ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.72 by jsr166, Tue Oct 30 16:05:35 2012 UTC vs.
Revision 1.120 by dl, Sun Dec 1 20:55:50 2013 UTC

# Line 6 | Line 6
6  
7   package jsr166e;
8  
9 < import java.util.Comparator;
9 > import jsr166e.ForkJoinPool;
10 >
11 > import java.io.ObjectStreamField;
12 > import java.io.Serializable;
13 > import java.lang.reflect.ParameterizedType;
14 > import java.lang.reflect.Type;
15 > import java.util.AbstractMap;
16   import java.util.Arrays;
11 import java.util.Map;
12 import java.util.Set;
17   import java.util.Collection;
18 < import java.util.AbstractMap;
19 < import java.util.AbstractSet;
20 < import java.util.AbstractCollection;
17 < import java.util.Hashtable;
18 > import java.util.Comparator;
19 > import java.util.ConcurrentModificationException;
20 > import java.util.Enumeration;
21   import java.util.HashMap;
22 + import java.util.Hashtable;
23   import java.util.Iterator;
24 < import java.util.Enumeration;
21 < import java.util.ConcurrentModificationException;
24 > import java.util.Map;
25   import java.util.NoSuchElementException;
26 + import java.util.Set;
27   import java.util.concurrent.ConcurrentMap;
24 import java.util.concurrent.ThreadLocalRandom;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
28   import java.util.concurrent.atomic.AtomicReference;
29 <
30 < import java.io.Serializable;
29 > import java.util.concurrent.atomic.AtomicInteger;
30 > import java.util.concurrent.locks.LockSupport;
31 > import java.util.concurrent.locks.ReentrantLock;
32  
33   /**
34   * A hash table supporting full concurrency of retrievals and
# Line 40 | Line 42 | import java.io.Serializable;
42   * interoperable with {@code Hashtable} in programs that rely on its
43   * thread safety but not on its synchronization details.
44   *
45 < * <p> Retrieval operations (including {@code get}) generally do not
45 > * <p>Retrieval operations (including {@code get}) generally do not
46   * block, so may overlap with update operations (including {@code put}
47   * and {@code remove}). Retrievals reflect the results of the most
48   * recently <em>completed</em> update operations holding upon their
# Line 61 | Line 63 | import java.io.Serializable;
63   * that may be adequate for monitoring or estimation purposes, but not
64   * for program control.
65   *
66 < * <p> The table is dynamically expanded when there are too many
66 > * <p>The table is dynamically expanded when there are too many
67   * collisions (i.e., keys that have distinct hash codes but fall into
68   * the same slot modulo the table size), with the expected average
69   * effect of maintaining roughly two bins per mapping (corresponding
# Line 80 | Line 82 | import java.io.Serializable;
82   * expected {@code concurrencyLevel} as an additional hint for
83   * internal sizing.  Note that using many keys with exactly the same
84   * {@code hashCode()} is a sure way to slow down performance of any
85 < * hash table.
85 > * hash table. To ameliorate impact, when keys are {@link Comparable},
86 > * this class may use comparison order among keys to help break ties.
87   *
88 < * <p> A {@link Set} projection of a ConcurrentHashMapV8 may be created
88 > * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
89   * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
90   * (using {@link #keySet(Object)} when only keys are of interest, and the
91   * mapped values are (perhaps transiently) not used or all take the
92   * same mapping value.
93   *
91 * <p> A ConcurrentHashMapV8 can be used as scalable frequency map (a
92 * form of histogram or multiset) by using {@link LongAdder} values
93 * and initializing via {@link #computeIfAbsent}. For example, to add
94 * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
95 * can use {@code freqs.computeIfAbsent(k -> new
96 * LongAdder()).increment();}
97 *
94   * <p>This class and its views and iterators implement all of the
95   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
96   * interfaces.
97   *
98 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
98 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
99   * does <em>not</em> allow {@code null} to be used as a key or value.
100   *
101 < * <p>ConcurrentHashMapV8s support parallel operations using the {@link
102 < * ForkJoinPool#commonPool}. (Task that may be used in other contexts
103 < * are available in class {@link ForkJoinTasks}). These operations are
104 < * designed to be safely, and often sensibly, applied even with maps
105 < * that are being concurrently updated by other threads; for example,
106 < * when computing a snapshot summary of the values in a shared
107 < * registry.  There are three kinds of operation, each with four
108 < * forms, accepting functions with Keys, Values, Entries, and (Key,
109 < * Value) arguments and/or return values. Because the elements of a
110 < * ConcurrentHashMapV8 are not ordered in any particular way, and may be
111 < * processed in different orders in different parallel executions, the
112 < * correctness of supplied functions should not depend on any
113 < * ordering, or on any other objects or values that may transiently
114 < * change while computation is in progress; and except for forEach
115 < * actions, should ideally be side-effect-free.
101 > * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
102 > * operations that are designed
103 > * to be safely, and often sensibly, applied even with maps that are
104 > * being concurrently updated by other threads; for example, when
105 > * computing a snapshot summary of the values in a shared registry.
106 > * There are three kinds of operation, each with four forms, accepting
107 > * functions with Keys, Values, Entries, and (Key, Value) arguments
108 > * and/or return values. Because the elements of a ConcurrentHashMapV8
109 > * are not ordered in any particular way, and may be processed in
110 > * different orders in different parallel executions, the correctness
111 > * of supplied functions should not depend on any ordering, or on any
112 > * other objects or values that may transiently change while
113 > * computation is in progress; and except for forEach actions, should
114 > * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
115 > * objects do not support method {@code setValue}.
116   *
117   * <ul>
118   * <li> forEach: Perform a given action on each element.
# Line 143 | Line 139 | import java.io.Serializable;
139   * <li> Reductions to scalar doubles, longs, and ints, using a
140   * given basis value.</li>
141   *
146 * </li>
142   * </ul>
143 + * </li>
144   * </ul>
145   *
146 + * <p>These bulk operations accept a {@code parallelismThreshold}
147 + * argument. Methods proceed sequentially if the current map size is
148 + * estimated to be less than the given threshold. Using a value of
149 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
150 + * of {@code 1} results in maximal parallelism by partitioning into
151 + * enough subtasks to fully utilize the {@link
152 + * ForkJoinPool#commonPool()} that is used for all parallel
153 + * computations. Normally, you would initially choose one of these
154 + * extreme values, and then measure performance of using in-between
155 + * values that trade off overhead versus throughput.
156 + *
157   * <p>The concurrency properties of bulk operations follow
158   * from those of ConcurrentHashMapV8: Any non-null result returned
159   * from {@code get(key)} and related access methods bears a
# Line 182 | Line 189 | import java.io.Serializable;
189   * arguments can be supplied using {@code new
190   * AbstractMap.SimpleEntry(k,v)}.
191   *
192 < * <p> Bulk operations may complete abruptly, throwing an
192 > * <p>Bulk operations may complete abruptly, throwing an
193   * exception encountered in the application of a supplied
194   * function. Bear in mind when handling such exceptions that other
195   * concurrently executing functions could also have thrown
196   * exceptions, or would have done so if the first exception had
197   * not occurred.
198   *
199 < * <p>Parallel speedups for bulk operations compared to sequential
200 < * processing are common but not guaranteed.  Operations involving
201 < * brief functions on small maps may execute more slowly than
202 < * sequential loops if the underlying work to parallelize the
203 < * computation is more expensive than the computation
204 < * itself. Similarly, parallelization may not lead to much actual
205 < * parallelism if all processors are busy performing unrelated tasks.
199 > * <p>Speedups for parallel compared to sequential forms are common
200 > * but not guaranteed.  Parallel operations involving brief functions
201 > * on small maps may execute more slowly than sequential forms if the
202 > * underlying work to parallelize the computation is more expensive
203 > * than the computation itself.  Similarly, parallelization may not
204 > * lead to much actual parallelism if all processors are busy
205 > * performing unrelated tasks.
206   *
207 < * <p> All arguments to all task methods must be non-null.
207 > * <p>All arguments to all task methods must be non-null.
208   *
209   * <p><em>jsr166e note: During transition, this class
210   * uses nested functional interfaces with different names but the
211 < * same forms as those expected for JDK8.<em>
211 > * same forms as those expected for JDK8.</em>
212   *
213   * <p>This class is a member of the
214   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
# Line 212 | Line 219 | import java.io.Serializable;
219   * @param <K> the type of keys maintained by this map
220   * @param <V> the type of mapped values
221   */
222 < public class ConcurrentHashMapV8<K, V>
223 <    implements ConcurrentMap<K, V>, Serializable {
222 > public class ConcurrentHashMapV8<K,V> extends AbstractMap<K,V>
223 >    implements ConcurrentMap<K,V>, Serializable {
224      private static final long serialVersionUID = 7249069246763182397L;
225  
226      /**
227 <     * A partitionable iterator. A Spliterator can be traversed
228 <     * directly, but can also be partitioned (before traversal) by
229 <     * creating another Spliterator that covers a non-overlapping
223 <     * portion of the elements, and so may be amenable to parallel
224 <     * execution.
225 <     *
226 <     * <p> This interface exports a subset of expected JDK8
227 <     * functionality.
228 <     *
229 <     * <p>Sample usage: Here is one (of the several) ways to compute
230 <     * the sum of the values held in a map using the ForkJoin
231 <     * framework. As illustrated here, Spliterators are well suited to
232 <     * designs in which a task repeatedly splits off half its work
233 <     * into forked subtasks until small enough to process directly,
234 <     * and then joins these subtasks. Variants of this style can also
235 <     * be used in completion-based designs.
236 <     *
237 <     * <pre>
238 <     * {@code ConcurrentHashMapV8<String, Long> m = ...
239 <     * // split as if have 8 * parallelism, for load balance
240 <     * int n = m.size();
241 <     * int p = aForkJoinPool.getParallelism() * 8;
242 <     * int split = (n < p)? n : p;
243 <     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
244 <     * // ...
245 <     * static class SumValues extends RecursiveTask<Long> {
246 <     *   final Spliterator<Long> s;
247 <     *   final int split;             // split while > 1
248 <     *   final SumValues nextJoin;    // records forked subtasks to join
249 <     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
250 <     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
251 <     *   }
252 <     *   public Long compute() {
253 <     *     long sum = 0;
254 <     *     SumValues subtasks = null; // fork subtasks
255 <     *     for (int s = split >>> 1; s > 0; s >>>= 1)
256 <     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
257 <     *     while (s.hasNext())        // directly process remaining elements
258 <     *       sum += s.next();
259 <     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
260 <     *       sum += t.join();         // collect subtask results
261 <     *     return sum;
262 <     *   }
263 <     * }
264 <     * }</pre>
227 >     * An object for traversing and partitioning elements of a source.
228 >     * This interface provides a subset of the functionality of JDK8
229 >     * java.util.Spliterator.
230       */
231 <    public static interface Spliterator<T> extends Iterator<T> {
231 >    public static interface ConcurrentHashMapSpliterator<T> {
232          /**
233 <         * Returns a Spliterator covering approximately half of the
234 <         * elements, guaranteed not to overlap with those subsequently
235 <         * returned by this Spliterator.  After invoking this method,
236 <         * the current Spliterator will <em>not</em> produce any of
272 <         * the elements of the returned Spliterator, but the two
273 <         * Spliterators together will produce all of the elements that
274 <         * would have been produced by this Spliterator had this
275 <         * method not been called. The exact number of elements
276 <         * produced by the returned Spliterator is not guaranteed, and
277 <         * may be zero (i.e., with {@code hasNext()} reporting {@code
278 <         * false}) if this Spliterator cannot be further split.
279 <         *
280 <         * @return a Spliterator covering approximately half of the
281 <         * elements
282 <         * @throws IllegalStateException if this Spliterator has
283 <         * already commenced traversing elements
233 >         * If possible, returns a new spliterator covering
234 >         * approximately one half of the elements, which will not be
235 >         * covered by this spliterator. Returns null if cannot be
236 >         * split.
237           */
238 <        Spliterator<T> split();
286 <    }
287 <
288 <    /**
289 <     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
290 <     * which additions may optionally be enabled by mapping to a
291 <     * common value.  This class cannot be directly instantiated. See
292 <     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
293 <     * {@link #newKeySet(int)}.
294 <     *
295 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
296 <     * that will never throw {@link ConcurrentModificationException},
297 <     * and guarantees to traverse elements as they existed upon
298 <     * construction of the iterator, and may (but is not guaranteed to)
299 <     * reflect any modifications subsequent to construction.
300 <     */
301 <    public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
302 <        private static final long serialVersionUID = 7249069246763182397L;
303 <        private final V value;
304 <        KeySetView(ConcurrentHashMapV8<K, V> map, V value) {  // non-public
305 <            super(map);
306 <            this.value = value;
307 <        }
308 <
238 >        ConcurrentHashMapSpliterator<T> trySplit();
239          /**
240 <         * Returns the map backing this view.
241 <         *
312 <         * @return the map backing this view
240 >         * Returns an estimate of the number of elements covered by
241 >         * this Spliterator.
242           */
243 <        public ConcurrentHashMapV8<K,V> getMap() { return map; }
243 >        long estimateSize();
244  
245 <        /**
246 <         * Returns the default mapped value for additions,
247 <         * or {@code null} if additions are not supported.
248 <         *
249 <         * @return the default mapped value for additions, or {@code null}
321 <         * if not supported.
322 <         */
323 <        public V getMappedValue() { return value; }
245 >        /** Applies the action to each untraversed element */
246 >        void forEachRemaining(Action<? super T> action);
247 >        /** If an element remains, applies the action and returns true. */
248 >        boolean tryAdvance(Action<? super T> action);
249 >    }
250  
251 <        // implement Set API
251 >    // Sams
252 >    /** Interface describing a void action of one argument */
253 >    public interface Action<A> { void apply(A a); }
254 >    /** Interface describing a void action of two arguments */
255 >    public interface BiAction<A,B> { void apply(A a, B b); }
256 >    /** Interface describing a function of one argument */
257 >    public interface Fun<A,T> { T apply(A a); }
258 >    /** Interface describing a function of two arguments */
259 >    public interface BiFun<A,B,T> { T apply(A a, B b); }
260 >    /** Interface describing a function mapping its argument to a double */
261 >    public interface ObjectToDouble<A> { double apply(A a); }
262 >    /** Interface describing a function mapping its argument to a long */
263 >    public interface ObjectToLong<A> { long apply(A a); }
264 >    /** Interface describing a function mapping its argument to an int */
265 >    public interface ObjectToInt<A> {int apply(A a); }
266 >    /** Interface describing a function mapping two arguments to a double */
267 >    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
268 >    /** Interface describing a function mapping two arguments to a long */
269 >    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
270 >    /** Interface describing a function mapping two arguments to an int */
271 >    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
272 >    /** Interface describing a function mapping two doubles to a double */
273 >    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
274 >    /** Interface describing a function mapping two longs to a long */
275 >    public interface LongByLongToLong { long apply(long a, long b); }
276 >    /** Interface describing a function mapping two ints to an int */
277 >    public interface IntByIntToInt { int apply(int a, int b); }
278  
327        public boolean contains(Object o) { return map.containsKey(o); }
328        public boolean remove(Object o)   { return map.remove(o) != null; }
329        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
330        public boolean add(K e) {
331            V v;
332            if ((v = value) == null)
333                throw new UnsupportedOperationException();
334            if (e == null)
335                throw new NullPointerException();
336            return map.internalPutIfAbsent(e, v) == null;
337        }
338        public boolean addAll(Collection<? extends K> c) {
339            boolean added = false;
340            V v;
341            if ((v = value) == null)
342                throw new UnsupportedOperationException();
343            for (K e : c) {
344                if (e == null)
345                    throw new NullPointerException();
346                if (map.internalPutIfAbsent(e, v) == null)
347                    added = true;
348            }
349            return added;
350        }
351        public boolean equals(Object o) {
352            Set<?> c;
353            return ((o instanceof Set) &&
354                    ((c = (Set<?>)o) == this ||
355                     (containsAll(c) && c.containsAll(this))));
356        }
357    }
279  
280      /*
281       * Overview:
# Line 366 | Line 287 | public class ConcurrentHashMapV8<K, V>
287       * the same or better than java.util.HashMap, and to support high
288       * initial insertion rates on an empty table by many threads.
289       *
290 <     * Each key-value mapping is held in a Node.  Because Node fields
291 <     * can contain special values, they are defined using plain Object
292 <     * types. Similarly in turn, all internal methods that use them
293 <     * work off Object types. And similarly, so do the internal
294 <     * methods of auxiliary iterator and view classes.  All public
295 <     * generic typed methods relay in/out of these internal methods,
296 <     * supplying null-checks and casts as needed. This also allows
297 <     * many of the public methods to be factored into a smaller number
298 <     * of internal methods (although sadly not so for the five
299 <     * variants of put-related operations). The validation-based
300 <     * approach explained below leads to a lot of code sprawl because
301 <     * retry-control precludes factoring into smaller methods.
290 >     * This map usually acts as a binned (bucketed) hash table.  Each
291 >     * key-value mapping is held in a Node.  Most nodes are instances
292 >     * of the basic Node class with hash, key, value, and next
293 >     * fields. However, various subclasses exist: TreeNodes are
294 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
295 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
296 >     * of bins during resizing. ReservationNodes are used as
297 >     * placeholders while establishing values in computeIfAbsent and
298 >     * related methods.  The types TreeBin, ForwardingNode, and
299 >     * ReservationNode do not hold normal user keys, values, or
300 >     * hashes, and are readily distinguishable during search etc
301 >     * because they have negative hash fields and null key and value
302 >     * fields. (These special nodes are either uncommon or transient,
303 >     * so the impact of carrying around some unused fields is
304 >     * insignificant.)
305       *
306       * The table is lazily initialized to a power-of-two size upon the
307       * first insertion.  Each bin in the table normally contains a
# Line 385 | Line 309 | public class ConcurrentHashMapV8<K, V>
309       * Table accesses require volatile/atomic reads, writes, and
310       * CASes.  Because there is no other way to arrange this without
311       * adding further indirections, we use intrinsics
312 <     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
313 <     * are always accurately traversable under volatile reads, so long
314 <     * as lookups check hash code and non-nullness of value before
315 <     * checking key equality.
316 <     *
317 <     * We use the top two bits of Node hash fields for control
394 <     * purposes -- they are available anyway because of addressing
395 <     * constraints.  As explained further below, these top bits are
396 <     * used as follows:
397 <     *  00 - Normal
398 <     *  01 - Locked
399 <     *  11 - Locked and may have a thread waiting for lock
400 <     *  10 - Node is a forwarding node
401 <     *
402 <     * The lower 30 bits of each Node's hash field contain a
403 <     * transformation of the key's hash code, except for forwarding
404 <     * nodes, for which the lower bits are zero (and so always have
405 <     * hash field == MOVED).
312 >     * (sun.misc.Unsafe) operations.
313 >     *
314 >     * We use the top (sign) bit of Node hash fields for control
315 >     * purposes -- it is available anyway because of addressing
316 >     * constraints.  Nodes with negative hash fields are specially
317 >     * handled or ignored in map methods.
318       *
319       * Insertion (via put or its variants) of the first node in an
320       * empty bin is performed by just CASing it to the bin.  This is
# Line 411 | Line 323 | public class ConcurrentHashMapV8<K, V>
323       * delete, and replace) require locks.  We do not want to waste
324       * the space required to associate a distinct lock object with
325       * each bin, so instead use the first node of a bin list itself as
326 <     * a lock. Blocking support for these locks relies on the builtin
327 <     * "synchronized" monitors.  However, we also need a tryLock
416 <     * construction, so we overlay these by using bits of the Node
417 <     * hash field for lock control (see above), and so normally use
418 <     * builtin monitors only for blocking and signalling using
419 <     * wait/notifyAll constructions. See Node.tryAwaitLock.
326 >     * a lock. Locking support for these locks relies on builtin
327 >     * "synchronized" monitors.
328       *
329       * Using the first node of a list as a lock does not by itself
330       * suffice though: When a node is locked, any update must first
331       * validate that it is still the first node after locking it, and
332       * retry if not. Because new nodes are always appended to lists,
333       * once a node is first in a bin, it remains first until deleted
334 <     * or the bin becomes invalidated (upon resizing).  However,
427 <     * operations that only conditionally update may inspect nodes
428 <     * until the point of update. This is a converse of sorts to the
429 <     * lazy locking technique described by Herlihy & Shavit.
334 >     * or the bin becomes invalidated (upon resizing).
335       *
336       * The main disadvantage of per-bin locks is that other update
337       * operations on other nodes in a bin list protected by the same
# Line 459 | Line 364 | public class ConcurrentHashMapV8<K, V>
364       * sometimes deviate significantly from uniform randomness.  This
365       * includes the case when N > (1<<30), so some keys MUST collide.
366       * Similarly for dumb or hostile usages in which multiple keys are
367 <     * designed to have identical hash codes. Also, although we guard
368 <     * against the worst effects of this (see method spread), sets of
369 <     * hashes may differ only in bits that do not impact their bin
370 <     * index for a given power-of-two mask.  So we use a secondary
371 <     * strategy that applies when the number of nodes in a bin exceeds
372 <     * a threshold, and at least one of the keys implements
468 <     * Comparable.  These TreeBins use a balanced tree to hold nodes
469 <     * (a specialized form of red-black trees), bounding search time
470 <     * to O(log N).  Each search step in a TreeBin is around twice as
367 >     * designed to have identical hash codes or ones that differs only
368 >     * in masked-out high bits. So we use a secondary strategy that
369 >     * applies when the number of nodes in a bin exceeds a
370 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
371 >     * specialized form of red-black trees), bounding search time to
372 >     * O(log N).  Each search step in a TreeBin is at least twice as
373       * slow as in a regular list, but given that N cannot exceed
374       * (1<<64) (before running out of addresses) this bounds search
375       * steps, lock hold times, etc, to reasonable constants (roughly
# Line 478 | Line 380 | public class ConcurrentHashMapV8<K, V>
380       * iterators in the same way.
381       *
382       * The table is resized when occupancy exceeds a percentage
383 <     * threshold (nominally, 0.75, but see below).  Only a single
384 <     * thread performs the resize (using field "sizeCtl", to arrange
385 <     * exclusion), but the table otherwise remains usable for reads
386 <     * and updates. Resizing proceeds by transferring bins, one by
387 <     * one, from the table to the next table.  Because we are using
388 <     * power-of-two expansion, the elements from each bin must either
389 <     * stay at same index, or move with a power of two offset. We
390 <     * eliminate unnecessary node creation by catching cases where old
391 <     * nodes can be reused because their next fields won't change.  On
392 <     * average, only about one-sixth of them need cloning when a table
393 <     * doubles. The nodes they replace will be garbage collectable as
394 <     * soon as they are no longer referenced by any reader thread that
395 <     * may be in the midst of concurrently traversing table.  Upon
396 <     * transfer, the old table bin contains only a special forwarding
397 <     * node (with hash field "MOVED") that contains the next table as
398 <     * its key. On encountering a forwarding node, access and update
399 <     * operations restart, using the new table.
400 <     *
401 <     * Each bin transfer requires its bin lock. However, unlike other
402 <     * cases, a transfer can skip a bin if it fails to acquire its
403 <     * lock, and revisit it later (unless it is a TreeBin). Method
404 <     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
405 <     * have been skipped because of failure to acquire a lock, and
406 <     * blocks only if none are available (i.e., only very rarely).
407 <     * The transfer operation must also ensure that all accessible
408 <     * bins in both the old and new table are usable by any traversal.
409 <     * When there are no lock acquisition failures, this is arranged
410 <     * simply by proceeding from the last bin (table.length - 1) up
411 <     * towards the first.  Upon seeing a forwarding node, traversals
412 <     * (see class Iter) arrange to move to the new table
413 <     * without revisiting nodes.  However, when any node is skipped
414 <     * during a transfer, all earlier table bins may have become
415 <     * visible, so are initialized with a reverse-forwarding node back
416 <     * to the old table until the new ones are established. (This
417 <     * sometimes requires transiently locking a forwarding node, which
418 <     * is possible under the above encoding.) These more expensive
419 <     * mechanics trigger only when necessary.
383 >     * threshold (nominally, 0.75, but see below).  Any thread
384 >     * noticing an overfull bin may assist in resizing after the
385 >     * initiating thread allocates and sets up the replacement array.
386 >     * However, rather than stalling, these other threads may proceed
387 >     * with insertions etc.  The use of TreeBins shields us from the
388 >     * worst case effects of overfilling while resizes are in
389 >     * progress.  Resizing proceeds by transferring bins, one by one,
390 >     * from the table to the next table. However, threads claim small
391 >     * blocks of indices to transfer (via field transferIndex) before
392 >     * doing so, reducing contention.  A generation stamp in field
393 >     * sizeCtl ensures that resizings do not overlap. Because we are
394 >     * using power-of-two expansion, the elements from each bin must
395 >     * either stay at same index, or move with a power of two
396 >     * offset. We eliminate unnecessary node creation by catching
397 >     * cases where old nodes can be reused because their next fields
398 >     * won't change.  On average, only about one-sixth of them need
399 >     * cloning when a table doubles. The nodes they replace will be
400 >     * garbage collectable as soon as they are no longer referenced by
401 >     * any reader thread that may be in the midst of concurrently
402 >     * traversing table.  Upon transfer, the old table bin contains
403 >     * only a special forwarding node (with hash field "MOVED") that
404 >     * contains the next table as its key. On encountering a
405 >     * forwarding node, access and update operations restart, using
406 >     * the new table.
407 >     *
408 >     * Each bin transfer requires its bin lock, which can stall
409 >     * waiting for locks while resizing. However, because other
410 >     * threads can join in and help resize rather than contend for
411 >     * locks, average aggregate waits become shorter as resizing
412 >     * progresses.  The transfer operation must also ensure that all
413 >     * accessible bins in both the old and new table are usable by any
414 >     * traversal.  This is arranged in part by proceeding from the
415 >     * last bin (table.length - 1) up towards the first.  Upon seeing
416 >     * a forwarding node, traversals (see class Traverser) arrange to
417 >     * move to the new table without revisiting nodes.  To ensure that
418 >     * no intervening nodes are skipped even when moved out of order,
419 >     * a stack (see class TableStack) is created on first encounter of
420 >     * a forwarding node during a traversal, to maintain its place if
421 >     * later processing the current table. The need for these
422 >     * save/restore mechanics is relatively rare, but when one
423 >     * forwarding node is encountered, typically many more will be.
424 >     * So Traversers use a simple caching scheme to avoid creating so
425 >     * many new TableStack nodes. (Thanks to Peter Levart for
426 >     * suggesting use of a stack here.)
427       *
428       * The traversal scheme also applies to partial traversals of
429       * ranges of bins (via an alternate Traverser constructor)
# Line 529 | Line 438 | public class ConcurrentHashMapV8<K, V>
438       * These cases attempt to override the initial capacity settings,
439       * but harmlessly fail to take effect in cases of races.
440       *
441 <     * The element count is maintained using a LongAdder, which avoids
442 <     * contention on updates but can encounter cache thrashing if read
443 <     * too frequently during concurrent access. To avoid reading so
444 <     * often, resizing is attempted either when a bin lock is
445 <     * contended, or upon adding to a bin already holding two or more
446 <     * nodes (checked before adding in the xIfAbsent methods, after
447 <     * adding in others). Under uniform hash distributions, the
448 <     * probability of this occurring at threshold is around 13%,
449 <     * meaning that only about 1 in 8 puts check threshold (and after
450 <     * resizing, many fewer do so). But this approximation has high
451 <     * variance for small table sizes, so we check on any collision
452 <     * for sizes <= 64. The bulk putAll operation further reduces
453 <     * contention by only committing count updates upon these size
454 <     * checks.
441 >     * The element count is maintained using a specialization of
442 >     * LongAdder. We need to incorporate a specialization rather than
443 >     * just use a LongAdder in order to access implicit
444 >     * contention-sensing that leads to creation of multiple
445 >     * CounterCells.  The counter mechanics avoid contention on
446 >     * updates but can encounter cache thrashing if read too
447 >     * frequently during concurrent access. To avoid reading so often,
448 >     * resizing under contention is attempted only upon adding to a
449 >     * bin already holding two or more nodes. Under uniform hash
450 >     * distributions, the probability of this occurring at threshold
451 >     * is around 13%, meaning that only about 1 in 8 puts check
452 >     * threshold (and after resizing, many fewer do so).
453 >     *
454 >     * TreeBins use a special form of comparison for search and
455 >     * related operations (which is the main reason we cannot use
456 >     * existing collections such as TreeMaps). TreeBins contain
457 >     * Comparable elements, but may contain others, as well as
458 >     * elements that are Comparable but not necessarily Comparable for
459 >     * the same T, so we cannot invoke compareTo among them. To handle
460 >     * this, the tree is ordered primarily by hash value, then by
461 >     * Comparable.compareTo order if applicable.  On lookup at a node,
462 >     * if elements are not comparable or compare as 0 then both left
463 >     * and right children may need to be searched in the case of tied
464 >     * hash values. (This corresponds to the full list search that
465 >     * would be necessary if all elements were non-Comparable and had
466 >     * tied hashes.) On insertion, to keep a total ordering (or as
467 >     * close as is required here) across rebalancings, we compare
468 >     * classes and identityHashCodes as tie-breakers. The red-black
469 >     * balancing code is updated from pre-jdk-collections
470 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
471 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
472 >     * Algorithms" (CLR).
473 >     *
474 >     * TreeBins also require an additional locking mechanism.  While
475 >     * list traversal is always possible by readers even during
476 >     * updates, tree traversal is not, mainly because of tree-rotations
477 >     * that may change the root node and/or its linkages.  TreeBins
478 >     * include a simple read-write lock mechanism parasitic on the
479 >     * main bin-synchronization strategy: Structural adjustments
480 >     * associated with an insertion or removal are already bin-locked
481 >     * (and so cannot conflict with other writers) but must wait for
482 >     * ongoing readers to finish. Since there can be only one such
483 >     * waiter, we use a simple scheme using a single "waiter" field to
484 >     * block writers.  However, readers need never block.  If the root
485 >     * lock is held, they proceed along the slow traversal path (via
486 >     * next-pointers) until the lock becomes available or the list is
487 >     * exhausted, whichever comes first. These cases are not fast, but
488 >     * maximize aggregate expected throughput.
489       *
490       * Maintaining API and serialization compatibility with previous
491       * versions of this class introduces several oddities. Mainly: We
# Line 552 | Line 495 | public class ConcurrentHashMapV8<K, V>
495       * time that we can guarantee to honor it.) We also declare an
496       * unused "Segment" class that is instantiated in minimal form
497       * only when serializing.
498 +     *
499 +     * Also, solely for compatibility with previous versions of this
500 +     * class, it extends AbstractMap, even though all of its methods
501 +     * are overridden, so it is just useless baggage.
502 +     *
503 +     * This file is organized to make things a little easier to follow
504 +     * while reading than they might otherwise: First the main static
505 +     * declarations and utilities, then fields, then main public
506 +     * methods (with a few factorings of multiple public methods into
507 +     * internal ones), then sizing methods, trees, traversers, and
508 +     * bulk operations.
509       */
510  
511      /* ---------------- Constants -------------- */
# Line 593 | Line 547 | public class ConcurrentHashMapV8<K, V>
547      private static final float LOAD_FACTOR = 0.75f;
548  
549      /**
550 <     * The buffer size for skipped bins during transfers. The
551 <     * value is arbitrary but should be large enough to avoid
552 <     * most locking stalls during resizes.
550 >     * The bin count threshold for using a tree rather than list for a
551 >     * bin.  Bins are converted to trees when adding an element to a
552 >     * bin with at least this many nodes. The value must be greater
553 >     * than 2, and should be at least 8 to mesh with assumptions in
554 >     * tree removal about conversion back to plain bins upon
555 >     * shrinkage.
556       */
557 <    private static final int TRANSFER_BUFFER_SIZE = 32;
557 >    static final int TREEIFY_THRESHOLD = 8;
558  
559      /**
560 <     * The bin count threshold for using a tree rather than list for a
561 <     * bin.  The value reflects the approximate break-even point for
562 <     * using tree-based operations.
560 >     * The bin count threshold for untreeifying a (split) bin during a
561 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
562 >     * most 6 to mesh with shrinkage detection under removal.
563       */
564 <    private static final int TREE_THRESHOLD = 8;
564 >    static final int UNTREEIFY_THRESHOLD = 6;
565  
566 <    /*
567 <     * Encodings for special uses of Node hash fields. See above for
568 <     * explanation.
566 >    /**
567 >     * The smallest table capacity for which bins may be treeified.
568 >     * (Otherwise the table is resized if too many nodes in a bin.)
569 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
570 >     * conflicts between resizing and treeification thresholds.
571       */
572 <    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
614 <    static final int LOCKED    = 0x40000000; // set/tested only as a bit
615 <    static final int WAITING   = 0xc0000000; // both bits set/tested together
616 <    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
617 <
618 <    /* ---------------- Fields -------------- */
572 >    static final int MIN_TREEIFY_CAPACITY = 64;
573  
574      /**
575 <     * The array of bins. Lazily initialized upon first insertion.
576 <     * Size is always a power of two. Accessed directly by iterators.
575 >     * Minimum number of rebinnings per transfer step. Ranges are
576 >     * subdivided to allow multiple resizer threads.  This value
577 >     * serves as a lower bound to avoid resizers encountering
578 >     * excessive memory contention.  The value should be at least
579 >     * DEFAULT_CAPACITY.
580       */
581 <    transient volatile Node[] table;
581 >    private static final int MIN_TRANSFER_STRIDE = 16;
582  
583      /**
584 <     * The counter maintaining number of elements.
584 >     * The number of bits used for generation stamp in sizeCtl.
585 >     * Must be at least 6 for 32bit arrays.
586       */
587 <    private transient final LongAdder counter;
587 >    private static int RESIZE_STAMP_BITS = 16;
588  
589      /**
590 <     * Table initialization and resizing control.  When negative, the
591 <     * table is being initialized or resized. Otherwise, when table is
634 <     * null, holds the initial table size to use upon creation, or 0
635 <     * for default. After initialization, holds the next element count
636 <     * value upon which to resize the table.
590 >     * The maximum number of threads that can help resize.
591 >     * Must fit in 32 - RESIZE_STAMP_BITS bits.
592       */
593 <    private transient volatile int sizeCtl;
639 <
640 <    // views
641 <    private transient KeySetView<K,V> keySet;
642 <    private transient Values<K,V> values;
643 <    private transient EntrySet<K,V> entrySet;
593 >    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
594  
595 <    /** For serialization compatibility. Null unless serialized; see below */
596 <    private Segment<K,V>[] segments;
597 <
598 <    /* ---------------- Table element access -------------- */
595 >    /**
596 >     * The bit shift for recording size stamp in sizeCtl.
597 >     */
598 >    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
599  
600      /*
601 <     * Volatile access methods are used for table elements as well as
652 <     * elements of in-progress next table while resizing.  Uses are
653 <     * null checked by callers, and implicitly bounds-checked, relying
654 <     * on the invariants that tab arrays have non-zero size, and all
655 <     * indices are masked with (tab.length - 1) which is never
656 <     * negative and always less than length. Note that, to be correct
657 <     * wrt arbitrary concurrency errors by users, bounds checks must
658 <     * operate on local variables, which accounts for some odd-looking
659 <     * inline assignments below.
601 >     * Encodings for Node hash fields. See above for explanation.
602       */
603 <
604 <    static final Node tabAt(Node[] tab, int i) { // used by Iter
605 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
606 <    }
607 <
608 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
609 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
610 <    }
611 <
612 <    private static final void setTabAt(Node[] tab, int i, Node v) {
613 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
614 <    }
603 >    static final int MOVED     = -1; // hash for forwarding nodes
604 >    static final int TREEBIN   = -2; // hash for roots of trees
605 >    static final int RESERVED  = -3; // hash for transient reservations
606 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
607 >
608 >    /** Number of CPUS, to place bounds on some sizings */
609 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
610 >
611 >    /** For serialization compatibility. */
612 >    private static final ObjectStreamField[] serialPersistentFields = {
613 >        new ObjectStreamField("segments", Segment[].class),
614 >        new ObjectStreamField("segmentMask", Integer.TYPE),
615 >        new ObjectStreamField("segmentShift", Integer.TYPE)
616 >    };
617  
618      /* ---------------- Nodes -------------- */
619  
620      /**
621 <     * Key-value entry. Note that this is never exported out as a
622 <     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
623 <     * field of MOVED are special, and do not contain user keys or
624 <     * values.  Otherwise, keys are never null, and null val fields
625 <     * indicate that a node is in the process of being deleted or
626 <     * created. For purposes of read-only access, a key may be read
627 <     * before a val, but can only be used after checking val to be
628 <     * non-null.
629 <     */
630 <    static class Node {
631 <        volatile int hash;
632 <        final Object key;
689 <        volatile Object val;
690 <        volatile Node next;
621 >     * Key-value entry.  This class is never exported out as a
622 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
623 >     * MapEntry below), but can be used for read-only traversals used
624 >     * in bulk tasks.  Subclasses of Node with a negative hash field
625 >     * are special, and contain null keys and values (but are never
626 >     * exported).  Otherwise, keys and vals are never null.
627 >     */
628 >    static class Node<K,V> implements Map.Entry<K,V> {
629 >        final int hash;
630 >        final K key;
631 >        volatile V val;
632 >        volatile Node<K,V> next;
633  
634 <        Node(int hash, Object key, Object val, Node next) {
634 >        Node(int hash, K key, V val, Node<K,V> next) {
635              this.hash = hash;
636              this.key = key;
637              this.val = val;
638              this.next = next;
639          }
640  
641 <        /** CompareAndSet the hash field */
642 <        final boolean casHash(int cmp, int val) {
643 <            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
644 <        }
645 <
646 <        /** The number of spins before blocking for a lock */
705 <        static final int MAX_SPINS =
706 <            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
707 <
708 <        /**
709 <         * Spins a while if LOCKED bit set and this node is the first
710 <         * of its bin, and then sets WAITING bits on hash field and
711 <         * blocks (once) if they are still set.  It is OK for this
712 <         * method to return even if lock is not available upon exit,
713 <         * which enables these simple single-wait mechanics.
714 <         *
715 <         * The corresponding signalling operation is performed within
716 <         * callers: Upon detecting that WAITING has been set when
717 <         * unlocking lock (via a failed CAS from non-waiting LOCKED
718 <         * state), unlockers acquire the sync lock and perform a
719 <         * notifyAll.
720 <         *
721 <         * The initial sanity check on tab and bounds is not currently
722 <         * necessary in the only usages of this method, but enables
723 <         * use in other future contexts.
724 <         */
725 <        final void tryAwaitLock(Node[] tab, int i) {
726 <            if (tab != null && i >= 0 && i < tab.length) { // sanity check
727 <                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
728 <                int spins = MAX_SPINS, h;
729 <                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
730 <                    if (spins >= 0) {
731 <                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
732 <                        if (r >= 0 && --spins == 0)
733 <                            Thread.yield();  // yield before block
734 <                    }
735 <                    else if (casHash(h, h | WAITING)) {
736 <                        synchronized (this) {
737 <                            if (tabAt(tab, i) == this &&
738 <                                (hash & WAITING) == WAITING) {
739 <                                try {
740 <                                    wait();
741 <                                } catch (InterruptedException ie) {
742 <                                    Thread.currentThread().interrupt();
743 <                                }
744 <                            }
745 <                            else
746 <                                notifyAll(); // possibly won race vs signaller
747 <                        }
748 <                        break;
749 <                    }
750 <                }
751 <            }
752 <        }
753 <
754 <        // Unsafe mechanics for casHash
755 <        private static final sun.misc.Unsafe UNSAFE;
756 <        private static final long hashOffset;
757 <
758 <        static {
759 <            try {
760 <                UNSAFE = getUnsafe();
761 <                Class<?> k = Node.class;
762 <                hashOffset = UNSAFE.objectFieldOffset
763 <                    (k.getDeclaredField("hash"));
764 <            } catch (Exception e) {
765 <                throw new Error(e);
766 <            }
767 <        }
768 <    }
769 <
770 <    /* ---------------- TreeBins -------------- */
771 <
772 <    /**
773 <     * Nodes for use in TreeBins
774 <     */
775 <    static final class TreeNode extends Node {
776 <        TreeNode parent;  // red-black tree links
777 <        TreeNode left;
778 <        TreeNode right;
779 <        TreeNode prev;    // needed to unlink next upon deletion
780 <        boolean red;
781 <
782 <        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
783 <            super(hash, key, val, next);
784 <            this.parent = parent;
785 <        }
786 <    }
787 <
788 <    /**
789 <     * A specialized form of red-black tree for use in bins
790 <     * whose size exceeds a threshold.
791 <     *
792 <     * TreeBins use a special form of comparison for search and
793 <     * related operations (which is the main reason we cannot use
794 <     * existing collections such as TreeMaps). TreeBins contain
795 <     * Comparable elements, but may contain others, as well as
796 <     * elements that are Comparable but not necessarily Comparable<T>
797 <     * for the same T, so we cannot invoke compareTo among them. To
798 <     * handle this, the tree is ordered primarily by hash value, then
799 <     * by getClass().getName() order, and then by Comparator order
800 <     * among elements of the same class.  On lookup at a node, if
801 <     * elements are not comparable or compare as 0, both left and
802 <     * right children may need to be searched in the case of tied hash
803 <     * values. (This corresponds to the full list search that would be
804 <     * necessary if all elements were non-Comparable and had tied
805 <     * hashes.)  The red-black balancing code is updated from
806 <     * pre-jdk-collections
807 <     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
808 <     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
809 <     * Algorithms" (CLR).
810 <     *
811 <     * TreeBins also maintain a separate locking discipline than
812 <     * regular bins. Because they are forwarded via special MOVED
813 <     * nodes at bin heads (which can never change once established),
814 <     * we cannot use those nodes as locks. Instead, TreeBin
815 <     * extends AbstractQueuedSynchronizer to support a simple form of
816 <     * read-write lock. For update operations and table validation,
817 <     * the exclusive form of lock behaves in the same way as bin-head
818 <     * locks. However, lookups use shared read-lock mechanics to allow
819 <     * multiple readers in the absence of writers.  Additionally,
820 <     * these lookups do not ever block: While the lock is not
821 <     * available, they proceed along the slow traversal path (via
822 <     * next-pointers) until the lock becomes available or the list is
823 <     * exhausted, whichever comes first. (These cases are not fast,
824 <     * but maximize aggregate expected throughput.)  The AQS mechanics
825 <     * for doing this are straightforward.  The lock state is held as
826 <     * AQS getState().  Read counts are negative; the write count (1)
827 <     * is positive.  There are no signalling preferences among readers
828 <     * and writers. Since we don't need to export full Lock API, we
829 <     * just override the minimal AQS methods and use them directly.
830 <     */
831 <    static final class TreeBin extends AbstractQueuedSynchronizer {
832 <        private static final long serialVersionUID = 2249069246763182397L;
833 <        transient TreeNode root;  // root of tree
834 <        transient TreeNode first; // head of next-pointer list
835 <
836 <        /* AQS overrides */
837 <        public final boolean isHeldExclusively() { return getState() > 0; }
838 <        public final boolean tryAcquire(int ignore) {
839 <            if (compareAndSetState(0, 1)) {
840 <                setExclusiveOwnerThread(Thread.currentThread());
841 <                return true;
842 <            }
843 <            return false;
844 <        }
845 <        public final boolean tryRelease(int ignore) {
846 <            setExclusiveOwnerThread(null);
847 <            setState(0);
848 <            return true;
849 <        }
850 <        public final int tryAcquireShared(int ignore) {
851 <            for (int c;;) {
852 <                if ((c = getState()) > 0)
853 <                    return -1;
854 <                if (compareAndSetState(c, c -1))
855 <                    return 1;
856 <            }
857 <        }
858 <        public final boolean tryReleaseShared(int ignore) {
859 <            int c;
860 <            do {} while (!compareAndSetState(c = getState(), c + 1));
861 <            return c == -1;
862 <        }
863 <
864 <        /** From CLR */
865 <        private void rotateLeft(TreeNode p) {
866 <            if (p != null) {
867 <                TreeNode r = p.right, pp, rl;
868 <                if ((rl = p.right = r.left) != null)
869 <                    rl.parent = p;
870 <                if ((pp = r.parent = p.parent) == null)
871 <                    root = r;
872 <                else if (pp.left == p)
873 <                    pp.left = r;
874 <                else
875 <                    pp.right = r;
876 <                r.left = p;
877 <                p.parent = r;
878 <            }
879 <        }
880 <
881 <        /** From CLR */
882 <        private void rotateRight(TreeNode p) {
883 <            if (p != null) {
884 <                TreeNode l = p.left, pp, lr;
885 <                if ((lr = p.left = l.right) != null)
886 <                    lr.parent = p;
887 <                if ((pp = l.parent = p.parent) == null)
888 <                    root = l;
889 <                else if (pp.right == p)
890 <                    pp.right = l;
891 <                else
892 <                    pp.left = l;
893 <                l.right = p;
894 <                p.parent = l;
895 <            }
896 <        }
897 <
898 <        /**
899 <         * Returns the TreeNode (or null if not found) for the given key
900 <         * starting at given root.
901 <         */
902 <        @SuppressWarnings("unchecked") final TreeNode getTreeNode
903 <            (int h, Object k, TreeNode p) {
904 <            Class<?> c = k.getClass();
905 <            while (p != null) {
906 <                int dir, ph;  Object pk; Class<?> pc;
907 <                if ((ph = p.hash) == h) {
908 <                    if ((pk = p.key) == k || k.equals(pk))
909 <                        return p;
910 <                    if (c != (pc = pk.getClass()) ||
911 <                        !(k instanceof Comparable) ||
912 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
913 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
914 <                        TreeNode r = null, s = null, pl, pr;
915 <                        if (dir >= 0) {
916 <                            if ((pl = p.left) != null && h <= pl.hash)
917 <                                s = pl;
918 <                        }
919 <                        else if ((pr = p.right) != null && h >= pr.hash)
920 <                            s = pr;
921 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
922 <                            return r;
923 <                    }
924 <                }
925 <                else
926 <                    dir = (h < ph) ? -1 : 1;
927 <                p = (dir > 0) ? p.right : p.left;
928 <            }
929 <            return null;
641 >        public final K getKey()       { return key; }
642 >        public final V getValue()     { return val; }
643 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
644 >        public final String toString(){ return key + "=" + val; }
645 >        public final V setValue(V value) {
646 >            throw new UnsupportedOperationException();
647          }
648  
649 <        /**
650 <         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
651 <         * read-lock to call getTreeNode, but during failure to get
652 <         * lock, searches along next links.
653 <         */
654 <        final Object getValue(int h, Object k) {
655 <            Node r = null;
939 <            int c = getState(); // Must read lock state first
940 <            for (Node e = first; e != null; e = e.next) {
941 <                if (c <= 0 && compareAndSetState(c, c - 1)) {
942 <                    try {
943 <                        r = getTreeNode(h, k, root);
944 <                    } finally {
945 <                        releaseShared(0);
946 <                    }
947 <                    break;
948 <                }
949 <                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
950 <                    r = e;
951 <                    break;
952 <                }
953 <                else
954 <                    c = getState();
955 <            }
956 <            return r == null ? null : r.val;
649 >        public final boolean equals(Object o) {
650 >            Object k, v, u; Map.Entry<?,?> e;
651 >            return ((o instanceof Map.Entry) &&
652 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
653 >                    (v = e.getValue()) != null &&
654 >                    (k == key || k.equals(key)) &&
655 >                    (v == (u = val) || v.equals(u)));
656          }
657  
658          /**
659 <         * Finds or adds a node.
961 <         * @return null if added
659 >         * Virtualized support for map.get(); overridden in subclasses.
660           */
661 <        @SuppressWarnings("unchecked") final TreeNode putTreeNode
662 <            (int h, Object k, Object v) {
663 <            Class<?> c = k.getClass();
664 <            TreeNode pp = root, p = null;
665 <            int dir = 0;
666 <            while (pp != null) { // find existing node or leaf to insert at
667 <                int ph;  Object pk; Class<?> pc;
668 <                p = pp;
669 <                if ((ph = p.hash) == h) {
972 <                    if ((pk = p.key) == k || k.equals(pk))
973 <                        return p;
974 <                    if (c != (pc = pk.getClass()) ||
975 <                        !(k instanceof Comparable) ||
976 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
977 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
978 <                        TreeNode r = null, s = null, pl, pr;
979 <                        if (dir >= 0) {
980 <                            if ((pl = p.left) != null && h <= pl.hash)
981 <                                s = pl;
982 <                        }
983 <                        else if ((pr = p.right) != null && h >= pr.hash)
984 <                            s = pr;
985 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
986 <                            return r;
987 <                    }
988 <                }
989 <                else
990 <                    dir = (h < ph) ? -1 : 1;
991 <                pp = (dir > 0) ? p.right : p.left;
992 <            }
993 <
994 <            TreeNode f = first;
995 <            TreeNode x = first = new TreeNode(h, k, v, f, p);
996 <            if (p == null)
997 <                root = x;
998 <            else { // attach and rebalance; adapted from CLR
999 <                TreeNode xp, xpp;
1000 <                if (f != null)
1001 <                    f.prev = x;
1002 <                if (dir <= 0)
1003 <                    p.left = x;
1004 <                else
1005 <                    p.right = x;
1006 <                x.red = true;
1007 <                while (x != null && (xp = x.parent) != null && xp.red &&
1008 <                       (xpp = xp.parent) != null) {
1009 <                    TreeNode xppl = xpp.left;
1010 <                    if (xp == xppl) {
1011 <                        TreeNode y = xpp.right;
1012 <                        if (y != null && y.red) {
1013 <                            y.red = false;
1014 <                            xp.red = false;
1015 <                            xpp.red = true;
1016 <                            x = xpp;
1017 <                        }
1018 <                        else {
1019 <                            if (x == xp.right) {
1020 <                                rotateLeft(x = xp);
1021 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
1022 <                            }
1023 <                            if (xp != null) {
1024 <                                xp.red = false;
1025 <                                if (xpp != null) {
1026 <                                    xpp.red = true;
1027 <                                    rotateRight(xpp);
1028 <                                }
1029 <                            }
1030 <                        }
1031 <                    }
1032 <                    else {
1033 <                        TreeNode y = xppl;
1034 <                        if (y != null && y.red) {
1035 <                            y.red = false;
1036 <                            xp.red = false;
1037 <                            xpp.red = true;
1038 <                            x = xpp;
1039 <                        }
1040 <                        else {
1041 <                            if (x == xp.left) {
1042 <                                rotateRight(x = xp);
1043 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
1044 <                            }
1045 <                            if (xp != null) {
1046 <                                xp.red = false;
1047 <                                if (xpp != null) {
1048 <                                    xpp.red = true;
1049 <                                    rotateLeft(xpp);
1050 <                                }
1051 <                            }
1052 <                        }
1053 <                    }
1054 <                }
1055 <                TreeNode r = root;
1056 <                if (r != null && r.red)
1057 <                    r.red = false;
661 >        Node<K,V> find(int h, Object k) {
662 >            Node<K,V> e = this;
663 >            if (k != null) {
664 >                do {
665 >                    K ek;
666 >                    if (e.hash == h &&
667 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
668 >                        return e;
669 >                } while ((e = e.next) != null);
670              }
671              return null;
672          }
1061
1062        /**
1063         * Removes the given node, that must be present before this
1064         * call.  This is messier than typical red-black deletion code
1065         * because we cannot swap the contents of an interior node
1066         * with a leaf successor that is pinned by "next" pointers
1067         * that are accessible independently of lock. So instead we
1068         * swap the tree linkages.
1069         */
1070        final void deleteTreeNode(TreeNode p) {
1071            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
1072            TreeNode pred = p.prev;
1073            if (pred == null)
1074                first = next;
1075            else
1076                pred.next = next;
1077            if (next != null)
1078                next.prev = pred;
1079            TreeNode replacement;
1080            TreeNode pl = p.left;
1081            TreeNode pr = p.right;
1082            if (pl != null && pr != null) {
1083                TreeNode s = pr, sl;
1084                while ((sl = s.left) != null) // find successor
1085                    s = sl;
1086                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1087                TreeNode sr = s.right;
1088                TreeNode pp = p.parent;
1089                if (s == pr) { // p was s's direct parent
1090                    p.parent = s;
1091                    s.right = p;
1092                }
1093                else {
1094                    TreeNode sp = s.parent;
1095                    if ((p.parent = sp) != null) {
1096                        if (s == sp.left)
1097                            sp.left = p;
1098                        else
1099                            sp.right = p;
1100                    }
1101                    if ((s.right = pr) != null)
1102                        pr.parent = s;
1103                }
1104                p.left = null;
1105                if ((p.right = sr) != null)
1106                    sr.parent = p;
1107                if ((s.left = pl) != null)
1108                    pl.parent = s;
1109                if ((s.parent = pp) == null)
1110                    root = s;
1111                else if (p == pp.left)
1112                    pp.left = s;
1113                else
1114                    pp.right = s;
1115                replacement = sr;
1116            }
1117            else
1118                replacement = (pl != null) ? pl : pr;
1119            TreeNode pp = p.parent;
1120            if (replacement == null) {
1121                if (pp == null) {
1122                    root = null;
1123                    return;
1124                }
1125                replacement = p;
1126            }
1127            else {
1128                replacement.parent = pp;
1129                if (pp == null)
1130                    root = replacement;
1131                else if (p == pp.left)
1132                    pp.left = replacement;
1133                else
1134                    pp.right = replacement;
1135                p.left = p.right = p.parent = null;
1136            }
1137            if (!p.red) { // rebalance, from CLR
1138                TreeNode x = replacement;
1139                while (x != null) {
1140                    TreeNode xp, xpl;
1141                    if (x.red || (xp = x.parent) == null) {
1142                        x.red = false;
1143                        break;
1144                    }
1145                    if (x == (xpl = xp.left)) {
1146                        TreeNode sib = xp.right;
1147                        if (sib != null && sib.red) {
1148                            sib.red = false;
1149                            xp.red = true;
1150                            rotateLeft(xp);
1151                            sib = (xp = x.parent) == null ? null : xp.right;
1152                        }
1153                        if (sib == null)
1154                            x = xp;
1155                        else {
1156                            TreeNode sl = sib.left, sr = sib.right;
1157                            if ((sr == null || !sr.red) &&
1158                                (sl == null || !sl.red)) {
1159                                sib.red = true;
1160                                x = xp;
1161                            }
1162                            else {
1163                                if (sr == null || !sr.red) {
1164                                    if (sl != null)
1165                                        sl.red = false;
1166                                    sib.red = true;
1167                                    rotateRight(sib);
1168                                    sib = (xp = x.parent) == null ? null : xp.right;
1169                                }
1170                                if (sib != null) {
1171                                    sib.red = (xp == null) ? false : xp.red;
1172                                    if ((sr = sib.right) != null)
1173                                        sr.red = false;
1174                                }
1175                                if (xp != null) {
1176                                    xp.red = false;
1177                                    rotateLeft(xp);
1178                                }
1179                                x = root;
1180                            }
1181                        }
1182                    }
1183                    else { // symmetric
1184                        TreeNode sib = xpl;
1185                        if (sib != null && sib.red) {
1186                            sib.red = false;
1187                            xp.red = true;
1188                            rotateRight(xp);
1189                            sib = (xp = x.parent) == null ? null : xp.left;
1190                        }
1191                        if (sib == null)
1192                            x = xp;
1193                        else {
1194                            TreeNode sl = sib.left, sr = sib.right;
1195                            if ((sl == null || !sl.red) &&
1196                                (sr == null || !sr.red)) {
1197                                sib.red = true;
1198                                x = xp;
1199                            }
1200                            else {
1201                                if (sl == null || !sl.red) {
1202                                    if (sr != null)
1203                                        sr.red = false;
1204                                    sib.red = true;
1205                                    rotateLeft(sib);
1206                                    sib = (xp = x.parent) == null ? null : xp.left;
1207                                }
1208                                if (sib != null) {
1209                                    sib.red = (xp == null) ? false : xp.red;
1210                                    if ((sl = sib.left) != null)
1211                                        sl.red = false;
1212                                }
1213                                if (xp != null) {
1214                                    xp.red = false;
1215                                    rotateRight(xp);
1216                                }
1217                                x = root;
1218                            }
1219                        }
1220                    }
1221                }
1222            }
1223            if (p == replacement && (pp = p.parent) != null) {
1224                if (p == pp.left) // detach pointers
1225                    pp.left = null;
1226                else if (p == pp.right)
1227                    pp.right = null;
1228                p.parent = null;
1229            }
1230        }
673      }
674  
675 <    /* ---------------- Collision reduction methods -------------- */
675 >    /* ---------------- Static utilities -------------- */
676  
677      /**
678 <     * Spreads higher bits to lower, and also forces top 2 bits to 0.
679 <     * Because the table uses power-of-two masking, sets of hashes
680 <     * that vary only in bits above the current mask will always
681 <     * collide. (Among known examples are sets of Float keys holding
682 <     * consecutive whole numbers in small tables.)  To counter this,
683 <     * we apply a transform that spreads the impact of higher bits
678 >     * Spreads (XORs) higher bits of hash to lower and also forces top
679 >     * bit to 0. Because the table uses power-of-two masking, sets of
680 >     * hashes that vary only in bits above the current mask will
681 >     * always collide. (Among known examples are sets of Float keys
682 >     * holding consecutive whole numbers in small tables.)  So we
683 >     * apply a transform that spreads the impact of higher bits
684       * downward. There is a tradeoff between speed, utility, and
685       * quality of bit-spreading. Because many common sets of hashes
686 <     * are already reasonably distributed across bits (so don't benefit
687 <     * from spreading), and because we use trees to handle large sets
688 <     * of collisions in bins, we don't need excessively high quality.
689 <     */
690 <    private static final int spread(int h) {
691 <        h ^= (h >>> 18) ^ (h >>> 12);
1250 <        return (h ^ (h >>> 10)) & HASH_BITS;
1251 <    }
1252 <
1253 <    /**
1254 <     * Replaces a list bin with a tree bin. Call only when locked.
1255 <     * Fails to replace if the given key is non-comparable or table
1256 <     * is, or needs, resizing.
1257 <     */
1258 <    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1259 <        if ((key instanceof Comparable) &&
1260 <            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1261 <            TreeBin t = new TreeBin();
1262 <            for (Node e = tabAt(tab, index); e != null; e = e.next)
1263 <                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1264 <            setTabAt(tab, index, new Node(MOVED, t, null, null));
1265 <        }
1266 <    }
1267 <
1268 <    /* ---------------- Internal access and update methods -------------- */
1269 <
1270 <    /** Implementation for get and containsKey */
1271 <    private final Object internalGet(Object k) {
1272 <        int h = spread(k.hashCode());
1273 <        retry: for (Node[] tab = table; tab != null;) {
1274 <            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1275 <            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1276 <                if ((eh = e.hash) == MOVED) {
1277 <                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1278 <                        return ((TreeBin)ek).getValue(h, k);
1279 <                    else {                        // restart with new table
1280 <                        tab = (Node[])ek;
1281 <                        continue retry;
1282 <                    }
1283 <                }
1284 <                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1285 <                         ((ek = e.key) == k || k.equals(ek)))
1286 <                    return ev;
1287 <            }
1288 <            break;
1289 <        }
1290 <        return null;
1291 <    }
1292 <
1293 <    /**
1294 <     * Implementation for the four public remove/replace methods:
1295 <     * Replaces node value with v, conditional upon match of cv if
1296 <     * non-null.  If resulting value is null, delete.
686 >     * are already reasonably distributed (so don't benefit from
687 >     * spreading), and because we use trees to handle large sets of
688 >     * collisions in bins, we just XOR some shifted bits in the
689 >     * cheapest possible way to reduce systematic lossage, as well as
690 >     * to incorporate impact of the highest bits that would otherwise
691 >     * never be used in index calculations because of table bounds.
692       */
693 <    private final Object internalReplace(Object k, Object v, Object cv) {
694 <        int h = spread(k.hashCode());
1300 <        Object oldVal = null;
1301 <        for (Node[] tab = table;;) {
1302 <            Node f; int i, fh; Object fk;
1303 <            if (tab == null ||
1304 <                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1305 <                break;
1306 <            else if ((fh = f.hash) == MOVED) {
1307 <                if ((fk = f.key) instanceof TreeBin) {
1308 <                    TreeBin t = (TreeBin)fk;
1309 <                    boolean validated = false;
1310 <                    boolean deleted = false;
1311 <                    t.acquire(0);
1312 <                    try {
1313 <                        if (tabAt(tab, i) == f) {
1314 <                            validated = true;
1315 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1316 <                            if (p != null) {
1317 <                                Object pv = p.val;
1318 <                                if (cv == null || cv == pv || cv.equals(pv)) {
1319 <                                    oldVal = pv;
1320 <                                    if ((p.val = v) == null) {
1321 <                                        deleted = true;
1322 <                                        t.deleteTreeNode(p);
1323 <                                    }
1324 <                                }
1325 <                            }
1326 <                        }
1327 <                    } finally {
1328 <                        t.release(0);
1329 <                    }
1330 <                    if (validated) {
1331 <                        if (deleted)
1332 <                            counter.add(-1L);
1333 <                        break;
1334 <                    }
1335 <                }
1336 <                else
1337 <                    tab = (Node[])fk;
1338 <            }
1339 <            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1340 <                break;                          // rules out possible existence
1341 <            else if ((fh & LOCKED) != 0) {
1342 <                checkForResize();               // try resizing if can't get lock
1343 <                f.tryAwaitLock(tab, i);
1344 <            }
1345 <            else if (f.casHash(fh, fh | LOCKED)) {
1346 <                boolean validated = false;
1347 <                boolean deleted = false;
1348 <                try {
1349 <                    if (tabAt(tab, i) == f) {
1350 <                        validated = true;
1351 <                        for (Node e = f, pred = null;;) {
1352 <                            Object ek, ev;
1353 <                            if ((e.hash & HASH_BITS) == h &&
1354 <                                ((ev = e.val) != null) &&
1355 <                                ((ek = e.key) == k || k.equals(ek))) {
1356 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1357 <                                    oldVal = ev;
1358 <                                    if ((e.val = v) == null) {
1359 <                                        deleted = true;
1360 <                                        Node en = e.next;
1361 <                                        if (pred != null)
1362 <                                            pred.next = en;
1363 <                                        else
1364 <                                            setTabAt(tab, i, en);
1365 <                                    }
1366 <                                }
1367 <                                break;
1368 <                            }
1369 <                            pred = e;
1370 <                            if ((e = e.next) == null)
1371 <                                break;
1372 <                        }
1373 <                    }
1374 <                } finally {
1375 <                    if (!f.casHash(fh | LOCKED, fh)) {
1376 <                        f.hash = fh;
1377 <                        synchronized (f) { f.notifyAll(); };
1378 <                    }
1379 <                }
1380 <                if (validated) {
1381 <                    if (deleted)
1382 <                        counter.add(-1L);
1383 <                    break;
1384 <                }
1385 <            }
1386 <        }
1387 <        return oldVal;
1388 <    }
1389 <
1390 <    /*
1391 <     * Internal versions of the six insertion methods, each a
1392 <     * little more complicated than the last. All have
1393 <     * the same basic structure as the first (internalPut):
1394 <     *  1. If table uninitialized, create
1395 <     *  2. If bin empty, try to CAS new node
1396 <     *  3. If bin stale, use new table
1397 <     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1398 <     *  5. Lock and validate; if valid, scan and add or update
1399 <     *
1400 <     * The others interweave other checks and/or alternative actions:
1401 <     *  * Plain put checks for and performs resize after insertion.
1402 <     *  * putIfAbsent prescans for mapping without lock (and fails to add
1403 <     *    if present), which also makes pre-emptive resize checks worthwhile.
1404 <     *  * computeIfAbsent extends form used in putIfAbsent with additional
1405 <     *    mechanics to deal with, calls, potential exceptions and null
1406 <     *    returns from function call.
1407 <     *  * compute uses the same function-call mechanics, but without
1408 <     *    the prescans
1409 <     *  * merge acts as putIfAbsent in the absent case, but invokes the
1410 <     *    update function if present
1411 <     *  * putAll attempts to pre-allocate enough table space
1412 <     *    and more lazily performs count updates and checks.
1413 <     *
1414 <     * Someday when details settle down a bit more, it might be worth
1415 <     * some factoring to reduce sprawl.
1416 <     */
1417 <
1418 <    /** Implementation for put */
1419 <    private final Object internalPut(Object k, Object v) {
1420 <        int h = spread(k.hashCode());
1421 <        int count = 0;
1422 <        for (Node[] tab = table;;) {
1423 <            int i; Node f; int fh; Object fk;
1424 <            if (tab == null)
1425 <                tab = initTable();
1426 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1427 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1428 <                    break;                   // no lock when adding to empty bin
1429 <            }
1430 <            else if ((fh = f.hash) == MOVED) {
1431 <                if ((fk = f.key) instanceof TreeBin) {
1432 <                    TreeBin t = (TreeBin)fk;
1433 <                    Object oldVal = null;
1434 <                    t.acquire(0);
1435 <                    try {
1436 <                        if (tabAt(tab, i) == f) {
1437 <                            count = 2;
1438 <                            TreeNode p = t.putTreeNode(h, k, v);
1439 <                            if (p != null) {
1440 <                                oldVal = p.val;
1441 <                                p.val = v;
1442 <                            }
1443 <                        }
1444 <                    } finally {
1445 <                        t.release(0);
1446 <                    }
1447 <                    if (count != 0) {
1448 <                        if (oldVal != null)
1449 <                            return oldVal;
1450 <                        break;
1451 <                    }
1452 <                }
1453 <                else
1454 <                    tab = (Node[])fk;
1455 <            }
1456 <            else if ((fh & LOCKED) != 0) {
1457 <                checkForResize();
1458 <                f.tryAwaitLock(tab, i);
1459 <            }
1460 <            else if (f.casHash(fh, fh | LOCKED)) {
1461 <                Object oldVal = null;
1462 <                try {                        // needed in case equals() throws
1463 <                    if (tabAt(tab, i) == f) {
1464 <                        count = 1;
1465 <                        for (Node e = f;; ++count) {
1466 <                            Object ek, ev;
1467 <                            if ((e.hash & HASH_BITS) == h &&
1468 <                                (ev = e.val) != null &&
1469 <                                ((ek = e.key) == k || k.equals(ek))) {
1470 <                                oldVal = ev;
1471 <                                e.val = v;
1472 <                                break;
1473 <                            }
1474 <                            Node last = e;
1475 <                            if ((e = e.next) == null) {
1476 <                                last.next = new Node(h, k, v, null);
1477 <                                if (count >= TREE_THRESHOLD)
1478 <                                    replaceWithTreeBin(tab, i, k);
1479 <                                break;
1480 <                            }
1481 <                        }
1482 <                    }
1483 <                } finally {                  // unlock and signal if needed
1484 <                    if (!f.casHash(fh | LOCKED, fh)) {
1485 <                        f.hash = fh;
1486 <                        synchronized (f) { f.notifyAll(); };
1487 <                    }
1488 <                }
1489 <                if (count != 0) {
1490 <                    if (oldVal != null)
1491 <                        return oldVal;
1492 <                    if (tab.length <= 64)
1493 <                        count = 2;
1494 <                    break;
1495 <                }
1496 <            }
1497 <        }
1498 <        counter.add(1L);
1499 <        if (count > 1)
1500 <            checkForResize();
1501 <        return null;
1502 <    }
1503 <
1504 <    /** Implementation for putIfAbsent */
1505 <    private final Object internalPutIfAbsent(Object k, Object v) {
1506 <        int h = spread(k.hashCode());
1507 <        int count = 0;
1508 <        for (Node[] tab = table;;) {
1509 <            int i; Node f; int fh; Object fk, fv;
1510 <            if (tab == null)
1511 <                tab = initTable();
1512 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1513 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1514 <                    break;
1515 <            }
1516 <            else if ((fh = f.hash) == MOVED) {
1517 <                if ((fk = f.key) instanceof TreeBin) {
1518 <                    TreeBin t = (TreeBin)fk;
1519 <                    Object oldVal = null;
1520 <                    t.acquire(0);
1521 <                    try {
1522 <                        if (tabAt(tab, i) == f) {
1523 <                            count = 2;
1524 <                            TreeNode p = t.putTreeNode(h, k, v);
1525 <                            if (p != null)
1526 <                                oldVal = p.val;
1527 <                        }
1528 <                    } finally {
1529 <                        t.release(0);
1530 <                    }
1531 <                    if (count != 0) {
1532 <                        if (oldVal != null)
1533 <                            return oldVal;
1534 <                        break;
1535 <                    }
1536 <                }
1537 <                else
1538 <                    tab = (Node[])fk;
1539 <            }
1540 <            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1541 <                     ((fk = f.key) == k || k.equals(fk)))
1542 <                return fv;
1543 <            else {
1544 <                Node g = f.next;
1545 <                if (g != null) { // at least 2 nodes -- search and maybe resize
1546 <                    for (Node e = g;;) {
1547 <                        Object ek, ev;
1548 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1549 <                            ((ek = e.key) == k || k.equals(ek)))
1550 <                            return ev;
1551 <                        if ((e = e.next) == null) {
1552 <                            checkForResize();
1553 <                            break;
1554 <                        }
1555 <                    }
1556 <                }
1557 <                if (((fh = f.hash) & LOCKED) != 0) {
1558 <                    checkForResize();
1559 <                    f.tryAwaitLock(tab, i);
1560 <                }
1561 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1562 <                    Object oldVal = null;
1563 <                    try {
1564 <                        if (tabAt(tab, i) == f) {
1565 <                            count = 1;
1566 <                            for (Node e = f;; ++count) {
1567 <                                Object ek, ev;
1568 <                                if ((e.hash & HASH_BITS) == h &&
1569 <                                    (ev = e.val) != null &&
1570 <                                    ((ek = e.key) == k || k.equals(ek))) {
1571 <                                    oldVal = ev;
1572 <                                    break;
1573 <                                }
1574 <                                Node last = e;
1575 <                                if ((e = e.next) == null) {
1576 <                                    last.next = new Node(h, k, v, null);
1577 <                                    if (count >= TREE_THRESHOLD)
1578 <                                        replaceWithTreeBin(tab, i, k);
1579 <                                    break;
1580 <                                }
1581 <                            }
1582 <                        }
1583 <                    } finally {
1584 <                        if (!f.casHash(fh | LOCKED, fh)) {
1585 <                            f.hash = fh;
1586 <                            synchronized (f) { f.notifyAll(); };
1587 <                        }
1588 <                    }
1589 <                    if (count != 0) {
1590 <                        if (oldVal != null)
1591 <                            return oldVal;
1592 <                        if (tab.length <= 64)
1593 <                            count = 2;
1594 <                        break;
1595 <                    }
1596 <                }
1597 <            }
1598 <        }
1599 <        counter.add(1L);
1600 <        if (count > 1)
1601 <            checkForResize();
1602 <        return null;
1603 <    }
1604 <
1605 <    /** Implementation for computeIfAbsent */
1606 <    private final Object internalComputeIfAbsent(K k,
1607 <                                                 Fun<? super K, ?> mf) {
1608 <        int h = spread(k.hashCode());
1609 <        Object val = null;
1610 <        int count = 0;
1611 <        for (Node[] tab = table;;) {
1612 <            Node f; int i, fh; Object fk, fv;
1613 <            if (tab == null)
1614 <                tab = initTable();
1615 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1616 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1617 <                if (casTabAt(tab, i, null, node)) {
1618 <                    count = 1;
1619 <                    try {
1620 <                        if ((val = mf.apply(k)) != null)
1621 <                            node.val = val;
1622 <                    } finally {
1623 <                        if (val == null)
1624 <                            setTabAt(tab, i, null);
1625 <                        if (!node.casHash(fh, h)) {
1626 <                            node.hash = h;
1627 <                            synchronized (node) { node.notifyAll(); };
1628 <                        }
1629 <                    }
1630 <                }
1631 <                if (count != 0)
1632 <                    break;
1633 <            }
1634 <            else if ((fh = f.hash) == MOVED) {
1635 <                if ((fk = f.key) instanceof TreeBin) {
1636 <                    TreeBin t = (TreeBin)fk;
1637 <                    boolean added = false;
1638 <                    t.acquire(0);
1639 <                    try {
1640 <                        if (tabAt(tab, i) == f) {
1641 <                            count = 1;
1642 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1643 <                            if (p != null)
1644 <                                val = p.val;
1645 <                            else if ((val = mf.apply(k)) != null) {
1646 <                                added = true;
1647 <                                count = 2;
1648 <                                t.putTreeNode(h, k, val);
1649 <                            }
1650 <                        }
1651 <                    } finally {
1652 <                        t.release(0);
1653 <                    }
1654 <                    if (count != 0) {
1655 <                        if (!added)
1656 <                            return val;
1657 <                        break;
1658 <                    }
1659 <                }
1660 <                else
1661 <                    tab = (Node[])fk;
1662 <            }
1663 <            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1664 <                     ((fk = f.key) == k || k.equals(fk)))
1665 <                return fv;
1666 <            else {
1667 <                Node g = f.next;
1668 <                if (g != null) {
1669 <                    for (Node e = g;;) {
1670 <                        Object ek, ev;
1671 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1672 <                            ((ek = e.key) == k || k.equals(ek)))
1673 <                            return ev;
1674 <                        if ((e = e.next) == null) {
1675 <                            checkForResize();
1676 <                            break;
1677 <                        }
1678 <                    }
1679 <                }
1680 <                if (((fh = f.hash) & LOCKED) != 0) {
1681 <                    checkForResize();
1682 <                    f.tryAwaitLock(tab, i);
1683 <                }
1684 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1685 <                    boolean added = false;
1686 <                    try {
1687 <                        if (tabAt(tab, i) == f) {
1688 <                            count = 1;
1689 <                            for (Node e = f;; ++count) {
1690 <                                Object ek, ev;
1691 <                                if ((e.hash & HASH_BITS) == h &&
1692 <                                    (ev = e.val) != null &&
1693 <                                    ((ek = e.key) == k || k.equals(ek))) {
1694 <                                    val = ev;
1695 <                                    break;
1696 <                                }
1697 <                                Node last = e;
1698 <                                if ((e = e.next) == null) {
1699 <                                    if ((val = mf.apply(k)) != null) {
1700 <                                        added = true;
1701 <                                        last.next = new Node(h, k, val, null);
1702 <                                        if (count >= TREE_THRESHOLD)
1703 <                                            replaceWithTreeBin(tab, i, k);
1704 <                                    }
1705 <                                    break;
1706 <                                }
1707 <                            }
1708 <                        }
1709 <                    } finally {
1710 <                        if (!f.casHash(fh | LOCKED, fh)) {
1711 <                            f.hash = fh;
1712 <                            synchronized (f) { f.notifyAll(); };
1713 <                        }
1714 <                    }
1715 <                    if (count != 0) {
1716 <                        if (!added)
1717 <                            return val;
1718 <                        if (tab.length <= 64)
1719 <                            count = 2;
1720 <                        break;
1721 <                    }
1722 <                }
1723 <            }
1724 <        }
1725 <        if (val != null) {
1726 <            counter.add(1L);
1727 <            if (count > 1)
1728 <                checkForResize();
1729 <        }
1730 <        return val;
1731 <    }
1732 <
1733 <    /** Implementation for compute */
1734 <    @SuppressWarnings("unchecked") private final Object internalCompute
1735 <        (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1736 <        int h = spread(k.hashCode());
1737 <        Object val = null;
1738 <        int delta = 0;
1739 <        int count = 0;
1740 <        for (Node[] tab = table;;) {
1741 <            Node f; int i, fh; Object fk;
1742 <            if (tab == null)
1743 <                tab = initTable();
1744 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1745 <                if (onlyIfPresent)
1746 <                    break;
1747 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1748 <                if (casTabAt(tab, i, null, node)) {
1749 <                    try {
1750 <                        count = 1;
1751 <                        if ((val = mf.apply(k, null)) != null) {
1752 <                            node.val = val;
1753 <                            delta = 1;
1754 <                        }
1755 <                    } finally {
1756 <                        if (delta == 0)
1757 <                            setTabAt(tab, i, null);
1758 <                        if (!node.casHash(fh, h)) {
1759 <                            node.hash = h;
1760 <                            synchronized (node) { node.notifyAll(); };
1761 <                        }
1762 <                    }
1763 <                }
1764 <                if (count != 0)
1765 <                    break;
1766 <            }
1767 <            else if ((fh = f.hash) == MOVED) {
1768 <                if ((fk = f.key) instanceof TreeBin) {
1769 <                    TreeBin t = (TreeBin)fk;
1770 <                    t.acquire(0);
1771 <                    try {
1772 <                        if (tabAt(tab, i) == f) {
1773 <                            count = 1;
1774 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1775 <                            Object pv = (p == null) ? null : p.val;
1776 <                            if ((val = mf.apply(k, (V)pv)) != null) {
1777 <                                if (p != null)
1778 <                                    p.val = val;
1779 <                                else {
1780 <                                    count = 2;
1781 <                                    delta = 1;
1782 <                                    t.putTreeNode(h, k, val);
1783 <                                }
1784 <                            }
1785 <                            else if (p != null) {
1786 <                                delta = -1;
1787 <                                t.deleteTreeNode(p);
1788 <                            }
1789 <                        }
1790 <                    } finally {
1791 <                        t.release(0);
1792 <                    }
1793 <                    if (count != 0)
1794 <                        break;
1795 <                }
1796 <                else
1797 <                    tab = (Node[])fk;
1798 <            }
1799 <            else if ((fh & LOCKED) != 0) {
1800 <                checkForResize();
1801 <                f.tryAwaitLock(tab, i);
1802 <            }
1803 <            else if (f.casHash(fh, fh | LOCKED)) {
1804 <                try {
1805 <                    if (tabAt(tab, i) == f) {
1806 <                        count = 1;
1807 <                        for (Node e = f, pred = null;; ++count) {
1808 <                            Object ek, ev;
1809 <                            if ((e.hash & HASH_BITS) == h &&
1810 <                                (ev = e.val) != null &&
1811 <                                ((ek = e.key) == k || k.equals(ek))) {
1812 <                                val = mf.apply(k, (V)ev);
1813 <                                if (val != null)
1814 <                                    e.val = val;
1815 <                                else {
1816 <                                    delta = -1;
1817 <                                    Node en = e.next;
1818 <                                    if (pred != null)
1819 <                                        pred.next = en;
1820 <                                    else
1821 <                                        setTabAt(tab, i, en);
1822 <                                }
1823 <                                break;
1824 <                            }
1825 <                            pred = e;
1826 <                            if ((e = e.next) == null) {
1827 <                                if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1828 <                                    pred.next = new Node(h, k, val, null);
1829 <                                    delta = 1;
1830 <                                    if (count >= TREE_THRESHOLD)
1831 <                                        replaceWithTreeBin(tab, i, k);
1832 <                                }
1833 <                                break;
1834 <                            }
1835 <                        }
1836 <                    }
1837 <                } finally {
1838 <                    if (!f.casHash(fh | LOCKED, fh)) {
1839 <                        f.hash = fh;
1840 <                        synchronized (f) { f.notifyAll(); };
1841 <                    }
1842 <                }
1843 <                if (count != 0) {
1844 <                    if (tab.length <= 64)
1845 <                        count = 2;
1846 <                    break;
1847 <                }
1848 <            }
1849 <        }
1850 <        if (delta != 0) {
1851 <            counter.add((long)delta);
1852 <            if (count > 1)
1853 <                checkForResize();
1854 <        }
1855 <        return val;
1856 <    }
1857 <
1858 <    /** Implementation for merge */
1859 <    @SuppressWarnings("unchecked") private final Object internalMerge
1860 <        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1861 <        int h = spread(k.hashCode());
1862 <        Object val = null;
1863 <        int delta = 0;
1864 <        int count = 0;
1865 <        for (Node[] tab = table;;) {
1866 <            int i; Node f; int fh; Object fk, fv;
1867 <            if (tab == null)
1868 <                tab = initTable();
1869 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1870 <                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1871 <                    delta = 1;
1872 <                    val = v;
1873 <                    break;
1874 <                }
1875 <            }
1876 <            else if ((fh = f.hash) == MOVED) {
1877 <                if ((fk = f.key) instanceof TreeBin) {
1878 <                    TreeBin t = (TreeBin)fk;
1879 <                    t.acquire(0);
1880 <                    try {
1881 <                        if (tabAt(tab, i) == f) {
1882 <                            count = 1;
1883 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1884 <                            val = (p == null) ? v : mf.apply((V)p.val, v);
1885 <                            if (val != null) {
1886 <                                if (p != null)
1887 <                                    p.val = val;
1888 <                                else {
1889 <                                    count = 2;
1890 <                                    delta = 1;
1891 <                                    t.putTreeNode(h, k, val);
1892 <                                }
1893 <                            }
1894 <                            else if (p != null) {
1895 <                                delta = -1;
1896 <                                t.deleteTreeNode(p);
1897 <                            }
1898 <                        }
1899 <                    } finally {
1900 <                        t.release(0);
1901 <                    }
1902 <                    if (count != 0)
1903 <                        break;
1904 <                }
1905 <                else
1906 <                    tab = (Node[])fk;
1907 <            }
1908 <            else if ((fh & LOCKED) != 0) {
1909 <                checkForResize();
1910 <                f.tryAwaitLock(tab, i);
1911 <            }
1912 <            else if (f.casHash(fh, fh | LOCKED)) {
1913 <                try {
1914 <                    if (tabAt(tab, i) == f) {
1915 <                        count = 1;
1916 <                        for (Node e = f, pred = null;; ++count) {
1917 <                            Object ek, ev;
1918 <                            if ((e.hash & HASH_BITS) == h &&
1919 <                                (ev = e.val) != null &&
1920 <                                ((ek = e.key) == k || k.equals(ek))) {
1921 <                                val = mf.apply(v, (V)ev);
1922 <                                if (val != null)
1923 <                                    e.val = val;
1924 <                                else {
1925 <                                    delta = -1;
1926 <                                    Node en = e.next;
1927 <                                    if (pred != null)
1928 <                                        pred.next = en;
1929 <                                    else
1930 <                                        setTabAt(tab, i, en);
1931 <                                }
1932 <                                break;
1933 <                            }
1934 <                            pred = e;
1935 <                            if ((e = e.next) == null) {
1936 <                                val = v;
1937 <                                pred.next = new Node(h, k, val, null);
1938 <                                delta = 1;
1939 <                                if (count >= TREE_THRESHOLD)
1940 <                                    replaceWithTreeBin(tab, i, k);
1941 <                                break;
1942 <                            }
1943 <                        }
1944 <                    }
1945 <                } finally {
1946 <                    if (!f.casHash(fh | LOCKED, fh)) {
1947 <                        f.hash = fh;
1948 <                        synchronized (f) { f.notifyAll(); };
1949 <                    }
1950 <                }
1951 <                if (count != 0) {
1952 <                    if (tab.length <= 64)
1953 <                        count = 2;
1954 <                    break;
1955 <                }
1956 <            }
1957 <        }
1958 <        if (delta != 0) {
1959 <            counter.add((long)delta);
1960 <            if (count > 1)
1961 <                checkForResize();
1962 <        }
1963 <        return val;
693 >    static final int spread(int h) {
694 >        return (h ^ (h >>> 16)) & HASH_BITS;
695      }
696  
1966    /** Implementation for putAll */
1967    private final void internalPutAll(Map<?, ?> m) {
1968        tryPresize(m.size());
1969        long delta = 0L;     // number of uncommitted additions
1970        boolean npe = false; // to throw exception on exit for nulls
1971        try {                // to clean up counts on other exceptions
1972            for (Map.Entry<?, ?> entry : m.entrySet()) {
1973                Object k, v;
1974                if (entry == null || (k = entry.getKey()) == null ||
1975                    (v = entry.getValue()) == null) {
1976                    npe = true;
1977                    break;
1978                }
1979                int h = spread(k.hashCode());
1980                for (Node[] tab = table;;) {
1981                    int i; Node f; int fh; Object fk;
1982                    if (tab == null)
1983                        tab = initTable();
1984                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1985                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1986                            ++delta;
1987                            break;
1988                        }
1989                    }
1990                    else if ((fh = f.hash) == MOVED) {
1991                        if ((fk = f.key) instanceof TreeBin) {
1992                            TreeBin t = (TreeBin)fk;
1993                            boolean validated = false;
1994                            t.acquire(0);
1995                            try {
1996                                if (tabAt(tab, i) == f) {
1997                                    validated = true;
1998                                    TreeNode p = t.getTreeNode(h, k, t.root);
1999                                    if (p != null)
2000                                        p.val = v;
2001                                    else {
2002                                        t.putTreeNode(h, k, v);
2003                                        ++delta;
2004                                    }
2005                                }
2006                            } finally {
2007                                t.release(0);
2008                            }
2009                            if (validated)
2010                                break;
2011                        }
2012                        else
2013                            tab = (Node[])fk;
2014                    }
2015                    else if ((fh & LOCKED) != 0) {
2016                        counter.add(delta);
2017                        delta = 0L;
2018                        checkForResize();
2019                        f.tryAwaitLock(tab, i);
2020                    }
2021                    else if (f.casHash(fh, fh | LOCKED)) {
2022                        int count = 0;
2023                        try {
2024                            if (tabAt(tab, i) == f) {
2025                                count = 1;
2026                                for (Node e = f;; ++count) {
2027                                    Object ek, ev;
2028                                    if ((e.hash & HASH_BITS) == h &&
2029                                        (ev = e.val) != null &&
2030                                        ((ek = e.key) == k || k.equals(ek))) {
2031                                        e.val = v;
2032                                        break;
2033                                    }
2034                                    Node last = e;
2035                                    if ((e = e.next) == null) {
2036                                        ++delta;
2037                                        last.next = new Node(h, k, v, null);
2038                                        if (count >= TREE_THRESHOLD)
2039                                            replaceWithTreeBin(tab, i, k);
2040                                        break;
2041                                    }
2042                                }
2043                            }
2044                        } finally {
2045                            if (!f.casHash(fh | LOCKED, fh)) {
2046                                f.hash = fh;
2047                                synchronized (f) { f.notifyAll(); };
2048                            }
2049                        }
2050                        if (count != 0) {
2051                            if (count > 1) {
2052                                counter.add(delta);
2053                                delta = 0L;
2054                                checkForResize();
2055                            }
2056                            break;
2057                        }
2058                    }
2059                }
2060            }
2061        } finally {
2062            if (delta != 0)
2063                counter.add(delta);
2064        }
2065        if (npe)
2066            throw new NullPointerException();
2067    }
2068
2069    /* ---------------- Table Initialization and Resizing -------------- */
2070
697      /**
698       * Returns a power of two table size for the given desired capacity.
699       * See Hackers Delight, sec 3.2
# Line 2083 | Line 709 | public class ConcurrentHashMapV8<K, V>
709      }
710  
711      /**
712 <     * Initializes table, using the size recorded in sizeCtl.
712 >     * Returns x's Class if it is of the form "class C implements
713 >     * Comparable<C>", else null.
714       */
715 <    private final Node[] initTable() {
716 <        Node[] tab; int sc;
717 <        while ((tab = table) == null) {
718 <            if ((sc = sizeCtl) < 0)
719 <                Thread.yield(); // lost initialization race; just spin
720 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
721 <                try {
722 <                    if ((tab = table) == null) {
723 <                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
724 <                        tab = table = new Node[n];
725 <                        sc = n - (n >>> 2);
726 <                    }
727 <                } finally {
2101 <                    sizeCtl = sc;
715 >    static Class<?> comparableClassFor(Object x) {
716 >        if (x instanceof Comparable) {
717 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
718 >            if ((c = x.getClass()) == String.class) // bypass checks
719 >                return c;
720 >            if ((ts = c.getGenericInterfaces()) != null) {
721 >                for (int i = 0; i < ts.length; ++i) {
722 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
723 >                        ((p = (ParameterizedType)t).getRawType() ==
724 >                         Comparable.class) &&
725 >                        (as = p.getActualTypeArguments()) != null &&
726 >                        as.length == 1 && as[0] == c) // type arg is c
727 >                        return c;
728                  }
2103                break;
2104            }
2105        }
2106        return tab;
2107    }
2108
2109    /**
2110     * If table is too small and not already resizing, creates next
2111     * table and transfers bins.  Rechecks occupancy after a transfer
2112     * to see if another resize is already needed because resizings
2113     * are lagging additions.
2114     */
2115    private final void checkForResize() {
2116        Node[] tab; int n, sc;
2117        while ((tab = table) != null &&
2118               (n = tab.length) < MAXIMUM_CAPACITY &&
2119               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
2120               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2121            try {
2122                if (tab == table) {
2123                    table = rebuild(tab);
2124                    sc = (n << 1) - (n >>> 1);
2125                }
2126            } finally {
2127                sizeCtl = sc;
729              }
730          }
731 +        return null;
732      }
733  
734      /**
735 <     * Tries to presize table to accommodate the given number of elements.
736 <     *
2135 <     * @param size number of elements (doesn't need to be perfectly accurate)
735 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
736 >     * class), else 0.
737       */
738 <    private final void tryPresize(int size) {
739 <        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
740 <            tableSizeFor(size + (size >>> 1) + 1);
741 <        int sc;
2141 <        while ((sc = sizeCtl) >= 0) {
2142 <            Node[] tab = table; int n;
2143 <            if (tab == null || (n = tab.length) == 0) {
2144 <                n = (sc > c) ? sc : c;
2145 <                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2146 <                    try {
2147 <                        if (table == tab) {
2148 <                            table = new Node[n];
2149 <                            sc = n - (n >>> 2);
2150 <                        }
2151 <                    } finally {
2152 <                        sizeCtl = sc;
2153 <                    }
2154 <                }
2155 <            }
2156 <            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2157 <                break;
2158 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2159 <                try {
2160 <                    if (table == tab) {
2161 <                        table = rebuild(tab);
2162 <                        sc = (n << 1) - (n >>> 1);
2163 <                    }
2164 <                } finally {
2165 <                    sizeCtl = sc;
2166 <                }
2167 <            }
2168 <        }
738 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
739 >    static int compareComparables(Class<?> kc, Object k, Object x) {
740 >        return (x == null || x.getClass() != kc ? 0 :
741 >                ((Comparable)k).compareTo(x));
742      }
743  
744 +    /* ---------------- Table element access -------------- */
745 +
746      /*
747 <     * Moves and/or copies the nodes in each bin to new table. See
748 <     * above for explanation.
749 <     *
750 <     * @return the new table
751 <     */
752 <    private static final Node[] rebuild(Node[] tab) {
753 <        int n = tab.length;
754 <        Node[] nextTab = new Node[n << 1];
755 <        Node fwd = new Node(MOVED, nextTab, null, null);
756 <        int[] buffer = null;       // holds bins to revisit; null until needed
757 <        Node rev = null;           // reverse forwarder; null until needed
758 <        int nbuffered = 0;         // the number of bins in buffer list
759 <        int bufferIndex = 0;       // buffer index of current buffered bin
760 <        int bin = n - 1;           // current non-buffered bin or -1 if none
761 <
762 <        for (int i = bin;;) {      // start upwards sweep
763 <            int fh; Node f;
764 <            if ((f = tabAt(tab, i)) == null) {
765 <                if (bin >= 0) {    // Unbuffered; no lock needed (or available)
766 <                    if (!casTabAt(tab, i, f, fwd))
767 <                        continue;
768 <                }
769 <                else {             // transiently use a locked forwarding node
2195 <                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2196 <                    if (!casTabAt(tab, i, f, g))
2197 <                        continue;
2198 <                    setTabAt(nextTab, i, null);
2199 <                    setTabAt(nextTab, i + n, null);
2200 <                    setTabAt(tab, i, fwd);
2201 <                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
2202 <                        g.hash = MOVED;
2203 <                        synchronized (g) { g.notifyAll(); }
2204 <                    }
2205 <                }
2206 <            }
2207 <            else if ((fh = f.hash) == MOVED) {
2208 <                Object fk = f.key;
2209 <                if (fk instanceof TreeBin) {
2210 <                    TreeBin t = (TreeBin)fk;
2211 <                    boolean validated = false;
2212 <                    t.acquire(0);
2213 <                    try {
2214 <                        if (tabAt(tab, i) == f) {
2215 <                            validated = true;
2216 <                            splitTreeBin(nextTab, i, t);
2217 <                            setTabAt(tab, i, fwd);
2218 <                        }
2219 <                    } finally {
2220 <                        t.release(0);
2221 <                    }
2222 <                    if (!validated)
2223 <                        continue;
2224 <                }
2225 <            }
2226 <            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2227 <                boolean validated = false;
2228 <                try {              // split to lo and hi lists; copying as needed
2229 <                    if (tabAt(tab, i) == f) {
2230 <                        validated = true;
2231 <                        splitBin(nextTab, i, f);
2232 <                        setTabAt(tab, i, fwd);
2233 <                    }
2234 <                } finally {
2235 <                    if (!f.casHash(fh | LOCKED, fh)) {
2236 <                        f.hash = fh;
2237 <                        synchronized (f) { f.notifyAll(); };
2238 <                    }
2239 <                }
2240 <                if (!validated)
2241 <                    continue;
2242 <            }
2243 <            else {
2244 <                if (buffer == null) // initialize buffer for revisits
2245 <                    buffer = new int[TRANSFER_BUFFER_SIZE];
2246 <                if (bin < 0 && bufferIndex > 0) {
2247 <                    int j = buffer[--bufferIndex];
2248 <                    buffer[bufferIndex] = i;
2249 <                    i = j;         // swap with another bin
2250 <                    continue;
2251 <                }
2252 <                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2253 <                    f.tryAwaitLock(tab, i);
2254 <                    continue;      // no other options -- block
2255 <                }
2256 <                if (rev == null)   // initialize reverse-forwarder
2257 <                    rev = new Node(MOVED, tab, null, null);
2258 <                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2259 <                    continue;      // recheck before adding to list
2260 <                buffer[nbuffered++] = i;
2261 <                setTabAt(nextTab, i, rev);     // install place-holders
2262 <                setTabAt(nextTab, i + n, rev);
2263 <            }
2264 <
2265 <            if (bin > 0)
2266 <                i = --bin;
2267 <            else if (buffer != null && nbuffered > 0) {
2268 <                bin = -1;
2269 <                i = buffer[bufferIndex = --nbuffered];
2270 <            }
2271 <            else
2272 <                return nextTab;
2273 <        }
747 >     * Volatile access methods are used for table elements as well as
748 >     * elements of in-progress next table while resizing.  All uses of
749 >     * the tab arguments must be null checked by callers.  All callers
750 >     * also paranoically precheck that tab's length is not zero (or an
751 >     * equivalent check), thus ensuring that any index argument taking
752 >     * the form of a hash value anded with (length - 1) is a valid
753 >     * index.  Note that, to be correct wrt arbitrary concurrency
754 >     * errors by users, these checks must operate on local variables,
755 >     * which accounts for some odd-looking inline assignments below.
756 >     * Note that calls to setTabAt always occur within locked regions,
757 >     * and so in principle require only release ordering, not
758 >     * full volatile semantics, but are currently coded as volatile
759 >     * writes to be conservative.
760 >     */
761 >
762 >    @SuppressWarnings("unchecked")
763 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
764 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
765 >    }
766 >
767 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
768 >                                        Node<K,V> c, Node<K,V> v) {
769 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
770      }
771  
772 <    /**
773 <     * Splits a normal bin with list headed by e into lo and hi parts;
2278 <     * installs in given table.
2279 <     */
2280 <    private static void splitBin(Node[] nextTab, int i, Node e) {
2281 <        int bit = nextTab.length >>> 1; // bit to split on
2282 <        int runBit = e.hash & bit;
2283 <        Node lastRun = e, lo = null, hi = null;
2284 <        for (Node p = e.next; p != null; p = p.next) {
2285 <            int b = p.hash & bit;
2286 <            if (b != runBit) {
2287 <                runBit = b;
2288 <                lastRun = p;
2289 <            }
2290 <        }
2291 <        if (runBit == 0)
2292 <            lo = lastRun;
2293 <        else
2294 <            hi = lastRun;
2295 <        for (Node p = e; p != lastRun; p = p.next) {
2296 <            int ph = p.hash & HASH_BITS;
2297 <            Object pk = p.key, pv = p.val;
2298 <            if ((ph & bit) == 0)
2299 <                lo = new Node(ph, pk, pv, lo);
2300 <            else
2301 <                hi = new Node(ph, pk, pv, hi);
2302 <        }
2303 <        setTabAt(nextTab, i, lo);
2304 <        setTabAt(nextTab, i + bit, hi);
772 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
773 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
774      }
775  
776 +    /* ---------------- Fields -------------- */
777 +
778      /**
779 <     * Splits a tree bin into lo and hi parts; installs in given table.
779 >     * The array of bins. Lazily initialized upon first insertion.
780 >     * Size is always a power of two. Accessed directly by iterators.
781       */
782 <    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2311 <        int bit = nextTab.length >>> 1;
2312 <        TreeBin lt = new TreeBin();
2313 <        TreeBin ht = new TreeBin();
2314 <        int lc = 0, hc = 0;
2315 <        for (Node e = t.first; e != null; e = e.next) {
2316 <            int h = e.hash & HASH_BITS;
2317 <            Object k = e.key, v = e.val;
2318 <            if ((h & bit) == 0) {
2319 <                ++lc;
2320 <                lt.putTreeNode(h, k, v);
2321 <            }
2322 <            else {
2323 <                ++hc;
2324 <                ht.putTreeNode(h, k, v);
2325 <            }
2326 <        }
2327 <        Node ln, hn; // throw away trees if too small
2328 <        if (lc <= (TREE_THRESHOLD >>> 1)) {
2329 <            ln = null;
2330 <            for (Node p = lt.first; p != null; p = p.next)
2331 <                ln = new Node(p.hash, p.key, p.val, ln);
2332 <        }
2333 <        else
2334 <            ln = new Node(MOVED, lt, null, null);
2335 <        setTabAt(nextTab, i, ln);
2336 <        if (hc <= (TREE_THRESHOLD >>> 1)) {
2337 <            hn = null;
2338 <            for (Node p = ht.first; p != null; p = p.next)
2339 <                hn = new Node(p.hash, p.key, p.val, hn);
2340 <        }
2341 <        else
2342 <            hn = new Node(MOVED, ht, null, null);
2343 <        setTabAt(nextTab, i + bit, hn);
2344 <    }
782 >    transient volatile Node<K,V>[] table;
783  
784      /**
785 <     * Implementation for clear. Steps through each bin, removing all
2348 <     * nodes.
785 >     * The next table to use; non-null only while resizing.
786       */
787 <    private final void internalClear() {
2351 <        long delta = 0L; // negative number of deletions
2352 <        int i = 0;
2353 <        Node[] tab = table;
2354 <        while (tab != null && i < tab.length) {
2355 <            int fh; Object fk;
2356 <            Node f = tabAt(tab, i);
2357 <            if (f == null)
2358 <                ++i;
2359 <            else if ((fh = f.hash) == MOVED) {
2360 <                if ((fk = f.key) instanceof TreeBin) {
2361 <                    TreeBin t = (TreeBin)fk;
2362 <                    t.acquire(0);
2363 <                    try {
2364 <                        if (tabAt(tab, i) == f) {
2365 <                            for (Node p = t.first; p != null; p = p.next) {
2366 <                                if (p.val != null) { // (currently always true)
2367 <                                    p.val = null;
2368 <                                    --delta;
2369 <                                }
2370 <                            }
2371 <                            t.first = null;
2372 <                            t.root = null;
2373 <                            ++i;
2374 <                        }
2375 <                    } finally {
2376 <                        t.release(0);
2377 <                    }
2378 <                }
2379 <                else
2380 <                    tab = (Node[])fk;
2381 <            }
2382 <            else if ((fh & LOCKED) != 0) {
2383 <                counter.add(delta); // opportunistically update count
2384 <                delta = 0L;
2385 <                f.tryAwaitLock(tab, i);
2386 <            }
2387 <            else if (f.casHash(fh, fh | LOCKED)) {
2388 <                try {
2389 <                    if (tabAt(tab, i) == f) {
2390 <                        for (Node e = f; e != null; e = e.next) {
2391 <                            if (e.val != null) {  // (currently always true)
2392 <                                e.val = null;
2393 <                                --delta;
2394 <                            }
2395 <                        }
2396 <                        setTabAt(tab, i, null);
2397 <                        ++i;
2398 <                    }
2399 <                } finally {
2400 <                    if (!f.casHash(fh | LOCKED, fh)) {
2401 <                        f.hash = fh;
2402 <                        synchronized (f) { f.notifyAll(); };
2403 <                    }
2404 <                }
2405 <            }
2406 <        }
2407 <        if (delta != 0)
2408 <            counter.add(delta);
2409 <    }
2410 <
2411 <    /* ----------------Table Traversal -------------- */
787 >    private transient volatile Node<K,V>[] nextTable;
788  
789      /**
790 <     * Encapsulates traversal for methods such as containsValue; also
791 <     * serves as a base class for other iterators and bulk tasks.
792 <     *
793 <     * At each step, the iterator snapshots the key ("nextKey") and
794 <     * value ("nextVal") of a valid node (i.e., one that, at point of
2419 <     * snapshot, has a non-null user value). Because val fields can
2420 <     * change (including to null, indicating deletion), field nextVal
2421 <     * might not be accurate at point of use, but still maintains the
2422 <     * weak consistency property of holding a value that was once
2423 <     * valid. To support iterator.remove, the nextKey field is not
2424 <     * updated (nulled out) when the iterator cannot advance.
2425 <     *
2426 <     * Internal traversals directly access these fields, as in:
2427 <     * {@code while (it.advance() != null) { process(it.nextKey); }}
2428 <     *
2429 <     * Exported iterators must track whether the iterator has advanced
2430 <     * (in hasNext vs next) (by setting/checking/nulling field
2431 <     * nextVal), and then extract key, value, or key-value pairs as
2432 <     * return values of next().
2433 <     *
2434 <     * The iterator visits once each still-valid node that was
2435 <     * reachable upon iterator construction. It might miss some that
2436 <     * were added to a bin after the bin was visited, which is OK wrt
2437 <     * consistency guarantees. Maintaining this property in the face
2438 <     * of possible ongoing resizes requires a fair amount of
2439 <     * bookkeeping state that is difficult to optimize away amidst
2440 <     * volatile accesses.  Even so, traversal maintains reasonable
2441 <     * throughput.
2442 <     *
2443 <     * Normally, iteration proceeds bin-by-bin traversing lists.
2444 <     * However, if the table has been resized, then all future steps
2445 <     * must traverse both the bin at the current index as well as at
2446 <     * (index + baseSize); and so on for further resizings. To
2447 <     * paranoically cope with potential sharing by users of iterators
2448 <     * across threads, iteration terminates if a bounds checks fails
2449 <     * for a table read.
2450 <     *
2451 <     * This class extends ForkJoinTask to streamline parallel
2452 <     * iteration in bulk operations (see BulkTask). This adds only an
2453 <     * int of space overhead, which is close enough to negligible in
2454 <     * cases where it is not needed to not worry about it.  Because
2455 <     * ForkJoinTask is Serializable, but iterators need not be, we
2456 <     * need to add warning suppressions.
2457 <     */
2458 <    @SuppressWarnings("serial") static class Traverser<K,V,R> extends ForkJoinTask<R> {
2459 <        final ConcurrentHashMapV8<K, V> map;
2460 <        Node next;           // the next entry to use
2461 <        Object nextKey;      // cached key field of next
2462 <        Object nextVal;      // cached val field of next
2463 <        Node[] tab;          // current table; updated if resized
2464 <        int index;           // index of bin to use next
2465 <        int baseIndex;       // current index of initial table
2466 <        int baseLimit;       // index bound for initial table
2467 <        int baseSize;        // initial table size
790 >     * Base counter value, used mainly when there is no contention,
791 >     * but also as a fallback during table initialization
792 >     * races. Updated via CAS.
793 >     */
794 >    private transient volatile long baseCount;
795  
796 <        /** Creates iterator for all entries in the table. */
797 <        Traverser(ConcurrentHashMapV8<K, V> map) {
798 <            this.map = map;
799 <        }
796 >    /**
797 >     * Table initialization and resizing control.  When negative, the
798 >     * table is being initialized or resized: -1 for initialization,
799 >     * else -(1 + the number of active resizing threads).  Otherwise,
800 >     * when table is null, holds the initial table size to use upon
801 >     * creation, or 0 for default. After initialization, holds the
802 >     * next element count value upon which to resize the table.
803 >     */
804 >    private transient volatile int sizeCtl;
805  
806 <        /** Creates iterator for split() methods */
807 <        Traverser(Traverser<K,V,?> it) {
808 <            ConcurrentHashMapV8<K, V> m; Node[] t;
809 <            if ((m = this.map = it.map) == null)
2478 <                t = null;
2479 <            else if ((t = it.tab) == null && // force parent tab initialization
2480 <                     (t = it.tab = m.table) != null)
2481 <                it.baseLimit = it.baseSize = t.length;
2482 <            this.tab = t;
2483 <            this.baseSize = it.baseSize;
2484 <            it.baseLimit = this.index = this.baseIndex =
2485 <                ((this.baseLimit = it.baseLimit) + it.baseIndex + 1) >>> 1;
2486 <        }
806 >    /**
807 >     * The next table index (plus one) to split while resizing.
808 >     */
809 >    private transient volatile int transferIndex;
810  
811 <        /**
812 <         * Advances next; returns nextVal or null if terminated.
813 <         * See above for explanation.
814 <         */
2492 <        final Object advance() {
2493 <            Node e = next;
2494 <            Object ev = null;
2495 <            outer: do {
2496 <                if (e != null)                  // advance past used/skipped node
2497 <                    e = e.next;
2498 <                while (e == null) {             // get to next non-null bin
2499 <                    ConcurrentHashMapV8<K, V> m;
2500 <                    Node[] t; int b, i, n; Object ek; // checks must use locals
2501 <                    if ((t = tab) != null)
2502 <                        n = t.length;
2503 <                    else if ((m = map) != null && (t = tab = m.table) != null)
2504 <                        n = baseLimit = baseSize = t.length;
2505 <                    else
2506 <                        break outer;
2507 <                    if ((b = baseIndex) >= baseLimit ||
2508 <                        (i = index) < 0 || i >= n)
2509 <                        break outer;
2510 <                    if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2511 <                        if ((ek = e.key) instanceof TreeBin)
2512 <                            e = ((TreeBin)ek).first;
2513 <                        else {
2514 <                            tab = (Node[])ek;
2515 <                            continue;           // restarts due to null val
2516 <                        }
2517 <                    }                           // visit upper slots if present
2518 <                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2519 <                }
2520 <                nextKey = e.key;
2521 <            } while ((ev = e.val) == null);    // skip deleted or special nodes
2522 <            next = e;
2523 <            return nextVal = ev;
2524 <        }
811 >    /**
812 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
813 >     */
814 >    private transient volatile int cellsBusy;
815  
816 <        public final void remove() {
817 <            Object k = nextKey;
818 <            if (k == null && (advance() == null || (k = nextKey) == null))
819 <                throw new IllegalStateException();
2530 <            map.internalReplace(k, null, null);
2531 <        }
816 >    /**
817 >     * Table of counter cells. When non-null, size is a power of 2.
818 >     */
819 >    private transient volatile CounterCell[] counterCells;
820  
821 <        public final boolean hasNext() {
822 <            return nextVal != null || advance() != null;
823 <        }
821 >    // views
822 >    private transient KeySetView<K,V> keySet;
823 >    private transient ValuesView<K,V> values;
824 >    private transient EntrySetView<K,V> entrySet;
825  
2537        public final boolean hasMoreElements() { return hasNext(); }
2538        public final void setRawResult(Object x) { }
2539        public R getRawResult() { return null; }
2540        public boolean exec() { return true; }
2541    }
826  
827      /* ---------------- Public operations -------------- */
828  
# Line 2546 | Line 830 | public class ConcurrentHashMapV8<K, V>
830       * Creates a new, empty map with the default initial table size (16).
831       */
832      public ConcurrentHashMapV8() {
2549        this.counter = new LongAdder();
833      }
834  
835      /**
# Line 2565 | Line 848 | public class ConcurrentHashMapV8<K, V>
848          int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
849                     MAXIMUM_CAPACITY :
850                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2568        this.counter = new LongAdder();
851          this.sizeCtl = cap;
852      }
853  
# Line 2575 | Line 857 | public class ConcurrentHashMapV8<K, V>
857       * @param m the map
858       */
859      public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2578        this.counter = new LongAdder();
860          this.sizeCtl = DEFAULT_CAPACITY;
861 <        internalPutAll(m);
861 >        putAll(m);
862      }
863  
864      /**
# Line 2618 | Line 899 | public class ConcurrentHashMapV8<K, V>
899       * nonpositive
900       */
901      public ConcurrentHashMapV8(int initialCapacity,
902 <                               float loadFactor, int concurrencyLevel) {
902 >                             float loadFactor, int concurrencyLevel) {
903          if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
904              throw new IllegalArgumentException();
905          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
# Line 2626 | Line 907 | public class ConcurrentHashMapV8<K, V>
907          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
908          int cap = (size >= (long)MAXIMUM_CAPACITY) ?
909              MAXIMUM_CAPACITY : tableSizeFor((int)size);
2629        this.counter = new LongAdder();
910          this.sizeCtl = cap;
911      }
912  
913 <    /**
2634 <     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2635 <     * from the given type to {@code Boolean.TRUE}.
2636 <     *
2637 <     * @return the new set
2638 <     */
2639 <    public static <K> KeySetView<K,Boolean> newKeySet() {
2640 <        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2641 <                                      Boolean.TRUE);
2642 <    }
2643 <
2644 <    /**
2645 <     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2646 <     * from the given type to {@code Boolean.TRUE}.
2647 <     *
2648 <     * @param initialCapacity The implementation performs internal
2649 <     * sizing to accommodate this many elements.
2650 <     * @throws IllegalArgumentException if the initial capacity of
2651 <     * elements is negative
2652 <     * @return the new set
2653 <     */
2654 <    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2655 <        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(initialCapacity),
2656 <                                      Boolean.TRUE);
2657 <    }
2658 <
2659 <    /**
2660 <     * {@inheritDoc}
2661 <     */
2662 <    public boolean isEmpty() {
2663 <        return counter.sum() <= 0L; // ignore transient negative values
2664 <    }
913 >    // Original (since JDK1.2) Map methods
914  
915      /**
916       * {@inheritDoc}
917       */
918      public int size() {
919 <        long n = counter.sum();
919 >        long n = sumCount();
920          return ((n < 0L) ? 0 :
921                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
922                  (int)n);
923      }
924  
925      /**
926 <     * Returns the number of mappings. This method should be used
2678 <     * instead of {@link #size} because a ConcurrentHashMapV8 may
2679 <     * contain more mappings than can be represented as an int. The
2680 <     * value returned is a snapshot; the actual count may differ if
2681 <     * there are ongoing concurrent insertions or removals.
2682 <     *
2683 <     * @return the number of mappings
926 >     * {@inheritDoc}
927       */
928 <    public long mappingCount() {
929 <        long n = counter.sum();
2687 <        return (n < 0L) ? 0L : n; // ignore transient negative values
928 >    public boolean isEmpty() {
929 >        return sumCount() <= 0L; // ignore transient negative values
930      }
931  
932      /**
# Line 2698 | Line 940 | public class ConcurrentHashMapV8<K, V>
940       *
941       * @throws NullPointerException if the specified key is null
942       */
943 <    @SuppressWarnings("unchecked") public V get(Object key) {
944 <        if (key == null)
945 <            throw new NullPointerException();
946 <        return (V)internalGet(key);
947 <    }
948 <
949 <    /**
950 <     * Returns the value to which the specified key is mapped,
951 <     * or the given defaultValue if this map contains no mapping for the key.
952 <     *
953 <     * @param key the key
954 <     * @param defaultValue the value to return if this map contains
955 <     * no mapping for the given key
956 <     * @return the mapping for the key, if present; else the defaultValue
957 <     * @throws NullPointerException if the specified key is null
958 <     */
959 <    @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
960 <        if (key == null)
2719 <            throw new NullPointerException();
2720 <        V v = (V) internalGet(key);
2721 <        return v == null ? defaultValue : v;
943 >    public V get(Object key) {
944 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
945 >        int h = spread(key.hashCode());
946 >        if ((tab = table) != null && (n = tab.length) > 0 &&
947 >            (e = tabAt(tab, (n - 1) & h)) != null) {
948 >            if ((eh = e.hash) == h) {
949 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
950 >                    return e.val;
951 >            }
952 >            else if (eh < 0)
953 >                return (p = e.find(h, key)) != null ? p.val : null;
954 >            while ((e = e.next) != null) {
955 >                if (e.hash == h &&
956 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
957 >                    return e.val;
958 >            }
959 >        }
960 >        return null;
961      }
962  
963      /**
964       * Tests if the specified object is a key in this table.
965       *
966 <     * @param  key   possible key
966 >     * @param  key possible key
967       * @return {@code true} if and only if the specified object
968       *         is a key in this table, as determined by the
969       *         {@code equals} method; {@code false} otherwise
970       * @throws NullPointerException if the specified key is null
971       */
972      public boolean containsKey(Object key) {
973 <        if (key == null)
2735 <            throw new NullPointerException();
2736 <        return internalGet(key) != null;
973 >        return get(key) != null;
974      }
975  
976      /**
# Line 2749 | Line 986 | public class ConcurrentHashMapV8<K, V>
986      public boolean containsValue(Object value) {
987          if (value == null)
988              throw new NullPointerException();
989 <        Object v;
990 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
991 <        while ((v = it.advance()) != null) {
992 <            if (v == value || value.equals(v))
993 <                return true;
989 >        Node<K,V>[] t;
990 >        if ((t = table) != null) {
991 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
992 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
993 >                V v;
994 >                if ((v = p.val) == value || (v != null && value.equals(v)))
995 >                    return true;
996 >            }
997          }
998          return false;
999      }
1000  
1001      /**
2762     * Legacy method testing if some key maps into the specified value
2763     * in this table.  This method is identical in functionality to
2764     * {@link #containsValue}, and exists solely to ensure
2765     * full compatibility with class {@link java.util.Hashtable},
2766     * which supported this method prior to introduction of the
2767     * Java Collections framework.
2768     *
2769     * @param  value a value to search for
2770     * @return {@code true} if and only if some key maps to the
2771     *         {@code value} argument in this table as
2772     *         determined by the {@code equals} method;
2773     *         {@code false} otherwise
2774     * @throws NullPointerException if the specified value is null
2775     */
2776    public boolean contains(Object value) {
2777        return containsValue(value);
2778    }
2779
2780    /**
1002       * Maps the specified key to the specified value in this table.
1003       * Neither the key nor the value can be null.
1004       *
1005 <     * <p> The value can be retrieved by calling the {@code get} method
1005 >     * <p>The value can be retrieved by calling the {@code get} method
1006       * with a key that is equal to the original key.
1007       *
1008       * @param key key with which the specified value is to be associated
# Line 2790 | Line 1011 | public class ConcurrentHashMapV8<K, V>
1011       *         {@code null} if there was no mapping for {@code key}
1012       * @throws NullPointerException if the specified key or value is null
1013       */
1014 <    @SuppressWarnings("unchecked") public V put(K key, V value) {
1015 <        if (key == null || value == null)
1014 >    public V put(K key, V value) {
1015 >        return putVal(key, value, false);
1016 >    }
1017 >
1018 >    /** Implementation for put and putIfAbsent */
1019 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
1020 >        if (key == null || value == null) throw new NullPointerException();
1021 >        int hash = spread(key.hashCode());
1022 >        int binCount = 0;
1023 >        for (Node<K,V>[] tab = table;;) {
1024 >            Node<K,V> f; int n, i, fh;
1025 >            if (tab == null || (n = tab.length) == 0)
1026 >                tab = initTable();
1027 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1028 >                if (casTabAt(tab, i, null,
1029 >                             new Node<K,V>(hash, key, value, null)))
1030 >                    break;                   // no lock when adding to empty bin
1031 >            }
1032 >            else if ((fh = f.hash) == MOVED)
1033 >                tab = helpTransfer(tab, f);
1034 >            else {
1035 >                V oldVal = null;
1036 >                synchronized (f) {
1037 >                    if (tabAt(tab, i) == f) {
1038 >                        if (fh >= 0) {
1039 >                            binCount = 1;
1040 >                            for (Node<K,V> e = f;; ++binCount) {
1041 >                                K ek;
1042 >                                if (e.hash == hash &&
1043 >                                    ((ek = e.key) == key ||
1044 >                                     (ek != null && key.equals(ek)))) {
1045 >                                    oldVal = e.val;
1046 >                                    if (!onlyIfAbsent)
1047 >                                        e.val = value;
1048 >                                    break;
1049 >                                }
1050 >                                Node<K,V> pred = e;
1051 >                                if ((e = e.next) == null) {
1052 >                                    pred.next = new Node<K,V>(hash, key,
1053 >                                                              value, null);
1054 >                                    break;
1055 >                                }
1056 >                            }
1057 >                        }
1058 >                        else if (f instanceof TreeBin) {
1059 >                            Node<K,V> p;
1060 >                            binCount = 2;
1061 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1062 >                                                           value)) != null) {
1063 >                                oldVal = p.val;
1064 >                                if (!onlyIfAbsent)
1065 >                                    p.val = value;
1066 >                            }
1067 >                        }
1068 >                    }
1069 >                }
1070 >                if (binCount != 0) {
1071 >                    if (binCount >= TREEIFY_THRESHOLD)
1072 >                        treeifyBin(tab, i);
1073 >                    if (oldVal != null)
1074 >                        return oldVal;
1075 >                    break;
1076 >                }
1077 >            }
1078 >        }
1079 >        addCount(1L, binCount);
1080 >        return null;
1081 >    }
1082 >
1083 >    /**
1084 >     * Copies all of the mappings from the specified map to this one.
1085 >     * These mappings replace any mappings that this map had for any of the
1086 >     * keys currently in the specified map.
1087 >     *
1088 >     * @param m mappings to be stored in this map
1089 >     */
1090 >    public void putAll(Map<? extends K, ? extends V> m) {
1091 >        tryPresize(m.size());
1092 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1093 >            putVal(e.getKey(), e.getValue(), false);
1094 >    }
1095 >
1096 >    /**
1097 >     * Removes the key (and its corresponding value) from this map.
1098 >     * This method does nothing if the key is not in the map.
1099 >     *
1100 >     * @param  key the key that needs to be removed
1101 >     * @return the previous value associated with {@code key}, or
1102 >     *         {@code null} if there was no mapping for {@code key}
1103 >     * @throws NullPointerException if the specified key is null
1104 >     */
1105 >    public V remove(Object key) {
1106 >        return replaceNode(key, null, null);
1107 >    }
1108 >
1109 >    /**
1110 >     * Implementation for the four public remove/replace methods:
1111 >     * Replaces node value with v, conditional upon match of cv if
1112 >     * non-null.  If resulting value is null, delete.
1113 >     */
1114 >    final V replaceNode(Object key, V value, Object cv) {
1115 >        int hash = spread(key.hashCode());
1116 >        for (Node<K,V>[] tab = table;;) {
1117 >            Node<K,V> f; int n, i, fh;
1118 >            if (tab == null || (n = tab.length) == 0 ||
1119 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1120 >                break;
1121 >            else if ((fh = f.hash) == MOVED)
1122 >                tab = helpTransfer(tab, f);
1123 >            else {
1124 >                V oldVal = null;
1125 >                boolean validated = false;
1126 >                synchronized (f) {
1127 >                    if (tabAt(tab, i) == f) {
1128 >                        if (fh >= 0) {
1129 >                            validated = true;
1130 >                            for (Node<K,V> e = f, pred = null;;) {
1131 >                                K ek;
1132 >                                if (e.hash == hash &&
1133 >                                    ((ek = e.key) == key ||
1134 >                                     (ek != null && key.equals(ek)))) {
1135 >                                    V ev = e.val;
1136 >                                    if (cv == null || cv == ev ||
1137 >                                        (ev != null && cv.equals(ev))) {
1138 >                                        oldVal = ev;
1139 >                                        if (value != null)
1140 >                                            e.val = value;
1141 >                                        else if (pred != null)
1142 >                                            pred.next = e.next;
1143 >                                        else
1144 >                                            setTabAt(tab, i, e.next);
1145 >                                    }
1146 >                                    break;
1147 >                                }
1148 >                                pred = e;
1149 >                                if ((e = e.next) == null)
1150 >                                    break;
1151 >                            }
1152 >                        }
1153 >                        else if (f instanceof TreeBin) {
1154 >                            validated = true;
1155 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1156 >                            TreeNode<K,V> r, p;
1157 >                            if ((r = t.root) != null &&
1158 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1159 >                                V pv = p.val;
1160 >                                if (cv == null || cv == pv ||
1161 >                                    (pv != null && cv.equals(pv))) {
1162 >                                    oldVal = pv;
1163 >                                    if (value != null)
1164 >                                        p.val = value;
1165 >                                    else if (t.removeTreeNode(p))
1166 >                                        setTabAt(tab, i, untreeify(t.first));
1167 >                                }
1168 >                            }
1169 >                        }
1170 >                    }
1171 >                }
1172 >                if (validated) {
1173 >                    if (oldVal != null) {
1174 >                        if (value == null)
1175 >                            addCount(-1L, -1);
1176 >                        return oldVal;
1177 >                    }
1178 >                    break;
1179 >                }
1180 >            }
1181 >        }
1182 >        return null;
1183 >    }
1184 >
1185 >    /**
1186 >     * Removes all of the mappings from this map.
1187 >     */
1188 >    public void clear() {
1189 >        long delta = 0L; // negative number of deletions
1190 >        int i = 0;
1191 >        Node<K,V>[] tab = table;
1192 >        while (tab != null && i < tab.length) {
1193 >            int fh;
1194 >            Node<K,V> f = tabAt(tab, i);
1195 >            if (f == null)
1196 >                ++i;
1197 >            else if ((fh = f.hash) == MOVED) {
1198 >                tab = helpTransfer(tab, f);
1199 >                i = 0; // restart
1200 >            }
1201 >            else {
1202 >                synchronized (f) {
1203 >                    if (tabAt(tab, i) == f) {
1204 >                        Node<K,V> p = (fh >= 0 ? f :
1205 >                                       (f instanceof TreeBin) ?
1206 >                                       ((TreeBin<K,V>)f).first : null);
1207 >                        while (p != null) {
1208 >                            --delta;
1209 >                            p = p.next;
1210 >                        }
1211 >                        setTabAt(tab, i++, null);
1212 >                    }
1213 >                }
1214 >            }
1215 >        }
1216 >        if (delta != 0L)
1217 >            addCount(delta, -1);
1218 >    }
1219 >
1220 >    /**
1221 >     * Returns a {@link Set} view of the keys contained in this map.
1222 >     * The set is backed by the map, so changes to the map are
1223 >     * reflected in the set, and vice-versa. The set supports element
1224 >     * removal, which removes the corresponding mapping from this map,
1225 >     * via the {@code Iterator.remove}, {@code Set.remove},
1226 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1227 >     * operations.  It does not support the {@code add} or
1228 >     * {@code addAll} operations.
1229 >     *
1230 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1231 >     * that will never throw {@link ConcurrentModificationException},
1232 >     * and guarantees to traverse elements as they existed upon
1233 >     * construction of the iterator, and may (but is not guaranteed to)
1234 >     * reflect any modifications subsequent to construction.
1235 >     *
1236 >     * @return the set view
1237 >     */
1238 >    public KeySetView<K,V> keySet() {
1239 >        KeySetView<K,V> ks;
1240 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1241 >    }
1242 >
1243 >    /**
1244 >     * Returns a {@link Collection} view of the values contained in this map.
1245 >     * The collection is backed by the map, so changes to the map are
1246 >     * reflected in the collection, and vice-versa.  The collection
1247 >     * supports element removal, which removes the corresponding
1248 >     * mapping from this map, via the {@code Iterator.remove},
1249 >     * {@code Collection.remove}, {@code removeAll},
1250 >     * {@code retainAll}, and {@code clear} operations.  It does not
1251 >     * support the {@code add} or {@code addAll} operations.
1252 >     *
1253 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1254 >     * that will never throw {@link ConcurrentModificationException},
1255 >     * and guarantees to traverse elements as they existed upon
1256 >     * construction of the iterator, and may (but is not guaranteed to)
1257 >     * reflect any modifications subsequent to construction.
1258 >     *
1259 >     * @return the collection view
1260 >     */
1261 >    public Collection<V> values() {
1262 >        ValuesView<K,V> vs;
1263 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1264 >    }
1265 >
1266 >    /**
1267 >     * Returns a {@link Set} view of the mappings contained in this map.
1268 >     * The set is backed by the map, so changes to the map are
1269 >     * reflected in the set, and vice-versa.  The set supports element
1270 >     * removal, which removes the corresponding mapping from the map,
1271 >     * via the {@code Iterator.remove}, {@code Set.remove},
1272 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1273 >     * operations.
1274 >     *
1275 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1276 >     * that will never throw {@link ConcurrentModificationException},
1277 >     * and guarantees to traverse elements as they existed upon
1278 >     * construction of the iterator, and may (but is not guaranteed to)
1279 >     * reflect any modifications subsequent to construction.
1280 >     *
1281 >     * @return the set view
1282 >     */
1283 >    public Set<Map.Entry<K,V>> entrySet() {
1284 >        EntrySetView<K,V> es;
1285 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1286 >    }
1287 >
1288 >    /**
1289 >     * Returns the hash code value for this {@link Map}, i.e.,
1290 >     * the sum of, for each key-value pair in the map,
1291 >     * {@code key.hashCode() ^ value.hashCode()}.
1292 >     *
1293 >     * @return the hash code value for this map
1294 >     */
1295 >    public int hashCode() {
1296 >        int h = 0;
1297 >        Node<K,V>[] t;
1298 >        if ((t = table) != null) {
1299 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1300 >            for (Node<K,V> p; (p = it.advance()) != null; )
1301 >                h += p.key.hashCode() ^ p.val.hashCode();
1302 >        }
1303 >        return h;
1304 >    }
1305 >
1306 >    /**
1307 >     * Returns a string representation of this map.  The string
1308 >     * representation consists of a list of key-value mappings (in no
1309 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1310 >     * mappings are separated by the characters {@code ", "} (comma
1311 >     * and space).  Each key-value mapping is rendered as the key
1312 >     * followed by an equals sign ("{@code =}") followed by the
1313 >     * associated value.
1314 >     *
1315 >     * @return a string representation of this map
1316 >     */
1317 >    public String toString() {
1318 >        Node<K,V>[] t;
1319 >        int f = (t = table) == null ? 0 : t.length;
1320 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1321 >        StringBuilder sb = new StringBuilder();
1322 >        sb.append('{');
1323 >        Node<K,V> p;
1324 >        if ((p = it.advance()) != null) {
1325 >            for (;;) {
1326 >                K k = p.key;
1327 >                V v = p.val;
1328 >                sb.append(k == this ? "(this Map)" : k);
1329 >                sb.append('=');
1330 >                sb.append(v == this ? "(this Map)" : v);
1331 >                if ((p = it.advance()) == null)
1332 >                    break;
1333 >                sb.append(',').append(' ');
1334 >            }
1335 >        }
1336 >        return sb.append('}').toString();
1337 >    }
1338 >
1339 >    /**
1340 >     * Compares the specified object with this map for equality.
1341 >     * Returns {@code true} if the given object is a map with the same
1342 >     * mappings as this map.  This operation may return misleading
1343 >     * results if either map is concurrently modified during execution
1344 >     * of this method.
1345 >     *
1346 >     * @param o object to be compared for equality with this map
1347 >     * @return {@code true} if the specified object is equal to this map
1348 >     */
1349 >    public boolean equals(Object o) {
1350 >        if (o != this) {
1351 >            if (!(o instanceof Map))
1352 >                return false;
1353 >            Map<?,?> m = (Map<?,?>) o;
1354 >            Node<K,V>[] t;
1355 >            int f = (t = table) == null ? 0 : t.length;
1356 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1357 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1358 >                V val = p.val;
1359 >                Object v = m.get(p.key);
1360 >                if (v == null || (v != val && !v.equals(val)))
1361 >                    return false;
1362 >            }
1363 >            for (Map.Entry<?,?> e : m.entrySet()) {
1364 >                Object mk, mv, v;
1365 >                if ((mk = e.getKey()) == null ||
1366 >                    (mv = e.getValue()) == null ||
1367 >                    (v = get(mk)) == null ||
1368 >                    (mv != v && !mv.equals(v)))
1369 >                    return false;
1370 >            }
1371 >        }
1372 >        return true;
1373 >    }
1374 >
1375 >    /**
1376 >     * Stripped-down version of helper class used in previous version,
1377 >     * declared for the sake of serialization compatibility
1378 >     */
1379 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1380 >        private static final long serialVersionUID = 2249069246763182397L;
1381 >        final float loadFactor;
1382 >        Segment(float lf) { this.loadFactor = lf; }
1383 >    }
1384 >
1385 >    /**
1386 >     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1387 >     * stream (i.e., serializes it).
1388 >     * @param s the stream
1389 >     * @throws java.io.IOException if an I/O error occurs
1390 >     * @serialData
1391 >     * the key (Object) and value (Object)
1392 >     * for each key-value mapping, followed by a null pair.
1393 >     * The key-value mappings are emitted in no particular order.
1394 >     */
1395 >    private void writeObject(java.io.ObjectOutputStream s)
1396 >        throws java.io.IOException {
1397 >        // For serialization compatibility
1398 >        // Emulate segment calculation from previous version of this class
1399 >        int sshift = 0;
1400 >        int ssize = 1;
1401 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1402 >            ++sshift;
1403 >            ssize <<= 1;
1404 >        }
1405 >        int segmentShift = 32 - sshift;
1406 >        int segmentMask = ssize - 1;
1407 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1408 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1409 >        for (int i = 0; i < segments.length; ++i)
1410 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1411 >        s.putFields().put("segments", segments);
1412 >        s.putFields().put("segmentShift", segmentShift);
1413 >        s.putFields().put("segmentMask", segmentMask);
1414 >        s.writeFields();
1415 >
1416 >        Node<K,V>[] t;
1417 >        if ((t = table) != null) {
1418 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1419 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1420 >                s.writeObject(p.key);
1421 >                s.writeObject(p.val);
1422 >            }
1423 >        }
1424 >        s.writeObject(null);
1425 >        s.writeObject(null);
1426 >        segments = null; // throw away
1427 >    }
1428 >
1429 >    /**
1430 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1431 >     * @param s the stream
1432 >     * @throws ClassNotFoundException if the class of a serialized object
1433 >     *         could not be found
1434 >     * @throws java.io.IOException if an I/O error occurs
1435 >     */
1436 >    private void readObject(java.io.ObjectInputStream s)
1437 >        throws java.io.IOException, ClassNotFoundException {
1438 >        /*
1439 >         * To improve performance in typical cases, we create nodes
1440 >         * while reading, then place in table once size is known.
1441 >         * However, we must also validate uniqueness and deal with
1442 >         * overpopulated bins while doing so, which requires
1443 >         * specialized versions of putVal mechanics.
1444 >         */
1445 >        sizeCtl = -1; // force exclusion for table construction
1446 >        s.defaultReadObject();
1447 >        long size = 0L;
1448 >        Node<K,V> p = null;
1449 >        for (;;) {
1450 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1451 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1452 >            if (k != null && v != null) {
1453 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1454 >                ++size;
1455 >            }
1456 >            else
1457 >                break;
1458 >        }
1459 >        if (size == 0L)
1460 >            sizeCtl = 0;
1461 >        else {
1462 >            int n;
1463 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1464 >                n = MAXIMUM_CAPACITY;
1465 >            else {
1466 >                int sz = (int)size;
1467 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1468 >            }
1469 >            @SuppressWarnings("unchecked")
1470 >                Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1471 >            int mask = n - 1;
1472 >            long added = 0L;
1473 >            while (p != null) {
1474 >                boolean insertAtFront;
1475 >                Node<K,V> next = p.next, first;
1476 >                int h = p.hash, j = h & mask;
1477 >                if ((first = tabAt(tab, j)) == null)
1478 >                    insertAtFront = true;
1479 >                else {
1480 >                    K k = p.key;
1481 >                    if (first.hash < 0) {
1482 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1483 >                        if (t.putTreeVal(h, k, p.val) == null)
1484 >                            ++added;
1485 >                        insertAtFront = false;
1486 >                    }
1487 >                    else {
1488 >                        int binCount = 0;
1489 >                        insertAtFront = true;
1490 >                        Node<K,V> q; K qk;
1491 >                        for (q = first; q != null; q = q.next) {
1492 >                            if (q.hash == h &&
1493 >                                ((qk = q.key) == k ||
1494 >                                 (qk != null && k.equals(qk)))) {
1495 >                                insertAtFront = false;
1496 >                                break;
1497 >                            }
1498 >                            ++binCount;
1499 >                        }
1500 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1501 >                            insertAtFront = false;
1502 >                            ++added;
1503 >                            p.next = first;
1504 >                            TreeNode<K,V> hd = null, tl = null;
1505 >                            for (q = p; q != null; q = q.next) {
1506 >                                TreeNode<K,V> t = new TreeNode<K,V>
1507 >                                    (q.hash, q.key, q.val, null, null);
1508 >                                if ((t.prev = tl) == null)
1509 >                                    hd = t;
1510 >                                else
1511 >                                    tl.next = t;
1512 >                                tl = t;
1513 >                            }
1514 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1515 >                        }
1516 >                    }
1517 >                }
1518 >                if (insertAtFront) {
1519 >                    ++added;
1520 >                    p.next = first;
1521 >                    setTabAt(tab, j, p);
1522 >                }
1523 >                p = next;
1524 >            }
1525 >            table = tab;
1526 >            sizeCtl = n - (n >>> 2);
1527 >            baseCount = added;
1528 >        }
1529 >    }
1530 >
1531 >    // ConcurrentMap methods
1532 >
1533 >    /**
1534 >     * {@inheritDoc}
1535 >     *
1536 >     * @return the previous value associated with the specified key,
1537 >     *         or {@code null} if there was no mapping for the key
1538 >     * @throws NullPointerException if the specified key or value is null
1539 >     */
1540 >    public V putIfAbsent(K key, V value) {
1541 >        return putVal(key, value, true);
1542 >    }
1543 >
1544 >    /**
1545 >     * {@inheritDoc}
1546 >     *
1547 >     * @throws NullPointerException if the specified key is null
1548 >     */
1549 >    public boolean remove(Object key, Object value) {
1550 >        if (key == null)
1551              throw new NullPointerException();
1552 <        return (V)internalPut(key, value);
1552 >        return value != null && replaceNode(key, null, value) != null;
1553 >    }
1554 >
1555 >    /**
1556 >     * {@inheritDoc}
1557 >     *
1558 >     * @throws NullPointerException if any of the arguments are null
1559 >     */
1560 >    public boolean replace(K key, V oldValue, V newValue) {
1561 >        if (key == null || oldValue == null || newValue == null)
1562 >            throw new NullPointerException();
1563 >        return replaceNode(key, newValue, oldValue) != null;
1564      }
1565  
1566      /**
# Line 2803 | Line 1570 | public class ConcurrentHashMapV8<K, V>
1570       *         or {@code null} if there was no mapping for the key
1571       * @throws NullPointerException if the specified key or value is null
1572       */
1573 <    @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
1573 >    public V replace(K key, V value) {
1574          if (key == null || value == null)
1575              throw new NullPointerException();
1576 <        return (V)internalPutIfAbsent(key, value);
1576 >        return replaceNode(key, value, null);
1577      }
1578  
1579 +    // Overrides of JDK8+ Map extension method defaults
1580 +
1581      /**
1582 <     * Copies all of the mappings from the specified map to this one.
1583 <     * These mappings replace any mappings that this map had for any of the
1584 <     * keys currently in the specified map.
1582 >     * Returns the value to which the specified key is mapped, or the
1583 >     * given default value if this map contains no mapping for the
1584 >     * key.
1585       *
1586 <     * @param m mappings to be stored in this map
1586 >     * @param key the key whose associated value is to be returned
1587 >     * @param defaultValue the value to return if this map contains
1588 >     * no mapping for the given key
1589 >     * @return the mapping for the key, if present; else the default value
1590 >     * @throws NullPointerException if the specified key is null
1591       */
1592 <    public void putAll(Map<? extends K, ? extends V> m) {
1593 <        internalPutAll(m);
1592 >    public V getOrDefault(Object key, V defaultValue) {
1593 >        V v;
1594 >        return (v = get(key)) == null ? defaultValue : v;
1595 >    }
1596 >
1597 >    public void forEach(BiAction<? super K, ? super V> action) {
1598 >        if (action == null) throw new NullPointerException();
1599 >        Node<K,V>[] t;
1600 >        if ((t = table) != null) {
1601 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1602 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1603 >                action.apply(p.key, p.val);
1604 >            }
1605 >        }
1606 >    }
1607 >
1608 >    public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1609 >        if (function == null) throw new NullPointerException();
1610 >        Node<K,V>[] t;
1611 >        if ((t = table) != null) {
1612 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1613 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1614 >                V oldValue = p.val;
1615 >                for (K key = p.key;;) {
1616 >                    V newValue = function.apply(key, oldValue);
1617 >                    if (newValue == null)
1618 >                        throw new NullPointerException();
1619 >                    if (replaceNode(key, newValue, oldValue) != null ||
1620 >                        (oldValue = get(key)) == null)
1621 >                        break;
1622 >                }
1623 >            }
1624 >        }
1625      }
1626  
1627      /**
1628       * If the specified key is not already associated with a value,
1629 <     * computes its value using the given mappingFunction and enters
1630 <     * it into the map unless null.  This is equivalent to
1631 <     * <pre> {@code
1632 <     * if (map.containsKey(key))
1633 <     *   return map.get(key);
1634 <     * value = mappingFunction.apply(key);
1635 <     * if (value != null)
2832 <     *   map.put(key, value);
2833 <     * return value;}</pre>
2834 <     *
2835 <     * except that the action is performed atomically.  If the
2836 <     * function returns {@code null} no mapping is recorded. If the
2837 <     * function itself throws an (unchecked) exception, the exception
2838 <     * is rethrown to its caller, and no mapping is recorded.  Some
2839 <     * attempted update operations on this map by other threads may be
2840 <     * blocked while computation is in progress, so the computation
2841 <     * should be short and simple, and must not attempt to update any
2842 <     * other mappings of this Map. The most appropriate usage is to
2843 <     * construct a new object serving as an initial mapped value, or
2844 <     * memoized result, as in:
2845 <     *
2846 <     *  <pre> {@code
2847 <     * map.computeIfAbsent(key, new Fun<K, V>() {
2848 <     *   public V map(K k) { return new Value(f(k)); }});}</pre>
1629 >     * attempts to compute its value using the given mapping function
1630 >     * and enters it into this map unless {@code null}.  The entire
1631 >     * method invocation is performed atomically, so the function is
1632 >     * applied at most once per key.  Some attempted update operations
1633 >     * on this map by other threads may be blocked while computation
1634 >     * is in progress, so the computation should be short and simple,
1635 >     * and must not attempt to update any other mappings of this map.
1636       *
1637       * @param key key with which the specified value is to be associated
1638       * @param mappingFunction the function to compute a value
# Line 2859 | Line 1646 | public class ConcurrentHashMapV8<K, V>
1646       * @throws RuntimeException or Error if the mappingFunction does so,
1647       *         in which case the mapping is left unestablished
1648       */
1649 <    @SuppressWarnings("unchecked") public V computeIfAbsent
2863 <        (K key, Fun<? super K, ? extends V> mappingFunction) {
1649 >    public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1650          if (key == null || mappingFunction == null)
1651              throw new NullPointerException();
1652 <        return (V)internalComputeIfAbsent(key, mappingFunction);
1652 >        int h = spread(key.hashCode());
1653 >        V val = null;
1654 >        int binCount = 0;
1655 >        for (Node<K,V>[] tab = table;;) {
1656 >            Node<K,V> f; int n, i, fh;
1657 >            if (tab == null || (n = tab.length) == 0)
1658 >                tab = initTable();
1659 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1660 >                Node<K,V> r = new ReservationNode<K,V>();
1661 >                synchronized (r) {
1662 >                    if (casTabAt(tab, i, null, r)) {
1663 >                        binCount = 1;
1664 >                        Node<K,V> node = null;
1665 >                        try {
1666 >                            if ((val = mappingFunction.apply(key)) != null)
1667 >                                node = new Node<K,V>(h, key, val, null);
1668 >                        } finally {
1669 >                            setTabAt(tab, i, node);
1670 >                        }
1671 >                    }
1672 >                }
1673 >                if (binCount != 0)
1674 >                    break;
1675 >            }
1676 >            else if ((fh = f.hash) == MOVED)
1677 >                tab = helpTransfer(tab, f);
1678 >            else {
1679 >                boolean added = false;
1680 >                synchronized (f) {
1681 >                    if (tabAt(tab, i) == f) {
1682 >                        if (fh >= 0) {
1683 >                            binCount = 1;
1684 >                            for (Node<K,V> e = f;; ++binCount) {
1685 >                                K ek; V ev;
1686 >                                if (e.hash == h &&
1687 >                                    ((ek = e.key) == key ||
1688 >                                     (ek != null && key.equals(ek)))) {
1689 >                                    val = e.val;
1690 >                                    break;
1691 >                                }
1692 >                                Node<K,V> pred = e;
1693 >                                if ((e = e.next) == null) {
1694 >                                    if ((val = mappingFunction.apply(key)) != null) {
1695 >                                        added = true;
1696 >                                        pred.next = new Node<K,V>(h, key, val, null);
1697 >                                    }
1698 >                                    break;
1699 >                                }
1700 >                            }
1701 >                        }
1702 >                        else if (f instanceof TreeBin) {
1703 >                            binCount = 2;
1704 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1705 >                            TreeNode<K,V> r, p;
1706 >                            if ((r = t.root) != null &&
1707 >                                (p = r.findTreeNode(h, key, null)) != null)
1708 >                                val = p.val;
1709 >                            else if ((val = mappingFunction.apply(key)) != null) {
1710 >                                added = true;
1711 >                                t.putTreeVal(h, key, val);
1712 >                            }
1713 >                        }
1714 >                    }
1715 >                }
1716 >                if (binCount != 0) {
1717 >                    if (binCount >= TREEIFY_THRESHOLD)
1718 >                        treeifyBin(tab, i);
1719 >                    if (!added)
1720 >                        return val;
1721 >                    break;
1722 >                }
1723 >            }
1724 >        }
1725 >        if (val != null)
1726 >            addCount(1L, binCount);
1727 >        return val;
1728      }
1729  
1730      /**
1731 <     * If the given key is present, computes a new mapping value given a key and
1732 <     * its current mapped value. This is equivalent to
1733 <     *  <pre> {@code
1734 <     *   if (map.containsKey(key)) {
1735 <     *     value = remappingFunction.apply(key, map.get(key));
1736 <     *     if (value != null)
1737 <     *       map.put(key, value);
2877 <     *     else
2878 <     *       map.remove(key);
2879 <     *   }
2880 <     * }</pre>
2881 <     *
2882 <     * except that the action is performed atomically.  If the
2883 <     * function returns {@code null}, the mapping is removed.  If the
2884 <     * function itself throws an (unchecked) exception, the exception
2885 <     * is rethrown to its caller, and the current mapping is left
2886 <     * unchanged.  Some attempted update operations on this map by
2887 <     * other threads may be blocked while computation is in progress,
2888 <     * so the computation should be short and simple, and must not
2889 <     * attempt to update any other mappings of this Map. For example,
2890 <     * to either create or append new messages to a value mapping:
1731 >     * If the value for the specified key is present, attempts to
1732 >     * compute a new mapping given the key and its current mapped
1733 >     * value.  The entire method invocation is performed atomically.
1734 >     * Some attempted update operations on this map by other threads
1735 >     * may be blocked while computation is in progress, so the
1736 >     * computation should be short and simple, and must not attempt to
1737 >     * update any other mappings of this map.
1738       *
1739 <     * @param key key with which the specified value is to be associated
1739 >     * @param key key with which a value may be associated
1740       * @param remappingFunction the function to compute a value
1741       * @return the new value associated with the specified key, or null if none
1742       * @throws NullPointerException if the specified key or remappingFunction
# Line 2900 | Line 1747 | public class ConcurrentHashMapV8<K, V>
1747       * @throws RuntimeException or Error if the remappingFunction does so,
1748       *         in which case the mapping is unchanged
1749       */
1750 <    @SuppressWarnings("unchecked") public V computeIfPresent
2904 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1750 >    public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1751          if (key == null || remappingFunction == null)
1752              throw new NullPointerException();
1753 <        return (V)internalCompute(key, true, remappingFunction);
1753 >        int h = spread(key.hashCode());
1754 >        V val = null;
1755 >        int delta = 0;
1756 >        int binCount = 0;
1757 >        for (Node<K,V>[] tab = table;;) {
1758 >            Node<K,V> f; int n, i, fh;
1759 >            if (tab == null || (n = tab.length) == 0)
1760 >                tab = initTable();
1761 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1762 >                break;
1763 >            else if ((fh = f.hash) == MOVED)
1764 >                tab = helpTransfer(tab, f);
1765 >            else {
1766 >                synchronized (f) {
1767 >                    if (tabAt(tab, i) == f) {
1768 >                        if (fh >= 0) {
1769 >                            binCount = 1;
1770 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1771 >                                K ek;
1772 >                                if (e.hash == h &&
1773 >                                    ((ek = e.key) == key ||
1774 >                                     (ek != null && key.equals(ek)))) {
1775 >                                    val = remappingFunction.apply(key, e.val);
1776 >                                    if (val != null)
1777 >                                        e.val = val;
1778 >                                    else {
1779 >                                        delta = -1;
1780 >                                        Node<K,V> en = e.next;
1781 >                                        if (pred != null)
1782 >                                            pred.next = en;
1783 >                                        else
1784 >                                            setTabAt(tab, i, en);
1785 >                                    }
1786 >                                    break;
1787 >                                }
1788 >                                pred = e;
1789 >                                if ((e = e.next) == null)
1790 >                                    break;
1791 >                            }
1792 >                        }
1793 >                        else if (f instanceof TreeBin) {
1794 >                            binCount = 2;
1795 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1796 >                            TreeNode<K,V> r, p;
1797 >                            if ((r = t.root) != null &&
1798 >                                (p = r.findTreeNode(h, key, null)) != null) {
1799 >                                val = remappingFunction.apply(key, p.val);
1800 >                                if (val != null)
1801 >                                    p.val = val;
1802 >                                else {
1803 >                                    delta = -1;
1804 >                                    if (t.removeTreeNode(p))
1805 >                                        setTabAt(tab, i, untreeify(t.first));
1806 >                                }
1807 >                            }
1808 >                        }
1809 >                    }
1810 >                }
1811 >                if (binCount != 0)
1812 >                    break;
1813 >            }
1814 >        }
1815 >        if (delta != 0)
1816 >            addCount((long)delta, binCount);
1817 >        return val;
1818      }
1819  
1820      /**
1821 <     * Computes a new mapping value given a key and
1822 <     * its current mapped value (or {@code null} if there is no current
1823 <     * mapping). This is equivalent to
1824 <     *  <pre> {@code
1825 <     *   value = remappingFunction.apply(key, map.get(key));
1826 <     *   if (value != null)
1827 <     *     map.put(key, value);
2918 <     *   else
2919 <     *     map.remove(key);
2920 <     * }</pre>
2921 <     *
2922 <     * except that the action is performed atomically.  If the
2923 <     * function returns {@code null}, the mapping is removed.  If the
2924 <     * function itself throws an (unchecked) exception, the exception
2925 <     * is rethrown to its caller, and the current mapping is left
2926 <     * unchanged.  Some attempted update operations on this map by
2927 <     * other threads may be blocked while computation is in progress,
2928 <     * so the computation should be short and simple, and must not
2929 <     * attempt to update any other mappings of this Map. For example,
2930 <     * to either create or append new messages to a value mapping:
2931 <     *
2932 <     * <pre> {@code
2933 <     * Map<Key, String> map = ...;
2934 <     * final String msg = ...;
2935 <     * map.compute(key, new BiFun<Key, String, String>() {
2936 <     *   public String apply(Key k, String v) {
2937 <     *    return (v == null) ? msg : v + msg;});}}</pre>
1821 >     * Attempts to compute a mapping for the specified key and its
1822 >     * current mapped value (or {@code null} if there is no current
1823 >     * mapping). The entire method invocation is performed atomically.
1824 >     * Some attempted update operations on this map by other threads
1825 >     * may be blocked while computation is in progress, so the
1826 >     * computation should be short and simple, and must not attempt to
1827 >     * update any other mappings of this Map.
1828       *
1829       * @param key key with which the specified value is to be associated
1830       * @param remappingFunction the function to compute a value
# Line 2947 | Line 1837 | public class ConcurrentHashMapV8<K, V>
1837       * @throws RuntimeException or Error if the remappingFunction does so,
1838       *         in which case the mapping is unchanged
1839       */
1840 <    @SuppressWarnings("unchecked") public V compute
1841 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1840 >    public V compute(K key,
1841 >                     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1842          if (key == null || remappingFunction == null)
1843              throw new NullPointerException();
1844 <        return (V)internalCompute(key, false, remappingFunction);
1844 >        int h = spread(key.hashCode());
1845 >        V val = null;
1846 >        int delta = 0;
1847 >        int binCount = 0;
1848 >        for (Node<K,V>[] tab = table;;) {
1849 >            Node<K,V> f; int n, i, fh;
1850 >            if (tab == null || (n = tab.length) == 0)
1851 >                tab = initTable();
1852 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1853 >                Node<K,V> r = new ReservationNode<K,V>();
1854 >                synchronized (r) {
1855 >                    if (casTabAt(tab, i, null, r)) {
1856 >                        binCount = 1;
1857 >                        Node<K,V> node = null;
1858 >                        try {
1859 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1860 >                                delta = 1;
1861 >                                node = new Node<K,V>(h, key, val, null);
1862 >                            }
1863 >                        } finally {
1864 >                            setTabAt(tab, i, node);
1865 >                        }
1866 >                    }
1867 >                }
1868 >                if (binCount != 0)
1869 >                    break;
1870 >            }
1871 >            else if ((fh = f.hash) == MOVED)
1872 >                tab = helpTransfer(tab, f);
1873 >            else {
1874 >                synchronized (f) {
1875 >                    if (tabAt(tab, i) == f) {
1876 >                        if (fh >= 0) {
1877 >                            binCount = 1;
1878 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1879 >                                K ek;
1880 >                                if (e.hash == h &&
1881 >                                    ((ek = e.key) == key ||
1882 >                                     (ek != null && key.equals(ek)))) {
1883 >                                    val = remappingFunction.apply(key, e.val);
1884 >                                    if (val != null)
1885 >                                        e.val = val;
1886 >                                    else {
1887 >                                        delta = -1;
1888 >                                        Node<K,V> en = e.next;
1889 >                                        if (pred != null)
1890 >                                            pred.next = en;
1891 >                                        else
1892 >                                            setTabAt(tab, i, en);
1893 >                                    }
1894 >                                    break;
1895 >                                }
1896 >                                pred = e;
1897 >                                if ((e = e.next) == null) {
1898 >                                    val = remappingFunction.apply(key, null);
1899 >                                    if (val != null) {
1900 >                                        delta = 1;
1901 >                                        pred.next =
1902 >                                            new Node<K,V>(h, key, val, null);
1903 >                                    }
1904 >                                    break;
1905 >                                }
1906 >                            }
1907 >                        }
1908 >                        else if (f instanceof TreeBin) {
1909 >                            binCount = 1;
1910 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1911 >                            TreeNode<K,V> r, p;
1912 >                            if ((r = t.root) != null)
1913 >                                p = r.findTreeNode(h, key, null);
1914 >                            else
1915 >                                p = null;
1916 >                            V pv = (p == null) ? null : p.val;
1917 >                            val = remappingFunction.apply(key, pv);
1918 >                            if (val != null) {
1919 >                                if (p != null)
1920 >                                    p.val = val;
1921 >                                else {
1922 >                                    delta = 1;
1923 >                                    t.putTreeVal(h, key, val);
1924 >                                }
1925 >                            }
1926 >                            else if (p != null) {
1927 >                                delta = -1;
1928 >                                if (t.removeTreeNode(p))
1929 >                                    setTabAt(tab, i, untreeify(t.first));
1930 >                            }
1931 >                        }
1932 >                    }
1933 >                }
1934 >                if (binCount != 0) {
1935 >                    if (binCount >= TREEIFY_THRESHOLD)
1936 >                        treeifyBin(tab, i);
1937 >                    break;
1938 >                }
1939 >            }
1940 >        }
1941 >        if (delta != 0)
1942 >            addCount((long)delta, binCount);
1943 >        return val;
1944      }
1945  
1946      /**
1947 <     * If the specified key is not already associated
1948 <     * with a value, associate it with the given value.
1949 <     * Otherwise, replace the value with the results of
1950 <     * the given remapping function. This is equivalent to:
1951 <     *  <pre> {@code
1952 <     *   if (!map.containsKey(key))
1953 <     *     map.put(value);
1954 <     *   else {
1955 <     *     newValue = remappingFunction.apply(map.get(key), value);
1956 <     *     if (value != null)
1957 <     *       map.put(key, value);
1958 <     *     else
1959 <     *       map.remove(key);
1960 <     *   }
1961 <     * }</pre>
1962 <     * except that the action is performed atomically.  If the
1963 <     * function returns {@code null}, the mapping is removed.  If the
1964 <     * function itself throws an (unchecked) exception, the exception
2976 <     * is rethrown to its caller, and the current mapping is left
2977 <     * unchanged.  Some attempted update operations on this map by
2978 <     * other threads may be blocked while computation is in progress,
2979 <     * so the computation should be short and simple, and must not
2980 <     * attempt to update any other mappings of this Map.
1947 >     * If the specified key is not already associated with a
1948 >     * (non-null) value, associates it with the given value.
1949 >     * Otherwise, replaces the value with the results of the given
1950 >     * remapping function, or removes if {@code null}. The entire
1951 >     * method invocation is performed atomically.  Some attempted
1952 >     * update operations on this map by other threads may be blocked
1953 >     * while computation is in progress, so the computation should be
1954 >     * short and simple, and must not attempt to update any other
1955 >     * mappings of this Map.
1956 >     *
1957 >     * @param key key with which the specified value is to be associated
1958 >     * @param value the value to use if absent
1959 >     * @param remappingFunction the function to recompute a value if present
1960 >     * @return the new value associated with the specified key, or null if none
1961 >     * @throws NullPointerException if the specified key or the
1962 >     *         remappingFunction is null
1963 >     * @throws RuntimeException or Error if the remappingFunction does so,
1964 >     *         in which case the mapping is unchanged
1965       */
1966 <    @SuppressWarnings("unchecked") public V merge
2983 <        (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1966 >    public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1967          if (key == null || value == null || remappingFunction == null)
1968              throw new NullPointerException();
1969 <        return (V)internalMerge(key, value, remappingFunction);
1969 >        int h = spread(key.hashCode());
1970 >        V val = null;
1971 >        int delta = 0;
1972 >        int binCount = 0;
1973 >        for (Node<K,V>[] tab = table;;) {
1974 >            Node<K,V> f; int n, i, fh;
1975 >            if (tab == null || (n = tab.length) == 0)
1976 >                tab = initTable();
1977 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1978 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1979 >                    delta = 1;
1980 >                    val = value;
1981 >                    break;
1982 >                }
1983 >            }
1984 >            else if ((fh = f.hash) == MOVED)
1985 >                tab = helpTransfer(tab, f);
1986 >            else {
1987 >                synchronized (f) {
1988 >                    if (tabAt(tab, i) == f) {
1989 >                        if (fh >= 0) {
1990 >                            binCount = 1;
1991 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1992 >                                K ek;
1993 >                                if (e.hash == h &&
1994 >                                    ((ek = e.key) == key ||
1995 >                                     (ek != null && key.equals(ek)))) {
1996 >                                    val = remappingFunction.apply(e.val, value);
1997 >                                    if (val != null)
1998 >                                        e.val = val;
1999 >                                    else {
2000 >                                        delta = -1;
2001 >                                        Node<K,V> en = e.next;
2002 >                                        if (pred != null)
2003 >                                            pred.next = en;
2004 >                                        else
2005 >                                            setTabAt(tab, i, en);
2006 >                                    }
2007 >                                    break;
2008 >                                }
2009 >                                pred = e;
2010 >                                if ((e = e.next) == null) {
2011 >                                    delta = 1;
2012 >                                    val = value;
2013 >                                    pred.next =
2014 >                                        new Node<K,V>(h, key, val, null);
2015 >                                    break;
2016 >                                }
2017 >                            }
2018 >                        }
2019 >                        else if (f instanceof TreeBin) {
2020 >                            binCount = 2;
2021 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2022 >                            TreeNode<K,V> r = t.root;
2023 >                            TreeNode<K,V> p = (r == null) ? null :
2024 >                                r.findTreeNode(h, key, null);
2025 >                            val = (p == null) ? value :
2026 >                                remappingFunction.apply(p.val, value);
2027 >                            if (val != null) {
2028 >                                if (p != null)
2029 >                                    p.val = val;
2030 >                                else {
2031 >                                    delta = 1;
2032 >                                    t.putTreeVal(h, key, val);
2033 >                                }
2034 >                            }
2035 >                            else if (p != null) {
2036 >                                delta = -1;
2037 >                                if (t.removeTreeNode(p))
2038 >                                    setTabAt(tab, i, untreeify(t.first));
2039 >                            }
2040 >                        }
2041 >                    }
2042 >                }
2043 >                if (binCount != 0) {
2044 >                    if (binCount >= TREEIFY_THRESHOLD)
2045 >                        treeifyBin(tab, i);
2046 >                    break;
2047 >                }
2048 >            }
2049 >        }
2050 >        if (delta != 0)
2051 >            addCount((long)delta, binCount);
2052 >        return val;
2053      }
2054  
2055 +    // Hashtable legacy methods
2056 +
2057      /**
2058 <     * Removes the key (and its corresponding value) from this map.
2059 <     * This method does nothing if the key is not in the map.
2058 >     * Legacy method testing if some key maps into the specified value
2059 >     * in this table.  This method is identical in functionality to
2060 >     * {@link #containsValue(Object)}, and exists solely to ensure
2061 >     * full compatibility with class {@link java.util.Hashtable},
2062 >     * which supported this method prior to introduction of the
2063 >     * Java Collections framework.
2064       *
2065 <     * @param  key the key that needs to be removed
2066 <     * @return the previous value associated with {@code key}, or
2067 <     *         {@code null} if there was no mapping for {@code key}
2068 <     * @throws NullPointerException if the specified key is null
2065 >     * @param  value a value to search for
2066 >     * @return {@code true} if and only if some key maps to the
2067 >     *         {@code value} argument in this table as
2068 >     *         determined by the {@code equals} method;
2069 >     *         {@code false} otherwise
2070 >     * @throws NullPointerException if the specified value is null
2071       */
2072 <    @SuppressWarnings("unchecked") public V remove(Object key) {
2073 <        if (key == null)
3000 <            throw new NullPointerException();
3001 <        return (V)internalReplace(key, null, null);
2072 >    @Deprecated public boolean contains(Object value) {
2073 >        return containsValue(value);
2074      }
2075  
2076      /**
2077 <     * {@inheritDoc}
2077 >     * Returns an enumeration of the keys in this table.
2078       *
2079 <     * @throws NullPointerException if the specified key is null
2079 >     * @return an enumeration of the keys in this table
2080 >     * @see #keySet()
2081       */
2082 <    public boolean remove(Object key, Object value) {
2083 <        if (key == null)
2084 <            throw new NullPointerException();
2085 <        if (value == null)
3013 <            return false;
3014 <        return internalReplace(key, null, value) != null;
2082 >    public Enumeration<K> keys() {
2083 >        Node<K,V>[] t;
2084 >        int f = (t = table) == null ? 0 : t.length;
2085 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2086      }
2087  
2088      /**
2089 <     * {@inheritDoc}
2089 >     * Returns an enumeration of the values in this table.
2090       *
2091 <     * @throws NullPointerException if any of the arguments are null
2091 >     * @return an enumeration of the values in this table
2092 >     * @see #values()
2093       */
2094 <    public boolean replace(K key, V oldValue, V newValue) {
2095 <        if (key == null || oldValue == null || newValue == null)
2096 <            throw new NullPointerException();
2097 <        return internalReplace(key, newValue, oldValue) != null;
2094 >    public Enumeration<V> elements() {
2095 >        Node<K,V>[] t;
2096 >        int f = (t = table) == null ? 0 : t.length;
2097 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2098      }
2099  
2100 +    // ConcurrentHashMapV8-only methods
2101 +
2102      /**
2103 <     * {@inheritDoc}
2103 >     * Returns the number of mappings. This method should be used
2104 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2105 >     * contain more mappings than can be represented as an int. The
2106 >     * value returned is an estimate; the actual count may differ if
2107 >     * there are concurrent insertions or removals.
2108       *
2109 <     * @return the previous value associated with the specified key,
2110 <     *         or {@code null} if there was no mapping for the key
3033 <     * @throws NullPointerException if the specified key or value is null
2109 >     * @return the number of mappings
2110 >     * @since 1.8
2111       */
2112 <    @SuppressWarnings("unchecked") public V replace(K key, V value) {
2113 <        if (key == null || value == null)
2114 <            throw new NullPointerException();
3038 <        return (V)internalReplace(key, value, null);
2112 >    public long mappingCount() {
2113 >        long n = sumCount();
2114 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2115      }
2116  
2117      /**
2118 <     * Removes all of the mappings from this map.
2118 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2119 >     * from the given type to {@code Boolean.TRUE}.
2120 >     *
2121 >     * @return the new set
2122 >     * @since 1.8
2123       */
2124 <    public void clear() {
2125 <        internalClear();
2124 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2125 >        return new KeySetView<K,Boolean>
2126 >            (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2127      }
2128  
2129      /**
2130 <     * Returns a {@link Set} view of the keys contained in this map.
2131 <     * The set is backed by the map, so changes to the map are
3051 <     * reflected in the set, and vice-versa.
2130 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2131 >     * from the given type to {@code Boolean.TRUE}.
2132       *
2133 <     * @return the set view
2133 >     * @param initialCapacity The implementation performs internal
2134 >     * sizing to accommodate this many elements.
2135 >     * @return the new set
2136 >     * @throws IllegalArgumentException if the initial capacity of
2137 >     * elements is negative
2138 >     * @since 1.8
2139       */
2140 <    public KeySetView<K,V> keySet() {
2141 <        KeySetView<K,V> ks = keySet;
2142 <        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2140 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2141 >        return new KeySetView<K,Boolean>
2142 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2143      }
2144  
2145      /**
2146       * Returns a {@link Set} view of the keys in this map, using the
2147       * given common mapped value for any additions (i.e., {@link
2148 <     * Collection#add} and {@link Collection#addAll}). This is of
2149 <     * course only appropriate if it is acceptable to use the same
2150 <     * value for all additions from this view.
2148 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2149 >     * This is of course only appropriate if it is acceptable to use
2150 >     * the same value for all additions from this view.
2151       *
2152 <     * @param mappedValue the mapped value to use for any
3068 <     * additions.
2152 >     * @param mappedValue the mapped value to use for any additions
2153       * @return the set view
2154       * @throws NullPointerException if the mappedValue is null
2155       */
# Line 3075 | Line 2159 | public class ConcurrentHashMapV8<K, V>
2159          return new KeySetView<K,V>(this, mappedValue);
2160      }
2161  
2162 +    /* ---------------- Special Nodes -------------- */
2163 +
2164      /**
2165 <     * Returns a {@link Collection} view of the values contained in this map.
3080 <     * The collection is backed by the map, so changes to the map are
3081 <     * reflected in the collection, and vice-versa.  The collection
3082 <     * supports element removal, which removes the corresponding
3083 <     * mapping from this map, via the {@code Iterator.remove},
3084 <     * {@code Collection.remove}, {@code removeAll},
3085 <     * {@code retainAll}, and {@code clear} operations.  It does not
3086 <     * support the {@code add} or {@code addAll} operations.
3087 <     *
3088 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
3089 <     * that will never throw {@link ConcurrentModificationException},
3090 <     * and guarantees to traverse elements as they existed upon
3091 <     * construction of the iterator, and may (but is not guaranteed to)
3092 <     * reflect any modifications subsequent to construction.
2165 >     * A node inserted at head of bins during transfer operations.
2166       */
2167 <    public Collection<V> values() {
2168 <        Values<K,V> vs = values;
2169 <        return (vs != null) ? vs : (values = new Values<K,V>(this));
2167 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2168 >        final Node<K,V>[] nextTable;
2169 >        ForwardingNode(Node<K,V>[] tab) {
2170 >            super(MOVED, null, null, null);
2171 >            this.nextTable = tab;
2172 >        }
2173 >
2174 >        Node<K,V> find(int h, Object k) {
2175 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2176 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2177 >                Node<K,V> e; int n;
2178 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2179 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2180 >                    return null;
2181 >                for (;;) {
2182 >                    int eh; K ek;
2183 >                    if ((eh = e.hash) == h &&
2184 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2185 >                        return e;
2186 >                    if (eh < 0) {
2187 >                        if (e instanceof ForwardingNode) {
2188 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2189 >                            continue outer;
2190 >                        }
2191 >                        else
2192 >                            return e.find(h, k);
2193 >                    }
2194 >                    if ((e = e.next) == null)
2195 >                        return null;
2196 >                }
2197 >            }
2198 >        }
2199      }
2200  
2201      /**
2202 <     * Returns a {@link Set} view of the mappings contained in this map.
3101 <     * The set is backed by the map, so changes to the map are
3102 <     * reflected in the set, and vice-versa.  The set supports element
3103 <     * removal, which removes the corresponding mapping from the map,
3104 <     * via the {@code Iterator.remove}, {@code Set.remove},
3105 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
3106 <     * operations.  It does not support the {@code add} or
3107 <     * {@code addAll} operations.
3108 <     *
3109 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
3110 <     * that will never throw {@link ConcurrentModificationException},
3111 <     * and guarantees to traverse elements as they existed upon
3112 <     * construction of the iterator, and may (but is not guaranteed to)
3113 <     * reflect any modifications subsequent to construction.
2202 >     * A place-holder node used in computeIfAbsent and compute
2203       */
2204 <    public Set<Map.Entry<K,V>> entrySet() {
2205 <        EntrySet<K,V> es = entrySet;
2206 <        return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2204 >    static final class ReservationNode<K,V> extends Node<K,V> {
2205 >        ReservationNode() {
2206 >            super(RESERVED, null, null, null);
2207 >        }
2208 >
2209 >        Node<K,V> find(int h, Object k) {
2210 >            return null;
2211 >        }
2212      }
2213  
2214 +    /* ---------------- Table Initialization and Resizing -------------- */
2215 +
2216      /**
2217 <     * Returns an enumeration of the keys in this table.
2218 <     *
3123 <     * @return an enumeration of the keys in this table
3124 <     * @see #keySet()
2217 >     * Returns the stamp bits for resizing a table of size n.
2218 >     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2219       */
2220 <    public Enumeration<K> keys() {
2221 <        return new KeyIterator<K,V>(this);
2220 >    static final int resizeStamp(int n) {
2221 >        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2222      }
2223  
2224      /**
2225 <     * Returns an enumeration of the values in this table.
3132 <     *
3133 <     * @return an enumeration of the values in this table
3134 <     * @see #values()
2225 >     * Initializes table, using the size recorded in sizeCtl.
2226       */
2227 <    public Enumeration<V> elements() {
2228 <        return new ValueIterator<K,V>(this);
2227 >    private final Node<K,V>[] initTable() {
2228 >        Node<K,V>[] tab; int sc;
2229 >        while ((tab = table) == null || tab.length == 0) {
2230 >            if ((sc = sizeCtl) < 0)
2231 >                Thread.yield(); // lost initialization race; just spin
2232 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2233 >                try {
2234 >                    if ((tab = table) == null || tab.length == 0) {
2235 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2236 >                        @SuppressWarnings("unchecked")
2237 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2238 >                        table = tab = nt;
2239 >                        sc = n - (n >>> 2);
2240 >                    }
2241 >                } finally {
2242 >                    sizeCtl = sc;
2243 >                }
2244 >                break;
2245 >            }
2246 >        }
2247 >        return tab;
2248      }
2249  
2250      /**
2251 <     * Returns a partitionable iterator of the keys in this map.
2252 <     *
2253 <     * @return a partitionable iterator of the keys in this map
2251 >     * Adds to count, and if table is too small and not already
2252 >     * resizing, initiates transfer. If already resizing, helps
2253 >     * perform transfer if work is available.  Rechecks occupancy
2254 >     * after a transfer to see if another resize is already needed
2255 >     * because resizings are lagging additions.
2256 >     *
2257 >     * @param x the count to add
2258 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2259 >     */
2260 >    private final void addCount(long x, int check) {
2261 >        CounterCell[] as; long b, s;
2262 >        if ((as = counterCells) != null ||
2263 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2264 >            CounterHashCode hc; CounterCell a; long v; int m;
2265 >            boolean uncontended = true;
2266 >            if ((hc = threadCounterHashCode.get()) == null ||
2267 >                as == null || (m = as.length - 1) < 0 ||
2268 >                (a = as[m & hc.code]) == null ||
2269 >                !(uncontended =
2270 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2271 >                fullAddCount(x, hc, uncontended);
2272 >                return;
2273 >            }
2274 >            if (check <= 1)
2275 >                return;
2276 >            s = sumCount();
2277 >        }
2278 >        if (check >= 0) {
2279 >            Node<K,V>[] tab, nt; int n, sc;
2280 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2281 >                   (n = tab.length) < MAXIMUM_CAPACITY) {
2282 >                int rs = resizeStamp(n);
2283 >                if (sc < 0) {
2284 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2285 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2286 >                        transferIndex <= 0)
2287 >                        break;
2288 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2289 >                        transfer(tab, nt);
2290 >                }
2291 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2292 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2293 >                    transfer(tab, null);
2294 >                s = sumCount();
2295 >            }
2296 >        }
2297 >    }
2298 >
2299 >    /**
2300 >     * Helps transfer if a resize is in progress.
2301       */
2302 <    public Spliterator<K> keySpliterator() {
2303 <        return new KeyIterator<K,V>(this);
2302 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2303 >        Node<K,V>[] nextTab; int sc;
2304 >        if (tab != null && (f instanceof ForwardingNode) &&
2305 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2306 >            int rs = resizeStamp(tab.length);
2307 >            while (nextTab == nextTable && table == tab &&
2308 >                   (sc = sizeCtl) < 0) {
2309 >                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2310 >                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
2311 >                    break;
2312 >                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2313 >                    transfer(tab, nextTab);
2314 >                    break;
2315 >                }
2316 >            }
2317 >            return nextTab;
2318 >        }
2319 >        return table;
2320      }
2321  
2322      /**
2323 <     * Returns a partitionable iterator of the values in this map.
2323 >     * Tries to presize table to accommodate the given number of elements.
2324       *
2325 <     * @return a partitionable iterator of the values in this map
2325 >     * @param size number of elements (doesn't need to be perfectly accurate)
2326       */
2327 <    public Spliterator<V> valueSpliterator() {
2328 <        return new ValueIterator<K,V>(this);
2327 >    private final void tryPresize(int size) {
2328 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2329 >            tableSizeFor(size + (size >>> 1) + 1);
2330 >        int sc;
2331 >        while ((sc = sizeCtl) >= 0) {
2332 >            Node<K,V>[] tab = table; int n;
2333 >            if (tab == null || (n = tab.length) == 0) {
2334 >                n = (sc > c) ? sc : c;
2335 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2336 >                    try {
2337 >                        if (table == tab) {
2338 >                            @SuppressWarnings("unchecked")
2339 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2340 >                            table = nt;
2341 >                            sc = n - (n >>> 2);
2342 >                        }
2343 >                    } finally {
2344 >                        sizeCtl = sc;
2345 >                    }
2346 >                }
2347 >            }
2348 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2349 >                break;
2350 >            else if (tab == table) {
2351 >                int rs = resizeStamp(n);
2352 >                if (sc < 0) {
2353 >                    Node<K,V>[] nt;
2354 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2355 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2356 >                        transferIndex <= 0)
2357 >                        break;
2358 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2359 >                        transfer(tab, nt);
2360 >                }
2361 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2362 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2363 >                    transfer(tab, null);
2364 >            }
2365 >        }
2366      }
2367  
2368      /**
2369 <     * Returns a partitionable iterator of the entries in this map.
2370 <     *
2371 <     * @return a partitionable iterator of the entries in this map
2369 >     * Moves and/or copies the nodes in each bin to new table. See
2370 >     * above for explanation.
2371 >     */
2372 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2373 >        int n = tab.length, stride;
2374 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2375 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2376 >        if (nextTab == null) {            // initiating
2377 >            try {
2378 >                @SuppressWarnings("unchecked")
2379 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2380 >                nextTab = nt;
2381 >            } catch (Throwable ex) {      // try to cope with OOME
2382 >                sizeCtl = Integer.MAX_VALUE;
2383 >                return;
2384 >            }
2385 >            nextTable = nextTab;
2386 >            transferIndex = n;
2387 >        }
2388 >        int nextn = nextTab.length;
2389 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2390 >        boolean advance = true;
2391 >        boolean finishing = false; // to ensure sweep before committing nextTab
2392 >        for (int i = 0, bound = 0;;) {
2393 >            Node<K,V> f; int fh;
2394 >            while (advance) {
2395 >                int nextIndex, nextBound;
2396 >                if (--i >= bound || finishing)
2397 >                    advance = false;
2398 >                else if ((nextIndex = transferIndex) <= 0) {
2399 >                    i = -1;
2400 >                    advance = false;
2401 >                }
2402 >                else if (U.compareAndSwapInt
2403 >                         (this, TRANSFERINDEX, nextIndex,
2404 >                          nextBound = (nextIndex > stride ?
2405 >                                       nextIndex - stride : 0))) {
2406 >                    bound = nextBound;
2407 >                    i = nextIndex - 1;
2408 >                    advance = false;
2409 >                }
2410 >            }
2411 >            if (i < 0 || i >= n || i + n >= nextn) {
2412 >                int sc;
2413 >                if (finishing) {
2414 >                    nextTable = null;
2415 >                    table = nextTab;
2416 >                    sizeCtl = (n << 1) - (n >>> 1);
2417 >                    return;
2418 >                }
2419 >                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2420 >                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2421 >                        return;
2422 >                    finishing = advance = true;
2423 >                    i = n; // recheck before commit
2424 >                }
2425 >            }
2426 >            else if ((f = tabAt(tab, i)) == null)
2427 >                advance = casTabAt(tab, i, null, fwd);
2428 >            else if ((fh = f.hash) == MOVED)
2429 >                advance = true; // already processed
2430 >            else {
2431 >                synchronized (f) {
2432 >                    if (tabAt(tab, i) == f) {
2433 >                        Node<K,V> ln, hn;
2434 >                        if (fh >= 0) {
2435 >                            int runBit = fh & n;
2436 >                            Node<K,V> lastRun = f;
2437 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2438 >                                int b = p.hash & n;
2439 >                                if (b != runBit) {
2440 >                                    runBit = b;
2441 >                                    lastRun = p;
2442 >                                }
2443 >                            }
2444 >                            if (runBit == 0) {
2445 >                                ln = lastRun;
2446 >                                hn = null;
2447 >                            }
2448 >                            else {
2449 >                                hn = lastRun;
2450 >                                ln = null;
2451 >                            }
2452 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2453 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2454 >                                if ((ph & n) == 0)
2455 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2456 >                                else
2457 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2458 >                            }
2459 >                            setTabAt(nextTab, i, ln);
2460 >                            setTabAt(nextTab, i + n, hn);
2461 >                            setTabAt(tab, i, fwd);
2462 >                            advance = true;
2463 >                        }
2464 >                        else if (f instanceof TreeBin) {
2465 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2466 >                            TreeNode<K,V> lo = null, loTail = null;
2467 >                            TreeNode<K,V> hi = null, hiTail = null;
2468 >                            int lc = 0, hc = 0;
2469 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2470 >                                int h = e.hash;
2471 >                                TreeNode<K,V> p = new TreeNode<K,V>
2472 >                                    (h, e.key, e.val, null, null);
2473 >                                if ((h & n) == 0) {
2474 >                                    if ((p.prev = loTail) == null)
2475 >                                        lo = p;
2476 >                                    else
2477 >                                        loTail.next = p;
2478 >                                    loTail = p;
2479 >                                    ++lc;
2480 >                                }
2481 >                                else {
2482 >                                    if ((p.prev = hiTail) == null)
2483 >                                        hi = p;
2484 >                                    else
2485 >                                        hiTail.next = p;
2486 >                                    hiTail = p;
2487 >                                    ++hc;
2488 >                                }
2489 >                            }
2490 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2491 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2492 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2493 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2494 >                            setTabAt(nextTab, i, ln);
2495 >                            setTabAt(nextTab, i + n, hn);
2496 >                            setTabAt(tab, i, fwd);
2497 >                            advance = true;
2498 >                        }
2499 >                    }
2500 >                }
2501 >            }
2502 >        }
2503 >    }
2504 >
2505 >    /* ---------------- Conversion from/to TreeBins -------------- */
2506 >
2507 >    /**
2508 >     * Replaces all linked nodes in bin at given index unless table is
2509 >     * too small, in which case resizes instead.
2510       */
2511 <    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2512 <        return new EntryIterator<K,V>(this);
2511 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2512 >        Node<K,V> b; int n, sc;
2513 >        if (tab != null) {
2514 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2515 >                tryPresize(n << 1);
2516 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2517 >                synchronized (b) {
2518 >                    if (tabAt(tab, index) == b) {
2519 >                        TreeNode<K,V> hd = null, tl = null;
2520 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2521 >                            TreeNode<K,V> p =
2522 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2523 >                                                  null, null);
2524 >                            if ((p.prev = tl) == null)
2525 >                                hd = p;
2526 >                            else
2527 >                                tl.next = p;
2528 >                            tl = p;
2529 >                        }
2530 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2531 >                    }
2532 >                }
2533 >            }
2534 >        }
2535      }
2536  
2537      /**
2538 <     * Returns the hash code value for this {@link Map}, i.e.,
3169 <     * the sum of, for each key-value pair in the map,
3170 <     * {@code key.hashCode() ^ value.hashCode()}.
3171 <     *
3172 <     * @return the hash code value for this map
2538 >     * Returns a list on non-TreeNodes replacing those in given list.
2539       */
2540 <    public int hashCode() {
2541 <        int h = 0;
2542 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2543 <        Object v;
2544 <        while ((v = it.advance()) != null) {
2545 <            h += it.nextKey.hashCode() ^ v.hashCode();
2540 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2541 >        Node<K,V> hd = null, tl = null;
2542 >        for (Node<K,V> q = b; q != null; q = q.next) {
2543 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2544 >            if (tl == null)
2545 >                hd = p;
2546 >            else
2547 >                tl.next = p;
2548 >            tl = p;
2549          }
2550 <        return h;
2550 >        return hd;
2551      }
2552  
2553 +    /* ---------------- TreeNodes -------------- */
2554 +
2555      /**
2556 <     * Returns a string representation of this map.  The string
3186 <     * representation consists of a list of key-value mappings (in no
3187 <     * particular order) enclosed in braces ("{@code {}}").  Adjacent
3188 <     * mappings are separated by the characters {@code ", "} (comma
3189 <     * and space).  Each key-value mapping is rendered as the key
3190 <     * followed by an equals sign ("{@code =}") followed by the
3191 <     * associated value.
3192 <     *
3193 <     * @return a string representation of this map
2556 >     * Nodes for use in TreeBins
2557       */
2558 <    public String toString() {
2559 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2560 <        StringBuilder sb = new StringBuilder();
2561 <        sb.append('{');
2562 <        Object v;
2563 <        if ((v = it.advance()) != null) {
2564 <            for (;;) {
2565 <                Object k = it.nextKey;
2566 <                sb.append(k == this ? "(this Map)" : k);
2567 <                sb.append('=');
2568 <                sb.append(v == this ? "(this Map)" : v);
2569 <                if ((v = it.advance()) == null)
2558 >    static final class TreeNode<K,V> extends Node<K,V> {
2559 >        TreeNode<K,V> parent;  // red-black tree links
2560 >        TreeNode<K,V> left;
2561 >        TreeNode<K,V> right;
2562 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2563 >        boolean red;
2564 >
2565 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2566 >                 TreeNode<K,V> parent) {
2567 >            super(hash, key, val, next);
2568 >            this.parent = parent;
2569 >        }
2570 >
2571 >        Node<K,V> find(int h, Object k) {
2572 >            return findTreeNode(h, k, null);
2573 >        }
2574 >
2575 >        /**
2576 >         * Returns the TreeNode (or null if not found) for the given key
2577 >         * starting at given root.
2578 >         */
2579 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2580 >            if (k != null) {
2581 >                TreeNode<K,V> p = this;
2582 >                do  {
2583 >                    int ph, dir; K pk; TreeNode<K,V> q;
2584 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2585 >                    if ((ph = p.hash) > h)
2586 >                        p = pl;
2587 >                    else if (ph < h)
2588 >                        p = pr;
2589 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2590 >                        return p;
2591 >                    else if (pl == null)
2592 >                        p = pr;
2593 >                    else if (pr == null)
2594 >                        p = pl;
2595 >                    else if ((kc != null ||
2596 >                              (kc = comparableClassFor(k)) != null) &&
2597 >                             (dir = compareComparables(kc, k, pk)) != 0)
2598 >                        p = (dir < 0) ? pl : pr;
2599 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2600 >                        return q;
2601 >                    else
2602 >                        p = pl;
2603 >                } while (p != null);
2604 >            }
2605 >            return null;
2606 >        }
2607 >    }
2608 >
2609 >    /* ---------------- TreeBins -------------- */
2610 >
2611 >    /**
2612 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2613 >     * keys or values, but instead point to list of TreeNodes and
2614 >     * their root. They also maintain a parasitic read-write lock
2615 >     * forcing writers (who hold bin lock) to wait for readers (who do
2616 >     * not) to complete before tree restructuring operations.
2617 >     */
2618 >    static final class TreeBin<K,V> extends Node<K,V> {
2619 >        TreeNode<K,V> root;
2620 >        volatile TreeNode<K,V> first;
2621 >        volatile Thread waiter;
2622 >        volatile int lockState;
2623 >        // values for lockState
2624 >        static final int WRITER = 1; // set while holding write lock
2625 >        static final int WAITER = 2; // set when waiting for write lock
2626 >        static final int READER = 4; // increment value for setting read lock
2627 >
2628 >        /**
2629 >         * Tie-breaking utility for ordering insertions when equal
2630 >         * hashCodes and non-comparable. We don't require a total
2631 >         * order, just a consistent insertion rule to maintain
2632 >         * equivalence across rebalancings. Tie-breaking further than
2633 >         * necessary simplifies testing a bit.
2634 >         */
2635 >        static int tieBreakOrder(Object a, Object b) {
2636 >            int d;
2637 >            if (a == null || b == null ||
2638 >                (d = a.getClass().getName().
2639 >                 compareTo(b.getClass().getName())) == 0)
2640 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2641 >                     -1 : 1);
2642 >            return d;
2643 >        }
2644 >
2645 >        /**
2646 >         * Creates bin with initial set of nodes headed by b.
2647 >         */
2648 >        TreeBin(TreeNode<K,V> b) {
2649 >            super(TREEBIN, null, null, null);
2650 >            this.first = b;
2651 >            TreeNode<K,V> r = null;
2652 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2653 >                next = (TreeNode<K,V>)x.next;
2654 >                x.left = x.right = null;
2655 >                if (r == null) {
2656 >                    x.parent = null;
2657 >                    x.red = false;
2658 >                    r = x;
2659 >                }
2660 >                else {
2661 >                    K k = x.key;
2662 >                    int h = x.hash;
2663 >                    Class<?> kc = null;
2664 >                    for (TreeNode<K,V> p = r;;) {
2665 >                        int dir, ph;
2666 >                        K pk = p.key;
2667 >                        if ((ph = p.hash) > h)
2668 >                            dir = -1;
2669 >                        else if (ph < h)
2670 >                            dir = 1;
2671 >                        else if ((kc == null &&
2672 >                                  (kc = comparableClassFor(k)) == null) ||
2673 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2674 >                            dir = tieBreakOrder(k, pk);
2675 >                            TreeNode<K,V> xp = p;
2676 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2677 >                            x.parent = xp;
2678 >                            if (dir <= 0)
2679 >                                xp.left = x;
2680 >                            else
2681 >                                xp.right = x;
2682 >                            r = balanceInsertion(r, x);
2683 >                            break;
2684 >                        }
2685 >                    }
2686 >                }
2687 >            }
2688 >            this.root = r;
2689 >            assert checkInvariants(root);
2690 >        }
2691 >
2692 >        /**
2693 >         * Acquires write lock for tree restructuring.
2694 >         */
2695 >        private final void lockRoot() {
2696 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2697 >                contendedLock(); // offload to separate method
2698 >        }
2699 >
2700 >        /**
2701 >         * Releases write lock for tree restructuring.
2702 >         */
2703 >        private final void unlockRoot() {
2704 >            lockState = 0;
2705 >        }
2706 >
2707 >        /**
2708 >         * Possibly blocks awaiting root lock.
2709 >         */
2710 >        private final void contendedLock() {
2711 >            boolean waiting = false;
2712 >            for (int s;;) {
2713 >                if (((s = lockState) & ~WAITER) == 0) {
2714 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2715 >                        if (waiting)
2716 >                            waiter = null;
2717 >                        return;
2718 >                    }
2719 >                }
2720 >                else if ((s & WAITER) == 0) {
2721 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2722 >                        waiting = true;
2723 >                        waiter = Thread.currentThread();
2724 >                    }
2725 >                }
2726 >                else if (waiting)
2727 >                    LockSupport.park(this);
2728 >            }
2729 >        }
2730 >
2731 >        /**
2732 >         * Returns matching node or null if none. Tries to search
2733 >         * using tree comparisons from root, but continues linear
2734 >         * search when lock not available.
2735 >         */
2736 >        final Node<K,V> find(int h, Object k) {
2737 >            if (k != null) {
2738 >                for (Node<K,V> e = first; e != null; ) {
2739 >                    int s; K ek;
2740 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2741 >                        if (e.hash == h &&
2742 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2743 >                            return e;
2744 >                        e = e.next;
2745 >                    }
2746 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2747 >                                                 s + READER)) {
2748 >                        TreeNode<K,V> r, p;
2749 >                        try {
2750 >                            p = ((r = root) == null ? null :
2751 >                                 r.findTreeNode(h, k, null));
2752 >                        } finally {
2753 >                            Thread w;
2754 >                            int ls;
2755 >                            do {} while (!U.compareAndSwapInt
2756 >                                         (this, LOCKSTATE,
2757 >                                          ls = lockState, ls - READER));
2758 >                            if (ls == (READER|WAITER) && (w = waiter) != null)
2759 >                                LockSupport.unpark(w);
2760 >                        }
2761 >                        return p;
2762 >                    }
2763 >                }
2764 >            }
2765 >            return null;
2766 >        }
2767 >
2768 >        /**
2769 >         * Finds or adds a node.
2770 >         * @return null if added
2771 >         */
2772 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2773 >            Class<?> kc = null;
2774 >            boolean searched = false;
2775 >            for (TreeNode<K,V> p = root;;) {
2776 >                int dir, ph; K pk;
2777 >                if (p == null) {
2778 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2779                      break;
2780 <                sb.append(',').append(' ');
2780 >                }
2781 >                else if ((ph = p.hash) > h)
2782 >                    dir = -1;
2783 >                else if (ph < h)
2784 >                    dir = 1;
2785 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2786 >                    return p;
2787 >                else if ((kc == null &&
2788 >                          (kc = comparableClassFor(k)) == null) ||
2789 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2790 >                    if (!searched) {
2791 >                        TreeNode<K,V> q, ch;
2792 >                        searched = true;
2793 >                        if (((ch = p.left) != null &&
2794 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2795 >                            ((ch = p.right) != null &&
2796 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2797 >                            return q;
2798 >                    }
2799 >                    dir = tieBreakOrder(k, pk);
2800 >                }
2801 >
2802 >                TreeNode<K,V> xp = p;
2803 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2804 >                    TreeNode<K,V> x, f = first;
2805 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2806 >                    if (f != null)
2807 >                        f.prev = x;
2808 >                    if (dir <= 0)
2809 >                        xp.left = x;
2810 >                    else
2811 >                        xp.right = x;
2812 >                    if (!xp.red)
2813 >                        x.red = true;
2814 >                    else {
2815 >                        lockRoot();
2816 >                        try {
2817 >                            root = balanceInsertion(root, x);
2818 >                        } finally {
2819 >                            unlockRoot();
2820 >                        }
2821 >                    }
2822 >                    break;
2823 >                }
2824 >            }
2825 >            assert checkInvariants(root);
2826 >            return null;
2827 >        }
2828 >
2829 >        /**
2830 >         * Removes the given node, that must be present before this
2831 >         * call.  This is messier than typical red-black deletion code
2832 >         * because we cannot swap the contents of an interior node
2833 >         * with a leaf successor that is pinned by "next" pointers
2834 >         * that are accessible independently of lock. So instead we
2835 >         * swap the tree linkages.
2836 >         *
2837 >         * @return true if now too small, so should be untreeified
2838 >         */
2839 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2840 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2841 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2842 >            TreeNode<K,V> r, rl;
2843 >            if (pred == null)
2844 >                first = next;
2845 >            else
2846 >                pred.next = next;
2847 >            if (next != null)
2848 >                next.prev = pred;
2849 >            if (first == null) {
2850 >                root = null;
2851 >                return true;
2852 >            }
2853 >            if ((r = root) == null || r.right == null || // too small
2854 >                (rl = r.left) == null || rl.left == null)
2855 >                return true;
2856 >            lockRoot();
2857 >            try {
2858 >                TreeNode<K,V> replacement;
2859 >                TreeNode<K,V> pl = p.left;
2860 >                TreeNode<K,V> pr = p.right;
2861 >                if (pl != null && pr != null) {
2862 >                    TreeNode<K,V> s = pr, sl;
2863 >                    while ((sl = s.left) != null) // find successor
2864 >                        s = sl;
2865 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2866 >                    TreeNode<K,V> sr = s.right;
2867 >                    TreeNode<K,V> pp = p.parent;
2868 >                    if (s == pr) { // p was s's direct parent
2869 >                        p.parent = s;
2870 >                        s.right = p;
2871 >                    }
2872 >                    else {
2873 >                        TreeNode<K,V> sp = s.parent;
2874 >                        if ((p.parent = sp) != null) {
2875 >                            if (s == sp.left)
2876 >                                sp.left = p;
2877 >                            else
2878 >                                sp.right = p;
2879 >                        }
2880 >                        if ((s.right = pr) != null)
2881 >                            pr.parent = s;
2882 >                    }
2883 >                    p.left = null;
2884 >                    if ((p.right = sr) != null)
2885 >                        sr.parent = p;
2886 >                    if ((s.left = pl) != null)
2887 >                        pl.parent = s;
2888 >                    if ((s.parent = pp) == null)
2889 >                        r = s;
2890 >                    else if (p == pp.left)
2891 >                        pp.left = s;
2892 >                    else
2893 >                        pp.right = s;
2894 >                    if (sr != null)
2895 >                        replacement = sr;
2896 >                    else
2897 >                        replacement = p;
2898 >                }
2899 >                else if (pl != null)
2900 >                    replacement = pl;
2901 >                else if (pr != null)
2902 >                    replacement = pr;
2903 >                else
2904 >                    replacement = p;
2905 >                if (replacement != p) {
2906 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2907 >                    if (pp == null)
2908 >                        r = replacement;
2909 >                    else if (p == pp.left)
2910 >                        pp.left = replacement;
2911 >                    else
2912 >                        pp.right = replacement;
2913 >                    p.left = p.right = p.parent = null;
2914 >                }
2915 >
2916 >                root = (p.red) ? r : balanceDeletion(r, replacement);
2917 >
2918 >                if (p == replacement) {  // detach pointers
2919 >                    TreeNode<K,V> pp;
2920 >                    if ((pp = p.parent) != null) {
2921 >                        if (p == pp.left)
2922 >                            pp.left = null;
2923 >                        else if (p == pp.right)
2924 >                            pp.right = null;
2925 >                        p.parent = null;
2926 >                    }
2927 >                }
2928 >            } finally {
2929 >                unlockRoot();
2930 >            }
2931 >            assert checkInvariants(root);
2932 >            return false;
2933 >        }
2934 >
2935 >        /* ------------------------------------------------------------ */
2936 >        // Red-black tree methods, all adapted from CLR
2937 >
2938 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2939 >                                              TreeNode<K,V> p) {
2940 >            TreeNode<K,V> r, pp, rl;
2941 >            if (p != null && (r = p.right) != null) {
2942 >                if ((rl = p.right = r.left) != null)
2943 >                    rl.parent = p;
2944 >                if ((pp = r.parent = p.parent) == null)
2945 >                    (root = r).red = false;
2946 >                else if (pp.left == p)
2947 >                    pp.left = r;
2948 >                else
2949 >                    pp.right = r;
2950 >                r.left = p;
2951 >                p.parent = r;
2952 >            }
2953 >            return root;
2954 >        }
2955 >
2956 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2957 >                                               TreeNode<K,V> p) {
2958 >            TreeNode<K,V> l, pp, lr;
2959 >            if (p != null && (l = p.left) != null) {
2960 >                if ((lr = p.left = l.right) != null)
2961 >                    lr.parent = p;
2962 >                if ((pp = l.parent = p.parent) == null)
2963 >                    (root = l).red = false;
2964 >                else if (pp.right == p)
2965 >                    pp.right = l;
2966 >                else
2967 >                    pp.left = l;
2968 >                l.right = p;
2969 >                p.parent = l;
2970 >            }
2971 >            return root;
2972 >        }
2973 >
2974 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2975 >                                                    TreeNode<K,V> x) {
2976 >            x.red = true;
2977 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2978 >                if ((xp = x.parent) == null) {
2979 >                    x.red = false;
2980 >                    return x;
2981 >                }
2982 >                else if (!xp.red || (xpp = xp.parent) == null)
2983 >                    return root;
2984 >                if (xp == (xppl = xpp.left)) {
2985 >                    if ((xppr = xpp.right) != null && xppr.red) {
2986 >                        xppr.red = false;
2987 >                        xp.red = false;
2988 >                        xpp.red = true;
2989 >                        x = xpp;
2990 >                    }
2991 >                    else {
2992 >                        if (x == xp.right) {
2993 >                            root = rotateLeft(root, x = xp);
2994 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2995 >                        }
2996 >                        if (xp != null) {
2997 >                            xp.red = false;
2998 >                            if (xpp != null) {
2999 >                                xpp.red = true;
3000 >                                root = rotateRight(root, xpp);
3001 >                            }
3002 >                        }
3003 >                    }
3004 >                }
3005 >                else {
3006 >                    if (xppl != null && xppl.red) {
3007 >                        xppl.red = false;
3008 >                        xp.red = false;
3009 >                        xpp.red = true;
3010 >                        x = xpp;
3011 >                    }
3012 >                    else {
3013 >                        if (x == xp.left) {
3014 >                            root = rotateRight(root, x = xp);
3015 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3016 >                        }
3017 >                        if (xp != null) {
3018 >                            xp.red = false;
3019 >                            if (xpp != null) {
3020 >                                xpp.red = true;
3021 >                                root = rotateLeft(root, xpp);
3022 >                            }
3023 >                        }
3024 >                    }
3025 >                }
3026 >            }
3027 >        }
3028 >
3029 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3030 >                                                   TreeNode<K,V> x) {
3031 >            for (TreeNode<K,V> xp, xpl, xpr;;)  {
3032 >                if (x == null || x == root)
3033 >                    return root;
3034 >                else if ((xp = x.parent) == null) {
3035 >                    x.red = false;
3036 >                    return x;
3037 >                }
3038 >                else if (x.red) {
3039 >                    x.red = false;
3040 >                    return root;
3041 >                }
3042 >                else if ((xpl = xp.left) == x) {
3043 >                    if ((xpr = xp.right) != null && xpr.red) {
3044 >                        xpr.red = false;
3045 >                        xp.red = true;
3046 >                        root = rotateLeft(root, xp);
3047 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3048 >                    }
3049 >                    if (xpr == null)
3050 >                        x = xp;
3051 >                    else {
3052 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3053 >                        if ((sr == null || !sr.red) &&
3054 >                            (sl == null || !sl.red)) {
3055 >                            xpr.red = true;
3056 >                            x = xp;
3057 >                        }
3058 >                        else {
3059 >                            if (sr == null || !sr.red) {
3060 >                                if (sl != null)
3061 >                                    sl.red = false;
3062 >                                xpr.red = true;
3063 >                                root = rotateRight(root, xpr);
3064 >                                xpr = (xp = x.parent) == null ?
3065 >                                    null : xp.right;
3066 >                            }
3067 >                            if (xpr != null) {
3068 >                                xpr.red = (xp == null) ? false : xp.red;
3069 >                                if ((sr = xpr.right) != null)
3070 >                                    sr.red = false;
3071 >                            }
3072 >                            if (xp != null) {
3073 >                                xp.red = false;
3074 >                                root = rotateLeft(root, xp);
3075 >                            }
3076 >                            x = root;
3077 >                        }
3078 >                    }
3079 >                }
3080 >                else { // symmetric
3081 >                    if (xpl != null && xpl.red) {
3082 >                        xpl.red = false;
3083 >                        xp.red = true;
3084 >                        root = rotateRight(root, xp);
3085 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3086 >                    }
3087 >                    if (xpl == null)
3088 >                        x = xp;
3089 >                    else {
3090 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3091 >                        if ((sl == null || !sl.red) &&
3092 >                            (sr == null || !sr.red)) {
3093 >                            xpl.red = true;
3094 >                            x = xp;
3095 >                        }
3096 >                        else {
3097 >                            if (sl == null || !sl.red) {
3098 >                                if (sr != null)
3099 >                                    sr.red = false;
3100 >                                xpl.red = true;
3101 >                                root = rotateLeft(root, xpl);
3102 >                                xpl = (xp = x.parent) == null ?
3103 >                                    null : xp.left;
3104 >                            }
3105 >                            if (xpl != null) {
3106 >                                xpl.red = (xp == null) ? false : xp.red;
3107 >                                if ((sl = xpl.left) != null)
3108 >                                    sl.red = false;
3109 >                            }
3110 >                            if (xp != null) {
3111 >                                xp.red = false;
3112 >                                root = rotateRight(root, xp);
3113 >                            }
3114 >                            x = root;
3115 >                        }
3116 >                    }
3117 >                }
3118 >            }
3119 >        }
3120 >
3121 >        /**
3122 >         * Recursive invariant check
3123 >         */
3124 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3125 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3126 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3127 >            if (tb != null && tb.next != t)
3128 >                return false;
3129 >            if (tn != null && tn.prev != t)
3130 >                return false;
3131 >            if (tp != null && t != tp.left && t != tp.right)
3132 >                return false;
3133 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3134 >                return false;
3135 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3136 >                return false;
3137 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3138 >                return false;
3139 >            if (tl != null && !checkInvariants(tl))
3140 >                return false;
3141 >            if (tr != null && !checkInvariants(tr))
3142 >                return false;
3143 >            return true;
3144 >        }
3145 >
3146 >        private static final sun.misc.Unsafe U;
3147 >        private static final long LOCKSTATE;
3148 >        static {
3149 >            try {
3150 >                U = getUnsafe();
3151 >                Class<?> k = TreeBin.class;
3152 >                LOCKSTATE = U.objectFieldOffset
3153 >                    (k.getDeclaredField("lockState"));
3154 >            } catch (Exception e) {
3155 >                throw new Error(e);
3156              }
3157          }
3211        return sb.append('}').toString();
3158      }
3159  
3160 +    /* ----------------Table Traversal -------------- */
3161 +
3162      /**
3163 <     * Compares the specified object with this map for equality.
3164 <     * Returns {@code true} if the given object is a map with the same
3165 <     * mappings as this map.  This operation may return misleading
3166 <     * results if either map is concurrently modified during execution
3167 <     * of this method.
3163 >     * Records the table, its length, and current traversal index for a
3164 >     * traverser that must process a region of a forwarded table before
3165 >     * proceeding with current table.
3166 >     */
3167 >    static final class TableStack<K,V> {
3168 >        int length;
3169 >        int index;
3170 >        Node<K,V>[] tab;
3171 >        TableStack<K,V> next;
3172 >    }
3173 >
3174 >    /**
3175 >     * Encapsulates traversal for methods such as containsValue; also
3176 >     * serves as a base class for other iterators and spliterators.
3177       *
3178 <     * @param o object to be compared for equality with this map
3179 <     * @return {@code true} if the specified object is equal to this map
3178 >     * Method advance visits once each still-valid node that was
3179 >     * reachable upon iterator construction. It might miss some that
3180 >     * were added to a bin after the bin was visited, which is OK wrt
3181 >     * consistency guarantees. Maintaining this property in the face
3182 >     * of possible ongoing resizes requires a fair amount of
3183 >     * bookkeeping state that is difficult to optimize away amidst
3184 >     * volatile accesses.  Even so, traversal maintains reasonable
3185 >     * throughput.
3186 >     *
3187 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3188 >     * However, if the table has been resized, then all future steps
3189 >     * must traverse both the bin at the current index as well as at
3190 >     * (index + baseSize); and so on for further resizings. To
3191 >     * paranoically cope with potential sharing by users of iterators
3192 >     * across threads, iteration terminates if a bounds checks fails
3193 >     * for a table read.
3194       */
3195 <    public boolean equals(Object o) {
3196 <        if (o != this) {
3197 <            if (!(o instanceof Map))
3198 <                return false;
3199 <            Map<?,?> m = (Map<?,?>) o;
3200 <            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3201 <            Object val;
3202 <            while ((val = it.advance()) != null) {
3203 <                Object v = m.get(it.nextKey);
3204 <                if (v == null || (v != val && !v.equals(val)))
3205 <                    return false;
3206 <            }
3207 <            for (Map.Entry<?,?> e : m.entrySet()) {
3208 <                Object mk, mv, v;
3209 <                if ((mk = e.getKey()) == null ||
3210 <                    (mv = e.getValue()) == null ||
3211 <                    (v = internalGet(mk)) == null ||
3212 <                    (mv != v && !mv.equals(v)))
3213 <                    return false;
3195 >    static class Traverser<K,V> {
3196 >        Node<K,V>[] tab;        // current table; updated if resized
3197 >        Node<K,V> next;         // the next entry to use
3198 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3199 >        int index;              // index of bin to use next
3200 >        int baseIndex;          // current index of initial table
3201 >        int baseLimit;          // index bound for initial table
3202 >        final int baseSize;     // initial table size
3203 >
3204 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3205 >            this.tab = tab;
3206 >            this.baseSize = size;
3207 >            this.baseIndex = this.index = index;
3208 >            this.baseLimit = limit;
3209 >            this.next = null;
3210 >        }
3211 >
3212 >        /**
3213 >         * Advances if possible, returning next valid node, or null if none.
3214 >         */
3215 >        final Node<K,V> advance() {
3216 >            Node<K,V> e;
3217 >            if ((e = next) != null)
3218 >                e = e.next;
3219 >            for (;;) {
3220 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3221 >                if (e != null)
3222 >                    return next = e;
3223 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3224 >                    (n = t.length) <= (i = index) || i < 0)
3225 >                    return next = null;
3226 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3227 >                    if (e instanceof ForwardingNode) {
3228 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3229 >                        e = null;
3230 >                        pushState(t, i, n);
3231 >                        continue;
3232 >                    }
3233 >                    else if (e instanceof TreeBin)
3234 >                        e = ((TreeBin<K,V>)e).first;
3235 >                    else
3236 >                        e = null;
3237 >                }
3238 >                if (stack != null)
3239 >                    recoverState(n);
3240 >                else if ((index = i + baseSize) >= n)
3241 >                    index = ++baseIndex; // visit upper slots if present
3242              }
3243          }
3245        return true;
3246    }
3244  
3245 <    /* ----------------Iterators -------------- */
3245 >        /**
3246 >         * Saves traversal state upon encountering a forwarding node.
3247 >         */
3248 >        private void pushState(Node<K,V>[] t, int i, int n) {
3249 >            TableStack<K,V> s = spare;  // reuse if possible
3250 >            if (s != null)
3251 >                spare = s.next;
3252 >            else
3253 >                s = new TableStack<K,V>();
3254 >            s.tab = t;
3255 >            s.length = n;
3256 >            s.index = i;
3257 >            s.next = stack;
3258 >            stack = s;
3259 >        }
3260 >
3261 >        /**
3262 >         * Possibly pops traversal state.
3263 >         *
3264 >         * @param n length of current table
3265 >         */
3266 >        private void recoverState(int n) {
3267 >            TableStack<K,V> s; int len;
3268 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3269 >                n = len;
3270 >                index = s.index;
3271 >                tab = s.tab;
3272 >                s.tab = null;
3273 >                TableStack<K,V> next = s.next;
3274 >                s.next = spare; // save for reuse
3275 >                stack = next;
3276 >                spare = s;
3277 >            }
3278 >            if (s == null && (index += baseSize) >= n)
3279 >                index = ++baseIndex;
3280 >        }
3281 >    }
3282  
3283 <    @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3284 <        implements Spliterator<K>, Enumeration<K> {
3285 <        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3286 <        KeyIterator(Traverser<K,V,Object> it) {
3287 <            super(it);
3283 >    /**
3284 >     * Base of key, value, and entry Iterators. Adds fields to
3285 >     * Traverser to support iterator.remove.
3286 >     */
3287 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3288 >        final ConcurrentHashMapV8<K,V> map;
3289 >        Node<K,V> lastReturned;
3290 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3291 >                    ConcurrentHashMapV8<K,V> map) {
3292 >            super(tab, size, index, limit);
3293 >            this.map = map;
3294 >            advance();
3295          }
3296 <        public KeyIterator<K,V> split() {
3297 <            if (nextKey != null)
3296 >
3297 >        public final boolean hasNext() { return next != null; }
3298 >        public final boolean hasMoreElements() { return next != null; }
3299 >
3300 >        public final void remove() {
3301 >            Node<K,V> p;
3302 >            if ((p = lastReturned) == null)
3303                  throw new IllegalStateException();
3304 <            return new KeyIterator<K,V>(this);
3304 >            lastReturned = null;
3305 >            map.replaceNode(p.key, null, null);
3306 >        }
3307 >    }
3308 >
3309 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3310 >        implements Iterator<K>, Enumeration<K> {
3311 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3312 >                    ConcurrentHashMapV8<K,V> map) {
3313 >            super(tab, index, size, limit, map);
3314          }
3315 <        @SuppressWarnings("unchecked") public final K next() {
3316 <            if (nextVal == null && advance() == null)
3315 >
3316 >        public final K next() {
3317 >            Node<K,V> p;
3318 >            if ((p = next) == null)
3319                  throw new NoSuchElementException();
3320 <            Object k = nextKey;
3321 <            nextVal = null;
3322 <            return (K) k;
3320 >            K k = p.key;
3321 >            lastReturned = p;
3322 >            advance();
3323 >            return k;
3324          }
3325  
3326          public final K nextElement() { return next(); }
3327      }
3328  
3329 <    @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3330 <        implements Spliterator<V>, Enumeration<V> {
3331 <        ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3332 <        ValueIterator(Traverser<K,V,Object> it) {
3333 <            super(it);
3277 <        }
3278 <        public ValueIterator<K,V> split() {
3279 <            if (nextKey != null)
3280 <                throw new IllegalStateException();
3281 <            return new ValueIterator<K,V>(this);
3329 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3330 >        implements Iterator<V>, Enumeration<V> {
3331 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3332 >                      ConcurrentHashMapV8<K,V> map) {
3333 >            super(tab, index, size, limit, map);
3334          }
3335  
3336 <        @SuppressWarnings("unchecked") public final V next() {
3337 <            Object v;
3338 <            if ((v = nextVal) == null && (v = advance()) == null)
3336 >        public final V next() {
3337 >            Node<K,V> p;
3338 >            if ((p = next) == null)
3339                  throw new NoSuchElementException();
3340 <            nextVal = null;
3341 <            return (V) v;
3340 >            V v = p.val;
3341 >            lastReturned = p;
3342 >            advance();
3343 >            return v;
3344          }
3345  
3346          public final V nextElement() { return next(); }
3347      }
3348  
3349 <    @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3350 <        implements Spliterator<Map.Entry<K,V>> {
3351 <        EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3352 <        EntryIterator(Traverser<K,V,Object> it) {
3353 <            super(it);
3300 <        }
3301 <        public EntryIterator<K,V> split() {
3302 <            if (nextKey != null)
3303 <                throw new IllegalStateException();
3304 <            return new EntryIterator<K,V>(this);
3349 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3350 >        implements Iterator<Map.Entry<K,V>> {
3351 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3352 >                      ConcurrentHashMapV8<K,V> map) {
3353 >            super(tab, index, size, limit, map);
3354          }
3355  
3356 <        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3357 <            Object v;
3358 <            if ((v = nextVal) == null && (v = advance()) == null)
3356 >        public final Map.Entry<K,V> next() {
3357 >            Node<K,V> p;
3358 >            if ((p = next) == null)
3359                  throw new NoSuchElementException();
3360 <            Object k = nextKey;
3361 <            nextVal = null;
3362 <            return new MapEntry<K,V>((K)k, (V)v, map);
3360 >            K k = p.key;
3361 >            V v = p.val;
3362 >            lastReturned = p;
3363 >            advance();
3364 >            return new MapEntry<K,V>(k, v, map);
3365          }
3366      }
3367  
3368      /**
3369 <     * Exported Entry for iterators
3369 >     * Exported Entry for EntryIterator
3370       */
3371 <    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3371 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3372          final K key; // non-null
3373          V val;       // non-null
3374 <        final ConcurrentHashMapV8<K, V> map;
3375 <        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3374 >        final ConcurrentHashMapV8<K,V> map;
3375 >        MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3376              this.key = key;
3377              this.val = val;
3378              this.map = map;
3379          }
3380 <        public final K getKey()       { return key; }
3381 <        public final V getValue()     { return val; }
3382 <        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3383 <        public final String toString(){ return key + "=" + val; }
3380 >        public K getKey()        { return key; }
3381 >        public V getValue()      { return val; }
3382 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3383 >        public String toString() { return key + "=" + val; }
3384  
3385 <        public final boolean equals(Object o) {
3385 >        public boolean equals(Object o) {
3386              Object k, v; Map.Entry<?,?> e;
3387              return ((o instanceof Map.Entry) &&
3388                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 3345 | Line 3396 | public class ConcurrentHashMapV8<K, V>
3396           * value to return is somewhat arbitrary here. Since we do not
3397           * necessarily track asynchronous changes, the most recent
3398           * "previous" value could be different from what we return (or
3399 <         * could even have been removed in which case the put will
3399 >         * could even have been removed, in which case the put will
3400           * re-establish). We do not and cannot guarantee more.
3401           */
3402 <        public final V setValue(V value) {
3402 >        public V setValue(V value) {
3403              if (value == null) throw new NullPointerException();
3404              V v = val;
3405              val = value;
# Line 3357 | Line 3408 | public class ConcurrentHashMapV8<K, V>
3408          }
3409      }
3410  
3411 <    /* ----------------Views -------------- */
3411 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3412 >        implements ConcurrentHashMapSpliterator<K> {
3413 >        long est;               // size estimate
3414 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3415 >                       long est) {
3416 >            super(tab, size, index, limit);
3417 >            this.est = est;
3418 >        }
3419 >
3420 >        public ConcurrentHashMapSpliterator<K> trySplit() {
3421 >            int i, f, h;
3422 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3423 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3424 >                                        f, est >>>= 1);
3425 >        }
3426  
3427 <    /**
3428 <     * Base class for views.
3429 <     */
3430 <    static abstract class CHMView<K, V> {
3431 <        final ConcurrentHashMapV8<K, V> map;
3367 <        CHMView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
3368 <        public final int size()                 { return map.size(); }
3369 <        public final boolean isEmpty()          { return map.isEmpty(); }
3370 <        public final void clear()               { map.clear(); }
3427 >        public void forEachRemaining(Action<? super K> action) {
3428 >            if (action == null) throw new NullPointerException();
3429 >            for (Node<K,V> p; (p = advance()) != null;)
3430 >                action.apply(p.key);
3431 >        }
3432  
3433 <        // implementations below rely on concrete classes supplying these
3434 <        abstract public Iterator<?> iterator();
3435 <        abstract public boolean contains(Object o);
3436 <        abstract public boolean remove(Object o);
3433 >        public boolean tryAdvance(Action<? super K> action) {
3434 >            if (action == null) throw new NullPointerException();
3435 >            Node<K,V> p;
3436 >            if ((p = advance()) == null)
3437 >                return false;
3438 >            action.apply(p.key);
3439 >            return true;
3440 >        }
3441  
3442 <        private static final String oomeMsg = "Required array size too large";
3442 >        public long estimateSize() { return est; }
3443  
3444 <        public final Object[] toArray() {
3380 <            long sz = map.mappingCount();
3381 <            if (sz > (long)(MAX_ARRAY_SIZE))
3382 <                throw new OutOfMemoryError(oomeMsg);
3383 <            int n = (int)sz;
3384 <            Object[] r = new Object[n];
3385 <            int i = 0;
3386 <            Iterator<?> it = iterator();
3387 <            while (it.hasNext()) {
3388 <                if (i == n) {
3389 <                    if (n >= MAX_ARRAY_SIZE)
3390 <                        throw new OutOfMemoryError(oomeMsg);
3391 <                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3392 <                        n = MAX_ARRAY_SIZE;
3393 <                    else
3394 <                        n += (n >>> 1) + 1;
3395 <                    r = Arrays.copyOf(r, n);
3396 <                }
3397 <                r[i++] = it.next();
3398 <            }
3399 <            return (i == n) ? r : Arrays.copyOf(r, i);
3400 <        }
3444 >    }
3445  
3446 <        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
3447 <            long sz = map.mappingCount();
3448 <            if (sz > (long)(MAX_ARRAY_SIZE))
3449 <                throw new OutOfMemoryError(oomeMsg);
3450 <            int m = (int)sz;
3451 <            T[] r = (a.length >= m) ? a :
3452 <                (T[])java.lang.reflect.Array
3409 <                .newInstance(a.getClass().getComponentType(), m);
3410 <            int n = r.length;
3411 <            int i = 0;
3412 <            Iterator<?> it = iterator();
3413 <            while (it.hasNext()) {
3414 <                if (i == n) {
3415 <                    if (n >= MAX_ARRAY_SIZE)
3416 <                        throw new OutOfMemoryError(oomeMsg);
3417 <                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3418 <                        n = MAX_ARRAY_SIZE;
3419 <                    else
3420 <                        n += (n >>> 1) + 1;
3421 <                    r = Arrays.copyOf(r, n);
3422 <                }
3423 <                r[i++] = (T)it.next();
3424 <            }
3425 <            if (a == r && i < n) {
3426 <                r[i] = null; // null-terminate
3427 <                return r;
3428 <            }
3429 <            return (i == n) ? r : Arrays.copyOf(r, i);
3446 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3447 >        implements ConcurrentHashMapSpliterator<V> {
3448 >        long est;               // size estimate
3449 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3450 >                         long est) {
3451 >            super(tab, size, index, limit);
3452 >            this.est = est;
3453          }
3454  
3455 <        public final int hashCode() {
3456 <            int h = 0;
3457 <            for (Iterator<?> it = iterator(); it.hasNext();)
3458 <                h += it.next().hashCode();
3459 <            return h;
3455 >        public ConcurrentHashMapSpliterator<V> trySplit() {
3456 >            int i, f, h;
3457 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3458 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3459 >                                          f, est >>>= 1);
3460          }
3461  
3462 <        public final String toString() {
3463 <            StringBuilder sb = new StringBuilder();
3464 <            sb.append('[');
3465 <            Iterator<?> it = iterator();
3443 <            if (it.hasNext()) {
3444 <                for (;;) {
3445 <                    Object e = it.next();
3446 <                    sb.append(e == this ? "(this Collection)" : e);
3447 <                    if (!it.hasNext())
3448 <                        break;
3449 <                    sb.append(',').append(' ');
3450 <                }
3451 <            }
3452 <            return sb.append(']').toString();
3462 >        public void forEachRemaining(Action<? super V> action) {
3463 >            if (action == null) throw new NullPointerException();
3464 >            for (Node<K,V> p; (p = advance()) != null;)
3465 >                action.apply(p.val);
3466          }
3467  
3468 <        public final boolean containsAll(Collection<?> c) {
3469 <            if (c != this) {
3470 <                for (Iterator<?> it = c.iterator(); it.hasNext();) {
3471 <                    Object e = it.next();
3472 <                    if (e == null || !contains(e))
3473 <                        return false;
3461 <                }
3462 <            }
3468 >        public boolean tryAdvance(Action<? super V> action) {
3469 >            if (action == null) throw new NullPointerException();
3470 >            Node<K,V> p;
3471 >            if ((p = advance()) == null)
3472 >                return false;
3473 >            action.apply(p.val);
3474              return true;
3475          }
3476  
3477 <        public final boolean removeAll(Collection<?> c) {
3467 <            boolean modified = false;
3468 <            for (Iterator<?> it = iterator(); it.hasNext();) {
3469 <                if (c.contains(it.next())) {
3470 <                    it.remove();
3471 <                    modified = true;
3472 <                }
3473 <            }
3474 <            return modified;
3475 <        }
3476 <
3477 <        public final boolean retainAll(Collection<?> c) {
3478 <            boolean modified = false;
3479 <            for (Iterator<?> it = iterator(); it.hasNext();) {
3480 <                if (!c.contains(it.next())) {
3481 <                    it.remove();
3482 <                    modified = true;
3483 <                }
3484 <            }
3485 <            return modified;
3486 <        }
3477 >        public long estimateSize() { return est; }
3478  
3479      }
3480  
3481 <    static final class Values<K,V> extends CHMView<K,V>
3482 <        implements Collection<V> {
3483 <        Values(ConcurrentHashMapV8<K, V> map)   { super(map); }
3484 <        public final boolean contains(Object o) { return map.containsValue(o); }
3485 <        public final boolean remove(Object o) {
3486 <            if (o != null) {
3487 <                Iterator<V> it = new ValueIterator<K,V>(map);
3488 <                while (it.hasNext()) {
3489 <                    if (o.equals(it.next())) {
3499 <                        it.remove();
3500 <                        return true;
3501 <                    }
3502 <                }
3503 <            }
3504 <            return false;
3505 <        }
3506 <        public final Iterator<V> iterator() {
3507 <            return new ValueIterator<K,V>(map);
3508 <        }
3509 <        public final boolean add(V e) {
3510 <            throw new UnsupportedOperationException();
3511 <        }
3512 <        public final boolean addAll(Collection<? extends V> c) {
3513 <            throw new UnsupportedOperationException();
3481 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3482 >        implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3483 >        final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3484 >        long est;               // size estimate
3485 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3486 >                         long est, ConcurrentHashMapV8<K,V> map) {
3487 >            super(tab, size, index, limit);
3488 >            this.map = map;
3489 >            this.est = est;
3490          }
3491  
3492 <    }
3493 <
3494 <    static final class EntrySet<K,V> extends CHMView<K,V>
3495 <        implements Set<Map.Entry<K,V>> {
3496 <        EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
3521 <        public final boolean contains(Object o) {
3522 <            Object k, v, r; Map.Entry<?,?> e;
3523 <            return ((o instanceof Map.Entry) &&
3524 <                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3525 <                    (r = map.get(k)) != null &&
3526 <                    (v = e.getValue()) != null &&
3527 <                    (v == r || v.equals(r)));
3492 >        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3493 >            int i, f, h;
3494 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3495 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3496 >                                          f, est >>>= 1, map);
3497          }
3498 <        public final boolean remove(Object o) {
3499 <            Object k, v; Map.Entry<?,?> e;
3500 <            return ((o instanceof Map.Entry) &&
3501 <                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3502 <                    (v = e.getValue()) != null &&
3534 <                    map.remove(k, v));
3535 <        }
3536 <        public final Iterator<Map.Entry<K,V>> iterator() {
3537 <            return new EntryIterator<K,V>(map);
3538 <        }
3539 <        public final boolean add(Entry<K,V> e) {
3540 <            throw new UnsupportedOperationException();
3541 <        }
3542 <        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
3543 <            throw new UnsupportedOperationException();
3498 >
3499 >        public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3500 >            if (action == null) throw new NullPointerException();
3501 >            for (Node<K,V> p; (p = advance()) != null; )
3502 >                action.apply(new MapEntry<K,V>(p.key, p.val, map));
3503          }
3504 <        public boolean equals(Object o) {
3505 <            Set<?> c;
3506 <            return ((o instanceof Set) &&
3507 <                    ((c = (Set<?>)o) == this ||
3508 <                     (containsAll(c) && c.containsAll(this))));
3504 >
3505 >        public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3506 >            if (action == null) throw new NullPointerException();
3507 >            Node<K,V> p;
3508 >            if ((p = advance()) == null)
3509 >                return false;
3510 >            action.apply(new MapEntry<K,V>(p.key, p.val, map));
3511 >            return true;
3512          }
3551    }
3513  
3514 <    /* ---------------- Serialization Support -------------- */
3514 >        public long estimateSize() { return est; }
3515  
3555    /**
3556     * Stripped-down version of helper class used in previous version,
3557     * declared for the sake of serialization compatibility
3558     */
3559    static class Segment<K,V> implements Serializable {
3560        private static final long serialVersionUID = 2249069246763182397L;
3561        final float loadFactor;
3562        Segment(float lf) { this.loadFactor = lf; }
3516      }
3517  
3518 <    /**
3566 <     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3567 <     * stream (i.e., serializes it).
3568 <     * @param s the stream
3569 <     * @serialData
3570 <     * the key (Object) and value (Object)
3571 <     * for each key-value mapping, followed by a null pair.
3572 <     * The key-value mappings are emitted in no particular order.
3573 <     */
3574 <    @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3575 <        throws java.io.IOException {
3576 <        if (segments == null) { // for serialization compatibility
3577 <            segments = (Segment<K,V>[])
3578 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3579 <            for (int i = 0; i < segments.length; ++i)
3580 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3581 <        }
3582 <        s.defaultWriteObject();
3583 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3584 <        Object v;
3585 <        while ((v = it.advance()) != null) {
3586 <            s.writeObject(it.nextKey);
3587 <            s.writeObject(v);
3588 <        }
3589 <        s.writeObject(null);
3590 <        s.writeObject(null);
3591 <        segments = null; // throw away
3592 <    }
3518 >    // Parallel bulk operations
3519  
3520      /**
3521 <     * Reconstitutes the instance from a stream (that is, deserializes it).
3522 <     * @param s the stream
3521 >     * Computes initial batch value for bulk tasks. The returned value
3522 >     * is approximately exp2 of the number of times (minus one) to
3523 >     * split task by two before executing leaf action. This value is
3524 >     * faster to compute and more convenient to use as a guide to
3525 >     * splitting than is the depth, since it is used while dividing by
3526 >     * two anyway.
3527       */
3528 <    @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3529 <        throws java.io.IOException, ClassNotFoundException {
3530 <        s.defaultReadObject();
3531 <        this.segments = null; // unneeded
3532 <        // initialize transient final field
3533 <        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3604 <
3605 <        // Create all nodes, then place in table once size is known
3606 <        long size = 0L;
3607 <        Node p = null;
3608 <        for (;;) {
3609 <            K k = (K) s.readObject();
3610 <            V v = (V) s.readObject();
3611 <            if (k != null && v != null) {
3612 <                int h = spread(k.hashCode());
3613 <                p = new Node(h, k, v, p);
3614 <                ++size;
3615 <            }
3616 <            else
3617 <                break;
3618 <        }
3619 <        if (p != null) {
3620 <            boolean init = false;
3621 <            int n;
3622 <            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3623 <                n = MAXIMUM_CAPACITY;
3624 <            else {
3625 <                int sz = (int)size;
3626 <                n = tableSizeFor(sz + (sz >>> 1) + 1);
3627 <            }
3628 <            int sc = sizeCtl;
3629 <            boolean collide = false;
3630 <            if (n > sc &&
3631 <                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3632 <                try {
3633 <                    if (table == null) {
3634 <                        init = true;
3635 <                        Node[] tab = new Node[n];
3636 <                        int mask = n - 1;
3637 <                        while (p != null) {
3638 <                            int j = p.hash & mask;
3639 <                            Node next = p.next;
3640 <                            Node q = p.next = tabAt(tab, j);
3641 <                            setTabAt(tab, j, p);
3642 <                            if (!collide && q != null && q.hash == p.hash)
3643 <                                collide = true;
3644 <                            p = next;
3645 <                        }
3646 <                        table = tab;
3647 <                        counter.add(size);
3648 <                        sc = n - (n >>> 2);
3649 <                    }
3650 <                } finally {
3651 <                    sizeCtl = sc;
3652 <                }
3653 <                if (collide) { // rescan and convert to TreeBins
3654 <                    Node[] tab = table;
3655 <                    for (int i = 0; i < tab.length; ++i) {
3656 <                        int c = 0;
3657 <                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3658 <                            if (++c > TREE_THRESHOLD &&
3659 <                                (e.key instanceof Comparable)) {
3660 <                                replaceWithTreeBin(tab, i, e.key);
3661 <                                break;
3662 <                            }
3663 <                        }
3664 <                    }
3665 <                }
3666 <            }
3667 <            if (!init) { // Can only happen if unsafely published.
3668 <                while (p != null) {
3669 <                    internalPut(p.key, p.val);
3670 <                    p = p.next;
3671 <                }
3672 <            }
3673 <        }
3528 >    final int batchFor(long b) {
3529 >        long n;
3530 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3531 >            return 0;
3532 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3533 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3534      }
3535  
3676
3677    // -------------------------------------------------------
3678
3679    // Sams
3680    /** Interface describing a void action of one argument */
3681    public interface Action<A> { void apply(A a); }
3682    /** Interface describing a void action of two arguments */
3683    public interface BiAction<A,B> { void apply(A a, B b); }
3684    /** Interface describing a function of one argument */
3685    public interface Fun<A,T> { T apply(A a); }
3686    /** Interface describing a function of two arguments */
3687    public interface BiFun<A,B,T> { T apply(A a, B b); }
3688    /** Interface describing a function of no arguments */
3689    public interface Generator<T> { T apply(); }
3690    /** Interface describing a function mapping its argument to a double */
3691    public interface ObjectToDouble<A> { double apply(A a); }
3692    /** Interface describing a function mapping its argument to a long */
3693    public interface ObjectToLong<A> { long apply(A a); }
3694    /** Interface describing a function mapping its argument to an int */
3695    public interface ObjectToInt<A> {int apply(A a); }
3696    /** Interface describing a function mapping two arguments to a double */
3697    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3698    /** Interface describing a function mapping two arguments to a long */
3699    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3700    /** Interface describing a function mapping two arguments to an int */
3701    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3702    /** Interface describing a function mapping a double to a double */
3703    public interface DoubleToDouble { double apply(double a); }
3704    /** Interface describing a function mapping a long to a long */
3705    public interface LongToLong { long apply(long a); }
3706    /** Interface describing a function mapping an int to an int */
3707    public interface IntToInt { int apply(int a); }
3708    /** Interface describing a function mapping two doubles to a double */
3709    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3710    /** Interface describing a function mapping two longs to a long */
3711    public interface LongByLongToLong { long apply(long a, long b); }
3712    /** Interface describing a function mapping two ints to an int */
3713    public interface IntByIntToInt { int apply(int a, int b); }
3714
3715
3716    // -------------------------------------------------------
3717
3536      /**
3537       * Performs the given action for each (key, value).
3538       *
3539 +     * @param parallelismThreshold the (estimated) number of elements
3540 +     * needed for this operation to be executed in parallel
3541       * @param action the action
3542 +     * @since 1.8
3543       */
3544 <    public void forEach(BiAction<K,V> action) {
3545 <        ForkJoinTasks.forEach
3546 <            (this, action).invoke();
3544 >    public void forEach(long parallelismThreshold,
3545 >                        BiAction<? super K,? super V> action) {
3546 >        if (action == null) throw new NullPointerException();
3547 >        new ForEachMappingTask<K,V>
3548 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3549 >             action).invoke();
3550      }
3551  
3552      /**
3553       * Performs the given action for each non-null transformation
3554       * of each (key, value).
3555       *
3556 +     * @param parallelismThreshold the (estimated) number of elements
3557 +     * needed for this operation to be executed in parallel
3558       * @param transformer a function returning the transformation
3559 <     * for an element, or null of there is no transformation (in
3560 <     * which case the action is not applied).
3559 >     * for an element, or null if there is no transformation (in
3560 >     * which case the action is not applied)
3561       * @param action the action
3562 +     * @since 1.8
3563       */
3564 <    public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3565 <                            Action<U> action) {
3566 <        ForkJoinTasks.forEach
3567 <            (this, transformer, action).invoke();
3564 >    public <U> void forEach(long parallelismThreshold,
3565 >                            BiFun<? super K, ? super V, ? extends U> transformer,
3566 >                            Action<? super U> action) {
3567 >        if (transformer == null || action == null)
3568 >            throw new NullPointerException();
3569 >        new ForEachTransformedMappingTask<K,V,U>
3570 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3571 >             transformer, action).invoke();
3572      }
3573  
3574      /**
# Line 3747 | Line 3578 | public class ConcurrentHashMapV8<K, V>
3578       * results of any other parallel invocations of the search
3579       * function are ignored.
3580       *
3581 +     * @param parallelismThreshold the (estimated) number of elements
3582 +     * needed for this operation to be executed in parallel
3583       * @param searchFunction a function returning a non-null
3584       * result on success, else null
3585       * @return a non-null result from applying the given search
3586       * function on each (key, value), or null if none
3587 +     * @since 1.8
3588       */
3589 <    public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3590 <        return ForkJoinTasks.search
3591 <            (this, searchFunction).invoke();
3589 >    public <U> U search(long parallelismThreshold,
3590 >                        BiFun<? super K, ? super V, ? extends U> searchFunction) {
3591 >        if (searchFunction == null) throw new NullPointerException();
3592 >        return new SearchMappingsTask<K,V,U>
3593 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3594 >             searchFunction, new AtomicReference<U>()).invoke();
3595      }
3596  
3597      /**
# Line 3762 | Line 3599 | public class ConcurrentHashMapV8<K, V>
3599       * of all (key, value) pairs using the given reducer to
3600       * combine values, or null if none.
3601       *
3602 +     * @param parallelismThreshold the (estimated) number of elements
3603 +     * needed for this operation to be executed in parallel
3604       * @param transformer a function returning the transformation
3605 <     * for an element, or null of there is no transformation (in
3606 <     * which case it is not combined).
3605 >     * for an element, or null if there is no transformation (in
3606 >     * which case it is not combined)
3607       * @param reducer a commutative associative combining function
3608       * @return the result of accumulating the given transformation
3609       * of all (key, value) pairs
3610 +     * @since 1.8
3611       */
3612 <    public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3612 >    public <U> U reduce(long parallelismThreshold,
3613 >                        BiFun<? super K, ? super V, ? extends U> transformer,
3614                          BiFun<? super U, ? super U, ? extends U> reducer) {
3615 <        return ForkJoinTasks.reduce
3616 <            (this, transformer, reducer).invoke();
3615 >        if (transformer == null || reducer == null)
3616 >            throw new NullPointerException();
3617 >        return new MapReduceMappingsTask<K,V,U>
3618 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3619 >             null, transformer, reducer).invoke();
3620      }
3621  
3622      /**
# Line 3780 | Line 3624 | public class ConcurrentHashMapV8<K, V>
3624       * of all (key, value) pairs using the given reducer to
3625       * combine values, and the given basis as an identity value.
3626       *
3627 +     * @param parallelismThreshold the (estimated) number of elements
3628 +     * needed for this operation to be executed in parallel
3629       * @param transformer a function returning the transformation
3630       * for an element
3631       * @param basis the identity (initial default value) for the reduction
3632       * @param reducer a commutative associative combining function
3633       * @return the result of accumulating the given transformation
3634       * of all (key, value) pairs
3635 +     * @since 1.8
3636       */
3637 <    public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3637 >    public double reduceToDouble(long parallelismThreshold,
3638 >                                 ObjectByObjectToDouble<? super K, ? super V> transformer,
3639                                   double basis,
3640                                   DoubleByDoubleToDouble reducer) {
3641 <        return ForkJoinTasks.reduceToDouble
3642 <            (this, transformer, basis, reducer).invoke();
3641 >        if (transformer == null || reducer == null)
3642 >            throw new NullPointerException();
3643 >        return new MapReduceMappingsToDoubleTask<K,V>
3644 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3645 >             null, transformer, basis, reducer).invoke();
3646      }
3647  
3648      /**
# Line 3799 | Line 3650 | public class ConcurrentHashMapV8<K, V>
3650       * of all (key, value) pairs using the given reducer to
3651       * combine values, and the given basis as an identity value.
3652       *
3653 +     * @param parallelismThreshold the (estimated) number of elements
3654 +     * needed for this operation to be executed in parallel
3655       * @param transformer a function returning the transformation
3656       * for an element
3657       * @param basis the identity (initial default value) for the reduction
3658       * @param reducer a commutative associative combining function
3659       * @return the result of accumulating the given transformation
3660       * of all (key, value) pairs
3661 +     * @since 1.8
3662       */
3663 <    public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3663 >    public long reduceToLong(long parallelismThreshold,
3664 >                             ObjectByObjectToLong<? super K, ? super V> transformer,
3665                               long basis,
3666                               LongByLongToLong reducer) {
3667 <        return ForkJoinTasks.reduceToLong
3668 <            (this, transformer, basis, reducer).invoke();
3667 >        if (transformer == null || reducer == null)
3668 >            throw new NullPointerException();
3669 >        return new MapReduceMappingsToLongTask<K,V>
3670 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3671 >             null, transformer, basis, reducer).invoke();
3672      }
3673  
3674      /**
# Line 3818 | Line 3676 | public class ConcurrentHashMapV8<K, V>
3676       * of all (key, value) pairs using the given reducer to
3677       * combine values, and the given basis as an identity value.
3678       *
3679 +     * @param parallelismThreshold the (estimated) number of elements
3680 +     * needed for this operation to be executed in parallel
3681       * @param transformer a function returning the transformation
3682       * for an element
3683       * @param basis the identity (initial default value) for the reduction
3684       * @param reducer a commutative associative combining function
3685       * @return the result of accumulating the given transformation
3686       * of all (key, value) pairs
3687 +     * @since 1.8
3688       */
3689 <    public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3689 >    public int reduceToInt(long parallelismThreshold,
3690 >                           ObjectByObjectToInt<? super K, ? super V> transformer,
3691                             int basis,
3692                             IntByIntToInt reducer) {
3693 <        return ForkJoinTasks.reduceToInt
3694 <            (this, transformer, basis, reducer).invoke();
3693 >        if (transformer == null || reducer == null)
3694 >            throw new NullPointerException();
3695 >        return new MapReduceMappingsToIntTask<K,V>
3696 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3697 >             null, transformer, basis, reducer).invoke();
3698      }
3699  
3700      /**
3701       * Performs the given action for each key.
3702       *
3703 +     * @param parallelismThreshold the (estimated) number of elements
3704 +     * needed for this operation to be executed in parallel
3705       * @param action the action
3706 +     * @since 1.8
3707       */
3708 <    public void forEachKey(Action<K> action) {
3709 <        ForkJoinTasks.forEachKey
3710 <            (this, action).invoke();
3708 >    public void forEachKey(long parallelismThreshold,
3709 >                           Action<? super K> action) {
3710 >        if (action == null) throw new NullPointerException();
3711 >        new ForEachKeyTask<K,V>
3712 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3713 >             action).invoke();
3714      }
3715  
3716      /**
3717       * Performs the given action for each non-null transformation
3718       * of each key.
3719       *
3720 +     * @param parallelismThreshold the (estimated) number of elements
3721 +     * needed for this operation to be executed in parallel
3722       * @param transformer a function returning the transformation
3723 <     * for an element, or null of there is no transformation (in
3724 <     * which case the action is not applied).
3723 >     * for an element, or null if there is no transformation (in
3724 >     * which case the action is not applied)
3725       * @param action the action
3726 +     * @since 1.8
3727       */
3728 <    public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3729 <                               Action<U> action) {
3730 <        ForkJoinTasks.forEachKey
3731 <            (this, transformer, action).invoke();
3728 >    public <U> void forEachKey(long parallelismThreshold,
3729 >                               Fun<? super K, ? extends U> transformer,
3730 >                               Action<? super U> action) {
3731 >        if (transformer == null || action == null)
3732 >            throw new NullPointerException();
3733 >        new ForEachTransformedKeyTask<K,V,U>
3734 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3735 >             transformer, action).invoke();
3736      }
3737  
3738      /**
# Line 3864 | Line 3742 | public class ConcurrentHashMapV8<K, V>
3742       * any other parallel invocations of the search function are
3743       * ignored.
3744       *
3745 +     * @param parallelismThreshold the (estimated) number of elements
3746 +     * needed for this operation to be executed in parallel
3747       * @param searchFunction a function returning a non-null
3748       * result on success, else null
3749       * @return a non-null result from applying the given search
3750       * function on each key, or null if none
3751 +     * @since 1.8
3752       */
3753 <    public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3754 <        return ForkJoinTasks.searchKeys
3755 <            (this, searchFunction).invoke();
3753 >    public <U> U searchKeys(long parallelismThreshold,
3754 >                            Fun<? super K, ? extends U> searchFunction) {
3755 >        if (searchFunction == null) throw new NullPointerException();
3756 >        return new SearchKeysTask<K,V,U>
3757 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3758 >             searchFunction, new AtomicReference<U>()).invoke();
3759      }
3760  
3761      /**
3762       * Returns the result of accumulating all keys using the given
3763       * reducer to combine values, or null if none.
3764       *
3765 +     * @param parallelismThreshold the (estimated) number of elements
3766 +     * needed for this operation to be executed in parallel
3767       * @param reducer a commutative associative combining function
3768       * @return the result of accumulating all keys using the given
3769       * reducer to combine values, or null if none
3770 +     * @since 1.8
3771       */
3772 <    public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3773 <        return ForkJoinTasks.reduceKeys
3774 <            (this, reducer).invoke();
3772 >    public K reduceKeys(long parallelismThreshold,
3773 >                        BiFun<? super K, ? super K, ? extends K> reducer) {
3774 >        if (reducer == null) throw new NullPointerException();
3775 >        return new ReduceKeysTask<K,V>
3776 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3777 >             null, reducer).invoke();
3778      }
3779  
3780      /**
# Line 3892 | Line 3782 | public class ConcurrentHashMapV8<K, V>
3782       * of all keys using the given reducer to combine values, or
3783       * null if none.
3784       *
3785 +     * @param parallelismThreshold the (estimated) number of elements
3786 +     * needed for this operation to be executed in parallel
3787       * @param transformer a function returning the transformation
3788 <     * for an element, or null of there is no transformation (in
3789 <     * which case it is not combined).
3788 >     * for an element, or null if there is no transformation (in
3789 >     * which case it is not combined)
3790       * @param reducer a commutative associative combining function
3791       * @return the result of accumulating the given transformation
3792       * of all keys
3793 +     * @since 1.8
3794       */
3795 <    public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3796 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
3797 <        return ForkJoinTasks.reduceKeys
3798 <            (this, transformer, reducer).invoke();
3795 >    public <U> U reduceKeys(long parallelismThreshold,
3796 >                            Fun<? super K, ? extends U> transformer,
3797 >         BiFun<? super U, ? super U, ? extends U> reducer) {
3798 >        if (transformer == null || reducer == null)
3799 >            throw new NullPointerException();
3800 >        return new MapReduceKeysTask<K,V,U>
3801 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3802 >             null, transformer, reducer).invoke();
3803      }
3804  
3805      /**
# Line 3910 | Line 3807 | public class ConcurrentHashMapV8<K, V>
3807       * of all keys using the given reducer to combine values, and
3808       * the given basis as an identity value.
3809       *
3810 +     * @param parallelismThreshold the (estimated) number of elements
3811 +     * needed for this operation to be executed in parallel
3812       * @param transformer a function returning the transformation
3813       * for an element
3814       * @param basis the identity (initial default value) for the reduction
3815       * @param reducer a commutative associative combining function
3816 <     * @return  the result of accumulating the given transformation
3816 >     * @return the result of accumulating the given transformation
3817       * of all keys
3818 +     * @since 1.8
3819       */
3820 <    public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3820 >    public double reduceKeysToDouble(long parallelismThreshold,
3821 >                                     ObjectToDouble<? super K> transformer,
3822                                       double basis,
3823                                       DoubleByDoubleToDouble reducer) {
3824 <        return ForkJoinTasks.reduceKeysToDouble
3825 <            (this, transformer, basis, reducer).invoke();
3824 >        if (transformer == null || reducer == null)
3825 >            throw new NullPointerException();
3826 >        return new MapReduceKeysToDoubleTask<K,V>
3827 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3828 >             null, transformer, basis, reducer).invoke();
3829      }
3830  
3831      /**
# Line 3929 | Line 3833 | public class ConcurrentHashMapV8<K, V>
3833       * of all keys using the given reducer to combine values, and
3834       * the given basis as an identity value.
3835       *
3836 +     * @param parallelismThreshold the (estimated) number of elements
3837 +     * needed for this operation to be executed in parallel
3838       * @param transformer a function returning the transformation
3839       * for an element
3840       * @param basis the identity (initial default value) for the reduction
3841       * @param reducer a commutative associative combining function
3842       * @return the result of accumulating the given transformation
3843       * of all keys
3844 +     * @since 1.8
3845       */
3846 <    public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3846 >    public long reduceKeysToLong(long parallelismThreshold,
3847 >                                 ObjectToLong<? super K> transformer,
3848                                   long basis,
3849                                   LongByLongToLong reducer) {
3850 <        return ForkJoinTasks.reduceKeysToLong
3851 <            (this, transformer, basis, reducer).invoke();
3850 >        if (transformer == null || reducer == null)
3851 >            throw new NullPointerException();
3852 >        return new MapReduceKeysToLongTask<K,V>
3853 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3854 >             null, transformer, basis, reducer).invoke();
3855      }
3856  
3857      /**
# Line 3948 | Line 3859 | public class ConcurrentHashMapV8<K, V>
3859       * of all keys using the given reducer to combine values, and
3860       * the given basis as an identity value.
3861       *
3862 +     * @param parallelismThreshold the (estimated) number of elements
3863 +     * needed for this operation to be executed in parallel
3864       * @param transformer a function returning the transformation
3865       * for an element
3866       * @param basis the identity (initial default value) for the reduction
3867       * @param reducer a commutative associative combining function
3868       * @return the result of accumulating the given transformation
3869       * of all keys
3870 +     * @since 1.8
3871       */
3872 <    public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3872 >    public int reduceKeysToInt(long parallelismThreshold,
3873 >                               ObjectToInt<? super K> transformer,
3874                                 int basis,
3875                                 IntByIntToInt reducer) {
3876 <        return ForkJoinTasks.reduceKeysToInt
3877 <            (this, transformer, basis, reducer).invoke();
3876 >        if (transformer == null || reducer == null)
3877 >            throw new NullPointerException();
3878 >        return new MapReduceKeysToIntTask<K,V>
3879 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3880 >             null, transformer, basis, reducer).invoke();
3881      }
3882  
3883      /**
3884       * Performs the given action for each value.
3885       *
3886 +     * @param parallelismThreshold the (estimated) number of elements
3887 +     * needed for this operation to be executed in parallel
3888       * @param action the action
3889 +     * @since 1.8
3890       */
3891 <    public void forEachValue(Action<V> action) {
3892 <        ForkJoinTasks.forEachValue
3893 <            (this, action).invoke();
3891 >    public void forEachValue(long parallelismThreshold,
3892 >                             Action<? super V> action) {
3893 >        if (action == null)
3894 >            throw new NullPointerException();
3895 >        new ForEachValueTask<K,V>
3896 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3897 >             action).invoke();
3898      }
3899  
3900      /**
3901       * Performs the given action for each non-null transformation
3902       * of each value.
3903       *
3904 +     * @param parallelismThreshold the (estimated) number of elements
3905 +     * needed for this operation to be executed in parallel
3906       * @param transformer a function returning the transformation
3907 <     * for an element, or null of there is no transformation (in
3908 <     * which case the action is not applied).
3907 >     * for an element, or null if there is no transformation (in
3908 >     * which case the action is not applied)
3909 >     * @param action the action
3910 >     * @since 1.8
3911       */
3912 <    public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3913 <                                 Action<U> action) {
3914 <        ForkJoinTasks.forEachValue
3915 <            (this, transformer, action).invoke();
3912 >    public <U> void forEachValue(long parallelismThreshold,
3913 >                                 Fun<? super V, ? extends U> transformer,
3914 >                                 Action<? super U> action) {
3915 >        if (transformer == null || action == null)
3916 >            throw new NullPointerException();
3917 >        new ForEachTransformedValueTask<K,V,U>
3918 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3919 >             transformer, action).invoke();
3920      }
3921  
3922      /**
# Line 3993 | Line 3926 | public class ConcurrentHashMapV8<K, V>
3926       * any other parallel invocations of the search function are
3927       * ignored.
3928       *
3929 +     * @param parallelismThreshold the (estimated) number of elements
3930 +     * needed for this operation to be executed in parallel
3931       * @param searchFunction a function returning a non-null
3932       * result on success, else null
3933       * @return a non-null result from applying the given search
3934       * function on each value, or null if none
3935 <     *
3935 >     * @since 1.8
3936       */
3937 <    public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3938 <        return ForkJoinTasks.searchValues
3939 <            (this, searchFunction).invoke();
3937 >    public <U> U searchValues(long parallelismThreshold,
3938 >                              Fun<? super V, ? extends U> searchFunction) {
3939 >        if (searchFunction == null) throw new NullPointerException();
3940 >        return new SearchValuesTask<K,V,U>
3941 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3942 >             searchFunction, new AtomicReference<U>()).invoke();
3943      }
3944  
3945      /**
3946       * Returns the result of accumulating all values using the
3947       * given reducer to combine values, or null if none.
3948       *
3949 +     * @param parallelismThreshold the (estimated) number of elements
3950 +     * needed for this operation to be executed in parallel
3951       * @param reducer a commutative associative combining function
3952 <     * @return  the result of accumulating all values
3952 >     * @return the result of accumulating all values
3953 >     * @since 1.8
3954       */
3955 <    public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3956 <        return ForkJoinTasks.reduceValues
3957 <            (this, reducer).invoke();
3955 >    public V reduceValues(long parallelismThreshold,
3956 >                          BiFun<? super V, ? super V, ? extends V> reducer) {
3957 >        if (reducer == null) throw new NullPointerException();
3958 >        return new ReduceValuesTask<K,V>
3959 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3960 >             null, reducer).invoke();
3961      }
3962  
3963      /**
# Line 4021 | Line 3965 | public class ConcurrentHashMapV8<K, V>
3965       * of all values using the given reducer to combine values, or
3966       * null if none.
3967       *
3968 +     * @param parallelismThreshold the (estimated) number of elements
3969 +     * needed for this operation to be executed in parallel
3970       * @param transformer a function returning the transformation
3971 <     * for an element, or null of there is no transformation (in
3972 <     * which case it is not combined).
3971 >     * for an element, or null if there is no transformation (in
3972 >     * which case it is not combined)
3973       * @param reducer a commutative associative combining function
3974       * @return the result of accumulating the given transformation
3975       * of all values
3976 +     * @since 1.8
3977       */
3978 <    public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3978 >    public <U> U reduceValues(long parallelismThreshold,
3979 >                              Fun<? super V, ? extends U> transformer,
3980                                BiFun<? super U, ? super U, ? extends U> reducer) {
3981 <        return ForkJoinTasks.reduceValues
3982 <            (this, transformer, reducer).invoke();
3981 >        if (transformer == null || reducer == null)
3982 >            throw new NullPointerException();
3983 >        return new MapReduceValuesTask<K,V,U>
3984 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3985 >             null, transformer, reducer).invoke();
3986      }
3987  
3988      /**
# Line 4039 | Line 3990 | public class ConcurrentHashMapV8<K, V>
3990       * of all values using the given reducer to combine values,
3991       * and the given basis as an identity value.
3992       *
3993 +     * @param parallelismThreshold the (estimated) number of elements
3994 +     * needed for this operation to be executed in parallel
3995       * @param transformer a function returning the transformation
3996       * for an element
3997       * @param basis the identity (initial default value) for the reduction
3998       * @param reducer a commutative associative combining function
3999       * @return the result of accumulating the given transformation
4000       * of all values
4001 +     * @since 1.8
4002       */
4003 <    public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
4003 >    public double reduceValuesToDouble(long parallelismThreshold,
4004 >                                       ObjectToDouble<? super V> transformer,
4005                                         double basis,
4006                                         DoubleByDoubleToDouble reducer) {
4007 <        return ForkJoinTasks.reduceValuesToDouble
4008 <            (this, transformer, basis, reducer).invoke();
4007 >        if (transformer == null || reducer == null)
4008 >            throw new NullPointerException();
4009 >        return new MapReduceValuesToDoubleTask<K,V>
4010 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4011 >             null, transformer, basis, reducer).invoke();
4012      }
4013  
4014      /**
# Line 4058 | Line 4016 | public class ConcurrentHashMapV8<K, V>
4016       * of all values using the given reducer to combine values,
4017       * and the given basis as an identity value.
4018       *
4019 +     * @param parallelismThreshold the (estimated) number of elements
4020 +     * needed for this operation to be executed in parallel
4021       * @param transformer a function returning the transformation
4022       * for an element
4023       * @param basis the identity (initial default value) for the reduction
4024       * @param reducer a commutative associative combining function
4025       * @return the result of accumulating the given transformation
4026       * of all values
4027 +     * @since 1.8
4028       */
4029 <    public long reduceValuesToLong(ObjectToLong<? super V> transformer,
4029 >    public long reduceValuesToLong(long parallelismThreshold,
4030 >                                   ObjectToLong<? super V> transformer,
4031                                     long basis,
4032                                     LongByLongToLong reducer) {
4033 <        return ForkJoinTasks.reduceValuesToLong
4034 <            (this, transformer, basis, reducer).invoke();
4033 >        if (transformer == null || reducer == null)
4034 >            throw new NullPointerException();
4035 >        return new MapReduceValuesToLongTask<K,V>
4036 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4037 >             null, transformer, basis, reducer).invoke();
4038      }
4039  
4040      /**
# Line 4077 | Line 4042 | public class ConcurrentHashMapV8<K, V>
4042       * of all values using the given reducer to combine values,
4043       * and the given basis as an identity value.
4044       *
4045 +     * @param parallelismThreshold the (estimated) number of elements
4046 +     * needed for this operation to be executed in parallel
4047       * @param transformer a function returning the transformation
4048       * for an element
4049       * @param basis the identity (initial default value) for the reduction
4050       * @param reducer a commutative associative combining function
4051       * @return the result of accumulating the given transformation
4052       * of all values
4053 +     * @since 1.8
4054       */
4055 <    public int reduceValuesToInt(ObjectToInt<? super V> transformer,
4055 >    public int reduceValuesToInt(long parallelismThreshold,
4056 >                                 ObjectToInt<? super V> transformer,
4057                                   int basis,
4058                                   IntByIntToInt reducer) {
4059 <        return ForkJoinTasks.reduceValuesToInt
4060 <            (this, transformer, basis, reducer).invoke();
4059 >        if (transformer == null || reducer == null)
4060 >            throw new NullPointerException();
4061 >        return new MapReduceValuesToIntTask<K,V>
4062 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4063 >             null, transformer, basis, reducer).invoke();
4064      }
4065  
4066      /**
4067       * Performs the given action for each entry.
4068       *
4069 +     * @param parallelismThreshold the (estimated) number of elements
4070 +     * needed for this operation to be executed in parallel
4071       * @param action the action
4072 +     * @since 1.8
4073       */
4074 <    public void forEachEntry(Action<Map.Entry<K,V>> action) {
4075 <        ForkJoinTasks.forEachEntry
4076 <            (this, action).invoke();
4074 >    public void forEachEntry(long parallelismThreshold,
4075 >                             Action<? super Map.Entry<K,V>> action) {
4076 >        if (action == null) throw new NullPointerException();
4077 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4078 >                                  action).invoke();
4079      }
4080  
4081      /**
4082       * Performs the given action for each non-null transformation
4083       * of each entry.
4084       *
4085 +     * @param parallelismThreshold the (estimated) number of elements
4086 +     * needed for this operation to be executed in parallel
4087       * @param transformer a function returning the transformation
4088 <     * for an element, or null of there is no transformation (in
4089 <     * which case the action is not applied).
4088 >     * for an element, or null if there is no transformation (in
4089 >     * which case the action is not applied)
4090       * @param action the action
4091 +     * @since 1.8
4092       */
4093 <    public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4094 <                                 Action<U> action) {
4095 <        ForkJoinTasks.forEachEntry
4096 <            (this, transformer, action).invoke();
4093 >    public <U> void forEachEntry(long parallelismThreshold,
4094 >                                 Fun<Map.Entry<K,V>, ? extends U> transformer,
4095 >                                 Action<? super U> action) {
4096 >        if (transformer == null || action == null)
4097 >            throw new NullPointerException();
4098 >        new ForEachTransformedEntryTask<K,V,U>
4099 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4100 >             transformer, action).invoke();
4101      }
4102  
4103      /**
# Line 4123 | Line 4107 | public class ConcurrentHashMapV8<K, V>
4107       * any other parallel invocations of the search function are
4108       * ignored.
4109       *
4110 +     * @param parallelismThreshold the (estimated) number of elements
4111 +     * needed for this operation to be executed in parallel
4112       * @param searchFunction a function returning a non-null
4113       * result on success, else null
4114       * @return a non-null result from applying the given search
4115       * function on each entry, or null if none
4116 +     * @since 1.8
4117       */
4118 <    public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4119 <        return ForkJoinTasks.searchEntries
4120 <            (this, searchFunction).invoke();
4118 >    public <U> U searchEntries(long parallelismThreshold,
4119 >                               Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4120 >        if (searchFunction == null) throw new NullPointerException();
4121 >        return new SearchEntriesTask<K,V,U>
4122 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4123 >             searchFunction, new AtomicReference<U>()).invoke();
4124      }
4125  
4126      /**
4127       * Returns the result of accumulating all entries using the
4128       * given reducer to combine values, or null if none.
4129       *
4130 +     * @param parallelismThreshold the (estimated) number of elements
4131 +     * needed for this operation to be executed in parallel
4132       * @param reducer a commutative associative combining function
4133       * @return the result of accumulating all entries
4134 +     * @since 1.8
4135       */
4136 <    public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4137 <        return ForkJoinTasks.reduceEntries
4138 <            (this, reducer).invoke();
4136 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4137 >                                        BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4138 >        if (reducer == null) throw new NullPointerException();
4139 >        return new ReduceEntriesTask<K,V>
4140 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4141 >             null, reducer).invoke();
4142      }
4143  
4144      /**
# Line 4150 | Line 4146 | public class ConcurrentHashMapV8<K, V>
4146       * of all entries using the given reducer to combine values,
4147       * or null if none.
4148       *
4149 +     * @param parallelismThreshold the (estimated) number of elements
4150 +     * needed for this operation to be executed in parallel
4151       * @param transformer a function returning the transformation
4152 <     * for an element, or null of there is no transformation (in
4153 <     * which case it is not combined).
4152 >     * for an element, or null if there is no transformation (in
4153 >     * which case it is not combined)
4154       * @param reducer a commutative associative combining function
4155       * @return the result of accumulating the given transformation
4156       * of all entries
4157 +     * @since 1.8
4158       */
4159 <    public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4159 >    public <U> U reduceEntries(long parallelismThreshold,
4160 >                               Fun<Map.Entry<K,V>, ? extends U> transformer,
4161                                 BiFun<? super U, ? super U, ? extends U> reducer) {
4162 <        return ForkJoinTasks.reduceEntries
4163 <            (this, transformer, reducer).invoke();
4162 >        if (transformer == null || reducer == null)
4163 >            throw new NullPointerException();
4164 >        return new MapReduceEntriesTask<K,V,U>
4165 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4166 >             null, transformer, reducer).invoke();
4167      }
4168  
4169      /**
# Line 4168 | Line 4171 | public class ConcurrentHashMapV8<K, V>
4171       * of all entries using the given reducer to combine values,
4172       * and the given basis as an identity value.
4173       *
4174 +     * @param parallelismThreshold the (estimated) number of elements
4175 +     * needed for this operation to be executed in parallel
4176       * @param transformer a function returning the transformation
4177       * for an element
4178       * @param basis the identity (initial default value) for the reduction
4179       * @param reducer a commutative associative combining function
4180       * @return the result of accumulating the given transformation
4181       * of all entries
4182 +     * @since 1.8
4183       */
4184 <    public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4184 >    public double reduceEntriesToDouble(long parallelismThreshold,
4185 >                                        ObjectToDouble<Map.Entry<K,V>> transformer,
4186                                          double basis,
4187                                          DoubleByDoubleToDouble reducer) {
4188 <        return ForkJoinTasks.reduceEntriesToDouble
4189 <            (this, transformer, basis, reducer).invoke();
4188 >        if (transformer == null || reducer == null)
4189 >            throw new NullPointerException();
4190 >        return new MapReduceEntriesToDoubleTask<K,V>
4191 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4192 >             null, transformer, basis, reducer).invoke();
4193      }
4194  
4195      /**
# Line 4187 | Line 4197 | public class ConcurrentHashMapV8<K, V>
4197       * of all entries using the given reducer to combine values,
4198       * and the given basis as an identity value.
4199       *
4200 +     * @param parallelismThreshold the (estimated) number of elements
4201 +     * needed for this operation to be executed in parallel
4202       * @param transformer a function returning the transformation
4203       * for an element
4204       * @param basis the identity (initial default value) for the reduction
4205       * @param reducer a commutative associative combining function
4206 <     * @return  the result of accumulating the given transformation
4206 >     * @return the result of accumulating the given transformation
4207       * of all entries
4208 +     * @since 1.8
4209       */
4210 <    public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4210 >    public long reduceEntriesToLong(long parallelismThreshold,
4211 >                                    ObjectToLong<Map.Entry<K,V>> transformer,
4212                                      long basis,
4213                                      LongByLongToLong reducer) {
4214 <        return ForkJoinTasks.reduceEntriesToLong
4215 <            (this, transformer, basis, reducer).invoke();
4214 >        if (transformer == null || reducer == null)
4215 >            throw new NullPointerException();
4216 >        return new MapReduceEntriesToLongTask<K,V>
4217 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4218 >             null, transformer, basis, reducer).invoke();
4219      }
4220  
4221      /**
# Line 4206 | Line 4223 | public class ConcurrentHashMapV8<K, V>
4223       * of all entries using the given reducer to combine values,
4224       * and the given basis as an identity value.
4225       *
4226 +     * @param parallelismThreshold the (estimated) number of elements
4227 +     * needed for this operation to be executed in parallel
4228       * @param transformer a function returning the transformation
4229       * for an element
4230       * @param basis the identity (initial default value) for the reduction
4231       * @param reducer a commutative associative combining function
4232       * @return the result of accumulating the given transformation
4233       * of all entries
4234 +     * @since 1.8
4235       */
4236 <    public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4236 >    public int reduceEntriesToInt(long parallelismThreshold,
4237 >                                  ObjectToInt<Map.Entry<K,V>> transformer,
4238                                    int basis,
4239                                    IntByIntToInt reducer) {
4240 <        return ForkJoinTasks.reduceEntriesToInt
4241 <            (this, transformer, basis, reducer).invoke();
4240 >        if (transformer == null || reducer == null)
4241 >            throw new NullPointerException();
4242 >        return new MapReduceEntriesToIntTask<K,V>
4243 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4244 >             null, transformer, basis, reducer).invoke();
4245      }
4246  
4247 <    // ---------------------------------------------------------------------
4247 >
4248 >    /* ----------------Views -------------- */
4249  
4250      /**
4251 <     * Predefined tasks for performing bulk parallel operations on
4227 <     * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4228 <     * for bulk operations. Each method has the same name, but returns
4229 <     * a task rather than invoking it. These methods may be useful in
4230 <     * custom applications such as submitting a task without waiting
4231 <     * for completion, using a custom pool, or combining with other
4232 <     * tasks.
4251 >     * Base class for views.
4252       */
4253 <    public static class ForkJoinTasks {
4254 <        private ForkJoinTasks() {}
4255 <
4256 <        /**
4257 <         * Returns a task that when invoked, performs the given
4239 <         * action for each (key, value)
4240 <         *
4241 <         * @param map the map
4242 <         * @param action the action
4243 <         * @return the task
4244 <         */
4245 <        public static <K,V> ForkJoinTask<Void> forEach
4246 <            (ConcurrentHashMapV8<K,V> map,
4247 <             BiAction<K,V> action) {
4248 <            if (action == null) throw new NullPointerException();
4249 <            return new ForEachMappingTask<K,V>(map, null, -1, null, action);
4250 <        }
4251 <
4252 <        /**
4253 <         * Returns a task that when invoked, performs the given
4254 <         * action for each non-null transformation of each (key, value)
4255 <         *
4256 <         * @param map the map
4257 <         * @param transformer a function returning the transformation
4258 <         * for an element, or null if there is no transformation (in
4259 <         * which case the action is not applied)
4260 <         * @param action the action
4261 <         * @return the task
4262 <         */
4263 <        public static <K,V,U> ForkJoinTask<Void> forEach
4264 <            (ConcurrentHashMapV8<K,V> map,
4265 <             BiFun<? super K, ? super V, ? extends U> transformer,
4266 <             Action<U> action) {
4267 <            if (transformer == null || action == null)
4268 <                throw new NullPointerException();
4269 <            return new ForEachTransformedMappingTask<K,V,U>
4270 <                (map, null, -1, null, transformer, action);
4271 <        }
4253 >    abstract static class CollectionView<K,V,E>
4254 >        implements Collection<E>, java.io.Serializable {
4255 >        private static final long serialVersionUID = 7249069246763182397L;
4256 >        final ConcurrentHashMapV8<K,V> map;
4257 >        CollectionView(ConcurrentHashMapV8<K,V> map)  { this.map = map; }
4258  
4259          /**
4260 <         * Returns a task that when invoked, returns a non-null result
4275 <         * from applying the given search function on each (key,
4276 <         * value), or null if none. Upon success, further element
4277 <         * processing is suppressed and the results of any other
4278 <         * parallel invocations of the search function are ignored.
4260 >         * Returns the map backing this view.
4261           *
4262 <         * @param map the map
4281 <         * @param searchFunction a function returning a non-null
4282 <         * result on success, else null
4283 <         * @return the task
4262 >         * @return the map backing this view
4263           */
4264 <        public static <K,V,U> ForkJoinTask<U> search
4286 <            (ConcurrentHashMapV8<K,V> map,
4287 <             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4288 <            if (searchFunction == null) throw new NullPointerException();
4289 <            return new SearchMappingsTask<K,V,U>
4290 <                (map, null, -1, null, searchFunction,
4291 <                 new AtomicReference<U>());
4292 <        }
4264 >        public ConcurrentHashMapV8<K,V> getMap() { return map; }
4265  
4266          /**
4267 <         * Returns a task that when invoked, returns the result of
4268 <         * accumulating the given transformation of all (key, value) pairs
4297 <         * using the given reducer to combine values, or null if none.
4298 <         *
4299 <         * @param map the map
4300 <         * @param transformer a function returning the transformation
4301 <         * for an element, or null if there is no transformation (in
4302 <         * which case it is not combined).
4303 <         * @param reducer a commutative associative combining function
4304 <         * @return the task
4267 >         * Removes all of the elements from this view, by removing all
4268 >         * the mappings from the map backing this view.
4269           */
4270 <        public static <K,V,U> ForkJoinTask<U> reduce
4271 <            (ConcurrentHashMapV8<K,V> map,
4272 <             BiFun<? super K, ? super V, ? extends U> transformer,
4309 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4310 <            if (transformer == null || reducer == null)
4311 <                throw new NullPointerException();
4312 <            return new MapReduceMappingsTask<K,V,U>
4313 <                (map, null, -1, null, transformer, reducer);
4314 <        }
4270 >        public final void clear()      { map.clear(); }
4271 >        public final int size()        { return map.size(); }
4272 >        public final boolean isEmpty() { return map.isEmpty(); }
4273  
4274 +        // implementations below rely on concrete classes supplying these
4275 +        // abstract methods
4276          /**
4277 <         * Returns a task that when invoked, returns the result of
4278 <         * accumulating the given transformation of all (key, value) pairs
4279 <         * using the given reducer to combine values, and the given
4280 <         * basis as an identity value.
4281 <         *
4282 <         * @param map the map
4283 <         * @param transformer a function returning the transformation
4284 <         * for an element
4285 <         * @param basis the identity (initial default value) for the reduction
4286 <         * @param reducer a commutative associative combining function
4327 <         * @return the task
4328 <         */
4329 <        public static <K,V> ForkJoinTask<Double> reduceToDouble
4330 <            (ConcurrentHashMapV8<K,V> map,
4331 <             ObjectByObjectToDouble<? super K, ? super V> transformer,
4332 <             double basis,
4333 <             DoubleByDoubleToDouble reducer) {
4334 <            if (transformer == null || reducer == null)
4335 <                throw new NullPointerException();
4336 <            return new MapReduceMappingsToDoubleTask<K,V>
4337 <                (map, null, -1, null, transformer, basis, reducer);
4338 <        }
4277 >         * Returns a "weakly consistent" iterator that will never
4278 >         * throw {@link ConcurrentModificationException}, and
4279 >         * guarantees to traverse elements as they existed upon
4280 >         * construction of the iterator, and may (but is not
4281 >         * guaranteed to) reflect any modifications subsequent to
4282 >         * construction.
4283 >         */
4284 >        public abstract Iterator<E> iterator();
4285 >        public abstract boolean contains(Object o);
4286 >        public abstract boolean remove(Object o);
4287  
4288 <        /**
4341 <         * Returns a task that when invoked, returns the result of
4342 <         * accumulating the given transformation of all (key, value) pairs
4343 <         * using the given reducer to combine values, and the given
4344 <         * basis as an identity value.
4345 <         *
4346 <         * @param map the map
4347 <         * @param transformer a function returning the transformation
4348 <         * for an element
4349 <         * @param basis the identity (initial default value) for the reduction
4350 <         * @param reducer a commutative associative combining function
4351 <         * @return the task
4352 <         */
4353 <        public static <K,V> ForkJoinTask<Long> reduceToLong
4354 <            (ConcurrentHashMapV8<K,V> map,
4355 <             ObjectByObjectToLong<? super K, ? super V> transformer,
4356 <             long basis,
4357 <             LongByLongToLong reducer) {
4358 <            if (transformer == null || reducer == null)
4359 <                throw new NullPointerException();
4360 <            return new MapReduceMappingsToLongTask<K,V>
4361 <                (map, null, -1, null, transformer, basis, reducer);
4362 <        }
4288 >        private static final String oomeMsg = "Required array size too large";
4289  
4290 <        /**
4291 <         * Returns a task that when invoked, returns the result of
4292 <         * accumulating the given transformation of all (key, value) pairs
4293 <         * using the given reducer to combine values, and the given
4294 <         * basis as an identity value.
4295 <         *
4296 <         * @param transformer a function returning the transformation
4297 <         * for an element
4298 <         * @param basis the identity (initial default value) for the reduction
4299 <         * @param reducer a commutative associative combining function
4300 <         * @return the task
4301 <         */
4302 <        public static <K,V> ForkJoinTask<Integer> reduceToInt
4303 <            (ConcurrentHashMapV8<K,V> map,
4304 <             ObjectByObjectToInt<? super K, ? super V> transformer,
4305 <             int basis,
4306 <             IntByIntToInt reducer) {
4307 <            if (transformer == null || reducer == null)
4308 <                throw new NullPointerException();
4309 <            return new MapReduceMappingsToIntTask<K,V>
4384 <                (map, null, -1, null, transformer, basis, reducer);
4290 >        public final Object[] toArray() {
4291 >            long sz = map.mappingCount();
4292 >            if (sz > MAX_ARRAY_SIZE)
4293 >                throw new OutOfMemoryError(oomeMsg);
4294 >            int n = (int)sz;
4295 >            Object[] r = new Object[n];
4296 >            int i = 0;
4297 >            for (E e : this) {
4298 >                if (i == n) {
4299 >                    if (n >= MAX_ARRAY_SIZE)
4300 >                        throw new OutOfMemoryError(oomeMsg);
4301 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4302 >                        n = MAX_ARRAY_SIZE;
4303 >                    else
4304 >                        n += (n >>> 1) + 1;
4305 >                    r = Arrays.copyOf(r, n);
4306 >                }
4307 >                r[i++] = e;
4308 >            }
4309 >            return (i == n) ? r : Arrays.copyOf(r, i);
4310          }
4311  
4312 <        /**
4313 <         * Returns a task that when invoked, performs the given action
4314 <         * for each key.
4315 <         *
4316 <         * @param map the map
4317 <         * @param action the action
4318 <         * @return the task
4319 <         */
4320 <        public static <K,V> ForkJoinTask<Void> forEachKey
4321 <            (ConcurrentHashMapV8<K,V> map,
4322 <             Action<K> action) {
4323 <            if (action == null) throw new NullPointerException();
4324 <            return new ForEachKeyTask<K,V>(map, null, -1, null, action);
4312 >        @SuppressWarnings("unchecked")
4313 >        public final <T> T[] toArray(T[] a) {
4314 >            long sz = map.mappingCount();
4315 >            if (sz > MAX_ARRAY_SIZE)
4316 >                throw new OutOfMemoryError(oomeMsg);
4317 >            int m = (int)sz;
4318 >            T[] r = (a.length >= m) ? a :
4319 >                (T[])java.lang.reflect.Array
4320 >                .newInstance(a.getClass().getComponentType(), m);
4321 >            int n = r.length;
4322 >            int i = 0;
4323 >            for (E e : this) {
4324 >                if (i == n) {
4325 >                    if (n >= MAX_ARRAY_SIZE)
4326 >                        throw new OutOfMemoryError(oomeMsg);
4327 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4328 >                        n = MAX_ARRAY_SIZE;
4329 >                    else
4330 >                        n += (n >>> 1) + 1;
4331 >                    r = Arrays.copyOf(r, n);
4332 >                }
4333 >                r[i++] = (T)e;
4334 >            }
4335 >            if (a == r && i < n) {
4336 >                r[i] = null; // null-terminate
4337 >                return r;
4338 >            }
4339 >            return (i == n) ? r : Arrays.copyOf(r, i);
4340          }
4341  
4342          /**
4343 <         * Returns a task that when invoked, performs the given action
4344 <         * for each non-null transformation of each key.
4343 >         * Returns a string representation of this collection.
4344 >         * The string representation consists of the string representations
4345 >         * of the collection's elements in the order they are returned by
4346 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4347 >         * Adjacent elements are separated by the characters {@code ", "}
4348 >         * (comma and space).  Elements are converted to strings as by
4349 >         * {@link String#valueOf(Object)}.
4350           *
4351 <         * @param map the map
4407 <         * @param transformer a function returning the transformation
4408 <         * for an element, or null if there is no transformation (in
4409 <         * which case the action is not applied)
4410 <         * @param action the action
4411 <         * @return the task
4351 >         * @return a string representation of this collection
4352           */
4353 <        public static <K,V,U> ForkJoinTask<Void> forEachKey
4354 <            (ConcurrentHashMapV8<K,V> map,
4355 <             Fun<? super K, ? extends U> transformer,
4356 <             Action<U> action) {
4357 <            if (transformer == null || action == null)
4358 <                throw new NullPointerException();
4359 <            return new ForEachTransformedKeyTask<K,V,U>
4360 <                (map, null, -1, null, transformer, action);
4353 >        public final String toString() {
4354 >            StringBuilder sb = new StringBuilder();
4355 >            sb.append('[');
4356 >            Iterator<E> it = iterator();
4357 >            if (it.hasNext()) {
4358 >                for (;;) {
4359 >                    Object e = it.next();
4360 >                    sb.append(e == this ? "(this Collection)" : e);
4361 >                    if (!it.hasNext())
4362 >                        break;
4363 >                    sb.append(',').append(' ');
4364 >                }
4365 >            }
4366 >            return sb.append(']').toString();
4367          }
4368  
4369 <        /**
4370 <         * Returns a task that when invoked, returns a non-null result
4371 <         * from applying the given search function on each key, or
4372 <         * null if none.  Upon success, further element processing is
4373 <         * suppressed and the results of any other parallel
4374 <         * invocations of the search function are ignored.
4375 <         *
4376 <         * @param map the map
4431 <         * @param searchFunction a function returning a non-null
4432 <         * result on success, else null
4433 <         * @return the task
4434 <         */
4435 <        public static <K,V,U> ForkJoinTask<U> searchKeys
4436 <            (ConcurrentHashMapV8<K,V> map,
4437 <             Fun<? super K, ? extends U> searchFunction) {
4438 <            if (searchFunction == null) throw new NullPointerException();
4439 <            return new SearchKeysTask<K,V,U>
4440 <                (map, null, -1, null, searchFunction,
4441 <                 new AtomicReference<U>());
4369 >        public final boolean containsAll(Collection<?> c) {
4370 >            if (c != this) {
4371 >                for (Object e : c) {
4372 >                    if (e == null || !contains(e))
4373 >                        return false;
4374 >                }
4375 >            }
4376 >            return true;
4377          }
4378  
4379 <        /**
4380 <         * Returns a task that when invoked, returns the result of
4381 <         * accumulating all keys using the given reducer to combine
4382 <         * values, or null if none.
4383 <         *
4384 <         * @param map the map
4385 <         * @param reducer a commutative associative combining function
4386 <         * @return the task
4387 <         */
4453 <        public static <K,V> ForkJoinTask<K> reduceKeys
4454 <            (ConcurrentHashMapV8<K,V> map,
4455 <             BiFun<? super K, ? super K, ? extends K> reducer) {
4456 <            if (reducer == null) throw new NullPointerException();
4457 <            return new ReduceKeysTask<K,V>
4458 <                (map, null, -1, null, reducer);
4379 >        public final boolean removeAll(Collection<?> c) {
4380 >            boolean modified = false;
4381 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4382 >                if (c.contains(it.next())) {
4383 >                    it.remove();
4384 >                    modified = true;
4385 >                }
4386 >            }
4387 >            return modified;
4388          }
4389  
4390 <        /**
4391 <         * Returns a task that when invoked, returns the result of
4392 <         * accumulating the given transformation of all keys using the given
4393 <         * reducer to combine values, or null if none.
4394 <         *
4395 <         * @param map the map
4396 <         * @param transformer a function returning the transformation
4397 <         * for an element, or null if there is no transformation (in
4398 <         * which case it is not combined).
4470 <         * @param reducer a commutative associative combining function
4471 <         * @return the task
4472 <         */
4473 <        public static <K,V,U> ForkJoinTask<U> reduceKeys
4474 <            (ConcurrentHashMapV8<K,V> map,
4475 <             Fun<? super K, ? extends U> transformer,
4476 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4477 <            if (transformer == null || reducer == null)
4478 <                throw new NullPointerException();
4479 <            return new MapReduceKeysTask<K,V,U>
4480 <                (map, null, -1, null, transformer, reducer);
4390 >        public final boolean retainAll(Collection<?> c) {
4391 >            boolean modified = false;
4392 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4393 >                if (!c.contains(it.next())) {
4394 >                    it.remove();
4395 >                    modified = true;
4396 >                }
4397 >            }
4398 >            return modified;
4399          }
4400  
4401 <        /**
4484 <         * Returns a task that when invoked, returns the result of
4485 <         * accumulating the given transformation of all keys using the given
4486 <         * reducer to combine values, and the given basis as an
4487 <         * identity value.
4488 <         *
4489 <         * @param map the map
4490 <         * @param transformer a function returning the transformation
4491 <         * for an element
4492 <         * @param basis the identity (initial default value) for the reduction
4493 <         * @param reducer a commutative associative combining function
4494 <         * @return the task
4495 <         */
4496 <        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4497 <            (ConcurrentHashMapV8<K,V> map,
4498 <             ObjectToDouble<? super K> transformer,
4499 <             double basis,
4500 <             DoubleByDoubleToDouble reducer) {
4501 <            if (transformer == null || reducer == null)
4502 <                throw new NullPointerException();
4503 <            return new MapReduceKeysToDoubleTask<K,V>
4504 <                (map, null, -1, null, transformer, basis, reducer);
4505 <        }
4401 >    }
4402  
4403 <        /**
4404 <         * Returns a task that when invoked, returns the result of
4405 <         * accumulating the given transformation of all keys using the given
4406 <         * reducer to combine values, and the given basis as an
4407 <         * identity value.
4408 <         *
4409 <         * @param map the map
4410 <         * @param transformer a function returning the transformation
4411 <         * for an element
4412 <         * @param basis the identity (initial default value) for the reduction
4413 <         * @param reducer a commutative associative combining function
4414 <         * @return the task
4415 <         */
4416 <        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4417 <            (ConcurrentHashMapV8<K,V> map,
4418 <             ObjectToLong<? super K> transformer,
4419 <             long basis,
4420 <             LongByLongToLong reducer) {
4525 <            if (transformer == null || reducer == null)
4526 <                throw new NullPointerException();
4527 <            return new MapReduceKeysToLongTask<K,V>
4528 <                (map, null, -1, null, transformer, basis, reducer);
4403 >    /**
4404 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4405 >     * which additions may optionally be enabled by mapping to a
4406 >     * common value.  This class cannot be directly instantiated.
4407 >     * See {@link #keySet() keySet()},
4408 >     * {@link #keySet(Object) keySet(V)},
4409 >     * {@link #newKeySet() newKeySet()},
4410 >     * {@link #newKeySet(int) newKeySet(int)}.
4411 >     *
4412 >     * @since 1.8
4413 >     */
4414 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4415 >        implements Set<K>, java.io.Serializable {
4416 >        private static final long serialVersionUID = 7249069246763182397L;
4417 >        private final V value;
4418 >        KeySetView(ConcurrentHashMapV8<K,V> map, V value) {  // non-public
4419 >            super(map);
4420 >            this.value = value;
4421          }
4422  
4423          /**
4424 <         * Returns a task that when invoked, returns the result of
4425 <         * accumulating the given transformation of all keys using the given
4534 <         * reducer to combine values, and the given basis as an
4535 <         * identity value.
4424 >         * Returns the default mapped value for additions,
4425 >         * or {@code null} if additions are not supported.
4426           *
4427 <         * @param map the map
4428 <         * @param transformer a function returning the transformation
4539 <         * for an element
4540 <         * @param basis the identity (initial default value) for the reduction
4541 <         * @param reducer a commutative associative combining function
4542 <         * @return the task
4427 >         * @return the default mapped value for additions, or {@code null}
4428 >         * if not supported
4429           */
4430 <        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4545 <            (ConcurrentHashMapV8<K,V> map,
4546 <             ObjectToInt<? super K> transformer,
4547 <             int basis,
4548 <             IntByIntToInt reducer) {
4549 <            if (transformer == null || reducer == null)
4550 <                throw new NullPointerException();
4551 <            return new MapReduceKeysToIntTask<K,V>
4552 <                (map, null, -1, null, transformer, basis, reducer);
4553 <        }
4430 >        public V getMappedValue() { return value; }
4431  
4432          /**
4433 <         * Returns a task that when invoked, performs the given action
4434 <         * for each value.
4558 <         *
4559 <         * @param map the map
4560 <         * @param action the action
4433 >         * {@inheritDoc}
4434 >         * @throws NullPointerException if the specified key is null
4435           */
4436 <        public static <K,V> ForkJoinTask<Void> forEachValue
4563 <            (ConcurrentHashMapV8<K,V> map,
4564 <             Action<V> action) {
4565 <            if (action == null) throw new NullPointerException();
4566 <            return new ForEachValueTask<K,V>(map, null, -1, null, action);
4567 <        }
4436 >        public boolean contains(Object o) { return map.containsKey(o); }
4437  
4438          /**
4439 <         * Returns a task that when invoked, performs the given action
4440 <         * for each non-null transformation of each value.
4439 >         * Removes the key from this map view, by removing the key (and its
4440 >         * corresponding value) from the backing map.  This method does
4441 >         * nothing if the key is not in the map.
4442           *
4443 <         * @param map the map
4444 <         * @param transformer a function returning the transformation
4445 <         * for an element, or null if there is no transformation (in
4576 <         * which case the action is not applied)
4577 <         * @param action the action
4443 >         * @param  o the key to be removed from the backing map
4444 >         * @return {@code true} if the backing map contained the specified key
4445 >         * @throws NullPointerException if the specified key is null
4446           */
4447 <        public static <K,V,U> ForkJoinTask<Void> forEachValue
4580 <            (ConcurrentHashMapV8<K,V> map,
4581 <             Fun<? super V, ? extends U> transformer,
4582 <             Action<U> action) {
4583 <            if (transformer == null || action == null)
4584 <                throw new NullPointerException();
4585 <            return new ForEachTransformedValueTask<K,V,U>
4586 <                (map, null, -1, null, transformer, action);
4587 <        }
4447 >        public boolean remove(Object o) { return map.remove(o) != null; }
4448  
4449          /**
4450 <         * Returns a task that when invoked, returns a non-null result
4591 <         * from applying the given search function on each value, or
4592 <         * null if none.  Upon success, further element processing is
4593 <         * suppressed and the results of any other parallel
4594 <         * invocations of the search function are ignored.
4595 <         *
4596 <         * @param map the map
4597 <         * @param searchFunction a function returning a non-null
4598 <         * result on success, else null
4599 <         * @return the task
4450 >         * @return an iterator over the keys of the backing map
4451           */
4452 <        public static <K,V,U> ForkJoinTask<U> searchValues
4453 <            (ConcurrentHashMapV8<K,V> map,
4454 <             Fun<? super V, ? extends U> searchFunction) {
4455 <            if (searchFunction == null) throw new NullPointerException();
4456 <            return new SearchValuesTask<K,V,U>
4606 <                (map, null, -1, null, searchFunction,
4607 <                 new AtomicReference<U>());
4452 >        public Iterator<K> iterator() {
4453 >            Node<K,V>[] t;
4454 >            ConcurrentHashMapV8<K,V> m = map;
4455 >            int f = (t = m.table) == null ? 0 : t.length;
4456 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4457          }
4458  
4459          /**
4460 <         * Returns a task that when invoked, returns the result of
4461 <         * accumulating all values using the given reducer to combine
4613 <         * values, or null if none.
4460 >         * Adds the specified key to this set view by mapping the key to
4461 >         * the default mapped value in the backing map, if defined.
4462           *
4463 <         * @param map the map
4464 <         * @param reducer a commutative associative combining function
4465 <         * @return the task
4463 >         * @param e key to be added
4464 >         * @return {@code true} if this set changed as a result of the call
4465 >         * @throws NullPointerException if the specified key is null
4466 >         * @throws UnsupportedOperationException if no default mapped value
4467 >         * for additions was provided
4468           */
4469 <        public static <K,V> ForkJoinTask<V> reduceValues
4470 <            (ConcurrentHashMapV8<K,V> map,
4471 <             BiFun<? super V, ? super V, ? extends V> reducer) {
4472 <            if (reducer == null) throw new NullPointerException();
4473 <            return new ReduceValuesTask<K,V>
4624 <                (map, null, -1, null, reducer);
4469 >        public boolean add(K e) {
4470 >            V v;
4471 >            if ((v = value) == null)
4472 >                throw new UnsupportedOperationException();
4473 >            return map.putVal(e, v, true) == null;
4474          }
4475  
4476          /**
4477 <         * Returns a task that when invoked, returns the result of
4478 <         * accumulating the given transformation of all values using the
4630 <         * given reducer to combine values, or null if none.
4477 >         * Adds all of the elements in the specified collection to this set,
4478 >         * as if by calling {@link #add} on each one.
4479           *
4480 <         * @param map the map
4481 <         * @param transformer a function returning the transformation
4482 <         * for an element, or null if there is no transformation (in
4483 <         * which case it is not combined).
4484 <         * @param reducer a commutative associative combining function
4485 <         * @return the task
4480 >         * @param c the elements to be inserted into this set
4481 >         * @return {@code true} if this set changed as a result of the call
4482 >         * @throws NullPointerException if the collection or any of its
4483 >         * elements are {@code null}
4484 >         * @throws UnsupportedOperationException if no default mapped value
4485 >         * for additions was provided
4486           */
4487 <        public static <K,V,U> ForkJoinTask<U> reduceValues
4488 <            (ConcurrentHashMapV8<K,V> map,
4489 <             Fun<? super V, ? extends U> transformer,
4490 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4491 <            if (transformer == null || reducer == null)
4492 <                throw new NullPointerException();
4493 <            return new MapReduceValuesTask<K,V,U>
4494 <                (map, null, -1, null, transformer, reducer);
4487 >        public boolean addAll(Collection<? extends K> c) {
4488 >            boolean added = false;
4489 >            V v;
4490 >            if ((v = value) == null)
4491 >                throw new UnsupportedOperationException();
4492 >            for (K e : c) {
4493 >                if (map.putVal(e, v, true) == null)
4494 >                    added = true;
4495 >            }
4496 >            return added;
4497          }
4498  
4499 <        /**
4500 <         * Returns a task that when invoked, returns the result of
4501 <         * accumulating the given transformation of all values using the
4502 <         * given reducer to combine values, and the given basis as an
4503 <         * identity value.
4654 <         *
4655 <         * @param map the map
4656 <         * @param transformer a function returning the transformation
4657 <         * for an element
4658 <         * @param basis the identity (initial default value) for the reduction
4659 <         * @param reducer a commutative associative combining function
4660 <         * @return the task
4661 <         */
4662 <        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4663 <            (ConcurrentHashMapV8<K,V> map,
4664 <             ObjectToDouble<? super V> transformer,
4665 <             double basis,
4666 <             DoubleByDoubleToDouble reducer) {
4667 <            if (transformer == null || reducer == null)
4668 <                throw new NullPointerException();
4669 <            return new MapReduceValuesToDoubleTask<K,V>
4670 <                (map, null, -1, null, transformer, basis, reducer);
4499 >        public int hashCode() {
4500 >            int h = 0;
4501 >            for (K e : this)
4502 >                h += e.hashCode();
4503 >            return h;
4504          }
4505  
4506 <        /**
4507 <         * Returns a task that when invoked, returns the result of
4508 <         * accumulating the given transformation of all values using the
4509 <         * given reducer to combine values, and the given basis as an
4510 <         * identity value.
4678 <         *
4679 <         * @param map the map
4680 <         * @param transformer a function returning the transformation
4681 <         * for an element
4682 <         * @param basis the identity (initial default value) for the reduction
4683 <         * @param reducer a commutative associative combining function
4684 <         * @return the task
4685 <         */
4686 <        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
4687 <            (ConcurrentHashMapV8<K,V> map,
4688 <             ObjectToLong<? super V> transformer,
4689 <             long basis,
4690 <             LongByLongToLong reducer) {
4691 <            if (transformer == null || reducer == null)
4692 <                throw new NullPointerException();
4693 <            return new MapReduceValuesToLongTask<K,V>
4694 <                (map, null, -1, null, transformer, basis, reducer);
4506 >        public boolean equals(Object o) {
4507 >            Set<?> c;
4508 >            return ((o instanceof Set) &&
4509 >                    ((c = (Set<?>)o) == this ||
4510 >                     (containsAll(c) && c.containsAll(this))));
4511          }
4512  
4513 <        /**
4514 <         * Returns a task that when invoked, returns the result of
4515 <         * accumulating the given transformation of all values using the
4516 <         * given reducer to combine values, and the given basis as an
4517 <         * identity value.
4518 <         *
4703 <         * @param map the map
4704 <         * @param transformer a function returning the transformation
4705 <         * for an element
4706 <         * @param basis the identity (initial default value) for the reduction
4707 <         * @param reducer a commutative associative combining function
4708 <         * @return the task
4709 <         */
4710 <        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
4711 <            (ConcurrentHashMapV8<K,V> map,
4712 <             ObjectToInt<? super V> transformer,
4713 <             int basis,
4714 <             IntByIntToInt reducer) {
4715 <            if (transformer == null || reducer == null)
4716 <                throw new NullPointerException();
4717 <            return new MapReduceValuesToIntTask<K,V>
4718 <                (map, null, -1, null, transformer, basis, reducer);
4513 >        public ConcurrentHashMapSpliterator<K> spliterator() {
4514 >            Node<K,V>[] t;
4515 >            ConcurrentHashMapV8<K,V> m = map;
4516 >            long n = m.sumCount();
4517 >            int f = (t = m.table) == null ? 0 : t.length;
4518 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4519          }
4520  
4521 <        /**
4722 <         * Returns a task that when invoked, perform the given action
4723 <         * for each entry.
4724 <         *
4725 <         * @param map the map
4726 <         * @param action the action
4727 <         */
4728 <        public static <K,V> ForkJoinTask<Void> forEachEntry
4729 <            (ConcurrentHashMapV8<K,V> map,
4730 <             Action<Map.Entry<K,V>> action) {
4521 >        public void forEach(Action<? super K> action) {
4522              if (action == null) throw new NullPointerException();
4523 <            return new ForEachEntryTask<K,V>(map, null, -1, null, action);
4523 >            Node<K,V>[] t;
4524 >            if ((t = map.table) != null) {
4525 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4526 >                for (Node<K,V> p; (p = it.advance()) != null; )
4527 >                    action.apply(p.key);
4528 >            }
4529          }
4530 +    }
4531  
4532 <        /**
4533 <         * Returns a task that when invoked, perform the given action
4534 <         * for each non-null transformation of each entry.
4535 <         *
4536 <         * @param map the map
4537 <         * @param transformer a function returning the transformation
4538 <         * for an element, or null if there is no transformation (in
4539 <         * which case the action is not applied)
4540 <         * @param action the action
4541 <         */
4542 <        public static <K,V,U> ForkJoinTask<Void> forEachEntry
4746 <            (ConcurrentHashMapV8<K,V> map,
4747 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
4748 <             Action<U> action) {
4749 <            if (transformer == null || action == null)
4750 <                throw new NullPointerException();
4751 <            return new ForEachTransformedEntryTask<K,V,U>
4752 <                (map, null, -1, null, transformer, action);
4532 >    /**
4533 >     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4534 >     * values, in which additions are disabled. This class cannot be
4535 >     * directly instantiated. See {@link #values()}.
4536 >     */
4537 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4538 >        implements Collection<V>, java.io.Serializable {
4539 >        private static final long serialVersionUID = 2249069246763182397L;
4540 >        ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4541 >        public final boolean contains(Object o) {
4542 >            return map.containsValue(o);
4543          }
4544  
4545 <        /**
4546 <         * Returns a task that when invoked, returns a non-null result
4547 <         * from applying the given search function on each entry, or
4548 <         * null if none.  Upon success, further element processing is
4549 <         * suppressed and the results of any other parallel
4550 <         * invocations of the search function are ignored.
4551 <         *
4552 <         * @param map the map
4553 <         * @param searchFunction a function returning a non-null
4554 <         * result on success, else null
4765 <         * @return the task
4766 <         */
4767 <        public static <K,V,U> ForkJoinTask<U> searchEntries
4768 <            (ConcurrentHashMapV8<K,V> map,
4769 <             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4770 <            if (searchFunction == null) throw new NullPointerException();
4771 <            return new SearchEntriesTask<K,V,U>
4772 <                (map, null, -1, null, searchFunction,
4773 <                 new AtomicReference<U>());
4545 >        public final boolean remove(Object o) {
4546 >            if (o != null) {
4547 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4548 >                    if (o.equals(it.next())) {
4549 >                        it.remove();
4550 >                        return true;
4551 >                    }
4552 >                }
4553 >            }
4554 >            return false;
4555          }
4556  
4557 <        /**
4558 <         * Returns a task that when invoked, returns the result of
4559 <         * accumulating all entries using the given reducer to combine
4560 <         * values, or null if none.
4561 <         *
4781 <         * @param map the map
4782 <         * @param reducer a commutative associative combining function
4783 <         * @return the task
4784 <         */
4785 <        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
4786 <            (ConcurrentHashMapV8<K,V> map,
4787 <             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4788 <            if (reducer == null) throw new NullPointerException();
4789 <            return new ReduceEntriesTask<K,V>
4790 <                (map, null, -1, null, reducer);
4557 >        public final Iterator<V> iterator() {
4558 >            ConcurrentHashMapV8<K,V> m = map;
4559 >            Node<K,V>[] t;
4560 >            int f = (t = m.table) == null ? 0 : t.length;
4561 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4562          }
4563  
4564 <        /**
4565 <         * Returns a task that when invoked, returns the result of
4795 <         * accumulating the given transformation of all entries using the
4796 <         * given reducer to combine values, or null if none.
4797 <         *
4798 <         * @param map the map
4799 <         * @param transformer a function returning the transformation
4800 <         * for an element, or null if there is no transformation (in
4801 <         * which case it is not combined).
4802 <         * @param reducer a commutative associative combining function
4803 <         * @return the task
4804 <         */
4805 <        public static <K,V,U> ForkJoinTask<U> reduceEntries
4806 <            (ConcurrentHashMapV8<K,V> map,
4807 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
4808 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4809 <            if (transformer == null || reducer == null)
4810 <                throw new NullPointerException();
4811 <            return new MapReduceEntriesTask<K,V,U>
4812 <                (map, null, -1, null, transformer, reducer);
4564 >        public final boolean add(V e) {
4565 >            throw new UnsupportedOperationException();
4566          }
4567 <
4568 <        /**
4816 <         * Returns a task that when invoked, returns the result of
4817 <         * accumulating the given transformation of all entries using the
4818 <         * given reducer to combine values, and the given basis as an
4819 <         * identity value.
4820 <         *
4821 <         * @param map the map
4822 <         * @param transformer a function returning the transformation
4823 <         * for an element
4824 <         * @param basis the identity (initial default value) for the reduction
4825 <         * @param reducer a commutative associative combining function
4826 <         * @return the task
4827 <         */
4828 <        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
4829 <            (ConcurrentHashMapV8<K,V> map,
4830 <             ObjectToDouble<Map.Entry<K,V>> transformer,
4831 <             double basis,
4832 <             DoubleByDoubleToDouble reducer) {
4833 <            if (transformer == null || reducer == null)
4834 <                throw new NullPointerException();
4835 <            return new MapReduceEntriesToDoubleTask<K,V>
4836 <                (map, null, -1, null, transformer, basis, reducer);
4567 >        public final boolean addAll(Collection<? extends V> c) {
4568 >            throw new UnsupportedOperationException();
4569          }
4570  
4571 <        /**
4572 <         * Returns a task that when invoked, returns the result of
4573 <         * accumulating the given transformation of all entries using the
4574 <         * given reducer to combine values, and the given basis as an
4575 <         * identity value.
4576 <         *
4845 <         * @param map the map
4846 <         * @param transformer a function returning the transformation
4847 <         * for an element
4848 <         * @param basis the identity (initial default value) for the reduction
4849 <         * @param reducer a commutative associative combining function
4850 <         * @return the task
4851 <         */
4852 <        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
4853 <            (ConcurrentHashMapV8<K,V> map,
4854 <             ObjectToLong<Map.Entry<K,V>> transformer,
4855 <             long basis,
4856 <             LongByLongToLong reducer) {
4857 <            if (transformer == null || reducer == null)
4858 <                throw new NullPointerException();
4859 <            return new MapReduceEntriesToLongTask<K,V>
4860 <                (map, null, -1, null, transformer, basis, reducer);
4571 >        public ConcurrentHashMapSpliterator<V> spliterator() {
4572 >            Node<K,V>[] t;
4573 >            ConcurrentHashMapV8<K,V> m = map;
4574 >            long n = m.sumCount();
4575 >            int f = (t = m.table) == null ? 0 : t.length;
4576 >            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4577          }
4578  
4579 <        /**
4580 <         * Returns a task that when invoked, returns the result of
4581 <         * accumulating the given transformation of all entries using the
4582 <         * given reducer to combine values, and the given basis as an
4583 <         * identity value.
4584 <         *
4585 <         * @param map the map
4586 <         * @param transformer a function returning the transformation
4871 <         * for an element
4872 <         * @param basis the identity (initial default value) for the reduction
4873 <         * @param reducer a commutative associative combining function
4874 <         * @return the task
4875 <         */
4876 <        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4877 <            (ConcurrentHashMapV8<K,V> map,
4878 <             ObjectToInt<Map.Entry<K,V>> transformer,
4879 <             int basis,
4880 <             IntByIntToInt reducer) {
4881 <            if (transformer == null || reducer == null)
4882 <                throw new NullPointerException();
4883 <            return new MapReduceEntriesToIntTask<K,V>
4884 <                (map, null, -1, null, transformer, basis, reducer);
4579 >        public void forEach(Action<? super V> action) {
4580 >            if (action == null) throw new NullPointerException();
4581 >            Node<K,V>[] t;
4582 >            if ((t = map.table) != null) {
4583 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4584 >                for (Node<K,V> p; (p = it.advance()) != null; )
4585 >                    action.apply(p.val);
4586 >            }
4587          }
4588      }
4589  
4888    // -------------------------------------------------------
4889
4590      /**
4591 <     * Base for FJ tasks for bulk operations. This adds a variant of
4592 <     * CountedCompleters and some split and merge bookkeeping to
4593 <     * iterator functionality. The forEach and reduce methods are
4594 <     * similar to those illustrated in CountedCompleter documentation,
4595 <     * except that bottom-up reduction completions perform them within
4596 <     * their compute methods. The search methods are like forEach
4597 <     * except they continually poll for success and exit early.  Also,
4598 <     * exceptions are handled in a simpler manner, by just trying to
4899 <     * complete root task exceptionally.
4900 <     */
4901 <    @SuppressWarnings("serial") static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
4902 <        final BulkTask<K,V,?> parent;  // completion target
4903 <        int batch;                     // split control; -1 for unknown
4904 <        int pending;                   // completion control
4591 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4592 >     * entries.  This class cannot be directly instantiated. See
4593 >     * {@link #entrySet()}.
4594 >     */
4595 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4596 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4597 >        private static final long serialVersionUID = 2249069246763182397L;
4598 >        EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4599  
4600 <        BulkTask(ConcurrentHashMapV8<K,V> map, BulkTask<K,V,?> parent,
4601 <                 int batch) {
4602 <            super(map);
4603 <            this.parent = parent;
4604 <            this.batch = batch;
4605 <            if (parent != null && map != null) { // split parent
4606 <                Node[] t;
4913 <                if ((t = parent.tab) == null &&
4914 <                    (t = parent.tab = map.table) != null)
4915 <                    parent.baseLimit = parent.baseSize = t.length;
4916 <                this.tab = t;
4917 <                this.baseSize = parent.baseSize;
4918 <                int hi = this.baseLimit = parent.baseLimit;
4919 <                parent.baseLimit = this.index = this.baseIndex =
4920 <                    (hi + parent.baseIndex + 1) >>> 1;
4921 <            }
4600 >        public boolean contains(Object o) {
4601 >            Object k, v, r; Map.Entry<?,?> e;
4602 >            return ((o instanceof Map.Entry) &&
4603 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4604 >                    (r = map.get(k)) != null &&
4605 >                    (v = e.getValue()) != null &&
4606 >                    (v == r || v.equals(r)));
4607          }
4608  
4609 <        /**
4610 <         * Forces root task to complete.
4611 <         * @param ex if null, complete normally, else exceptionally
4612 <         * @return false to simplify use
4613 <         */
4614 <        final boolean tryCompleteComputation(Throwable ex) {
4930 <            for (BulkTask<K,V,?> a = this;;) {
4931 <                BulkTask<K,V,?> p = a.parent;
4932 <                if (p == null) {
4933 <                    if (ex != null)
4934 <                        a.completeExceptionally(ex);
4935 <                    else
4936 <                        a.quietlyComplete();
4937 <                    return false;
4938 <                }
4939 <                a = p;
4940 <            }
4609 >        public boolean remove(Object o) {
4610 >            Object k, v; Map.Entry<?,?> e;
4611 >            return ((o instanceof Map.Entry) &&
4612 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4613 >                    (v = e.getValue()) != null &&
4614 >                    map.remove(k, v));
4615          }
4616  
4617          /**
4618 <         * Version of tryCompleteComputation for function screening checks
4618 >         * @return an iterator over the entries of the backing map
4619           */
4620 <        final boolean abortOnNullFunction() {
4621 <            return tryCompleteComputation(new Error("Unexpected null function"));
4620 >        public Iterator<Map.Entry<K,V>> iterator() {
4621 >            ConcurrentHashMapV8<K,V> m = map;
4622 >            Node<K,V>[] t;
4623 >            int f = (t = m.table) == null ? 0 : t.length;
4624 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4625          }
4626  
4627 <        // utilities
4627 >        public boolean add(Entry<K,V> e) {
4628 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4629 >        }
4630  
4631 <        /** CompareAndSet pending count */
4632 <        final boolean casPending(int cmp, int val) {
4633 <            return U.compareAndSwapInt(this, PENDING, cmp, val);
4631 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4632 >            boolean added = false;
4633 >            for (Entry<K,V> e : c) {
4634 >                if (add(e))
4635 >                    added = true;
4636 >            }
4637 >            return added;
4638          }
4639  
4640 <        /**
4641 <         * Returns approx exp2 of the number of times (minus one) to
4642 <         * split task by two before executing leaf action. This value
4643 <         * is faster to compute and more convenient to use as a guide
4644 <         * to splitting than is the depth, since it is used while
4645 <         * dividing by two anyway.
4646 <         */
4964 <        final int batch() {
4965 <            ConcurrentHashMapV8<K, V> m; int b; Node[] t;  ForkJoinPool pool;
4966 <            if ((b = batch) < 0 && (m = map) != null) { // force initialization
4967 <                if ((t = tab) == null && (t = tab = m.table) != null)
4968 <                    baseLimit = baseSize = t.length;
4969 <                if (t != null) {
4970 <                    long n = m.counter.sum();
4971 <                    int par = ((pool = getPool()) == null) ?
4972 <                        ForkJoinPool.getCommonPoolParallelism() :
4973 <                        pool.getParallelism();
4974 <                    int sp = par << 3; // slack of 8
4975 <                    b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
4640 >        public final int hashCode() {
4641 >            int h = 0;
4642 >            Node<K,V>[] t;
4643 >            if ((t = map.table) != null) {
4644 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4645 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4646 >                    h += p.hashCode();
4647                  }
4648              }
4649 <            return b;
4649 >            return h;
4650          }
4651  
4652 <        /**
4653 <         * Returns exportable snapshot entry.
4654 <         */
4655 <        static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
4656 <            return new AbstractMap.SimpleEntry<K,V>(k, v);
4652 >        public final boolean equals(Object o) {
4653 >            Set<?> c;
4654 >            return ((o instanceof Set) &&
4655 >                    ((c = (Set<?>)o) == this ||
4656 >                     (containsAll(c) && c.containsAll(this))));
4657          }
4658  
4659 <        // Unsafe mechanics
4660 <        private static final sun.misc.Unsafe U;
4661 <        private static final long PENDING;
4662 <        static {
4663 <            try {
4664 <                U = getUnsafe();
4665 <                PENDING = U.objectFieldOffset
4666 <                    (BulkTask.class.getDeclaredField("pending"));
4667 <            } catch (Exception e) {
4668 <                throw new Error(e);
4659 >        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4660 >            Node<K,V>[] t;
4661 >            ConcurrentHashMapV8<K,V> m = map;
4662 >            long n = m.sumCount();
4663 >            int f = (t = m.table) == null ? 0 : t.length;
4664 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4665 >        }
4666 >
4667 >        public void forEach(Action<? super Map.Entry<K,V>> action) {
4668 >            if (action == null) throw new NullPointerException();
4669 >            Node<K,V>[] t;
4670 >            if ((t = map.table) != null) {
4671 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4672 >                for (Node<K,V> p; (p = it.advance()) != null; )
4673 >                    action.apply(new MapEntry<K,V>(p.key, p.val, map));
4674              }
4675          }
4676 +
4677      }
4678  
4679 +    // -------------------------------------------------------
4680 +
4681      /**
4682 <     * Base class for non-reductive actions
4682 >     * Base class for bulk tasks. Repeats some fields and code from
4683 >     * class Traverser, because we need to subclass CountedCompleter.
4684       */
4685 <    @SuppressWarnings("serial") static abstract class BulkAction<K,V,R> extends BulkTask<K,V,R> {
4686 <        BulkAction<K,V,?> nextTask;
4687 <        BulkAction(ConcurrentHashMapV8<K,V> map, BulkTask<K,V,?> parent,
4688 <                   int batch, BulkAction<K,V,?> nextTask) {
4689 <            super(map, parent, batch);
4690 <            this.nextTask = nextTask;
4685 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4686 >        Node<K,V>[] tab;        // same as Traverser
4687 >        Node<K,V> next;
4688 >        int index;
4689 >        int baseIndex;
4690 >        int baseLimit;
4691 >        final int baseSize;
4692 >        int batch;              // split control
4693 >
4694 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4695 >            super(par);
4696 >            this.batch = b;
4697 >            this.index = this.baseIndex = i;
4698 >            if ((this.tab = t) == null)
4699 >                this.baseSize = this.baseLimit = 0;
4700 >            else if (par == null)
4701 >                this.baseSize = this.baseLimit = t.length;
4702 >            else {
4703 >                this.baseLimit = f;
4704 >                this.baseSize = par.baseSize;
4705 >            }
4706          }
4707  
4708          /**
4709 <         * Try to complete task and upward parents. Upon hitting
5015 <         * non-completed parent, if a non-FJ task, try to help out the
5016 <         * computation.
4709 >         * Same as Traverser version
4710           */
4711 <        final void tryComplete(BulkAction<K,V,?> subtasks) {
4712 <            BulkTask<K,V,?> a = this, s = a;
4713 <            for (int c;;) {
4714 <                if ((c = a.pending) == 0) {
4715 <                    if ((a = (s = a).parent) == null) {
4716 <                        s.quietlyComplete();
4717 <                        break;
4718 <                    }
4719 <                }
4720 <                else if (a.casPending(c, c - 1)) {
4721 <                    if (subtasks != null && !inForkJoinPool()) {
4722 <                        while ((s = a.parent) != null)
4723 <                            a = s;
4724 <                        while (!a.isDone()) {
4725 <                            BulkAction<K,V,?> next = subtasks.nextTask;
4726 <                            if (subtasks.tryUnfork())
5034 <                                subtasks.exec();
5035 <                            if ((subtasks = next) == null)
5036 <                                break;
5037 <                        }
4711 >        final Node<K,V> advance() {
4712 >            Node<K,V> e;
4713 >            if ((e = next) != null)
4714 >                e = e.next;
4715 >            for (;;) {
4716 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4717 >                if (e != null)
4718 >                    return next = e;
4719 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4720 >                    (n = t.length) <= (i = index) || i < 0)
4721 >                    return next = null;
4722 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4723 >                    if (e instanceof ForwardingNode) {
4724 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4725 >                        e = null;
4726 >                        continue;
4727                      }
4728 <                    break;
4728 >                    else if (e instanceof TreeBin)
4729 >                        e = ((TreeBin<K,V>)e).first;
4730 >                    else
4731 >                        e = null;
4732                  }
4733 +                if ((index += baseSize) >= n)
4734 +                    index = ++baseIndex;    // visit upper slots if present
4735              }
4736          }
5043
4737      }
4738  
4739      /*
4740       * Task classes. Coded in a regular but ugly format/style to
4741       * simplify checks that each variant differs in the right way from
4742 <     * others.
4743 <     */
4744 <
4745 <    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
4746 <        extends BulkAction<K,V,Void> {
4747 <        final Action<K> action;
4742 >     * others. The null screenings exist because compilers cannot tell
4743 >     * that we've already null-checked task arguments, so we force
4744 >     * simplest hoisted bypass to help avoid convoluted traps.
4745 >     */
4746 >    @SuppressWarnings("serial")
4747 >    static final class ForEachKeyTask<K,V>
4748 >        extends BulkTask<K,V,Void> {
4749 >        final Action<? super K> action;
4750          ForEachKeyTask
4751 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4752 <             ForEachKeyTask<K,V> nextTask,
4753 <             Action<K> action) {
5059 <            super(m, p, b, nextTask);
4751 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4752 >             Action<? super K> action) {
4753 >            super(p, b, i, f, t);
4754              this.action = action;
4755          }
4756 <        @SuppressWarnings("unchecked") public final boolean exec() {
4757 <            final Action<K> action = this.action;
4758 <            if (action == null)
4759 <                return abortOnNullFunction();
4760 <            ForEachKeyTask<K,V> subtasks = null;
4761 <            try {
4762 <                int b = batch(), c;
4763 <                while (b > 1 && baseIndex != baseLimit) {
4764 <                    do {} while (!casPending(c = pending, c+1));
4765 <                    (subtasks = new ForEachKeyTask<K,V>
4766 <                     (map, this, b >>>= 1, subtasks, action)).fork();
4767 <                }
4768 <                while (advance() != null)
5075 <                    action.apply((K)nextKey);
5076 <            } catch (Throwable ex) {
5077 <                return tryCompleteComputation(ex);
4756 >        public final void compute() {
4757 >            final Action<? super K> action;
4758 >            if ((action = this.action) != null) {
4759 >                for (int i = baseIndex, f, h; batch > 0 &&
4760 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4761 >                    addToPendingCount(1);
4762 >                    new ForEachKeyTask<K,V>
4763 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4764 >                         action).fork();
4765 >                }
4766 >                for (Node<K,V> p; (p = advance()) != null;)
4767 >                    action.apply(p.key);
4768 >                propagateCompletion();
4769              }
5079            tryComplete(subtasks);
5080            return false;
4770          }
4771      }
4772  
4773 <    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
4774 <        extends BulkAction<K,V,Void> {
4775 <        final Action<V> action;
4773 >    @SuppressWarnings("serial")
4774 >    static final class ForEachValueTask<K,V>
4775 >        extends BulkTask<K,V,Void> {
4776 >        final Action<? super V> action;
4777          ForEachValueTask
4778 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4779 <             ForEachValueTask<K,V> nextTask,
4780 <             Action<V> action) {
5091 <            super(m, p, b, nextTask);
4778 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4779 >             Action<? super V> action) {
4780 >            super(p, b, i, f, t);
4781              this.action = action;
4782          }
4783 <        @SuppressWarnings("unchecked") public final boolean exec() {
4784 <            final Action<V> action = this.action;
4785 <            if (action == null)
4786 <                return abortOnNullFunction();
4787 <            ForEachValueTask<K,V> subtasks = null;
4788 <            try {
4789 <                int b = batch(), c;
4790 <                while (b > 1 && baseIndex != baseLimit) {
4791 <                    do {} while (!casPending(c = pending, c+1));
4792 <                    (subtasks = new ForEachValueTask<K,V>
4793 <                     (map, this, b >>>= 1, subtasks, action)).fork();
4794 <                }
4795 <                Object v;
5107 <                while ((v = advance()) != null)
5108 <                    action.apply((V)v);
5109 <            } catch (Throwable ex) {
5110 <                return tryCompleteComputation(ex);
4783 >        public final void compute() {
4784 >            final Action<? super V> action;
4785 >            if ((action = this.action) != null) {
4786 >                for (int i = baseIndex, f, h; batch > 0 &&
4787 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4788 >                    addToPendingCount(1);
4789 >                    new ForEachValueTask<K,V>
4790 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4791 >                         action).fork();
4792 >                }
4793 >                for (Node<K,V> p; (p = advance()) != null;)
4794 >                    action.apply(p.val);
4795 >                propagateCompletion();
4796              }
5112            tryComplete(subtasks);
5113            return false;
4797          }
4798      }
4799  
4800 <    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
4801 <        extends BulkAction<K,V,Void> {
4802 <        final Action<Entry<K,V>> action;
4800 >    @SuppressWarnings("serial")
4801 >    static final class ForEachEntryTask<K,V>
4802 >        extends BulkTask<K,V,Void> {
4803 >        final Action<? super Entry<K,V>> action;
4804          ForEachEntryTask
4805 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4806 <             ForEachEntryTask<K,V> nextTask,
4807 <             Action<Entry<K,V>> action) {
5124 <            super(m, p, b, nextTask);
4805 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4806 >             Action<? super Entry<K,V>> action) {
4807 >            super(p, b, i, f, t);
4808              this.action = action;
4809          }
4810 <        @SuppressWarnings("unchecked") public final boolean exec() {
4811 <            final Action<Entry<K,V>> action = this.action;
4812 <            if (action == null)
4813 <                return abortOnNullFunction();
4814 <            ForEachEntryTask<K,V> subtasks = null;
4815 <            try {
4816 <                int b = batch(), c;
4817 <                while (b > 1 && baseIndex != baseLimit) {
4818 <                    do {} while (!casPending(c = pending, c+1));
4819 <                    (subtasks = new ForEachEntryTask<K,V>
4820 <                     (map, this, b >>>= 1, subtasks, action)).fork();
4821 <                }
4822 <                Object v;
5140 <                while ((v = advance()) != null)
5141 <                    action.apply(entryFor((K)nextKey, (V)v));
5142 <            } catch (Throwable ex) {
5143 <                return tryCompleteComputation(ex);
4810 >        public final void compute() {
4811 >            final Action<? super Entry<K,V>> action;
4812 >            if ((action = this.action) != null) {
4813 >                for (int i = baseIndex, f, h; batch > 0 &&
4814 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4815 >                    addToPendingCount(1);
4816 >                    new ForEachEntryTask<K,V>
4817 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4818 >                         action).fork();
4819 >                }
4820 >                for (Node<K,V> p; (p = advance()) != null; )
4821 >                    action.apply(p);
4822 >                propagateCompletion();
4823              }
5145            tryComplete(subtasks);
5146            return false;
4824          }
4825      }
4826  
4827 <    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
4828 <        extends BulkAction<K,V,Void> {
4829 <        final BiAction<K,V> action;
4827 >    @SuppressWarnings("serial")
4828 >    static final class ForEachMappingTask<K,V>
4829 >        extends BulkTask<K,V,Void> {
4830 >        final BiAction<? super K, ? super V> action;
4831          ForEachMappingTask
4832 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4833 <             ForEachMappingTask<K,V> nextTask,
4834 <             BiAction<K,V> action) {
5157 <            super(m, p, b, nextTask);
4832 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4833 >             BiAction<? super K,? super V> action) {
4834 >            super(p, b, i, f, t);
4835              this.action = action;
4836          }
4837 <        @SuppressWarnings("unchecked") public final boolean exec() {
4838 <            final BiAction<K,V> action = this.action;
4839 <            if (action == null)
4840 <                return abortOnNullFunction();
4841 <            ForEachMappingTask<K,V> subtasks = null;
4842 <            try {
4843 <                int b = batch(), c;
4844 <                while (b > 1 && baseIndex != baseLimit) {
4845 <                    do {} while (!casPending(c = pending, c+1));
4846 <                    (subtasks = new ForEachMappingTask<K,V>
4847 <                     (map, this, b >>>= 1, subtasks, action)).fork();
4848 <                }
4849 <                Object v;
5173 <                while ((v = advance()) != null)
5174 <                    action.apply((K)nextKey, (V)v);
5175 <            } catch (Throwable ex) {
5176 <                return tryCompleteComputation(ex);
4837 >        public final void compute() {
4838 >            final BiAction<? super K, ? super V> action;
4839 >            if ((action = this.action) != null) {
4840 >                for (int i = baseIndex, f, h; batch > 0 &&
4841 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4842 >                    addToPendingCount(1);
4843 >                    new ForEachMappingTask<K,V>
4844 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4845 >                         action).fork();
4846 >                }
4847 >                for (Node<K,V> p; (p = advance()) != null; )
4848 >                    action.apply(p.key, p.val);
4849 >                propagateCompletion();
4850              }
5178            tryComplete(subtasks);
5179            return false;
4851          }
4852      }
4853  
4854 <    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
4855 <        extends BulkAction<K,V,Void> {
4854 >    @SuppressWarnings("serial")
4855 >    static final class ForEachTransformedKeyTask<K,V,U>
4856 >        extends BulkTask<K,V,Void> {
4857          final Fun<? super K, ? extends U> transformer;
4858 <        final Action<U> action;
4858 >        final Action<? super U> action;
4859          ForEachTransformedKeyTask
4860 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4861 <             ForEachTransformedKeyTask<K,V,U> nextTask,
4862 <             Fun<? super K, ? extends U> transformer,
4863 <             Action<U> action) {
4864 <            super(m, p, b, nextTask);
4865 <            this.transformer = transformer;
4866 <            this.action = action;
4867 <
4868 <        }
4869 <        @SuppressWarnings("unchecked") public final boolean exec() {
4870 <            final Fun<? super K, ? extends U> transformer =
4871 <                this.transformer;
4872 <            final Action<U> action = this.action;
4873 <            if (transformer == null || action == null)
4874 <                return abortOnNullFunction();
4875 <            ForEachTransformedKeyTask<K,V,U> subtasks = null;
4876 <            try {
4877 <                int b = batch(), c;
4878 <                while (b > 1 && baseIndex != baseLimit) {
4879 <                    do {} while (!casPending(c = pending, c+1));
5208 <                    (subtasks = new ForEachTransformedKeyTask<K,V,U>
5209 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5210 <                }
5211 <                U u;
5212 <                while (advance() != null) {
5213 <                    if ((u = transformer.apply((K)nextKey)) != null)
4860 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4861 >             Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4862 >            super(p, b, i, f, t);
4863 >            this.transformer = transformer; this.action = action;
4864 >        }
4865 >        public final void compute() {
4866 >            final Fun<? super K, ? extends U> transformer;
4867 >            final Action<? super U> action;
4868 >            if ((transformer = this.transformer) != null &&
4869 >                (action = this.action) != null) {
4870 >                for (int i = baseIndex, f, h; batch > 0 &&
4871 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4872 >                    addToPendingCount(1);
4873 >                    new ForEachTransformedKeyTask<K,V,U>
4874 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4875 >                         transformer, action).fork();
4876 >                }
4877 >                for (Node<K,V> p; (p = advance()) != null; ) {
4878 >                    U u;
4879 >                    if ((u = transformer.apply(p.key)) != null)
4880                          action.apply(u);
4881                  }
4882 <            } catch (Throwable ex) {
5217 <                return tryCompleteComputation(ex);
4882 >                propagateCompletion();
4883              }
5219            tryComplete(subtasks);
5220            return false;
4884          }
4885      }
4886  
4887 <    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
4888 <        extends BulkAction<K,V,Void> {
4887 >    @SuppressWarnings("serial")
4888 >    static final class ForEachTransformedValueTask<K,V,U>
4889 >        extends BulkTask<K,V,Void> {
4890          final Fun<? super V, ? extends U> transformer;
4891 <        final Action<U> action;
4891 >        final Action<? super U> action;
4892          ForEachTransformedValueTask
4893 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4894 <             ForEachTransformedValueTask<K,V,U> nextTask,
4895 <             Fun<? super V, ? extends U> transformer,
4896 <             Action<U> action) {
4897 <            super(m, p, b, nextTask);
4898 <            this.transformer = transformer;
4899 <            this.action = action;
4900 <
4901 <        }
4902 <        @SuppressWarnings("unchecked") public final boolean exec() {
4903 <            final Fun<? super V, ? extends U> transformer =
4904 <                this.transformer;
4905 <            final Action<U> action = this.action;
4906 <            if (transformer == null || action == null)
4907 <                return abortOnNullFunction();
4908 <            ForEachTransformedValueTask<K,V,U> subtasks = null;
4909 <            try {
4910 <                int b = batch(), c;
4911 <                while (b > 1 && baseIndex != baseLimit) {
4912 <                    do {} while (!casPending(c = pending, c+1));
5249 <                    (subtasks = new ForEachTransformedValueTask<K,V,U>
5250 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5251 <                }
5252 <                Object v; U u;
5253 <                while ((v = advance()) != null) {
5254 <                    if ((u = transformer.apply((V)v)) != null)
4893 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4894 >             Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4895 >            super(p, b, i, f, t);
4896 >            this.transformer = transformer; this.action = action;
4897 >        }
4898 >        public final void compute() {
4899 >            final Fun<? super V, ? extends U> transformer;
4900 >            final Action<? super U> action;
4901 >            if ((transformer = this.transformer) != null &&
4902 >                (action = this.action) != null) {
4903 >                for (int i = baseIndex, f, h; batch > 0 &&
4904 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4905 >                    addToPendingCount(1);
4906 >                    new ForEachTransformedValueTask<K,V,U>
4907 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4908 >                         transformer, action).fork();
4909 >                }
4910 >                for (Node<K,V> p; (p = advance()) != null; ) {
4911 >                    U u;
4912 >                    if ((u = transformer.apply(p.val)) != null)
4913                          action.apply(u);
4914                  }
4915 <            } catch (Throwable ex) {
5258 <                return tryCompleteComputation(ex);
4915 >                propagateCompletion();
4916              }
5260            tryComplete(subtasks);
5261            return false;
4917          }
4918      }
4919  
4920 <    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
4921 <        extends BulkAction<K,V,Void> {
4920 >    @SuppressWarnings("serial")
4921 >    static final class ForEachTransformedEntryTask<K,V,U>
4922 >        extends BulkTask<K,V,Void> {
4923          final Fun<Map.Entry<K,V>, ? extends U> transformer;
4924 <        final Action<U> action;
4924 >        final Action<? super U> action;
4925          ForEachTransformedEntryTask
4926 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4927 <             ForEachTransformedEntryTask<K,V,U> nextTask,
4928 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
4929 <             Action<U> action) {
4930 <            super(m, p, b, nextTask);
4931 <            this.transformer = transformer;
4932 <            this.action = action;
4933 <
4934 <        }
4935 <        @SuppressWarnings("unchecked") public final boolean exec() {
4936 <            final Fun<Map.Entry<K,V>, ? extends U> transformer =
4937 <                this.transformer;
4938 <            final Action<U> action = this.action;
4939 <            if (transformer == null || action == null)
4940 <                return abortOnNullFunction();
4941 <            ForEachTransformedEntryTask<K,V,U> subtasks = null;
4942 <            try {
4943 <                int b = batch(), c;
4944 <                while (b > 1 && baseIndex != baseLimit) {
4945 <                    do {} while (!casPending(c = pending, c+1));
5290 <                    (subtasks = new ForEachTransformedEntryTask<K,V,U>
5291 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5292 <                }
5293 <                Object v; U u;
5294 <                while ((v = advance()) != null) {
5295 <                    if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
4926 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4927 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4928 >            super(p, b, i, f, t);
4929 >            this.transformer = transformer; this.action = action;
4930 >        }
4931 >        public final void compute() {
4932 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
4933 >            final Action<? super U> action;
4934 >            if ((transformer = this.transformer) != null &&
4935 >                (action = this.action) != null) {
4936 >                for (int i = baseIndex, f, h; batch > 0 &&
4937 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4938 >                    addToPendingCount(1);
4939 >                    new ForEachTransformedEntryTask<K,V,U>
4940 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4941 >                         transformer, action).fork();
4942 >                }
4943 >                for (Node<K,V> p; (p = advance()) != null; ) {
4944 >                    U u;
4945 >                    if ((u = transformer.apply(p)) != null)
4946                          action.apply(u);
4947                  }
4948 <            } catch (Throwable ex) {
5299 <                return tryCompleteComputation(ex);
4948 >                propagateCompletion();
4949              }
5301            tryComplete(subtasks);
5302            return false;
4950          }
4951      }
4952  
4953 <    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
4954 <        extends BulkAction<K,V,Void> {
4953 >    @SuppressWarnings("serial")
4954 >    static final class ForEachTransformedMappingTask<K,V,U>
4955 >        extends BulkTask<K,V,Void> {
4956          final BiFun<? super K, ? super V, ? extends U> transformer;
4957 <        final Action<U> action;
4957 >        final Action<? super U> action;
4958          ForEachTransformedMappingTask
4959 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5312 <             ForEachTransformedMappingTask<K,V,U> nextTask,
4959 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4960               BiFun<? super K, ? super V, ? extends U> transformer,
4961 <             Action<U> action) {
4962 <            super(m, p, b, nextTask);
4963 <            this.transformer = transformer;
4964 <            this.action = action;
4965 <
4966 <        }
4967 <        @SuppressWarnings("unchecked") public final boolean exec() {
4968 <            final BiFun<? super K, ? super V, ? extends U> transformer =
4969 <                this.transformer;
4970 <            final Action<U> action = this.action;
4971 <            if (transformer == null || action == null)
4972 <                return abortOnNullFunction();
4973 <            ForEachTransformedMappingTask<K,V,U> subtasks = null;
4974 <            try {
4975 <                int b = batch(), c;
4976 <                while (b > 1 && baseIndex != baseLimit) {
4977 <                    do {} while (!casPending(c = pending, c+1));
4978 <                    (subtasks = new ForEachTransformedMappingTask<K,V,U>
4979 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5333 <                }
5334 <                Object v; U u;
5335 <                while ((v = advance()) != null) {
5336 <                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
4961 >             Action<? super U> action) {
4962 >            super(p, b, i, f, t);
4963 >            this.transformer = transformer; this.action = action;
4964 >        }
4965 >        public final void compute() {
4966 >            final BiFun<? super K, ? super V, ? extends U> transformer;
4967 >            final Action<? super U> action;
4968 >            if ((transformer = this.transformer) != null &&
4969 >                (action = this.action) != null) {
4970 >                for (int i = baseIndex, f, h; batch > 0 &&
4971 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4972 >                    addToPendingCount(1);
4973 >                    new ForEachTransformedMappingTask<K,V,U>
4974 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4975 >                         transformer, action).fork();
4976 >                }
4977 >                for (Node<K,V> p; (p = advance()) != null; ) {
4978 >                    U u;
4979 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4980                          action.apply(u);
4981                  }
4982 <            } catch (Throwable ex) {
5340 <                return tryCompleteComputation(ex);
4982 >                propagateCompletion();
4983              }
5342            tryComplete(subtasks);
5343            return false;
4984          }
4985      }
4986  
4987 <    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
4988 <        extends BulkAction<K,V,U> {
4987 >    @SuppressWarnings("serial")
4988 >    static final class SearchKeysTask<K,V,U>
4989 >        extends BulkTask<K,V,U> {
4990          final Fun<? super K, ? extends U> searchFunction;
4991          final AtomicReference<U> result;
4992          SearchKeysTask
4993 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5353 <             SearchKeysTask<K,V,U> nextTask,
4993 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4994               Fun<? super K, ? extends U> searchFunction,
4995               AtomicReference<U> result) {
4996 <            super(m, p, b, nextTask);
4996 >            super(p, b, i, f, t);
4997              this.searchFunction = searchFunction; this.result = result;
4998          }
4999 <        @SuppressWarnings("unchecked") public final boolean exec() {
5000 <            AtomicReference<U> result = this.result;
5001 <            final Fun<? super K, ? extends U> searchFunction =
5002 <                this.searchFunction;
5003 <            if (searchFunction == null || result == null)
5004 <                return abortOnNullFunction();
5005 <            SearchKeysTask<K,V,U> subtasks = null;
5006 <            try {
5007 <                int b = batch(), c;
5008 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5009 <                    do {} while (!casPending(c = pending, c+1));
5010 <                    (subtasks = new SearchKeysTask<K,V,U>
5011 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5012 <                }
5013 <                U u;
5014 <                while (result.get() == null && advance() != null) {
5015 <                    if ((u = searchFunction.apply((K)nextKey)) != null) {
4999 >        public final U getRawResult() { return result.get(); }
5000 >        public final void compute() {
5001 >            final Fun<? super K, ? extends U> searchFunction;
5002 >            final AtomicReference<U> result;
5003 >            if ((searchFunction = this.searchFunction) != null &&
5004 >                (result = this.result) != null) {
5005 >                for (int i = baseIndex, f, h; batch > 0 &&
5006 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5007 >                    if (result.get() != null)
5008 >                        return;
5009 >                    addToPendingCount(1);
5010 >                    new SearchKeysTask<K,V,U>
5011 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5012 >                         searchFunction, result).fork();
5013 >                }
5014 >                while (result.get() == null) {
5015 >                    U u;
5016 >                    Node<K,V> p;
5017 >                    if ((p = advance()) == null) {
5018 >                        propagateCompletion();
5019 >                        break;
5020 >                    }
5021 >                    if ((u = searchFunction.apply(p.key)) != null) {
5022                          if (result.compareAndSet(null, u))
5023 <                            tryCompleteComputation(null);
5023 >                            quietlyCompleteRoot();
5024                          break;
5025                      }
5026                  }
5381            } catch (Throwable ex) {
5382                return tryCompleteComputation(ex);
5027              }
5384            tryComplete(subtasks);
5385            return false;
5028          }
5387        public final U getRawResult() { return result.get(); }
5029      }
5030  
5031 <    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5032 <        extends BulkAction<K,V,U> {
5031 >    @SuppressWarnings("serial")
5032 >    static final class SearchValuesTask<K,V,U>
5033 >        extends BulkTask<K,V,U> {
5034          final Fun<? super V, ? extends U> searchFunction;
5035          final AtomicReference<U> result;
5036          SearchValuesTask
5037 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5396 <             SearchValuesTask<K,V,U> nextTask,
5037 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5038               Fun<? super V, ? extends U> searchFunction,
5039               AtomicReference<U> result) {
5040 <            super(m, p, b, nextTask);
5040 >            super(p, b, i, f, t);
5041              this.searchFunction = searchFunction; this.result = result;
5042          }
5043 <        @SuppressWarnings("unchecked") public final boolean exec() {
5044 <            AtomicReference<U> result = this.result;
5045 <            final Fun<? super V, ? extends U> searchFunction =
5046 <                this.searchFunction;
5047 <            if (searchFunction == null || result == null)
5048 <                return abortOnNullFunction();
5049 <            SearchValuesTask<K,V,U> subtasks = null;
5050 <            try {
5051 <                int b = batch(), c;
5052 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5053 <                    do {} while (!casPending(c = pending, c+1));
5054 <                    (subtasks = new SearchValuesTask<K,V,U>
5055 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5056 <                }
5057 <                Object v; U u;
5058 <                while (result.get() == null && (v = advance()) != null) {
5059 <                    if ((u = searchFunction.apply((V)v)) != null) {
5043 >        public final U getRawResult() { return result.get(); }
5044 >        public final void compute() {
5045 >            final Fun<? super V, ? extends U> searchFunction;
5046 >            final AtomicReference<U> result;
5047 >            if ((searchFunction = this.searchFunction) != null &&
5048 >                (result = this.result) != null) {
5049 >                for (int i = baseIndex, f, h; batch > 0 &&
5050 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5051 >                    if (result.get() != null)
5052 >                        return;
5053 >                    addToPendingCount(1);
5054 >                    new SearchValuesTask<K,V,U>
5055 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5056 >                         searchFunction, result).fork();
5057 >                }
5058 >                while (result.get() == null) {
5059 >                    U u;
5060 >                    Node<K,V> p;
5061 >                    if ((p = advance()) == null) {
5062 >                        propagateCompletion();
5063 >                        break;
5064 >                    }
5065 >                    if ((u = searchFunction.apply(p.val)) != null) {
5066                          if (result.compareAndSet(null, u))
5067 <                            tryCompleteComputation(null);
5067 >                            quietlyCompleteRoot();
5068                          break;
5069                      }
5070                  }
5424            } catch (Throwable ex) {
5425                return tryCompleteComputation(ex);
5071              }
5427            tryComplete(subtasks);
5428            return false;
5072          }
5430        public final U getRawResult() { return result.get(); }
5073      }
5074  
5075 <    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5076 <        extends BulkAction<K,V,U> {
5075 >    @SuppressWarnings("serial")
5076 >    static final class SearchEntriesTask<K,V,U>
5077 >        extends BulkTask<K,V,U> {
5078          final Fun<Entry<K,V>, ? extends U> searchFunction;
5079          final AtomicReference<U> result;
5080          SearchEntriesTask
5081 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5439 <             SearchEntriesTask<K,V,U> nextTask,
5081 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5082               Fun<Entry<K,V>, ? extends U> searchFunction,
5083               AtomicReference<U> result) {
5084 <            super(m, p, b, nextTask);
5084 >            super(p, b, i, f, t);
5085              this.searchFunction = searchFunction; this.result = result;
5086          }
5087 <        @SuppressWarnings("unchecked") public final boolean exec() {
5088 <            AtomicReference<U> result = this.result;
5089 <            final Fun<Entry<K,V>, ? extends U> searchFunction =
5090 <                this.searchFunction;
5091 <            if (searchFunction == null || result == null)
5092 <                return abortOnNullFunction();
5093 <            SearchEntriesTask<K,V,U> subtasks = null;
5094 <            try {
5095 <                int b = batch(), c;
5096 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5097 <                    do {} while (!casPending(c = pending, c+1));
5098 <                    (subtasks = new SearchEntriesTask<K,V,U>
5099 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5100 <                }
5101 <                Object v; U u;
5102 <                while (result.get() == null && (v = advance()) != null) {
5103 <                    if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5104 <                        if (result.compareAndSet(null, u))
5105 <                            tryCompleteComputation(null);
5087 >        public final U getRawResult() { return result.get(); }
5088 >        public final void compute() {
5089 >            final Fun<Entry<K,V>, ? extends U> searchFunction;
5090 >            final AtomicReference<U> result;
5091 >            if ((searchFunction = this.searchFunction) != null &&
5092 >                (result = this.result) != null) {
5093 >                for (int i = baseIndex, f, h; batch > 0 &&
5094 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5095 >                    if (result.get() != null)
5096 >                        return;
5097 >                    addToPendingCount(1);
5098 >                    new SearchEntriesTask<K,V,U>
5099 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5100 >                         searchFunction, result).fork();
5101 >                }
5102 >                while (result.get() == null) {
5103 >                    U u;
5104 >                    Node<K,V> p;
5105 >                    if ((p = advance()) == null) {
5106 >                        propagateCompletion();
5107                          break;
5108                      }
5109 +                    if ((u = searchFunction.apply(p)) != null) {
5110 +                        if (result.compareAndSet(null, u))
5111 +                            quietlyCompleteRoot();
5112 +                        return;
5113 +                    }
5114                  }
5467            } catch (Throwable ex) {
5468                return tryCompleteComputation(ex);
5115              }
5470            tryComplete(subtasks);
5471            return false;
5116          }
5473        public final U getRawResult() { return result.get(); }
5117      }
5118  
5119 <    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5120 <        extends BulkAction<K,V,U> {
5119 >    @SuppressWarnings("serial")
5120 >    static final class SearchMappingsTask<K,V,U>
5121 >        extends BulkTask<K,V,U> {
5122          final BiFun<? super K, ? super V, ? extends U> searchFunction;
5123          final AtomicReference<U> result;
5124          SearchMappingsTask
5125 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5482 <             SearchMappingsTask<K,V,U> nextTask,
5125 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5126               BiFun<? super K, ? super V, ? extends U> searchFunction,
5127               AtomicReference<U> result) {
5128 <            super(m, p, b, nextTask);
5128 >            super(p, b, i, f, t);
5129              this.searchFunction = searchFunction; this.result = result;
5130          }
5131 <        @SuppressWarnings("unchecked") public final boolean exec() {
5132 <            AtomicReference<U> result = this.result;
5133 <            final BiFun<? super K, ? super V, ? extends U> searchFunction =
5134 <                this.searchFunction;
5135 <            if (searchFunction == null || result == null)
5136 <                return abortOnNullFunction();
5137 <            SearchMappingsTask<K,V,U> subtasks = null;
5138 <            try {
5139 <                int b = batch(), c;
5140 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5141 <                    do {} while (!casPending(c = pending, c+1));
5142 <                    (subtasks = new SearchMappingsTask<K,V,U>
5143 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5144 <                }
5145 <                Object v; U u;
5146 <                while (result.get() == null && (v = advance()) != null) {
5147 <                    if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5131 >        public final U getRawResult() { return result.get(); }
5132 >        public final void compute() {
5133 >            final BiFun<? super K, ? super V, ? extends U> searchFunction;
5134 >            final AtomicReference<U> result;
5135 >            if ((searchFunction = this.searchFunction) != null &&
5136 >                (result = this.result) != null) {
5137 >                for (int i = baseIndex, f, h; batch > 0 &&
5138 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5139 >                    if (result.get() != null)
5140 >                        return;
5141 >                    addToPendingCount(1);
5142 >                    new SearchMappingsTask<K,V,U>
5143 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5144 >                         searchFunction, result).fork();
5145 >                }
5146 >                while (result.get() == null) {
5147 >                    U u;
5148 >                    Node<K,V> p;
5149 >                    if ((p = advance()) == null) {
5150 >                        propagateCompletion();
5151 >                        break;
5152 >                    }
5153 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5154                          if (result.compareAndSet(null, u))
5155 <                            tryCompleteComputation(null);
5155 >                            quietlyCompleteRoot();
5156                          break;
5157                      }
5158                  }
5510            } catch (Throwable ex) {
5511                return tryCompleteComputation(ex);
5159              }
5513            tryComplete(subtasks);
5514            return false;
5160          }
5516        public final U getRawResult() { return result.get(); }
5161      }
5162  
5163 <    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5163 >    @SuppressWarnings("serial")
5164 >    static final class ReduceKeysTask<K,V>
5165          extends BulkTask<K,V,K> {
5166          final BiFun<? super K, ? super K, ? extends K> reducer;
5167          K result;
5168          ReduceKeysTask<K,V> rights, nextRight;
5169          ReduceKeysTask
5170 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5170 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5171               ReduceKeysTask<K,V> nextRight,
5172               BiFun<? super K, ? super K, ? extends K> reducer) {
5173 <            super(m, p, b); this.nextRight = nextRight;
5173 >            super(p, b, i, f, t); this.nextRight = nextRight;
5174              this.reducer = reducer;
5175          }
5176 <        @SuppressWarnings("unchecked") public final boolean exec() {
5177 <            final BiFun<? super K, ? super K, ? extends K> reducer =
5178 <                this.reducer;
5179 <            if (reducer == null)
5180 <                return abortOnNullFunction();
5181 <            try {
5182 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5538 <                    do {} while (!casPending(c = pending, c+1));
5176 >        public final K getRawResult() { return result; }
5177 >        public final void compute() {
5178 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5179 >            if ((reducer = this.reducer) != null) {
5180 >                for (int i = baseIndex, f, h; batch > 0 &&
5181 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5182 >                    addToPendingCount(1);
5183                      (rights = new ReduceKeysTask<K,V>
5184 <                     (map, this, b >>>= 1, rights, reducer)).fork();
5184 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5185 >                      rights, reducer)).fork();
5186                  }
5187                  K r = null;
5188 <                while (advance() != null) {
5189 <                    K u = (K)nextKey;
5190 <                    r = (r == null) ? u : reducer.apply(r, u);
5188 >                for (Node<K,V> p; (p = advance()) != null; ) {
5189 >                    K u = p.key;
5190 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5191                  }
5192                  result = r;
5193 <                for (ReduceKeysTask<K,V> t = this, s;;) {
5194 <                    int c; BulkTask<K,V,?> par; K tr, sr;
5195 <                    if ((c = t.pending) == 0) {
5196 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5197 <                            if ((sr = s.result) != null)
5198 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5199 <                        }
5200 <                        if ((par = t.parent) == null ||
5201 <                            !(par instanceof ReduceKeysTask)) {
5202 <                            t.quietlyComplete();
5203 <                            break;
5559 <                        }
5560 <                        t = (ReduceKeysTask<K,V>)par;
5193 >                CountedCompleter<?> c;
5194 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5195 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5196 >                        t = (ReduceKeysTask<K,V>)c,
5197 >                        s = t.rights;
5198 >                    while (s != null) {
5199 >                        K tr, sr;
5200 >                        if ((sr = s.result) != null)
5201 >                            t.result = (((tr = t.result) == null) ? sr :
5202 >                                        reducer.apply(tr, sr));
5203 >                        s = t.rights = s.nextRight;
5204                      }
5562                    else if (t.casPending(c, c - 1))
5563                        break;
5205                  }
5565            } catch (Throwable ex) {
5566                return tryCompleteComputation(ex);
5206              }
5568            ReduceKeysTask<K,V> s = rights;
5569            if (s != null && !inForkJoinPool()) {
5570                do  {
5571                    if (s.tryUnfork())
5572                        s.exec();
5573                } while ((s = s.nextRight) != null);
5574            }
5575            return false;
5207          }
5577        public final K getRawResult() { return result; }
5208      }
5209  
5210 <    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5210 >    @SuppressWarnings("serial")
5211 >    static final class ReduceValuesTask<K,V>
5212          extends BulkTask<K,V,V> {
5213          final BiFun<? super V, ? super V, ? extends V> reducer;
5214          V result;
5215          ReduceValuesTask<K,V> rights, nextRight;
5216          ReduceValuesTask
5217 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5217 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5218               ReduceValuesTask<K,V> nextRight,
5219               BiFun<? super V, ? super V, ? extends V> reducer) {
5220 <            super(m, p, b); this.nextRight = nextRight;
5220 >            super(p, b, i, f, t); this.nextRight = nextRight;
5221              this.reducer = reducer;
5222          }
5223 <        @SuppressWarnings("unchecked") public final boolean exec() {
5224 <            final BiFun<? super V, ? super V, ? extends V> reducer =
5225 <                this.reducer;
5226 <            if (reducer == null)
5227 <                return abortOnNullFunction();
5228 <            try {
5229 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5599 <                    do {} while (!casPending(c = pending, c+1));
5223 >        public final V getRawResult() { return result; }
5224 >        public final void compute() {
5225 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5226 >            if ((reducer = this.reducer) != null) {
5227 >                for (int i = baseIndex, f, h; batch > 0 &&
5228 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5229 >                    addToPendingCount(1);
5230                      (rights = new ReduceValuesTask<K,V>
5231 <                     (map, this, b >>>= 1, rights, reducer)).fork();
5231 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5232 >                      rights, reducer)).fork();
5233                  }
5234                  V r = null;
5235 <                Object v;
5236 <                while ((v = advance()) != null) {
5237 <                    V u = (V)v;
5607 <                    r = (r == null) ? u : reducer.apply(r, u);
5235 >                for (Node<K,V> p; (p = advance()) != null; ) {
5236 >                    V v = p.val;
5237 >                    r = (r == null) ? v : reducer.apply(r, v);
5238                  }
5239                  result = r;
5240 <                for (ReduceValuesTask<K,V> t = this, s;;) {
5241 <                    int c; BulkTask<K,V,?> par; V tr, sr;
5242 <                    if ((c = t.pending) == 0) {
5243 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5244 <                            if ((sr = s.result) != null)
5245 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5246 <                        }
5247 <                        if ((par = t.parent) == null ||
5248 <                            !(par instanceof ReduceValuesTask)) {
5249 <                            t.quietlyComplete();
5250 <                            break;
5621 <                        }
5622 <                        t = (ReduceValuesTask<K,V>)par;
5240 >                CountedCompleter<?> c;
5241 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5242 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5243 >                        t = (ReduceValuesTask<K,V>)c,
5244 >                        s = t.rights;
5245 >                    while (s != null) {
5246 >                        V tr, sr;
5247 >                        if ((sr = s.result) != null)
5248 >                            t.result = (((tr = t.result) == null) ? sr :
5249 >                                        reducer.apply(tr, sr));
5250 >                        s = t.rights = s.nextRight;
5251                      }
5624                    else if (t.casPending(c, c - 1))
5625                        break;
5252                  }
5627            } catch (Throwable ex) {
5628                return tryCompleteComputation(ex);
5629            }
5630            ReduceValuesTask<K,V> s = rights;
5631            if (s != null && !inForkJoinPool()) {
5632                do  {
5633                    if (s.tryUnfork())
5634                        s.exec();
5635                } while ((s = s.nextRight) != null);
5253              }
5637            return false;
5254          }
5639        public final V getRawResult() { return result; }
5255      }
5256  
5257 <    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5257 >    @SuppressWarnings("serial")
5258 >    static final class ReduceEntriesTask<K,V>
5259          extends BulkTask<K,V,Map.Entry<K,V>> {
5260          final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5261          Map.Entry<K,V> result;
5262          ReduceEntriesTask<K,V> rights, nextRight;
5263          ReduceEntriesTask
5264 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5264 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5265               ReduceEntriesTask<K,V> nextRight,
5266               BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5267 <            super(m, p, b); this.nextRight = nextRight;
5267 >            super(p, b, i, f, t); this.nextRight = nextRight;
5268              this.reducer = reducer;
5269          }
5270 <        @SuppressWarnings("unchecked") public final boolean exec() {
5271 <            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5272 <                this.reducer;
5273 <            if (reducer == null)
5274 <                return abortOnNullFunction();
5275 <            try {
5276 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5661 <                    do {} while (!casPending(c = pending, c+1));
5270 >        public final Map.Entry<K,V> getRawResult() { return result; }
5271 >        public final void compute() {
5272 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5273 >            if ((reducer = this.reducer) != null) {
5274 >                for (int i = baseIndex, f, h; batch > 0 &&
5275 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5276 >                    addToPendingCount(1);
5277                      (rights = new ReduceEntriesTask<K,V>
5278 <                     (map, this, b >>>= 1, rights, reducer)).fork();
5278 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5279 >                      rights, reducer)).fork();
5280                  }
5281                  Map.Entry<K,V> r = null;
5282 <                Object v;
5283 <                while ((v = advance()) != null) {
5668 <                    Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5669 <                    r = (r == null) ? u : reducer.apply(r, u);
5670 <                }
5282 >                for (Node<K,V> p; (p = advance()) != null; )
5283 >                    r = (r == null) ? p : reducer.apply(r, p);
5284                  result = r;
5285 <                for (ReduceEntriesTask<K,V> t = this, s;;) {
5286 <                    int c; BulkTask<K,V,?> par; Map.Entry<K,V> tr, sr;
5287 <                    if ((c = t.pending) == 0) {
5288 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5289 <                            if ((sr = s.result) != null)
5290 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5291 <                        }
5292 <                        if ((par = t.parent) == null ||
5293 <                            !(par instanceof ReduceEntriesTask)) {
5294 <                            t.quietlyComplete();
5295 <                            break;
5683 <                        }
5684 <                        t = (ReduceEntriesTask<K,V>)par;
5285 >                CountedCompleter<?> c;
5286 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5287 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5288 >                        t = (ReduceEntriesTask<K,V>)c,
5289 >                        s = t.rights;
5290 >                    while (s != null) {
5291 >                        Map.Entry<K,V> tr, sr;
5292 >                        if ((sr = s.result) != null)
5293 >                            t.result = (((tr = t.result) == null) ? sr :
5294 >                                        reducer.apply(tr, sr));
5295 >                        s = t.rights = s.nextRight;
5296                      }
5686                    else if (t.casPending(c, c - 1))
5687                        break;
5297                  }
5689            } catch (Throwable ex) {
5690                return tryCompleteComputation(ex);
5691            }
5692            ReduceEntriesTask<K,V> s = rights;
5693            if (s != null && !inForkJoinPool()) {
5694                do  {
5695                    if (s.tryUnfork())
5696                        s.exec();
5697                } while ((s = s.nextRight) != null);
5298              }
5699            return false;
5299          }
5701        public final Map.Entry<K,V> getRawResult() { return result; }
5300      }
5301  
5302 <    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5302 >    @SuppressWarnings("serial")
5303 >    static final class MapReduceKeysTask<K,V,U>
5304          extends BulkTask<K,V,U> {
5305          final Fun<? super K, ? extends U> transformer;
5306          final BiFun<? super U, ? super U, ? extends U> reducer;
5307          U result;
5308          MapReduceKeysTask<K,V,U> rights, nextRight;
5309          MapReduceKeysTask
5310 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5310 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5311               MapReduceKeysTask<K,V,U> nextRight,
5312               Fun<? super K, ? extends U> transformer,
5313               BiFun<? super U, ? super U, ? extends U> reducer) {
5314 <            super(m, p, b); this.nextRight = nextRight;
5314 >            super(p, b, i, f, t); this.nextRight = nextRight;
5315              this.transformer = transformer;
5316              this.reducer = reducer;
5317          }
5318 <        @SuppressWarnings("unchecked") public final boolean exec() {
5319 <            final Fun<? super K, ? extends U> transformer =
5320 <                this.transformer;
5321 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5322 <                this.reducer;
5323 <            if (transformer == null || reducer == null)
5324 <                return abortOnNullFunction();
5325 <            try {
5326 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5728 <                    do {} while (!casPending(c = pending, c+1));
5318 >        public final U getRawResult() { return result; }
5319 >        public final void compute() {
5320 >            final Fun<? super K, ? extends U> transformer;
5321 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5322 >            if ((transformer = this.transformer) != null &&
5323 >                (reducer = this.reducer) != null) {
5324 >                for (int i = baseIndex, f, h; batch > 0 &&
5325 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5326 >                    addToPendingCount(1);
5327                      (rights = new MapReduceKeysTask<K,V,U>
5328 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5328 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5329 >                      rights, transformer, reducer)).fork();
5330                  }
5331 <                U r = null, u;
5332 <                while (advance() != null) {
5333 <                    if ((u = transformer.apply((K)nextKey)) != null)
5331 >                U r = null;
5332 >                for (Node<K,V> p; (p = advance()) != null; ) {
5333 >                    U u;
5334 >                    if ((u = transformer.apply(p.key)) != null)
5335                          r = (r == null) ? u : reducer.apply(r, u);
5336                  }
5337                  result = r;
5338 <                for (MapReduceKeysTask<K,V,U> t = this, s;;) {
5339 <                    int c; BulkTask<K,V,?> par; U tr, sr;
5340 <                    if ((c = t.pending) == 0) {
5341 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5342 <                            if ((sr = s.result) != null)
5343 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5344 <                        }
5345 <                        if ((par = t.parent) == null ||
5346 <                            !(par instanceof MapReduceKeysTask)) {
5347 <                            t.quietlyComplete();
5348 <                            break;
5749 <                        }
5750 <                        t = (MapReduceKeysTask<K,V,U>)par;
5338 >                CountedCompleter<?> c;
5339 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5340 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5341 >                        t = (MapReduceKeysTask<K,V,U>)c,
5342 >                        s = t.rights;
5343 >                    while (s != null) {
5344 >                        U tr, sr;
5345 >                        if ((sr = s.result) != null)
5346 >                            t.result = (((tr = t.result) == null) ? sr :
5347 >                                        reducer.apply(tr, sr));
5348 >                        s = t.rights = s.nextRight;
5349                      }
5752                    else if (t.casPending(c, c - 1))
5753                        break;
5350                  }
5755            } catch (Throwable ex) {
5756                return tryCompleteComputation(ex);
5351              }
5758            MapReduceKeysTask<K,V,U> s = rights;
5759            if (s != null && !inForkJoinPool()) {
5760                do  {
5761                    if (s.tryUnfork())
5762                        s.exec();
5763                } while ((s = s.nextRight) != null);
5764            }
5765            return false;
5352          }
5767        public final U getRawResult() { return result; }
5353      }
5354  
5355 <    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5355 >    @SuppressWarnings("serial")
5356 >    static final class MapReduceValuesTask<K,V,U>
5357          extends BulkTask<K,V,U> {
5358          final Fun<? super V, ? extends U> transformer;
5359          final BiFun<? super U, ? super U, ? extends U> reducer;
5360          U result;
5361          MapReduceValuesTask<K,V,U> rights, nextRight;
5362          MapReduceValuesTask
5363 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5363 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5364               MapReduceValuesTask<K,V,U> nextRight,
5365               Fun<? super V, ? extends U> transformer,
5366               BiFun<? super U, ? super U, ? extends U> reducer) {
5367 <            super(m, p, b); this.nextRight = nextRight;
5367 >            super(p, b, i, f, t); this.nextRight = nextRight;
5368              this.transformer = transformer;
5369              this.reducer = reducer;
5370          }
5371 <        @SuppressWarnings("unchecked") public final boolean exec() {
5372 <            final Fun<? super V, ? extends U> transformer =
5373 <                this.transformer;
5374 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5375 <                this.reducer;
5376 <            if (transformer == null || reducer == null)
5377 <                return abortOnNullFunction();
5378 <            try {
5379 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5794 <                    do {} while (!casPending(c = pending, c+1));
5371 >        public final U getRawResult() { return result; }
5372 >        public final void compute() {
5373 >            final Fun<? super V, ? extends U> transformer;
5374 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5375 >            if ((transformer = this.transformer) != null &&
5376 >                (reducer = this.reducer) != null) {
5377 >                for (int i = baseIndex, f, h; batch > 0 &&
5378 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5379 >                    addToPendingCount(1);
5380                      (rights = new MapReduceValuesTask<K,V,U>
5381 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5381 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5382 >                      rights, transformer, reducer)).fork();
5383                  }
5384 <                U r = null, u;
5385 <                Object v;
5386 <                while ((v = advance()) != null) {
5387 <                    if ((u = transformer.apply((V)v)) != null)
5384 >                U r = null;
5385 >                for (Node<K,V> p; (p = advance()) != null; ) {
5386 >                    U u;
5387 >                    if ((u = transformer.apply(p.val)) != null)
5388                          r = (r == null) ? u : reducer.apply(r, u);
5389                  }
5390                  result = r;
5391 <                for (MapReduceValuesTask<K,V,U> t = this, s;;) {
5392 <                    int c; BulkTask<K,V,?> par; U tr, sr;
5393 <                    if ((c = t.pending) == 0) {
5394 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5395 <                            if ((sr = s.result) != null)
5396 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5397 <                        }
5398 <                        if ((par = t.parent) == null ||
5399 <                            !(par instanceof MapReduceValuesTask)) {
5400 <                            t.quietlyComplete();
5401 <                            break;
5816 <                        }
5817 <                        t = (MapReduceValuesTask<K,V,U>)par;
5391 >                CountedCompleter<?> c;
5392 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5393 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5394 >                        t = (MapReduceValuesTask<K,V,U>)c,
5395 >                        s = t.rights;
5396 >                    while (s != null) {
5397 >                        U tr, sr;
5398 >                        if ((sr = s.result) != null)
5399 >                            t.result = (((tr = t.result) == null) ? sr :
5400 >                                        reducer.apply(tr, sr));
5401 >                        s = t.rights = s.nextRight;
5402                      }
5819                    else if (t.casPending(c, c - 1))
5820                        break;
5403                  }
5822            } catch (Throwable ex) {
5823                return tryCompleteComputation(ex);
5824            }
5825            MapReduceValuesTask<K,V,U> s = rights;
5826            if (s != null && !inForkJoinPool()) {
5827                do  {
5828                    if (s.tryUnfork())
5829                        s.exec();
5830                } while ((s = s.nextRight) != null);
5404              }
5832            return false;
5405          }
5834        public final U getRawResult() { return result; }
5406      }
5407  
5408 <    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5408 >    @SuppressWarnings("serial")
5409 >    static final class MapReduceEntriesTask<K,V,U>
5410          extends BulkTask<K,V,U> {
5411          final Fun<Map.Entry<K,V>, ? extends U> transformer;
5412          final BiFun<? super U, ? super U, ? extends U> reducer;
5413          U result;
5414          MapReduceEntriesTask<K,V,U> rights, nextRight;
5415          MapReduceEntriesTask
5416 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5416 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5417               MapReduceEntriesTask<K,V,U> nextRight,
5418               Fun<Map.Entry<K,V>, ? extends U> transformer,
5419               BiFun<? super U, ? super U, ? extends U> reducer) {
5420 <            super(m, p, b); this.nextRight = nextRight;
5420 >            super(p, b, i, f, t); this.nextRight = nextRight;
5421              this.transformer = transformer;
5422              this.reducer = reducer;
5423          }
5424 <        @SuppressWarnings("unchecked") public final boolean exec() {
5425 <            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5426 <                this.transformer;
5427 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5428 <                this.reducer;
5429 <            if (transformer == null || reducer == null)
5430 <                return abortOnNullFunction();
5431 <            try {
5432 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5861 <                    do {} while (!casPending(c = pending, c+1));
5424 >        public final U getRawResult() { return result; }
5425 >        public final void compute() {
5426 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5427 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5428 >            if ((transformer = this.transformer) != null &&
5429 >                (reducer = this.reducer) != null) {
5430 >                for (int i = baseIndex, f, h; batch > 0 &&
5431 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5432 >                    addToPendingCount(1);
5433                      (rights = new MapReduceEntriesTask<K,V,U>
5434 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5434 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5435 >                      rights, transformer, reducer)).fork();
5436                  }
5437 <                U r = null, u;
5438 <                Object v;
5439 <                while ((v = advance()) != null) {
5440 <                    if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5437 >                U r = null;
5438 >                for (Node<K,V> p; (p = advance()) != null; ) {
5439 >                    U u;
5440 >                    if ((u = transformer.apply(p)) != null)
5441                          r = (r == null) ? u : reducer.apply(r, u);
5442                  }
5443                  result = r;
5444 <                for (MapReduceEntriesTask<K,V,U> t = this, s;;) {
5445 <                    int c; BulkTask<K,V,?> par; U tr, sr;
5446 <                    if ((c = t.pending) == 0) {
5447 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5448 <                            if ((sr = s.result) != null)
5449 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5450 <                        }
5451 <                        if ((par = t.parent) == null ||
5452 <                            !(par instanceof MapReduceEntriesTask)) {
5453 <                            t.quietlyComplete();
5454 <                            break;
5883 <                        }
5884 <                        t = (MapReduceEntriesTask<K,V,U>)par;
5444 >                CountedCompleter<?> c;
5445 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5446 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5447 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5448 >                        s = t.rights;
5449 >                    while (s != null) {
5450 >                        U tr, sr;
5451 >                        if ((sr = s.result) != null)
5452 >                            t.result = (((tr = t.result) == null) ? sr :
5453 >                                        reducer.apply(tr, sr));
5454 >                        s = t.rights = s.nextRight;
5455                      }
5886                    else if (t.casPending(c, c - 1))
5887                        break;
5456                  }
5889            } catch (Throwable ex) {
5890                return tryCompleteComputation(ex);
5891            }
5892            MapReduceEntriesTask<K,V,U> s = rights;
5893            if (s != null && !inForkJoinPool()) {
5894                do  {
5895                    if (s.tryUnfork())
5896                        s.exec();
5897                } while ((s = s.nextRight) != null);
5457              }
5899            return false;
5458          }
5901        public final U getRawResult() { return result; }
5459      }
5460  
5461 <    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5461 >    @SuppressWarnings("serial")
5462 >    static final class MapReduceMappingsTask<K,V,U>
5463          extends BulkTask<K,V,U> {
5464          final BiFun<? super K, ? super V, ? extends U> transformer;
5465          final BiFun<? super U, ? super U, ? extends U> reducer;
5466          U result;
5467          MapReduceMappingsTask<K,V,U> rights, nextRight;
5468          MapReduceMappingsTask
5469 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5469 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5470               MapReduceMappingsTask<K,V,U> nextRight,
5471               BiFun<? super K, ? super V, ? extends U> transformer,
5472               BiFun<? super U, ? super U, ? extends U> reducer) {
5473 <            super(m, p, b); this.nextRight = nextRight;
5473 >            super(p, b, i, f, t); this.nextRight = nextRight;
5474              this.transformer = transformer;
5475              this.reducer = reducer;
5476          }
5477 <        @SuppressWarnings("unchecked") public final boolean exec() {
5478 <            final BiFun<? super K, ? super V, ? extends U> transformer =
5479 <                this.transformer;
5480 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5481 <                this.reducer;
5482 <            if (transformer == null || reducer == null)
5483 <                return abortOnNullFunction();
5484 <            try {
5485 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5928 <                    do {} while (!casPending(c = pending, c+1));
5477 >        public final U getRawResult() { return result; }
5478 >        public final void compute() {
5479 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5480 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5481 >            if ((transformer = this.transformer) != null &&
5482 >                (reducer = this.reducer) != null) {
5483 >                for (int i = baseIndex, f, h; batch > 0 &&
5484 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5485 >                    addToPendingCount(1);
5486                      (rights = new MapReduceMappingsTask<K,V,U>
5487 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5487 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5488 >                      rights, transformer, reducer)).fork();
5489                  }
5490 <                U r = null, u;
5491 <                Object v;
5492 <                while ((v = advance()) != null) {
5493 <                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5490 >                U r = null;
5491 >                for (Node<K,V> p; (p = advance()) != null; ) {
5492 >                    U u;
5493 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5494                          r = (r == null) ? u : reducer.apply(r, u);
5495                  }
5496                  result = r;
5497 <                for (MapReduceMappingsTask<K,V,U> t = this, s;;) {
5498 <                    int c; BulkTask<K,V,?> par; U tr, sr;
5499 <                    if ((c = t.pending) == 0) {
5500 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5501 <                            if ((sr = s.result) != null)
5502 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5503 <                        }
5504 <                        if ((par = t.parent) == null ||
5505 <                            !(par instanceof MapReduceMappingsTask)) {
5506 <                            t.quietlyComplete();
5507 <                            break;
5950 <                        }
5951 <                        t = (MapReduceMappingsTask<K,V,U>)par;
5497 >                CountedCompleter<?> c;
5498 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5499 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5500 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5501 >                        s = t.rights;
5502 >                    while (s != null) {
5503 >                        U tr, sr;
5504 >                        if ((sr = s.result) != null)
5505 >                            t.result = (((tr = t.result) == null) ? sr :
5506 >                                        reducer.apply(tr, sr));
5507 >                        s = t.rights = s.nextRight;
5508                      }
5953                    else if (t.casPending(c, c - 1))
5954                        break;
5509                  }
5956            } catch (Throwable ex) {
5957                return tryCompleteComputation(ex);
5958            }
5959            MapReduceMappingsTask<K,V,U> s = rights;
5960            if (s != null && !inForkJoinPool()) {
5961                do  {
5962                    if (s.tryUnfork())
5963                        s.exec();
5964                } while ((s = s.nextRight) != null);
5510              }
5966            return false;
5511          }
5968        public final U getRawResult() { return result; }
5512      }
5513  
5514 <    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5514 >    @SuppressWarnings("serial")
5515 >    static final class MapReduceKeysToDoubleTask<K,V>
5516          extends BulkTask<K,V,Double> {
5517          final ObjectToDouble<? super K> transformer;
5518          final DoubleByDoubleToDouble reducer;
# Line 5976 | Line 5520 | public class ConcurrentHashMapV8<K, V>
5520          double result;
5521          MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5522          MapReduceKeysToDoubleTask
5523 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5523 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5524               MapReduceKeysToDoubleTask<K,V> nextRight,
5525               ObjectToDouble<? super K> transformer,
5526               double basis,
5527               DoubleByDoubleToDouble reducer) {
5528 <            super(m, p, b); this.nextRight = nextRight;
5528 >            super(p, b, i, f, t); this.nextRight = nextRight;
5529              this.transformer = transformer;
5530              this.basis = basis; this.reducer = reducer;
5531          }
5532 <        @SuppressWarnings("unchecked") public final boolean exec() {
5533 <            final ObjectToDouble<? super K> transformer =
5534 <                this.transformer;
5535 <            final DoubleByDoubleToDouble reducer = this.reducer;
5536 <            if (transformer == null || reducer == null)
5537 <                return abortOnNullFunction();
5538 <            try {
5539 <                final double id = this.basis;
5540 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5541 <                    do {} while (!casPending(c = pending, c+1));
5532 >        public final Double getRawResult() { return result; }
5533 >        public final void compute() {
5534 >            final ObjectToDouble<? super K> transformer;
5535 >            final DoubleByDoubleToDouble reducer;
5536 >            if ((transformer = this.transformer) != null &&
5537 >                (reducer = this.reducer) != null) {
5538 >                double r = this.basis;
5539 >                for (int i = baseIndex, f, h; batch > 0 &&
5540 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5541 >                    addToPendingCount(1);
5542                      (rights = new MapReduceKeysToDoubleTask<K,V>
5543 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5543 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5544 >                      rights, transformer, r, reducer)).fork();
5545                  }
5546 <                double r = id;
5547 <                while (advance() != null)
6003 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
5546 >                for (Node<K,V> p; (p = advance()) != null; )
5547 >                    r = reducer.apply(r, transformer.apply(p.key));
5548                  result = r;
5549 <                for (MapReduceKeysToDoubleTask<K,V> t = this, s;;) {
5550 <                    int c; BulkTask<K,V,?> par;
5551 <                    if ((c = t.pending) == 0) {
5552 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5553 <                            t.result = reducer.apply(t.result, s.result);
5554 <                        }
5555 <                        if ((par = t.parent) == null ||
5556 <                            !(par instanceof MapReduceKeysToDoubleTask)) {
6013 <                            t.quietlyComplete();
6014 <                            break;
6015 <                        }
6016 <                        t = (MapReduceKeysToDoubleTask<K,V>)par;
5549 >                CountedCompleter<?> c;
5550 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5551 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5552 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5553 >                        s = t.rights;
5554 >                    while (s != null) {
5555 >                        t.result = reducer.apply(t.result, s.result);
5556 >                        s = t.rights = s.nextRight;
5557                      }
6018                    else if (t.casPending(c, c - 1))
6019                        break;
5558                  }
6021            } catch (Throwable ex) {
6022                return tryCompleteComputation(ex);
5559              }
6024            MapReduceKeysToDoubleTask<K,V> s = rights;
6025            if (s != null && !inForkJoinPool()) {
6026                do  {
6027                    if (s.tryUnfork())
6028                        s.exec();
6029                } while ((s = s.nextRight) != null);
6030            }
6031            return false;
5560          }
6033        public final Double getRawResult() { return result; }
5561      }
5562  
5563 <    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5563 >    @SuppressWarnings("serial")
5564 >    static final class MapReduceValuesToDoubleTask<K,V>
5565          extends BulkTask<K,V,Double> {
5566          final ObjectToDouble<? super V> transformer;
5567          final DoubleByDoubleToDouble reducer;
# Line 6041 | Line 5569 | public class ConcurrentHashMapV8<K, V>
5569          double result;
5570          MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5571          MapReduceValuesToDoubleTask
5572 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5572 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5573               MapReduceValuesToDoubleTask<K,V> nextRight,
5574               ObjectToDouble<? super V> transformer,
5575               double basis,
5576               DoubleByDoubleToDouble reducer) {
5577 <            super(m, p, b); this.nextRight = nextRight;
5577 >            super(p, b, i, f, t); this.nextRight = nextRight;
5578              this.transformer = transformer;
5579              this.basis = basis; this.reducer = reducer;
5580          }
5581 <        @SuppressWarnings("unchecked") public final boolean exec() {
5582 <            final ObjectToDouble<? super V> transformer =
5583 <                this.transformer;
5584 <            final DoubleByDoubleToDouble reducer = this.reducer;
5585 <            if (transformer == null || reducer == null)
5586 <                return abortOnNullFunction();
5587 <            try {
5588 <                final double id = this.basis;
5589 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5590 <                    do {} while (!casPending(c = pending, c+1));
5581 >        public final Double getRawResult() { return result; }
5582 >        public final void compute() {
5583 >            final ObjectToDouble<? super V> transformer;
5584 >            final DoubleByDoubleToDouble reducer;
5585 >            if ((transformer = this.transformer) != null &&
5586 >                (reducer = this.reducer) != null) {
5587 >                double r = this.basis;
5588 >                for (int i = baseIndex, f, h; batch > 0 &&
5589 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5590 >                    addToPendingCount(1);
5591                      (rights = new MapReduceValuesToDoubleTask<K,V>
5592 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5592 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5593 >                      rights, transformer, r, reducer)).fork();
5594                  }
5595 <                double r = id;
5596 <                Object v;
6068 <                while ((v = advance()) != null)
6069 <                    r = reducer.apply(r, transformer.apply((V)v));
5595 >                for (Node<K,V> p; (p = advance()) != null; )
5596 >                    r = reducer.apply(r, transformer.apply(p.val));
5597                  result = r;
5598 <                for (MapReduceValuesToDoubleTask<K,V> t = this, s;;) {
5599 <                    int c; BulkTask<K,V,?> par;
5600 <                    if ((c = t.pending) == 0) {
5601 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5602 <                            t.result = reducer.apply(t.result, s.result);
5603 <                        }
5604 <                        if ((par = t.parent) == null ||
5605 <                            !(par instanceof MapReduceValuesToDoubleTask)) {
6079 <                            t.quietlyComplete();
6080 <                            break;
6081 <                        }
6082 <                        t = (MapReduceValuesToDoubleTask<K,V>)par;
5598 >                CountedCompleter<?> c;
5599 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5600 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5601 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5602 >                        s = t.rights;
5603 >                    while (s != null) {
5604 >                        t.result = reducer.apply(t.result, s.result);
5605 >                        s = t.rights = s.nextRight;
5606                      }
6084                    else if (t.casPending(c, c - 1))
6085                        break;
5607                  }
6087            } catch (Throwable ex) {
6088                return tryCompleteComputation(ex);
5608              }
6090            MapReduceValuesToDoubleTask<K,V> s = rights;
6091            if (s != null && !inForkJoinPool()) {
6092                do  {
6093                    if (s.tryUnfork())
6094                        s.exec();
6095                } while ((s = s.nextRight) != null);
6096            }
6097            return false;
5609          }
6099        public final Double getRawResult() { return result; }
5610      }
5611  
5612 <    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
5612 >    @SuppressWarnings("serial")
5613 >    static final class MapReduceEntriesToDoubleTask<K,V>
5614          extends BulkTask<K,V,Double> {
5615          final ObjectToDouble<Map.Entry<K,V>> transformer;
5616          final DoubleByDoubleToDouble reducer;
# Line 6107 | Line 5618 | public class ConcurrentHashMapV8<K, V>
5618          double result;
5619          MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5620          MapReduceEntriesToDoubleTask
5621 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5621 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5622               MapReduceEntriesToDoubleTask<K,V> nextRight,
5623               ObjectToDouble<Map.Entry<K,V>> transformer,
5624               double basis,
5625               DoubleByDoubleToDouble reducer) {
5626 <            super(m, p, b); this.nextRight = nextRight;
5626 >            super(p, b, i, f, t); this.nextRight = nextRight;
5627              this.transformer = transformer;
5628              this.basis = basis; this.reducer = reducer;
5629          }
5630 <        @SuppressWarnings("unchecked") public final boolean exec() {
5631 <            final ObjectToDouble<Map.Entry<K,V>> transformer =
5632 <                this.transformer;
5633 <            final DoubleByDoubleToDouble reducer = this.reducer;
5634 <            if (transformer == null || reducer == null)
5635 <                return abortOnNullFunction();
5636 <            try {
5637 <                final double id = this.basis;
5638 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5639 <                    do {} while (!casPending(c = pending, c+1));
5630 >        public final Double getRawResult() { return result; }
5631 >        public final void compute() {
5632 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
5633 >            final DoubleByDoubleToDouble reducer;
5634 >            if ((transformer = this.transformer) != null &&
5635 >                (reducer = this.reducer) != null) {
5636 >                double r = this.basis;
5637 >                for (int i = baseIndex, f, h; batch > 0 &&
5638 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5639 >                    addToPendingCount(1);
5640                      (rights = new MapReduceEntriesToDoubleTask<K,V>
5641 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5641 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5642 >                      rights, transformer, r, reducer)).fork();
5643                  }
5644 <                double r = id;
5645 <                Object v;
6134 <                while ((v = advance()) != null)
6135 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5644 >                for (Node<K,V> p; (p = advance()) != null; )
5645 >                    r = reducer.apply(r, transformer.apply(p));
5646                  result = r;
5647 <                for (MapReduceEntriesToDoubleTask<K,V> t = this, s;;) {
5648 <                    int c; BulkTask<K,V,?> par;
5649 <                    if ((c = t.pending) == 0) {
5650 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5651 <                            t.result = reducer.apply(t.result, s.result);
5652 <                        }
5653 <                        if ((par = t.parent) == null ||
5654 <                            !(par instanceof MapReduceEntriesToDoubleTask)) {
6145 <                            t.quietlyComplete();
6146 <                            break;
6147 <                        }
6148 <                        t = (MapReduceEntriesToDoubleTask<K,V>)par;
5647 >                CountedCompleter<?> c;
5648 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5649 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5650 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5651 >                        s = t.rights;
5652 >                    while (s != null) {
5653 >                        t.result = reducer.apply(t.result, s.result);
5654 >                        s = t.rights = s.nextRight;
5655                      }
6150                    else if (t.casPending(c, c - 1))
6151                        break;
5656                  }
6153            } catch (Throwable ex) {
6154                return tryCompleteComputation(ex);
6155            }
6156            MapReduceEntriesToDoubleTask<K,V> s = rights;
6157            if (s != null && !inForkJoinPool()) {
6158                do  {
6159                    if (s.tryUnfork())
6160                        s.exec();
6161                } while ((s = s.nextRight) != null);
5657              }
6163            return false;
5658          }
6165        public final Double getRawResult() { return result; }
5659      }
5660  
5661 <    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
5661 >    @SuppressWarnings("serial")
5662 >    static final class MapReduceMappingsToDoubleTask<K,V>
5663          extends BulkTask<K,V,Double> {
5664          final ObjectByObjectToDouble<? super K, ? super V> transformer;
5665          final DoubleByDoubleToDouble reducer;
# Line 6173 | Line 5667 | public class ConcurrentHashMapV8<K, V>
5667          double result;
5668          MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5669          MapReduceMappingsToDoubleTask
5670 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5670 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5671               MapReduceMappingsToDoubleTask<K,V> nextRight,
5672               ObjectByObjectToDouble<? super K, ? super V> transformer,
5673               double basis,
5674               DoubleByDoubleToDouble reducer) {
5675 <            super(m, p, b); this.nextRight = nextRight;
5675 >            super(p, b, i, f, t); this.nextRight = nextRight;
5676              this.transformer = transformer;
5677              this.basis = basis; this.reducer = reducer;
5678          }
5679 <        @SuppressWarnings("unchecked") public final boolean exec() {
5680 <            final ObjectByObjectToDouble<? super K, ? super V> transformer =
5681 <                this.transformer;
5682 <            final DoubleByDoubleToDouble reducer = this.reducer;
5683 <            if (transformer == null || reducer == null)
5684 <                return abortOnNullFunction();
5685 <            try {
5686 <                final double id = this.basis;
5687 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5688 <                    do {} while (!casPending(c = pending, c+1));
5679 >        public final Double getRawResult() { return result; }
5680 >        public final void compute() {
5681 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
5682 >            final DoubleByDoubleToDouble reducer;
5683 >            if ((transformer = this.transformer) != null &&
5684 >                (reducer = this.reducer) != null) {
5685 >                double r = this.basis;
5686 >                for (int i = baseIndex, f, h; batch > 0 &&
5687 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5688 >                    addToPendingCount(1);
5689                      (rights = new MapReduceMappingsToDoubleTask<K,V>
5690 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5690 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5691 >                      rights, transformer, r, reducer)).fork();
5692                  }
5693 <                double r = id;
5694 <                Object v;
6200 <                while ((v = advance()) != null)
6201 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
5693 >                for (Node<K,V> p; (p = advance()) != null; )
5694 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5695                  result = r;
5696 <                for (MapReduceMappingsToDoubleTask<K,V> t = this, s;;) {
5697 <                    int c; BulkTask<K,V,?> par;
5698 <                    if ((c = t.pending) == 0) {
5699 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5700 <                            t.result = reducer.apply(t.result, s.result);
5701 <                        }
5702 <                        if ((par = t.parent) == null ||
5703 <                            !(par instanceof MapReduceMappingsToDoubleTask)) {
6211 <                            t.quietlyComplete();
6212 <                            break;
6213 <                        }
6214 <                        t = (MapReduceMappingsToDoubleTask<K,V>)par;
5696 >                CountedCompleter<?> c;
5697 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5698 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5699 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5700 >                        s = t.rights;
5701 >                    while (s != null) {
5702 >                        t.result = reducer.apply(t.result, s.result);
5703 >                        s = t.rights = s.nextRight;
5704                      }
6216                    else if (t.casPending(c, c - 1))
6217                        break;
5705                  }
6219            } catch (Throwable ex) {
6220                return tryCompleteComputation(ex);
5706              }
6222            MapReduceMappingsToDoubleTask<K,V> s = rights;
6223            if (s != null && !inForkJoinPool()) {
6224                do  {
6225                    if (s.tryUnfork())
6226                        s.exec();
6227                } while ((s = s.nextRight) != null);
6228            }
6229            return false;
5707          }
6231        public final Double getRawResult() { return result; }
5708      }
5709  
5710 <    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
5710 >    @SuppressWarnings("serial")
5711 >    static final class MapReduceKeysToLongTask<K,V>
5712          extends BulkTask<K,V,Long> {
5713          final ObjectToLong<? super K> transformer;
5714          final LongByLongToLong reducer;
# Line 6239 | Line 5716 | public class ConcurrentHashMapV8<K, V>
5716          long result;
5717          MapReduceKeysToLongTask<K,V> rights, nextRight;
5718          MapReduceKeysToLongTask
5719 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5719 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5720               MapReduceKeysToLongTask<K,V> nextRight,
5721               ObjectToLong<? super K> transformer,
5722               long basis,
5723               LongByLongToLong reducer) {
5724 <            super(m, p, b); this.nextRight = nextRight;
5724 >            super(p, b, i, f, t); this.nextRight = nextRight;
5725              this.transformer = transformer;
5726              this.basis = basis; this.reducer = reducer;
5727          }
5728 <        @SuppressWarnings("unchecked") public final boolean exec() {
5729 <            final ObjectToLong<? super K> transformer =
5730 <                this.transformer;
5731 <            final LongByLongToLong reducer = this.reducer;
5732 <            if (transformer == null || reducer == null)
5733 <                return abortOnNullFunction();
5734 <            try {
5735 <                final long id = this.basis;
5736 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5737 <                    do {} while (!casPending(c = pending, c+1));
5728 >        public final Long getRawResult() { return result; }
5729 >        public final void compute() {
5730 >            final ObjectToLong<? super K> transformer;
5731 >            final LongByLongToLong reducer;
5732 >            if ((transformer = this.transformer) != null &&
5733 >                (reducer = this.reducer) != null) {
5734 >                long r = this.basis;
5735 >                for (int i = baseIndex, f, h; batch > 0 &&
5736 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5737 >                    addToPendingCount(1);
5738                      (rights = new MapReduceKeysToLongTask<K,V>
5739 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5739 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5740 >                      rights, transformer, r, reducer)).fork();
5741                  }
5742 <                long r = id;
5743 <                while (advance() != null)
6266 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
5742 >                for (Node<K,V> p; (p = advance()) != null; )
5743 >                    r = reducer.apply(r, transformer.apply(p.key));
5744                  result = r;
5745 <                for (MapReduceKeysToLongTask<K,V> t = this, s;;) {
5746 <                    int c; BulkTask<K,V,?> par;
5747 <                    if ((c = t.pending) == 0) {
5748 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5749 <                            t.result = reducer.apply(t.result, s.result);
5750 <                        }
5751 <                        if ((par = t.parent) == null ||
5752 <                            !(par instanceof MapReduceKeysToLongTask)) {
6276 <                            t.quietlyComplete();
6277 <                            break;
6278 <                        }
6279 <                        t = (MapReduceKeysToLongTask<K,V>)par;
5745 >                CountedCompleter<?> c;
5746 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5747 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5748 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5749 >                        s = t.rights;
5750 >                    while (s != null) {
5751 >                        t.result = reducer.apply(t.result, s.result);
5752 >                        s = t.rights = s.nextRight;
5753                      }
6281                    else if (t.casPending(c, c - 1))
6282                        break;
5754                  }
6284            } catch (Throwable ex) {
6285                return tryCompleteComputation(ex);
6286            }
6287            MapReduceKeysToLongTask<K,V> s = rights;
6288            if (s != null && !inForkJoinPool()) {
6289                do  {
6290                    if (s.tryUnfork())
6291                        s.exec();
6292                } while ((s = s.nextRight) != null);
5755              }
6294            return false;
5756          }
6296        public final Long getRawResult() { return result; }
5757      }
5758  
5759 <    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
5759 >    @SuppressWarnings("serial")
5760 >    static final class MapReduceValuesToLongTask<K,V>
5761          extends BulkTask<K,V,Long> {
5762          final ObjectToLong<? super V> transformer;
5763          final LongByLongToLong reducer;
# Line 6304 | Line 5765 | public class ConcurrentHashMapV8<K, V>
5765          long result;
5766          MapReduceValuesToLongTask<K,V> rights, nextRight;
5767          MapReduceValuesToLongTask
5768 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5768 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5769               MapReduceValuesToLongTask<K,V> nextRight,
5770               ObjectToLong<? super V> transformer,
5771               long basis,
5772               LongByLongToLong reducer) {
5773 <            super(m, p, b); this.nextRight = nextRight;
5773 >            super(p, b, i, f, t); this.nextRight = nextRight;
5774              this.transformer = transformer;
5775              this.basis = basis; this.reducer = reducer;
5776          }
5777 <        @SuppressWarnings("unchecked") public final boolean exec() {
5778 <            final ObjectToLong<? super V> transformer =
5779 <                this.transformer;
5780 <            final LongByLongToLong reducer = this.reducer;
5781 <            if (transformer == null || reducer == null)
5782 <                return abortOnNullFunction();
5783 <            try {
5784 <                final long id = this.basis;
5785 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5786 <                    do {} while (!casPending(c = pending, c+1));
5777 >        public final Long getRawResult() { return result; }
5778 >        public final void compute() {
5779 >            final ObjectToLong<? super V> transformer;
5780 >            final LongByLongToLong reducer;
5781 >            if ((transformer = this.transformer) != null &&
5782 >                (reducer = this.reducer) != null) {
5783 >                long r = this.basis;
5784 >                for (int i = baseIndex, f, h; batch > 0 &&
5785 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5786 >                    addToPendingCount(1);
5787                      (rights = new MapReduceValuesToLongTask<K,V>
5788 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5788 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5789 >                      rights, transformer, r, reducer)).fork();
5790                  }
5791 <                long r = id;
5792 <                Object v;
6331 <                while ((v = advance()) != null)
6332 <                    r = reducer.apply(r, transformer.apply((V)v));
5791 >                for (Node<K,V> p; (p = advance()) != null; )
5792 >                    r = reducer.apply(r, transformer.apply(p.val));
5793                  result = r;
5794 <                for (MapReduceValuesToLongTask<K,V> t = this, s;;) {
5795 <                    int c; BulkTask<K,V,?> par;
5796 <                    if ((c = t.pending) == 0) {
5797 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5798 <                            t.result = reducer.apply(t.result, s.result);
5799 <                        }
5800 <                        if ((par = t.parent) == null ||
5801 <                            !(par instanceof MapReduceValuesToLongTask)) {
6342 <                            t.quietlyComplete();
6343 <                            break;
6344 <                        }
6345 <                        t = (MapReduceValuesToLongTask<K,V>)par;
5794 >                CountedCompleter<?> c;
5795 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5796 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5797 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5798 >                        s = t.rights;
5799 >                    while (s != null) {
5800 >                        t.result = reducer.apply(t.result, s.result);
5801 >                        s = t.rights = s.nextRight;
5802                      }
6347                    else if (t.casPending(c, c - 1))
6348                        break;
5803                  }
6350            } catch (Throwable ex) {
6351                return tryCompleteComputation(ex);
5804              }
6353            MapReduceValuesToLongTask<K,V> s = rights;
6354            if (s != null && !inForkJoinPool()) {
6355                do  {
6356                    if (s.tryUnfork())
6357                        s.exec();
6358                } while ((s = s.nextRight) != null);
6359            }
6360            return false;
5805          }
6362        public final Long getRawResult() { return result; }
5806      }
5807  
5808 <    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
5808 >    @SuppressWarnings("serial")
5809 >    static final class MapReduceEntriesToLongTask<K,V>
5810          extends BulkTask<K,V,Long> {
5811          final ObjectToLong<Map.Entry<K,V>> transformer;
5812          final LongByLongToLong reducer;
# Line 6370 | Line 5814 | public class ConcurrentHashMapV8<K, V>
5814          long result;
5815          MapReduceEntriesToLongTask<K,V> rights, nextRight;
5816          MapReduceEntriesToLongTask
5817 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5817 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5818               MapReduceEntriesToLongTask<K,V> nextRight,
5819               ObjectToLong<Map.Entry<K,V>> transformer,
5820               long basis,
5821               LongByLongToLong reducer) {
5822 <            super(m, p, b); this.nextRight = nextRight;
5822 >            super(p, b, i, f, t); this.nextRight = nextRight;
5823              this.transformer = transformer;
5824              this.basis = basis; this.reducer = reducer;
5825          }
5826 <        @SuppressWarnings("unchecked") public final boolean exec() {
5827 <            final ObjectToLong<Map.Entry<K,V>> transformer =
5828 <                this.transformer;
5829 <            final LongByLongToLong reducer = this.reducer;
5830 <            if (transformer == null || reducer == null)
5831 <                return abortOnNullFunction();
5832 <            try {
5833 <                final long id = this.basis;
5834 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5835 <                    do {} while (!casPending(c = pending, c+1));
5826 >        public final Long getRawResult() { return result; }
5827 >        public final void compute() {
5828 >            final ObjectToLong<Map.Entry<K,V>> transformer;
5829 >            final LongByLongToLong reducer;
5830 >            if ((transformer = this.transformer) != null &&
5831 >                (reducer = this.reducer) != null) {
5832 >                long r = this.basis;
5833 >                for (int i = baseIndex, f, h; batch > 0 &&
5834 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5835 >                    addToPendingCount(1);
5836                      (rights = new MapReduceEntriesToLongTask<K,V>
5837 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5837 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5838 >                      rights, transformer, r, reducer)).fork();
5839                  }
5840 <                long r = id;
5841 <                Object v;
6397 <                while ((v = advance()) != null)
6398 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5840 >                for (Node<K,V> p; (p = advance()) != null; )
5841 >                    r = reducer.apply(r, transformer.apply(p));
5842                  result = r;
5843 <                for (MapReduceEntriesToLongTask<K,V> t = this, s;;) {
5844 <                    int c; BulkTask<K,V,?> par;
5845 <                    if ((c = t.pending) == 0) {
5846 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5847 <                            t.result = reducer.apply(t.result, s.result);
5848 <                        }
5849 <                        if ((par = t.parent) == null ||
5850 <                            !(par instanceof MapReduceEntriesToLongTask)) {
6408 <                            t.quietlyComplete();
6409 <                            break;
6410 <                        }
6411 <                        t = (MapReduceEntriesToLongTask<K,V>)par;
5843 >                CountedCompleter<?> c;
5844 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5845 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5846 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5847 >                        s = t.rights;
5848 >                    while (s != null) {
5849 >                        t.result = reducer.apply(t.result, s.result);
5850 >                        s = t.rights = s.nextRight;
5851                      }
6413                    else if (t.casPending(c, c - 1))
6414                        break;
5852                  }
6416            } catch (Throwable ex) {
6417                return tryCompleteComputation(ex);
6418            }
6419            MapReduceEntriesToLongTask<K,V> s = rights;
6420            if (s != null && !inForkJoinPool()) {
6421                do  {
6422                    if (s.tryUnfork())
6423                        s.exec();
6424                } while ((s = s.nextRight) != null);
5853              }
6426            return false;
5854          }
6428        public final Long getRawResult() { return result; }
5855      }
5856  
5857 <    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
5857 >    @SuppressWarnings("serial")
5858 >    static final class MapReduceMappingsToLongTask<K,V>
5859          extends BulkTask<K,V,Long> {
5860          final ObjectByObjectToLong<? super K, ? super V> transformer;
5861          final LongByLongToLong reducer;
# Line 6436 | Line 5863 | public class ConcurrentHashMapV8<K, V>
5863          long result;
5864          MapReduceMappingsToLongTask<K,V> rights, nextRight;
5865          MapReduceMappingsToLongTask
5866 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5866 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5867               MapReduceMappingsToLongTask<K,V> nextRight,
5868               ObjectByObjectToLong<? super K, ? super V> transformer,
5869               long basis,
5870               LongByLongToLong reducer) {
5871 <            super(m, p, b); this.nextRight = nextRight;
5871 >            super(p, b, i, f, t); this.nextRight = nextRight;
5872              this.transformer = transformer;
5873              this.basis = basis; this.reducer = reducer;
5874          }
5875 <        @SuppressWarnings("unchecked") public final boolean exec() {
5876 <            final ObjectByObjectToLong<? super K, ? super V> transformer =
5877 <                this.transformer;
5878 <            final LongByLongToLong reducer = this.reducer;
5879 <            if (transformer == null || reducer == null)
5880 <                return abortOnNullFunction();
5881 <            try {
5882 <                final long id = this.basis;
5883 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5884 <                    do {} while (!casPending(c = pending, c+1));
5875 >        public final Long getRawResult() { return result; }
5876 >        public final void compute() {
5877 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
5878 >            final LongByLongToLong reducer;
5879 >            if ((transformer = this.transformer) != null &&
5880 >                (reducer = this.reducer) != null) {
5881 >                long r = this.basis;
5882 >                for (int i = baseIndex, f, h; batch > 0 &&
5883 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5884 >                    addToPendingCount(1);
5885                      (rights = new MapReduceMappingsToLongTask<K,V>
5886 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5886 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5887 >                      rights, transformer, r, reducer)).fork();
5888                  }
5889 <                long r = id;
5890 <                Object v;
6463 <                while ((v = advance()) != null)
6464 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
5889 >                for (Node<K,V> p; (p = advance()) != null; )
5890 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5891                  result = r;
5892 <                for (MapReduceMappingsToLongTask<K,V> t = this, s;;) {
5893 <                    int c; BulkTask<K,V,?> par;
5894 <                    if ((c = t.pending) == 0) {
5895 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5896 <                            t.result = reducer.apply(t.result, s.result);
5897 <                        }
5898 <                        if ((par = t.parent) == null ||
5899 <                            !(par instanceof MapReduceMappingsToLongTask)) {
6474 <                            t.quietlyComplete();
6475 <                            break;
6476 <                        }
6477 <                        t = (MapReduceMappingsToLongTask<K,V>)par;
5892 >                CountedCompleter<?> c;
5893 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5894 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5895 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
5896 >                        s = t.rights;
5897 >                    while (s != null) {
5898 >                        t.result = reducer.apply(t.result, s.result);
5899 >                        s = t.rights = s.nextRight;
5900                      }
6479                    else if (t.casPending(c, c - 1))
6480                        break;
5901                  }
6482            } catch (Throwable ex) {
6483                return tryCompleteComputation(ex);
6484            }
6485            MapReduceMappingsToLongTask<K,V> s = rights;
6486            if (s != null && !inForkJoinPool()) {
6487                do  {
6488                    if (s.tryUnfork())
6489                        s.exec();
6490                } while ((s = s.nextRight) != null);
5902              }
6492            return false;
5903          }
6494        public final Long getRawResult() { return result; }
5904      }
5905  
5906 <    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
5906 >    @SuppressWarnings("serial")
5907 >    static final class MapReduceKeysToIntTask<K,V>
5908          extends BulkTask<K,V,Integer> {
5909          final ObjectToInt<? super K> transformer;
5910          final IntByIntToInt reducer;
# Line 6502 | Line 5912 | public class ConcurrentHashMapV8<K, V>
5912          int result;
5913          MapReduceKeysToIntTask<K,V> rights, nextRight;
5914          MapReduceKeysToIntTask
5915 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5915 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5916               MapReduceKeysToIntTask<K,V> nextRight,
5917               ObjectToInt<? super K> transformer,
5918               int basis,
5919               IntByIntToInt reducer) {
5920 <            super(m, p, b); this.nextRight = nextRight;
5920 >            super(p, b, i, f, t); this.nextRight = nextRight;
5921              this.transformer = transformer;
5922              this.basis = basis; this.reducer = reducer;
5923          }
5924 <        @SuppressWarnings("unchecked") public final boolean exec() {
5925 <            final ObjectToInt<? super K> transformer =
5926 <                this.transformer;
5927 <            final IntByIntToInt reducer = this.reducer;
5928 <            if (transformer == null || reducer == null)
5929 <                return abortOnNullFunction();
5930 <            try {
5931 <                final int id = this.basis;
5932 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5933 <                    do {} while (!casPending(c = pending, c+1));
5924 >        public final Integer getRawResult() { return result; }
5925 >        public final void compute() {
5926 >            final ObjectToInt<? super K> transformer;
5927 >            final IntByIntToInt reducer;
5928 >            if ((transformer = this.transformer) != null &&
5929 >                (reducer = this.reducer) != null) {
5930 >                int r = this.basis;
5931 >                for (int i = baseIndex, f, h; batch > 0 &&
5932 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5933 >                    addToPendingCount(1);
5934                      (rights = new MapReduceKeysToIntTask<K,V>
5935 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5935 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5936 >                      rights, transformer, r, reducer)).fork();
5937                  }
5938 <                int r = id;
5939 <                while (advance() != null)
6529 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
5938 >                for (Node<K,V> p; (p = advance()) != null; )
5939 >                    r = reducer.apply(r, transformer.apply(p.key));
5940                  result = r;
5941 <                for (MapReduceKeysToIntTask<K,V> t = this, s;;) {
5942 <                    int c; BulkTask<K,V,?> par;
5943 <                    if ((c = t.pending) == 0) {
5944 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5945 <                            t.result = reducer.apply(t.result, s.result);
5946 <                        }
5947 <                        if ((par = t.parent) == null ||
5948 <                            !(par instanceof MapReduceKeysToIntTask)) {
6539 <                            t.quietlyComplete();
6540 <                            break;
6541 <                        }
6542 <                        t = (MapReduceKeysToIntTask<K,V>)par;
5941 >                CountedCompleter<?> c;
5942 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5943 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5944 >                        t = (MapReduceKeysToIntTask<K,V>)c,
5945 >                        s = t.rights;
5946 >                    while (s != null) {
5947 >                        t.result = reducer.apply(t.result, s.result);
5948 >                        s = t.rights = s.nextRight;
5949                      }
6544                    else if (t.casPending(c, c - 1))
6545                        break;
5950                  }
6547            } catch (Throwable ex) {
6548                return tryCompleteComputation(ex);
6549            }
6550            MapReduceKeysToIntTask<K,V> s = rights;
6551            if (s != null && !inForkJoinPool()) {
6552                do  {
6553                    if (s.tryUnfork())
6554                        s.exec();
6555                } while ((s = s.nextRight) != null);
5951              }
6557            return false;
5952          }
6559        public final Integer getRawResult() { return result; }
5953      }
5954  
5955 <    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
5955 >    @SuppressWarnings("serial")
5956 >    static final class MapReduceValuesToIntTask<K,V>
5957          extends BulkTask<K,V,Integer> {
5958          final ObjectToInt<? super V> transformer;
5959          final IntByIntToInt reducer;
# Line 6567 | Line 5961 | public class ConcurrentHashMapV8<K, V>
5961          int result;
5962          MapReduceValuesToIntTask<K,V> rights, nextRight;
5963          MapReduceValuesToIntTask
5964 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5964 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5965               MapReduceValuesToIntTask<K,V> nextRight,
5966               ObjectToInt<? super V> transformer,
5967               int basis,
5968               IntByIntToInt reducer) {
5969 <            super(m, p, b); this.nextRight = nextRight;
5969 >            super(p, b, i, f, t); this.nextRight = nextRight;
5970              this.transformer = transformer;
5971              this.basis = basis; this.reducer = reducer;
5972          }
5973 <        @SuppressWarnings("unchecked") public final boolean exec() {
5974 <            final ObjectToInt<? super V> transformer =
5975 <                this.transformer;
5976 <            final IntByIntToInt reducer = this.reducer;
5977 <            if (transformer == null || reducer == null)
5978 <                return abortOnNullFunction();
5979 <            try {
5980 <                final int id = this.basis;
5981 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5982 <                    do {} while (!casPending(c = pending, c+1));
5973 >        public final Integer getRawResult() { return result; }
5974 >        public final void compute() {
5975 >            final ObjectToInt<? super V> transformer;
5976 >            final IntByIntToInt reducer;
5977 >            if ((transformer = this.transformer) != null &&
5978 >                (reducer = this.reducer) != null) {
5979 >                int r = this.basis;
5980 >                for (int i = baseIndex, f, h; batch > 0 &&
5981 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5982 >                    addToPendingCount(1);
5983                      (rights = new MapReduceValuesToIntTask<K,V>
5984 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5984 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5985 >                      rights, transformer, r, reducer)).fork();
5986                  }
5987 <                int r = id;
5988 <                Object v;
6594 <                while ((v = advance()) != null)
6595 <                    r = reducer.apply(r, transformer.apply((V)v));
5987 >                for (Node<K,V> p; (p = advance()) != null; )
5988 >                    r = reducer.apply(r, transformer.apply(p.val));
5989                  result = r;
5990 <                for (MapReduceValuesToIntTask<K,V> t = this, s;;) {
5991 <                    int c; BulkTask<K,V,?> par;
5992 <                    if ((c = t.pending) == 0) {
5993 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5994 <                            t.result = reducer.apply(t.result, s.result);
5995 <                        }
5996 <                        if ((par = t.parent) == null ||
5997 <                            !(par instanceof MapReduceValuesToIntTask)) {
6605 <                            t.quietlyComplete();
6606 <                            break;
6607 <                        }
6608 <                        t = (MapReduceValuesToIntTask<K,V>)par;
5990 >                CountedCompleter<?> c;
5991 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5992 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5993 >                        t = (MapReduceValuesToIntTask<K,V>)c,
5994 >                        s = t.rights;
5995 >                    while (s != null) {
5996 >                        t.result = reducer.apply(t.result, s.result);
5997 >                        s = t.rights = s.nextRight;
5998                      }
6610                    else if (t.casPending(c, c - 1))
6611                        break;
5999                  }
6613            } catch (Throwable ex) {
6614                return tryCompleteComputation(ex);
6000              }
6616            MapReduceValuesToIntTask<K,V> s = rights;
6617            if (s != null && !inForkJoinPool()) {
6618                do  {
6619                    if (s.tryUnfork())
6620                        s.exec();
6621                } while ((s = s.nextRight) != null);
6622            }
6623            return false;
6001          }
6625        public final Integer getRawResult() { return result; }
6002      }
6003  
6004 <    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6004 >    @SuppressWarnings("serial")
6005 >    static final class MapReduceEntriesToIntTask<K,V>
6006          extends BulkTask<K,V,Integer> {
6007          final ObjectToInt<Map.Entry<K,V>> transformer;
6008          final IntByIntToInt reducer;
# Line 6633 | Line 6010 | public class ConcurrentHashMapV8<K, V>
6010          int result;
6011          MapReduceEntriesToIntTask<K,V> rights, nextRight;
6012          MapReduceEntriesToIntTask
6013 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6013 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6014               MapReduceEntriesToIntTask<K,V> nextRight,
6015               ObjectToInt<Map.Entry<K,V>> transformer,
6016               int basis,
6017               IntByIntToInt reducer) {
6018 <            super(m, p, b); this.nextRight = nextRight;
6018 >            super(p, b, i, f, t); this.nextRight = nextRight;
6019              this.transformer = transformer;
6020              this.basis = basis; this.reducer = reducer;
6021          }
6022 <        @SuppressWarnings("unchecked") public final boolean exec() {
6023 <            final ObjectToInt<Map.Entry<K,V>> transformer =
6024 <                this.transformer;
6025 <            final IntByIntToInt reducer = this.reducer;
6026 <            if (transformer == null || reducer == null)
6027 <                return abortOnNullFunction();
6028 <            try {
6029 <                final int id = this.basis;
6030 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6031 <                    do {} while (!casPending(c = pending, c+1));
6022 >        public final Integer getRawResult() { return result; }
6023 >        public final void compute() {
6024 >            final ObjectToInt<Map.Entry<K,V>> transformer;
6025 >            final IntByIntToInt reducer;
6026 >            if ((transformer = this.transformer) != null &&
6027 >                (reducer = this.reducer) != null) {
6028 >                int r = this.basis;
6029 >                for (int i = baseIndex, f, h; batch > 0 &&
6030 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6031 >                    addToPendingCount(1);
6032                      (rights = new MapReduceEntriesToIntTask<K,V>
6033 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6033 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6034 >                      rights, transformer, r, reducer)).fork();
6035                  }
6036 <                int r = id;
6037 <                Object v;
6660 <                while ((v = advance()) != null)
6661 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6036 >                for (Node<K,V> p; (p = advance()) != null; )
6037 >                    r = reducer.apply(r, transformer.apply(p));
6038                  result = r;
6039 <                for (MapReduceEntriesToIntTask<K,V> t = this, s;;) {
6040 <                    int c; BulkTask<K,V,?> par;
6041 <                    if ((c = t.pending) == 0) {
6042 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6043 <                            t.result = reducer.apply(t.result, s.result);
6044 <                        }
6045 <                        if ((par = t.parent) == null ||
6046 <                            !(par instanceof MapReduceEntriesToIntTask)) {
6671 <                            t.quietlyComplete();
6672 <                            break;
6673 <                        }
6674 <                        t = (MapReduceEntriesToIntTask<K,V>)par;
6039 >                CountedCompleter<?> c;
6040 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6041 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
6042 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6043 >                        s = t.rights;
6044 >                    while (s != null) {
6045 >                        t.result = reducer.apply(t.result, s.result);
6046 >                        s = t.rights = s.nextRight;
6047                      }
6676                    else if (t.casPending(c, c - 1))
6677                        break;
6048                  }
6679            } catch (Throwable ex) {
6680                return tryCompleteComputation(ex);
6049              }
6682            MapReduceEntriesToIntTask<K,V> s = rights;
6683            if (s != null && !inForkJoinPool()) {
6684                do  {
6685                    if (s.tryUnfork())
6686                        s.exec();
6687                } while ((s = s.nextRight) != null);
6688            }
6689            return false;
6050          }
6691        public final Integer getRawResult() { return result; }
6051      }
6052  
6053 <    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6053 >    @SuppressWarnings("serial")
6054 >    static final class MapReduceMappingsToIntTask<K,V>
6055          extends BulkTask<K,V,Integer> {
6056          final ObjectByObjectToInt<? super K, ? super V> transformer;
6057          final IntByIntToInt reducer;
# Line 6699 | Line 6059 | public class ConcurrentHashMapV8<K, V>
6059          int result;
6060          MapReduceMappingsToIntTask<K,V> rights, nextRight;
6061          MapReduceMappingsToIntTask
6062 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6063 <             MapReduceMappingsToIntTask<K,V> rights,
6062 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6063 >             MapReduceMappingsToIntTask<K,V> nextRight,
6064               ObjectByObjectToInt<? super K, ? super V> transformer,
6065               int basis,
6066               IntByIntToInt reducer) {
6067 <            super(m, p, b); this.nextRight = nextRight;
6067 >            super(p, b, i, f, t); this.nextRight = nextRight;
6068              this.transformer = transformer;
6069              this.basis = basis; this.reducer = reducer;
6070          }
6071 <        @SuppressWarnings("unchecked") public final boolean exec() {
6072 <            final ObjectByObjectToInt<? super K, ? super V> transformer =
6073 <                this.transformer;
6074 <            final IntByIntToInt reducer = this.reducer;
6075 <            if (transformer == null || reducer == null)
6076 <                return abortOnNullFunction();
6077 <            try {
6078 <                final int id = this.basis;
6079 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6080 <                    do {} while (!casPending(c = pending, c+1));
6071 >        public final Integer getRawResult() { return result; }
6072 >        public final void compute() {
6073 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
6074 >            final IntByIntToInt reducer;
6075 >            if ((transformer = this.transformer) != null &&
6076 >                (reducer = this.reducer) != null) {
6077 >                int r = this.basis;
6078 >                for (int i = baseIndex, f, h; batch > 0 &&
6079 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6080 >                    addToPendingCount(1);
6081                      (rights = new MapReduceMappingsToIntTask<K,V>
6082 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6082 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6083 >                      rights, transformer, r, reducer)).fork();
6084                  }
6085 <                int r = id;
6086 <                Object v;
6726 <                while ((v = advance()) != null)
6727 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6085 >                for (Node<K,V> p; (p = advance()) != null; )
6086 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
6087                  result = r;
6088 <                for (MapReduceMappingsToIntTask<K,V> t = this, s;;) {
6089 <                    int c; BulkTask<K,V,?> par;
6090 <                    if ((c = t.pending) == 0) {
6091 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6092 <                            t.result = reducer.apply(t.result, s.result);
6093 <                        }
6094 <                        if ((par = t.parent) == null ||
6095 <                            !(par instanceof MapReduceMappingsToIntTask)) {
6737 <                            t.quietlyComplete();
6738 <                            break;
6739 <                        }
6740 <                        t = (MapReduceMappingsToIntTask<K,V>)par;
6088 >                CountedCompleter<?> c;
6089 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6090 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6091 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6092 >                        s = t.rights;
6093 >                    while (s != null) {
6094 >                        t.result = reducer.apply(t.result, s.result);
6095 >                        s = t.rights = s.nextRight;
6096                      }
6742                    else if (t.casPending(c, c - 1))
6743                        break;
6097                  }
6745            } catch (Throwable ex) {
6746                return tryCompleteComputation(ex);
6098              }
6099 <            MapReduceMappingsToIntTask<K,V> s = rights;
6100 <            if (s != null && !inForkJoinPool()) {
6101 <                do  {
6102 <                    if (s.tryUnfork())
6103 <                        s.exec();
6104 <                } while ((s = s.nextRight) != null);
6099 >        }
6100 >    }
6101 >
6102 >    /* ---------------- Counters -------------- */
6103 >
6104 >    // Adapted from LongAdder and Striped64.
6105 >    // See their internal docs for explanation.
6106 >
6107 >    // A padded cell for distributing counts
6108 >    static final class CounterCell {
6109 >        volatile long p0, p1, p2, p3, p4, p5, p6;
6110 >        volatile long value;
6111 >        volatile long q0, q1, q2, q3, q4, q5, q6;
6112 >        CounterCell(long x) { value = x; }
6113 >    }
6114 >
6115 >    /**
6116 >     * Holder for the thread-local hash code determining which
6117 >     * CounterCell to use. The code is initialized via the
6118 >     * counterHashCodeGenerator, but may be moved upon collisions.
6119 >     */
6120 >    static final class CounterHashCode {
6121 >        int code;
6122 >    }
6123 >
6124 >    /**
6125 >     * Generates initial value for per-thread CounterHashCodes.
6126 >     */
6127 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6128 >
6129 >    /**
6130 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
6131 >     * for explanation.
6132 >     */
6133 >    static final int SEED_INCREMENT = 0x61c88647;
6134 >
6135 >    /**
6136 >     * Per-thread counter hash codes. Shared across all instances.
6137 >     */
6138 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6139 >        new ThreadLocal<CounterHashCode>();
6140 >
6141 >
6142 >    final long sumCount() {
6143 >        CounterCell[] as = counterCells; CounterCell a;
6144 >        long sum = baseCount;
6145 >        if (as != null) {
6146 >            for (int i = 0; i < as.length; ++i) {
6147 >                if ((a = as[i]) != null)
6148 >                    sum += a.value;
6149              }
6755            return false;
6150          }
6151 <        public final Integer getRawResult() { return result; }
6151 >        return sum;
6152      }
6153  
6154 +    // See LongAdder version for explanation
6155 +    private final void fullAddCount(long x, CounterHashCode hc,
6156 +                                    boolean wasUncontended) {
6157 +        int h;
6158 +        if (hc == null) {
6159 +            hc = new CounterHashCode();
6160 +            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6161 +            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6162 +            threadCounterHashCode.set(hc);
6163 +        }
6164 +        else
6165 +            h = hc.code;
6166 +        boolean collide = false;                // True if last slot nonempty
6167 +        for (;;) {
6168 +            CounterCell[] as; CounterCell a; int n; long v;
6169 +            if ((as = counterCells) != null && (n = as.length) > 0) {
6170 +                if ((a = as[(n - 1) & h]) == null) {
6171 +                    if (cellsBusy == 0) {            // Try to attach new Cell
6172 +                        CounterCell r = new CounterCell(x); // Optimistic create
6173 +                        if (cellsBusy == 0 &&
6174 +                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6175 +                            boolean created = false;
6176 +                            try {               // Recheck under lock
6177 +                                CounterCell[] rs; int m, j;
6178 +                                if ((rs = counterCells) != null &&
6179 +                                    (m = rs.length) > 0 &&
6180 +                                    rs[j = (m - 1) & h] == null) {
6181 +                                    rs[j] = r;
6182 +                                    created = true;
6183 +                                }
6184 +                            } finally {
6185 +                                cellsBusy = 0;
6186 +                            }
6187 +                            if (created)
6188 +                                break;
6189 +                            continue;           // Slot is now non-empty
6190 +                        }
6191 +                    }
6192 +                    collide = false;
6193 +                }
6194 +                else if (!wasUncontended)       // CAS already known to fail
6195 +                    wasUncontended = true;      // Continue after rehash
6196 +                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6197 +                    break;
6198 +                else if (counterCells != as || n >= NCPU)
6199 +                    collide = false;            // At max size or stale
6200 +                else if (!collide)
6201 +                    collide = true;
6202 +                else if (cellsBusy == 0 &&
6203 +                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6204 +                    try {
6205 +                        if (counterCells == as) {// Expand table unless stale
6206 +                            CounterCell[] rs = new CounterCell[n << 1];
6207 +                            for (int i = 0; i < n; ++i)
6208 +                                rs[i] = as[i];
6209 +                            counterCells = rs;
6210 +                        }
6211 +                    } finally {
6212 +                        cellsBusy = 0;
6213 +                    }
6214 +                    collide = false;
6215 +                    continue;                   // Retry with expanded table
6216 +                }
6217 +                h ^= h << 13;                   // Rehash
6218 +                h ^= h >>> 17;
6219 +                h ^= h << 5;
6220 +            }
6221 +            else if (cellsBusy == 0 && counterCells == as &&
6222 +                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6223 +                boolean init = false;
6224 +                try {                           // Initialize table
6225 +                    if (counterCells == as) {
6226 +                        CounterCell[] rs = new CounterCell[2];
6227 +                        rs[h & 1] = new CounterCell(x);
6228 +                        counterCells = rs;
6229 +                        init = true;
6230 +                    }
6231 +                } finally {
6232 +                    cellsBusy = 0;
6233 +                }
6234 +                if (init)
6235 +                    break;
6236 +            }
6237 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6238 +                break;                          // Fall back on using base
6239 +        }
6240 +        hc.code = h;                            // Record index for next time
6241 +    }
6242  
6243      // Unsafe mechanics
6244 <    private static final sun.misc.Unsafe UNSAFE;
6245 <    private static final long counterOffset;
6246 <    private static final long sizeCtlOffset;
6244 >    private static final sun.misc.Unsafe U;
6245 >    private static final long SIZECTL;
6246 >    private static final long TRANSFERINDEX;
6247 >    private static final long BASECOUNT;
6248 >    private static final long CELLSBUSY;
6249 >    private static final long CELLVALUE;
6250      private static final long ABASE;
6251      private static final int ASHIFT;
6252  
6253      static {
6769        int ss;
6254          try {
6255 <            UNSAFE = getUnsafe();
6255 >            U = getUnsafe();
6256              Class<?> k = ConcurrentHashMapV8.class;
6257 <            counterOffset = UNSAFE.objectFieldOffset
6774 <                (k.getDeclaredField("counter"));
6775 <            sizeCtlOffset = UNSAFE.objectFieldOffset
6257 >            SIZECTL = U.objectFieldOffset
6258                  (k.getDeclaredField("sizeCtl"));
6259 <            Class<?> sc = Node[].class;
6260 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6261 <            ss = UNSAFE.arrayIndexScale(sc);
6259 >            TRANSFERINDEX = U.objectFieldOffset
6260 >                (k.getDeclaredField("transferIndex"));
6261 >            BASECOUNT = U.objectFieldOffset
6262 >                (k.getDeclaredField("baseCount"));
6263 >            CELLSBUSY = U.objectFieldOffset
6264 >                (k.getDeclaredField("cellsBusy"));
6265 >            Class<?> ck = CounterCell.class;
6266 >            CELLVALUE = U.objectFieldOffset
6267 >                (ck.getDeclaredField("value"));
6268 >            Class<?> ak = Node[].class;
6269 >            ABASE = U.arrayBaseOffset(ak);
6270 >            int scale = U.arrayIndexScale(ak);
6271 >            if ((scale & (scale - 1)) != 0)
6272 >                throw new Error("data type scale not a power of two");
6273 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6274          } catch (Exception e) {
6275              throw new Error(e);
6276          }
6783        if ((ss & (ss-1)) != 0)
6784            throw new Error("data type scale not a power of two");
6785        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6277      }
6278  
6279      /**
# Line 6795 | Line 6286 | public class ConcurrentHashMapV8<K, V>
6286      private static sun.misc.Unsafe getUnsafe() {
6287          try {
6288              return sun.misc.Unsafe.getUnsafe();
6289 <        } catch (SecurityException se) {
6290 <            try {
6291 <                return java.security.AccessController.doPrivileged
6292 <                    (new java.security
6293 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6294 <                        public sun.misc.Unsafe run() throws Exception {
6295 <                            java.lang.reflect.Field f = sun.misc
6296 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6297 <                            f.setAccessible(true);
6298 <                            return (sun.misc.Unsafe) f.get(null);
6299 <                        }});
6300 <            } catch (java.security.PrivilegedActionException e) {
6301 <                throw new RuntimeException("Could not initialize intrinsics",
6302 <                                           e.getCause());
6303 <            }
6289 >        } catch (SecurityException tryReflectionInstead) {}
6290 >        try {
6291 >            return java.security.AccessController.doPrivileged
6292 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6293 >                public sun.misc.Unsafe run() throws Exception {
6294 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6295 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6296 >                        f.setAccessible(true);
6297 >                        Object x = f.get(null);
6298 >                        if (k.isInstance(x))
6299 >                            return k.cast(x);
6300 >                    }
6301 >                    throw new NoSuchFieldError("the Unsafe");
6302 >                }});
6303 >        } catch (java.security.PrivilegedActionException e) {
6304 >            throw new RuntimeException("Could not initialize intrinsics",
6305 >                                       e.getCause());
6306          }
6307      }
6308   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines