >     * Generates initial value for per-thread CounterHashCodes.
6082 >     */
6083 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6084 >
6085 >    /**
6086 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
6087 >     * for explanation.
6088 >     */
6089 >    static final int SEED_INCREMENT = 0x61c88647;
6090 >
6091 >    /**
6092 >     * Per-thread counter hash codes. Shared across all instances.
6093 >     */
6094 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6095 >        new ThreadLocal<CounterHashCode>();
6096 >
6097 >
6098 >    final long sumCount() {
6099 >        CounterCell[] as = counterCells; CounterCell a;
6100 >        long sum = baseCount;
6101 >        if (as != null) {
6102 >            for (int i = 0; i < as.length; ++i) {
6103 >                if ((a = as[i]) != null)
6104 >                    sum += a.value;
6105 >            }
6106 >        }
6107 >        return sum;
6108 >    }
6109 >
6110 >    // See LongAdder version for explanation
6111 >    private final void fullAddCount(long x, CounterHashCode hc,
6112 >                                    boolean wasUncontended) {
6113 >        int h;
6114 >        if (hc == null) {
6115 >            hc = new CounterHashCode();
6116 >            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6117 >            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6118 >            threadCounterHashCode.set(hc);
6119 >        }
6120 >        else
6121 >            h = hc.code;
6122 >        boolean collide = false;                // True if last slot nonempty
6123 >        for (;;) {
6124 >            CounterCell[] as; CounterCell a; int n; long v;
6125 >            if ((as = counterCells) != null && (n = as.length) > 0) {
6126 >                if ((a = as[(n - 1) & h]) == null) {
6127 >                    if (cellsBusy == 0) {            // Try to attach new Cell
6128 >                        CounterCell r = new CounterCell(x); // Optimistic create
6129 >                        if (cellsBusy == 0 &&
6130 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6131 >                            boolean created = false;
6132 >                            try {               // Recheck under lock
6133 >                                CounterCell[] rs; int m, j;
6134 >                                if ((rs = counterCells) != null &&
6135 >                                    (m = rs.length) > 0 &&
6136 >                                    rs[j = (m - 1) & h] == null) {
6137 >                                    rs[j] = r;
6138 >                                    created = true;
6139 >                                }
6140 >                            } finally {
6141 >                                cellsBusy = 0;
6142 >                            }
6143 >                            if (created)
6144 >                                break;
6145 >                            continue;           // Slot is now non-empty
6146 >                        }
6147 >                    }
6148 >                    collide = false;
6149 >                }
6150 >                else if (!wasUncontended)       // CAS already known to fail
6151 >                    wasUncontended = true;      // Continue after rehash
6152 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6153 >                    break;
6154 >                else if (counterCells != as || n >= NCPU)
6155 >                    collide = false;            // At max size or stale
6156 >                else if (!collide)
6157 >                    collide = true;
6158 >                else if (cellsBusy == 0 &&
6159 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6160 >                    try {
6161 >                        if (counterCells == as) {// Expand table unless stale
6162 >                            CounterCell[] rs = new CounterCell[n << 1];
6163 >                            for (int i = 0; i < n; ++i)
6164 >                                rs[i] = as[i];
6165 >                            counterCells = rs;
6166 >                        }
6167 >                    } finally {
6168 >                        cellsBusy = 0;
6169 >                    }
6170 >                    collide = false;
6171 >                    continue;                   // Retry with expanded table
6172 >                }
6173 >                h ^= h << 13;                   // Rehash
6174 >                h ^= h >>> 17;
6175 >                h ^= h << 5;
6176 >            }
6177 >            else if (cellsBusy == 0 && counterCells == as &&
6178 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6179 >                boolean init = false;
6180 >                try {                           // Initialize table
6181 >                    if (counterCells == as) {
6182 >                        CounterCell[] rs = new CounterCell[2];
6183 >                        rs[h & 1] = new CounterCell(x);
6184 >                        counterCells = rs;
6185 >                        init = true;
6186 >                    }
6187 >                } finally {
6188 >                    cellsBusy = 0;
6189                  }
6190 +                if (init)
6191 +                    break;
6192              }
6193 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6194 +                break;                          // Fall back on using base
6195          }
6196 +        hc.code = h;                            // Record index for next time
6197      }
6198  
6199      // Unsafe mechanics
6200 <    private static final sun.misc.Unsafe UNSAFE;
6201 <    private static final long counterOffset;
6202 <    private static final long sizeCtlOffset;
6200 >    private static final sun.misc.Unsafe U;
6201 >    private static final long SIZECTL;
6202 >    private static final long TRANSFERINDEX;
6203 >    private static final long BASECOUNT;
6204 >    private static final long CELLSBUSY;
6205 >    private static final long CELLVALUE;
6206      private static final long ABASE;
6207      private static final int ASHIFT;
6208  
6209      static {
6617        int ss;
6210          try {
6211 <            UNSAFE = getUnsafe();
6211 >            U = getUnsafe();
6212              Class<?> k = ConcurrentHashMapV8.class;
6213 <            counterOffset = UNSAFE.objectFieldOffset
6622 <                (k.getDeclaredField("counter"));
6623 <            sizeCtlOffset = UNSAFE.objectFieldOffset
6213 >            SIZECTL = U.objectFieldOffset
6214                  (k.getDeclaredField("sizeCtl"));
6215 <            Class<?> sc = Node[].class;
6216 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6217 <            ss = UNSAFE.arrayIndexScale(sc);
6215 >            TRANSFERINDEX = U.objectFieldOffset
6216 >                (k.getDeclaredField("transferIndex"));
6217 >            BASECOUNT = U.objectFieldOffset
6218 >                (k.getDeclaredField("baseCount"));
6219 >            CELLSBUSY = U.objectFieldOffset
6220 >                (k.getDeclaredField("cellsBusy"));
6221 >            Class<?> ck = CounterCell.class;
6222 >            CELLVALUE = U.objectFieldOffset
6223 >                (ck.getDeclaredField("value"));
6224 >            Class<?> ak = Node[].class;
6225 >            ABASE = U.arrayBaseOffset(ak);
6226 >            int scale = U.arrayIndexScale(ak);
6227 >            if ((scale & (scale - 1)) != 0)
6228 >                throw new Error("data type scale not a power of two");
6229 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6230          } catch (Exception e) {
6231              throw new Error(e);
6232          }
6631        if ((ss & (ss-1)) != 0)
6632            throw new Error("data type scale not a power of two");
6633        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6233      }
6234  
6235      /**
# Line 6643 | Line 6242 | public class ConcurrentHashMapV8<K, V>
6242      private static sun.misc.Unsafe getUnsafe() {
6243          try {
6244              return sun.misc.Unsafe.getUnsafe();
6245 <        } catch (SecurityException se) {
6246 <            try {
6247 <                return java.security.AccessController.doPrivileged
6248 <                    (new java.security
6249 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6250 <                        public sun.misc.Unsafe run() throws Exception {
6251 <                            java.lang.reflect.Field f = sun.misc
6252 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6253 <                            f.setAccessible(true);
6254 <                            return (sun.misc.Unsafe) f.get(null);
6255 <                        }});
6256 <            } catch (java.security.PrivilegedActionException e) {
6257 <                throw new RuntimeException("Could not initialize intrinsics",
6258 <                                           e.getCause());
6259 <            }
6245 >        } catch (SecurityException tryReflectionInstead) {}
6246 >        try {
6247 >            return java.security.AccessController.doPrivileged
6248 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6249 >                public sun.misc.Unsafe run() throws Exception {
6250 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6251 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6252 >                        f.setAccessible(true);
6253 >                        Object x = f.get(null);
6254 >                        if (k.isInstance(x))
6255 >                            return k.cast(x);
6256 >                    }
6257 >                    throw new NoSuchFieldError("the Unsafe");
6258 >                }});
6259 >        } catch (java.security.PrivilegedActionException e) {
6260 >            throw new RuntimeException("Could not initialize intrinsics",
6261 >                                       e.getCause());
6262          }
6263      }
6264   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines