ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.12 by jsr166, Tue Aug 30 18:31:54 2011 UTC vs.
Revision 1.116 by dl, Wed Sep 11 14:53:38 2013 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166e;
8 < import jsr166e.LongAdder;
9 < import java.util.Map;
10 < import java.util.Set;
11 < import java.util.Collection;
8 >
9 > import jsr166e.ForkJoinPool;
10 >
11 > import java.io.ObjectStreamField;
12 > import java.io.Serializable;
13 > import java.lang.reflect.ParameterizedType;
14 > import java.lang.reflect.Type;
15   import java.util.AbstractMap;
16 < import java.util.AbstractSet;
17 < import java.util.AbstractCollection;
18 < import java.util.Hashtable;
16 > import java.util.Arrays;
17 > import java.util.Collection;
18 > import java.util.Comparator;
19 > import java.util.ConcurrentModificationException;
20 > import java.util.Enumeration;
21   import java.util.HashMap;
22 + import java.util.Hashtable;
23   import java.util.Iterator;
24 < import java.util.Enumeration;
19 < import java.util.ConcurrentModificationException;
24 > import java.util.Map;
25   import java.util.NoSuchElementException;
26 + import java.util.Set;
27   import java.util.concurrent.ConcurrentMap;
28 < import java.io.Serializable;
28 > import java.util.concurrent.atomic.AtomicReference;
29 > import java.util.concurrent.atomic.AtomicInteger;
30 > import java.util.concurrent.locks.LockSupport;
31 > import java.util.concurrent.locks.ReentrantLock;
32  
33   /**
34   * A hash table supporting full concurrency of retrievals and
# Line 33 | Line 42 | import java.io.Serializable;
42   * interoperable with {@code Hashtable} in programs that rely on its
43   * thread safety but not on its synchronization details.
44   *
45 < * <p> Retrieval operations (including {@code get}) generally do not
45 > * <p>Retrieval operations (including {@code get}) generally do not
46   * block, so may overlap with update operations (including {@code put}
47   * and {@code remove}). Retrievals reflect the results of the most
48   * recently <em>completed</em> update operations holding upon their
49 < * onset.  For aggregate operations such as {@code putAll} and {@code
50 < * clear}, concurrent retrievals may reflect insertion or removal of
51 < * only some entries.  Similarly, Iterators and Enumerations return
52 < * elements reflecting the state of the hash table at some point at or
53 < * since the creation of the iterator/enumeration.  They do
54 < * <em>not</em> throw {@link ConcurrentModificationException}.
55 < * However, iterators are designed to be used by only one thread at a
56 < * time.  Bear in mind that the results of aggregate status methods
57 < * including {@code size}, {@code isEmpty}, and {@code containsValue}
58 < * are typically useful only when a map is not undergoing concurrent
59 < * updates in other threads.  Otherwise the results of these methods
60 < * reflect transient states that may be adequate for monitoring
61 < * purposes, but not for program control.
62 < *
63 < * <p> Resizing this or any other kind of hash table is a relatively
64 < * slow operation, so, when possible, it is a good idea to provide
65 < * estimates of expected table sizes in constructors. Also, for
66 < * compatibility with previous versions of this class, constructors
67 < * may optionally specify an expected {@code concurrencyLevel} as an
68 < * additional hint for internal sizing.
49 > * onset. (More formally, an update operation for a given key bears a
50 > * <em>happens-before</em> relation with any (non-null) retrieval for
51 > * that key reporting the updated value.)  For aggregate operations
52 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
53 > * reflect insertion or removal of only some entries.  Similarly,
54 > * Iterators and Enumerations return elements reflecting the state of
55 > * the hash table at some point at or since the creation of the
56 > * iterator/enumeration.  They do <em>not</em> throw {@link
57 > * ConcurrentModificationException}.  However, iterators are designed
58 > * to be used by only one thread at a time.  Bear in mind that the
59 > * results of aggregate status methods including {@code size}, {@code
60 > * isEmpty}, and {@code containsValue} are typically useful only when
61 > * a map is not undergoing concurrent updates in other threads.
62 > * Otherwise the results of these methods reflect transient states
63 > * that may be adequate for monitoring or estimation purposes, but not
64 > * for program control.
65 > *
66 > * <p>The table is dynamically expanded when there are too many
67 > * collisions (i.e., keys that have distinct hash codes but fall into
68 > * the same slot modulo the table size), with the expected average
69 > * effect of maintaining roughly two bins per mapping (corresponding
70 > * to a 0.75 load factor threshold for resizing). There may be much
71 > * variance around this average as mappings are added and removed, but
72 > * overall, this maintains a commonly accepted time/space tradeoff for
73 > * hash tables.  However, resizing this or any other kind of hash
74 > * table may be a relatively slow operation. When possible, it is a
75 > * good idea to provide a size estimate as an optional {@code
76 > * initialCapacity} constructor argument. An additional optional
77 > * {@code loadFactor} constructor argument provides a further means of
78 > * customizing initial table capacity by specifying the table density
79 > * to be used in calculating the amount of space to allocate for the
80 > * given number of elements.  Also, for compatibility with previous
81 > * versions of this class, constructors may optionally specify an
82 > * expected {@code concurrencyLevel} as an additional hint for
83 > * internal sizing.  Note that using many keys with exactly the same
84 > * {@code hashCode()} is a sure way to slow down performance of any
85 > * hash table. To ameliorate impact, when keys are {@link Comparable},
86 > * this class may use comparison order among keys to help break ties.
87 > *
88 > * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
89 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
90 > * (using {@link #keySet(Object)} when only keys are of interest, and the
91 > * mapped values are (perhaps transiently) not used or all take the
92 > * same mapping value.
93   *
94   * <p>This class and its views and iterators implement all of the
95   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
96   * interfaces.
97   *
98 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
98 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
99   * does <em>not</em> allow {@code null} to be used as a key or value.
100   *
101 + * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
102 + * operations that are designed
103 + * to be safely, and often sensibly, applied even with maps that are
104 + * being concurrently updated by other threads; for example, when
105 + * computing a snapshot summary of the values in a shared registry.
106 + * There are three kinds of operation, each with four forms, accepting
107 + * functions with Keys, Values, Entries, and (Key, Value) arguments
108 + * and/or return values. Because the elements of a ConcurrentHashMapV8
109 + * are not ordered in any particular way, and may be processed in
110 + * different orders in different parallel executions, the correctness
111 + * of supplied functions should not depend on any ordering, or on any
112 + * other objects or values that may transiently change while
113 + * computation is in progress; and except for forEach actions, should
114 + * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
115 + * objects do not support method {@code setValue}.
116 + *
117 + * <ul>
118 + * <li> forEach: Perform a given action on each element.
119 + * A variant form applies a given transformation on each element
120 + * before performing the action.</li>
121 + *
122 + * <li> search: Return the first available non-null result of
123 + * applying a given function on each element; skipping further
124 + * search when a result is found.</li>
125 + *
126 + * <li> reduce: Accumulate each element.  The supplied reduction
127 + * function cannot rely on ordering (more formally, it should be
128 + * both associative and commutative).  There are five variants:
129 + *
130 + * <ul>
131 + *
132 + * <li> Plain reductions. (There is not a form of this method for
133 + * (key, value) function arguments since there is no corresponding
134 + * return type.)</li>
135 + *
136 + * <li> Mapped reductions that accumulate the results of a given
137 + * function applied to each element.</li>
138 + *
139 + * <li> Reductions to scalar doubles, longs, and ints, using a
140 + * given basis value.</li>
141 + *
142 + * </ul>
143 + * </li>
144 + * </ul>
145 + *
146 + * <p>These bulk operations accept a {@code parallelismThreshold}
147 + * argument. Methods proceed sequentially if the current map size is
148 + * estimated to be less than the given threshold. Using a value of
149 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
150 + * of {@code 1} results in maximal parallelism by partitioning into
151 + * enough subtasks to fully utilize the {@link
152 + * ForkJoinPool#commonPool()} that is used for all parallel
153 + * computations. Normally, you would initially choose one of these
154 + * extreme values, and then measure performance of using in-between
155 + * values that trade off overhead versus throughput.
156 + *
157 + * <p>The concurrency properties of bulk operations follow
158 + * from those of ConcurrentHashMapV8: Any non-null result returned
159 + * from {@code get(key)} and related access methods bears a
160 + * happens-before relation with the associated insertion or
161 + * update.  The result of any bulk operation reflects the
162 + * composition of these per-element relations (but is not
163 + * necessarily atomic with respect to the map as a whole unless it
164 + * is somehow known to be quiescent).  Conversely, because keys
165 + * and values in the map are never null, null serves as a reliable
166 + * atomic indicator of the current lack of any result.  To
167 + * maintain this property, null serves as an implicit basis for
168 + * all non-scalar reduction operations. For the double, long, and
169 + * int versions, the basis should be one that, when combined with
170 + * any other value, returns that other value (more formally, it
171 + * should be the identity element for the reduction). Most common
172 + * reductions have these properties; for example, computing a sum
173 + * with basis 0 or a minimum with basis MAX_VALUE.
174 + *
175 + * <p>Search and transformation functions provided as arguments
176 + * should similarly return null to indicate the lack of any result
177 + * (in which case it is not used). In the case of mapped
178 + * reductions, this also enables transformations to serve as
179 + * filters, returning null (or, in the case of primitive
180 + * specializations, the identity basis) if the element should not
181 + * be combined. You can create compound transformations and
182 + * filterings by composing them yourself under this "null means
183 + * there is nothing there now" rule before using them in search or
184 + * reduce operations.
185 + *
186 + * <p>Methods accepting and/or returning Entry arguments maintain
187 + * key-value associations. They may be useful for example when
188 + * finding the key for the greatest value. Note that "plain" Entry
189 + * arguments can be supplied using {@code new
190 + * AbstractMap.SimpleEntry(k,v)}.
191 + *
192 + * <p>Bulk operations may complete abruptly, throwing an
193 + * exception encountered in the application of a supplied
194 + * function. Bear in mind when handling such exceptions that other
195 + * concurrently executing functions could also have thrown
196 + * exceptions, or would have done so if the first exception had
197 + * not occurred.
198 + *
199 + * <p>Speedups for parallel compared to sequential forms are common
200 + * but not guaranteed.  Parallel operations involving brief functions
201 + * on small maps may execute more slowly than sequential forms if the
202 + * underlying work to parallelize the computation is more expensive
203 + * than the computation itself.  Similarly, parallelization may not
204 + * lead to much actual parallelism if all processors are busy
205 + * performing unrelated tasks.
206 + *
207 + * <p>All arguments to all task methods must be non-null.
208 + *
209 + * <p><em>jsr166e note: During transition, this class
210 + * uses nested functional interfaces with different names but the
211 + * same forms as those expected for JDK8.</em>
212 + *
213   * <p>This class is a member of the
214   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
215   * Java Collections Framework</a>.
216   *
72 * <p><em>jsr166e note: This class is a candidate replacement for
73 * java.util.concurrent.ConcurrentHashMap.<em>
74 *
217   * @since 1.5
218   * @author Doug Lea
219   * @param <K> the type of keys maintained by this map
220   * @param <V> the type of mapped values
221   */
222 < public class ConcurrentHashMapV8<K, V>
223 <        implements ConcurrentMap<K, V>, Serializable {
222 > public class ConcurrentHashMapV8<K,V> extends AbstractMap<K,V>
223 >    implements ConcurrentMap<K,V>, Serializable {
224      private static final long serialVersionUID = 7249069246763182397L;
225  
226      /**
227 <     * A function computing a mapping from the given key to a value,
228 <     * or {@code null} if there is no mapping. This is a place-holder
229 <     * for an upcoming JDK8 interface.
230 <     */
231 <    public static interface MappingFunction<K, V> {
232 <        /**
233 <         * Returns a value for the given key, or null if there is no
234 <         * mapping. If this function throws an (unchecked) exception,
235 <         * the exception is rethrown to its caller, and no mapping is
236 <         * recorded.  Because this function is invoked within
95 <         * atomicity control, the computation should be short and
96 <         * simple. The most common usage is to construct a new object
97 <         * serving as an initial mapped value.
98 <         *
99 <         * @param key the (non-null) key
100 <         * @return a value, or null if none
227 >     * An object for traversing and partitioning elements of a source.
228 >     * This interface provides a subset of the functionality of JDK8
229 >     * java.util.Spliterator.
230 >     */
231 >    public static interface ConcurrentHashMapSpliterator<T> {
232 >        /**
233 >         * If possible, returns a new spliterator covering
234 >         * approximately one half of the elements, which will not be
235 >         * covered by this spliterator. Returns null if cannot be
236 >         * split.
237           */
238 <        V map(K key);
239 <    }
238 >        ConcurrentHashMapSpliterator<T> trySplit();
239 >        /**
240 >         * Returns an estimate of the number of elements covered by
241 >         * this Spliterator.
242 >         */
243 >        long estimateSize();
244 >
245 >        /** Applies the action to each untraversed element */
246 >        void forEachRemaining(Action<? super T> action);
247 >        /** If an element remains, applies the action and returns true. */
248 >        boolean tryAdvance(Action<? super T> action);
249 >    }
250 >
251 >    // Sams
252 >    /** Interface describing a void action of one argument */
253 >    public interface Action<A> { void apply(A a); }
254 >    /** Interface describing a void action of two arguments */
255 >    public interface BiAction<A,B> { void apply(A a, B b); }
256 >    /** Interface describing a function of one argument */
257 >    public interface Fun<A,T> { T apply(A a); }
258 >    /** Interface describing a function of two arguments */
259 >    public interface BiFun<A,B,T> { T apply(A a, B b); }
260 >    /** Interface describing a function mapping its argument to a double */
261 >    public interface ObjectToDouble<A> { double apply(A a); }
262 >    /** Interface describing a function mapping its argument to a long */
263 >    public interface ObjectToLong<A> { long apply(A a); }
264 >    /** Interface describing a function mapping its argument to an int */
265 >    public interface ObjectToInt<A> {int apply(A a); }
266 >    /** Interface describing a function mapping two arguments to a double */
267 >    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
268 >    /** Interface describing a function mapping two arguments to a long */
269 >    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
270 >    /** Interface describing a function mapping two arguments to an int */
271 >    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
272 >    /** Interface describing a function mapping two doubles to a double */
273 >    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
274 >    /** Interface describing a function mapping two longs to a long */
275 >    public interface LongByLongToLong { long apply(long a, long b); }
276 >    /** Interface describing a function mapping two ints to an int */
277 >    public interface IntByIntToInt { int apply(int a, int b); }
278 >
279  
280      /*
281       * Overview:
# Line 108 | Line 283 | public class ConcurrentHashMapV8<K, V>
283       * The primary design goal of this hash table is to maintain
284       * concurrent readability (typically method get(), but also
285       * iterators and related methods) while minimizing update
286 <     * contention.
287 <     *
288 <     * Each key-value mapping is held in a Node.  Because Node fields
289 <     * can contain special values, they are defined using plain Object
290 <     * types. Similarly in turn, all internal methods that use them
291 <     * work off Object types. All public generic-typed methods relay
292 <     * in/out of these internal methods, supplying casts as needed.
286 >     * contention. Secondary goals are to keep space consumption about
287 >     * the same or better than java.util.HashMap, and to support high
288 >     * initial insertion rates on an empty table by many threads.
289 >     *
290 >     * This map usually acts as a binned (bucketed) hash table.  Each
291 >     * key-value mapping is held in a Node.  Most nodes are instances
292 >     * of the basic Node class with hash, key, value, and next
293 >     * fields. However, various subclasses exist: TreeNodes are
294 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
295 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
296 >     * of bins during resizing. ReservationNodes are used as
297 >     * placeholders while establishing values in computeIfAbsent and
298 >     * related methods.  The types TreeBin, ForwardingNode, and
299 >     * ReservationNode do not hold normal user keys, values, or
300 >     * hashes, and are readily distinguishable during search etc
301 >     * because they have negative hash fields and null key and value
302 >     * fields. (These special nodes are either uncommon or transient,
303 >     * so the impact of carrying around some unused fields is
304 >     * insignificant.)
305       *
306       * The table is lazily initialized to a power-of-two size upon the
307 <     * first insertion.  Each bin in the table contains a (typically
308 <     * short) list of Nodes.  Table accesses require volatile/atomic
309 <     * reads, writes, and CASes.  Because there is no other way to
310 <     * arrange this without adding further indirections, we use
311 <     * intrinsics (sun.misc.Unsafe) operations.  The lists of nodes
312 <     * within bins are always accurately traversable under volatile
313 <     * reads, so long as lookups check hash code and non-nullness of
314 <     * key and value before checking key equality. (All valid hash
315 <     * codes are nonnegative. Negative values are reserved for special
316 <     * forwarding nodes; see below.)
317 <     *
318 <     * A bin may be locked during update (insert, delete, and replace)
319 <     * operations.  We do not want to waste the space required to
320 <     * associate a distinct lock object with each bin, so instead use
321 <     * the first node of a bin list itself as a lock, using builtin
322 <     * "synchronized" locks. These save space and we can live with
323 <     * only plain block-structured lock/unlock operations. Using the
324 <     * first node of a list as a lock does not by itself suffice
325 <     * though: When a node is locked, any update must first validate
326 <     * that it is still the first node, and retry if not. (Because new
327 <     * nodes are always appended to lists, once a node is first in a
328 <     * bin, it remains first until deleted or the bin becomes
329 <     * invalidated.)  However, update operations can and sometimes do
330 <     * still traverse the bin until the point of update, which helps
331 <     * reduce cache misses on retries.  This is a converse of sorts to
332 <     * the lazy locking technique described by Herlihy & Shavit. If
333 <     * there is no existing node during a put operation, then one can
334 <     * be CAS'ed in (without need for lock except in computeIfAbsent);
335 <     * the CAS serves as validation. This is on average the most
336 <     * common case for put operations -- under random hash codes, the
337 <     * distribution of nodes in bins follows a Poisson distribution
338 <     * (see http://en.wikipedia.org/wiki/Poisson_distribution) with a
339 <     * parameter of 0.5 on average under the default loadFactor of
340 <     * 0.75.  The expected number of locks covering different elements
341 <     * (i.e., bins with 2 or more nodes) is approximately 10% at
342 <     * steady state under default settings.  Lock contention
343 <     * probability for two threads accessing arbitrary distinct
344 <     * elements is, roughly, 1 / (8 * #elements).
345 <     *
346 <     * The table is resized when occupancy exceeds a threshold.  Only
347 <     * a single thread performs the resize (using field "resizing", to
348 <     * arrange exclusion), but the table otherwise remains usable for
349 <     * both reads and updates. Resizing proceeds by transferring bins,
350 <     * one by one, from the table to the next table.  Upon transfer,
351 <     * the old table bin contains only a special forwarding node (with
352 <     * negative hash code ("MOVED")) that contains the next table as
307 >     * first insertion.  Each bin in the table normally contains a
308 >     * list of Nodes (most often, the list has only zero or one Node).
309 >     * Table accesses require volatile/atomic reads, writes, and
310 >     * CASes.  Because there is no other way to arrange this without
311 >     * adding further indirections, we use intrinsics
312 >     * (sun.misc.Unsafe) operations.
313 >     *
314 >     * We use the top (sign) bit of Node hash fields for control
315 >     * purposes -- it is available anyway because of addressing
316 >     * constraints.  Nodes with negative hash fields are specially
317 >     * handled or ignored in map methods.
318 >     *
319 >     * Insertion (via put or its variants) of the first node in an
320 >     * empty bin is performed by just CASing it to the bin.  This is
321 >     * by far the most common case for put operations under most
322 >     * key/hash distributions.  Other update operations (insert,
323 >     * delete, and replace) require locks.  We do not want to waste
324 >     * the space required to associate a distinct lock object with
325 >     * each bin, so instead use the first node of a bin list itself as
326 >     * a lock. Locking support for these locks relies on builtin
327 >     * "synchronized" monitors.
328 >     *
329 >     * Using the first node of a list as a lock does not by itself
330 >     * suffice though: When a node is locked, any update must first
331 >     * validate that it is still the first node after locking it, and
332 >     * retry if not. Because new nodes are always appended to lists,
333 >     * once a node is first in a bin, it remains first until deleted
334 >     * or the bin becomes invalidated (upon resizing).
335 >     *
336 >     * The main disadvantage of per-bin locks is that other update
337 >     * operations on other nodes in a bin list protected by the same
338 >     * lock can stall, for example when user equals() or mapping
339 >     * functions take a long time.  However, statistically, under
340 >     * random hash codes, this is not a common problem.  Ideally, the
341 >     * frequency of nodes in bins follows a Poisson distribution
342 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
343 >     * parameter of about 0.5 on average, given the resizing threshold
344 >     * of 0.75, although with a large variance because of resizing
345 >     * granularity. Ignoring variance, the expected occurrences of
346 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
347 >     * first values are:
348 >     *
349 >     * 0:    0.60653066
350 >     * 1:    0.30326533
351 >     * 2:    0.07581633
352 >     * 3:    0.01263606
353 >     * 4:    0.00157952
354 >     * 5:    0.00015795
355 >     * 6:    0.00001316
356 >     * 7:    0.00000094
357 >     * 8:    0.00000006
358 >     * more: less than 1 in ten million
359 >     *
360 >     * Lock contention probability for two threads accessing distinct
361 >     * elements is roughly 1 / (8 * #elements) under random hashes.
362 >     *
363 >     * Actual hash code distributions encountered in practice
364 >     * sometimes deviate significantly from uniform randomness.  This
365 >     * includes the case when N > (1<<30), so some keys MUST collide.
366 >     * Similarly for dumb or hostile usages in which multiple keys are
367 >     * designed to have identical hash codes or ones that differs only
368 >     * in masked-out high bits. So we use a secondary strategy that
369 >     * applies when the number of nodes in a bin exceeds a
370 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
371 >     * specialized form of red-black trees), bounding search time to
372 >     * O(log N).  Each search step in a TreeBin is at least twice as
373 >     * slow as in a regular list, but given that N cannot exceed
374 >     * (1<<64) (before running out of addresses) this bounds search
375 >     * steps, lock hold times, etc, to reasonable constants (roughly
376 >     * 100 nodes inspected per operation worst case) so long as keys
377 >     * are Comparable (which is very common -- String, Long, etc).
378 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
379 >     * traversal pointers as regular nodes, so can be traversed in
380 >     * iterators in the same way.
381 >     *
382 >     * The table is resized when occupancy exceeds a percentage
383 >     * threshold (nominally, 0.75, but see below).  Any thread
384 >     * noticing an overfull bin may assist in resizing after the
385 >     * initiating thread allocates and sets up the replacement array.
386 >     * However, rather than stalling, these other threads may proceed
387 >     * with insertions etc.  The use of TreeBins shields us from the
388 >     * worst case effects of overfilling while resizes are in
389 >     * progress.  Resizing proceeds by transferring bins, one by one,
390 >     * from the table to the next table. However, threads claim small
391 >     * blocks of indices to transfer (via field transferIndex) before
392 >     * doing so, reducing contention.  Because we are using
393 >     * power-of-two expansion, the elements from each bin must either
394 >     * stay at same index, or move with a power of two offset. We
395 >     * eliminate unnecessary node creation by catching cases where old
396 >     * nodes can be reused because their next fields won't change.  On
397 >     * average, only about one-sixth of them need cloning when a table
398 >     * doubles. The nodes they replace will be garbage collectable as
399 >     * soon as they are no longer referenced by any reader thread that
400 >     * may be in the midst of concurrently traversing table.  Upon
401 >     * transfer, the old table bin contains only a special forwarding
402 >     * node (with hash field "MOVED") that contains the next table as
403       * its key. On encountering a forwarding node, access and update
404 <     * operations restart, using the new table. To ensure concurrent
405 <     * readability of traversals, transfers must proceed from the last
406 <     * bin (table.length - 1) up towards the first.  Any traversal
407 <     * starting from the first bin can then arrange to move to the new
408 <     * table for the rest of the traversal without revisiting nodes.
409 <     * This constrains bin transfers to a particular order, and so can
410 <     * block indefinitely waiting for the next lock, and other threads
411 <     * cannot help with the transfer. However, expected stalls are
412 <     * infrequent enough to not warrant the additional overhead and
413 <     * complexity of access and iteration schemes that could admit
414 <     * out-of-order or concurrent bin transfers.
415 <     *
416 <     * A similar traversal scheme (not yet implemented) can apply to
417 <     * partial traversals during partitioned aggregate operations.
418 <     * Also, read-only operations give up if ever forwarded to a null
419 <     * table, which provides support for shutdown-style clearing,
420 <     * which is also not currently implemented.
421 <     *
422 <     * The element count is maintained using a LongAdder, which avoids
423 <     * contention on updates but can encounter cache thrashing if read
424 <     * too frequently during concurrent updates. To avoid reading so
425 <     * often, resizing is normally attempted only upon adding to a bin
426 <     * already holding two or more nodes. Under the default threshold
427 <     * (0.75), and uniform hash distributions, the probability of this
428 <     * occurring at threshold is around 13%, meaning that only about 1
429 <     * in 8 puts check threshold (and after resizing, many fewer do
430 <     * so). But this approximation has high variance for small table
431 <     * sizes, so we check on any collision for sizes <= 64.  Further,
432 <     * to increase the probability that a resize occurs soon enough, we
433 <     * offset the threshold (see THRESHOLD_OFFSET) by the expected
434 <     * number of puts between checks. This is currently set to 8, in
435 <     * accord with the default load factor. In practice, this is
436 <     * rarely overridden, and in any case is close enough to other
437 <     * plausible values not to waste dynamic probability computation
438 <     * for more precision.
404 >     * operations restart, using the new table.
405 >     *
406 >     * Each bin transfer requires its bin lock, which can stall
407 >     * waiting for locks while resizing. However, because other
408 >     * threads can join in and help resize rather than contend for
409 >     * locks, average aggregate waits become shorter as resizing
410 >     * progresses.  The transfer operation must also ensure that all
411 >     * accessible bins in both the old and new table are usable by any
412 >     * traversal.  This is arranged in part by proceeding from the
413 >     * last bin (table.length - 1) up towards the first.  Upon seeing
414 >     * a forwarding node, traversals (see class Traverser) arrange to
415 >     * move to the new table without revisiting nodes.  To ensure that
416 >     * no intervening nodes are skipped even when moved out of order,
417 >     * a stack (see class TableStack) is created on first encounter of
418 >     * a forwarding node during a traversal, to maintain its place if
419 >     * later processing the current table. The need for these
420 >     * save/restore mechanics is relatively rare, but when one
421 >     * forwarding node is encountered, typically many more will be.
422 >     * So Traversers use a simple caching scheme to avoid creating so
423 >     * many new TableStack nodes. (Thanks to Peter Levart for
424 >     * suggesting use of a stack here.)
425 >     *
426 >     * The traversal scheme also applies to partial traversals of
427 >     * ranges of bins (via an alternate Traverser constructor)
428 >     * to support partitioned aggregate operations.  Also, read-only
429 >     * operations give up if ever forwarded to a null table, which
430 >     * provides support for shutdown-style clearing, which is also not
431 >     * currently implemented.
432 >     *
433 >     * Lazy table initialization minimizes footprint until first use,
434 >     * and also avoids resizings when the first operation is from a
435 >     * putAll, constructor with map argument, or deserialization.
436 >     * These cases attempt to override the initial capacity settings,
437 >     * but harmlessly fail to take effect in cases of races.
438 >     *
439 >     * The element count is maintained using a specialization of
440 >     * LongAdder. We need to incorporate a specialization rather than
441 >     * just use a LongAdder in order to access implicit
442 >     * contention-sensing that leads to creation of multiple
443 >     * CounterCells.  The counter mechanics avoid contention on
444 >     * updates but can encounter cache thrashing if read too
445 >     * frequently during concurrent access. To avoid reading so often,
446 >     * resizing under contention is attempted only upon adding to a
447 >     * bin already holding two or more nodes. Under uniform hash
448 >     * distributions, the probability of this occurring at threshold
449 >     * is around 13%, meaning that only about 1 in 8 puts check
450 >     * threshold (and after resizing, many fewer do so).
451 >     *
452 >     * TreeBins use a special form of comparison for search and
453 >     * related operations (which is the main reason we cannot use
454 >     * existing collections such as TreeMaps). TreeBins contain
455 >     * Comparable elements, but may contain others, as well as
456 >     * elements that are Comparable but not necessarily Comparable for
457 >     * the same T, so we cannot invoke compareTo among them. To handle
458 >     * this, the tree is ordered primarily by hash value, then by
459 >     * Comparable.compareTo order if applicable.  On lookup at a node,
460 >     * if elements are not comparable or compare as 0 then both left
461 >     * and right children may need to be searched in the case of tied
462 >     * hash values. (This corresponds to the full list search that
463 >     * would be necessary if all elements were non-Comparable and had
464 >     * tied hashes.) On insertion, to keep a total ordering (or as
465 >     * close as is required here) across rebalancings, we compare
466 >     * classes and identityHashCodes as tie-breakers. The red-black
467 >     * balancing code is updated from pre-jdk-collections
468 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
469 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
470 >     * Algorithms" (CLR).
471 >     *
472 >     * TreeBins also require an additional locking mechanism.  While
473 >     * list traversal is always possible by readers even during
474 >     * updates, tree traversal is not, mainly because of tree-rotations
475 >     * that may change the root node and/or its linkages.  TreeBins
476 >     * include a simple read-write lock mechanism parasitic on the
477 >     * main bin-synchronization strategy: Structural adjustments
478 >     * associated with an insertion or removal are already bin-locked
479 >     * (and so cannot conflict with other writers) but must wait for
480 >     * ongoing readers to finish. Since there can be only one such
481 >     * waiter, we use a simple scheme using a single "waiter" field to
482 >     * block writers.  However, readers need never block.  If the root
483 >     * lock is held, they proceed along the slow traversal path (via
484 >     * next-pointers) until the lock becomes available or the list is
485 >     * exhausted, whichever comes first. These cases are not fast, but
486 >     * maximize aggregate expected throughput.
487 >     *
488 >     * Maintaining API and serialization compatibility with previous
489 >     * versions of this class introduces several oddities. Mainly: We
490 >     * leave untouched but unused constructor arguments refering to
491 >     * concurrencyLevel. We accept a loadFactor constructor argument,
492 >     * but apply it only to initial table capacity (which is the only
493 >     * time that we can guarantee to honor it.) We also declare an
494 >     * unused "Segment" class that is instantiated in minimal form
495 >     * only when serializing.
496 >     *
497 >     * Also, solely for compatibility with previous versions of this
498 >     * class, it extends AbstractMap, even though all of its methods
499 >     * are overridden, so it is just useless baggage.
500 >     *
501 >     * This file is organized to make things a little easier to follow
502 >     * while reading than they might otherwise: First the main static
503 >     * declarations and utilities, then fields, then main public
504 >     * methods (with a few factorings of multiple public methods into
505 >     * internal ones), then sizing methods, trees, traversers, and
506 >     * bulk operations.
507       */
508  
509      /* ---------------- Constants -------------- */
510  
511      /**
512 <     * The smallest allowed table capacity.  Must be a power of 2, at
513 <     * least 2.
512 >     * The largest possible table capacity.  This value must be
513 >     * exactly 1<<30 to stay within Java array allocation and indexing
514 >     * bounds for power of two table sizes, and is further required
515 >     * because the top two bits of 32bit hash fields are used for
516 >     * control purposes.
517       */
518 <    static final int MINIMUM_CAPACITY = 2;
518 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
519  
520      /**
521 <     * The largest allowed table capacity.  Must be a power of 2, at
522 <     * most 1<<30.
521 >     * The default initial table capacity.  Must be a power of 2
522 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
523       */
524 <    static final int MAXIMUM_CAPACITY = 1 << 30;
524 >    private static final int DEFAULT_CAPACITY = 16;
525  
526      /**
527 <     * The default initial table capacity.  Must be a power of 2, at
528 <     * least MINIMUM_CAPACITY and at most MAXIMUM_CAPACITY.
527 >     * The largest possible (non-power of two) array size.
528 >     * Needed by toArray and related methods.
529       */
530 <    static final int DEFAULT_CAPACITY = 16;
530 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
531  
532      /**
533 <     * The default load factor for this table, used when not otherwise
534 <     * specified in a constructor.
533 >     * The default concurrency level for this table. Unused but
534 >     * defined for compatibility with previous versions of this class.
535       */
536 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
536 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
537  
538      /**
539 <     * The default concurrency level for this table. Unused, but
540 <     * defined for compatibility with previous versions of this class.
539 >     * The load factor for this table. Overrides of this value in
540 >     * constructors affect only the initial table capacity.  The
541 >     * actual floating point value isn't normally used -- it is
542 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
543 >     * the associated resizing threshold.
544       */
545 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
545 >    private static final float LOAD_FACTOR = 0.75f;
546  
547      /**
548 <     * The count value to offset thresholds to compensate for checking
549 <     * for resizing only when inserting into bins with two or more
550 <     * elements. See above for explanation.
548 >     * The bin count threshold for using a tree rather than list for a
549 >     * bin.  Bins are converted to trees when adding an element to a
550 >     * bin with at least this many nodes. The value must be greater
551 >     * than 2, and should be at least 8 to mesh with assumptions in
552 >     * tree removal about conversion back to plain bins upon
553 >     * shrinkage.
554       */
555 <    static final int THRESHOLD_OFFSET = 8;
555 >    static final int TREEIFY_THRESHOLD = 8;
556  
557      /**
558 <     * Special node hash value indicating to use table in node.key
559 <     * Must be negative.
558 >     * The bin count threshold for untreeifying a (split) bin during a
559 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
560 >     * most 6 to mesh with shrinkage detection under removal.
561       */
562 <    static final int MOVED = -1;
248 <
249 <    /* ---------------- Fields -------------- */
562 >    static final int UNTREEIFY_THRESHOLD = 6;
563  
564      /**
565 <     * The array of bins. Lazily initialized upon first insertion.
566 <     * Size is always a power of two. Accessed directly by inner
567 <     * classes.
565 >     * The smallest table capacity for which bins may be treeified.
566 >     * (Otherwise the table is resized if too many nodes in a bin.)
567 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
568 >     * conflicts between resizing and treeification thresholds.
569       */
570 <    transient volatile Node[] table;
257 <
258 <    /** The counter maintaining number of elements. */
259 <    private transient final LongAdder counter;
260 <    /** Nonzero when table is being initialized or resized. Updated via CAS. */
261 <    private transient volatile int resizing;
262 <    /** The target load factor for the table. */
263 <    private transient float loadFactor;
264 <    /** The next element count value upon which to resize the table. */
265 <    private transient int threshold;
266 <    /** The initial capacity of the table. */
267 <    private transient int initCap;
268 <
269 <    // views
270 <    transient Set<K> keySet;
271 <    transient Set<Map.Entry<K,V>> entrySet;
272 <    transient Collection<V> values;
273 <
274 <    /** For serialization compatibility. Null unless serialized; see below */
275 <    Segment<K,V>[] segments;
570 >    static final int MIN_TREEIFY_CAPACITY = 64;
571  
572      /**
573 <     * Applies a supplemental hash function to a given hashCode, which
574 <     * defends against poor quality hash functions.  The result must
575 <     * be non-negative, and for reasonable performance must have good
576 <     * avalanche properties; i.e., that each bit of the argument
577 <     * affects each bit (except sign bit) of the result.
573 >     * Minimum number of rebinnings per transfer step. Ranges are
574 >     * subdivided to allow multiple resizer threads.  This value
575 >     * serves as a lower bound to avoid resizers encountering
576 >     * excessive memory contention.  The value should be at least
577 >     * DEFAULT_CAPACITY.
578       */
579 <    private static final int spread(int h) {
285 <        // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/
286 <        h ^= h >>> 16;
287 <        h *= 0x85ebca6b;
288 <        h ^= h >>> 13;
289 <        h *= 0xc2b2ae35;
290 <        return (h >>> 16) ^ (h & 0x7fffffff); // mask out sign bit
291 <    }
579 >    private static final int MIN_TRANSFER_STRIDE = 16;
580  
581 <    /**
582 <     * Key-value entry. Note that this is never exported out as a
295 <     * user-visible Map.Entry.
581 >    /*
582 >     * Encodings for Node hash fields. See above for explanation.
583       */
584 <    static final class Node {
584 >    static final int MOVED     = -1; // hash for forwarding nodes
585 >    static final int TREEBIN   = -2; // hash for roots of trees
586 >    static final int RESERVED  = -3; // hash for transient reservations
587 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
588 >
589 >    /** Number of CPUS, to place bounds on some sizings */
590 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
591 >
592 >    /** For serialization compatibility. */
593 >    private static final ObjectStreamField[] serialPersistentFields = {
594 >        new ObjectStreamField("segments", Segment[].class),
595 >        new ObjectStreamField("segmentMask", Integer.TYPE),
596 >        new ObjectStreamField("segmentShift", Integer.TYPE)
597 >    };
598 >
599 >    /* ---------------- Nodes -------------- */
600 >
601 >    /**
602 >     * Key-value entry.  This class is never exported out as a
603 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
604 >     * MapEntry below), but can be used for read-only traversals used
605 >     * in bulk tasks.  Subclasses of Node with a negative hash field
606 >     * are special, and contain null keys and values (but are never
607 >     * exported).  Otherwise, keys and vals are never null.
608 >     */
609 >    static class Node<K,V> implements Map.Entry<K,V> {
610          final int hash;
611 <        final Object key;
612 <        volatile Object val;
613 <        volatile Node next;
611 >        final K key;
612 >        volatile V val;
613 >        volatile Node<K,V> next;
614  
615 <        Node(int hash, Object key, Object val, Node next) {
615 >        Node(int hash, K key, V val, Node<K,V> next) {
616              this.hash = hash;
617              this.key = key;
618              this.val = val;
619              this.next = next;
620          }
621 +
622 +        public final K getKey()       { return key; }
623 +        public final V getValue()     { return val; }
624 +        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
625 +        public final String toString(){ return key + "=" + val; }
626 +        public final V setValue(V value) {
627 +            throw new UnsupportedOperationException();
628 +        }
629 +
630 +        public final boolean equals(Object o) {
631 +            Object k, v, u; Map.Entry<?,?> e;
632 +            return ((o instanceof Map.Entry) &&
633 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
634 +                    (v = e.getValue()) != null &&
635 +                    (k == key || k.equals(key)) &&
636 +                    (v == (u = val) || v.equals(u)));
637 +        }
638 +
639 +        /**
640 +         * Virtualized support for map.get(); overridden in subclasses.
641 +         */
642 +        Node<K,V> find(int h, Object k) {
643 +            Node<K,V> e = this;
644 +            if (k != null) {
645 +                do {
646 +                    K ek;
647 +                    if (e.hash == h &&
648 +                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
649 +                        return e;
650 +                } while ((e = e.next) != null);
651 +            }
652 +            return null;
653 +        }
654      }
655  
656 +    /* ---------------- Static utilities -------------- */
657 +
658 +    /**
659 +     * Spreads (XORs) higher bits of hash to lower and also forces top
660 +     * bit to 0. Because the table uses power-of-two masking, sets of
661 +     * hashes that vary only in bits above the current mask will
662 +     * always collide. (Among known examples are sets of Float keys
663 +     * holding consecutive whole numbers in small tables.)  So we
664 +     * apply a transform that spreads the impact of higher bits
665 +     * downward. There is a tradeoff between speed, utility, and
666 +     * quality of bit-spreading. Because many common sets of hashes
667 +     * are already reasonably distributed (so don't benefit from
668 +     * spreading), and because we use trees to handle large sets of
669 +     * collisions in bins, we just XOR some shifted bits in the
670 +     * cheapest possible way to reduce systematic lossage, as well as
671 +     * to incorporate impact of the highest bits that would otherwise
672 +     * never be used in index calculations because of table bounds.
673 +     */
674 +    static final int spread(int h) {
675 +        return (h ^ (h >>> 16)) & HASH_BITS;
676 +    }
677 +
678 +    /**
679 +     * Returns a power of two table size for the given desired capacity.
680 +     * See Hackers Delight, sec 3.2
681 +     */
682 +    private static final int tableSizeFor(int c) {
683 +        int n = c - 1;
684 +        n |= n >>> 1;
685 +        n |= n >>> 2;
686 +        n |= n >>> 4;
687 +        n |= n >>> 8;
688 +        n |= n >>> 16;
689 +        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
690 +    }
691 +
692 +    /**
693 +     * Returns x's Class if it is of the form "class C implements
694 +     * Comparable<C>", else null.
695 +     */
696 +    static Class<?> comparableClassFor(Object x) {
697 +        if (x instanceof Comparable) {
698 +            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
699 +            if ((c = x.getClass()) == String.class) // bypass checks
700 +                return c;
701 +            if ((ts = c.getGenericInterfaces()) != null) {
702 +                for (int i = 0; i < ts.length; ++i) {
703 +                    if (((t = ts[i]) instanceof ParameterizedType) &&
704 +                        ((p = (ParameterizedType)t).getRawType() ==
705 +                         Comparable.class) &&
706 +                        (as = p.getActualTypeArguments()) != null &&
707 +                        as.length == 1 && as[0] == c) // type arg is c
708 +                        return c;
709 +                }
710 +            }
711 +        }
712 +        return null;
713 +    }
714 +
715 +    /**
716 +     * Returns k.compareTo(x) if x matches kc (k's screened comparable
717 +     * class), else 0.
718 +     */
719 +    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
720 +    static int compareComparables(Class<?> kc, Object k, Object x) {
721 +        return (x == null || x.getClass() != kc ? 0 :
722 +                ((Comparable)k).compareTo(x));
723 +    }
724 +
725 +    /* ---------------- Table element access -------------- */
726 +
727      /*
728       * Volatile access methods are used for table elements as well as
729 <     * elements of in-progress next table while resizing.  Uses in
730 <     * access and update methods are null checked by callers, and
731 <     * implicitly bounds-checked, relying on the invariants that tab
732 <     * arrays have non-zero size, and all indices are masked with
733 <     * (tab.length - 1) which is never negative and always less than
734 <     * length. The "relaxed" non-volatile forms are used only during
735 <     * table initialization. The only other usage is in
736 <     * HashIterator.advance, which performs explicit checks.
729 >     * elements of in-progress next table while resizing.  All uses of
730 >     * the tab arguments must be null checked by callers.  All callers
731 >     * also paranoically precheck that tab's length is not zero (or an
732 >     * equivalent check), thus ensuring that any index argument taking
733 >     * the form of a hash value anded with (length - 1) is a valid
734 >     * index.  Note that, to be correct wrt arbitrary concurrency
735 >     * errors by users, these checks must operate on local variables,
736 >     * which accounts for some odd-looking inline assignments below.
737 >     * Note that calls to setTabAt always occur within locked regions,
738 >     * and so in principle require only release ordering, not need
739 >     * full volatile semantics, but are currently coded as volatile
740 >     * writes to be conservative.
741 >     */
742 >
743 >    @SuppressWarnings("unchecked")
744 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
745 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
746 >    }
747 >
748 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
749 >                                        Node<K,V> c, Node<K,V> v) {
750 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
751 >    }
752 >
753 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
754 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
755 >    }
756 >
757 >    /* ---------------- Fields -------------- */
758 >
759 >    /**
760 >     * The array of bins. Lazily initialized upon first insertion.
761 >     * Size is always a power of two. Accessed directly by iterators.
762 >     */
763 >    transient volatile Node<K,V>[] table;
764 >
765 >    /**
766 >     * The next table to use; non-null only while resizing.
767 >     */
768 >    private transient volatile Node<K,V>[] nextTable;
769 >
770 >    /**
771 >     * Base counter value, used mainly when there is no contention,
772 >     * but also as a fallback during table initialization
773 >     * races. Updated via CAS.
774 >     */
775 >    private transient volatile long baseCount;
776 >
777 >    /**
778 >     * Table initialization and resizing control.  When negative, the
779 >     * table is being initialized or resized: -1 for initialization,
780 >     * else -(1 + the number of active resizing threads).  Otherwise,
781 >     * when table is null, holds the initial table size to use upon
782 >     * creation, or 0 for default. After initialization, holds the
783 >     * next element count value upon which to resize the table.
784 >     */
785 >    private transient volatile int sizeCtl;
786 >
787 >    /**
788 >     * The next table index (plus one) to split while resizing.
789 >     */
790 >    private transient volatile int transferIndex;
791 >
792 >    /**
793 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
794 >     */
795 >    private transient volatile int cellsBusy;
796 >
797 >    /**
798 >     * Table of counter cells. When non-null, size is a power of 2.
799       */
800 +    private transient volatile CounterCell[] counterCells;
801 +
802 +    // views
803 +    private transient KeySetView<K,V> keySet;
804 +    private transient ValuesView<K,V> values;
805 +    private transient EntrySetView<K,V> entrySet;
806 +
807  
808 <    static final Node tabAt(Node[] tab, int i) { // used in HashIterator
809 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
808 >    /* ---------------- Public operations -------------- */
809 >
810 >    /**
811 >     * Creates a new, empty map with the default initial table size (16).
812 >     */
813 >    public ConcurrentHashMapV8() {
814      }
815  
816 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
817 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
816 >    /**
817 >     * Creates a new, empty map with an initial table size
818 >     * accommodating the specified number of elements without the need
819 >     * to dynamically resize.
820 >     *
821 >     * @param initialCapacity The implementation performs internal
822 >     * sizing to accommodate this many elements.
823 >     * @throws IllegalArgumentException if the initial capacity of
824 >     * elements is negative
825 >     */
826 >    public ConcurrentHashMapV8(int initialCapacity) {
827 >        if (initialCapacity < 0)
828 >            throw new IllegalArgumentException();
829 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
830 >                   MAXIMUM_CAPACITY :
831 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
832 >        this.sizeCtl = cap;
833      }
834  
835 <    private static final void setTabAt(Node[] tab, int i, Node v) {
836 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
835 >    /**
836 >     * Creates a new map with the same mappings as the given map.
837 >     *
838 >     * @param m the map
839 >     */
840 >    public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
841 >        this.sizeCtl = DEFAULT_CAPACITY;
842 >        putAll(m);
843      }
844  
845 <    private static final Node relaxedTabAt(Node[] tab, int i) {
846 <        return (Node)UNSAFE.getObject(tab, ((long)i<<ASHIFT)+ABASE);
845 >    /**
846 >     * Creates a new, empty map with an initial table size based on
847 >     * the given number of elements ({@code initialCapacity}) and
848 >     * initial table density ({@code loadFactor}).
849 >     *
850 >     * @param initialCapacity the initial capacity. The implementation
851 >     * performs internal sizing to accommodate this many elements,
852 >     * given the specified load factor.
853 >     * @param loadFactor the load factor (table density) for
854 >     * establishing the initial table size
855 >     * @throws IllegalArgumentException if the initial capacity of
856 >     * elements is negative or the load factor is nonpositive
857 >     *
858 >     * @since 1.6
859 >     */
860 >    public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
861 >        this(initialCapacity, loadFactor, 1);
862      }
863  
864 <    private static final void relaxedSetTabAt(Node[] tab, int i, Node v) {
865 <        UNSAFE.putObject(tab, ((long)i<<ASHIFT)+ABASE, v);
864 >    /**
865 >     * Creates a new, empty map with an initial table size based on
866 >     * the given number of elements ({@code initialCapacity}), table
867 >     * density ({@code loadFactor}), and number of concurrently
868 >     * updating threads ({@code concurrencyLevel}).
869 >     *
870 >     * @param initialCapacity the initial capacity. The implementation
871 >     * performs internal sizing to accommodate this many elements,
872 >     * given the specified load factor.
873 >     * @param loadFactor the load factor (table density) for
874 >     * establishing the initial table size
875 >     * @param concurrencyLevel the estimated number of concurrently
876 >     * updating threads. The implementation may use this value as
877 >     * a sizing hint.
878 >     * @throws IllegalArgumentException if the initial capacity is
879 >     * negative or the load factor or concurrencyLevel are
880 >     * nonpositive
881 >     */
882 >    public ConcurrentHashMapV8(int initialCapacity,
883 >                             float loadFactor, int concurrencyLevel) {
884 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
885 >            throw new IllegalArgumentException();
886 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
887 >            initialCapacity = concurrencyLevel;   // as estimated threads
888 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
889 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
890 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
891 >        this.sizeCtl = cap;
892      }
893  
894 <    /* ---------------- Access and update operations -------------- */
894 >    // Original (since JDK1.2) Map methods
895  
896 <   /** Implementation for get and containsKey */
897 <    private final Object internalGet(Object k) {
898 <        int h = spread(k.hashCode());
899 <        Node[] tab = table;
900 <        retry: while (tab != null) {
901 <            Node e = tabAt(tab, (tab.length - 1) & h);
902 <            while (e != null) {
903 <                int eh = e.hash;
904 <                if (eh == h) {
905 <                    Object ek = e.key, ev = e.val;
906 <                    if (ev != null && ek != null && (k == ek || k.equals(ek)))
907 <                        return ev;
908 <                }
909 <                else if (eh < 0) { // bin was moved during resize
910 <                    tab = (Node[])e.key;
911 <                    continue retry;
912 <                }
913 <                e = e.next;
896 >    /**
897 >     * {@inheritDoc}
898 >     */
899 >    public int size() {
900 >        long n = sumCount();
901 >        return ((n < 0L) ? 0 :
902 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
903 >                (int)n);
904 >    }
905 >
906 >    /**
907 >     * {@inheritDoc}
908 >     */
909 >    public boolean isEmpty() {
910 >        return sumCount() <= 0L; // ignore transient negative values
911 >    }
912 >
913 >    /**
914 >     * Returns the value to which the specified key is mapped,
915 >     * or {@code null} if this map contains no mapping for the key.
916 >     *
917 >     * <p>More formally, if this map contains a mapping from a key
918 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
919 >     * then this method returns {@code v}; otherwise it returns
920 >     * {@code null}.  (There can be at most one such mapping.)
921 >     *
922 >     * @throws NullPointerException if the specified key is null
923 >     */
924 >    public V get(Object key) {
925 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
926 >        int h = spread(key.hashCode());
927 >        if ((tab = table) != null && (n = tab.length) > 0 &&
928 >            (e = tabAt(tab, (n - 1) & h)) != null) {
929 >            if ((eh = e.hash) == h) {
930 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
931 >                    return e.val;
932 >            }
933 >            else if (eh < 0)
934 >                return (p = e.find(h, key)) != null ? p.val : null;
935 >            while ((e = e.next) != null) {
936 >                if (e.hash == h &&
937 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
938 >                    return e.val;
939              }
364            break;
940          }
941          return null;
942      }
943  
944 +    /**
945 +     * Tests if the specified object is a key in this table.
946 +     *
947 +     * @param  key possible key
948 +     * @return {@code true} if and only if the specified object
949 +     *         is a key in this table, as determined by the
950 +     *         {@code equals} method; {@code false} otherwise
951 +     * @throws NullPointerException if the specified key is null
952 +     */
953 +    public boolean containsKey(Object key) {
954 +        return get(key) != null;
955 +    }
956 +
957 +    /**
958 +     * Returns {@code true} if this map maps one or more keys to the
959 +     * specified value. Note: This method may require a full traversal
960 +     * of the map, and is much slower than method {@code containsKey}.
961 +     *
962 +     * @param value value whose presence in this map is to be tested
963 +     * @return {@code true} if this map maps one or more keys to the
964 +     *         specified value
965 +     * @throws NullPointerException if the specified value is null
966 +     */
967 +    public boolean containsValue(Object value) {
968 +        if (value == null)
969 +            throw new NullPointerException();
970 +        Node<K,V>[] t;
971 +        if ((t = table) != null) {
972 +            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
973 +            for (Node<K,V> p; (p = it.advance()) != null; ) {
974 +                V v;
975 +                if ((v = p.val) == value || (v != null && value.equals(v)))
976 +                    return true;
977 +            }
978 +        }
979 +        return false;
980 +    }
981 +
982 +    /**
983 +     * Maps the specified key to the specified value in this table.
984 +     * Neither the key nor the value can be null.
985 +     *
986 +     * <p>The value can be retrieved by calling the {@code get} method
987 +     * with a key that is equal to the original key.
988 +     *
989 +     * @param key key with which the specified value is to be associated
990 +     * @param value value to be associated with the specified key
991 +     * @return the previous value associated with {@code key}, or
992 +     *         {@code null} if there was no mapping for {@code key}
993 +     * @throws NullPointerException if the specified key or value is null
994 +     */
995 +    public V put(K key, V value) {
996 +        return putVal(key, value, false);
997 +    }
998  
999      /** Implementation for put and putIfAbsent */
1000 <    private final Object internalPut(Object k, Object v, boolean replace) {
1001 <        int h = spread(k.hashCode());
1002 <        Object oldVal = null;  // the previous value or null if none
1003 <        Node[] tab = table;
1004 <        for (;;) {
1005 <            Node e; int i;
1006 <            if (tab == null)
1007 <                tab = grow(0);
1008 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1009 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1010 <                    break;
1000 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
1001 >        if (key == null || value == null) throw new NullPointerException();
1002 >        int hash = spread(key.hashCode());
1003 >        int binCount = 0;
1004 >        for (Node<K,V>[] tab = table;;) {
1005 >            Node<K,V> f; int n, i, fh;
1006 >            if (tab == null || (n = tab.length) == 0)
1007 >                tab = initTable();
1008 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1009 >                if (casTabAt(tab, i, null,
1010 >                             new Node<K,V>(hash, key, value, null)))
1011 >                    break;                   // no lock when adding to empty bin
1012              }
1013 <            else if (e.hash < 0)
1014 <                tab = (Node[])e.key;
1013 >            else if ((fh = f.hash) == MOVED)
1014 >                tab = helpTransfer(tab, f);
1015              else {
1016 <                boolean validated = false;
1017 <                boolean checkSize = false;
1018 <                synchronized (e) {
1019 <                    if (tabAt(tab, i) == e) {
1020 <                        validated = true;
1021 <                        for (Node first = e;;) {
1022 <                            Object ek, ev;
1023 <                            if (e.hash == h &&
1024 <                                (ek = e.key) != null &&
1025 <                                (ev = e.val) != null &&
1026 <                                (k == ek || k.equals(ek))) {
1027 <                                oldVal = ev;
1028 <                                if (replace)
1029 <                                    e.val = v;
1030 <                                break;
1016 >                V oldVal = null;
1017 >                synchronized (f) {
1018 >                    if (tabAt(tab, i) == f) {
1019 >                        if (fh >= 0) {
1020 >                            binCount = 1;
1021 >                            for (Node<K,V> e = f;; ++binCount) {
1022 >                                K ek;
1023 >                                if (e.hash == hash &&
1024 >                                    ((ek = e.key) == key ||
1025 >                                     (ek != null && key.equals(ek)))) {
1026 >                                    oldVal = e.val;
1027 >                                    if (!onlyIfAbsent)
1028 >                                        e.val = value;
1029 >                                    break;
1030 >                                }
1031 >                                Node<K,V> pred = e;
1032 >                                if ((e = e.next) == null) {
1033 >                                    pred.next = new Node<K,V>(hash, key,
1034 >                                                              value, null);
1035 >                                    break;
1036 >                                }
1037                              }
1038 <                            Node last = e;
1039 <                            if ((e = e.next) == null) {
1040 <                                last.next = new Node(h, k, v, null);
1041 <                                if (last != first || tab.length <= 64)
1042 <                                    checkSize = true;
1043 <                                break;
1038 >                        }
1039 >                        else if (f instanceof TreeBin) {
1040 >                            Node<K,V> p;
1041 >                            binCount = 2;
1042 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1043 >                                                           value)) != null) {
1044 >                                oldVal = p.val;
1045 >                                if (!onlyIfAbsent)
1046 >                                    p.val = value;
1047                              }
1048                          }
1049                      }
1050                  }
1051 <                if (validated) {
1052 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1053 <                        resizing == 0 && counter.sum() >= threshold)
1054 <                        grow(0);
1051 >                if (binCount != 0) {
1052 >                    if (binCount >= TREEIFY_THRESHOLD)
1053 >                        treeifyBin(tab, i);
1054 >                    if (oldVal != null)
1055 >                        return oldVal;
1056                      break;
1057                  }
1058              }
1059          }
1060 <        if (oldVal == null)
1061 <            counter.increment();
1062 <        return oldVal;
1060 >        addCount(1L, binCount);
1061 >        return null;
1062 >    }
1063 >
1064 >    /**
1065 >     * Copies all of the mappings from the specified map to this one.
1066 >     * These mappings replace any mappings that this map had for any of the
1067 >     * keys currently in the specified map.
1068 >     *
1069 >     * @param m mappings to be stored in this map
1070 >     */
1071 >    public void putAll(Map<? extends K, ? extends V> m) {
1072 >        tryPresize(m.size());
1073 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1074 >            putVal(e.getKey(), e.getValue(), false);
1075 >    }
1076 >
1077 >    /**
1078 >     * Removes the key (and its corresponding value) from this map.
1079 >     * This method does nothing if the key is not in the map.
1080 >     *
1081 >     * @param  key the key that needs to be removed
1082 >     * @return the previous value associated with {@code key}, or
1083 >     *         {@code null} if there was no mapping for {@code key}
1084 >     * @throws NullPointerException if the specified key is null
1085 >     */
1086 >    public V remove(Object key) {
1087 >        return replaceNode(key, null, null);
1088      }
1089  
1090      /**
# Line 427 | Line 1092 | public class ConcurrentHashMapV8<K, V>
1092       * Replaces node value with v, conditional upon match of cv if
1093       * non-null.  If resulting value is null, delete.
1094       */
1095 <    private final Object internalReplace(Object k, Object v, Object cv) {
1096 <        int h = spread(k.hashCode());
1097 <        Object oldVal = null;
1098 <        Node e; int i;
1099 <        Node[] tab = table;
1100 <        while (tab != null &&
1101 <               (e = tabAt(tab, i = (tab.length - 1) & h)) != null) {
1102 <            if (e.hash < 0)
1103 <                tab = (Node[])e.key;
1095 >    final V replaceNode(Object key, V value, Object cv) {
1096 >        int hash = spread(key.hashCode());
1097 >        for (Node<K,V>[] tab = table;;) {
1098 >            Node<K,V> f; int n, i, fh;
1099 >            if (tab == null || (n = tab.length) == 0 ||
1100 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1101 >                break;
1102 >            else if ((fh = f.hash) == MOVED)
1103 >                tab = helpTransfer(tab, f);
1104              else {
1105 +                V oldVal = null;
1106                  boolean validated = false;
1107 <                boolean deleted = false;
1108 <                synchronized (e) {
1109 <                    if (tabAt(tab, i) == e) {
1110 <                        validated = true;
1111 <                        Node pred = null;
1112 <                        do {
1113 <                            Object ek, ev;
1114 <                            if (e.hash == h &&
1115 <                                (ek = e.key) != null &&
1116 <                                (ev = e.val) != null &&
1117 <                                (k == ek || k.equals(ek))) {
1118 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1119 <                                    oldVal = ev;
1120 <                                    if ((e.val = v) == null) {
1121 <                                        deleted = true;
1122 <                                        Node en = e.next;
1123 <                                        if (pred != null)
458 <                                            pred.next = en;
1107 >                synchronized (f) {
1108 >                    if (tabAt(tab, i) == f) {
1109 >                        if (fh >= 0) {
1110 >                            validated = true;
1111 >                            for (Node<K,V> e = f, pred = null;;) {
1112 >                                K ek;
1113 >                                if (e.hash == hash &&
1114 >                                    ((ek = e.key) == key ||
1115 >                                     (ek != null && key.equals(ek)))) {
1116 >                                    V ev = e.val;
1117 >                                    if (cv == null || cv == ev ||
1118 >                                        (ev != null && cv.equals(ev))) {
1119 >                                        oldVal = ev;
1120 >                                        if (value != null)
1121 >                                            e.val = value;
1122 >                                        else if (pred != null)
1123 >                                            pred.next = e.next;
1124                                          else
1125 <                                            setTabAt(tab, i, en);
1125 >                                            setTabAt(tab, i, e.next);
1126                                      }
1127 +                                    break;
1128                                  }
1129 <                                break;
1129 >                                pred = e;
1130 >                                if ((e = e.next) == null)
1131 >                                    break;
1132                              }
1133 <                            pred = e;
1134 <                        } while ((e = e.next) != null);
1133 >                        }
1134 >                        else if (f instanceof TreeBin) {
1135 >                            validated = true;
1136 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1137 >                            TreeNode<K,V> r, p;
1138 >                            if ((r = t.root) != null &&
1139 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1140 >                                V pv = p.val;
1141 >                                if (cv == null || cv == pv ||
1142 >                                    (pv != null && cv.equals(pv))) {
1143 >                                    oldVal = pv;
1144 >                                    if (value != null)
1145 >                                        p.val = value;
1146 >                                    else if (t.removeTreeNode(p))
1147 >                                        setTabAt(tab, i, untreeify(t.first));
1148 >                                }
1149 >                            }
1150 >                        }
1151                      }
1152                  }
1153                  if (validated) {
1154 <                    if (deleted)
1155 <                        counter.decrement();
1154 >                    if (oldVal != null) {
1155 >                        if (value == null)
1156 >                            addCount(-1L, -1);
1157 >                        return oldVal;
1158 >                    }
1159                      break;
1160                  }
1161              }
1162          }
1163 <        return oldVal;
1163 >        return null;
1164      }
1165  
1166 <    /** Implementation for computeIfAbsent and compute */
1167 <    @SuppressWarnings("unchecked")
1168 <    private final V internalCompute(K k,
1169 <                                    MappingFunction<? super K, ? extends V> f,
1170 <                                    boolean replace) {
1171 <        int h = spread(k.hashCode());
1172 <        V val = null;
1173 <        boolean added = false;
1174 <        Node[] tab = table;
1166 >    /**
1167 >     * Removes all of the mappings from this map.
1168 >     */
1169 >    public void clear() {
1170 >        long delta = 0L; // negative number of deletions
1171 >        int i = 0;
1172 >        Node<K,V>[] tab = table;
1173 >        while (tab != null && i < tab.length) {
1174 >            int fh;
1175 >            Node<K,V> f = tabAt(tab, i);
1176 >            if (f == null)
1177 >                ++i;
1178 >            else if ((fh = f.hash) == MOVED) {
1179 >                tab = helpTransfer(tab, f);
1180 >                i = 0; // restart
1181 >            }
1182 >            else {
1183 >                synchronized (f) {
1184 >                    if (tabAt(tab, i) == f) {
1185 >                        Node<K,V> p = (fh >= 0 ? f :
1186 >                                       (f instanceof TreeBin) ?
1187 >                                       ((TreeBin<K,V>)f).first : null);
1188 >                        while (p != null) {
1189 >                            --delta;
1190 >                            p = p.next;
1191 >                        }
1192 >                        setTabAt(tab, i++, null);
1193 >                    }
1194 >                }
1195 >            }
1196 >        }
1197 >        if (delta != 0L)
1198 >            addCount(delta, -1);
1199 >    }
1200 >
1201 >    /**
1202 >     * Returns a {@link Set} view of the keys contained in this map.
1203 >     * The set is backed by the map, so changes to the map are
1204 >     * reflected in the set, and vice-versa. The set supports element
1205 >     * removal, which removes the corresponding mapping from this map,
1206 >     * via the {@code Iterator.remove}, {@code Set.remove},
1207 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1208 >     * operations.  It does not support the {@code add} or
1209 >     * {@code addAll} operations.
1210 >     *
1211 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1212 >     * that will never throw {@link ConcurrentModificationException},
1213 >     * and guarantees to traverse elements as they existed upon
1214 >     * construction of the iterator, and may (but is not guaranteed to)
1215 >     * reflect any modifications subsequent to construction.
1216 >     *
1217 >     * @return the set view
1218 >     */
1219 >    public KeySetView<K,V> keySet() {
1220 >        KeySetView<K,V> ks;
1221 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1222 >    }
1223 >
1224 >    /**
1225 >     * Returns a {@link Collection} view of the values contained in this map.
1226 >     * The collection is backed by the map, so changes to the map are
1227 >     * reflected in the collection, and vice-versa.  The collection
1228 >     * supports element removal, which removes the corresponding
1229 >     * mapping from this map, via the {@code Iterator.remove},
1230 >     * {@code Collection.remove}, {@code removeAll},
1231 >     * {@code retainAll}, and {@code clear} operations.  It does not
1232 >     * support the {@code add} or {@code addAll} operations.
1233 >     *
1234 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1235 >     * that will never throw {@link ConcurrentModificationException},
1236 >     * and guarantees to traverse elements as they existed upon
1237 >     * construction of the iterator, and may (but is not guaranteed to)
1238 >     * reflect any modifications subsequent to construction.
1239 >     *
1240 >     * @return the collection view
1241 >     */
1242 >    public Collection<V> values() {
1243 >        ValuesView<K,V> vs;
1244 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1245 >    }
1246 >
1247 >    /**
1248 >     * Returns a {@link Set} view of the mappings contained in this map.
1249 >     * The set is backed by the map, so changes to the map are
1250 >     * reflected in the set, and vice-versa.  The set supports element
1251 >     * removal, which removes the corresponding mapping from the map,
1252 >     * via the {@code Iterator.remove}, {@code Set.remove},
1253 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1254 >     * operations.
1255 >     *
1256 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1257 >     * that will never throw {@link ConcurrentModificationException},
1258 >     * and guarantees to traverse elements as they existed upon
1259 >     * construction of the iterator, and may (but is not guaranteed to)
1260 >     * reflect any modifications subsequent to construction.
1261 >     *
1262 >     * @return the set view
1263 >     */
1264 >    public Set<Map.Entry<K,V>> entrySet() {
1265 >        EntrySetView<K,V> es;
1266 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1267 >    }
1268 >
1269 >    /**
1270 >     * Returns the hash code value for this {@link Map}, i.e.,
1271 >     * the sum of, for each key-value pair in the map,
1272 >     * {@code key.hashCode() ^ value.hashCode()}.
1273 >     *
1274 >     * @return the hash code value for this map
1275 >     */
1276 >    public int hashCode() {
1277 >        int h = 0;
1278 >        Node<K,V>[] t;
1279 >        if ((t = table) != null) {
1280 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1281 >            for (Node<K,V> p; (p = it.advance()) != null; )
1282 >                h += p.key.hashCode() ^ p.val.hashCode();
1283 >        }
1284 >        return h;
1285 >    }
1286 >
1287 >    /**
1288 >     * Returns a string representation of this map.  The string
1289 >     * representation consists of a list of key-value mappings (in no
1290 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1291 >     * mappings are separated by the characters {@code ", "} (comma
1292 >     * and space).  Each key-value mapping is rendered as the key
1293 >     * followed by an equals sign ("{@code =}") followed by the
1294 >     * associated value.
1295 >     *
1296 >     * @return a string representation of this map
1297 >     */
1298 >    public String toString() {
1299 >        Node<K,V>[] t;
1300 >        int f = (t = table) == null ? 0 : t.length;
1301 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1302 >        StringBuilder sb = new StringBuilder();
1303 >        sb.append('{');
1304 >        Node<K,V> p;
1305 >        if ((p = it.advance()) != null) {
1306 >            for (;;) {
1307 >                K k = p.key;
1308 >                V v = p.val;
1309 >                sb.append(k == this ? "(this Map)" : k);
1310 >                sb.append('=');
1311 >                sb.append(v == this ? "(this Map)" : v);
1312 >                if ((p = it.advance()) == null)
1313 >                    break;
1314 >                sb.append(',').append(' ');
1315 >            }
1316 >        }
1317 >        return sb.append('}').toString();
1318 >    }
1319 >
1320 >    /**
1321 >     * Compares the specified object with this map for equality.
1322 >     * Returns {@code true} if the given object is a map with the same
1323 >     * mappings as this map.  This operation may return misleading
1324 >     * results if either map is concurrently modified during execution
1325 >     * of this method.
1326 >     *
1327 >     * @param o object to be compared for equality with this map
1328 >     * @return {@code true} if the specified object is equal to this map
1329 >     */
1330 >    public boolean equals(Object o) {
1331 >        if (o != this) {
1332 >            if (!(o instanceof Map))
1333 >                return false;
1334 >            Map<?,?> m = (Map<?,?>) o;
1335 >            Node<K,V>[] t;
1336 >            int f = (t = table) == null ? 0 : t.length;
1337 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1338 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1339 >                V val = p.val;
1340 >                Object v = m.get(p.key);
1341 >                if (v == null || (v != val && !v.equals(val)))
1342 >                    return false;
1343 >            }
1344 >            for (Map.Entry<?,?> e : m.entrySet()) {
1345 >                Object mk, mv, v;
1346 >                if ((mk = e.getKey()) == null ||
1347 >                    (mv = e.getValue()) == null ||
1348 >                    (v = get(mk)) == null ||
1349 >                    (mv != v && !mv.equals(v)))
1350 >                    return false;
1351 >            }
1352 >        }
1353 >        return true;
1354 >    }
1355 >
1356 >    /**
1357 >     * Stripped-down version of helper class used in previous version,
1358 >     * declared for the sake of serialization compatibility
1359 >     */
1360 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1361 >        private static final long serialVersionUID = 2249069246763182397L;
1362 >        final float loadFactor;
1363 >        Segment(float lf) { this.loadFactor = lf; }
1364 >    }
1365 >
1366 >    /**
1367 >     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1368 >     * stream (i.e., serializes it).
1369 >     * @param s the stream
1370 >     * @throws java.io.IOException if an I/O error occurs
1371 >     * @serialData
1372 >     * the key (Object) and value (Object)
1373 >     * for each key-value mapping, followed by a null pair.
1374 >     * The key-value mappings are emitted in no particular order.
1375 >     */
1376 >    private void writeObject(java.io.ObjectOutputStream s)
1377 >        throws java.io.IOException {
1378 >        // For serialization compatibility
1379 >        // Emulate segment calculation from previous version of this class
1380 >        int sshift = 0;
1381 >        int ssize = 1;
1382 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1383 >            ++sshift;
1384 >            ssize <<= 1;
1385 >        }
1386 >        int segmentShift = 32 - sshift;
1387 >        int segmentMask = ssize - 1;
1388 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1389 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1390 >        for (int i = 0; i < segments.length; ++i)
1391 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1392 >        s.putFields().put("segments", segments);
1393 >        s.putFields().put("segmentShift", segmentShift);
1394 >        s.putFields().put("segmentMask", segmentMask);
1395 >        s.writeFields();
1396 >
1397 >        Node<K,V>[] t;
1398 >        if ((t = table) != null) {
1399 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1400 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1401 >                s.writeObject(p.key);
1402 >                s.writeObject(p.val);
1403 >            }
1404 >        }
1405 >        s.writeObject(null);
1406 >        s.writeObject(null);
1407 >        segments = null; // throw away
1408 >    }
1409 >
1410 >    /**
1411 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1412 >     * @param s the stream
1413 >     * @throws ClassNotFoundException if the class of a serialized object
1414 >     *         could not be found
1415 >     * @throws java.io.IOException if an I/O error occurs
1416 >     */
1417 >    private void readObject(java.io.ObjectInputStream s)
1418 >        throws java.io.IOException, ClassNotFoundException {
1419 >        /*
1420 >         * To improve performance in typical cases, we create nodes
1421 >         * while reading, then place in table once size is known.
1422 >         * However, we must also validate uniqueness and deal with
1423 >         * overpopulated bins while doing so, which requires
1424 >         * specialized versions of putVal mechanics.
1425 >         */
1426 >        sizeCtl = -1; // force exclusion for table construction
1427 >        s.defaultReadObject();
1428 >        long size = 0L;
1429 >        Node<K,V> p = null;
1430          for (;;) {
1431 <            Node e; int i;
1432 <            if (tab == null)
1433 <                tab = grow(0);
1434 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1435 <                Node node = new Node(h, k, null, null);
1436 <                boolean validated = false;
1437 <                synchronized (node) {
1438 <                    if (casTabAt(tab, i, null, node)) {
1439 <                        validated = true;
1431 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1432 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1433 >            if (k != null && v != null) {
1434 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1435 >                ++size;
1436 >            }
1437 >            else
1438 >                break;
1439 >        }
1440 >        if (size == 0L)
1441 >            sizeCtl = 0;
1442 >        else {
1443 >            int n;
1444 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1445 >                n = MAXIMUM_CAPACITY;
1446 >            else {
1447 >                int sz = (int)size;
1448 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1449 >            }
1450 >            @SuppressWarnings("unchecked")
1451 >                Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1452 >            int mask = n - 1;
1453 >            long added = 0L;
1454 >            while (p != null) {
1455 >                boolean insertAtFront;
1456 >                Node<K,V> next = p.next, first;
1457 >                int h = p.hash, j = h & mask;
1458 >                if ((first = tabAt(tab, j)) == null)
1459 >                    insertAtFront = true;
1460 >                else {
1461 >                    K k = p.key;
1462 >                    if (first.hash < 0) {
1463 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1464 >                        if (t.putTreeVal(h, k, p.val) == null)
1465 >                            ++added;
1466 >                        insertAtFront = false;
1467 >                    }
1468 >                    else {
1469 >                        int binCount = 0;
1470 >                        insertAtFront = true;
1471 >                        Node<K,V> q; K qk;
1472 >                        for (q = first; q != null; q = q.next) {
1473 >                            if (q.hash == h &&
1474 >                                ((qk = q.key) == k ||
1475 >                                 (qk != null && k.equals(qk)))) {
1476 >                                insertAtFront = false;
1477 >                                break;
1478 >                            }
1479 >                            ++binCount;
1480 >                        }
1481 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1482 >                            insertAtFront = false;
1483 >                            ++added;
1484 >                            p.next = first;
1485 >                            TreeNode<K,V> hd = null, tl = null;
1486 >                            for (q = p; q != null; q = q.next) {
1487 >                                TreeNode<K,V> t = new TreeNode<K,V>
1488 >                                    (q.hash, q.key, q.val, null, null);
1489 >                                if ((t.prev = tl) == null)
1490 >                                    hd = t;
1491 >                                else
1492 >                                    tl.next = t;
1493 >                                tl = t;
1494 >                            }
1495 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1496 >                        }
1497 >                    }
1498 >                }
1499 >                if (insertAtFront) {
1500 >                    ++added;
1501 >                    p.next = first;
1502 >                    setTabAt(tab, j, p);
1503 >                }
1504 >                p = next;
1505 >            }
1506 >            table = tab;
1507 >            sizeCtl = n - (n >>> 2);
1508 >            baseCount = added;
1509 >        }
1510 >    }
1511 >
1512 >    // ConcurrentMap methods
1513 >
1514 >    /**
1515 >     * {@inheritDoc}
1516 >     *
1517 >     * @return the previous value associated with the specified key,
1518 >     *         or {@code null} if there was no mapping for the key
1519 >     * @throws NullPointerException if the specified key or value is null
1520 >     */
1521 >    public V putIfAbsent(K key, V value) {
1522 >        return putVal(key, value, true);
1523 >    }
1524 >
1525 >    /**
1526 >     * {@inheritDoc}
1527 >     *
1528 >     * @throws NullPointerException if the specified key is null
1529 >     */
1530 >    public boolean remove(Object key, Object value) {
1531 >        if (key == null)
1532 >            throw new NullPointerException();
1533 >        return value != null && replaceNode(key, null, value) != null;
1534 >    }
1535 >
1536 >    /**
1537 >     * {@inheritDoc}
1538 >     *
1539 >     * @throws NullPointerException if any of the arguments are null
1540 >     */
1541 >    public boolean replace(K key, V oldValue, V newValue) {
1542 >        if (key == null || oldValue == null || newValue == null)
1543 >            throw new NullPointerException();
1544 >        return replaceNode(key, newValue, oldValue) != null;
1545 >    }
1546 >
1547 >    /**
1548 >     * {@inheritDoc}
1549 >     *
1550 >     * @return the previous value associated with the specified key,
1551 >     *         or {@code null} if there was no mapping for the key
1552 >     * @throws NullPointerException if the specified key or value is null
1553 >     */
1554 >    public V replace(K key, V value) {
1555 >        if (key == null || value == null)
1556 >            throw new NullPointerException();
1557 >        return replaceNode(key, value, null);
1558 >    }
1559 >
1560 >    // Overrides of JDK8+ Map extension method defaults
1561 >
1562 >    /**
1563 >     * Returns the value to which the specified key is mapped, or the
1564 >     * given default value if this map contains no mapping for the
1565 >     * key.
1566 >     *
1567 >     * @param key the key whose associated value is to be returned
1568 >     * @param defaultValue the value to return if this map contains
1569 >     * no mapping for the given key
1570 >     * @return the mapping for the key, if present; else the default value
1571 >     * @throws NullPointerException if the specified key is null
1572 >     */
1573 >    public V getOrDefault(Object key, V defaultValue) {
1574 >        V v;
1575 >        return (v = get(key)) == null ? defaultValue : v;
1576 >    }
1577 >
1578 >    public void forEach(BiAction<? super K, ? super V> action) {
1579 >        if (action == null) throw new NullPointerException();
1580 >        Node<K,V>[] t;
1581 >        if ((t = table) != null) {
1582 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1583 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1584 >                action.apply(p.key, p.val);
1585 >            }
1586 >        }
1587 >    }
1588 >
1589 >    public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1590 >        if (function == null) throw new NullPointerException();
1591 >        Node<K,V>[] t;
1592 >        if ((t = table) != null) {
1593 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1594 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1595 >                V oldValue = p.val;
1596 >                for (K key = p.key;;) {
1597 >                    V newValue = function.apply(key, oldValue);
1598 >                    if (newValue == null)
1599 >                        throw new NullPointerException();
1600 >                    if (replaceNode(key, newValue, oldValue) != null ||
1601 >                        (oldValue = get(key)) == null)
1602 >                        break;
1603 >                }
1604 >            }
1605 >        }
1606 >    }
1607 >
1608 >    /**
1609 >     * If the specified key is not already associated with a value,
1610 >     * attempts to compute its value using the given mapping function
1611 >     * and enters it into this map unless {@code null}.  The entire
1612 >     * method invocation is performed atomically, so the function is
1613 >     * applied at most once per key.  Some attempted update operations
1614 >     * on this map by other threads may be blocked while computation
1615 >     * is in progress, so the computation should be short and simple,
1616 >     * and must not attempt to update any other mappings of this map.
1617 >     *
1618 >     * @param key key with which the specified value is to be associated
1619 >     * @param mappingFunction the function to compute a value
1620 >     * @return the current (existing or computed) value associated with
1621 >     *         the specified key, or null if the computed value is null
1622 >     * @throws NullPointerException if the specified key or mappingFunction
1623 >     *         is null
1624 >     * @throws IllegalStateException if the computation detectably
1625 >     *         attempts a recursive update to this map that would
1626 >     *         otherwise never complete
1627 >     * @throws RuntimeException or Error if the mappingFunction does so,
1628 >     *         in which case the mapping is left unestablished
1629 >     */
1630 >    public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1631 >        if (key == null || mappingFunction == null)
1632 >            throw new NullPointerException();
1633 >        int h = spread(key.hashCode());
1634 >        V val = null;
1635 >        int binCount = 0;
1636 >        for (Node<K,V>[] tab = table;;) {
1637 >            Node<K,V> f; int n, i, fh;
1638 >            if (tab == null || (n = tab.length) == 0)
1639 >                tab = initTable();
1640 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1641 >                Node<K,V> r = new ReservationNode<K,V>();
1642 >                synchronized (r) {
1643 >                    if (casTabAt(tab, i, null, r)) {
1644 >                        binCount = 1;
1645 >                        Node<K,V> node = null;
1646                          try {
1647 <                            val = f.map(k);
1648 <                            if (val != null) {
1649 <                                node.val = val;
1647 >                            if ((val = mappingFunction.apply(key)) != null)
1648 >                                node = new Node<K,V>(h, key, val, null);
1649 >                        } finally {
1650 >                            setTabAt(tab, i, node);
1651 >                        }
1652 >                    }
1653 >                }
1654 >                if (binCount != 0)
1655 >                    break;
1656 >            }
1657 >            else if ((fh = f.hash) == MOVED)
1658 >                tab = helpTransfer(tab, f);
1659 >            else {
1660 >                boolean added = false;
1661 >                synchronized (f) {
1662 >                    if (tabAt(tab, i) == f) {
1663 >                        if (fh >= 0) {
1664 >                            binCount = 1;
1665 >                            for (Node<K,V> e = f;; ++binCount) {
1666 >                                K ek; V ev;
1667 >                                if (e.hash == h &&
1668 >                                    ((ek = e.key) == key ||
1669 >                                     (ek != null && key.equals(ek)))) {
1670 >                                    val = e.val;
1671 >                                    break;
1672 >                                }
1673 >                                Node<K,V> pred = e;
1674 >                                if ((e = e.next) == null) {
1675 >                                    if ((val = mappingFunction.apply(key)) != null) {
1676 >                                        added = true;
1677 >                                        pred.next = new Node<K,V>(h, key, val, null);
1678 >                                    }
1679 >                                    break;
1680 >                                }
1681 >                            }
1682 >                        }
1683 >                        else if (f instanceof TreeBin) {
1684 >                            binCount = 2;
1685 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1686 >                            TreeNode<K,V> r, p;
1687 >                            if ((r = t.root) != null &&
1688 >                                (p = r.findTreeNode(h, key, null)) != null)
1689 >                                val = p.val;
1690 >                            else if ((val = mappingFunction.apply(key)) != null) {
1691                                  added = true;
1692 +                                t.putTreeVal(h, key, val);
1693 +                            }
1694 +                        }
1695 +                    }
1696 +                }
1697 +                if (binCount != 0) {
1698 +                    if (binCount >= TREEIFY_THRESHOLD)
1699 +                        treeifyBin(tab, i);
1700 +                    if (!added)
1701 +                        return val;
1702 +                    break;
1703 +                }
1704 +            }
1705 +        }
1706 +        if (val != null)
1707 +            addCount(1L, binCount);
1708 +        return val;
1709 +    }
1710 +
1711 +    /**
1712 +     * If the value for the specified key is present, attempts to
1713 +     * compute a new mapping given the key and its current mapped
1714 +     * value.  The entire method invocation is performed atomically.
1715 +     * Some attempted update operations on this map by other threads
1716 +     * may be blocked while computation is in progress, so the
1717 +     * computation should be short and simple, and must not attempt to
1718 +     * update any other mappings of this map.
1719 +     *
1720 +     * @param key key with which a value may be associated
1721 +     * @param remappingFunction the function to compute a value
1722 +     * @return the new value associated with the specified key, or null if none
1723 +     * @throws NullPointerException if the specified key or remappingFunction
1724 +     *         is null
1725 +     * @throws IllegalStateException if the computation detectably
1726 +     *         attempts a recursive update to this map that would
1727 +     *         otherwise never complete
1728 +     * @throws RuntimeException or Error if the remappingFunction does so,
1729 +     *         in which case the mapping is unchanged
1730 +     */
1731 +    public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1732 +        if (key == null || remappingFunction == null)
1733 +            throw new NullPointerException();
1734 +        int h = spread(key.hashCode());
1735 +        V val = null;
1736 +        int delta = 0;
1737 +        int binCount = 0;
1738 +        for (Node<K,V>[] tab = table;;) {
1739 +            Node<K,V> f; int n, i, fh;
1740 +            if (tab == null || (n = tab.length) == 0)
1741 +                tab = initTable();
1742 +            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1743 +                break;
1744 +            else if ((fh = f.hash) == MOVED)
1745 +                tab = helpTransfer(tab, f);
1746 +            else {
1747 +                synchronized (f) {
1748 +                    if (tabAt(tab, i) == f) {
1749 +                        if (fh >= 0) {
1750 +                            binCount = 1;
1751 +                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1752 +                                K ek;
1753 +                                if (e.hash == h &&
1754 +                                    ((ek = e.key) == key ||
1755 +                                     (ek != null && key.equals(ek)))) {
1756 +                                    val = remappingFunction.apply(key, e.val);
1757 +                                    if (val != null)
1758 +                                        e.val = val;
1759 +                                    else {
1760 +                                        delta = -1;
1761 +                                        Node<K,V> en = e.next;
1762 +                                        if (pred != null)
1763 +                                            pred.next = en;
1764 +                                        else
1765 +                                            setTabAt(tab, i, en);
1766 +                                    }
1767 +                                    break;
1768 +                                }
1769 +                                pred = e;
1770 +                                if ((e = e.next) == null)
1771 +                                    break;
1772 +                            }
1773 +                        }
1774 +                        else if (f instanceof TreeBin) {
1775 +                            binCount = 2;
1776 +                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1777 +                            TreeNode<K,V> r, p;
1778 +                            if ((r = t.root) != null &&
1779 +                                (p = r.findTreeNode(h, key, null)) != null) {
1780 +                                val = remappingFunction.apply(key, p.val);
1781 +                                if (val != null)
1782 +                                    p.val = val;
1783 +                                else {
1784 +                                    delta = -1;
1785 +                                    if (t.removeTreeNode(p))
1786 +                                        setTabAt(tab, i, untreeify(t.first));
1787 +                                }
1788 +                            }
1789 +                        }
1790 +                    }
1791 +                }
1792 +                if (binCount != 0)
1793 +                    break;
1794 +            }
1795 +        }
1796 +        if (delta != 0)
1797 +            addCount((long)delta, binCount);
1798 +        return val;
1799 +    }
1800 +
1801 +    /**
1802 +     * Attempts to compute a mapping for the specified key and its
1803 +     * current mapped value (or {@code null} if there is no current
1804 +     * mapping). The entire method invocation is performed atomically.
1805 +     * Some attempted update operations on this map by other threads
1806 +     * may be blocked while computation is in progress, so the
1807 +     * computation should be short and simple, and must not attempt to
1808 +     * update any other mappings of this Map.
1809 +     *
1810 +     * @param key key with which the specified value is to be associated
1811 +     * @param remappingFunction the function to compute a value
1812 +     * @return the new value associated with the specified key, or null if none
1813 +     * @throws NullPointerException if the specified key or remappingFunction
1814 +     *         is null
1815 +     * @throws IllegalStateException if the computation detectably
1816 +     *         attempts a recursive update to this map that would
1817 +     *         otherwise never complete
1818 +     * @throws RuntimeException or Error if the remappingFunction does so,
1819 +     *         in which case the mapping is unchanged
1820 +     */
1821 +    public V compute(K key,
1822 +                     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1823 +        if (key == null || remappingFunction == null)
1824 +            throw new NullPointerException();
1825 +        int h = spread(key.hashCode());
1826 +        V val = null;
1827 +        int delta = 0;
1828 +        int binCount = 0;
1829 +        for (Node<K,V>[] tab = table;;) {
1830 +            Node<K,V> f; int n, i, fh;
1831 +            if (tab == null || (n = tab.length) == 0)
1832 +                tab = initTable();
1833 +            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1834 +                Node<K,V> r = new ReservationNode<K,V>();
1835 +                synchronized (r) {
1836 +                    if (casTabAt(tab, i, null, r)) {
1837 +                        binCount = 1;
1838 +                        Node<K,V> node = null;
1839 +                        try {
1840 +                            if ((val = remappingFunction.apply(key, null)) != null) {
1841 +                                delta = 1;
1842 +                                node = new Node<K,V>(h, key, val, null);
1843                              }
1844                          } finally {
1845 <                            if (!added)
506 <                                setTabAt(tab, i, null);
1845 >                            setTabAt(tab, i, node);
1846                          }
1847                      }
1848                  }
1849 <                if (validated)
1849 >                if (binCount != 0)
1850                      break;
1851              }
1852 <            else if (e.hash < 0)
1853 <                tab = (Node[])e.key;
515 <            else if (Thread.holdsLock(e))
516 <                throw new IllegalStateException("Recursive map computation");
1852 >            else if ((fh = f.hash) == MOVED)
1853 >                tab = helpTransfer(tab, f);
1854              else {
1855 <                boolean validated = false;
1856 <                boolean checkSize = false;
1857 <                synchronized (e) {
1858 <                    if (tabAt(tab, i) == e) {
1859 <                        validated = true;
1860 <                        for (Node first = e;;) {
1861 <                            Object ek, ev, fv;
1862 <                            if (e.hash == h &&
1863 <                                (ek = e.key) != null &&
1864 <                                (ev = e.val) != null &&
1865 <                                (k == ek || k.equals(ek))) {
1866 <                                if (replace && (fv = f.map(k)) != null)
1867 <                                    ev = e.val = fv;
1868 <                                val = (V)ev;
1869 <                                break;
1855 >                synchronized (f) {
1856 >                    if (tabAt(tab, i) == f) {
1857 >                        if (fh >= 0) {
1858 >                            binCount = 1;
1859 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1860 >                                K ek;
1861 >                                if (e.hash == h &&
1862 >                                    ((ek = e.key) == key ||
1863 >                                     (ek != null && key.equals(ek)))) {
1864 >                                    val = remappingFunction.apply(key, e.val);
1865 >                                    if (val != null)
1866 >                                        e.val = val;
1867 >                                    else {
1868 >                                        delta = -1;
1869 >                                        Node<K,V> en = e.next;
1870 >                                        if (pred != null)
1871 >                                            pred.next = en;
1872 >                                        else
1873 >                                            setTabAt(tab, i, en);
1874 >                                    }
1875 >                                    break;
1876 >                                }
1877 >                                pred = e;
1878 >                                if ((e = e.next) == null) {
1879 >                                    val = remappingFunction.apply(key, null);
1880 >                                    if (val != null) {
1881 >                                        delta = 1;
1882 >                                        pred.next =
1883 >                                            new Node<K,V>(h, key, val, null);
1884 >                                    }
1885 >                                    break;
1886 >                                }
1887                              }
1888 <                            Node last = e;
1889 <                            if ((e = e.next) == null) {
1890 <                                if ((val = f.map(k)) != null) {
1891 <                                    last.next = new Node(h, k, val, null);
1892 <                                    added = true;
1893 <                                    if (last != first || tab.length <= 64)
1894 <                                        checkSize = true;
1888 >                        }
1889 >                        else if (f instanceof TreeBin) {
1890 >                            binCount = 1;
1891 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1892 >                            TreeNode<K,V> r, p;
1893 >                            if ((r = t.root) != null)
1894 >                                p = r.findTreeNode(h, key, null);
1895 >                            else
1896 >                                p = null;
1897 >                            V pv = (p == null) ? null : p.val;
1898 >                            val = remappingFunction.apply(key, pv);
1899 >                            if (val != null) {
1900 >                                if (p != null)
1901 >                                    p.val = val;
1902 >                                else {
1903 >                                    delta = 1;
1904 >                                    t.putTreeVal(h, key, val);
1905                                  }
1906 <                                break;
1906 >                            }
1907 >                            else if (p != null) {
1908 >                                delta = -1;
1909 >                                if (t.removeTreeNode(p))
1910 >                                    setTabAt(tab, i, untreeify(t.first));
1911                              }
1912                          }
1913                      }
1914                  }
1915 <                if (validated) {
1916 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1917 <                        resizing == 0 && counter.sum() >= threshold)
550 <                        grow(0);
1915 >                if (binCount != 0) {
1916 >                    if (binCount >= TREEIFY_THRESHOLD)
1917 >                        treeifyBin(tab, i);
1918                      break;
1919                  }
1920              }
1921          }
1922 <        if (added)
1923 <            counter.increment();
1922 >        if (delta != 0)
1923 >            addCount((long)delta, binCount);
1924          return val;
1925      }
1926  
1927 <    /*
1928 <     * Reclassifies nodes in each bin to new table.  Because we are
1929 <     * using power-of-two expansion, the elements from each bin must
1930 <     * either stay at same index, or move with a power of two
1931 <     * offset. We eliminate unnecessary node creation by catching
1932 <     * cases where old nodes can be reused because their next fields
1933 <     * won't change.  Statistically, at the default threshold, only
1934 <     * about one-sixth of them need cloning when a table doubles. The
1935 <     * nodes they replace will be garbage collectable as soon as they
1936 <     * are no longer referenced by any reader thread that may be in
1937 <     * the midst of concurrently traversing table.
1938 <     *
1939 <     * Transfers are done from the bottom up to preserve iterator
1940 <     * traversability. On each step, the old bin is locked,
1941 <     * moved/copied, and then replaced with a forwarding node.
1942 <     */
1943 <    private static final void transfer(Node[] tab, Node[] nextTab) {
1944 <        int n = tab.length;
1945 <        int mask = nextTab.length - 1;
1946 <        Node fwd = new Node(MOVED, nextTab, null, null);
1947 <        for (int i = n - 1; i >= 0; --i) {
1948 <            for (Node e;;) {
1949 <                if ((e = tabAt(tab, i)) == null) {
1950 <                    if (casTabAt(tab, i, e, fwd))
1951 <                        break;
1927 >    /**
1928 >     * If the specified key is not already associated with a
1929 >     * (non-null) value, associates it with the given value.
1930 >     * Otherwise, replaces the value with the results of the given
1931 >     * remapping function, or removes if {@code null}. The entire
1932 >     * method invocation is performed atomically.  Some attempted
1933 >     * update operations on this map by other threads may be blocked
1934 >     * while computation is in progress, so the computation should be
1935 >     * short and simple, and must not attempt to update any other
1936 >     * mappings of this Map.
1937 >     *
1938 >     * @param key key with which the specified value is to be associated
1939 >     * @param value the value to use if absent
1940 >     * @param remappingFunction the function to recompute a value if present
1941 >     * @return the new value associated with the specified key, or null if none
1942 >     * @throws NullPointerException if the specified key or the
1943 >     *         remappingFunction is null
1944 >     * @throws RuntimeException or Error if the remappingFunction does so,
1945 >     *         in which case the mapping is unchanged
1946 >     */
1947 >    public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1948 >        if (key == null || value == null || remappingFunction == null)
1949 >            throw new NullPointerException();
1950 >        int h = spread(key.hashCode());
1951 >        V val = null;
1952 >        int delta = 0;
1953 >        int binCount = 0;
1954 >        for (Node<K,V>[] tab = table;;) {
1955 >            Node<K,V> f; int n, i, fh;
1956 >            if (tab == null || (n = tab.length) == 0)
1957 >                tab = initTable();
1958 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1959 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1960 >                    delta = 1;
1961 >                    val = value;
1962 >                    break;
1963                  }
1964 <                else {
1965 <                    int idx = e.hash & mask;
1966 <                    boolean validated = false;
1967 <                    synchronized (e) {
1968 <                        if (tabAt(tab, i) == e) {
1969 <                            validated = true;
1970 <                            Node lastRun = e;
1971 <                            for (Node p = e.next; p != null; p = p.next) {
1972 <                                int j = p.hash & mask;
1973 <                                if (j != idx) {
1974 <                                    idx = j;
1975 <                                    lastRun = p;
1964 >            }
1965 >            else if ((fh = f.hash) == MOVED)
1966 >                tab = helpTransfer(tab, f);
1967 >            else {
1968 >                synchronized (f) {
1969 >                    if (tabAt(tab, i) == f) {
1970 >                        if (fh >= 0) {
1971 >                            binCount = 1;
1972 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1973 >                                K ek;
1974 >                                if (e.hash == h &&
1975 >                                    ((ek = e.key) == key ||
1976 >                                     (ek != null && key.equals(ek)))) {
1977 >                                    val = remappingFunction.apply(e.val, value);
1978 >                                    if (val != null)
1979 >                                        e.val = val;
1980 >                                    else {
1981 >                                        delta = -1;
1982 >                                        Node<K,V> en = e.next;
1983 >                                        if (pred != null)
1984 >                                            pred.next = en;
1985 >                                        else
1986 >                                            setTabAt(tab, i, en);
1987 >                                    }
1988 >                                    break;
1989 >                                }
1990 >                                pred = e;
1991 >                                if ((e = e.next) == null) {
1992 >                                    delta = 1;
1993 >                                    val = value;
1994 >                                    pred.next =
1995 >                                        new Node<K,V>(h, key, val, null);
1996 >                                    break;
1997                                  }
1998                              }
1999 <                            relaxedSetTabAt(nextTab, idx, lastRun);
2000 <                            for (Node p = e; p != lastRun; p = p.next) {
2001 <                                int h = p.hash;
2002 <                                int j = h & mask;
2003 <                                Node r = relaxedTabAt(nextTab, j);
2004 <                                relaxedSetTabAt(nextTab, j,
2005 <                                                new Node(h, p.key, p.val, r));
1999 >                        }
2000 >                        else if (f instanceof TreeBin) {
2001 >                            binCount = 2;
2002 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2003 >                            TreeNode<K,V> r = t.root;
2004 >                            TreeNode<K,V> p = (r == null) ? null :
2005 >                                r.findTreeNode(h, key, null);
2006 >                            val = (p == null) ? value :
2007 >                                remappingFunction.apply(p.val, value);
2008 >                            if (val != null) {
2009 >                                if (p != null)
2010 >                                    p.val = val;
2011 >                                else {
2012 >                                    delta = 1;
2013 >                                    t.putTreeVal(h, key, val);
2014 >                                }
2015 >                            }
2016 >                            else if (p != null) {
2017 >                                delta = -1;
2018 >                                if (t.removeTreeNode(p))
2019 >                                    setTabAt(tab, i, untreeify(t.first));
2020                              }
608                            setTabAt(tab, i, fwd);
2021                          }
2022                      }
2023 <                    if (validated)
2024 <                        break;
2023 >                }
2024 >                if (binCount != 0) {
2025 >                    if (binCount >= TREEIFY_THRESHOLD)
2026 >                        treeifyBin(tab, i);
2027 >                    break;
2028                  }
2029              }
2030          }
2031 +        if (delta != 0)
2032 +            addCount((long)delta, binCount);
2033 +        return val;
2034      }
2035  
2036 +    // Hashtable legacy methods
2037 +
2038      /**
2039 <     * If not already resizing, initializes or creates next table and
2040 <     * transfers bins. Rechecks occupancy after a transfer to see if
2041 <     * another resize is already needed because resizings are lagging
2042 <     * additions.
2043 <     *
2044 <     * @param sizeHint overridden capacity target (nonzero only from putAll)
2045 <     * @return current table
2046 <     */
2047 <    private final Node[] grow(int sizeHint) {
2048 <        if (resizing == 0 &&
2049 <            UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) {
2050 <            try {
2039 >     * Legacy method testing if some key maps into the specified value
2040 >     * in this table.  This method is identical in functionality to
2041 >     * {@link #containsValue(Object)}, and exists solely to ensure
2042 >     * full compatibility with class {@link java.util.Hashtable},
2043 >     * which supported this method prior to introduction of the
2044 >     * Java Collections framework.
2045 >     *
2046 >     * @param  value a value to search for
2047 >     * @return {@code true} if and only if some key maps to the
2048 >     *         {@code value} argument in this table as
2049 >     *         determined by the {@code equals} method;
2050 >     *         {@code false} otherwise
2051 >     * @throws NullPointerException if the specified value is null
2052 >     */
2053 >    @Deprecated public boolean contains(Object value) {
2054 >        return containsValue(value);
2055 >    }
2056 >
2057 >    /**
2058 >     * Returns an enumeration of the keys in this table.
2059 >     *
2060 >     * @return an enumeration of the keys in this table
2061 >     * @see #keySet()
2062 >     */
2063 >    public Enumeration<K> keys() {
2064 >        Node<K,V>[] t;
2065 >        int f = (t = table) == null ? 0 : t.length;
2066 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2067 >    }
2068 >
2069 >    /**
2070 >     * Returns an enumeration of the values in this table.
2071 >     *
2072 >     * @return an enumeration of the values in this table
2073 >     * @see #values()
2074 >     */
2075 >    public Enumeration<V> elements() {
2076 >        Node<K,V>[] t;
2077 >        int f = (t = table) == null ? 0 : t.length;
2078 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2079 >    }
2080 >
2081 >    // ConcurrentHashMapV8-only methods
2082 >
2083 >    /**
2084 >     * Returns the number of mappings. This method should be used
2085 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2086 >     * contain more mappings than can be represented as an int. The
2087 >     * value returned is an estimate; the actual count may differ if
2088 >     * there are concurrent insertions or removals.
2089 >     *
2090 >     * @return the number of mappings
2091 >     * @since 1.8
2092 >     */
2093 >    public long mappingCount() {
2094 >        long n = sumCount();
2095 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2096 >    }
2097 >
2098 >    /**
2099 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2100 >     * from the given type to {@code Boolean.TRUE}.
2101 >     *
2102 >     * @return the new set
2103 >     * @since 1.8
2104 >     */
2105 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2106 >        return new KeySetView<K,Boolean>
2107 >            (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2108 >    }
2109 >
2110 >    /**
2111 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2112 >     * from the given type to {@code Boolean.TRUE}.
2113 >     *
2114 >     * @param initialCapacity The implementation performs internal
2115 >     * sizing to accommodate this many elements.
2116 >     * @return the new set
2117 >     * @throws IllegalArgumentException if the initial capacity of
2118 >     * elements is negative
2119 >     * @since 1.8
2120 >     */
2121 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2122 >        return new KeySetView<K,Boolean>
2123 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2124 >    }
2125 >
2126 >    /**
2127 >     * Returns a {@link Set} view of the keys in this map, using the
2128 >     * given common mapped value for any additions (i.e., {@link
2129 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2130 >     * This is of course only appropriate if it is acceptable to use
2131 >     * the same value for all additions from this view.
2132 >     *
2133 >     * @param mappedValue the mapped value to use for any additions
2134 >     * @return the set view
2135 >     * @throws NullPointerException if the mappedValue is null
2136 >     */
2137 >    public KeySetView<K,V> keySet(V mappedValue) {
2138 >        if (mappedValue == null)
2139 >            throw new NullPointerException();
2140 >        return new KeySetView<K,V>(this, mappedValue);
2141 >    }
2142 >
2143 >    /* ---------------- Special Nodes -------------- */
2144 >
2145 >    /**
2146 >     * A node inserted at head of bins during transfer operations.
2147 >     */
2148 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2149 >        final Node<K,V>[] nextTable;
2150 >        ForwardingNode(Node<K,V>[] tab) {
2151 >            super(MOVED, null, null, null);
2152 >            this.nextTable = tab;
2153 >        }
2154 >
2155 >        Node<K,V> find(int h, Object k) {
2156 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2157 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2158 >                Node<K,V> e; int n;
2159 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2160 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2161 >                    return null;
2162                  for (;;) {
2163 <                    int cap, n;
2164 <                    Node[] tab = table;
2165 <                    if (tab == null) {
2166 <                        int c = initCap;
2167 <                        if (c < sizeHint)
2168 <                            c = sizeHint;
2169 <                        if (c == DEFAULT_CAPACITY)
2170 <                            cap = c;
640 <                        else if (c >= MAXIMUM_CAPACITY)
641 <                            cap = MAXIMUM_CAPACITY;
642 <                        else {
643 <                            cap = MINIMUM_CAPACITY;
644 <                            while (cap < c)
645 <                                cap <<= 1;
2163 >                    int eh; K ek;
2164 >                    if ((eh = e.hash) == h &&
2165 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2166 >                        return e;
2167 >                    if (eh < 0) {
2168 >                        if (e instanceof ForwardingNode) {
2169 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2170 >                            continue outer;
2171                          }
2172 +                        else
2173 +                            return e.find(h, k);
2174                      }
2175 <                    else if ((n = tab.length) < MAXIMUM_CAPACITY &&
2176 <                             (sizeHint <= 0 || n < sizeHint))
2177 <                        cap = n << 1;
2178 <                    else
2179 <                        break;
2180 <                    threshold = (int)(cap * loadFactor) - THRESHOLD_OFFSET;
2181 <                    Node[] nextTab = new Node[cap];
2182 <                    if (tab != null)
2183 <                        transfer(tab, nextTab);
2184 <                    table = nextTab;
2185 <                    if (tab == null || cap >= MAXIMUM_CAPACITY ||
2186 <                        ((sizeHint > 0) ? cap >= sizeHint :
2187 <                         counter.sum() < threshold))
2175 >                    if ((e = e.next) == null)
2176 >                        return null;
2177 >                }
2178 >            }
2179 >        }
2180 >    }
2181 >
2182 >    /**
2183 >     * A place-holder node used in computeIfAbsent and compute
2184 >     */
2185 >    static final class ReservationNode<K,V> extends Node<K,V> {
2186 >        ReservationNode() {
2187 >            super(RESERVED, null, null, null);
2188 >        }
2189 >
2190 >        Node<K,V> find(int h, Object k) {
2191 >            return null;
2192 >        }
2193 >    }
2194 >
2195 >    /* ---------------- Table Initialization and Resizing -------------- */
2196 >
2197 >    /**
2198 >     * Initializes table, using the size recorded in sizeCtl.
2199 >     */
2200 >    private final Node<K,V>[] initTable() {
2201 >        Node<K,V>[] tab; int sc;
2202 >        while ((tab = table) == null || tab.length == 0) {
2203 >            if ((sc = sizeCtl) < 0)
2204 >                Thread.yield(); // lost initialization race; just spin
2205 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2206 >                try {
2207 >                    if ((tab = table) == null || tab.length == 0) {
2208 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2209 >                        @SuppressWarnings("unchecked")
2210 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2211 >                        table = tab = nt;
2212 >                        sc = n - (n >>> 2);
2213 >                    }
2214 >                } finally {
2215 >                    sizeCtl = sc;
2216 >                }
2217 >                break;
2218 >            }
2219 >        }
2220 >        return tab;
2221 >    }
2222 >
2223 >    /**
2224 >     * Adds to count, and if table is too small and not already
2225 >     * resizing, initiates transfer. If already resizing, helps
2226 >     * perform transfer if work is available.  Rechecks occupancy
2227 >     * after a transfer to see if another resize is already needed
2228 >     * because resizings are lagging additions.
2229 >     *
2230 >     * @param x the count to add
2231 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2232 >     */
2233 >    private final void addCount(long x, int check) {
2234 >        CounterCell[] as; long b, s;
2235 >        if ((as = counterCells) != null ||
2236 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2237 >            CounterHashCode hc; CounterCell a; long v; int m;
2238 >            boolean uncontended = true;
2239 >            if ((hc = threadCounterHashCode.get()) == null ||
2240 >                as == null || (m = as.length - 1) < 0 ||
2241 >                (a = as[m & hc.code]) == null ||
2242 >                !(uncontended =
2243 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2244 >                fullAddCount(x, hc, uncontended);
2245 >                return;
2246 >            }
2247 >            if (check <= 1)
2248 >                return;
2249 >            s = sumCount();
2250 >        }
2251 >        if (check >= 0) {
2252 >            Node<K,V>[] tab, nt; int sc;
2253 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2254 >                   tab.length < MAXIMUM_CAPACITY) {
2255 >                if (sc < 0) {
2256 >                    if (sc == -1 || transferIndex <= 0 ||
2257 >                        (nt = nextTable) == null)
2258                          break;
2259 +                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2260 +                        transfer(tab, nt);
2261                  }
2262 <            } finally {
2263 <                resizing = 0;
2262 >                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2263 >                    transfer(tab, null);
2264 >                s = sumCount();
2265              }
2266          }
2267 <        else if (table == null)
2268 <            Thread.yield(); // lost initialization race; just spin
2267 >    }
2268 >
2269 >    /**
2270 >     * Helps transfer if a resize is in progress.
2271 >     */
2272 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2273 >        Node<K,V>[] nextTab; int sc;
2274 >        if ((f instanceof ForwardingNode) &&
2275 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2276 >            while (transferIndex > 0 && nextTab == nextTable &&
2277 >                   (sc = sizeCtl) < -1) {
2278 >                if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1)) {
2279 >                    transfer(tab, nextTab);
2280 >                    break;
2281 >                }
2282 >            }
2283 >            return nextTab;
2284 >        }
2285          return table;
2286      }
2287  
2288      /**
2289 <     * Implementation for putAll and constructor with Map
2290 <     * argument. Tries to first override initial capacity or grow
2291 <     * based on map size to pre-allocate table space.
2289 >     * Tries to presize table to accommodate the given number of elements.
2290 >     *
2291 >     * @param size number of elements (doesn't need to be perfectly accurate)
2292       */
2293 <    private final void internalPutAll(Map<? extends K, ? extends V> m) {
2294 <        int s = m.size();
2295 <        grow((s >= (MAXIMUM_CAPACITY >>> 1)) ? s : s + (s >>> 1));
2296 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
2297 <            Object k = e.getKey();
2298 <            Object v = e.getValue();
2299 <            if (k == null || v == null)
2300 <                throw new NullPointerException();
2301 <            internalPut(k, v, true);
2293 >    private final void tryPresize(int size) {
2294 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2295 >            tableSizeFor(size + (size >>> 1) + 1);
2296 >        int sc;
2297 >        while ((sc = sizeCtl) >= 0) {
2298 >            Node<K,V>[] tab = table; int n;
2299 >            if (tab == null || (n = tab.length) == 0) {
2300 >                n = (sc > c) ? sc : c;
2301 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2302 >                    try {
2303 >                        if (table == tab) {
2304 >                            @SuppressWarnings("unchecked")
2305 >                                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2306 >                            table = nt;
2307 >                            sc = n - (n >>> 2);
2308 >                        }
2309 >                    } finally {
2310 >                        sizeCtl = sc;
2311 >                    }
2312 >                }
2313 >            }
2314 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2315 >                break;
2316 >            else if (tab == table &&
2317 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2318 >                transfer(tab, null);
2319          }
2320      }
2321  
2322      /**
2323 <     * Implementation for clear. Steps through each bin, removing all nodes.
2323 >     * Moves and/or copies the nodes in each bin to new table. See
2324 >     * above for explanation.
2325       */
2326 <    private final void internalClear() {
2327 <        long deletions = 0L;
2328 <        int i = 0;
2329 <        Node[] tab = table;
2330 <        while (tab != null && i < tab.length) {
2331 <            Node e = tabAt(tab, i);
2332 <            if (e == null)
2333 <                ++i;
2334 <            else if (e.hash < 0)
2335 <                tab = (Node[])e.key;
2326 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2327 >        int n = tab.length, stride;
2328 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2329 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2330 >        if (nextTab == null) {            // initiating
2331 >            try {
2332 >                @SuppressWarnings("unchecked")
2333 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2334 >                nextTab = nt;
2335 >            } catch (Throwable ex) {      // try to cope with OOME
2336 >                sizeCtl = Integer.MAX_VALUE;
2337 >                return;
2338 >            }
2339 >            nextTable = nextTab;
2340 >            transferIndex = n;
2341 >        }
2342 >        int nextn = nextTab.length;
2343 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2344 >        boolean advance = true;
2345 >        boolean finishing = false; // to ensure sweep before committing nextTab
2346 >        for (int i = 0, bound = 0;;) {
2347 >            Node<K,V> f; int fh;
2348 >            while (advance) {
2349 >                int nextIndex, nextBound;
2350 >                if (--i >= bound || finishing)
2351 >                    advance = false;
2352 >                else if ((nextIndex = transferIndex) <= 0) {
2353 >                    i = -1;
2354 >                    advance = false;
2355 >                }
2356 >                else if (U.compareAndSwapInt
2357 >                         (this, TRANSFERINDEX, nextIndex,
2358 >                          nextBound = (nextIndex > stride ?
2359 >                                       nextIndex - stride : 0))) {
2360 >                    bound = nextBound;
2361 >                    i = nextIndex - 1;
2362 >                    advance = false;
2363 >                }
2364 >            }
2365 >            if (i < 0 || i >= n || i + n >= nextn) {
2366 >                int sc;
2367 >                if (finishing) {
2368 >                    nextTable = null;
2369 >                    table = nextTab;
2370 >                    sizeCtl = (n << 1) - (n >>> 1);
2371 >                    return;
2372 >                }
2373 >                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2374 >                    if (sc != -1)
2375 >                        return;
2376 >                    finishing = advance = true;
2377 >                    i = n; // recheck before commit
2378 >                }
2379 >            }
2380 >            else if ((f = tabAt(tab, i)) == null)
2381 >                advance = casTabAt(tab, i, null, fwd);
2382 >            else if ((fh = f.hash) == MOVED)
2383 >                advance = true; // already processed
2384              else {
2385 <                boolean validated = false;
2386 <                synchronized (e) {
2387 <                    if (tabAt(tab, i) == e) {
2388 <                        validated = true;
2389 <                        do {
2390 <                            if (e.val != null) {
2391 <                                e.val = null;
2392 <                                ++deletions;
2385 >                synchronized (f) {
2386 >                    if (tabAt(tab, i) == f) {
2387 >                        Node<K,V> ln, hn;
2388 >                        if (fh >= 0) {
2389 >                            int runBit = fh & n;
2390 >                            Node<K,V> lastRun = f;
2391 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2392 >                                int b = p.hash & n;
2393 >                                if (b != runBit) {
2394 >                                    runBit = b;
2395 >                                    lastRun = p;
2396 >                                }
2397 >                            }
2398 >                            if (runBit == 0) {
2399 >                                ln = lastRun;
2400 >                                hn = null;
2401 >                            }
2402 >                            else {
2403 >                                hn = lastRun;
2404 >                                ln = null;
2405                              }
2406 <                        } while ((e = e.next) != null);
2407 <                        setTabAt(tab, i, null);
2406 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2407 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2408 >                                if ((ph & n) == 0)
2409 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2410 >                                else
2411 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2412 >                            }
2413 >                            setTabAt(nextTab, i, ln);
2414 >                            setTabAt(nextTab, i + n, hn);
2415 >                            setTabAt(tab, i, fwd);
2416 >                            advance = true;
2417 >                        }
2418 >                        else if (f instanceof TreeBin) {
2419 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2420 >                            TreeNode<K,V> lo = null, loTail = null;
2421 >                            TreeNode<K,V> hi = null, hiTail = null;
2422 >                            int lc = 0, hc = 0;
2423 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2424 >                                int h = e.hash;
2425 >                                TreeNode<K,V> p = new TreeNode<K,V>
2426 >                                    (h, e.key, e.val, null, null);
2427 >                                if ((h & n) == 0) {
2428 >                                    if ((p.prev = loTail) == null)
2429 >                                        lo = p;
2430 >                                    else
2431 >                                        loTail.next = p;
2432 >                                    loTail = p;
2433 >                                    ++lc;
2434 >                                }
2435 >                                else {
2436 >                                    if ((p.prev = hiTail) == null)
2437 >                                        hi = p;
2438 >                                    else
2439 >                                        hiTail.next = p;
2440 >                                    hiTail = p;
2441 >                                    ++hc;
2442 >                                }
2443 >                            }
2444 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2445 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2446 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2447 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2448 >                            setTabAt(nextTab, i, ln);
2449 >                            setTabAt(nextTab, i + n, hn);
2450 >                            setTabAt(tab, i, fwd);
2451 >                            advance = true;
2452 >                        }
2453                      }
2454                  }
2455 <                if (validated) {
2456 <                    ++i;
2457 <                    if (deletions > THRESHOLD_OFFSET) { // bound lag in counts
2458 <                        counter.add(-deletions);
2459 <                        deletions = 0L;
2455 >            }
2456 >        }
2457 >    }
2458 >
2459 >    /* ---------------- Conversion from/to TreeBins -------------- */
2460 >
2461 >    /**
2462 >     * Replaces all linked nodes in bin at given index unless table is
2463 >     * too small, in which case resizes instead.
2464 >     */
2465 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2466 >        Node<K,V> b; int n, sc;
2467 >        if (tab != null) {
2468 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2469 >                if (tab == table && (sc = sizeCtl) >= 0 &&
2470 >                    U.compareAndSwapInt(this, SIZECTL, sc, -2))
2471 >                    transfer(tab, null);
2472 >            }
2473 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2474 >                synchronized (b) {
2475 >                    if (tabAt(tab, index) == b) {
2476 >                        TreeNode<K,V> hd = null, tl = null;
2477 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2478 >                            TreeNode<K,V> p =
2479 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2480 >                                                  null, null);
2481 >                            if ((p.prev = tl) == null)
2482 >                                hd = p;
2483 >                            else
2484 >                                tl.next = p;
2485 >                            tl = p;
2486 >                        }
2487 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2488                      }
2489                  }
2490              }
2491          }
725        if (deletions != 0L)
726            counter.add(-deletions);
2492      }
2493  
2494      /**
2495 <     * Base class for key, value, and entry iterators, plus internal
731 <     * implementations of public traversal-based methods, to avoid
732 <     * duplicating traversal code.
2495 >     * Returns a list on non-TreeNodes replacing those in given list.
2496       */
2497 <    class HashIterator {
2498 <        private Node next;          // the next entry to return
2499 <        private Node[] tab;         // current table; updated if resized
2500 <        private Node lastReturned;  // the last entry returned, for remove
2501 <        private Object nextVal;     // cached value of next
2502 <        private int index;          // index of bin to use next
2503 <        private int baseIndex;      // current index of initial table
2504 <        private final int baseSize; // initial table size
2497 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2498 >        Node<K,V> hd = null, tl = null;
2499 >        for (Node<K,V> q = b; q != null; q = q.next) {
2500 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2501 >            if (tl == null)
2502 >                hd = p;
2503 >            else
2504 >                tl.next = p;
2505 >            tl = p;
2506 >        }
2507 >        return hd;
2508 >    }
2509  
2510 <        HashIterator() {
2511 <            Node[] t = tab = table;
2512 <            if (t == null)
2513 <                baseSize = 0;
2514 <            else {
2515 <                baseSize = t.length;
2516 <                advance(null);
2517 <            }
2510 >    /* ---------------- TreeNodes -------------- */
2511 >
2512 >    /**
2513 >     * Nodes for use in TreeBins
2514 >     */
2515 >    static final class TreeNode<K,V> extends Node<K,V> {
2516 >        TreeNode<K,V> parent;  // red-black tree links
2517 >        TreeNode<K,V> left;
2518 >        TreeNode<K,V> right;
2519 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2520 >        boolean red;
2521 >
2522 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2523 >                 TreeNode<K,V> parent) {
2524 >            super(hash, key, val, next);
2525 >            this.parent = parent;
2526          }
2527  
2528 <        public final boolean hasNext()         { return next != null; }
2529 <        public final boolean hasMoreElements() { return next != null; }
2528 >        Node<K,V> find(int h, Object k) {
2529 >            return findTreeNode(h, k, null);
2530 >        }
2531  
2532          /**
2533 <         * Advances next.  Normally, iteration proceeds bin-by-bin
2534 <         * traversing lists.  However, if the table has been resized,
759 <         * then all future steps must traverse both the bin at the
760 <         * current index as well as at (index + baseSize); and so on
761 <         * for further resizings. To paranoically cope with potential
762 <         * (improper) sharing of iterators across threads, table reads
763 <         * are bounds-checked.
2533 >         * Returns the TreeNode (or null if not found) for the given key
2534 >         * starting at given root.
2535           */
2536 <        final void advance(Node e) {
2537 <            for (;;) {
2538 <                Node[] t; int i; // for bounds checks
2539 <                if (e != null) {
2540 <                    Object ek = e.key, ev = e.val;
2541 <                    if (ev != null && ek != null) {
2542 <                        nextVal = ev;
2543 <                        next = e;
2544 <                        break;
2545 <                    }
2546 <                    e = e.next;
2547 <                }
2548 <                else if (baseIndex < baseSize && (t = tab) != null &&
2549 <                         t.length > (i = index) && i >= 0) {
2550 <                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2551 <                        tab = (Node[])e.key;
2552 <                        e = null;
2553 <                    }
2554 <                    else if (i + baseSize < t.length)
2555 <                        index += baseSize;    // visit forwarded upper slots
2536 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2537 >            if (k != null) {
2538 >                TreeNode<K,V> p = this;
2539 >                do  {
2540 >                    int ph, dir; K pk; TreeNode<K,V> q;
2541 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2542 >                    if ((ph = p.hash) > h)
2543 >                        p = pl;
2544 >                    else if (ph < h)
2545 >                        p = pr;
2546 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2547 >                        return p;
2548 >                    else if (pl == null)
2549 >                        p = pr;
2550 >                    else if (pr == null)
2551 >                        p = pl;
2552 >                    else if ((kc != null ||
2553 >                              (kc = comparableClassFor(k)) != null) &&
2554 >                             (dir = compareComparables(kc, k, pk)) != 0)
2555 >                        p = (dir < 0) ? pl : pr;
2556 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2557 >                        return q;
2558                      else
2559 <                        index = ++baseIndex;
2559 >                        p = pl;
2560 >                } while (p != null);
2561 >            }
2562 >            return null;
2563 >        }
2564 >    }
2565 >
2566 >    /* ---------------- TreeBins -------------- */
2567 >
2568 >    /**
2569 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2570 >     * keys or values, but instead point to list of TreeNodes and
2571 >     * their root. They also maintain a parasitic read-write lock
2572 >     * forcing writers (who hold bin lock) to wait for readers (who do
2573 >     * not) to complete before tree restructuring operations.
2574 >     */
2575 >    static final class TreeBin<K,V> extends Node<K,V> {
2576 >        TreeNode<K,V> root;
2577 >        volatile TreeNode<K,V> first;
2578 >        volatile Thread waiter;
2579 >        volatile int lockState;
2580 >        // values for lockState
2581 >        static final int WRITER = 1; // set while holding write lock
2582 >        static final int WAITER = 2; // set when waiting for write lock
2583 >        static final int READER = 4; // increment value for setting read lock
2584 >
2585 >        /**
2586 >         * Tie-breaking utility for ordering insertions when equal
2587 >         * hashCodes and non-comparable. We don't require a total
2588 >         * order, just a consistent insertion rule to maintain
2589 >         * equivalence across rebalancings. Tie-breaking further than
2590 >         * necessary simplifies testing a bit.
2591 >         */
2592 >        static int tieBreakOrder(Object a, Object b) {
2593 >            int d;
2594 >            if (a == null || b == null ||
2595 >                (d = a.getClass().getName().
2596 >                 compareTo(b.getClass().getName())) == 0)
2597 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2598 >                     -1 : 1);
2599 >            return d;
2600 >        }
2601 >
2602 >        /**
2603 >         * Creates bin with initial set of nodes headed by b.
2604 >         */
2605 >        TreeBin(TreeNode<K,V> b) {
2606 >            super(TREEBIN, null, null, null);
2607 >            this.first = b;
2608 >            TreeNode<K,V> r = null;
2609 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2610 >                next = (TreeNode<K,V>)x.next;
2611 >                x.left = x.right = null;
2612 >                if (r == null) {
2613 >                    x.parent = null;
2614 >                    x.red = false;
2615 >                    r = x;
2616                  }
2617                  else {
2618 <                    next = null;
2619 <                    break;
2618 >                    K k = x.key;
2619 >                    int h = x.hash;
2620 >                    Class<?> kc = null;
2621 >                    for (TreeNode<K,V> p = r;;) {
2622 >                        int dir, ph;
2623 >                        K pk = p.key;
2624 >                        if ((ph = p.hash) > h)
2625 >                            dir = -1;
2626 >                        else if (ph < h)
2627 >                            dir = 1;
2628 >                        else if ((kc == null &&
2629 >                                  (kc = comparableClassFor(k)) == null) ||
2630 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2631 >                            dir = tieBreakOrder(k, pk);
2632 >                            TreeNode<K,V> xp = p;
2633 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2634 >                            x.parent = xp;
2635 >                            if (dir <= 0)
2636 >                                xp.left = x;
2637 >                            else
2638 >                                xp.right = x;
2639 >                            r = balanceInsertion(r, x);
2640 >                            break;
2641 >                        }
2642 >                    }
2643                  }
2644              }
2645 +            this.root = r;
2646 +            assert checkInvariants(root);
2647          }
2648  
2649 <        final Object nextKey() {
2650 <            Node e = next;
2651 <            if (e == null)
2652 <                throw new NoSuchElementException();
2653 <            Object k = e.key;
2654 <            advance((lastReturned = e).next);
801 <            return k;
2649 >        /**
2650 >         * Acquires write lock for tree restructuring.
2651 >         */
2652 >        private final void lockRoot() {
2653 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2654 >                contendedLock(); // offload to separate method
2655          }
2656  
2657 <        final Object nextValue() {
2658 <            Node e = next;
2659 <            if (e == null)
2660 <                throw new NoSuchElementException();
2661 <            Object v = nextVal;
809 <            advance((lastReturned = e).next);
810 <            return v;
2657 >        /**
2658 >         * Releases write lock for tree restructuring.
2659 >         */
2660 >        private final void unlockRoot() {
2661 >            lockState = 0;
2662          }
2663  
2664 <        final WriteThroughEntry nextEntry() {
2665 <            Node e = next;
2666 <            if (e == null)
2667 <                throw new NoSuchElementException();
2668 <            WriteThroughEntry entry =
2669 <                new WriteThroughEntry(e.key, nextVal);
2670 <            advance((lastReturned = e).next);
2671 <            return entry;
2664 >        /**
2665 >         * Possibly blocks awaiting root lock.
2666 >         */
2667 >        private final void contendedLock() {
2668 >            boolean waiting = false;
2669 >            for (int s;;) {
2670 >                if (((s = lockState) & WRITER) == 0) {
2671 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2672 >                        if (waiting)
2673 >                            waiter = null;
2674 >                        return;
2675 >                    }
2676 >                }
2677 >                else if ((s & WAITER) == 0) {
2678 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2679 >                        waiting = true;
2680 >                        waiter = Thread.currentThread();
2681 >                    }
2682 >                }
2683 >                else if (waiting)
2684 >                    LockSupport.park(this);
2685 >            }
2686          }
2687  
2688 <        public final void remove() {
2689 <            if (lastReturned == null)
2690 <                throw new IllegalStateException();
2691 <            ConcurrentHashMapV8.this.remove(lastReturned.key);
2692 <            lastReturned = null;
2688 >        /**
2689 >         * Returns matching node or null if none. Tries to search
2690 >         * using tree comparisons from root, but continues linear
2691 >         * search when lock not available.
2692 >         */
2693 > final Node<K,V> find(int h, Object k) {
2694 >            if (k != null) {
2695 >                for (Node<K,V> e = first; e != null; e = e.next) {
2696 >                    int s; K ek;
2697 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2698 >                        if (e.hash == h &&
2699 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2700 >                            return e;
2701 >                    }
2702 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2703 >                                                 s + READER)) {
2704 >                        TreeNode<K,V> r, p;
2705 >                        try {
2706 >                            p = ((r = root) == null ? null :
2707 >                                 r.findTreeNode(h, k, null));
2708 >                        } finally {
2709 >                            Thread w;
2710 >                            int ls;
2711 >                            do {} while (!U.compareAndSwapInt
2712 >                                         (this, LOCKSTATE,
2713 >                                          ls = lockState, ls - READER));
2714 >                            if (ls == (READER|WAITER) && (w = waiter) != null)
2715 >                                LockSupport.unpark(w);
2716 >                        }
2717 >                        return p;
2718 >                    }
2719 >                }
2720 >            }
2721 >            return null;
2722          }
2723  
2724 <        /** Helper for serialization */
2725 <        final void writeEntries(java.io.ObjectOutputStream s)
2726 <            throws java.io.IOException {
2727 <            Node e;
2728 <            while ((e = next) != null) {
2729 <                s.writeObject(e.key);
2730 <                s.writeObject(nextVal);
2731 <                advance(e.next);
2724 >        /**
2725 >         * Finds or adds a node.
2726 >         * @return null if added
2727 >         */
2728 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2729 >            Class<?> kc = null;
2730 >            boolean searched = false;
2731 >            for (TreeNode<K,V> p = root;;) {
2732 >                int dir, ph; K pk;
2733 >                if (p == null) {
2734 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2735 >                    break;
2736 >                }
2737 >                else if ((ph = p.hash) > h)
2738 >                    dir = -1;
2739 >                else if (ph < h)
2740 >                    dir = 1;
2741 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2742 >                    return p;
2743 >                else if ((kc == null &&
2744 >                          (kc = comparableClassFor(k)) == null) ||
2745 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2746 >                    if (!searched) {
2747 >                        TreeNode<K,V> q, ch;
2748 >                        searched = true;
2749 >                        if (((ch = p.left) != null &&
2750 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2751 >                            ((ch = p.right) != null &&
2752 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2753 >                            return q;
2754 >                    }
2755 >                    dir = tieBreakOrder(k, pk);
2756 >                }
2757 >
2758 >                TreeNode<K,V> xp = p;
2759 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2760 >                    TreeNode<K,V> x, f = first;
2761 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2762 >                    if (f != null)
2763 >                        f.prev = x;
2764 >                    if (dir <= 0)
2765 >                        xp.left = x;
2766 >                    else
2767 >                        xp.right = x;
2768 >                    if (!xp.red)
2769 >                        x.red = true;
2770 >                    else {
2771 >                        lockRoot();
2772 >                        try {
2773 >                            root = balanceInsertion(root, x);
2774 >                        } finally {
2775 >                            unlockRoot();
2776 >                        }
2777 >                    }
2778 >                    break;
2779 >                }
2780              }
2781 +            assert checkInvariants(root);
2782 +            return null;
2783          }
2784  
2785 <        /** Helper for containsValue */
2786 <        final boolean containsVal(Object value) {
2787 <            if (value != null) {
2788 <                Node e;
2789 <                while ((e = next) != null) {
2790 <                    Object v = nextVal;
2791 <                    if (value == v || value.equals(v))
2792 <                        return true;
2793 <                    advance(e.next);
2785 >        /**
2786 >         * Removes the given node, that must be present before this
2787 >         * call.  This is messier than typical red-black deletion code
2788 >         * because we cannot swap the contents of an interior node
2789 >         * with a leaf successor that is pinned by "next" pointers
2790 >         * that are accessible independently of lock. So instead we
2791 >         * swap the tree linkages.
2792 >         *
2793 >         * @return true if now too small, so should be untreeified
2794 >         */
2795 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2796 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2797 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2798 >            TreeNode<K,V> r, rl;
2799 >            if (pred == null)
2800 >                first = next;
2801 >            else
2802 >                pred.next = next;
2803 >            if (next != null)
2804 >                next.prev = pred;
2805 >            if (first == null) {
2806 >                root = null;
2807 >                return true;
2808 >            }
2809 >            if ((r = root) == null || r.right == null || // too small
2810 >                (rl = r.left) == null || rl.left == null)
2811 >                return true;
2812 >            lockRoot();
2813 >            try {
2814 >                TreeNode<K,V> replacement;
2815 >                TreeNode<K,V> pl = p.left;
2816 >                TreeNode<K,V> pr = p.right;
2817 >                if (pl != null && pr != null) {
2818 >                    TreeNode<K,V> s = pr, sl;
2819 >                    while ((sl = s.left) != null) // find successor
2820 >                        s = sl;
2821 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2822 >                    TreeNode<K,V> sr = s.right;
2823 >                    TreeNode<K,V> pp = p.parent;
2824 >                    if (s == pr) { // p was s's direct parent
2825 >                        p.parent = s;
2826 >                        s.right = p;
2827 >                    }
2828 >                    else {
2829 >                        TreeNode<K,V> sp = s.parent;
2830 >                        if ((p.parent = sp) != null) {
2831 >                            if (s == sp.left)
2832 >                                sp.left = p;
2833 >                            else
2834 >                                sp.right = p;
2835 >                        }
2836 >                        if ((s.right = pr) != null)
2837 >                            pr.parent = s;
2838 >                    }
2839 >                    p.left = null;
2840 >                    if ((p.right = sr) != null)
2841 >                        sr.parent = p;
2842 >                    if ((s.left = pl) != null)
2843 >                        pl.parent = s;
2844 >                    if ((s.parent = pp) == null)
2845 >                        r = s;
2846 >                    else if (p == pp.left)
2847 >                        pp.left = s;
2848 >                    else
2849 >                        pp.right = s;
2850 >                    if (sr != null)
2851 >                        replacement = sr;
2852 >                    else
2853 >                        replacement = p;
2854 >                }
2855 >                else if (pl != null)
2856 >                    replacement = pl;
2857 >                else if (pr != null)
2858 >                    replacement = pr;
2859 >                else
2860 >                    replacement = p;
2861 >                if (replacement != p) {
2862 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2863 >                    if (pp == null)
2864 >                        r = replacement;
2865 >                    else if (p == pp.left)
2866 >                        pp.left = replacement;
2867 >                    else
2868 >                        pp.right = replacement;
2869 >                    p.left = p.right = p.parent = null;
2870                  }
2871 +
2872 +                root = (p.red) ? r : balanceDeletion(r, replacement);
2873 +
2874 +                if (p == replacement) {  // detach pointers
2875 +                    TreeNode<K,V> pp;
2876 +                    if ((pp = p.parent) != null) {
2877 +                        if (p == pp.left)
2878 +                            pp.left = null;
2879 +                        else if (p == pp.right)
2880 +                            pp.right = null;
2881 +                        p.parent = null;
2882 +                    }
2883 +                }
2884 +            } finally {
2885 +                unlockRoot();
2886              }
2887 +            assert checkInvariants(root);
2888              return false;
2889          }
2890  
2891 <        /** Helper for Map.hashCode */
2892 <        final int mapHashCode() {
2893 <            int h = 0;
2894 <            Node e;
2895 <            while ((e = next) != null) {
2896 <                h += e.key.hashCode() ^ nextVal.hashCode();
2897 <                advance(e.next);
2891 >        /* ------------------------------------------------------------ */
2892 >        // Red-black tree methods, all adapted from CLR
2893 >
2894 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2895 >                                              TreeNode<K,V> p) {
2896 >            TreeNode<K,V> r, pp, rl;
2897 >            if (p != null && (r = p.right) != null) {
2898 >                if ((rl = p.right = r.left) != null)
2899 >                    rl.parent = p;
2900 >                if ((pp = r.parent = p.parent) == null)
2901 >                    (root = r).red = false;
2902 >                else if (pp.left == p)
2903 >                    pp.left = r;
2904 >                else
2905 >                    pp.right = r;
2906 >                r.left = p;
2907 >                p.parent = r;
2908              }
2909 <            return h;
2909 >            return root;
2910          }
2911  
2912 <        /** Helper for Map.toString */
2913 <        final String mapToString() {
2914 <            Node e = next;
2915 <            if (e == null)
2916 <                return "{}";
2917 <            StringBuilder sb = new StringBuilder();
2918 <            sb.append('{');
2919 <            for (;;) {
2920 <                sb.append(e.key   == this ? "(this Map)" : e.key);
2921 <                sb.append('=');
876 <                sb.append(nextVal == this ? "(this Map)" : nextVal);
877 <                advance(e.next);
878 <                if ((e = next) != null)
879 <                    sb.append(',').append(' ');
2912 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2913 >                                               TreeNode<K,V> p) {
2914 >            TreeNode<K,V> l, pp, lr;
2915 >            if (p != null && (l = p.left) != null) {
2916 >                if ((lr = p.left = l.right) != null)
2917 >                    lr.parent = p;
2918 >                if ((pp = l.parent = p.parent) == null)
2919 >                    (root = l).red = false;
2920 >                else if (pp.right == p)
2921 >                    pp.right = l;
2922                  else
2923 <                    return sb.append('}').toString();
2923 >                    pp.left = l;
2924 >                l.right = p;
2925 >                p.parent = l;
2926 >            }
2927 >            return root;
2928 >        }
2929 >
2930 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2931 >                                                    TreeNode<K,V> x) {
2932 >            x.red = true;
2933 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2934 >                if ((xp = x.parent) == null) {
2935 >                    x.red = false;
2936 >                    return x;
2937 >                }
2938 >                else if (!xp.red || (xpp = xp.parent) == null)
2939 >                    return root;
2940 >                if (xp == (xppl = xpp.left)) {
2941 >                    if ((xppr = xpp.right) != null && xppr.red) {
2942 >                        xppr.red = false;
2943 >                        xp.red = false;
2944 >                        xpp.red = true;
2945 >                        x = xpp;
2946 >                    }
2947 >                    else {
2948 >                        if (x == xp.right) {
2949 >                            root = rotateLeft(root, x = xp);
2950 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2951 >                        }
2952 >                        if (xp != null) {
2953 >                            xp.red = false;
2954 >                            if (xpp != null) {
2955 >                                xpp.red = true;
2956 >                                root = rotateRight(root, xpp);
2957 >                            }
2958 >                        }
2959 >                    }
2960 >                }
2961 >                else {
2962 >                    if (xppl != null && xppl.red) {
2963 >                        xppl.red = false;
2964 >                        xp.red = false;
2965 >                        xpp.red = true;
2966 >                        x = xpp;
2967 >                    }
2968 >                    else {
2969 >                        if (x == xp.left) {
2970 >                            root = rotateRight(root, x = xp);
2971 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2972 >                        }
2973 >                        if (xp != null) {
2974 >                            xp.red = false;
2975 >                            if (xpp != null) {
2976 >                                xpp.red = true;
2977 >                                root = rotateLeft(root, xpp);
2978 >                            }
2979 >                        }
2980 >                    }
2981 >                }
2982 >            }
2983 >        }
2984 >
2985 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2986 >                                                   TreeNode<K,V> x) {
2987 >            for (TreeNode<K,V> xp, xpl, xpr;;)  {
2988 >                if (x == null || x == root)
2989 >                    return root;
2990 >                else if ((xp = x.parent) == null) {
2991 >                    x.red = false;
2992 >                    return x;
2993 >                }
2994 >                else if (x.red) {
2995 >                    x.red = false;
2996 >                    return root;
2997 >                }
2998 >                else if ((xpl = xp.left) == x) {
2999 >                    if ((xpr = xp.right) != null && xpr.red) {
3000 >                        xpr.red = false;
3001 >                        xp.red = true;
3002 >                        root = rotateLeft(root, xp);
3003 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3004 >                    }
3005 >                    if (xpr == null)
3006 >                        x = xp;
3007 >                    else {
3008 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3009 >                        if ((sr == null || !sr.red) &&
3010 >                            (sl == null || !sl.red)) {
3011 >                            xpr.red = true;
3012 >                            x = xp;
3013 >                        }
3014 >                        else {
3015 >                            if (sr == null || !sr.red) {
3016 >                                if (sl != null)
3017 >                                    sl.red = false;
3018 >                                xpr.red = true;
3019 >                                root = rotateRight(root, xpr);
3020 >                                xpr = (xp = x.parent) == null ?
3021 >                                    null : xp.right;
3022 >                            }
3023 >                            if (xpr != null) {
3024 >                                xpr.red = (xp == null) ? false : xp.red;
3025 >                                if ((sr = xpr.right) != null)
3026 >                                    sr.red = false;
3027 >                            }
3028 >                            if (xp != null) {
3029 >                                xp.red = false;
3030 >                                root = rotateLeft(root, xp);
3031 >                            }
3032 >                            x = root;
3033 >                        }
3034 >                    }
3035 >                }
3036 >                else { // symmetric
3037 >                    if (xpl != null && xpl.red) {
3038 >                        xpl.red = false;
3039 >                        xp.red = true;
3040 >                        root = rotateRight(root, xp);
3041 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3042 >                    }
3043 >                    if (xpl == null)
3044 >                        x = xp;
3045 >                    else {
3046 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3047 >                        if ((sl == null || !sl.red) &&
3048 >                            (sr == null || !sr.red)) {
3049 >                            xpl.red = true;
3050 >                            x = xp;
3051 >                        }
3052 >                        else {
3053 >                            if (sl == null || !sl.red) {
3054 >                                if (sr != null)
3055 >                                    sr.red = false;
3056 >                                xpl.red = true;
3057 >                                root = rotateLeft(root, xpl);
3058 >                                xpl = (xp = x.parent) == null ?
3059 >                                    null : xp.left;
3060 >                            }
3061 >                            if (xpl != null) {
3062 >                                xpl.red = (xp == null) ? false : xp.red;
3063 >                                if ((sl = xpl.left) != null)
3064 >                                    sl.red = false;
3065 >                            }
3066 >                            if (xp != null) {
3067 >                                xp.red = false;
3068 >                                root = rotateRight(root, xp);
3069 >                            }
3070 >                            x = root;
3071 >                        }
3072 >                    }
3073 >                }
3074 >            }
3075 >        }
3076 >
3077 >        /**
3078 >         * Recursive invariant check
3079 >         */
3080 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3081 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3082 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3083 >            if (tb != null && tb.next != t)
3084 >                return false;
3085 >            if (tn != null && tn.prev != t)
3086 >                return false;
3087 >            if (tp != null && t != tp.left && t != tp.right)
3088 >                return false;
3089 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3090 >                return false;
3091 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3092 >                return false;
3093 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3094 >                return false;
3095 >            if (tl != null && !checkInvariants(tl))
3096 >                return false;
3097 >            if (tr != null && !checkInvariants(tr))
3098 >                return false;
3099 >            return true;
3100 >        }
3101 >
3102 >        private static final sun.misc.Unsafe U;
3103 >        private static final long LOCKSTATE;
3104 >        static {
3105 >            try {
3106 >                U = getUnsafe();
3107 >                Class<?> k = TreeBin.class;
3108 >                LOCKSTATE = U.objectFieldOffset
3109 >                    (k.getDeclaredField("lockState"));
3110 >            } catch (Exception e) {
3111 >                throw new Error(e);
3112              }
3113          }
3114      }
3115  
3116 <    /* ---------------- Public operations -------------- */
3116 >    /* ----------------Table Traversal -------------- */
3117  
3118      /**
3119 <     * Creates a new, empty map with the specified initial
3120 <     * capacity, load factor and concurrency level.
3121 <     *
3122 <     * @param initialCapacity the initial capacity. The implementation
3123 <     * performs internal sizing to accommodate this many elements.
3124 <     * @param loadFactor  the load factor threshold, used to control resizing.
3125 <     * Resizing may be performed when the average number of elements per
3126 <     * bin exceeds this threshold.
3127 <     * @param concurrencyLevel the estimated number of concurrently
898 <     * updating threads. The implementation may use this value as
899 <     * a sizing hint.
900 <     * @throws IllegalArgumentException if the initial capacity is
901 <     * negative or the load factor or concurrencyLevel are
902 <     * nonpositive.
903 <     */
904 <    public ConcurrentHashMapV8(int initialCapacity,
905 <                               float loadFactor, int concurrencyLevel) {
906 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
907 <            throw new IllegalArgumentException();
908 <        this.initCap = initialCapacity;
909 <        this.loadFactor = loadFactor;
910 <        this.counter = new LongAdder();
3119 >     * Records the table, its length, and current traversal index for a
3120 >     * traverser that must process a region of a forwarded table before
3121 >     * proceeding with current table.
3122 >     */
3123 >    static final class TableStack<K,V> {
3124 >        int length;
3125 >        int index;
3126 >        Node<K,V>[] tab;
3127 >        TableStack<K,V> next;
3128      }
3129  
3130      /**
3131 <     * Creates a new, empty map with the specified initial capacity
3132 <     * and load factor and with the default concurrencyLevel (16).
3133 <     *
3134 <     * @param initialCapacity The implementation performs internal
3135 <     * sizing to accommodate this many elements.
3136 <     * @param loadFactor  the load factor threshold, used to control resizing.
3137 <     * Resizing may be performed when the average number of elements per
3138 <     * bin exceeds this threshold.
3139 <     * @throws IllegalArgumentException if the initial capacity of
3140 <     * elements is negative or the load factor is nonpositive
3141 <     *
3142 <     * @since 1.6
3143 <     */
3144 <    public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
3145 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
3131 >     * Encapsulates traversal for methods such as containsValue; also
3132 >     * serves as a base class for other iterators and spliterators.
3133 >     *
3134 >     * Method advance visits once each still-valid node that was
3135 >     * reachable upon iterator construction. It might miss some that
3136 >     * were added to a bin after the bin was visited, which is OK wrt
3137 >     * consistency guarantees. Maintaining this property in the face
3138 >     * of possible ongoing resizes requires a fair amount of
3139 >     * bookkeeping state that is difficult to optimize away amidst
3140 >     * volatile accesses.  Even so, traversal maintains reasonable
3141 >     * throughput.
3142 >     *
3143 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3144 >     * However, if the table has been resized, then all future steps
3145 >     * must traverse both the bin at the current index as well as at
3146 >     * (index + baseSize); and so on for further resizings. To
3147 >     * paranoically cope with potential sharing by users of iterators
3148 >     * across threads, iteration terminates if a bounds checks fails
3149 >     * for a table read.
3150 >     */
3151 >    static class Traverser<K,V> {
3152 >        Node<K,V>[] tab;        // current table; updated if resized
3153 >        Node<K,V> next;         // the next entry to use
3154 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3155 >        int index;              // index of bin to use next
3156 >        int baseIndex;          // current index of initial table
3157 >        int baseLimit;          // index bound for initial table
3158 >        final int baseSize;     // initial table size
3159 >
3160 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3161 >            this.tab = tab;
3162 >            this.baseSize = size;
3163 >            this.baseIndex = this.index = index;
3164 >            this.baseLimit = limit;
3165 >            this.next = null;
3166 >        }
3167 >
3168 >        /**
3169 >         * Advances if possible, returning next valid node, or null if none.
3170 >         */
3171 >        final Node<K,V> advance() {
3172 >            Node<K,V> e;
3173 >            if ((e = next) != null)
3174 >                e = e.next;
3175 >            for (;;) {
3176 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3177 >                if (e != null)
3178 >                    return next = e;
3179 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3180 >                    (n = t.length) <= (i = index) || i < 0)
3181 >                    return next = null;
3182 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3183 >                    if (e instanceof ForwardingNode) {
3184 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3185 >                        e = null;
3186 >                        pushState(t, i, n);
3187 >                        continue;
3188 >                    }
3189 >                    else if (e instanceof TreeBin)
3190 >                        e = ((TreeBin<K,V>)e).first;
3191 >                    else
3192 >                        e = null;
3193 >                }
3194 >                if (stack != null)
3195 >                    recoverState(n);
3196 >                else if ((index = i + baseSize) >= n)
3197 >                    index = ++baseIndex; // visit upper slots if present
3198 >            }
3199 >        }
3200 >
3201 >        /**
3202 >         * Saves traversal state upon encountering a forwarding node.
3203 >         */
3204 >        private void pushState(Node<K,V>[] t, int i, int n) {
3205 >            TableStack<K,V> s = spare;  // reuse if possible
3206 >            if (s != null)
3207 >                spare = s.next;
3208 >            else
3209 >                s = new TableStack<K,V>();
3210 >            s.tab = t;
3211 >            s.length = n;
3212 >            s.index = i;
3213 >            s.next = stack;
3214 >            stack = s;
3215 >        }
3216 >
3217 >        /**
3218 >         * Possibly pops traversal state.
3219 >         *
3220 >         * @param n length of current table
3221 >         */
3222 >        private void recoverState(int n) {
3223 >            TableStack<K,V> s; int len;
3224 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3225 >                n = len;
3226 >                index = s.index;
3227 >                tab = s.tab;
3228 >                s.tab = null;
3229 >                TableStack<K,V> next = s.next;
3230 >                s.next = spare; // save for reuse
3231 >                stack = next;
3232 >                spare = s;
3233 >            }
3234 >            if (s == null && (index += baseSize) >= n)
3235 >                index = ++baseIndex;
3236 >        }
3237      }
3238  
3239      /**
3240 <     * Creates a new, empty map with the specified initial capacity,
3241 <     * and with default load factor (0.75) and concurrencyLevel (16).
934 <     *
935 <     * @param initialCapacity the initial capacity. The implementation
936 <     * performs internal sizing to accommodate this many elements.
937 <     * @throws IllegalArgumentException if the initial capacity of
938 <     * elements is negative.
3240 >     * Base of key, value, and entry Iterators. Adds fields to
3241 >     * Traverser to support iterator.remove.
3242       */
3243 <    public ConcurrentHashMapV8(int initialCapacity) {
3244 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
3243 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3244 >        final ConcurrentHashMapV8<K,V> map;
3245 >        Node<K,V> lastReturned;
3246 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3247 >                    ConcurrentHashMapV8<K,V> map) {
3248 >            super(tab, size, index, limit);
3249 >            this.map = map;
3250 >            advance();
3251 >        }
3252 >
3253 >        public final boolean hasNext() { return next != null; }
3254 >        public final boolean hasMoreElements() { return next != null; }
3255 >
3256 >        public final void remove() {
3257 >            Node<K,V> p;
3258 >            if ((p = lastReturned) == null)
3259 >                throw new IllegalStateException();
3260 >            lastReturned = null;
3261 >            map.replaceNode(p.key, null, null);
3262 >        }
3263 >    }
3264 >
3265 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3266 >        implements Iterator<K>, Enumeration<K> {
3267 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3268 >                    ConcurrentHashMapV8<K,V> map) {
3269 >            super(tab, index, size, limit, map);
3270 >        }
3271 >
3272 >        public final K next() {
3273 >            Node<K,V> p;
3274 >            if ((p = next) == null)
3275 >                throw new NoSuchElementException();
3276 >            K k = p.key;
3277 >            lastReturned = p;
3278 >            advance();
3279 >            return k;
3280 >        }
3281 >
3282 >        public final K nextElement() { return next(); }
3283 >    }
3284 >
3285 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3286 >        implements Iterator<V>, Enumeration<V> {
3287 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3288 >                      ConcurrentHashMapV8<K,V> map) {
3289 >            super(tab, index, size, limit, map);
3290 >        }
3291 >
3292 >        public final V next() {
3293 >            Node<K,V> p;
3294 >            if ((p = next) == null)
3295 >                throw new NoSuchElementException();
3296 >            V v = p.val;
3297 >            lastReturned = p;
3298 >            advance();
3299 >            return v;
3300 >        }
3301 >
3302 >        public final V nextElement() { return next(); }
3303 >    }
3304 >
3305 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3306 >        implements Iterator<Map.Entry<K,V>> {
3307 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3308 >                      ConcurrentHashMapV8<K,V> map) {
3309 >            super(tab, index, size, limit, map);
3310 >        }
3311 >
3312 >        public final Map.Entry<K,V> next() {
3313 >            Node<K,V> p;
3314 >            if ((p = next) == null)
3315 >                throw new NoSuchElementException();
3316 >            K k = p.key;
3317 >            V v = p.val;
3318 >            lastReturned = p;
3319 >            advance();
3320 >            return new MapEntry<K,V>(k, v, map);
3321 >        }
3322      }
3323  
3324      /**
3325 <     * Creates a new, empty map with a default initial capacity (16),
946 <     * load factor (0.75) and concurrencyLevel (16).
3325 >     * Exported Entry for EntryIterator
3326       */
3327 <    public ConcurrentHashMapV8() {
3328 <        this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
3327 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3328 >        final K key; // non-null
3329 >        V val;       // non-null
3330 >        final ConcurrentHashMapV8<K,V> map;
3331 >        MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3332 >            this.key = key;
3333 >            this.val = val;
3334 >            this.map = map;
3335 >        }
3336 >        public K getKey()        { return key; }
3337 >        public V getValue()      { return val; }
3338 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3339 >        public String toString() { return key + "=" + val; }
3340 >
3341 >        public boolean equals(Object o) {
3342 >            Object k, v; Map.Entry<?,?> e;
3343 >            return ((o instanceof Map.Entry) &&
3344 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3345 >                    (v = e.getValue()) != null &&
3346 >                    (k == key || k.equals(key)) &&
3347 >                    (v == val || v.equals(val)));
3348 >        }
3349 >
3350 >        /**
3351 >         * Sets our entry's value and writes through to the map. The
3352 >         * value to return is somewhat arbitrary here. Since we do not
3353 >         * necessarily track asynchronous changes, the most recent
3354 >         * "previous" value could be different from what we return (or
3355 >         * could even have been removed, in which case the put will
3356 >         * re-establish). We do not and cannot guarantee more.
3357 >         */
3358 >        public V setValue(V value) {
3359 >            if (value == null) throw new NullPointerException();
3360 >            V v = val;
3361 >            val = value;
3362 >            map.put(key, value);
3363 >            return v;
3364 >        }
3365      }
3366  
3367 +    static final class KeySpliterator<K,V> extends Traverser<K,V>
3368 +        implements ConcurrentHashMapSpliterator<K> {
3369 +        long est;               // size estimate
3370 +        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3371 +                       long est) {
3372 +            super(tab, size, index, limit);
3373 +            this.est = est;
3374 +        }
3375 +
3376 +        public ConcurrentHashMapSpliterator<K> trySplit() {
3377 +            int i, f, h;
3378 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3379 +                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3380 +                                        f, est >>>= 1);
3381 +        }
3382 +
3383 +        public void forEachRemaining(Action<? super K> action) {
3384 +            if (action == null) throw new NullPointerException();
3385 +            for (Node<K,V> p; (p = advance()) != null;)
3386 +                action.apply(p.key);
3387 +        }
3388 +
3389 +        public boolean tryAdvance(Action<? super K> action) {
3390 +            if (action == null) throw new NullPointerException();
3391 +            Node<K,V> p;
3392 +            if ((p = advance()) == null)
3393 +                return false;
3394 +            action.apply(p.key);
3395 +            return true;
3396 +        }
3397 +
3398 +        public long estimateSize() { return est; }
3399 +
3400 +    }
3401 +
3402 +    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3403 +        implements ConcurrentHashMapSpliterator<V> {
3404 +        long est;               // size estimate
3405 +        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3406 +                         long est) {
3407 +            super(tab, size, index, limit);
3408 +            this.est = est;
3409 +        }
3410 +
3411 +        public ConcurrentHashMapSpliterator<V> trySplit() {
3412 +            int i, f, h;
3413 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3414 +                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3415 +                                          f, est >>>= 1);
3416 +        }
3417 +
3418 +        public void forEachRemaining(Action<? super V> action) {
3419 +            if (action == null) throw new NullPointerException();
3420 +            for (Node<K,V> p; (p = advance()) != null;)
3421 +                action.apply(p.val);
3422 +        }
3423 +
3424 +        public boolean tryAdvance(Action<? super V> action) {
3425 +            if (action == null) throw new NullPointerException();
3426 +            Node<K,V> p;
3427 +            if ((p = advance()) == null)
3428 +                return false;
3429 +            action.apply(p.val);
3430 +            return true;
3431 +        }
3432 +
3433 +        public long estimateSize() { return est; }
3434 +
3435 +    }
3436 +
3437 +    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3438 +        implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3439 +        final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3440 +        long est;               // size estimate
3441 +        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3442 +                         long est, ConcurrentHashMapV8<K,V> map) {
3443 +            super(tab, size, index, limit);
3444 +            this.map = map;
3445 +            this.est = est;
3446 +        }
3447 +
3448 +        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3449 +            int i, f, h;
3450 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3451 +                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3452 +                                          f, est >>>= 1, map);
3453 +        }
3454 +
3455 +        public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3456 +            if (action == null) throw new NullPointerException();
3457 +            for (Node<K,V> p; (p = advance()) != null; )
3458 +                action.apply(new MapEntry<K,V>(p.key, p.val, map));
3459 +        }
3460 +
3461 +        public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3462 +            if (action == null) throw new NullPointerException();
3463 +            Node<K,V> p;
3464 +            if ((p = advance()) == null)
3465 +                return false;
3466 +            action.apply(new MapEntry<K,V>(p.key, p.val, map));
3467 +            return true;
3468 +        }
3469 +
3470 +        public long estimateSize() { return est; }
3471 +
3472 +    }
3473 +
3474 +    // Parallel bulk operations
3475 +
3476      /**
3477 <     * Creates a new map with the same mappings as the given map.
3478 <     * The map is created with a capacity of 1.5 times the number
3479 <     * of mappings in the given map or 16 (whichever is greater),
3480 <     * and a default load factor (0.75) and concurrencyLevel (16).
3481 <     *
3482 <     * @param m the map
3477 >     * Computes initial batch value for bulk tasks. The returned value
3478 >     * is approximately exp2 of the number of times (minus one) to
3479 >     * split task by two before executing leaf action. This value is
3480 >     * faster to compute and more convenient to use as a guide to
3481 >     * splitting than is the depth, since it is used while dividing by
3482 >     * two anyway.
3483       */
3484 <    public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
3485 <        this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
3486 <        if (m == null)
3487 <            throw new NullPointerException();
3488 <        internalPutAll(m);
3484 >    final int batchFor(long b) {
3485 >        long n;
3486 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3487 >            return 0;
3488 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3489 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3490      }
3491  
3492      /**
3493 <     * Returns {@code true} if this map contains no key-value mappings.
3493 >     * Performs the given action for each (key, value).
3494       *
3495 <     * @return {@code true} if this map contains no key-value mappings
3495 >     * @param parallelismThreshold the (estimated) number of elements
3496 >     * needed for this operation to be executed in parallel
3497 >     * @param action the action
3498 >     * @since 1.8
3499       */
3500 <    public boolean isEmpty() {
3501 <        return counter.sum() <= 0L; // ignore transient negative values
3500 >    public void forEach(long parallelismThreshold,
3501 >                        BiAction<? super K,? super V> action) {
3502 >        if (action == null) throw new NullPointerException();
3503 >        new ForEachMappingTask<K,V>
3504 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3505 >             action).invoke();
3506      }
3507  
3508      /**
3509 <     * Returns the number of key-value mappings in this map.  If the
3510 <     * map contains more than {@code Integer.MAX_VALUE} elements, returns
979 <     * {@code Integer.MAX_VALUE}.
3509 >     * Performs the given action for each non-null transformation
3510 >     * of each (key, value).
3511       *
3512 <     * @return the number of key-value mappings in this map
3512 >     * @param parallelismThreshold the (estimated) number of elements
3513 >     * needed for this operation to be executed in parallel
3514 >     * @param transformer a function returning the transformation
3515 >     * for an element, or null if there is no transformation (in
3516 >     * which case the action is not applied)
3517 >     * @param action the action
3518 >     * @since 1.8
3519       */
3520 <    public int size() {
3521 <        long n = counter.sum();
3522 <        return ((n >>> 31) == 0) ? (int)n : (n < 0L) ? 0 : Integer.MAX_VALUE;
3520 >    public <U> void forEach(long parallelismThreshold,
3521 >                            BiFun<? super K, ? super V, ? extends U> transformer,
3522 >                            Action<? super U> action) {
3523 >        if (transformer == null || action == null)
3524 >            throw new NullPointerException();
3525 >        new ForEachTransformedMappingTask<K,V,U>
3526 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3527 >             transformer, action).invoke();
3528      }
3529  
3530      /**
3531 <     * Returns the value to which the specified key is mapped,
3532 <     * or {@code null} if this map contains no mapping for the key.
3533 <     *
3534 <     * <p>More formally, if this map contains a mapping from a key
3535 <     * {@code k} to a value {@code v} such that {@code key.equals(k)},
3536 <     * then this method returns {@code v}; otherwise it returns
3537 <     * {@code null}.  (There can be at most one such mapping.)
3538 <     *
3539 <     * @throws NullPointerException if the specified key is null
3540 <     */
3541 <    @SuppressWarnings("unchecked")
3542 <    public V get(Object key) {
3543 <        if (key == null)
3531 >     * Returns a non-null result from applying the given search
3532 >     * function on each (key, value), or null if none.  Upon
3533 >     * success, further element processing is suppressed and the
3534 >     * results of any other parallel invocations of the search
3535 >     * function are ignored.
3536 >     *
3537 >     * @param parallelismThreshold the (estimated) number of elements
3538 >     * needed for this operation to be executed in parallel
3539 >     * @param searchFunction a function returning a non-null
3540 >     * result on success, else null
3541 >     * @return a non-null result from applying the given search
3542 >     * function on each (key, value), or null if none
3543 >     * @since 1.8
3544 >     */
3545 >    public <U> U search(long parallelismThreshold,
3546 >                        BiFun<? super K, ? super V, ? extends U> searchFunction) {
3547 >        if (searchFunction == null) throw new NullPointerException();
3548 >        return new SearchMappingsTask<K,V,U>
3549 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3550 >             searchFunction, new AtomicReference<U>()).invoke();
3551 >    }
3552 >
3553 >    /**
3554 >     * Returns the result of accumulating the given transformation
3555 >     * of all (key, value) pairs using the given reducer to
3556 >     * combine values, or null if none.
3557 >     *
3558 >     * @param parallelismThreshold the (estimated) number of elements
3559 >     * needed for this operation to be executed in parallel
3560 >     * @param transformer a function returning the transformation
3561 >     * for an element, or null if there is no transformation (in
3562 >     * which case it is not combined)
3563 >     * @param reducer a commutative associative combining function
3564 >     * @return the result of accumulating the given transformation
3565 >     * of all (key, value) pairs
3566 >     * @since 1.8
3567 >     */
3568 >    public <U> U reduce(long parallelismThreshold,
3569 >                        BiFun<? super K, ? super V, ? extends U> transformer,
3570 >                        BiFun<? super U, ? super U, ? extends U> reducer) {
3571 >        if (transformer == null || reducer == null)
3572              throw new NullPointerException();
3573 <        return (V)internalGet(key);
3573 >        return new MapReduceMappingsTask<K,V,U>
3574 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3575 >             null, transformer, reducer).invoke();
3576      }
3577  
3578      /**
3579 <     * Tests if the specified object is a key in this table.
3580 <     *
3581 <     * @param  key   possible key
3582 <     * @return {@code true} if and only if the specified object
3583 <     *         is a key in this table, as determined by the
3584 <     *         {@code equals} method; {@code false} otherwise.
3585 <     * @throws NullPointerException if the specified key is null
3586 <     */
3587 <    public boolean containsKey(Object key) {
3588 <        if (key == null)
3579 >     * Returns the result of accumulating the given transformation
3580 >     * of all (key, value) pairs using the given reducer to
3581 >     * combine values, and the given basis as an identity value.
3582 >     *
3583 >     * @param parallelismThreshold the (estimated) number of elements
3584 >     * needed for this operation to be executed in parallel
3585 >     * @param transformer a function returning the transformation
3586 >     * for an element
3587 >     * @param basis the identity (initial default value) for the reduction
3588 >     * @param reducer a commutative associative combining function
3589 >     * @return the result of accumulating the given transformation
3590 >     * of all (key, value) pairs
3591 >     * @since 1.8
3592 >     */
3593 >    public double reduceToDouble(long parallelismThreshold,
3594 >                                 ObjectByObjectToDouble<? super K, ? super V> transformer,
3595 >                                 double basis,
3596 >                                 DoubleByDoubleToDouble reducer) {
3597 >        if (transformer == null || reducer == null)
3598              throw new NullPointerException();
3599 <        return internalGet(key) != null;
3599 >        return new MapReduceMappingsToDoubleTask<K,V>
3600 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3601 >             null, transformer, basis, reducer).invoke();
3602      }
3603  
3604      /**
3605 <     * Returns {@code true} if this map maps one or more keys to the
3606 <     * specified value. Note: This method requires a full internal
3607 <     * traversal of the hash table, and so is much slower than
3608 <     * method {@code containsKey}.
3609 <     *
3610 <     * @param value value whose presence in this map is to be tested
3611 <     * @return {@code true} if this map maps one or more keys to the
3612 <     *         specified value
3613 <     * @throws NullPointerException if the specified value is null
3614 <     */
3615 <    public boolean containsValue(Object value) {
3616 <        if (value == null)
3605 >     * Returns the result of accumulating the given transformation
3606 >     * of all (key, value) pairs using the given reducer to
3607 >     * combine values, and the given basis as an identity value.
3608 >     *
3609 >     * @param parallelismThreshold the (estimated) number of elements
3610 >     * needed for this operation to be executed in parallel
3611 >     * @param transformer a function returning the transformation
3612 >     * for an element
3613 >     * @param basis the identity (initial default value) for the reduction
3614 >     * @param reducer a commutative associative combining function
3615 >     * @return the result of accumulating the given transformation
3616 >     * of all (key, value) pairs
3617 >     * @since 1.8
3618 >     */
3619 >    public long reduceToLong(long parallelismThreshold,
3620 >                             ObjectByObjectToLong<? super K, ? super V> transformer,
3621 >                             long basis,
3622 >                             LongByLongToLong reducer) {
3623 >        if (transformer == null || reducer == null)
3624              throw new NullPointerException();
3625 <        return new HashIterator().containsVal(value);
3625 >        return new MapReduceMappingsToLongTask<K,V>
3626 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3627 >             null, transformer, basis, reducer).invoke();
3628      }
3629  
3630      /**
3631 <     * Legacy method testing if some key maps into the specified value
3632 <     * in this table.  This method is identical in functionality to
3633 <     * {@link #containsValue}, and exists solely to ensure
3634 <     * full compatibility with class {@link java.util.Hashtable},
3635 <     * which supported this method prior to introduction of the
3636 <     * Java Collections framework.
3637 <     *
3638 <     * @param  value a value to search for
3639 <     * @return {@code true} if and only if some key maps to the
3640 <     *         {@code value} argument in this table as
3641 <     *         determined by the {@code equals} method;
3642 <     *         {@code false} otherwise
3643 <     * @throws NullPointerException if the specified value is null
3644 <     */
3645 <    public boolean contains(Object value) {
3646 <        return containsValue(value);
3631 >     * Returns the result of accumulating the given transformation
3632 >     * of all (key, value) pairs using the given reducer to
3633 >     * combine values, and the given basis as an identity value.
3634 >     *
3635 >     * @param parallelismThreshold the (estimated) number of elements
3636 >     * needed for this operation to be executed in parallel
3637 >     * @param transformer a function returning the transformation
3638 >     * for an element
3639 >     * @param basis the identity (initial default value) for the reduction
3640 >     * @param reducer a commutative associative combining function
3641 >     * @return the result of accumulating the given transformation
3642 >     * of all (key, value) pairs
3643 >     * @since 1.8
3644 >     */
3645 >    public int reduceToInt(long parallelismThreshold,
3646 >                           ObjectByObjectToInt<? super K, ? super V> transformer,
3647 >                           int basis,
3648 >                           IntByIntToInt reducer) {
3649 >        if (transformer == null || reducer == null)
3650 >            throw new NullPointerException();
3651 >        return new MapReduceMappingsToIntTask<K,V>
3652 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3653 >             null, transformer, basis, reducer).invoke();
3654      }
3655  
3656      /**
3657 <     * Maps the specified key to the specified value in this table.
1059 <     * Neither the key nor the value can be null.
3657 >     * Performs the given action for each key.
3658       *
3659 <     * <p> The value can be retrieved by calling the {@code get} method
3660 <     * with a key that is equal to the original key.
3661 <     *
3662 <     * @param key key with which the specified value is to be associated
1065 <     * @param value value to be associated with the specified key
1066 <     * @return the previous value associated with {@code key}, or
1067 <     *         {@code null} if there was no mapping for {@code key}
1068 <     * @throws NullPointerException if the specified key or value is null
3659 >     * @param parallelismThreshold the (estimated) number of elements
3660 >     * needed for this operation to be executed in parallel
3661 >     * @param action the action
3662 >     * @since 1.8
3663       */
3664 <    @SuppressWarnings("unchecked")
3665 <    public V put(K key, V value) {
3666 <        if (key == null || value == null)
3667 <            throw new NullPointerException();
3668 <        return (V)internalPut(key, value, true);
3664 >    public void forEachKey(long parallelismThreshold,
3665 >                           Action<? super K> action) {
3666 >        if (action == null) throw new NullPointerException();
3667 >        new ForEachKeyTask<K,V>
3668 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3669 >             action).invoke();
3670      }
3671  
3672      /**
3673 <     * {@inheritDoc}
3673 >     * Performs the given action for each non-null transformation
3674 >     * of each key.
3675       *
3676 <     * @return the previous value associated with the specified key,
3677 <     *         or {@code null} if there was no mapping for the key
3678 <     * @throws NullPointerException if the specified key or value is null
3676 >     * @param parallelismThreshold the (estimated) number of elements
3677 >     * needed for this operation to be executed in parallel
3678 >     * @param transformer a function returning the transformation
3679 >     * for an element, or null if there is no transformation (in
3680 >     * which case the action is not applied)
3681 >     * @param action the action
3682 >     * @since 1.8
3683       */
3684 <    @SuppressWarnings("unchecked")
3685 <    public V putIfAbsent(K key, V value) {
3686 <        if (key == null || value == null)
3684 >    public <U> void forEachKey(long parallelismThreshold,
3685 >                               Fun<? super K, ? extends U> transformer,
3686 >                               Action<? super U> action) {
3687 >        if (transformer == null || action == null)
3688 >            throw new NullPointerException();
3689 >        new ForEachTransformedKeyTask<K,V,U>
3690 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3691 >             transformer, action).invoke();
3692 >    }
3693 >
3694 >    /**
3695 >     * Returns a non-null result from applying the given search
3696 >     * function on each key, or null if none. Upon success,
3697 >     * further element processing is suppressed and the results of
3698 >     * any other parallel invocations of the search function are
3699 >     * ignored.
3700 >     *
3701 >     * @param parallelismThreshold the (estimated) number of elements
3702 >     * needed for this operation to be executed in parallel
3703 >     * @param searchFunction a function returning a non-null
3704 >     * result on success, else null
3705 >     * @return a non-null result from applying the given search
3706 >     * function on each key, or null if none
3707 >     * @since 1.8
3708 >     */
3709 >    public <U> U searchKeys(long parallelismThreshold,
3710 >                            Fun<? super K, ? extends U> searchFunction) {
3711 >        if (searchFunction == null) throw new NullPointerException();
3712 >        return new SearchKeysTask<K,V,U>
3713 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3714 >             searchFunction, new AtomicReference<U>()).invoke();
3715 >    }
3716 >
3717 >    /**
3718 >     * Returns the result of accumulating all keys using the given
3719 >     * reducer to combine values, or null if none.
3720 >     *
3721 >     * @param parallelismThreshold the (estimated) number of elements
3722 >     * needed for this operation to be executed in parallel
3723 >     * @param reducer a commutative associative combining function
3724 >     * @return the result of accumulating all keys using the given
3725 >     * reducer to combine values, or null if none
3726 >     * @since 1.8
3727 >     */
3728 >    public K reduceKeys(long parallelismThreshold,
3729 >                        BiFun<? super K, ? super K, ? extends K> reducer) {
3730 >        if (reducer == null) throw new NullPointerException();
3731 >        return new ReduceKeysTask<K,V>
3732 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3733 >             null, reducer).invoke();
3734 >    }
3735 >
3736 >    /**
3737 >     * Returns the result of accumulating the given transformation
3738 >     * of all keys using the given reducer to combine values, or
3739 >     * null if none.
3740 >     *
3741 >     * @param parallelismThreshold the (estimated) number of elements
3742 >     * needed for this operation to be executed in parallel
3743 >     * @param transformer a function returning the transformation
3744 >     * for an element, or null if there is no transformation (in
3745 >     * which case it is not combined)
3746 >     * @param reducer a commutative associative combining function
3747 >     * @return the result of accumulating the given transformation
3748 >     * of all keys
3749 >     * @since 1.8
3750 >     */
3751 >    public <U> U reduceKeys(long parallelismThreshold,
3752 >                            Fun<? super K, ? extends U> transformer,
3753 >         BiFun<? super U, ? super U, ? extends U> reducer) {
3754 >        if (transformer == null || reducer == null)
3755              throw new NullPointerException();
3756 <        return (V)internalPut(key, value, false);
3756 >        return new MapReduceKeysTask<K,V,U>
3757 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3758 >             null, transformer, reducer).invoke();
3759      }
3760  
3761      /**
3762 <     * Copies all of the mappings from the specified map to this one.
3763 <     * These mappings replace any mappings that this map had for any of the
3764 <     * keys currently in the specified map.
3765 <     *
3766 <     * @param m mappings to be stored in this map
3767 <     */
3768 <    public void putAll(Map<? extends K, ? extends V> m) {
3769 <        if (m == null)
3762 >     * Returns the result of accumulating the given transformation
3763 >     * of all keys using the given reducer to combine values, and
3764 >     * the given basis as an identity value.
3765 >     *
3766 >     * @param parallelismThreshold the (estimated) number of elements
3767 >     * needed for this operation to be executed in parallel
3768 >     * @param transformer a function returning the transformation
3769 >     * for an element
3770 >     * @param basis the identity (initial default value) for the reduction
3771 >     * @param reducer a commutative associative combining function
3772 >     * @return the result of accumulating the given transformation
3773 >     * of all keys
3774 >     * @since 1.8
3775 >     */
3776 >    public double reduceKeysToDouble(long parallelismThreshold,
3777 >                                     ObjectToDouble<? super K> transformer,
3778 >                                     double basis,
3779 >                                     DoubleByDoubleToDouble reducer) {
3780 >        if (transformer == null || reducer == null)
3781              throw new NullPointerException();
3782 <        internalPutAll(m);
3782 >        return new MapReduceKeysToDoubleTask<K,V>
3783 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3784 >             null, transformer, basis, reducer).invoke();
3785      }
3786  
3787      /**
3788 <     * If the specified key is not already associated with a value,
3789 <     * computes its value using the given mappingFunction, and if
3790 <     * non-null, enters it into the map.  This is equivalent to
3791 <     *
3792 <     * <pre>
3793 <     *   if (map.containsKey(key))
3794 <     *       return map.get(key);
3795 <     *   value = mappingFunction.map(key);
3796 <     *   if (value != null)
3797 <     *      map.put(key, value);
3798 <     *   return value;
3799 <     * </pre>
3800 <     *
3801 <     * except that the action is performed atomically.  Some attempted
3802 <     * update operations on this map by other threads may be blocked
3803 <     * while computation is in progress, so the computation should be
3804 <     * short and simple, and must not attempt to update any other
3805 <     * mappings of this Map. The most appropriate usage is to
3806 <     * construct a new object serving as an initial mapped value, or
1124 <     * memoized result, as in:
1125 <     * <pre>{@code
1126 <     * map.computeIfAbsent(key, new MappingFunction<K, V>() {
1127 <     *   public V map(K k) { return new Value(f(k)); }};
1128 <     * }</pre>
1129 <     *
1130 <     * @param key key with which the specified value is to be associated
1131 <     * @param mappingFunction the function to compute a value
1132 <     * @return the current (existing or computed) value associated with
1133 <     *         the specified key, or {@code null} if the computation
1134 <     *         returned {@code null}.
1135 <     * @throws NullPointerException if the specified key or mappingFunction
1136 <     *         is null,
1137 <     * @throws IllegalStateException if the computation detectably
1138 <     *         attempts a recursive update to this map that would
1139 <     *         otherwise never complete.
1140 <     * @throws RuntimeException or Error if the mappingFunction does so,
1141 <     *         in which case the mapping is left unestablished.
1142 <     */
1143 <    public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
1144 <        if (key == null || mappingFunction == null)
3788 >     * Returns the result of accumulating the given transformation
3789 >     * of all keys using the given reducer to combine values, and
3790 >     * the given basis as an identity value.
3791 >     *
3792 >     * @param parallelismThreshold the (estimated) number of elements
3793 >     * needed for this operation to be executed in parallel
3794 >     * @param transformer a function returning the transformation
3795 >     * for an element
3796 >     * @param basis the identity (initial default value) for the reduction
3797 >     * @param reducer a commutative associative combining function
3798 >     * @return the result of accumulating the given transformation
3799 >     * of all keys
3800 >     * @since 1.8
3801 >     */
3802 >    public long reduceKeysToLong(long parallelismThreshold,
3803 >                                 ObjectToLong<? super K> transformer,
3804 >                                 long basis,
3805 >                                 LongByLongToLong reducer) {
3806 >        if (transformer == null || reducer == null)
3807              throw new NullPointerException();
3808 <        return internalCompute(key, mappingFunction, false);
3808 >        return new MapReduceKeysToLongTask<K,V>
3809 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3810 >             null, transformer, basis, reducer).invoke();
3811      }
3812  
3813      /**
3814 <     * Computes the value associated with the given key using the given
3815 <     * mappingFunction, and if non-null, enters it into the map.  This
3816 <     * is equivalent to
3817 <     *
3818 <     * <pre>
3819 <     *   value = mappingFunction.map(key);
3820 <     *   if (value != null)
3821 <     *      map.put(key, value);
3822 <     *   else
3823 <     *      value = map.get(key);
3824 <     *   return value;
3825 <     * </pre>
3826 <     *
3827 <     * except that the action is performed atomically.  Some attempted
3828 <     * update operations on this map by other threads may be blocked
3829 <     * while computation is in progress, so the computation should be
3830 <     * short and simple, and must not attempt to update any other
3831 <     * mappings of this Map.
3832 <     *
1169 <     * @param key key with which the specified value is to be associated
1170 <     * @param mappingFunction the function to compute a value
1171 <     * @return the current value associated with
1172 <     *         the specified key, or {@code null} if the computation
1173 <     *         returned {@code null} and the value was not otherwise present.
1174 <     * @throws NullPointerException if the specified key or mappingFunction
1175 <     *         is null,
1176 <     * @throws IllegalStateException if the computation detectably
1177 <     *         attempts a recursive update to this map that would
1178 <     *         otherwise never complete.
1179 <     * @throws RuntimeException or Error if the mappingFunction does so,
1180 <     *         in which case the mapping is unchanged.
1181 <     */
1182 <    public V compute(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
1183 <        if (key == null || mappingFunction == null)
3814 >     * Returns the result of accumulating the given transformation
3815 >     * of all keys using the given reducer to combine values, and
3816 >     * the given basis as an identity value.
3817 >     *
3818 >     * @param parallelismThreshold the (estimated) number of elements
3819 >     * needed for this operation to be executed in parallel
3820 >     * @param transformer a function returning the transformation
3821 >     * for an element
3822 >     * @param basis the identity (initial default value) for the reduction
3823 >     * @param reducer a commutative associative combining function
3824 >     * @return the result of accumulating the given transformation
3825 >     * of all keys
3826 >     * @since 1.8
3827 >     */
3828 >    public int reduceKeysToInt(long parallelismThreshold,
3829 >                               ObjectToInt<? super K> transformer,
3830 >                               int basis,
3831 >                               IntByIntToInt reducer) {
3832 >        if (transformer == null || reducer == null)
3833              throw new NullPointerException();
3834 <        return internalCompute(key, mappingFunction, true);
3834 >        return new MapReduceKeysToIntTask<K,V>
3835 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3836 >             null, transformer, basis, reducer).invoke();
3837      }
3838  
3839      /**
3840 <     * Removes the key (and its corresponding value) from this map.
1190 <     * This method does nothing if the key is not in the map.
3840 >     * Performs the given action for each value.
3841       *
3842 <     * @param  key the key that needs to be removed
3843 <     * @return the previous value associated with {@code key}, or
3844 <     *         {@code null} if there was no mapping for {@code key}
3845 <     * @throws NullPointerException if the specified key is null
3842 >     * @param parallelismThreshold the (estimated) number of elements
3843 >     * needed for this operation to be executed in parallel
3844 >     * @param action the action
3845 >     * @since 1.8
3846       */
3847 <    @SuppressWarnings("unchecked")
3848 <    public V remove(Object key) {
3849 <        if (key == null)
3847 >    public void forEachValue(long parallelismThreshold,
3848 >                             Action<? super V> action) {
3849 >        if (action == null)
3850              throw new NullPointerException();
3851 <        return (V)internalReplace(key, null, null);
3851 >        new ForEachValueTask<K,V>
3852 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3853 >             action).invoke();
3854      }
3855  
3856      /**
3857 <     * {@inheritDoc}
3858 <     *
3859 <     * @throws NullPointerException if the specified key is null
3860 <     */
3861 <    public boolean remove(Object key, Object value) {
3862 <        if (key == null)
3857 >     * Performs the given action for each non-null transformation
3858 >     * of each value.
3859 >     *
3860 >     * @param parallelismThreshold the (estimated) number of elements
3861 >     * needed for this operation to be executed in parallel
3862 >     * @param transformer a function returning the transformation
3863 >     * for an element, or null if there is no transformation (in
3864 >     * which case the action is not applied)
3865 >     * @param action the action
3866 >     * @since 1.8
3867 >     */
3868 >    public <U> void forEachValue(long parallelismThreshold,
3869 >                                 Fun<? super V, ? extends U> transformer,
3870 >                                 Action<? super U> action) {
3871 >        if (transformer == null || action == null)
3872              throw new NullPointerException();
3873 <        if (value == null)
3874 <            return false;
3875 <        return internalReplace(key, null, value) != null;
3873 >        new ForEachTransformedValueTask<K,V,U>
3874 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3875 >             transformer, action).invoke();
3876 >    }
3877 >
3878 >    /**
3879 >     * Returns a non-null result from applying the given search
3880 >     * function on each value, or null if none.  Upon success,
3881 >     * further element processing is suppressed and the results of
3882 >     * any other parallel invocations of the search function are
3883 >     * ignored.
3884 >     *
3885 >     * @param parallelismThreshold the (estimated) number of elements
3886 >     * needed for this operation to be executed in parallel
3887 >     * @param searchFunction a function returning a non-null
3888 >     * result on success, else null
3889 >     * @return a non-null result from applying the given search
3890 >     * function on each value, or null if none
3891 >     * @since 1.8
3892 >     */
3893 >    public <U> U searchValues(long parallelismThreshold,
3894 >                              Fun<? super V, ? extends U> searchFunction) {
3895 >        if (searchFunction == null) throw new NullPointerException();
3896 >        return new SearchValuesTask<K,V,U>
3897 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3898 >             searchFunction, new AtomicReference<U>()).invoke();
3899 >    }
3900 >
3901 >    /**
3902 >     * Returns the result of accumulating all values using the
3903 >     * given reducer to combine values, or null if none.
3904 >     *
3905 >     * @param parallelismThreshold the (estimated) number of elements
3906 >     * needed for this operation to be executed in parallel
3907 >     * @param reducer a commutative associative combining function
3908 >     * @return the result of accumulating all values
3909 >     * @since 1.8
3910 >     */
3911 >    public V reduceValues(long parallelismThreshold,
3912 >                          BiFun<? super V, ? super V, ? extends V> reducer) {
3913 >        if (reducer == null) throw new NullPointerException();
3914 >        return new ReduceValuesTask<K,V>
3915 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3916 >             null, reducer).invoke();
3917 >    }
3918 >
3919 >    /**
3920 >     * Returns the result of accumulating the given transformation
3921 >     * of all values using the given reducer to combine values, or
3922 >     * null if none.
3923 >     *
3924 >     * @param parallelismThreshold the (estimated) number of elements
3925 >     * needed for this operation to be executed in parallel
3926 >     * @param transformer a function returning the transformation
3927 >     * for an element, or null if there is no transformation (in
3928 >     * which case it is not combined)
3929 >     * @param reducer a commutative associative combining function
3930 >     * @return the result of accumulating the given transformation
3931 >     * of all values
3932 >     * @since 1.8
3933 >     */
3934 >    public <U> U reduceValues(long parallelismThreshold,
3935 >                              Fun<? super V, ? extends U> transformer,
3936 >                              BiFun<? super U, ? super U, ? extends U> reducer) {
3937 >        if (transformer == null || reducer == null)
3938 >            throw new NullPointerException();
3939 >        return new MapReduceValuesTask<K,V,U>
3940 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3941 >             null, transformer, reducer).invoke();
3942      }
3943  
3944      /**
3945 <     * {@inheritDoc}
3946 <     *
3947 <     * @throws NullPointerException if any of the arguments are null
3948 <     */
3949 <    public boolean replace(K key, V oldValue, V newValue) {
3950 <        if (key == null || oldValue == null || newValue == null)
3945 >     * Returns the result of accumulating the given transformation
3946 >     * of all values using the given reducer to combine values,
3947 >     * and the given basis as an identity value.
3948 >     *
3949 >     * @param parallelismThreshold the (estimated) number of elements
3950 >     * needed for this operation to be executed in parallel
3951 >     * @param transformer a function returning the transformation
3952 >     * for an element
3953 >     * @param basis the identity (initial default value) for the reduction
3954 >     * @param reducer a commutative associative combining function
3955 >     * @return the result of accumulating the given transformation
3956 >     * of all values
3957 >     * @since 1.8
3958 >     */
3959 >    public double reduceValuesToDouble(long parallelismThreshold,
3960 >                                       ObjectToDouble<? super V> transformer,
3961 >                                       double basis,
3962 >                                       DoubleByDoubleToDouble reducer) {
3963 >        if (transformer == null || reducer == null)
3964              throw new NullPointerException();
3965 <        return internalReplace(key, newValue, oldValue) != null;
3965 >        return new MapReduceValuesToDoubleTask<K,V>
3966 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3967 >             null, transformer, basis, reducer).invoke();
3968      }
3969  
3970      /**
3971 <     * {@inheritDoc}
3972 <     *
3973 <     * @return the previous value associated with the specified key,
3974 <     *         or {@code null} if there was no mapping for the key
3975 <     * @throws NullPointerException if the specified key or value is null
3976 <     */
3977 <    @SuppressWarnings("unchecked")
3978 <    public V replace(K key, V value) {
3979 <        if (key == null || value == null)
3971 >     * Returns the result of accumulating the given transformation
3972 >     * of all values using the given reducer to combine values,
3973 >     * and the given basis as an identity value.
3974 >     *
3975 >     * @param parallelismThreshold the (estimated) number of elements
3976 >     * needed for this operation to be executed in parallel
3977 >     * @param transformer a function returning the transformation
3978 >     * for an element
3979 >     * @param basis the identity (initial default value) for the reduction
3980 >     * @param reducer a commutative associative combining function
3981 >     * @return the result of accumulating the given transformation
3982 >     * of all values
3983 >     * @since 1.8
3984 >     */
3985 >    public long reduceValuesToLong(long parallelismThreshold,
3986 >                                   ObjectToLong<? super V> transformer,
3987 >                                   long basis,
3988 >                                   LongByLongToLong reducer) {
3989 >        if (transformer == null || reducer == null)
3990              throw new NullPointerException();
3991 <        return (V)internalReplace(key, value, null);
3991 >        return new MapReduceValuesToLongTask<K,V>
3992 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3993 >             null, transformer, basis, reducer).invoke();
3994      }
3995  
3996      /**
3997 <     * Removes all of the mappings from this map.
3998 <     */
3999 <    public void clear() {
4000 <        internalClear();
3997 >     * Returns the result of accumulating the given transformation
3998 >     * of all values using the given reducer to combine values,
3999 >     * and the given basis as an identity value.
4000 >     *
4001 >     * @param parallelismThreshold the (estimated) number of elements
4002 >     * needed for this operation to be executed in parallel
4003 >     * @param transformer a function returning the transformation
4004 >     * for an element
4005 >     * @param basis the identity (initial default value) for the reduction
4006 >     * @param reducer a commutative associative combining function
4007 >     * @return the result of accumulating the given transformation
4008 >     * of all values
4009 >     * @since 1.8
4010 >     */
4011 >    public int reduceValuesToInt(long parallelismThreshold,
4012 >                                 ObjectToInt<? super V> transformer,
4013 >                                 int basis,
4014 >                                 IntByIntToInt reducer) {
4015 >        if (transformer == null || reducer == null)
4016 >            throw new NullPointerException();
4017 >        return new MapReduceValuesToIntTask<K,V>
4018 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4019 >             null, transformer, basis, reducer).invoke();
4020      }
4021  
4022      /**
4023 <     * Returns a {@link Set} view of the keys contained in this map.
1251 <     * The set is backed by the map, so changes to the map are
1252 <     * reflected in the set, and vice-versa.  The set supports element
1253 <     * removal, which removes the corresponding mapping from this map,
1254 <     * via the {@code Iterator.remove}, {@code Set.remove},
1255 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
1256 <     * operations.  It does not support the {@code add} or
1257 <     * {@code addAll} operations.
4023 >     * Performs the given action for each entry.
4024       *
4025 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4026 <     * that will never throw {@link ConcurrentModificationException},
4027 <     * and guarantees to traverse elements as they existed upon
4028 <     * construction of the iterator, and may (but is not guaranteed to)
1263 <     * reflect any modifications subsequent to construction.
4025 >     * @param parallelismThreshold the (estimated) number of elements
4026 >     * needed for this operation to be executed in parallel
4027 >     * @param action the action
4028 >     * @since 1.8
4029       */
4030 <    public Set<K> keySet() {
4031 <        Set<K> ks = keySet;
4032 <        return (ks != null) ? ks : (keySet = new KeySet());
4030 >    public void forEachEntry(long parallelismThreshold,
4031 >                             Action<? super Map.Entry<K,V>> action) {
4032 >        if (action == null) throw new NullPointerException();
4033 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4034 >                                  action).invoke();
4035      }
4036  
4037      /**
4038 <     * Returns a {@link Collection} view of the values contained in this map.
4039 <     * The collection is backed by the map, so changes to the map are
1273 <     * reflected in the collection, and vice-versa.  The collection
1274 <     * supports element removal, which removes the corresponding
1275 <     * mapping from this map, via the {@code Iterator.remove},
1276 <     * {@code Collection.remove}, {@code removeAll},
1277 <     * {@code retainAll}, and {@code clear} operations.  It does not
1278 <     * support the {@code add} or {@code addAll} operations.
4038 >     * Performs the given action for each non-null transformation
4039 >     * of each entry.
4040       *
4041 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4042 <     * that will never throw {@link ConcurrentModificationException},
4043 <     * and guarantees to traverse elements as they existed upon
4044 <     * construction of the iterator, and may (but is not guaranteed to)
4045 <     * reflect any modifications subsequent to construction.
4041 >     * @param parallelismThreshold the (estimated) number of elements
4042 >     * needed for this operation to be executed in parallel
4043 >     * @param transformer a function returning the transformation
4044 >     * for an element, or null if there is no transformation (in
4045 >     * which case the action is not applied)
4046 >     * @param action the action
4047 >     * @since 1.8
4048       */
4049 <    public Collection<V> values() {
4050 <        Collection<V> vs = values;
4051 <        return (vs != null) ? vs : (values = new Values());
4049 >    public <U> void forEachEntry(long parallelismThreshold,
4050 >                                 Fun<Map.Entry<K,V>, ? extends U> transformer,
4051 >                                 Action<? super U> action) {
4052 >        if (transformer == null || action == null)
4053 >            throw new NullPointerException();
4054 >        new ForEachTransformedEntryTask<K,V,U>
4055 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4056 >             transformer, action).invoke();
4057 >    }
4058 >
4059 >    /**
4060 >     * Returns a non-null result from applying the given search
4061 >     * function on each entry, or null if none.  Upon success,
4062 >     * further element processing is suppressed and the results of
4063 >     * any other parallel invocations of the search function are
4064 >     * ignored.
4065 >     *
4066 >     * @param parallelismThreshold the (estimated) number of elements
4067 >     * needed for this operation to be executed in parallel
4068 >     * @param searchFunction a function returning a non-null
4069 >     * result on success, else null
4070 >     * @return a non-null result from applying the given search
4071 >     * function on each entry, or null if none
4072 >     * @since 1.8
4073 >     */
4074 >    public <U> U searchEntries(long parallelismThreshold,
4075 >                               Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4076 >        if (searchFunction == null) throw new NullPointerException();
4077 >        return new SearchEntriesTask<K,V,U>
4078 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4079 >             searchFunction, new AtomicReference<U>()).invoke();
4080 >    }
4081 >
4082 >    /**
4083 >     * Returns the result of accumulating all entries using the
4084 >     * given reducer to combine values, or null if none.
4085 >     *
4086 >     * @param parallelismThreshold the (estimated) number of elements
4087 >     * needed for this operation to be executed in parallel
4088 >     * @param reducer a commutative associative combining function
4089 >     * @return the result of accumulating all entries
4090 >     * @since 1.8
4091 >     */
4092 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4093 >                                        BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4094 >        if (reducer == null) throw new NullPointerException();
4095 >        return new ReduceEntriesTask<K,V>
4096 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4097 >             null, reducer).invoke();
4098 >    }
4099 >
4100 >    /**
4101 >     * Returns the result of accumulating the given transformation
4102 >     * of all entries using the given reducer to combine values,
4103 >     * or null if none.
4104 >     *
4105 >     * @param parallelismThreshold the (estimated) number of elements
4106 >     * needed for this operation to be executed in parallel
4107 >     * @param transformer a function returning the transformation
4108 >     * for an element, or null if there is no transformation (in
4109 >     * which case it is not combined)
4110 >     * @param reducer a commutative associative combining function
4111 >     * @return the result of accumulating the given transformation
4112 >     * of all entries
4113 >     * @since 1.8
4114 >     */
4115 >    public <U> U reduceEntries(long parallelismThreshold,
4116 >                               Fun<Map.Entry<K,V>, ? extends U> transformer,
4117 >                               BiFun<? super U, ? super U, ? extends U> reducer) {
4118 >        if (transformer == null || reducer == null)
4119 >            throw new NullPointerException();
4120 >        return new MapReduceEntriesTask<K,V,U>
4121 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4122 >             null, transformer, reducer).invoke();
4123      }
4124  
4125      /**
4126 <     * Returns a {@link Set} view of the mappings contained in this map.
4127 <     * The set is backed by the map, so changes to the map are
4128 <     * reflected in the set, and vice-versa.  The set supports element
4129 <     * removal, which removes the corresponding mapping from the map,
4130 <     * via the {@code Iterator.remove}, {@code Set.remove},
4131 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
4132 <     * operations.  It does not support the {@code add} or
4133 <     * {@code addAll} operations.
4134 <     *
4135 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4136 <     * that will never throw {@link ConcurrentModificationException},
4137 <     * and guarantees to traverse elements as they existed upon
4138 <     * construction of the iterator, and may (but is not guaranteed to)
4139 <     * reflect any modifications subsequent to construction.
4140 <     */
4141 <    public Set<Map.Entry<K,V>> entrySet() {
4142 <        Set<Map.Entry<K,V>> es = entrySet;
4143 <        return (es != null) ? es : (entrySet = new EntrySet());
4126 >     * Returns the result of accumulating the given transformation
4127 >     * of all entries using the given reducer to combine values,
4128 >     * and the given basis as an identity value.
4129 >     *
4130 >     * @param parallelismThreshold the (estimated) number of elements
4131 >     * needed for this operation to be executed in parallel
4132 >     * @param transformer a function returning the transformation
4133 >     * for an element
4134 >     * @param basis the identity (initial default value) for the reduction
4135 >     * @param reducer a commutative associative combining function
4136 >     * @return the result of accumulating the given transformation
4137 >     * of all entries
4138 >     * @since 1.8
4139 >     */
4140 >    public double reduceEntriesToDouble(long parallelismThreshold,
4141 >                                        ObjectToDouble<Map.Entry<K,V>> transformer,
4142 >                                        double basis,
4143 >                                        DoubleByDoubleToDouble reducer) {
4144 >        if (transformer == null || reducer == null)
4145 >            throw new NullPointerException();
4146 >        return new MapReduceEntriesToDoubleTask<K,V>
4147 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4148 >             null, transformer, basis, reducer).invoke();
4149      }
4150  
4151      /**
4152 <     * Returns an enumeration of the keys in this table.
4153 <     *
4154 <     * @return an enumeration of the keys in this table
4155 <     * @see #keySet()
4156 <     */
4157 <    public Enumeration<K> keys() {
4158 <        return new KeyIterator();
4152 >     * Returns the result of accumulating the given transformation
4153 >     * of all entries using the given reducer to combine values,
4154 >     * and the given basis as an identity value.
4155 >     *
4156 >     * @param parallelismThreshold the (estimated) number of elements
4157 >     * needed for this operation to be executed in parallel
4158 >     * @param transformer a function returning the transformation
4159 >     * for an element
4160 >     * @param basis the identity (initial default value) for the reduction
4161 >     * @param reducer a commutative associative combining function
4162 >     * @return the result of accumulating the given transformation
4163 >     * of all entries
4164 >     * @since 1.8
4165 >     */
4166 >    public long reduceEntriesToLong(long parallelismThreshold,
4167 >                                    ObjectToLong<Map.Entry<K,V>> transformer,
4168 >                                    long basis,
4169 >                                    LongByLongToLong reducer) {
4170 >        if (transformer == null || reducer == null)
4171 >            throw new NullPointerException();
4172 >        return new MapReduceEntriesToLongTask<K,V>
4173 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4174 >             null, transformer, basis, reducer).invoke();
4175      }
4176  
4177      /**
4178 <     * Returns an enumeration of the values in this table.
4179 <     *
4180 <     * @return an enumeration of the values in this table
4181 <     * @see #values()
4182 <     */
4183 <    public Enumeration<V> elements() {
4184 <        return new ValueIterator();
4178 >     * Returns the result of accumulating the given transformation
4179 >     * of all entries using the given reducer to combine values,
4180 >     * and the given basis as an identity value.
4181 >     *
4182 >     * @param parallelismThreshold the (estimated) number of elements
4183 >     * needed for this operation to be executed in parallel
4184 >     * @param transformer a function returning the transformation
4185 >     * for an element
4186 >     * @param basis the identity (initial default value) for the reduction
4187 >     * @param reducer a commutative associative combining function
4188 >     * @return the result of accumulating the given transformation
4189 >     * of all entries
4190 >     * @since 1.8
4191 >     */
4192 >    public int reduceEntriesToInt(long parallelismThreshold,
4193 >                                  ObjectToInt<Map.Entry<K,V>> transformer,
4194 >                                  int basis,
4195 >                                  IntByIntToInt reducer) {
4196 >        if (transformer == null || reducer == null)
4197 >            throw new NullPointerException();
4198 >        return new MapReduceEntriesToIntTask<K,V>
4199 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4200 >             null, transformer, basis, reducer).invoke();
4201      }
4202  
4203 +
4204 +    /* ----------------Views -------------- */
4205 +
4206      /**
4207 <     * Returns the hash code value for this {@link Map}, i.e.,
1334 <     * the sum of, for each key-value pair in the map,
1335 <     * {@code key.hashCode() ^ value.hashCode()}.
1336 <     *
1337 <     * @return the hash code value for this map
4207 >     * Base class for views.
4208       */
4209 <    public int hashCode() {
4210 <        return new HashIterator().mapHashCode();
4209 >    abstract static class CollectionView<K,V,E>
4210 >        implements Collection<E>, java.io.Serializable {
4211 >        private static final long serialVersionUID = 7249069246763182397L;
4212 >        final ConcurrentHashMapV8<K,V> map;
4213 >        CollectionView(ConcurrentHashMapV8<K,V> map)  { this.map = map; }
4214 >
4215 >        /**
4216 >         * Returns the map backing this view.
4217 >         *
4218 >         * @return the map backing this view
4219 >         */
4220 >        public ConcurrentHashMapV8<K,V> getMap() { return map; }
4221 >
4222 >        /**
4223 >         * Removes all of the elements from this view, by removing all
4224 >         * the mappings from the map backing this view.
4225 >         */
4226 >        public final void clear()      { map.clear(); }
4227 >        public final int size()        { return map.size(); }
4228 >        public final boolean isEmpty() { return map.isEmpty(); }
4229 >
4230 >        // implementations below rely on concrete classes supplying these
4231 >        // abstract methods
4232 >        /**
4233 >         * Returns a "weakly consistent" iterator that will never
4234 >         * throw {@link ConcurrentModificationException}, and
4235 >         * guarantees to traverse elements as they existed upon
4236 >         * construction of the iterator, and may (but is not
4237 >         * guaranteed to) reflect any modifications subsequent to
4238 >         * construction.
4239 >         */
4240 >        public abstract Iterator<E> iterator();
4241 >        public abstract boolean contains(Object o);
4242 >        public abstract boolean remove(Object o);
4243 >
4244 >        private static final String oomeMsg = "Required array size too large";
4245 >
4246 >        public final Object[] toArray() {
4247 >            long sz = map.mappingCount();
4248 >            if (sz > MAX_ARRAY_SIZE)
4249 >                throw new OutOfMemoryError(oomeMsg);
4250 >            int n = (int)sz;
4251 >            Object[] r = new Object[n];
4252 >            int i = 0;
4253 >            for (E e : this) {
4254 >                if (i == n) {
4255 >                    if (n >= MAX_ARRAY_SIZE)
4256 >                        throw new OutOfMemoryError(oomeMsg);
4257 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4258 >                        n = MAX_ARRAY_SIZE;
4259 >                    else
4260 >                        n += (n >>> 1) + 1;
4261 >                    r = Arrays.copyOf(r, n);
4262 >                }
4263 >                r[i++] = e;
4264 >            }
4265 >            return (i == n) ? r : Arrays.copyOf(r, i);
4266 >        }
4267 >
4268 >        @SuppressWarnings("unchecked")
4269 >        public final <T> T[] toArray(T[] a) {
4270 >            long sz = map.mappingCount();
4271 >            if (sz > MAX_ARRAY_SIZE)
4272 >                throw new OutOfMemoryError(oomeMsg);
4273 >            int m = (int)sz;
4274 >            T[] r = (a.length >= m) ? a :
4275 >                (T[])java.lang.reflect.Array
4276 >                .newInstance(a.getClass().getComponentType(), m);
4277 >            int n = r.length;
4278 >            int i = 0;
4279 >            for (E e : this) {
4280 >                if (i == n) {
4281 >                    if (n >= MAX_ARRAY_SIZE)
4282 >                        throw new OutOfMemoryError(oomeMsg);
4283 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4284 >                        n = MAX_ARRAY_SIZE;
4285 >                    else
4286 >                        n += (n >>> 1) + 1;
4287 >                    r = Arrays.copyOf(r, n);
4288 >                }
4289 >                r[i++] = (T)e;
4290 >            }
4291 >            if (a == r && i < n) {
4292 >                r[i] = null; // null-terminate
4293 >                return r;
4294 >            }
4295 >            return (i == n) ? r : Arrays.copyOf(r, i);
4296 >        }
4297 >
4298 >        /**
4299 >         * Returns a string representation of this collection.
4300 >         * The string representation consists of the string representations
4301 >         * of the collection's elements in the order they are returned by
4302 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4303 >         * Adjacent elements are separated by the characters {@code ", "}
4304 >         * (comma and space).  Elements are converted to strings as by
4305 >         * {@link String#valueOf(Object)}.
4306 >         *
4307 >         * @return a string representation of this collection
4308 >         */
4309 >        public final String toString() {
4310 >            StringBuilder sb = new StringBuilder();
4311 >            sb.append('[');
4312 >            Iterator<E> it = iterator();
4313 >            if (it.hasNext()) {
4314 >                for (;;) {
4315 >                    Object e = it.next();
4316 >                    sb.append(e == this ? "(this Collection)" : e);
4317 >                    if (!it.hasNext())
4318 >                        break;
4319 >                    sb.append(',').append(' ');
4320 >                }
4321 >            }
4322 >            return sb.append(']').toString();
4323 >        }
4324 >
4325 >        public final boolean containsAll(Collection<?> c) {
4326 >            if (c != this) {
4327 >                for (Object e : c) {
4328 >                    if (e == null || !contains(e))
4329 >                        return false;
4330 >                }
4331 >            }
4332 >            return true;
4333 >        }
4334 >
4335 >        public final boolean removeAll(Collection<?> c) {
4336 >            boolean modified = false;
4337 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4338 >                if (c.contains(it.next())) {
4339 >                    it.remove();
4340 >                    modified = true;
4341 >                }
4342 >            }
4343 >            return modified;
4344 >        }
4345 >
4346 >        public final boolean retainAll(Collection<?> c) {
4347 >            boolean modified = false;
4348 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4349 >                if (!c.contains(it.next())) {
4350 >                    it.remove();
4351 >                    modified = true;
4352 >                }
4353 >            }
4354 >            return modified;
4355 >        }
4356 >
4357      }
4358  
4359      /**
4360 <     * Returns a string representation of this map.  The string
4361 <     * representation consists of a list of key-value mappings (in no
4362 <     * particular order) enclosed in braces ("{@code {}}").  Adjacent
4363 <     * mappings are separated by the characters {@code ", "} (comma
4364 <     * and space).  Each key-value mapping is rendered as the key
4365 <     * followed by an equals sign ("{@code =}") followed by the
4366 <     * associated value.
4360 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4361 >     * which additions may optionally be enabled by mapping to a
4362 >     * common value.  This class cannot be directly instantiated.
4363 >     * See {@link #keySet() keySet()},
4364 >     * {@link #keySet(Object) keySet(V)},
4365 >     * {@link #newKeySet() newKeySet()},
4366 >     * {@link #newKeySet(int) newKeySet(int)}.
4367       *
4368 <     * @return a string representation of this map
4368 >     * @since 1.8
4369       */
4370 <    public String toString() {
4371 <        return new HashIterator().mapToString();
4370 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4371 >        implements Set<K>, java.io.Serializable {
4372 >        private static final long serialVersionUID = 7249069246763182397L;
4373 >        private final V value;
4374 >        KeySetView(ConcurrentHashMapV8<K,V> map, V value) {  // non-public
4375 >            super(map);
4376 >            this.value = value;
4377 >        }
4378 >
4379 >        /**
4380 >         * Returns the default mapped value for additions,
4381 >         * or {@code null} if additions are not supported.
4382 >         *
4383 >         * @return the default mapped value for additions, or {@code null}
4384 >         * if not supported
4385 >         */
4386 >        public V getMappedValue() { return value; }
4387 >
4388 >        /**
4389 >         * {@inheritDoc}
4390 >         * @throws NullPointerException if the specified key is null
4391 >         */
4392 >        public boolean contains(Object o) { return map.containsKey(o); }
4393 >
4394 >        /**
4395 >         * Removes the key from this map view, by removing the key (and its
4396 >         * corresponding value) from the backing map.  This method does
4397 >         * nothing if the key is not in the map.
4398 >         *
4399 >         * @param  o the key to be removed from the backing map
4400 >         * @return {@code true} if the backing map contained the specified key
4401 >         * @throws NullPointerException if the specified key is null
4402 >         */
4403 >        public boolean remove(Object o) { return map.remove(o) != null; }
4404 >
4405 >        /**
4406 >         * @return an iterator over the keys of the backing map
4407 >         */
4408 >        public Iterator<K> iterator() {
4409 >            Node<K,V>[] t;
4410 >            ConcurrentHashMapV8<K,V> m = map;
4411 >            int f = (t = m.table) == null ? 0 : t.length;
4412 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4413 >        }
4414 >
4415 >        /**
4416 >         * Adds the specified key to this set view by mapping the key to
4417 >         * the default mapped value in the backing map, if defined.
4418 >         *
4419 >         * @param e key to be added
4420 >         * @return {@code true} if this set changed as a result of the call
4421 >         * @throws NullPointerException if the specified key is null
4422 >         * @throws UnsupportedOperationException if no default mapped value
4423 >         * for additions was provided
4424 >         */
4425 >        public boolean add(K e) {
4426 >            V v;
4427 >            if ((v = value) == null)
4428 >                throw new UnsupportedOperationException();
4429 >            return map.putVal(e, v, true) == null;
4430 >        }
4431 >
4432 >        /**
4433 >         * Adds all of the elements in the specified collection to this set,
4434 >         * as if by calling {@link #add} on each one.
4435 >         *
4436 >         * @param c the elements to be inserted into this set
4437 >         * @return {@code true} if this set changed as a result of the call
4438 >         * @throws NullPointerException if the collection or any of its
4439 >         * elements are {@code null}
4440 >         * @throws UnsupportedOperationException if no default mapped value
4441 >         * for additions was provided
4442 >         */
4443 >        public boolean addAll(Collection<? extends K> c) {
4444 >            boolean added = false;
4445 >            V v;
4446 >            if ((v = value) == null)
4447 >                throw new UnsupportedOperationException();
4448 >            for (K e : c) {
4449 >                if (map.putVal(e, v, true) == null)
4450 >                    added = true;
4451 >            }
4452 >            return added;
4453 >        }
4454 >
4455 >        public int hashCode() {
4456 >            int h = 0;
4457 >            for (K e : this)
4458 >                h += e.hashCode();
4459 >            return h;
4460 >        }
4461 >
4462 >        public boolean equals(Object o) {
4463 >            Set<?> c;
4464 >            return ((o instanceof Set) &&
4465 >                    ((c = (Set<?>)o) == this ||
4466 >                     (containsAll(c) && c.containsAll(this))));
4467 >        }
4468 >
4469 >        public ConcurrentHashMapSpliterator<K> spliterator() {
4470 >            Node<K,V>[] t;
4471 >            ConcurrentHashMapV8<K,V> m = map;
4472 >            long n = m.sumCount();
4473 >            int f = (t = m.table) == null ? 0 : t.length;
4474 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4475 >        }
4476 >
4477 >        public void forEach(Action<? super K> action) {
4478 >            if (action == null) throw new NullPointerException();
4479 >            Node<K,V>[] t;
4480 >            if ((t = map.table) != null) {
4481 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4482 >                for (Node<K,V> p; (p = it.advance()) != null; )
4483 >                    action.apply(p.key);
4484 >            }
4485 >        }
4486      }
4487  
4488      /**
4489 <     * Compares the specified object with this map for equality.
4490 <     * Returns {@code true} if the given object is a map with the same
4491 <     * mappings as this map.  This operation may return misleading
1362 <     * results if either map is concurrently modified during execution
1363 <     * of this method.
1364 <     *
1365 <     * @param o object to be compared for equality with this map
1366 <     * @return {@code true} if the specified object is equal to this map
4489 >     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4490 >     * values, in which additions are disabled. This class cannot be
4491 >     * directly instantiated. See {@link #values()}.
4492       */
4493 <    public boolean equals(Object o) {
4494 <        if (o == this)
4495 <            return true;
4496 <        if (!(o instanceof Map))
4497 <            return false;
4498 <        Map<?,?> m = (Map<?,?>) o;
4499 <        try {
4500 <            for (Map.Entry<K,V> e : this.entrySet())
4501 <                if (! e.getValue().equals(m.get(e.getKey())))
4502 <                    return false;
4503 <            for (Map.Entry<?,?> e : m.entrySet()) {
4504 <                Object k = e.getKey();
4505 <                Object v = e.getValue();
4506 <                if (k == null || v == null || !v.equals(get(k)))
4507 <                    return false;
4493 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4494 >        implements Collection<V>, java.io.Serializable {
4495 >        private static final long serialVersionUID = 2249069246763182397L;
4496 >        ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4497 >        public final boolean contains(Object o) {
4498 >            return map.containsValue(o);
4499 >        }
4500 >
4501 >        public final boolean remove(Object o) {
4502 >            if (o != null) {
4503 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4504 >                    if (o.equals(it.next())) {
4505 >                        it.remove();
4506 >                        return true;
4507 >                    }
4508 >                }
4509              }
1384            return true;
1385        } catch (ClassCastException unused) {
1386            return false;
1387        } catch (NullPointerException unused) {
4510              return false;
4511          }
4512 +
4513 +        public final Iterator<V> iterator() {
4514 +            ConcurrentHashMapV8<K,V> m = map;
4515 +            Node<K,V>[] t;
4516 +            int f = (t = m.table) == null ? 0 : t.length;
4517 +            return new ValueIterator<K,V>(t, f, 0, f, m);
4518 +        }
4519 +
4520 +        public final boolean add(V e) {
4521 +            throw new UnsupportedOperationException();
4522 +        }
4523 +        public final boolean addAll(Collection<? extends V> c) {
4524 +            throw new UnsupportedOperationException();
4525 +        }
4526 +
4527 +        public ConcurrentHashMapSpliterator<V> spliterator() {
4528 +            Node<K,V>[] t;
4529 +            ConcurrentHashMapV8<K,V> m = map;
4530 +            long n = m.sumCount();
4531 +            int f = (t = m.table) == null ? 0 : t.length;
4532 +            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4533 +        }
4534 +
4535 +        public void forEach(Action<? super V> action) {
4536 +            if (action == null) throw new NullPointerException();
4537 +            Node<K,V>[] t;
4538 +            if ((t = map.table) != null) {
4539 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4540 +                for (Node<K,V> p; (p = it.advance()) != null; )
4541 +                    action.apply(p.val);
4542 +            }
4543 +        }
4544      }
4545  
4546      /**
4547 <     * Custom Entry class used by EntryIterator.next(), that relays
4548 <     * setValue changes to the underlying map.
4547 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4548 >     * entries.  This class cannot be directly instantiated. See
4549 >     * {@link #entrySet()}.
4550       */
4551 <    final class WriteThroughEntry extends AbstractMap.SimpleEntry<K,V> {
4552 <        @SuppressWarnings("unchecked")
4553 <        WriteThroughEntry(Object k, Object v) {
4554 <            super((K)k, (V)v);
4551 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4552 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4553 >        private static final long serialVersionUID = 2249069246763182397L;
4554 >        EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4555 >
4556 >        public boolean contains(Object o) {
4557 >            Object k, v, r; Map.Entry<?,?> e;
4558 >            return ((o instanceof Map.Entry) &&
4559 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4560 >                    (r = map.get(k)) != null &&
4561 >                    (v = e.getValue()) != null &&
4562 >                    (v == r || v.equals(r)));
4563 >        }
4564 >
4565 >        public boolean remove(Object o) {
4566 >            Object k, v; Map.Entry<?,?> e;
4567 >            return ((o instanceof Map.Entry) &&
4568 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4569 >                    (v = e.getValue()) != null &&
4570 >                    map.remove(k, v));
4571          }
4572  
4573          /**
4574 <         * Sets our entry's value and writes through to the map. The
1404 <         * value to return is somewhat arbitrary here. Since a
1405 <         * WriteThroughEntry does not necessarily track asynchronous
1406 <         * changes, the most recent "previous" value could be
1407 <         * different from what we return (or could even have been
1408 <         * removed in which case the put will re-establish). We do not
1409 <         * and cannot guarantee more.
4574 >         * @return an iterator over the entries of the backing map
4575           */
4576 <        public V setValue(V value) {
4577 <            if (value == null) throw new NullPointerException();
4578 <            V v = super.setValue(value);
4579 <            ConcurrentHashMapV8.this.put(getKey(), value);
4580 <            return v;
4576 >        public Iterator<Map.Entry<K,V>> iterator() {
4577 >            ConcurrentHashMapV8<K,V> m = map;
4578 >            Node<K,V>[] t;
4579 >            int f = (t = m.table) == null ? 0 : t.length;
4580 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4581          }
4582 +
4583 +        public boolean add(Entry<K,V> e) {
4584 +            return map.putVal(e.getKey(), e.getValue(), false) == null;
4585 +        }
4586 +
4587 +        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4588 +            boolean added = false;
4589 +            for (Entry<K,V> e : c) {
4590 +                if (add(e))
4591 +                    added = true;
4592 +            }
4593 +            return added;
4594 +        }
4595 +
4596 +        public final int hashCode() {
4597 +            int h = 0;
4598 +            Node<K,V>[] t;
4599 +            if ((t = map.table) != null) {
4600 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4601 +                for (Node<K,V> p; (p = it.advance()) != null; ) {
4602 +                    h += p.hashCode();
4603 +                }
4604 +            }
4605 +            return h;
4606 +        }
4607 +
4608 +        public final boolean equals(Object o) {
4609 +            Set<?> c;
4610 +            return ((o instanceof Set) &&
4611 +                    ((c = (Set<?>)o) == this ||
4612 +                     (containsAll(c) && c.containsAll(this))));
4613 +        }
4614 +
4615 +        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4616 +            Node<K,V>[] t;
4617 +            ConcurrentHashMapV8<K,V> m = map;
4618 +            long n = m.sumCount();
4619 +            int f = (t = m.table) == null ? 0 : t.length;
4620 +            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4621 +        }
4622 +
4623 +        public void forEach(Action<? super Map.Entry<K,V>> action) {
4624 +            if (action == null) throw new NullPointerException();
4625 +            Node<K,V>[] t;
4626 +            if ((t = map.table) != null) {
4627 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4628 +                for (Node<K,V> p; (p = it.advance()) != null; )
4629 +                    action.apply(new MapEntry<K,V>(p.key, p.val, map));
4630 +            }
4631 +        }
4632 +
4633      }
4634  
4635 <    final class KeyIterator extends HashIterator
4636 <        implements Iterator<K>, Enumeration<K> {
4637 <        @SuppressWarnings("unchecked")
4638 <        public final K next()        { return (K)super.nextKey(); }
4639 <        @SuppressWarnings("unchecked")
4640 <        public final K nextElement() { return (K)super.nextKey(); }
4635 >    // -------------------------------------------------------
4636 >
4637 >    /**
4638 >     * Base class for bulk tasks. Repeats some fields and code from
4639 >     * class Traverser, because we need to subclass CountedCompleter.
4640 >     */
4641 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4642 >        Node<K,V>[] tab;        // same as Traverser
4643 >        Node<K,V> next;
4644 >        int index;
4645 >        int baseIndex;
4646 >        int baseLimit;
4647 >        final int baseSize;
4648 >        int batch;              // split control
4649 >
4650 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4651 >            super(par);
4652 >            this.batch = b;
4653 >            this.index = this.baseIndex = i;
4654 >            if ((this.tab = t) == null)
4655 >                this.baseSize = this.baseLimit = 0;
4656 >            else if (par == null)
4657 >                this.baseSize = this.baseLimit = t.length;
4658 >            else {
4659 >                this.baseLimit = f;
4660 >                this.baseSize = par.baseSize;
4661 >            }
4662 >        }
4663 >
4664 >        /**
4665 >         * Same as Traverser version
4666 >         */
4667 >        final Node<K,V> advance() {
4668 >            Node<K,V> e;
4669 >            if ((e = next) != null)
4670 >                e = e.next;
4671 >            for (;;) {
4672 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4673 >                if (e != null)
4674 >                    return next = e;
4675 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4676 >                    (n = t.length) <= (i = index) || i < 0)
4677 >                    return next = null;
4678 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4679 >                    if (e instanceof ForwardingNode) {
4680 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4681 >                        e = null;
4682 >                        continue;
4683 >                    }
4684 >                    else if (e instanceof TreeBin)
4685 >                        e = ((TreeBin<K,V>)e).first;
4686 >                    else
4687 >                        e = null;
4688 >                }
4689 >                if ((index += baseSize) >= n)
4690 >                    index = ++baseIndex;    // visit upper slots if present
4691 >            }
4692 >        }
4693      }
4694  
4695 <    final class ValueIterator extends HashIterator
4696 <        implements Iterator<V>, Enumeration<V> {
4697 <        @SuppressWarnings("unchecked")
4698 <        public final V next()        { return (V)super.nextValue(); }
4699 <        @SuppressWarnings("unchecked")
4700 <        public final V nextElement() { return (V)super.nextValue(); }
4695 >    /*
4696 >     * Task classes. Coded in a regular but ugly format/style to
4697 >     * simplify checks that each variant differs in the right way from
4698 >     * others. The null screenings exist because compilers cannot tell
4699 >     * that we've already null-checked task arguments, so we force
4700 >     * simplest hoisted bypass to help avoid convoluted traps.
4701 >     */
4702 >    @SuppressWarnings("serial")
4703 >    static final class ForEachKeyTask<K,V>
4704 >        extends BulkTask<K,V,Void> {
4705 >        final Action<? super K> action;
4706 >        ForEachKeyTask
4707 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4708 >             Action<? super K> action) {
4709 >            super(p, b, i, f, t);
4710 >            this.action = action;
4711 >        }
4712 >        public final void compute() {
4713 >            final Action<? super K> action;
4714 >            if ((action = this.action) != null) {
4715 >                for (int i = baseIndex, f, h; batch > 0 &&
4716 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4717 >                    addToPendingCount(1);
4718 >                    new ForEachKeyTask<K,V>
4719 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4720 >                         action).fork();
4721 >                }
4722 >                for (Node<K,V> p; (p = advance()) != null;)
4723 >                    action.apply(p.key);
4724 >                propagateCompletion();
4725 >            }
4726 >        }
4727      }
4728  
4729 <    final class EntryIterator extends HashIterator
4730 <        implements Iterator<Entry<K,V>> {
4731 <        public final Map.Entry<K,V> next() { return super.nextEntry(); }
4729 >    @SuppressWarnings("serial")
4730 >    static final class ForEachValueTask<K,V>
4731 >        extends BulkTask<K,V,Void> {
4732 >        final Action<? super V> action;
4733 >        ForEachValueTask
4734 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4735 >             Action<? super V> action) {
4736 >            super(p, b, i, f, t);
4737 >            this.action = action;
4738 >        }
4739 >        public final void compute() {
4740 >            final Action<? super V> action;
4741 >            if ((action = this.action) != null) {
4742 >                for (int i = baseIndex, f, h; batch > 0 &&
4743 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4744 >                    addToPendingCount(1);
4745 >                    new ForEachValueTask<K,V>
4746 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4747 >                         action).fork();
4748 >                }
4749 >                for (Node<K,V> p; (p = advance()) != null;)
4750 >                    action.apply(p.val);
4751 >                propagateCompletion();
4752 >            }
4753 >        }
4754      }
4755  
4756 <    final class KeySet extends AbstractSet<K> {
4757 <        public int size() {
4758 <            return ConcurrentHashMapV8.this.size();
4756 >    @SuppressWarnings("serial")
4757 >    static final class ForEachEntryTask<K,V>
4758 >        extends BulkTask<K,V,Void> {
4759 >        final Action<? super Entry<K,V>> action;
4760 >        ForEachEntryTask
4761 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4762 >             Action<? super Entry<K,V>> action) {
4763 >            super(p, b, i, f, t);
4764 >            this.action = action;
4765 >        }
4766 >        public final void compute() {
4767 >            final Action<? super Entry<K,V>> action;
4768 >            if ((action = this.action) != null) {
4769 >                for (int i = baseIndex, f, h; batch > 0 &&
4770 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4771 >                    addToPendingCount(1);
4772 >                    new ForEachEntryTask<K,V>
4773 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4774 >                         action).fork();
4775 >                }
4776 >                for (Node<K,V> p; (p = advance()) != null; )
4777 >                    action.apply(p);
4778 >                propagateCompletion();
4779 >            }
4780          }
4781 <        public boolean isEmpty() {
4782 <            return ConcurrentHashMapV8.this.isEmpty();
4781 >    }
4782 >
4783 >    @SuppressWarnings("serial")
4784 >    static final class ForEachMappingTask<K,V>
4785 >        extends BulkTask<K,V,Void> {
4786 >        final BiAction<? super K, ? super V> action;
4787 >        ForEachMappingTask
4788 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4789 >             BiAction<? super K,? super V> action) {
4790 >            super(p, b, i, f, t);
4791 >            this.action = action;
4792 >        }
4793 >        public final void compute() {
4794 >            final BiAction<? super K, ? super V> action;
4795 >            if ((action = this.action) != null) {
4796 >                for (int i = baseIndex, f, h; batch > 0 &&
4797 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4798 >                    addToPendingCount(1);
4799 >                    new ForEachMappingTask<K,V>
4800 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4801 >                         action).fork();
4802 >                }
4803 >                for (Node<K,V> p; (p = advance()) != null; )
4804 >                    action.apply(p.key, p.val);
4805 >                propagateCompletion();
4806 >            }
4807          }
4808 <        public void clear() {
4809 <            ConcurrentHashMapV8.this.clear();
4808 >    }
4809 >
4810 >    @SuppressWarnings("serial")
4811 >    static final class ForEachTransformedKeyTask<K,V,U>
4812 >        extends BulkTask<K,V,Void> {
4813 >        final Fun<? super K, ? extends U> transformer;
4814 >        final Action<? super U> action;
4815 >        ForEachTransformedKeyTask
4816 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4817 >             Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4818 >            super(p, b, i, f, t);
4819 >            this.transformer = transformer; this.action = action;
4820 >        }
4821 >        public final void compute() {
4822 >            final Fun<? super K, ? extends U> transformer;
4823 >            final Action<? super U> action;
4824 >            if ((transformer = this.transformer) != null &&
4825 >                (action = this.action) != null) {
4826 >                for (int i = baseIndex, f, h; batch > 0 &&
4827 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4828 >                    addToPendingCount(1);
4829 >                    new ForEachTransformedKeyTask<K,V,U>
4830 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4831 >                         transformer, action).fork();
4832 >                }
4833 >                for (Node<K,V> p; (p = advance()) != null; ) {
4834 >                    U u;
4835 >                    if ((u = transformer.apply(p.key)) != null)
4836 >                        action.apply(u);
4837 >                }
4838 >                propagateCompletion();
4839 >            }
4840          }
4841 <        public Iterator<K> iterator() {
4842 <            return new KeyIterator();
4841 >    }
4842 >
4843 >    @SuppressWarnings("serial")
4844 >    static final class ForEachTransformedValueTask<K,V,U>
4845 >        extends BulkTask<K,V,Void> {
4846 >        final Fun<? super V, ? extends U> transformer;
4847 >        final Action<? super U> action;
4848 >        ForEachTransformedValueTask
4849 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4850 >             Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4851 >            super(p, b, i, f, t);
4852 >            this.transformer = transformer; this.action = action;
4853 >        }
4854 >        public final void compute() {
4855 >            final Fun<? super V, ? extends U> transformer;
4856 >            final Action<? super U> action;
4857 >            if ((transformer = this.transformer) != null &&
4858 >                (action = this.action) != null) {
4859 >                for (int i = baseIndex, f, h; batch > 0 &&
4860 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4861 >                    addToPendingCount(1);
4862 >                    new ForEachTransformedValueTask<K,V,U>
4863 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4864 >                         transformer, action).fork();
4865 >                }
4866 >                for (Node<K,V> p; (p = advance()) != null; ) {
4867 >                    U u;
4868 >                    if ((u = transformer.apply(p.val)) != null)
4869 >                        action.apply(u);
4870 >                }
4871 >                propagateCompletion();
4872 >            }
4873          }
4874 <        public boolean contains(Object o) {
4875 <            return ConcurrentHashMapV8.this.containsKey(o);
4874 >    }
4875 >
4876 >    @SuppressWarnings("serial")
4877 >    static final class ForEachTransformedEntryTask<K,V,U>
4878 >        extends BulkTask<K,V,Void> {
4879 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
4880 >        final Action<? super U> action;
4881 >        ForEachTransformedEntryTask
4882 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4883 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4884 >            super(p, b, i, f, t);
4885 >            this.transformer = transformer; this.action = action;
4886 >        }
4887 >        public final void compute() {
4888 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
4889 >            final Action<? super U> action;
4890 >            if ((transformer = this.transformer) != null &&
4891 >                (action = this.action) != null) {
4892 >                for (int i = baseIndex, f, h; batch > 0 &&
4893 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4894 >                    addToPendingCount(1);
4895 >                    new ForEachTransformedEntryTask<K,V,U>
4896 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4897 >                         transformer, action).fork();
4898 >                }
4899 >                for (Node<K,V> p; (p = advance()) != null; ) {
4900 >                    U u;
4901 >                    if ((u = transformer.apply(p)) != null)
4902 >                        action.apply(u);
4903 >                }
4904 >                propagateCompletion();
4905 >            }
4906          }
4907 <        public boolean remove(Object o) {
4908 <            return ConcurrentHashMapV8.this.remove(o) != null;
4907 >    }
4908 >
4909 >    @SuppressWarnings("serial")
4910 >    static final class ForEachTransformedMappingTask<K,V,U>
4911 >        extends BulkTask<K,V,Void> {
4912 >        final BiFun<? super K, ? super V, ? extends U> transformer;
4913 >        final Action<? super U> action;
4914 >        ForEachTransformedMappingTask
4915 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4916 >             BiFun<? super K, ? super V, ? extends U> transformer,
4917 >             Action<? super U> action) {
4918 >            super(p, b, i, f, t);
4919 >            this.transformer = transformer; this.action = action;
4920 >        }
4921 >        public final void compute() {
4922 >            final BiFun<? super K, ? super V, ? extends U> transformer;
4923 >            final Action<? super U> action;
4924 >            if ((transformer = this.transformer) != null &&
4925 >                (action = this.action) != null) {
4926 >                for (int i = baseIndex, f, h; batch > 0 &&
4927 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4928 >                    addToPendingCount(1);
4929 >                    new ForEachTransformedMappingTask<K,V,U>
4930 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4931 >                         transformer, action).fork();
4932 >                }
4933 >                for (Node<K,V> p; (p = advance()) != null; ) {
4934 >                    U u;
4935 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4936 >                        action.apply(u);
4937 >                }
4938 >                propagateCompletion();
4939 >            }
4940 >        }
4941 >    }
4942 >
4943 >    @SuppressWarnings("serial")
4944 >    static final class SearchKeysTask<K,V,U>
4945 >        extends BulkTask<K,V,U> {
4946 >        final Fun<? super K, ? extends U> searchFunction;
4947 >        final AtomicReference<U> result;
4948 >        SearchKeysTask
4949 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4950 >             Fun<? super K, ? extends U> searchFunction,
4951 >             AtomicReference<U> result) {
4952 >            super(p, b, i, f, t);
4953 >            this.searchFunction = searchFunction; this.result = result;
4954 >        }
4955 >        public final U getRawResult() { return result.get(); }
4956 >        public final void compute() {
4957 >            final Fun<? super K, ? extends U> searchFunction;
4958 >            final AtomicReference<U> result;
4959 >            if ((searchFunction = this.searchFunction) != null &&
4960 >                (result = this.result) != null) {
4961 >                for (int i = baseIndex, f, h; batch > 0 &&
4962 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4963 >                    if (result.get() != null)
4964 >                        return;
4965 >                    addToPendingCount(1);
4966 >                    new SearchKeysTask<K,V,U>
4967 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4968 >                         searchFunction, result).fork();
4969 >                }
4970 >                while (result.get() == null) {
4971 >                    U u;
4972 >                    Node<K,V> p;
4973 >                    if ((p = advance()) == null) {
4974 >                        propagateCompletion();
4975 >                        break;
4976 >                    }
4977 >                    if ((u = searchFunction.apply(p.key)) != null) {
4978 >                        if (result.compareAndSet(null, u))
4979 >                            quietlyCompleteRoot();
4980 >                        break;
4981 >                    }
4982 >                }
4983 >            }
4984 >        }
4985 >    }
4986 >
4987 >    @SuppressWarnings("serial")
4988 >    static final class SearchValuesTask<K,V,U>
4989 >        extends BulkTask<K,V,U> {
4990 >        final Fun<? super V, ? extends U> searchFunction;
4991 >        final AtomicReference<U> result;
4992 >        SearchValuesTask
4993 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4994 >             Fun<? super V, ? extends U> searchFunction,
4995 >             AtomicReference<U> result) {
4996 >            super(p, b, i, f, t);
4997 >            this.searchFunction = searchFunction; this.result = result;
4998 >        }
4999 >        public final U getRawResult() { return result.get(); }
5000 >        public final void compute() {
5001 >            final Fun<? super V, ? extends U> searchFunction;
5002 >            final AtomicReference<U> result;
5003 >            if ((searchFunction = this.searchFunction) != null &&
5004 >                (result = this.result) != null) {
5005 >                for (int i = baseIndex, f, h; batch > 0 &&
5006 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5007 >                    if (result.get() != null)
5008 >                        return;
5009 >                    addToPendingCount(1);
5010 >                    new SearchValuesTask<K,V,U>
5011 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5012 >                         searchFunction, result).fork();
5013 >                }
5014 >                while (result.get() == null) {
5015 >                    U u;
5016 >                    Node<K,V> p;
5017 >                    if ((p = advance()) == null) {
5018 >                        propagateCompletion();
5019 >                        break;
5020 >                    }
5021 >                    if ((u = searchFunction.apply(p.val)) != null) {
5022 >                        if (result.compareAndSet(null, u))
5023 >                            quietlyCompleteRoot();
5024 >                        break;
5025 >                    }
5026 >                }
5027 >            }
5028          }
5029      }
5030  
5031 <    final class Values extends AbstractCollection<V> {
5032 <        public int size() {
5033 <            return ConcurrentHashMapV8.this.size();
5031 >    @SuppressWarnings("serial")
5032 >    static final class SearchEntriesTask<K,V,U>
5033 >        extends BulkTask<K,V,U> {
5034 >        final Fun<Entry<K,V>, ? extends U> searchFunction;
5035 >        final AtomicReference<U> result;
5036 >        SearchEntriesTask
5037 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5038 >             Fun<Entry<K,V>, ? extends U> searchFunction,
5039 >             AtomicReference<U> result) {
5040 >            super(p, b, i, f, t);
5041 >            this.searchFunction = searchFunction; this.result = result;
5042 >        }
5043 >        public final U getRawResult() { return result.get(); }
5044 >        public final void compute() {
5045 >            final Fun<Entry<K,V>, ? extends U> searchFunction;
5046 >            final AtomicReference<U> result;
5047 >            if ((searchFunction = this.searchFunction) != null &&
5048 >                (result = this.result) != null) {
5049 >                for (int i = baseIndex, f, h; batch > 0 &&
5050 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5051 >                    if (result.get() != null)
5052 >                        return;
5053 >                    addToPendingCount(1);
5054 >                    new SearchEntriesTask<K,V,U>
5055 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5056 >                         searchFunction, result).fork();
5057 >                }
5058 >                while (result.get() == null) {
5059 >                    U u;
5060 >                    Node<K,V> p;
5061 >                    if ((p = advance()) == null) {
5062 >                        propagateCompletion();
5063 >                        break;
5064 >                    }
5065 >                    if ((u = searchFunction.apply(p)) != null) {
5066 >                        if (result.compareAndSet(null, u))
5067 >                            quietlyCompleteRoot();
5068 >                        return;
5069 >                    }
5070 >                }
5071 >            }
5072          }
5073 <        public boolean isEmpty() {
5074 <            return ConcurrentHashMapV8.this.isEmpty();
5073 >    }
5074 >
5075 >    @SuppressWarnings("serial")
5076 >    static final class SearchMappingsTask<K,V,U>
5077 >        extends BulkTask<K,V,U> {
5078 >        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5079 >        final AtomicReference<U> result;
5080 >        SearchMappingsTask
5081 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5082 >             BiFun<? super K, ? super V, ? extends U> searchFunction,
5083 >             AtomicReference<U> result) {
5084 >            super(p, b, i, f, t);
5085 >            this.searchFunction = searchFunction; this.result = result;
5086 >        }
5087 >        public final U getRawResult() { return result.get(); }
5088 >        public final void compute() {
5089 >            final BiFun<? super K, ? super V, ? extends U> searchFunction;
5090 >            final AtomicReference<U> result;
5091 >            if ((searchFunction = this.searchFunction) != null &&
5092 >                (result = this.result) != null) {
5093 >                for (int i = baseIndex, f, h; batch > 0 &&
5094 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5095 >                    if (result.get() != null)
5096 >                        return;
5097 >                    addToPendingCount(1);
5098 >                    new SearchMappingsTask<K,V,U>
5099 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5100 >                         searchFunction, result).fork();
5101 >                }
5102 >                while (result.get() == null) {
5103 >                    U u;
5104 >                    Node<K,V> p;
5105 >                    if ((p = advance()) == null) {
5106 >                        propagateCompletion();
5107 >                        break;
5108 >                    }
5109 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5110 >                        if (result.compareAndSet(null, u))
5111 >                            quietlyCompleteRoot();
5112 >                        break;
5113 >                    }
5114 >                }
5115 >            }
5116          }
5117 <        public void clear() {
5118 <            ConcurrentHashMapV8.this.clear();
5117 >    }
5118 >
5119 >    @SuppressWarnings("serial")
5120 >    static final class ReduceKeysTask<K,V>
5121 >        extends BulkTask<K,V,K> {
5122 >        final BiFun<? super K, ? super K, ? extends K> reducer;
5123 >        K result;
5124 >        ReduceKeysTask<K,V> rights, nextRight;
5125 >        ReduceKeysTask
5126 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5127 >             ReduceKeysTask<K,V> nextRight,
5128 >             BiFun<? super K, ? super K, ? extends K> reducer) {
5129 >            super(p, b, i, f, t); this.nextRight = nextRight;
5130 >            this.reducer = reducer;
5131 >        }
5132 >        public final K getRawResult() { return result; }
5133 >        public final void compute() {
5134 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5135 >            if ((reducer = this.reducer) != null) {
5136 >                for (int i = baseIndex, f, h; batch > 0 &&
5137 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5138 >                    addToPendingCount(1);
5139 >                    (rights = new ReduceKeysTask<K,V>
5140 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5141 >                      rights, reducer)).fork();
5142 >                }
5143 >                K r = null;
5144 >                for (Node<K,V> p; (p = advance()) != null; ) {
5145 >                    K u = p.key;
5146 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5147 >                }
5148 >                result = r;
5149 >                CountedCompleter<?> c;
5150 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5151 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5152 >                        t = (ReduceKeysTask<K,V>)c,
5153 >                        s = t.rights;
5154 >                    while (s != null) {
5155 >                        K tr, sr;
5156 >                        if ((sr = s.result) != null)
5157 >                            t.result = (((tr = t.result) == null) ? sr :
5158 >                                        reducer.apply(tr, sr));
5159 >                        s = t.rights = s.nextRight;
5160 >                    }
5161 >                }
5162 >            }
5163          }
5164 <        public Iterator<V> iterator() {
5165 <            return new ValueIterator();
5164 >    }
5165 >
5166 >    @SuppressWarnings("serial")
5167 >    static final class ReduceValuesTask<K,V>
5168 >        extends BulkTask<K,V,V> {
5169 >        final BiFun<? super V, ? super V, ? extends V> reducer;
5170 >        V result;
5171 >        ReduceValuesTask<K,V> rights, nextRight;
5172 >        ReduceValuesTask
5173 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5174 >             ReduceValuesTask<K,V> nextRight,
5175 >             BiFun<? super V, ? super V, ? extends V> reducer) {
5176 >            super(p, b, i, f, t); this.nextRight = nextRight;
5177 >            this.reducer = reducer;
5178 >        }
5179 >        public final V getRawResult() { return result; }
5180 >        public final void compute() {
5181 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5182 >            if ((reducer = this.reducer) != null) {
5183 >                for (int i = baseIndex, f, h; batch > 0 &&
5184 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5185 >                    addToPendingCount(1);
5186 >                    (rights = new ReduceValuesTask<K,V>
5187 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5188 >                      rights, reducer)).fork();
5189 >                }
5190 >                V r = null;
5191 >                for (Node<K,V> p; (p = advance()) != null; ) {
5192 >                    V v = p.val;
5193 >                    r = (r == null) ? v : reducer.apply(r, v);
5194 >                }
5195 >                result = r;
5196 >                CountedCompleter<?> c;
5197 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5198 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5199 >                        t = (ReduceValuesTask<K,V>)c,
5200 >                        s = t.rights;
5201 >                    while (s != null) {
5202 >                        V tr, sr;
5203 >                        if ((sr = s.result) != null)
5204 >                            t.result = (((tr = t.result) == null) ? sr :
5205 >                                        reducer.apply(tr, sr));
5206 >                        s = t.rights = s.nextRight;
5207 >                    }
5208 >                }
5209 >            }
5210          }
5211 <        public boolean contains(Object o) {
5212 <            return ConcurrentHashMapV8.this.containsValue(o);
5211 >    }
5212 >
5213 >    @SuppressWarnings("serial")
5214 >    static final class ReduceEntriesTask<K,V>
5215 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5216 >        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5217 >        Map.Entry<K,V> result;
5218 >        ReduceEntriesTask<K,V> rights, nextRight;
5219 >        ReduceEntriesTask
5220 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5221 >             ReduceEntriesTask<K,V> nextRight,
5222 >             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5223 >            super(p, b, i, f, t); this.nextRight = nextRight;
5224 >            this.reducer = reducer;
5225 >        }
5226 >        public final Map.Entry<K,V> getRawResult() { return result; }
5227 >        public final void compute() {
5228 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5229 >            if ((reducer = this.reducer) != null) {
5230 >                for (int i = baseIndex, f, h; batch > 0 &&
5231 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5232 >                    addToPendingCount(1);
5233 >                    (rights = new ReduceEntriesTask<K,V>
5234 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5235 >                      rights, reducer)).fork();
5236 >                }
5237 >                Map.Entry<K,V> r = null;
5238 >                for (Node<K,V> p; (p = advance()) != null; )
5239 >                    r = (r == null) ? p : reducer.apply(r, p);
5240 >                result = r;
5241 >                CountedCompleter<?> c;
5242 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5243 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5244 >                        t = (ReduceEntriesTask<K,V>)c,
5245 >                        s = t.rights;
5246 >                    while (s != null) {
5247 >                        Map.Entry<K,V> tr, sr;
5248 >                        if ((sr = s.result) != null)
5249 >                            t.result = (((tr = t.result) == null) ? sr :
5250 >                                        reducer.apply(tr, sr));
5251 >                        s = t.rights = s.nextRight;
5252 >                    }
5253 >                }
5254 >            }
5255          }
5256      }
5257  
5258 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
5259 <        public int size() {
5260 <            return ConcurrentHashMapV8.this.size();
5258 >    @SuppressWarnings("serial")
5259 >    static final class MapReduceKeysTask<K,V,U>
5260 >        extends BulkTask<K,V,U> {
5261 >        final Fun<? super K, ? extends U> transformer;
5262 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5263 >        U result;
5264 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5265 >        MapReduceKeysTask
5266 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5267 >             MapReduceKeysTask<K,V,U> nextRight,
5268 >             Fun<? super K, ? extends U> transformer,
5269 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5270 >            super(p, b, i, f, t); this.nextRight = nextRight;
5271 >            this.transformer = transformer;
5272 >            this.reducer = reducer;
5273 >        }
5274 >        public final U getRawResult() { return result; }
5275 >        public final void compute() {
5276 >            final Fun<? super K, ? extends U> transformer;
5277 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5278 >            if ((transformer = this.transformer) != null &&
5279 >                (reducer = this.reducer) != null) {
5280 >                for (int i = baseIndex, f, h; batch > 0 &&
5281 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5282 >                    addToPendingCount(1);
5283 >                    (rights = new MapReduceKeysTask<K,V,U>
5284 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5285 >                      rights, transformer, reducer)).fork();
5286 >                }
5287 >                U r = null;
5288 >                for (Node<K,V> p; (p = advance()) != null; ) {
5289 >                    U u;
5290 >                    if ((u = transformer.apply(p.key)) != null)
5291 >                        r = (r == null) ? u : reducer.apply(r, u);
5292 >                }
5293 >                result = r;
5294 >                CountedCompleter<?> c;
5295 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5296 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5297 >                        t = (MapReduceKeysTask<K,V,U>)c,
5298 >                        s = t.rights;
5299 >                    while (s != null) {
5300 >                        U tr, sr;
5301 >                        if ((sr = s.result) != null)
5302 >                            t.result = (((tr = t.result) == null) ? sr :
5303 >                                        reducer.apply(tr, sr));
5304 >                        s = t.rights = s.nextRight;
5305 >                    }
5306 >                }
5307 >            }
5308          }
5309 <        public boolean isEmpty() {
5310 <            return ConcurrentHashMapV8.this.isEmpty();
5309 >    }
5310 >
5311 >    @SuppressWarnings("serial")
5312 >    static final class MapReduceValuesTask<K,V,U>
5313 >        extends BulkTask<K,V,U> {
5314 >        final Fun<? super V, ? extends U> transformer;
5315 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5316 >        U result;
5317 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5318 >        MapReduceValuesTask
5319 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5320 >             MapReduceValuesTask<K,V,U> nextRight,
5321 >             Fun<? super V, ? extends U> transformer,
5322 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5323 >            super(p, b, i, f, t); this.nextRight = nextRight;
5324 >            this.transformer = transformer;
5325 >            this.reducer = reducer;
5326 >        }
5327 >        public final U getRawResult() { return result; }
5328 >        public final void compute() {
5329 >            final Fun<? super V, ? extends U> transformer;
5330 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5331 >            if ((transformer = this.transformer) != null &&
5332 >                (reducer = this.reducer) != null) {
5333 >                for (int i = baseIndex, f, h; batch > 0 &&
5334 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5335 >                    addToPendingCount(1);
5336 >                    (rights = new MapReduceValuesTask<K,V,U>
5337 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5338 >                      rights, transformer, reducer)).fork();
5339 >                }
5340 >                U r = null;
5341 >                for (Node<K,V> p; (p = advance()) != null; ) {
5342 >                    U u;
5343 >                    if ((u = transformer.apply(p.val)) != null)
5344 >                        r = (r == null) ? u : reducer.apply(r, u);
5345 >                }
5346 >                result = r;
5347 >                CountedCompleter<?> c;
5348 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5349 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5350 >                        t = (MapReduceValuesTask<K,V,U>)c,
5351 >                        s = t.rights;
5352 >                    while (s != null) {
5353 >                        U tr, sr;
5354 >                        if ((sr = s.result) != null)
5355 >                            t.result = (((tr = t.result) == null) ? sr :
5356 >                                        reducer.apply(tr, sr));
5357 >                        s = t.rights = s.nextRight;
5358 >                    }
5359 >                }
5360 >            }
5361          }
5362 <        public void clear() {
5363 <            ConcurrentHashMapV8.this.clear();
5362 >    }
5363 >
5364 >    @SuppressWarnings("serial")
5365 >    static final class MapReduceEntriesTask<K,V,U>
5366 >        extends BulkTask<K,V,U> {
5367 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5368 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5369 >        U result;
5370 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5371 >        MapReduceEntriesTask
5372 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5373 >             MapReduceEntriesTask<K,V,U> nextRight,
5374 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5375 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5376 >            super(p, b, i, f, t); this.nextRight = nextRight;
5377 >            this.transformer = transformer;
5378 >            this.reducer = reducer;
5379 >        }
5380 >        public final U getRawResult() { return result; }
5381 >        public final void compute() {
5382 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5383 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5384 >            if ((transformer = this.transformer) != null &&
5385 >                (reducer = this.reducer) != null) {
5386 >                for (int i = baseIndex, f, h; batch > 0 &&
5387 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5388 >                    addToPendingCount(1);
5389 >                    (rights = new MapReduceEntriesTask<K,V,U>
5390 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5391 >                      rights, transformer, reducer)).fork();
5392 >                }
5393 >                U r = null;
5394 >                for (Node<K,V> p; (p = advance()) != null; ) {
5395 >                    U u;
5396 >                    if ((u = transformer.apply(p)) != null)
5397 >                        r = (r == null) ? u : reducer.apply(r, u);
5398 >                }
5399 >                result = r;
5400 >                CountedCompleter<?> c;
5401 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5402 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5403 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5404 >                        s = t.rights;
5405 >                    while (s != null) {
5406 >                        U tr, sr;
5407 >                        if ((sr = s.result) != null)
5408 >                            t.result = (((tr = t.result) == null) ? sr :
5409 >                                        reducer.apply(tr, sr));
5410 >                        s = t.rights = s.nextRight;
5411 >                    }
5412 >                }
5413 >            }
5414          }
5415 <        public Iterator<Map.Entry<K,V>> iterator() {
5416 <            return new EntryIterator();
5415 >    }
5416 >
5417 >    @SuppressWarnings("serial")
5418 >    static final class MapReduceMappingsTask<K,V,U>
5419 >        extends BulkTask<K,V,U> {
5420 >        final BiFun<? super K, ? super V, ? extends U> transformer;
5421 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5422 >        U result;
5423 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5424 >        MapReduceMappingsTask
5425 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5426 >             MapReduceMappingsTask<K,V,U> nextRight,
5427 >             BiFun<? super K, ? super V, ? extends U> transformer,
5428 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5429 >            super(p, b, i, f, t); this.nextRight = nextRight;
5430 >            this.transformer = transformer;
5431 >            this.reducer = reducer;
5432 >        }
5433 >        public final U getRawResult() { return result; }
5434 >        public final void compute() {
5435 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5436 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5437 >            if ((transformer = this.transformer) != null &&
5438 >                (reducer = this.reducer) != null) {
5439 >                for (int i = baseIndex, f, h; batch > 0 &&
5440 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5441 >                    addToPendingCount(1);
5442 >                    (rights = new MapReduceMappingsTask<K,V,U>
5443 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5444 >                      rights, transformer, reducer)).fork();
5445 >                }
5446 >                U r = null;
5447 >                for (Node<K,V> p; (p = advance()) != null; ) {
5448 >                    U u;
5449 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5450 >                        r = (r == null) ? u : reducer.apply(r, u);
5451 >                }
5452 >                result = r;
5453 >                CountedCompleter<?> c;
5454 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5455 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5456 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5457 >                        s = t.rights;
5458 >                    while (s != null) {
5459 >                        U tr, sr;
5460 >                        if ((sr = s.result) != null)
5461 >                            t.result = (((tr = t.result) == null) ? sr :
5462 >                                        reducer.apply(tr, sr));
5463 >                        s = t.rights = s.nextRight;
5464 >                    }
5465 >                }
5466 >            }
5467          }
5468 <        public boolean contains(Object o) {
5469 <            if (!(o instanceof Map.Entry))
5470 <                return false;
5471 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
5472 <            V v = ConcurrentHashMapV8.this.get(e.getKey());
5473 <            return v != null && v.equals(e.getValue());
5468 >    }
5469 >
5470 >    @SuppressWarnings("serial")
5471 >    static final class MapReduceKeysToDoubleTask<K,V>
5472 >        extends BulkTask<K,V,Double> {
5473 >        final ObjectToDouble<? super K> transformer;
5474 >        final DoubleByDoubleToDouble reducer;
5475 >        final double basis;
5476 >        double result;
5477 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5478 >        MapReduceKeysToDoubleTask
5479 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5480 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5481 >             ObjectToDouble<? super K> transformer,
5482 >             double basis,
5483 >             DoubleByDoubleToDouble reducer) {
5484 >            super(p, b, i, f, t); this.nextRight = nextRight;
5485 >            this.transformer = transformer;
5486 >            this.basis = basis; this.reducer = reducer;
5487 >        }
5488 >        public final Double getRawResult() { return result; }
5489 >        public final void compute() {
5490 >            final ObjectToDouble<? super K> transformer;
5491 >            final DoubleByDoubleToDouble reducer;
5492 >            if ((transformer = this.transformer) != null &&
5493 >                (reducer = this.reducer) != null) {
5494 >                double r = this.basis;
5495 >                for (int i = baseIndex, f, h; batch > 0 &&
5496 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5497 >                    addToPendingCount(1);
5498 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5499 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5500 >                      rights, transformer, r, reducer)).fork();
5501 >                }
5502 >                for (Node<K,V> p; (p = advance()) != null; )
5503 >                    r = reducer.apply(r, transformer.apply(p.key));
5504 >                result = r;
5505 >                CountedCompleter<?> c;
5506 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5507 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5508 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5509 >                        s = t.rights;
5510 >                    while (s != null) {
5511 >                        t.result = reducer.apply(t.result, s.result);
5512 >                        s = t.rights = s.nextRight;
5513 >                    }
5514 >                }
5515 >            }
5516          }
5517 <        public boolean remove(Object o) {
5518 <            if (!(o instanceof Map.Entry))
5519 <                return false;
5520 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
5521 <            return ConcurrentHashMapV8.this.remove(e.getKey(), e.getValue());
5517 >    }
5518 >
5519 >    @SuppressWarnings("serial")
5520 >    static final class MapReduceValuesToDoubleTask<K,V>
5521 >        extends BulkTask<K,V,Double> {
5522 >        final ObjectToDouble<? super V> transformer;
5523 >        final DoubleByDoubleToDouble reducer;
5524 >        final double basis;
5525 >        double result;
5526 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5527 >        MapReduceValuesToDoubleTask
5528 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5529 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5530 >             ObjectToDouble<? super V> transformer,
5531 >             double basis,
5532 >             DoubleByDoubleToDouble reducer) {
5533 >            super(p, b, i, f, t); this.nextRight = nextRight;
5534 >            this.transformer = transformer;
5535 >            this.basis = basis; this.reducer = reducer;
5536 >        }
5537 >        public final Double getRawResult() { return result; }
5538 >        public final void compute() {
5539 >            final ObjectToDouble<? super V> transformer;
5540 >            final DoubleByDoubleToDouble reducer;
5541 >            if ((transformer = this.transformer) != null &&
5542 >                (reducer = this.reducer) != null) {
5543 >                double r = this.basis;
5544 >                for (int i = baseIndex, f, h; batch > 0 &&
5545 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5546 >                    addToPendingCount(1);
5547 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5548 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5549 >                      rights, transformer, r, reducer)).fork();
5550 >                }
5551 >                for (Node<K,V> p; (p = advance()) != null; )
5552 >                    r = reducer.apply(r, transformer.apply(p.val));
5553 >                result = r;
5554 >                CountedCompleter<?> c;
5555 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5556 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5557 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5558 >                        s = t.rights;
5559 >                    while (s != null) {
5560 >                        t.result = reducer.apply(t.result, s.result);
5561 >                        s = t.rights = s.nextRight;
5562 >                    }
5563 >                }
5564 >            }
5565 >        }
5566 >    }
5567 >
5568 >    @SuppressWarnings("serial")
5569 >    static final class MapReduceEntriesToDoubleTask<K,V>
5570 >        extends BulkTask<K,V,Double> {
5571 >        final ObjectToDouble<Map.Entry<K,V>> transformer;
5572 >        final DoubleByDoubleToDouble reducer;
5573 >        final double basis;
5574 >        double result;
5575 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5576 >        MapReduceEntriesToDoubleTask
5577 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5578 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5579 >             ObjectToDouble<Map.Entry<K,V>> transformer,
5580 >             double basis,
5581 >             DoubleByDoubleToDouble reducer) {
5582 >            super(p, b, i, f, t); this.nextRight = nextRight;
5583 >            this.transformer = transformer;
5584 >            this.basis = basis; this.reducer = reducer;
5585 >        }
5586 >        public final Double getRawResult() { return result; }
5587 >        public final void compute() {
5588 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
5589 >            final DoubleByDoubleToDouble reducer;
5590 >            if ((transformer = this.transformer) != null &&
5591 >                (reducer = this.reducer) != null) {
5592 >                double r = this.basis;
5593 >                for (int i = baseIndex, f, h; batch > 0 &&
5594 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5595 >                    addToPendingCount(1);
5596 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5597 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5598 >                      rights, transformer, r, reducer)).fork();
5599 >                }
5600 >                for (Node<K,V> p; (p = advance()) != null; )
5601 >                    r = reducer.apply(r, transformer.apply(p));
5602 >                result = r;
5603 >                CountedCompleter<?> c;
5604 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5605 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5606 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5607 >                        s = t.rights;
5608 >                    while (s != null) {
5609 >                        t.result = reducer.apply(t.result, s.result);
5610 >                        s = t.rights = s.nextRight;
5611 >                    }
5612 >                }
5613 >            }
5614 >        }
5615 >    }
5616 >
5617 >    @SuppressWarnings("serial")
5618 >    static final class MapReduceMappingsToDoubleTask<K,V>
5619 >        extends BulkTask<K,V,Double> {
5620 >        final ObjectByObjectToDouble<? super K, ? super V> transformer;
5621 >        final DoubleByDoubleToDouble reducer;
5622 >        final double basis;
5623 >        double result;
5624 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5625 >        MapReduceMappingsToDoubleTask
5626 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5627 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5628 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
5629 >             double basis,
5630 >             DoubleByDoubleToDouble reducer) {
5631 >            super(p, b, i, f, t); this.nextRight = nextRight;
5632 >            this.transformer = transformer;
5633 >            this.basis = basis; this.reducer = reducer;
5634 >        }
5635 >        public final Double getRawResult() { return result; }
5636 >        public final void compute() {
5637 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
5638 >            final DoubleByDoubleToDouble reducer;
5639 >            if ((transformer = this.transformer) != null &&
5640 >                (reducer = this.reducer) != null) {
5641 >                double r = this.basis;
5642 >                for (int i = baseIndex, f, h; batch > 0 &&
5643 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5644 >                    addToPendingCount(1);
5645 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5646 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5647 >                      rights, transformer, r, reducer)).fork();
5648 >                }
5649 >                for (Node<K,V> p; (p = advance()) != null; )
5650 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5651 >                result = r;
5652 >                CountedCompleter<?> c;
5653 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5654 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5655 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5656 >                        s = t.rights;
5657 >                    while (s != null) {
5658 >                        t.result = reducer.apply(t.result, s.result);
5659 >                        s = t.rights = s.nextRight;
5660 >                    }
5661 >                }
5662 >            }
5663          }
5664      }
5665  
5666 <    /* ---------------- Serialization Support -------------- */
5666 >    @SuppressWarnings("serial")
5667 >    static final class MapReduceKeysToLongTask<K,V>
5668 >        extends BulkTask<K,V,Long> {
5669 >        final ObjectToLong<? super K> transformer;
5670 >        final LongByLongToLong reducer;
5671 >        final long basis;
5672 >        long result;
5673 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5674 >        MapReduceKeysToLongTask
5675 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5676 >             MapReduceKeysToLongTask<K,V> nextRight,
5677 >             ObjectToLong<? super K> transformer,
5678 >             long basis,
5679 >             LongByLongToLong reducer) {
5680 >            super(p, b, i, f, t); this.nextRight = nextRight;
5681 >            this.transformer = transformer;
5682 >            this.basis = basis; this.reducer = reducer;
5683 >        }
5684 >        public final Long getRawResult() { return result; }
5685 >        public final void compute() {
5686 >            final ObjectToLong<? super K> transformer;
5687 >            final LongByLongToLong reducer;
5688 >            if ((transformer = this.transformer) != null &&
5689 >                (reducer = this.reducer) != null) {
5690 >                long r = this.basis;
5691 >                for (int i = baseIndex, f, h; batch > 0 &&
5692 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5693 >                    addToPendingCount(1);
5694 >                    (rights = new MapReduceKeysToLongTask<K,V>
5695 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5696 >                      rights, transformer, r, reducer)).fork();
5697 >                }
5698 >                for (Node<K,V> p; (p = advance()) != null; )
5699 >                    r = reducer.apply(r, transformer.apply(p.key));
5700 >                result = r;
5701 >                CountedCompleter<?> c;
5702 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5703 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5704 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5705 >                        s = t.rights;
5706 >                    while (s != null) {
5707 >                        t.result = reducer.apply(t.result, s.result);
5708 >                        s = t.rights = s.nextRight;
5709 >                    }
5710 >                }
5711 >            }
5712 >        }
5713 >    }
5714 >
5715 >    @SuppressWarnings("serial")
5716 >    static final class MapReduceValuesToLongTask<K,V>
5717 >        extends BulkTask<K,V,Long> {
5718 >        final ObjectToLong<? super V> transformer;
5719 >        final LongByLongToLong reducer;
5720 >        final long basis;
5721 >        long result;
5722 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5723 >        MapReduceValuesToLongTask
5724 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5725 >             MapReduceValuesToLongTask<K,V> nextRight,
5726 >             ObjectToLong<? super V> transformer,
5727 >             long basis,
5728 >             LongByLongToLong reducer) {
5729 >            super(p, b, i, f, t); this.nextRight = nextRight;
5730 >            this.transformer = transformer;
5731 >            this.basis = basis; this.reducer = reducer;
5732 >        }
5733 >        public final Long getRawResult() { return result; }
5734 >        public final void compute() {
5735 >            final ObjectToLong<? super V> transformer;
5736 >            final LongByLongToLong reducer;
5737 >            if ((transformer = this.transformer) != null &&
5738 >                (reducer = this.reducer) != null) {
5739 >                long r = this.basis;
5740 >                for (int i = baseIndex, f, h; batch > 0 &&
5741 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5742 >                    addToPendingCount(1);
5743 >                    (rights = new MapReduceValuesToLongTask<K,V>
5744 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5745 >                      rights, transformer, r, reducer)).fork();
5746 >                }
5747 >                for (Node<K,V> p; (p = advance()) != null; )
5748 >                    r = reducer.apply(r, transformer.apply(p.val));
5749 >                result = r;
5750 >                CountedCompleter<?> c;
5751 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5752 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5753 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5754 >                        s = t.rights;
5755 >                    while (s != null) {
5756 >                        t.result = reducer.apply(t.result, s.result);
5757 >                        s = t.rights = s.nextRight;
5758 >                    }
5759 >                }
5760 >            }
5761 >        }
5762 >    }
5763 >
5764 >    @SuppressWarnings("serial")
5765 >    static final class MapReduceEntriesToLongTask<K,V>
5766 >        extends BulkTask<K,V,Long> {
5767 >        final ObjectToLong<Map.Entry<K,V>> transformer;
5768 >        final LongByLongToLong reducer;
5769 >        final long basis;
5770 >        long result;
5771 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
5772 >        MapReduceEntriesToLongTask
5773 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5774 >             MapReduceEntriesToLongTask<K,V> nextRight,
5775 >             ObjectToLong<Map.Entry<K,V>> transformer,
5776 >             long basis,
5777 >             LongByLongToLong reducer) {
5778 >            super(p, b, i, f, t); this.nextRight = nextRight;
5779 >            this.transformer = transformer;
5780 >            this.basis = basis; this.reducer = reducer;
5781 >        }
5782 >        public final Long getRawResult() { return result; }
5783 >        public final void compute() {
5784 >            final ObjectToLong<Map.Entry<K,V>> transformer;
5785 >            final LongByLongToLong reducer;
5786 >            if ((transformer = this.transformer) != null &&
5787 >                (reducer = this.reducer) != null) {
5788 >                long r = this.basis;
5789 >                for (int i = baseIndex, f, h; batch > 0 &&
5790 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5791 >                    addToPendingCount(1);
5792 >                    (rights = new MapReduceEntriesToLongTask<K,V>
5793 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5794 >                      rights, transformer, r, reducer)).fork();
5795 >                }
5796 >                for (Node<K,V> p; (p = advance()) != null; )
5797 >                    r = reducer.apply(r, transformer.apply(p));
5798 >                result = r;
5799 >                CountedCompleter<?> c;
5800 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5801 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5802 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5803 >                        s = t.rights;
5804 >                    while (s != null) {
5805 >                        t.result = reducer.apply(t.result, s.result);
5806 >                        s = t.rights = s.nextRight;
5807 >                    }
5808 >                }
5809 >            }
5810 >        }
5811 >    }
5812 >
5813 >    @SuppressWarnings("serial")
5814 >    static final class MapReduceMappingsToLongTask<K,V>
5815 >        extends BulkTask<K,V,Long> {
5816 >        final ObjectByObjectToLong<? super K, ? super V> transformer;
5817 >        final LongByLongToLong reducer;
5818 >        final long basis;
5819 >        long result;
5820 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
5821 >        MapReduceMappingsToLongTask
5822 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5823 >             MapReduceMappingsToLongTask<K,V> nextRight,
5824 >             ObjectByObjectToLong<? super K, ? super V> transformer,
5825 >             long basis,
5826 >             LongByLongToLong reducer) {
5827 >            super(p, b, i, f, t); this.nextRight = nextRight;
5828 >            this.transformer = transformer;
5829 >            this.basis = basis; this.reducer = reducer;
5830 >        }
5831 >        public final Long getRawResult() { return result; }
5832 >        public final void compute() {
5833 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
5834 >            final LongByLongToLong reducer;
5835 >            if ((transformer = this.transformer) != null &&
5836 >                (reducer = this.reducer) != null) {
5837 >                long r = this.basis;
5838 >                for (int i = baseIndex, f, h; batch > 0 &&
5839 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5840 >                    addToPendingCount(1);
5841 >                    (rights = new MapReduceMappingsToLongTask<K,V>
5842 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5843 >                      rights, transformer, r, reducer)).fork();
5844 >                }
5845 >                for (Node<K,V> p; (p = advance()) != null; )
5846 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5847 >                result = r;
5848 >                CountedCompleter<?> c;
5849 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5850 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5851 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
5852 >                        s = t.rights;
5853 >                    while (s != null) {
5854 >                        t.result = reducer.apply(t.result, s.result);
5855 >                        s = t.rights = s.nextRight;
5856 >                    }
5857 >                }
5858 >            }
5859 >        }
5860 >    }
5861 >
5862 >    @SuppressWarnings("serial")
5863 >    static final class MapReduceKeysToIntTask<K,V>
5864 >        extends BulkTask<K,V,Integer> {
5865 >        final ObjectToInt<? super K> transformer;
5866 >        final IntByIntToInt reducer;
5867 >        final int basis;
5868 >        int result;
5869 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
5870 >        MapReduceKeysToIntTask
5871 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5872 >             MapReduceKeysToIntTask<K,V> nextRight,
5873 >             ObjectToInt<? super K> transformer,
5874 >             int basis,
5875 >             IntByIntToInt reducer) {
5876 >            super(p, b, i, f, t); this.nextRight = nextRight;
5877 >            this.transformer = transformer;
5878 >            this.basis = basis; this.reducer = reducer;
5879 >        }
5880 >        public final Integer getRawResult() { return result; }
5881 >        public final void compute() {
5882 >            final ObjectToInt<? super K> transformer;
5883 >            final IntByIntToInt reducer;
5884 >            if ((transformer = this.transformer) != null &&
5885 >                (reducer = this.reducer) != null) {
5886 >                int r = this.basis;
5887 >                for (int i = baseIndex, f, h; batch > 0 &&
5888 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5889 >                    addToPendingCount(1);
5890 >                    (rights = new MapReduceKeysToIntTask<K,V>
5891 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5892 >                      rights, transformer, r, reducer)).fork();
5893 >                }
5894 >                for (Node<K,V> p; (p = advance()) != null; )
5895 >                    r = reducer.apply(r, transformer.apply(p.key));
5896 >                result = r;
5897 >                CountedCompleter<?> c;
5898 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5899 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5900 >                        t = (MapReduceKeysToIntTask<K,V>)c,
5901 >                        s = t.rights;
5902 >                    while (s != null) {
5903 >                        t.result = reducer.apply(t.result, s.result);
5904 >                        s = t.rights = s.nextRight;
5905 >                    }
5906 >                }
5907 >            }
5908 >        }
5909 >    }
5910 >
5911 >    @SuppressWarnings("serial")
5912 >    static final class MapReduceValuesToIntTask<K,V>
5913 >        extends BulkTask<K,V,Integer> {
5914 >        final ObjectToInt<? super V> transformer;
5915 >        final IntByIntToInt reducer;
5916 >        final int basis;
5917 >        int result;
5918 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
5919 >        MapReduceValuesToIntTask
5920 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5921 >             MapReduceValuesToIntTask<K,V> nextRight,
5922 >             ObjectToInt<? super V> transformer,
5923 >             int basis,
5924 >             IntByIntToInt reducer) {
5925 >            super(p, b, i, f, t); this.nextRight = nextRight;
5926 >            this.transformer = transformer;
5927 >            this.basis = basis; this.reducer = reducer;
5928 >        }
5929 >        public final Integer getRawResult() { return result; }
5930 >        public final void compute() {
5931 >            final ObjectToInt<? super V> transformer;
5932 >            final IntByIntToInt reducer;
5933 >            if ((transformer = this.transformer) != null &&
5934 >                (reducer = this.reducer) != null) {
5935 >                int r = this.basis;
5936 >                for (int i = baseIndex, f, h; batch > 0 &&
5937 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5938 >                    addToPendingCount(1);
5939 >                    (rights = new MapReduceValuesToIntTask<K,V>
5940 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5941 >                      rights, transformer, r, reducer)).fork();
5942 >                }
5943 >                for (Node<K,V> p; (p = advance()) != null; )
5944 >                    r = reducer.apply(r, transformer.apply(p.val));
5945 >                result = r;
5946 >                CountedCompleter<?> c;
5947 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5948 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5949 >                        t = (MapReduceValuesToIntTask<K,V>)c,
5950 >                        s = t.rights;
5951 >                    while (s != null) {
5952 >                        t.result = reducer.apply(t.result, s.result);
5953 >                        s = t.rights = s.nextRight;
5954 >                    }
5955 >                }
5956 >            }
5957 >        }
5958 >    }
5959 >
5960 >    @SuppressWarnings("serial")
5961 >    static final class MapReduceEntriesToIntTask<K,V>
5962 >        extends BulkTask<K,V,Integer> {
5963 >        final ObjectToInt<Map.Entry<K,V>> transformer;
5964 >        final IntByIntToInt reducer;
5965 >        final int basis;
5966 >        int result;
5967 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
5968 >        MapReduceEntriesToIntTask
5969 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5970 >             MapReduceEntriesToIntTask<K,V> nextRight,
5971 >             ObjectToInt<Map.Entry<K,V>> transformer,
5972 >             int basis,
5973 >             IntByIntToInt reducer) {
5974 >            super(p, b, i, f, t); this.nextRight = nextRight;
5975 >            this.transformer = transformer;
5976 >            this.basis = basis; this.reducer = reducer;
5977 >        }
5978 >        public final Integer getRawResult() { return result; }
5979 >        public final void compute() {
5980 >            final ObjectToInt<Map.Entry<K,V>> transformer;
5981 >            final IntByIntToInt reducer;
5982 >            if ((transformer = this.transformer) != null &&
5983 >                (reducer = this.reducer) != null) {
5984 >                int r = this.basis;
5985 >                for (int i = baseIndex, f, h; batch > 0 &&
5986 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5987 >                    addToPendingCount(1);
5988 >                    (rights = new MapReduceEntriesToIntTask<K,V>
5989 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5990 >                      rights, transformer, r, reducer)).fork();
5991 >                }
5992 >                for (Node<K,V> p; (p = advance()) != null; )
5993 >                    r = reducer.apply(r, transformer.apply(p));
5994 >                result = r;
5995 >                CountedCompleter<?> c;
5996 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5997 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5998 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
5999 >                        s = t.rights;
6000 >                    while (s != null) {
6001 >                        t.result = reducer.apply(t.result, s.result);
6002 >                        s = t.rights = s.nextRight;
6003 >                    }
6004 >                }
6005 >            }
6006 >        }
6007 >    }
6008 >
6009 >    @SuppressWarnings("serial")
6010 >    static final class MapReduceMappingsToIntTask<K,V>
6011 >        extends BulkTask<K,V,Integer> {
6012 >        final ObjectByObjectToInt<? super K, ? super V> transformer;
6013 >        final IntByIntToInt reducer;
6014 >        final int basis;
6015 >        int result;
6016 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6017 >        MapReduceMappingsToIntTask
6018 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6019 >             MapReduceMappingsToIntTask<K,V> nextRight,
6020 >             ObjectByObjectToInt<? super K, ? super V> transformer,
6021 >             int basis,
6022 >             IntByIntToInt reducer) {
6023 >            super(p, b, i, f, t); this.nextRight = nextRight;
6024 >            this.transformer = transformer;
6025 >            this.basis = basis; this.reducer = reducer;
6026 >        }
6027 >        public final Integer getRawResult() { return result; }
6028 >        public final void compute() {
6029 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
6030 >            final IntByIntToInt reducer;
6031 >            if ((transformer = this.transformer) != null &&
6032 >                (reducer = this.reducer) != null) {
6033 >                int r = this.basis;
6034 >                for (int i = baseIndex, f, h; batch > 0 &&
6035 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6036 >                    addToPendingCount(1);
6037 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6038 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6039 >                      rights, transformer, r, reducer)).fork();
6040 >                }
6041 >                for (Node<K,V> p; (p = advance()) != null; )
6042 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
6043 >                result = r;
6044 >                CountedCompleter<?> c;
6045 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6046 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6047 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6048 >                        s = t.rights;
6049 >                    while (s != null) {
6050 >                        t.result = reducer.apply(t.result, s.result);
6051 >                        s = t.rights = s.nextRight;
6052 >                    }
6053 >                }
6054 >            }
6055 >        }
6056 >    }
6057 >
6058 >    /* ---------------- Counters -------------- */
6059 >
6060 >    // Adapted from LongAdder and Striped64.
6061 >    // See their internal docs for explanation.
6062 >
6063 >    // A padded cell for distributing counts
6064 >    static final class CounterCell {
6065 >        volatile long p0, p1, p2, p3, p4, p5, p6;
6066 >        volatile long value;
6067 >        volatile long q0, q1, q2, q3, q4, q5, q6;
6068 >        CounterCell(long x) { value = x; }
6069 >    }
6070  
6071      /**
6072 <     * Helper class used in previous version, declared for the sake of
6073 <     * serialization compatibility
6072 >     * Holder for the thread-local hash code determining which
6073 >     * CounterCell to use. The code is initialized via the
6074 >     * counterHashCodeGenerator, but may be moved upon collisions.
6075       */
6076 <    static class Segment<K,V> extends java.util.concurrent.locks.ReentrantLock
6077 <        implements Serializable {
1515 <        private static final long serialVersionUID = 2249069246763182397L;
1516 <        final float loadFactor;
1517 <        Segment(float lf) { this.loadFactor = lf; }
6076 >    static final class CounterHashCode {
6077 >        int code;
6078      }
6079  
6080      /**
6081 <     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1522 <     * stream (i.e., serializes it).
1523 <     * @param s the stream
1524 <     * @serialData
1525 <     * the key (Object) and value (Object)
1526 <     * for each key-value mapping, followed by a null pair.
1527 <     * The key-value mappings are emitted in no particular order.
6081 >     * Generates initial value for per-thread CounterHashCodes.
6082       */
6083 <    @SuppressWarnings("unchecked")
1530 <    private void writeObject(java.io.ObjectOutputStream s)
1531 <            throws java.io.IOException {
1532 <        if (segments == null) { // for serialization compatibility
1533 <            segments = (Segment<K,V>[])
1534 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1535 <            for (int i = 0; i < segments.length; ++i)
1536 <                segments[i] = new Segment<K,V>(loadFactor);
1537 <        }
1538 <        s.defaultWriteObject();
1539 <        new HashIterator().writeEntries(s);
1540 <        s.writeObject(null);
1541 <        s.writeObject(null);
1542 <        segments = null; // throw away
1543 <    }
6083 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6084  
6085      /**
6086 <     * Reconstitutes the instance from a stream (that is, deserializes it).
6087 <     * @param s the stream
6086 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
6087 >     * for explanation.
6088       */
6089 <    @SuppressWarnings("unchecked")
6090 <    private void readObject(java.io.ObjectInputStream s)
6091 <            throws java.io.IOException, ClassNotFoundException {
6092 <        s.defaultReadObject();
6093 <        // find load factor in a segment, if one exists
6094 <        if (segments != null && segments.length != 0)
6095 <            this.loadFactor = segments[0].loadFactor;
6096 <        else
1557 <            this.loadFactor = DEFAULT_LOAD_FACTOR;
1558 <        this.initCap = DEFAULT_CAPACITY;
1559 <        LongAdder ct = new LongAdder(); // force final field write
1560 <        UNSAFE.putObjectVolatile(this, counterOffset, ct);
1561 <        this.segments = null; // unneeded
6089 >    static final int SEED_INCREMENT = 0x61c88647;
6090 >
6091 >    /**
6092 >     * Per-thread counter hash codes. Shared across all instances.
6093 >     */
6094 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6095 >        new ThreadLocal<CounterHashCode>();
6096 >
6097  
6098 <        // Read the keys and values, and put the mappings in the table
6098 >    final long sumCount() {
6099 >        CounterCell[] as = counterCells; CounterCell a;
6100 >        long sum = baseCount;
6101 >        if (as != null) {
6102 >            for (int i = 0; i < as.length; ++i) {
6103 >                if ((a = as[i]) != null)
6104 >                    sum += a.value;
6105 >            }
6106 >        }
6107 >        return sum;
6108 >    }
6109 >
6110 >    // See LongAdder version for explanation
6111 >    private final void fullAddCount(long x, CounterHashCode hc,
6112 >                                    boolean wasUncontended) {
6113 >        int h;
6114 >        if (hc == null) {
6115 >            hc = new CounterHashCode();
6116 >            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6117 >            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6118 >            threadCounterHashCode.set(hc);
6119 >        }
6120 >        else
6121 >            h = hc.code;
6122 >        boolean collide = false;                // True if last slot nonempty
6123          for (;;) {
6124 <            K key = (K) s.readObject();
6125 <            V value = (V) s.readObject();
6126 <            if (key == null)
6127 <                break;
6128 <            put(key, value);
6124 >            CounterCell[] as; CounterCell a; int n; long v;
6125 >            if ((as = counterCells) != null && (n = as.length) > 0) {
6126 >                if ((a = as[(n - 1) & h]) == null) {
6127 >                    if (cellsBusy == 0) {            // Try to attach new Cell
6128 >                        CounterCell r = new CounterCell(x); // Optimistic create
6129 >                        if (cellsBusy == 0 &&
6130 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6131 >                            boolean created = false;
6132 >                            try {               // Recheck under lock
6133 >                                CounterCell[] rs; int m, j;
6134 >                                if ((rs = counterCells) != null &&
6135 >                                    (m = rs.length) > 0 &&
6136 >                                    rs[j = (m - 1) & h] == null) {
6137 >                                    rs[j] = r;
6138 >                                    created = true;
6139 >                                }
6140 >                            } finally {
6141 >                                cellsBusy = 0;
6142 >                            }
6143 >                            if (created)
6144 >                                break;
6145 >                            continue;           // Slot is now non-empty
6146 >                        }
6147 >                    }
6148 >                    collide = false;
6149 >                }
6150 >                else if (!wasUncontended)       // CAS already known to fail
6151 >                    wasUncontended = true;      // Continue after rehash
6152 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6153 >                    break;
6154 >                else if (counterCells != as || n >= NCPU)
6155 >                    collide = false;            // At max size or stale
6156 >                else if (!collide)
6157 >                    collide = true;
6158 >                else if (cellsBusy == 0 &&
6159 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6160 >                    try {
6161 >                        if (counterCells == as) {// Expand table unless stale
6162 >                            CounterCell[] rs = new CounterCell[n << 1];
6163 >                            for (int i = 0; i < n; ++i)
6164 >                                rs[i] = as[i];
6165 >                            counterCells = rs;
6166 >                        }
6167 >                    } finally {
6168 >                        cellsBusy = 0;
6169 >                    }
6170 >                    collide = false;
6171 >                    continue;                   // Retry with expanded table
6172 >                }
6173 >                h ^= h << 13;                   // Rehash
6174 >                h ^= h >>> 17;
6175 >                h ^= h << 5;
6176 >            }
6177 >            else if (cellsBusy == 0 && counterCells == as &&
6178 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6179 >                boolean init = false;
6180 >                try {                           // Initialize table
6181 >                    if (counterCells == as) {
6182 >                        CounterCell[] rs = new CounterCell[2];
6183 >                        rs[h & 1] = new CounterCell(x);
6184 >                        counterCells = rs;
6185 >                        init = true;
6186 >                    }
6187 >                } finally {
6188 >                    cellsBusy = 0;
6189 >                }
6190 >                if (init)
6191 >                    break;
6192 >            }
6193 >            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6194 >                break;                          // Fall back on using base
6195          }
6196 +        hc.code = h;                            // Record index for next time
6197      }
6198  
6199      // Unsafe mechanics
6200 <    private static final sun.misc.Unsafe UNSAFE;
6201 <    private static final long counterOffset;
6202 <    private static final long resizingOffset;
6200 >    private static final sun.misc.Unsafe U;
6201 >    private static final long SIZECTL;
6202 >    private static final long TRANSFERINDEX;
6203 >    private static final long BASECOUNT;
6204 >    private static final long CELLSBUSY;
6205 >    private static final long CELLVALUE;
6206      private static final long ABASE;
6207      private static final int ASHIFT;
6208  
6209      static {
1581        int ss;
6210          try {
6211 <            UNSAFE = getUnsafe();
6211 >            U = getUnsafe();
6212              Class<?> k = ConcurrentHashMapV8.class;
6213 <            counterOffset = UNSAFE.objectFieldOffset
6214 <                (k.getDeclaredField("counter"));
6215 <            resizingOffset = UNSAFE.objectFieldOffset
6216 <                (k.getDeclaredField("resizing"));
6217 <            Class<?> sc = Node[].class;
6218 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6219 <            ss = UNSAFE.arrayIndexScale(sc);
6213 >            SIZECTL = U.objectFieldOffset
6214 >                (k.getDeclaredField("sizeCtl"));
6215 >            TRANSFERINDEX = U.objectFieldOffset
6216 >                (k.getDeclaredField("transferIndex"));
6217 >            BASECOUNT = U.objectFieldOffset
6218 >                (k.getDeclaredField("baseCount"));
6219 >            CELLSBUSY = U.objectFieldOffset
6220 >                (k.getDeclaredField("cellsBusy"));
6221 >            Class<?> ck = CounterCell.class;
6222 >            CELLVALUE = U.objectFieldOffset
6223 >                (ck.getDeclaredField("value"));
6224 >            Class<?> ak = Node[].class;
6225 >            ABASE = U.arrayBaseOffset(ak);
6226 >            int scale = U.arrayIndexScale(ak);
6227 >            if ((scale & (scale - 1)) != 0)
6228 >                throw new Error("data type scale not a power of two");
6229 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6230          } catch (Exception e) {
6231              throw new Error(e);
6232          }
1595        if ((ss & (ss-1)) != 0)
1596            throw new Error("data type scale not a power of two");
1597        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6233      }
6234  
6235      /**
# Line 1607 | Line 6242 | public class ConcurrentHashMapV8<K, V>
6242      private static sun.misc.Unsafe getUnsafe() {
6243          try {
6244              return sun.misc.Unsafe.getUnsafe();
6245 <        } catch (SecurityException se) {
6246 <            try {
6247 <                return java.security.AccessController.doPrivileged
6248 <                    (new java.security
6249 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6250 <                        public sun.misc.Unsafe run() throws Exception {
6251 <                            java.lang.reflect.Field f = sun.misc
6252 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6253 <                            f.setAccessible(true);
6254 <                            return (sun.misc.Unsafe) f.get(null);
6255 <                        }});
6256 <            } catch (java.security.PrivilegedActionException e) {
6257 <                throw new RuntimeException("Could not initialize intrinsics",
6258 <                                           e.getCause());
6259 <            }
6245 >        } catch (SecurityException tryReflectionInstead) {}
6246 >        try {
6247 >            return java.security.AccessController.doPrivileged
6248 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6249 >                public sun.misc.Unsafe run() throws Exception {
6250 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6251 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6252 >                        f.setAccessible(true);
6253 >                        Object x = f.get(null);
6254 >                        if (k.isInstance(x))
6255 >                            return k.cast(x);
6256 >                    }
6257 >                    throw new NoSuchFieldError("the Unsafe");
6258 >                }});
6259 >        } catch (java.security.PrivilegedActionException e) {
6260 >            throw new RuntimeException("Could not initialize intrinsics",
6261 >                                       e.getCause());
6262          }
6263      }
1627
6264   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines