ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.86 by jsr166, Sun Jan 6 20:05:51 2013 UTC vs.
Revision 1.122 by jsr166, Thu Feb 26 06:53:34 2015 UTC

# Line 6 | Line 6
6  
7   package jsr166e;
8  
9 < import java.util.Comparator;
9 > import jsr166e.ForkJoinPool;
10 >
11 > import java.io.ObjectStreamField;
12 > import java.io.Serializable;
13 > import java.lang.reflect.ParameterizedType;
14 > import java.lang.reflect.Type;
15 > import java.util.AbstractMap;
16   import java.util.Arrays;
11 import java.util.Map;
12 import java.util.Set;
17   import java.util.Collection;
18 < import java.util.AbstractMap;
19 < import java.util.AbstractSet;
16 < import java.util.AbstractCollection;
17 < import java.util.Hashtable;
18 > import java.util.ConcurrentModificationException;
19 > import java.util.Enumeration;
20   import java.util.HashMap;
21 + import java.util.Hashtable;
22   import java.util.Iterator;
23 < import java.util.Enumeration;
21 < import java.util.ConcurrentModificationException;
23 > import java.util.Map;
24   import java.util.NoSuchElementException;
25 + import java.util.Set;
26   import java.util.concurrent.ConcurrentMap;
24 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 import java.util.concurrent.atomic.AtomicInteger;
27   import java.util.concurrent.atomic.AtomicReference;
28 < import java.io.Serializable;
28 > import java.util.concurrent.atomic.AtomicInteger;
29 > import java.util.concurrent.locks.LockSupport;
30 > import java.util.concurrent.locks.ReentrantLock;
31  
32   /**
33   * A hash table supporting full concurrency of retrievals and
# Line 78 | Line 81 | import java.io.Serializable;
81   * expected {@code concurrencyLevel} as an additional hint for
82   * internal sizing.  Note that using many keys with exactly the same
83   * {@code hashCode()} is a sure way to slow down performance of any
84 < * hash table.
84 > * hash table. To ameliorate impact, when keys are {@link Comparable},
85 > * this class may use comparison order among keys to help break ties.
86   *
87   * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
88   * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
# Line 86 | Line 90 | import java.io.Serializable;
90   * mapped values are (perhaps transiently) not used or all take the
91   * same mapping value.
92   *
89 * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
90 * form of histogram or multiset) by using {@link LongAdder} values
91 * and initializing via {@link #computeIfAbsent}. For example, to add
92 * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
93 * can use {@code freqs.computeIfAbsent(k -> new
94 * LongAdder()).increment();}
95 *
93   * <p>This class and its views and iterators implement all of the
94   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
95   * interfaces.
# Line 100 | Line 97 | import java.io.Serializable;
97   * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
98   * does <em>not</em> allow {@code null} to be used as a key or value.
99   *
100 < * <p>ConcurrentHashMapV8s support sequential and parallel operations
101 < * bulk operations. (Parallel forms use the {@link
102 < * ForkJoinPool#commonPool()}). Tasks that may be used in other
103 < * contexts are available in class {@link ForkJoinTasks}. These
104 < * operations are designed to be safely, and often sensibly, applied
105 < * even with maps that are being concurrently updated by other
106 < * threads; for example, when computing a snapshot summary of the
107 < * values in a shared registry.  There are three kinds of operation,
108 < * each with four forms, accepting functions with Keys, Values,
109 < * Entries, and (Key, Value) arguments and/or return values. Because
110 < * the elements of a ConcurrentHashMapV8 are not ordered in any
111 < * particular way, and may be processed in different orders in
112 < * different parallel executions, the correctness of supplied
113 < * functions should not depend on any ordering, or on any other
114 < * objects or values that may transiently change while computation is
118 < * in progress; and except for forEach actions, should ideally be
119 < * side-effect-free.
100 > * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
101 > * operations that are designed
102 > * to be safely, and often sensibly, applied even with maps that are
103 > * being concurrently updated by other threads; for example, when
104 > * computing a snapshot summary of the values in a shared registry.
105 > * There are three kinds of operation, each with four forms, accepting
106 > * functions with Keys, Values, Entries, and (Key, Value) arguments
107 > * and/or return values. Because the elements of a ConcurrentHashMapV8
108 > * are not ordered in any particular way, and may be processed in
109 > * different orders in different parallel executions, the correctness
110 > * of supplied functions should not depend on any ordering, or on any
111 > * other objects or values that may transiently change while
112 > * computation is in progress; and except for forEach actions, should
113 > * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
114 > * objects do not support method {@code setValue}.
115   *
116   * <ul>
117   * <li> forEach: Perform a given action on each element.
# Line 143 | Line 138 | import java.io.Serializable;
138   * <li> Reductions to scalar doubles, longs, and ints, using a
139   * given basis value.</li>
140   *
146 * </li>
141   * </ul>
142 + * </li>
143   * </ul>
144   *
145 + * <p>These bulk operations accept a {@code parallelismThreshold}
146 + * argument. Methods proceed sequentially if the current map size is
147 + * estimated to be less than the given threshold. Using a value of
148 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
149 + * of {@code 1} results in maximal parallelism by partitioning into
150 + * enough subtasks to fully utilize the {@link
151 + * ForkJoinPool#commonPool()} that is used for all parallel
152 + * computations. Normally, you would initially choose one of these
153 + * extreme values, and then measure performance of using in-between
154 + * values that trade off overhead versus throughput.
155 + *
156   * <p>The concurrency properties of bulk operations follow
157   * from those of ConcurrentHashMapV8: Any non-null result returned
158   * from {@code get(key)} and related access methods bears a
# Line 212 | Line 218 | import java.io.Serializable;
218   * @param <K> the type of keys maintained by this map
219   * @param <V> the type of mapped values
220   */
221 < public class ConcurrentHashMapV8<K, V>
222 <    implements ConcurrentMap<K, V>, Serializable {
221 > public class ConcurrentHashMapV8<K,V> extends AbstractMap<K,V>
222 >    implements ConcurrentMap<K,V>, Serializable {
223      private static final long serialVersionUID = 7249069246763182397L;
224  
225      /**
226 <     * A partitionable iterator. A Spliterator can be traversed
227 <     * directly, but can also be partitioned (before traversal) by
228 <     * creating another Spliterator that covers a non-overlapping
223 <     * portion of the elements, and so may be amenable to parallel
224 <     * execution.
225 <     *
226 <     * <p>This interface exports a subset of expected JDK8
227 <     * functionality.
228 <     *
229 <     * <p>Sample usage: Here is one (of the several) ways to compute
230 <     * the sum of the values held in a map using the ForkJoin
231 <     * framework. As illustrated here, Spliterators are well suited to
232 <     * designs in which a task repeatedly splits off half its work
233 <     * into forked subtasks until small enough to process directly,
234 <     * and then joins these subtasks. Variants of this style can also
235 <     * be used in completion-based designs.
236 <     *
237 <     * <pre>
238 <     * {@code ConcurrentHashMapV8<String, Long> m = ...
239 <     * // split as if have 8 * parallelism, for load balance
240 <     * int n = m.size();
241 <     * int p = aForkJoinPool.getParallelism() * 8;
242 <     * int split = (n < p)? n : p;
243 <     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
244 <     * // ...
245 <     * static class SumValues extends RecursiveTask<Long> {
246 <     *   final Spliterator<Long> s;
247 <     *   final int split;             // split while > 1
248 <     *   final SumValues nextJoin;    // records forked subtasks to join
249 <     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
250 <     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
251 <     *   }
252 <     *   public Long compute() {
253 <     *     long sum = 0;
254 <     *     SumValues subtasks = null; // fork subtasks
255 <     *     for (int s = split >>> 1; s > 0; s >>>= 1)
256 <     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
257 <     *     while (s.hasNext())        // directly process remaining elements
258 <     *       sum += s.next();
259 <     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
260 <     *       sum += t.join();         // collect subtask results
261 <     *     return sum;
262 <     *   }
263 <     * }
264 <     * }</pre>
226 >     * An object for traversing and partitioning elements of a source.
227 >     * This interface provides a subset of the functionality of JDK8
228 >     * java.util.Spliterator.
229       */
230 <    public static interface Spliterator<T> extends Iterator<T> {
230 >    public static interface ConcurrentHashMapSpliterator<T> {
231          /**
232 <         * Returns a Spliterator covering approximately half of the
233 <         * elements, guaranteed not to overlap with those subsequently
234 <         * returned by this Spliterator.  After invoking this method,
235 <         * the current Spliterator will <em>not</em> produce any of
236 <         * the elements of the returned Spliterator, but the two
237 <         * Spliterators together will produce all of the elements that
238 <         * would have been produced by this Spliterator had this
239 <         * method not been called. The exact number of elements
240 <         * produced by the returned Spliterator is not guaranteed, and
277 <         * may be zero (i.e., with {@code hasNext()} reporting {@code
278 <         * false}) if this Spliterator cannot be further split.
279 <         *
280 <         * @return a Spliterator covering approximately half of the
281 <         * elements
282 <         * @throws IllegalStateException if this Spliterator has
283 <         * already commenced traversing elements
232 >         * If possible, returns a new spliterator covering
233 >         * approximately one half of the elements, which will not be
234 >         * covered by this spliterator. Returns null if cannot be
235 >         * split.
236 >         */
237 >        ConcurrentHashMapSpliterator<T> trySplit();
238 >        /**
239 >         * Returns an estimate of the number of elements covered by
240 >         * this Spliterator.
241           */
242 <        Spliterator<T> split();
242 >        long estimateSize();
243 >
244 >        /** Applies the action to each untraversed element */
245 >        void forEachRemaining(Action<? super T> action);
246 >        /** If an element remains, applies the action and returns true. */
247 >        boolean tryAdvance(Action<? super T> action);
248      }
249  
250 +    // Sams
251 +    /** Interface describing a void action of one argument */
252 +    public interface Action<A> { void apply(A a); }
253 +    /** Interface describing a void action of two arguments */
254 +    public interface BiAction<A,B> { void apply(A a, B b); }
255 +    /** Interface describing a function of one argument */
256 +    public interface Fun<A,T> { T apply(A a); }
257 +    /** Interface describing a function of two arguments */
258 +    public interface BiFun<A,B,T> { T apply(A a, B b); }
259 +    /** Interface describing a function mapping its argument to a double */
260 +    public interface ObjectToDouble<A> { double apply(A a); }
261 +    /** Interface describing a function mapping its argument to a long */
262 +    public interface ObjectToLong<A> { long apply(A a); }
263 +    /** Interface describing a function mapping its argument to an int */
264 +    public interface ObjectToInt<A> {int apply(A a); }
265 +    /** Interface describing a function mapping two arguments to a double */
266 +    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
267 +    /** Interface describing a function mapping two arguments to a long */
268 +    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
269 +    /** Interface describing a function mapping two arguments to an int */
270 +    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
271 +    /** Interface describing a function mapping two doubles to a double */
272 +    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
273 +    /** Interface describing a function mapping two longs to a long */
274 +    public interface LongByLongToLong { long apply(long a, long b); }
275 +    /** Interface describing a function mapping two ints to an int */
276 +    public interface IntByIntToInt { int apply(int a, int b); }
277 +
278 +
279      /*
280       * Overview:
281       *
# Line 295 | Line 286 | public class ConcurrentHashMapV8<K, V>
286       * the same or better than java.util.HashMap, and to support high
287       * initial insertion rates on an empty table by many threads.
288       *
289 <     * Each key-value mapping is held in a Node.  Because Node key
290 <     * fields can contain special values, they are defined using plain
291 <     * Object types (not type "K"). This leads to a lot of explicit
292 <     * casting (and many explicit warning suppressions to tell
293 <     * compilers not to complain about it). It also allows some of the
294 <     * public methods to be factored into a smaller number of internal
295 <     * methods (although sadly not so for the five variants of
296 <     * put-related operations). The validation-based approach
297 <     * explained below leads to a lot of code sprawl because
298 <     * retry-control precludes factoring into smaller methods.
289 >     * This map usually acts as a binned (bucketed) hash table.  Each
290 >     * key-value mapping is held in a Node.  Most nodes are instances
291 >     * of the basic Node class with hash, key, value, and next
292 >     * fields. However, various subclasses exist: TreeNodes are
293 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
294 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
295 >     * of bins during resizing. ReservationNodes are used as
296 >     * placeholders while establishing values in computeIfAbsent and
297 >     * related methods.  The types TreeBin, ForwardingNode, and
298 >     * ReservationNode do not hold normal user keys, values, or
299 >     * hashes, and are readily distinguishable during search etc
300 >     * because they have negative hash fields and null key and value
301 >     * fields. (These special nodes are either uncommon or transient,
302 >     * so the impact of carrying around some unused fields is
303 >     * insignificant.)
304       *
305       * The table is lazily initialized to a power-of-two size upon the
306       * first insertion.  Each bin in the table normally contains a
# Line 312 | Line 308 | public class ConcurrentHashMapV8<K, V>
308       * Table accesses require volatile/atomic reads, writes, and
309       * CASes.  Because there is no other way to arrange this without
310       * adding further indirections, we use intrinsics
311 <     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
316 <     * are always accurately traversable under volatile reads, so long
317 <     * as lookups check hash code and non-nullness of value before
318 <     * checking key equality.
311 >     * (sun.misc.Unsafe) operations.
312       *
313       * We use the top (sign) bit of Node hash fields for control
314       * purposes -- it is available anyway because of addressing
315 <     * constraints.  Nodes with negative hash fields are forwarding
316 <     * nodes to either TreeBins or resized tables.  The lower 31 bits
324 <     * of each normal Node's hash field contain a transformation of
325 <     * the key's hash code.
315 >     * constraints.  Nodes with negative hash fields are specially
316 >     * handled or ignored in map methods.
317       *
318       * Insertion (via put or its variants) of the first node in an
319       * empty bin is performed by just CASing it to the bin.  This is
# Line 339 | Line 330 | public class ConcurrentHashMapV8<K, V>
330       * validate that it is still the first node after locking it, and
331       * retry if not. Because new nodes are always appended to lists,
332       * once a node is first in a bin, it remains first until deleted
333 <     * or the bin becomes invalidated (upon resizing).  However,
343 <     * operations that only conditionally update may inspect nodes
344 <     * until the point of update. This is a converse of sorts to the
345 <     * lazy locking technique described by Herlihy & Shavit.
333 >     * or the bin becomes invalidated (upon resizing).
334       *
335       * The main disadvantage of per-bin locks is that other update
336       * operations on other nodes in a bin list protected by the same
# Line 375 | Line 363 | public class ConcurrentHashMapV8<K, V>
363       * sometimes deviate significantly from uniform randomness.  This
364       * includes the case when N > (1<<30), so some keys MUST collide.
365       * Similarly for dumb or hostile usages in which multiple keys are
366 <     * designed to have identical hash codes. Also, although we guard
367 <     * against the worst effects of this (see method spread), sets of
368 <     * hashes may differ only in bits that do not impact their bin
369 <     * index for a given power-of-two mask.  So we use a secondary
370 <     * strategy that applies when the number of nodes in a bin exceeds
371 <     * a threshold, and at least one of the keys implements
384 <     * Comparable.  These TreeBins use a balanced tree to hold nodes
385 <     * (a specialized form of red-black trees), bounding search time
386 <     * to O(log N).  Each search step in a TreeBin is around twice as
366 >     * designed to have identical hash codes or ones that differs only
367 >     * in masked-out high bits. So we use a secondary strategy that
368 >     * applies when the number of nodes in a bin exceeds a
369 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
370 >     * specialized form of red-black trees), bounding search time to
371 >     * O(log N).  Each search step in a TreeBin is at least twice as
372       * slow as in a regular list, but given that N cannot exceed
373       * (1<<64) (before running out of addresses) this bounds search
374       * steps, lock hold times, etc, to reasonable constants (roughly
# Line 396 | Line 381 | public class ConcurrentHashMapV8<K, V>
381       * The table is resized when occupancy exceeds a percentage
382       * threshold (nominally, 0.75, but see below).  Any thread
383       * noticing an overfull bin may assist in resizing after the
384 <     * initiating thread allocates and sets up the replacement
385 <     * array. However, rather than stalling, these other threads may
386 <     * proceed with insertions etc.  The use of TreeBins shields us
387 <     * from the worst case effects of overfilling while resizes are in
384 >     * initiating thread allocates and sets up the replacement array.
385 >     * However, rather than stalling, these other threads may proceed
386 >     * with insertions etc.  The use of TreeBins shields us from the
387 >     * worst case effects of overfilling while resizes are in
388       * progress.  Resizing proceeds by transferring bins, one by one,
389 <     * from the table to the next table. To enable concurrency, the
390 <     * next table must be (incrementally) prefilled with place-holders
391 <     * serving as reverse forwarders to the old table.  Because we are
389 >     * from the table to the next table. However, threads claim small
390 >     * blocks of indices to transfer (via field transferIndex) before
391 >     * doing so, reducing contention.  A generation stamp in field
392 >     * sizeCtl ensures that resizings do not overlap. Because we are
393       * using power-of-two expansion, the elements from each bin must
394       * either stay at same index, or move with a power of two
395       * offset. We eliminate unnecessary node creation by catching
# Line 424 | Line 410 | public class ConcurrentHashMapV8<K, V>
410       * locks, average aggregate waits become shorter as resizing
411       * progresses.  The transfer operation must also ensure that all
412       * accessible bins in both the old and new table are usable by any
413 <     * traversal.  This is arranged by proceeding from the last bin
414 <     * (table.length - 1) up towards the first.  Upon seeing a
415 <     * forwarding node, traversals (see class Traverser) arrange to
416 <     * move to the new table without revisiting nodes.  However, to
417 <     * ensure that no intervening nodes are skipped, bin splitting can
418 <     * only begin after the associated reverse-forwarders are in
419 <     * place.
413 >     * traversal.  This is arranged in part by proceeding from the
414 >     * last bin (table.length - 1) up towards the first.  Upon seeing
415 >     * a forwarding node, traversals (see class Traverser) arrange to
416 >     * move to the new table without revisiting nodes.  To ensure that
417 >     * no intervening nodes are skipped even when moved out of order,
418 >     * a stack (see class TableStack) is created on first encounter of
419 >     * a forwarding node during a traversal, to maintain its place if
420 >     * later processing the current table. The need for these
421 >     * save/restore mechanics is relatively rare, but when one
422 >     * forwarding node is encountered, typically many more will be.
423 >     * So Traversers use a simple caching scheme to avoid creating so
424 >     * many new TableStack nodes. (Thanks to Peter Levart for
425 >     * suggesting use of a stack here.)
426       *
427       * The traversal scheme also applies to partial traversals of
428       * ranges of bins (via an alternate Traverser constructor)
# Line 456 | Line 448 | public class ConcurrentHashMapV8<K, V>
448       * bin already holding two or more nodes. Under uniform hash
449       * distributions, the probability of this occurring at threshold
450       * is around 13%, meaning that only about 1 in 8 puts check
451 <     * threshold (and after resizing, many fewer do so). The bulk
452 <     * putAll operation further reduces contention by only committing
453 <     * count updates upon these size checks.
451 >     * threshold (and after resizing, many fewer do so).
452 >     *
453 >     * TreeBins use a special form of comparison for search and
454 >     * related operations (which is the main reason we cannot use
455 >     * existing collections such as TreeMaps). TreeBins contain
456 >     * Comparable elements, but may contain others, as well as
457 >     * elements that are Comparable but not necessarily Comparable for
458 >     * the same T, so we cannot invoke compareTo among them. To handle
459 >     * this, the tree is ordered primarily by hash value, then by
460 >     * Comparable.compareTo order if applicable.  On lookup at a node,
461 >     * if elements are not comparable or compare as 0 then both left
462 >     * and right children may need to be searched in the case of tied
463 >     * hash values. (This corresponds to the full list search that
464 >     * would be necessary if all elements were non-Comparable and had
465 >     * tied hashes.) On insertion, to keep a total ordering (or as
466 >     * close as is required here) across rebalancings, we compare
467 >     * classes and identityHashCodes as tie-breakers. The red-black
468 >     * balancing code is updated from pre-jdk-collections
469 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
470 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
471 >     * Algorithms" (CLR).
472 >     *
473 >     * TreeBins also require an additional locking mechanism.  While
474 >     * list traversal is always possible by readers even during
475 >     * updates, tree traversal is not, mainly because of tree-rotations
476 >     * that may change the root node and/or its linkages.  TreeBins
477 >     * include a simple read-write lock mechanism parasitic on the
478 >     * main bin-synchronization strategy: Structural adjustments
479 >     * associated with an insertion or removal are already bin-locked
480 >     * (and so cannot conflict with other writers) but must wait for
481 >     * ongoing readers to finish. Since there can be only one such
482 >     * waiter, we use a simple scheme using a single "waiter" field to
483 >     * block writers.  However, readers need never block.  If the root
484 >     * lock is held, they proceed along the slow traversal path (via
485 >     * next-pointers) until the lock becomes available or the list is
486 >     * exhausted, whichever comes first. These cases are not fast, but
487 >     * maximize aggregate expected throughput.
488       *
489       * Maintaining API and serialization compatibility with previous
490       * versions of this class introduces several oddities. Mainly: We
# Line 468 | Line 494 | public class ConcurrentHashMapV8<K, V>
494       * time that we can guarantee to honor it.) We also declare an
495       * unused "Segment" class that is instantiated in minimal form
496       * only when serializing.
497 +     *
498 +     * Also, solely for compatibility with previous versions of this
499 +     * class, it extends AbstractMap, even though all of its methods
500 +     * are overridden, so it is just useless baggage.
501 +     *
502 +     * This file is organized to make things a little easier to follow
503 +     * while reading than they might otherwise: First the main static
504 +     * declarations and utilities, then fields, then main public
505 +     * methods (with a few factorings of multiple public methods into
506 +     * internal ones), then sizing methods, trees, traversers, and
507 +     * bulk operations.
508       */
509  
510      /* ---------------- Constants -------------- */
# Line 510 | Line 547 | public class ConcurrentHashMapV8<K, V>
547  
548      /**
549       * The bin count threshold for using a tree rather than list for a
550 <     * bin.  The value reflects the approximate break-even point for
551 <     * using tree-based operations.
552 <     */
553 <    private static final int TREE_THRESHOLD = 8;
554 <
518 <    /**
519 <     * Minimum number of rebinnings per transfer step. Ranges are
520 <     * subdivided to allow multiple resizer threads.  This value
521 <     * serves as a lower bound to avoid resizers encountering
522 <     * excessive memory contention.  The value should be at least
523 <     * DEFAULT_CAPACITY.
524 <     */
525 <    private static final int MIN_TRANSFER_STRIDE = 16;
526 <
527 <    /*
528 <     * Encodings for Node hash fields. See above for explanation.
529 <     */
530 <    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
531 <    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
532 <
533 <    /** Number of CPUS, to place bounds on some sizings */
534 <    static final int NCPU = Runtime.getRuntime().availableProcessors();
535 <
536 <    /* ---------------- Counters -------------- */
537 <
538 <    // Adapted from LongAdder and Striped64.
539 <    // See their internal docs for explanation.
540 <
541 <    // A padded cell for distributing counts
542 <    static final class CounterCell {
543 <        volatile long p0, p1, p2, p3, p4, p5, p6;
544 <        volatile long value;
545 <        volatile long q0, q1, q2, q3, q4, q5, q6;
546 <        CounterCell(long x) { value = x; }
547 <    }
548 <
549 <    /**
550 <     * Holder for the thread-local hash code determining which
551 <     * CounterCell to use. The code is initialized via the
552 <     * counterHashCodeGenerator, but may be moved upon collisions.
553 <     */
554 <    static final class CounterHashCode {
555 <        int code;
556 <    }
557 <
558 <    /**
559 <     * Generates initial value for per-thread CounterHashCodes
560 <     */
561 <    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
562 <
563 <    /**
564 <     * Increment for counterHashCodeGenerator. See class ThreadLocal
565 <     * for explanation.
566 <     */
567 <    static final int SEED_INCREMENT = 0x61c88647;
568 <
569 <    /**
570 <     * Per-thread counter hash codes. Shared across all instances.
571 <     */
572 <    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
573 <        new ThreadLocal<CounterHashCode>();
574 <
575 <    /* ---------------- Fields -------------- */
576 <
577 <    /**
578 <     * The array of bins. Lazily initialized upon first insertion.
579 <     * Size is always a power of two. Accessed directly by iterators.
580 <     */
581 <    transient volatile Node<V>[] table;
582 <
583 <    /**
584 <     * The next table to use; non-null only while resizing.
550 >     * bin.  Bins are converted to trees when adding an element to a
551 >     * bin with at least this many nodes. The value must be greater
552 >     * than 2, and should be at least 8 to mesh with assumptions in
553 >     * tree removal about conversion back to plain bins upon
554 >     * shrinkage.
555       */
556 <    private transient volatile Node<V>[] nextTable;
556 >    static final int TREEIFY_THRESHOLD = 8;
557  
558      /**
559 <     * Base counter value, used mainly when there is no contention,
560 <     * but also as a fallback during table initialization
561 <     * races. Updated via CAS.
559 >     * The bin count threshold for untreeifying a (split) bin during a
560 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
561 >     * most 6 to mesh with shrinkage detection under removal.
562       */
563 <    private transient volatile long baseCount;
563 >    static final int UNTREEIFY_THRESHOLD = 6;
564  
565      /**
566 <     * Table initialization and resizing control.  When negative, the
567 <     * table is being initialized or resized: -1 for initialization,
568 <     * else -(1 + the number of active resizing threads).  Otherwise,
569 <     * when table is null, holds the initial table size to use upon
600 <     * creation, or 0 for default. After initialization, holds the
601 <     * next element count value upon which to resize the table.
566 >     * The smallest table capacity for which bins may be treeified.
567 >     * (Otherwise the table is resized if too many nodes in a bin.)
568 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
569 >     * conflicts between resizing and treeification thresholds.
570       */
571 <    private transient volatile int sizeCtl;
571 >    static final int MIN_TREEIFY_CAPACITY = 64;
572  
573      /**
574 <     * The next table index (plus one) to split while resizing.
574 >     * Minimum number of rebinnings per transfer step. Ranges are
575 >     * subdivided to allow multiple resizer threads.  This value
576 >     * serves as a lower bound to avoid resizers encountering
577 >     * excessive memory contention.  The value should be at least
578 >     * DEFAULT_CAPACITY.
579       */
580 <    private transient volatile int transferIndex;
580 >    private static final int MIN_TRANSFER_STRIDE = 16;
581  
582      /**
583 <     * The least available table index to split while resizing.
583 >     * The number of bits used for generation stamp in sizeCtl.
584 >     * Must be at least 6 for 32bit arrays.
585       */
586 <    private transient volatile int transferOrigin;
586 >    private static int RESIZE_STAMP_BITS = 16;
587  
588      /**
589 <     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
589 >     * The maximum number of threads that can help resize.
590 >     * Must fit in 32 - RESIZE_STAMP_BITS bits.
591       */
592 <    private transient volatile int counterBusy;
592 >    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
593  
594      /**
595 <     * Table of counter cells. When non-null, size is a power of 2.
595 >     * The bit shift for recording size stamp in sizeCtl.
596       */
597 <    private transient volatile CounterCell[] counterCells;
624 <
625 <    // views
626 <    private transient KeySetView<K,V> keySet;
627 <    private transient ValuesView<K,V> values;
628 <    private transient EntrySetView<K,V> entrySet;
629 <
630 <    /** For serialization compatibility. Null unless serialized; see below */
631 <    private Segment<K,V>[] segments;
632 <
633 <    /* ---------------- Table element access -------------- */
597 >    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
598  
599      /*
600 <     * Volatile access methods are used for table elements as well as
601 <     * elements of in-progress next table while resizing.  Uses are
602 <     * null checked by callers, and implicitly bounds-checked, relying
603 <     * on the invariants that tab arrays have non-zero size, and all
604 <     * indices are masked with (tab.length - 1) which is never
605 <     * negative and always less than length. Note that, to be correct
642 <     * wrt arbitrary concurrency errors by users, bounds checks must
643 <     * operate on local variables, which accounts for some odd-looking
644 <     * inline assignments below.
645 <     */
646 <
647 <    @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
648 <        (Node<V>[] tab, int i) { // used by Traverser
649 <        return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
650 <    }
600 >     * Encodings for Node hash fields. See above for explanation.
601 >     */
602 >    static final int MOVED     = -1; // hash for forwarding nodes
603 >    static final int TREEBIN   = -2; // hash for roots of trees
604 >    static final int RESERVED  = -3; // hash for transient reservations
605 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
606  
607 <    private static final <V> boolean casTabAt
608 <        (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
654 <        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
655 <    }
607 >    /** Number of CPUS, to place bounds on some sizings */
608 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
609  
610 <    private static final <V> void setTabAt
611 <        (Node<V>[] tab, int i, Node<V> v) {
612 <        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
613 <    }
610 >    /** For serialization compatibility. */
611 >    private static final ObjectStreamField[] serialPersistentFields = {
612 >        new ObjectStreamField("segments", Segment[].class),
613 >        new ObjectStreamField("segmentMask", Integer.TYPE),
614 >        new ObjectStreamField("segmentShift", Integer.TYPE)
615 >    };
616  
617      /* ---------------- Nodes -------------- */
618  
619      /**
620 <     * Key-value entry. Note that this is never exported out as a
621 <     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
622 <     * field of MOVED are special, and do not contain user keys or
623 <     * values.  Otherwise, keys are never null, and null val fields
624 <     * indicate that a node is in the process of being deleted or
625 <     * created. For purposes of read-only access, a key may be read
671 <     * before a val, but can only be used after checking val to be
672 <     * non-null.
620 >     * Key-value entry.  This class is never exported out as a
621 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
622 >     * MapEntry below), but can be used for read-only traversals used
623 >     * in bulk tasks.  Subclasses of Node with a negative hash field
624 >     * are special, and contain null keys and values (but are never
625 >     * exported).  Otherwise, keys and vals are never null.
626       */
627 <    static class Node<V> {
627 >    static class Node<K,V> implements Map.Entry<K,V> {
628          final int hash;
629 <        final Object key;
629 >        final K key;
630          volatile V val;
631 <        volatile Node<V> next;
631 >        volatile Node<K,V> next;
632  
633 <        Node(int hash, Object key, V val, Node<V> next) {
633 >        Node(int hash, K key, V val, Node<K,V> next) {
634              this.hash = hash;
635              this.key = key;
636              this.val = val;
637              this.next = next;
638          }
686    }
687
688    /* ---------------- TreeBins -------------- */
689
690    /**
691     * Nodes for use in TreeBins
692     */
693    static final class TreeNode<V> extends Node<V> {
694        TreeNode<V> parent;  // red-black tree links
695        TreeNode<V> left;
696        TreeNode<V> right;
697        TreeNode<V> prev;    // needed to unlink next upon deletion
698        boolean red;
639  
640 <        TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
641 <            super(hash, key, val, next);
642 <            this.parent = parent;
643 <        }
644 <    }
645 <
706 <    /**
707 <     * A specialized form of red-black tree for use in bins
708 <     * whose size exceeds a threshold.
709 <     *
710 <     * TreeBins use a special form of comparison for search and
711 <     * related operations (which is the main reason we cannot use
712 <     * existing collections such as TreeMaps). TreeBins contain
713 <     * Comparable elements, but may contain others, as well as
714 <     * elements that are Comparable but not necessarily Comparable<T>
715 <     * for the same T, so we cannot invoke compareTo among them. To
716 <     * handle this, the tree is ordered primarily by hash value, then
717 <     * by getClass().getName() order, and then by Comparator order
718 <     * among elements of the same class.  On lookup at a node, if
719 <     * elements are not comparable or compare as 0, both left and
720 <     * right children may need to be searched in the case of tied hash
721 <     * values. (This corresponds to the full list search that would be
722 <     * necessary if all elements were non-Comparable and had tied
723 <     * hashes.)  The red-black balancing code is updated from
724 <     * pre-jdk-collections
725 <     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
726 <     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
727 <     * Algorithms" (CLR).
728 <     *
729 <     * TreeBins also maintain a separate locking discipline than
730 <     * regular bins. Because they are forwarded via special MOVED
731 <     * nodes at bin heads (which can never change once established),
732 <     * we cannot use those nodes as locks. Instead, TreeBin
733 <     * extends AbstractQueuedSynchronizer to support a simple form of
734 <     * read-write lock. For update operations and table validation,
735 <     * the exclusive form of lock behaves in the same way as bin-head
736 <     * locks. However, lookups use shared read-lock mechanics to allow
737 <     * multiple readers in the absence of writers.  Additionally,
738 <     * these lookups do not ever block: While the lock is not
739 <     * available, they proceed along the slow traversal path (via
740 <     * next-pointers) until the lock becomes available or the list is
741 <     * exhausted, whichever comes first. (These cases are not fast,
742 <     * but maximize aggregate expected throughput.)  The AQS mechanics
743 <     * for doing this are straightforward.  The lock state is held as
744 <     * AQS getState().  Read counts are negative; the write count (1)
745 <     * is positive.  There are no signalling preferences among readers
746 <     * and writers. Since we don't need to export full Lock API, we
747 <     * just override the minimal AQS methods and use them directly.
748 <     */
749 <    static final class TreeBin<V> extends AbstractQueuedSynchronizer {
750 <        private static final long serialVersionUID = 2249069246763182397L;
751 <        transient TreeNode<V> root;  // root of tree
752 <        transient TreeNode<V> first; // head of next-pointer list
753 <
754 <        /* AQS overrides */
755 <        public final boolean isHeldExclusively() { return getState() > 0; }
756 <        public final boolean tryAcquire(int ignore) {
757 <            if (compareAndSetState(0, 1)) {
758 <                setExclusiveOwnerThread(Thread.currentThread());
759 <                return true;
760 <            }
761 <            return false;
762 <        }
763 <        public final boolean tryRelease(int ignore) {
764 <            setExclusiveOwnerThread(null);
765 <            setState(0);
766 <            return true;
767 <        }
768 <        public final int tryAcquireShared(int ignore) {
769 <            for (int c;;) {
770 <                if ((c = getState()) > 0)
771 <                    return -1;
772 <                if (compareAndSetState(c, c -1))
773 <                    return 1;
774 <            }
775 <        }
776 <        public final boolean tryReleaseShared(int ignore) {
777 <            int c;
778 <            do {} while (!compareAndSetState(c = getState(), c + 1));
779 <            return c == -1;
780 <        }
781 <
782 <        /** From CLR */
783 <        private void rotateLeft(TreeNode<V> p) {
784 <            if (p != null) {
785 <                TreeNode<V> r = p.right, pp, rl;
786 <                if ((rl = p.right = r.left) != null)
787 <                    rl.parent = p;
788 <                if ((pp = r.parent = p.parent) == null)
789 <                    root = r;
790 <                else if (pp.left == p)
791 <                    pp.left = r;
792 <                else
793 <                    pp.right = r;
794 <                r.left = p;
795 <                p.parent = r;
796 <            }
640 >        public final K getKey()       { return key; }
641 >        public final V getValue()     { return val; }
642 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
643 >        public final String toString(){ return key + "=" + val; }
644 >        public final V setValue(V value) {
645 >            throw new UnsupportedOperationException();
646          }
647  
648 <        /** From CLR */
649 <        private void rotateRight(TreeNode<V> p) {
650 <            if (p != null) {
651 <                TreeNode<V> l = p.left, pp, lr;
652 <                if ((lr = p.left = l.right) != null)
653 <                    lr.parent = p;
654 <                if ((pp = l.parent = p.parent) == null)
806 <                    root = l;
807 <                else if (pp.right == p)
808 <                    pp.right = l;
809 <                else
810 <                    pp.left = l;
811 <                l.right = p;
812 <                p.parent = l;
813 <            }
648 >        public final boolean equals(Object o) {
649 >            Object k, v, u; Map.Entry<?,?> e;
650 >            return ((o instanceof Map.Entry) &&
651 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
652 >                    (v = e.getValue()) != null &&
653 >                    (k == key || k.equals(key)) &&
654 >                    (v == (u = val) || v.equals(u)));
655          }
656  
657          /**
658 <         * Returns the TreeNode (or null if not found) for the given key
818 <         * starting at given root.
658 >         * Virtualized support for map.get(); overridden in subclasses.
659           */
660 <        @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
661 <            (int h, Object k, TreeNode<V> p) {
662 <            Class<?> c = k.getClass();
663 <            while (p != null) {
664 <                int dir, ph;  Object pk; Class<?> pc;
665 <                if ((ph = p.hash) == h) {
666 <                    if ((pk = p.key) == k || k.equals(pk))
667 <                        return p;
668 <                    if (c != (pc = pk.getClass()) ||
829 <                        !(k instanceof Comparable) ||
830 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
831 <                        if ((dir = (c == pc) ? 0 :
832 <                             c.getName().compareTo(pc.getName())) == 0) {
833 <                            TreeNode<V> r = null, pl, pr; // check both sides
834 <                            if ((pr = p.right) != null && h >= pr.hash &&
835 <                                (r = getTreeNode(h, k, pr)) != null)
836 <                                return r;
837 <                            else if ((pl = p.left) != null && h <= pl.hash)
838 <                                dir = -1;
839 <                            else // nothing there
840 <                                return null;
841 <                        }
842 <                    }
843 <                }
844 <                else
845 <                    dir = (h < ph) ? -1 : 1;
846 <                p = (dir > 0) ? p.right : p.left;
660 >        Node<K,V> find(int h, Object k) {
661 >            Node<K,V> e = this;
662 >            if (k != null) {
663 >                do {
664 >                    K ek;
665 >                    if (e.hash == h &&
666 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
667 >                        return e;
668 >                } while ((e = e.next) != null);
669              }
670              return null;
671          }
850
851        /**
852         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
853         * read-lock to call getTreeNode, but during failure to get
854         * lock, searches along next links.
855         */
856        final V getValue(int h, Object k) {
857            Node<V> r = null;
858            int c = getState(); // Must read lock state first
859            for (Node<V> e = first; e != null; e = e.next) {
860                if (c <= 0 && compareAndSetState(c, c - 1)) {
861                    try {
862                        r = getTreeNode(h, k, root);
863                    } finally {
864                        releaseShared(0);
865                    }
866                    break;
867                }
868                else if (e.hash == h && k.equals(e.key)) {
869                    r = e;
870                    break;
871                }
872                else
873                    c = getState();
874            }
875            return r == null ? null : r.val;
876        }
877
878        /**
879         * Finds or adds a node.
880         * @return null if added
881         */
882        @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
883            (int h, Object k, V v) {
884            Class<?> c = k.getClass();
885            TreeNode<V> pp = root, p = null;
886            int dir = 0;
887            while (pp != null) { // find existing node or leaf to insert at
888                int ph;  Object pk; Class<?> pc;
889                p = pp;
890                if ((ph = p.hash) == h) {
891                    if ((pk = p.key) == k || k.equals(pk))
892                        return p;
893                    if (c != (pc = pk.getClass()) ||
894                        !(k instanceof Comparable) ||
895                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
896                        TreeNode<V> s = null, r = null, pr;
897                        if ((dir = (c == pc) ? 0 :
898                             c.getName().compareTo(pc.getName())) == 0) {
899                            if ((pr = p.right) != null && h >= pr.hash &&
900                                (r = getTreeNode(h, k, pr)) != null)
901                                return r;
902                            else // continue left
903                                dir = -1;
904                        }
905                        else if ((pr = p.right) != null && h >= pr.hash)
906                            s = pr;
907                        if (s != null && (r = getTreeNode(h, k, s)) != null)
908                            return r;
909                    }
910                }
911                else
912                    dir = (h < ph) ? -1 : 1;
913                pp = (dir > 0) ? p.right : p.left;
914            }
915
916            TreeNode<V> f = first;
917            TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
918            if (p == null)
919                root = x;
920            else { // attach and rebalance; adapted from CLR
921                TreeNode<V> xp, xpp;
922                if (f != null)
923                    f.prev = x;
924                if (dir <= 0)
925                    p.left = x;
926                else
927                    p.right = x;
928                x.red = true;
929                while (x != null && (xp = x.parent) != null && xp.red &&
930                       (xpp = xp.parent) != null) {
931                    TreeNode<V> xppl = xpp.left;
932                    if (xp == xppl) {
933                        TreeNode<V> y = xpp.right;
934                        if (y != null && y.red) {
935                            y.red = false;
936                            xp.red = false;
937                            xpp.red = true;
938                            x = xpp;
939                        }
940                        else {
941                            if (x == xp.right) {
942                                rotateLeft(x = xp);
943                                xpp = (xp = x.parent) == null ? null : xp.parent;
944                            }
945                            if (xp != null) {
946                                xp.red = false;
947                                if (xpp != null) {
948                                    xpp.red = true;
949                                    rotateRight(xpp);
950                                }
951                            }
952                        }
953                    }
954                    else {
955                        TreeNode<V> y = xppl;
956                        if (y != null && y.red) {
957                            y.red = false;
958                            xp.red = false;
959                            xpp.red = true;
960                            x = xpp;
961                        }
962                        else {
963                            if (x == xp.left) {
964                                rotateRight(x = xp);
965                                xpp = (xp = x.parent) == null ? null : xp.parent;
966                            }
967                            if (xp != null) {
968                                xp.red = false;
969                                if (xpp != null) {
970                                    xpp.red = true;
971                                    rotateLeft(xpp);
972                                }
973                            }
974                        }
975                    }
976                }
977                TreeNode<V> r = root;
978                if (r != null && r.red)
979                    r.red = false;
980            }
981            return null;
982        }
983
984        /**
985         * Removes the given node, that must be present before this
986         * call.  This is messier than typical red-black deletion code
987         * because we cannot swap the contents of an interior node
988         * with a leaf successor that is pinned by "next" pointers
989         * that are accessible independently of lock. So instead we
990         * swap the tree linkages.
991         */
992        final void deleteTreeNode(TreeNode<V> p) {
993            TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
994            TreeNode<V> pred = p.prev;
995            if (pred == null)
996                first = next;
997            else
998                pred.next = next;
999            if (next != null)
1000                next.prev = pred;
1001            TreeNode<V> replacement;
1002            TreeNode<V> pl = p.left;
1003            TreeNode<V> pr = p.right;
1004            if (pl != null && pr != null) {
1005                TreeNode<V> s = pr, sl;
1006                while ((sl = s.left) != null) // find successor
1007                    s = sl;
1008                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1009                TreeNode<V> sr = s.right;
1010                TreeNode<V> pp = p.parent;
1011                if (s == pr) { // p was s's direct parent
1012                    p.parent = s;
1013                    s.right = p;
1014                }
1015                else {
1016                    TreeNode<V> sp = s.parent;
1017                    if ((p.parent = sp) != null) {
1018                        if (s == sp.left)
1019                            sp.left = p;
1020                        else
1021                            sp.right = p;
1022                    }
1023                    if ((s.right = pr) != null)
1024                        pr.parent = s;
1025                }
1026                p.left = null;
1027                if ((p.right = sr) != null)
1028                    sr.parent = p;
1029                if ((s.left = pl) != null)
1030                    pl.parent = s;
1031                if ((s.parent = pp) == null)
1032                    root = s;
1033                else if (p == pp.left)
1034                    pp.left = s;
1035                else
1036                    pp.right = s;
1037                replacement = sr;
1038            }
1039            else
1040                replacement = (pl != null) ? pl : pr;
1041            TreeNode<V> pp = p.parent;
1042            if (replacement == null) {
1043                if (pp == null) {
1044                    root = null;
1045                    return;
1046                }
1047                replacement = p;
1048            }
1049            else {
1050                replacement.parent = pp;
1051                if (pp == null)
1052                    root = replacement;
1053                else if (p == pp.left)
1054                    pp.left = replacement;
1055                else
1056                    pp.right = replacement;
1057                p.left = p.right = p.parent = null;
1058            }
1059            if (!p.red) { // rebalance, from CLR
1060                TreeNode<V> x = replacement;
1061                while (x != null) {
1062                    TreeNode<V> xp, xpl;
1063                    if (x.red || (xp = x.parent) == null) {
1064                        x.red = false;
1065                        break;
1066                    }
1067                    if (x == (xpl = xp.left)) {
1068                        TreeNode<V> sib = xp.right;
1069                        if (sib != null && sib.red) {
1070                            sib.red = false;
1071                            xp.red = true;
1072                            rotateLeft(xp);
1073                            sib = (xp = x.parent) == null ? null : xp.right;
1074                        }
1075                        if (sib == null)
1076                            x = xp;
1077                        else {
1078                            TreeNode<V> sl = sib.left, sr = sib.right;
1079                            if ((sr == null || !sr.red) &&
1080                                (sl == null || !sl.red)) {
1081                                sib.red = true;
1082                                x = xp;
1083                            }
1084                            else {
1085                                if (sr == null || !sr.red) {
1086                                    if (sl != null)
1087                                        sl.red = false;
1088                                    sib.red = true;
1089                                    rotateRight(sib);
1090                                    sib = (xp = x.parent) == null ?
1091                                        null : xp.right;
1092                                }
1093                                if (sib != null) {
1094                                    sib.red = (xp == null) ? false : xp.red;
1095                                    if ((sr = sib.right) != null)
1096                                        sr.red = false;
1097                                }
1098                                if (xp != null) {
1099                                    xp.red = false;
1100                                    rotateLeft(xp);
1101                                }
1102                                x = root;
1103                            }
1104                        }
1105                    }
1106                    else { // symmetric
1107                        TreeNode<V> sib = xpl;
1108                        if (sib != null && sib.red) {
1109                            sib.red = false;
1110                            xp.red = true;
1111                            rotateRight(xp);
1112                            sib = (xp = x.parent) == null ? null : xp.left;
1113                        }
1114                        if (sib == null)
1115                            x = xp;
1116                        else {
1117                            TreeNode<V> sl = sib.left, sr = sib.right;
1118                            if ((sl == null || !sl.red) &&
1119                                (sr == null || !sr.red)) {
1120                                sib.red = true;
1121                                x = xp;
1122                            }
1123                            else {
1124                                if (sl == null || !sl.red) {
1125                                    if (sr != null)
1126                                        sr.red = false;
1127                                    sib.red = true;
1128                                    rotateLeft(sib);
1129                                    sib = (xp = x.parent) == null ?
1130                                        null : xp.left;
1131                                }
1132                                if (sib != null) {
1133                                    sib.red = (xp == null) ? false : xp.red;
1134                                    if ((sl = sib.left) != null)
1135                                        sl.red = false;
1136                                }
1137                                if (xp != null) {
1138                                    xp.red = false;
1139                                    rotateRight(xp);
1140                                }
1141                                x = root;
1142                            }
1143                        }
1144                    }
1145                }
1146            }
1147            if (p == replacement && (pp = p.parent) != null) {
1148                if (p == pp.left) // detach pointers
1149                    pp.left = null;
1150                else if (p == pp.right)
1151                    pp.right = null;
1152                p.parent = null;
1153            }
1154        }
672      }
673  
674 <    /* ---------------- Collision reduction methods -------------- */
674 >    /* ---------------- Static utilities -------------- */
675  
676      /**
677 <     * Spreads higher bits to lower, and also forces top bit to 0.
678 <     * Because the table uses power-of-two masking, sets of hashes
679 <     * that vary only in bits above the current mask will always
680 <     * collide. (Among known examples are sets of Float keys holding
681 <     * consecutive whole numbers in small tables.)  To counter this,
682 <     * we apply a transform that spreads the impact of higher bits
677 >     * Spreads (XORs) higher bits of hash to lower and also forces top
678 >     * bit to 0. Because the table uses power-of-two masking, sets of
679 >     * hashes that vary only in bits above the current mask will
680 >     * always collide. (Among known examples are sets of Float keys
681 >     * holding consecutive whole numbers in small tables.)  So we
682 >     * apply a transform that spreads the impact of higher bits
683       * downward. There is a tradeoff between speed, utility, and
684       * quality of bit-spreading. Because many common sets of hashes
685 <     * are already reasonably distributed across bits (so don't benefit
686 <     * from spreading), and because we use trees to handle large sets
687 <     * of collisions in bins, we don't need excessively high quality.
685 >     * are already reasonably distributed (so don't benefit from
686 >     * spreading), and because we use trees to handle large sets of
687 >     * collisions in bins, we just XOR some shifted bits in the
688 >     * cheapest possible way to reduce systematic lossage, as well as
689 >     * to incorporate impact of the highest bits that would otherwise
690 >     * never be used in index calculations because of table bounds.
691       */
692 <    private static final int spread(int h) {
693 <        h ^= (h >>> 18) ^ (h >>> 12);
1174 <        return (h ^ (h >>> 10)) & HASH_BITS;
692 >    static final int spread(int h) {
693 >        return (h ^ (h >>> 16)) & HASH_BITS;
694      }
695  
696      /**
1178     * Replaces a list bin with a tree bin if key is comparable.  Call
1179     * only when locked.
1180     */
1181    private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1182        if (key instanceof Comparable) {
1183            TreeBin<V> t = new TreeBin<V>();
1184            for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1185                t.putTreeNode(e.hash, e.key, e.val);
1186            setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1187        }
1188    }
1189
1190    /* ---------------- Internal access and update methods -------------- */
1191
1192    /** Implementation for get and containsKey */
1193    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1194        int h = spread(k.hashCode());
1195        retry: for (Node<V>[] tab = table; tab != null;) {
1196            Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1197            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1198                if ((eh = e.hash) < 0) {
1199                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1200                        return ((TreeBin<V>)ek).getValue(h, k);
1201                    else {                      // restart with new table
1202                        tab = (Node<V>[])ek;
1203                        continue retry;
1204                    }
1205                }
1206                else if (eh == h && (ev = e.val) != null &&
1207                         ((ek = e.key) == k || k.equals(ek)))
1208                    return ev;
1209            }
1210            break;
1211        }
1212        return null;
1213    }
1214
1215    /**
1216     * Implementation for the four public remove/replace methods:
1217     * Replaces node value with v, conditional upon match of cv if
1218     * non-null.  If resulting value is null, delete.
1219     */
1220    @SuppressWarnings("unchecked") private final V internalReplace
1221        (Object k, V v, Object cv) {
1222        int h = spread(k.hashCode());
1223        V oldVal = null;
1224        for (Node<V>[] tab = table;;) {
1225            Node<V> f; int i, fh; Object fk;
1226            if (tab == null ||
1227                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1228                break;
1229            else if ((fh = f.hash) < 0) {
1230                if ((fk = f.key) instanceof TreeBin) {
1231                    TreeBin<V> t = (TreeBin<V>)fk;
1232                    boolean validated = false;
1233                    boolean deleted = false;
1234                    t.acquire(0);
1235                    try {
1236                        if (tabAt(tab, i) == f) {
1237                            validated = true;
1238                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1239                            if (p != null) {
1240                                V pv = p.val;
1241                                if (cv == null || cv == pv || cv.equals(pv)) {
1242                                    oldVal = pv;
1243                                    if ((p.val = v) == null) {
1244                                        deleted = true;
1245                                        t.deleteTreeNode(p);
1246                                    }
1247                                }
1248                            }
1249                        }
1250                    } finally {
1251                        t.release(0);
1252                    }
1253                    if (validated) {
1254                        if (deleted)
1255                            addCount(-1L, -1);
1256                        break;
1257                    }
1258                }
1259                else
1260                    tab = (Node<V>[])fk;
1261            }
1262            else if (fh != h && f.next == null) // precheck
1263                break;                          // rules out possible existence
1264            else {
1265                boolean validated = false;
1266                boolean deleted = false;
1267                synchronized (f) {
1268                    if (tabAt(tab, i) == f) {
1269                        validated = true;
1270                        for (Node<V> e = f, pred = null;;) {
1271                            Object ek; V ev;
1272                            if (e.hash == h &&
1273                                ((ev = e.val) != null) &&
1274                                ((ek = e.key) == k || k.equals(ek))) {
1275                                if (cv == null || cv == ev || cv.equals(ev)) {
1276                                    oldVal = ev;
1277                                    if ((e.val = v) == null) {
1278                                        deleted = true;
1279                                        Node<V> en = e.next;
1280                                        if (pred != null)
1281                                            pred.next = en;
1282                                        else
1283                                            setTabAt(tab, i, en);
1284                                    }
1285                                }
1286                                break;
1287                            }
1288                            pred = e;
1289                            if ((e = e.next) == null)
1290                                break;
1291                        }
1292                    }
1293                }
1294                if (validated) {
1295                    if (deleted)
1296                        addCount(-1L, -1);
1297                    break;
1298                }
1299            }
1300        }
1301        return oldVal;
1302    }
1303
1304    /*
1305     * Internal versions of insertion methods
1306     * All have the same basic structure as the first (internalPut):
1307     *  1. If table uninitialized, create
1308     *  2. If bin empty, try to CAS new node
1309     *  3. If bin stale, use new table
1310     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1311     *  5. Lock and validate; if valid, scan and add or update
1312     *
1313     * The putAll method differs mainly in attempting to pre-allocate
1314     * enough table space, and also more lazily performs count updates
1315     * and checks.
1316     *
1317     * Most of the function-accepting methods can't be factored nicely
1318     * because they require different functional forms, so instead
1319     * sprawl out similar mechanics.
1320     */
1321
1322    /** Implementation for put and putIfAbsent */
1323    @SuppressWarnings("unchecked") private final V internalPut
1324        (K k, V v, boolean onlyIfAbsent) {
1325        if (k == null || v == null) throw new NullPointerException();
1326        int h = spread(k.hashCode());
1327        int len = 0;
1328        for (Node<V>[] tab = table;;) {
1329            int i, fh; Node<V> f; Object fk; V fv;
1330            if (tab == null)
1331                tab = initTable();
1332            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1333                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1334                    break;                   // no lock when adding to empty bin
1335            }
1336            else if ((fh = f.hash) < 0) {
1337                if ((fk = f.key) instanceof TreeBin) {
1338                    TreeBin<V> t = (TreeBin<V>)fk;
1339                    V oldVal = null;
1340                    t.acquire(0);
1341                    try {
1342                        if (tabAt(tab, i) == f) {
1343                            len = 2;
1344                            TreeNode<V> p = t.putTreeNode(h, k, v);
1345                            if (p != null) {
1346                                oldVal = p.val;
1347                                if (!onlyIfAbsent)
1348                                    p.val = v;
1349                            }
1350                        }
1351                    } finally {
1352                        t.release(0);
1353                    }
1354                    if (len != 0) {
1355                        if (oldVal != null)
1356                            return oldVal;
1357                        break;
1358                    }
1359                }
1360                else
1361                    tab = (Node<V>[])fk;
1362            }
1363            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1364                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1365                return fv;
1366            else {
1367                V oldVal = null;
1368                synchronized (f) {
1369                    if (tabAt(tab, i) == f) {
1370                        len = 1;
1371                        for (Node<V> e = f;; ++len) {
1372                            Object ek; V ev;
1373                            if (e.hash == h &&
1374                                (ev = e.val) != null &&
1375                                ((ek = e.key) == k || k.equals(ek))) {
1376                                oldVal = ev;
1377                                if (!onlyIfAbsent)
1378                                    e.val = v;
1379                                break;
1380                            }
1381                            Node<V> last = e;
1382                            if ((e = e.next) == null) {
1383                                last.next = new Node<V>(h, k, v, null);
1384                                if (len >= TREE_THRESHOLD)
1385                                    replaceWithTreeBin(tab, i, k);
1386                                break;
1387                            }
1388                        }
1389                    }
1390                }
1391                if (len != 0) {
1392                    if (oldVal != null)
1393                        return oldVal;
1394                    break;
1395                }
1396            }
1397        }
1398        addCount(1L, len);
1399        return null;
1400    }
1401
1402    /** Implementation for computeIfAbsent */
1403    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1404        (K k, Fun<? super K, ? extends V> mf) {
1405        if (k == null || mf == null)
1406            throw new NullPointerException();
1407        int h = spread(k.hashCode());
1408        V val = null;
1409        int len = 0;
1410        for (Node<V>[] tab = table;;) {
1411            Node<V> f; int i; Object fk;
1412            if (tab == null)
1413                tab = initTable();
1414            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1415                Node<V> node = new Node<V>(h, k, null, null);
1416                synchronized (node) {
1417                    if (casTabAt(tab, i, null, node)) {
1418                        len = 1;
1419                        try {
1420                            if ((val = mf.apply(k)) != null)
1421                                node.val = val;
1422                        } finally {
1423                            if (val == null)
1424                                setTabAt(tab, i, null);
1425                        }
1426                    }
1427                }
1428                if (len != 0)
1429                    break;
1430            }
1431            else if (f.hash < 0) {
1432                if ((fk = f.key) instanceof TreeBin) {
1433                    TreeBin<V> t = (TreeBin<V>)fk;
1434                    boolean added = false;
1435                    t.acquire(0);
1436                    try {
1437                        if (tabAt(tab, i) == f) {
1438                            len = 1;
1439                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1440                            if (p != null)
1441                                val = p.val;
1442                            else if ((val = mf.apply(k)) != null) {
1443                                added = true;
1444                                len = 2;
1445                                t.putTreeNode(h, k, val);
1446                            }
1447                        }
1448                    } finally {
1449                        t.release(0);
1450                    }
1451                    if (len != 0) {
1452                        if (!added)
1453                            return val;
1454                        break;
1455                    }
1456                }
1457                else
1458                    tab = (Node<V>[])fk;
1459            }
1460            else {
1461                for (Node<V> e = f; e != null; e = e.next) { // prescan
1462                    Object ek; V ev;
1463                    if (e.hash == h && (ev = e.val) != null &&
1464                        ((ek = e.key) == k || k.equals(ek)))
1465                        return ev;
1466                }
1467                boolean added = false;
1468                synchronized (f) {
1469                    if (tabAt(tab, i) == f) {
1470                        len = 1;
1471                        for (Node<V> e = f;; ++len) {
1472                            Object ek; V ev;
1473                            if (e.hash == h &&
1474                                (ev = e.val) != null &&
1475                                ((ek = e.key) == k || k.equals(ek))) {
1476                                val = ev;
1477                                break;
1478                            }
1479                            Node<V> last = e;
1480                            if ((e = e.next) == null) {
1481                                if ((val = mf.apply(k)) != null) {
1482                                    added = true;
1483                                    last.next = new Node<V>(h, k, val, null);
1484                                    if (len >= TREE_THRESHOLD)
1485                                        replaceWithTreeBin(tab, i, k);
1486                                }
1487                                break;
1488                            }
1489                        }
1490                    }
1491                }
1492                if (len != 0) {
1493                    if (!added)
1494                        return val;
1495                    break;
1496                }
1497            }
1498        }
1499        if (val != null)
1500            addCount(1L, len);
1501        return val;
1502    }
1503
1504    /** Implementation for compute */
1505    @SuppressWarnings("unchecked") private final V internalCompute
1506        (K k, boolean onlyIfPresent,
1507         BiFun<? super K, ? super V, ? extends V> mf) {
1508        if (k == null || mf == null)
1509            throw new NullPointerException();
1510        int h = spread(k.hashCode());
1511        V val = null;
1512        int delta = 0;
1513        int len = 0;
1514        for (Node<V>[] tab = table;;) {
1515            Node<V> f; int i, fh; Object fk;
1516            if (tab == null)
1517                tab = initTable();
1518            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1519                if (onlyIfPresent)
1520                    break;
1521                Node<V> node = new Node<V>(h, k, null, null);
1522                synchronized (node) {
1523                    if (casTabAt(tab, i, null, node)) {
1524                        try {
1525                            len = 1;
1526                            if ((val = mf.apply(k, null)) != null) {
1527                                node.val = val;
1528                                delta = 1;
1529                            }
1530                        } finally {
1531                            if (delta == 0)
1532                                setTabAt(tab, i, null);
1533                        }
1534                    }
1535                }
1536                if (len != 0)
1537                    break;
1538            }
1539            else if ((fh = f.hash) < 0) {
1540                if ((fk = f.key) instanceof TreeBin) {
1541                    TreeBin<V> t = (TreeBin<V>)fk;
1542                    t.acquire(0);
1543                    try {
1544                        if (tabAt(tab, i) == f) {
1545                            len = 1;
1546                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1547                            if (p == null && onlyIfPresent)
1548                                break;
1549                            V pv = (p == null) ? null : p.val;
1550                            if ((val = mf.apply(k, pv)) != null) {
1551                                if (p != null)
1552                                    p.val = val;
1553                                else {
1554                                    len = 2;
1555                                    delta = 1;
1556                                    t.putTreeNode(h, k, val);
1557                                }
1558                            }
1559                            else if (p != null) {
1560                                delta = -1;
1561                                t.deleteTreeNode(p);
1562                            }
1563                        }
1564                    } finally {
1565                        t.release(0);
1566                    }
1567                    if (len != 0)
1568                        break;
1569                }
1570                else
1571                    tab = (Node<V>[])fk;
1572            }
1573            else {
1574                synchronized (f) {
1575                    if (tabAt(tab, i) == f) {
1576                        len = 1;
1577                        for (Node<V> e = f, pred = null;; ++len) {
1578                            Object ek; V ev;
1579                            if (e.hash == h &&
1580                                (ev = e.val) != null &&
1581                                ((ek = e.key) == k || k.equals(ek))) {
1582                                val = mf.apply(k, ev);
1583                                if (val != null)
1584                                    e.val = val;
1585                                else {
1586                                    delta = -1;
1587                                    Node<V> en = e.next;
1588                                    if (pred != null)
1589                                        pred.next = en;
1590                                    else
1591                                        setTabAt(tab, i, en);
1592                                }
1593                                break;
1594                            }
1595                            pred = e;
1596                            if ((e = e.next) == null) {
1597                                if (!onlyIfPresent &&
1598                                    (val = mf.apply(k, null)) != null) {
1599                                    pred.next = new Node<V>(h, k, val, null);
1600                                    delta = 1;
1601                                    if (len >= TREE_THRESHOLD)
1602                                        replaceWithTreeBin(tab, i, k);
1603                                }
1604                                break;
1605                            }
1606                        }
1607                    }
1608                }
1609                if (len != 0)
1610                    break;
1611            }
1612        }
1613        if (delta != 0)
1614            addCount((long)delta, len);
1615        return val;
1616    }
1617
1618    /** Implementation for merge */
1619    @SuppressWarnings("unchecked") private final V internalMerge
1620        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1621        if (k == null || v == null || mf == null)
1622            throw new NullPointerException();
1623        int h = spread(k.hashCode());
1624        V val = null;
1625        int delta = 0;
1626        int len = 0;
1627        for (Node<V>[] tab = table;;) {
1628            int i; Node<V> f; Object fk; V fv;
1629            if (tab == null)
1630                tab = initTable();
1631            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1632                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1633                    delta = 1;
1634                    val = v;
1635                    break;
1636                }
1637            }
1638            else if (f.hash < 0) {
1639                if ((fk = f.key) instanceof TreeBin) {
1640                    TreeBin<V> t = (TreeBin<V>)fk;
1641                    t.acquire(0);
1642                    try {
1643                        if (tabAt(tab, i) == f) {
1644                            len = 1;
1645                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1646                            val = (p == null) ? v : mf.apply(p.val, v);
1647                            if (val != null) {
1648                                if (p != null)
1649                                    p.val = val;
1650                                else {
1651                                    len = 2;
1652                                    delta = 1;
1653                                    t.putTreeNode(h, k, val);
1654                                }
1655                            }
1656                            else if (p != null) {
1657                                delta = -1;
1658                                t.deleteTreeNode(p);
1659                            }
1660                        }
1661                    } finally {
1662                        t.release(0);
1663                    }
1664                    if (len != 0)
1665                        break;
1666                }
1667                else
1668                    tab = (Node<V>[])fk;
1669            }
1670            else {
1671                synchronized (f) {
1672                    if (tabAt(tab, i) == f) {
1673                        len = 1;
1674                        for (Node<V> e = f, pred = null;; ++len) {
1675                            Object ek; V ev;
1676                            if (e.hash == h &&
1677                                (ev = e.val) != null &&
1678                                ((ek = e.key) == k || k.equals(ek))) {
1679                                val = mf.apply(ev, v);
1680                                if (val != null)
1681                                    e.val = val;
1682                                else {
1683                                    delta = -1;
1684                                    Node<V> en = e.next;
1685                                    if (pred != null)
1686                                        pred.next = en;
1687                                    else
1688                                        setTabAt(tab, i, en);
1689                                }
1690                                break;
1691                            }
1692                            pred = e;
1693                            if ((e = e.next) == null) {
1694                                val = v;
1695                                pred.next = new Node<V>(h, k, val, null);
1696                                delta = 1;
1697                                if (len >= TREE_THRESHOLD)
1698                                    replaceWithTreeBin(tab, i, k);
1699                                break;
1700                            }
1701                        }
1702                    }
1703                }
1704                if (len != 0)
1705                    break;
1706            }
1707        }
1708        if (delta != 0)
1709            addCount((long)delta, len);
1710        return val;
1711    }
1712
1713    /** Implementation for putAll */
1714    @SuppressWarnings("unchecked") private final void internalPutAll
1715        (Map<? extends K, ? extends V> m) {
1716        tryPresize(m.size());
1717        long delta = 0L;     // number of uncommitted additions
1718        boolean npe = false; // to throw exception on exit for nulls
1719        try {                // to clean up counts on other exceptions
1720            for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1721                Object k; V v;
1722                if (entry == null || (k = entry.getKey()) == null ||
1723                    (v = entry.getValue()) == null) {
1724                    npe = true;
1725                    break;
1726                }
1727                int h = spread(k.hashCode());
1728                for (Node<V>[] tab = table;;) {
1729                    int i; Node<V> f; int fh; Object fk;
1730                    if (tab == null)
1731                        tab = initTable();
1732                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1733                        if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1734                            ++delta;
1735                            break;
1736                        }
1737                    }
1738                    else if ((fh = f.hash) < 0) {
1739                        if ((fk = f.key) instanceof TreeBin) {
1740                            TreeBin<V> t = (TreeBin<V>)fk;
1741                            boolean validated = false;
1742                            t.acquire(0);
1743                            try {
1744                                if (tabAt(tab, i) == f) {
1745                                    validated = true;
1746                                    TreeNode<V> p = t.getTreeNode(h, k, t.root);
1747                                    if (p != null)
1748                                        p.val = v;
1749                                    else {
1750                                        t.putTreeNode(h, k, v);
1751                                        ++delta;
1752                                    }
1753                                }
1754                            } finally {
1755                                t.release(0);
1756                            }
1757                            if (validated)
1758                                break;
1759                        }
1760                        else
1761                            tab = (Node<V>[])fk;
1762                    }
1763                    else {
1764                        int len = 0;
1765                        synchronized (f) {
1766                            if (tabAt(tab, i) == f) {
1767                                len = 1;
1768                                for (Node<V> e = f;; ++len) {
1769                                    Object ek; V ev;
1770                                    if (e.hash == h &&
1771                                        (ev = e.val) != null &&
1772                                        ((ek = e.key) == k || k.equals(ek))) {
1773                                        e.val = v;
1774                                        break;
1775                                    }
1776                                    Node<V> last = e;
1777                                    if ((e = e.next) == null) {
1778                                        ++delta;
1779                                        last.next = new Node<V>(h, k, v, null);
1780                                        if (len >= TREE_THRESHOLD)
1781                                            replaceWithTreeBin(tab, i, k);
1782                                        break;
1783                                    }
1784                                }
1785                            }
1786                        }
1787                        if (len != 0) {
1788                            if (len > 1)
1789                                addCount(delta, len);
1790                            break;
1791                        }
1792                    }
1793                }
1794            }
1795        } finally {
1796            if (delta != 0L)
1797                addCount(delta, 2);
1798        }
1799        if (npe)
1800            throw new NullPointerException();
1801    }
1802
1803    /**
1804     * Implementation for clear. Steps through each bin, removing all
1805     * nodes.
1806     */
1807    @SuppressWarnings("unchecked") private final void internalClear() {
1808        long delta = 0L; // negative number of deletions
1809        int i = 0;
1810        Node<V>[] tab = table;
1811        while (tab != null && i < tab.length) {
1812            Node<V> f = tabAt(tab, i);
1813            if (f == null)
1814                ++i;
1815            else if (f.hash < 0) {
1816                Object fk;
1817                if ((fk = f.key) instanceof TreeBin) {
1818                    TreeBin<V> t = (TreeBin<V>)fk;
1819                    t.acquire(0);
1820                    try {
1821                        if (tabAt(tab, i) == f) {
1822                            for (Node<V> p = t.first; p != null; p = p.next) {
1823                                if (p.val != null) { // (currently always true)
1824                                    p.val = null;
1825                                    --delta;
1826                                }
1827                            }
1828                            t.first = null;
1829                            t.root = null;
1830                            ++i;
1831                        }
1832                    } finally {
1833                        t.release(0);
1834                    }
1835                }
1836                else
1837                    tab = (Node<V>[])fk;
1838            }
1839            else {
1840                synchronized (f) {
1841                    if (tabAt(tab, i) == f) {
1842                        for (Node<V> e = f; e != null; e = e.next) {
1843                            if (e.val != null) {  // (currently always true)
1844                                e.val = null;
1845                                --delta;
1846                            }
1847                        }
1848                        setTabAt(tab, i, null);
1849                        ++i;
1850                    }
1851                }
1852            }
1853        }
1854        if (delta != 0L)
1855            addCount(delta, -1);
1856    }
1857
1858    /* ---------------- Table Initialization and Resizing -------------- */
1859
1860    /**
697       * Returns a power of two table size for the given desired capacity.
698       * See Hackers Delight, sec 3.2
699       */
# Line 1872 | Line 708 | public class ConcurrentHashMapV8<K, V>
708      }
709  
710      /**
711 <     * Initializes table, using the size recorded in sizeCtl.
711 >     * Returns x's Class if it is of the form "class C implements
712 >     * Comparable<C>", else null.
713       */
714 <    @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
715 <        Node<V>[] tab; int sc;
716 <        while ((tab = table) == null) {
717 <            if ((sc = sizeCtl) < 0)
718 <                Thread.yield(); // lost initialization race; just spin
719 <            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
720 <                try {
721 <                    if ((tab = table) == null) {
722 <                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
723 <                        @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
724 <                        table = tab = (Node<V>[])tb;
725 <                        sc = n - (n >>> 2);
726 <                    }
1890 <                } finally {
1891 <                    sizeCtl = sc;
714 >    static Class<?> comparableClassFor(Object x) {
715 >        if (x instanceof Comparable) {
716 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
717 >            if ((c = x.getClass()) == String.class) // bypass checks
718 >                return c;
719 >            if ((ts = c.getGenericInterfaces()) != null) {
720 >                for (int i = 0; i < ts.length; ++i) {
721 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
722 >                        ((p = (ParameterizedType)t).getRawType() ==
723 >                         Comparable.class) &&
724 >                        (as = p.getActualTypeArguments()) != null &&
725 >                        as.length == 1 && as[0] == c) // type arg is c
726 >                        return c;
727                  }
1893                break;
728              }
729          }
730 <        return tab;
730 >        return null;
731      }
732  
733      /**
734 <     * Adds to count, and if table is too small and not already
735 <     * resizing, initiates transfer. If already resizing, helps
1902 <     * perform transfer if work is available.  Rechecks occupancy
1903 <     * after a transfer to see if another resize is already needed
1904 <     * because resizings are lagging additions.
1905 <     *
1906 <     * @param x the count to add
1907 <     * @param check if <0, don't check resize, if <= 1 only check if uncontended
734 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
735 >     * class), else 0.
736       */
737 <    private final void addCount(long x, int check) {
738 <        CounterCell[] as; long b, s;
739 <        if ((as = counterCells) != null ||
740 <            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1913 <            CounterHashCode hc; CounterCell a; long v; int m;
1914 <            boolean uncontended = true;
1915 <            if ((hc = threadCounterHashCode.get()) == null ||
1916 <                as == null || (m = as.length - 1) < 0 ||
1917 <                (a = as[m & hc.code]) == null ||
1918 <                !(uncontended =
1919 <                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1920 <                fullAddCount(x, hc, uncontended);
1921 <                return;
1922 <            }
1923 <            if (check <= 1)
1924 <                return;
1925 <            s = sumCount();
1926 <        }
1927 <        if (check >= 0) {
1928 <            Node<V>[] tab, nt; int sc;
1929 <            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1930 <                   tab.length < MAXIMUM_CAPACITY) {
1931 <                if (sc < 0) {
1932 <                    if (sc == -1 || transferIndex <= transferOrigin ||
1933 <                        (nt = nextTable) == null)
1934 <                        break;
1935 <                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1936 <                        transfer(tab, nt);
1937 <                }
1938 <                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1939 <                    transfer(tab, null);
1940 <                s = sumCount();
1941 <            }
1942 <        }
737 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
738 >    static int compareComparables(Class<?> kc, Object k, Object x) {
739 >        return (x == null || x.getClass() != kc ? 0 :
740 >                ((Comparable)k).compareTo(x));
741      }
742  
743 <    /**
1946 <     * Tries to presize table to accommodate the given number of elements.
1947 <     *
1948 <     * @param size number of elements (doesn't need to be perfectly accurate)
1949 <     */
1950 <    @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1951 <        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1952 <            tableSizeFor(size + (size >>> 1) + 1);
1953 <        int sc;
1954 <        while ((sc = sizeCtl) >= 0) {
1955 <            Node<V>[] tab = table; int n;
1956 <            if (tab == null || (n = tab.length) == 0) {
1957 <                n = (sc > c) ? sc : c;
1958 <                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1959 <                    try {
1960 <                        if (table == tab) {
1961 <                            @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1962 <                            table = (Node<V>[])tb;
1963 <                            sc = n - (n >>> 2);
1964 <                        }
1965 <                    } finally {
1966 <                        sizeCtl = sc;
1967 <                    }
1968 <                }
1969 <            }
1970 <            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1971 <                break;
1972 <            else if (tab == table &&
1973 <                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1974 <                transfer(tab, null);
1975 <        }
1976 <    }
743 >    /* ---------------- Table element access -------------- */
744  
745      /*
746 <     * Moves and/or copies the nodes in each bin to new table. See
747 <     * above for explanation.
748 <     */
749 <    @SuppressWarnings("unchecked") private final void transfer
750 <        (Node<V>[] tab, Node<V>[] nextTab) {
751 <        int n = tab.length, stride;
752 <        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
753 <            stride = MIN_TRANSFER_STRIDE; // subdivide range
754 <        if (nextTab == null) {            // initiating
755 <            try {
756 <                @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
757 <                nextTab = (Node<V>[])tb;
758 <            } catch (Throwable ex) {      // try to cope with OOME
759 <                sizeCtl = Integer.MAX_VALUE;
760 <                return;
761 <            }
762 <            nextTable = nextTab;
763 <            transferOrigin = n;
1997 <            transferIndex = n;
1998 <            Node<V> rev = new Node<V>(MOVED, tab, null, null);
1999 <            for (int k = n; k > 0;) {    // progressively reveal ready slots
2000 <                int nextk = (k > stride) ? k - stride : 0;
2001 <                for (int m = nextk; m < k; ++m)
2002 <                    nextTab[m] = rev;
2003 <                for (int m = n + nextk; m < n + k; ++m)
2004 <                    nextTab[m] = rev;
2005 <                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2006 <            }
2007 <        }
2008 <        int nextn = nextTab.length;
2009 <        Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
2010 <        boolean advance = true;
2011 <        for (int i = 0, bound = 0;;) {
2012 <            int nextIndex, nextBound; Node<V> f; Object fk;
2013 <            while (advance) {
2014 <                if (--i >= bound)
2015 <                    advance = false;
2016 <                else if ((nextIndex = transferIndex) <= transferOrigin) {
2017 <                    i = -1;
2018 <                    advance = false;
2019 <                }
2020 <                else if (U.compareAndSwapInt
2021 <                         (this, TRANSFERINDEX, nextIndex,
2022 <                          nextBound = (nextIndex > stride ?
2023 <                                       nextIndex - stride : 0))) {
2024 <                    bound = nextBound;
2025 <                    i = nextIndex - 1;
2026 <                    advance = false;
2027 <                }
2028 <            }
2029 <            if (i < 0 || i >= n || i + n >= nextn) {
2030 <                for (int sc;;) {
2031 <                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2032 <                        if (sc == -1) {
2033 <                            nextTable = null;
2034 <                            table = nextTab;
2035 <                            sizeCtl = (n << 1) - (n >>> 1);
2036 <                        }
2037 <                        return;
2038 <                    }
2039 <                }
2040 <            }
2041 <            else if ((f = tabAt(tab, i)) == null) {
2042 <                if (casTabAt(tab, i, null, fwd)) {
2043 <                    setTabAt(nextTab, i, null);
2044 <                    setTabAt(nextTab, i + n, null);
2045 <                    advance = true;
2046 <                }
2047 <            }
2048 <            else if (f.hash >= 0) {
2049 <                synchronized (f) {
2050 <                    if (tabAt(tab, i) == f) {
2051 <                        int runBit = f.hash & n;
2052 <                        Node<V> lastRun = f, lo = null, hi = null;
2053 <                        for (Node<V> p = f.next; p != null; p = p.next) {
2054 <                            int b = p.hash & n;
2055 <                            if (b != runBit) {
2056 <                                runBit = b;
2057 <                                lastRun = p;
2058 <                            }
2059 <                        }
2060 <                        if (runBit == 0)
2061 <                            lo = lastRun;
2062 <                        else
2063 <                            hi = lastRun;
2064 <                        for (Node<V> p = f; p != lastRun; p = p.next) {
2065 <                            int ph = p.hash;
2066 <                            Object pk = p.key; V pv = p.val;
2067 <                            if ((ph & n) == 0)
2068 <                                lo = new Node<V>(ph, pk, pv, lo);
2069 <                            else
2070 <                                hi = new Node<V>(ph, pk, pv, hi);
2071 <                        }
2072 <                        setTabAt(nextTab, i, lo);
2073 <                        setTabAt(nextTab, i + n, hi);
2074 <                        setTabAt(tab, i, fwd);
2075 <                        advance = true;
2076 <                    }
2077 <                }
2078 <            }
2079 <            else if ((fk = f.key) instanceof TreeBin) {
2080 <                TreeBin<V> t = (TreeBin<V>)fk;
2081 <                t.acquire(0);
2082 <                try {
2083 <                    if (tabAt(tab, i) == f) {
2084 <                        TreeBin<V> lt = new TreeBin<V>();
2085 <                        TreeBin<V> ht = new TreeBin<V>();
2086 <                        int lc = 0, hc = 0;
2087 <                        for (Node<V> e = t.first; e != null; e = e.next) {
2088 <                            int h = e.hash;
2089 <                            Object k = e.key; V v = e.val;
2090 <                            if ((h & n) == 0) {
2091 <                                ++lc;
2092 <                                lt.putTreeNode(h, k, v);
2093 <                            }
2094 <                            else {
2095 <                                ++hc;
2096 <                                ht.putTreeNode(h, k, v);
2097 <                            }
2098 <                        }
2099 <                        Node<V> ln, hn; // throw away trees if too small
2100 <                        if (lc < TREE_THRESHOLD) {
2101 <                            ln = null;
2102 <                            for (Node<V> p = lt.first; p != null; p = p.next)
2103 <                                ln = new Node<V>(p.hash, p.key, p.val, ln);
2104 <                        }
2105 <                        else
2106 <                            ln = new Node<V>(MOVED, lt, null, null);
2107 <                        setTabAt(nextTab, i, ln);
2108 <                        if (hc < TREE_THRESHOLD) {
2109 <                            hn = null;
2110 <                            for (Node<V> p = ht.first; p != null; p = p.next)
2111 <                                hn = new Node<V>(p.hash, p.key, p.val, hn);
2112 <                        }
2113 <                        else
2114 <                            hn = new Node<V>(MOVED, ht, null, null);
2115 <                        setTabAt(nextTab, i + n, hn);
2116 <                        setTabAt(tab, i, fwd);
2117 <                        advance = true;
2118 <                    }
2119 <                } finally {
2120 <                    t.release(0);
2121 <                }
2122 <            }
2123 <            else
2124 <                advance = true; // already processed
2125 <        }
746 >     * Volatile access methods are used for table elements as well as
747 >     * elements of in-progress next table while resizing.  All uses of
748 >     * the tab arguments must be null checked by callers.  All callers
749 >     * also paranoically precheck that tab's length is not zero (or an
750 >     * equivalent check), thus ensuring that any index argument taking
751 >     * the form of a hash value anded with (length - 1) is a valid
752 >     * index.  Note that, to be correct wrt arbitrary concurrency
753 >     * errors by users, these checks must operate on local variables,
754 >     * which accounts for some odd-looking inline assignments below.
755 >     * Note that calls to setTabAt always occur within locked regions,
756 >     * and so in principle require only release ordering, not
757 >     * full volatile semantics, but are currently coded as volatile
758 >     * writes to be conservative.
759 >     */
760 >
761 >    @SuppressWarnings("unchecked")
762 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
763 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
764      }
765  
766 <    /* ---------------- Counter support -------------- */
767 <
768 <    final long sumCount() {
2131 <        CounterCell[] as = counterCells; CounterCell a;
2132 <        long sum = baseCount;
2133 <        if (as != null) {
2134 <            for (int i = 0; i < as.length; ++i) {
2135 <                if ((a = as[i]) != null)
2136 <                    sum += a.value;
2137 <            }
2138 <        }
2139 <        return sum;
766 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
767 >                                        Node<K,V> c, Node<K,V> v) {
768 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
769      }
770  
771 <    // See LongAdder version for explanation
772 <    private final void fullAddCount(long x, CounterHashCode hc,
2144 <                                    boolean wasUncontended) {
2145 <        int h;
2146 <        if (hc == null) {
2147 <            hc = new CounterHashCode();
2148 <            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
2149 <            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
2150 <            threadCounterHashCode.set(hc);
2151 <        }
2152 <        else
2153 <            h = hc.code;
2154 <        boolean collide = false;                // True if last slot nonempty
2155 <        for (;;) {
2156 <            CounterCell[] as; CounterCell a; int n; long v;
2157 <            if ((as = counterCells) != null && (n = as.length) > 0) {
2158 <                if ((a = as[(n - 1) & h]) == null) {
2159 <                    if (counterBusy == 0) {            // Try to attach new Cell
2160 <                        CounterCell r = new CounterCell(x); // Optimistic create
2161 <                        if (counterBusy == 0 &&
2162 <                            U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2163 <                            boolean created = false;
2164 <                            try {               // Recheck under lock
2165 <                                CounterCell[] rs; int m, j;
2166 <                                if ((rs = counterCells) != null &&
2167 <                                    (m = rs.length) > 0 &&
2168 <                                    rs[j = (m - 1) & h] == null) {
2169 <                                    rs[j] = r;
2170 <                                    created = true;
2171 <                                }
2172 <                            } finally {
2173 <                                counterBusy = 0;
2174 <                            }
2175 <                            if (created)
2176 <                                break;
2177 <                            continue;           // Slot is now non-empty
2178 <                        }
2179 <                    }
2180 <                    collide = false;
2181 <                }
2182 <                else if (!wasUncontended)       // CAS already known to fail
2183 <                    wasUncontended = true;      // Continue after rehash
2184 <                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2185 <                    break;
2186 <                else if (counterCells != as || n >= NCPU)
2187 <                    collide = false;            // At max size or stale
2188 <                else if (!collide)
2189 <                    collide = true;
2190 <                else if (counterBusy == 0 &&
2191 <                         U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2192 <                    try {
2193 <                        if (counterCells == as) {// Expand table unless stale
2194 <                            CounterCell[] rs = new CounterCell[n << 1];
2195 <                            for (int i = 0; i < n; ++i)
2196 <                                rs[i] = as[i];
2197 <                            counterCells = rs;
2198 <                        }
2199 <                    } finally {
2200 <                        counterBusy = 0;
2201 <                    }
2202 <                    collide = false;
2203 <                    continue;                   // Retry with expanded table
2204 <                }
2205 <                h ^= h << 13;                   // Rehash
2206 <                h ^= h >>> 17;
2207 <                h ^= h << 5;
2208 <            }
2209 <            else if (counterBusy == 0 && counterCells == as &&
2210 <                     U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2211 <                boolean init = false;
2212 <                try {                           // Initialize table
2213 <                    if (counterCells == as) {
2214 <                        CounterCell[] rs = new CounterCell[2];
2215 <                        rs[h & 1] = new CounterCell(x);
2216 <                        counterCells = rs;
2217 <                        init = true;
2218 <                    }
2219 <                } finally {
2220 <                    counterBusy = 0;
2221 <                }
2222 <                if (init)
2223 <                    break;
2224 <            }
2225 <            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2226 <                break;                          // Fall back on using base
2227 <        }
2228 <        hc.code = h;                            // Record index for next time
771 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
772 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
773      }
774  
775 <    /* ----------------Table Traversal -------------- */
775 >    /* ---------------- Fields -------------- */
776  
777      /**
778 <     * Encapsulates traversal for methods such as containsValue; also
779 <     * serves as a base class for other iterators and bulk tasks.
780 <     *
781 <     * At each step, the iterator snapshots the key ("nextKey") and
2238 <     * value ("nextVal") of a valid node (i.e., one that, at point of
2239 <     * snapshot, has a non-null user value). Because val fields can
2240 <     * change (including to null, indicating deletion), field nextVal
2241 <     * might not be accurate at point of use, but still maintains the
2242 <     * weak consistency property of holding a value that was once
2243 <     * valid. To support iterator.remove, the nextKey field is not
2244 <     * updated (nulled out) when the iterator cannot advance.
2245 <     *
2246 <     * Internal traversals directly access these fields, as in:
2247 <     * {@code while (it.advance() != null) { process(it.nextKey); }}
2248 <     *
2249 <     * Exported iterators must track whether the iterator has advanced
2250 <     * (in hasNext vs next) (by setting/checking/nulling field
2251 <     * nextVal), and then extract key, value, or key-value pairs as
2252 <     * return values of next().
2253 <     *
2254 <     * The iterator visits once each still-valid node that was
2255 <     * reachable upon iterator construction. It might miss some that
2256 <     * were added to a bin after the bin was visited, which is OK wrt
2257 <     * consistency guarantees. Maintaining this property in the face
2258 <     * of possible ongoing resizes requires a fair amount of
2259 <     * bookkeeping state that is difficult to optimize away amidst
2260 <     * volatile accesses.  Even so, traversal maintains reasonable
2261 <     * throughput.
2262 <     *
2263 <     * Normally, iteration proceeds bin-by-bin traversing lists.
2264 <     * However, if the table has been resized, then all future steps
2265 <     * must traverse both the bin at the current index as well as at
2266 <     * (index + baseSize); and so on for further resizings. To
2267 <     * paranoically cope with potential sharing by users of iterators
2268 <     * across threads, iteration terminates if a bounds checks fails
2269 <     * for a table read.
2270 <     *
2271 <     * This class extends CountedCompleter to streamline parallel
2272 <     * iteration in bulk operations. This adds only a few fields of
2273 <     * space overhead, which is small enough in cases where it is not
2274 <     * needed to not worry about it.  Because CountedCompleter is
2275 <     * Serializable, but iterators need not be, we need to add warning
2276 <     * suppressions.
2277 <     */
2278 <    @SuppressWarnings("serial") static class Traverser<K,V,R>
2279 <        extends CountedCompleter<R> {
2280 <        final ConcurrentHashMapV8<K, V> map;
2281 <        Node<V> next;        // the next entry to use
2282 <        Object nextKey;      // cached key field of next
2283 <        V nextVal;           // cached val field of next
2284 <        Node<V>[] tab;       // current table; updated if resized
2285 <        int index;           // index of bin to use next
2286 <        int baseIndex;       // current index of initial table
2287 <        int baseLimit;       // index bound for initial table
2288 <        int baseSize;        // initial table size
2289 <        int batch;           // split control
2290 <
2291 <        /** Creates iterator for all entries in the table. */
2292 <        Traverser(ConcurrentHashMapV8<K, V> map) {
2293 <            this.map = map;
2294 <        }
778 >     * The array of bins. Lazily initialized upon first insertion.
779 >     * Size is always a power of two. Accessed directly by iterators.
780 >     */
781 >    transient volatile Node<K,V>[] table;
782  
783 <        /** Creates iterator for split() methods and task constructors */
784 <        Traverser(ConcurrentHashMapV8<K,V> map, Traverser<K,V,?> it, int batch) {
785 <            super(it);
786 <            this.batch = batch;
2300 <            if ((this.map = map) != null && it != null) { // split parent
2301 <                Node<V>[] t;
2302 <                if ((t = it.tab) == null &&
2303 <                    (t = it.tab = map.table) != null)
2304 <                    it.baseLimit = it.baseSize = t.length;
2305 <                this.tab = t;
2306 <                this.baseSize = it.baseSize;
2307 <                int hi = this.baseLimit = it.baseLimit;
2308 <                it.baseLimit = this.index = this.baseIndex =
2309 <                    (hi + it.baseIndex + 1) >>> 1;
2310 <            }
2311 <        }
783 >    /**
784 >     * The next table to use; non-null only while resizing.
785 >     */
786 >    private transient volatile Node<K,V>[] nextTable;
787  
788 <        /**
789 <         * Advances next; returns nextVal or null if terminated.
790 <         * See above for explanation.
791 <         */
792 <        @SuppressWarnings("unchecked") final V advance() {
793 <            Node<V> e = next;
2319 <            V ev = null;
2320 <            outer: do {
2321 <                if (e != null)                  // advance past used/skipped node
2322 <                    e = e.next;
2323 <                while (e == null) {             // get to next non-null bin
2324 <                    ConcurrentHashMapV8<K, V> m;
2325 <                    Node<V>[] t; int b, i, n; Object ek; //  must use locals
2326 <                    if ((t = tab) != null)
2327 <                        n = t.length;
2328 <                    else if ((m = map) != null && (t = tab = m.table) != null)
2329 <                        n = baseLimit = baseSize = t.length;
2330 <                    else
2331 <                        break outer;
2332 <                    if ((b = baseIndex) >= baseLimit ||
2333 <                        (i = index) < 0 || i >= n)
2334 <                        break outer;
2335 <                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2336 <                        if ((ek = e.key) instanceof TreeBin)
2337 <                            e = ((TreeBin<V>)ek).first;
2338 <                        else {
2339 <                            tab = (Node<V>[])ek;
2340 <                            continue;           // restarts due to null val
2341 <                        }
2342 <                    }                           // visit upper slots if present
2343 <                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2344 <                }
2345 <                nextKey = e.key;
2346 <            } while ((ev = e.val) == null);    // skip deleted or special nodes
2347 <            next = e;
2348 <            return nextVal = ev;
2349 <        }
788 >    /**
789 >     * Base counter value, used mainly when there is no contention,
790 >     * but also as a fallback during table initialization
791 >     * races. Updated via CAS.
792 >     */
793 >    private transient volatile long baseCount;
794  
795 <        public final void remove() {
796 <            Object k = nextKey;
797 <            if (k == null && (advance() == null || (k = nextKey) == null))
798 <                throw new IllegalStateException();
799 <            map.internalReplace(k, null, null);
800 <        }
795 >    /**
796 >     * Table initialization and resizing control.  When negative, the
797 >     * table is being initialized or resized: -1 for initialization,
798 >     * else -(1 + the number of active resizing threads).  Otherwise,
799 >     * when table is null, holds the initial table size to use upon
800 >     * creation, or 0 for default. After initialization, holds the
801 >     * next element count value upon which to resize the table.
802 >     */
803 >    private transient volatile int sizeCtl;
804  
805 <        public final boolean hasNext() {
806 <            return nextVal != null || advance() != null;
807 <        }
805 >    /**
806 >     * The next table index (plus one) to split while resizing.
807 >     */
808 >    private transient volatile int transferIndex;
809  
810 <        public final boolean hasMoreElements() { return hasNext(); }
810 >    /**
811 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
812 >     */
813 >    private transient volatile int cellsBusy;
814  
815 <        public void compute() { } // default no-op CountedCompleter body
815 >    /**
816 >     * Table of counter cells. When non-null, size is a power of 2.
817 >     */
818 >    private transient volatile CounterCell[] counterCells;
819  
820 <        /**
821 <         * Returns a batch value > 0 if this task should (and must) be
822 <         * split, if so, adding to pending count, and in any case
823 <         * updating batch value. The initial batch value is approx
2370 <         * exp2 of the number of times (minus one) to split task by
2371 <         * two before executing leaf action. This value is faster to
2372 <         * compute and more convenient to use as a guide to splitting
2373 <         * than is the depth, since it is used while dividing by two
2374 <         * anyway.
2375 <         */
2376 <        final int preSplit() {
2377 <            ConcurrentHashMapV8<K, V> m; int b; Node<V>[] t;  ForkJoinPool pool;
2378 <            if ((b = batch) < 0 && (m = map) != null) { // force initialization
2379 <                if ((t = tab) == null && (t = tab = m.table) != null)
2380 <                    baseLimit = baseSize = t.length;
2381 <                if (t != null) {
2382 <                    long n = m.sumCount();
2383 <                    int par = ((pool = getPool()) == null) ?
2384 <                        ForkJoinPool.getCommonPoolParallelism() :
2385 <                        pool.getParallelism();
2386 <                    int sp = par << 3; // slack of 8
2387 <                    b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2388 <                }
2389 <            }
2390 <            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2391 <            if ((batch = b) > 0)
2392 <                addToPendingCount(1);
2393 <            return b;
2394 <        }
820 >    // views
821 >    private transient KeySetView<K,V> keySet;
822 >    private transient ValuesView<K,V> values;
823 >    private transient EntrySetView<K,V> entrySet;
824  
2396    }
825  
826      /* ---------------- Public operations -------------- */
827  
# Line 2429 | Line 857 | public class ConcurrentHashMapV8<K, V>
857       */
858      public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
859          this.sizeCtl = DEFAULT_CAPACITY;
860 <        internalPutAll(m);
860 >        putAll(m);
861      }
862  
863      /**
# Line 2470 | Line 898 | public class ConcurrentHashMapV8<K, V>
898       * nonpositive
899       */
900      public ConcurrentHashMapV8(int initialCapacity,
901 <                               float loadFactor, int concurrencyLevel) {
901 >                             float loadFactor, int concurrencyLevel) {
902          if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
903              throw new IllegalArgumentException();
904          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
# Line 2481 | Line 909 | public class ConcurrentHashMapV8<K, V>
909          this.sizeCtl = cap;
910      }
911  
912 <    /**
2485 <     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2486 <     * from the given type to {@code Boolean.TRUE}.
2487 <     *
2488 <     * @return the new set
2489 <     */
2490 <    public static <K> KeySetView<K,Boolean> newKeySet() {
2491 <        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2492 <                                      Boolean.TRUE);
2493 <    }
2494 <
2495 <    /**
2496 <     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2497 <     * from the given type to {@code Boolean.TRUE}.
2498 <     *
2499 <     * @param initialCapacity The implementation performs internal
2500 <     * sizing to accommodate this many elements.
2501 <     * @throws IllegalArgumentException if the initial capacity of
2502 <     * elements is negative
2503 <     * @return the new set
2504 <     */
2505 <    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2506 <        return new KeySetView<K,Boolean>
2507 <            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2508 <    }
2509 <
2510 <    /**
2511 <     * {@inheritDoc}
2512 <     */
2513 <    public boolean isEmpty() {
2514 <        return sumCount() <= 0L; // ignore transient negative values
2515 <    }
912 >    // Original (since JDK1.2) Map methods
913  
914      /**
915       * {@inheritDoc}
# Line 2525 | Line 922 | public class ConcurrentHashMapV8<K, V>
922      }
923  
924      /**
925 <     * Returns the number of mappings. This method should be used
2529 <     * instead of {@link #size} because a ConcurrentHashMapV8 may
2530 <     * contain more mappings than can be represented as an int. The
2531 <     * value returned is an estimate; the actual count may differ if
2532 <     * there are concurrent insertions or removals.
2533 <     *
2534 <     * @return the number of mappings
925 >     * {@inheritDoc}
926       */
927 <    public long mappingCount() {
928 <        long n = sumCount();
2538 <        return (n < 0L) ? 0L : n; // ignore transient negative values
927 >    public boolean isEmpty() {
928 >        return sumCount() <= 0L; // ignore transient negative values
929      }
930  
931      /**
# Line 2550 | Line 940 | public class ConcurrentHashMapV8<K, V>
940       * @throws NullPointerException if the specified key is null
941       */
942      public V get(Object key) {
943 <        return internalGet(key);
944 <    }
945 <
946 <    /**
947 <     * Returns the value to which the specified key is mapped,
948 <     * or the given defaultValue if this map contains no mapping for the key.
949 <     *
950 <     * @param key the key
951 <     * @param defaultValue the value to return if this map contains
952 <     * no mapping for the given key
953 <     * @return the mapping for the key, if present; else the defaultValue
954 <     * @throws NullPointerException if the specified key is null
955 <     */
956 <    public V getValueOrDefault(Object key, V defaultValue) {
957 <        V v;
958 <        return (v = internalGet(key)) == null ? defaultValue : v;
943 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
944 >        int h = spread(key.hashCode());
945 >        if ((tab = table) != null && (n = tab.length) > 0 &&
946 >            (e = tabAt(tab, (n - 1) & h)) != null) {
947 >            if ((eh = e.hash) == h) {
948 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
949 >                    return e.val;
950 >            }
951 >            else if (eh < 0)
952 >                return (p = e.find(h, key)) != null ? p.val : null;
953 >            while ((e = e.next) != null) {
954 >                if (e.hash == h &&
955 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
956 >                    return e.val;
957 >            }
958 >        }
959 >        return null;
960      }
961  
962      /**
963       * Tests if the specified object is a key in this table.
964       *
965 <     * @param  key   possible key
965 >     * @param  key possible key
966       * @return {@code true} if and only if the specified object
967       *         is a key in this table, as determined by the
968       *         {@code equals} method; {@code false} otherwise
969       * @throws NullPointerException if the specified key is null
970       */
971      public boolean containsKey(Object key) {
972 <        return internalGet(key) != null;
972 >        return get(key) != null;
973      }
974  
975      /**
# Line 2594 | Line 985 | public class ConcurrentHashMapV8<K, V>
985      public boolean containsValue(Object value) {
986          if (value == null)
987              throw new NullPointerException();
988 <        V v;
989 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
990 <        while ((v = it.advance()) != null) {
991 <            if (v == value || value.equals(v))
992 <                return true;
988 >        Node<K,V>[] t;
989 >        if ((t = table) != null) {
990 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
991 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
992 >                V v;
993 >                if ((v = p.val) == value || (v != null && value.equals(v)))
994 >                    return true;
995 >            }
996          }
997          return false;
998      }
999  
1000      /**
2607     * Legacy method testing if some key maps into the specified value
2608     * in this table.  This method is identical in functionality to
2609     * {@link #containsValue}, and exists solely to ensure
2610     * full compatibility with class {@link java.util.Hashtable},
2611     * which supported this method prior to introduction of the
2612     * Java Collections framework.
2613     *
2614     * @param  value a value to search for
2615     * @return {@code true} if and only if some key maps to the
2616     *         {@code value} argument in this table as
2617     *         determined by the {@code equals} method;
2618     *         {@code false} otherwise
2619     * @throws NullPointerException if the specified value is null
2620     */
2621    @Deprecated public boolean contains(Object value) {
2622        return containsValue(value);
2623    }
2624
2625    /**
1001       * Maps the specified key to the specified value in this table.
1002       * Neither the key nor the value can be null.
1003       *
# Line 2636 | Line 1011 | public class ConcurrentHashMapV8<K, V>
1011       * @throws NullPointerException if the specified key or value is null
1012       */
1013      public V put(K key, V value) {
1014 <        return internalPut(key, value, false);
1014 >        return putVal(key, value, false);
1015      }
1016  
1017 <    /**
1018 <     * {@inheritDoc}
1019 <     *
1020 <     * @return the previous value associated with the specified key,
1021 <     *         or {@code null} if there was no mapping for the key
1022 <     * @throws NullPointerException if the specified key or value is null
1023 <     */
1024 <    public V putIfAbsent(K key, V value) {
1025 <        return internalPut(key, value, true);
1017 >    /** Implementation for put and putIfAbsent */
1018 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
1019 >        if (key == null || value == null) throw new NullPointerException();
1020 >        int hash = spread(key.hashCode());
1021 >        int binCount = 0;
1022 >        for (Node<K,V>[] tab = table;;) {
1023 >            Node<K,V> f; int n, i, fh;
1024 >            if (tab == null || (n = tab.length) == 0)
1025 >                tab = initTable();
1026 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1027 >                if (casTabAt(tab, i, null,
1028 >                             new Node<K,V>(hash, key, value, null)))
1029 >                    break;                   // no lock when adding to empty bin
1030 >            }
1031 >            else if ((fh = f.hash) == MOVED)
1032 >                tab = helpTransfer(tab, f);
1033 >            else {
1034 >                V oldVal = null;
1035 >                synchronized (f) {
1036 >                    if (tabAt(tab, i) == f) {
1037 >                        if (fh >= 0) {
1038 >                            binCount = 1;
1039 >                            for (Node<K,V> e = f;; ++binCount) {
1040 >                                K ek;
1041 >                                if (e.hash == hash &&
1042 >                                    ((ek = e.key) == key ||
1043 >                                     (ek != null && key.equals(ek)))) {
1044 >                                    oldVal = e.val;
1045 >                                    if (!onlyIfAbsent)
1046 >                                        e.val = value;
1047 >                                    break;
1048 >                                }
1049 >                                Node<K,V> pred = e;
1050 >                                if ((e = e.next) == null) {
1051 >                                    pred.next = new Node<K,V>(hash, key,
1052 >                                                              value, null);
1053 >                                    break;
1054 >                                }
1055 >                            }
1056 >                        }
1057 >                        else if (f instanceof TreeBin) {
1058 >                            Node<K,V> p;
1059 >                            binCount = 2;
1060 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1061 >                                                           value)) != null) {
1062 >                                oldVal = p.val;
1063 >                                if (!onlyIfAbsent)
1064 >                                    p.val = value;
1065 >                            }
1066 >                        }
1067 >                    }
1068 >                }
1069 >                if (binCount != 0) {
1070 >                    if (binCount >= TREEIFY_THRESHOLD)
1071 >                        treeifyBin(tab, i);
1072 >                    if (oldVal != null)
1073 >                        return oldVal;
1074 >                    break;
1075 >                }
1076 >            }
1077 >        }
1078 >        addCount(1L, binCount);
1079 >        return null;
1080      }
1081  
1082      /**
# Line 2658 | Line 1087 | public class ConcurrentHashMapV8<K, V>
1087       * @param m mappings to be stored in this map
1088       */
1089      public void putAll(Map<? extends K, ? extends V> m) {
1090 <        internalPutAll(m);
1091 <    }
1092 <
2664 <    /**
2665 <     * If the specified key is not already associated with a value,
2666 <     * computes its value using the given mappingFunction and enters
2667 <     * it into the map unless null.  This is equivalent to
2668 <     * <pre> {@code
2669 <     * if (map.containsKey(key))
2670 <     *   return map.get(key);
2671 <     * value = mappingFunction.apply(key);
2672 <     * if (value != null)
2673 <     *   map.put(key, value);
2674 <     * return value;}</pre>
2675 <     *
2676 <     * except that the action is performed atomically.  If the
2677 <     * function returns {@code null} no mapping is recorded. If the
2678 <     * function itself throws an (unchecked) exception, the exception
2679 <     * is rethrown to its caller, and no mapping is recorded.  Some
2680 <     * attempted update operations on this map by other threads may be
2681 <     * blocked while computation is in progress, so the computation
2682 <     * should be short and simple, and must not attempt to update any
2683 <     * other mappings of this Map. The most appropriate usage is to
2684 <     * construct a new object serving as an initial mapped value, or
2685 <     * memoized result, as in:
2686 <     *
2687 <     *  <pre> {@code
2688 <     * map.computeIfAbsent(key, new Fun<K, V>() {
2689 <     *   public V map(K k) { return new Value(f(k)); }});}</pre>
2690 <     *
2691 <     * @param key key with which the specified value is to be associated
2692 <     * @param mappingFunction the function to compute a value
2693 <     * @return the current (existing or computed) value associated with
2694 <     *         the specified key, or null if the computed value is null
2695 <     * @throws NullPointerException if the specified key or mappingFunction
2696 <     *         is null
2697 <     * @throws IllegalStateException if the computation detectably
2698 <     *         attempts a recursive update to this map that would
2699 <     *         otherwise never complete
2700 <     * @throws RuntimeException or Error if the mappingFunction does so,
2701 <     *         in which case the mapping is left unestablished
2702 <     */
2703 <    public V computeIfAbsent
2704 <        (K key, Fun<? super K, ? extends V> mappingFunction) {
2705 <        return internalComputeIfAbsent(key, mappingFunction);
2706 <    }
2707 <
2708 <    /**
2709 <     * If the given key is present, computes a new mapping value given a key and
2710 <     * its current mapped value. This is equivalent to
2711 <     *  <pre> {@code
2712 <     *   if (map.containsKey(key)) {
2713 <     *     value = remappingFunction.apply(key, map.get(key));
2714 <     *     if (value != null)
2715 <     *       map.put(key, value);
2716 <     *     else
2717 <     *       map.remove(key);
2718 <     *   }
2719 <     * }</pre>
2720 <     *
2721 <     * except that the action is performed atomically.  If the
2722 <     * function returns {@code null}, the mapping is removed.  If the
2723 <     * function itself throws an (unchecked) exception, the exception
2724 <     * is rethrown to its caller, and the current mapping is left
2725 <     * unchanged.  Some attempted update operations on this map by
2726 <     * other threads may be blocked while computation is in progress,
2727 <     * so the computation should be short and simple, and must not
2728 <     * attempt to update any other mappings of this Map. For example,
2729 <     * to either create or append new messages to a value mapping:
2730 <     *
2731 <     * @param key key with which the specified value is to be associated
2732 <     * @param remappingFunction the function to compute a value
2733 <     * @return the new value associated with the specified key, or null if none
2734 <     * @throws NullPointerException if the specified key or remappingFunction
2735 <     *         is null
2736 <     * @throws IllegalStateException if the computation detectably
2737 <     *         attempts a recursive update to this map that would
2738 <     *         otherwise never complete
2739 <     * @throws RuntimeException or Error if the remappingFunction does so,
2740 <     *         in which case the mapping is unchanged
2741 <     */
2742 <    public V computeIfPresent
2743 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2744 <        return internalCompute(key, true, remappingFunction);
2745 <    }
2746 <
2747 <    /**
2748 <     * Computes a new mapping value given a key and
2749 <     * its current mapped value (or {@code null} if there is no current
2750 <     * mapping). This is equivalent to
2751 <     *  <pre> {@code
2752 <     *   value = remappingFunction.apply(key, map.get(key));
2753 <     *   if (value != null)
2754 <     *     map.put(key, value);
2755 <     *   else
2756 <     *     map.remove(key);
2757 <     * }</pre>
2758 <     *
2759 <     * except that the action is performed atomically.  If the
2760 <     * function returns {@code null}, the mapping is removed.  If the
2761 <     * function itself throws an (unchecked) exception, the exception
2762 <     * is rethrown to its caller, and the current mapping is left
2763 <     * unchanged.  Some attempted update operations on this map by
2764 <     * other threads may be blocked while computation is in progress,
2765 <     * so the computation should be short and simple, and must not
2766 <     * attempt to update any other mappings of this Map. For example,
2767 <     * to either create or append new messages to a value mapping:
2768 <     *
2769 <     * <pre> {@code
2770 <     * Map<Key, String> map = ...;
2771 <     * final String msg = ...;
2772 <     * map.compute(key, new BiFun<Key, String, String>() {
2773 <     *   public String apply(Key k, String v) {
2774 <     *    return (v == null) ? msg : v + msg;});}}</pre>
2775 <     *
2776 <     * @param key key with which the specified value is to be associated
2777 <     * @param remappingFunction the function to compute a value
2778 <     * @return the new value associated with the specified key, or null if none
2779 <     * @throws NullPointerException if the specified key or remappingFunction
2780 <     *         is null
2781 <     * @throws IllegalStateException if the computation detectably
2782 <     *         attempts a recursive update to this map that would
2783 <     *         otherwise never complete
2784 <     * @throws RuntimeException or Error if the remappingFunction does so,
2785 <     *         in which case the mapping is unchanged
2786 <     */
2787 <    public V compute
2788 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2789 <        return internalCompute(key, false, remappingFunction);
2790 <    }
2791 <
2792 <    /**
2793 <     * If the specified key is not already associated
2794 <     * with a value, associate it with the given value.
2795 <     * Otherwise, replace the value with the results of
2796 <     * the given remapping function. This is equivalent to:
2797 <     *  <pre> {@code
2798 <     *   if (!map.containsKey(key))
2799 <     *     map.put(value);
2800 <     *   else {
2801 <     *     newValue = remappingFunction.apply(map.get(key), value);
2802 <     *     if (value != null)
2803 <     *       map.put(key, value);
2804 <     *     else
2805 <     *       map.remove(key);
2806 <     *   }
2807 <     * }</pre>
2808 <     * except that the action is performed atomically.  If the
2809 <     * function returns {@code null}, the mapping is removed.  If the
2810 <     * function itself throws an (unchecked) exception, the exception
2811 <     * is rethrown to its caller, and the current mapping is left
2812 <     * unchanged.  Some attempted update operations on this map by
2813 <     * other threads may be blocked while computation is in progress,
2814 <     * so the computation should be short and simple, and must not
2815 <     * attempt to update any other mappings of this Map.
2816 <     */
2817 <    public V merge
2818 <        (K key, V value,
2819 <         BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2820 <        return internalMerge(key, value, remappingFunction);
1090 >        tryPresize(m.size());
1091 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1092 >            putVal(e.getKey(), e.getValue(), false);
1093      }
1094  
1095      /**
# Line 2830 | Line 1102 | public class ConcurrentHashMapV8<K, V>
1102       * @throws NullPointerException if the specified key is null
1103       */
1104      public V remove(Object key) {
1105 <        return internalReplace(key, null, null);
1105 >        return replaceNode(key, null, null);
1106      }
1107  
1108      /**
1109 <     * {@inheritDoc}
1110 <     *
1111 <     * @throws NullPointerException if the specified key is null
2840 <     */
2841 <    public boolean remove(Object key, Object value) {
2842 <        return value != null && internalReplace(key, null, value) != null;
2843 <    }
2844 <
2845 <    /**
2846 <     * {@inheritDoc}
2847 <     *
2848 <     * @throws NullPointerException if any of the arguments are null
2849 <     */
2850 <    public boolean replace(K key, V oldValue, V newValue) {
2851 <        if (key == null || oldValue == null || newValue == null)
2852 <            throw new NullPointerException();
2853 <        return internalReplace(key, newValue, oldValue) != null;
2854 <    }
2855 <
2856 <    /**
2857 <     * {@inheritDoc}
2858 <     *
2859 <     * @return the previous value associated with the specified key,
2860 <     *         or {@code null} if there was no mapping for the key
2861 <     * @throws NullPointerException if the specified key or value is null
1109 >     * Implementation for the four public remove/replace methods:
1110 >     * Replaces node value with v, conditional upon match of cv if
1111 >     * non-null.  If resulting value is null, delete.
1112       */
1113 <    public V replace(K key, V value) {
1114 <        if (key == null || value == null)
1115 <            throw new NullPointerException();
1116 <        return internalReplace(key, value, null);
1113 >    final V replaceNode(Object key, V value, Object cv) {
1114 >        int hash = spread(key.hashCode());
1115 >        for (Node<K,V>[] tab = table;;) {
1116 >            Node<K,V> f; int n, i, fh;
1117 >            if (tab == null || (n = tab.length) == 0 ||
1118 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1119 >                break;
1120 >            else if ((fh = f.hash) == MOVED)
1121 >                tab = helpTransfer(tab, f);
1122 >            else {
1123 >                V oldVal = null;
1124 >                boolean validated = false;
1125 >                synchronized (f) {
1126 >                    if (tabAt(tab, i) == f) {
1127 >                        if (fh >= 0) {
1128 >                            validated = true;
1129 >                            for (Node<K,V> e = f, pred = null;;) {
1130 >                                K ek;
1131 >                                if (e.hash == hash &&
1132 >                                    ((ek = e.key) == key ||
1133 >                                     (ek != null && key.equals(ek)))) {
1134 >                                    V ev = e.val;
1135 >                                    if (cv == null || cv == ev ||
1136 >                                        (ev != null && cv.equals(ev))) {
1137 >                                        oldVal = ev;
1138 >                                        if (value != null)
1139 >                                            e.val = value;
1140 >                                        else if (pred != null)
1141 >                                            pred.next = e.next;
1142 >                                        else
1143 >                                            setTabAt(tab, i, e.next);
1144 >                                    }
1145 >                                    break;
1146 >                                }
1147 >                                pred = e;
1148 >                                if ((e = e.next) == null)
1149 >                                    break;
1150 >                            }
1151 >                        }
1152 >                        else if (f instanceof TreeBin) {
1153 >                            validated = true;
1154 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1155 >                            TreeNode<K,V> r, p;
1156 >                            if ((r = t.root) != null &&
1157 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1158 >                                V pv = p.val;
1159 >                                if (cv == null || cv == pv ||
1160 >                                    (pv != null && cv.equals(pv))) {
1161 >                                    oldVal = pv;
1162 >                                    if (value != null)
1163 >                                        p.val = value;
1164 >                                    else if (t.removeTreeNode(p))
1165 >                                        setTabAt(tab, i, untreeify(t.first));
1166 >                                }
1167 >                            }
1168 >                        }
1169 >                    }
1170 >                }
1171 >                if (validated) {
1172 >                    if (oldVal != null) {
1173 >                        if (value == null)
1174 >                            addCount(-1L, -1);
1175 >                        return oldVal;
1176 >                    }
1177 >                    break;
1178 >                }
1179 >            }
1180 >        }
1181 >        return null;
1182      }
1183  
1184      /**
1185       * Removes all of the mappings from this map.
1186       */
1187      public void clear() {
1188 <        internalClear();
1188 >        long delta = 0L; // negative number of deletions
1189 >        int i = 0;
1190 >        Node<K,V>[] tab = table;
1191 >        while (tab != null && i < tab.length) {
1192 >            int fh;
1193 >            Node<K,V> f = tabAt(tab, i);
1194 >            if (f == null)
1195 >                ++i;
1196 >            else if ((fh = f.hash) == MOVED) {
1197 >                tab = helpTransfer(tab, f);
1198 >                i = 0; // restart
1199 >            }
1200 >            else {
1201 >                synchronized (f) {
1202 >                    if (tabAt(tab, i) == f) {
1203 >                        Node<K,V> p = (fh >= 0 ? f :
1204 >                                       (f instanceof TreeBin) ?
1205 >                                       ((TreeBin<K,V>)f).first : null);
1206 >                        while (p != null) {
1207 >                            --delta;
1208 >                            p = p.next;
1209 >                        }
1210 >                        setTabAt(tab, i++, null);
1211 >                    }
1212 >                }
1213 >            }
1214 >        }
1215 >        if (delta != 0L)
1216 >            addCount(delta, -1);
1217      }
1218  
1219      /**
1220       * Returns a {@link Set} view of the keys contained in this map.
1221       * The set is backed by the map, so changes to the map are
1222 <     * reflected in the set, and vice-versa.
1222 >     * reflected in the set, and vice-versa. The set supports element
1223 >     * removal, which removes the corresponding mapping from this map,
1224 >     * via the {@code Iterator.remove}, {@code Set.remove},
1225 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1226 >     * operations.  It does not support the {@code add} or
1227 >     * {@code addAll} operations.
1228       *
1229 <     * @return the set view
1230 <     */
1231 <    public KeySetView<K,V> keySet() {
1232 <        KeySetView<K,V> ks = keySet;
1233 <        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2886 <    }
2887 <
2888 <    /**
2889 <     * Returns a {@link Set} view of the keys in this map, using the
2890 <     * given common mapped value for any additions (i.e., {@link
2891 <     * Collection#add} and {@link Collection#addAll}). This is of
2892 <     * course only appropriate if it is acceptable to use the same
2893 <     * value for all additions from this view.
1229 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1230 >     * that will never throw {@link ConcurrentModificationException},
1231 >     * and guarantees to traverse elements as they existed upon
1232 >     * construction of the iterator, and may (but is not guaranteed to)
1233 >     * reflect any modifications subsequent to construction.
1234       *
2895     * @param mappedValue the mapped value to use for any
2896     * additions.
1235       * @return the set view
2898     * @throws NullPointerException if the mappedValue is null
1236       */
1237 <    public KeySetView<K,V> keySet(V mappedValue) {
1238 <        if (mappedValue == null)
1239 <            throw new NullPointerException();
2903 <        return new KeySetView<K,V>(this, mappedValue);
1237 >    public KeySetView<K,V> keySet() {
1238 >        KeySetView<K,V> ks;
1239 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1240      }
1241  
1242      /**
1243       * Returns a {@link Collection} view of the values contained in this map.
1244       * The collection is backed by the map, so changes to the map are
1245 <     * reflected in the collection, and vice-versa.
1245 >     * reflected in the collection, and vice-versa.  The collection
1246 >     * supports element removal, which removes the corresponding
1247 >     * mapping from this map, via the {@code Iterator.remove},
1248 >     * {@code Collection.remove}, {@code removeAll},
1249 >     * {@code retainAll}, and {@code clear} operations.  It does not
1250 >     * support the {@code add} or {@code addAll} operations.
1251 >     *
1252 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1253 >     * that will never throw {@link ConcurrentModificationException},
1254 >     * and guarantees to traverse elements as they existed upon
1255 >     * construction of the iterator, and may (but is not guaranteed to)
1256 >     * reflect any modifications subsequent to construction.
1257 >     *
1258 >     * @return the collection view
1259       */
1260 <    public ValuesView<K,V> values() {
1261 <        ValuesView<K,V> vs = values;
1262 <        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
1260 >    public Collection<V> values() {
1261 >        ValuesView<K,V> vs;
1262 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1263      }
1264  
1265      /**
# Line 2920 | Line 1269 | public class ConcurrentHashMapV8<K, V>
1269       * removal, which removes the corresponding mapping from the map,
1270       * via the {@code Iterator.remove}, {@code Set.remove},
1271       * {@code removeAll}, {@code retainAll}, and {@code clear}
1272 <     * operations.  It does not support the {@code add} or
2924 <     * {@code addAll} operations.
1272 >     * operations.
1273       *
1274       * <p>The view's {@code iterator} is a "weakly consistent" iterator
1275       * that will never throw {@link ConcurrentModificationException},
1276       * and guarantees to traverse elements as they existed upon
1277       * construction of the iterator, and may (but is not guaranteed to)
1278       * reflect any modifications subsequent to construction.
2931     */
2932    public Set<Map.Entry<K,V>> entrySet() {
2933        EntrySetView<K,V> es = entrySet;
2934        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2935    }
2936
2937    /**
2938     * Returns an enumeration of the keys in this table.
2939     *
2940     * @return an enumeration of the keys in this table
2941     * @see #keySet()
2942     */
2943    public Enumeration<K> keys() {
2944        return new KeyIterator<K,V>(this);
2945    }
2946
2947    /**
2948     * Returns an enumeration of the values in this table.
1279       *
1280 <     * @return an enumeration of the values in this table
2951 <     * @see #values()
2952 <     */
2953 <    public Enumeration<V> elements() {
2954 <        return new ValueIterator<K,V>(this);
2955 <    }
2956 <
2957 <    /**
2958 <     * Returns a partitionable iterator of the keys in this map.
2959 <     *
2960 <     * @return a partitionable iterator of the keys in this map
2961 <     */
2962 <    public Spliterator<K> keySpliterator() {
2963 <        return new KeyIterator<K,V>(this);
2964 <    }
2965 <
2966 <    /**
2967 <     * Returns a partitionable iterator of the values in this map.
2968 <     *
2969 <     * @return a partitionable iterator of the values in this map
2970 <     */
2971 <    public Spliterator<V> valueSpliterator() {
2972 <        return new ValueIterator<K,V>(this);
2973 <    }
2974 <
2975 <    /**
2976 <     * Returns a partitionable iterator of the entries in this map.
2977 <     *
2978 <     * @return a partitionable iterator of the entries in this map
1280 >     * @return the set view
1281       */
1282 <    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
1283 <        return new EntryIterator<K,V>(this);
1282 >    public Set<Map.Entry<K,V>> entrySet() {
1283 >        EntrySetView<K,V> es;
1284 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1285      }
1286  
1287      /**
# Line 2990 | Line 1293 | public class ConcurrentHashMapV8<K, V>
1293       */
1294      public int hashCode() {
1295          int h = 0;
1296 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1297 <        V v;
1298 <        while ((v = it.advance()) != null) {
1299 <            h += it.nextKey.hashCode() ^ v.hashCode();
1296 >        Node<K,V>[] t;
1297 >        if ((t = table) != null) {
1298 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1299 >            for (Node<K,V> p; (p = it.advance()) != null; )
1300 >                h += p.key.hashCode() ^ p.val.hashCode();
1301          }
1302          return h;
1303      }
# Line 3010 | Line 1314 | public class ConcurrentHashMapV8<K, V>
1314       * @return a string representation of this map
1315       */
1316      public String toString() {
1317 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1317 >        Node<K,V>[] t;
1318 >        int f = (t = table) == null ? 0 : t.length;
1319 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1320          StringBuilder sb = new StringBuilder();
1321          sb.append('{');
1322 <        V v;
1323 <        if ((v = it.advance()) != null) {
1322 >        Node<K,V> p;
1323 >        if ((p = it.advance()) != null) {
1324              for (;;) {
1325 <                Object k = it.nextKey;
1325 >                K k = p.key;
1326 >                V v = p.val;
1327                  sb.append(k == this ? "(this Map)" : k);
1328                  sb.append('=');
1329                  sb.append(v == this ? "(this Map)" : v);
1330 <                if ((v = it.advance()) == null)
1330 >                if ((p = it.advance()) == null)
1331                      break;
1332                  sb.append(',').append(' ');
1333              }
# Line 3043 | Line 1350 | public class ConcurrentHashMapV8<K, V>
1350              if (!(o instanceof Map))
1351                  return false;
1352              Map<?,?> m = (Map<?,?>) o;
1353 <            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1354 <            V val;
1355 <            while ((val = it.advance()) != null) {
1356 <                Object v = m.get(it.nextKey);
1353 >            Node<K,V>[] t;
1354 >            int f = (t = table) == null ? 0 : t.length;
1355 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1356 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1357 >                V val = p.val;
1358 >                Object v = m.get(p.key);
1359                  if (v == null || (v != val && !v.equals(val)))
1360                      return false;
1361              }
# Line 3054 | Line 1363 | public class ConcurrentHashMapV8<K, V>
1363                  Object mk, mv, v;
1364                  if ((mk = e.getKey()) == null ||
1365                      (mv = e.getValue()) == null ||
1366 <                    (v = internalGet(mk)) == null ||
1366 >                    (v = get(mk)) == null ||
1367                      (mv != v && !mv.equals(v)))
1368                      return false;
1369              }
# Line 3062 | Line 1371 | public class ConcurrentHashMapV8<K, V>
1371          return true;
1372      }
1373  
3065    /* ----------------Iterators -------------- */
3066
3067    @SuppressWarnings("serial") static final class KeyIterator<K,V>
3068        extends Traverser<K,V,Object>
3069        implements Spliterator<K>, Enumeration<K> {
3070        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3071        KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3072            super(map, it, -1);
3073        }
3074        public KeyIterator<K,V> split() {
3075            if (nextKey != null)
3076                throw new IllegalStateException();
3077            return new KeyIterator<K,V>(map, this);
3078        }
3079        @SuppressWarnings("unchecked") public final K next() {
3080            if (nextVal == null && advance() == null)
3081                throw new NoSuchElementException();
3082            Object k = nextKey;
3083            nextVal = null;
3084            return (K) k;
3085        }
3086
3087        public final K nextElement() { return next(); }
3088    }
3089
3090    @SuppressWarnings("serial") static final class ValueIterator<K,V>
3091        extends Traverser<K,V,Object>
3092        implements Spliterator<V>, Enumeration<V> {
3093        ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3094        ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3095            super(map, it, -1);
3096        }
3097        public ValueIterator<K,V> split() {
3098            if (nextKey != null)
3099                throw new IllegalStateException();
3100            return new ValueIterator<K,V>(map, this);
3101        }
3102
3103        public final V next() {
3104            V v;
3105            if ((v = nextVal) == null && (v = advance()) == null)
3106                throw new NoSuchElementException();
3107            nextVal = null;
3108            return v;
3109        }
3110
3111        public final V nextElement() { return next(); }
3112    }
3113
3114    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3115        extends Traverser<K,V,Object>
3116        implements Spliterator<Map.Entry<K,V>> {
3117        EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3118        EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3119            super(map, it, -1);
3120        }
3121        public EntryIterator<K,V> split() {
3122            if (nextKey != null)
3123                throw new IllegalStateException();
3124            return new EntryIterator<K,V>(map, this);
3125        }
3126
3127        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3128            V v;
3129            if ((v = nextVal) == null && (v = advance()) == null)
3130                throw new NoSuchElementException();
3131            Object k = nextKey;
3132            nextVal = null;
3133            return new MapEntry<K,V>((K)k, v, map);
3134        }
3135    }
3136
3137    /**
3138     * Exported Entry for iterators
3139     */
3140    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3141        final K key; // non-null
3142        V val;       // non-null
3143        final ConcurrentHashMapV8<K, V> map;
3144        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3145            this.key = key;
3146            this.val = val;
3147            this.map = map;
3148        }
3149        public final K getKey()       { return key; }
3150        public final V getValue()     { return val; }
3151        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3152        public final String toString(){ return key + "=" + val; }
3153
3154        public final boolean equals(Object o) {
3155            Object k, v; Map.Entry<?,?> e;
3156            return ((o instanceof Map.Entry) &&
3157                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3158                    (v = e.getValue()) != null &&
3159                    (k == key || k.equals(key)) &&
3160                    (v == val || v.equals(val)));
3161        }
3162
3163        /**
3164         * Sets our entry's value and writes through to the map. The
3165         * value to return is somewhat arbitrary here. Since we do not
3166         * necessarily track asynchronous changes, the most recent
3167         * "previous" value could be different from what we return (or
3168         * could even have been removed in which case the put will
3169         * re-establish). We do not and cannot guarantee more.
3170         */
3171        public final V setValue(V value) {
3172            if (value == null) throw new NullPointerException();
3173            V v = val;
3174            val = value;
3175            map.put(key, value);
3176            return v;
3177        }
3178    }
3179
3180    /**
3181     * Returns exportable snapshot entry for the given key and value
3182     * when write-through can't or shouldn't be used.
3183     */
3184    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3185        return new AbstractMap.SimpleEntry<K,V>(k, v);
3186    }
3187
3188    /* ---------------- Serialization Support -------------- */
3189
1374      /**
1375       * Stripped-down version of helper class used in previous version,
1376       * declared for the sake of serialization compatibility
1377       */
1378 <    static class Segment<K,V> implements Serializable {
1378 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1379          private static final long serialVersionUID = 2249069246763182397L;
1380          final float loadFactor;
1381          Segment(float lf) { this.loadFactor = lf; }
# Line 3201 | Line 1385 | public class ConcurrentHashMapV8<K, V>
1385       * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1386       * stream (i.e., serializes it).
1387       * @param s the stream
1388 +     * @throws java.io.IOException if an I/O error occurs
1389       * @serialData
1390       * the key (Object) and value (Object)
1391       * for each key-value mapping, followed by a null pair.
1392       * The key-value mappings are emitted in no particular order.
1393       */
1394 <    @SuppressWarnings("unchecked") private void writeObject
3210 <        (java.io.ObjectOutputStream s)
1394 >    private void writeObject(java.io.ObjectOutputStream s)
1395          throws java.io.IOException {
1396 <        if (segments == null) { // for serialization compatibility
1397 <            segments = (Segment<K,V>[])
1398 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1399 <            for (int i = 0; i < segments.length; ++i)
1400 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
1401 <        }
1402 <        s.defaultWriteObject();
1403 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1404 <        V v;
1405 <        while ((v = it.advance()) != null) {
1406 <            s.writeObject(it.nextKey);
1407 <            s.writeObject(v);
1396 >        // For serialization compatibility
1397 >        // Emulate segment calculation from previous version of this class
1398 >        int sshift = 0;
1399 >        int ssize = 1;
1400 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1401 >            ++sshift;
1402 >            ssize <<= 1;
1403 >        }
1404 >        int segmentShift = 32 - sshift;
1405 >        int segmentMask = ssize - 1;
1406 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1407 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1408 >        for (int i = 0; i < segments.length; ++i)
1409 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1410 >        s.putFields().put("segments", segments);
1411 >        s.putFields().put("segmentShift", segmentShift);
1412 >        s.putFields().put("segmentMask", segmentMask);
1413 >        s.writeFields();
1414 >
1415 >        Node<K,V>[] t;
1416 >        if ((t = table) != null) {
1417 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1418 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1419 >                s.writeObject(p.key);
1420 >                s.writeObject(p.val);
1421 >            }
1422          }
1423          s.writeObject(null);
1424          s.writeObject(null);
# Line 3230 | Line 1428 | public class ConcurrentHashMapV8<K, V>
1428      /**
1429       * Reconstitutes the instance from a stream (that is, deserializes it).
1430       * @param s the stream
1431 +     * @throws ClassNotFoundException if the class of a serialized object
1432 +     *         could not be found
1433 +     * @throws java.io.IOException if an I/O error occurs
1434       */
1435 <    @SuppressWarnings("unchecked") private void readObject
3235 <        (java.io.ObjectInputStream s)
1435 >    private void readObject(java.io.ObjectInputStream s)
1436          throws java.io.IOException, ClassNotFoundException {
1437 +        /*
1438 +         * To improve performance in typical cases, we create nodes
1439 +         * while reading, then place in table once size is known.
1440 +         * However, we must also validate uniqueness and deal with
1441 +         * overpopulated bins while doing so, which requires
1442 +         * specialized versions of putVal mechanics.
1443 +         */
1444 +        sizeCtl = -1; // force exclusion for table construction
1445          s.defaultReadObject();
3238        this.segments = null; // unneeded
3239
3240        // Create all nodes, then place in table once size is known
1446          long size = 0L;
1447 <        Node<V> p = null;
1447 >        Node<K,V> p = null;
1448          for (;;) {
1449 <            K k = (K) s.readObject();
1450 <            V v = (V) s.readObject();
1449 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1450 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1451              if (k != null && v != null) {
1452 <                int h = spread(k.hashCode());
3248 <                p = new Node<V>(h, k, v, p);
1452 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1453                  ++size;
1454              }
1455              else
1456                  break;
1457          }
1458 <        if (p != null) {
1459 <            boolean init = false;
1458 >        if (size == 0L)
1459 >            sizeCtl = 0;
1460 >        else {
1461              int n;
1462              if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1463                  n = MAXIMUM_CAPACITY;
# Line 3260 | Line 1465 | public class ConcurrentHashMapV8<K, V>
1465                  int sz = (int)size;
1466                  n = tableSizeFor(sz + (sz >>> 1) + 1);
1467              }
1468 <            int sc = sizeCtl;
1469 <            boolean collide = false;
1470 <            if (n > sc &&
1471 <                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1472 <                try {
1473 <                    if (table == null) {
1474 <                        init = true;
1475 <                        @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
1476 <                        Node<V>[] tab = (Node<V>[])rt;
1477 <                        int mask = n - 1;
1478 <                        while (p != null) {
1479 <                            int j = p.hash & mask;
1480 <                            Node<V> next = p.next;
1481 <                            Node<V> q = p.next = tabAt(tab, j);
1482 <                            setTabAt(tab, j, p);
1483 <                            if (!collide && q != null && q.hash == p.hash)
1484 <                                collide = true;
3280 <                            p = next;
3281 <                        }
3282 <                        table = tab;
3283 <                        addCount(size, -1);
3284 <                        sc = n - (n >>> 2);
1468 >            @SuppressWarnings("unchecked")
1469 >                Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1470 >            int mask = n - 1;
1471 >            long added = 0L;
1472 >            while (p != null) {
1473 >                boolean insertAtFront;
1474 >                Node<K,V> next = p.next, first;
1475 >                int h = p.hash, j = h & mask;
1476 >                if ((first = tabAt(tab, j)) == null)
1477 >                    insertAtFront = true;
1478 >                else {
1479 >                    K k = p.key;
1480 >                    if (first.hash < 0) {
1481 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1482 >                        if (t.putTreeVal(h, k, p.val) == null)
1483 >                            ++added;
1484 >                        insertAtFront = false;
1485                      }
1486 <                } finally {
1487 <                    sizeCtl = sc;
1488 <                }
1489 <                if (collide) { // rescan and convert to TreeBins
1490 <                    Node<V>[] tab = table;
1491 <                    for (int i = 0; i < tab.length; ++i) {
1492 <                        int c = 0;
1493 <                        for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
1494 <                            if (++c > TREE_THRESHOLD &&
3295 <                                (e.key instanceof Comparable)) {
3296 <                                replaceWithTreeBin(tab, i, e.key);
1486 >                    else {
1487 >                        int binCount = 0;
1488 >                        insertAtFront = true;
1489 >                        Node<K,V> q; K qk;
1490 >                        for (q = first; q != null; q = q.next) {
1491 >                            if (q.hash == h &&
1492 >                                ((qk = q.key) == k ||
1493 >                                 (qk != null && k.equals(qk)))) {
1494 >                                insertAtFront = false;
1495                                  break;
1496                              }
1497 +                            ++binCount;
1498 +                        }
1499 +                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1500 +                            insertAtFront = false;
1501 +                            ++added;
1502 +                            p.next = first;
1503 +                            TreeNode<K,V> hd = null, tl = null;
1504 +                            for (q = p; q != null; q = q.next) {
1505 +                                TreeNode<K,V> t = new TreeNode<K,V>
1506 +                                    (q.hash, q.key, q.val, null, null);
1507 +                                if ((t.prev = tl) == null)
1508 +                                    hd = t;
1509 +                                else
1510 +                                    tl.next = t;
1511 +                                tl = t;
1512 +                            }
1513 +                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1514                          }
1515                      }
1516                  }
1517 <            }
1518 <            if (!init) { // Can only happen if unsafely published.
1519 <                while (p != null) {
1520 <                    internalPut((K)p.key, p.val, false);
3306 <                    p = p.next;
1517 >                if (insertAtFront) {
1518 >                    ++added;
1519 >                    p.next = first;
1520 >                    setTabAt(tab, j, p);
1521                  }
1522 +                p = next;
1523              }
1524 +            table = tab;
1525 +            sizeCtl = n - (n >>> 2);
1526 +            baseCount = added;
1527          }
1528      }
1529  
1530 <    // -------------------------------------------------------
3313 <
3314 <    // Sams
3315 <    /** Interface describing a void action of one argument */
3316 <    public interface Action<A> { void apply(A a); }
3317 <    /** Interface describing a void action of two arguments */
3318 <    public interface BiAction<A,B> { void apply(A a, B b); }
3319 <    /** Interface describing a function of one argument */
3320 <    public interface Fun<A,T> { T apply(A a); }
3321 <    /** Interface describing a function of two arguments */
3322 <    public interface BiFun<A,B,T> { T apply(A a, B b); }
3323 <    /** Interface describing a function of no arguments */
3324 <    public interface Generator<T> { T apply(); }
3325 <    /** Interface describing a function mapping its argument to a double */
3326 <    public interface ObjectToDouble<A> { double apply(A a); }
3327 <    /** Interface describing a function mapping its argument to a long */
3328 <    public interface ObjectToLong<A> { long apply(A a); }
3329 <    /** Interface describing a function mapping its argument to an int */
3330 <    public interface ObjectToInt<A> {int apply(A a); }
3331 <    /** Interface describing a function mapping two arguments to a double */
3332 <    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3333 <    /** Interface describing a function mapping two arguments to a long */
3334 <    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3335 <    /** Interface describing a function mapping two arguments to an int */
3336 <    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3337 <    /** Interface describing a function mapping a double to a double */
3338 <    public interface DoubleToDouble { double apply(double a); }
3339 <    /** Interface describing a function mapping a long to a long */
3340 <    public interface LongToLong { long apply(long a); }
3341 <    /** Interface describing a function mapping an int to an int */
3342 <    public interface IntToInt { int apply(int a); }
3343 <    /** Interface describing a function mapping two doubles to a double */
3344 <    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3345 <    /** Interface describing a function mapping two longs to a long */
3346 <    public interface LongByLongToLong { long apply(long a, long b); }
3347 <    /** Interface describing a function mapping two ints to an int */
3348 <    public interface IntByIntToInt { int apply(int a, int b); }
3349 <
3350 <
3351 <    // -------------------------------------------------------
3352 <
3353 <    // Sequential bulk operations
1530 >    // ConcurrentMap methods
1531  
1532      /**
1533 <     * Performs the given action for each (key, value).
1533 >     * {@inheritDoc}
1534       *
1535 <     * @param action the action
1535 >     * @return the previous value associated with the specified key,
1536 >     *         or {@code null} if there was no mapping for the key
1537 >     * @throws NullPointerException if the specified key or value is null
1538       */
1539 <    @SuppressWarnings("unchecked") public void forEachSequentially
1540 <        (BiAction<K,V> action) {
3362 <        if (action == null) throw new NullPointerException();
3363 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3364 <        V v;
3365 <        while ((v = it.advance()) != null)
3366 <            action.apply((K)it.nextKey, v);
1539 >    public V putIfAbsent(K key, V value) {
1540 >        return putVal(key, value, true);
1541      }
1542  
1543      /**
1544 <     * Performs the given action for each non-null transformation
3371 <     * of each (key, value).
1544 >     * {@inheritDoc}
1545       *
1546 <     * @param transformer a function returning the transformation
3374 <     * for an element, or null of there is no transformation (in
3375 <     * which case the action is not applied).
3376 <     * @param action the action
1546 >     * @throws NullPointerException if the specified key is null
1547       */
1548 <    @SuppressWarnings("unchecked") public <U> void forEachSequentially
1549 <        (BiFun<? super K, ? super V, ? extends U> transformer,
3380 <         Action<U> action) {
3381 <        if (transformer == null || action == null)
1548 >    public boolean remove(Object key, Object value) {
1549 >        if (key == null)
1550              throw new NullPointerException();
1551 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3384 <        V v; U u;
3385 <        while ((v = it.advance()) != null) {
3386 <            if ((u = transformer.apply((K)it.nextKey, v)) != null)
3387 <                action.apply(u);
3388 <        }
1551 >        return value != null && replaceNode(key, null, value) != null;
1552      }
1553  
1554      /**
1555 <     * Returns a non-null result from applying the given search
3393 <     * function on each (key, value), or null if none.
1555 >     * {@inheritDoc}
1556       *
1557 <     * @param searchFunction a function returning a non-null
3396 <     * result on success, else null
3397 <     * @return a non-null result from applying the given search
3398 <     * function on each (key, value), or null if none
1557 >     * @throws NullPointerException if any of the arguments are null
1558       */
1559 <    @SuppressWarnings("unchecked") public <U> U searchSequentially
1560 <        (BiFun<? super K, ? super V, ? extends U> searchFunction) {
1561 <        if (searchFunction == null) throw new NullPointerException();
1562 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3404 <        V v; U u;
3405 <        while ((v = it.advance()) != null) {
3406 <            if ((u = searchFunction.apply((K)it.nextKey, v)) != null)
3407 <                return u;
3408 <        }
3409 <        return null;
1559 >    public boolean replace(K key, V oldValue, V newValue) {
1560 >        if (key == null || oldValue == null || newValue == null)
1561 >            throw new NullPointerException();
1562 >        return replaceNode(key, newValue, oldValue) != null;
1563      }
1564  
1565      /**
1566 <     * Returns the result of accumulating the given transformation
3414 <     * of all (key, value) pairs using the given reducer to
3415 <     * combine values, or null if none.
1566 >     * {@inheritDoc}
1567       *
1568 <     * @param transformer a function returning the transformation
1569 <     * for an element, or null of there is no transformation (in
1570 <     * which case it is not combined).
3420 <     * @param reducer a commutative associative combining function
3421 <     * @return the result of accumulating the given transformation
3422 <     * of all (key, value) pairs
1568 >     * @return the previous value associated with the specified key,
1569 >     *         or {@code null} if there was no mapping for the key
1570 >     * @throws NullPointerException if the specified key or value is null
1571       */
1572 <    @SuppressWarnings("unchecked") public <U> U reduceSequentially
1573 <        (BiFun<? super K, ? super V, ? extends U> transformer,
3426 <         BiFun<? super U, ? super U, ? extends U> reducer) {
3427 <        if (transformer == null || reducer == null)
1572 >    public V replace(K key, V value) {
1573 >        if (key == null || value == null)
1574              throw new NullPointerException();
1575 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3430 <        U r = null, u; V v;
3431 <        while ((v = it.advance()) != null) {
3432 <            if ((u = transformer.apply((K)it.nextKey, v)) != null)
3433 <                r = (r == null) ? u : reducer.apply(r, u);
3434 <        }
3435 <        return r;
1575 >        return replaceNode(key, value, null);
1576      }
1577  
1578 +    // Overrides of JDK8+ Map extension method defaults
1579 +
1580      /**
1581 <     * Returns the result of accumulating the given transformation
1582 <     * of all (key, value) pairs using the given reducer to
1583 <     * combine values, and the given basis as an identity value.
1581 >     * Returns the value to which the specified key is mapped, or the
1582 >     * given default value if this map contains no mapping for the
1583 >     * key.
1584       *
1585 <     * @param transformer a function returning the transformation
1586 <     * for an element
1587 <     * @param basis the identity (initial default value) for the reduction
1588 <     * @param reducer a commutative associative combining function
1589 <     * @return the result of accumulating the given transformation
3448 <     * of all (key, value) pairs
1585 >     * @param key the key whose associated value is to be returned
1586 >     * @param defaultValue the value to return if this map contains
1587 >     * no mapping for the given key
1588 >     * @return the mapping for the key, if present; else the default value
1589 >     * @throws NullPointerException if the specified key is null
1590       */
1591 <    @SuppressWarnings("unchecked") public double reduceToDoubleSequentially
1592 <        (ObjectByObjectToDouble<? super K, ? super V> transformer,
1593 <         double basis,
1594 <         DoubleByDoubleToDouble reducer) {
1595 <        if (transformer == null || reducer == null)
1596 <            throw new NullPointerException();
1597 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1598 <        double r = basis; V v;
1599 <        while ((v = it.advance()) != null)
1600 <            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
1601 <        return r;
1591 >    public V getOrDefault(Object key, V defaultValue) {
1592 >        V v;
1593 >        return (v = get(key)) == null ? defaultValue : v;
1594 >    }
1595 >
1596 >    public void forEach(BiAction<? super K, ? super V> action) {
1597 >        if (action == null) throw new NullPointerException();
1598 >        Node<K,V>[] t;
1599 >        if ((t = table) != null) {
1600 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1601 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1602 >                action.apply(p.key, p.val);
1603 >            }
1604 >        }
1605 >    }
1606 >
1607 >    public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1608 >        if (function == null) throw new NullPointerException();
1609 >        Node<K,V>[] t;
1610 >        if ((t = table) != null) {
1611 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1612 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1613 >                V oldValue = p.val;
1614 >                for (K key = p.key;;) {
1615 >                    V newValue = function.apply(key, oldValue);
1616 >                    if (newValue == null)
1617 >                        throw new NullPointerException();
1618 >                    if (replaceNode(key, newValue, oldValue) != null ||
1619 >                        (oldValue = get(key)) == null)
1620 >                        break;
1621 >                }
1622 >            }
1623 >        }
1624      }
1625  
1626      /**
1627 <     * Returns the result of accumulating the given transformation
1628 <     * of all (key, value) pairs using the given reducer to
1629 <     * combine values, and the given basis as an identity value.
1627 >     * If the specified key is not already associated with a value,
1628 >     * attempts to compute its value using the given mapping function
1629 >     * and enters it into this map unless {@code null}.  The entire
1630 >     * method invocation is performed atomically, so the function is
1631 >     * applied at most once per key.  Some attempted update operations
1632 >     * on this map by other threads may be blocked while computation
1633 >     * is in progress, so the computation should be short and simple,
1634 >     * and must not attempt to update any other mappings of this map.
1635       *
1636 <     * @param transformer a function returning the transformation
1637 <     * for an element
1638 <     * @param basis the identity (initial default value) for the reduction
1639 <     * @param reducer a commutative associative combining function
1640 <     * @return the result of accumulating the given transformation
1641 <     * of all (key, value) pairs
1636 >     * @param key key with which the specified value is to be associated
1637 >     * @param mappingFunction the function to compute a value
1638 >     * @return the current (existing or computed) value associated with
1639 >     *         the specified key, or null if the computed value is null
1640 >     * @throws NullPointerException if the specified key or mappingFunction
1641 >     *         is null
1642 >     * @throws IllegalStateException if the computation detectably
1643 >     *         attempts a recursive update to this map that would
1644 >     *         otherwise never complete
1645 >     * @throws RuntimeException or Error if the mappingFunction does so,
1646 >     *         in which case the mapping is left unestablished
1647       */
1648 <    @SuppressWarnings("unchecked") public long reduceToLongSequentially
1649 <        (ObjectByObjectToLong<? super K, ? super V> transformer,
3477 <         long basis,
3478 <         LongByLongToLong reducer) {
3479 <        if (transformer == null || reducer == null)
1648 >    public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1649 >        if (key == null || mappingFunction == null)
1650              throw new NullPointerException();
1651 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1652 <        long r = basis; V v;
1653 <        while ((v = it.advance()) != null)
1654 <            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
1655 <        return r;
1651 >        int h = spread(key.hashCode());
1652 >        V val = null;
1653 >        int binCount = 0;
1654 >        for (Node<K,V>[] tab = table;;) {
1655 >            Node<K,V> f; int n, i, fh;
1656 >            if (tab == null || (n = tab.length) == 0)
1657 >                tab = initTable();
1658 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1659 >                Node<K,V> r = new ReservationNode<K,V>();
1660 >                synchronized (r) {
1661 >                    if (casTabAt(tab, i, null, r)) {
1662 >                        binCount = 1;
1663 >                        Node<K,V> node = null;
1664 >                        try {
1665 >                            if ((val = mappingFunction.apply(key)) != null)
1666 >                                node = new Node<K,V>(h, key, val, null);
1667 >                        } finally {
1668 >                            setTabAt(tab, i, node);
1669 >                        }
1670 >                    }
1671 >                }
1672 >                if (binCount != 0)
1673 >                    break;
1674 >            }
1675 >            else if ((fh = f.hash) == MOVED)
1676 >                tab = helpTransfer(tab, f);
1677 >            else {
1678 >                boolean added = false;
1679 >                synchronized (f) {
1680 >                    if (tabAt(tab, i) == f) {
1681 >                        if (fh >= 0) {
1682 >                            binCount = 1;
1683 >                            for (Node<K,V> e = f;; ++binCount) {
1684 >                                K ek; V ev;
1685 >                                if (e.hash == h &&
1686 >                                    ((ek = e.key) == key ||
1687 >                                     (ek != null && key.equals(ek)))) {
1688 >                                    val = e.val;
1689 >                                    break;
1690 >                                }
1691 >                                Node<K,V> pred = e;
1692 >                                if ((e = e.next) == null) {
1693 >                                    if ((val = mappingFunction.apply(key)) != null) {
1694 >                                        added = true;
1695 >                                        pred.next = new Node<K,V>(h, key, val, null);
1696 >                                    }
1697 >                                    break;
1698 >                                }
1699 >                            }
1700 >                        }
1701 >                        else if (f instanceof TreeBin) {
1702 >                            binCount = 2;
1703 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1704 >                            TreeNode<K,V> r, p;
1705 >                            if ((r = t.root) != null &&
1706 >                                (p = r.findTreeNode(h, key, null)) != null)
1707 >                                val = p.val;
1708 >                            else if ((val = mappingFunction.apply(key)) != null) {
1709 >                                added = true;
1710 >                                t.putTreeVal(h, key, val);
1711 >                            }
1712 >                        }
1713 >                    }
1714 >                }
1715 >                if (binCount != 0) {
1716 >                    if (binCount >= TREEIFY_THRESHOLD)
1717 >                        treeifyBin(tab, i);
1718 >                    if (!added)
1719 >                        return val;
1720 >                    break;
1721 >                }
1722 >            }
1723 >        }
1724 >        if (val != null)
1725 >            addCount(1L, binCount);
1726 >        return val;
1727      }
1728  
1729      /**
1730 <     * Returns the result of accumulating the given transformation
1731 <     * of all (key, value) pairs using the given reducer to
1732 <     * combine values, and the given basis as an identity value.
1730 >     * If the value for the specified key is present, attempts to
1731 >     * compute a new mapping given the key and its current mapped
1732 >     * value.  The entire method invocation is performed atomically.
1733 >     * Some attempted update operations on this map by other threads
1734 >     * may be blocked while computation is in progress, so the
1735 >     * computation should be short and simple, and must not attempt to
1736 >     * update any other mappings of this map.
1737       *
1738 <     * @param transformer a function returning the transformation
1739 <     * for an element
1740 <     * @param basis the identity (initial default value) for the reduction
1741 <     * @param reducer a commutative associative combining function
1742 <     * @return the result of accumulating the given transformation
1743 <     * of all (key, value) pairs
1738 >     * @param key key with which a value may be associated
1739 >     * @param remappingFunction the function to compute a value
1740 >     * @return the new value associated with the specified key, or null if none
1741 >     * @throws NullPointerException if the specified key or remappingFunction
1742 >     *         is null
1743 >     * @throws IllegalStateException if the computation detectably
1744 >     *         attempts a recursive update to this map that would
1745 >     *         otherwise never complete
1746 >     * @throws RuntimeException or Error if the remappingFunction does so,
1747 >     *         in which case the mapping is unchanged
1748       */
1749 <    @SuppressWarnings("unchecked") public int reduceToIntSequentially
1750 <        (ObjectByObjectToInt<? super K, ? super V> transformer,
3502 <         int basis,
3503 <         IntByIntToInt reducer) {
3504 <        if (transformer == null || reducer == null)
1749 >    public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1750 >        if (key == null || remappingFunction == null)
1751              throw new NullPointerException();
1752 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1753 <        int r = basis; V v;
1754 <        while ((v = it.advance()) != null)
1755 <            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
1756 <        return r;
1752 >        int h = spread(key.hashCode());
1753 >        V val = null;
1754 >        int delta = 0;
1755 >        int binCount = 0;
1756 >        for (Node<K,V>[] tab = table;;) {
1757 >            Node<K,V> f; int n, i, fh;
1758 >            if (tab == null || (n = tab.length) == 0)
1759 >                tab = initTable();
1760 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1761 >                break;
1762 >            else if ((fh = f.hash) == MOVED)
1763 >                tab = helpTransfer(tab, f);
1764 >            else {
1765 >                synchronized (f) {
1766 >                    if (tabAt(tab, i) == f) {
1767 >                        if (fh >= 0) {
1768 >                            binCount = 1;
1769 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1770 >                                K ek;
1771 >                                if (e.hash == h &&
1772 >                                    ((ek = e.key) == key ||
1773 >                                     (ek != null && key.equals(ek)))) {
1774 >                                    val = remappingFunction.apply(key, e.val);
1775 >                                    if (val != null)
1776 >                                        e.val = val;
1777 >                                    else {
1778 >                                        delta = -1;
1779 >                                        Node<K,V> en = e.next;
1780 >                                        if (pred != null)
1781 >                                            pred.next = en;
1782 >                                        else
1783 >                                            setTabAt(tab, i, en);
1784 >                                    }
1785 >                                    break;
1786 >                                }
1787 >                                pred = e;
1788 >                                if ((e = e.next) == null)
1789 >                                    break;
1790 >                            }
1791 >                        }
1792 >                        else if (f instanceof TreeBin) {
1793 >                            binCount = 2;
1794 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1795 >                            TreeNode<K,V> r, p;
1796 >                            if ((r = t.root) != null &&
1797 >                                (p = r.findTreeNode(h, key, null)) != null) {
1798 >                                val = remappingFunction.apply(key, p.val);
1799 >                                if (val != null)
1800 >                                    p.val = val;
1801 >                                else {
1802 >                                    delta = -1;
1803 >                                    if (t.removeTreeNode(p))
1804 >                                        setTabAt(tab, i, untreeify(t.first));
1805 >                                }
1806 >                            }
1807 >                        }
1808 >                    }
1809 >                }
1810 >                if (binCount != 0)
1811 >                    break;
1812 >            }
1813 >        }
1814 >        if (delta != 0)
1815 >            addCount((long)delta, binCount);
1816 >        return val;
1817      }
1818  
1819      /**
1820 <     * Performs the given action for each key.
1820 >     * Attempts to compute a mapping for the specified key and its
1821 >     * current mapped value (or {@code null} if there is no current
1822 >     * mapping). The entire method invocation is performed atomically.
1823 >     * Some attempted update operations on this map by other threads
1824 >     * may be blocked while computation is in progress, so the
1825 >     * computation should be short and simple, and must not attempt to
1826 >     * update any other mappings of this Map.
1827       *
1828 <     * @param action the action
1828 >     * @param key key with which the specified value is to be associated
1829 >     * @param remappingFunction the function to compute a value
1830 >     * @return the new value associated with the specified key, or null if none
1831 >     * @throws NullPointerException if the specified key or remappingFunction
1832 >     *         is null
1833 >     * @throws IllegalStateException if the computation detectably
1834 >     *         attempts a recursive update to this map that would
1835 >     *         otherwise never complete
1836 >     * @throws RuntimeException or Error if the remappingFunction does so,
1837 >     *         in which case the mapping is unchanged
1838       */
1839 <    @SuppressWarnings("unchecked") public void forEachKeySequentially
1840 <        (Action<K> action) {
1841 <        if (action == null) throw new NullPointerException();
1842 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1843 <        while (it.advance() != null)
1844 <            action.apply((K)it.nextKey);
1839 >    public V compute(K key,
1840 >                     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1841 >        if (key == null || remappingFunction == null)
1842 >            throw new NullPointerException();
1843 >        int h = spread(key.hashCode());
1844 >        V val = null;
1845 >        int delta = 0;
1846 >        int binCount = 0;
1847 >        for (Node<K,V>[] tab = table;;) {
1848 >            Node<K,V> f; int n, i, fh;
1849 >            if (tab == null || (n = tab.length) == 0)
1850 >                tab = initTable();
1851 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1852 >                Node<K,V> r = new ReservationNode<K,V>();
1853 >                synchronized (r) {
1854 >                    if (casTabAt(tab, i, null, r)) {
1855 >                        binCount = 1;
1856 >                        Node<K,V> node = null;
1857 >                        try {
1858 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1859 >                                delta = 1;
1860 >                                node = new Node<K,V>(h, key, val, null);
1861 >                            }
1862 >                        } finally {
1863 >                            setTabAt(tab, i, node);
1864 >                        }
1865 >                    }
1866 >                }
1867 >                if (binCount != 0)
1868 >                    break;
1869 >            }
1870 >            else if ((fh = f.hash) == MOVED)
1871 >                tab = helpTransfer(tab, f);
1872 >            else {
1873 >                synchronized (f) {
1874 >                    if (tabAt(tab, i) == f) {
1875 >                        if (fh >= 0) {
1876 >                            binCount = 1;
1877 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1878 >                                K ek;
1879 >                                if (e.hash == h &&
1880 >                                    ((ek = e.key) == key ||
1881 >                                     (ek != null && key.equals(ek)))) {
1882 >                                    val = remappingFunction.apply(key, e.val);
1883 >                                    if (val != null)
1884 >                                        e.val = val;
1885 >                                    else {
1886 >                                        delta = -1;
1887 >                                        Node<K,V> en = e.next;
1888 >                                        if (pred != null)
1889 >                                            pred.next = en;
1890 >                                        else
1891 >                                            setTabAt(tab, i, en);
1892 >                                    }
1893 >                                    break;
1894 >                                }
1895 >                                pred = e;
1896 >                                if ((e = e.next) == null) {
1897 >                                    val = remappingFunction.apply(key, null);
1898 >                                    if (val != null) {
1899 >                                        delta = 1;
1900 >                                        pred.next =
1901 >                                            new Node<K,V>(h, key, val, null);
1902 >                                    }
1903 >                                    break;
1904 >                                }
1905 >                            }
1906 >                        }
1907 >                        else if (f instanceof TreeBin) {
1908 >                            binCount = 1;
1909 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1910 >                            TreeNode<K,V> r, p;
1911 >                            if ((r = t.root) != null)
1912 >                                p = r.findTreeNode(h, key, null);
1913 >                            else
1914 >                                p = null;
1915 >                            V pv = (p == null) ? null : p.val;
1916 >                            val = remappingFunction.apply(key, pv);
1917 >                            if (val != null) {
1918 >                                if (p != null)
1919 >                                    p.val = val;
1920 >                                else {
1921 >                                    delta = 1;
1922 >                                    t.putTreeVal(h, key, val);
1923 >                                }
1924 >                            }
1925 >                            else if (p != null) {
1926 >                                delta = -1;
1927 >                                if (t.removeTreeNode(p))
1928 >                                    setTabAt(tab, i, untreeify(t.first));
1929 >                            }
1930 >                        }
1931 >                    }
1932 >                }
1933 >                if (binCount != 0) {
1934 >                    if (binCount >= TREEIFY_THRESHOLD)
1935 >                        treeifyBin(tab, i);
1936 >                    break;
1937 >                }
1938 >            }
1939 >        }
1940 >        if (delta != 0)
1941 >            addCount((long)delta, binCount);
1942 >        return val;
1943      }
1944  
1945      /**
1946 <     * Performs the given action for each non-null transformation
1947 <     * of each key.
1946 >     * If the specified key is not already associated with a
1947 >     * (non-null) value, associates it with the given value.
1948 >     * Otherwise, replaces the value with the results of the given
1949 >     * remapping function, or removes if {@code null}. The entire
1950 >     * method invocation is performed atomically.  Some attempted
1951 >     * update operations on this map by other threads may be blocked
1952 >     * while computation is in progress, so the computation should be
1953 >     * short and simple, and must not attempt to update any other
1954 >     * mappings of this Map.
1955       *
1956 <     * @param transformer a function returning the transformation
1957 <     * for an element, or null of there is no transformation (in
1958 <     * which case the action is not applied).
1959 <     * @param action the action
1956 >     * @param key key with which the specified value is to be associated
1957 >     * @param value the value to use if absent
1958 >     * @param remappingFunction the function to recompute a value if present
1959 >     * @return the new value associated with the specified key, or null if none
1960 >     * @throws NullPointerException if the specified key or the
1961 >     *         remappingFunction is null
1962 >     * @throws RuntimeException or Error if the remappingFunction does so,
1963 >     *         in which case the mapping is unchanged
1964       */
1965 <    @SuppressWarnings("unchecked") public <U> void forEachKeySequentially
1966 <        (Fun<? super K, ? extends U> transformer,
3537 <         Action<U> action) {
3538 <        if (transformer == null || action == null)
1965 >    public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1966 >        if (key == null || value == null || remappingFunction == null)
1967              throw new NullPointerException();
1968 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1969 <        U u;
1970 <        while (it.advance() != null) {
1971 <            if ((u = transformer.apply((K)it.nextKey)) != null)
1972 <                action.apply(u);
1968 >        int h = spread(key.hashCode());
1969 >        V val = null;
1970 >        int delta = 0;
1971 >        int binCount = 0;
1972 >        for (Node<K,V>[] tab = table;;) {
1973 >            Node<K,V> f; int n, i, fh;
1974 >            if (tab == null || (n = tab.length) == 0)
1975 >                tab = initTable();
1976 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1977 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1978 >                    delta = 1;
1979 >                    val = value;
1980 >                    break;
1981 >                }
1982 >            }
1983 >            else if ((fh = f.hash) == MOVED)
1984 >                tab = helpTransfer(tab, f);
1985 >            else {
1986 >                synchronized (f) {
1987 >                    if (tabAt(tab, i) == f) {
1988 >                        if (fh >= 0) {
1989 >                            binCount = 1;
1990 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1991 >                                K ek;
1992 >                                if (e.hash == h &&
1993 >                                    ((ek = e.key) == key ||
1994 >                                     (ek != null && key.equals(ek)))) {
1995 >                                    val = remappingFunction.apply(e.val, value);
1996 >                                    if (val != null)
1997 >                                        e.val = val;
1998 >                                    else {
1999 >                                        delta = -1;
2000 >                                        Node<K,V> en = e.next;
2001 >                                        if (pred != null)
2002 >                                            pred.next = en;
2003 >                                        else
2004 >                                            setTabAt(tab, i, en);
2005 >                                    }
2006 >                                    break;
2007 >                                }
2008 >                                pred = e;
2009 >                                if ((e = e.next) == null) {
2010 >                                    delta = 1;
2011 >                                    val = value;
2012 >                                    pred.next =
2013 >                                        new Node<K,V>(h, key, val, null);
2014 >                                    break;
2015 >                                }
2016 >                            }
2017 >                        }
2018 >                        else if (f instanceof TreeBin) {
2019 >                            binCount = 2;
2020 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2021 >                            TreeNode<K,V> r = t.root;
2022 >                            TreeNode<K,V> p = (r == null) ? null :
2023 >                                r.findTreeNode(h, key, null);
2024 >                            val = (p == null) ? value :
2025 >                                remappingFunction.apply(p.val, value);
2026 >                            if (val != null) {
2027 >                                if (p != null)
2028 >                                    p.val = val;
2029 >                                else {
2030 >                                    delta = 1;
2031 >                                    t.putTreeVal(h, key, val);
2032 >                                }
2033 >                            }
2034 >                            else if (p != null) {
2035 >                                delta = -1;
2036 >                                if (t.removeTreeNode(p))
2037 >                                    setTabAt(tab, i, untreeify(t.first));
2038 >                            }
2039 >                        }
2040 >                    }
2041 >                }
2042 >                if (binCount != 0) {
2043 >                    if (binCount >= TREEIFY_THRESHOLD)
2044 >                        treeifyBin(tab, i);
2045 >                    break;
2046 >                }
2047 >            }
2048          }
2049 <        ForkJoinTasks.forEachKey
2050 <            (this, transformer, action).invoke();
2049 >        if (delta != 0)
2050 >            addCount((long)delta, binCount);
2051 >        return val;
2052      }
2053  
2054 +    // Hashtable legacy methods
2055 +
2056      /**
2057 <     * Returns a non-null result from applying the given search
2058 <     * function on each key, or null if none.
2057 >     * Legacy method testing if some key maps into the specified value
2058 >     * in this table.  This method is identical in functionality to
2059 >     * {@link #containsValue(Object)}, and exists solely to ensure
2060 >     * full compatibility with class {@link java.util.Hashtable},
2061 >     * which supported this method prior to introduction of the
2062 >     * Java Collections framework.
2063       *
2064 <     * @param searchFunction a function returning a non-null
2065 <     * result on success, else null
2066 <     * @return a non-null result from applying the given search
2067 <     * function on each key, or null if none
2064 >     * @param  value a value to search for
2065 >     * @return {@code true} if and only if some key maps to the
2066 >     *         {@code value} argument in this table as
2067 >     *         determined by the {@code equals} method;
2068 >     *         {@code false} otherwise
2069 >     * @throws NullPointerException if the specified value is null
2070       */
2071 <    @SuppressWarnings("unchecked") public <U> U searchKeysSequentially
2072 <        (Fun<? super K, ? extends U> searchFunction) {
3561 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3562 <        U u;
3563 <        while (it.advance() != null) {
3564 <            if ((u = searchFunction.apply((K)it.nextKey)) != null)
3565 <                return u;
3566 <        }
3567 <        return null;
2071 >    @Deprecated public boolean contains(Object value) {
2072 >        return containsValue(value);
2073      }
2074  
2075      /**
2076 <     * Returns the result of accumulating all keys using the given
3572 <     * reducer to combine values, or null if none.
2076 >     * Returns an enumeration of the keys in this table.
2077       *
2078 <     * @param reducer a commutative associative combining function
2079 <     * @return the result of accumulating all keys using the given
3576 <     * reducer to combine values, or null if none
2078 >     * @return an enumeration of the keys in this table
2079 >     * @see #keySet()
2080       */
2081 <    @SuppressWarnings("unchecked") public K reduceKeysSequentially
2082 <        (BiFun<? super K, ? super K, ? extends K> reducer) {
2083 <        if (reducer == null) throw new NullPointerException();
2084 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3582 <        K r = null;
3583 <        while (it.advance() != null) {
3584 <            K u = (K)it.nextKey;
3585 <            r = (r == null) ? u : reducer.apply(r, u);
3586 <        }
3587 <        return r;
2081 >    public Enumeration<K> keys() {
2082 >        Node<K,V>[] t;
2083 >        int f = (t = table) == null ? 0 : t.length;
2084 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2085      }
2086  
2087      /**
2088 <     * Returns the result of accumulating the given transformation
3592 <     * of all keys using the given reducer to combine values, or
3593 <     * null if none.
2088 >     * Returns an enumeration of the values in this table.
2089       *
2090 <     * @param transformer a function returning the transformation
2091 <     * for an element, or null of there is no transformation (in
3597 <     * which case it is not combined).
3598 <     * @param reducer a commutative associative combining function
3599 <     * @return the result of accumulating the given transformation
3600 <     * of all keys
2090 >     * @return an enumeration of the values in this table
2091 >     * @see #values()
2092       */
2093 <    @SuppressWarnings("unchecked") public <U> U reduceKeysSequentially
2094 <        (Fun<? super K, ? extends U> transformer,
2095 <         BiFun<? super U, ? super U, ? extends U> reducer) {
2096 <        if (transformer == null || reducer == null)
3606 <            throw new NullPointerException();
3607 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3608 <        U r = null, u;
3609 <        while (it.advance() != null) {
3610 <            if ((u = transformer.apply((K)it.nextKey)) != null)
3611 <                r = (r == null) ? u : reducer.apply(r, u);
3612 <        }
3613 <        return r;
2093 >    public Enumeration<V> elements() {
2094 >        Node<K,V>[] t;
2095 >        int f = (t = table) == null ? 0 : t.length;
2096 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2097      }
2098  
2099 +    // ConcurrentHashMapV8-only methods
2100 +
2101      /**
2102 <     * Returns the result of accumulating the given transformation
2103 <     * of all keys using the given reducer to combine values, and
2104 <     * the given basis as an identity value.
2102 >     * Returns the number of mappings. This method should be used
2103 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2104 >     * contain more mappings than can be represented as an int. The
2105 >     * value returned is an estimate; the actual count may differ if
2106 >     * there are concurrent insertions or removals.
2107       *
2108 <     * @param transformer a function returning the transformation
2109 <     * for an element
3623 <     * @param basis the identity (initial default value) for the reduction
3624 <     * @param reducer a commutative associative combining function
3625 <     * @return  the result of accumulating the given transformation
3626 <     * of all keys
2108 >     * @return the number of mappings
2109 >     * @since 1.8
2110       */
2111 <    @SuppressWarnings("unchecked") public double reduceKeysToDoubleSequentially
2112 <        (ObjectToDouble<? super K> transformer,
2113 <         double basis,
3631 <         DoubleByDoubleToDouble reducer) {
3632 <        if (transformer == null || reducer == null)
3633 <            throw new NullPointerException();
3634 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3635 <        double r = basis;
3636 <        while (it.advance() != null)
3637 <            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3638 <        return r;
2111 >    public long mappingCount() {
2112 >        long n = sumCount();
2113 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2114      }
2115  
2116      /**
2117 <     * Returns the result of accumulating the given transformation
2118 <     * of all keys using the given reducer to combine values, and
3644 <     * the given basis as an identity value.
2117 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2118 >     * from the given type to {@code Boolean.TRUE}.
2119       *
2120 <     * @param transformer a function returning the transformation
2121 <     * for an element
3648 <     * @param basis the identity (initial default value) for the reduction
3649 <     * @param reducer a commutative associative combining function
3650 <     * @return the result of accumulating the given transformation
3651 <     * of all keys
2120 >     * @return the new set
2121 >     * @since 1.8
2122       */
2123 <    @SuppressWarnings("unchecked") public long reduceKeysToLongSequentially
2124 <        (ObjectToLong<? super K> transformer,
2125 <         long basis,
3656 <         LongByLongToLong reducer) {
3657 <        if (transformer == null || reducer == null)
3658 <            throw new NullPointerException();
3659 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3660 <        long r = basis;
3661 <        while (it.advance() != null)
3662 <            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3663 <        return r;
2123 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2124 >        return new KeySetView<K,Boolean>
2125 >            (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2126      }
2127  
2128      /**
2129 <     * Returns the result of accumulating the given transformation
2130 <     * of all keys using the given reducer to combine values, and
3669 <     * the given basis as an identity value.
2129 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2130 >     * from the given type to {@code Boolean.TRUE}.
2131       *
2132 <     * @param transformer a function returning the transformation
2133 <     * for an element
2134 <     * @param basis the identity (initial default value) for the reduction
2135 <     * @param reducer a commutative associative combining function
2136 <     * @return the result of accumulating the given transformation
2137 <     * of all keys
2132 >     * @param initialCapacity The implementation performs internal
2133 >     * sizing to accommodate this many elements.
2134 >     * @return the new set
2135 >     * @throws IllegalArgumentException if the initial capacity of
2136 >     * elements is negative
2137 >     * @since 1.8
2138       */
2139 <    @SuppressWarnings("unchecked") public int reduceKeysToIntSequentially
2140 <        (ObjectToInt<? super K> transformer,
2141 <         int basis,
3681 <         IntByIntToInt reducer) {
3682 <        if (transformer == null || reducer == null)
3683 <            throw new NullPointerException();
3684 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3685 <        int r = basis;
3686 <        while (it.advance() != null)
3687 <            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3688 <        return r;
2139 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2140 >        return new KeySetView<K,Boolean>
2141 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2142      }
2143  
2144      /**
2145 <     * Performs the given action for each value.
2145 >     * Returns a {@link Set} view of the keys in this map, using the
2146 >     * given common mapped value for any additions (i.e., {@link
2147 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2148 >     * This is of course only appropriate if it is acceptable to use
2149 >     * the same value for all additions from this view.
2150       *
2151 <     * @param action the action
2151 >     * @param mappedValue the mapped value to use for any additions
2152 >     * @return the set view
2153 >     * @throws NullPointerException if the mappedValue is null
2154       */
2155 <    public void forEachValueSequentially(Action<V> action) {
2156 <        if (action == null) throw new NullPointerException();
2157 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2158 <        V v;
3700 <        while ((v = it.advance()) != null)
3701 <            action.apply(v);
2155 >    public KeySetView<K,V> keySet(V mappedValue) {
2156 >        if (mappedValue == null)
2157 >            throw new NullPointerException();
2158 >        return new KeySetView<K,V>(this, mappedValue);
2159      }
2160  
2161 +    /* ---------------- Special Nodes -------------- */
2162 +
2163      /**
2164 <     * Performs the given action for each non-null transformation
3706 <     * of each value.
3707 <     *
3708 <     * @param transformer a function returning the transformation
3709 <     * for an element, or null of there is no transformation (in
3710 <     * which case the action is not applied).
2164 >     * A node inserted at head of bins during transfer operations.
2165       */
2166 <    public <U> void forEachValueSequentially
2167 <        (Fun<? super V, ? extends U> transformer,
2168 <         Action<U> action) {
2169 <        if (transformer == null || action == null)
2170 <            throw new NullPointerException();
2171 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2172 <        V v; U u;
2173 <        while ((v = it.advance()) != null) {
2174 <            if ((u = transformer.apply(v)) != null)
2175 <                action.apply(u);
2166 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2167 >        final Node<K,V>[] nextTable;
2168 >        ForwardingNode(Node<K,V>[] tab) {
2169 >            super(MOVED, null, null, null);
2170 >            this.nextTable = tab;
2171 >        }
2172 >
2173 >        Node<K,V> find(int h, Object k) {
2174 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2175 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2176 >                Node<K,V> e; int n;
2177 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2178 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2179 >                    return null;
2180 >                for (;;) {
2181 >                    int eh; K ek;
2182 >                    if ((eh = e.hash) == h &&
2183 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2184 >                        return e;
2185 >                    if (eh < 0) {
2186 >                        if (e instanceof ForwardingNode) {
2187 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2188 >                            continue outer;
2189 >                        }
2190 >                        else
2191 >                            return e.find(h, k);
2192 >                    }
2193 >                    if ((e = e.next) == null)
2194 >                        return null;
2195 >                }
2196 >            }
2197          }
2198      }
2199  
2200      /**
2201 <     * Returns a non-null result from applying the given search
3727 <     * function on each value, or null if none.
3728 <     *
3729 <     * @param searchFunction a function returning a non-null
3730 <     * result on success, else null
3731 <     * @return a non-null result from applying the given search
3732 <     * function on each value, or null if none
2201 >     * A place-holder node used in computeIfAbsent and compute
2202       */
2203 <    public <U> U searchValuesSequentially
2204 <        (Fun<? super V, ? extends U> searchFunction) {
2205 <        if (searchFunction == null) throw new NullPointerException();
2206 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2207 <        V v; U u;
2208 <        while ((v = it.advance()) != null) {
2209 <            if ((u = searchFunction.apply(v)) != null)
3741 <                return u;
2203 >    static final class ReservationNode<K,V> extends Node<K,V> {
2204 >        ReservationNode() {
2205 >            super(RESERVED, null, null, null);
2206 >        }
2207 >
2208 >        Node<K,V> find(int h, Object k) {
2209 >            return null;
2210          }
3743        return null;
2211      }
2212  
2213 +    /* ---------------- Table Initialization and Resizing -------------- */
2214 +
2215      /**
2216 <     * Returns the result of accumulating all values using the
2217 <     * given reducer to combine values, or null if none.
3749 <     *
3750 <     * @param reducer a commutative associative combining function
3751 <     * @return  the result of accumulating all values
2216 >     * Returns the stamp bits for resizing a table of size n.
2217 >     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2218       */
2219 <    public V reduceValuesSequentially
2220 <        (BiFun<? super V, ? super V, ? extends V> reducer) {
3755 <        if (reducer == null) throw new NullPointerException();
3756 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3757 <        V r = null; V v;
3758 <        while ((v = it.advance()) != null)
3759 <            r = (r == null) ? v : reducer.apply(r, v);
3760 <        return r;
2219 >    static final int resizeStamp(int n) {
2220 >        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2221      }
2222  
2223      /**
2224 <     * Returns the result of accumulating the given transformation
3765 <     * of all values using the given reducer to combine values, or
3766 <     * null if none.
3767 <     *
3768 <     * @param transformer a function returning the transformation
3769 <     * for an element, or null of there is no transformation (in
3770 <     * which case it is not combined).
3771 <     * @param reducer a commutative associative combining function
3772 <     * @return the result of accumulating the given transformation
3773 <     * of all values
2224 >     * Initializes table, using the size recorded in sizeCtl.
2225       */
2226 <    public <U> U reduceValuesSequentially
2227 <        (Fun<? super V, ? extends U> transformer,
2228 <         BiFun<? super U, ? super U, ? extends U> reducer) {
2229 <        if (transformer == null || reducer == null)
2230 <            throw new NullPointerException();
2231 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2232 <        U r = null, u; V v;
2233 <        while ((v = it.advance()) != null) {
2234 <            if ((u = transformer.apply(v)) != null)
2235 <                r = (r == null) ? u : reducer.apply(r, u);
2226 >    private final Node<K,V>[] initTable() {
2227 >        Node<K,V>[] tab; int sc;
2228 >        while ((tab = table) == null || tab.length == 0) {
2229 >            if ((sc = sizeCtl) < 0)
2230 >                Thread.yield(); // lost initialization race; just spin
2231 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2232 >                try {
2233 >                    if ((tab = table) == null || tab.length == 0) {
2234 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2235 >                        @SuppressWarnings("unchecked")
2236 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2237 >                        table = tab = nt;
2238 >                        sc = n - (n >>> 2);
2239 >                    }
2240 >                } finally {
2241 >                    sizeCtl = sc;
2242 >                }
2243 >                break;
2244 >            }
2245          }
2246 <        return r;
2246 >        return tab;
2247      }
2248  
2249      /**
2250 <     * Returns the result of accumulating the given transformation
2251 <     * of all values using the given reducer to combine values,
2252 <     * and the given basis as an identity value.
2250 >     * Adds to count, and if table is too small and not already
2251 >     * resizing, initiates transfer. If already resizing, helps
2252 >     * perform transfer if work is available.  Rechecks occupancy
2253 >     * after a transfer to see if another resize is already needed
2254 >     * because resizings are lagging additions.
2255       *
2256 <     * @param transformer a function returning the transformation
2257 <     * for an element
3796 <     * @param basis the identity (initial default value) for the reduction
3797 <     * @param reducer a commutative associative combining function
3798 <     * @return the result of accumulating the given transformation
3799 <     * of all values
2256 >     * @param x the count to add
2257 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2258       */
2259 <    public double reduceValuesToDoubleSequentially
2260 <        (ObjectToDouble<? super V> transformer,
2261 <         double basis,
2262 <         DoubleByDoubleToDouble reducer) {
2263 <        if (transformer == null || reducer == null)
2264 <            throw new NullPointerException();
2265 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2266 <        double r = basis; V v;
2267 <        while ((v = it.advance()) != null)
2268 <            r = reducer.apply(r, transformer.apply(v));
2269 <        return r;
2259 >    private final void addCount(long x, int check) {
2260 >        CounterCell[] as; long b, s;
2261 >        if ((as = counterCells) != null ||
2262 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2263 >            CounterHashCode hc; CounterCell a; long v; int m;
2264 >            boolean uncontended = true;
2265 >            if ((hc = threadCounterHashCode.get()) == null ||
2266 >                as == null || (m = as.length - 1) < 0 ||
2267 >                (a = as[m & hc.code]) == null ||
2268 >                !(uncontended =
2269 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2270 >                fullAddCount(x, hc, uncontended);
2271 >                return;
2272 >            }
2273 >            if (check <= 1)
2274 >                return;
2275 >            s = sumCount();
2276 >        }
2277 >        if (check >= 0) {
2278 >            Node<K,V>[] tab, nt; int n, sc;
2279 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2280 >                   (n = tab.length) < MAXIMUM_CAPACITY) {
2281 >                int rs = resizeStamp(n);
2282 >                if (sc < 0) {
2283 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2284 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2285 >                        transferIndex <= 0)
2286 >                        break;
2287 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2288 >                        transfer(tab, nt);
2289 >                }
2290 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2291 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2292 >                    transfer(tab, null);
2293 >                s = sumCount();
2294 >            }
2295 >        }
2296      }
2297  
2298      /**
2299 <     * Returns the result of accumulating the given transformation
3816 <     * of all values using the given reducer to combine values,
3817 <     * and the given basis as an identity value.
3818 <     *
3819 <     * @param transformer a function returning the transformation
3820 <     * for an element
3821 <     * @param basis the identity (initial default value) for the reduction
3822 <     * @param reducer a commutative associative combining function
3823 <     * @return the result of accumulating the given transformation
3824 <     * of all values
2299 >     * Helps transfer if a resize is in progress.
2300       */
2301 <    public long reduceValuesToLongSequentially
2302 <        (ObjectToLong<? super V> transformer,
2303 <         long basis,
2304 <         LongByLongToLong reducer) {
2305 <        if (transformer == null || reducer == null)
2306 <            throw new NullPointerException();
2307 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2308 <        long r = basis; V v;
2309 <        while ((v = it.advance()) != null)
2310 <            r = reducer.apply(r, transformer.apply(v));
2311 <        return r;
2301 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2302 >        Node<K,V>[] nextTab; int sc;
2303 >        if (tab != null && (f instanceof ForwardingNode) &&
2304 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2305 >            int rs = resizeStamp(tab.length);
2306 >            while (nextTab == nextTable && table == tab &&
2307 >                   (sc = sizeCtl) < 0) {
2308 >                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2309 >                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
2310 >                    break;
2311 >                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2312 >                    transfer(tab, nextTab);
2313 >                    break;
2314 >                }
2315 >            }
2316 >            return nextTab;
2317 >        }
2318 >        return table;
2319      }
2320  
2321      /**
2322 <     * Returns the result of accumulating the given transformation
3841 <     * of all values using the given reducer to combine values,
3842 <     * and the given basis as an identity value.
2322 >     * Tries to presize table to accommodate the given number of elements.
2323       *
2324 <     * @param transformer a function returning the transformation
3845 <     * for an element
3846 <     * @param basis the identity (initial default value) for the reduction
3847 <     * @param reducer a commutative associative combining function
3848 <     * @return the result of accumulating the given transformation
3849 <     * of all values
2324 >     * @param size number of elements (doesn't need to be perfectly accurate)
2325       */
2326 <    public int reduceValuesToIntSequentially
2327 <        (ObjectToInt<? super V> transformer,
2328 <         int basis,
2329 <         IntByIntToInt reducer) {
2330 <        if (transformer == null || reducer == null)
2331 <            throw new NullPointerException();
2332 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2333 <        int r = basis; V v;
2334 <        while ((v = it.advance()) != null)
2335 <            r = reducer.apply(r, transformer.apply(v));
2336 <        return r;
2326 >    private final void tryPresize(int size) {
2327 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2328 >            tableSizeFor(size + (size >>> 1) + 1);
2329 >        int sc;
2330 >        while ((sc = sizeCtl) >= 0) {
2331 >            Node<K,V>[] tab = table; int n;
2332 >            if (tab == null || (n = tab.length) == 0) {
2333 >                n = (sc > c) ? sc : c;
2334 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2335 >                    try {
2336 >                        if (table == tab) {
2337 >                            @SuppressWarnings("unchecked")
2338 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2339 >                            table = nt;
2340 >                            sc = n - (n >>> 2);
2341 >                        }
2342 >                    } finally {
2343 >                        sizeCtl = sc;
2344 >                    }
2345 >                }
2346 >            }
2347 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2348 >                break;
2349 >            else if (tab == table) {
2350 >                int rs = resizeStamp(n);
2351 >                if (sc < 0) {
2352 >                    Node<K,V>[] nt;
2353 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2354 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2355 >                        transferIndex <= 0)
2356 >                        break;
2357 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2358 >                        transfer(tab, nt);
2359 >                }
2360 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2361 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2362 >                    transfer(tab, null);
2363 >            }
2364 >        }
2365      }
2366  
2367      /**
2368 <     * Performs the given action for each entry.
2369 <     *
3867 <     * @param action the action
2368 >     * Moves and/or copies the nodes in each bin to new table. See
2369 >     * above for explanation.
2370       */
2371 <    @SuppressWarnings("unchecked") public void forEachEntrySequentially
2372 <        (Action<Map.Entry<K,V>> action) {
2373 <        if (action == null) throw new NullPointerException();
2374 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2375 <        V v;
2376 <        while ((v = it.advance()) != null)
2377 <            action.apply(entryFor((K)it.nextKey, v));
2371 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2372 >        int n = tab.length, stride;
2373 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2374 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2375 >        if (nextTab == null) {            // initiating
2376 >            try {
2377 >                @SuppressWarnings("unchecked")
2378 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2379 >                nextTab = nt;
2380 >            } catch (Throwable ex) {      // try to cope with OOME
2381 >                sizeCtl = Integer.MAX_VALUE;
2382 >                return;
2383 >            }
2384 >            nextTable = nextTab;
2385 >            transferIndex = n;
2386 >        }
2387 >        int nextn = nextTab.length;
2388 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2389 >        boolean advance = true;
2390 >        boolean finishing = false; // to ensure sweep before committing nextTab
2391 >        for (int i = 0, bound = 0;;) {
2392 >            Node<K,V> f; int fh;
2393 >            while (advance) {
2394 >                int nextIndex, nextBound;
2395 >                if (--i >= bound || finishing)
2396 >                    advance = false;
2397 >                else if ((nextIndex = transferIndex) <= 0) {
2398 >                    i = -1;
2399 >                    advance = false;
2400 >                }
2401 >                else if (U.compareAndSwapInt
2402 >                         (this, TRANSFERINDEX, nextIndex,
2403 >                          nextBound = (nextIndex > stride ?
2404 >                                       nextIndex - stride : 0))) {
2405 >                    bound = nextBound;
2406 >                    i = nextIndex - 1;
2407 >                    advance = false;
2408 >                }
2409 >            }
2410 >            if (i < 0 || i >= n || i + n >= nextn) {
2411 >                int sc;
2412 >                if (finishing) {
2413 >                    nextTable = null;
2414 >                    table = nextTab;
2415 >                    sizeCtl = (n << 1) - (n >>> 1);
2416 >                    return;
2417 >                }
2418 >                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2419 >                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2420 >                        return;
2421 >                    finishing = advance = true;
2422 >                    i = n; // recheck before commit
2423 >                }
2424 >            }
2425 >            else if ((f = tabAt(tab, i)) == null)
2426 >                advance = casTabAt(tab, i, null, fwd);
2427 >            else if ((fh = f.hash) == MOVED)
2428 >                advance = true; // already processed
2429 >            else {
2430 >                synchronized (f) {
2431 >                    if (tabAt(tab, i) == f) {
2432 >                        Node<K,V> ln, hn;
2433 >                        if (fh >= 0) {
2434 >                            int runBit = fh & n;
2435 >                            Node<K,V> lastRun = f;
2436 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2437 >                                int b = p.hash & n;
2438 >                                if (b != runBit) {
2439 >                                    runBit = b;
2440 >                                    lastRun = p;
2441 >                                }
2442 >                            }
2443 >                            if (runBit == 0) {
2444 >                                ln = lastRun;
2445 >                                hn = null;
2446 >                            }
2447 >                            else {
2448 >                                hn = lastRun;
2449 >                                ln = null;
2450 >                            }
2451 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2452 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2453 >                                if ((ph & n) == 0)
2454 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2455 >                                else
2456 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2457 >                            }
2458 >                            setTabAt(nextTab, i, ln);
2459 >                            setTabAt(nextTab, i + n, hn);
2460 >                            setTabAt(tab, i, fwd);
2461 >                            advance = true;
2462 >                        }
2463 >                        else if (f instanceof TreeBin) {
2464 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2465 >                            TreeNode<K,V> lo = null, loTail = null;
2466 >                            TreeNode<K,V> hi = null, hiTail = null;
2467 >                            int lc = 0, hc = 0;
2468 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2469 >                                int h = e.hash;
2470 >                                TreeNode<K,V> p = new TreeNode<K,V>
2471 >                                    (h, e.key, e.val, null, null);
2472 >                                if ((h & n) == 0) {
2473 >                                    if ((p.prev = loTail) == null)
2474 >                                        lo = p;
2475 >                                    else
2476 >                                        loTail.next = p;
2477 >                                    loTail = p;
2478 >                                    ++lc;
2479 >                                }
2480 >                                else {
2481 >                                    if ((p.prev = hiTail) == null)
2482 >                                        hi = p;
2483 >                                    else
2484 >                                        hiTail.next = p;
2485 >                                    hiTail = p;
2486 >                                    ++hc;
2487 >                                }
2488 >                            }
2489 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2490 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2491 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2492 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2493 >                            setTabAt(nextTab, i, ln);
2494 >                            setTabAt(nextTab, i + n, hn);
2495 >                            setTabAt(tab, i, fwd);
2496 >                            advance = true;
2497 >                        }
2498 >                    }
2499 >                }
2500 >            }
2501 >        }
2502      }
2503  
2504 +    /* ---------------- Conversion from/to TreeBins -------------- */
2505 +
2506      /**
2507 <     * Performs the given action for each non-null transformation
2508 <     * of each entry.
3881 <     *
3882 <     * @param transformer a function returning the transformation
3883 <     * for an element, or null of there is no transformation (in
3884 <     * which case the action is not applied).
3885 <     * @param action the action
2507 >     * Replaces all linked nodes in bin at given index unless table is
2508 >     * too small, in which case resizes instead.
2509       */
2510 <    @SuppressWarnings("unchecked") public <U> void forEachEntrySequentially
2511 <        (Fun<Map.Entry<K,V>, ? extends U> transformer,
2512 <         Action<U> action) {
2513 <        if (transformer == null || action == null)
2514 <            throw new NullPointerException();
2515 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2516 <        V v; U u;
2517 <        while ((v = it.advance()) != null) {
2518 <            if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
2519 <                action.apply(u);
2510 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2511 >        Node<K,V> b; int n, sc;
2512 >        if (tab != null) {
2513 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2514 >                tryPresize(n << 1);
2515 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2516 >                synchronized (b) {
2517 >                    if (tabAt(tab, index) == b) {
2518 >                        TreeNode<K,V> hd = null, tl = null;
2519 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2520 >                            TreeNode<K,V> p =
2521 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2522 >                                                  null, null);
2523 >                            if ((p.prev = tl) == null)
2524 >                                hd = p;
2525 >                            else
2526 >                                tl.next = p;
2527 >                            tl = p;
2528 >                        }
2529 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2530 >                    }
2531 >                }
2532 >            }
2533          }
2534      }
2535  
2536      /**
2537 <     * Returns a non-null result from applying the given search
3902 <     * function on each entry, or null if none.
3903 <     *
3904 <     * @param searchFunction a function returning a non-null
3905 <     * result on success, else null
3906 <     * @return a non-null result from applying the given search
3907 <     * function on each entry, or null if none
2537 >     * Returns a list on non-TreeNodes replacing those in given list.
2538       */
2539 <    @SuppressWarnings("unchecked") public <U> U searchEntriesSequentially
2540 <        (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
2541 <        if (searchFunction == null) throw new NullPointerException();
2542 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2543 <        V v; U u;
2544 <        while ((v = it.advance()) != null) {
2545 <            if ((u = searchFunction.apply(entryFor((K)it.nextKey, v))) != null)
2546 <                return u;
2539 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2540 >        Node<K,V> hd = null, tl = null;
2541 >        for (Node<K,V> q = b; q != null; q = q.next) {
2542 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2543 >            if (tl == null)
2544 >                hd = p;
2545 >            else
2546 >                tl.next = p;
2547 >            tl = p;
2548          }
2549 <        return null;
2549 >        return hd;
2550      }
2551  
2552 +    /* ---------------- TreeNodes -------------- */
2553 +
2554      /**
2555 <     * Returns the result of accumulating all entries using the
3923 <     * given reducer to combine values, or null if none.
3924 <     *
3925 <     * @param reducer a commutative associative combining function
3926 <     * @return the result of accumulating all entries
2555 >     * Nodes for use in TreeBins
2556       */
2557 <    @SuppressWarnings("unchecked") public Map.Entry<K,V> reduceEntriesSequentially
2558 <        (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
2559 <        if (reducer == null) throw new NullPointerException();
2560 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2561 <        Map.Entry<K,V> r = null; V v;
2562 <        while ((v = it.advance()) != null) {
2563 <            Map.Entry<K,V> u = entryFor((K)it.nextKey, v);
2564 <            r = (r == null) ? u : reducer.apply(r, u);
2557 >    static final class TreeNode<K,V> extends Node<K,V> {
2558 >        TreeNode<K,V> parent;  // red-black tree links
2559 >        TreeNode<K,V> left;
2560 >        TreeNode<K,V> right;
2561 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2562 >        boolean red;
2563 >
2564 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2565 >                 TreeNode<K,V> parent) {
2566 >            super(hash, key, val, next);
2567 >            this.parent = parent;
2568 >        }
2569 >
2570 >        Node<K,V> find(int h, Object k) {
2571 >            return findTreeNode(h, k, null);
2572 >        }
2573 >
2574 >        /**
2575 >         * Returns the TreeNode (or null if not found) for the given key
2576 >         * starting at given root.
2577 >         */
2578 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2579 >            if (k != null) {
2580 >                TreeNode<K,V> p = this;
2581 >                do {
2582 >                    int ph, dir; K pk; TreeNode<K,V> q;
2583 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2584 >                    if ((ph = p.hash) > h)
2585 >                        p = pl;
2586 >                    else if (ph < h)
2587 >                        p = pr;
2588 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2589 >                        return p;
2590 >                    else if (pl == null)
2591 >                        p = pr;
2592 >                    else if (pr == null)
2593 >                        p = pl;
2594 >                    else if ((kc != null ||
2595 >                              (kc = comparableClassFor(k)) != null) &&
2596 >                             (dir = compareComparables(kc, k, pk)) != 0)
2597 >                        p = (dir < 0) ? pl : pr;
2598 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2599 >                        return q;
2600 >                    else
2601 >                        p = pl;
2602 >                } while (p != null);
2603 >            }
2604 >            return null;
2605          }
3937        return r;
2606      }
2607  
2608 +    /* ---------------- TreeBins -------------- */
2609 +
2610      /**
2611 <     * Returns the result of accumulating the given transformation
2612 <     * of all entries using the given reducer to combine values,
2613 <     * or null if none.
2614 <     *
2615 <     * @param transformer a function returning the transformation
2616 <     * for an element, or null of there is no transformation (in
2617 <     * which case it is not combined).
2618 <     * @param reducer a commutative associative combining function
2619 <     * @return the result of accumulating the given transformation
2620 <     * of all entries
2621 <     */
2622 <    @SuppressWarnings("unchecked") public <U> U reduceEntriesSequentially
2623 <        (Fun<Map.Entry<K,V>, ? extends U> transformer,
2624 <         BiFun<? super U, ? super U, ? extends U> reducer) {
2625 <        if (transformer == null || reducer == null)
2626 <            throw new NullPointerException();
2627 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2628 <        U r = null, u; V v;
2629 <        while ((v = it.advance()) != null) {
2630 <            if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
2631 <                r = (r == null) ? u : reducer.apply(r, u);
2611 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2612 >     * keys or values, but instead point to list of TreeNodes and
2613 >     * their root. They also maintain a parasitic read-write lock
2614 >     * forcing writers (who hold bin lock) to wait for readers (who do
2615 >     * not) to complete before tree restructuring operations.
2616 >     */
2617 >    static final class TreeBin<K,V> extends Node<K,V> {
2618 >        TreeNode<K,V> root;
2619 >        volatile TreeNode<K,V> first;
2620 >        volatile Thread waiter;
2621 >        volatile int lockState;
2622 >        // values for lockState
2623 >        static final int WRITER = 1; // set while holding write lock
2624 >        static final int WAITER = 2; // set when waiting for write lock
2625 >        static final int READER = 4; // increment value for setting read lock
2626 >
2627 >        /**
2628 >         * Tie-breaking utility for ordering insertions when equal
2629 >         * hashCodes and non-comparable. We don't require a total
2630 >         * order, just a consistent insertion rule to maintain
2631 >         * equivalence across rebalancings. Tie-breaking further than
2632 >         * necessary simplifies testing a bit.
2633 >         */
2634 >        static int tieBreakOrder(Object a, Object b) {
2635 >            int d;
2636 >            if (a == null || b == null ||
2637 >                (d = a.getClass().getName().
2638 >                 compareTo(b.getClass().getName())) == 0)
2639 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2640 >                     -1 : 1);
2641 >            return d;
2642 >        }
2643 >
2644 >        /**
2645 >         * Creates bin with initial set of nodes headed by b.
2646 >         */
2647 >        TreeBin(TreeNode<K,V> b) {
2648 >            super(TREEBIN, null, null, null);
2649 >            this.first = b;
2650 >            TreeNode<K,V> r = null;
2651 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2652 >                next = (TreeNode<K,V>)x.next;
2653 >                x.left = x.right = null;
2654 >                if (r == null) {
2655 >                    x.parent = null;
2656 >                    x.red = false;
2657 >                    r = x;
2658 >                }
2659 >                else {
2660 >                    K k = x.key;
2661 >                    int h = x.hash;
2662 >                    Class<?> kc = null;
2663 >                    for (TreeNode<K,V> p = r;;) {
2664 >                        int dir, ph;
2665 >                        K pk = p.key;
2666 >                        if ((ph = p.hash) > h)
2667 >                            dir = -1;
2668 >                        else if (ph < h)
2669 >                            dir = 1;
2670 >                        else if ((kc == null &&
2671 >                                  (kc = comparableClassFor(k)) == null) ||
2672 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2673 >                            dir = tieBreakOrder(k, pk);
2674 >                            TreeNode<K,V> xp = p;
2675 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2676 >                            x.parent = xp;
2677 >                            if (dir <= 0)
2678 >                                xp.left = x;
2679 >                            else
2680 >                                xp.right = x;
2681 >                            r = balanceInsertion(r, x);
2682 >                            break;
2683 >                        }
2684 >                    }
2685 >                }
2686 >            }
2687 >            this.root = r;
2688 >            assert checkInvariants(root);
2689 >        }
2690 >
2691 >        /**
2692 >         * Acquires write lock for tree restructuring.
2693 >         */
2694 >        private final void lockRoot() {
2695 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2696 >                contendedLock(); // offload to separate method
2697 >        }
2698 >
2699 >        /**
2700 >         * Releases write lock for tree restructuring.
2701 >         */
2702 >        private final void unlockRoot() {
2703 >            lockState = 0;
2704 >        }
2705 >
2706 >        /**
2707 >         * Possibly blocks awaiting root lock.
2708 >         */
2709 >        private final void contendedLock() {
2710 >            boolean waiting = false;
2711 >            for (int s;;) {
2712 >                if (((s = lockState) & ~WAITER) == 0) {
2713 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2714 >                        if (waiting)
2715 >                            waiter = null;
2716 >                        return;
2717 >                    }
2718 >                }
2719 >                else if ((s & WAITER) == 0) {
2720 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2721 >                        waiting = true;
2722 >                        waiter = Thread.currentThread();
2723 >                    }
2724 >                }
2725 >                else if (waiting)
2726 >                    LockSupport.park(this);
2727 >            }
2728 >        }
2729 >
2730 >        /**
2731 >         * Returns matching node or null if none. Tries to search
2732 >         * using tree comparisons from root, but continues linear
2733 >         * search when lock not available.
2734 >         */
2735 >        final Node<K,V> find(int h, Object k) {
2736 >            if (k != null) {
2737 >                for (Node<K,V> e = first; e != null; ) {
2738 >                    int s; K ek;
2739 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2740 >                        if (e.hash == h &&
2741 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2742 >                            return e;
2743 >                        e = e.next;
2744 >                    }
2745 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2746 >                                                 s + READER)) {
2747 >                        TreeNode<K,V> r, p;
2748 >                        try {
2749 >                            p = ((r = root) == null ? null :
2750 >                                 r.findTreeNode(h, k, null));
2751 >                        } finally {
2752 >                            Thread w;
2753 >                            int ls;
2754 >                            do {} while (!U.compareAndSwapInt
2755 >                                         (this, LOCKSTATE,
2756 >                                          ls = lockState, ls - READER));
2757 >                            if (ls == (READER|WAITER) && (w = waiter) != null)
2758 >                                LockSupport.unpark(w);
2759 >                        }
2760 >                        return p;
2761 >                    }
2762 >                }
2763 >            }
2764 >            return null;
2765 >        }
2766 >
2767 >        /**
2768 >         * Finds or adds a node.
2769 >         * @return null if added
2770 >         */
2771 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2772 >            Class<?> kc = null;
2773 >            boolean searched = false;
2774 >            for (TreeNode<K,V> p = root;;) {
2775 >                int dir, ph; K pk;
2776 >                if (p == null) {
2777 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2778 >                    break;
2779 >                }
2780 >                else if ((ph = p.hash) > h)
2781 >                    dir = -1;
2782 >                else if (ph < h)
2783 >                    dir = 1;
2784 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2785 >                    return p;
2786 >                else if ((kc == null &&
2787 >                          (kc = comparableClassFor(k)) == null) ||
2788 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2789 >                    if (!searched) {
2790 >                        TreeNode<K,V> q, ch;
2791 >                        searched = true;
2792 >                        if (((ch = p.left) != null &&
2793 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2794 >                            ((ch = p.right) != null &&
2795 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2796 >                            return q;
2797 >                    }
2798 >                    dir = tieBreakOrder(k, pk);
2799 >                }
2800 >
2801 >                TreeNode<K,V> xp = p;
2802 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2803 >                    TreeNode<K,V> x, f = first;
2804 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2805 >                    if (f != null)
2806 >                        f.prev = x;
2807 >                    if (dir <= 0)
2808 >                        xp.left = x;
2809 >                    else
2810 >                        xp.right = x;
2811 >                    if (!xp.red)
2812 >                        x.red = true;
2813 >                    else {
2814 >                        lockRoot();
2815 >                        try {
2816 >                            root = balanceInsertion(root, x);
2817 >                        } finally {
2818 >                            unlockRoot();
2819 >                        }
2820 >                    }
2821 >                    break;
2822 >                }
2823 >            }
2824 >            assert checkInvariants(root);
2825 >            return null;
2826 >        }
2827 >
2828 >        /**
2829 >         * Removes the given node, that must be present before this
2830 >         * call.  This is messier than typical red-black deletion code
2831 >         * because we cannot swap the contents of an interior node
2832 >         * with a leaf successor that is pinned by "next" pointers
2833 >         * that are accessible independently of lock. So instead we
2834 >         * swap the tree linkages.
2835 >         *
2836 >         * @return true if now too small, so should be untreeified
2837 >         */
2838 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2839 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2840 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2841 >            TreeNode<K,V> r, rl;
2842 >            if (pred == null)
2843 >                first = next;
2844 >            else
2845 >                pred.next = next;
2846 >            if (next != null)
2847 >                next.prev = pred;
2848 >            if (first == null) {
2849 >                root = null;
2850 >                return true;
2851 >            }
2852 >            if ((r = root) == null || r.right == null || // too small
2853 >                (rl = r.left) == null || rl.left == null)
2854 >                return true;
2855 >            lockRoot();
2856 >            try {
2857 >                TreeNode<K,V> replacement;
2858 >                TreeNode<K,V> pl = p.left;
2859 >                TreeNode<K,V> pr = p.right;
2860 >                if (pl != null && pr != null) {
2861 >                    TreeNode<K,V> s = pr, sl;
2862 >                    while ((sl = s.left) != null) // find successor
2863 >                        s = sl;
2864 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2865 >                    TreeNode<K,V> sr = s.right;
2866 >                    TreeNode<K,V> pp = p.parent;
2867 >                    if (s == pr) { // p was s's direct parent
2868 >                        p.parent = s;
2869 >                        s.right = p;
2870 >                    }
2871 >                    else {
2872 >                        TreeNode<K,V> sp = s.parent;
2873 >                        if ((p.parent = sp) != null) {
2874 >                            if (s == sp.left)
2875 >                                sp.left = p;
2876 >                            else
2877 >                                sp.right = p;
2878 >                        }
2879 >                        if ((s.right = pr) != null)
2880 >                            pr.parent = s;
2881 >                    }
2882 >                    p.left = null;
2883 >                    if ((p.right = sr) != null)
2884 >                        sr.parent = p;
2885 >                    if ((s.left = pl) != null)
2886 >                        pl.parent = s;
2887 >                    if ((s.parent = pp) == null)
2888 >                        r = s;
2889 >                    else if (p == pp.left)
2890 >                        pp.left = s;
2891 >                    else
2892 >                        pp.right = s;
2893 >                    if (sr != null)
2894 >                        replacement = sr;
2895 >                    else
2896 >                        replacement = p;
2897 >                }
2898 >                else if (pl != null)
2899 >                    replacement = pl;
2900 >                else if (pr != null)
2901 >                    replacement = pr;
2902 >                else
2903 >                    replacement = p;
2904 >                if (replacement != p) {
2905 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2906 >                    if (pp == null)
2907 >                        r = replacement;
2908 >                    else if (p == pp.left)
2909 >                        pp.left = replacement;
2910 >                    else
2911 >                        pp.right = replacement;
2912 >                    p.left = p.right = p.parent = null;
2913 >                }
2914 >
2915 >                root = (p.red) ? r : balanceDeletion(r, replacement);
2916 >
2917 >                if (p == replacement) {  // detach pointers
2918 >                    TreeNode<K,V> pp;
2919 >                    if ((pp = p.parent) != null) {
2920 >                        if (p == pp.left)
2921 >                            pp.left = null;
2922 >                        else if (p == pp.right)
2923 >                            pp.right = null;
2924 >                        p.parent = null;
2925 >                    }
2926 >                }
2927 >            } finally {
2928 >                unlockRoot();
2929 >            }
2930 >            assert checkInvariants(root);
2931 >            return false;
2932 >        }
2933 >
2934 >        /* ------------------------------------------------------------ */
2935 >        // Red-black tree methods, all adapted from CLR
2936 >
2937 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2938 >                                              TreeNode<K,V> p) {
2939 >            TreeNode<K,V> r, pp, rl;
2940 >            if (p != null && (r = p.right) != null) {
2941 >                if ((rl = p.right = r.left) != null)
2942 >                    rl.parent = p;
2943 >                if ((pp = r.parent = p.parent) == null)
2944 >                    (root = r).red = false;
2945 >                else if (pp.left == p)
2946 >                    pp.left = r;
2947 >                else
2948 >                    pp.right = r;
2949 >                r.left = p;
2950 >                p.parent = r;
2951 >            }
2952 >            return root;
2953 >        }
2954 >
2955 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2956 >                                               TreeNode<K,V> p) {
2957 >            TreeNode<K,V> l, pp, lr;
2958 >            if (p != null && (l = p.left) != null) {
2959 >                if ((lr = p.left = l.right) != null)
2960 >                    lr.parent = p;
2961 >                if ((pp = l.parent = p.parent) == null)
2962 >                    (root = l).red = false;
2963 >                else if (pp.right == p)
2964 >                    pp.right = l;
2965 >                else
2966 >                    pp.left = l;
2967 >                l.right = p;
2968 >                p.parent = l;
2969 >            }
2970 >            return root;
2971 >        }
2972 >
2973 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2974 >                                                    TreeNode<K,V> x) {
2975 >            x.red = true;
2976 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2977 >                if ((xp = x.parent) == null) {
2978 >                    x.red = false;
2979 >                    return x;
2980 >                }
2981 >                else if (!xp.red || (xpp = xp.parent) == null)
2982 >                    return root;
2983 >                if (xp == (xppl = xpp.left)) {
2984 >                    if ((xppr = xpp.right) != null && xppr.red) {
2985 >                        xppr.red = false;
2986 >                        xp.red = false;
2987 >                        xpp.red = true;
2988 >                        x = xpp;
2989 >                    }
2990 >                    else {
2991 >                        if (x == xp.right) {
2992 >                            root = rotateLeft(root, x = xp);
2993 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2994 >                        }
2995 >                        if (xp != null) {
2996 >                            xp.red = false;
2997 >                            if (xpp != null) {
2998 >                                xpp.red = true;
2999 >                                root = rotateRight(root, xpp);
3000 >                            }
3001 >                        }
3002 >                    }
3003 >                }
3004 >                else {
3005 >                    if (xppl != null && xppl.red) {
3006 >                        xppl.red = false;
3007 >                        xp.red = false;
3008 >                        xpp.red = true;
3009 >                        x = xpp;
3010 >                    }
3011 >                    else {
3012 >                        if (x == xp.left) {
3013 >                            root = rotateRight(root, x = xp);
3014 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3015 >                        }
3016 >                        if (xp != null) {
3017 >                            xp.red = false;
3018 >                            if (xpp != null) {
3019 >                                xpp.red = true;
3020 >                                root = rotateLeft(root, xpp);
3021 >                            }
3022 >                        }
3023 >                    }
3024 >                }
3025 >            }
3026 >        }
3027 >
3028 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3029 >                                                   TreeNode<K,V> x) {
3030 >            for (TreeNode<K,V> xp, xpl, xpr;;) {
3031 >                if (x == null || x == root)
3032 >                    return root;
3033 >                else if ((xp = x.parent) == null) {
3034 >                    x.red = false;
3035 >                    return x;
3036 >                }
3037 >                else if (x.red) {
3038 >                    x.red = false;
3039 >                    return root;
3040 >                }
3041 >                else if ((xpl = xp.left) == x) {
3042 >                    if ((xpr = xp.right) != null && xpr.red) {
3043 >                        xpr.red = false;
3044 >                        xp.red = true;
3045 >                        root = rotateLeft(root, xp);
3046 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3047 >                    }
3048 >                    if (xpr == null)
3049 >                        x = xp;
3050 >                    else {
3051 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3052 >                        if ((sr == null || !sr.red) &&
3053 >                            (sl == null || !sl.red)) {
3054 >                            xpr.red = true;
3055 >                            x = xp;
3056 >                        }
3057 >                        else {
3058 >                            if (sr == null || !sr.red) {
3059 >                                if (sl != null)
3060 >                                    sl.red = false;
3061 >                                xpr.red = true;
3062 >                                root = rotateRight(root, xpr);
3063 >                                xpr = (xp = x.parent) == null ?
3064 >                                    null : xp.right;
3065 >                            }
3066 >                            if (xpr != null) {
3067 >                                xpr.red = (xp == null) ? false : xp.red;
3068 >                                if ((sr = xpr.right) != null)
3069 >                                    sr.red = false;
3070 >                            }
3071 >                            if (xp != null) {
3072 >                                xp.red = false;
3073 >                                root = rotateLeft(root, xp);
3074 >                            }
3075 >                            x = root;
3076 >                        }
3077 >                    }
3078 >                }
3079 >                else { // symmetric
3080 >                    if (xpl != null && xpl.red) {
3081 >                        xpl.red = false;
3082 >                        xp.red = true;
3083 >                        root = rotateRight(root, xp);
3084 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3085 >                    }
3086 >                    if (xpl == null)
3087 >                        x = xp;
3088 >                    else {
3089 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3090 >                        if ((sl == null || !sl.red) &&
3091 >                            (sr == null || !sr.red)) {
3092 >                            xpl.red = true;
3093 >                            x = xp;
3094 >                        }
3095 >                        else {
3096 >                            if (sl == null || !sl.red) {
3097 >                                if (sr != null)
3098 >                                    sr.red = false;
3099 >                                xpl.red = true;
3100 >                                root = rotateLeft(root, xpl);
3101 >                                xpl = (xp = x.parent) == null ?
3102 >                                    null : xp.left;
3103 >                            }
3104 >                            if (xpl != null) {
3105 >                                xpl.red = (xp == null) ? false : xp.red;
3106 >                                if ((sl = xpl.left) != null)
3107 >                                    sl.red = false;
3108 >                            }
3109 >                            if (xp != null) {
3110 >                                xp.red = false;
3111 >                                root = rotateRight(root, xp);
3112 >                            }
3113 >                            x = root;
3114 >                        }
3115 >                    }
3116 >                }
3117 >            }
3118 >        }
3119 >
3120 >        /**
3121 >         * Recursive invariant check
3122 >         */
3123 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3124 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3125 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3126 >            if (tb != null && tb.next != t)
3127 >                return false;
3128 >            if (tn != null && tn.prev != t)
3129 >                return false;
3130 >            if (tp != null && t != tp.left && t != tp.right)
3131 >                return false;
3132 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3133 >                return false;
3134 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3135 >                return false;
3136 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3137 >                return false;
3138 >            if (tl != null && !checkInvariants(tl))
3139 >                return false;
3140 >            if (tr != null && !checkInvariants(tr))
3141 >                return false;
3142 >            return true;
3143 >        }
3144 >
3145 >        private static final sun.misc.Unsafe U;
3146 >        private static final long LOCKSTATE;
3147 >        static {
3148 >            try {
3149 >                U = getUnsafe();
3150 >                Class<?> k = TreeBin.class;
3151 >                LOCKSTATE = U.objectFieldOffset
3152 >                    (k.getDeclaredField("lockState"));
3153 >            } catch (Exception e) {
3154 >                throw new Error(e);
3155 >            }
3156          }
3963        return r;
3157      }
3158  
3159 +    /* ----------------Table Traversal -------------- */
3160 +
3161      /**
3162 <     * Returns the result of accumulating the given transformation
3163 <     * of all entries using the given reducer to combine values,
3164 <     * and the given basis as an identity value.
3165 <     *
3166 <     * @param transformer a function returning the transformation
3167 <     * for an element
3168 <     * @param basis the identity (initial default value) for the reduction
3169 <     * @param reducer a commutative associative combining function
3170 <     * @return the result of accumulating the given transformation
3976 <     * of all entries
3977 <     */
3978 <    @SuppressWarnings("unchecked") public double reduceEntriesToDoubleSequentially
3979 <        (ObjectToDouble<Map.Entry<K,V>> transformer,
3980 <         double basis,
3981 <         DoubleByDoubleToDouble reducer) {
3982 <        if (transformer == null || reducer == null)
3983 <            throw new NullPointerException();
3984 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3985 <        double r = basis; V v;
3986 <        while ((v = it.advance()) != null)
3987 <            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
3988 <        return r;
3162 >     * Records the table, its length, and current traversal index for a
3163 >     * traverser that must process a region of a forwarded table before
3164 >     * proceeding with current table.
3165 >     */
3166 >    static final class TableStack<K,V> {
3167 >        int length;
3168 >        int index;
3169 >        Node<K,V>[] tab;
3170 >        TableStack<K,V> next;
3171      }
3172  
3173      /**
3174 <     * Returns the result of accumulating the given transformation
3175 <     * of all entries using the given reducer to combine values,
3994 <     * and the given basis as an identity value.
3174 >     * Encapsulates traversal for methods such as containsValue; also
3175 >     * serves as a base class for other iterators and spliterators.
3176       *
3177 <     * @param transformer a function returning the transformation
3178 <     * for an element
3179 <     * @param basis the identity (initial default value) for the reduction
3180 <     * @param reducer a commutative associative combining function
3181 <     * @return  the result of accumulating the given transformation
3182 <     * of all entries
3177 >     * Method advance visits once each still-valid node that was
3178 >     * reachable upon iterator construction. It might miss some that
3179 >     * were added to a bin after the bin was visited, which is OK wrt
3180 >     * consistency guarantees. Maintaining this property in the face
3181 >     * of possible ongoing resizes requires a fair amount of
3182 >     * bookkeeping state that is difficult to optimize away amidst
3183 >     * volatile accesses.  Even so, traversal maintains reasonable
3184 >     * throughput.
3185 >     *
3186 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3187 >     * However, if the table has been resized, then all future steps
3188 >     * must traverse both the bin at the current index as well as at
3189 >     * (index + baseSize); and so on for further resizings. To
3190 >     * paranoically cope with potential sharing by users of iterators
3191 >     * across threads, iteration terminates if a bounds checks fails
3192 >     * for a table read.
3193       */
3194 <    @SuppressWarnings("unchecked") public long reduceEntriesToLongSequentially
3195 <        (ObjectToLong<Map.Entry<K,V>> transformer,
3196 <         long basis,
3197 <         LongByLongToLong reducer) {
3198 <        if (transformer == null || reducer == null)
3199 <            throw new NullPointerException();
3200 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3201 <        long r = basis; V v;
3202 <        while ((v = it.advance()) != null)
3203 <            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
3204 <        return r;
3194 >    static class Traverser<K,V> {
3195 >        Node<K,V>[] tab;        // current table; updated if resized
3196 >        Node<K,V> next;         // the next entry to use
3197 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3198 >        int index;              // index of bin to use next
3199 >        int baseIndex;          // current index of initial table
3200 >        int baseLimit;          // index bound for initial table
3201 >        final int baseSize;     // initial table size
3202 >
3203 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3204 >            this.tab = tab;
3205 >            this.baseSize = size;
3206 >            this.baseIndex = this.index = index;
3207 >            this.baseLimit = limit;
3208 >            this.next = null;
3209 >        }
3210 >
3211 >        /**
3212 >         * Advances if possible, returning next valid node, or null if none.
3213 >         */
3214 >        final Node<K,V> advance() {
3215 >            Node<K,V> e;
3216 >            if ((e = next) != null)
3217 >                e = e.next;
3218 >            for (;;) {
3219 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3220 >                if (e != null)
3221 >                    return next = e;
3222 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3223 >                    (n = t.length) <= (i = index) || i < 0)
3224 >                    return next = null;
3225 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3226 >                    if (e instanceof ForwardingNode) {
3227 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3228 >                        e = null;
3229 >                        pushState(t, i, n);
3230 >                        continue;
3231 >                    }
3232 >                    else if (e instanceof TreeBin)
3233 >                        e = ((TreeBin<K,V>)e).first;
3234 >                    else
3235 >                        e = null;
3236 >                }
3237 >                if (stack != null)
3238 >                    recoverState(n);
3239 >                else if ((index = i + baseSize) >= n)
3240 >                    index = ++baseIndex; // visit upper slots if present
3241 >            }
3242 >        }
3243 >
3244 >        /**
3245 >         * Saves traversal state upon encountering a forwarding node.
3246 >         */
3247 >        private void pushState(Node<K,V>[] t, int i, int n) {
3248 >            TableStack<K,V> s = spare;  // reuse if possible
3249 >            if (s != null)
3250 >                spare = s.next;
3251 >            else
3252 >                s = new TableStack<K,V>();
3253 >            s.tab = t;
3254 >            s.length = n;
3255 >            s.index = i;
3256 >            s.next = stack;
3257 >            stack = s;
3258 >        }
3259 >
3260 >        /**
3261 >         * Possibly pops traversal state.
3262 >         *
3263 >         * @param n length of current table
3264 >         */
3265 >        private void recoverState(int n) {
3266 >            TableStack<K,V> s; int len;
3267 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3268 >                n = len;
3269 >                index = s.index;
3270 >                tab = s.tab;
3271 >                s.tab = null;
3272 >                TableStack<K,V> next = s.next;
3273 >                s.next = spare; // save for reuse
3274 >                stack = next;
3275 >                spare = s;
3276 >            }
3277 >            if (s == null && (index += baseSize) >= n)
3278 >                index = ++baseIndex;
3279 >        }
3280      }
3281  
3282      /**
3283 <     * Returns the result of accumulating the given transformation
3284 <     * of all entries using the given reducer to combine values,
3285 <     * and the given basis as an identity value.
3286 <     *
3287 <     * @param transformer a function returning the transformation
3288 <     * for an element
3289 <     * @param basis the identity (initial default value) for the reduction
3290 <     * @param reducer a commutative associative combining function
3291 <     * @return the result of accumulating the given transformation
3292 <     * of all entries
3283 >     * Base of key, value, and entry Iterators. Adds fields to
3284 >     * Traverser to support iterator.remove.
3285 >     */
3286 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3287 >        final ConcurrentHashMapV8<K,V> map;
3288 >        Node<K,V> lastReturned;
3289 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3290 >                    ConcurrentHashMapV8<K,V> map) {
3291 >            super(tab, size, index, limit);
3292 >            this.map = map;
3293 >            advance();
3294 >        }
3295 >
3296 >        public final boolean hasNext() { return next != null; }
3297 >        public final boolean hasMoreElements() { return next != null; }
3298 >
3299 >        public final void remove() {
3300 >            Node<K,V> p;
3301 >            if ((p = lastReturned) == null)
3302 >                throw new IllegalStateException();
3303 >            lastReturned = null;
3304 >            map.replaceNode(p.key, null, null);
3305 >        }
3306 >    }
3307 >
3308 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3309 >        implements Iterator<K>, Enumeration<K> {
3310 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3311 >                    ConcurrentHashMapV8<K,V> map) {
3312 >            super(tab, index, size, limit, map);
3313 >        }
3314 >
3315 >        public final K next() {
3316 >            Node<K,V> p;
3317 >            if ((p = next) == null)
3318 >                throw new NoSuchElementException();
3319 >            K k = p.key;
3320 >            lastReturned = p;
3321 >            advance();
3322 >            return k;
3323 >        }
3324 >
3325 >        public final K nextElement() { return next(); }
3326 >    }
3327 >
3328 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3329 >        implements Iterator<V>, Enumeration<V> {
3330 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3331 >                      ConcurrentHashMapV8<K,V> map) {
3332 >            super(tab, index, size, limit, map);
3333 >        }
3334 >
3335 >        public final V next() {
3336 >            Node<K,V> p;
3337 >            if ((p = next) == null)
3338 >                throw new NoSuchElementException();
3339 >            V v = p.val;
3340 >            lastReturned = p;
3341 >            advance();
3342 >            return v;
3343 >        }
3344 >
3345 >        public final V nextElement() { return next(); }
3346 >    }
3347 >
3348 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3349 >        implements Iterator<Map.Entry<K,V>> {
3350 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3351 >                      ConcurrentHashMapV8<K,V> map) {
3352 >            super(tab, index, size, limit, map);
3353 >        }
3354 >
3355 >        public final Map.Entry<K,V> next() {
3356 >            Node<K,V> p;
3357 >            if ((p = next) == null)
3358 >                throw new NoSuchElementException();
3359 >            K k = p.key;
3360 >            V v = p.val;
3361 >            lastReturned = p;
3362 >            advance();
3363 >            return new MapEntry<K,V>(k, v, map);
3364 >        }
3365 >    }
3366 >
3367 >    /**
3368 >     * Exported Entry for EntryIterator
3369       */
3370 <    @SuppressWarnings("unchecked") public int reduceEntriesToIntSequentially
3371 <        (ObjectToInt<Map.Entry<K,V>> transformer,
3372 <         int basis,
3373 <         IntByIntToInt reducer) {
3374 <        if (transformer == null || reducer == null)
3375 <            throw new NullPointerException();
3376 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3377 <        int r = basis; V v;
3378 <        while ((v = it.advance()) != null)
3379 <            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
3380 <        return r;
3370 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3371 >        final K key; // non-null
3372 >        V val;       // non-null
3373 >        final ConcurrentHashMapV8<K,V> map;
3374 >        MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3375 >            this.key = key;
3376 >            this.val = val;
3377 >            this.map = map;
3378 >        }
3379 >        public K getKey()        { return key; }
3380 >        public V getValue()      { return val; }
3381 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3382 >        public String toString() { return key + "=" + val; }
3383 >
3384 >        public boolean equals(Object o) {
3385 >            Object k, v; Map.Entry<?,?> e;
3386 >            return ((o instanceof Map.Entry) &&
3387 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3388 >                    (v = e.getValue()) != null &&
3389 >                    (k == key || k.equals(key)) &&
3390 >                    (v == val || v.equals(val)));
3391 >        }
3392 >
3393 >        /**
3394 >         * Sets our entry's value and writes through to the map. The
3395 >         * value to return is somewhat arbitrary here. Since we do not
3396 >         * necessarily track asynchronous changes, the most recent
3397 >         * "previous" value could be different from what we return (or
3398 >         * could even have been removed, in which case the put will
3399 >         * re-establish). We do not and cannot guarantee more.
3400 >         */
3401 >        public V setValue(V value) {
3402 >            if (value == null) throw new NullPointerException();
3403 >            V v = val;
3404 >            val = value;
3405 >            map.put(key, value);
3406 >            return v;
3407 >        }
3408 >    }
3409 >
3410 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3411 >        implements ConcurrentHashMapSpliterator<K> {
3412 >        long est;               // size estimate
3413 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3414 >                       long est) {
3415 >            super(tab, size, index, limit);
3416 >            this.est = est;
3417 >        }
3418 >
3419 >        public ConcurrentHashMapSpliterator<K> trySplit() {
3420 >            int i, f, h;
3421 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3422 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3423 >                                        f, est >>>= 1);
3424 >        }
3425 >
3426 >        public void forEachRemaining(Action<? super K> action) {
3427 >            if (action == null) throw new NullPointerException();
3428 >            for (Node<K,V> p; (p = advance()) != null;)
3429 >                action.apply(p.key);
3430 >        }
3431 >
3432 >        public boolean tryAdvance(Action<? super K> action) {
3433 >            if (action == null) throw new NullPointerException();
3434 >            Node<K,V> p;
3435 >            if ((p = advance()) == null)
3436 >                return false;
3437 >            action.apply(p.key);
3438 >            return true;
3439 >        }
3440 >
3441 >        public long estimateSize() { return est; }
3442 >
3443 >    }
3444 >
3445 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3446 >        implements ConcurrentHashMapSpliterator<V> {
3447 >        long est;               // size estimate
3448 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3449 >                         long est) {
3450 >            super(tab, size, index, limit);
3451 >            this.est = est;
3452 >        }
3453 >
3454 >        public ConcurrentHashMapSpliterator<V> trySplit() {
3455 >            int i, f, h;
3456 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3457 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3458 >                                          f, est >>>= 1);
3459 >        }
3460 >
3461 >        public void forEachRemaining(Action<? super V> action) {
3462 >            if (action == null) throw new NullPointerException();
3463 >            for (Node<K,V> p; (p = advance()) != null;)
3464 >                action.apply(p.val);
3465 >        }
3466 >
3467 >        public boolean tryAdvance(Action<? super V> action) {
3468 >            if (action == null) throw new NullPointerException();
3469 >            Node<K,V> p;
3470 >            if ((p = advance()) == null)
3471 >                return false;
3472 >            action.apply(p.val);
3473 >            return true;
3474 >        }
3475 >
3476 >        public long estimateSize() { return est; }
3477 >
3478 >    }
3479 >
3480 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3481 >        implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3482 >        final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3483 >        long est;               // size estimate
3484 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3485 >                         long est, ConcurrentHashMapV8<K,V> map) {
3486 >            super(tab, size, index, limit);
3487 >            this.map = map;
3488 >            this.est = est;
3489 >        }
3490 >
3491 >        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3492 >            int i, f, h;
3493 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3494 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3495 >                                          f, est >>>= 1, map);
3496 >        }
3497 >
3498 >        public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3499 >            if (action == null) throw new NullPointerException();
3500 >            for (Node<K,V> p; (p = advance()) != null; )
3501 >                action.apply(new MapEntry<K,V>(p.key, p.val, map));
3502 >        }
3503 >
3504 >        public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3505 >            if (action == null) throw new NullPointerException();
3506 >            Node<K,V> p;
3507 >            if ((p = advance()) == null)
3508 >                return false;
3509 >            action.apply(new MapEntry<K,V>(p.key, p.val, map));
3510 >            return true;
3511 >        }
3512 >
3513 >        public long estimateSize() { return est; }
3514 >
3515      }
3516  
3517      // Parallel bulk operations
3518  
3519      /**
3520 +     * Computes initial batch value for bulk tasks. The returned value
3521 +     * is approximately exp2 of the number of times (minus one) to
3522 +     * split task by two before executing leaf action. This value is
3523 +     * faster to compute and more convenient to use as a guide to
3524 +     * splitting than is the depth, since it is used while dividing by
3525 +     * two anyway.
3526 +     */
3527 +    final int batchFor(long b) {
3528 +        long n;
3529 +        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3530 +            return 0;
3531 +        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3532 +        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3533 +    }
3534 +
3535 +    /**
3536       * Performs the given action for each (key, value).
3537       *
3538 +     * @param parallelismThreshold the (estimated) number of elements
3539 +     * needed for this operation to be executed in parallel
3540       * @param action the action
3541 +     * @since 1.8
3542       */
3543 <    public void forEachInParallel(BiAction<K,V> action) {
3544 <        ForkJoinTasks.forEach
3545 <            (this, action).invoke();
3543 >    public void forEach(long parallelismThreshold,
3544 >                        BiAction<? super K,? super V> action) {
3545 >        if (action == null) throw new NullPointerException();
3546 >        new ForEachMappingTask<K,V>
3547 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3548 >             action).invoke();
3549      }
3550  
3551      /**
3552       * Performs the given action for each non-null transformation
3553       * of each (key, value).
3554       *
3555 +     * @param parallelismThreshold the (estimated) number of elements
3556 +     * needed for this operation to be executed in parallel
3557       * @param transformer a function returning the transformation
3558 <     * for an element, or null of there is no transformation (in
3559 <     * which case the action is not applied).
3558 >     * for an element, or null if there is no transformation (in
3559 >     * which case the action is not applied)
3560       * @param action the action
3561 +     * @since 1.8
3562       */
3563 <    public <U> void forEachInParallel
3564 <        (BiFun<? super K, ? super V, ? extends U> transformer,
3565 <                            Action<U> action) {
3566 <        ForkJoinTasks.forEach
3567 <            (this, transformer, action).invoke();
3563 >    public <U> void forEach(long parallelismThreshold,
3564 >                            BiFun<? super K, ? super V, ? extends U> transformer,
3565 >                            Action<? super U> action) {
3566 >        if (transformer == null || action == null)
3567 >            throw new NullPointerException();
3568 >        new ForEachTransformedMappingTask<K,V,U>
3569 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3570 >             transformer, action).invoke();
3571      }
3572  
3573      /**
# Line 4073 | Line 3577 | public class ConcurrentHashMapV8<K, V>
3577       * results of any other parallel invocations of the search
3578       * function are ignored.
3579       *
3580 +     * @param parallelismThreshold the (estimated) number of elements
3581 +     * needed for this operation to be executed in parallel
3582       * @param searchFunction a function returning a non-null
3583       * result on success, else null
3584       * @return a non-null result from applying the given search
3585       * function on each (key, value), or null if none
3586 +     * @since 1.8
3587       */
3588 <    public <U> U searchInParallel
3589 <        (BiFun<? super K, ? super V, ? extends U> searchFunction) {
3590 <        return ForkJoinTasks.search
3591 <            (this, searchFunction).invoke();
3588 >    public <U> U search(long parallelismThreshold,
3589 >                        BiFun<? super K, ? super V, ? extends U> searchFunction) {
3590 >        if (searchFunction == null) throw new NullPointerException();
3591 >        return new SearchMappingsTask<K,V,U>
3592 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3593 >             searchFunction, new AtomicReference<U>()).invoke();
3594      }
3595  
3596      /**
# Line 4089 | Line 3598 | public class ConcurrentHashMapV8<K, V>
3598       * of all (key, value) pairs using the given reducer to
3599       * combine values, or null if none.
3600       *
3601 +     * @param parallelismThreshold the (estimated) number of elements
3602 +     * needed for this operation to be executed in parallel
3603       * @param transformer a function returning the transformation
3604 <     * for an element, or null of there is no transformation (in
3605 <     * which case it is not combined).
3604 >     * for an element, or null if there is no transformation (in
3605 >     * which case it is not combined)
3606       * @param reducer a commutative associative combining function
3607       * @return the result of accumulating the given transformation
3608       * of all (key, value) pairs
3609 +     * @since 1.8
3610       */
3611 <    public <U> U reduceInParallel
3612 <        (BiFun<? super K, ? super V, ? extends U> transformer,
3613 <         BiFun<? super U, ? super U, ? extends U> reducer) {
3614 <        return ForkJoinTasks.reduce
3615 <            (this, transformer, reducer).invoke();
3611 >    public <U> U reduce(long parallelismThreshold,
3612 >                        BiFun<? super K, ? super V, ? extends U> transformer,
3613 >                        BiFun<? super U, ? super U, ? extends U> reducer) {
3614 >        if (transformer == null || reducer == null)
3615 >            throw new NullPointerException();
3616 >        return new MapReduceMappingsTask<K,V,U>
3617 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3618 >             null, transformer, reducer).invoke();
3619      }
3620  
3621      /**
# Line 4108 | Line 3623 | public class ConcurrentHashMapV8<K, V>
3623       * of all (key, value) pairs using the given reducer to
3624       * combine values, and the given basis as an identity value.
3625       *
3626 +     * @param parallelismThreshold the (estimated) number of elements
3627 +     * needed for this operation to be executed in parallel
3628       * @param transformer a function returning the transformation
3629       * for an element
3630       * @param basis the identity (initial default value) for the reduction
3631       * @param reducer a commutative associative combining function
3632       * @return the result of accumulating the given transformation
3633       * of all (key, value) pairs
3634 +     * @since 1.8
3635       */
3636 <    public double reduceToDoubleInParallel
3637 <        (ObjectByObjectToDouble<? super K, ? super V> transformer,
3638 <         double basis,
3639 <         DoubleByDoubleToDouble reducer) {
3640 <        return ForkJoinTasks.reduceToDouble
3641 <            (this, transformer, basis, reducer).invoke();
3636 >    public double reduceToDouble(long parallelismThreshold,
3637 >                                 ObjectByObjectToDouble<? super K, ? super V> transformer,
3638 >                                 double basis,
3639 >                                 DoubleByDoubleToDouble reducer) {
3640 >        if (transformer == null || reducer == null)
3641 >            throw new NullPointerException();
3642 >        return new MapReduceMappingsToDoubleTask<K,V>
3643 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3644 >             null, transformer, basis, reducer).invoke();
3645      }
3646  
3647      /**
# Line 4128 | Line 3649 | public class ConcurrentHashMapV8<K, V>
3649       * of all (key, value) pairs using the given reducer to
3650       * combine values, and the given basis as an identity value.
3651       *
3652 +     * @param parallelismThreshold the (estimated) number of elements
3653 +     * needed for this operation to be executed in parallel
3654       * @param transformer a function returning the transformation
3655       * for an element
3656       * @param basis the identity (initial default value) for the reduction
3657       * @param reducer a commutative associative combining function
3658       * @return the result of accumulating the given transformation
3659       * of all (key, value) pairs
3660 +     * @since 1.8
3661       */
3662 <    public long reduceToLongInParallel
3663 <        (ObjectByObjectToLong<? super K, ? super V> transformer,
3664 <         long basis,
3665 <         LongByLongToLong reducer) {
3666 <        return ForkJoinTasks.reduceToLong
3667 <            (this, transformer, basis, reducer).invoke();
3662 >    public long reduceToLong(long parallelismThreshold,
3663 >                             ObjectByObjectToLong<? super K, ? super V> transformer,
3664 >                             long basis,
3665 >                             LongByLongToLong reducer) {
3666 >        if (transformer == null || reducer == null)
3667 >            throw new NullPointerException();
3668 >        return new MapReduceMappingsToLongTask<K,V>
3669 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3670 >             null, transformer, basis, reducer).invoke();
3671      }
3672  
3673      /**
# Line 4148 | Line 3675 | public class ConcurrentHashMapV8<K, V>
3675       * of all (key, value) pairs using the given reducer to
3676       * combine values, and the given basis as an identity value.
3677       *
3678 +     * @param parallelismThreshold the (estimated) number of elements
3679 +     * needed for this operation to be executed in parallel
3680       * @param transformer a function returning the transformation
3681       * for an element
3682       * @param basis the identity (initial default value) for the reduction
3683       * @param reducer a commutative associative combining function
3684       * @return the result of accumulating the given transformation
3685       * of all (key, value) pairs
3686 +     * @since 1.8
3687       */
3688 <    public int reduceToIntInParallel
3689 <        (ObjectByObjectToInt<? super K, ? super V> transformer,
3690 <         int basis,
3691 <         IntByIntToInt reducer) {
3692 <        return ForkJoinTasks.reduceToInt
3693 <            (this, transformer, basis, reducer).invoke();
3688 >    public int reduceToInt(long parallelismThreshold,
3689 >                           ObjectByObjectToInt<? super K, ? super V> transformer,
3690 >                           int basis,
3691 >                           IntByIntToInt reducer) {
3692 >        if (transformer == null || reducer == null)
3693 >            throw new NullPointerException();
3694 >        return new MapReduceMappingsToIntTask<K,V>
3695 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3696 >             null, transformer, basis, reducer).invoke();
3697      }
3698  
3699      /**
3700       * Performs the given action for each key.
3701       *
3702 +     * @param parallelismThreshold the (estimated) number of elements
3703 +     * needed for this operation to be executed in parallel
3704       * @param action the action
3705 +     * @since 1.8
3706       */
3707 <    public void forEachKeyInParallel(Action<K> action) {
3708 <        ForkJoinTasks.forEachKey
3709 <            (this, action).invoke();
3707 >    public void forEachKey(long parallelismThreshold,
3708 >                           Action<? super K> action) {
3709 >        if (action == null) throw new NullPointerException();
3710 >        new ForEachKeyTask<K,V>
3711 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3712 >             action).invoke();
3713      }
3714  
3715      /**
3716       * Performs the given action for each non-null transformation
3717       * of each key.
3718       *
3719 +     * @param parallelismThreshold the (estimated) number of elements
3720 +     * needed for this operation to be executed in parallel
3721       * @param transformer a function returning the transformation
3722 <     * for an element, or null of there is no transformation (in
3723 <     * which case the action is not applied).
3722 >     * for an element, or null if there is no transformation (in
3723 >     * which case the action is not applied)
3724       * @param action the action
3725 +     * @since 1.8
3726       */
3727 <    public <U> void forEachKeyInParallel
3728 <        (Fun<? super K, ? extends U> transformer,
3729 <         Action<U> action) {
3730 <        ForkJoinTasks.forEachKey
3731 <            (this, transformer, action).invoke();
3727 >    public <U> void forEachKey(long parallelismThreshold,
3728 >                               Fun<? super K, ? extends U> transformer,
3729 >                               Action<? super U> action) {
3730 >        if (transformer == null || action == null)
3731 >            throw new NullPointerException();
3732 >        new ForEachTransformedKeyTask<K,V,U>
3733 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3734 >             transformer, action).invoke();
3735      }
3736  
3737      /**
# Line 4196 | Line 3741 | public class ConcurrentHashMapV8<K, V>
3741       * any other parallel invocations of the search function are
3742       * ignored.
3743       *
3744 +     * @param parallelismThreshold the (estimated) number of elements
3745 +     * needed for this operation to be executed in parallel
3746       * @param searchFunction a function returning a non-null
3747       * result on success, else null
3748       * @return a non-null result from applying the given search
3749       * function on each key, or null if none
3750 +     * @since 1.8
3751       */
3752 <    public <U> U searchKeysInParallel
3753 <        (Fun<? super K, ? extends U> searchFunction) {
3754 <        return ForkJoinTasks.searchKeys
3755 <            (this, searchFunction).invoke();
3752 >    public <U> U searchKeys(long parallelismThreshold,
3753 >                            Fun<? super K, ? extends U> searchFunction) {
3754 >        if (searchFunction == null) throw new NullPointerException();
3755 >        return new SearchKeysTask<K,V,U>
3756 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3757 >             searchFunction, new AtomicReference<U>()).invoke();
3758      }
3759  
3760      /**
3761       * Returns the result of accumulating all keys using the given
3762       * reducer to combine values, or null if none.
3763       *
3764 +     * @param parallelismThreshold the (estimated) number of elements
3765 +     * needed for this operation to be executed in parallel
3766       * @param reducer a commutative associative combining function
3767       * @return the result of accumulating all keys using the given
3768       * reducer to combine values, or null if none
3769 +     * @since 1.8
3770       */
3771 <    public K reduceKeysInParallel
3772 <        (BiFun<? super K, ? super K, ? extends K> reducer) {
3773 <        return ForkJoinTasks.reduceKeys
3774 <            (this, reducer).invoke();
3771 >    public K reduceKeys(long parallelismThreshold,
3772 >                        BiFun<? super K, ? super K, ? extends K> reducer) {
3773 >        if (reducer == null) throw new NullPointerException();
3774 >        return new ReduceKeysTask<K,V>
3775 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3776 >             null, reducer).invoke();
3777      }
3778  
3779      /**
# Line 4226 | Line 3781 | public class ConcurrentHashMapV8<K, V>
3781       * of all keys using the given reducer to combine values, or
3782       * null if none.
3783       *
3784 +     * @param parallelismThreshold the (estimated) number of elements
3785 +     * needed for this operation to be executed in parallel
3786       * @param transformer a function returning the transformation
3787 <     * for an element, or null of there is no transformation (in
3788 <     * which case it is not combined).
3787 >     * for an element, or null if there is no transformation (in
3788 >     * which case it is not combined)
3789       * @param reducer a commutative associative combining function
3790       * @return the result of accumulating the given transformation
3791       * of all keys
3792 +     * @since 1.8
3793       */
3794 <    public <U> U reduceKeysInParallel
3795 <        (Fun<? super K, ? extends U> transformer,
3794 >    public <U> U reduceKeys(long parallelismThreshold,
3795 >                            Fun<? super K, ? extends U> transformer,
3796           BiFun<? super U, ? super U, ? extends U> reducer) {
3797 <        return ForkJoinTasks.reduceKeys
3798 <            (this, transformer, reducer).invoke();
3797 >        if (transformer == null || reducer == null)
3798 >            throw new NullPointerException();
3799 >        return new MapReduceKeysTask<K,V,U>
3800 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3801 >             null, transformer, reducer).invoke();
3802      }
3803  
3804      /**
# Line 4245 | Line 3806 | public class ConcurrentHashMapV8<K, V>
3806       * of all keys using the given reducer to combine values, and
3807       * the given basis as an identity value.
3808       *
3809 +     * @param parallelismThreshold the (estimated) number of elements
3810 +     * needed for this operation to be executed in parallel
3811       * @param transformer a function returning the transformation
3812       * for an element
3813       * @param basis the identity (initial default value) for the reduction
3814       * @param reducer a commutative associative combining function
3815 <     * @return  the result of accumulating the given transformation
3815 >     * @return the result of accumulating the given transformation
3816       * of all keys
3817 +     * @since 1.8
3818       */
3819 <    public double reduceKeysToDoubleInParallel
3820 <        (ObjectToDouble<? super K> transformer,
3821 <         double basis,
3822 <         DoubleByDoubleToDouble reducer) {
3823 <        return ForkJoinTasks.reduceKeysToDouble
3824 <            (this, transformer, basis, reducer).invoke();
3819 >    public double reduceKeysToDouble(long parallelismThreshold,
3820 >                                     ObjectToDouble<? super K> transformer,
3821 >                                     double basis,
3822 >                                     DoubleByDoubleToDouble reducer) {
3823 >        if (transformer == null || reducer == null)
3824 >            throw new NullPointerException();
3825 >        return new MapReduceKeysToDoubleTask<K,V>
3826 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3827 >             null, transformer, basis, reducer).invoke();
3828      }
3829  
3830      /**
# Line 4265 | Line 3832 | public class ConcurrentHashMapV8<K, V>
3832       * of all keys using the given reducer to combine values, and
3833       * the given basis as an identity value.
3834       *
3835 +     * @param parallelismThreshold the (estimated) number of elements
3836 +     * needed for this operation to be executed in parallel
3837       * @param transformer a function returning the transformation
3838       * for an element
3839       * @param basis the identity (initial default value) for the reduction
3840       * @param reducer a commutative associative combining function
3841       * @return the result of accumulating the given transformation
3842       * of all keys
3843 +     * @since 1.8
3844       */
3845 <    public long reduceKeysToLongInParallel
3846 <        (ObjectToLong<? super K> transformer,
3847 <         long basis,
3848 <         LongByLongToLong reducer) {
3849 <        return ForkJoinTasks.reduceKeysToLong
3850 <            (this, transformer, basis, reducer).invoke();
3845 >    public long reduceKeysToLong(long parallelismThreshold,
3846 >                                 ObjectToLong<? super K> transformer,
3847 >                                 long basis,
3848 >                                 LongByLongToLong reducer) {
3849 >        if (transformer == null || reducer == null)
3850 >            throw new NullPointerException();
3851 >        return new MapReduceKeysToLongTask<K,V>
3852 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3853 >             null, transformer, basis, reducer).invoke();
3854      }
3855  
3856      /**
# Line 4285 | Line 3858 | public class ConcurrentHashMapV8<K, V>
3858       * of all keys using the given reducer to combine values, and
3859       * the given basis as an identity value.
3860       *
3861 +     * @param parallelismThreshold the (estimated) number of elements
3862 +     * needed for this operation to be executed in parallel
3863       * @param transformer a function returning the transformation
3864       * for an element
3865       * @param basis the identity (initial default value) for the reduction
3866       * @param reducer a commutative associative combining function
3867       * @return the result of accumulating the given transformation
3868       * of all keys
3869 +     * @since 1.8
3870       */
3871 <    public int reduceKeysToIntInParallel
3872 <        (ObjectToInt<? super K> transformer,
3873 <         int basis,
3874 <         IntByIntToInt reducer) {
3875 <        return ForkJoinTasks.reduceKeysToInt
3876 <            (this, transformer, basis, reducer).invoke();
3871 >    public int reduceKeysToInt(long parallelismThreshold,
3872 >                               ObjectToInt<? super K> transformer,
3873 >                               int basis,
3874 >                               IntByIntToInt reducer) {
3875 >        if (transformer == null || reducer == null)
3876 >            throw new NullPointerException();
3877 >        return new MapReduceKeysToIntTask<K,V>
3878 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3879 >             null, transformer, basis, reducer).invoke();
3880      }
3881  
3882      /**
3883       * Performs the given action for each value.
3884       *
3885 +     * @param parallelismThreshold the (estimated) number of elements
3886 +     * needed for this operation to be executed in parallel
3887       * @param action the action
3888 +     * @since 1.8
3889       */
3890 <    public void forEachValueInParallel(Action<V> action) {
3891 <        ForkJoinTasks.forEachValue
3892 <            (this, action).invoke();
3890 >    public void forEachValue(long parallelismThreshold,
3891 >                             Action<? super V> action) {
3892 >        if (action == null)
3893 >            throw new NullPointerException();
3894 >        new ForEachValueTask<K,V>
3895 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3896 >             action).invoke();
3897      }
3898  
3899      /**
3900       * Performs the given action for each non-null transformation
3901       * of each value.
3902       *
3903 +     * @param parallelismThreshold the (estimated) number of elements
3904 +     * needed for this operation to be executed in parallel
3905       * @param transformer a function returning the transformation
3906 <     * for an element, or null of there is no transformation (in
3907 <     * which case the action is not applied).
3906 >     * for an element, or null if there is no transformation (in
3907 >     * which case the action is not applied)
3908 >     * @param action the action
3909 >     * @since 1.8
3910       */
3911 <    public <U> void forEachValueInParallel
3912 <        (Fun<? super V, ? extends U> transformer,
3913 <         Action<U> action) {
3914 <        ForkJoinTasks.forEachValue
3915 <            (this, transformer, action).invoke();
3911 >    public <U> void forEachValue(long parallelismThreshold,
3912 >                                 Fun<? super V, ? extends U> transformer,
3913 >                                 Action<? super U> action) {
3914 >        if (transformer == null || action == null)
3915 >            throw new NullPointerException();
3916 >        new ForEachTransformedValueTask<K,V,U>
3917 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3918 >             transformer, action).invoke();
3919      }
3920  
3921      /**
# Line 4332 | Line 3925 | public class ConcurrentHashMapV8<K, V>
3925       * any other parallel invocations of the search function are
3926       * ignored.
3927       *
3928 +     * @param parallelismThreshold the (estimated) number of elements
3929 +     * needed for this operation to be executed in parallel
3930       * @param searchFunction a function returning a non-null
3931       * result on success, else null
3932       * @return a non-null result from applying the given search
3933       * function on each value, or null if none
3934 +     * @since 1.8
3935       */
3936 <    public <U> U searchValuesInParallel
3937 <        (Fun<? super V, ? extends U> searchFunction) {
3938 <        return ForkJoinTasks.searchValues
3939 <            (this, searchFunction).invoke();
3936 >    public <U> U searchValues(long parallelismThreshold,
3937 >                              Fun<? super V, ? extends U> searchFunction) {
3938 >        if (searchFunction == null) throw new NullPointerException();
3939 >        return new SearchValuesTask<K,V,U>
3940 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3941 >             searchFunction, new AtomicReference<U>()).invoke();
3942      }
3943  
3944      /**
3945       * Returns the result of accumulating all values using the
3946       * given reducer to combine values, or null if none.
3947       *
3948 +     * @param parallelismThreshold the (estimated) number of elements
3949 +     * needed for this operation to be executed in parallel
3950       * @param reducer a commutative associative combining function
3951 <     * @return  the result of accumulating all values
3951 >     * @return the result of accumulating all values
3952 >     * @since 1.8
3953       */
3954 <    public V reduceValuesInParallel
3955 <        (BiFun<? super V, ? super V, ? extends V> reducer) {
3956 <        return ForkJoinTasks.reduceValues
3957 <            (this, reducer).invoke();
3954 >    public V reduceValues(long parallelismThreshold,
3955 >                          BiFun<? super V, ? super V, ? extends V> reducer) {
3956 >        if (reducer == null) throw new NullPointerException();
3957 >        return new ReduceValuesTask<K,V>
3958 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3959 >             null, reducer).invoke();
3960      }
3961  
3962      /**
# Line 4361 | Line 3964 | public class ConcurrentHashMapV8<K, V>
3964       * of all values using the given reducer to combine values, or
3965       * null if none.
3966       *
3967 +     * @param parallelismThreshold the (estimated) number of elements
3968 +     * needed for this operation to be executed in parallel
3969       * @param transformer a function returning the transformation
3970 <     * for an element, or null of there is no transformation (in
3971 <     * which case it is not combined).
3970 >     * for an element, or null if there is no transformation (in
3971 >     * which case it is not combined)
3972       * @param reducer a commutative associative combining function
3973       * @return the result of accumulating the given transformation
3974       * of all values
3975 +     * @since 1.8
3976       */
3977 <    public <U> U reduceValuesInParallel
3978 <        (Fun<? super V, ? extends U> transformer,
3979 <         BiFun<? super U, ? super U, ? extends U> reducer) {
3980 <        return ForkJoinTasks.reduceValues
3981 <            (this, transformer, reducer).invoke();
3977 >    public <U> U reduceValues(long parallelismThreshold,
3978 >                              Fun<? super V, ? extends U> transformer,
3979 >                              BiFun<? super U, ? super U, ? extends U> reducer) {
3980 >        if (transformer == null || reducer == null)
3981 >            throw new NullPointerException();
3982 >        return new MapReduceValuesTask<K,V,U>
3983 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3984 >             null, transformer, reducer).invoke();
3985      }
3986  
3987      /**
# Line 4380 | Line 3989 | public class ConcurrentHashMapV8<K, V>
3989       * of all values using the given reducer to combine values,
3990       * and the given basis as an identity value.
3991       *
3992 +     * @param parallelismThreshold the (estimated) number of elements
3993 +     * needed for this operation to be executed in parallel
3994       * @param transformer a function returning the transformation
3995       * for an element
3996       * @param basis the identity (initial default value) for the reduction
3997       * @param reducer a commutative associative combining function
3998       * @return the result of accumulating the given transformation
3999       * of all values
4000 +     * @since 1.8
4001       */
4002 <    public double reduceValuesToDoubleInParallel
4003 <        (ObjectToDouble<? super V> transformer,
4004 <         double basis,
4005 <         DoubleByDoubleToDouble reducer) {
4006 <        return ForkJoinTasks.reduceValuesToDouble
4007 <            (this, transformer, basis, reducer).invoke();
4002 >    public double reduceValuesToDouble(long parallelismThreshold,
4003 >                                       ObjectToDouble<? super V> transformer,
4004 >                                       double basis,
4005 >                                       DoubleByDoubleToDouble reducer) {
4006 >        if (transformer == null || reducer == null)
4007 >            throw new NullPointerException();
4008 >        return new MapReduceValuesToDoubleTask<K,V>
4009 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4010 >             null, transformer, basis, reducer).invoke();
4011      }
4012  
4013      /**
# Line 4400 | Line 4015 | public class ConcurrentHashMapV8<K, V>
4015       * of all values using the given reducer to combine values,
4016       * and the given basis as an identity value.
4017       *
4018 +     * @param parallelismThreshold the (estimated) number of elements
4019 +     * needed for this operation to be executed in parallel
4020       * @param transformer a function returning the transformation
4021       * for an element
4022       * @param basis the identity (initial default value) for the reduction
4023       * @param reducer a commutative associative combining function
4024       * @return the result of accumulating the given transformation
4025       * of all values
4026 +     * @since 1.8
4027       */
4028 <    public long reduceValuesToLongInParallel
4029 <        (ObjectToLong<? super V> transformer,
4030 <         long basis,
4031 <         LongByLongToLong reducer) {
4032 <        return ForkJoinTasks.reduceValuesToLong
4033 <            (this, transformer, basis, reducer).invoke();
4028 >    public long reduceValuesToLong(long parallelismThreshold,
4029 >                                   ObjectToLong<? super V> transformer,
4030 >                                   long basis,
4031 >                                   LongByLongToLong reducer) {
4032 >        if (transformer == null || reducer == null)
4033 >            throw new NullPointerException();
4034 >        return new MapReduceValuesToLongTask<K,V>
4035 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4036 >             null, transformer, basis, reducer).invoke();
4037      }
4038  
4039      /**
# Line 4420 | Line 4041 | public class ConcurrentHashMapV8<K, V>
4041       * of all values using the given reducer to combine values,
4042       * and the given basis as an identity value.
4043       *
4044 +     * @param parallelismThreshold the (estimated) number of elements
4045 +     * needed for this operation to be executed in parallel
4046       * @param transformer a function returning the transformation
4047       * for an element
4048       * @param basis the identity (initial default value) for the reduction
4049       * @param reducer a commutative associative combining function
4050       * @return the result of accumulating the given transformation
4051       * of all values
4052 +     * @since 1.8
4053       */
4054 <    public int reduceValuesToIntInParallel
4055 <        (ObjectToInt<? super V> transformer,
4056 <         int basis,
4057 <         IntByIntToInt reducer) {
4058 <        return ForkJoinTasks.reduceValuesToInt
4059 <            (this, transformer, basis, reducer).invoke();
4054 >    public int reduceValuesToInt(long parallelismThreshold,
4055 >                                 ObjectToInt<? super V> transformer,
4056 >                                 int basis,
4057 >                                 IntByIntToInt reducer) {
4058 >        if (transformer == null || reducer == null)
4059 >            throw new NullPointerException();
4060 >        return new MapReduceValuesToIntTask<K,V>
4061 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4062 >             null, transformer, basis, reducer).invoke();
4063      }
4064  
4065      /**
4066       * Performs the given action for each entry.
4067       *
4068 +     * @param parallelismThreshold the (estimated) number of elements
4069 +     * needed for this operation to be executed in parallel
4070       * @param action the action
4071 +     * @since 1.8
4072       */
4073 <    public void forEachEntryInParallel(Action<Map.Entry<K,V>> action) {
4074 <        ForkJoinTasks.forEachEntry
4075 <            (this, action).invoke();
4073 >    public void forEachEntry(long parallelismThreshold,
4074 >                             Action<? super Map.Entry<K,V>> action) {
4075 >        if (action == null) throw new NullPointerException();
4076 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4077 >                                  action).invoke();
4078      }
4079  
4080      /**
4081       * Performs the given action for each non-null transformation
4082       * of each entry.
4083       *
4084 +     * @param parallelismThreshold the (estimated) number of elements
4085 +     * needed for this operation to be executed in parallel
4086       * @param transformer a function returning the transformation
4087 <     * for an element, or null of there is no transformation (in
4088 <     * which case the action is not applied).
4087 >     * for an element, or null if there is no transformation (in
4088 >     * which case the action is not applied)
4089       * @param action the action
4090 +     * @since 1.8
4091       */
4092 <    public <U> void forEachEntryInParallel
4093 <        (Fun<Map.Entry<K,V>, ? extends U> transformer,
4094 <         Action<U> action) {
4095 <        ForkJoinTasks.forEachEntry
4096 <            (this, transformer, action).invoke();
4092 >    public <U> void forEachEntry(long parallelismThreshold,
4093 >                                 Fun<Map.Entry<K,V>, ? extends U> transformer,
4094 >                                 Action<? super U> action) {
4095 >        if (transformer == null || action == null)
4096 >            throw new NullPointerException();
4097 >        new ForEachTransformedEntryTask<K,V,U>
4098 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4099 >             transformer, action).invoke();
4100      }
4101  
4102      /**
# Line 4468 | Line 4106 | public class ConcurrentHashMapV8<K, V>
4106       * any other parallel invocations of the search function are
4107       * ignored.
4108       *
4109 +     * @param parallelismThreshold the (estimated) number of elements
4110 +     * needed for this operation to be executed in parallel
4111       * @param searchFunction a function returning a non-null
4112       * result on success, else null
4113       * @return a non-null result from applying the given search
4114       * function on each entry, or null if none
4115 +     * @since 1.8
4116       */
4117 <    public <U> U searchEntriesInParallel
4118 <        (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4119 <        return ForkJoinTasks.searchEntries
4120 <            (this, searchFunction).invoke();
4117 >    public <U> U searchEntries(long parallelismThreshold,
4118 >                               Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4119 >        if (searchFunction == null) throw new NullPointerException();
4120 >        return new SearchEntriesTask<K,V,U>
4121 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4122 >             searchFunction, new AtomicReference<U>()).invoke();
4123      }
4124  
4125      /**
4126       * Returns the result of accumulating all entries using the
4127       * given reducer to combine values, or null if none.
4128       *
4129 +     * @param parallelismThreshold the (estimated) number of elements
4130 +     * needed for this operation to be executed in parallel
4131       * @param reducer a commutative associative combining function
4132       * @return the result of accumulating all entries
4133 +     * @since 1.8
4134       */
4135 <    public Map.Entry<K,V> reduceEntriesInParallel
4136 <        (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4137 <        return ForkJoinTasks.reduceEntries
4138 <            (this, reducer).invoke();
4135 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4136 >                                        BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4137 >        if (reducer == null) throw new NullPointerException();
4138 >        return new ReduceEntriesTask<K,V>
4139 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4140 >             null, reducer).invoke();
4141      }
4142  
4143      /**
# Line 4497 | Line 4145 | public class ConcurrentHashMapV8<K, V>
4145       * of all entries using the given reducer to combine values,
4146       * or null if none.
4147       *
4148 +     * @param parallelismThreshold the (estimated) number of elements
4149 +     * needed for this operation to be executed in parallel
4150       * @param transformer a function returning the transformation
4151 <     * for an element, or null of there is no transformation (in
4152 <     * which case it is not combined).
4151 >     * for an element, or null if there is no transformation (in
4152 >     * which case it is not combined)
4153       * @param reducer a commutative associative combining function
4154       * @return the result of accumulating the given transformation
4155       * of all entries
4156 +     * @since 1.8
4157       */
4158 <    public <U> U reduceEntriesInParallel
4159 <        (Fun<Map.Entry<K,V>, ? extends U> transformer,
4160 <         BiFun<? super U, ? super U, ? extends U> reducer) {
4161 <        return ForkJoinTasks.reduceEntries
4162 <            (this, transformer, reducer).invoke();
4158 >    public <U> U reduceEntries(long parallelismThreshold,
4159 >                               Fun<Map.Entry<K,V>, ? extends U> transformer,
4160 >                               BiFun<? super U, ? super U, ? extends U> reducer) {
4161 >        if (transformer == null || reducer == null)
4162 >            throw new NullPointerException();
4163 >        return new MapReduceEntriesTask<K,V,U>
4164 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4165 >             null, transformer, reducer).invoke();
4166      }
4167  
4168      /**
# Line 4516 | Line 4170 | public class ConcurrentHashMapV8<K, V>
4170       * of all entries using the given reducer to combine values,
4171       * and the given basis as an identity value.
4172       *
4173 +     * @param parallelismThreshold the (estimated) number of elements
4174 +     * needed for this operation to be executed in parallel
4175       * @param transformer a function returning the transformation
4176       * for an element
4177       * @param basis the identity (initial default value) for the reduction
4178       * @param reducer a commutative associative combining function
4179       * @return the result of accumulating the given transformation
4180       * of all entries
4181 +     * @since 1.8
4182       */
4183 <    public double reduceEntriesToDoubleInParallel
4184 <        (ObjectToDouble<Map.Entry<K,V>> transformer,
4185 <         double basis,
4186 <         DoubleByDoubleToDouble reducer) {
4187 <        return ForkJoinTasks.reduceEntriesToDouble
4188 <            (this, transformer, basis, reducer).invoke();
4183 >    public double reduceEntriesToDouble(long parallelismThreshold,
4184 >                                        ObjectToDouble<Map.Entry<K,V>> transformer,
4185 >                                        double basis,
4186 >                                        DoubleByDoubleToDouble reducer) {
4187 >        if (transformer == null || reducer == null)
4188 >            throw new NullPointerException();
4189 >        return new MapReduceEntriesToDoubleTask<K,V>
4190 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4191 >             null, transformer, basis, reducer).invoke();
4192      }
4193  
4194      /**
# Line 4536 | Line 4196 | public class ConcurrentHashMapV8<K, V>
4196       * of all entries using the given reducer to combine values,
4197       * and the given basis as an identity value.
4198       *
4199 +     * @param parallelismThreshold the (estimated) number of elements
4200 +     * needed for this operation to be executed in parallel
4201       * @param transformer a function returning the transformation
4202       * for an element
4203       * @param basis the identity (initial default value) for the reduction
4204       * @param reducer a commutative associative combining function
4205 <     * @return  the result of accumulating the given transformation
4205 >     * @return the result of accumulating the given transformation
4206       * of all entries
4207 +     * @since 1.8
4208       */
4209 <    public long reduceEntriesToLongInParallel
4210 <        (ObjectToLong<Map.Entry<K,V>> transformer,
4211 <         long basis,
4212 <         LongByLongToLong reducer) {
4213 <        return ForkJoinTasks.reduceEntriesToLong
4214 <            (this, transformer, basis, reducer).invoke();
4209 >    public long reduceEntriesToLong(long parallelismThreshold,
4210 >                                    ObjectToLong<Map.Entry<K,V>> transformer,
4211 >                                    long basis,
4212 >                                    LongByLongToLong reducer) {
4213 >        if (transformer == null || reducer == null)
4214 >            throw new NullPointerException();
4215 >        return new MapReduceEntriesToLongTask<K,V>
4216 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4217 >             null, transformer, basis, reducer).invoke();
4218      }
4219  
4220      /**
# Line 4556 | Line 4222 | public class ConcurrentHashMapV8<K, V>
4222       * of all entries using the given reducer to combine values,
4223       * and the given basis as an identity value.
4224       *
4225 +     * @param parallelismThreshold the (estimated) number of elements
4226 +     * needed for this operation to be executed in parallel
4227       * @param transformer a function returning the transformation
4228       * for an element
4229       * @param basis the identity (initial default value) for the reduction
4230       * @param reducer a commutative associative combining function
4231       * @return the result of accumulating the given transformation
4232       * of all entries
4233 +     * @since 1.8
4234       */
4235 <    public int reduceEntriesToIntInParallel
4236 <        (ObjectToInt<Map.Entry<K,V>> transformer,
4237 <         int basis,
4238 <         IntByIntToInt reducer) {
4239 <        return ForkJoinTasks.reduceEntriesToInt
4240 <            (this, transformer, basis, reducer).invoke();
4235 >    public int reduceEntriesToInt(long parallelismThreshold,
4236 >                                  ObjectToInt<Map.Entry<K,V>> transformer,
4237 >                                  int basis,
4238 >                                  IntByIntToInt reducer) {
4239 >        if (transformer == null || reducer == null)
4240 >            throw new NullPointerException();
4241 >        return new MapReduceEntriesToIntTask<K,V>
4242 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4243 >             null, transformer, basis, reducer).invoke();
4244      }
4245  
4246  
# Line 4577 | Line 4249 | public class ConcurrentHashMapV8<K, V>
4249      /**
4250       * Base class for views.
4251       */
4252 <    static abstract class CHMView<K, V> {
4253 <        final ConcurrentHashMapV8<K, V> map;
4254 <        CHMView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
4252 >    abstract static class CollectionView<K,V,E>
4253 >        implements Collection<E>, java.io.Serializable {
4254 >        private static final long serialVersionUID = 7249069246763182397L;
4255 >        final ConcurrentHashMapV8<K,V> map;
4256 >        CollectionView(ConcurrentHashMapV8<K,V> map)  { this.map = map; }
4257  
4258          /**
4259           * Returns the map backing this view.
# Line 4588 | Line 4262 | public class ConcurrentHashMapV8<K, V>
4262           */
4263          public ConcurrentHashMapV8<K,V> getMap() { return map; }
4264  
4265 <        public final int size()                 { return map.size(); }
4266 <        public final boolean isEmpty()          { return map.isEmpty(); }
4267 <        public final void clear()               { map.clear(); }
4265 >        /**
4266 >         * Removes all of the elements from this view, by removing all
4267 >         * the mappings from the map backing this view.
4268 >         */
4269 >        public final void clear()      { map.clear(); }
4270 >        public final int size()        { return map.size(); }
4271 >        public final boolean isEmpty() { return map.isEmpty(); }
4272  
4273          // implementations below rely on concrete classes supplying these
4274 <        abstract public Iterator<?> iterator();
4275 <        abstract public boolean contains(Object o);
4276 <        abstract public boolean remove(Object o);
4274 >        // abstract methods
4275 >        /**
4276 >         * Returns a "weakly consistent" iterator that will never
4277 >         * throw {@link ConcurrentModificationException}, and
4278 >         * guarantees to traverse elements as they existed upon
4279 >         * construction of the iterator, and may (but is not
4280 >         * guaranteed to) reflect any modifications subsequent to
4281 >         * construction.
4282 >         */
4283 >        public abstract Iterator<E> iterator();
4284 >        public abstract boolean contains(Object o);
4285 >        public abstract boolean remove(Object o);
4286  
4287          private static final String oomeMsg = "Required array size too large";
4288  
4289          public final Object[] toArray() {
4290              long sz = map.mappingCount();
4291 <            if (sz > (long)(MAX_ARRAY_SIZE))
4291 >            if (sz > MAX_ARRAY_SIZE)
4292                  throw new OutOfMemoryError(oomeMsg);
4293              int n = (int)sz;
4294              Object[] r = new Object[n];
4295              int i = 0;
4296 <            Iterator<?> it = iterator();
4610 <            while (it.hasNext()) {
4296 >            for (E e : this) {
4297                  if (i == n) {
4298                      if (n >= MAX_ARRAY_SIZE)
4299                          throw new OutOfMemoryError(oomeMsg);
# Line 4617 | Line 4303 | public class ConcurrentHashMapV8<K, V>
4303                          n += (n >>> 1) + 1;
4304                      r = Arrays.copyOf(r, n);
4305                  }
4306 <                r[i++] = it.next();
4306 >                r[i++] = e;
4307              }
4308              return (i == n) ? r : Arrays.copyOf(r, i);
4309          }
4310  
4311 <        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4311 >        @SuppressWarnings("unchecked")
4312 >        public final <T> T[] toArray(T[] a) {
4313              long sz = map.mappingCount();
4314 <            if (sz > (long)(MAX_ARRAY_SIZE))
4314 >            if (sz > MAX_ARRAY_SIZE)
4315                  throw new OutOfMemoryError(oomeMsg);
4316              int m = (int)sz;
4317              T[] r = (a.length >= m) ? a :
# Line 4632 | Line 4319 | public class ConcurrentHashMapV8<K, V>
4319                  .newInstance(a.getClass().getComponentType(), m);
4320              int n = r.length;
4321              int i = 0;
4322 <            Iterator<?> it = iterator();
4636 <            while (it.hasNext()) {
4322 >            for (E e : this) {
4323                  if (i == n) {
4324                      if (n >= MAX_ARRAY_SIZE)
4325                          throw new OutOfMemoryError(oomeMsg);
# Line 4643 | Line 4329 | public class ConcurrentHashMapV8<K, V>
4329                          n += (n >>> 1) + 1;
4330                      r = Arrays.copyOf(r, n);
4331                  }
4332 <                r[i++] = (T)it.next();
4332 >                r[i++] = (T)e;
4333              }
4334              if (a == r && i < n) {
4335                  r[i] = null; // null-terminate
# Line 4652 | Line 4338 | public class ConcurrentHashMapV8<K, V>
4338              return (i == n) ? r : Arrays.copyOf(r, i);
4339          }
4340  
4341 <        public final int hashCode() {
4342 <            int h = 0;
4343 <            for (Iterator<?> it = iterator(); it.hasNext();)
4344 <                h += it.next().hashCode();
4345 <            return h;
4346 <        }
4347 <
4341 >        /**
4342 >         * Returns a string representation of this collection.
4343 >         * The string representation consists of the string representations
4344 >         * of the collection's elements in the order they are returned by
4345 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4346 >         * Adjacent elements are separated by the characters {@code ", "}
4347 >         * (comma and space).  Elements are converted to strings as by
4348 >         * {@link String#valueOf(Object)}.
4349 >         *
4350 >         * @return a string representation of this collection
4351 >         */
4352          public final String toString() {
4353              StringBuilder sb = new StringBuilder();
4354              sb.append('[');
4355 <            Iterator<?> it = iterator();
4355 >            Iterator<E> it = iterator();
4356              if (it.hasNext()) {
4357                  for (;;) {
4358                      Object e = it.next();
# Line 4677 | Line 4367 | public class ConcurrentHashMapV8<K, V>
4367  
4368          public final boolean containsAll(Collection<?> c) {
4369              if (c != this) {
4370 <                for (Iterator<?> it = c.iterator(); it.hasNext();) {
4681 <                    Object e = it.next();
4370 >                for (Object e : c) {
4371                      if (e == null || !contains(e))
4372                          return false;
4373                  }
# Line 4688 | Line 4377 | public class ConcurrentHashMapV8<K, V>
4377  
4378          public final boolean removeAll(Collection<?> c) {
4379              boolean modified = false;
4380 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4380 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4381                  if (c.contains(it.next())) {
4382                      it.remove();
4383                      modified = true;
# Line 4699 | Line 4388 | public class ConcurrentHashMapV8<K, V>
4388  
4389          public final boolean retainAll(Collection<?> c) {
4390              boolean modified = false;
4391 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4391 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4392                  if (!c.contains(it.next())) {
4393                      it.remove();
4394                      modified = true;
# Line 4713 | Line 4402 | public class ConcurrentHashMapV8<K, V>
4402      /**
4403       * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4404       * which additions may optionally be enabled by mapping to a
4405 <     * common value.  This class cannot be directly instantiated. See
4406 <     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4407 <     * {@link #newKeySet(int)}.
4405 >     * common value.  This class cannot be directly instantiated.
4406 >     * See {@link #keySet() keySet()},
4407 >     * {@link #keySet(Object) keySet(V)},
4408 >     * {@link #newKeySet() newKeySet()},
4409 >     * {@link #newKeySet(int) newKeySet(int)}.
4410 >     *
4411 >     * @since 1.8
4412       */
4413 <    public static class KeySetView<K,V> extends CHMView<K,V>
4413 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4414          implements Set<K>, java.io.Serializable {
4415          private static final long serialVersionUID = 7249069246763182397L;
4416          private final V value;
4417 <        KeySetView(ConcurrentHashMapV8<K, V> map, V value) {  // non-public
4417 >        KeySetView(ConcurrentHashMapV8<K,V> map, V value) {  // non-public
4418              super(map);
4419              this.value = value;
4420          }
# Line 4731 | Line 4424 | public class ConcurrentHashMapV8<K, V>
4424           * or {@code null} if additions are not supported.
4425           *
4426           * @return the default mapped value for additions, or {@code null}
4427 <         * if not supported.
4427 >         * if not supported
4428           */
4429          public V getMappedValue() { return value; }
4430  
4431 <        // implement Set API
4432 <
4431 >        /**
4432 >         * {@inheritDoc}
4433 >         * @throws NullPointerException if the specified key is null
4434 >         */
4435          public boolean contains(Object o) { return map.containsKey(o); }
4741        public boolean remove(Object o)   { return map.remove(o) != null; }
4436  
4437          /**
4438 <         * Returns a "weakly consistent" iterator that will never
4439 <         * throw {@link ConcurrentModificationException}, and
4440 <         * guarantees to traverse elements as they existed upon
4441 <         * construction of the iterator, and may (but is not
4442 <         * guaranteed to) reflect any modifications subsequent to
4443 <         * construction.
4438 >         * Removes the key from this map view, by removing the key (and its
4439 >         * corresponding value) from the backing map.  This method does
4440 >         * nothing if the key is not in the map.
4441 >         *
4442 >         * @param  o the key to be removed from the backing map
4443 >         * @return {@code true} if the backing map contained the specified key
4444 >         * @throws NullPointerException if the specified key is null
4445 >         */
4446 >        public boolean remove(Object o) { return map.remove(o) != null; }
4447 >
4448 >        /**
4449 >         * @return an iterator over the keys of the backing map
4450 >         */
4451 >        public Iterator<K> iterator() {
4452 >            Node<K,V>[] t;
4453 >            ConcurrentHashMapV8<K,V> m = map;
4454 >            int f = (t = m.table) == null ? 0 : t.length;
4455 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4456 >        }
4457 >
4458 >        /**
4459 >         * Adds the specified key to this set view by mapping the key to
4460 >         * the default mapped value in the backing map, if defined.
4461           *
4462 <         * @return an iterator over the keys of this map
4462 >         * @param e key to be added
4463 >         * @return {@code true} if this set changed as a result of the call
4464 >         * @throws NullPointerException if the specified key is null
4465 >         * @throws UnsupportedOperationException if no default mapped value
4466 >         * for additions was provided
4467           */
4753        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4468          public boolean add(K e) {
4469              V v;
4470              if ((v = value) == null)
4471                  throw new UnsupportedOperationException();
4472 <            if (e == null)
4759 <                throw new NullPointerException();
4760 <            return map.internalPut(e, v, true) == null;
4472 >            return map.putVal(e, v, true) == null;
4473          }
4474 +
4475 +        /**
4476 +         * Adds all of the elements in the specified collection to this set,
4477 +         * as if by calling {@link #add} on each one.
4478 +         *
4479 +         * @param c the elements to be inserted into this set
4480 +         * @return {@code true} if this set changed as a result of the call
4481 +         * @throws NullPointerException if the collection or any of its
4482 +         * elements are {@code null}
4483 +         * @throws UnsupportedOperationException if no default mapped value
4484 +         * for additions was provided
4485 +         */
4486          public boolean addAll(Collection<? extends K> c) {
4487              boolean added = false;
4488              V v;
4489              if ((v = value) == null)
4490                  throw new UnsupportedOperationException();
4491              for (K e : c) {
4492 <                if (e == null)
4769 <                    throw new NullPointerException();
4770 <                if (map.internalPut(e, v, true) == null)
4492 >                if (map.putVal(e, v, true) == null)
4493                      added = true;
4494              }
4495              return added;
4496          }
4497 +
4498 +        public int hashCode() {
4499 +            int h = 0;
4500 +            for (K e : this)
4501 +                h += e.hashCode();
4502 +            return h;
4503 +        }
4504 +
4505          public boolean equals(Object o) {
4506              Set<?> c;
4507              return ((o instanceof Set) &&
4508                      ((c = (Set<?>)o) == this ||
4509                       (containsAll(c) && c.containsAll(this))));
4510          }
4511 +
4512 +        public ConcurrentHashMapSpliterator<K> spliterator() {
4513 +            Node<K,V>[] t;
4514 +            ConcurrentHashMapV8<K,V> m = map;
4515 +            long n = m.sumCount();
4516 +            int f = (t = m.table) == null ? 0 : t.length;
4517 +            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4518 +        }
4519 +
4520 +        public void forEach(Action<? super K> action) {
4521 +            if (action == null) throw new NullPointerException();
4522 +            Node<K,V>[] t;
4523 +            if ((t = map.table) != null) {
4524 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4525 +                for (Node<K,V> p; (p = it.advance()) != null; )
4526 +                    action.apply(p.key);
4527 +            }
4528 +        }
4529      }
4530  
4531      /**
4532       * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4533       * values, in which additions are disabled. This class cannot be
4534 <     * directly instantiated. See {@link #values},
4787 <     *
4788 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4789 <     * that will never throw {@link ConcurrentModificationException},
4790 <     * and guarantees to traverse elements as they existed upon
4791 <     * construction of the iterator, and may (but is not guaranteed to)
4792 <     * reflect any modifications subsequent to construction.
4534 >     * directly instantiated. See {@link #values()}.
4535       */
4536 <    public static final class ValuesView<K,V> extends CHMView<K,V>
4537 <        implements Collection<V> {
4538 <        ValuesView(ConcurrentHashMapV8<K, V> map)   { super(map); }
4539 <        public final boolean contains(Object o) { return map.containsValue(o); }
4536 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4537 >        implements Collection<V>, java.io.Serializable {
4538 >        private static final long serialVersionUID = 2249069246763182397L;
4539 >        ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4540 >        public final boolean contains(Object o) {
4541 >            return map.containsValue(o);
4542 >        }
4543 >
4544          public final boolean remove(Object o) {
4545              if (o != null) {
4546 <                Iterator<V> it = new ValueIterator<K,V>(map);
4801 <                while (it.hasNext()) {
4546 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4547                      if (o.equals(it.next())) {
4548                          it.remove();
4549                          return true;
# Line 4808 | Line 4553 | public class ConcurrentHashMapV8<K, V>
4553              return false;
4554          }
4555  
4811        /**
4812         * Returns a "weakly consistent" iterator that will never
4813         * throw {@link ConcurrentModificationException}, and
4814         * guarantees to traverse elements as they existed upon
4815         * construction of the iterator, and may (but is not
4816         * guaranteed to) reflect any modifications subsequent to
4817         * construction.
4818         *
4819         * @return an iterator over the values of this map
4820         */
4556          public final Iterator<V> iterator() {
4557 <            return new ValueIterator<K,V>(map);
4557 >            ConcurrentHashMapV8<K,V> m = map;
4558 >            Node<K,V>[] t;
4559 >            int f = (t = m.table) == null ? 0 : t.length;
4560 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4561          }
4562 +
4563          public final boolean add(V e) {
4564              throw new UnsupportedOperationException();
4565          }
# Line 4828 | Line 4567 | public class ConcurrentHashMapV8<K, V>
4567              throw new UnsupportedOperationException();
4568          }
4569  
4570 +        public ConcurrentHashMapSpliterator<V> spliterator() {
4571 +            Node<K,V>[] t;
4572 +            ConcurrentHashMapV8<K,V> m = map;
4573 +            long n = m.sumCount();
4574 +            int f = (t = m.table) == null ? 0 : t.length;
4575 +            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4576 +        }
4577 +
4578 +        public void forEach(Action<? super V> action) {
4579 +            if (action == null) throw new NullPointerException();
4580 +            Node<K,V>[] t;
4581 +            if ((t = map.table) != null) {
4582 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4583 +                for (Node<K,V> p; (p = it.advance()) != null; )
4584 +                    action.apply(p.val);
4585 +            }
4586 +        }
4587      }
4588  
4589      /**
4590       * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4591       * entries.  This class cannot be directly instantiated. See
4592 <     * {@link #entrySet}.
4592 >     * {@link #entrySet()}.
4593       */
4594 <    public static final class EntrySetView<K,V> extends CHMView<K,V>
4595 <        implements Set<Map.Entry<K,V>> {
4596 <        EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4597 <        public final boolean contains(Object o) {
4594 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4595 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4596 >        private static final long serialVersionUID = 2249069246763182397L;
4597 >        EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4598 >
4599 >        public boolean contains(Object o) {
4600              Object k, v, r; Map.Entry<?,?> e;
4601              return ((o instanceof Map.Entry) &&
4602                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4846 | Line 4604 | public class ConcurrentHashMapV8<K, V>
4604                      (v = e.getValue()) != null &&
4605                      (v == r || v.equals(r)));
4606          }
4607 <        public final boolean remove(Object o) {
4607 >
4608 >        public boolean remove(Object o) {
4609              Object k, v; Map.Entry<?,?> e;
4610              return ((o instanceof Map.Entry) &&
4611                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4855 | Line 4614 | public class ConcurrentHashMapV8<K, V>
4614          }
4615  
4616          /**
4617 <         * Returns a "weakly consistent" iterator that will never
4859 <         * throw {@link ConcurrentModificationException}, and
4860 <         * guarantees to traverse elements as they existed upon
4861 <         * construction of the iterator, and may (but is not
4862 <         * guaranteed to) reflect any modifications subsequent to
4863 <         * construction.
4864 <         *
4865 <         * @return an iterator over the entries of this map
4617 >         * @return an iterator over the entries of the backing map
4618           */
4619 <        public final Iterator<Map.Entry<K,V>> iterator() {
4620 <            return new EntryIterator<K,V>(map);
4619 >        public Iterator<Map.Entry<K,V>> iterator() {
4620 >            ConcurrentHashMapV8<K,V> m = map;
4621 >            Node<K,V>[] t;
4622 >            int f = (t = m.table) == null ? 0 : t.length;
4623 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4624          }
4625  
4626 <        public final boolean add(Entry<K,V> e) {
4627 <            K key = e.getKey();
4873 <            V value = e.getValue();
4874 <            if (key == null || value == null)
4875 <                throw new NullPointerException();
4876 <            return map.internalPut(key, value, false) == null;
4626 >        public boolean add(Entry<K,V> e) {
4627 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4628          }
4629 <        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4629 >
4630 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4631              boolean added = false;
4632              for (Entry<K,V> e : c) {
4633                  if (add(e))
# Line 4883 | Line 4635 | public class ConcurrentHashMapV8<K, V>
4635              }
4636              return added;
4637          }
4638 <        public boolean equals(Object o) {
4638 >
4639 >        public final int hashCode() {
4640 >            int h = 0;
4641 >            Node<K,V>[] t;
4642 >            if ((t = map.table) != null) {
4643 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4644 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4645 >                    h += p.hashCode();
4646 >                }
4647 >            }
4648 >            return h;
4649 >        }
4650 >
4651 >        public final boolean equals(Object o) {
4652              Set<?> c;
4653              return ((o instanceof Set) &&
4654                      ((c = (Set<?>)o) == this ||
4655                       (containsAll(c) && c.containsAll(this))));
4656          }
4892    }
4893
4894    // ---------------------------------------------------------------------
4895
4896    /**
4897     * Predefined tasks for performing bulk parallel operations on
4898     * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4899     * for bulk operations. Each method has the same name, but returns
4900     * a task rather than invoking it. These methods may be useful in
4901     * custom applications such as submitting a task without waiting
4902     * for completion, using a custom pool, or combining with other
4903     * tasks.
4904     */
4905    public static class ForkJoinTasks {
4906        private ForkJoinTasks() {}
4907
4908        /**
4909         * Returns a task that when invoked, performs the given
4910         * action for each (key, value)
4911         *
4912         * @param map the map
4913         * @param action the action
4914         * @return the task
4915         */
4916        public static <K,V> ForkJoinTask<Void> forEach
4917            (ConcurrentHashMapV8<K,V> map,
4918             BiAction<K,V> action) {
4919            if (action == null) throw new NullPointerException();
4920            return new ForEachMappingTask<K,V>(map, null, -1, action);
4921        }
4922
4923        /**
4924         * Returns a task that when invoked, performs the given
4925         * action for each non-null transformation of each (key, value)
4926         *
4927         * @param map the map
4928         * @param transformer a function returning the transformation
4929         * for an element, or null if there is no transformation (in
4930         * which case the action is not applied)
4931         * @param action the action
4932         * @return the task
4933         */
4934        public static <K,V,U> ForkJoinTask<Void> forEach
4935            (ConcurrentHashMapV8<K,V> map,
4936             BiFun<? super K, ? super V, ? extends U> transformer,
4937             Action<U> action) {
4938            if (transformer == null || action == null)
4939                throw new NullPointerException();
4940            return new ForEachTransformedMappingTask<K,V,U>
4941                (map, null, -1, transformer, action);
4942        }
4943
4944        /**
4945         * Returns a task that when invoked, returns a non-null result
4946         * from applying the given search function on each (key,
4947         * value), or null if none. Upon success, further element
4948         * processing is suppressed and the results of any other
4949         * parallel invocations of the search function are ignored.
4950         *
4951         * @param map the map
4952         * @param searchFunction a function returning a non-null
4953         * result on success, else null
4954         * @return the task
4955         */
4956        public static <K,V,U> ForkJoinTask<U> search
4957            (ConcurrentHashMapV8<K,V> map,
4958             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4959            if (searchFunction == null) throw new NullPointerException();
4960            return new SearchMappingsTask<K,V,U>
4961                (map, null, -1, searchFunction,
4962                 new AtomicReference<U>());
4963        }
4964
4965        /**
4966         * Returns a task that when invoked, returns the result of
4967         * accumulating the given transformation of all (key, value) pairs
4968         * using the given reducer to combine values, or null if none.
4969         *
4970         * @param map the map
4971         * @param transformer a function returning the transformation
4972         * for an element, or null if there is no transformation (in
4973         * which case it is not combined).
4974         * @param reducer a commutative associative combining function
4975         * @return the task
4976         */
4977        public static <K,V,U> ForkJoinTask<U> reduce
4978            (ConcurrentHashMapV8<K,V> map,
4979             BiFun<? super K, ? super V, ? extends U> transformer,
4980             BiFun<? super U, ? super U, ? extends U> reducer) {
4981            if (transformer == null || reducer == null)
4982                throw new NullPointerException();
4983            return new MapReduceMappingsTask<K,V,U>
4984                (map, null, -1, null, transformer, reducer);
4985        }
4986
4987        /**
4988         * Returns a task that when invoked, returns the result of
4989         * accumulating the given transformation of all (key, value) pairs
4990         * using the given reducer to combine values, and the given
4991         * basis as an identity value.
4992         *
4993         * @param map the map
4994         * @param transformer a function returning the transformation
4995         * for an element
4996         * @param basis the identity (initial default value) for the reduction
4997         * @param reducer a commutative associative combining function
4998         * @return the task
4999         */
5000        public static <K,V> ForkJoinTask<Double> reduceToDouble
5001            (ConcurrentHashMapV8<K,V> map,
5002             ObjectByObjectToDouble<? super K, ? super V> transformer,
5003             double basis,
5004             DoubleByDoubleToDouble reducer) {
5005            if (transformer == null || reducer == null)
5006                throw new NullPointerException();
5007            return new MapReduceMappingsToDoubleTask<K,V>
5008                (map, null, -1, null, transformer, basis, reducer);
5009        }
5010
5011        /**
5012         * Returns a task that when invoked, returns the result of
5013         * accumulating the given transformation of all (key, value) pairs
5014         * using the given reducer to combine values, and the given
5015         * basis as an identity value.
5016         *
5017         * @param map the map
5018         * @param transformer a function returning the transformation
5019         * for an element
5020         * @param basis the identity (initial default value) for the reduction
5021         * @param reducer a commutative associative combining function
5022         * @return the task
5023         */
5024        public static <K,V> ForkJoinTask<Long> reduceToLong
5025            (ConcurrentHashMapV8<K,V> map,
5026             ObjectByObjectToLong<? super K, ? super V> transformer,
5027             long basis,
5028             LongByLongToLong reducer) {
5029            if (transformer == null || reducer == null)
5030                throw new NullPointerException();
5031            return new MapReduceMappingsToLongTask<K,V>
5032                (map, null, -1, null, transformer, basis, reducer);
5033        }
4657  
4658 <        /**
4659 <         * Returns a task that when invoked, returns the result of
4660 <         * accumulating the given transformation of all (key, value) pairs
4661 <         * using the given reducer to combine values, and the given
4662 <         * basis as an identity value.
4663 <         *
5041 <         * @param transformer a function returning the transformation
5042 <         * for an element
5043 <         * @param basis the identity (initial default value) for the reduction
5044 <         * @param reducer a commutative associative combining function
5045 <         * @return the task
5046 <         */
5047 <        public static <K,V> ForkJoinTask<Integer> reduceToInt
5048 <            (ConcurrentHashMapV8<K,V> map,
5049 <             ObjectByObjectToInt<? super K, ? super V> transformer,
5050 <             int basis,
5051 <             IntByIntToInt reducer) {
5052 <            if (transformer == null || reducer == null)
5053 <                throw new NullPointerException();
5054 <            return new MapReduceMappingsToIntTask<K,V>
5055 <                (map, null, -1, null, transformer, basis, reducer);
4658 >        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4659 >            Node<K,V>[] t;
4660 >            ConcurrentHashMapV8<K,V> m = map;
4661 >            long n = m.sumCount();
4662 >            int f = (t = m.table) == null ? 0 : t.length;
4663 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4664          }
4665  
4666 <        /**
5059 <         * Returns a task that when invoked, performs the given action
5060 <         * for each key.
5061 <         *
5062 <         * @param map the map
5063 <         * @param action the action
5064 <         * @return the task
5065 <         */
5066 <        public static <K,V> ForkJoinTask<Void> forEachKey
5067 <            (ConcurrentHashMapV8<K,V> map,
5068 <             Action<K> action) {
4666 >        public void forEach(Action<? super Map.Entry<K,V>> action) {
4667              if (action == null) throw new NullPointerException();
4668 <            return new ForEachKeyTask<K,V>(map, null, -1, action);
4669 <        }
4670 <
4671 <        /**
4672 <         * Returns a task that when invoked, performs the given action
4673 <         * for each non-null transformation of each key.
5076 <         *
5077 <         * @param map the map
5078 <         * @param transformer a function returning the transformation
5079 <         * for an element, or null if there is no transformation (in
5080 <         * which case the action is not applied)
5081 <         * @param action the action
5082 <         * @return the task
5083 <         */
5084 <        public static <K,V,U> ForkJoinTask<Void> forEachKey
5085 <            (ConcurrentHashMapV8<K,V> map,
5086 <             Fun<? super K, ? extends U> transformer,
5087 <             Action<U> action) {
5088 <            if (transformer == null || action == null)
5089 <                throw new NullPointerException();
5090 <            return new ForEachTransformedKeyTask<K,V,U>
5091 <                (map, null, -1, transformer, action);
5092 <        }
5093 <
5094 <        /**
5095 <         * Returns a task that when invoked, returns a non-null result
5096 <         * from applying the given search function on each key, or
5097 <         * null if none.  Upon success, further element processing is
5098 <         * suppressed and the results of any other parallel
5099 <         * invocations of the search function are ignored.
5100 <         *
5101 <         * @param map the map
5102 <         * @param searchFunction a function returning a non-null
5103 <         * result on success, else null
5104 <         * @return the task
5105 <         */
5106 <        public static <K,V,U> ForkJoinTask<U> searchKeys
5107 <            (ConcurrentHashMapV8<K,V> map,
5108 <             Fun<? super K, ? extends U> searchFunction) {
5109 <            if (searchFunction == null) throw new NullPointerException();
5110 <            return new SearchKeysTask<K,V,U>
5111 <                (map, null, -1, searchFunction,
5112 <                 new AtomicReference<U>());
5113 <        }
5114 <
5115 <        /**
5116 <         * Returns a task that when invoked, returns the result of
5117 <         * accumulating all keys using the given reducer to combine
5118 <         * values, or null if none.
5119 <         *
5120 <         * @param map the map
5121 <         * @param reducer a commutative associative combining function
5122 <         * @return the task
5123 <         */
5124 <        public static <K,V> ForkJoinTask<K> reduceKeys
5125 <            (ConcurrentHashMapV8<K,V> map,
5126 <             BiFun<? super K, ? super K, ? extends K> reducer) {
5127 <            if (reducer == null) throw new NullPointerException();
5128 <            return new ReduceKeysTask<K,V>
5129 <                (map, null, -1, null, reducer);
5130 <        }
5131 <
5132 <        /**
5133 <         * Returns a task that when invoked, returns the result of
5134 <         * accumulating the given transformation of all keys using the given
5135 <         * reducer to combine values, or null if none.
5136 <         *
5137 <         * @param map the map
5138 <         * @param transformer a function returning the transformation
5139 <         * for an element, or null if there is no transformation (in
5140 <         * which case it is not combined).
5141 <         * @param reducer a commutative associative combining function
5142 <         * @return the task
5143 <         */
5144 <        public static <K,V,U> ForkJoinTask<U> reduceKeys
5145 <            (ConcurrentHashMapV8<K,V> map,
5146 <             Fun<? super K, ? extends U> transformer,
5147 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5148 <            if (transformer == null || reducer == null)
5149 <                throw new NullPointerException();
5150 <            return new MapReduceKeysTask<K,V,U>
5151 <                (map, null, -1, null, transformer, reducer);
5152 <        }
5153 <
5154 <        /**
5155 <         * Returns a task that when invoked, returns the result of
5156 <         * accumulating the given transformation of all keys using the given
5157 <         * reducer to combine values, and the given basis as an
5158 <         * identity value.
5159 <         *
5160 <         * @param map the map
5161 <         * @param transformer a function returning the transformation
5162 <         * for an element
5163 <         * @param basis the identity (initial default value) for the reduction
5164 <         * @param reducer a commutative associative combining function
5165 <         * @return the task
5166 <         */
5167 <        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5168 <            (ConcurrentHashMapV8<K,V> map,
5169 <             ObjectToDouble<? super K> transformer,
5170 <             double basis,
5171 <             DoubleByDoubleToDouble reducer) {
5172 <            if (transformer == null || reducer == null)
5173 <                throw new NullPointerException();
5174 <            return new MapReduceKeysToDoubleTask<K,V>
5175 <                (map, null, -1, null, transformer, basis, reducer);
5176 <        }
5177 <
5178 <        /**
5179 <         * Returns a task that when invoked, returns the result of
5180 <         * accumulating the given transformation of all keys using the given
5181 <         * reducer to combine values, and the given basis as an
5182 <         * identity value.
5183 <         *
5184 <         * @param map the map
5185 <         * @param transformer a function returning the transformation
5186 <         * for an element
5187 <         * @param basis the identity (initial default value) for the reduction
5188 <         * @param reducer a commutative associative combining function
5189 <         * @return the task
5190 <         */
5191 <        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5192 <            (ConcurrentHashMapV8<K,V> map,
5193 <             ObjectToLong<? super K> transformer,
5194 <             long basis,
5195 <             LongByLongToLong reducer) {
5196 <            if (transformer == null || reducer == null)
5197 <                throw new NullPointerException();
5198 <            return new MapReduceKeysToLongTask<K,V>
5199 <                (map, null, -1, null, transformer, basis, reducer);
5200 <        }
5201 <
5202 <        /**
5203 <         * Returns a task that when invoked, returns the result of
5204 <         * accumulating the given transformation of all keys using the given
5205 <         * reducer to combine values, and the given basis as an
5206 <         * identity value.
5207 <         *
5208 <         * @param map the map
5209 <         * @param transformer a function returning the transformation
5210 <         * for an element
5211 <         * @param basis the identity (initial default value) for the reduction
5212 <         * @param reducer a commutative associative combining function
5213 <         * @return the task
5214 <         */
5215 <        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5216 <            (ConcurrentHashMapV8<K,V> map,
5217 <             ObjectToInt<? super K> transformer,
5218 <             int basis,
5219 <             IntByIntToInt reducer) {
5220 <            if (transformer == null || reducer == null)
5221 <                throw new NullPointerException();
5222 <            return new MapReduceKeysToIntTask<K,V>
5223 <                (map, null, -1, null, transformer, basis, reducer);
5224 <        }
5225 <
5226 <        /**
5227 <         * Returns a task that when invoked, performs the given action
5228 <         * for each value.
5229 <         *
5230 <         * @param map the map
5231 <         * @param action the action
5232 <         */
5233 <        public static <K,V> ForkJoinTask<Void> forEachValue
5234 <            (ConcurrentHashMapV8<K,V> map,
5235 <             Action<V> action) {
5236 <            if (action == null) throw new NullPointerException();
5237 <            return new ForEachValueTask<K,V>(map, null, -1, action);
5238 <        }
5239 <
5240 <        /**
5241 <         * Returns a task that when invoked, performs the given action
5242 <         * for each non-null transformation of each value.
5243 <         *
5244 <         * @param map the map
5245 <         * @param transformer a function returning the transformation
5246 <         * for an element, or null if there is no transformation (in
5247 <         * which case the action is not applied)
5248 <         * @param action the action
5249 <         */
5250 <        public static <K,V,U> ForkJoinTask<Void> forEachValue
5251 <            (ConcurrentHashMapV8<K,V> map,
5252 <             Fun<? super V, ? extends U> transformer,
5253 <             Action<U> action) {
5254 <            if (transformer == null || action == null)
5255 <                throw new NullPointerException();
5256 <            return new ForEachTransformedValueTask<K,V,U>
5257 <                (map, null, -1, transformer, action);
5258 <        }
5259 <
5260 <        /**
5261 <         * Returns a task that when invoked, returns a non-null result
5262 <         * from applying the given search function on each value, or
5263 <         * null if none.  Upon success, further element processing is
5264 <         * suppressed and the results of any other parallel
5265 <         * invocations of the search function are ignored.
5266 <         *
5267 <         * @param map the map
5268 <         * @param searchFunction a function returning a non-null
5269 <         * result on success, else null
5270 <         * @return the task
5271 <         */
5272 <        public static <K,V,U> ForkJoinTask<U> searchValues
5273 <            (ConcurrentHashMapV8<K,V> map,
5274 <             Fun<? super V, ? extends U> searchFunction) {
5275 <            if (searchFunction == null) throw new NullPointerException();
5276 <            return new SearchValuesTask<K,V,U>
5277 <                (map, null, -1, searchFunction,
5278 <                 new AtomicReference<U>());
5279 <        }
5280 <
5281 <        /**
5282 <         * Returns a task that when invoked, returns the result of
5283 <         * accumulating all values using the given reducer to combine
5284 <         * values, or null if none.
5285 <         *
5286 <         * @param map the map
5287 <         * @param reducer a commutative associative combining function
5288 <         * @return the task
5289 <         */
5290 <        public static <K,V> ForkJoinTask<V> reduceValues
5291 <            (ConcurrentHashMapV8<K,V> map,
5292 <             BiFun<? super V, ? super V, ? extends V> reducer) {
5293 <            if (reducer == null) throw new NullPointerException();
5294 <            return new ReduceValuesTask<K,V>
5295 <                (map, null, -1, null, reducer);
5296 <        }
5297 <
5298 <        /**
5299 <         * Returns a task that when invoked, returns the result of
5300 <         * accumulating the given transformation of all values using the
5301 <         * given reducer to combine values, or null if none.
5302 <         *
5303 <         * @param map the map
5304 <         * @param transformer a function returning the transformation
5305 <         * for an element, or null if there is no transformation (in
5306 <         * which case it is not combined).
5307 <         * @param reducer a commutative associative combining function
5308 <         * @return the task
5309 <         */
5310 <        public static <K,V,U> ForkJoinTask<U> reduceValues
5311 <            (ConcurrentHashMapV8<K,V> map,
5312 <             Fun<? super V, ? extends U> transformer,
5313 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5314 <            if (transformer == null || reducer == null)
5315 <                throw new NullPointerException();
5316 <            return new MapReduceValuesTask<K,V,U>
5317 <                (map, null, -1, null, transformer, reducer);
5318 <        }
5319 <
5320 <        /**
5321 <         * Returns a task that when invoked, returns the result of
5322 <         * accumulating the given transformation of all values using the
5323 <         * given reducer to combine values, and the given basis as an
5324 <         * identity value.
5325 <         *
5326 <         * @param map the map
5327 <         * @param transformer a function returning the transformation
5328 <         * for an element
5329 <         * @param basis the identity (initial default value) for the reduction
5330 <         * @param reducer a commutative associative combining function
5331 <         * @return the task
5332 <         */
5333 <        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5334 <            (ConcurrentHashMapV8<K,V> map,
5335 <             ObjectToDouble<? super V> transformer,
5336 <             double basis,
5337 <             DoubleByDoubleToDouble reducer) {
5338 <            if (transformer == null || reducer == null)
5339 <                throw new NullPointerException();
5340 <            return new MapReduceValuesToDoubleTask<K,V>
5341 <                (map, null, -1, null, transformer, basis, reducer);
5342 <        }
5343 <
5344 <        /**
5345 <         * Returns a task that when invoked, returns the result of
5346 <         * accumulating the given transformation of all values using the
5347 <         * given reducer to combine values, and the given basis as an
5348 <         * identity value.
5349 <         *
5350 <         * @param map the map
5351 <         * @param transformer a function returning the transformation
5352 <         * for an element
5353 <         * @param basis the identity (initial default value) for the reduction
5354 <         * @param reducer a commutative associative combining function
5355 <         * @return the task
5356 <         */
5357 <        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5358 <            (ConcurrentHashMapV8<K,V> map,
5359 <             ObjectToLong<? super V> transformer,
5360 <             long basis,
5361 <             LongByLongToLong reducer) {
5362 <            if (transformer == null || reducer == null)
5363 <                throw new NullPointerException();
5364 <            return new MapReduceValuesToLongTask<K,V>
5365 <                (map, null, -1, null, transformer, basis, reducer);
5366 <        }
5367 <
5368 <        /**
5369 <         * Returns a task that when invoked, returns the result of
5370 <         * accumulating the given transformation of all values using the
5371 <         * given reducer to combine values, and the given basis as an
5372 <         * identity value.
5373 <         *
5374 <         * @param map the map
5375 <         * @param transformer a function returning the transformation
5376 <         * for an element
5377 <         * @param basis the identity (initial default value) for the reduction
5378 <         * @param reducer a commutative associative combining function
5379 <         * @return the task
5380 <         */
5381 <        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5382 <            (ConcurrentHashMapV8<K,V> map,
5383 <             ObjectToInt<? super V> transformer,
5384 <             int basis,
5385 <             IntByIntToInt reducer) {
5386 <            if (transformer == null || reducer == null)
5387 <                throw new NullPointerException();
5388 <            return new MapReduceValuesToIntTask<K,V>
5389 <                (map, null, -1, null, transformer, basis, reducer);
5390 <        }
5391 <
5392 <        /**
5393 <         * Returns a task that when invoked, perform the given action
5394 <         * for each entry.
5395 <         *
5396 <         * @param map the map
5397 <         * @param action the action
5398 <         */
5399 <        public static <K,V> ForkJoinTask<Void> forEachEntry
5400 <            (ConcurrentHashMapV8<K,V> map,
5401 <             Action<Map.Entry<K,V>> action) {
5402 <            if (action == null) throw new NullPointerException();
5403 <            return new ForEachEntryTask<K,V>(map, null, -1, action);
5404 <        }
5405 <
5406 <        /**
5407 <         * Returns a task that when invoked, perform the given action
5408 <         * for each non-null transformation of each entry.
5409 <         *
5410 <         * @param map the map
5411 <         * @param transformer a function returning the transformation
5412 <         * for an element, or null if there is no transformation (in
5413 <         * which case the action is not applied)
5414 <         * @param action the action
5415 <         */
5416 <        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5417 <            (ConcurrentHashMapV8<K,V> map,
5418 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5419 <             Action<U> action) {
5420 <            if (transformer == null || action == null)
5421 <                throw new NullPointerException();
5422 <            return new ForEachTransformedEntryTask<K,V,U>
5423 <                (map, null, -1, transformer, action);
5424 <        }
5425 <
5426 <        /**
5427 <         * Returns a task that when invoked, returns a non-null result
5428 <         * from applying the given search function on each entry, or
5429 <         * null if none.  Upon success, further element processing is
5430 <         * suppressed and the results of any other parallel
5431 <         * invocations of the search function are ignored.
5432 <         *
5433 <         * @param map the map
5434 <         * @param searchFunction a function returning a non-null
5435 <         * result on success, else null
5436 <         * @return the task
5437 <         */
5438 <        public static <K,V,U> ForkJoinTask<U> searchEntries
5439 <            (ConcurrentHashMapV8<K,V> map,
5440 <             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5441 <            if (searchFunction == null) throw new NullPointerException();
5442 <            return new SearchEntriesTask<K,V,U>
5443 <                (map, null, -1, searchFunction,
5444 <                 new AtomicReference<U>());
5445 <        }
5446 <
5447 <        /**
5448 <         * Returns a task that when invoked, returns the result of
5449 <         * accumulating all entries using the given reducer to combine
5450 <         * values, or null if none.
5451 <         *
5452 <         * @param map the map
5453 <         * @param reducer a commutative associative combining function
5454 <         * @return the task
5455 <         */
5456 <        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5457 <            (ConcurrentHashMapV8<K,V> map,
5458 <             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5459 <            if (reducer == null) throw new NullPointerException();
5460 <            return new ReduceEntriesTask<K,V>
5461 <                (map, null, -1, null, reducer);
4668 >            Node<K,V>[] t;
4669 >            if ((t = map.table) != null) {
4670 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4671 >                for (Node<K,V> p; (p = it.advance()) != null; )
4672 >                    action.apply(new MapEntry<K,V>(p.key, p.val, map));
4673 >            }
4674          }
4675  
4676 <        /**
5465 <         * Returns a task that when invoked, returns the result of
5466 <         * accumulating the given transformation of all entries using the
5467 <         * given reducer to combine values, or null if none.
5468 <         *
5469 <         * @param map the map
5470 <         * @param transformer a function returning the transformation
5471 <         * for an element, or null if there is no transformation (in
5472 <         * which case it is not combined).
5473 <         * @param reducer a commutative associative combining function
5474 <         * @return the task
5475 <         */
5476 <        public static <K,V,U> ForkJoinTask<U> reduceEntries
5477 <            (ConcurrentHashMapV8<K,V> map,
5478 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5479 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5480 <            if (transformer == null || reducer == null)
5481 <                throw new NullPointerException();
5482 <            return new MapReduceEntriesTask<K,V,U>
5483 <                (map, null, -1, null, transformer, reducer);
5484 <        }
4676 >    }
4677  
4678 <        /**
5487 <         * Returns a task that when invoked, returns the result of
5488 <         * accumulating the given transformation of all entries using the
5489 <         * given reducer to combine values, and the given basis as an
5490 <         * identity value.
5491 <         *
5492 <         * @param map the map
5493 <         * @param transformer a function returning the transformation
5494 <         * for an element
5495 <         * @param basis the identity (initial default value) for the reduction
5496 <         * @param reducer a commutative associative combining function
5497 <         * @return the task
5498 <         */
5499 <        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5500 <            (ConcurrentHashMapV8<K,V> map,
5501 <             ObjectToDouble<Map.Entry<K,V>> transformer,
5502 <             double basis,
5503 <             DoubleByDoubleToDouble reducer) {
5504 <            if (transformer == null || reducer == null)
5505 <                throw new NullPointerException();
5506 <            return new MapReduceEntriesToDoubleTask<K,V>
5507 <                (map, null, -1, null, transformer, basis, reducer);
5508 <        }
4678 >    // -------------------------------------------------------
4679  
4680 <        /**
4681 <         * Returns a task that when invoked, returns the result of
4682 <         * accumulating the given transformation of all entries using the
4683 <         * given reducer to combine values, and the given basis as an
4684 <         * identity value.
4685 <         *
4686 <         * @param map the map
4687 <         * @param transformer a function returning the transformation
4688 <         * for an element
4689 <         * @param basis the identity (initial default value) for the reduction
4690 <         * @param reducer a commutative associative combining function
4691 <         * @return the task
4692 <         */
4693 <        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
4694 <            (ConcurrentHashMapV8<K,V> map,
4695 <             ObjectToLong<Map.Entry<K,V>> transformer,
4696 <             long basis,
4697 <             LongByLongToLong reducer) {
4698 <            if (transformer == null || reducer == null)
4699 <                throw new NullPointerException();
4700 <            return new MapReduceEntriesToLongTask<K,V>
4701 <                (map, null, -1, null, transformer, basis, reducer);
4680 >    /**
4681 >     * Base class for bulk tasks. Repeats some fields and code from
4682 >     * class Traverser, because we need to subclass CountedCompleter.
4683 >     */
4684 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4685 >        Node<K,V>[] tab;        // same as Traverser
4686 >        Node<K,V> next;
4687 >        int index;
4688 >        int baseIndex;
4689 >        int baseLimit;
4690 >        final int baseSize;
4691 >        int batch;              // split control
4692 >
4693 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4694 >            super(par);
4695 >            this.batch = b;
4696 >            this.index = this.baseIndex = i;
4697 >            if ((this.tab = t) == null)
4698 >                this.baseSize = this.baseLimit = 0;
4699 >            else if (par == null)
4700 >                this.baseSize = this.baseLimit = t.length;
4701 >            else {
4702 >                this.baseLimit = f;
4703 >                this.baseSize = par.baseSize;
4704 >            }
4705          }
4706  
4707          /**
4708 <         * Returns a task that when invoked, returns the result of
5536 <         * accumulating the given transformation of all entries using the
5537 <         * given reducer to combine values, and the given basis as an
5538 <         * identity value.
5539 <         *
5540 <         * @param map the map
5541 <         * @param transformer a function returning the transformation
5542 <         * for an element
5543 <         * @param basis the identity (initial default value) for the reduction
5544 <         * @param reducer a commutative associative combining function
5545 <         * @return the task
4708 >         * Same as Traverser version
4709           */
4710 <        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4711 <            (ConcurrentHashMapV8<K,V> map,
4712 <             ObjectToInt<Map.Entry<K,V>> transformer,
4713 <             int basis,
4714 <             IntByIntToInt reducer) {
4715 <            if (transformer == null || reducer == null)
4716 <                throw new NullPointerException();
4717 <            return new MapReduceEntriesToIntTask<K,V>
4718 <                (map, null, -1, null, transformer, basis, reducer);
4710 >        final Node<K,V> advance() {
4711 >            Node<K,V> e;
4712 >            if ((e = next) != null)
4713 >                e = e.next;
4714 >            for (;;) {
4715 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4716 >                if (e != null)
4717 >                    return next = e;
4718 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4719 >                    (n = t.length) <= (i = index) || i < 0)
4720 >                    return next = null;
4721 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4722 >                    if (e instanceof ForwardingNode) {
4723 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4724 >                        e = null;
4725 >                        continue;
4726 >                    }
4727 >                    else if (e instanceof TreeBin)
4728 >                        e = ((TreeBin<K,V>)e).first;
4729 >                    else
4730 >                        e = null;
4731 >                }
4732 >                if ((index += baseSize) >= n)
4733 >                    index = ++baseIndex;    // visit upper slots if present
4734 >            }
4735          }
4736      }
4737  
5559    // -------------------------------------------------------
5560
4738      /*
4739       * Task classes. Coded in a regular but ugly format/style to
4740       * simplify checks that each variant differs in the right way from
# Line 5565 | Line 4742 | public class ConcurrentHashMapV8<K, V>
4742       * that we've already null-checked task arguments, so we force
4743       * simplest hoisted bypass to help avoid convoluted traps.
4744       */
4745 <
4746 <    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
4747 <        extends Traverser<K,V,Void> {
4748 <        final Action<K> action;
4745 >    @SuppressWarnings("serial")
4746 >    static final class ForEachKeyTask<K,V>
4747 >        extends BulkTask<K,V,Void> {
4748 >        final Action<? super K> action;
4749          ForEachKeyTask
4750 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4751 <             Action<K> action) {
4752 <            super(m, p, b);
4750 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4751 >             Action<? super K> action) {
4752 >            super(p, b, i, f, t);
4753              this.action = action;
4754          }
4755 <        @SuppressWarnings("unchecked") public final void compute() {
4756 <            final Action<K> action;
4755 >        public final void compute() {
4756 >            final Action<? super K> action;
4757              if ((action = this.action) != null) {
4758 <                for (int b; (b = preSplit()) > 0;)
4759 <                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
4760 <                while (advance() != null)
4761 <                    action.apply((K)nextKey);
4758 >                for (int i = baseIndex, f, h; batch > 0 &&
4759 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4760 >                    addToPendingCount(1);
4761 >                    new ForEachKeyTask<K,V>
4762 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4763 >                         action).fork();
4764 >                }
4765 >                for (Node<K,V> p; (p = advance()) != null;)
4766 >                    action.apply(p.key);
4767                  propagateCompletion();
4768              }
4769          }
4770      }
4771  
4772 <    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
4773 <        extends Traverser<K,V,Void> {
4774 <        final Action<V> action;
4772 >    @SuppressWarnings("serial")
4773 >    static final class ForEachValueTask<K,V>
4774 >        extends BulkTask<K,V,Void> {
4775 >        final Action<? super V> action;
4776          ForEachValueTask
4777 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4778 <             Action<V> action) {
4779 <            super(m, p, b);
4777 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4778 >             Action<? super V> action) {
4779 >            super(p, b, i, f, t);
4780              this.action = action;
4781          }
4782 <        @SuppressWarnings("unchecked") public final void compute() {
4783 <            final Action<V> action;
4782 >        public final void compute() {
4783 >            final Action<? super V> action;
4784              if ((action = this.action) != null) {
4785 <                for (int b; (b = preSplit()) > 0;)
4786 <                    new ForEachValueTask<K,V>(map, this, b, action).fork();
4787 <                V v;
4788 <                while ((v = advance()) != null)
4789 <                    action.apply(v);
4785 >                for (int i = baseIndex, f, h; batch > 0 &&
4786 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4787 >                    addToPendingCount(1);
4788 >                    new ForEachValueTask<K,V>
4789 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4790 >                         action).fork();
4791 >                }
4792 >                for (Node<K,V> p; (p = advance()) != null;)
4793 >                    action.apply(p.val);
4794                  propagateCompletion();
4795              }
4796          }
4797      }
4798  
4799 <    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
4800 <        extends Traverser<K,V,Void> {
4801 <        final Action<Entry<K,V>> action;
4799 >    @SuppressWarnings("serial")
4800 >    static final class ForEachEntryTask<K,V>
4801 >        extends BulkTask<K,V,Void> {
4802 >        final Action<? super Entry<K,V>> action;
4803          ForEachEntryTask
4804 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4805 <             Action<Entry<K,V>> action) {
4806 <            super(m, p, b);
4804 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4805 >             Action<? super Entry<K,V>> action) {
4806 >            super(p, b, i, f, t);
4807              this.action = action;
4808          }
4809 <        @SuppressWarnings("unchecked") public final void compute() {
4810 <            final Action<Entry<K,V>> action;
4809 >        public final void compute() {
4810 >            final Action<? super Entry<K,V>> action;
4811              if ((action = this.action) != null) {
4812 <                for (int b; (b = preSplit()) > 0;)
4813 <                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
4814 <                V v;
4815 <                while ((v = advance()) != null)
4816 <                    action.apply(entryFor((K)nextKey, v));
4812 >                for (int i = baseIndex, f, h; batch > 0 &&
4813 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4814 >                    addToPendingCount(1);
4815 >                    new ForEachEntryTask<K,V>
4816 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4817 >                         action).fork();
4818 >                }
4819 >                for (Node<K,V> p; (p = advance()) != null; )
4820 >                    action.apply(p);
4821                  propagateCompletion();
4822              }
4823          }
4824      }
4825  
4826 <    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
4827 <        extends Traverser<K,V,Void> {
4828 <        final BiAction<K,V> action;
4826 >    @SuppressWarnings("serial")
4827 >    static final class ForEachMappingTask<K,V>
4828 >        extends BulkTask<K,V,Void> {
4829 >        final BiAction<? super K, ? super V> action;
4830          ForEachMappingTask
4831 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4832 <             BiAction<K,V> action) {
4833 <            super(m, p, b);
4831 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4832 >             BiAction<? super K,? super V> action) {
4833 >            super(p, b, i, f, t);
4834              this.action = action;
4835          }
4836 <        @SuppressWarnings("unchecked") public final void compute() {
4837 <            final BiAction<K,V> action;
4836 >        public final void compute() {
4837 >            final BiAction<? super K, ? super V> action;
4838              if ((action = this.action) != null) {
4839 <                for (int b; (b = preSplit()) > 0;)
4840 <                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
4841 <                V v;
4842 <                while ((v = advance()) != null)
4843 <                    action.apply((K)nextKey, v);
4839 >                for (int i = baseIndex, f, h; batch > 0 &&
4840 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4841 >                    addToPendingCount(1);
4842 >                    new ForEachMappingTask<K,V>
4843 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4844 >                         action).fork();
4845 >                }
4846 >                for (Node<K,V> p; (p = advance()) != null; )
4847 >                    action.apply(p.key, p.val);
4848                  propagateCompletion();
4849              }
4850          }
4851      }
4852  
4853 <    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
4854 <        extends Traverser<K,V,Void> {
4853 >    @SuppressWarnings("serial")
4854 >    static final class ForEachTransformedKeyTask<K,V,U>
4855 >        extends BulkTask<K,V,Void> {
4856          final Fun<? super K, ? extends U> transformer;
4857 <        final Action<U> action;
4857 >        final Action<? super U> action;
4858          ForEachTransformedKeyTask
4859 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4860 <             Fun<? super K, ? extends U> transformer, Action<U> action) {
4861 <            super(m, p, b);
4859 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4860 >             Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4861 >            super(p, b, i, f, t);
4862              this.transformer = transformer; this.action = action;
4863          }
4864 <        @SuppressWarnings("unchecked") public final void compute() {
4864 >        public final void compute() {
4865              final Fun<? super K, ? extends U> transformer;
4866 <            final Action<U> action;
4866 >            final Action<? super U> action;
4867              if ((transformer = this.transformer) != null &&
4868                  (action = this.action) != null) {
4869 <                for (int b; (b = preSplit()) > 0;)
4869 >                for (int i = baseIndex, f, h; batch > 0 &&
4870 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4871 >                    addToPendingCount(1);
4872                      new ForEachTransformedKeyTask<K,V,U>
4873 <                        (map, this, b, transformer, action).fork();
4874 <                U u;
4875 <                while (advance() != null) {
4876 <                    if ((u = transformer.apply((K)nextKey)) != null)
4873 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4874 >                         transformer, action).fork();
4875 >                }
4876 >                for (Node<K,V> p; (p = advance()) != null; ) {
4877 >                    U u;
4878 >                    if ((u = transformer.apply(p.key)) != null)
4879                          action.apply(u);
4880                  }
4881                  propagateCompletion();
# Line 5681 | Line 4883 | public class ConcurrentHashMapV8<K, V>
4883          }
4884      }
4885  
4886 <    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
4887 <        extends Traverser<K,V,Void> {
4886 >    @SuppressWarnings("serial")
4887 >    static final class ForEachTransformedValueTask<K,V,U>
4888 >        extends BulkTask<K,V,Void> {
4889          final Fun<? super V, ? extends U> transformer;
4890 <        final Action<U> action;
4890 >        final Action<? super U> action;
4891          ForEachTransformedValueTask
4892 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4893 <             Fun<? super V, ? extends U> transformer, Action<U> action) {
4894 <            super(m, p, b);
4892 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4893 >             Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4894 >            super(p, b, i, f, t);
4895              this.transformer = transformer; this.action = action;
4896          }
4897 <        @SuppressWarnings("unchecked") public final void compute() {
4897 >        public final void compute() {
4898              final Fun<? super V, ? extends U> transformer;
4899 <            final Action<U> action;
4899 >            final Action<? super U> action;
4900              if ((transformer = this.transformer) != null &&
4901                  (action = this.action) != null) {
4902 <                for (int b; (b = preSplit()) > 0;)
4902 >                for (int i = baseIndex, f, h; batch > 0 &&
4903 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4904 >                    addToPendingCount(1);
4905                      new ForEachTransformedValueTask<K,V,U>
4906 <                        (map, this, b, transformer, action).fork();
4907 <                V v; U u;
4908 <                while ((v = advance()) != null) {
4909 <                    if ((u = transformer.apply(v)) != null)
4906 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4907 >                         transformer, action).fork();
4908 >                }
4909 >                for (Node<K,V> p; (p = advance()) != null; ) {
4910 >                    U u;
4911 >                    if ((u = transformer.apply(p.val)) != null)
4912                          action.apply(u);
4913                  }
4914                  propagateCompletion();
# Line 5709 | Line 4916 | public class ConcurrentHashMapV8<K, V>
4916          }
4917      }
4918  
4919 <    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
4920 <        extends Traverser<K,V,Void> {
4919 >    @SuppressWarnings("serial")
4920 >    static final class ForEachTransformedEntryTask<K,V,U>
4921 >        extends BulkTask<K,V,Void> {
4922          final Fun<Map.Entry<K,V>, ? extends U> transformer;
4923 <        final Action<U> action;
4923 >        final Action<? super U> action;
4924          ForEachTransformedEntryTask
4925 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4926 <             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
4927 <            super(m, p, b);
4925 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4926 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4927 >            super(p, b, i, f, t);
4928              this.transformer = transformer; this.action = action;
4929          }
4930 <        @SuppressWarnings("unchecked") public final void compute() {
4930 >        public final void compute() {
4931              final Fun<Map.Entry<K,V>, ? extends U> transformer;
4932 <            final Action<U> action;
4932 >            final Action<? super U> action;
4933              if ((transformer = this.transformer) != null &&
4934                  (action = this.action) != null) {
4935 <                for (int b; (b = preSplit()) > 0;)
4935 >                for (int i = baseIndex, f, h; batch > 0 &&
4936 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4937 >                    addToPendingCount(1);
4938                      new ForEachTransformedEntryTask<K,V,U>
4939 <                        (map, this, b, transformer, action).fork();
4940 <                V v; U u;
4941 <                while ((v = advance()) != null) {
4942 <                    if ((u = transformer.apply(entryFor((K)nextKey,
4943 <                                                        v))) != null)
4939 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4940 >                         transformer, action).fork();
4941 >                }
4942 >                for (Node<K,V> p; (p = advance()) != null; ) {
4943 >                    U u;
4944 >                    if ((u = transformer.apply(p)) != null)
4945                          action.apply(u);
4946                  }
4947                  propagateCompletion();
# Line 5738 | Line 4949 | public class ConcurrentHashMapV8<K, V>
4949          }
4950      }
4951  
4952 <    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
4953 <        extends Traverser<K,V,Void> {
4952 >    @SuppressWarnings("serial")
4953 >    static final class ForEachTransformedMappingTask<K,V,U>
4954 >        extends BulkTask<K,V,Void> {
4955          final BiFun<? super K, ? super V, ? extends U> transformer;
4956 <        final Action<U> action;
4956 >        final Action<? super U> action;
4957          ForEachTransformedMappingTask
4958 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4958 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4959               BiFun<? super K, ? super V, ? extends U> transformer,
4960 <             Action<U> action) {
4961 <            super(m, p, b);
4960 >             Action<? super U> action) {
4961 >            super(p, b, i, f, t);
4962              this.transformer = transformer; this.action = action;
4963          }
4964 <        @SuppressWarnings("unchecked") public final void compute() {
4964 >        public final void compute() {
4965              final BiFun<? super K, ? super V, ? extends U> transformer;
4966 <            final Action<U> action;
4966 >            final Action<? super U> action;
4967              if ((transformer = this.transformer) != null &&
4968                  (action = this.action) != null) {
4969 <                for (int b; (b = preSplit()) > 0;)
4969 >                for (int i = baseIndex, f, h; batch > 0 &&
4970 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4971 >                    addToPendingCount(1);
4972                      new ForEachTransformedMappingTask<K,V,U>
4973 <                        (map, this, b, transformer, action).fork();
4974 <                V v; U u;
4975 <                while ((v = advance()) != null) {
4976 <                    if ((u = transformer.apply((K)nextKey, v)) != null)
4973 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4974 >                         transformer, action).fork();
4975 >                }
4976 >                for (Node<K,V> p; (p = advance()) != null; ) {
4977 >                    U u;
4978 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4979                          action.apply(u);
4980                  }
4981                  propagateCompletion();
# Line 5767 | Line 4983 | public class ConcurrentHashMapV8<K, V>
4983          }
4984      }
4985  
4986 <    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
4987 <        extends Traverser<K,V,U> {
4986 >    @SuppressWarnings("serial")
4987 >    static final class SearchKeysTask<K,V,U>
4988 >        extends BulkTask<K,V,U> {
4989          final Fun<? super K, ? extends U> searchFunction;
4990          final AtomicReference<U> result;
4991          SearchKeysTask
4992 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4992 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4993               Fun<? super K, ? extends U> searchFunction,
4994               AtomicReference<U> result) {
4995 <            super(m, p, b);
4995 >            super(p, b, i, f, t);
4996              this.searchFunction = searchFunction; this.result = result;
4997          }
4998          public final U getRawResult() { return result.get(); }
4999 <        @SuppressWarnings("unchecked") public final void compute() {
4999 >        public final void compute() {
5000              final Fun<? super K, ? extends U> searchFunction;
5001              final AtomicReference<U> result;
5002              if ((searchFunction = this.searchFunction) != null &&
5003                  (result = this.result) != null) {
5004 <                for (int b;;) {
5004 >                for (int i = baseIndex, f, h; batch > 0 &&
5005 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5006                      if (result.get() != null)
5007                          return;
5008 <                    if ((b = preSplit()) <= 0)
5791 <                        break;
5008 >                    addToPendingCount(1);
5009                      new SearchKeysTask<K,V,U>
5010 <                        (map, this, b, searchFunction, result).fork();
5010 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5011 >                         searchFunction, result).fork();
5012                  }
5013                  while (result.get() == null) {
5014                      U u;
5015 <                    if (advance() == null) {
5015 >                    Node<K,V> p;
5016 >                    if ((p = advance()) == null) {
5017                          propagateCompletion();
5018                          break;
5019                      }
5020 <                    if ((u = searchFunction.apply((K)nextKey)) != null) {
5020 >                    if ((u = searchFunction.apply(p.key)) != null) {
5021                          if (result.compareAndSet(null, u))
5022                              quietlyCompleteRoot();
5023                          break;
# Line 5808 | Line 5027 | public class ConcurrentHashMapV8<K, V>
5027          }
5028      }
5029  
5030 <    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5031 <        extends Traverser<K,V,U> {
5030 >    @SuppressWarnings("serial")
5031 >    static final class SearchValuesTask<K,V,U>
5032 >        extends BulkTask<K,V,U> {
5033          final Fun<? super V, ? extends U> searchFunction;
5034          final AtomicReference<U> result;
5035          SearchValuesTask
5036 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5036 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5037               Fun<? super V, ? extends U> searchFunction,
5038               AtomicReference<U> result) {
5039 <            super(m, p, b);
5039 >            super(p, b, i, f, t);
5040              this.searchFunction = searchFunction; this.result = result;
5041          }
5042          public final U getRawResult() { return result.get(); }
5043 <        @SuppressWarnings("unchecked") public final void compute() {
5043 >        public final void compute() {
5044              final Fun<? super V, ? extends U> searchFunction;
5045              final AtomicReference<U> result;
5046              if ((searchFunction = this.searchFunction) != null &&
5047                  (result = this.result) != null) {
5048 <                for (int b;;) {
5048 >                for (int i = baseIndex, f, h; batch > 0 &&
5049 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5050                      if (result.get() != null)
5051                          return;
5052 <                    if ((b = preSplit()) <= 0)
5832 <                        break;
5052 >                    addToPendingCount(1);
5053                      new SearchValuesTask<K,V,U>
5054 <                        (map, this, b, searchFunction, result).fork();
5054 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5055 >                         searchFunction, result).fork();
5056                  }
5057                  while (result.get() == null) {
5058 <                    V v; U u;
5059 <                    if ((v = advance()) == null) {
5058 >                    U u;
5059 >                    Node<K,V> p;
5060 >                    if ((p = advance()) == null) {
5061                          propagateCompletion();
5062                          break;
5063                      }
5064 <                    if ((u = searchFunction.apply(v)) != null) {
5064 >                    if ((u = searchFunction.apply(p.val)) != null) {
5065                          if (result.compareAndSet(null, u))
5066                              quietlyCompleteRoot();
5067                          break;
# Line 5849 | Line 5071 | public class ConcurrentHashMapV8<K, V>
5071          }
5072      }
5073  
5074 <    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5075 <        extends Traverser<K,V,U> {
5074 >    @SuppressWarnings("serial")
5075 >    static final class SearchEntriesTask<K,V,U>
5076 >        extends BulkTask<K,V,U> {
5077          final Fun<Entry<K,V>, ? extends U> searchFunction;
5078          final AtomicReference<U> result;
5079          SearchEntriesTask
5080 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5080 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5081               Fun<Entry<K,V>, ? extends U> searchFunction,
5082               AtomicReference<U> result) {
5083 <            super(m, p, b);
5083 >            super(p, b, i, f, t);
5084              this.searchFunction = searchFunction; this.result = result;
5085          }
5086          public final U getRawResult() { return result.get(); }
5087 <        @SuppressWarnings("unchecked") public final void compute() {
5087 >        public final void compute() {
5088              final Fun<Entry<K,V>, ? extends U> searchFunction;
5089              final AtomicReference<U> result;
5090              if ((searchFunction = this.searchFunction) != null &&
5091                  (result = this.result) != null) {
5092 <                for (int b;;) {
5092 >                for (int i = baseIndex, f, h; batch > 0 &&
5093 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5094                      if (result.get() != null)
5095                          return;
5096 <                    if ((b = preSplit()) <= 0)
5873 <                        break;
5096 >                    addToPendingCount(1);
5097                      new SearchEntriesTask<K,V,U>
5098 <                        (map, this, b, searchFunction, result).fork();
5098 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5099 >                         searchFunction, result).fork();
5100                  }
5101                  while (result.get() == null) {
5102 <                    V v; U u;
5103 <                    if ((v = advance()) == null) {
5102 >                    U u;
5103 >                    Node<K,V> p;
5104 >                    if ((p = advance()) == null) {
5105                          propagateCompletion();
5106                          break;
5107                      }
5108 <                    if ((u = searchFunction.apply(entryFor((K)nextKey,
5884 <                                                           v))) != null) {
5108 >                    if ((u = searchFunction.apply(p)) != null) {
5109                          if (result.compareAndSet(null, u))
5110                              quietlyCompleteRoot();
5111                          return;
# Line 5891 | Line 5115 | public class ConcurrentHashMapV8<K, V>
5115          }
5116      }
5117  
5118 <    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5119 <        extends Traverser<K,V,U> {
5118 >    @SuppressWarnings("serial")
5119 >    static final class SearchMappingsTask<K,V,U>
5120 >        extends BulkTask<K,V,U> {
5121          final BiFun<? super K, ? super V, ? extends U> searchFunction;
5122          final AtomicReference<U> result;
5123          SearchMappingsTask
5124 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5124 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5125               BiFun<? super K, ? super V, ? extends U> searchFunction,
5126               AtomicReference<U> result) {
5127 <            super(m, p, b);
5127 >            super(p, b, i, f, t);
5128              this.searchFunction = searchFunction; this.result = result;
5129          }
5130          public final U getRawResult() { return result.get(); }
5131 <        @SuppressWarnings("unchecked") public final void compute() {
5131 >        public final void compute() {
5132              final BiFun<? super K, ? super V, ? extends U> searchFunction;
5133              final AtomicReference<U> result;
5134              if ((searchFunction = this.searchFunction) != null &&
5135                  (result = this.result) != null) {
5136 <                for (int b;;) {
5136 >                for (int i = baseIndex, f, h; batch > 0 &&
5137 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5138                      if (result.get() != null)
5139                          return;
5140 <                    if ((b = preSplit()) <= 0)
5915 <                        break;
5140 >                    addToPendingCount(1);
5141                      new SearchMappingsTask<K,V,U>
5142 <                        (map, this, b, searchFunction, result).fork();
5142 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5143 >                         searchFunction, result).fork();
5144                  }
5145                  while (result.get() == null) {
5146 <                    V v; U u;
5147 <                    if ((v = advance()) == null) {
5146 >                    U u;
5147 >                    Node<K,V> p;
5148 >                    if ((p = advance()) == null) {
5149                          propagateCompletion();
5150                          break;
5151                      }
5152 <                    if ((u = searchFunction.apply((K)nextKey, v)) != null) {
5152 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5153                          if (result.compareAndSet(null, u))
5154                              quietlyCompleteRoot();
5155                          break;
# Line 5932 | Line 5159 | public class ConcurrentHashMapV8<K, V>
5159          }
5160      }
5161  
5162 <    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5163 <        extends Traverser<K,V,K> {
5162 >    @SuppressWarnings("serial")
5163 >    static final class ReduceKeysTask<K,V>
5164 >        extends BulkTask<K,V,K> {
5165          final BiFun<? super K, ? super K, ? extends K> reducer;
5166          K result;
5167          ReduceKeysTask<K,V> rights, nextRight;
5168          ReduceKeysTask
5169 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5169 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5170               ReduceKeysTask<K,V> nextRight,
5171               BiFun<? super K, ? super K, ? extends K> reducer) {
5172 <            super(m, p, b); this.nextRight = nextRight;
5172 >            super(p, b, i, f, t); this.nextRight = nextRight;
5173              this.reducer = reducer;
5174          }
5175          public final K getRawResult() { return result; }
5176 <        @SuppressWarnings("unchecked") public final void compute() {
5176 >        public final void compute() {
5177              final BiFun<? super K, ? super K, ? extends K> reducer;
5178              if ((reducer = this.reducer) != null) {
5179 <                for (int b; (b = preSplit()) > 0;)
5179 >                for (int i = baseIndex, f, h; batch > 0 &&
5180 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5181 >                    addToPendingCount(1);
5182                      (rights = new ReduceKeysTask<K,V>
5183 <                     (map, this, b, rights, reducer)).fork();
5183 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5184 >                      rights, reducer)).fork();
5185 >                }
5186                  K r = null;
5187 <                while (advance() != null) {
5188 <                    K u = (K)nextKey;
5189 <                    r = (r == null) ? u : reducer.apply(r, u);
5187 >                for (Node<K,V> p; (p = advance()) != null; ) {
5188 >                    K u = p.key;
5189 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5190                  }
5191                  result = r;
5192                  CountedCompleter<?> c;
5193                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5194 <                    ReduceKeysTask<K,V>
5194 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5195                          t = (ReduceKeysTask<K,V>)c,
5196                          s = t.rights;
5197                      while (s != null) {
# Line 5974 | Line 5206 | public class ConcurrentHashMapV8<K, V>
5206          }
5207      }
5208  
5209 <    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5210 <        extends Traverser<K,V,V> {
5209 >    @SuppressWarnings("serial")
5210 >    static final class ReduceValuesTask<K,V>
5211 >        extends BulkTask<K,V,V> {
5212          final BiFun<? super V, ? super V, ? extends V> reducer;
5213          V result;
5214          ReduceValuesTask<K,V> rights, nextRight;
5215          ReduceValuesTask
5216 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5216 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5217               ReduceValuesTask<K,V> nextRight,
5218               BiFun<? super V, ? super V, ? extends V> reducer) {
5219 <            super(m, p, b); this.nextRight = nextRight;
5219 >            super(p, b, i, f, t); this.nextRight = nextRight;
5220              this.reducer = reducer;
5221          }
5222          public final V getRawResult() { return result; }
5223 <        @SuppressWarnings("unchecked") public final void compute() {
5223 >        public final void compute() {
5224              final BiFun<? super V, ? super V, ? extends V> reducer;
5225              if ((reducer = this.reducer) != null) {
5226 <                for (int b; (b = preSplit()) > 0;)
5226 >                for (int i = baseIndex, f, h; batch > 0 &&
5227 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5228 >                    addToPendingCount(1);
5229                      (rights = new ReduceValuesTask<K,V>
5230 <                     (map, this, b, rights, reducer)).fork();
5230 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5231 >                      rights, reducer)).fork();
5232 >                }
5233                  V r = null;
5234 <                V v;
5235 <                while ((v = advance()) != null) {
5236 <                    V u = v;
6000 <                    r = (r == null) ? u : reducer.apply(r, u);
5234 >                for (Node<K,V> p; (p = advance()) != null; ) {
5235 >                    V v = p.val;
5236 >                    r = (r == null) ? v : reducer.apply(r, v);
5237                  }
5238                  result = r;
5239                  CountedCompleter<?> c;
5240                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5241 <                    ReduceValuesTask<K,V>
5241 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5242                          t = (ReduceValuesTask<K,V>)c,
5243                          s = t.rights;
5244                      while (s != null) {
# Line 6017 | Line 5253 | public class ConcurrentHashMapV8<K, V>
5253          }
5254      }
5255  
5256 <    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5257 <        extends Traverser<K,V,Map.Entry<K,V>> {
5256 >    @SuppressWarnings("serial")
5257 >    static final class ReduceEntriesTask<K,V>
5258 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5259          final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5260          Map.Entry<K,V> result;
5261          ReduceEntriesTask<K,V> rights, nextRight;
5262          ReduceEntriesTask
5263 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5263 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5264               ReduceEntriesTask<K,V> nextRight,
5265               BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5266 <            super(m, p, b); this.nextRight = nextRight;
5266 >            super(p, b, i, f, t); this.nextRight = nextRight;
5267              this.reducer = reducer;
5268          }
5269          public final Map.Entry<K,V> getRawResult() { return result; }
5270 <        @SuppressWarnings("unchecked") public final void compute() {
5270 >        public final void compute() {
5271              final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5272              if ((reducer = this.reducer) != null) {
5273 <                for (int b; (b = preSplit()) > 0;)
5273 >                for (int i = baseIndex, f, h; batch > 0 &&
5274 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5275 >                    addToPendingCount(1);
5276                      (rights = new ReduceEntriesTask<K,V>
5277 <                     (map, this, b, rights, reducer)).fork();
5278 <                Map.Entry<K,V> r = null;
6040 <                V v;
6041 <                while ((v = advance()) != null) {
6042 <                    Map.Entry<K,V> u = entryFor((K)nextKey, v);
6043 <                    r = (r == null) ? u : reducer.apply(r, u);
5277 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5278 >                      rights, reducer)).fork();
5279                  }
5280 +                Map.Entry<K,V> r = null;
5281 +                for (Node<K,V> p; (p = advance()) != null; )
5282 +                    r = (r == null) ? p : reducer.apply(r, p);
5283                  result = r;
5284                  CountedCompleter<?> c;
5285                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5286 <                    ReduceEntriesTask<K,V>
5286 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5287                          t = (ReduceEntriesTask<K,V>)c,
5288                          s = t.rights;
5289                      while (s != null) {
# Line 6060 | Line 5298 | public class ConcurrentHashMapV8<K, V>
5298          }
5299      }
5300  
5301 <    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5302 <        extends Traverser<K,V,U> {
5301 >    @SuppressWarnings("serial")
5302 >    static final class MapReduceKeysTask<K,V,U>
5303 >        extends BulkTask<K,V,U> {
5304          final Fun<? super K, ? extends U> transformer;
5305          final BiFun<? super U, ? super U, ? extends U> reducer;
5306          U result;
5307          MapReduceKeysTask<K,V,U> rights, nextRight;
5308          MapReduceKeysTask
5309 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5309 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5310               MapReduceKeysTask<K,V,U> nextRight,
5311               Fun<? super K, ? extends U> transformer,
5312               BiFun<? super U, ? super U, ? extends U> reducer) {
5313 <            super(m, p, b); this.nextRight = nextRight;
5313 >            super(p, b, i, f, t); this.nextRight = nextRight;
5314              this.transformer = transformer;
5315              this.reducer = reducer;
5316          }
5317          public final U getRawResult() { return result; }
5318 <        @SuppressWarnings("unchecked") public final void compute() {
5318 >        public final void compute() {
5319              final Fun<? super K, ? extends U> transformer;
5320              final BiFun<? super U, ? super U, ? extends U> reducer;
5321              if ((transformer = this.transformer) != null &&
5322                  (reducer = this.reducer) != null) {
5323 <                for (int b; (b = preSplit()) > 0;)
5323 >                for (int i = baseIndex, f, h; batch > 0 &&
5324 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5325 >                    addToPendingCount(1);
5326                      (rights = new MapReduceKeysTask<K,V,U>
5327 <                     (map, this, b, rights, transformer, reducer)).fork();
5328 <                U r = null, u;
5329 <                while (advance() != null) {
5330 <                    if ((u = transformer.apply((K)nextKey)) != null)
5327 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5328 >                      rights, transformer, reducer)).fork();
5329 >                }
5330 >                U r = null;
5331 >                for (Node<K,V> p; (p = advance()) != null; ) {
5332 >                    U u;
5333 >                    if ((u = transformer.apply(p.key)) != null)
5334                          r = (r == null) ? u : reducer.apply(r, u);
5335                  }
5336                  result = r;
5337                  CountedCompleter<?> c;
5338                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5339 <                    MapReduceKeysTask<K,V,U>
5339 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5340                          t = (MapReduceKeysTask<K,V,U>)c,
5341                          s = t.rights;
5342                      while (s != null) {
# Line 6107 | Line 5351 | public class ConcurrentHashMapV8<K, V>
5351          }
5352      }
5353  
5354 <    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5355 <        extends Traverser<K,V,U> {
5354 >    @SuppressWarnings("serial")
5355 >    static final class MapReduceValuesTask<K,V,U>
5356 >        extends BulkTask<K,V,U> {
5357          final Fun<? super V, ? extends U> transformer;
5358          final BiFun<? super U, ? super U, ? extends U> reducer;
5359          U result;
5360          MapReduceValuesTask<K,V,U> rights, nextRight;
5361          MapReduceValuesTask
5362 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5362 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5363               MapReduceValuesTask<K,V,U> nextRight,
5364               Fun<? super V, ? extends U> transformer,
5365               BiFun<? super U, ? super U, ? extends U> reducer) {
5366 <            super(m, p, b); this.nextRight = nextRight;
5366 >            super(p, b, i, f, t); this.nextRight = nextRight;
5367              this.transformer = transformer;
5368              this.reducer = reducer;
5369          }
5370          public final U getRawResult() { return result; }
5371 <        @SuppressWarnings("unchecked") public final void compute() {
5371 >        public final void compute() {
5372              final Fun<? super V, ? extends U> transformer;
5373              final BiFun<? super U, ? super U, ? extends U> reducer;
5374              if ((transformer = this.transformer) != null &&
5375                  (reducer = this.reducer) != null) {
5376 <                for (int b; (b = preSplit()) > 0;)
5376 >                for (int i = baseIndex, f, h; batch > 0 &&
5377 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5378 >                    addToPendingCount(1);
5379                      (rights = new MapReduceValuesTask<K,V,U>
5380 <                     (map, this, b, rights, transformer, reducer)).fork();
5381 <                U r = null, u;
5382 <                V v;
5383 <                while ((v = advance()) != null) {
5384 <                    if ((u = transformer.apply(v)) != null)
5380 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5381 >                      rights, transformer, reducer)).fork();
5382 >                }
5383 >                U r = null;
5384 >                for (Node<K,V> p; (p = advance()) != null; ) {
5385 >                    U u;
5386 >                    if ((u = transformer.apply(p.val)) != null)
5387                          r = (r == null) ? u : reducer.apply(r, u);
5388                  }
5389                  result = r;
5390                  CountedCompleter<?> c;
5391                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5392 <                    MapReduceValuesTask<K,V,U>
5392 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5393                          t = (MapReduceValuesTask<K,V,U>)c,
5394                          s = t.rights;
5395                      while (s != null) {
# Line 6155 | Line 5404 | public class ConcurrentHashMapV8<K, V>
5404          }
5405      }
5406  
5407 <    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5408 <        extends Traverser<K,V,U> {
5407 >    @SuppressWarnings("serial")
5408 >    static final class MapReduceEntriesTask<K,V,U>
5409 >        extends BulkTask<K,V,U> {
5410          final Fun<Map.Entry<K,V>, ? extends U> transformer;
5411          final BiFun<? super U, ? super U, ? extends U> reducer;
5412          U result;
5413          MapReduceEntriesTask<K,V,U> rights, nextRight;
5414          MapReduceEntriesTask
5415 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5415 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5416               MapReduceEntriesTask<K,V,U> nextRight,
5417               Fun<Map.Entry<K,V>, ? extends U> transformer,
5418               BiFun<? super U, ? super U, ? extends U> reducer) {
5419 <            super(m, p, b); this.nextRight = nextRight;
5419 >            super(p, b, i, f, t); this.nextRight = nextRight;
5420              this.transformer = transformer;
5421              this.reducer = reducer;
5422          }
5423          public final U getRawResult() { return result; }
5424 <        @SuppressWarnings("unchecked") public final void compute() {
5424 >        public final void compute() {
5425              final Fun<Map.Entry<K,V>, ? extends U> transformer;
5426              final BiFun<? super U, ? super U, ? extends U> reducer;
5427              if ((transformer = this.transformer) != null &&
5428                  (reducer = this.reducer) != null) {
5429 <                for (int b; (b = preSplit()) > 0;)
5429 >                for (int i = baseIndex, f, h; batch > 0 &&
5430 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5431 >                    addToPendingCount(1);
5432                      (rights = new MapReduceEntriesTask<K,V,U>
5433 <                     (map, this, b, rights, transformer, reducer)).fork();
5434 <                U r = null, u;
5435 <                V v;
5436 <                while ((v = advance()) != null) {
5437 <                    if ((u = transformer.apply(entryFor((K)nextKey,
5438 <                                                        v))) != null)
5433 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5434 >                      rights, transformer, reducer)).fork();
5435 >                }
5436 >                U r = null;
5437 >                for (Node<K,V> p; (p = advance()) != null; ) {
5438 >                    U u;
5439 >                    if ((u = transformer.apply(p)) != null)
5440                          r = (r == null) ? u : reducer.apply(r, u);
5441                  }
5442                  result = r;
5443                  CountedCompleter<?> c;
5444                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5445 <                    MapReduceEntriesTask<K,V,U>
5445 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5446                          t = (MapReduceEntriesTask<K,V,U>)c,
5447                          s = t.rights;
5448                      while (s != null) {
# Line 6204 | Line 5457 | public class ConcurrentHashMapV8<K, V>
5457          }
5458      }
5459  
5460 <    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5461 <        extends Traverser<K,V,U> {
5460 >    @SuppressWarnings("serial")
5461 >    static final class MapReduceMappingsTask<K,V,U>
5462 >        extends BulkTask<K,V,U> {
5463          final BiFun<? super K, ? super V, ? extends U> transformer;
5464          final BiFun<? super U, ? super U, ? extends U> reducer;
5465          U result;
5466          MapReduceMappingsTask<K,V,U> rights, nextRight;
5467          MapReduceMappingsTask
5468 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5468 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5469               MapReduceMappingsTask<K,V,U> nextRight,
5470               BiFun<? super K, ? super V, ? extends U> transformer,
5471               BiFun<? super U, ? super U, ? extends U> reducer) {
5472 <            super(m, p, b); this.nextRight = nextRight;
5472 >            super(p, b, i, f, t); this.nextRight = nextRight;
5473              this.transformer = transformer;
5474              this.reducer = reducer;
5475          }
5476          public final U getRawResult() { return result; }
5477 <        @SuppressWarnings("unchecked") public final void compute() {
5477 >        public final void compute() {
5478              final BiFun<? super K, ? super V, ? extends U> transformer;
5479              final BiFun<? super U, ? super U, ? extends U> reducer;
5480              if ((transformer = this.transformer) != null &&
5481                  (reducer = this.reducer) != null) {
5482 <                for (int b; (b = preSplit()) > 0;)
5482 >                for (int i = baseIndex, f, h; batch > 0 &&
5483 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5484 >                    addToPendingCount(1);
5485                      (rights = new MapReduceMappingsTask<K,V,U>
5486 <                     (map, this, b, rights, transformer, reducer)).fork();
5487 <                U r = null, u;
5488 <                V v;
5489 <                while ((v = advance()) != null) {
5490 <                    if ((u = transformer.apply((K)nextKey, v)) != null)
5486 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5487 >                      rights, transformer, reducer)).fork();
5488 >                }
5489 >                U r = null;
5490 >                for (Node<K,V> p; (p = advance()) != null; ) {
5491 >                    U u;
5492 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5493                          r = (r == null) ? u : reducer.apply(r, u);
5494                  }
5495                  result = r;
5496                  CountedCompleter<?> c;
5497                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5498 <                    MapReduceMappingsTask<K,V,U>
5498 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5499                          t = (MapReduceMappingsTask<K,V,U>)c,
5500                          s = t.rights;
5501                      while (s != null) {
# Line 6252 | Line 5510 | public class ConcurrentHashMapV8<K, V>
5510          }
5511      }
5512  
5513 <    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5514 <        extends Traverser<K,V,Double> {
5513 >    @SuppressWarnings("serial")
5514 >    static final class MapReduceKeysToDoubleTask<K,V>
5515 >        extends BulkTask<K,V,Double> {
5516          final ObjectToDouble<? super K> transformer;
5517          final DoubleByDoubleToDouble reducer;
5518          final double basis;
5519          double result;
5520          MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5521          MapReduceKeysToDoubleTask
5522 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5522 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5523               MapReduceKeysToDoubleTask<K,V> nextRight,
5524               ObjectToDouble<? super K> transformer,
5525               double basis,
5526               DoubleByDoubleToDouble reducer) {
5527 <            super(m, p, b); this.nextRight = nextRight;
5527 >            super(p, b, i, f, t); this.nextRight = nextRight;
5528              this.transformer = transformer;
5529              this.basis = basis; this.reducer = reducer;
5530          }
5531          public final Double getRawResult() { return result; }
5532 <        @SuppressWarnings("unchecked") public final void compute() {
5532 >        public final void compute() {
5533              final ObjectToDouble<? super K> transformer;
5534              final DoubleByDoubleToDouble reducer;
5535              if ((transformer = this.transformer) != null &&
5536                  (reducer = this.reducer) != null) {
5537                  double r = this.basis;
5538 <                for (int b; (b = preSplit()) > 0;)
5538 >                for (int i = baseIndex, f, h; batch > 0 &&
5539 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5540 >                    addToPendingCount(1);
5541                      (rights = new MapReduceKeysToDoubleTask<K,V>
5542 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5543 <                while (advance() != null)
5544 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
5542 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5543 >                      rights, transformer, r, reducer)).fork();
5544 >                }
5545 >                for (Node<K,V> p; (p = advance()) != null; )
5546 >                    r = reducer.apply(r, transformer.apply(p.key));
5547                  result = r;
5548                  CountedCompleter<?> c;
5549                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5550 <                    MapReduceKeysToDoubleTask<K,V>
5550 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5551                          t = (MapReduceKeysToDoubleTask<K,V>)c,
5552                          s = t.rights;
5553                      while (s != null) {
# Line 6296 | Line 5559 | public class ConcurrentHashMapV8<K, V>
5559          }
5560      }
5561  
5562 <    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5563 <        extends Traverser<K,V,Double> {
5562 >    @SuppressWarnings("serial")
5563 >    static final class MapReduceValuesToDoubleTask<K,V>
5564 >        extends BulkTask<K,V,Double> {
5565          final ObjectToDouble<? super V> transformer;
5566          final DoubleByDoubleToDouble reducer;
5567          final double basis;
5568          double result;
5569          MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5570          MapReduceValuesToDoubleTask
5571 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5571 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5572               MapReduceValuesToDoubleTask<K,V> nextRight,
5573               ObjectToDouble<? super V> transformer,
5574               double basis,
5575               DoubleByDoubleToDouble reducer) {
5576 <            super(m, p, b); this.nextRight = nextRight;
5576 >            super(p, b, i, f, t); this.nextRight = nextRight;
5577              this.transformer = transformer;
5578              this.basis = basis; this.reducer = reducer;
5579          }
5580          public final Double getRawResult() { return result; }
5581 <        @SuppressWarnings("unchecked") public final void compute() {
5581 >        public final void compute() {
5582              final ObjectToDouble<? super V> transformer;
5583              final DoubleByDoubleToDouble reducer;
5584              if ((transformer = this.transformer) != null &&
5585                  (reducer = this.reducer) != null) {
5586                  double r = this.basis;
5587 <                for (int b; (b = preSplit()) > 0;)
5587 >                for (int i = baseIndex, f, h; batch > 0 &&
5588 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5589 >                    addToPendingCount(1);
5590                      (rights = new MapReduceValuesToDoubleTask<K,V>
5591 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5592 <                V v;
5593 <                while ((v = advance()) != null)
5594 <                    r = reducer.apply(r, transformer.apply(v));
5591 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5592 >                      rights, transformer, r, reducer)).fork();
5593 >                }
5594 >                for (Node<K,V> p; (p = advance()) != null; )
5595 >                    r = reducer.apply(r, transformer.apply(p.val));
5596                  result = r;
5597                  CountedCompleter<?> c;
5598                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5599 <                    MapReduceValuesToDoubleTask<K,V>
5599 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5600                          t = (MapReduceValuesToDoubleTask<K,V>)c,
5601                          s = t.rights;
5602                      while (s != null) {
# Line 6341 | Line 5608 | public class ConcurrentHashMapV8<K, V>
5608          }
5609      }
5610  
5611 <    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
5612 <        extends Traverser<K,V,Double> {
5611 >    @SuppressWarnings("serial")
5612 >    static final class MapReduceEntriesToDoubleTask<K,V>
5613 >        extends BulkTask<K,V,Double> {
5614          final ObjectToDouble<Map.Entry<K,V>> transformer;
5615          final DoubleByDoubleToDouble reducer;
5616          final double basis;
5617          double result;
5618          MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5619          MapReduceEntriesToDoubleTask
5620 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5620 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5621               MapReduceEntriesToDoubleTask<K,V> nextRight,
5622               ObjectToDouble<Map.Entry<K,V>> transformer,
5623               double basis,
5624               DoubleByDoubleToDouble reducer) {
5625 <            super(m, p, b); this.nextRight = nextRight;
5625 >            super(p, b, i, f, t); this.nextRight = nextRight;
5626              this.transformer = transformer;
5627              this.basis = basis; this.reducer = reducer;
5628          }
5629          public final Double getRawResult() { return result; }
5630 <        @SuppressWarnings("unchecked") public final void compute() {
5630 >        public final void compute() {
5631              final ObjectToDouble<Map.Entry<K,V>> transformer;
5632              final DoubleByDoubleToDouble reducer;
5633              if ((transformer = this.transformer) != null &&
5634                  (reducer = this.reducer) != null) {
5635                  double r = this.basis;
5636 <                for (int b; (b = preSplit()) > 0;)
5636 >                for (int i = baseIndex, f, h; batch > 0 &&
5637 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5638 >                    addToPendingCount(1);
5639                      (rights = new MapReduceEntriesToDoubleTask<K,V>
5640 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5641 <                V v;
5642 <                while ((v = advance()) != null)
5643 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
5644 <                                                                    v)));
5640 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5641 >                      rights, transformer, r, reducer)).fork();
5642 >                }
5643 >                for (Node<K,V> p; (p = advance()) != null; )
5644 >                    r = reducer.apply(r, transformer.apply(p));
5645                  result = r;
5646                  CountedCompleter<?> c;
5647                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5648 <                    MapReduceEntriesToDoubleTask<K,V>
5648 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5649                          t = (MapReduceEntriesToDoubleTask<K,V>)c,
5650                          s = t.rights;
5651                      while (s != null) {
# Line 6387 | Line 5657 | public class ConcurrentHashMapV8<K, V>
5657          }
5658      }
5659  
5660 <    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
5661 <        extends Traverser<K,V,Double> {
5660 >    @SuppressWarnings("serial")
5661 >    static final class MapReduceMappingsToDoubleTask<K,V>
5662 >        extends BulkTask<K,V,Double> {
5663          final ObjectByObjectToDouble<? super K, ? super V> transformer;
5664          final DoubleByDoubleToDouble reducer;
5665          final double basis;
5666          double result;
5667          MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5668          MapReduceMappingsToDoubleTask
5669 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5669 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5670               MapReduceMappingsToDoubleTask<K,V> nextRight,
5671               ObjectByObjectToDouble<? super K, ? super V> transformer,
5672               double basis,
5673               DoubleByDoubleToDouble reducer) {
5674 <            super(m, p, b); this.nextRight = nextRight;
5674 >            super(p, b, i, f, t); this.nextRight = nextRight;
5675              this.transformer = transformer;
5676              this.basis = basis; this.reducer = reducer;
5677          }
5678          public final Double getRawResult() { return result; }
5679 <        @SuppressWarnings("unchecked") public final void compute() {
5679 >        public final void compute() {
5680              final ObjectByObjectToDouble<? super K, ? super V> transformer;
5681              final DoubleByDoubleToDouble reducer;
5682              if ((transformer = this.transformer) != null &&
5683                  (reducer = this.reducer) != null) {
5684                  double r = this.basis;
5685 <                for (int b; (b = preSplit()) > 0;)
5685 >                for (int i = baseIndex, f, h; batch > 0 &&
5686 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5687 >                    addToPendingCount(1);
5688                      (rights = new MapReduceMappingsToDoubleTask<K,V>
5689 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5690 <                V v;
5691 <                while ((v = advance()) != null)
5692 <                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
5689 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5690 >                      rights, transformer, r, reducer)).fork();
5691 >                }
5692 >                for (Node<K,V> p; (p = advance()) != null; )
5693 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5694                  result = r;
5695                  CountedCompleter<?> c;
5696                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5697 <                    MapReduceMappingsToDoubleTask<K,V>
5697 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5698                          t = (MapReduceMappingsToDoubleTask<K,V>)c,
5699                          s = t.rights;
5700                      while (s != null) {
# Line 6432 | Line 5706 | public class ConcurrentHashMapV8<K, V>
5706          }
5707      }
5708  
5709 <    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
5710 <        extends Traverser<K,V,Long> {
5709 >    @SuppressWarnings("serial")
5710 >    static final class MapReduceKeysToLongTask<K,V>
5711 >        extends BulkTask<K,V,Long> {
5712          final ObjectToLong<? super K> transformer;
5713          final LongByLongToLong reducer;
5714          final long basis;
5715          long result;
5716          MapReduceKeysToLongTask<K,V> rights, nextRight;
5717          MapReduceKeysToLongTask
5718 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5718 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5719               MapReduceKeysToLongTask<K,V> nextRight,
5720               ObjectToLong<? super K> transformer,
5721               long basis,
5722               LongByLongToLong reducer) {
5723 <            super(m, p, b); this.nextRight = nextRight;
5723 >            super(p, b, i, f, t); this.nextRight = nextRight;
5724              this.transformer = transformer;
5725              this.basis = basis; this.reducer = reducer;
5726          }
5727          public final Long getRawResult() { return result; }
5728 <        @SuppressWarnings("unchecked") public final void compute() {
5728 >        public final void compute() {
5729              final ObjectToLong<? super K> transformer;
5730              final LongByLongToLong reducer;
5731              if ((transformer = this.transformer) != null &&
5732                  (reducer = this.reducer) != null) {
5733                  long r = this.basis;
5734 <                for (int b; (b = preSplit()) > 0;)
5734 >                for (int i = baseIndex, f, h; batch > 0 &&
5735 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5736 >                    addToPendingCount(1);
5737                      (rights = new MapReduceKeysToLongTask<K,V>
5738 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5739 <                while (advance() != null)
5740 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
5738 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5739 >                      rights, transformer, r, reducer)).fork();
5740 >                }
5741 >                for (Node<K,V> p; (p = advance()) != null; )
5742 >                    r = reducer.apply(r, transformer.apply(p.key));
5743                  result = r;
5744                  CountedCompleter<?> c;
5745                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5746 <                    MapReduceKeysToLongTask<K,V>
5746 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5747                          t = (MapReduceKeysToLongTask<K,V>)c,
5748                          s = t.rights;
5749                      while (s != null) {
# Line 6476 | Line 5755 | public class ConcurrentHashMapV8<K, V>
5755          }
5756      }
5757  
5758 <    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
5759 <        extends Traverser<K,V,Long> {
5758 >    @SuppressWarnings("serial")
5759 >    static final class MapReduceValuesToLongTask<K,V>
5760 >        extends BulkTask<K,V,Long> {
5761          final ObjectToLong<? super V> transformer;
5762          final LongByLongToLong reducer;
5763          final long basis;
5764          long result;
5765          MapReduceValuesToLongTask<K,V> rights, nextRight;
5766          MapReduceValuesToLongTask
5767 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5767 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5768               MapReduceValuesToLongTask<K,V> nextRight,
5769               ObjectToLong<? super V> transformer,
5770               long basis,
5771               LongByLongToLong reducer) {
5772 <            super(m, p, b); this.nextRight = nextRight;
5772 >            super(p, b, i, f, t); this.nextRight = nextRight;
5773              this.transformer = transformer;
5774              this.basis = basis; this.reducer = reducer;
5775          }
5776          public final Long getRawResult() { return result; }
5777 <        @SuppressWarnings("unchecked") public final void compute() {
5777 >        public final void compute() {
5778              final ObjectToLong<? super V> transformer;
5779              final LongByLongToLong reducer;
5780              if ((transformer = this.transformer) != null &&
5781                  (reducer = this.reducer) != null) {
5782                  long r = this.basis;
5783 <                for (int b; (b = preSplit()) > 0;)
5783 >                for (int i = baseIndex, f, h; batch > 0 &&
5784 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5785 >                    addToPendingCount(1);
5786                      (rights = new MapReduceValuesToLongTask<K,V>
5787 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5788 <                V v;
5789 <                while ((v = advance()) != null)
5790 <                    r = reducer.apply(r, transformer.apply(v));
5787 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5788 >                      rights, transformer, r, reducer)).fork();
5789 >                }
5790 >                for (Node<K,V> p; (p = advance()) != null; )
5791 >                    r = reducer.apply(r, transformer.apply(p.val));
5792                  result = r;
5793                  CountedCompleter<?> c;
5794                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5795 <                    MapReduceValuesToLongTask<K,V>
5795 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5796                          t = (MapReduceValuesToLongTask<K,V>)c,
5797                          s = t.rights;
5798                      while (s != null) {
# Line 6521 | Line 5804 | public class ConcurrentHashMapV8<K, V>
5804          }
5805      }
5806  
5807 <    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
5808 <        extends Traverser<K,V,Long> {
5807 >    @SuppressWarnings("serial")
5808 >    static final class MapReduceEntriesToLongTask<K,V>
5809 >        extends BulkTask<K,V,Long> {
5810          final ObjectToLong<Map.Entry<K,V>> transformer;
5811          final LongByLongToLong reducer;
5812          final long basis;
5813          long result;
5814          MapReduceEntriesToLongTask<K,V> rights, nextRight;
5815          MapReduceEntriesToLongTask
5816 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5816 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5817               MapReduceEntriesToLongTask<K,V> nextRight,
5818               ObjectToLong<Map.Entry<K,V>> transformer,
5819               long basis,
5820               LongByLongToLong reducer) {
5821 <            super(m, p, b); this.nextRight = nextRight;
5821 >            super(p, b, i, f, t); this.nextRight = nextRight;
5822              this.transformer = transformer;
5823              this.basis = basis; this.reducer = reducer;
5824          }
5825          public final Long getRawResult() { return result; }
5826 <        @SuppressWarnings("unchecked") public final void compute() {
5826 >        public final void compute() {
5827              final ObjectToLong<Map.Entry<K,V>> transformer;
5828              final LongByLongToLong reducer;
5829              if ((transformer = this.transformer) != null &&
5830                  (reducer = this.reducer) != null) {
5831                  long r = this.basis;
5832 <                for (int b; (b = preSplit()) > 0;)
5832 >                for (int i = baseIndex, f, h; batch > 0 &&
5833 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5834 >                    addToPendingCount(1);
5835                      (rights = new MapReduceEntriesToLongTask<K,V>
5836 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5837 <                V v;
5838 <                while ((v = advance()) != null)
5839 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
5840 <                                                                    v)));
5836 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5837 >                      rights, transformer, r, reducer)).fork();
5838 >                }
5839 >                for (Node<K,V> p; (p = advance()) != null; )
5840 >                    r = reducer.apply(r, transformer.apply(p));
5841                  result = r;
5842                  CountedCompleter<?> c;
5843                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5844 <                    MapReduceEntriesToLongTask<K,V>
5844 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5845                          t = (MapReduceEntriesToLongTask<K,V>)c,
5846                          s = t.rights;
5847                      while (s != null) {
# Line 6567 | Line 5853 | public class ConcurrentHashMapV8<K, V>
5853          }
5854      }
5855  
5856 <    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
5857 <        extends Traverser<K,V,Long> {
5856 >    @SuppressWarnings("serial")
5857 >    static final class MapReduceMappingsToLongTask<K,V>
5858 >        extends BulkTask<K,V,Long> {
5859          final ObjectByObjectToLong<? super K, ? super V> transformer;
5860          final LongByLongToLong reducer;
5861          final long basis;
5862          long result;
5863          MapReduceMappingsToLongTask<K,V> rights, nextRight;
5864          MapReduceMappingsToLongTask
5865 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5865 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5866               MapReduceMappingsToLongTask<K,V> nextRight,
5867               ObjectByObjectToLong<? super K, ? super V> transformer,
5868               long basis,
5869               LongByLongToLong reducer) {
5870 <            super(m, p, b); this.nextRight = nextRight;
5870 >            super(p, b, i, f, t); this.nextRight = nextRight;
5871              this.transformer = transformer;
5872              this.basis = basis; this.reducer = reducer;
5873          }
5874          public final Long getRawResult() { return result; }
5875 <        @SuppressWarnings("unchecked") public final void compute() {
5875 >        public final void compute() {
5876              final ObjectByObjectToLong<? super K, ? super V> transformer;
5877              final LongByLongToLong reducer;
5878              if ((transformer = this.transformer) != null &&
5879                  (reducer = this.reducer) != null) {
5880                  long r = this.basis;
5881 <                for (int b; (b = preSplit()) > 0;)
5881 >                for (int i = baseIndex, f, h; batch > 0 &&
5882 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5883 >                    addToPendingCount(1);
5884                      (rights = new MapReduceMappingsToLongTask<K,V>
5885 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5886 <                V v;
5887 <                while ((v = advance()) != null)
5888 <                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
5885 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5886 >                      rights, transformer, r, reducer)).fork();
5887 >                }
5888 >                for (Node<K,V> p; (p = advance()) != null; )
5889 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5890                  result = r;
5891                  CountedCompleter<?> c;
5892                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5893 <                    MapReduceMappingsToLongTask<K,V>
5893 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5894                          t = (MapReduceMappingsToLongTask<K,V>)c,
5895                          s = t.rights;
5896                      while (s != null) {
# Line 6612 | Line 5902 | public class ConcurrentHashMapV8<K, V>
5902          }
5903      }
5904  
5905 <    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
5906 <        extends Traverser<K,V,Integer> {
5905 >    @SuppressWarnings("serial")
5906 >    static final class MapReduceKeysToIntTask<K,V>
5907 >        extends BulkTask<K,V,Integer> {
5908          final ObjectToInt<? super K> transformer;
5909          final IntByIntToInt reducer;
5910          final int basis;
5911          int result;
5912          MapReduceKeysToIntTask<K,V> rights, nextRight;
5913          MapReduceKeysToIntTask
5914 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5914 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5915               MapReduceKeysToIntTask<K,V> nextRight,
5916               ObjectToInt<? super K> transformer,
5917               int basis,
5918               IntByIntToInt reducer) {
5919 <            super(m, p, b); this.nextRight = nextRight;
5919 >            super(p, b, i, f, t); this.nextRight = nextRight;
5920              this.transformer = transformer;
5921              this.basis = basis; this.reducer = reducer;
5922          }
5923          public final Integer getRawResult() { return result; }
5924 <        @SuppressWarnings("unchecked") public final void compute() {
5924 >        public final void compute() {
5925              final ObjectToInt<? super K> transformer;
5926              final IntByIntToInt reducer;
5927              if ((transformer = this.transformer) != null &&
5928                  (reducer = this.reducer) != null) {
5929                  int r = this.basis;
5930 <                for (int b; (b = preSplit()) > 0;)
5930 >                for (int i = baseIndex, f, h; batch > 0 &&
5931 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5932 >                    addToPendingCount(1);
5933                      (rights = new MapReduceKeysToIntTask<K,V>
5934 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5935 <                while (advance() != null)
5936 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
5934 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5935 >                      rights, transformer, r, reducer)).fork();
5936 >                }
5937 >                for (Node<K,V> p; (p = advance()) != null; )
5938 >                    r = reducer.apply(r, transformer.apply(p.key));
5939                  result = r;
5940                  CountedCompleter<?> c;
5941                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5942 <                    MapReduceKeysToIntTask<K,V>
5942 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5943                          t = (MapReduceKeysToIntTask<K,V>)c,
5944                          s = t.rights;
5945                      while (s != null) {
# Line 6656 | Line 5951 | public class ConcurrentHashMapV8<K, V>
5951          }
5952      }
5953  
5954 <    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
5955 <        extends Traverser<K,V,Integer> {
5954 >    @SuppressWarnings("serial")
5955 >    static final class MapReduceValuesToIntTask<K,V>
5956 >        extends BulkTask<K,V,Integer> {
5957          final ObjectToInt<? super V> transformer;
5958          final IntByIntToInt reducer;
5959          final int basis;
5960          int result;
5961          MapReduceValuesToIntTask<K,V> rights, nextRight;
5962          MapReduceValuesToIntTask
5963 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5963 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5964               MapReduceValuesToIntTask<K,V> nextRight,
5965               ObjectToInt<? super V> transformer,
5966               int basis,
5967               IntByIntToInt reducer) {
5968 <            super(m, p, b); this.nextRight = nextRight;
5968 >            super(p, b, i, f, t); this.nextRight = nextRight;
5969              this.transformer = transformer;
5970              this.basis = basis; this.reducer = reducer;
5971          }
5972          public final Integer getRawResult() { return result; }
5973 <        @SuppressWarnings("unchecked") public final void compute() {
5973 >        public final void compute() {
5974              final ObjectToInt<? super V> transformer;
5975              final IntByIntToInt reducer;
5976              if ((transformer = this.transformer) != null &&
5977                  (reducer = this.reducer) != null) {
5978                  int r = this.basis;
5979 <                for (int b; (b = preSplit()) > 0;)
5979 >                for (int i = baseIndex, f, h; batch > 0 &&
5980 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5981 >                    addToPendingCount(1);
5982                      (rights = new MapReduceValuesToIntTask<K,V>
5983 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5984 <                V v;
5985 <                while ((v = advance()) != null)
5986 <                    r = reducer.apply(r, transformer.apply(v));
5983 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5984 >                      rights, transformer, r, reducer)).fork();
5985 >                }
5986 >                for (Node<K,V> p; (p = advance()) != null; )
5987 >                    r = reducer.apply(r, transformer.apply(p.val));
5988                  result = r;
5989                  CountedCompleter<?> c;
5990                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5991 <                    MapReduceValuesToIntTask<K,V>
5991 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5992                          t = (MapReduceValuesToIntTask<K,V>)c,
5993                          s = t.rights;
5994                      while (s != null) {
# Line 6701 | Line 6000 | public class ConcurrentHashMapV8<K, V>
6000          }
6001      }
6002  
6003 <    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6004 <        extends Traverser<K,V,Integer> {
6003 >    @SuppressWarnings("serial")
6004 >    static final class MapReduceEntriesToIntTask<K,V>
6005 >        extends BulkTask<K,V,Integer> {
6006          final ObjectToInt<Map.Entry<K,V>> transformer;
6007          final IntByIntToInt reducer;
6008          final int basis;
6009          int result;
6010          MapReduceEntriesToIntTask<K,V> rights, nextRight;
6011          MapReduceEntriesToIntTask
6012 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6012 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6013               MapReduceEntriesToIntTask<K,V> nextRight,
6014               ObjectToInt<Map.Entry<K,V>> transformer,
6015               int basis,
6016               IntByIntToInt reducer) {
6017 <            super(m, p, b); this.nextRight = nextRight;
6017 >            super(p, b, i, f, t); this.nextRight = nextRight;
6018              this.transformer = transformer;
6019              this.basis = basis; this.reducer = reducer;
6020          }
6021          public final Integer getRawResult() { return result; }
6022 <        @SuppressWarnings("unchecked") public final void compute() {
6022 >        public final void compute() {
6023              final ObjectToInt<Map.Entry<K,V>> transformer;
6024              final IntByIntToInt reducer;
6025              if ((transformer = this.transformer) != null &&
6026                  (reducer = this.reducer) != null) {
6027                  int r = this.basis;
6028 <                for (int b; (b = preSplit()) > 0;)
6028 >                for (int i = baseIndex, f, h; batch > 0 &&
6029 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6030 >                    addToPendingCount(1);
6031                      (rights = new MapReduceEntriesToIntTask<K,V>
6032 <                     (map, this, b, rights, transformer, r, reducer)).fork();
6033 <                V v;
6034 <                while ((v = advance()) != null)
6035 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6036 <                                                                    v)));
6032 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6033 >                      rights, transformer, r, reducer)).fork();
6034 >                }
6035 >                for (Node<K,V> p; (p = advance()) != null; )
6036 >                    r = reducer.apply(r, transformer.apply(p));
6037                  result = r;
6038                  CountedCompleter<?> c;
6039                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6040 <                    MapReduceEntriesToIntTask<K,V>
6040 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
6041                          t = (MapReduceEntriesToIntTask<K,V>)c,
6042                          s = t.rights;
6043                      while (s != null) {
# Line 6747 | Line 6049 | public class ConcurrentHashMapV8<K, V>
6049          }
6050      }
6051  
6052 <    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6053 <        extends Traverser<K,V,Integer> {
6052 >    @SuppressWarnings("serial")
6053 >    static final class MapReduceMappingsToIntTask<K,V>
6054 >        extends BulkTask<K,V,Integer> {
6055          final ObjectByObjectToInt<? super K, ? super V> transformer;
6056          final IntByIntToInt reducer;
6057          final int basis;
6058          int result;
6059          MapReduceMappingsToIntTask<K,V> rights, nextRight;
6060          MapReduceMappingsToIntTask
6061 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6061 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6062               MapReduceMappingsToIntTask<K,V> nextRight,
6063               ObjectByObjectToInt<? super K, ? super V> transformer,
6064               int basis,
6065               IntByIntToInt reducer) {
6066 <            super(m, p, b); this.nextRight = nextRight;
6066 >            super(p, b, i, f, t); this.nextRight = nextRight;
6067              this.transformer = transformer;
6068              this.basis = basis; this.reducer = reducer;
6069          }
6070          public final Integer getRawResult() { return result; }
6071 <        @SuppressWarnings("unchecked") public final void compute() {
6071 >        public final void compute() {
6072              final ObjectByObjectToInt<? super K, ? super V> transformer;
6073              final IntByIntToInt reducer;
6074              if ((transformer = this.transformer) != null &&
6075                  (reducer = this.reducer) != null) {
6076                  int r = this.basis;
6077 <                for (int b; (b = preSplit()) > 0;)
6077 >                for (int i = baseIndex, f, h; batch > 0 &&
6078 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6079 >                    addToPendingCount(1);
6080                      (rights = new MapReduceMappingsToIntTask<K,V>
6081 <                     (map, this, b, rights, transformer, r, reducer)).fork();
6082 <                V v;
6083 <                while ((v = advance()) != null)
6084 <                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
6081 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6082 >                      rights, transformer, r, reducer)).fork();
6083 >                }
6084 >                for (Node<K,V> p; (p = advance()) != null; )
6085 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
6086                  result = r;
6087                  CountedCompleter<?> c;
6088                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6089 <                    MapReduceMappingsToIntTask<K,V>
6089 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6090                          t = (MapReduceMappingsToIntTask<K,V>)c,
6091                          s = t.rights;
6092                      while (s != null) {
# Line 6792 | Line 6098 | public class ConcurrentHashMapV8<K, V>
6098          }
6099      }
6100  
6101 +    /* ---------------- Counters -------------- */
6102 +
6103 +    // Adapted from LongAdder and Striped64.
6104 +    // See their internal docs for explanation.
6105 +
6106 +    // A padded cell for distributing counts
6107 +    static final class CounterCell {
6108 +        volatile long p0, p1, p2, p3, p4, p5, p6;
6109 +        volatile long value;
6110 +        volatile long q0, q1, q2, q3, q4, q5, q6;
6111 +        CounterCell(long x) { value = x; }
6112 +    }
6113 +
6114 +    /**
6115 +     * Holder for the thread-local hash code determining which
6116 +     * CounterCell to use. The code is initialized via the
6117 +     * counterHashCodeGenerator, but may be moved upon collisions.
6118 +     */
6119 +    static final class CounterHashCode {
6120 +        int code;
6121 +    }
6122 +
6123 +    /**
6124 +     * Generates initial value for per-thread CounterHashCodes.
6125 +     */
6126 +    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6127 +
6128 +    /**
6129 +     * Increment for counterHashCodeGenerator. See class ThreadLocal
6130 +     * for explanation.
6131 +     */
6132 +    static final int SEED_INCREMENT = 0x61c88647;
6133 +
6134 +    /**
6135 +     * Per-thread counter hash codes. Shared across all instances.
6136 +     */
6137 +    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6138 +        new ThreadLocal<CounterHashCode>();
6139 +
6140 +
6141 +    final long sumCount() {
6142 +        CounterCell[] as = counterCells; CounterCell a;
6143 +        long sum = baseCount;
6144 +        if (as != null) {
6145 +            for (int i = 0; i < as.length; ++i) {
6146 +                if ((a = as[i]) != null)
6147 +                    sum += a.value;
6148 +            }
6149 +        }
6150 +        return sum;
6151 +    }
6152 +
6153 +    // See LongAdder version for explanation
6154 +    private final void fullAddCount(long x, CounterHashCode hc,
6155 +                                    boolean wasUncontended) {
6156 +        int h;
6157 +        if (hc == null) {
6158 +            hc = new CounterHashCode();
6159 +            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6160 +            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6161 +            threadCounterHashCode.set(hc);
6162 +        }
6163 +        else
6164 +            h = hc.code;
6165 +        boolean collide = false;                // True if last slot nonempty
6166 +        for (;;) {
6167 +            CounterCell[] as; CounterCell a; int n; long v;
6168 +            if ((as = counterCells) != null && (n = as.length) > 0) {
6169 +                if ((a = as[(n - 1) & h]) == null) {
6170 +                    if (cellsBusy == 0) {            // Try to attach new Cell
6171 +                        CounterCell r = new CounterCell(x); // Optimistic create
6172 +                        if (cellsBusy == 0 &&
6173 +                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6174 +                            boolean created = false;
6175 +                            try {               // Recheck under lock
6176 +                                CounterCell[] rs; int m, j;
6177 +                                if ((rs = counterCells) != null &&
6178 +                                    (m = rs.length) > 0 &&
6179 +                                    rs[j = (m - 1) & h] == null) {
6180 +                                    rs[j] = r;
6181 +                                    created = true;
6182 +                                }
6183 +                            } finally {
6184 +                                cellsBusy = 0;
6185 +                            }
6186 +                            if (created)
6187 +                                break;
6188 +                            continue;           // Slot is now non-empty
6189 +                        }
6190 +                    }
6191 +                    collide = false;
6192 +                }
6193 +                else if (!wasUncontended)       // CAS already known to fail
6194 +                    wasUncontended = true;      // Continue after rehash
6195 +                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6196 +                    break;
6197 +                else if (counterCells != as || n >= NCPU)
6198 +                    collide = false;            // At max size or stale
6199 +                else if (!collide)
6200 +                    collide = true;
6201 +                else if (cellsBusy == 0 &&
6202 +                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6203 +                    try {
6204 +                        if (counterCells == as) {// Expand table unless stale
6205 +                            CounterCell[] rs = new CounterCell[n << 1];
6206 +                            for (int i = 0; i < n; ++i)
6207 +                                rs[i] = as[i];
6208 +                            counterCells = rs;
6209 +                        }
6210 +                    } finally {
6211 +                        cellsBusy = 0;
6212 +                    }
6213 +                    collide = false;
6214 +                    continue;                   // Retry with expanded table
6215 +                }
6216 +                h ^= h << 13;                   // Rehash
6217 +                h ^= h >>> 17;
6218 +                h ^= h << 5;
6219 +            }
6220 +            else if (cellsBusy == 0 && counterCells == as &&
6221 +                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6222 +                boolean init = false;
6223 +                try {                           // Initialize table
6224 +                    if (counterCells == as) {
6225 +                        CounterCell[] rs = new CounterCell[2];
6226 +                        rs[h & 1] = new CounterCell(x);
6227 +                        counterCells = rs;
6228 +                        init = true;
6229 +                    }
6230 +                } finally {
6231 +                    cellsBusy = 0;
6232 +                }
6233 +                if (init)
6234 +                    break;
6235 +            }
6236 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6237 +                break;                          // Fall back on using base
6238 +        }
6239 +        hc.code = h;                            // Record index for next time
6240 +    }
6241 +
6242      // Unsafe mechanics
6243      private static final sun.misc.Unsafe U;
6244      private static final long SIZECTL;
6245      private static final long TRANSFERINDEX;
6799    private static final long TRANSFERORIGIN;
6246      private static final long BASECOUNT;
6247 <    private static final long COUNTERBUSY;
6247 >    private static final long CELLSBUSY;
6248      private static final long CELLVALUE;
6249      private static final long ABASE;
6250      private static final int ASHIFT;
6251  
6252      static {
6807        int ss;
6253          try {
6254              U = getUnsafe();
6255              Class<?> k = ConcurrentHashMapV8.class;
# Line 6812 | Line 6257 | public class ConcurrentHashMapV8<K, V>
6257                  (k.getDeclaredField("sizeCtl"));
6258              TRANSFERINDEX = U.objectFieldOffset
6259                  (k.getDeclaredField("transferIndex"));
6815            TRANSFERORIGIN = U.objectFieldOffset
6816                (k.getDeclaredField("transferOrigin"));
6260              BASECOUNT = U.objectFieldOffset
6261                  (k.getDeclaredField("baseCount"));
6262 <            COUNTERBUSY = U.objectFieldOffset
6263 <                (k.getDeclaredField("counterBusy"));
6262 >            CELLSBUSY = U.objectFieldOffset
6263 >                (k.getDeclaredField("cellsBusy"));
6264              Class<?> ck = CounterCell.class;
6265              CELLVALUE = U.objectFieldOffset
6266                  (ck.getDeclaredField("value"));
6267 <            Class<?> sc = Node[].class;
6268 <            ABASE = U.arrayBaseOffset(sc);
6269 <            ss = U.arrayIndexScale(sc);
6270 <            ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6267 >            Class<?> ak = Node[].class;
6268 >            ABASE = U.arrayBaseOffset(ak);
6269 >            int scale = U.arrayIndexScale(ak);
6270 >            if ((scale & (scale - 1)) != 0)
6271 >                throw new Error("data type scale not a power of two");
6272 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6273          } catch (Exception e) {
6274              throw new Error(e);
6275          }
6831        if ((ss & (ss-1)) != 0)
6832            throw new Error("data type scale not a power of two");
6276      }
6277  
6278      /**
# Line 6842 | Line 6285 | public class ConcurrentHashMapV8<K, V>
6285      private static sun.misc.Unsafe getUnsafe() {
6286          try {
6287              return sun.misc.Unsafe.getUnsafe();
6288 <        } catch (SecurityException se) {
6289 <            try {
6290 <                return java.security.AccessController.doPrivileged
6291 <                    (new java.security
6292 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6293 <                        public sun.misc.Unsafe run() throws Exception {
6294 <                            java.lang.reflect.Field f = sun.misc
6295 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6296 <                            f.setAccessible(true);
6297 <                            return (sun.misc.Unsafe) f.get(null);
6298 <                        }});
6299 <            } catch (java.security.PrivilegedActionException e) {
6300 <                throw new RuntimeException("Could not initialize intrinsics",
6301 <                                           e.getCause());
6302 <            }
6288 >        } catch (SecurityException tryReflectionInstead) {}
6289 >        try {
6290 >            return java.security.AccessController.doPrivileged
6291 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6292 >                public sun.misc.Unsafe run() throws Exception {
6293 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6294 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6295 >                        f.setAccessible(true);
6296 >                        Object x = f.get(null);
6297 >                        if (k.isInstance(x))
6298 >                            return k.cast(x);
6299 >                    }
6300 >                    throw new NoSuchFieldError("the Unsafe");
6301 >                }});
6302 >        } catch (java.security.PrivilegedActionException e) {
6303 >            throw new RuntimeException("Could not initialize intrinsics",
6304 >                                       e.getCause());
6305          }
6306      }
6307   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines