ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.12 by jsr166, Tue Aug 30 18:31:54 2011 UTC vs.
Revision 1.125 by jsr166, Sun Sep 13 16:28:14 2015 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166e;
8 < import jsr166e.LongAdder;
9 < import java.util.Map;
10 < import java.util.Set;
11 < import java.util.Collection;
8 >
9 > import jsr166e.ForkJoinPool;
10 >
11 > import java.io.ObjectStreamField;
12 > import java.io.Serializable;
13 > import java.lang.reflect.ParameterizedType;
14 > import java.lang.reflect.Type;
15   import java.util.AbstractMap;
16 < import java.util.AbstractSet;
17 < import java.util.AbstractCollection;
18 < import java.util.Hashtable;
16 > import java.util.Arrays;
17 > import java.util.Collection;
18 > import java.util.ConcurrentModificationException;
19 > import java.util.Enumeration;
20   import java.util.HashMap;
21 + import java.util.Hashtable;
22   import java.util.Iterator;
23 < import java.util.Enumeration;
19 < import java.util.ConcurrentModificationException;
23 > import java.util.Map;
24   import java.util.NoSuchElementException;
25 + import java.util.Set;
26   import java.util.concurrent.ConcurrentMap;
27 < import java.io.Serializable;
27 > import java.util.concurrent.atomic.AtomicReference;
28 > import java.util.concurrent.atomic.AtomicInteger;
29 > import java.util.concurrent.locks.LockSupport;
30 > import java.util.concurrent.locks.ReentrantLock;
31  
32   /**
33   * A hash table supporting full concurrency of retrievals and
# Line 33 | Line 41 | import java.io.Serializable;
41   * interoperable with {@code Hashtable} in programs that rely on its
42   * thread safety but not on its synchronization details.
43   *
44 < * <p> Retrieval operations (including {@code get}) generally do not
44 > * <p>Retrieval operations (including {@code get}) generally do not
45   * block, so may overlap with update operations (including {@code put}
46   * and {@code remove}). Retrievals reflect the results of the most
47   * recently <em>completed</em> update operations holding upon their
48 < * onset.  For aggregate operations such as {@code putAll} and {@code
49 < * clear}, concurrent retrievals may reflect insertion or removal of
50 < * only some entries.  Similarly, Iterators and Enumerations return
51 < * elements reflecting the state of the hash table at some point at or
52 < * since the creation of the iterator/enumeration.  They do
53 < * <em>not</em> throw {@link ConcurrentModificationException}.
54 < * However, iterators are designed to be used by only one thread at a
55 < * time.  Bear in mind that the results of aggregate status methods
56 < * including {@code size}, {@code isEmpty}, and {@code containsValue}
57 < * are typically useful only when a map is not undergoing concurrent
58 < * updates in other threads.  Otherwise the results of these methods
59 < * reflect transient states that may be adequate for monitoring
60 < * purposes, but not for program control.
61 < *
62 < * <p> Resizing this or any other kind of hash table is a relatively
63 < * slow operation, so, when possible, it is a good idea to provide
64 < * estimates of expected table sizes in constructors. Also, for
65 < * compatibility with previous versions of this class, constructors
66 < * may optionally specify an expected {@code concurrencyLevel} as an
67 < * additional hint for internal sizing.
48 > * onset. (More formally, an update operation for a given key bears a
49 > * <em>happens-before</em> relation with any (non-null) retrieval for
50 > * that key reporting the updated value.)  For aggregate operations
51 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
52 > * reflect insertion or removal of only some entries.  Similarly,
53 > * Iterators and Enumerations return elements reflecting the state of
54 > * the hash table at some point at or since the creation of the
55 > * iterator/enumeration.  They do <em>not</em> throw {@link
56 > * ConcurrentModificationException}.  However, iterators are designed
57 > * to be used by only one thread at a time.  Bear in mind that the
58 > * results of aggregate status methods including {@code size}, {@code
59 > * isEmpty}, and {@code containsValue} are typically useful only when
60 > * a map is not undergoing concurrent updates in other threads.
61 > * Otherwise the results of these methods reflect transient states
62 > * that may be adequate for monitoring or estimation purposes, but not
63 > * for program control.
64 > *
65 > * <p>The table is dynamically expanded when there are too many
66 > * collisions (i.e., keys that have distinct hash codes but fall into
67 > * the same slot modulo the table size), with the expected average
68 > * effect of maintaining roughly two bins per mapping (corresponding
69 > * to a 0.75 load factor threshold for resizing). There may be much
70 > * variance around this average as mappings are added and removed, but
71 > * overall, this maintains a commonly accepted time/space tradeoff for
72 > * hash tables.  However, resizing this or any other kind of hash
73 > * table may be a relatively slow operation. When possible, it is a
74 > * good idea to provide a size estimate as an optional {@code
75 > * initialCapacity} constructor argument. An additional optional
76 > * {@code loadFactor} constructor argument provides a further means of
77 > * customizing initial table capacity by specifying the table density
78 > * to be used in calculating the amount of space to allocate for the
79 > * given number of elements.  Also, for compatibility with previous
80 > * versions of this class, constructors may optionally specify an
81 > * expected {@code concurrencyLevel} as an additional hint for
82 > * internal sizing.  Note that using many keys with exactly the same
83 > * {@code hashCode()} is a sure way to slow down performance of any
84 > * hash table. To ameliorate impact, when keys are {@link Comparable},
85 > * this class may use comparison order among keys to help break ties.
86 > *
87 > * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
88 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
89 > * (using {@link #keySet(Object)} when only keys are of interest, and the
90 > * mapped values are (perhaps transiently) not used or all take the
91 > * same mapping value.
92   *
93   * <p>This class and its views and iterators implement all of the
94   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
95   * interfaces.
96   *
97 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
97 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
98   * does <em>not</em> allow {@code null} to be used as a key or value.
99   *
100 + * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
101 + * operations that are designed
102 + * to be safely, and often sensibly, applied even with maps that are
103 + * being concurrently updated by other threads; for example, when
104 + * computing a snapshot summary of the values in a shared registry.
105 + * There are three kinds of operation, each with four forms, accepting
106 + * functions with Keys, Values, Entries, and (Key, Value) arguments
107 + * and/or return values. Because the elements of a ConcurrentHashMapV8
108 + * are not ordered in any particular way, and may be processed in
109 + * different orders in different parallel executions, the correctness
110 + * of supplied functions should not depend on any ordering, or on any
111 + * other objects or values that may transiently change while
112 + * computation is in progress; and except for forEach actions, should
113 + * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
114 + * objects do not support method {@code setValue}.
115 + *
116 + * <ul>
117 + * <li>forEach: Perform a given action on each element.
118 + * A variant form applies a given transformation on each element
119 + * before performing the action.
120 + *
121 + * <li>search: Return the first available non-null result of
122 + * applying a given function on each element; skipping further
123 + * search when a result is found.
124 + *
125 + * <li>reduce: Accumulate each element.  The supplied reduction
126 + * function cannot rely on ordering (more formally, it should be
127 + * both associative and commutative).  There are five variants:
128 + *
129 + * <ul>
130 + *
131 + * <li>Plain reductions. (There is not a form of this method for
132 + * (key, value) function arguments since there is no corresponding
133 + * return type.)
134 + *
135 + * <li>Mapped reductions that accumulate the results of a given
136 + * function applied to each element.
137 + *
138 + * <li>Reductions to scalar doubles, longs, and ints, using a
139 + * given basis value.
140 + *
141 + * </ul>
142 + * </ul>
143 + *
144 + * <p>These bulk operations accept a {@code parallelismThreshold}
145 + * argument. Methods proceed sequentially if the current map size is
146 + * estimated to be less than the given threshold. Using a value of
147 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
148 + * of {@code 1} results in maximal parallelism by partitioning into
149 + * enough subtasks to fully utilize the {@link
150 + * ForkJoinPool#commonPool()} that is used for all parallel
151 + * computations. Normally, you would initially choose one of these
152 + * extreme values, and then measure performance of using in-between
153 + * values that trade off overhead versus throughput.
154 + *
155 + * <p>The concurrency properties of bulk operations follow
156 + * from those of ConcurrentHashMapV8: Any non-null result returned
157 + * from {@code get(key)} and related access methods bears a
158 + * happens-before relation with the associated insertion or
159 + * update.  The result of any bulk operation reflects the
160 + * composition of these per-element relations (but is not
161 + * necessarily atomic with respect to the map as a whole unless it
162 + * is somehow known to be quiescent).  Conversely, because keys
163 + * and values in the map are never null, null serves as a reliable
164 + * atomic indicator of the current lack of any result.  To
165 + * maintain this property, null serves as an implicit basis for
166 + * all non-scalar reduction operations. For the double, long, and
167 + * int versions, the basis should be one that, when combined with
168 + * any other value, returns that other value (more formally, it
169 + * should be the identity element for the reduction). Most common
170 + * reductions have these properties; for example, computing a sum
171 + * with basis 0 or a minimum with basis MAX_VALUE.
172 + *
173 + * <p>Search and transformation functions provided as arguments
174 + * should similarly return null to indicate the lack of any result
175 + * (in which case it is not used). In the case of mapped
176 + * reductions, this also enables transformations to serve as
177 + * filters, returning null (or, in the case of primitive
178 + * specializations, the identity basis) if the element should not
179 + * be combined. You can create compound transformations and
180 + * filterings by composing them yourself under this "null means
181 + * there is nothing there now" rule before using them in search or
182 + * reduce operations.
183 + *
184 + * <p>Methods accepting and/or returning Entry arguments maintain
185 + * key-value associations. They may be useful for example when
186 + * finding the key for the greatest value. Note that "plain" Entry
187 + * arguments can be supplied using {@code new
188 + * AbstractMap.SimpleEntry(k,v)}.
189 + *
190 + * <p>Bulk operations may complete abruptly, throwing an
191 + * exception encountered in the application of a supplied
192 + * function. Bear in mind when handling such exceptions that other
193 + * concurrently executing functions could also have thrown
194 + * exceptions, or would have done so if the first exception had
195 + * not occurred.
196 + *
197 + * <p>Speedups for parallel compared to sequential forms are common
198 + * but not guaranteed.  Parallel operations involving brief functions
199 + * on small maps may execute more slowly than sequential forms if the
200 + * underlying work to parallelize the computation is more expensive
201 + * than the computation itself.  Similarly, parallelization may not
202 + * lead to much actual parallelism if all processors are busy
203 + * performing unrelated tasks.
204 + *
205 + * <p>All arguments to all task methods must be non-null.
206 + *
207 + * <p><em>jsr166e note: During transition, this class
208 + * uses nested functional interfaces with different names but the
209 + * same forms as those expected for JDK8.</em>
210 + *
211   * <p>This class is a member of the
212   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
213   * Java Collections Framework</a>.
214   *
72 * <p><em>jsr166e note: This class is a candidate replacement for
73 * java.util.concurrent.ConcurrentHashMap.<em>
74 *
215   * @since 1.5
216   * @author Doug Lea
217   * @param <K> the type of keys maintained by this map
218   * @param <V> the type of mapped values
219   */
220 < public class ConcurrentHashMapV8<K, V>
221 <        implements ConcurrentMap<K, V>, Serializable {
220 > public class ConcurrentHashMapV8<K,V> extends AbstractMap<K,V>
221 >    implements ConcurrentMap<K,V>, Serializable {
222      private static final long serialVersionUID = 7249069246763182397L;
223  
224      /**
225 <     * A function computing a mapping from the given key to a value,
226 <     * or {@code null} if there is no mapping. This is a place-holder
227 <     * for an upcoming JDK8 interface.
228 <     */
229 <    public static interface MappingFunction<K, V> {
230 <        /**
231 <         * Returns a value for the given key, or null if there is no
232 <         * mapping. If this function throws an (unchecked) exception,
233 <         * the exception is rethrown to its caller, and no mapping is
234 <         * recorded.  Because this function is invoked within
95 <         * atomicity control, the computation should be short and
96 <         * simple. The most common usage is to construct a new object
97 <         * serving as an initial mapped value.
98 <         *
99 <         * @param key the (non-null) key
100 <         * @return a value, or null if none
225 >     * An object for traversing and partitioning elements of a source.
226 >     * This interface provides a subset of the functionality of JDK8
227 >     * java.util.Spliterator.
228 >     */
229 >    public static interface ConcurrentHashMapSpliterator<T> {
230 >        /**
231 >         * If possible, returns a new spliterator covering
232 >         * approximately one half of the elements, which will not be
233 >         * covered by this spliterator. Returns null if cannot be
234 >         * split.
235           */
236 <        V map(K key);
237 <    }
236 >        ConcurrentHashMapSpliterator<T> trySplit();
237 >        /**
238 >         * Returns an estimate of the number of elements covered by
239 >         * this Spliterator.
240 >         */
241 >        long estimateSize();
242 >
243 >        /** Applies the action to each untraversed element */
244 >        void forEachRemaining(Action<? super T> action);
245 >        /** If an element remains, applies the action and returns true. */
246 >        boolean tryAdvance(Action<? super T> action);
247 >    }
248 >
249 >    // Sams
250 >    /** Interface describing a void action of one argument */
251 >    public interface Action<A> { void apply(A a); }
252 >    /** Interface describing a void action of two arguments */
253 >    public interface BiAction<A,B> { void apply(A a, B b); }
254 >    /** Interface describing a function of one argument */
255 >    public interface Fun<A,T> { T apply(A a); }
256 >    /** Interface describing a function of two arguments */
257 >    public interface BiFun<A,B,T> { T apply(A a, B b); }
258 >    /** Interface describing a function mapping its argument to a double */
259 >    public interface ObjectToDouble<A> { double apply(A a); }
260 >    /** Interface describing a function mapping its argument to a long */
261 >    public interface ObjectToLong<A> { long apply(A a); }
262 >    /** Interface describing a function mapping its argument to an int */
263 >    public interface ObjectToInt<A> {int apply(A a); }
264 >    /** Interface describing a function mapping two arguments to a double */
265 >    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
266 >    /** Interface describing a function mapping two arguments to a long */
267 >    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
268 >    /** Interface describing a function mapping two arguments to an int */
269 >    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
270 >    /** Interface describing a function mapping two doubles to a double */
271 >    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
272 >    /** Interface describing a function mapping two longs to a long */
273 >    public interface LongByLongToLong { long apply(long a, long b); }
274 >    /** Interface describing a function mapping two ints to an int */
275 >    public interface IntByIntToInt { int apply(int a, int b); }
276 >
277  
278      /*
279       * Overview:
# Line 108 | Line 281 | public class ConcurrentHashMapV8<K, V>
281       * The primary design goal of this hash table is to maintain
282       * concurrent readability (typically method get(), but also
283       * iterators and related methods) while minimizing update
284 <     * contention.
285 <     *
286 <     * Each key-value mapping is held in a Node.  Because Node fields
287 <     * can contain special values, they are defined using plain Object
288 <     * types. Similarly in turn, all internal methods that use them
289 <     * work off Object types. All public generic-typed methods relay
290 <     * in/out of these internal methods, supplying casts as needed.
284 >     * contention. Secondary goals are to keep space consumption about
285 >     * the same or better than java.util.HashMap, and to support high
286 >     * initial insertion rates on an empty table by many threads.
287 >     *
288 >     * This map usually acts as a binned (bucketed) hash table.  Each
289 >     * key-value mapping is held in a Node.  Most nodes are instances
290 >     * of the basic Node class with hash, key, value, and next
291 >     * fields. However, various subclasses exist: TreeNodes are
292 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
293 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
294 >     * of bins during resizing. ReservationNodes are used as
295 >     * placeholders while establishing values in computeIfAbsent and
296 >     * related methods.  The types TreeBin, ForwardingNode, and
297 >     * ReservationNode do not hold normal user keys, values, or
298 >     * hashes, and are readily distinguishable during search etc
299 >     * because they have negative hash fields and null key and value
300 >     * fields. (These special nodes are either uncommon or transient,
301 >     * so the impact of carrying around some unused fields is
302 >     * insignificant.)
303       *
304       * The table is lazily initialized to a power-of-two size upon the
305 <     * first insertion.  Each bin in the table contains a (typically
306 <     * short) list of Nodes.  Table accesses require volatile/atomic
307 <     * reads, writes, and CASes.  Because there is no other way to
308 <     * arrange this without adding further indirections, we use
309 <     * intrinsics (sun.misc.Unsafe) operations.  The lists of nodes
310 <     * within bins are always accurately traversable under volatile
311 <     * reads, so long as lookups check hash code and non-nullness of
312 <     * key and value before checking key equality. (All valid hash
313 <     * codes are nonnegative. Negative values are reserved for special
314 <     * forwarding nodes; see below.)
315 <     *
316 <     * A bin may be locked during update (insert, delete, and replace)
317 <     * operations.  We do not want to waste the space required to
318 <     * associate a distinct lock object with each bin, so instead use
319 <     * the first node of a bin list itself as a lock, using builtin
320 <     * "synchronized" locks. These save space and we can live with
321 <     * only plain block-structured lock/unlock operations. Using the
322 <     * first node of a list as a lock does not by itself suffice
323 <     * though: When a node is locked, any update must first validate
324 <     * that it is still the first node, and retry if not. (Because new
325 <     * nodes are always appended to lists, once a node is first in a
326 <     * bin, it remains first until deleted or the bin becomes
327 <     * invalidated.)  However, update operations can and sometimes do
328 <     * still traverse the bin until the point of update, which helps
329 <     * reduce cache misses on retries.  This is a converse of sorts to
330 <     * the lazy locking technique described by Herlihy & Shavit. If
331 <     * there is no existing node during a put operation, then one can
332 <     * be CAS'ed in (without need for lock except in computeIfAbsent);
333 <     * the CAS serves as validation. This is on average the most
334 <     * common case for put operations -- under random hash codes, the
335 <     * distribution of nodes in bins follows a Poisson distribution
336 <     * (see http://en.wikipedia.org/wiki/Poisson_distribution) with a
337 <     * parameter of 0.5 on average under the default loadFactor of
338 <     * 0.75.  The expected number of locks covering different elements
339 <     * (i.e., bins with 2 or more nodes) is approximately 10% at
340 <     * steady state under default settings.  Lock contention
341 <     * probability for two threads accessing arbitrary distinct
342 <     * elements is, roughly, 1 / (8 * #elements).
343 <     *
344 <     * The table is resized when occupancy exceeds a threshold.  Only
345 <     * a single thread performs the resize (using field "resizing", to
346 <     * arrange exclusion), but the table otherwise remains usable for
347 <     * both reads and updates. Resizing proceeds by transferring bins,
348 <     * one by one, from the table to the next table.  Upon transfer,
349 <     * the old table bin contains only a special forwarding node (with
350 <     * negative hash code ("MOVED")) that contains the next table as
351 <     * its key. On encountering a forwarding node, access and update
352 <     * operations restart, using the new table. To ensure concurrent
353 <     * readability of traversals, transfers must proceed from the last
354 <     * bin (table.length - 1) up towards the first.  Any traversal
355 <     * starting from the first bin can then arrange to move to the new
356 <     * table for the rest of the traversal without revisiting nodes.
357 <     * This constrains bin transfers to a particular order, and so can
358 <     * block indefinitely waiting for the next lock, and other threads
359 <     * cannot help with the transfer. However, expected stalls are
360 <     * infrequent enough to not warrant the additional overhead and
361 <     * complexity of access and iteration schemes that could admit
362 <     * out-of-order or concurrent bin transfers.
363 <     *
364 <     * A similar traversal scheme (not yet implemented) can apply to
365 <     * partial traversals during partitioned aggregate operations.
366 <     * Also, read-only operations give up if ever forwarded to a null
367 <     * table, which provides support for shutdown-style clearing,
368 <     * which is also not currently implemented.
369 <     *
370 <     * The element count is maintained using a LongAdder, which avoids
371 <     * contention on updates but can encounter cache thrashing if read
372 <     * too frequently during concurrent updates. To avoid reading so
373 <     * often, resizing is normally attempted only upon adding to a bin
374 <     * already holding two or more nodes. Under the default threshold
375 <     * (0.75), and uniform hash distributions, the probability of this
376 <     * occurring at threshold is around 13%, meaning that only about 1
377 <     * in 8 puts check threshold (and after resizing, many fewer do
378 <     * so). But this approximation has high variance for small table
379 <     * sizes, so we check on any collision for sizes <= 64.  Further,
380 <     * to increase the probability that a resize occurs soon enough, we
381 <     * offset the threshold (see THRESHOLD_OFFSET) by the expected
382 <     * number of puts between checks. This is currently set to 8, in
383 <     * accord with the default load factor. In practice, this is
384 <     * rarely overridden, and in any case is close enough to other
385 <     * plausible values not to waste dynamic probability computation
386 <     * for more precision.
305 >     * first insertion.  Each bin in the table normally contains a
306 >     * list of Nodes (most often, the list has only zero or one Node).
307 >     * Table accesses require volatile/atomic reads, writes, and
308 >     * CASes.  Because there is no other way to arrange this without
309 >     * adding further indirections, we use intrinsics
310 >     * (sun.misc.Unsafe) operations.
311 >     *
312 >     * We use the top (sign) bit of Node hash fields for control
313 >     * purposes -- it is available anyway because of addressing
314 >     * constraints.  Nodes with negative hash fields are specially
315 >     * handled or ignored in map methods.
316 >     *
317 >     * Insertion (via put or its variants) of the first node in an
318 >     * empty bin is performed by just CASing it to the bin.  This is
319 >     * by far the most common case for put operations under most
320 >     * key/hash distributions.  Other update operations (insert,
321 >     * delete, and replace) require locks.  We do not want to waste
322 >     * the space required to associate a distinct lock object with
323 >     * each bin, so instead use the first node of a bin list itself as
324 >     * a lock. Locking support for these locks relies on builtin
325 >     * "synchronized" monitors.
326 >     *
327 >     * Using the first node of a list as a lock does not by itself
328 >     * suffice though: When a node is locked, any update must first
329 >     * validate that it is still the first node after locking it, and
330 >     * retry if not. Because new nodes are always appended to lists,
331 >     * once a node is first in a bin, it remains first until deleted
332 >     * or the bin becomes invalidated (upon resizing).
333 >     *
334 >     * The main disadvantage of per-bin locks is that other update
335 >     * operations on other nodes in a bin list protected by the same
336 >     * lock can stall, for example when user equals() or mapping
337 >     * functions take a long time.  However, statistically, under
338 >     * random hash codes, this is not a common problem.  Ideally, the
339 >     * frequency of nodes in bins follows a Poisson distribution
340 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
341 >     * parameter of about 0.5 on average, given the resizing threshold
342 >     * of 0.75, although with a large variance because of resizing
343 >     * granularity. Ignoring variance, the expected occurrences of
344 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
345 >     * first values are:
346 >     *
347 >     * 0:    0.60653066
348 >     * 1:    0.30326533
349 >     * 2:    0.07581633
350 >     * 3:    0.01263606
351 >     * 4:    0.00157952
352 >     * 5:    0.00015795
353 >     * 6:    0.00001316
354 >     * 7:    0.00000094
355 >     * 8:    0.00000006
356 >     * more: less than 1 in ten million
357 >     *
358 >     * Lock contention probability for two threads accessing distinct
359 >     * elements is roughly 1 / (8 * #elements) under random hashes.
360 >     *
361 >     * Actual hash code distributions encountered in practice
362 >     * sometimes deviate significantly from uniform randomness.  This
363 >     * includes the case when N > (1<<30), so some keys MUST collide.
364 >     * Similarly for dumb or hostile usages in which multiple keys are
365 >     * designed to have identical hash codes or ones that differs only
366 >     * in masked-out high bits. So we use a secondary strategy that
367 >     * applies when the number of nodes in a bin exceeds a
368 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
369 >     * specialized form of red-black trees), bounding search time to
370 >     * O(log N).  Each search step in a TreeBin is at least twice as
371 >     * slow as in a regular list, but given that N cannot exceed
372 >     * (1<<64) (before running out of addresses) this bounds search
373 >     * steps, lock hold times, etc, to reasonable constants (roughly
374 >     * 100 nodes inspected per operation worst case) so long as keys
375 >     * are Comparable (which is very common -- String, Long, etc).
376 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
377 >     * traversal pointers as regular nodes, so can be traversed in
378 >     * iterators in the same way.
379 >     *
380 >     * The table is resized when occupancy exceeds a percentage
381 >     * threshold (nominally, 0.75, but see below).  Any thread
382 >     * noticing an overfull bin may assist in resizing after the
383 >     * initiating thread allocates and sets up the replacement array.
384 >     * However, rather than stalling, these other threads may proceed
385 >     * with insertions etc.  The use of TreeBins shields us from the
386 >     * worst case effects of overfilling while resizes are in
387 >     * progress.  Resizing proceeds by transferring bins, one by one,
388 >     * from the table to the next table. However, threads claim small
389 >     * blocks of indices to transfer (via field transferIndex) before
390 >     * doing so, reducing contention.  A generation stamp in field
391 >     * sizeCtl ensures that resizings do not overlap. Because we are
392 >     * using power-of-two expansion, the elements from each bin must
393 >     * either stay at same index, or move with a power of two
394 >     * offset. We eliminate unnecessary node creation by catching
395 >     * cases where old nodes can be reused because their next fields
396 >     * won't change.  On average, only about one-sixth of them need
397 >     * cloning when a table doubles. The nodes they replace will be
398 >     * garbage collectable as soon as they are no longer referenced by
399 >     * any reader thread that may be in the midst of concurrently
400 >     * traversing table.  Upon transfer, the old table bin contains
401 >     * only a special forwarding node (with hash field "MOVED") that
402 >     * contains the next table as its key. On encountering a
403 >     * forwarding node, access and update operations restart, using
404 >     * the new table.
405 >     *
406 >     * Each bin transfer requires its bin lock, which can stall
407 >     * waiting for locks while resizing. However, because other
408 >     * threads can join in and help resize rather than contend for
409 >     * locks, average aggregate waits become shorter as resizing
410 >     * progresses.  The transfer operation must also ensure that all
411 >     * accessible bins in both the old and new table are usable by any
412 >     * traversal.  This is arranged in part by proceeding from the
413 >     * last bin (table.length - 1) up towards the first.  Upon seeing
414 >     * a forwarding node, traversals (see class Traverser) arrange to
415 >     * move to the new table without revisiting nodes.  To ensure that
416 >     * no intervening nodes are skipped even when moved out of order,
417 >     * a stack (see class TableStack) is created on first encounter of
418 >     * a forwarding node during a traversal, to maintain its place if
419 >     * later processing the current table. The need for these
420 >     * save/restore mechanics is relatively rare, but when one
421 >     * forwarding node is encountered, typically many more will be.
422 >     * So Traversers use a simple caching scheme to avoid creating so
423 >     * many new TableStack nodes. (Thanks to Peter Levart for
424 >     * suggesting use of a stack here.)
425 >     *
426 >     * The traversal scheme also applies to partial traversals of
427 >     * ranges of bins (via an alternate Traverser constructor)
428 >     * to support partitioned aggregate operations.  Also, read-only
429 >     * operations give up if ever forwarded to a null table, which
430 >     * provides support for shutdown-style clearing, which is also not
431 >     * currently implemented.
432 >     *
433 >     * Lazy table initialization minimizes footprint until first use,
434 >     * and also avoids resizings when the first operation is from a
435 >     * putAll, constructor with map argument, or deserialization.
436 >     * These cases attempt to override the initial capacity settings,
437 >     * but harmlessly fail to take effect in cases of races.
438 >     *
439 >     * The element count is maintained using a specialization of
440 >     * LongAdder. We need to incorporate a specialization rather than
441 >     * just use a LongAdder in order to access implicit
442 >     * contention-sensing that leads to creation of multiple
443 >     * CounterCells.  The counter mechanics avoid contention on
444 >     * updates but can encounter cache thrashing if read too
445 >     * frequently during concurrent access. To avoid reading so often,
446 >     * resizing under contention is attempted only upon adding to a
447 >     * bin already holding two or more nodes. Under uniform hash
448 >     * distributions, the probability of this occurring at threshold
449 >     * is around 13%, meaning that only about 1 in 8 puts check
450 >     * threshold (and after resizing, many fewer do so).
451 >     *
452 >     * TreeBins use a special form of comparison for search and
453 >     * related operations (which is the main reason we cannot use
454 >     * existing collections such as TreeMaps). TreeBins contain
455 >     * Comparable elements, but may contain others, as well as
456 >     * elements that are Comparable but not necessarily Comparable for
457 >     * the same T, so we cannot invoke compareTo among them. To handle
458 >     * this, the tree is ordered primarily by hash value, then by
459 >     * Comparable.compareTo order if applicable.  On lookup at a node,
460 >     * if elements are not comparable or compare as 0 then both left
461 >     * and right children may need to be searched in the case of tied
462 >     * hash values. (This corresponds to the full list search that
463 >     * would be necessary if all elements were non-Comparable and had
464 >     * tied hashes.) On insertion, to keep a total ordering (or as
465 >     * close as is required here) across rebalancings, we compare
466 >     * classes and identityHashCodes as tie-breakers. The red-black
467 >     * balancing code is updated from pre-jdk-collections
468 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
469 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
470 >     * Algorithms" (CLR).
471 >     *
472 >     * TreeBins also require an additional locking mechanism.  While
473 >     * list traversal is always possible by readers even during
474 >     * updates, tree traversal is not, mainly because of tree-rotations
475 >     * that may change the root node and/or its linkages.  TreeBins
476 >     * include a simple read-write lock mechanism parasitic on the
477 >     * main bin-synchronization strategy: Structural adjustments
478 >     * associated with an insertion or removal are already bin-locked
479 >     * (and so cannot conflict with other writers) but must wait for
480 >     * ongoing readers to finish. Since there can be only one such
481 >     * waiter, we use a simple scheme using a single "waiter" field to
482 >     * block writers.  However, readers need never block.  If the root
483 >     * lock is held, they proceed along the slow traversal path (via
484 >     * next-pointers) until the lock becomes available or the list is
485 >     * exhausted, whichever comes first. These cases are not fast, but
486 >     * maximize aggregate expected throughput.
487 >     *
488 >     * Maintaining API and serialization compatibility with previous
489 >     * versions of this class introduces several oddities. Mainly: We
490 >     * leave untouched but unused constructor arguments referring to
491 >     * concurrencyLevel. We accept a loadFactor constructor argument,
492 >     * but apply it only to initial table capacity (which is the only
493 >     * time that we can guarantee to honor it.) We also declare an
494 >     * unused "Segment" class that is instantiated in minimal form
495 >     * only when serializing.
496 >     *
497 >     * Also, solely for compatibility with previous versions of this
498 >     * class, it extends AbstractMap, even though all of its methods
499 >     * are overridden, so it is just useless baggage.
500 >     *
501 >     * This file is organized to make things a little easier to follow
502 >     * while reading than they might otherwise: First the main static
503 >     * declarations and utilities, then fields, then main public
504 >     * methods (with a few factorings of multiple public methods into
505 >     * internal ones), then sizing methods, trees, traversers, and
506 >     * bulk operations.
507       */
508  
509      /* ---------------- Constants -------------- */
510  
511      /**
512 <     * The smallest allowed table capacity.  Must be a power of 2, at
513 <     * least 2.
512 >     * The largest possible table capacity.  This value must be
513 >     * exactly 1<<30 to stay within Java array allocation and indexing
514 >     * bounds for power of two table sizes, and is further required
515 >     * because the top two bits of 32bit hash fields are used for
516 >     * control purposes.
517       */
518 <    static final int MINIMUM_CAPACITY = 2;
518 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
519  
520      /**
521 <     * The largest allowed table capacity.  Must be a power of 2, at
522 <     * most 1<<30.
521 >     * The default initial table capacity.  Must be a power of 2
522 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
523       */
524 <    static final int MAXIMUM_CAPACITY = 1 << 30;
524 >    private static final int DEFAULT_CAPACITY = 16;
525  
526      /**
527 <     * The default initial table capacity.  Must be a power of 2, at
528 <     * least MINIMUM_CAPACITY and at most MAXIMUM_CAPACITY.
527 >     * The largest possible (non-power of two) array size.
528 >     * Needed by toArray and related methods.
529       */
530 <    static final int DEFAULT_CAPACITY = 16;
530 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
531  
532      /**
533 <     * The default load factor for this table, used when not otherwise
534 <     * specified in a constructor.
533 >     * The default concurrency level for this table. Unused but
534 >     * defined for compatibility with previous versions of this class.
535       */
536 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
536 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
537  
538      /**
539 <     * The default concurrency level for this table. Unused, but
540 <     * defined for compatibility with previous versions of this class.
539 >     * The load factor for this table. Overrides of this value in
540 >     * constructors affect only the initial table capacity.  The
541 >     * actual floating point value isn't normally used -- it is
542 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
543 >     * the associated resizing threshold.
544       */
545 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
545 >    private static final float LOAD_FACTOR = 0.75f;
546  
547      /**
548 <     * The count value to offset thresholds to compensate for checking
549 <     * for resizing only when inserting into bins with two or more
550 <     * elements. See above for explanation.
548 >     * The bin count threshold for using a tree rather than list for a
549 >     * bin.  Bins are converted to trees when adding an element to a
550 >     * bin with at least this many nodes. The value must be greater
551 >     * than 2, and should be at least 8 to mesh with assumptions in
552 >     * tree removal about conversion back to plain bins upon
553 >     * shrinkage.
554       */
555 <    static final int THRESHOLD_OFFSET = 8;
555 >    static final int TREEIFY_THRESHOLD = 8;
556  
557      /**
558 <     * Special node hash value indicating to use table in node.key
559 <     * Must be negative.
558 >     * The bin count threshold for untreeifying a (split) bin during a
559 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
560 >     * most 6 to mesh with shrinkage detection under removal.
561       */
562 <    static final int MOVED = -1;
248 <
249 <    /* ---------------- Fields -------------- */
562 >    static final int UNTREEIFY_THRESHOLD = 6;
563  
564      /**
565 <     * The array of bins. Lazily initialized upon first insertion.
566 <     * Size is always a power of two. Accessed directly by inner
567 <     * classes.
565 >     * The smallest table capacity for which bins may be treeified.
566 >     * (Otherwise the table is resized if too many nodes in a bin.)
567 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
568 >     * conflicts between resizing and treeification thresholds.
569       */
570 <    transient volatile Node[] table;
570 >    static final int MIN_TREEIFY_CAPACITY = 64;
571  
572 <    /** The counter maintaining number of elements. */
573 <    private transient final LongAdder counter;
574 <    /** Nonzero when table is being initialized or resized. Updated via CAS. */
575 <    private transient volatile int resizing;
576 <    /** The target load factor for the table. */
577 <    private transient float loadFactor;
578 <    /** The next element count value upon which to resize the table. */
579 <    private transient int threshold;
266 <    /** The initial capacity of the table. */
267 <    private transient int initCap;
268 <
269 <    // views
270 <    transient Set<K> keySet;
271 <    transient Set<Map.Entry<K,V>> entrySet;
272 <    transient Collection<V> values;
572 >    /**
573 >     * Minimum number of rebinnings per transfer step. Ranges are
574 >     * subdivided to allow multiple resizer threads.  This value
575 >     * serves as a lower bound to avoid resizers encountering
576 >     * excessive memory contention.  The value should be at least
577 >     * DEFAULT_CAPACITY.
578 >     */
579 >    private static final int MIN_TRANSFER_STRIDE = 16;
580  
581 <    /** For serialization compatibility. Null unless serialized; see below */
582 <    Segment<K,V>[] segments;
581 >    /**
582 >     * The number of bits used for generation stamp in sizeCtl.
583 >     * Must be at least 6 for 32bit arrays.
584 >     */
585 >    private static int RESIZE_STAMP_BITS = 16;
586  
587      /**
588 <     * Applies a supplemental hash function to a given hashCode, which
589 <     * defends against poor quality hash functions.  The result must
280 <     * be non-negative, and for reasonable performance must have good
281 <     * avalanche properties; i.e., that each bit of the argument
282 <     * affects each bit (except sign bit) of the result.
588 >     * The maximum number of threads that can help resize.
589 >     * Must fit in 32 - RESIZE_STAMP_BITS bits.
590       */
591 <    private static final int spread(int h) {
285 <        // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/
286 <        h ^= h >>> 16;
287 <        h *= 0x85ebca6b;
288 <        h ^= h >>> 13;
289 <        h *= 0xc2b2ae35;
290 <        return (h >>> 16) ^ (h & 0x7fffffff); // mask out sign bit
291 <    }
591 >    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
592  
593      /**
594 <     * Key-value entry. Note that this is never exported out as a
295 <     * user-visible Map.Entry.
594 >     * The bit shift for recording size stamp in sizeCtl.
595       */
596 <    static final class Node {
596 >    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
597 >
598 >    /*
599 >     * Encodings for Node hash fields. See above for explanation.
600 >     */
601 >    static final int MOVED     = -1; // hash for forwarding nodes
602 >    static final int TREEBIN   = -2; // hash for roots of trees
603 >    static final int RESERVED  = -3; // hash for transient reservations
604 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
605 >
606 >    /** Number of CPUS, to place bounds on some sizings */
607 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
608 >
609 >    /** For serialization compatibility. */
610 >    private static final ObjectStreamField[] serialPersistentFields = {
611 >        new ObjectStreamField("segments", Segment[].class),
612 >        new ObjectStreamField("segmentMask", Integer.TYPE),
613 >        new ObjectStreamField("segmentShift", Integer.TYPE)
614 >    };
615 >
616 >    /* ---------------- Nodes -------------- */
617 >
618 >    /**
619 >     * Key-value entry.  This class is never exported out as a
620 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
621 >     * MapEntry below), but can be used for read-only traversals used
622 >     * in bulk tasks.  Subclasses of Node with a negative hash field
623 >     * are special, and contain null keys and values (but are never
624 >     * exported).  Otherwise, keys and vals are never null.
625 >     */
626 >    static class Node<K,V> implements Map.Entry<K,V> {
627          final int hash;
628 <        final Object key;
629 <        volatile Object val;
630 <        volatile Node next;
628 >        final K key;
629 >        volatile V val;
630 >        volatile Node<K,V> next;
631  
632 <        Node(int hash, Object key, Object val, Node next) {
632 >        Node(int hash, K key, V val, Node<K,V> next) {
633              this.hash = hash;
634              this.key = key;
635              this.val = val;
636              this.next = next;
637          }
638 +
639 +        public final K getKey()     { return key; }
640 +        public final V getValue()   { return val; }
641 +        public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
642 +        public final String toString() { return key + "=" + val; }
643 +        public final V setValue(V value) {
644 +            throw new UnsupportedOperationException();
645 +        }
646 +
647 +        public final boolean equals(Object o) {
648 +            Object k, v, u; Map.Entry<?,?> e;
649 +            return ((o instanceof Map.Entry) &&
650 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
651 +                    (v = e.getValue()) != null &&
652 +                    (k == key || k.equals(key)) &&
653 +                    (v == (u = val) || v.equals(u)));
654 +        }
655 +
656 +        /**
657 +         * Virtualized support for map.get(); overridden in subclasses.
658 +         */
659 +        Node<K,V> find(int h, Object k) {
660 +            Node<K,V> e = this;
661 +            if (k != null) {
662 +                do {
663 +                    K ek;
664 +                    if (e.hash == h &&
665 +                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
666 +                        return e;
667 +                } while ((e = e.next) != null);
668 +            }
669 +            return null;
670 +        }
671 +    }
672 +
673 +    /* ---------------- Static utilities -------------- */
674 +
675 +    /**
676 +     * Spreads (XORs) higher bits of hash to lower and also forces top
677 +     * bit to 0. Because the table uses power-of-two masking, sets of
678 +     * hashes that vary only in bits above the current mask will
679 +     * always collide. (Among known examples are sets of Float keys
680 +     * holding consecutive whole numbers in small tables.)  So we
681 +     * apply a transform that spreads the impact of higher bits
682 +     * downward. There is a tradeoff between speed, utility, and
683 +     * quality of bit-spreading. Because many common sets of hashes
684 +     * are already reasonably distributed (so don't benefit from
685 +     * spreading), and because we use trees to handle large sets of
686 +     * collisions in bins, we just XOR some shifted bits in the
687 +     * cheapest possible way to reduce systematic lossage, as well as
688 +     * to incorporate impact of the highest bits that would otherwise
689 +     * never be used in index calculations because of table bounds.
690 +     */
691 +    static final int spread(int h) {
692 +        return (h ^ (h >>> 16)) & HASH_BITS;
693 +    }
694 +
695 +    /**
696 +     * Returns a power of two table size for the given desired capacity.
697 +     * See Hackers Delight, sec 3.2
698 +     */
699 +    private static final int tableSizeFor(int c) {
700 +        int n = c - 1;
701 +        n |= n >>> 1;
702 +        n |= n >>> 2;
703 +        n |= n >>> 4;
704 +        n |= n >>> 8;
705 +        n |= n >>> 16;
706 +        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
707 +    }
708 +
709 +    /**
710 +     * Returns x's Class if it is of the form "class C implements
711 +     * Comparable<C>", else null.
712 +     */
713 +    static Class<?> comparableClassFor(Object x) {
714 +        if (x instanceof Comparable) {
715 +            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
716 +            if ((c = x.getClass()) == String.class) // bypass checks
717 +                return c;
718 +            if ((ts = c.getGenericInterfaces()) != null) {
719 +                for (int i = 0; i < ts.length; ++i) {
720 +                    if (((t = ts[i]) instanceof ParameterizedType) &&
721 +                        ((p = (ParameterizedType)t).getRawType() ==
722 +                         Comparable.class) &&
723 +                        (as = p.getActualTypeArguments()) != null &&
724 +                        as.length == 1 && as[0] == c) // type arg is c
725 +                        return c;
726 +                }
727 +            }
728 +        }
729 +        return null;
730      }
731  
732 +    /**
733 +     * Returns k.compareTo(x) if x matches kc (k's screened comparable
734 +     * class), else 0.
735 +     */
736 +    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
737 +    static int compareComparables(Class<?> kc, Object k, Object x) {
738 +        return (x == null || x.getClass() != kc ? 0 :
739 +                ((Comparable)k).compareTo(x));
740 +    }
741 +
742 +    /* ---------------- Table element access -------------- */
743 +
744      /*
745       * Volatile access methods are used for table elements as well as
746 <     * elements of in-progress next table while resizing.  Uses in
747 <     * access and update methods are null checked by callers, and
748 <     * implicitly bounds-checked, relying on the invariants that tab
749 <     * arrays have non-zero size, and all indices are masked with
750 <     * (tab.length - 1) which is never negative and always less than
751 <     * length. The "relaxed" non-volatile forms are used only during
752 <     * table initialization. The only other usage is in
753 <     * HashIterator.advance, which performs explicit checks.
746 >     * elements of in-progress next table while resizing.  All uses of
747 >     * the tab arguments must be null checked by callers.  All callers
748 >     * also paranoically precheck that tab's length is not zero (or an
749 >     * equivalent check), thus ensuring that any index argument taking
750 >     * the form of a hash value anded with (length - 1) is a valid
751 >     * index.  Note that, to be correct wrt arbitrary concurrency
752 >     * errors by users, these checks must operate on local variables,
753 >     * which accounts for some odd-looking inline assignments below.
754 >     * Note that calls to setTabAt always occur within locked regions,
755 >     * and so in principle require only release ordering, not
756 >     * full volatile semantics, but are currently coded as volatile
757 >     * writes to be conservative.
758 >     */
759 >
760 >    @SuppressWarnings("unchecked")
761 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
762 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
763 >    }
764 >
765 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
766 >                                        Node<K,V> c, Node<K,V> v) {
767 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
768 >    }
769 >
770 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
771 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
772 >    }
773 >
774 >    /* ---------------- Fields -------------- */
775 >
776 >    /**
777 >     * The array of bins. Lazily initialized upon first insertion.
778 >     * Size is always a power of two. Accessed directly by iterators.
779 >     */
780 >    transient volatile Node<K,V>[] table;
781 >
782 >    /**
783 >     * The next table to use; non-null only while resizing.
784 >     */
785 >    private transient volatile Node<K,V>[] nextTable;
786 >
787 >    /**
788 >     * Base counter value, used mainly when there is no contention,
789 >     * but also as a fallback during table initialization
790 >     * races. Updated via CAS.
791 >     */
792 >    private transient volatile long baseCount;
793 >
794 >    /**
795 >     * Table initialization and resizing control.  When negative, the
796 >     * table is being initialized or resized: -1 for initialization,
797 >     * else -(1 + the number of active resizing threads).  Otherwise,
798 >     * when table is null, holds the initial table size to use upon
799 >     * creation, or 0 for default. After initialization, holds the
800 >     * next element count value upon which to resize the table.
801       */
802 +    private transient volatile int sizeCtl;
803  
804 <    static final Node tabAt(Node[] tab, int i) { // used in HashIterator
805 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
804 >    /**
805 >     * The next table index (plus one) to split while resizing.
806 >     */
807 >    private transient volatile int transferIndex;
808 >
809 >    /**
810 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
811 >     */
812 >    private transient volatile int cellsBusy;
813 >
814 >    /**
815 >     * Table of counter cells. When non-null, size is a power of 2.
816 >     */
817 >    private transient volatile CounterCell[] counterCells;
818 >
819 >    // views
820 >    private transient KeySetView<K,V> keySet;
821 >    private transient ValuesView<K,V> values;
822 >    private transient EntrySetView<K,V> entrySet;
823 >
824 >
825 >    /* ---------------- Public operations -------------- */
826 >
827 >    /**
828 >     * Creates a new, empty map with the default initial table size (16).
829 >     */
830 >    public ConcurrentHashMapV8() {
831 >    }
832 >
833 >    /**
834 >     * Creates a new, empty map with an initial table size
835 >     * accommodating the specified number of elements without the need
836 >     * to dynamically resize.
837 >     *
838 >     * @param initialCapacity The implementation performs internal
839 >     * sizing to accommodate this many elements.
840 >     * @throws IllegalArgumentException if the initial capacity of
841 >     * elements is negative
842 >     */
843 >    public ConcurrentHashMapV8(int initialCapacity) {
844 >        if (initialCapacity < 0)
845 >            throw new IllegalArgumentException();
846 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
847 >                   MAXIMUM_CAPACITY :
848 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
849 >        this.sizeCtl = cap;
850      }
851  
852 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
853 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
852 >    /**
853 >     * Creates a new map with the same mappings as the given map.
854 >     *
855 >     * @param m the map
856 >     */
857 >    public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
858 >        this.sizeCtl = DEFAULT_CAPACITY;
859 >        putAll(m);
860      }
861  
862 <    private static final void setTabAt(Node[] tab, int i, Node v) {
863 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
862 >    /**
863 >     * Creates a new, empty map with an initial table size based on
864 >     * the given number of elements ({@code initialCapacity}) and
865 >     * initial table density ({@code loadFactor}).
866 >     *
867 >     * @param initialCapacity the initial capacity. The implementation
868 >     * performs internal sizing to accommodate this many elements,
869 >     * given the specified load factor.
870 >     * @param loadFactor the load factor (table density) for
871 >     * establishing the initial table size
872 >     * @throws IllegalArgumentException if the initial capacity of
873 >     * elements is negative or the load factor is nonpositive
874 >     *
875 >     * @since 1.6
876 >     */
877 >    public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
878 >        this(initialCapacity, loadFactor, 1);
879      }
880  
881 <    private static final Node relaxedTabAt(Node[] tab, int i) {
882 <        return (Node)UNSAFE.getObject(tab, ((long)i<<ASHIFT)+ABASE);
881 >    /**
882 >     * Creates a new, empty map with an initial table size based on
883 >     * the given number of elements ({@code initialCapacity}), table
884 >     * density ({@code loadFactor}), and number of concurrently
885 >     * updating threads ({@code concurrencyLevel}).
886 >     *
887 >     * @param initialCapacity the initial capacity. The implementation
888 >     * performs internal sizing to accommodate this many elements,
889 >     * given the specified load factor.
890 >     * @param loadFactor the load factor (table density) for
891 >     * establishing the initial table size
892 >     * @param concurrencyLevel the estimated number of concurrently
893 >     * updating threads. The implementation may use this value as
894 >     * a sizing hint.
895 >     * @throws IllegalArgumentException if the initial capacity is
896 >     * negative or the load factor or concurrencyLevel are
897 >     * nonpositive
898 >     */
899 >    public ConcurrentHashMapV8(int initialCapacity,
900 >                             float loadFactor, int concurrencyLevel) {
901 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
902 >            throw new IllegalArgumentException();
903 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
904 >            initialCapacity = concurrencyLevel;   // as estimated threads
905 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
906 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
907 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
908 >        this.sizeCtl = cap;
909      }
910  
911 <    private static final void relaxedSetTabAt(Node[] tab, int i, Node v) {
912 <        UNSAFE.putObject(tab, ((long)i<<ASHIFT)+ABASE, v);
911 >    // Original (since JDK1.2) Map methods
912 >
913 >    /**
914 >     * {@inheritDoc}
915 >     */
916 >    public int size() {
917 >        long n = sumCount();
918 >        return ((n < 0L) ? 0 :
919 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
920 >                (int)n);
921      }
922  
923 <    /* ---------------- Access and update operations -------------- */
923 >    /**
924 >     * {@inheritDoc}
925 >     */
926 >    public boolean isEmpty() {
927 >        return sumCount() <= 0L; // ignore transient negative values
928 >    }
929  
930 <   /** Implementation for get and containsKey */
931 <    private final Object internalGet(Object k) {
932 <        int h = spread(k.hashCode());
933 <        Node[] tab = table;
934 <        retry: while (tab != null) {
935 <            Node e = tabAt(tab, (tab.length - 1) & h);
936 <            while (e != null) {
937 <                int eh = e.hash;
938 <                if (eh == h) {
939 <                    Object ek = e.key, ev = e.val;
940 <                    if (ev != null && ek != null && (k == ek || k.equals(ek)))
941 <                        return ev;
942 <                }
943 <                else if (eh < 0) { // bin was moved during resize
944 <                    tab = (Node[])e.key;
945 <                    continue retry;
946 <                }
947 <                e = e.next;
930 >    /**
931 >     * Returns the value to which the specified key is mapped,
932 >     * or {@code null} if this map contains no mapping for the key.
933 >     *
934 >     * <p>More formally, if this map contains a mapping from a key
935 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
936 >     * then this method returns {@code v}; otherwise it returns
937 >     * {@code null}.  (There can be at most one such mapping.)
938 >     *
939 >     * @throws NullPointerException if the specified key is null
940 >     */
941 >    public V get(Object key) {
942 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
943 >        int h = spread(key.hashCode());
944 >        if ((tab = table) != null && (n = tab.length) > 0 &&
945 >            (e = tabAt(tab, (n - 1) & h)) != null) {
946 >            if ((eh = e.hash) == h) {
947 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
948 >                    return e.val;
949 >            }
950 >            else if (eh < 0)
951 >                return (p = e.find(h, key)) != null ? p.val : null;
952 >            while ((e = e.next) != null) {
953 >                if (e.hash == h &&
954 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
955 >                    return e.val;
956              }
364            break;
957          }
958          return null;
959      }
960  
961 +    /**
962 +     * Tests if the specified object is a key in this table.
963 +     *
964 +     * @param  key possible key
965 +     * @return {@code true} if and only if the specified object
966 +     *         is a key in this table, as determined by the
967 +     *         {@code equals} method; {@code false} otherwise
968 +     * @throws NullPointerException if the specified key is null
969 +     */
970 +    public boolean containsKey(Object key) {
971 +        return get(key) != null;
972 +    }
973 +
974 +    /**
975 +     * Returns {@code true} if this map maps one or more keys to the
976 +     * specified value. Note: This method may require a full traversal
977 +     * of the map, and is much slower than method {@code containsKey}.
978 +     *
979 +     * @param value value whose presence in this map is to be tested
980 +     * @return {@code true} if this map maps one or more keys to the
981 +     *         specified value
982 +     * @throws NullPointerException if the specified value is null
983 +     */
984 +    public boolean containsValue(Object value) {
985 +        if (value == null)
986 +            throw new NullPointerException();
987 +        Node<K,V>[] t;
988 +        if ((t = table) != null) {
989 +            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
990 +            for (Node<K,V> p; (p = it.advance()) != null; ) {
991 +                V v;
992 +                if ((v = p.val) == value || (v != null && value.equals(v)))
993 +                    return true;
994 +            }
995 +        }
996 +        return false;
997 +    }
998 +
999 +    /**
1000 +     * Maps the specified key to the specified value in this table.
1001 +     * Neither the key nor the value can be null.
1002 +     *
1003 +     * <p>The value can be retrieved by calling the {@code get} method
1004 +     * with a key that is equal to the original key.
1005 +     *
1006 +     * @param key key with which the specified value is to be associated
1007 +     * @param value value to be associated with the specified key
1008 +     * @return the previous value associated with {@code key}, or
1009 +     *         {@code null} if there was no mapping for {@code key}
1010 +     * @throws NullPointerException if the specified key or value is null
1011 +     */
1012 +    public V put(K key, V value) {
1013 +        return putVal(key, value, false);
1014 +    }
1015  
1016      /** Implementation for put and putIfAbsent */
1017 <    private final Object internalPut(Object k, Object v, boolean replace) {
1018 <        int h = spread(k.hashCode());
1019 <        Object oldVal = null;  // the previous value or null if none
1020 <        Node[] tab = table;
1021 <        for (;;) {
1022 <            Node e; int i;
1023 <            if (tab == null)
1024 <                tab = grow(0);
1025 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1026 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1027 <                    break;
1017 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
1018 >        if (key == null || value == null) throw new NullPointerException();
1019 >        int hash = spread(key.hashCode());
1020 >        int binCount = 0;
1021 >        for (Node<K,V>[] tab = table;;) {
1022 >            Node<K,V> f; int n, i, fh;
1023 >            if (tab == null || (n = tab.length) == 0)
1024 >                tab = initTable();
1025 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1026 >                if (casTabAt(tab, i, null,
1027 >                             new Node<K,V>(hash, key, value, null)))
1028 >                    break;                   // no lock when adding to empty bin
1029              }
1030 <            else if (e.hash < 0)
1031 <                tab = (Node[])e.key;
1030 >            else if ((fh = f.hash) == MOVED)
1031 >                tab = helpTransfer(tab, f);
1032              else {
1033 <                boolean validated = false;
1034 <                boolean checkSize = false;
1035 <                synchronized (e) {
1036 <                    if (tabAt(tab, i) == e) {
1037 <                        validated = true;
1038 <                        for (Node first = e;;) {
1039 <                            Object ek, ev;
1040 <                            if (e.hash == h &&
1041 <                                (ek = e.key) != null &&
1042 <                                (ev = e.val) != null &&
1043 <                                (k == ek || k.equals(ek))) {
1044 <                                oldVal = ev;
1045 <                                if (replace)
1046 <                                    e.val = v;
1047 <                                break;
1033 >                V oldVal = null;
1034 >                synchronized (f) {
1035 >                    if (tabAt(tab, i) == f) {
1036 >                        if (fh >= 0) {
1037 >                            binCount = 1;
1038 >                            for (Node<K,V> e = f;; ++binCount) {
1039 >                                K ek;
1040 >                                if (e.hash == hash &&
1041 >                                    ((ek = e.key) == key ||
1042 >                                     (ek != null && key.equals(ek)))) {
1043 >                                    oldVal = e.val;
1044 >                                    if (!onlyIfAbsent)
1045 >                                        e.val = value;
1046 >                                    break;
1047 >                                }
1048 >                                Node<K,V> pred = e;
1049 >                                if ((e = e.next) == null) {
1050 >                                    pred.next = new Node<K,V>(hash, key,
1051 >                                                              value, null);
1052 >                                    break;
1053 >                                }
1054                              }
1055 <                            Node last = e;
1056 <                            if ((e = e.next) == null) {
1057 <                                last.next = new Node(h, k, v, null);
1058 <                                if (last != first || tab.length <= 64)
1059 <                                    checkSize = true;
1060 <                                break;
1055 >                        }
1056 >                        else if (f instanceof TreeBin) {
1057 >                            Node<K,V> p;
1058 >                            binCount = 2;
1059 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1060 >                                                           value)) != null) {
1061 >                                oldVal = p.val;
1062 >                                if (!onlyIfAbsent)
1063 >                                    p.val = value;
1064                              }
1065                          }
1066                      }
1067                  }
1068 <                if (validated) {
1069 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1070 <                        resizing == 0 && counter.sum() >= threshold)
1071 <                        grow(0);
1068 >                if (binCount != 0) {
1069 >                    if (binCount >= TREEIFY_THRESHOLD)
1070 >                        treeifyBin(tab, i);
1071 >                    if (oldVal != null)
1072 >                        return oldVal;
1073                      break;
1074                  }
1075              }
1076          }
1077 <        if (oldVal == null)
1078 <            counter.increment();
1079 <        return oldVal;
1077 >        addCount(1L, binCount);
1078 >        return null;
1079 >    }
1080 >
1081 >    /**
1082 >     * Copies all of the mappings from the specified map to this one.
1083 >     * These mappings replace any mappings that this map had for any of the
1084 >     * keys currently in the specified map.
1085 >     *
1086 >     * @param m mappings to be stored in this map
1087 >     */
1088 >    public void putAll(Map<? extends K, ? extends V> m) {
1089 >        tryPresize(m.size());
1090 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1091 >            putVal(e.getKey(), e.getValue(), false);
1092 >    }
1093 >
1094 >    /**
1095 >     * Removes the key (and its corresponding value) from this map.
1096 >     * This method does nothing if the key is not in the map.
1097 >     *
1098 >     * @param  key the key that needs to be removed
1099 >     * @return the previous value associated with {@code key}, or
1100 >     *         {@code null} if there was no mapping for {@code key}
1101 >     * @throws NullPointerException if the specified key is null
1102 >     */
1103 >    public V remove(Object key) {
1104 >        return replaceNode(key, null, null);
1105      }
1106  
1107      /**
# Line 427 | Line 1109 | public class ConcurrentHashMapV8<K, V>
1109       * Replaces node value with v, conditional upon match of cv if
1110       * non-null.  If resulting value is null, delete.
1111       */
1112 <    private final Object internalReplace(Object k, Object v, Object cv) {
1113 <        int h = spread(k.hashCode());
1114 <        Object oldVal = null;
1115 <        Node e; int i;
1116 <        Node[] tab = table;
1117 <        while (tab != null &&
1118 <               (e = tabAt(tab, i = (tab.length - 1) & h)) != null) {
1119 <            if (e.hash < 0)
1120 <                tab = (Node[])e.key;
1112 >    final V replaceNode(Object key, V value, Object cv) {
1113 >        int hash = spread(key.hashCode());
1114 >        for (Node<K,V>[] tab = table;;) {
1115 >            Node<K,V> f; int n, i, fh;
1116 >            if (tab == null || (n = tab.length) == 0 ||
1117 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1118 >                break;
1119 >            else if ((fh = f.hash) == MOVED)
1120 >                tab = helpTransfer(tab, f);
1121              else {
1122 +                V oldVal = null;
1123                  boolean validated = false;
1124 <                boolean deleted = false;
1125 <                synchronized (e) {
1126 <                    if (tabAt(tab, i) == e) {
1127 <                        validated = true;
1128 <                        Node pred = null;
1129 <                        do {
1130 <                            Object ek, ev;
1131 <                            if (e.hash == h &&
1132 <                                (ek = e.key) != null &&
1133 <                                (ev = e.val) != null &&
1134 <                                (k == ek || k.equals(ek))) {
1135 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1136 <                                    oldVal = ev;
1137 <                                    if ((e.val = v) == null) {
1138 <                                        deleted = true;
1139 <                                        Node en = e.next;
1140 <                                        if (pred != null)
458 <                                            pred.next = en;
1124 >                synchronized (f) {
1125 >                    if (tabAt(tab, i) == f) {
1126 >                        if (fh >= 0) {
1127 >                            validated = true;
1128 >                            for (Node<K,V> e = f, pred = null;;) {
1129 >                                K ek;
1130 >                                if (e.hash == hash &&
1131 >                                    ((ek = e.key) == key ||
1132 >                                     (ek != null && key.equals(ek)))) {
1133 >                                    V ev = e.val;
1134 >                                    if (cv == null || cv == ev ||
1135 >                                        (ev != null && cv.equals(ev))) {
1136 >                                        oldVal = ev;
1137 >                                        if (value != null)
1138 >                                            e.val = value;
1139 >                                        else if (pred != null)
1140 >                                            pred.next = e.next;
1141                                          else
1142 <                                            setTabAt(tab, i, en);
1142 >                                            setTabAt(tab, i, e.next);
1143                                      }
1144 +                                    break;
1145                                  }
1146 <                                break;
1146 >                                pred = e;
1147 >                                if ((e = e.next) == null)
1148 >                                    break;
1149                              }
1150 <                            pred = e;
1151 <                        } while ((e = e.next) != null);
1150 >                        }
1151 >                        else if (f instanceof TreeBin) {
1152 >                            validated = true;
1153 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1154 >                            TreeNode<K,V> r, p;
1155 >                            if ((r = t.root) != null &&
1156 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1157 >                                V pv = p.val;
1158 >                                if (cv == null || cv == pv ||
1159 >                                    (pv != null && cv.equals(pv))) {
1160 >                                    oldVal = pv;
1161 >                                    if (value != null)
1162 >                                        p.val = value;
1163 >                                    else if (t.removeTreeNode(p))
1164 >                                        setTabAt(tab, i, untreeify(t.first));
1165 >                                }
1166 >                            }
1167 >                        }
1168                      }
1169                  }
1170                  if (validated) {
1171 <                    if (deleted)
1172 <                        counter.decrement();
1171 >                    if (oldVal != null) {
1172 >                        if (value == null)
1173 >                            addCount(-1L, -1);
1174 >                        return oldVal;
1175 >                    }
1176                      break;
1177                  }
1178              }
1179          }
1180 <        return oldVal;
1180 >        return null;
1181      }
1182  
1183 <    /** Implementation for computeIfAbsent and compute */
1184 <    @SuppressWarnings("unchecked")
1185 <    private final V internalCompute(K k,
1186 <                                    MappingFunction<? super K, ? extends V> f,
1187 <                                    boolean replace) {
1188 <        int h = spread(k.hashCode());
1189 <        V val = null;
1190 <        boolean added = false;
1191 <        Node[] tab = table;
1183 >    /**
1184 >     * Removes all of the mappings from this map.
1185 >     */
1186 >    public void clear() {
1187 >        long delta = 0L; // negative number of deletions
1188 >        int i = 0;
1189 >        Node<K,V>[] tab = table;
1190 >        while (tab != null && i < tab.length) {
1191 >            int fh;
1192 >            Node<K,V> f = tabAt(tab, i);
1193 >            if (f == null)
1194 >                ++i;
1195 >            else if ((fh = f.hash) == MOVED) {
1196 >                tab = helpTransfer(tab, f);
1197 >                i = 0; // restart
1198 >            }
1199 >            else {
1200 >                synchronized (f) {
1201 >                    if (tabAt(tab, i) == f) {
1202 >                        Node<K,V> p = (fh >= 0 ? f :
1203 >                                       (f instanceof TreeBin) ?
1204 >                                       ((TreeBin<K,V>)f).first : null);
1205 >                        while (p != null) {
1206 >                            --delta;
1207 >                            p = p.next;
1208 >                        }
1209 >                        setTabAt(tab, i++, null);
1210 >                    }
1211 >                }
1212 >            }
1213 >        }
1214 >        if (delta != 0L)
1215 >            addCount(delta, -1);
1216 >    }
1217 >
1218 >    /**
1219 >     * Returns a {@link Set} view of the keys contained in this map.
1220 >     * The set is backed by the map, so changes to the map are
1221 >     * reflected in the set, and vice-versa. The set supports element
1222 >     * removal, which removes the corresponding mapping from this map,
1223 >     * via the {@code Iterator.remove}, {@code Set.remove},
1224 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1225 >     * operations.  It does not support the {@code add} or
1226 >     * {@code addAll} operations.
1227 >     *
1228 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1229 >     * that will never throw {@link ConcurrentModificationException},
1230 >     * and guarantees to traverse elements as they existed upon
1231 >     * construction of the iterator, and may (but is not guaranteed to)
1232 >     * reflect any modifications subsequent to construction.
1233 >     *
1234 >     * @return the set view
1235 >     */
1236 >    public KeySetView<K,V> keySet() {
1237 >        KeySetView<K,V> ks;
1238 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1239 >    }
1240 >
1241 >    /**
1242 >     * Returns a {@link Collection} view of the values contained in this map.
1243 >     * The collection is backed by the map, so changes to the map are
1244 >     * reflected in the collection, and vice-versa.  The collection
1245 >     * supports element removal, which removes the corresponding
1246 >     * mapping from this map, via the {@code Iterator.remove},
1247 >     * {@code Collection.remove}, {@code removeAll},
1248 >     * {@code retainAll}, and {@code clear} operations.  It does not
1249 >     * support the {@code add} or {@code addAll} operations.
1250 >     *
1251 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1252 >     * that will never throw {@link ConcurrentModificationException},
1253 >     * and guarantees to traverse elements as they existed upon
1254 >     * construction of the iterator, and may (but is not guaranteed to)
1255 >     * reflect any modifications subsequent to construction.
1256 >     *
1257 >     * @return the collection view
1258 >     */
1259 >    public Collection<V> values() {
1260 >        ValuesView<K,V> vs;
1261 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1262 >    }
1263 >
1264 >    /**
1265 >     * Returns a {@link Set} view of the mappings contained in this map.
1266 >     * The set is backed by the map, so changes to the map are
1267 >     * reflected in the set, and vice-versa.  The set supports element
1268 >     * removal, which removes the corresponding mapping from the map,
1269 >     * via the {@code Iterator.remove}, {@code Set.remove},
1270 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1271 >     * operations.
1272 >     *
1273 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1274 >     * that will never throw {@link ConcurrentModificationException},
1275 >     * and guarantees to traverse elements as they existed upon
1276 >     * construction of the iterator, and may (but is not guaranteed to)
1277 >     * reflect any modifications subsequent to construction.
1278 >     *
1279 >     * @return the set view
1280 >     */
1281 >    public Set<Map.Entry<K,V>> entrySet() {
1282 >        EntrySetView<K,V> es;
1283 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1284 >    }
1285 >
1286 >    /**
1287 >     * Returns the hash code value for this {@link Map}, i.e.,
1288 >     * the sum of, for each key-value pair in the map,
1289 >     * {@code key.hashCode() ^ value.hashCode()}.
1290 >     *
1291 >     * @return the hash code value for this map
1292 >     */
1293 >    public int hashCode() {
1294 >        int h = 0;
1295 >        Node<K,V>[] t;
1296 >        if ((t = table) != null) {
1297 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1298 >            for (Node<K,V> p; (p = it.advance()) != null; )
1299 >                h += p.key.hashCode() ^ p.val.hashCode();
1300 >        }
1301 >        return h;
1302 >    }
1303 >
1304 >    /**
1305 >     * Returns a string representation of this map.  The string
1306 >     * representation consists of a list of key-value mappings (in no
1307 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1308 >     * mappings are separated by the characters {@code ", "} (comma
1309 >     * and space).  Each key-value mapping is rendered as the key
1310 >     * followed by an equals sign ("{@code =}") followed by the
1311 >     * associated value.
1312 >     *
1313 >     * @return a string representation of this map
1314 >     */
1315 >    public String toString() {
1316 >        Node<K,V>[] t;
1317 >        int f = (t = table) == null ? 0 : t.length;
1318 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1319 >        StringBuilder sb = new StringBuilder();
1320 >        sb.append('{');
1321 >        Node<K,V> p;
1322 >        if ((p = it.advance()) != null) {
1323 >            for (;;) {
1324 >                K k = p.key;
1325 >                V v = p.val;
1326 >                sb.append(k == this ? "(this Map)" : k);
1327 >                sb.append('=');
1328 >                sb.append(v == this ? "(this Map)" : v);
1329 >                if ((p = it.advance()) == null)
1330 >                    break;
1331 >                sb.append(',').append(' ');
1332 >            }
1333 >        }
1334 >        return sb.append('}').toString();
1335 >    }
1336 >
1337 >    /**
1338 >     * Compares the specified object with this map for equality.
1339 >     * Returns {@code true} if the given object is a map with the same
1340 >     * mappings as this map.  This operation may return misleading
1341 >     * results if either map is concurrently modified during execution
1342 >     * of this method.
1343 >     *
1344 >     * @param o object to be compared for equality with this map
1345 >     * @return {@code true} if the specified object is equal to this map
1346 >     */
1347 >    public boolean equals(Object o) {
1348 >        if (o != this) {
1349 >            if (!(o instanceof Map))
1350 >                return false;
1351 >            Map<?,?> m = (Map<?,?>) o;
1352 >            Node<K,V>[] t;
1353 >            int f = (t = table) == null ? 0 : t.length;
1354 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1355 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1356 >                V val = p.val;
1357 >                Object v = m.get(p.key);
1358 >                if (v == null || (v != val && !v.equals(val)))
1359 >                    return false;
1360 >            }
1361 >            for (Map.Entry<?,?> e : m.entrySet()) {
1362 >                Object mk, mv, v;
1363 >                if ((mk = e.getKey()) == null ||
1364 >                    (mv = e.getValue()) == null ||
1365 >                    (v = get(mk)) == null ||
1366 >                    (mv != v && !mv.equals(v)))
1367 >                    return false;
1368 >            }
1369 >        }
1370 >        return true;
1371 >    }
1372 >
1373 >    /**
1374 >     * Stripped-down version of helper class used in previous version,
1375 >     * declared for the sake of serialization compatibility
1376 >     */
1377 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1378 >        private static final long serialVersionUID = 2249069246763182397L;
1379 >        final float loadFactor;
1380 >        Segment(float lf) { this.loadFactor = lf; }
1381 >    }
1382 >
1383 >    /**
1384 >     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1385 >     * stream (i.e., serializes it).
1386 >     * @param s the stream
1387 >     * @throws java.io.IOException if an I/O error occurs
1388 >     * @serialData
1389 >     * the key (Object) and value (Object)
1390 >     * for each key-value mapping, followed by a null pair.
1391 >     * The key-value mappings are emitted in no particular order.
1392 >     */
1393 >    private void writeObject(java.io.ObjectOutputStream s)
1394 >        throws java.io.IOException {
1395 >        // For serialization compatibility
1396 >        // Emulate segment calculation from previous version of this class
1397 >        int sshift = 0;
1398 >        int ssize = 1;
1399 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1400 >            ++sshift;
1401 >            ssize <<= 1;
1402 >        }
1403 >        int segmentShift = 32 - sshift;
1404 >        int segmentMask = ssize - 1;
1405 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1406 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1407 >        for (int i = 0; i < segments.length; ++i)
1408 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1409 >        s.putFields().put("segments", segments);
1410 >        s.putFields().put("segmentShift", segmentShift);
1411 >        s.putFields().put("segmentMask", segmentMask);
1412 >        s.writeFields();
1413 >
1414 >        Node<K,V>[] t;
1415 >        if ((t = table) != null) {
1416 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1417 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1418 >                s.writeObject(p.key);
1419 >                s.writeObject(p.val);
1420 >            }
1421 >        }
1422 >        s.writeObject(null);
1423 >        s.writeObject(null);
1424 >        segments = null; // throw away
1425 >    }
1426 >
1427 >    /**
1428 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1429 >     * @param s the stream
1430 >     * @throws ClassNotFoundException if the class of a serialized object
1431 >     *         could not be found
1432 >     * @throws java.io.IOException if an I/O error occurs
1433 >     */
1434 >    private void readObject(java.io.ObjectInputStream s)
1435 >        throws java.io.IOException, ClassNotFoundException {
1436 >        /*
1437 >         * To improve performance in typical cases, we create nodes
1438 >         * while reading, then place in table once size is known.
1439 >         * However, we must also validate uniqueness and deal with
1440 >         * overpopulated bins while doing so, which requires
1441 >         * specialized versions of putVal mechanics.
1442 >         */
1443 >        sizeCtl = -1; // force exclusion for table construction
1444 >        s.defaultReadObject();
1445 >        long size = 0L;
1446 >        Node<K,V> p = null;
1447          for (;;) {
1448 <            Node e; int i;
1449 <            if (tab == null)
1450 <                tab = grow(0);
1451 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1452 <                Node node = new Node(h, k, null, null);
1453 <                boolean validated = false;
1454 <                synchronized (node) {
1455 <                    if (casTabAt(tab, i, null, node)) {
1456 <                        validated = true;
1448 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1449 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1450 >            if (k != null && v != null) {
1451 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1452 >                ++size;
1453 >            }
1454 >            else
1455 >                break;
1456 >        }
1457 >        if (size == 0L)
1458 >            sizeCtl = 0;
1459 >        else {
1460 >            int n;
1461 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1462 >                n = MAXIMUM_CAPACITY;
1463 >            else {
1464 >                int sz = (int)size;
1465 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1466 >            }
1467 >            @SuppressWarnings("unchecked")
1468 >                Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1469 >            int mask = n - 1;
1470 >            long added = 0L;
1471 >            while (p != null) {
1472 >                boolean insertAtFront;
1473 >                Node<K,V> next = p.next, first;
1474 >                int h = p.hash, j = h & mask;
1475 >                if ((first = tabAt(tab, j)) == null)
1476 >                    insertAtFront = true;
1477 >                else {
1478 >                    K k = p.key;
1479 >                    if (first.hash < 0) {
1480 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1481 >                        if (t.putTreeVal(h, k, p.val) == null)
1482 >                            ++added;
1483 >                        insertAtFront = false;
1484 >                    }
1485 >                    else {
1486 >                        int binCount = 0;
1487 >                        insertAtFront = true;
1488 >                        Node<K,V> q; K qk;
1489 >                        for (q = first; q != null; q = q.next) {
1490 >                            if (q.hash == h &&
1491 >                                ((qk = q.key) == k ||
1492 >                                 (qk != null && k.equals(qk)))) {
1493 >                                insertAtFront = false;
1494 >                                break;
1495 >                            }
1496 >                            ++binCount;
1497 >                        }
1498 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1499 >                            insertAtFront = false;
1500 >                            ++added;
1501 >                            p.next = first;
1502 >                            TreeNode<K,V> hd = null, tl = null;
1503 >                            for (q = p; q != null; q = q.next) {
1504 >                                TreeNode<K,V> t = new TreeNode<K,V>
1505 >                                    (q.hash, q.key, q.val, null, null);
1506 >                                if ((t.prev = tl) == null)
1507 >                                    hd = t;
1508 >                                else
1509 >                                    tl.next = t;
1510 >                                tl = t;
1511 >                            }
1512 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1513 >                        }
1514 >                    }
1515 >                }
1516 >                if (insertAtFront) {
1517 >                    ++added;
1518 >                    p.next = first;
1519 >                    setTabAt(tab, j, p);
1520 >                }
1521 >                p = next;
1522 >            }
1523 >            table = tab;
1524 >            sizeCtl = n - (n >>> 2);
1525 >            baseCount = added;
1526 >        }
1527 >    }
1528 >
1529 >    // ConcurrentMap methods
1530 >
1531 >    /**
1532 >     * {@inheritDoc}
1533 >     *
1534 >     * @return the previous value associated with the specified key,
1535 >     *         or {@code null} if there was no mapping for the key
1536 >     * @throws NullPointerException if the specified key or value is null
1537 >     */
1538 >    public V putIfAbsent(K key, V value) {
1539 >        return putVal(key, value, true);
1540 >    }
1541 >
1542 >    /**
1543 >     * {@inheritDoc}
1544 >     *
1545 >     * @throws NullPointerException if the specified key is null
1546 >     */
1547 >    public boolean remove(Object key, Object value) {
1548 >        if (key == null)
1549 >            throw new NullPointerException();
1550 >        return value != null && replaceNode(key, null, value) != null;
1551 >    }
1552 >
1553 >    /**
1554 >     * {@inheritDoc}
1555 >     *
1556 >     * @throws NullPointerException if any of the arguments are null
1557 >     */
1558 >    public boolean replace(K key, V oldValue, V newValue) {
1559 >        if (key == null || oldValue == null || newValue == null)
1560 >            throw new NullPointerException();
1561 >        return replaceNode(key, newValue, oldValue) != null;
1562 >    }
1563 >
1564 >    /**
1565 >     * {@inheritDoc}
1566 >     *
1567 >     * @return the previous value associated with the specified key,
1568 >     *         or {@code null} if there was no mapping for the key
1569 >     * @throws NullPointerException if the specified key or value is null
1570 >     */
1571 >    public V replace(K key, V value) {
1572 >        if (key == null || value == null)
1573 >            throw new NullPointerException();
1574 >        return replaceNode(key, value, null);
1575 >    }
1576 >
1577 >    // Overrides of JDK8+ Map extension method defaults
1578 >
1579 >    /**
1580 >     * Returns the value to which the specified key is mapped, or the
1581 >     * given default value if this map contains no mapping for the
1582 >     * key.
1583 >     *
1584 >     * @param key the key whose associated value is to be returned
1585 >     * @param defaultValue the value to return if this map contains
1586 >     * no mapping for the given key
1587 >     * @return the mapping for the key, if present; else the default value
1588 >     * @throws NullPointerException if the specified key is null
1589 >     */
1590 >    public V getOrDefault(Object key, V defaultValue) {
1591 >        V v;
1592 >        return (v = get(key)) == null ? defaultValue : v;
1593 >    }
1594 >
1595 >    public void forEach(BiAction<? super K, ? super V> action) {
1596 >        if (action == null) throw new NullPointerException();
1597 >        Node<K,V>[] t;
1598 >        if ((t = table) != null) {
1599 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1600 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1601 >                action.apply(p.key, p.val);
1602 >            }
1603 >        }
1604 >    }
1605 >
1606 >    public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1607 >        if (function == null) throw new NullPointerException();
1608 >        Node<K,V>[] t;
1609 >        if ((t = table) != null) {
1610 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1611 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1612 >                V oldValue = p.val;
1613 >                for (K key = p.key;;) {
1614 >                    V newValue = function.apply(key, oldValue);
1615 >                    if (newValue == null)
1616 >                        throw new NullPointerException();
1617 >                    if (replaceNode(key, newValue, oldValue) != null ||
1618 >                        (oldValue = get(key)) == null)
1619 >                        break;
1620 >                }
1621 >            }
1622 >        }
1623 >    }
1624 >
1625 >    /**
1626 >     * If the specified key is not already associated with a value,
1627 >     * attempts to compute its value using the given mapping function
1628 >     * and enters it into this map unless {@code null}.  The entire
1629 >     * method invocation is performed atomically, so the function is
1630 >     * applied at most once per key.  Some attempted update operations
1631 >     * on this map by other threads may be blocked while computation
1632 >     * is in progress, so the computation should be short and simple,
1633 >     * and must not attempt to update any other mappings of this map.
1634 >     *
1635 >     * @param key key with which the specified value is to be associated
1636 >     * @param mappingFunction the function to compute a value
1637 >     * @return the current (existing or computed) value associated with
1638 >     *         the specified key, or null if the computed value is null
1639 >     * @throws NullPointerException if the specified key or mappingFunction
1640 >     *         is null
1641 >     * @throws IllegalStateException if the computation detectably
1642 >     *         attempts a recursive update to this map that would
1643 >     *         otherwise never complete
1644 >     * @throws RuntimeException or Error if the mappingFunction does so,
1645 >     *         in which case the mapping is left unestablished
1646 >     */
1647 >    public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1648 >        if (key == null || mappingFunction == null)
1649 >            throw new NullPointerException();
1650 >        int h = spread(key.hashCode());
1651 >        V val = null;
1652 >        int binCount = 0;
1653 >        for (Node<K,V>[] tab = table;;) {
1654 >            Node<K,V> f; int n, i, fh;
1655 >            if (tab == null || (n = tab.length) == 0)
1656 >                tab = initTable();
1657 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1658 >                Node<K,V> r = new ReservationNode<K,V>();
1659 >                synchronized (r) {
1660 >                    if (casTabAt(tab, i, null, r)) {
1661 >                        binCount = 1;
1662 >                        Node<K,V> node = null;
1663                          try {
1664 <                            val = f.map(k);
1665 <                            if (val != null) {
1666 <                                node.val = val;
1664 >                            if ((val = mappingFunction.apply(key)) != null)
1665 >                                node = new Node<K,V>(h, key, val, null);
1666 >                        } finally {
1667 >                            setTabAt(tab, i, node);
1668 >                        }
1669 >                    }
1670 >                }
1671 >                if (binCount != 0)
1672 >                    break;
1673 >            }
1674 >            else if ((fh = f.hash) == MOVED)
1675 >                tab = helpTransfer(tab, f);
1676 >            else {
1677 >                boolean added = false;
1678 >                synchronized (f) {
1679 >                    if (tabAt(tab, i) == f) {
1680 >                        if (fh >= 0) {
1681 >                            binCount = 1;
1682 >                            for (Node<K,V> e = f;; ++binCount) {
1683 >                                K ek; V ev;
1684 >                                if (e.hash == h &&
1685 >                                    ((ek = e.key) == key ||
1686 >                                     (ek != null && key.equals(ek)))) {
1687 >                                    val = e.val;
1688 >                                    break;
1689 >                                }
1690 >                                Node<K,V> pred = e;
1691 >                                if ((e = e.next) == null) {
1692 >                                    if ((val = mappingFunction.apply(key)) != null) {
1693 >                                        added = true;
1694 >                                        pred.next = new Node<K,V>(h, key, val, null);
1695 >                                    }
1696 >                                    break;
1697 >                                }
1698 >                            }
1699 >                        }
1700 >                        else if (f instanceof TreeBin) {
1701 >                            binCount = 2;
1702 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1703 >                            TreeNode<K,V> r, p;
1704 >                            if ((r = t.root) != null &&
1705 >                                (p = r.findTreeNode(h, key, null)) != null)
1706 >                                val = p.val;
1707 >                            else if ((val = mappingFunction.apply(key)) != null) {
1708                                  added = true;
1709 +                                t.putTreeVal(h, key, val);
1710 +                            }
1711 +                        }
1712 +                    }
1713 +                }
1714 +                if (binCount != 0) {
1715 +                    if (binCount >= TREEIFY_THRESHOLD)
1716 +                        treeifyBin(tab, i);
1717 +                    if (!added)
1718 +                        return val;
1719 +                    break;
1720 +                }
1721 +            }
1722 +        }
1723 +        if (val != null)
1724 +            addCount(1L, binCount);
1725 +        return val;
1726 +    }
1727 +
1728 +    /**
1729 +     * If the value for the specified key is present, attempts to
1730 +     * compute a new mapping given the key and its current mapped
1731 +     * value.  The entire method invocation is performed atomically.
1732 +     * Some attempted update operations on this map by other threads
1733 +     * may be blocked while computation is in progress, so the
1734 +     * computation should be short and simple, and must not attempt to
1735 +     * update any other mappings of this map.
1736 +     *
1737 +     * @param key key with which a value may be associated
1738 +     * @param remappingFunction the function to compute a value
1739 +     * @return the new value associated with the specified key, or null if none
1740 +     * @throws NullPointerException if the specified key or remappingFunction
1741 +     *         is null
1742 +     * @throws IllegalStateException if the computation detectably
1743 +     *         attempts a recursive update to this map that would
1744 +     *         otherwise never complete
1745 +     * @throws RuntimeException or Error if the remappingFunction does so,
1746 +     *         in which case the mapping is unchanged
1747 +     */
1748 +    public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1749 +        if (key == null || remappingFunction == null)
1750 +            throw new NullPointerException();
1751 +        int h = spread(key.hashCode());
1752 +        V val = null;
1753 +        int delta = 0;
1754 +        int binCount = 0;
1755 +        for (Node<K,V>[] tab = table;;) {
1756 +            Node<K,V> f; int n, i, fh;
1757 +            if (tab == null || (n = tab.length) == 0)
1758 +                tab = initTable();
1759 +            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1760 +                break;
1761 +            else if ((fh = f.hash) == MOVED)
1762 +                tab = helpTransfer(tab, f);
1763 +            else {
1764 +                synchronized (f) {
1765 +                    if (tabAt(tab, i) == f) {
1766 +                        if (fh >= 0) {
1767 +                            binCount = 1;
1768 +                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1769 +                                K ek;
1770 +                                if (e.hash == h &&
1771 +                                    ((ek = e.key) == key ||
1772 +                                     (ek != null && key.equals(ek)))) {
1773 +                                    val = remappingFunction.apply(key, e.val);
1774 +                                    if (val != null)
1775 +                                        e.val = val;
1776 +                                    else {
1777 +                                        delta = -1;
1778 +                                        Node<K,V> en = e.next;
1779 +                                        if (pred != null)
1780 +                                            pred.next = en;
1781 +                                        else
1782 +                                            setTabAt(tab, i, en);
1783 +                                    }
1784 +                                    break;
1785 +                                }
1786 +                                pred = e;
1787 +                                if ((e = e.next) == null)
1788 +                                    break;
1789 +                            }
1790 +                        }
1791 +                        else if (f instanceof TreeBin) {
1792 +                            binCount = 2;
1793 +                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1794 +                            TreeNode<K,V> r, p;
1795 +                            if ((r = t.root) != null &&
1796 +                                (p = r.findTreeNode(h, key, null)) != null) {
1797 +                                val = remappingFunction.apply(key, p.val);
1798 +                                if (val != null)
1799 +                                    p.val = val;
1800 +                                else {
1801 +                                    delta = -1;
1802 +                                    if (t.removeTreeNode(p))
1803 +                                        setTabAt(tab, i, untreeify(t.first));
1804 +                                }
1805 +                            }
1806 +                        }
1807 +                    }
1808 +                }
1809 +                if (binCount != 0)
1810 +                    break;
1811 +            }
1812 +        }
1813 +        if (delta != 0)
1814 +            addCount((long)delta, binCount);
1815 +        return val;
1816 +    }
1817 +
1818 +    /**
1819 +     * Attempts to compute a mapping for the specified key and its
1820 +     * current mapped value (or {@code null} if there is no current
1821 +     * mapping). The entire method invocation is performed atomically.
1822 +     * Some attempted update operations on this map by other threads
1823 +     * may be blocked while computation is in progress, so the
1824 +     * computation should be short and simple, and must not attempt to
1825 +     * update any other mappings of this Map.
1826 +     *
1827 +     * @param key key with which the specified value is to be associated
1828 +     * @param remappingFunction the function to compute a value
1829 +     * @return the new value associated with the specified key, or null if none
1830 +     * @throws NullPointerException if the specified key or remappingFunction
1831 +     *         is null
1832 +     * @throws IllegalStateException if the computation detectably
1833 +     *         attempts a recursive update to this map that would
1834 +     *         otherwise never complete
1835 +     * @throws RuntimeException or Error if the remappingFunction does so,
1836 +     *         in which case the mapping is unchanged
1837 +     */
1838 +    public V compute(K key,
1839 +                     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1840 +        if (key == null || remappingFunction == null)
1841 +            throw new NullPointerException();
1842 +        int h = spread(key.hashCode());
1843 +        V val = null;
1844 +        int delta = 0;
1845 +        int binCount = 0;
1846 +        for (Node<K,V>[] tab = table;;) {
1847 +            Node<K,V> f; int n, i, fh;
1848 +            if (tab == null || (n = tab.length) == 0)
1849 +                tab = initTable();
1850 +            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1851 +                Node<K,V> r = new ReservationNode<K,V>();
1852 +                synchronized (r) {
1853 +                    if (casTabAt(tab, i, null, r)) {
1854 +                        binCount = 1;
1855 +                        Node<K,V> node = null;
1856 +                        try {
1857 +                            if ((val = remappingFunction.apply(key, null)) != null) {
1858 +                                delta = 1;
1859 +                                node = new Node<K,V>(h, key, val, null);
1860                              }
1861                          } finally {
1862 <                            if (!added)
506 <                                setTabAt(tab, i, null);
1862 >                            setTabAt(tab, i, node);
1863                          }
1864                      }
1865                  }
1866 <                if (validated)
1866 >                if (binCount != 0)
1867                      break;
1868              }
1869 <            else if (e.hash < 0)
1870 <                tab = (Node[])e.key;
515 <            else if (Thread.holdsLock(e))
516 <                throw new IllegalStateException("Recursive map computation");
1869 >            else if ((fh = f.hash) == MOVED)
1870 >                tab = helpTransfer(tab, f);
1871              else {
1872 <                boolean validated = false;
1873 <                boolean checkSize = false;
1874 <                synchronized (e) {
1875 <                    if (tabAt(tab, i) == e) {
1876 <                        validated = true;
1877 <                        for (Node first = e;;) {
1878 <                            Object ek, ev, fv;
1879 <                            if (e.hash == h &&
1880 <                                (ek = e.key) != null &&
1881 <                                (ev = e.val) != null &&
1882 <                                (k == ek || k.equals(ek))) {
1883 <                                if (replace && (fv = f.map(k)) != null)
1884 <                                    ev = e.val = fv;
1885 <                                val = (V)ev;
1886 <                                break;
1872 >                synchronized (f) {
1873 >                    if (tabAt(tab, i) == f) {
1874 >                        if (fh >= 0) {
1875 >                            binCount = 1;
1876 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1877 >                                K ek;
1878 >                                if (e.hash == h &&
1879 >                                    ((ek = e.key) == key ||
1880 >                                     (ek != null && key.equals(ek)))) {
1881 >                                    val = remappingFunction.apply(key, e.val);
1882 >                                    if (val != null)
1883 >                                        e.val = val;
1884 >                                    else {
1885 >                                        delta = -1;
1886 >                                        Node<K,V> en = e.next;
1887 >                                        if (pred != null)
1888 >                                            pred.next = en;
1889 >                                        else
1890 >                                            setTabAt(tab, i, en);
1891 >                                    }
1892 >                                    break;
1893 >                                }
1894 >                                pred = e;
1895 >                                if ((e = e.next) == null) {
1896 >                                    val = remappingFunction.apply(key, null);
1897 >                                    if (val != null) {
1898 >                                        delta = 1;
1899 >                                        pred.next =
1900 >                                            new Node<K,V>(h, key, val, null);
1901 >                                    }
1902 >                                    break;
1903 >                                }
1904                              }
1905 <                            Node last = e;
1906 <                            if ((e = e.next) == null) {
1907 <                                if ((val = f.map(k)) != null) {
1908 <                                    last.next = new Node(h, k, val, null);
1909 <                                    added = true;
1910 <                                    if (last != first || tab.length <= 64)
1911 <                                        checkSize = true;
1905 >                        }
1906 >                        else if (f instanceof TreeBin) {
1907 >                            binCount = 1;
1908 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1909 >                            TreeNode<K,V> r, p;
1910 >                            if ((r = t.root) != null)
1911 >                                p = r.findTreeNode(h, key, null);
1912 >                            else
1913 >                                p = null;
1914 >                            V pv = (p == null) ? null : p.val;
1915 >                            val = remappingFunction.apply(key, pv);
1916 >                            if (val != null) {
1917 >                                if (p != null)
1918 >                                    p.val = val;
1919 >                                else {
1920 >                                    delta = 1;
1921 >                                    t.putTreeVal(h, key, val);
1922                                  }
1923 <                                break;
1923 >                            }
1924 >                            else if (p != null) {
1925 >                                delta = -1;
1926 >                                if (t.removeTreeNode(p))
1927 >                                    setTabAt(tab, i, untreeify(t.first));
1928                              }
1929                          }
1930                      }
1931                  }
1932 <                if (validated) {
1933 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1934 <                        resizing == 0 && counter.sum() >= threshold)
550 <                        grow(0);
1932 >                if (binCount != 0) {
1933 >                    if (binCount >= TREEIFY_THRESHOLD)
1934 >                        treeifyBin(tab, i);
1935                      break;
1936                  }
1937              }
1938          }
1939 <        if (added)
1940 <            counter.increment();
1939 >        if (delta != 0)
1940 >            addCount((long)delta, binCount);
1941          return val;
1942      }
1943  
1944 <    /*
1945 <     * Reclassifies nodes in each bin to new table.  Because we are
1946 <     * using power-of-two expansion, the elements from each bin must
1947 <     * either stay at same index, or move with a power of two
1948 <     * offset. We eliminate unnecessary node creation by catching
1949 <     * cases where old nodes can be reused because their next fields
1950 <     * won't change.  Statistically, at the default threshold, only
1951 <     * about one-sixth of them need cloning when a table doubles. The
1952 <     * nodes they replace will be garbage collectable as soon as they
1953 <     * are no longer referenced by any reader thread that may be in
1954 <     * the midst of concurrently traversing table.
1955 <     *
1956 <     * Transfers are done from the bottom up to preserve iterator
1957 <     * traversability. On each step, the old bin is locked,
1958 <     * moved/copied, and then replaced with a forwarding node.
1959 <     */
1960 <    private static final void transfer(Node[] tab, Node[] nextTab) {
1961 <        int n = tab.length;
1962 <        int mask = nextTab.length - 1;
1963 <        Node fwd = new Node(MOVED, nextTab, null, null);
1964 <        for (int i = n - 1; i >= 0; --i) {
1965 <            for (Node e;;) {
1966 <                if ((e = tabAt(tab, i)) == null) {
1967 <                    if (casTabAt(tab, i, e, fwd))
1968 <                        break;
1944 >    /**
1945 >     * If the specified key is not already associated with a
1946 >     * (non-null) value, associates it with the given value.
1947 >     * Otherwise, replaces the value with the results of the given
1948 >     * remapping function, or removes if {@code null}. The entire
1949 >     * method invocation is performed atomically.  Some attempted
1950 >     * update operations on this map by other threads may be blocked
1951 >     * while computation is in progress, so the computation should be
1952 >     * short and simple, and must not attempt to update any other
1953 >     * mappings of this Map.
1954 >     *
1955 >     * @param key key with which the specified value is to be associated
1956 >     * @param value the value to use if absent
1957 >     * @param remappingFunction the function to recompute a value if present
1958 >     * @return the new value associated with the specified key, or null if none
1959 >     * @throws NullPointerException if the specified key or the
1960 >     *         remappingFunction is null
1961 >     * @throws RuntimeException or Error if the remappingFunction does so,
1962 >     *         in which case the mapping is unchanged
1963 >     */
1964 >    public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1965 >        if (key == null || value == null || remappingFunction == null)
1966 >            throw new NullPointerException();
1967 >        int h = spread(key.hashCode());
1968 >        V val = null;
1969 >        int delta = 0;
1970 >        int binCount = 0;
1971 >        for (Node<K,V>[] tab = table;;) {
1972 >            Node<K,V> f; int n, i, fh;
1973 >            if (tab == null || (n = tab.length) == 0)
1974 >                tab = initTable();
1975 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1976 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1977 >                    delta = 1;
1978 >                    val = value;
1979 >                    break;
1980                  }
1981 <                else {
1982 <                    int idx = e.hash & mask;
1983 <                    boolean validated = false;
1984 <                    synchronized (e) {
1985 <                        if (tabAt(tab, i) == e) {
1986 <                            validated = true;
1987 <                            Node lastRun = e;
1988 <                            for (Node p = e.next; p != null; p = p.next) {
1989 <                                int j = p.hash & mask;
1990 <                                if (j != idx) {
1991 <                                    idx = j;
1992 <                                    lastRun = p;
1981 >            }
1982 >            else if ((fh = f.hash) == MOVED)
1983 >                tab = helpTransfer(tab, f);
1984 >            else {
1985 >                synchronized (f) {
1986 >                    if (tabAt(tab, i) == f) {
1987 >                        if (fh >= 0) {
1988 >                            binCount = 1;
1989 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1990 >                                K ek;
1991 >                                if (e.hash == h &&
1992 >                                    ((ek = e.key) == key ||
1993 >                                     (ek != null && key.equals(ek)))) {
1994 >                                    val = remappingFunction.apply(e.val, value);
1995 >                                    if (val != null)
1996 >                                        e.val = val;
1997 >                                    else {
1998 >                                        delta = -1;
1999 >                                        Node<K,V> en = e.next;
2000 >                                        if (pred != null)
2001 >                                            pred.next = en;
2002 >                                        else
2003 >                                            setTabAt(tab, i, en);
2004 >                                    }
2005 >                                    break;
2006 >                                }
2007 >                                pred = e;
2008 >                                if ((e = e.next) == null) {
2009 >                                    delta = 1;
2010 >                                    val = value;
2011 >                                    pred.next =
2012 >                                        new Node<K,V>(h, key, val, null);
2013 >                                    break;
2014                                  }
2015                              }
2016 <                            relaxedSetTabAt(nextTab, idx, lastRun);
2017 <                            for (Node p = e; p != lastRun; p = p.next) {
2018 <                                int h = p.hash;
2019 <                                int j = h & mask;
2020 <                                Node r = relaxedTabAt(nextTab, j);
2021 <                                relaxedSetTabAt(nextTab, j,
2022 <                                                new Node(h, p.key, p.val, r));
2016 >                        }
2017 >                        else if (f instanceof TreeBin) {
2018 >                            binCount = 2;
2019 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2020 >                            TreeNode<K,V> r = t.root;
2021 >                            TreeNode<K,V> p = (r == null) ? null :
2022 >                                r.findTreeNode(h, key, null);
2023 >                            val = (p == null) ? value :
2024 >                                remappingFunction.apply(p.val, value);
2025 >                            if (val != null) {
2026 >                                if (p != null)
2027 >                                    p.val = val;
2028 >                                else {
2029 >                                    delta = 1;
2030 >                                    t.putTreeVal(h, key, val);
2031 >                                }
2032 >                            }
2033 >                            else if (p != null) {
2034 >                                delta = -1;
2035 >                                if (t.removeTreeNode(p))
2036 >                                    setTabAt(tab, i, untreeify(t.first));
2037                              }
608                            setTabAt(tab, i, fwd);
2038                          }
2039                      }
2040 <                    if (validated)
2041 <                        break;
2040 >                }
2041 >                if (binCount != 0) {
2042 >                    if (binCount >= TREEIFY_THRESHOLD)
2043 >                        treeifyBin(tab, i);
2044 >                    break;
2045                  }
2046              }
2047          }
2048 +        if (delta != 0)
2049 +            addCount((long)delta, binCount);
2050 +        return val;
2051      }
2052  
2053 +    // Hashtable legacy methods
2054 +
2055      /**
2056 <     * If not already resizing, initializes or creates next table and
2057 <     * transfers bins. Rechecks occupancy after a transfer to see if
2058 <     * another resize is already needed because resizings are lagging
2059 <     * additions.
2060 <     *
2061 <     * @param sizeHint overridden capacity target (nonzero only from putAll)
2062 <     * @return current table
2063 <     */
2064 <    private final Node[] grow(int sizeHint) {
2065 <        if (resizing == 0 &&
2066 <            UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) {
2067 <            try {
2056 >     * Legacy method testing if some key maps into the specified value
2057 >     * in this table.  This method is identical in functionality to
2058 >     * {@link #containsValue(Object)}, and exists solely to ensure
2059 >     * full compatibility with class {@link java.util.Hashtable},
2060 >     * which supported this method prior to introduction of the
2061 >     * Java Collections framework.
2062 >     *
2063 >     * @param  value a value to search for
2064 >     * @return {@code true} if and only if some key maps to the
2065 >     *         {@code value} argument in this table as
2066 >     *         determined by the {@code equals} method;
2067 >     *         {@code false} otherwise
2068 >     * @throws NullPointerException if the specified value is null
2069 >     */
2070 >    @Deprecated public boolean contains(Object value) {
2071 >        return containsValue(value);
2072 >    }
2073 >
2074 >    /**
2075 >     * Returns an enumeration of the keys in this table.
2076 >     *
2077 >     * @return an enumeration of the keys in this table
2078 >     * @see #keySet()
2079 >     */
2080 >    public Enumeration<K> keys() {
2081 >        Node<K,V>[] t;
2082 >        int f = (t = table) == null ? 0 : t.length;
2083 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2084 >    }
2085 >
2086 >    /**
2087 >     * Returns an enumeration of the values in this table.
2088 >     *
2089 >     * @return an enumeration of the values in this table
2090 >     * @see #values()
2091 >     */
2092 >    public Enumeration<V> elements() {
2093 >        Node<K,V>[] t;
2094 >        int f = (t = table) == null ? 0 : t.length;
2095 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2096 >    }
2097 >
2098 >    // ConcurrentHashMapV8-only methods
2099 >
2100 >    /**
2101 >     * Returns the number of mappings. This method should be used
2102 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2103 >     * contain more mappings than can be represented as an int. The
2104 >     * value returned is an estimate; the actual count may differ if
2105 >     * there are concurrent insertions or removals.
2106 >     *
2107 >     * @return the number of mappings
2108 >     * @since 1.8
2109 >     */
2110 >    public long mappingCount() {
2111 >        long n = sumCount();
2112 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2113 >    }
2114 >
2115 >    /**
2116 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2117 >     * from the given type to {@code Boolean.TRUE}.
2118 >     *
2119 >     * @return the new set
2120 >     * @since 1.8
2121 >     */
2122 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2123 >        return new KeySetView<K,Boolean>
2124 >            (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2125 >    }
2126 >
2127 >    /**
2128 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2129 >     * from the given type to {@code Boolean.TRUE}.
2130 >     *
2131 >     * @param initialCapacity The implementation performs internal
2132 >     * sizing to accommodate this many elements.
2133 >     * @return the new set
2134 >     * @throws IllegalArgumentException if the initial capacity of
2135 >     * elements is negative
2136 >     * @since 1.8
2137 >     */
2138 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2139 >        return new KeySetView<K,Boolean>
2140 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2141 >    }
2142 >
2143 >    /**
2144 >     * Returns a {@link Set} view of the keys in this map, using the
2145 >     * given common mapped value for any additions (i.e., {@link
2146 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2147 >     * This is of course only appropriate if it is acceptable to use
2148 >     * the same value for all additions from this view.
2149 >     *
2150 >     * @param mappedValue the mapped value to use for any additions
2151 >     * @return the set view
2152 >     * @throws NullPointerException if the mappedValue is null
2153 >     */
2154 >    public KeySetView<K,V> keySet(V mappedValue) {
2155 >        if (mappedValue == null)
2156 >            throw new NullPointerException();
2157 >        return new KeySetView<K,V>(this, mappedValue);
2158 >    }
2159 >
2160 >    /* ---------------- Special Nodes -------------- */
2161 >
2162 >    /**
2163 >     * A node inserted at head of bins during transfer operations.
2164 >     */
2165 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2166 >        final Node<K,V>[] nextTable;
2167 >        ForwardingNode(Node<K,V>[] tab) {
2168 >            super(MOVED, null, null, null);
2169 >            this.nextTable = tab;
2170 >        }
2171 >
2172 >        Node<K,V> find(int h, Object k) {
2173 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2174 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2175 >                Node<K,V> e; int n;
2176 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2177 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2178 >                    return null;
2179                  for (;;) {
2180 <                    int cap, n;
2181 <                    Node[] tab = table;
2182 <                    if (tab == null) {
2183 <                        int c = initCap;
2184 <                        if (c < sizeHint)
2185 <                            c = sizeHint;
2186 <                        if (c == DEFAULT_CAPACITY)
2187 <                            cap = c;
640 <                        else if (c >= MAXIMUM_CAPACITY)
641 <                            cap = MAXIMUM_CAPACITY;
642 <                        else {
643 <                            cap = MINIMUM_CAPACITY;
644 <                            while (cap < c)
645 <                                cap <<= 1;
2180 >                    int eh; K ek;
2181 >                    if ((eh = e.hash) == h &&
2182 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2183 >                        return e;
2184 >                    if (eh < 0) {
2185 >                        if (e instanceof ForwardingNode) {
2186 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2187 >                            continue outer;
2188                          }
2189 +                        else
2190 +                            return e.find(h, k);
2191                      }
2192 <                    else if ((n = tab.length) < MAXIMUM_CAPACITY &&
2193 <                             (sizeHint <= 0 || n < sizeHint))
2194 <                        cap = n << 1;
2195 <                    else
2196 <                        break;
2197 <                    threshold = (int)(cap * loadFactor) - THRESHOLD_OFFSET;
2198 <                    Node[] nextTab = new Node[cap];
2199 <                    if (tab != null)
2200 <                        transfer(tab, nextTab);
2201 <                    table = nextTab;
2202 <                    if (tab == null || cap >= MAXIMUM_CAPACITY ||
2203 <                        ((sizeHint > 0) ? cap >= sizeHint :
2204 <                         counter.sum() < threshold))
2192 >                    if ((e = e.next) == null)
2193 >                        return null;
2194 >                }
2195 >            }
2196 >        }
2197 >    }
2198 >
2199 >    /**
2200 >     * A place-holder node used in computeIfAbsent and compute
2201 >     */
2202 >    static final class ReservationNode<K,V> extends Node<K,V> {
2203 >        ReservationNode() {
2204 >            super(RESERVED, null, null, null);
2205 >        }
2206 >
2207 >        Node<K,V> find(int h, Object k) {
2208 >            return null;
2209 >        }
2210 >    }
2211 >
2212 >    /* ---------------- Table Initialization and Resizing -------------- */
2213 >
2214 >    /**
2215 >     * Returns the stamp bits for resizing a table of size n.
2216 >     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2217 >     */
2218 >    static final int resizeStamp(int n) {
2219 >        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2220 >    }
2221 >
2222 >    /**
2223 >     * Initializes table, using the size recorded in sizeCtl.
2224 >     */
2225 >    private final Node<K,V>[] initTable() {
2226 >        Node<K,V>[] tab; int sc;
2227 >        while ((tab = table) == null || tab.length == 0) {
2228 >            if ((sc = sizeCtl) < 0)
2229 >                Thread.yield(); // lost initialization race; just spin
2230 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2231 >                try {
2232 >                    if ((tab = table) == null || tab.length == 0) {
2233 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2234 >                        @SuppressWarnings("unchecked")
2235 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2236 >                        table = tab = nt;
2237 >                        sc = n - (n >>> 2);
2238 >                    }
2239 >                } finally {
2240 >                    sizeCtl = sc;
2241 >                }
2242 >                break;
2243 >            }
2244 >        }
2245 >        return tab;
2246 >    }
2247 >
2248 >    /**
2249 >     * Adds to count, and if table is too small and not already
2250 >     * resizing, initiates transfer. If already resizing, helps
2251 >     * perform transfer if work is available.  Rechecks occupancy
2252 >     * after a transfer to see if another resize is already needed
2253 >     * because resizings are lagging additions.
2254 >     *
2255 >     * @param x the count to add
2256 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2257 >     */
2258 >    private final void addCount(long x, int check) {
2259 >        CounterCell[] as; long b, s;
2260 >        if ((as = counterCells) != null ||
2261 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2262 >            CounterHashCode hc; CounterCell a; long v; int m;
2263 >            boolean uncontended = true;
2264 >            if ((hc = threadCounterHashCode.get()) == null ||
2265 >                as == null || (m = as.length - 1) < 0 ||
2266 >                (a = as[m & hc.code]) == null ||
2267 >                !(uncontended =
2268 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2269 >                fullAddCount(x, hc, uncontended);
2270 >                return;
2271 >            }
2272 >            if (check <= 1)
2273 >                return;
2274 >            s = sumCount();
2275 >        }
2276 >        if (check >= 0) {
2277 >            Node<K,V>[] tab, nt; int n, sc;
2278 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2279 >                   (n = tab.length) < MAXIMUM_CAPACITY) {
2280 >                int rs = resizeStamp(n);
2281 >                if (sc < 0) {
2282 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2283 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2284 >                        transferIndex <= 0)
2285                          break;
2286 +                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2287 +                        transfer(tab, nt);
2288                  }
2289 <            } finally {
2290 <                resizing = 0;
2289 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2290 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2291 >                    transfer(tab, null);
2292 >                s = sumCount();
2293              }
2294          }
2295 <        else if (table == null)
2296 <            Thread.yield(); // lost initialization race; just spin
2295 >    }
2296 >
2297 >    /**
2298 >     * Helps transfer if a resize is in progress.
2299 >     */
2300 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2301 >        Node<K,V>[] nextTab; int sc;
2302 >        if (tab != null && (f instanceof ForwardingNode) &&
2303 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2304 >            int rs = resizeStamp(tab.length);
2305 >            while (nextTab == nextTable && table == tab &&
2306 >                   (sc = sizeCtl) < 0) {
2307 >                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2308 >                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
2309 >                    break;
2310 >                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2311 >                    transfer(tab, nextTab);
2312 >                    break;
2313 >                }
2314 >            }
2315 >            return nextTab;
2316 >        }
2317          return table;
2318      }
2319  
2320      /**
2321 <     * Implementation for putAll and constructor with Map
2322 <     * argument. Tries to first override initial capacity or grow
2323 <     * based on map size to pre-allocate table space.
2321 >     * Tries to presize table to accommodate the given number of elements.
2322 >     *
2323 >     * @param size number of elements (doesn't need to be perfectly accurate)
2324       */
2325 <    private final void internalPutAll(Map<? extends K, ? extends V> m) {
2326 <        int s = m.size();
2327 <        grow((s >= (MAXIMUM_CAPACITY >>> 1)) ? s : s + (s >>> 1));
2328 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
2329 <            Object k = e.getKey();
2330 <            Object v = e.getValue();
2331 <            if (k == null || v == null)
2332 <                throw new NullPointerException();
2333 <            internalPut(k, v, true);
2325 >    private final void tryPresize(int size) {
2326 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2327 >            tableSizeFor(size + (size >>> 1) + 1);
2328 >        int sc;
2329 >        while ((sc = sizeCtl) >= 0) {
2330 >            Node<K,V>[] tab = table; int n;
2331 >            if (tab == null || (n = tab.length) == 0) {
2332 >                n = (sc > c) ? sc : c;
2333 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2334 >                    try {
2335 >                        if (table == tab) {
2336 >                            @SuppressWarnings("unchecked")
2337 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2338 >                            table = nt;
2339 >                            sc = n - (n >>> 2);
2340 >                        }
2341 >                    } finally {
2342 >                        sizeCtl = sc;
2343 >                    }
2344 >                }
2345 >            }
2346 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2347 >                break;
2348 >            else if (tab == table) {
2349 >                int rs = resizeStamp(n);
2350 >                if (sc < 0) {
2351 >                    Node<K,V>[] nt;
2352 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2353 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2354 >                        transferIndex <= 0)
2355 >                        break;
2356 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2357 >                        transfer(tab, nt);
2358 >                }
2359 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2360 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2361 >                    transfer(tab, null);
2362 >            }
2363          }
2364      }
2365  
2366      /**
2367 <     * Implementation for clear. Steps through each bin, removing all nodes.
2367 >     * Moves and/or copies the nodes in each bin to new table. See
2368 >     * above for explanation.
2369       */
2370 <    private final void internalClear() {
2371 <        long deletions = 0L;
2372 <        int i = 0;
2373 <        Node[] tab = table;
2374 <        while (tab != null && i < tab.length) {
2375 <            Node e = tabAt(tab, i);
2376 <            if (e == null)
2377 <                ++i;
2378 <            else if (e.hash < 0)
2379 <                tab = (Node[])e.key;
2370 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2371 >        int n = tab.length, stride;
2372 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2373 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2374 >        if (nextTab == null) {            // initiating
2375 >            try {
2376 >                @SuppressWarnings("unchecked")
2377 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2378 >                nextTab = nt;
2379 >            } catch (Throwable ex) {      // try to cope with OOME
2380 >                sizeCtl = Integer.MAX_VALUE;
2381 >                return;
2382 >            }
2383 >            nextTable = nextTab;
2384 >            transferIndex = n;
2385 >        }
2386 >        int nextn = nextTab.length;
2387 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2388 >        boolean advance = true;
2389 >        boolean finishing = false; // to ensure sweep before committing nextTab
2390 >        for (int i = 0, bound = 0;;) {
2391 >            Node<K,V> f; int fh;
2392 >            while (advance) {
2393 >                int nextIndex, nextBound;
2394 >                if (--i >= bound || finishing)
2395 >                    advance = false;
2396 >                else if ((nextIndex = transferIndex) <= 0) {
2397 >                    i = -1;
2398 >                    advance = false;
2399 >                }
2400 >                else if (U.compareAndSwapInt
2401 >                         (this, TRANSFERINDEX, nextIndex,
2402 >                          nextBound = (nextIndex > stride ?
2403 >                                       nextIndex - stride : 0))) {
2404 >                    bound = nextBound;
2405 >                    i = nextIndex - 1;
2406 >                    advance = false;
2407 >                }
2408 >            }
2409 >            if (i < 0 || i >= n || i + n >= nextn) {
2410 >                int sc;
2411 >                if (finishing) {
2412 >                    nextTable = null;
2413 >                    table = nextTab;
2414 >                    sizeCtl = (n << 1) - (n >>> 1);
2415 >                    return;
2416 >                }
2417 >                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2418 >                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2419 >                        return;
2420 >                    finishing = advance = true;
2421 >                    i = n; // recheck before commit
2422 >                }
2423 >            }
2424 >            else if ((f = tabAt(tab, i)) == null)
2425 >                advance = casTabAt(tab, i, null, fwd);
2426 >            else if ((fh = f.hash) == MOVED)
2427 >                advance = true; // already processed
2428              else {
2429 <                boolean validated = false;
2430 <                synchronized (e) {
2431 <                    if (tabAt(tab, i) == e) {
2432 <                        validated = true;
2433 <                        do {
2434 <                            if (e.val != null) {
2435 <                                e.val = null;
2436 <                                ++deletions;
2429 >                synchronized (f) {
2430 >                    if (tabAt(tab, i) == f) {
2431 >                        Node<K,V> ln, hn;
2432 >                        if (fh >= 0) {
2433 >                            int runBit = fh & n;
2434 >                            Node<K,V> lastRun = f;
2435 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2436 >                                int b = p.hash & n;
2437 >                                if (b != runBit) {
2438 >                                    runBit = b;
2439 >                                    lastRun = p;
2440 >                                }
2441 >                            }
2442 >                            if (runBit == 0) {
2443 >                                ln = lastRun;
2444 >                                hn = null;
2445 >                            }
2446 >                            else {
2447 >                                hn = lastRun;
2448 >                                ln = null;
2449                              }
2450 <                        } while ((e = e.next) != null);
2451 <                        setTabAt(tab, i, null);
2450 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2451 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2452 >                                if ((ph & n) == 0)
2453 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2454 >                                else
2455 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2456 >                            }
2457 >                            setTabAt(nextTab, i, ln);
2458 >                            setTabAt(nextTab, i + n, hn);
2459 >                            setTabAt(tab, i, fwd);
2460 >                            advance = true;
2461 >                        }
2462 >                        else if (f instanceof TreeBin) {
2463 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2464 >                            TreeNode<K,V> lo = null, loTail = null;
2465 >                            TreeNode<K,V> hi = null, hiTail = null;
2466 >                            int lc = 0, hc = 0;
2467 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2468 >                                int h = e.hash;
2469 >                                TreeNode<K,V> p = new TreeNode<K,V>
2470 >                                    (h, e.key, e.val, null, null);
2471 >                                if ((h & n) == 0) {
2472 >                                    if ((p.prev = loTail) == null)
2473 >                                        lo = p;
2474 >                                    else
2475 >                                        loTail.next = p;
2476 >                                    loTail = p;
2477 >                                    ++lc;
2478 >                                }
2479 >                                else {
2480 >                                    if ((p.prev = hiTail) == null)
2481 >                                        hi = p;
2482 >                                    else
2483 >                                        hiTail.next = p;
2484 >                                    hiTail = p;
2485 >                                    ++hc;
2486 >                                }
2487 >                            }
2488 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2489 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2490 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2491 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2492 >                            setTabAt(nextTab, i, ln);
2493 >                            setTabAt(nextTab, i + n, hn);
2494 >                            setTabAt(tab, i, fwd);
2495 >                            advance = true;
2496 >                        }
2497                      }
2498                  }
2499 <                if (validated) {
2500 <                    ++i;
2501 <                    if (deletions > THRESHOLD_OFFSET) { // bound lag in counts
2502 <                        counter.add(-deletions);
2503 <                        deletions = 0L;
2499 >            }
2500 >        }
2501 >    }
2502 >
2503 >    /* ---------------- Conversion from/to TreeBins -------------- */
2504 >
2505 >    /**
2506 >     * Replaces all linked nodes in bin at given index unless table is
2507 >     * too small, in which case resizes instead.
2508 >     */
2509 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2510 >        Node<K,V> b; int n, sc;
2511 >        if (tab != null) {
2512 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2513 >                tryPresize(n << 1);
2514 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2515 >                synchronized (b) {
2516 >                    if (tabAt(tab, index) == b) {
2517 >                        TreeNode<K,V> hd = null, tl = null;
2518 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2519 >                            TreeNode<K,V> p =
2520 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2521 >                                                  null, null);
2522 >                            if ((p.prev = tl) == null)
2523 >                                hd = p;
2524 >                            else
2525 >                                tl.next = p;
2526 >                            tl = p;
2527 >                        }
2528 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2529                      }
2530                  }
2531              }
2532          }
725        if (deletions != 0L)
726            counter.add(-deletions);
2533      }
2534  
2535      /**
2536 <     * Base class for key, value, and entry iterators, plus internal
731 <     * implementations of public traversal-based methods, to avoid
732 <     * duplicating traversal code.
2536 >     * Returns a list on non-TreeNodes replacing those in given list.
2537       */
2538 <    class HashIterator {
2539 <        private Node next;          // the next entry to return
2540 <        private Node[] tab;         // current table; updated if resized
2541 <        private Node lastReturned;  // the last entry returned, for remove
2542 <        private Object nextVal;     // cached value of next
2543 <        private int index;          // index of bin to use next
2544 <        private int baseIndex;      // current index of initial table
2545 <        private final int baseSize; // initial table size
2538 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2539 >        Node<K,V> hd = null, tl = null;
2540 >        for (Node<K,V> q = b; q != null; q = q.next) {
2541 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2542 >            if (tl == null)
2543 >                hd = p;
2544 >            else
2545 >                tl.next = p;
2546 >            tl = p;
2547 >        }
2548 >        return hd;
2549 >    }
2550  
2551 <        HashIterator() {
2552 <            Node[] t = tab = table;
2553 <            if (t == null)
2554 <                baseSize = 0;
2555 <            else {
2556 <                baseSize = t.length;
2557 <                advance(null);
2558 <            }
2551 >    /* ---------------- TreeNodes -------------- */
2552 >
2553 >    /**
2554 >     * Nodes for use in TreeBins
2555 >     */
2556 >    static final class TreeNode<K,V> extends Node<K,V> {
2557 >        TreeNode<K,V> parent;  // red-black tree links
2558 >        TreeNode<K,V> left;
2559 >        TreeNode<K,V> right;
2560 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2561 >        boolean red;
2562 >
2563 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2564 >                 TreeNode<K,V> parent) {
2565 >            super(hash, key, val, next);
2566 >            this.parent = parent;
2567          }
2568  
2569 <        public final boolean hasNext()         { return next != null; }
2570 <        public final boolean hasMoreElements() { return next != null; }
2569 >        Node<K,V> find(int h, Object k) {
2570 >            return findTreeNode(h, k, null);
2571 >        }
2572  
2573          /**
2574 <         * Advances next.  Normally, iteration proceeds bin-by-bin
2575 <         * traversing lists.  However, if the table has been resized,
759 <         * then all future steps must traverse both the bin at the
760 <         * current index as well as at (index + baseSize); and so on
761 <         * for further resizings. To paranoically cope with potential
762 <         * (improper) sharing of iterators across threads, table reads
763 <         * are bounds-checked.
2574 >         * Returns the TreeNode (or null if not found) for the given key
2575 >         * starting at given root.
2576           */
2577 <        final void advance(Node e) {
2578 <            for (;;) {
2579 <                Node[] t; int i; // for bounds checks
2580 <                if (e != null) {
2581 <                    Object ek = e.key, ev = e.val;
2582 <                    if (ev != null && ek != null) {
2583 <                        nextVal = ev;
2584 <                        next = e;
2585 <                        break;
2586 <                    }
2587 <                    e = e.next;
2588 <                }
2589 <                else if (baseIndex < baseSize && (t = tab) != null &&
2590 <                         t.length > (i = index) && i >= 0) {
2591 <                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2592 <                        tab = (Node[])e.key;
2593 <                        e = null;
2594 <                    }
2595 <                    else if (i + baseSize < t.length)
2596 <                        index += baseSize;    // visit forwarded upper slots
2577 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2578 >            if (k != null) {
2579 >                TreeNode<K,V> p = this;
2580 >                do {
2581 >                    int ph, dir; K pk; TreeNode<K,V> q;
2582 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2583 >                    if ((ph = p.hash) > h)
2584 >                        p = pl;
2585 >                    else if (ph < h)
2586 >                        p = pr;
2587 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2588 >                        return p;
2589 >                    else if (pl == null)
2590 >                        p = pr;
2591 >                    else if (pr == null)
2592 >                        p = pl;
2593 >                    else if ((kc != null ||
2594 >                              (kc = comparableClassFor(k)) != null) &&
2595 >                             (dir = compareComparables(kc, k, pk)) != 0)
2596 >                        p = (dir < 0) ? pl : pr;
2597 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2598 >                        return q;
2599                      else
2600 <                        index = ++baseIndex;
2600 >                        p = pl;
2601 >                } while (p != null);
2602 >            }
2603 >            return null;
2604 >        }
2605 >    }
2606 >
2607 >    /* ---------------- TreeBins -------------- */
2608 >
2609 >    /**
2610 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2611 >     * keys or values, but instead point to list of TreeNodes and
2612 >     * their root. They also maintain a parasitic read-write lock
2613 >     * forcing writers (who hold bin lock) to wait for readers (who do
2614 >     * not) to complete before tree restructuring operations.
2615 >     */
2616 >    static final class TreeBin<K,V> extends Node<K,V> {
2617 >        TreeNode<K,V> root;
2618 >        volatile TreeNode<K,V> first;
2619 >        volatile Thread waiter;
2620 >        volatile int lockState;
2621 >        // values for lockState
2622 >        static final int WRITER = 1; // set while holding write lock
2623 >        static final int WAITER = 2; // set when waiting for write lock
2624 >        static final int READER = 4; // increment value for setting read lock
2625 >
2626 >        /**
2627 >         * Tie-breaking utility for ordering insertions when equal
2628 >         * hashCodes and non-comparable. We don't require a total
2629 >         * order, just a consistent insertion rule to maintain
2630 >         * equivalence across rebalancings. Tie-breaking further than
2631 >         * necessary simplifies testing a bit.
2632 >         */
2633 >        static int tieBreakOrder(Object a, Object b) {
2634 >            int d;
2635 >            if (a == null || b == null ||
2636 >                (d = a.getClass().getName().
2637 >                 compareTo(b.getClass().getName())) == 0)
2638 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2639 >                     -1 : 1);
2640 >            return d;
2641 >        }
2642 >
2643 >        /**
2644 >         * Creates bin with initial set of nodes headed by b.
2645 >         */
2646 >        TreeBin(TreeNode<K,V> b) {
2647 >            super(TREEBIN, null, null, null);
2648 >            this.first = b;
2649 >            TreeNode<K,V> r = null;
2650 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2651 >                next = (TreeNode<K,V>)x.next;
2652 >                x.left = x.right = null;
2653 >                if (r == null) {
2654 >                    x.parent = null;
2655 >                    x.red = false;
2656 >                    r = x;
2657                  }
2658                  else {
2659 <                    next = null;
2660 <                    break;
2659 >                    K k = x.key;
2660 >                    int h = x.hash;
2661 >                    Class<?> kc = null;
2662 >                    for (TreeNode<K,V> p = r;;) {
2663 >                        int dir, ph;
2664 >                        K pk = p.key;
2665 >                        if ((ph = p.hash) > h)
2666 >                            dir = -1;
2667 >                        else if (ph < h)
2668 >                            dir = 1;
2669 >                        else if ((kc == null &&
2670 >                                  (kc = comparableClassFor(k)) == null) ||
2671 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2672 >                            dir = tieBreakOrder(k, pk);
2673 >                            TreeNode<K,V> xp = p;
2674 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2675 >                            x.parent = xp;
2676 >                            if (dir <= 0)
2677 >                                xp.left = x;
2678 >                            else
2679 >                                xp.right = x;
2680 >                            r = balanceInsertion(r, x);
2681 >                            break;
2682 >                        }
2683 >                    }
2684                  }
2685              }
2686 +            this.root = r;
2687 +            assert checkInvariants(root);
2688          }
2689  
2690 <        final Object nextKey() {
2691 <            Node e = next;
2692 <            if (e == null)
2693 <                throw new NoSuchElementException();
2694 <            Object k = e.key;
2695 <            advance((lastReturned = e).next);
801 <            return k;
2690 >        /**
2691 >         * Acquires write lock for tree restructuring.
2692 >         */
2693 >        private final void lockRoot() {
2694 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2695 >                contendedLock(); // offload to separate method
2696          }
2697  
2698 <        final Object nextValue() {
2699 <            Node e = next;
2700 <            if (e == null)
2701 <                throw new NoSuchElementException();
2702 <            Object v = nextVal;
809 <            advance((lastReturned = e).next);
810 <            return v;
2698 >        /**
2699 >         * Releases write lock for tree restructuring.
2700 >         */
2701 >        private final void unlockRoot() {
2702 >            lockState = 0;
2703          }
2704  
2705 <        final WriteThroughEntry nextEntry() {
2706 <            Node e = next;
2707 <            if (e == null)
2708 <                throw new NoSuchElementException();
2709 <            WriteThroughEntry entry =
2710 <                new WriteThroughEntry(e.key, nextVal);
2711 <            advance((lastReturned = e).next);
2712 <            return entry;
2705 >        /**
2706 >         * Possibly blocks awaiting root lock.
2707 >         */
2708 >        private final void contendedLock() {
2709 >            boolean waiting = false;
2710 >            for (int s;;) {
2711 >                if (((s = lockState) & ~WAITER) == 0) {
2712 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2713 >                        if (waiting)
2714 >                            waiter = null;
2715 >                        return;
2716 >                    }
2717 >                }
2718 >                else if ((s & WAITER) == 0) {
2719 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2720 >                        waiting = true;
2721 >                        waiter = Thread.currentThread();
2722 >                    }
2723 >                }
2724 >                else if (waiting)
2725 >                    LockSupport.park(this);
2726 >            }
2727          }
2728  
2729 <        public final void remove() {
2730 <            if (lastReturned == null)
2731 <                throw new IllegalStateException();
2732 <            ConcurrentHashMapV8.this.remove(lastReturned.key);
2733 <            lastReturned = null;
2729 >        /**
2730 >         * Returns matching node or null if none. Tries to search
2731 >         * using tree comparisons from root, but continues linear
2732 >         * search when lock not available.
2733 >         */
2734 >        final Node<K,V> find(int h, Object k) {
2735 >            if (k != null) {
2736 >                for (Node<K,V> e = first; e != null; ) {
2737 >                    int s; K ek;
2738 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2739 >                        if (e.hash == h &&
2740 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2741 >                            return e;
2742 >                        e = e.next;
2743 >                    }
2744 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2745 >                                                 s + READER)) {
2746 >                        TreeNode<K,V> r, p;
2747 >                        try {
2748 >                            p = ((r = root) == null ? null :
2749 >                                 r.findTreeNode(h, k, null));
2750 >                        } finally {
2751 >                            Thread w;
2752 >                            int ls;
2753 >                            do {} while (!U.compareAndSwapInt
2754 >                                         (this, LOCKSTATE,
2755 >                                          ls = lockState, ls - READER));
2756 >                            if (ls == (READER|WAITER) && (w = waiter) != null)
2757 >                                LockSupport.unpark(w);
2758 >                        }
2759 >                        return p;
2760 >                    }
2761 >                }
2762 >            }
2763 >            return null;
2764          }
2765  
2766 <        /** Helper for serialization */
2767 <        final void writeEntries(java.io.ObjectOutputStream s)
2768 <            throws java.io.IOException {
2769 <            Node e;
2770 <            while ((e = next) != null) {
2771 <                s.writeObject(e.key);
2772 <                s.writeObject(nextVal);
2773 <                advance(e.next);
2766 >        /**
2767 >         * Finds or adds a node.
2768 >         * @return null if added
2769 >         */
2770 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2771 >            Class<?> kc = null;
2772 >            boolean searched = false;
2773 >            for (TreeNode<K,V> p = root;;) {
2774 >                int dir, ph; K pk;
2775 >                if (p == null) {
2776 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2777 >                    break;
2778 >                }
2779 >                else if ((ph = p.hash) > h)
2780 >                    dir = -1;
2781 >                else if (ph < h)
2782 >                    dir = 1;
2783 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2784 >                    return p;
2785 >                else if ((kc == null &&
2786 >                          (kc = comparableClassFor(k)) == null) ||
2787 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2788 >                    if (!searched) {
2789 >                        TreeNode<K,V> q, ch;
2790 >                        searched = true;
2791 >                        if (((ch = p.left) != null &&
2792 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2793 >                            ((ch = p.right) != null &&
2794 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2795 >                            return q;
2796 >                    }
2797 >                    dir = tieBreakOrder(k, pk);
2798 >                }
2799 >
2800 >                TreeNode<K,V> xp = p;
2801 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2802 >                    TreeNode<K,V> x, f = first;
2803 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2804 >                    if (f != null)
2805 >                        f.prev = x;
2806 >                    if (dir <= 0)
2807 >                        xp.left = x;
2808 >                    else
2809 >                        xp.right = x;
2810 >                    if (!xp.red)
2811 >                        x.red = true;
2812 >                    else {
2813 >                        lockRoot();
2814 >                        try {
2815 >                            root = balanceInsertion(root, x);
2816 >                        } finally {
2817 >                            unlockRoot();
2818 >                        }
2819 >                    }
2820 >                    break;
2821 >                }
2822              }
2823 +            assert checkInvariants(root);
2824 +            return null;
2825          }
2826  
2827 <        /** Helper for containsValue */
2828 <        final boolean containsVal(Object value) {
2829 <            if (value != null) {
2830 <                Node e;
2831 <                while ((e = next) != null) {
2832 <                    Object v = nextVal;
2833 <                    if (value == v || value.equals(v))
2834 <                        return true;
2835 <                    advance(e.next);
2827 >        /**
2828 >         * Removes the given node, that must be present before this
2829 >         * call.  This is messier than typical red-black deletion code
2830 >         * because we cannot swap the contents of an interior node
2831 >         * with a leaf successor that is pinned by "next" pointers
2832 >         * that are accessible independently of lock. So instead we
2833 >         * swap the tree linkages.
2834 >         *
2835 >         * @return true if now too small, so should be untreeified
2836 >         */
2837 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2838 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2839 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2840 >            TreeNode<K,V> r, rl;
2841 >            if (pred == null)
2842 >                first = next;
2843 >            else
2844 >                pred.next = next;
2845 >            if (next != null)
2846 >                next.prev = pred;
2847 >            if (first == null) {
2848 >                root = null;
2849 >                return true;
2850 >            }
2851 >            if ((r = root) == null || r.right == null || // too small
2852 >                (rl = r.left) == null || rl.left == null)
2853 >                return true;
2854 >            lockRoot();
2855 >            try {
2856 >                TreeNode<K,V> replacement;
2857 >                TreeNode<K,V> pl = p.left;
2858 >                TreeNode<K,V> pr = p.right;
2859 >                if (pl != null && pr != null) {
2860 >                    TreeNode<K,V> s = pr, sl;
2861 >                    while ((sl = s.left) != null) // find successor
2862 >                        s = sl;
2863 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2864 >                    TreeNode<K,V> sr = s.right;
2865 >                    TreeNode<K,V> pp = p.parent;
2866 >                    if (s == pr) { // p was s's direct parent
2867 >                        p.parent = s;
2868 >                        s.right = p;
2869 >                    }
2870 >                    else {
2871 >                        TreeNode<K,V> sp = s.parent;
2872 >                        if ((p.parent = sp) != null) {
2873 >                            if (s == sp.left)
2874 >                                sp.left = p;
2875 >                            else
2876 >                                sp.right = p;
2877 >                        }
2878 >                        if ((s.right = pr) != null)
2879 >                            pr.parent = s;
2880 >                    }
2881 >                    p.left = null;
2882 >                    if ((p.right = sr) != null)
2883 >                        sr.parent = p;
2884 >                    if ((s.left = pl) != null)
2885 >                        pl.parent = s;
2886 >                    if ((s.parent = pp) == null)
2887 >                        r = s;
2888 >                    else if (p == pp.left)
2889 >                        pp.left = s;
2890 >                    else
2891 >                        pp.right = s;
2892 >                    if (sr != null)
2893 >                        replacement = sr;
2894 >                    else
2895 >                        replacement = p;
2896                  }
2897 +                else if (pl != null)
2898 +                    replacement = pl;
2899 +                else if (pr != null)
2900 +                    replacement = pr;
2901 +                else
2902 +                    replacement = p;
2903 +                if (replacement != p) {
2904 +                    TreeNode<K,V> pp = replacement.parent = p.parent;
2905 +                    if (pp == null)
2906 +                        r = replacement;
2907 +                    else if (p == pp.left)
2908 +                        pp.left = replacement;
2909 +                    else
2910 +                        pp.right = replacement;
2911 +                    p.left = p.right = p.parent = null;
2912 +                }
2913 +
2914 +                root = (p.red) ? r : balanceDeletion(r, replacement);
2915 +
2916 +                if (p == replacement) {  // detach pointers
2917 +                    TreeNode<K,V> pp;
2918 +                    if ((pp = p.parent) != null) {
2919 +                        if (p == pp.left)
2920 +                            pp.left = null;
2921 +                        else if (p == pp.right)
2922 +                            pp.right = null;
2923 +                        p.parent = null;
2924 +                    }
2925 +                }
2926 +            } finally {
2927 +                unlockRoot();
2928              }
2929 +            assert checkInvariants(root);
2930              return false;
2931          }
2932  
2933 <        /** Helper for Map.hashCode */
2934 <        final int mapHashCode() {
2935 <            int h = 0;
2936 <            Node e;
2937 <            while ((e = next) != null) {
2938 <                h += e.key.hashCode() ^ nextVal.hashCode();
2939 <                advance(e.next);
2933 >        /* ------------------------------------------------------------ */
2934 >        // Red-black tree methods, all adapted from CLR
2935 >
2936 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2937 >                                              TreeNode<K,V> p) {
2938 >            TreeNode<K,V> r, pp, rl;
2939 >            if (p != null && (r = p.right) != null) {
2940 >                if ((rl = p.right = r.left) != null)
2941 >                    rl.parent = p;
2942 >                if ((pp = r.parent = p.parent) == null)
2943 >                    (root = r).red = false;
2944 >                else if (pp.left == p)
2945 >                    pp.left = r;
2946 >                else
2947 >                    pp.right = r;
2948 >                r.left = p;
2949 >                p.parent = r;
2950              }
2951 <            return h;
2951 >            return root;
2952          }
2953  
2954 <        /** Helper for Map.toString */
2955 <        final String mapToString() {
2956 <            Node e = next;
2957 <            if (e == null)
2958 <                return "{}";
2959 <            StringBuilder sb = new StringBuilder();
2960 <            sb.append('{');
2961 <            for (;;) {
2962 <                sb.append(e.key   == this ? "(this Map)" : e.key);
2963 <                sb.append('=');
876 <                sb.append(nextVal == this ? "(this Map)" : nextVal);
877 <                advance(e.next);
878 <                if ((e = next) != null)
879 <                    sb.append(',').append(' ');
2954 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2955 >                                               TreeNode<K,V> p) {
2956 >            TreeNode<K,V> l, pp, lr;
2957 >            if (p != null && (l = p.left) != null) {
2958 >                if ((lr = p.left = l.right) != null)
2959 >                    lr.parent = p;
2960 >                if ((pp = l.parent = p.parent) == null)
2961 >                    (root = l).red = false;
2962 >                else if (pp.right == p)
2963 >                    pp.right = l;
2964                  else
2965 <                    return sb.append('}').toString();
2965 >                    pp.left = l;
2966 >                l.right = p;
2967 >                p.parent = l;
2968 >            }
2969 >            return root;
2970 >        }
2971 >
2972 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2973 >                                                    TreeNode<K,V> x) {
2974 >            x.red = true;
2975 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2976 >                if ((xp = x.parent) == null) {
2977 >                    x.red = false;
2978 >                    return x;
2979 >                }
2980 >                else if (!xp.red || (xpp = xp.parent) == null)
2981 >                    return root;
2982 >                if (xp == (xppl = xpp.left)) {
2983 >                    if ((xppr = xpp.right) != null && xppr.red) {
2984 >                        xppr.red = false;
2985 >                        xp.red = false;
2986 >                        xpp.red = true;
2987 >                        x = xpp;
2988 >                    }
2989 >                    else {
2990 >                        if (x == xp.right) {
2991 >                            root = rotateLeft(root, x = xp);
2992 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2993 >                        }
2994 >                        if (xp != null) {
2995 >                            xp.red = false;
2996 >                            if (xpp != null) {
2997 >                                xpp.red = true;
2998 >                                root = rotateRight(root, xpp);
2999 >                            }
3000 >                        }
3001 >                    }
3002 >                }
3003 >                else {
3004 >                    if (xppl != null && xppl.red) {
3005 >                        xppl.red = false;
3006 >                        xp.red = false;
3007 >                        xpp.red = true;
3008 >                        x = xpp;
3009 >                    }
3010 >                    else {
3011 >                        if (x == xp.left) {
3012 >                            root = rotateRight(root, x = xp);
3013 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3014 >                        }
3015 >                        if (xp != null) {
3016 >                            xp.red = false;
3017 >                            if (xpp != null) {
3018 >                                xpp.red = true;
3019 >                                root = rotateLeft(root, xpp);
3020 >                            }
3021 >                        }
3022 >                    }
3023 >                }
3024 >            }
3025 >        }
3026 >
3027 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3028 >                                                   TreeNode<K,V> x) {
3029 >            for (TreeNode<K,V> xp, xpl, xpr;;) {
3030 >                if (x == null || x == root)
3031 >                    return root;
3032 >                else if ((xp = x.parent) == null) {
3033 >                    x.red = false;
3034 >                    return x;
3035 >                }
3036 >                else if (x.red) {
3037 >                    x.red = false;
3038 >                    return root;
3039 >                }
3040 >                else if ((xpl = xp.left) == x) {
3041 >                    if ((xpr = xp.right) != null && xpr.red) {
3042 >                        xpr.red = false;
3043 >                        xp.red = true;
3044 >                        root = rotateLeft(root, xp);
3045 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3046 >                    }
3047 >                    if (xpr == null)
3048 >                        x = xp;
3049 >                    else {
3050 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3051 >                        if ((sr == null || !sr.red) &&
3052 >                            (sl == null || !sl.red)) {
3053 >                            xpr.red = true;
3054 >                            x = xp;
3055 >                        }
3056 >                        else {
3057 >                            if (sr == null || !sr.red) {
3058 >                                if (sl != null)
3059 >                                    sl.red = false;
3060 >                                xpr.red = true;
3061 >                                root = rotateRight(root, xpr);
3062 >                                xpr = (xp = x.parent) == null ?
3063 >                                    null : xp.right;
3064 >                            }
3065 >                            if (xpr != null) {
3066 >                                xpr.red = (xp == null) ? false : xp.red;
3067 >                                if ((sr = xpr.right) != null)
3068 >                                    sr.red = false;
3069 >                            }
3070 >                            if (xp != null) {
3071 >                                xp.red = false;
3072 >                                root = rotateLeft(root, xp);
3073 >                            }
3074 >                            x = root;
3075 >                        }
3076 >                    }
3077 >                }
3078 >                else { // symmetric
3079 >                    if (xpl != null && xpl.red) {
3080 >                        xpl.red = false;
3081 >                        xp.red = true;
3082 >                        root = rotateRight(root, xp);
3083 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3084 >                    }
3085 >                    if (xpl == null)
3086 >                        x = xp;
3087 >                    else {
3088 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3089 >                        if ((sl == null || !sl.red) &&
3090 >                            (sr == null || !sr.red)) {
3091 >                            xpl.red = true;
3092 >                            x = xp;
3093 >                        }
3094 >                        else {
3095 >                            if (sl == null || !sl.red) {
3096 >                                if (sr != null)
3097 >                                    sr.red = false;
3098 >                                xpl.red = true;
3099 >                                root = rotateLeft(root, xpl);
3100 >                                xpl = (xp = x.parent) == null ?
3101 >                                    null : xp.left;
3102 >                            }
3103 >                            if (xpl != null) {
3104 >                                xpl.red = (xp == null) ? false : xp.red;
3105 >                                if ((sl = xpl.left) != null)
3106 >                                    sl.red = false;
3107 >                            }
3108 >                            if (xp != null) {
3109 >                                xp.red = false;
3110 >                                root = rotateRight(root, xp);
3111 >                            }
3112 >                            x = root;
3113 >                        }
3114 >                    }
3115 >                }
3116 >            }
3117 >        }
3118 >
3119 >        /**
3120 >         * Recursive invariant check
3121 >         */
3122 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3123 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3124 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3125 >            if (tb != null && tb.next != t)
3126 >                return false;
3127 >            if (tn != null && tn.prev != t)
3128 >                return false;
3129 >            if (tp != null && t != tp.left && t != tp.right)
3130 >                return false;
3131 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3132 >                return false;
3133 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3134 >                return false;
3135 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3136 >                return false;
3137 >            if (tl != null && !checkInvariants(tl))
3138 >                return false;
3139 >            if (tr != null && !checkInvariants(tr))
3140 >                return false;
3141 >            return true;
3142 >        }
3143 >
3144 >        private static final sun.misc.Unsafe U;
3145 >        private static final long LOCKSTATE;
3146 >        static {
3147 >            try {
3148 >                U = getUnsafe();
3149 >                Class<?> k = TreeBin.class;
3150 >                LOCKSTATE = U.objectFieldOffset
3151 >                    (k.getDeclaredField("lockState"));
3152 >            } catch (Exception e) {
3153 >                throw new Error(e);
3154              }
3155          }
3156      }
3157  
3158 <    /* ---------------- Public operations -------------- */
3158 >    /* ----------------Table Traversal -------------- */
3159  
3160      /**
3161 <     * Creates a new, empty map with the specified initial
3162 <     * capacity, load factor and concurrency level.
3163 <     *
3164 <     * @param initialCapacity the initial capacity. The implementation
3165 <     * performs internal sizing to accommodate this many elements.
3166 <     * @param loadFactor  the load factor threshold, used to control resizing.
3167 <     * Resizing may be performed when the average number of elements per
3168 <     * bin exceeds this threshold.
3169 <     * @param concurrencyLevel the estimated number of concurrently
898 <     * updating threads. The implementation may use this value as
899 <     * a sizing hint.
900 <     * @throws IllegalArgumentException if the initial capacity is
901 <     * negative or the load factor or concurrencyLevel are
902 <     * nonpositive.
903 <     */
904 <    public ConcurrentHashMapV8(int initialCapacity,
905 <                               float loadFactor, int concurrencyLevel) {
906 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
907 <            throw new IllegalArgumentException();
908 <        this.initCap = initialCapacity;
909 <        this.loadFactor = loadFactor;
910 <        this.counter = new LongAdder();
3161 >     * Records the table, its length, and current traversal index for a
3162 >     * traverser that must process a region of a forwarded table before
3163 >     * proceeding with current table.
3164 >     */
3165 >    static final class TableStack<K,V> {
3166 >        int length;
3167 >        int index;
3168 >        Node<K,V>[] tab;
3169 >        TableStack<K,V> next;
3170      }
3171  
3172      /**
3173 <     * Creates a new, empty map with the specified initial capacity
3174 <     * and load factor and with the default concurrencyLevel (16).
3175 <     *
3176 <     * @param initialCapacity The implementation performs internal
3177 <     * sizing to accommodate this many elements.
3178 <     * @param loadFactor  the load factor threshold, used to control resizing.
3179 <     * Resizing may be performed when the average number of elements per
3180 <     * bin exceeds this threshold.
3181 <     * @throws IllegalArgumentException if the initial capacity of
3182 <     * elements is negative or the load factor is nonpositive
3183 <     *
3184 <     * @since 1.6
3185 <     */
3186 <    public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
3187 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
3173 >     * Encapsulates traversal for methods such as containsValue; also
3174 >     * serves as a base class for other iterators and spliterators.
3175 >     *
3176 >     * Method advance visits once each still-valid node that was
3177 >     * reachable upon iterator construction. It might miss some that
3178 >     * were added to a bin after the bin was visited, which is OK wrt
3179 >     * consistency guarantees. Maintaining this property in the face
3180 >     * of possible ongoing resizes requires a fair amount of
3181 >     * bookkeeping state that is difficult to optimize away amidst
3182 >     * volatile accesses.  Even so, traversal maintains reasonable
3183 >     * throughput.
3184 >     *
3185 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3186 >     * However, if the table has been resized, then all future steps
3187 >     * must traverse both the bin at the current index as well as at
3188 >     * (index + baseSize); and so on for further resizings. To
3189 >     * paranoically cope with potential sharing by users of iterators
3190 >     * across threads, iteration terminates if a bounds checks fails
3191 >     * for a table read.
3192 >     */
3193 >    static class Traverser<K,V> {
3194 >        Node<K,V>[] tab;        // current table; updated if resized
3195 >        Node<K,V> next;         // the next entry to use
3196 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3197 >        int index;              // index of bin to use next
3198 >        int baseIndex;          // current index of initial table
3199 >        int baseLimit;          // index bound for initial table
3200 >        final int baseSize;     // initial table size
3201 >
3202 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3203 >            this.tab = tab;
3204 >            this.baseSize = size;
3205 >            this.baseIndex = this.index = index;
3206 >            this.baseLimit = limit;
3207 >            this.next = null;
3208 >        }
3209 >
3210 >        /**
3211 >         * Advances if possible, returning next valid node, or null if none.
3212 >         */
3213 >        final Node<K,V> advance() {
3214 >            Node<K,V> e;
3215 >            if ((e = next) != null)
3216 >                e = e.next;
3217 >            for (;;) {
3218 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3219 >                if (e != null)
3220 >                    return next = e;
3221 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3222 >                    (n = t.length) <= (i = index) || i < 0)
3223 >                    return next = null;
3224 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3225 >                    if (e instanceof ForwardingNode) {
3226 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3227 >                        e = null;
3228 >                        pushState(t, i, n);
3229 >                        continue;
3230 >                    }
3231 >                    else if (e instanceof TreeBin)
3232 >                        e = ((TreeBin<K,V>)e).first;
3233 >                    else
3234 >                        e = null;
3235 >                }
3236 >                if (stack != null)
3237 >                    recoverState(n);
3238 >                else if ((index = i + baseSize) >= n)
3239 >                    index = ++baseIndex; // visit upper slots if present
3240 >            }
3241 >        }
3242 >
3243 >        /**
3244 >         * Saves traversal state upon encountering a forwarding node.
3245 >         */
3246 >        private void pushState(Node<K,V>[] t, int i, int n) {
3247 >            TableStack<K,V> s = spare;  // reuse if possible
3248 >            if (s != null)
3249 >                spare = s.next;
3250 >            else
3251 >                s = new TableStack<K,V>();
3252 >            s.tab = t;
3253 >            s.length = n;
3254 >            s.index = i;
3255 >            s.next = stack;
3256 >            stack = s;
3257 >        }
3258 >
3259 >        /**
3260 >         * Possibly pops traversal state.
3261 >         *
3262 >         * @param n length of current table
3263 >         */
3264 >        private void recoverState(int n) {
3265 >            TableStack<K,V> s; int len;
3266 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3267 >                n = len;
3268 >                index = s.index;
3269 >                tab = s.tab;
3270 >                s.tab = null;
3271 >                TableStack<K,V> next = s.next;
3272 >                s.next = spare; // save for reuse
3273 >                stack = next;
3274 >                spare = s;
3275 >            }
3276 >            if (s == null && (index += baseSize) >= n)
3277 >                index = ++baseIndex;
3278 >        }
3279      }
3280  
3281      /**
3282 <     * Creates a new, empty map with the specified initial capacity,
3283 <     * and with default load factor (0.75) and concurrencyLevel (16).
934 <     *
935 <     * @param initialCapacity the initial capacity. The implementation
936 <     * performs internal sizing to accommodate this many elements.
937 <     * @throws IllegalArgumentException if the initial capacity of
938 <     * elements is negative.
3282 >     * Base of key, value, and entry Iterators. Adds fields to
3283 >     * Traverser to support iterator.remove.
3284       */
3285 <    public ConcurrentHashMapV8(int initialCapacity) {
3286 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
3285 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3286 >        final ConcurrentHashMapV8<K,V> map;
3287 >        Node<K,V> lastReturned;
3288 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3289 >                    ConcurrentHashMapV8<K,V> map) {
3290 >            super(tab, size, index, limit);
3291 >            this.map = map;
3292 >            advance();
3293 >        }
3294 >
3295 >        public final boolean hasNext() { return next != null; }
3296 >        public final boolean hasMoreElements() { return next != null; }
3297 >
3298 >        public final void remove() {
3299 >            Node<K,V> p;
3300 >            if ((p = lastReturned) == null)
3301 >                throw new IllegalStateException();
3302 >            lastReturned = null;
3303 >            map.replaceNode(p.key, null, null);
3304 >        }
3305 >    }
3306 >
3307 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3308 >        implements Iterator<K>, Enumeration<K> {
3309 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3310 >                    ConcurrentHashMapV8<K,V> map) {
3311 >            super(tab, index, size, limit, map);
3312 >        }
3313 >
3314 >        public final K next() {
3315 >            Node<K,V> p;
3316 >            if ((p = next) == null)
3317 >                throw new NoSuchElementException();
3318 >            K k = p.key;
3319 >            lastReturned = p;
3320 >            advance();
3321 >            return k;
3322 >        }
3323 >
3324 >        public final K nextElement() { return next(); }
3325 >    }
3326 >
3327 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3328 >        implements Iterator<V>, Enumeration<V> {
3329 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3330 >                      ConcurrentHashMapV8<K,V> map) {
3331 >            super(tab, index, size, limit, map);
3332 >        }
3333 >
3334 >        public final V next() {
3335 >            Node<K,V> p;
3336 >            if ((p = next) == null)
3337 >                throw new NoSuchElementException();
3338 >            V v = p.val;
3339 >            lastReturned = p;
3340 >            advance();
3341 >            return v;
3342 >        }
3343 >
3344 >        public final V nextElement() { return next(); }
3345 >    }
3346 >
3347 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3348 >        implements Iterator<Map.Entry<K,V>> {
3349 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3350 >                      ConcurrentHashMapV8<K,V> map) {
3351 >            super(tab, index, size, limit, map);
3352 >        }
3353 >
3354 >        public final Map.Entry<K,V> next() {
3355 >            Node<K,V> p;
3356 >            if ((p = next) == null)
3357 >                throw new NoSuchElementException();
3358 >            K k = p.key;
3359 >            V v = p.val;
3360 >            lastReturned = p;
3361 >            advance();
3362 >            return new MapEntry<K,V>(k, v, map);
3363 >        }
3364      }
3365  
3366      /**
3367 <     * Creates a new, empty map with a default initial capacity (16),
946 <     * load factor (0.75) and concurrencyLevel (16).
3367 >     * Exported Entry for EntryIterator
3368       */
3369 <    public ConcurrentHashMapV8() {
3370 <        this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
3369 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3370 >        final K key; // non-null
3371 >        V val;       // non-null
3372 >        final ConcurrentHashMapV8<K,V> map;
3373 >        MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3374 >            this.key = key;
3375 >            this.val = val;
3376 >            this.map = map;
3377 >        }
3378 >        public K getKey()        { return key; }
3379 >        public V getValue()      { return val; }
3380 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3381 >        public String toString() { return key + "=" + val; }
3382 >
3383 >        public boolean equals(Object o) {
3384 >            Object k, v; Map.Entry<?,?> e;
3385 >            return ((o instanceof Map.Entry) &&
3386 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3387 >                    (v = e.getValue()) != null &&
3388 >                    (k == key || k.equals(key)) &&
3389 >                    (v == val || v.equals(val)));
3390 >        }
3391 >
3392 >        /**
3393 >         * Sets our entry's value and writes through to the map. The
3394 >         * value to return is somewhat arbitrary here. Since we do not
3395 >         * necessarily track asynchronous changes, the most recent
3396 >         * "previous" value could be different from what we return (or
3397 >         * could even have been removed, in which case the put will
3398 >         * re-establish). We do not and cannot guarantee more.
3399 >         */
3400 >        public V setValue(V value) {
3401 >            if (value == null) throw new NullPointerException();
3402 >            V v = val;
3403 >            val = value;
3404 >            map.put(key, value);
3405 >            return v;
3406 >        }
3407 >    }
3408 >
3409 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3410 >        implements ConcurrentHashMapSpliterator<K> {
3411 >        long est;               // size estimate
3412 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3413 >                       long est) {
3414 >            super(tab, size, index, limit);
3415 >            this.est = est;
3416 >        }
3417 >
3418 >        public ConcurrentHashMapSpliterator<K> trySplit() {
3419 >            int i, f, h;
3420 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3421 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3422 >                                        f, est >>>= 1);
3423 >        }
3424 >
3425 >        public void forEachRemaining(Action<? super K> action) {
3426 >            if (action == null) throw new NullPointerException();
3427 >            for (Node<K,V> p; (p = advance()) != null;)
3428 >                action.apply(p.key);
3429 >        }
3430 >
3431 >        public boolean tryAdvance(Action<? super K> action) {
3432 >            if (action == null) throw new NullPointerException();
3433 >            Node<K,V> p;
3434 >            if ((p = advance()) == null)
3435 >                return false;
3436 >            action.apply(p.key);
3437 >            return true;
3438 >        }
3439 >
3440 >        public long estimateSize() { return est; }
3441 >
3442 >    }
3443 >
3444 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3445 >        implements ConcurrentHashMapSpliterator<V> {
3446 >        long est;               // size estimate
3447 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3448 >                         long est) {
3449 >            super(tab, size, index, limit);
3450 >            this.est = est;
3451 >        }
3452 >
3453 >        public ConcurrentHashMapSpliterator<V> trySplit() {
3454 >            int i, f, h;
3455 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3456 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3457 >                                          f, est >>>= 1);
3458 >        }
3459 >
3460 >        public void forEachRemaining(Action<? super V> action) {
3461 >            if (action == null) throw new NullPointerException();
3462 >            for (Node<K,V> p; (p = advance()) != null;)
3463 >                action.apply(p.val);
3464 >        }
3465 >
3466 >        public boolean tryAdvance(Action<? super V> action) {
3467 >            if (action == null) throw new NullPointerException();
3468 >            Node<K,V> p;
3469 >            if ((p = advance()) == null)
3470 >                return false;
3471 >            action.apply(p.val);
3472 >            return true;
3473 >        }
3474 >
3475 >        public long estimateSize() { return est; }
3476 >
3477      }
3478  
3479 +    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3480 +        implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3481 +        final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3482 +        long est;               // size estimate
3483 +        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3484 +                         long est, ConcurrentHashMapV8<K,V> map) {
3485 +            super(tab, size, index, limit);
3486 +            this.map = map;
3487 +            this.est = est;
3488 +        }
3489 +
3490 +        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3491 +            int i, f, h;
3492 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3493 +                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3494 +                                          f, est >>>= 1, map);
3495 +        }
3496 +
3497 +        public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3498 +            if (action == null) throw new NullPointerException();
3499 +            for (Node<K,V> p; (p = advance()) != null; )
3500 +                action.apply(new MapEntry<K,V>(p.key, p.val, map));
3501 +        }
3502 +
3503 +        public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3504 +            if (action == null) throw new NullPointerException();
3505 +            Node<K,V> p;
3506 +            if ((p = advance()) == null)
3507 +                return false;
3508 +            action.apply(new MapEntry<K,V>(p.key, p.val, map));
3509 +            return true;
3510 +        }
3511 +
3512 +        public long estimateSize() { return est; }
3513 +
3514 +    }
3515 +
3516 +    // Parallel bulk operations
3517 +
3518      /**
3519 <     * Creates a new map with the same mappings as the given map.
3520 <     * The map is created with a capacity of 1.5 times the number
3521 <     * of mappings in the given map or 16 (whichever is greater),
3522 <     * and a default load factor (0.75) and concurrencyLevel (16).
3523 <     *
3524 <     * @param m the map
3519 >     * Computes initial batch value for bulk tasks. The returned value
3520 >     * is approximately exp2 of the number of times (minus one) to
3521 >     * split task by two before executing leaf action. This value is
3522 >     * faster to compute and more convenient to use as a guide to
3523 >     * splitting than is the depth, since it is used while dividing by
3524 >     * two anyway.
3525       */
3526 <    public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
3527 <        this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
3528 <        if (m == null)
3529 <            throw new NullPointerException();
3530 <        internalPutAll(m);
3526 >    final int batchFor(long b) {
3527 >        long n;
3528 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3529 >            return 0;
3530 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3531 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3532      }
3533  
3534      /**
3535 <     * Returns {@code true} if this map contains no key-value mappings.
3535 >     * Performs the given action for each (key, value).
3536       *
3537 <     * @return {@code true} if this map contains no key-value mappings
3537 >     * @param parallelismThreshold the (estimated) number of elements
3538 >     * needed for this operation to be executed in parallel
3539 >     * @param action the action
3540 >     * @since 1.8
3541       */
3542 <    public boolean isEmpty() {
3543 <        return counter.sum() <= 0L; // ignore transient negative values
3542 >    public void forEach(long parallelismThreshold,
3543 >                        BiAction<? super K,? super V> action) {
3544 >        if (action == null) throw new NullPointerException();
3545 >        new ForEachMappingTask<K,V>
3546 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3547 >             action).invoke();
3548      }
3549  
3550      /**
3551 <     * Returns the number of key-value mappings in this map.  If the
3552 <     * map contains more than {@code Integer.MAX_VALUE} elements, returns
979 <     * {@code Integer.MAX_VALUE}.
3551 >     * Performs the given action for each non-null transformation
3552 >     * of each (key, value).
3553       *
3554 <     * @return the number of key-value mappings in this map
3554 >     * @param parallelismThreshold the (estimated) number of elements
3555 >     * needed for this operation to be executed in parallel
3556 >     * @param transformer a function returning the transformation
3557 >     * for an element, or null if there is no transformation (in
3558 >     * which case the action is not applied)
3559 >     * @param action the action
3560 >     * @since 1.8
3561       */
3562 <    public int size() {
3563 <        long n = counter.sum();
3564 <        return ((n >>> 31) == 0) ? (int)n : (n < 0L) ? 0 : Integer.MAX_VALUE;
3562 >    public <U> void forEach(long parallelismThreshold,
3563 >                            BiFun<? super K, ? super V, ? extends U> transformer,
3564 >                            Action<? super U> action) {
3565 >        if (transformer == null || action == null)
3566 >            throw new NullPointerException();
3567 >        new ForEachTransformedMappingTask<K,V,U>
3568 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3569 >             transformer, action).invoke();
3570      }
3571  
3572      /**
3573 <     * Returns the value to which the specified key is mapped,
3574 <     * or {@code null} if this map contains no mapping for the key.
3575 <     *
3576 <     * <p>More formally, if this map contains a mapping from a key
3577 <     * {@code k} to a value {@code v} such that {@code key.equals(k)},
3578 <     * then this method returns {@code v}; otherwise it returns
3579 <     * {@code null}.  (There can be at most one such mapping.)
3580 <     *
3581 <     * @throws NullPointerException if the specified key is null
3582 <     */
3583 <    @SuppressWarnings("unchecked")
3584 <    public V get(Object key) {
3585 <        if (key == null)
3573 >     * Returns a non-null result from applying the given search
3574 >     * function on each (key, value), or null if none.  Upon
3575 >     * success, further element processing is suppressed and the
3576 >     * results of any other parallel invocations of the search
3577 >     * function are ignored.
3578 >     *
3579 >     * @param parallelismThreshold the (estimated) number of elements
3580 >     * needed for this operation to be executed in parallel
3581 >     * @param searchFunction a function returning a non-null
3582 >     * result on success, else null
3583 >     * @return a non-null result from applying the given search
3584 >     * function on each (key, value), or null if none
3585 >     * @since 1.8
3586 >     */
3587 >    public <U> U search(long parallelismThreshold,
3588 >                        BiFun<? super K, ? super V, ? extends U> searchFunction) {
3589 >        if (searchFunction == null) throw new NullPointerException();
3590 >        return new SearchMappingsTask<K,V,U>
3591 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3592 >             searchFunction, new AtomicReference<U>()).invoke();
3593 >    }
3594 >
3595 >    /**
3596 >     * Returns the result of accumulating the given transformation
3597 >     * of all (key, value) pairs using the given reducer to
3598 >     * combine values, or null if none.
3599 >     *
3600 >     * @param parallelismThreshold the (estimated) number of elements
3601 >     * needed for this operation to be executed in parallel
3602 >     * @param transformer a function returning the transformation
3603 >     * for an element, or null if there is no transformation (in
3604 >     * which case it is not combined)
3605 >     * @param reducer a commutative associative combining function
3606 >     * @return the result of accumulating the given transformation
3607 >     * of all (key, value) pairs
3608 >     * @since 1.8
3609 >     */
3610 >    public <U> U reduce(long parallelismThreshold,
3611 >                        BiFun<? super K, ? super V, ? extends U> transformer,
3612 >                        BiFun<? super U, ? super U, ? extends U> reducer) {
3613 >        if (transformer == null || reducer == null)
3614              throw new NullPointerException();
3615 <        return (V)internalGet(key);
3615 >        return new MapReduceMappingsTask<K,V,U>
3616 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3617 >             null, transformer, reducer).invoke();
3618      }
3619  
3620      /**
3621 <     * Tests if the specified object is a key in this table.
3622 <     *
3623 <     * @param  key   possible key
3624 <     * @return {@code true} if and only if the specified object
3625 <     *         is a key in this table, as determined by the
3626 <     *         {@code equals} method; {@code false} otherwise.
3627 <     * @throws NullPointerException if the specified key is null
3628 <     */
3629 <    public boolean containsKey(Object key) {
3630 <        if (key == null)
3621 >     * Returns the result of accumulating the given transformation
3622 >     * of all (key, value) pairs using the given reducer to
3623 >     * combine values, and the given basis as an identity value.
3624 >     *
3625 >     * @param parallelismThreshold the (estimated) number of elements
3626 >     * needed for this operation to be executed in parallel
3627 >     * @param transformer a function returning the transformation
3628 >     * for an element
3629 >     * @param basis the identity (initial default value) for the reduction
3630 >     * @param reducer a commutative associative combining function
3631 >     * @return the result of accumulating the given transformation
3632 >     * of all (key, value) pairs
3633 >     * @since 1.8
3634 >     */
3635 >    public double reduceToDouble(long parallelismThreshold,
3636 >                                 ObjectByObjectToDouble<? super K, ? super V> transformer,
3637 >                                 double basis,
3638 >                                 DoubleByDoubleToDouble reducer) {
3639 >        if (transformer == null || reducer == null)
3640              throw new NullPointerException();
3641 <        return internalGet(key) != null;
3641 >        return new MapReduceMappingsToDoubleTask<K,V>
3642 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3643 >             null, transformer, basis, reducer).invoke();
3644      }
3645  
3646      /**
3647 <     * Returns {@code true} if this map maps one or more keys to the
3648 <     * specified value. Note: This method requires a full internal
3649 <     * traversal of the hash table, and so is much slower than
3650 <     * method {@code containsKey}.
3651 <     *
3652 <     * @param value value whose presence in this map is to be tested
3653 <     * @return {@code true} if this map maps one or more keys to the
3654 <     *         specified value
3655 <     * @throws NullPointerException if the specified value is null
3656 <     */
3657 <    public boolean containsValue(Object value) {
3658 <        if (value == null)
3647 >     * Returns the result of accumulating the given transformation
3648 >     * of all (key, value) pairs using the given reducer to
3649 >     * combine values, and the given basis as an identity value.
3650 >     *
3651 >     * @param parallelismThreshold the (estimated) number of elements
3652 >     * needed for this operation to be executed in parallel
3653 >     * @param transformer a function returning the transformation
3654 >     * for an element
3655 >     * @param basis the identity (initial default value) for the reduction
3656 >     * @param reducer a commutative associative combining function
3657 >     * @return the result of accumulating the given transformation
3658 >     * of all (key, value) pairs
3659 >     * @since 1.8
3660 >     */
3661 >    public long reduceToLong(long parallelismThreshold,
3662 >                             ObjectByObjectToLong<? super K, ? super V> transformer,
3663 >                             long basis,
3664 >                             LongByLongToLong reducer) {
3665 >        if (transformer == null || reducer == null)
3666              throw new NullPointerException();
3667 <        return new HashIterator().containsVal(value);
3667 >        return new MapReduceMappingsToLongTask<K,V>
3668 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3669 >             null, transformer, basis, reducer).invoke();
3670      }
3671  
3672      /**
3673 <     * Legacy method testing if some key maps into the specified value
3674 <     * in this table.  This method is identical in functionality to
3675 <     * {@link #containsValue}, and exists solely to ensure
3676 <     * full compatibility with class {@link java.util.Hashtable},
3677 <     * which supported this method prior to introduction of the
3678 <     * Java Collections framework.
3679 <     *
3680 <     * @param  value a value to search for
3681 <     * @return {@code true} if and only if some key maps to the
3682 <     *         {@code value} argument in this table as
3683 <     *         determined by the {@code equals} method;
3684 <     *         {@code false} otherwise
3685 <     * @throws NullPointerException if the specified value is null
3686 <     */
3687 <    public boolean contains(Object value) {
3688 <        return containsValue(value);
3673 >     * Returns the result of accumulating the given transformation
3674 >     * of all (key, value) pairs using the given reducer to
3675 >     * combine values, and the given basis as an identity value.
3676 >     *
3677 >     * @param parallelismThreshold the (estimated) number of elements
3678 >     * needed for this operation to be executed in parallel
3679 >     * @param transformer a function returning the transformation
3680 >     * for an element
3681 >     * @param basis the identity (initial default value) for the reduction
3682 >     * @param reducer a commutative associative combining function
3683 >     * @return the result of accumulating the given transformation
3684 >     * of all (key, value) pairs
3685 >     * @since 1.8
3686 >     */
3687 >    public int reduceToInt(long parallelismThreshold,
3688 >                           ObjectByObjectToInt<? super K, ? super V> transformer,
3689 >                           int basis,
3690 >                           IntByIntToInt reducer) {
3691 >        if (transformer == null || reducer == null)
3692 >            throw new NullPointerException();
3693 >        return new MapReduceMappingsToIntTask<K,V>
3694 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3695 >             null, transformer, basis, reducer).invoke();
3696      }
3697  
3698      /**
3699 <     * Maps the specified key to the specified value in this table.
1059 <     * Neither the key nor the value can be null.
1060 <     *
1061 <     * <p> The value can be retrieved by calling the {@code get} method
1062 <     * with a key that is equal to the original key.
3699 >     * Performs the given action for each key.
3700       *
3701 <     * @param key key with which the specified value is to be associated
3702 <     * @param value value to be associated with the specified key
3703 <     * @return the previous value associated with {@code key}, or
3704 <     *         {@code null} if there was no mapping for {@code key}
1068 <     * @throws NullPointerException if the specified key or value is null
3701 >     * @param parallelismThreshold the (estimated) number of elements
3702 >     * needed for this operation to be executed in parallel
3703 >     * @param action the action
3704 >     * @since 1.8
3705       */
3706 <    @SuppressWarnings("unchecked")
3707 <    public V put(K key, V value) {
3708 <        if (key == null || value == null)
3709 <            throw new NullPointerException();
3710 <        return (V)internalPut(key, value, true);
3706 >    public void forEachKey(long parallelismThreshold,
3707 >                           Action<? super K> action) {
3708 >        if (action == null) throw new NullPointerException();
3709 >        new ForEachKeyTask<K,V>
3710 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3711 >             action).invoke();
3712      }
3713  
3714      /**
3715 <     * {@inheritDoc}
3715 >     * Performs the given action for each non-null transformation
3716 >     * of each key.
3717       *
3718 <     * @return the previous value associated with the specified key,
3719 <     *         or {@code null} if there was no mapping for the key
3720 <     * @throws NullPointerException if the specified key or value is null
3718 >     * @param parallelismThreshold the (estimated) number of elements
3719 >     * needed for this operation to be executed in parallel
3720 >     * @param transformer a function returning the transformation
3721 >     * for an element, or null if there is no transformation (in
3722 >     * which case the action is not applied)
3723 >     * @param action the action
3724 >     * @since 1.8
3725       */
3726 <    @SuppressWarnings("unchecked")
3727 <    public V putIfAbsent(K key, V value) {
3728 <        if (key == null || value == null)
3726 >    public <U> void forEachKey(long parallelismThreshold,
3727 >                               Fun<? super K, ? extends U> transformer,
3728 >                               Action<? super U> action) {
3729 >        if (transformer == null || action == null)
3730 >            throw new NullPointerException();
3731 >        new ForEachTransformedKeyTask<K,V,U>
3732 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3733 >             transformer, action).invoke();
3734 >    }
3735 >
3736 >    /**
3737 >     * Returns a non-null result from applying the given search
3738 >     * function on each key, or null if none. Upon success,
3739 >     * further element processing is suppressed and the results of
3740 >     * any other parallel invocations of the search function are
3741 >     * ignored.
3742 >     *
3743 >     * @param parallelismThreshold the (estimated) number of elements
3744 >     * needed for this operation to be executed in parallel
3745 >     * @param searchFunction a function returning a non-null
3746 >     * result on success, else null
3747 >     * @return a non-null result from applying the given search
3748 >     * function on each key, or null if none
3749 >     * @since 1.8
3750 >     */
3751 >    public <U> U searchKeys(long parallelismThreshold,
3752 >                            Fun<? super K, ? extends U> searchFunction) {
3753 >        if (searchFunction == null) throw new NullPointerException();
3754 >        return new SearchKeysTask<K,V,U>
3755 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3756 >             searchFunction, new AtomicReference<U>()).invoke();
3757 >    }
3758 >
3759 >    /**
3760 >     * Returns the result of accumulating all keys using the given
3761 >     * reducer to combine values, or null if none.
3762 >     *
3763 >     * @param parallelismThreshold the (estimated) number of elements
3764 >     * needed for this operation to be executed in parallel
3765 >     * @param reducer a commutative associative combining function
3766 >     * @return the result of accumulating all keys using the given
3767 >     * reducer to combine values, or null if none
3768 >     * @since 1.8
3769 >     */
3770 >    public K reduceKeys(long parallelismThreshold,
3771 >                        BiFun<? super K, ? super K, ? extends K> reducer) {
3772 >        if (reducer == null) throw new NullPointerException();
3773 >        return new ReduceKeysTask<K,V>
3774 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3775 >             null, reducer).invoke();
3776 >    }
3777 >
3778 >    /**
3779 >     * Returns the result of accumulating the given transformation
3780 >     * of all keys using the given reducer to combine values, or
3781 >     * null if none.
3782 >     *
3783 >     * @param parallelismThreshold the (estimated) number of elements
3784 >     * needed for this operation to be executed in parallel
3785 >     * @param transformer a function returning the transformation
3786 >     * for an element, or null if there is no transformation (in
3787 >     * which case it is not combined)
3788 >     * @param reducer a commutative associative combining function
3789 >     * @return the result of accumulating the given transformation
3790 >     * of all keys
3791 >     * @since 1.8
3792 >     */
3793 >    public <U> U reduceKeys(long parallelismThreshold,
3794 >                            Fun<? super K, ? extends U> transformer,
3795 >         BiFun<? super U, ? super U, ? extends U> reducer) {
3796 >        if (transformer == null || reducer == null)
3797              throw new NullPointerException();
3798 <        return (V)internalPut(key, value, false);
3798 >        return new MapReduceKeysTask<K,V,U>
3799 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3800 >             null, transformer, reducer).invoke();
3801      }
3802  
3803      /**
3804 <     * Copies all of the mappings from the specified map to this one.
3805 <     * These mappings replace any mappings that this map had for any of the
3806 <     * keys currently in the specified map.
3807 <     *
3808 <     * @param m mappings to be stored in this map
3809 <     */
3810 <    public void putAll(Map<? extends K, ? extends V> m) {
3811 <        if (m == null)
3804 >     * Returns the result of accumulating the given transformation
3805 >     * of all keys using the given reducer to combine values, and
3806 >     * the given basis as an identity value.
3807 >     *
3808 >     * @param parallelismThreshold the (estimated) number of elements
3809 >     * needed for this operation to be executed in parallel
3810 >     * @param transformer a function returning the transformation
3811 >     * for an element
3812 >     * @param basis the identity (initial default value) for the reduction
3813 >     * @param reducer a commutative associative combining function
3814 >     * @return the result of accumulating the given transformation
3815 >     * of all keys
3816 >     * @since 1.8
3817 >     */
3818 >    public double reduceKeysToDouble(long parallelismThreshold,
3819 >                                     ObjectToDouble<? super K> transformer,
3820 >                                     double basis,
3821 >                                     DoubleByDoubleToDouble reducer) {
3822 >        if (transformer == null || reducer == null)
3823              throw new NullPointerException();
3824 <        internalPutAll(m);
3824 >        return new MapReduceKeysToDoubleTask<K,V>
3825 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3826 >             null, transformer, basis, reducer).invoke();
3827      }
3828  
3829      /**
3830 <     * If the specified key is not already associated with a value,
3831 <     * computes its value using the given mappingFunction, and if
3832 <     * non-null, enters it into the map.  This is equivalent to
3833 <     *
3834 <     * <pre>
3835 <     *   if (map.containsKey(key))
3836 <     *       return map.get(key);
3837 <     *   value = mappingFunction.map(key);
3838 <     *   if (value != null)
3839 <     *      map.put(key, value);
3840 <     *   return value;
3841 <     * </pre>
3842 <     *
3843 <     * except that the action is performed atomically.  Some attempted
3844 <     * update operations on this map by other threads may be blocked
3845 <     * while computation is in progress, so the computation should be
3846 <     * short and simple, and must not attempt to update any other
3847 <     * mappings of this Map. The most appropriate usage is to
3848 <     * construct a new object serving as an initial mapped value, or
1124 <     * memoized result, as in:
1125 <     * <pre>{@code
1126 <     * map.computeIfAbsent(key, new MappingFunction<K, V>() {
1127 <     *   public V map(K k) { return new Value(f(k)); }};
1128 <     * }</pre>
1129 <     *
1130 <     * @param key key with which the specified value is to be associated
1131 <     * @param mappingFunction the function to compute a value
1132 <     * @return the current (existing or computed) value associated with
1133 <     *         the specified key, or {@code null} if the computation
1134 <     *         returned {@code null}.
1135 <     * @throws NullPointerException if the specified key or mappingFunction
1136 <     *         is null,
1137 <     * @throws IllegalStateException if the computation detectably
1138 <     *         attempts a recursive update to this map that would
1139 <     *         otherwise never complete.
1140 <     * @throws RuntimeException or Error if the mappingFunction does so,
1141 <     *         in which case the mapping is left unestablished.
1142 <     */
1143 <    public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
1144 <        if (key == null || mappingFunction == null)
3830 >     * Returns the result of accumulating the given transformation
3831 >     * of all keys using the given reducer to combine values, and
3832 >     * the given basis as an identity value.
3833 >     *
3834 >     * @param parallelismThreshold the (estimated) number of elements
3835 >     * needed for this operation to be executed in parallel
3836 >     * @param transformer a function returning the transformation
3837 >     * for an element
3838 >     * @param basis the identity (initial default value) for the reduction
3839 >     * @param reducer a commutative associative combining function
3840 >     * @return the result of accumulating the given transformation
3841 >     * of all keys
3842 >     * @since 1.8
3843 >     */
3844 >    public long reduceKeysToLong(long parallelismThreshold,
3845 >                                 ObjectToLong<? super K> transformer,
3846 >                                 long basis,
3847 >                                 LongByLongToLong reducer) {
3848 >        if (transformer == null || reducer == null)
3849              throw new NullPointerException();
3850 <        return internalCompute(key, mappingFunction, false);
3850 >        return new MapReduceKeysToLongTask<K,V>
3851 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3852 >             null, transformer, basis, reducer).invoke();
3853      }
3854  
3855      /**
3856 <     * Computes the value associated with the given key using the given
3857 <     * mappingFunction, and if non-null, enters it into the map.  This
3858 <     * is equivalent to
3859 <     *
3860 <     * <pre>
3861 <     *   value = mappingFunction.map(key);
3862 <     *   if (value != null)
3863 <     *      map.put(key, value);
3864 <     *   else
3865 <     *      value = map.get(key);
3866 <     *   return value;
3867 <     * </pre>
3868 <     *
3869 <     * except that the action is performed atomically.  Some attempted
3870 <     * update operations on this map by other threads may be blocked
3871 <     * while computation is in progress, so the computation should be
3872 <     * short and simple, and must not attempt to update any other
3873 <     * mappings of this Map.
3874 <     *
1169 <     * @param key key with which the specified value is to be associated
1170 <     * @param mappingFunction the function to compute a value
1171 <     * @return the current value associated with
1172 <     *         the specified key, or {@code null} if the computation
1173 <     *         returned {@code null} and the value was not otherwise present.
1174 <     * @throws NullPointerException if the specified key or mappingFunction
1175 <     *         is null,
1176 <     * @throws IllegalStateException if the computation detectably
1177 <     *         attempts a recursive update to this map that would
1178 <     *         otherwise never complete.
1179 <     * @throws RuntimeException or Error if the mappingFunction does so,
1180 <     *         in which case the mapping is unchanged.
1181 <     */
1182 <    public V compute(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
1183 <        if (key == null || mappingFunction == null)
3856 >     * Returns the result of accumulating the given transformation
3857 >     * of all keys using the given reducer to combine values, and
3858 >     * the given basis as an identity value.
3859 >     *
3860 >     * @param parallelismThreshold the (estimated) number of elements
3861 >     * needed for this operation to be executed in parallel
3862 >     * @param transformer a function returning the transformation
3863 >     * for an element
3864 >     * @param basis the identity (initial default value) for the reduction
3865 >     * @param reducer a commutative associative combining function
3866 >     * @return the result of accumulating the given transformation
3867 >     * of all keys
3868 >     * @since 1.8
3869 >     */
3870 >    public int reduceKeysToInt(long parallelismThreshold,
3871 >                               ObjectToInt<? super K> transformer,
3872 >                               int basis,
3873 >                               IntByIntToInt reducer) {
3874 >        if (transformer == null || reducer == null)
3875              throw new NullPointerException();
3876 <        return internalCompute(key, mappingFunction, true);
3876 >        return new MapReduceKeysToIntTask<K,V>
3877 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3878 >             null, transformer, basis, reducer).invoke();
3879      }
3880  
3881      /**
3882 <     * Removes the key (and its corresponding value) from this map.
1190 <     * This method does nothing if the key is not in the map.
3882 >     * Performs the given action for each value.
3883       *
3884 <     * @param  key the key that needs to be removed
3885 <     * @return the previous value associated with {@code key}, or
3886 <     *         {@code null} if there was no mapping for {@code key}
3887 <     * @throws NullPointerException if the specified key is null
3884 >     * @param parallelismThreshold the (estimated) number of elements
3885 >     * needed for this operation to be executed in parallel
3886 >     * @param action the action
3887 >     * @since 1.8
3888       */
3889 <    @SuppressWarnings("unchecked")
3890 <    public V remove(Object key) {
3891 <        if (key == null)
3889 >    public void forEachValue(long parallelismThreshold,
3890 >                             Action<? super V> action) {
3891 >        if (action == null)
3892              throw new NullPointerException();
3893 <        return (V)internalReplace(key, null, null);
3893 >        new ForEachValueTask<K,V>
3894 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3895 >             action).invoke();
3896      }
3897  
3898      /**
3899 <     * {@inheritDoc}
3900 <     *
3901 <     * @throws NullPointerException if the specified key is null
3902 <     */
3903 <    public boolean remove(Object key, Object value) {
3904 <        if (key == null)
3899 >     * Performs the given action for each non-null transformation
3900 >     * of each value.
3901 >     *
3902 >     * @param parallelismThreshold the (estimated) number of elements
3903 >     * needed for this operation to be executed in parallel
3904 >     * @param transformer a function returning the transformation
3905 >     * for an element, or null if there is no transformation (in
3906 >     * which case the action is not applied)
3907 >     * @param action the action
3908 >     * @since 1.8
3909 >     */
3910 >    public <U> void forEachValue(long parallelismThreshold,
3911 >                                 Fun<? super V, ? extends U> transformer,
3912 >                                 Action<? super U> action) {
3913 >        if (transformer == null || action == null)
3914              throw new NullPointerException();
3915 <        if (value == null)
3916 <            return false;
3917 <        return internalReplace(key, null, value) != null;
3915 >        new ForEachTransformedValueTask<K,V,U>
3916 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3917 >             transformer, action).invoke();
3918 >    }
3919 >
3920 >    /**
3921 >     * Returns a non-null result from applying the given search
3922 >     * function on each value, or null if none.  Upon success,
3923 >     * further element processing is suppressed and the results of
3924 >     * any other parallel invocations of the search function are
3925 >     * ignored.
3926 >     *
3927 >     * @param parallelismThreshold the (estimated) number of elements
3928 >     * needed for this operation to be executed in parallel
3929 >     * @param searchFunction a function returning a non-null
3930 >     * result on success, else null
3931 >     * @return a non-null result from applying the given search
3932 >     * function on each value, or null if none
3933 >     * @since 1.8
3934 >     */
3935 >    public <U> U searchValues(long parallelismThreshold,
3936 >                              Fun<? super V, ? extends U> searchFunction) {
3937 >        if (searchFunction == null) throw new NullPointerException();
3938 >        return new SearchValuesTask<K,V,U>
3939 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3940 >             searchFunction, new AtomicReference<U>()).invoke();
3941 >    }
3942 >
3943 >    /**
3944 >     * Returns the result of accumulating all values using the
3945 >     * given reducer to combine values, or null if none.
3946 >     *
3947 >     * @param parallelismThreshold the (estimated) number of elements
3948 >     * needed for this operation to be executed in parallel
3949 >     * @param reducer a commutative associative combining function
3950 >     * @return the result of accumulating all values
3951 >     * @since 1.8
3952 >     */
3953 >    public V reduceValues(long parallelismThreshold,
3954 >                          BiFun<? super V, ? super V, ? extends V> reducer) {
3955 >        if (reducer == null) throw new NullPointerException();
3956 >        return new ReduceValuesTask<K,V>
3957 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3958 >             null, reducer).invoke();
3959 >    }
3960 >
3961 >    /**
3962 >     * Returns the result of accumulating the given transformation
3963 >     * of all values using the given reducer to combine values, or
3964 >     * null if none.
3965 >     *
3966 >     * @param parallelismThreshold the (estimated) number of elements
3967 >     * needed for this operation to be executed in parallel
3968 >     * @param transformer a function returning the transformation
3969 >     * for an element, or null if there is no transformation (in
3970 >     * which case it is not combined)
3971 >     * @param reducer a commutative associative combining function
3972 >     * @return the result of accumulating the given transformation
3973 >     * of all values
3974 >     * @since 1.8
3975 >     */
3976 >    public <U> U reduceValues(long parallelismThreshold,
3977 >                              Fun<? super V, ? extends U> transformer,
3978 >                              BiFun<? super U, ? super U, ? extends U> reducer) {
3979 >        if (transformer == null || reducer == null)
3980 >            throw new NullPointerException();
3981 >        return new MapReduceValuesTask<K,V,U>
3982 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3983 >             null, transformer, reducer).invoke();
3984      }
3985  
3986      /**
3987 <     * {@inheritDoc}
3988 <     *
3989 <     * @throws NullPointerException if any of the arguments are null
3990 <     */
3991 <    public boolean replace(K key, V oldValue, V newValue) {
3992 <        if (key == null || oldValue == null || newValue == null)
3987 >     * Returns the result of accumulating the given transformation
3988 >     * of all values using the given reducer to combine values,
3989 >     * and the given basis as an identity value.
3990 >     *
3991 >     * @param parallelismThreshold the (estimated) number of elements
3992 >     * needed for this operation to be executed in parallel
3993 >     * @param transformer a function returning the transformation
3994 >     * for an element
3995 >     * @param basis the identity (initial default value) for the reduction
3996 >     * @param reducer a commutative associative combining function
3997 >     * @return the result of accumulating the given transformation
3998 >     * of all values
3999 >     * @since 1.8
4000 >     */
4001 >    public double reduceValuesToDouble(long parallelismThreshold,
4002 >                                       ObjectToDouble<? super V> transformer,
4003 >                                       double basis,
4004 >                                       DoubleByDoubleToDouble reducer) {
4005 >        if (transformer == null || reducer == null)
4006              throw new NullPointerException();
4007 <        return internalReplace(key, newValue, oldValue) != null;
4007 >        return new MapReduceValuesToDoubleTask<K,V>
4008 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4009 >             null, transformer, basis, reducer).invoke();
4010      }
4011  
4012      /**
4013 <     * {@inheritDoc}
4014 <     *
4015 <     * @return the previous value associated with the specified key,
4016 <     *         or {@code null} if there was no mapping for the key
4017 <     * @throws NullPointerException if the specified key or value is null
4018 <     */
4019 <    @SuppressWarnings("unchecked")
4020 <    public V replace(K key, V value) {
4021 <        if (key == null || value == null)
4013 >     * Returns the result of accumulating the given transformation
4014 >     * of all values using the given reducer to combine values,
4015 >     * and the given basis as an identity value.
4016 >     *
4017 >     * @param parallelismThreshold the (estimated) number of elements
4018 >     * needed for this operation to be executed in parallel
4019 >     * @param transformer a function returning the transformation
4020 >     * for an element
4021 >     * @param basis the identity (initial default value) for the reduction
4022 >     * @param reducer a commutative associative combining function
4023 >     * @return the result of accumulating the given transformation
4024 >     * of all values
4025 >     * @since 1.8
4026 >     */
4027 >    public long reduceValuesToLong(long parallelismThreshold,
4028 >                                   ObjectToLong<? super V> transformer,
4029 >                                   long basis,
4030 >                                   LongByLongToLong reducer) {
4031 >        if (transformer == null || reducer == null)
4032              throw new NullPointerException();
4033 <        return (V)internalReplace(key, value, null);
4033 >        return new MapReduceValuesToLongTask<K,V>
4034 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4035 >             null, transformer, basis, reducer).invoke();
4036      }
4037  
4038      /**
4039 <     * Removes all of the mappings from this map.
4040 <     */
4041 <    public void clear() {
4042 <        internalClear();
4039 >     * Returns the result of accumulating the given transformation
4040 >     * of all values using the given reducer to combine values,
4041 >     * and the given basis as an identity value.
4042 >     *
4043 >     * @param parallelismThreshold the (estimated) number of elements
4044 >     * needed for this operation to be executed in parallel
4045 >     * @param transformer a function returning the transformation
4046 >     * for an element
4047 >     * @param basis the identity (initial default value) for the reduction
4048 >     * @param reducer a commutative associative combining function
4049 >     * @return the result of accumulating the given transformation
4050 >     * of all values
4051 >     * @since 1.8
4052 >     */
4053 >    public int reduceValuesToInt(long parallelismThreshold,
4054 >                                 ObjectToInt<? super V> transformer,
4055 >                                 int basis,
4056 >                                 IntByIntToInt reducer) {
4057 >        if (transformer == null || reducer == null)
4058 >            throw new NullPointerException();
4059 >        return new MapReduceValuesToIntTask<K,V>
4060 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4061 >             null, transformer, basis, reducer).invoke();
4062      }
4063  
4064      /**
4065 <     * Returns a {@link Set} view of the keys contained in this map.
1251 <     * The set is backed by the map, so changes to the map are
1252 <     * reflected in the set, and vice-versa.  The set supports element
1253 <     * removal, which removes the corresponding mapping from this map,
1254 <     * via the {@code Iterator.remove}, {@code Set.remove},
1255 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
1256 <     * operations.  It does not support the {@code add} or
1257 <     * {@code addAll} operations.
4065 >     * Performs the given action for each entry.
4066       *
4067 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4068 <     * that will never throw {@link ConcurrentModificationException},
4069 <     * and guarantees to traverse elements as they existed upon
4070 <     * construction of the iterator, and may (but is not guaranteed to)
1263 <     * reflect any modifications subsequent to construction.
4067 >     * @param parallelismThreshold the (estimated) number of elements
4068 >     * needed for this operation to be executed in parallel
4069 >     * @param action the action
4070 >     * @since 1.8
4071       */
4072 <    public Set<K> keySet() {
4073 <        Set<K> ks = keySet;
4074 <        return (ks != null) ? ks : (keySet = new KeySet());
4072 >    public void forEachEntry(long parallelismThreshold,
4073 >                             Action<? super Map.Entry<K,V>> action) {
4074 >        if (action == null) throw new NullPointerException();
4075 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4076 >                                  action).invoke();
4077      }
4078  
4079      /**
4080 <     * Returns a {@link Collection} view of the values contained in this map.
4081 <     * The collection is backed by the map, so changes to the map are
1273 <     * reflected in the collection, and vice-versa.  The collection
1274 <     * supports element removal, which removes the corresponding
1275 <     * mapping from this map, via the {@code Iterator.remove},
1276 <     * {@code Collection.remove}, {@code removeAll},
1277 <     * {@code retainAll}, and {@code clear} operations.  It does not
1278 <     * support the {@code add} or {@code addAll} operations.
4080 >     * Performs the given action for each non-null transformation
4081 >     * of each entry.
4082       *
4083 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4084 <     * that will never throw {@link ConcurrentModificationException},
4085 <     * and guarantees to traverse elements as they existed upon
4086 <     * construction of the iterator, and may (but is not guaranteed to)
4087 <     * reflect any modifications subsequent to construction.
4083 >     * @param parallelismThreshold the (estimated) number of elements
4084 >     * needed for this operation to be executed in parallel
4085 >     * @param transformer a function returning the transformation
4086 >     * for an element, or null if there is no transformation (in
4087 >     * which case the action is not applied)
4088 >     * @param action the action
4089 >     * @since 1.8
4090       */
4091 <    public Collection<V> values() {
4092 <        Collection<V> vs = values;
4093 <        return (vs != null) ? vs : (values = new Values());
4091 >    public <U> void forEachEntry(long parallelismThreshold,
4092 >                                 Fun<Map.Entry<K,V>, ? extends U> transformer,
4093 >                                 Action<? super U> action) {
4094 >        if (transformer == null || action == null)
4095 >            throw new NullPointerException();
4096 >        new ForEachTransformedEntryTask<K,V,U>
4097 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4098 >             transformer, action).invoke();
4099 >    }
4100 >
4101 >    /**
4102 >     * Returns a non-null result from applying the given search
4103 >     * function on each entry, or null if none.  Upon success,
4104 >     * further element processing is suppressed and the results of
4105 >     * any other parallel invocations of the search function are
4106 >     * ignored.
4107 >     *
4108 >     * @param parallelismThreshold the (estimated) number of elements
4109 >     * needed for this operation to be executed in parallel
4110 >     * @param searchFunction a function returning a non-null
4111 >     * result on success, else null
4112 >     * @return a non-null result from applying the given search
4113 >     * function on each entry, or null if none
4114 >     * @since 1.8
4115 >     */
4116 >    public <U> U searchEntries(long parallelismThreshold,
4117 >                               Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4118 >        if (searchFunction == null) throw new NullPointerException();
4119 >        return new SearchEntriesTask<K,V,U>
4120 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4121 >             searchFunction, new AtomicReference<U>()).invoke();
4122 >    }
4123 >
4124 >    /**
4125 >     * Returns the result of accumulating all entries using the
4126 >     * given reducer to combine values, or null if none.
4127 >     *
4128 >     * @param parallelismThreshold the (estimated) number of elements
4129 >     * needed for this operation to be executed in parallel
4130 >     * @param reducer a commutative associative combining function
4131 >     * @return the result of accumulating all entries
4132 >     * @since 1.8
4133 >     */
4134 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4135 >                                        BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4136 >        if (reducer == null) throw new NullPointerException();
4137 >        return new ReduceEntriesTask<K,V>
4138 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4139 >             null, reducer).invoke();
4140 >    }
4141 >
4142 >    /**
4143 >     * Returns the result of accumulating the given transformation
4144 >     * of all entries using the given reducer to combine values,
4145 >     * or null if none.
4146 >     *
4147 >     * @param parallelismThreshold the (estimated) number of elements
4148 >     * needed for this operation to be executed in parallel
4149 >     * @param transformer a function returning the transformation
4150 >     * for an element, or null if there is no transformation (in
4151 >     * which case it is not combined)
4152 >     * @param reducer a commutative associative combining function
4153 >     * @return the result of accumulating the given transformation
4154 >     * of all entries
4155 >     * @since 1.8
4156 >     */
4157 >    public <U> U reduceEntries(long parallelismThreshold,
4158 >                               Fun<Map.Entry<K,V>, ? extends U> transformer,
4159 >                               BiFun<? super U, ? super U, ? extends U> reducer) {
4160 >        if (transformer == null || reducer == null)
4161 >            throw new NullPointerException();
4162 >        return new MapReduceEntriesTask<K,V,U>
4163 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4164 >             null, transformer, reducer).invoke();
4165      }
4166  
4167      /**
4168 <     * Returns a {@link Set} view of the mappings contained in this map.
4169 <     * The set is backed by the map, so changes to the map are
4170 <     * reflected in the set, and vice-versa.  The set supports element
4171 <     * removal, which removes the corresponding mapping from the map,
4172 <     * via the {@code Iterator.remove}, {@code Set.remove},
4173 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
4174 <     * operations.  It does not support the {@code add} or
4175 <     * {@code addAll} operations.
4176 <     *
4177 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4178 <     * that will never throw {@link ConcurrentModificationException},
4179 <     * and guarantees to traverse elements as they existed upon
4180 <     * construction of the iterator, and may (but is not guaranteed to)
4181 <     * reflect any modifications subsequent to construction.
4182 <     */
4183 <    public Set<Map.Entry<K,V>> entrySet() {
4184 <        Set<Map.Entry<K,V>> es = entrySet;
4185 <        return (es != null) ? es : (entrySet = new EntrySet());
4168 >     * Returns the result of accumulating the given transformation
4169 >     * of all entries using the given reducer to combine values,
4170 >     * and the given basis as an identity value.
4171 >     *
4172 >     * @param parallelismThreshold the (estimated) number of elements
4173 >     * needed for this operation to be executed in parallel
4174 >     * @param transformer a function returning the transformation
4175 >     * for an element
4176 >     * @param basis the identity (initial default value) for the reduction
4177 >     * @param reducer a commutative associative combining function
4178 >     * @return the result of accumulating the given transformation
4179 >     * of all entries
4180 >     * @since 1.8
4181 >     */
4182 >    public double reduceEntriesToDouble(long parallelismThreshold,
4183 >                                        ObjectToDouble<Map.Entry<K,V>> transformer,
4184 >                                        double basis,
4185 >                                        DoubleByDoubleToDouble reducer) {
4186 >        if (transformer == null || reducer == null)
4187 >            throw new NullPointerException();
4188 >        return new MapReduceEntriesToDoubleTask<K,V>
4189 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4190 >             null, transformer, basis, reducer).invoke();
4191      }
4192  
4193      /**
4194 <     * Returns an enumeration of the keys in this table.
4195 <     *
4196 <     * @return an enumeration of the keys in this table
4197 <     * @see #keySet()
4198 <     */
4199 <    public Enumeration<K> keys() {
4200 <        return new KeyIterator();
4194 >     * Returns the result of accumulating the given transformation
4195 >     * of all entries using the given reducer to combine values,
4196 >     * and the given basis as an identity value.
4197 >     *
4198 >     * @param parallelismThreshold the (estimated) number of elements
4199 >     * needed for this operation to be executed in parallel
4200 >     * @param transformer a function returning the transformation
4201 >     * for an element
4202 >     * @param basis the identity (initial default value) for the reduction
4203 >     * @param reducer a commutative associative combining function
4204 >     * @return the result of accumulating the given transformation
4205 >     * of all entries
4206 >     * @since 1.8
4207 >     */
4208 >    public long reduceEntriesToLong(long parallelismThreshold,
4209 >                                    ObjectToLong<Map.Entry<K,V>> transformer,
4210 >                                    long basis,
4211 >                                    LongByLongToLong reducer) {
4212 >        if (transformer == null || reducer == null)
4213 >            throw new NullPointerException();
4214 >        return new MapReduceEntriesToLongTask<K,V>
4215 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4216 >             null, transformer, basis, reducer).invoke();
4217      }
4218  
4219      /**
4220 <     * Returns an enumeration of the values in this table.
4221 <     *
4222 <     * @return an enumeration of the values in this table
4223 <     * @see #values()
4224 <     */
4225 <    public Enumeration<V> elements() {
4226 <        return new ValueIterator();
4220 >     * Returns the result of accumulating the given transformation
4221 >     * of all entries using the given reducer to combine values,
4222 >     * and the given basis as an identity value.
4223 >     *
4224 >     * @param parallelismThreshold the (estimated) number of elements
4225 >     * needed for this operation to be executed in parallel
4226 >     * @param transformer a function returning the transformation
4227 >     * for an element
4228 >     * @param basis the identity (initial default value) for the reduction
4229 >     * @param reducer a commutative associative combining function
4230 >     * @return the result of accumulating the given transformation
4231 >     * of all entries
4232 >     * @since 1.8
4233 >     */
4234 >    public int reduceEntriesToInt(long parallelismThreshold,
4235 >                                  ObjectToInt<Map.Entry<K,V>> transformer,
4236 >                                  int basis,
4237 >                                  IntByIntToInt reducer) {
4238 >        if (transformer == null || reducer == null)
4239 >            throw new NullPointerException();
4240 >        return new MapReduceEntriesToIntTask<K,V>
4241 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4242 >             null, transformer, basis, reducer).invoke();
4243      }
4244  
4245 +
4246 +    /* ----------------Views -------------- */
4247 +
4248      /**
4249 <     * Returns the hash code value for this {@link Map}, i.e.,
1334 <     * the sum of, for each key-value pair in the map,
1335 <     * {@code key.hashCode() ^ value.hashCode()}.
1336 <     *
1337 <     * @return the hash code value for this map
4249 >     * Base class for views.
4250       */
4251 <    public int hashCode() {
4252 <        return new HashIterator().mapHashCode();
4251 >    abstract static class CollectionView<K,V,E>
4252 >        implements Collection<E>, java.io.Serializable {
4253 >        private static final long serialVersionUID = 7249069246763182397L;
4254 >        final ConcurrentHashMapV8<K,V> map;
4255 >        CollectionView(ConcurrentHashMapV8<K,V> map)  { this.map = map; }
4256 >
4257 >        /**
4258 >         * Returns the map backing this view.
4259 >         *
4260 >         * @return the map backing this view
4261 >         */
4262 >        public ConcurrentHashMapV8<K,V> getMap() { return map; }
4263 >
4264 >        /**
4265 >         * Removes all of the elements from this view, by removing all
4266 >         * the mappings from the map backing this view.
4267 >         */
4268 >        public final void clear()      { map.clear(); }
4269 >        public final int size()        { return map.size(); }
4270 >        public final boolean isEmpty() { return map.isEmpty(); }
4271 >
4272 >        // implementations below rely on concrete classes supplying these
4273 >        // abstract methods
4274 >        /**
4275 >         * Returns a "weakly consistent" iterator that will never
4276 >         * throw {@link ConcurrentModificationException}, and
4277 >         * guarantees to traverse elements as they existed upon
4278 >         * construction of the iterator, and may (but is not
4279 >         * guaranteed to) reflect any modifications subsequent to
4280 >         * construction.
4281 >         */
4282 >        public abstract Iterator<E> iterator();
4283 >        public abstract boolean contains(Object o);
4284 >        public abstract boolean remove(Object o);
4285 >
4286 >        private static final String oomeMsg = "Required array size too large";
4287 >
4288 >        public final Object[] toArray() {
4289 >            long sz = map.mappingCount();
4290 >            if (sz > MAX_ARRAY_SIZE)
4291 >                throw new OutOfMemoryError(oomeMsg);
4292 >            int n = (int)sz;
4293 >            Object[] r = new Object[n];
4294 >            int i = 0;
4295 >            for (E e : this) {
4296 >                if (i == n) {
4297 >                    if (n >= MAX_ARRAY_SIZE)
4298 >                        throw new OutOfMemoryError(oomeMsg);
4299 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4300 >                        n = MAX_ARRAY_SIZE;
4301 >                    else
4302 >                        n += (n >>> 1) + 1;
4303 >                    r = Arrays.copyOf(r, n);
4304 >                }
4305 >                r[i++] = e;
4306 >            }
4307 >            return (i == n) ? r : Arrays.copyOf(r, i);
4308 >        }
4309 >
4310 >        @SuppressWarnings("unchecked")
4311 >        public final <T> T[] toArray(T[] a) {
4312 >            long sz = map.mappingCount();
4313 >            if (sz > MAX_ARRAY_SIZE)
4314 >                throw new OutOfMemoryError(oomeMsg);
4315 >            int m = (int)sz;
4316 >            T[] r = (a.length >= m) ? a :
4317 >                (T[])java.lang.reflect.Array
4318 >                .newInstance(a.getClass().getComponentType(), m);
4319 >            int n = r.length;
4320 >            int i = 0;
4321 >            for (E e : this) {
4322 >                if (i == n) {
4323 >                    if (n >= MAX_ARRAY_SIZE)
4324 >                        throw new OutOfMemoryError(oomeMsg);
4325 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4326 >                        n = MAX_ARRAY_SIZE;
4327 >                    else
4328 >                        n += (n >>> 1) + 1;
4329 >                    r = Arrays.copyOf(r, n);
4330 >                }
4331 >                r[i++] = (T)e;
4332 >            }
4333 >            if (a == r && i < n) {
4334 >                r[i] = null; // null-terminate
4335 >                return r;
4336 >            }
4337 >            return (i == n) ? r : Arrays.copyOf(r, i);
4338 >        }
4339 >
4340 >        /**
4341 >         * Returns a string representation of this collection.
4342 >         * The string representation consists of the string representations
4343 >         * of the collection's elements in the order they are returned by
4344 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4345 >         * Adjacent elements are separated by the characters {@code ", "}
4346 >         * (comma and space).  Elements are converted to strings as by
4347 >         * {@link String#valueOf(Object)}.
4348 >         *
4349 >         * @return a string representation of this collection
4350 >         */
4351 >        public final String toString() {
4352 >            StringBuilder sb = new StringBuilder();
4353 >            sb.append('[');
4354 >            Iterator<E> it = iterator();
4355 >            if (it.hasNext()) {
4356 >                for (;;) {
4357 >                    Object e = it.next();
4358 >                    sb.append(e == this ? "(this Collection)" : e);
4359 >                    if (!it.hasNext())
4360 >                        break;
4361 >                    sb.append(',').append(' ');
4362 >                }
4363 >            }
4364 >            return sb.append(']').toString();
4365 >        }
4366 >
4367 >        public final boolean containsAll(Collection<?> c) {
4368 >            if (c != this) {
4369 >                for (Object e : c) {
4370 >                    if (e == null || !contains(e))
4371 >                        return false;
4372 >                }
4373 >            }
4374 >            return true;
4375 >        }
4376 >
4377 >        public final boolean removeAll(Collection<?> c) {
4378 >            boolean modified = false;
4379 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4380 >                if (c.contains(it.next())) {
4381 >                    it.remove();
4382 >                    modified = true;
4383 >                }
4384 >            }
4385 >            return modified;
4386 >        }
4387 >
4388 >        public final boolean retainAll(Collection<?> c) {
4389 >            boolean modified = false;
4390 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4391 >                if (!c.contains(it.next())) {
4392 >                    it.remove();
4393 >                    modified = true;
4394 >                }
4395 >            }
4396 >            return modified;
4397 >        }
4398 >
4399      }
4400  
4401      /**
4402 <     * Returns a string representation of this map.  The string
4403 <     * representation consists of a list of key-value mappings (in no
4404 <     * particular order) enclosed in braces ("{@code {}}").  Adjacent
4405 <     * mappings are separated by the characters {@code ", "} (comma
4406 <     * and space).  Each key-value mapping is rendered as the key
4407 <     * followed by an equals sign ("{@code =}") followed by the
4408 <     * associated value.
4402 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4403 >     * which additions may optionally be enabled by mapping to a
4404 >     * common value.  This class cannot be directly instantiated.
4405 >     * See {@link #keySet() keySet()},
4406 >     * {@link #keySet(Object) keySet(V)},
4407 >     * {@link #newKeySet() newKeySet()},
4408 >     * {@link #newKeySet(int) newKeySet(int)}.
4409       *
4410 <     * @return a string representation of this map
4410 >     * @since 1.8
4411       */
4412 <    public String toString() {
4413 <        return new HashIterator().mapToString();
4412 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4413 >        implements Set<K>, java.io.Serializable {
4414 >        private static final long serialVersionUID = 7249069246763182397L;
4415 >        private final V value;
4416 >        KeySetView(ConcurrentHashMapV8<K,V> map, V value) {  // non-public
4417 >            super(map);
4418 >            this.value = value;
4419 >        }
4420 >
4421 >        /**
4422 >         * Returns the default mapped value for additions,
4423 >         * or {@code null} if additions are not supported.
4424 >         *
4425 >         * @return the default mapped value for additions, or {@code null}
4426 >         * if not supported
4427 >         */
4428 >        public V getMappedValue() { return value; }
4429 >
4430 >        /**
4431 >         * {@inheritDoc}
4432 >         * @throws NullPointerException if the specified key is null
4433 >         */
4434 >        public boolean contains(Object o) { return map.containsKey(o); }
4435 >
4436 >        /**
4437 >         * Removes the key from this map view, by removing the key (and its
4438 >         * corresponding value) from the backing map.  This method does
4439 >         * nothing if the key is not in the map.
4440 >         *
4441 >         * @param  o the key to be removed from the backing map
4442 >         * @return {@code true} if the backing map contained the specified key
4443 >         * @throws NullPointerException if the specified key is null
4444 >         */
4445 >        public boolean remove(Object o) { return map.remove(o) != null; }
4446 >
4447 >        /**
4448 >         * @return an iterator over the keys of the backing map
4449 >         */
4450 >        public Iterator<K> iterator() {
4451 >            Node<K,V>[] t;
4452 >            ConcurrentHashMapV8<K,V> m = map;
4453 >            int f = (t = m.table) == null ? 0 : t.length;
4454 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4455 >        }
4456 >
4457 >        /**
4458 >         * Adds the specified key to this set view by mapping the key to
4459 >         * the default mapped value in the backing map, if defined.
4460 >         *
4461 >         * @param e key to be added
4462 >         * @return {@code true} if this set changed as a result of the call
4463 >         * @throws NullPointerException if the specified key is null
4464 >         * @throws UnsupportedOperationException if no default mapped value
4465 >         * for additions was provided
4466 >         */
4467 >        public boolean add(K e) {
4468 >            V v;
4469 >            if ((v = value) == null)
4470 >                throw new UnsupportedOperationException();
4471 >            return map.putVal(e, v, true) == null;
4472 >        }
4473 >
4474 >        /**
4475 >         * Adds all of the elements in the specified collection to this set,
4476 >         * as if by calling {@link #add} on each one.
4477 >         *
4478 >         * @param c the elements to be inserted into this set
4479 >         * @return {@code true} if this set changed as a result of the call
4480 >         * @throws NullPointerException if the collection or any of its
4481 >         * elements are {@code null}
4482 >         * @throws UnsupportedOperationException if no default mapped value
4483 >         * for additions was provided
4484 >         */
4485 >        public boolean addAll(Collection<? extends K> c) {
4486 >            boolean added = false;
4487 >            V v;
4488 >            if ((v = value) == null)
4489 >                throw new UnsupportedOperationException();
4490 >            for (K e : c) {
4491 >                if (map.putVal(e, v, true) == null)
4492 >                    added = true;
4493 >            }
4494 >            return added;
4495 >        }
4496 >
4497 >        public int hashCode() {
4498 >            int h = 0;
4499 >            for (K e : this)
4500 >                h += e.hashCode();
4501 >            return h;
4502 >        }
4503 >
4504 >        public boolean equals(Object o) {
4505 >            Set<?> c;
4506 >            return ((o instanceof Set) &&
4507 >                    ((c = (Set<?>)o) == this ||
4508 >                     (containsAll(c) && c.containsAll(this))));
4509 >        }
4510 >
4511 >        public ConcurrentHashMapSpliterator<K> spliterator() {
4512 >            Node<K,V>[] t;
4513 >            ConcurrentHashMapV8<K,V> m = map;
4514 >            long n = m.sumCount();
4515 >            int f = (t = m.table) == null ? 0 : t.length;
4516 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4517 >        }
4518 >
4519 >        public void forEach(Action<? super K> action) {
4520 >            if (action == null) throw new NullPointerException();
4521 >            Node<K,V>[] t;
4522 >            if ((t = map.table) != null) {
4523 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4524 >                for (Node<K,V> p; (p = it.advance()) != null; )
4525 >                    action.apply(p.key);
4526 >            }
4527 >        }
4528      }
4529  
4530      /**
4531 <     * Compares the specified object with this map for equality.
4532 <     * Returns {@code true} if the given object is a map with the same
4533 <     * mappings as this map.  This operation may return misleading
1362 <     * results if either map is concurrently modified during execution
1363 <     * of this method.
1364 <     *
1365 <     * @param o object to be compared for equality with this map
1366 <     * @return {@code true} if the specified object is equal to this map
4531 >     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4532 >     * values, in which additions are disabled. This class cannot be
4533 >     * directly instantiated. See {@link #values()}.
4534       */
4535 <    public boolean equals(Object o) {
4536 <        if (o == this)
4537 <            return true;
4538 <        if (!(o instanceof Map))
4539 <            return false;
4540 <        Map<?,?> m = (Map<?,?>) o;
4541 <        try {
4542 <            for (Map.Entry<K,V> e : this.entrySet())
4543 <                if (! e.getValue().equals(m.get(e.getKey())))
4544 <                    return false;
4545 <            for (Map.Entry<?,?> e : m.entrySet()) {
4546 <                Object k = e.getKey();
4547 <                Object v = e.getValue();
4548 <                if (k == null || v == null || !v.equals(get(k)))
4549 <                    return false;
4535 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4536 >        implements Collection<V>, java.io.Serializable {
4537 >        private static final long serialVersionUID = 2249069246763182397L;
4538 >        ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4539 >        public final boolean contains(Object o) {
4540 >            return map.containsValue(o);
4541 >        }
4542 >
4543 >        public final boolean remove(Object o) {
4544 >            if (o != null) {
4545 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4546 >                    if (o.equals(it.next())) {
4547 >                        it.remove();
4548 >                        return true;
4549 >                    }
4550 >                }
4551              }
1384            return true;
1385        } catch (ClassCastException unused) {
1386            return false;
1387        } catch (NullPointerException unused) {
4552              return false;
4553          }
4554 +
4555 +        public final Iterator<V> iterator() {
4556 +            ConcurrentHashMapV8<K,V> m = map;
4557 +            Node<K,V>[] t;
4558 +            int f = (t = m.table) == null ? 0 : t.length;
4559 +            return new ValueIterator<K,V>(t, f, 0, f, m);
4560 +        }
4561 +
4562 +        public final boolean add(V e) {
4563 +            throw new UnsupportedOperationException();
4564 +        }
4565 +        public final boolean addAll(Collection<? extends V> c) {
4566 +            throw new UnsupportedOperationException();
4567 +        }
4568 +
4569 +        public ConcurrentHashMapSpliterator<V> spliterator() {
4570 +            Node<K,V>[] t;
4571 +            ConcurrentHashMapV8<K,V> m = map;
4572 +            long n = m.sumCount();
4573 +            int f = (t = m.table) == null ? 0 : t.length;
4574 +            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4575 +        }
4576 +
4577 +        public void forEach(Action<? super V> action) {
4578 +            if (action == null) throw new NullPointerException();
4579 +            Node<K,V>[] t;
4580 +            if ((t = map.table) != null) {
4581 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4582 +                for (Node<K,V> p; (p = it.advance()) != null; )
4583 +                    action.apply(p.val);
4584 +            }
4585 +        }
4586      }
4587  
4588      /**
4589 <     * Custom Entry class used by EntryIterator.next(), that relays
4590 <     * setValue changes to the underlying map.
4589 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4590 >     * entries.  This class cannot be directly instantiated. See
4591 >     * {@link #entrySet()}.
4592       */
4593 <    final class WriteThroughEntry extends AbstractMap.SimpleEntry<K,V> {
4594 <        @SuppressWarnings("unchecked")
4595 <        WriteThroughEntry(Object k, Object v) {
4596 <            super((K)k, (V)v);
4593 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4594 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4595 >        private static final long serialVersionUID = 2249069246763182397L;
4596 >        EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4597 >
4598 >        public boolean contains(Object o) {
4599 >            Object k, v, r; Map.Entry<?,?> e;
4600 >            return ((o instanceof Map.Entry) &&
4601 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4602 >                    (r = map.get(k)) != null &&
4603 >                    (v = e.getValue()) != null &&
4604 >                    (v == r || v.equals(r)));
4605 >        }
4606 >
4607 >        public boolean remove(Object o) {
4608 >            Object k, v; Map.Entry<?,?> e;
4609 >            return ((o instanceof Map.Entry) &&
4610 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4611 >                    (v = e.getValue()) != null &&
4612 >                    map.remove(k, v));
4613          }
4614  
4615          /**
4616 <         * Sets our entry's value and writes through to the map. The
1404 <         * value to return is somewhat arbitrary here. Since a
1405 <         * WriteThroughEntry does not necessarily track asynchronous
1406 <         * changes, the most recent "previous" value could be
1407 <         * different from what we return (or could even have been
1408 <         * removed in which case the put will re-establish). We do not
1409 <         * and cannot guarantee more.
4616 >         * @return an iterator over the entries of the backing map
4617           */
4618 <        public V setValue(V value) {
4619 <            if (value == null) throw new NullPointerException();
4620 <            V v = super.setValue(value);
4621 <            ConcurrentHashMapV8.this.put(getKey(), value);
4622 <            return v;
4618 >        public Iterator<Map.Entry<K,V>> iterator() {
4619 >            ConcurrentHashMapV8<K,V> m = map;
4620 >            Node<K,V>[] t;
4621 >            int f = (t = m.table) == null ? 0 : t.length;
4622 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4623 >        }
4624 >
4625 >        public boolean add(Entry<K,V> e) {
4626 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4627 >        }
4628 >
4629 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4630 >            boolean added = false;
4631 >            for (Entry<K,V> e : c) {
4632 >                if (add(e))
4633 >                    added = true;
4634 >            }
4635 >            return added;
4636          }
4637 +
4638 +        public final int hashCode() {
4639 +            int h = 0;
4640 +            Node<K,V>[] t;
4641 +            if ((t = map.table) != null) {
4642 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4643 +                for (Node<K,V> p; (p = it.advance()) != null; ) {
4644 +                    h += p.hashCode();
4645 +                }
4646 +            }
4647 +            return h;
4648 +        }
4649 +
4650 +        public final boolean equals(Object o) {
4651 +            Set<?> c;
4652 +            return ((o instanceof Set) &&
4653 +                    ((c = (Set<?>)o) == this ||
4654 +                     (containsAll(c) && c.containsAll(this))));
4655 +        }
4656 +
4657 +        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4658 +            Node<K,V>[] t;
4659 +            ConcurrentHashMapV8<K,V> m = map;
4660 +            long n = m.sumCount();
4661 +            int f = (t = m.table) == null ? 0 : t.length;
4662 +            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4663 +        }
4664 +
4665 +        public void forEach(Action<? super Map.Entry<K,V>> action) {
4666 +            if (action == null) throw new NullPointerException();
4667 +            Node<K,V>[] t;
4668 +            if ((t = map.table) != null) {
4669 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4670 +                for (Node<K,V> p; (p = it.advance()) != null; )
4671 +                    action.apply(new MapEntry<K,V>(p.key, p.val, map));
4672 +            }
4673 +        }
4674 +
4675      }
4676  
4677 <    final class KeyIterator extends HashIterator
4678 <        implements Iterator<K>, Enumeration<K> {
4679 <        @SuppressWarnings("unchecked")
4680 <        public final K next()        { return (K)super.nextKey(); }
4681 <        @SuppressWarnings("unchecked")
4682 <        public final K nextElement() { return (K)super.nextKey(); }
4677 >    // -------------------------------------------------------
4678 >
4679 >    /**
4680 >     * Base class for bulk tasks. Repeats some fields and code from
4681 >     * class Traverser, because we need to subclass CountedCompleter.
4682 >     */
4683 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4684 >        Node<K,V>[] tab;        // same as Traverser
4685 >        Node<K,V> next;
4686 >        int index;
4687 >        int baseIndex;
4688 >        int baseLimit;
4689 >        final int baseSize;
4690 >        int batch;              // split control
4691 >
4692 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4693 >            super(par);
4694 >            this.batch = b;
4695 >            this.index = this.baseIndex = i;
4696 >            if ((this.tab = t) == null)
4697 >                this.baseSize = this.baseLimit = 0;
4698 >            else if (par == null)
4699 >                this.baseSize = this.baseLimit = t.length;
4700 >            else {
4701 >                this.baseLimit = f;
4702 >                this.baseSize = par.baseSize;
4703 >            }
4704 >        }
4705 >
4706 >        /**
4707 >         * Same as Traverser version
4708 >         */
4709 >        final Node<K,V> advance() {
4710 >            Node<K,V> e;
4711 >            if ((e = next) != null)
4712 >                e = e.next;
4713 >            for (;;) {
4714 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4715 >                if (e != null)
4716 >                    return next = e;
4717 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4718 >                    (n = t.length) <= (i = index) || i < 0)
4719 >                    return next = null;
4720 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4721 >                    if (e instanceof ForwardingNode) {
4722 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4723 >                        e = null;
4724 >                        continue;
4725 >                    }
4726 >                    else if (e instanceof TreeBin)
4727 >                        e = ((TreeBin<K,V>)e).first;
4728 >                    else
4729 >                        e = null;
4730 >                }
4731 >                if ((index += baseSize) >= n)
4732 >                    index = ++baseIndex;    // visit upper slots if present
4733 >            }
4734 >        }
4735      }
4736  
4737 <    final class ValueIterator extends HashIterator
4738 <        implements Iterator<V>, Enumeration<V> {
4739 <        @SuppressWarnings("unchecked")
4740 <        public final V next()        { return (V)super.nextValue(); }
4741 <        @SuppressWarnings("unchecked")
4742 <        public final V nextElement() { return (V)super.nextValue(); }
4737 >    /*
4738 >     * Task classes. Coded in a regular but ugly format/style to
4739 >     * simplify checks that each variant differs in the right way from
4740 >     * others. The null screenings exist because compilers cannot tell
4741 >     * that we've already null-checked task arguments, so we force
4742 >     * simplest hoisted bypass to help avoid convoluted traps.
4743 >     */
4744 >    @SuppressWarnings("serial")
4745 >    static final class ForEachKeyTask<K,V>
4746 >        extends BulkTask<K,V,Void> {
4747 >        final Action<? super K> action;
4748 >        ForEachKeyTask
4749 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4750 >             Action<? super K> action) {
4751 >            super(p, b, i, f, t);
4752 >            this.action = action;
4753 >        }
4754 >        public final void compute() {
4755 >            final Action<? super K> action;
4756 >            if ((action = this.action) != null) {
4757 >                for (int i = baseIndex, f, h; batch > 0 &&
4758 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4759 >                    addToPendingCount(1);
4760 >                    new ForEachKeyTask<K,V>
4761 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4762 >                         action).fork();
4763 >                }
4764 >                for (Node<K,V> p; (p = advance()) != null;)
4765 >                    action.apply(p.key);
4766 >                propagateCompletion();
4767 >            }
4768 >        }
4769      }
4770  
4771 <    final class EntryIterator extends HashIterator
4772 <        implements Iterator<Entry<K,V>> {
4773 <        public final Map.Entry<K,V> next() { return super.nextEntry(); }
4771 >    @SuppressWarnings("serial")
4772 >    static final class ForEachValueTask<K,V>
4773 >        extends BulkTask<K,V,Void> {
4774 >        final Action<? super V> action;
4775 >        ForEachValueTask
4776 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4777 >             Action<? super V> action) {
4778 >            super(p, b, i, f, t);
4779 >            this.action = action;
4780 >        }
4781 >        public final void compute() {
4782 >            final Action<? super V> action;
4783 >            if ((action = this.action) != null) {
4784 >                for (int i = baseIndex, f, h; batch > 0 &&
4785 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4786 >                    addToPendingCount(1);
4787 >                    new ForEachValueTask<K,V>
4788 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4789 >                         action).fork();
4790 >                }
4791 >                for (Node<K,V> p; (p = advance()) != null;)
4792 >                    action.apply(p.val);
4793 >                propagateCompletion();
4794 >            }
4795 >        }
4796      }
4797  
4798 <    final class KeySet extends AbstractSet<K> {
4799 <        public int size() {
4800 <            return ConcurrentHashMapV8.this.size();
4798 >    @SuppressWarnings("serial")
4799 >    static final class ForEachEntryTask<K,V>
4800 >        extends BulkTask<K,V,Void> {
4801 >        final Action<? super Entry<K,V>> action;
4802 >        ForEachEntryTask
4803 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4804 >             Action<? super Entry<K,V>> action) {
4805 >            super(p, b, i, f, t);
4806 >            this.action = action;
4807 >        }
4808 >        public final void compute() {
4809 >            final Action<? super Entry<K,V>> action;
4810 >            if ((action = this.action) != null) {
4811 >                for (int i = baseIndex, f, h; batch > 0 &&
4812 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4813 >                    addToPendingCount(1);
4814 >                    new ForEachEntryTask<K,V>
4815 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4816 >                         action).fork();
4817 >                }
4818 >                for (Node<K,V> p; (p = advance()) != null; )
4819 >                    action.apply(p);
4820 >                propagateCompletion();
4821 >            }
4822          }
4823 <        public boolean isEmpty() {
4824 <            return ConcurrentHashMapV8.this.isEmpty();
4823 >    }
4824 >
4825 >    @SuppressWarnings("serial")
4826 >    static final class ForEachMappingTask<K,V>
4827 >        extends BulkTask<K,V,Void> {
4828 >        final BiAction<? super K, ? super V> action;
4829 >        ForEachMappingTask
4830 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4831 >             BiAction<? super K,? super V> action) {
4832 >            super(p, b, i, f, t);
4833 >            this.action = action;
4834 >        }
4835 >        public final void compute() {
4836 >            final BiAction<? super K, ? super V> action;
4837 >            if ((action = this.action) != null) {
4838 >                for (int i = baseIndex, f, h; batch > 0 &&
4839 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4840 >                    addToPendingCount(1);
4841 >                    new ForEachMappingTask<K,V>
4842 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4843 >                         action).fork();
4844 >                }
4845 >                for (Node<K,V> p; (p = advance()) != null; )
4846 >                    action.apply(p.key, p.val);
4847 >                propagateCompletion();
4848 >            }
4849          }
4850 <        public void clear() {
4851 <            ConcurrentHashMapV8.this.clear();
4850 >    }
4851 >
4852 >    @SuppressWarnings("serial")
4853 >    static final class ForEachTransformedKeyTask<K,V,U>
4854 >        extends BulkTask<K,V,Void> {
4855 >        final Fun<? super K, ? extends U> transformer;
4856 >        final Action<? super U> action;
4857 >        ForEachTransformedKeyTask
4858 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4859 >             Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4860 >            super(p, b, i, f, t);
4861 >            this.transformer = transformer; this.action = action;
4862 >        }
4863 >        public final void compute() {
4864 >            final Fun<? super K, ? extends U> transformer;
4865 >            final Action<? super U> action;
4866 >            if ((transformer = this.transformer) != null &&
4867 >                (action = this.action) != null) {
4868 >                for (int i = baseIndex, f, h; batch > 0 &&
4869 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4870 >                    addToPendingCount(1);
4871 >                    new ForEachTransformedKeyTask<K,V,U>
4872 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4873 >                         transformer, action).fork();
4874 >                }
4875 >                for (Node<K,V> p; (p = advance()) != null; ) {
4876 >                    U u;
4877 >                    if ((u = transformer.apply(p.key)) != null)
4878 >                        action.apply(u);
4879 >                }
4880 >                propagateCompletion();
4881 >            }
4882          }
4883 <        public Iterator<K> iterator() {
4884 <            return new KeyIterator();
4883 >    }
4884 >
4885 >    @SuppressWarnings("serial")
4886 >    static final class ForEachTransformedValueTask<K,V,U>
4887 >        extends BulkTask<K,V,Void> {
4888 >        final Fun<? super V, ? extends U> transformer;
4889 >        final Action<? super U> action;
4890 >        ForEachTransformedValueTask
4891 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4892 >             Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4893 >            super(p, b, i, f, t);
4894 >            this.transformer = transformer; this.action = action;
4895 >        }
4896 >        public final void compute() {
4897 >            final Fun<? super V, ? extends U> transformer;
4898 >            final Action<? super U> action;
4899 >            if ((transformer = this.transformer) != null &&
4900 >                (action = this.action) != null) {
4901 >                for (int i = baseIndex, f, h; batch > 0 &&
4902 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4903 >                    addToPendingCount(1);
4904 >                    new ForEachTransformedValueTask<K,V,U>
4905 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4906 >                         transformer, action).fork();
4907 >                }
4908 >                for (Node<K,V> p; (p = advance()) != null; ) {
4909 >                    U u;
4910 >                    if ((u = transformer.apply(p.val)) != null)
4911 >                        action.apply(u);
4912 >                }
4913 >                propagateCompletion();
4914 >            }
4915          }
4916 <        public boolean contains(Object o) {
4917 <            return ConcurrentHashMapV8.this.containsKey(o);
4916 >    }
4917 >
4918 >    @SuppressWarnings("serial")
4919 >    static final class ForEachTransformedEntryTask<K,V,U>
4920 >        extends BulkTask<K,V,Void> {
4921 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
4922 >        final Action<? super U> action;
4923 >        ForEachTransformedEntryTask
4924 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4925 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4926 >            super(p, b, i, f, t);
4927 >            this.transformer = transformer; this.action = action;
4928 >        }
4929 >        public final void compute() {
4930 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
4931 >            final Action<? super U> action;
4932 >            if ((transformer = this.transformer) != null &&
4933 >                (action = this.action) != null) {
4934 >                for (int i = baseIndex, f, h; batch > 0 &&
4935 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4936 >                    addToPendingCount(1);
4937 >                    new ForEachTransformedEntryTask<K,V,U>
4938 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4939 >                         transformer, action).fork();
4940 >                }
4941 >                for (Node<K,V> p; (p = advance()) != null; ) {
4942 >                    U u;
4943 >                    if ((u = transformer.apply(p)) != null)
4944 >                        action.apply(u);
4945 >                }
4946 >                propagateCompletion();
4947 >            }
4948          }
4949 <        public boolean remove(Object o) {
4950 <            return ConcurrentHashMapV8.this.remove(o) != null;
4949 >    }
4950 >
4951 >    @SuppressWarnings("serial")
4952 >    static final class ForEachTransformedMappingTask<K,V,U>
4953 >        extends BulkTask<K,V,Void> {
4954 >        final BiFun<? super K, ? super V, ? extends U> transformer;
4955 >        final Action<? super U> action;
4956 >        ForEachTransformedMappingTask
4957 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4958 >             BiFun<? super K, ? super V, ? extends U> transformer,
4959 >             Action<? super U> action) {
4960 >            super(p, b, i, f, t);
4961 >            this.transformer = transformer; this.action = action;
4962 >        }
4963 >        public final void compute() {
4964 >            final BiFun<? super K, ? super V, ? extends U> transformer;
4965 >            final Action<? super U> action;
4966 >            if ((transformer = this.transformer) != null &&
4967 >                (action = this.action) != null) {
4968 >                for (int i = baseIndex, f, h; batch > 0 &&
4969 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4970 >                    addToPendingCount(1);
4971 >                    new ForEachTransformedMappingTask<K,V,U>
4972 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4973 >                         transformer, action).fork();
4974 >                }
4975 >                for (Node<K,V> p; (p = advance()) != null; ) {
4976 >                    U u;
4977 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4978 >                        action.apply(u);
4979 >                }
4980 >                propagateCompletion();
4981 >            }
4982          }
4983      }
4984  
4985 <    final class Values extends AbstractCollection<V> {
4986 <        public int size() {
4987 <            return ConcurrentHashMapV8.this.size();
4985 >    @SuppressWarnings("serial")
4986 >    static final class SearchKeysTask<K,V,U>
4987 >        extends BulkTask<K,V,U> {
4988 >        final Fun<? super K, ? extends U> searchFunction;
4989 >        final AtomicReference<U> result;
4990 >        SearchKeysTask
4991 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4992 >             Fun<? super K, ? extends U> searchFunction,
4993 >             AtomicReference<U> result) {
4994 >            super(p, b, i, f, t);
4995 >            this.searchFunction = searchFunction; this.result = result;
4996 >        }
4997 >        public final U getRawResult() { return result.get(); }
4998 >        public final void compute() {
4999 >            final Fun<? super K, ? extends U> searchFunction;
5000 >            final AtomicReference<U> result;
5001 >            if ((searchFunction = this.searchFunction) != null &&
5002 >                (result = this.result) != null) {
5003 >                for (int i = baseIndex, f, h; batch > 0 &&
5004 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5005 >                    if (result.get() != null)
5006 >                        return;
5007 >                    addToPendingCount(1);
5008 >                    new SearchKeysTask<K,V,U>
5009 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5010 >                         searchFunction, result).fork();
5011 >                }
5012 >                while (result.get() == null) {
5013 >                    U u;
5014 >                    Node<K,V> p;
5015 >                    if ((p = advance()) == null) {
5016 >                        propagateCompletion();
5017 >                        break;
5018 >                    }
5019 >                    if ((u = searchFunction.apply(p.key)) != null) {
5020 >                        if (result.compareAndSet(null, u))
5021 >                            quietlyCompleteRoot();
5022 >                        break;
5023 >                    }
5024 >                }
5025 >            }
5026          }
5027 <        public boolean isEmpty() {
5028 <            return ConcurrentHashMapV8.this.isEmpty();
5027 >    }
5028 >
5029 >    @SuppressWarnings("serial")
5030 >    static final class SearchValuesTask<K,V,U>
5031 >        extends BulkTask<K,V,U> {
5032 >        final Fun<? super V, ? extends U> searchFunction;
5033 >        final AtomicReference<U> result;
5034 >        SearchValuesTask
5035 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5036 >             Fun<? super V, ? extends U> searchFunction,
5037 >             AtomicReference<U> result) {
5038 >            super(p, b, i, f, t);
5039 >            this.searchFunction = searchFunction; this.result = result;
5040 >        }
5041 >        public final U getRawResult() { return result.get(); }
5042 >        public final void compute() {
5043 >            final Fun<? super V, ? extends U> searchFunction;
5044 >            final AtomicReference<U> result;
5045 >            if ((searchFunction = this.searchFunction) != null &&
5046 >                (result = this.result) != null) {
5047 >                for (int i = baseIndex, f, h; batch > 0 &&
5048 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5049 >                    if (result.get() != null)
5050 >                        return;
5051 >                    addToPendingCount(1);
5052 >                    new SearchValuesTask<K,V,U>
5053 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5054 >                         searchFunction, result).fork();
5055 >                }
5056 >                while (result.get() == null) {
5057 >                    U u;
5058 >                    Node<K,V> p;
5059 >                    if ((p = advance()) == null) {
5060 >                        propagateCompletion();
5061 >                        break;
5062 >                    }
5063 >                    if ((u = searchFunction.apply(p.val)) != null) {
5064 >                        if (result.compareAndSet(null, u))
5065 >                            quietlyCompleteRoot();
5066 >                        break;
5067 >                    }
5068 >                }
5069 >            }
5070          }
5071 <        public void clear() {
5072 <            ConcurrentHashMapV8.this.clear();
5071 >    }
5072 >
5073 >    @SuppressWarnings("serial")
5074 >    static final class SearchEntriesTask<K,V,U>
5075 >        extends BulkTask<K,V,U> {
5076 >        final Fun<Entry<K,V>, ? extends U> searchFunction;
5077 >        final AtomicReference<U> result;
5078 >        SearchEntriesTask
5079 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5080 >             Fun<Entry<K,V>, ? extends U> searchFunction,
5081 >             AtomicReference<U> result) {
5082 >            super(p, b, i, f, t);
5083 >            this.searchFunction = searchFunction; this.result = result;
5084 >        }
5085 >        public final U getRawResult() { return result.get(); }
5086 >        public final void compute() {
5087 >            final Fun<Entry<K,V>, ? extends U> searchFunction;
5088 >            final AtomicReference<U> result;
5089 >            if ((searchFunction = this.searchFunction) != null &&
5090 >                (result = this.result) != null) {
5091 >                for (int i = baseIndex, f, h; batch > 0 &&
5092 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5093 >                    if (result.get() != null)
5094 >                        return;
5095 >                    addToPendingCount(1);
5096 >                    new SearchEntriesTask<K,V,U>
5097 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5098 >                         searchFunction, result).fork();
5099 >                }
5100 >                while (result.get() == null) {
5101 >                    U u;
5102 >                    Node<K,V> p;
5103 >                    if ((p = advance()) == null) {
5104 >                        propagateCompletion();
5105 >                        break;
5106 >                    }
5107 >                    if ((u = searchFunction.apply(p)) != null) {
5108 >                        if (result.compareAndSet(null, u))
5109 >                            quietlyCompleteRoot();
5110 >                        return;
5111 >                    }
5112 >                }
5113 >            }
5114          }
5115 <        public Iterator<V> iterator() {
5116 <            return new ValueIterator();
5115 >    }
5116 >
5117 >    @SuppressWarnings("serial")
5118 >    static final class SearchMappingsTask<K,V,U>
5119 >        extends BulkTask<K,V,U> {
5120 >        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5121 >        final AtomicReference<U> result;
5122 >        SearchMappingsTask
5123 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5124 >             BiFun<? super K, ? super V, ? extends U> searchFunction,
5125 >             AtomicReference<U> result) {
5126 >            super(p, b, i, f, t);
5127 >            this.searchFunction = searchFunction; this.result = result;
5128 >        }
5129 >        public final U getRawResult() { return result.get(); }
5130 >        public final void compute() {
5131 >            final BiFun<? super K, ? super V, ? extends U> searchFunction;
5132 >            final AtomicReference<U> result;
5133 >            if ((searchFunction = this.searchFunction) != null &&
5134 >                (result = this.result) != null) {
5135 >                for (int i = baseIndex, f, h; batch > 0 &&
5136 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5137 >                    if (result.get() != null)
5138 >                        return;
5139 >                    addToPendingCount(1);
5140 >                    new SearchMappingsTask<K,V,U>
5141 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5142 >                         searchFunction, result).fork();
5143 >                }
5144 >                while (result.get() == null) {
5145 >                    U u;
5146 >                    Node<K,V> p;
5147 >                    if ((p = advance()) == null) {
5148 >                        propagateCompletion();
5149 >                        break;
5150 >                    }
5151 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5152 >                        if (result.compareAndSet(null, u))
5153 >                            quietlyCompleteRoot();
5154 >                        break;
5155 >                    }
5156 >                }
5157 >            }
5158          }
5159 <        public boolean contains(Object o) {
5160 <            return ConcurrentHashMapV8.this.containsValue(o);
5159 >    }
5160 >
5161 >    @SuppressWarnings("serial")
5162 >    static final class ReduceKeysTask<K,V>
5163 >        extends BulkTask<K,V,K> {
5164 >        final BiFun<? super K, ? super K, ? extends K> reducer;
5165 >        K result;
5166 >        ReduceKeysTask<K,V> rights, nextRight;
5167 >        ReduceKeysTask
5168 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5169 >             ReduceKeysTask<K,V> nextRight,
5170 >             BiFun<? super K, ? super K, ? extends K> reducer) {
5171 >            super(p, b, i, f, t); this.nextRight = nextRight;
5172 >            this.reducer = reducer;
5173 >        }
5174 >        public final K getRawResult() { return result; }
5175 >        public final void compute() {
5176 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5177 >            if ((reducer = this.reducer) != null) {
5178 >                for (int i = baseIndex, f, h; batch > 0 &&
5179 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5180 >                    addToPendingCount(1);
5181 >                    (rights = new ReduceKeysTask<K,V>
5182 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5183 >                      rights, reducer)).fork();
5184 >                }
5185 >                K r = null;
5186 >                for (Node<K,V> p; (p = advance()) != null; ) {
5187 >                    K u = p.key;
5188 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5189 >                }
5190 >                result = r;
5191 >                CountedCompleter<?> c;
5192 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5193 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5194 >                        t = (ReduceKeysTask<K,V>)c,
5195 >                        s = t.rights;
5196 >                    while (s != null) {
5197 >                        K tr, sr;
5198 >                        if ((sr = s.result) != null)
5199 >                            t.result = (((tr = t.result) == null) ? sr :
5200 >                                        reducer.apply(tr, sr));
5201 >                        s = t.rights = s.nextRight;
5202 >                    }
5203 >                }
5204 >            }
5205          }
5206      }
5207  
5208 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
5209 <        public int size() {
5210 <            return ConcurrentHashMapV8.this.size();
5208 >    @SuppressWarnings("serial")
5209 >    static final class ReduceValuesTask<K,V>
5210 >        extends BulkTask<K,V,V> {
5211 >        final BiFun<? super V, ? super V, ? extends V> reducer;
5212 >        V result;
5213 >        ReduceValuesTask<K,V> rights, nextRight;
5214 >        ReduceValuesTask
5215 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5216 >             ReduceValuesTask<K,V> nextRight,
5217 >             BiFun<? super V, ? super V, ? extends V> reducer) {
5218 >            super(p, b, i, f, t); this.nextRight = nextRight;
5219 >            this.reducer = reducer;
5220 >        }
5221 >        public final V getRawResult() { return result; }
5222 >        public final void compute() {
5223 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5224 >            if ((reducer = this.reducer) != null) {
5225 >                for (int i = baseIndex, f, h; batch > 0 &&
5226 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5227 >                    addToPendingCount(1);
5228 >                    (rights = new ReduceValuesTask<K,V>
5229 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5230 >                      rights, reducer)).fork();
5231 >                }
5232 >                V r = null;
5233 >                for (Node<K,V> p; (p = advance()) != null; ) {
5234 >                    V v = p.val;
5235 >                    r = (r == null) ? v : reducer.apply(r, v);
5236 >                }
5237 >                result = r;
5238 >                CountedCompleter<?> c;
5239 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5240 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5241 >                        t = (ReduceValuesTask<K,V>)c,
5242 >                        s = t.rights;
5243 >                    while (s != null) {
5244 >                        V tr, sr;
5245 >                        if ((sr = s.result) != null)
5246 >                            t.result = (((tr = t.result) == null) ? sr :
5247 >                                        reducer.apply(tr, sr));
5248 >                        s = t.rights = s.nextRight;
5249 >                    }
5250 >                }
5251 >            }
5252          }
5253 <        public boolean isEmpty() {
5254 <            return ConcurrentHashMapV8.this.isEmpty();
5253 >    }
5254 >
5255 >    @SuppressWarnings("serial")
5256 >    static final class ReduceEntriesTask<K,V>
5257 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5258 >        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5259 >        Map.Entry<K,V> result;
5260 >        ReduceEntriesTask<K,V> rights, nextRight;
5261 >        ReduceEntriesTask
5262 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5263 >             ReduceEntriesTask<K,V> nextRight,
5264 >             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5265 >            super(p, b, i, f, t); this.nextRight = nextRight;
5266 >            this.reducer = reducer;
5267 >        }
5268 >        public final Map.Entry<K,V> getRawResult() { return result; }
5269 >        public final void compute() {
5270 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5271 >            if ((reducer = this.reducer) != null) {
5272 >                for (int i = baseIndex, f, h; batch > 0 &&
5273 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5274 >                    addToPendingCount(1);
5275 >                    (rights = new ReduceEntriesTask<K,V>
5276 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5277 >                      rights, reducer)).fork();
5278 >                }
5279 >                Map.Entry<K,V> r = null;
5280 >                for (Node<K,V> p; (p = advance()) != null; )
5281 >                    r = (r == null) ? p : reducer.apply(r, p);
5282 >                result = r;
5283 >                CountedCompleter<?> c;
5284 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5285 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5286 >                        t = (ReduceEntriesTask<K,V>)c,
5287 >                        s = t.rights;
5288 >                    while (s != null) {
5289 >                        Map.Entry<K,V> tr, sr;
5290 >                        if ((sr = s.result) != null)
5291 >                            t.result = (((tr = t.result) == null) ? sr :
5292 >                                        reducer.apply(tr, sr));
5293 >                        s = t.rights = s.nextRight;
5294 >                    }
5295 >                }
5296 >            }
5297          }
5298 <        public void clear() {
5299 <            ConcurrentHashMapV8.this.clear();
5298 >    }
5299 >
5300 >    @SuppressWarnings("serial")
5301 >    static final class MapReduceKeysTask<K,V,U>
5302 >        extends BulkTask<K,V,U> {
5303 >        final Fun<? super K, ? extends U> transformer;
5304 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5305 >        U result;
5306 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5307 >        MapReduceKeysTask
5308 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5309 >             MapReduceKeysTask<K,V,U> nextRight,
5310 >             Fun<? super K, ? extends U> transformer,
5311 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5312 >            super(p, b, i, f, t); this.nextRight = nextRight;
5313 >            this.transformer = transformer;
5314 >            this.reducer = reducer;
5315 >        }
5316 >        public final U getRawResult() { return result; }
5317 >        public final void compute() {
5318 >            final Fun<? super K, ? extends U> transformer;
5319 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5320 >            if ((transformer = this.transformer) != null &&
5321 >                (reducer = this.reducer) != null) {
5322 >                for (int i = baseIndex, f, h; batch > 0 &&
5323 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5324 >                    addToPendingCount(1);
5325 >                    (rights = new MapReduceKeysTask<K,V,U>
5326 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5327 >                      rights, transformer, reducer)).fork();
5328 >                }
5329 >                U r = null;
5330 >                for (Node<K,V> p; (p = advance()) != null; ) {
5331 >                    U u;
5332 >                    if ((u = transformer.apply(p.key)) != null)
5333 >                        r = (r == null) ? u : reducer.apply(r, u);
5334 >                }
5335 >                result = r;
5336 >                CountedCompleter<?> c;
5337 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5338 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5339 >                        t = (MapReduceKeysTask<K,V,U>)c,
5340 >                        s = t.rights;
5341 >                    while (s != null) {
5342 >                        U tr, sr;
5343 >                        if ((sr = s.result) != null)
5344 >                            t.result = (((tr = t.result) == null) ? sr :
5345 >                                        reducer.apply(tr, sr));
5346 >                        s = t.rights = s.nextRight;
5347 >                    }
5348 >                }
5349 >            }
5350          }
5351 <        public Iterator<Map.Entry<K,V>> iterator() {
5352 <            return new EntryIterator();
5351 >    }
5352 >
5353 >    @SuppressWarnings("serial")
5354 >    static final class MapReduceValuesTask<K,V,U>
5355 >        extends BulkTask<K,V,U> {
5356 >        final Fun<? super V, ? extends U> transformer;
5357 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5358 >        U result;
5359 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5360 >        MapReduceValuesTask
5361 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5362 >             MapReduceValuesTask<K,V,U> nextRight,
5363 >             Fun<? super V, ? extends U> transformer,
5364 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5365 >            super(p, b, i, f, t); this.nextRight = nextRight;
5366 >            this.transformer = transformer;
5367 >            this.reducer = reducer;
5368 >        }
5369 >        public final U getRawResult() { return result; }
5370 >        public final void compute() {
5371 >            final Fun<? super V, ? extends U> transformer;
5372 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5373 >            if ((transformer = this.transformer) != null &&
5374 >                (reducer = this.reducer) != null) {
5375 >                for (int i = baseIndex, f, h; batch > 0 &&
5376 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5377 >                    addToPendingCount(1);
5378 >                    (rights = new MapReduceValuesTask<K,V,U>
5379 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5380 >                      rights, transformer, reducer)).fork();
5381 >                }
5382 >                U r = null;
5383 >                for (Node<K,V> p; (p = advance()) != null; ) {
5384 >                    U u;
5385 >                    if ((u = transformer.apply(p.val)) != null)
5386 >                        r = (r == null) ? u : reducer.apply(r, u);
5387 >                }
5388 >                result = r;
5389 >                CountedCompleter<?> c;
5390 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5391 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5392 >                        t = (MapReduceValuesTask<K,V,U>)c,
5393 >                        s = t.rights;
5394 >                    while (s != null) {
5395 >                        U tr, sr;
5396 >                        if ((sr = s.result) != null)
5397 >                            t.result = (((tr = t.result) == null) ? sr :
5398 >                                        reducer.apply(tr, sr));
5399 >                        s = t.rights = s.nextRight;
5400 >                    }
5401 >                }
5402 >            }
5403          }
5404 <        public boolean contains(Object o) {
5405 <            if (!(o instanceof Map.Entry))
5406 <                return false;
5407 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
5408 <            V v = ConcurrentHashMapV8.this.get(e.getKey());
5409 <            return v != null && v.equals(e.getValue());
5404 >    }
5405 >
5406 >    @SuppressWarnings("serial")
5407 >    static final class MapReduceEntriesTask<K,V,U>
5408 >        extends BulkTask<K,V,U> {
5409 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5410 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5411 >        U result;
5412 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5413 >        MapReduceEntriesTask
5414 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5415 >             MapReduceEntriesTask<K,V,U> nextRight,
5416 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5417 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5418 >            super(p, b, i, f, t); this.nextRight = nextRight;
5419 >            this.transformer = transformer;
5420 >            this.reducer = reducer;
5421 >        }
5422 >        public final U getRawResult() { return result; }
5423 >        public final void compute() {
5424 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5425 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5426 >            if ((transformer = this.transformer) != null &&
5427 >                (reducer = this.reducer) != null) {
5428 >                for (int i = baseIndex, f, h; batch > 0 &&
5429 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5430 >                    addToPendingCount(1);
5431 >                    (rights = new MapReduceEntriesTask<K,V,U>
5432 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5433 >                      rights, transformer, reducer)).fork();
5434 >                }
5435 >                U r = null;
5436 >                for (Node<K,V> p; (p = advance()) != null; ) {
5437 >                    U u;
5438 >                    if ((u = transformer.apply(p)) != null)
5439 >                        r = (r == null) ? u : reducer.apply(r, u);
5440 >                }
5441 >                result = r;
5442 >                CountedCompleter<?> c;
5443 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5444 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5445 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5446 >                        s = t.rights;
5447 >                    while (s != null) {
5448 >                        U tr, sr;
5449 >                        if ((sr = s.result) != null)
5450 >                            t.result = (((tr = t.result) == null) ? sr :
5451 >                                        reducer.apply(tr, sr));
5452 >                        s = t.rights = s.nextRight;
5453 >                    }
5454 >                }
5455 >            }
5456          }
5457 <        public boolean remove(Object o) {
5458 <            if (!(o instanceof Map.Entry))
5459 <                return false;
5460 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
5461 <            return ConcurrentHashMapV8.this.remove(e.getKey(), e.getValue());
5457 >    }
5458 >
5459 >    @SuppressWarnings("serial")
5460 >    static final class MapReduceMappingsTask<K,V,U>
5461 >        extends BulkTask<K,V,U> {
5462 >        final BiFun<? super K, ? super V, ? extends U> transformer;
5463 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5464 >        U result;
5465 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5466 >        MapReduceMappingsTask
5467 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5468 >             MapReduceMappingsTask<K,V,U> nextRight,
5469 >             BiFun<? super K, ? super V, ? extends U> transformer,
5470 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5471 >            super(p, b, i, f, t); this.nextRight = nextRight;
5472 >            this.transformer = transformer;
5473 >            this.reducer = reducer;
5474 >        }
5475 >        public final U getRawResult() { return result; }
5476 >        public final void compute() {
5477 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5478 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5479 >            if ((transformer = this.transformer) != null &&
5480 >                (reducer = this.reducer) != null) {
5481 >                for (int i = baseIndex, f, h; batch > 0 &&
5482 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5483 >                    addToPendingCount(1);
5484 >                    (rights = new MapReduceMappingsTask<K,V,U>
5485 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5486 >                      rights, transformer, reducer)).fork();
5487 >                }
5488 >                U r = null;
5489 >                for (Node<K,V> p; (p = advance()) != null; ) {
5490 >                    U u;
5491 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5492 >                        r = (r == null) ? u : reducer.apply(r, u);
5493 >                }
5494 >                result = r;
5495 >                CountedCompleter<?> c;
5496 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5497 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5498 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5499 >                        s = t.rights;
5500 >                    while (s != null) {
5501 >                        U tr, sr;
5502 >                        if ((sr = s.result) != null)
5503 >                            t.result = (((tr = t.result) == null) ? sr :
5504 >                                        reducer.apply(tr, sr));
5505 >                        s = t.rights = s.nextRight;
5506 >                    }
5507 >                }
5508 >            }
5509 >        }
5510 >    }
5511 >
5512 >    @SuppressWarnings("serial")
5513 >    static final class MapReduceKeysToDoubleTask<K,V>
5514 >        extends BulkTask<K,V,Double> {
5515 >        final ObjectToDouble<? super K> transformer;
5516 >        final DoubleByDoubleToDouble reducer;
5517 >        final double basis;
5518 >        double result;
5519 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5520 >        MapReduceKeysToDoubleTask
5521 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5522 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5523 >             ObjectToDouble<? super K> transformer,
5524 >             double basis,
5525 >             DoubleByDoubleToDouble reducer) {
5526 >            super(p, b, i, f, t); this.nextRight = nextRight;
5527 >            this.transformer = transformer;
5528 >            this.basis = basis; this.reducer = reducer;
5529 >        }
5530 >        public final Double getRawResult() { return result; }
5531 >        public final void compute() {
5532 >            final ObjectToDouble<? super K> transformer;
5533 >            final DoubleByDoubleToDouble reducer;
5534 >            if ((transformer = this.transformer) != null &&
5535 >                (reducer = this.reducer) != null) {
5536 >                double r = this.basis;
5537 >                for (int i = baseIndex, f, h; batch > 0 &&
5538 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5539 >                    addToPendingCount(1);
5540 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5541 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5542 >                      rights, transformer, r, reducer)).fork();
5543 >                }
5544 >                for (Node<K,V> p; (p = advance()) != null; )
5545 >                    r = reducer.apply(r, transformer.apply(p.key));
5546 >                result = r;
5547 >                CountedCompleter<?> c;
5548 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5549 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5550 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5551 >                        s = t.rights;
5552 >                    while (s != null) {
5553 >                        t.result = reducer.apply(t.result, s.result);
5554 >                        s = t.rights = s.nextRight;
5555 >                    }
5556 >                }
5557 >            }
5558          }
5559      }
5560  
5561 <    /* ---------------- Serialization Support -------------- */
5561 >    @SuppressWarnings("serial")
5562 >    static final class MapReduceValuesToDoubleTask<K,V>
5563 >        extends BulkTask<K,V,Double> {
5564 >        final ObjectToDouble<? super V> transformer;
5565 >        final DoubleByDoubleToDouble reducer;
5566 >        final double basis;
5567 >        double result;
5568 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5569 >        MapReduceValuesToDoubleTask
5570 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5571 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5572 >             ObjectToDouble<? super V> transformer,
5573 >             double basis,
5574 >             DoubleByDoubleToDouble reducer) {
5575 >            super(p, b, i, f, t); this.nextRight = nextRight;
5576 >            this.transformer = transformer;
5577 >            this.basis = basis; this.reducer = reducer;
5578 >        }
5579 >        public final Double getRawResult() { return result; }
5580 >        public final void compute() {
5581 >            final ObjectToDouble<? super V> transformer;
5582 >            final DoubleByDoubleToDouble reducer;
5583 >            if ((transformer = this.transformer) != null &&
5584 >                (reducer = this.reducer) != null) {
5585 >                double r = this.basis;
5586 >                for (int i = baseIndex, f, h; batch > 0 &&
5587 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5588 >                    addToPendingCount(1);
5589 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5590 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5591 >                      rights, transformer, r, reducer)).fork();
5592 >                }
5593 >                for (Node<K,V> p; (p = advance()) != null; )
5594 >                    r = reducer.apply(r, transformer.apply(p.val));
5595 >                result = r;
5596 >                CountedCompleter<?> c;
5597 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5598 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5599 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5600 >                        s = t.rights;
5601 >                    while (s != null) {
5602 >                        t.result = reducer.apply(t.result, s.result);
5603 >                        s = t.rights = s.nextRight;
5604 >                    }
5605 >                }
5606 >            }
5607 >        }
5608 >    }
5609 >
5610 >    @SuppressWarnings("serial")
5611 >    static final class MapReduceEntriesToDoubleTask<K,V>
5612 >        extends BulkTask<K,V,Double> {
5613 >        final ObjectToDouble<Map.Entry<K,V>> transformer;
5614 >        final DoubleByDoubleToDouble reducer;
5615 >        final double basis;
5616 >        double result;
5617 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5618 >        MapReduceEntriesToDoubleTask
5619 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5620 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5621 >             ObjectToDouble<Map.Entry<K,V>> transformer,
5622 >             double basis,
5623 >             DoubleByDoubleToDouble reducer) {
5624 >            super(p, b, i, f, t); this.nextRight = nextRight;
5625 >            this.transformer = transformer;
5626 >            this.basis = basis; this.reducer = reducer;
5627 >        }
5628 >        public final Double getRawResult() { return result; }
5629 >        public final void compute() {
5630 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
5631 >            final DoubleByDoubleToDouble reducer;
5632 >            if ((transformer = this.transformer) != null &&
5633 >                (reducer = this.reducer) != null) {
5634 >                double r = this.basis;
5635 >                for (int i = baseIndex, f, h; batch > 0 &&
5636 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5637 >                    addToPendingCount(1);
5638 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5639 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5640 >                      rights, transformer, r, reducer)).fork();
5641 >                }
5642 >                for (Node<K,V> p; (p = advance()) != null; )
5643 >                    r = reducer.apply(r, transformer.apply(p));
5644 >                result = r;
5645 >                CountedCompleter<?> c;
5646 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5647 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5648 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5649 >                        s = t.rights;
5650 >                    while (s != null) {
5651 >                        t.result = reducer.apply(t.result, s.result);
5652 >                        s = t.rights = s.nextRight;
5653 >                    }
5654 >                }
5655 >            }
5656 >        }
5657 >    }
5658 >
5659 >    @SuppressWarnings("serial")
5660 >    static final class MapReduceMappingsToDoubleTask<K,V>
5661 >        extends BulkTask<K,V,Double> {
5662 >        final ObjectByObjectToDouble<? super K, ? super V> transformer;
5663 >        final DoubleByDoubleToDouble reducer;
5664 >        final double basis;
5665 >        double result;
5666 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5667 >        MapReduceMappingsToDoubleTask
5668 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5669 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5670 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
5671 >             double basis,
5672 >             DoubleByDoubleToDouble reducer) {
5673 >            super(p, b, i, f, t); this.nextRight = nextRight;
5674 >            this.transformer = transformer;
5675 >            this.basis = basis; this.reducer = reducer;
5676 >        }
5677 >        public final Double getRawResult() { return result; }
5678 >        public final void compute() {
5679 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
5680 >            final DoubleByDoubleToDouble reducer;
5681 >            if ((transformer = this.transformer) != null &&
5682 >                (reducer = this.reducer) != null) {
5683 >                double r = this.basis;
5684 >                for (int i = baseIndex, f, h; batch > 0 &&
5685 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5686 >                    addToPendingCount(1);
5687 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5688 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5689 >                      rights, transformer, r, reducer)).fork();
5690 >                }
5691 >                for (Node<K,V> p; (p = advance()) != null; )
5692 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5693 >                result = r;
5694 >                CountedCompleter<?> c;
5695 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5696 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5697 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5698 >                        s = t.rights;
5699 >                    while (s != null) {
5700 >                        t.result = reducer.apply(t.result, s.result);
5701 >                        s = t.rights = s.nextRight;
5702 >                    }
5703 >                }
5704 >            }
5705 >        }
5706 >    }
5707 >
5708 >    @SuppressWarnings("serial")
5709 >    static final class MapReduceKeysToLongTask<K,V>
5710 >        extends BulkTask<K,V,Long> {
5711 >        final ObjectToLong<? super K> transformer;
5712 >        final LongByLongToLong reducer;
5713 >        final long basis;
5714 >        long result;
5715 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5716 >        MapReduceKeysToLongTask
5717 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5718 >             MapReduceKeysToLongTask<K,V> nextRight,
5719 >             ObjectToLong<? super K> transformer,
5720 >             long basis,
5721 >             LongByLongToLong reducer) {
5722 >            super(p, b, i, f, t); this.nextRight = nextRight;
5723 >            this.transformer = transformer;
5724 >            this.basis = basis; this.reducer = reducer;
5725 >        }
5726 >        public final Long getRawResult() { return result; }
5727 >        public final void compute() {
5728 >            final ObjectToLong<? super K> transformer;
5729 >            final LongByLongToLong reducer;
5730 >            if ((transformer = this.transformer) != null &&
5731 >                (reducer = this.reducer) != null) {
5732 >                long r = this.basis;
5733 >                for (int i = baseIndex, f, h; batch > 0 &&
5734 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5735 >                    addToPendingCount(1);
5736 >                    (rights = new MapReduceKeysToLongTask<K,V>
5737 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5738 >                      rights, transformer, r, reducer)).fork();
5739 >                }
5740 >                for (Node<K,V> p; (p = advance()) != null; )
5741 >                    r = reducer.apply(r, transformer.apply(p.key));
5742 >                result = r;
5743 >                CountedCompleter<?> c;
5744 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5745 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5746 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5747 >                        s = t.rights;
5748 >                    while (s != null) {
5749 >                        t.result = reducer.apply(t.result, s.result);
5750 >                        s = t.rights = s.nextRight;
5751 >                    }
5752 >                }
5753 >            }
5754 >        }
5755 >    }
5756 >
5757 >    @SuppressWarnings("serial")
5758 >    static final class MapReduceValuesToLongTask<K,V>
5759 >        extends BulkTask<K,V,Long> {
5760 >        final ObjectToLong<? super V> transformer;
5761 >        final LongByLongToLong reducer;
5762 >        final long basis;
5763 >        long result;
5764 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5765 >        MapReduceValuesToLongTask
5766 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5767 >             MapReduceValuesToLongTask<K,V> nextRight,
5768 >             ObjectToLong<? super V> transformer,
5769 >             long basis,
5770 >             LongByLongToLong reducer) {
5771 >            super(p, b, i, f, t); this.nextRight = nextRight;
5772 >            this.transformer = transformer;
5773 >            this.basis = basis; this.reducer = reducer;
5774 >        }
5775 >        public final Long getRawResult() { return result; }
5776 >        public final void compute() {
5777 >            final ObjectToLong<? super V> transformer;
5778 >            final LongByLongToLong reducer;
5779 >            if ((transformer = this.transformer) != null &&
5780 >                (reducer = this.reducer) != null) {
5781 >                long r = this.basis;
5782 >                for (int i = baseIndex, f, h; batch > 0 &&
5783 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5784 >                    addToPendingCount(1);
5785 >                    (rights = new MapReduceValuesToLongTask<K,V>
5786 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5787 >                      rights, transformer, r, reducer)).fork();
5788 >                }
5789 >                for (Node<K,V> p; (p = advance()) != null; )
5790 >                    r = reducer.apply(r, transformer.apply(p.val));
5791 >                result = r;
5792 >                CountedCompleter<?> c;
5793 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5794 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5795 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5796 >                        s = t.rights;
5797 >                    while (s != null) {
5798 >                        t.result = reducer.apply(t.result, s.result);
5799 >                        s = t.rights = s.nextRight;
5800 >                    }
5801 >                }
5802 >            }
5803 >        }
5804 >    }
5805 >
5806 >    @SuppressWarnings("serial")
5807 >    static final class MapReduceEntriesToLongTask<K,V>
5808 >        extends BulkTask<K,V,Long> {
5809 >        final ObjectToLong<Map.Entry<K,V>> transformer;
5810 >        final LongByLongToLong reducer;
5811 >        final long basis;
5812 >        long result;
5813 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
5814 >        MapReduceEntriesToLongTask
5815 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5816 >             MapReduceEntriesToLongTask<K,V> nextRight,
5817 >             ObjectToLong<Map.Entry<K,V>> transformer,
5818 >             long basis,
5819 >             LongByLongToLong reducer) {
5820 >            super(p, b, i, f, t); this.nextRight = nextRight;
5821 >            this.transformer = transformer;
5822 >            this.basis = basis; this.reducer = reducer;
5823 >        }
5824 >        public final Long getRawResult() { return result; }
5825 >        public final void compute() {
5826 >            final ObjectToLong<Map.Entry<K,V>> transformer;
5827 >            final LongByLongToLong reducer;
5828 >            if ((transformer = this.transformer) != null &&
5829 >                (reducer = this.reducer) != null) {
5830 >                long r = this.basis;
5831 >                for (int i = baseIndex, f, h; batch > 0 &&
5832 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5833 >                    addToPendingCount(1);
5834 >                    (rights = new MapReduceEntriesToLongTask<K,V>
5835 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5836 >                      rights, transformer, r, reducer)).fork();
5837 >                }
5838 >                for (Node<K,V> p; (p = advance()) != null; )
5839 >                    r = reducer.apply(r, transformer.apply(p));
5840 >                result = r;
5841 >                CountedCompleter<?> c;
5842 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5843 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5844 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5845 >                        s = t.rights;
5846 >                    while (s != null) {
5847 >                        t.result = reducer.apply(t.result, s.result);
5848 >                        s = t.rights = s.nextRight;
5849 >                    }
5850 >                }
5851 >            }
5852 >        }
5853 >    }
5854 >
5855 >    @SuppressWarnings("serial")
5856 >    static final class MapReduceMappingsToLongTask<K,V>
5857 >        extends BulkTask<K,V,Long> {
5858 >        final ObjectByObjectToLong<? super K, ? super V> transformer;
5859 >        final LongByLongToLong reducer;
5860 >        final long basis;
5861 >        long result;
5862 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
5863 >        MapReduceMappingsToLongTask
5864 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5865 >             MapReduceMappingsToLongTask<K,V> nextRight,
5866 >             ObjectByObjectToLong<? super K, ? super V> transformer,
5867 >             long basis,
5868 >             LongByLongToLong reducer) {
5869 >            super(p, b, i, f, t); this.nextRight = nextRight;
5870 >            this.transformer = transformer;
5871 >            this.basis = basis; this.reducer = reducer;
5872 >        }
5873 >        public final Long getRawResult() { return result; }
5874 >        public final void compute() {
5875 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
5876 >            final LongByLongToLong reducer;
5877 >            if ((transformer = this.transformer) != null &&
5878 >                (reducer = this.reducer) != null) {
5879 >                long r = this.basis;
5880 >                for (int i = baseIndex, f, h; batch > 0 &&
5881 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5882 >                    addToPendingCount(1);
5883 >                    (rights = new MapReduceMappingsToLongTask<K,V>
5884 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5885 >                      rights, transformer, r, reducer)).fork();
5886 >                }
5887 >                for (Node<K,V> p; (p = advance()) != null; )
5888 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5889 >                result = r;
5890 >                CountedCompleter<?> c;
5891 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5892 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5893 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
5894 >                        s = t.rights;
5895 >                    while (s != null) {
5896 >                        t.result = reducer.apply(t.result, s.result);
5897 >                        s = t.rights = s.nextRight;
5898 >                    }
5899 >                }
5900 >            }
5901 >        }
5902 >    }
5903 >
5904 >    @SuppressWarnings("serial")
5905 >    static final class MapReduceKeysToIntTask<K,V>
5906 >        extends BulkTask<K,V,Integer> {
5907 >        final ObjectToInt<? super K> transformer;
5908 >        final IntByIntToInt reducer;
5909 >        final int basis;
5910 >        int result;
5911 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
5912 >        MapReduceKeysToIntTask
5913 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5914 >             MapReduceKeysToIntTask<K,V> nextRight,
5915 >             ObjectToInt<? super K> transformer,
5916 >             int basis,
5917 >             IntByIntToInt reducer) {
5918 >            super(p, b, i, f, t); this.nextRight = nextRight;
5919 >            this.transformer = transformer;
5920 >            this.basis = basis; this.reducer = reducer;
5921 >        }
5922 >        public final Integer getRawResult() { return result; }
5923 >        public final void compute() {
5924 >            final ObjectToInt<? super K> transformer;
5925 >            final IntByIntToInt reducer;
5926 >            if ((transformer = this.transformer) != null &&
5927 >                (reducer = this.reducer) != null) {
5928 >                int r = this.basis;
5929 >                for (int i = baseIndex, f, h; batch > 0 &&
5930 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5931 >                    addToPendingCount(1);
5932 >                    (rights = new MapReduceKeysToIntTask<K,V>
5933 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5934 >                      rights, transformer, r, reducer)).fork();
5935 >                }
5936 >                for (Node<K,V> p; (p = advance()) != null; )
5937 >                    r = reducer.apply(r, transformer.apply(p.key));
5938 >                result = r;
5939 >                CountedCompleter<?> c;
5940 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5941 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5942 >                        t = (MapReduceKeysToIntTask<K,V>)c,
5943 >                        s = t.rights;
5944 >                    while (s != null) {
5945 >                        t.result = reducer.apply(t.result, s.result);
5946 >                        s = t.rights = s.nextRight;
5947 >                    }
5948 >                }
5949 >            }
5950 >        }
5951 >    }
5952 >
5953 >    @SuppressWarnings("serial")
5954 >    static final class MapReduceValuesToIntTask<K,V>
5955 >        extends BulkTask<K,V,Integer> {
5956 >        final ObjectToInt<? super V> transformer;
5957 >        final IntByIntToInt reducer;
5958 >        final int basis;
5959 >        int result;
5960 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
5961 >        MapReduceValuesToIntTask
5962 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5963 >             MapReduceValuesToIntTask<K,V> nextRight,
5964 >             ObjectToInt<? super V> transformer,
5965 >             int basis,
5966 >             IntByIntToInt reducer) {
5967 >            super(p, b, i, f, t); this.nextRight = nextRight;
5968 >            this.transformer = transformer;
5969 >            this.basis = basis; this.reducer = reducer;
5970 >        }
5971 >        public final Integer getRawResult() { return result; }
5972 >        public final void compute() {
5973 >            final ObjectToInt<? super V> transformer;
5974 >            final IntByIntToInt reducer;
5975 >            if ((transformer = this.transformer) != null &&
5976 >                (reducer = this.reducer) != null) {
5977 >                int r = this.basis;
5978 >                for (int i = baseIndex, f, h; batch > 0 &&
5979 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5980 >                    addToPendingCount(1);
5981 >                    (rights = new MapReduceValuesToIntTask<K,V>
5982 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5983 >                      rights, transformer, r, reducer)).fork();
5984 >                }
5985 >                for (Node<K,V> p; (p = advance()) != null; )
5986 >                    r = reducer.apply(r, transformer.apply(p.val));
5987 >                result = r;
5988 >                CountedCompleter<?> c;
5989 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5990 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5991 >                        t = (MapReduceValuesToIntTask<K,V>)c,
5992 >                        s = t.rights;
5993 >                    while (s != null) {
5994 >                        t.result = reducer.apply(t.result, s.result);
5995 >                        s = t.rights = s.nextRight;
5996 >                    }
5997 >                }
5998 >            }
5999 >        }
6000 >    }
6001 >
6002 >    @SuppressWarnings("serial")
6003 >    static final class MapReduceEntriesToIntTask<K,V>
6004 >        extends BulkTask<K,V,Integer> {
6005 >        final ObjectToInt<Map.Entry<K,V>> transformer;
6006 >        final IntByIntToInt reducer;
6007 >        final int basis;
6008 >        int result;
6009 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6010 >        MapReduceEntriesToIntTask
6011 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6012 >             MapReduceEntriesToIntTask<K,V> nextRight,
6013 >             ObjectToInt<Map.Entry<K,V>> transformer,
6014 >             int basis,
6015 >             IntByIntToInt reducer) {
6016 >            super(p, b, i, f, t); this.nextRight = nextRight;
6017 >            this.transformer = transformer;
6018 >            this.basis = basis; this.reducer = reducer;
6019 >        }
6020 >        public final Integer getRawResult() { return result; }
6021 >        public final void compute() {
6022 >            final ObjectToInt<Map.Entry<K,V>> transformer;
6023 >            final IntByIntToInt reducer;
6024 >            if ((transformer = this.transformer) != null &&
6025 >                (reducer = this.reducer) != null) {
6026 >                int r = this.basis;
6027 >                for (int i = baseIndex, f, h; batch > 0 &&
6028 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6029 >                    addToPendingCount(1);
6030 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6031 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6032 >                      rights, transformer, r, reducer)).fork();
6033 >                }
6034 >                for (Node<K,V> p; (p = advance()) != null; )
6035 >                    r = reducer.apply(r, transformer.apply(p));
6036 >                result = r;
6037 >                CountedCompleter<?> c;
6038 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6039 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
6040 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6041 >                        s = t.rights;
6042 >                    while (s != null) {
6043 >                        t.result = reducer.apply(t.result, s.result);
6044 >                        s = t.rights = s.nextRight;
6045 >                    }
6046 >                }
6047 >            }
6048 >        }
6049 >    }
6050 >
6051 >    @SuppressWarnings("serial")
6052 >    static final class MapReduceMappingsToIntTask<K,V>
6053 >        extends BulkTask<K,V,Integer> {
6054 >        final ObjectByObjectToInt<? super K, ? super V> transformer;
6055 >        final IntByIntToInt reducer;
6056 >        final int basis;
6057 >        int result;
6058 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6059 >        MapReduceMappingsToIntTask
6060 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6061 >             MapReduceMappingsToIntTask<K,V> nextRight,
6062 >             ObjectByObjectToInt<? super K, ? super V> transformer,
6063 >             int basis,
6064 >             IntByIntToInt reducer) {
6065 >            super(p, b, i, f, t); this.nextRight = nextRight;
6066 >            this.transformer = transformer;
6067 >            this.basis = basis; this.reducer = reducer;
6068 >        }
6069 >        public final Integer getRawResult() { return result; }
6070 >        public final void compute() {
6071 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
6072 >            final IntByIntToInt reducer;
6073 >            if ((transformer = this.transformer) != null &&
6074 >                (reducer = this.reducer) != null) {
6075 >                int r = this.basis;
6076 >                for (int i = baseIndex, f, h; batch > 0 &&
6077 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6078 >                    addToPendingCount(1);
6079 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6080 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6081 >                      rights, transformer, r, reducer)).fork();
6082 >                }
6083 >                for (Node<K,V> p; (p = advance()) != null; )
6084 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
6085 >                result = r;
6086 >                CountedCompleter<?> c;
6087 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6088 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6089 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6090 >                        s = t.rights;
6091 >                    while (s != null) {
6092 >                        t.result = reducer.apply(t.result, s.result);
6093 >                        s = t.rights = s.nextRight;
6094 >                    }
6095 >                }
6096 >            }
6097 >        }
6098 >    }
6099 >
6100 >    /* ---------------- Counters -------------- */
6101 >
6102 >    // Adapted from LongAdder and Striped64.
6103 >    // See their internal docs for explanation.
6104 >
6105 >    // A padded cell for distributing counts
6106 >    static final class CounterCell {
6107 >        volatile long p0, p1, p2, p3, p4, p5, p6;
6108 >        volatile long value;
6109 >        volatile long q0, q1, q2, q3, q4, q5, q6;
6110 >        CounterCell(long x) { value = x; }
6111 >    }
6112  
6113      /**
6114 <     * Helper class used in previous version, declared for the sake of
6115 <     * serialization compatibility
6114 >     * Holder for the thread-local hash code determining which
6115 >     * CounterCell to use. The code is initialized via the
6116 >     * counterHashCodeGenerator, but may be moved upon collisions.
6117       */
6118 <    static class Segment<K,V> extends java.util.concurrent.locks.ReentrantLock
6119 <        implements Serializable {
1515 <        private static final long serialVersionUID = 2249069246763182397L;
1516 <        final float loadFactor;
1517 <        Segment(float lf) { this.loadFactor = lf; }
6118 >    static final class CounterHashCode {
6119 >        int code;
6120      }
6121  
6122      /**
6123 <     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1522 <     * stream (i.e., serializes it).
1523 <     * @param s the stream
1524 <     * @serialData
1525 <     * the key (Object) and value (Object)
1526 <     * for each key-value mapping, followed by a null pair.
1527 <     * The key-value mappings are emitted in no particular order.
6123 >     * Generates initial value for per-thread CounterHashCodes.
6124       */
6125 <    @SuppressWarnings("unchecked")
1530 <    private void writeObject(java.io.ObjectOutputStream s)
1531 <            throws java.io.IOException {
1532 <        if (segments == null) { // for serialization compatibility
1533 <            segments = (Segment<K,V>[])
1534 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1535 <            for (int i = 0; i < segments.length; ++i)
1536 <                segments[i] = new Segment<K,V>(loadFactor);
1537 <        }
1538 <        s.defaultWriteObject();
1539 <        new HashIterator().writeEntries(s);
1540 <        s.writeObject(null);
1541 <        s.writeObject(null);
1542 <        segments = null; // throw away
1543 <    }
6125 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6126  
6127      /**
6128 <     * Reconstitutes the instance from a stream (that is, deserializes it).
6129 <     * @param s the stream
6128 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
6129 >     * for explanation.
6130       */
6131 <    @SuppressWarnings("unchecked")
6132 <    private void readObject(java.io.ObjectInputStream s)
6133 <            throws java.io.IOException, ClassNotFoundException {
6134 <        s.defaultReadObject();
6135 <        // find load factor in a segment, if one exists
6136 <        if (segments != null && segments.length != 0)
6137 <            this.loadFactor = segments[0].loadFactor;
6138 <        else
1557 <            this.loadFactor = DEFAULT_LOAD_FACTOR;
1558 <        this.initCap = DEFAULT_CAPACITY;
1559 <        LongAdder ct = new LongAdder(); // force final field write
1560 <        UNSAFE.putObjectVolatile(this, counterOffset, ct);
1561 <        this.segments = null; // unneeded
6131 >    static final int SEED_INCREMENT = 0x61c88647;
6132 >
6133 >    /**
6134 >     * Per-thread counter hash codes. Shared across all instances.
6135 >     */
6136 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6137 >        new ThreadLocal<CounterHashCode>();
6138 >
6139  
6140 <        // Read the keys and values, and put the mappings in the table
6140 >    final long sumCount() {
6141 >        CounterCell[] as = counterCells; CounterCell a;
6142 >        long sum = baseCount;
6143 >        if (as != null) {
6144 >            for (int i = 0; i < as.length; ++i) {
6145 >                if ((a = as[i]) != null)
6146 >                    sum += a.value;
6147 >            }
6148 >        }
6149 >        return sum;
6150 >    }
6151 >
6152 >    // See LongAdder version for explanation
6153 >    private final void fullAddCount(long x, CounterHashCode hc,
6154 >                                    boolean wasUncontended) {
6155 >        int h;
6156 >        if (hc == null) {
6157 >            hc = new CounterHashCode();
6158 >            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6159 >            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6160 >            threadCounterHashCode.set(hc);
6161 >        }
6162 >        else
6163 >            h = hc.code;
6164 >        boolean collide = false;                // True if last slot nonempty
6165          for (;;) {
6166 <            K key = (K) s.readObject();
6167 <            V value = (V) s.readObject();
6168 <            if (key == null)
6169 <                break;
6170 <            put(key, value);
6166 >            CounterCell[] as; CounterCell a; int n; long v;
6167 >            if ((as = counterCells) != null && (n = as.length) > 0) {
6168 >                if ((a = as[(n - 1) & h]) == null) {
6169 >                    if (cellsBusy == 0) {            // Try to attach new Cell
6170 >                        CounterCell r = new CounterCell(x); // Optimistic create
6171 >                        if (cellsBusy == 0 &&
6172 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6173 >                            boolean created = false;
6174 >                            try {               // Recheck under lock
6175 >                                CounterCell[] rs; int m, j;
6176 >                                if ((rs = counterCells) != null &&
6177 >                                    (m = rs.length) > 0 &&
6178 >                                    rs[j = (m - 1) & h] == null) {
6179 >                                    rs[j] = r;
6180 >                                    created = true;
6181 >                                }
6182 >                            } finally {
6183 >                                cellsBusy = 0;
6184 >                            }
6185 >                            if (created)
6186 >                                break;
6187 >                            continue;           // Slot is now non-empty
6188 >                        }
6189 >                    }
6190 >                    collide = false;
6191 >                }
6192 >                else if (!wasUncontended)       // CAS already known to fail
6193 >                    wasUncontended = true;      // Continue after rehash
6194 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6195 >                    break;
6196 >                else if (counterCells != as || n >= NCPU)
6197 >                    collide = false;            // At max size or stale
6198 >                else if (!collide)
6199 >                    collide = true;
6200 >                else if (cellsBusy == 0 &&
6201 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6202 >                    try {
6203 >                        if (counterCells == as) {// Expand table unless stale
6204 >                            CounterCell[] rs = new CounterCell[n << 1];
6205 >                            for (int i = 0; i < n; ++i)
6206 >                                rs[i] = as[i];
6207 >                            counterCells = rs;
6208 >                        }
6209 >                    } finally {
6210 >                        cellsBusy = 0;
6211 >                    }
6212 >                    collide = false;
6213 >                    continue;                   // Retry with expanded table
6214 >                }
6215 >                h ^= h << 13;                   // Rehash
6216 >                h ^= h >>> 17;
6217 >                h ^= h << 5;
6218 >            }
6219 >            else if (cellsBusy == 0 && counterCells == as &&
6220 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6221 >                boolean init = false;
6222 >                try {                           // Initialize table
6223 >                    if (counterCells == as) {
6224 >                        CounterCell[] rs = new CounterCell[2];
6225 >                        rs[h & 1] = new CounterCell(x);
6226 >                        counterCells = rs;
6227 >                        init = true;
6228 >                    }
6229 >                } finally {
6230 >                    cellsBusy = 0;
6231 >                }
6232 >                if (init)
6233 >                    break;
6234 >            }
6235 >            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6236 >                break;                          // Fall back on using base
6237          }
6238 +        hc.code = h;                            // Record index for next time
6239      }
6240  
6241      // Unsafe mechanics
6242 <    private static final sun.misc.Unsafe UNSAFE;
6243 <    private static final long counterOffset;
6244 <    private static final long resizingOffset;
6242 >    private static final sun.misc.Unsafe U;
6243 >    private static final long SIZECTL;
6244 >    private static final long TRANSFERINDEX;
6245 >    private static final long BASECOUNT;
6246 >    private static final long CELLSBUSY;
6247 >    private static final long CELLVALUE;
6248      private static final long ABASE;
6249      private static final int ASHIFT;
6250  
6251      static {
1581        int ss;
6252          try {
6253 <            UNSAFE = getUnsafe();
6253 >            U = getUnsafe();
6254              Class<?> k = ConcurrentHashMapV8.class;
6255 <            counterOffset = UNSAFE.objectFieldOffset
6256 <                (k.getDeclaredField("counter"));
6257 <            resizingOffset = UNSAFE.objectFieldOffset
6258 <                (k.getDeclaredField("resizing"));
6259 <            Class<?> sc = Node[].class;
6260 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6261 <            ss = UNSAFE.arrayIndexScale(sc);
6255 >            SIZECTL = U.objectFieldOffset
6256 >                (k.getDeclaredField("sizeCtl"));
6257 >            TRANSFERINDEX = U.objectFieldOffset
6258 >                (k.getDeclaredField("transferIndex"));
6259 >            BASECOUNT = U.objectFieldOffset
6260 >                (k.getDeclaredField("baseCount"));
6261 >            CELLSBUSY = U.objectFieldOffset
6262 >                (k.getDeclaredField("cellsBusy"));
6263 >            Class<?> ck = CounterCell.class;
6264 >            CELLVALUE = U.objectFieldOffset
6265 >                (ck.getDeclaredField("value"));
6266 >            Class<?> ak = Node[].class;
6267 >            ABASE = U.arrayBaseOffset(ak);
6268 >            int scale = U.arrayIndexScale(ak);
6269 >            if ((scale & (scale - 1)) != 0)
6270 >                throw new Error("data type scale not a power of two");
6271 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6272          } catch (Exception e) {
6273              throw new Error(e);
6274          }
1595        if ((ss & (ss-1)) != 0)
1596            throw new Error("data type scale not a power of two");
1597        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6275      }
6276  
6277      /**
# Line 1607 | Line 6284 | public class ConcurrentHashMapV8<K, V>
6284      private static sun.misc.Unsafe getUnsafe() {
6285          try {
6286              return sun.misc.Unsafe.getUnsafe();
6287 <        } catch (SecurityException se) {
6288 <            try {
6289 <                return java.security.AccessController.doPrivileged
6290 <                    (new java.security
6291 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6292 <                        public sun.misc.Unsafe run() throws Exception {
6293 <                            java.lang.reflect.Field f = sun.misc
6294 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6295 <                            f.setAccessible(true);
6296 <                            return (sun.misc.Unsafe) f.get(null);
6297 <                        }});
6298 <            } catch (java.security.PrivilegedActionException e) {
6299 <                throw new RuntimeException("Could not initialize intrinsics",
6300 <                                           e.getCause());
6301 <            }
6287 >        } catch (SecurityException tryReflectionInstead) {}
6288 >        try {
6289 >            return java.security.AccessController.doPrivileged
6290 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6291 >                public sun.misc.Unsafe run() throws Exception {
6292 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6293 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6294 >                        f.setAccessible(true);
6295 >                        Object x = f.get(null);
6296 >                        if (k.isInstance(x))
6297 >                            return k.cast(x);
6298 >                    }
6299 >                    throw new NoSuchFieldError("the Unsafe");
6300 >                }});
6301 >        } catch (java.security.PrivilegedActionException e) {
6302 >            throw new RuntimeException("Could not initialize intrinsics",
6303 >                                       e.getCause());
6304          }
6305      }
1627
6306   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines