ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.13 by jsr166, Wed Aug 31 00:22:11 2011 UTC vs.
Revision 1.111 by jsr166, Fri Jul 19 19:34:43 2013 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166e;
8 < import jsr166e.LongAdder;
9 < import java.util.Map;
10 < import java.util.Set;
8 >
9 > import jsr166e.ForkJoinPool;
10 >
11 > import java.io.ObjectStreamField;
12 > import java.io.Serializable;
13 > import java.lang.reflect.ParameterizedType;
14 > import java.lang.reflect.Type;
15 > import java.util.Arrays;
16   import java.util.Collection;
17 < import java.util.AbstractMap;
18 < import java.util.AbstractSet;
19 < import java.util.AbstractCollection;
15 < import java.util.Hashtable;
17 > import java.util.Comparator;
18 > import java.util.ConcurrentModificationException;
19 > import java.util.Enumeration;
20   import java.util.HashMap;
21 + import java.util.Hashtable;
22   import java.util.Iterator;
23 < import java.util.Enumeration;
19 < import java.util.ConcurrentModificationException;
23 > import java.util.Map;
24   import java.util.NoSuchElementException;
25 + import java.util.Set;
26   import java.util.concurrent.ConcurrentMap;
27 < import java.io.Serializable;
27 > import java.util.concurrent.atomic.AtomicReference;
28 > import java.util.concurrent.atomic.AtomicInteger;
29 > import java.util.concurrent.locks.LockSupport;
30 > import java.util.concurrent.locks.ReentrantLock;
31  
32   /**
33   * A hash table supporting full concurrency of retrievals and
# Line 33 | Line 41 | import java.io.Serializable;
41   * interoperable with {@code Hashtable} in programs that rely on its
42   * thread safety but not on its synchronization details.
43   *
44 < * <p> Retrieval operations (including {@code get}) generally do not
44 > * <p>Retrieval operations (including {@code get}) generally do not
45   * block, so may overlap with update operations (including {@code put}
46   * and {@code remove}). Retrievals reflect the results of the most
47   * recently <em>completed</em> update operations holding upon their
48 < * onset.  For aggregate operations such as {@code putAll} and {@code
49 < * clear}, concurrent retrievals may reflect insertion or removal of
50 < * only some entries.  Similarly, Iterators and Enumerations return
51 < * elements reflecting the state of the hash table at some point at or
52 < * since the creation of the iterator/enumeration.  They do
53 < * <em>not</em> throw {@link ConcurrentModificationException}.
54 < * However, iterators are designed to be used by only one thread at a
55 < * time.  Bear in mind that the results of aggregate status methods
56 < * including {@code size}, {@code isEmpty}, and {@code containsValue}
57 < * are typically useful only when a map is not undergoing concurrent
58 < * updates in other threads.  Otherwise the results of these methods
59 < * reflect transient states that may be adequate for monitoring
60 < * purposes, but not for program control.
61 < *
62 < * <p> Resizing this or any other kind of hash table is a relatively
63 < * slow operation, so, when possible, it is a good idea to provide
64 < * estimates of expected table sizes in constructors. Also, for
65 < * compatibility with previous versions of this class, constructors
66 < * may optionally specify an expected {@code concurrencyLevel} as an
67 < * additional hint for internal sizing.
48 > * onset. (More formally, an update operation for a given key bears a
49 > * <em>happens-before</em> relation with any (non-null) retrieval for
50 > * that key reporting the updated value.)  For aggregate operations
51 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
52 > * reflect insertion or removal of only some entries.  Similarly,
53 > * Iterators and Enumerations return elements reflecting the state of
54 > * the hash table at some point at or since the creation of the
55 > * iterator/enumeration.  They do <em>not</em> throw {@link
56 > * ConcurrentModificationException}.  However, iterators are designed
57 > * to be used by only one thread at a time.  Bear in mind that the
58 > * results of aggregate status methods including {@code size}, {@code
59 > * isEmpty}, and {@code containsValue} are typically useful only when
60 > * a map is not undergoing concurrent updates in other threads.
61 > * Otherwise the results of these methods reflect transient states
62 > * that may be adequate for monitoring or estimation purposes, but not
63 > * for program control.
64 > *
65 > * <p>The table is dynamically expanded when there are too many
66 > * collisions (i.e., keys that have distinct hash codes but fall into
67 > * the same slot modulo the table size), with the expected average
68 > * effect of maintaining roughly two bins per mapping (corresponding
69 > * to a 0.75 load factor threshold for resizing). There may be much
70 > * variance around this average as mappings are added and removed, but
71 > * overall, this maintains a commonly accepted time/space tradeoff for
72 > * hash tables.  However, resizing this or any other kind of hash
73 > * table may be a relatively slow operation. When possible, it is a
74 > * good idea to provide a size estimate as an optional {@code
75 > * initialCapacity} constructor argument. An additional optional
76 > * {@code loadFactor} constructor argument provides a further means of
77 > * customizing initial table capacity by specifying the table density
78 > * to be used in calculating the amount of space to allocate for the
79 > * given number of elements.  Also, for compatibility with previous
80 > * versions of this class, constructors may optionally specify an
81 > * expected {@code concurrencyLevel} as an additional hint for
82 > * internal sizing.  Note that using many keys with exactly the same
83 > * {@code hashCode()} is a sure way to slow down performance of any
84 > * hash table. To ameliorate impact, when keys are {@link Comparable},
85 > * this class may use comparison order among keys to help break ties.
86 > *
87 > * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
88 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
89 > * (using {@link #keySet(Object)} when only keys are of interest, and the
90 > * mapped values are (perhaps transiently) not used or all take the
91 > * same mapping value.
92   *
93   * <p>This class and its views and iterators implement all of the
94   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
95   * interfaces.
96   *
97 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
97 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
98   * does <em>not</em> allow {@code null} to be used as a key or value.
99   *
100 + * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
101 + * operations that are designed
102 + * to be safely, and often sensibly, applied even with maps that are
103 + * being concurrently updated by other threads; for example, when
104 + * computing a snapshot summary of the values in a shared registry.
105 + * There are three kinds of operation, each with four forms, accepting
106 + * functions with Keys, Values, Entries, and (Key, Value) arguments
107 + * and/or return values. Because the elements of a ConcurrentHashMapV8
108 + * are not ordered in any particular way, and may be processed in
109 + * different orders in different parallel executions, the correctness
110 + * of supplied functions should not depend on any ordering, or on any
111 + * other objects or values that may transiently change while
112 + * computation is in progress; and except for forEach actions, should
113 + * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
114 + * objects do not support method {@code setValue}.
115 + *
116 + * <ul>
117 + * <li> forEach: Perform a given action on each element.
118 + * A variant form applies a given transformation on each element
119 + * before performing the action.</li>
120 + *
121 + * <li> search: Return the first available non-null result of
122 + * applying a given function on each element; skipping further
123 + * search when a result is found.</li>
124 + *
125 + * <li> reduce: Accumulate each element.  The supplied reduction
126 + * function cannot rely on ordering (more formally, it should be
127 + * both associative and commutative).  There are five variants:
128 + *
129 + * <ul>
130 + *
131 + * <li> Plain reductions. (There is not a form of this method for
132 + * (key, value) function arguments since there is no corresponding
133 + * return type.)</li>
134 + *
135 + * <li> Mapped reductions that accumulate the results of a given
136 + * function applied to each element.</li>
137 + *
138 + * <li> Reductions to scalar doubles, longs, and ints, using a
139 + * given basis value.</li>
140 + *
141 + * </ul>
142 + * </li>
143 + * </ul>
144 + *
145 + * <p>These bulk operations accept a {@code parallelismThreshold}
146 + * argument. Methods proceed sequentially if the current map size is
147 + * estimated to be less than the given threshold. Using a value of
148 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
149 + * of {@code 1} results in maximal parallelism by partitioning into
150 + * enough subtasks to fully utilize the {@link
151 + * ForkJoinPool#commonPool()} that is used for all parallel
152 + * computations. Normally, you would initially choose one of these
153 + * extreme values, and then measure performance of using in-between
154 + * values that trade off overhead versus throughput.
155 + *
156 + * <p>The concurrency properties of bulk operations follow
157 + * from those of ConcurrentHashMapV8: Any non-null result returned
158 + * from {@code get(key)} and related access methods bears a
159 + * happens-before relation with the associated insertion or
160 + * update.  The result of any bulk operation reflects the
161 + * composition of these per-element relations (but is not
162 + * necessarily atomic with respect to the map as a whole unless it
163 + * is somehow known to be quiescent).  Conversely, because keys
164 + * and values in the map are never null, null serves as a reliable
165 + * atomic indicator of the current lack of any result.  To
166 + * maintain this property, null serves as an implicit basis for
167 + * all non-scalar reduction operations. For the double, long, and
168 + * int versions, the basis should be one that, when combined with
169 + * any other value, returns that other value (more formally, it
170 + * should be the identity element for the reduction). Most common
171 + * reductions have these properties; for example, computing a sum
172 + * with basis 0 or a minimum with basis MAX_VALUE.
173 + *
174 + * <p>Search and transformation functions provided as arguments
175 + * should similarly return null to indicate the lack of any result
176 + * (in which case it is not used). In the case of mapped
177 + * reductions, this also enables transformations to serve as
178 + * filters, returning null (or, in the case of primitive
179 + * specializations, the identity basis) if the element should not
180 + * be combined. You can create compound transformations and
181 + * filterings by composing them yourself under this "null means
182 + * there is nothing there now" rule before using them in search or
183 + * reduce operations.
184 + *
185 + * <p>Methods accepting and/or returning Entry arguments maintain
186 + * key-value associations. They may be useful for example when
187 + * finding the key for the greatest value. Note that "plain" Entry
188 + * arguments can be supplied using {@code new
189 + * AbstractMap.SimpleEntry(k,v)}.
190 + *
191 + * <p>Bulk operations may complete abruptly, throwing an
192 + * exception encountered in the application of a supplied
193 + * function. Bear in mind when handling such exceptions that other
194 + * concurrently executing functions could also have thrown
195 + * exceptions, or would have done so if the first exception had
196 + * not occurred.
197 + *
198 + * <p>Speedups for parallel compared to sequential forms are common
199 + * but not guaranteed.  Parallel operations involving brief functions
200 + * on small maps may execute more slowly than sequential forms if the
201 + * underlying work to parallelize the computation is more expensive
202 + * than the computation itself.  Similarly, parallelization may not
203 + * lead to much actual parallelism if all processors are busy
204 + * performing unrelated tasks.
205 + *
206 + * <p>All arguments to all task methods must be non-null.
207 + *
208 + * <p><em>jsr166e note: During transition, this class
209 + * uses nested functional interfaces with different names but the
210 + * same forms as those expected for JDK8.</em>
211 + *
212   * <p>This class is a member of the
213   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
214   * Java Collections Framework</a>.
215   *
72 * <p><em>jsr166e note: This class is a candidate replacement for
73 * java.util.concurrent.ConcurrentHashMap.<em>
74 *
216   * @since 1.5
217   * @author Doug Lea
218   * @param <K> the type of keys maintained by this map
219   * @param <V> the type of mapped values
220   */
221 < public class ConcurrentHashMapV8<K, V>
222 <        implements ConcurrentMap<K, V>, Serializable {
221 > public class ConcurrentHashMapV8<K,V>
222 >    implements ConcurrentMap<K,V>, Serializable {
223      private static final long serialVersionUID = 7249069246763182397L;
224  
225      /**
226 <     * A function computing a mapping from the given key to a value,
227 <     * or {@code null} if there is no mapping. This is a place-holder
228 <     * for an upcoming JDK8 interface.
229 <     */
230 <    public static interface MappingFunction<K, V> {
231 <        /**
232 <         * Returns a value for the given key, or null if there is no
233 <         * mapping. If this function throws an (unchecked) exception,
234 <         * the exception is rethrown to its caller, and no mapping is
235 <         * recorded.  Because this function is invoked within
95 <         * atomicity control, the computation should be short and
96 <         * simple. The most common usage is to construct a new object
97 <         * serving as an initial mapped value.
98 <         *
99 <         * @param key the (non-null) key
100 <         * @return a value, or null if none
226 >     * An object for traversing and partitioning elements of a source.
227 >     * This interface provides a subset of the functionality of JDK8
228 >     * java.util.Spliterator.
229 >     */
230 >    public static interface ConcurrentHashMapSpliterator<T> {
231 >        /**
232 >         * If possible, returns a new spliterator covering
233 >         * approximately one half of the elements, which will not be
234 >         * covered by this spliterator. Returns null if cannot be
235 >         * split.
236           */
237 <        V map(K key);
238 <    }
237 >        ConcurrentHashMapSpliterator<T> trySplit();
238 >        /**
239 >         * Returns an estimate of the number of elements covered by
240 >         * this Spliterator.
241 >         */
242 >        long estimateSize();
243 >
244 >        /** Applies the action to each untraversed element */
245 >        void forEachRemaining(Action<? super T> action);
246 >        /** If an element remains, applies the action and returns true. */
247 >        boolean tryAdvance(Action<? super T> action);
248 >    }
249 >
250 >    // Sams
251 >    /** Interface describing a void action of one argument */
252 >    public interface Action<A> { void apply(A a); }
253 >    /** Interface describing a void action of two arguments */
254 >    public interface BiAction<A,B> { void apply(A a, B b); }
255 >    /** Interface describing a function of one argument */
256 >    public interface Fun<A,T> { T apply(A a); }
257 >    /** Interface describing a function of two arguments */
258 >    public interface BiFun<A,B,T> { T apply(A a, B b); }
259 >    /** Interface describing a function mapping its argument to a double */
260 >    public interface ObjectToDouble<A> { double apply(A a); }
261 >    /** Interface describing a function mapping its argument to a long */
262 >    public interface ObjectToLong<A> { long apply(A a); }
263 >    /** Interface describing a function mapping its argument to an int */
264 >    public interface ObjectToInt<A> {int apply(A a); }
265 >    /** Interface describing a function mapping two arguments to a double */
266 >    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
267 >    /** Interface describing a function mapping two arguments to a long */
268 >    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
269 >    /** Interface describing a function mapping two arguments to an int */
270 >    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
271 >    /** Interface describing a function mapping two doubles to a double */
272 >    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
273 >    /** Interface describing a function mapping two longs to a long */
274 >    public interface LongByLongToLong { long apply(long a, long b); }
275 >    /** Interface describing a function mapping two ints to an int */
276 >    public interface IntByIntToInt { int apply(int a, int b); }
277  
278      /*
279       * Overview:
# Line 108 | Line 281 | public class ConcurrentHashMapV8<K, V>
281       * The primary design goal of this hash table is to maintain
282       * concurrent readability (typically method get(), but also
283       * iterators and related methods) while minimizing update
284 <     * contention.
285 <     *
286 <     * Each key-value mapping is held in a Node.  Because Node fields
287 <     * can contain special values, they are defined using plain Object
288 <     * types. Similarly in turn, all internal methods that use them
289 <     * work off Object types. All public generic-typed methods relay
290 <     * in/out of these internal methods, supplying casts as needed.
284 >     * contention. Secondary goals are to keep space consumption about
285 >     * the same or better than java.util.HashMap, and to support high
286 >     * initial insertion rates on an empty table by many threads.
287 >     *
288 >     * This map usually acts as a binned (bucketed) hash table.  Each
289 >     * key-value mapping is held in a Node.  Most nodes are instances
290 >     * of the basic Node class with hash, key, value, and next
291 >     * fields. However, various subclasses exist: TreeNodes are
292 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
293 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
294 >     * of bins during resizing. ReservationNodes are used as
295 >     * placeholders while establishing values in computeIfAbsent and
296 >     * related methods.  The types TreeBin, ForwardingNode, and
297 >     * ReservationNode do not hold normal user keys, values, or
298 >     * hashes, and are readily distinguishable during search etc
299 >     * because they have negative hash fields and null key and value
300 >     * fields. (These special nodes are either uncommon or transient,
301 >     * so the impact of carrying around some unused fields is
302 >     * insignificant.)
303       *
304       * The table is lazily initialized to a power-of-two size upon the
305 <     * first insertion.  Each bin in the table contains a (typically
306 <     * short) list of Nodes.  Table accesses require volatile/atomic
307 <     * reads, writes, and CASes.  Because there is no other way to
308 <     * arrange this without adding further indirections, we use
309 <     * intrinsics (sun.misc.Unsafe) operations.  The lists of nodes
310 <     * within bins are always accurately traversable under volatile
311 <     * reads, so long as lookups check hash code and non-nullness of
312 <     * key and value before checking key equality. (All valid hash
313 <     * codes are nonnegative. Negative values are reserved for special
314 <     * forwarding nodes; see below.)
315 <     *
316 <     * A bin may be locked during update (insert, delete, and replace)
317 <     * operations.  We do not want to waste the space required to
318 <     * associate a distinct lock object with each bin, so instead use
319 <     * the first node of a bin list itself as a lock, using builtin
320 <     * "synchronized" locks. These save space and we can live with
321 <     * only plain block-structured lock/unlock operations. Using the
322 <     * first node of a list as a lock does not by itself suffice
323 <     * though: When a node is locked, any update must first validate
324 <     * that it is still the first node, and retry if not. (Because new
325 <     * nodes are always appended to lists, once a node is first in a
326 <     * bin, it remains first until deleted or the bin becomes
327 <     * invalidated.)  However, update operations can and sometimes do
328 <     * still traverse the bin until the point of update, which helps
329 <     * reduce cache misses on retries.  This is a converse of sorts to
330 <     * the lazy locking technique described by Herlihy & Shavit. If
331 <     * there is no existing node during a put operation, then one can
332 <     * be CAS'ed in (without need for lock except in computeIfAbsent);
333 <     * the CAS serves as validation. This is on average the most
334 <     * common case for put operations -- under random hash codes, the
335 <     * distribution of nodes in bins follows a Poisson distribution
336 <     * (see http://en.wikipedia.org/wiki/Poisson_distribution) with a
337 <     * parameter of 0.5 on average under the default loadFactor of
338 <     * 0.75.  The expected number of locks covering different elements
339 <     * (i.e., bins with 2 or more nodes) is approximately 10% at
340 <     * steady state under default settings.  Lock contention
341 <     * probability for two threads accessing arbitrary distinct
342 <     * elements is, roughly, 1 / (8 * #elements).
343 <     *
344 <     * The table is resized when occupancy exceeds a threshold.  Only
345 <     * a single thread performs the resize (using field "resizing", to
346 <     * arrange exclusion), but the table otherwise remains usable for
347 <     * both reads and updates. Resizing proceeds by transferring bins,
348 <     * one by one, from the table to the next table.  Upon transfer,
349 <     * the old table bin contains only a special forwarding node (with
350 <     * negative hash code ("MOVED")) that contains the next table as
351 <     * its key. On encountering a forwarding node, access and update
352 <     * operations restart, using the new table. To ensure concurrent
353 <     * readability of traversals, transfers must proceed from the last
354 <     * bin (table.length - 1) up towards the first.  Any traversal
355 <     * starting from the first bin can then arrange to move to the new
356 <     * table for the rest of the traversal without revisiting nodes.
357 <     * This constrains bin transfers to a particular order, and so can
358 <     * block indefinitely waiting for the next lock, and other threads
359 <     * cannot help with the transfer. However, expected stalls are
360 <     * infrequent enough to not warrant the additional overhead and
361 <     * complexity of access and iteration schemes that could admit
362 <     * out-of-order or concurrent bin transfers.
363 <     *
364 <     * A similar traversal scheme (not yet implemented) can apply to
365 <     * partial traversals during partitioned aggregate operations.
366 <     * Also, read-only operations give up if ever forwarded to a null
367 <     * table, which provides support for shutdown-style clearing,
368 <     * which is also not currently implemented.
369 <     *
370 <     * The element count is maintained using a LongAdder, which avoids
371 <     * contention on updates but can encounter cache thrashing if read
372 <     * too frequently during concurrent updates. To avoid reading so
373 <     * often, resizing is normally attempted only upon adding to a bin
374 <     * already holding two or more nodes. Under the default threshold
375 <     * (0.75), and uniform hash distributions, the probability of this
376 <     * occurring at threshold is around 13%, meaning that only about 1
377 <     * in 8 puts check threshold (and after resizing, many fewer do
378 <     * so). But this approximation has high variance for small table
379 <     * sizes, so we check on any collision for sizes <= 64.  Further,
380 <     * to increase the probability that a resize occurs soon enough, we
381 <     * offset the threshold (see THRESHOLD_OFFSET) by the expected
382 <     * number of puts between checks. This is currently set to 8, in
383 <     * accord with the default load factor. In practice, this is
384 <     * rarely overridden, and in any case is close enough to other
385 <     * plausible values not to waste dynamic probability computation
386 <     * for more precision.
305 >     * first insertion.  Each bin in the table normally contains a
306 >     * list of Nodes (most often, the list has only zero or one Node).
307 >     * Table accesses require volatile/atomic reads, writes, and
308 >     * CASes.  Because there is no other way to arrange this without
309 >     * adding further indirections, we use intrinsics
310 >     * (sun.misc.Unsafe) operations.
311 >     *
312 >     * We use the top (sign) bit of Node hash fields for control
313 >     * purposes -- it is available anyway because of addressing
314 >     * constraints.  Nodes with negative hash fields are specially
315 >     * handled or ignored in map methods.
316 >     *
317 >     * Insertion (via put or its variants) of the first node in an
318 >     * empty bin is performed by just CASing it to the bin.  This is
319 >     * by far the most common case for put operations under most
320 >     * key/hash distributions.  Other update operations (insert,
321 >     * delete, and replace) require locks.  We do not want to waste
322 >     * the space required to associate a distinct lock object with
323 >     * each bin, so instead use the first node of a bin list itself as
324 >     * a lock. Locking support for these locks relies on builtin
325 >     * "synchronized" monitors.
326 >     *
327 >     * Using the first node of a list as a lock does not by itself
328 >     * suffice though: When a node is locked, any update must first
329 >     * validate that it is still the first node after locking it, and
330 >     * retry if not. Because new nodes are always appended to lists,
331 >     * once a node is first in a bin, it remains first until deleted
332 >     * or the bin becomes invalidated (upon resizing).
333 >     *
334 >     * The main disadvantage of per-bin locks is that other update
335 >     * operations on other nodes in a bin list protected by the same
336 >     * lock can stall, for example when user equals() or mapping
337 >     * functions take a long time.  However, statistically, under
338 >     * random hash codes, this is not a common problem.  Ideally, the
339 >     * frequency of nodes in bins follows a Poisson distribution
340 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
341 >     * parameter of about 0.5 on average, given the resizing threshold
342 >     * of 0.75, although with a large variance because of resizing
343 >     * granularity. Ignoring variance, the expected occurrences of
344 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
345 >     * first values are:
346 >     *
347 >     * 0:    0.60653066
348 >     * 1:    0.30326533
349 >     * 2:    0.07581633
350 >     * 3:    0.01263606
351 >     * 4:    0.00157952
352 >     * 5:    0.00015795
353 >     * 6:    0.00001316
354 >     * 7:    0.00000094
355 >     * 8:    0.00000006
356 >     * more: less than 1 in ten million
357 >     *
358 >     * Lock contention probability for two threads accessing distinct
359 >     * elements is roughly 1 / (8 * #elements) under random hashes.
360 >     *
361 >     * Actual hash code distributions encountered in practice
362 >     * sometimes deviate significantly from uniform randomness.  This
363 >     * includes the case when N > (1<<30), so some keys MUST collide.
364 >     * Similarly for dumb or hostile usages in which multiple keys are
365 >     * designed to have identical hash codes or ones that differs only
366 >     * in masked-out high bits. So we use a secondary strategy that
367 >     * applies when the number of nodes in a bin exceeds a
368 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
369 >     * specialized form of red-black trees), bounding search time to
370 >     * O(log N).  Each search step in a TreeBin is at least twice as
371 >     * slow as in a regular list, but given that N cannot exceed
372 >     * (1<<64) (before running out of addresses) this bounds search
373 >     * steps, lock hold times, etc, to reasonable constants (roughly
374 >     * 100 nodes inspected per operation worst case) so long as keys
375 >     * are Comparable (which is very common -- String, Long, etc).
376 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
377 >     * traversal pointers as regular nodes, so can be traversed in
378 >     * iterators in the same way.
379 >     *
380 >     * The table is resized when occupancy exceeds a percentage
381 >     * threshold (nominally, 0.75, but see below).  Any thread
382 >     * noticing an overfull bin may assist in resizing after the
383 >     * initiating thread allocates and sets up the replacement
384 >     * array. However, rather than stalling, these other threads may
385 >     * proceed with insertions etc.  The use of TreeBins shields us
386 >     * from the worst case effects of overfilling while resizes are in
387 >     * progress.  Resizing proceeds by transferring bins, one by one,
388 >     * from the table to the next table. To enable concurrency, the
389 >     * next table must be (incrementally) prefilled with place-holders
390 >     * serving as reverse forwarders to the old table.  Because we are
391 >     * using power-of-two expansion, the elements from each bin must
392 >     * either stay at same index, or move with a power of two
393 >     * offset. We eliminate unnecessary node creation by catching
394 >     * cases where old nodes can be reused because their next fields
395 >     * won't change.  On average, only about one-sixth of them need
396 >     * cloning when a table doubles. The nodes they replace will be
397 >     * garbage collectable as soon as they are no longer referenced by
398 >     * any reader thread that may be in the midst of concurrently
399 >     * traversing table.  Upon transfer, the old table bin contains
400 >     * only a special forwarding node (with hash field "MOVED") that
401 >     * contains the next table as its key. On encountering a
402 >     * forwarding node, access and update operations restart, using
403 >     * the new table.
404 >     *
405 >     * Each bin transfer requires its bin lock, which can stall
406 >     * waiting for locks while resizing. However, because other
407 >     * threads can join in and help resize rather than contend for
408 >     * locks, average aggregate waits become shorter as resizing
409 >     * progresses.  The transfer operation must also ensure that all
410 >     * accessible bins in both the old and new table are usable by any
411 >     * traversal.  This is arranged by proceeding from the last bin
412 >     * (table.length - 1) up towards the first.  Upon seeing a
413 >     * forwarding node, traversals (see class Traverser) arrange to
414 >     * move to the new table without revisiting nodes.  However, to
415 >     * ensure that no intervening nodes are skipped, bin splitting can
416 >     * only begin after the associated reverse-forwarders are in
417 >     * place.
418 >     *
419 >     * The traversal scheme also applies to partial traversals of
420 >     * ranges of bins (via an alternate Traverser constructor)
421 >     * to support partitioned aggregate operations.  Also, read-only
422 >     * operations give up if ever forwarded to a null table, which
423 >     * provides support for shutdown-style clearing, which is also not
424 >     * currently implemented.
425 >     *
426 >     * Lazy table initialization minimizes footprint until first use,
427 >     * and also avoids resizings when the first operation is from a
428 >     * putAll, constructor with map argument, or deserialization.
429 >     * These cases attempt to override the initial capacity settings,
430 >     * but harmlessly fail to take effect in cases of races.
431 >     *
432 >     * The element count is maintained using a specialization of
433 >     * LongAdder. We need to incorporate a specialization rather than
434 >     * just use a LongAdder in order to access implicit
435 >     * contention-sensing that leads to creation of multiple
436 >     * CounterCells.  The counter mechanics avoid contention on
437 >     * updates but can encounter cache thrashing if read too
438 >     * frequently during concurrent access. To avoid reading so often,
439 >     * resizing under contention is attempted only upon adding to a
440 >     * bin already holding two or more nodes. Under uniform hash
441 >     * distributions, the probability of this occurring at threshold
442 >     * is around 13%, meaning that only about 1 in 8 puts check
443 >     * threshold (and after resizing, many fewer do so).
444 >     *
445 >     * TreeBins use a special form of comparison for search and
446 >     * related operations (which is the main reason we cannot use
447 >     * existing collections such as TreeMaps). TreeBins contain
448 >     * Comparable elements, but may contain others, as well as
449 >     * elements that are Comparable but not necessarily Comparable
450 >     * for the same T, so we cannot invoke compareTo among them. To
451 >     * handle this, the tree is ordered primarily by hash value, then
452 >     * by Comparable.compareTo order if applicable.  On lookup at a
453 >     * node, if elements are not comparable or compare as 0 then both
454 >     * left and right children may need to be searched in the case of
455 >     * tied hash values. (This corresponds to the full list search
456 >     * that would be necessary if all elements were non-Comparable and
457 >     * had tied hashes.)  The red-black balancing code is updated from
458 >     * pre-jdk-collections
459 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
460 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
461 >     * Algorithms" (CLR).
462 >     *
463 >     * TreeBins also require an additional locking mechanism.  While
464 >     * list traversal is always possible by readers even during
465 >     * updates, tree traversal is not, mainly because of tree-rotations
466 >     * that may change the root node and/or its linkages.  TreeBins
467 >     * include a simple read-write lock mechanism parasitic on the
468 >     * main bin-synchronization strategy: Structural adjustments
469 >     * associated with an insertion or removal are already bin-locked
470 >     * (and so cannot conflict with other writers) but must wait for
471 >     * ongoing readers to finish. Since there can be only one such
472 >     * waiter, we use a simple scheme using a single "waiter" field to
473 >     * block writers.  However, readers need never block.  If the root
474 >     * lock is held, they proceed along the slow traversal path (via
475 >     * next-pointers) until the lock becomes available or the list is
476 >     * exhausted, whichever comes first. These cases are not fast, but
477 >     * maximize aggregate expected throughput.
478 >     *
479 >     * Maintaining API and serialization compatibility with previous
480 >     * versions of this class introduces several oddities. Mainly: We
481 >     * leave untouched but unused constructor arguments refering to
482 >     * concurrencyLevel. We accept a loadFactor constructor argument,
483 >     * but apply it only to initial table capacity (which is the only
484 >     * time that we can guarantee to honor it.) We also declare an
485 >     * unused "Segment" class that is instantiated in minimal form
486 >     * only when serializing.
487 >     *
488 >     * This file is organized to make things a little easier to follow
489 >     * while reading than they might otherwise: First the main static
490 >     * declarations and utilities, then fields, then main public
491 >     * methods (with a few factorings of multiple public methods into
492 >     * internal ones), then sizing methods, trees, traversers, and
493 >     * bulk operations.
494       */
495  
496      /* ---------------- Constants -------------- */
497  
498      /**
499 <     * The smallest allowed table capacity.  Must be a power of 2, at
500 <     * least 2.
499 >     * The largest possible table capacity.  This value must be
500 >     * exactly 1<<30 to stay within Java array allocation and indexing
501 >     * bounds for power of two table sizes, and is further required
502 >     * because the top two bits of 32bit hash fields are used for
503 >     * control purposes.
504       */
505 <    static final int MINIMUM_CAPACITY = 2;
505 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
506  
507      /**
508 <     * The largest allowed table capacity.  Must be a power of 2, at
509 <     * most 1<<30.
508 >     * The default initial table capacity.  Must be a power of 2
509 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
510       */
511 <    static final int MAXIMUM_CAPACITY = 1 << 30;
511 >    private static final int DEFAULT_CAPACITY = 16;
512  
513      /**
514 <     * The default initial table capacity.  Must be a power of 2, at
515 <     * least MINIMUM_CAPACITY and at most MAXIMUM_CAPACITY.
514 >     * The largest possible (non-power of two) array size.
515 >     * Needed by toArray and related methods.
516       */
517 <    static final int DEFAULT_CAPACITY = 16;
517 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
518  
519      /**
520 <     * The default load factor for this table, used when not otherwise
521 <     * specified in a constructor.
520 >     * The default concurrency level for this table. Unused but
521 >     * defined for compatibility with previous versions of this class.
522       */
523 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
523 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
524  
525      /**
526 <     * The default concurrency level for this table. Unused, but
527 <     * defined for compatibility with previous versions of this class.
526 >     * The load factor for this table. Overrides of this value in
527 >     * constructors affect only the initial table capacity.  The
528 >     * actual floating point value isn't normally used -- it is
529 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
530 >     * the associated resizing threshold.
531       */
532 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
532 >    private static final float LOAD_FACTOR = 0.75f;
533  
534      /**
535 <     * The count value to offset thresholds to compensate for checking
536 <     * for resizing only when inserting into bins with two or more
537 <     * elements. See above for explanation.
535 >     * The bin count threshold for using a tree rather than list for a
536 >     * bin.  Bins are converted to trees when adding an element to a
537 >     * bin with at least this many nodes. The value must be greater
538 >     * than 2, and should be at least 8 to mesh with assumptions in
539 >     * tree removal about conversion back to plain bins upon
540 >     * shrinkage.
541       */
542 <    static final int THRESHOLD_OFFSET = 8;
542 >    static final int TREEIFY_THRESHOLD = 8;
543  
544      /**
545 <     * Special node hash value indicating to use table in node.key
546 <     * Must be negative.
545 >     * The bin count threshold for untreeifying a (split) bin during a
546 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
547 >     * most 6 to mesh with shrinkage detection under removal.
548       */
549 <    static final int MOVED = -1;
248 <
249 <    /* ---------------- Fields -------------- */
549 >    static final int UNTREEIFY_THRESHOLD = 6;
550  
551      /**
552 <     * The array of bins. Lazily initialized upon first insertion.
553 <     * Size is always a power of two. Accessed directly by inner
554 <     * classes.
552 >     * The smallest table capacity for which bins may be treeified.
553 >     * (Otherwise the table is resized if too many nodes in a bin.)
554 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
555 >     * conflicts between resizing and treeification thresholds.
556       */
557 <    transient volatile Node[] table;
257 <
258 <    /** The counter maintaining number of elements. */
259 <    private transient final LongAdder counter;
260 <    /** Nonzero when table is being initialized or resized. Updated via CAS. */
261 <    private transient volatile int resizing;
262 <    /** The target load factor for the table. */
263 <    private transient float loadFactor;
264 <    /** The next element count value upon which to resize the table. */
265 <    private transient int threshold;
266 <    /** The initial capacity of the table. */
267 <    private transient int initCap;
268 <
269 <    // views
270 <    transient Set<K> keySet;
271 <    transient Set<Map.Entry<K,V>> entrySet;
272 <    transient Collection<V> values;
273 <
274 <    /** For serialization compatibility. Null unless serialized; see below */
275 <    Segment<K,V>[] segments;
557 >    static final int MIN_TREEIFY_CAPACITY = 64;
558  
559      /**
560 <     * Applies a supplemental hash function to a given hashCode, which
561 <     * defends against poor quality hash functions.  The result must
562 <     * be non-negative, and for reasonable performance must have good
563 <     * avalanche properties; i.e., that each bit of the argument
564 <     * affects each bit (except sign bit) of the result.
560 >     * Minimum number of rebinnings per transfer step. Ranges are
561 >     * subdivided to allow multiple resizer threads.  This value
562 >     * serves as a lower bound to avoid resizers encountering
563 >     * excessive memory contention.  The value should be at least
564 >     * DEFAULT_CAPACITY.
565       */
566 <    private static final int spread(int h) {
285 <        // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/
286 <        h ^= h >>> 16;
287 <        h *= 0x85ebca6b;
288 <        h ^= h >>> 13;
289 <        h *= 0xc2b2ae35;
290 <        return (h >>> 16) ^ (h & 0x7fffffff); // mask out sign bit
291 <    }
566 >    private static final int MIN_TRANSFER_STRIDE = 16;
567  
568 <    /**
569 <     * Key-value entry. Note that this is never exported out as a
570 <     * user-visible Map.Entry.
568 >    /*
569 >     * Encodings for Node hash fields. See above for explanation.
570 >     */
571 >    static final int MOVED     = -1; // hash for forwarding nodes
572 >    static final int TREEBIN   = -2; // hash for roots of trees
573 >    static final int RESERVED  = -3; // hash for transient reservations
574 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
575 >
576 >    /** Number of CPUS, to place bounds on some sizings */
577 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
578 >
579 >    /** For serialization compatibility. */
580 >    private static final ObjectStreamField[] serialPersistentFields = {
581 >        new ObjectStreamField("segments", Segment[].class),
582 >        new ObjectStreamField("segmentMask", Integer.TYPE),
583 >        new ObjectStreamField("segmentShift", Integer.TYPE)
584 >    };
585 >
586 >    /* ---------------- Nodes -------------- */
587 >
588 >    /**
589 >     * Key-value entry.  This class is never exported out as a
590 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
591 >     * MapEntry below), but can be used for read-only traversals used
592 >     * in bulk tasks.  Subclasses of Node with a negative hash field
593 >     * are special, and contain null keys and values (but are never
594 >     * exported).  Otherwise, keys and vals are never null.
595       */
596 <    static final class Node {
596 >    static class Node<K,V> implements Map.Entry<K,V> {
597          final int hash;
598 <        final Object key;
599 <        volatile Object val;
600 <        volatile Node next;
598 >        final K key;
599 >        volatile V val;
600 >        volatile Node<K,V> next;
601  
602 <        Node(int hash, Object key, Object val, Node next) {
602 >        Node(int hash, K key, V val, Node<K,V> next) {
603              this.hash = hash;
604              this.key = key;
605              this.val = val;
606              this.next = next;
607          }
608 +
609 +        public final K getKey()       { return key; }
610 +        public final V getValue()     { return val; }
611 +        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
612 +        public final String toString(){ return key + "=" + val; }
613 +        public final V setValue(V value) {
614 +            throw new UnsupportedOperationException();
615 +        }
616 +
617 +        public final boolean equals(Object o) {
618 +            Object k, v, u; Map.Entry<?,?> e;
619 +            return ((o instanceof Map.Entry) &&
620 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
621 +                    (v = e.getValue()) != null &&
622 +                    (k == key || k.equals(key)) &&
623 +                    (v == (u = val) || v.equals(u)));
624 +        }
625 +
626 +        /**
627 +         * Virtualized support for map.get(); overridden in subclasses.
628 +         */
629 +        Node<K,V> find(int h, Object k) {
630 +            Node<K,V> e = this;
631 +            if (k != null) {
632 +                do {
633 +                    K ek;
634 +                    if (e.hash == h &&
635 +                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
636 +                        return e;
637 +                } while ((e = e.next) != null);
638 +            }
639 +            return null;
640 +        }
641      }
642  
643 +    /* ---------------- Static utilities -------------- */
644 +
645 +    /**
646 +     * Spreads (XORs) higher bits of hash to lower and also forces top
647 +     * bit to 0. Because the table uses power-of-two masking, sets of
648 +     * hashes that vary only in bits above the current mask will
649 +     * always collide. (Among known examples are sets of Float keys
650 +     * holding consecutive whole numbers in small tables.)  So we
651 +     * apply a transform that spreads the impact of higher bits
652 +     * downward. There is a tradeoff between speed, utility, and
653 +     * quality of bit-spreading. Because many common sets of hashes
654 +     * are already reasonably distributed (so don't benefit from
655 +     * spreading), and because we use trees to handle large sets of
656 +     * collisions in bins, we just XOR some shifted bits in the
657 +     * cheapest possible way to reduce systematic lossage, as well as
658 +     * to incorporate impact of the highest bits that would otherwise
659 +     * never be used in index calculations because of table bounds.
660 +     */
661 +    static final int spread(int h) {
662 +        return (h ^ (h >>> 16)) & HASH_BITS;
663 +    }
664 +
665 +    /**
666 +     * Returns a power of two table size for the given desired capacity.
667 +     * See Hackers Delight, sec 3.2
668 +     */
669 +    private static final int tableSizeFor(int c) {
670 +        int n = c - 1;
671 +        n |= n >>> 1;
672 +        n |= n >>> 2;
673 +        n |= n >>> 4;
674 +        n |= n >>> 8;
675 +        n |= n >>> 16;
676 +        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
677 +    }
678 +
679 +    /**
680 +     * Returns x's Class if it is of the form "class C implements
681 +     * Comparable<C>", else null.
682 +     */
683 +    static Class<?> comparableClassFor(Object x) {
684 +        if (x instanceof Comparable) {
685 +            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
686 +            if ((c = x.getClass()) == String.class) // bypass checks
687 +                return c;
688 +            if ((ts = c.getGenericInterfaces()) != null) {
689 +                for (int i = 0; i < ts.length; ++i) {
690 +                    if (((t = ts[i]) instanceof ParameterizedType) &&
691 +                        ((p = (ParameterizedType)t).getRawType() ==
692 +                         Comparable.class) &&
693 +                        (as = p.getActualTypeArguments()) != null &&
694 +                        as.length == 1 && as[0] == c) // type arg is c
695 +                        return c;
696 +                }
697 +            }
698 +        }
699 +        return null;
700 +    }
701 +
702 +    /**
703 +     * Returns k.compareTo(x) if x matches kc (k's screened comparable
704 +     * class), else 0.
705 +     */
706 +    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
707 +    static int compareComparables(Class<?> kc, Object k, Object x) {
708 +        return (x == null || x.getClass() != kc ? 0 :
709 +                ((Comparable)k).compareTo(x));
710 +    }
711 +
712 +    /* ---------------- Table element access -------------- */
713 +
714      /*
715       * Volatile access methods are used for table elements as well as
716 <     * elements of in-progress next table while resizing.  Uses in
717 <     * access and update methods are null checked by callers, and
718 <     * implicitly bounds-checked, relying on the invariants that tab
719 <     * arrays have non-zero size, and all indices are masked with
720 <     * (tab.length - 1) which is never negative and always less than
721 <     * length. The "relaxed" non-volatile forms are used only during
722 <     * table initialization. The only other usage is in
723 <     * HashIterator.advance, which performs explicit checks.
716 >     * elements of in-progress next table while resizing.  All uses of
717 >     * the tab arguments must be null checked by callers.  All callers
718 >     * also paranoically precheck that tab's length is not zero (or an
719 >     * equivalent check), thus ensuring that any index argument taking
720 >     * the form of a hash value anded with (length - 1) is a valid
721 >     * index.  Note that, to be correct wrt arbitrary concurrency
722 >     * errors by users, these checks must operate on local variables,
723 >     * which accounts for some odd-looking inline assignments below.
724 >     * Note that calls to setTabAt always occur within locked regions,
725 >     * and so in principle require only release ordering, not need
726 >     * full volatile semantics, but are currently coded as volatile
727 >     * writes to be conservative.
728 >     */
729 >
730 >    @SuppressWarnings("unchecked")
731 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
732 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
733 >    }
734 >
735 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
736 >                                        Node<K,V> c, Node<K,V> v) {
737 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
738 >    }
739 >
740 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
741 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
742 >    }
743 >
744 >    /* ---------------- Fields -------------- */
745 >
746 >    /**
747 >     * The array of bins. Lazily initialized upon first insertion.
748 >     * Size is always a power of two. Accessed directly by iterators.
749 >     */
750 >    transient volatile Node<K,V>[] table;
751 >
752 >    /**
753 >     * The next table to use; non-null only while resizing.
754 >     */
755 >    private transient volatile Node<K,V>[] nextTable;
756 >
757 >    /**
758 >     * Base counter value, used mainly when there is no contention,
759 >     * but also as a fallback during table initialization
760 >     * races. Updated via CAS.
761       */
762 +    private transient volatile long baseCount;
763  
764 <    static final Node tabAt(Node[] tab, int i) { // used in HashIterator
765 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
764 >    /**
765 >     * Table initialization and resizing control.  When negative, the
766 >     * table is being initialized or resized: -1 for initialization,
767 >     * else -(1 + the number of active resizing threads).  Otherwise,
768 >     * when table is null, holds the initial table size to use upon
769 >     * creation, or 0 for default. After initialization, holds the
770 >     * next element count value upon which to resize the table.
771 >     */
772 >    private transient volatile int sizeCtl;
773 >
774 >    /**
775 >     * The next table index (plus one) to split while resizing.
776 >     */
777 >    private transient volatile int transferIndex;
778 >
779 >    /**
780 >     * The least available table index to split while resizing.
781 >     */
782 >    private transient volatile int transferOrigin;
783 >
784 >    /**
785 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
786 >     */
787 >    private transient volatile int cellsBusy;
788 >
789 >    /**
790 >     * Table of counter cells. When non-null, size is a power of 2.
791 >     */
792 >    private transient volatile CounterCell[] counterCells;
793 >
794 >    // views
795 >    private transient KeySetView<K,V> keySet;
796 >    private transient ValuesView<K,V> values;
797 >    private transient EntrySetView<K,V> entrySet;
798 >
799 >
800 >    /* ---------------- Public operations -------------- */
801 >
802 >    /**
803 >     * Creates a new, empty map with the default initial table size (16).
804 >     */
805 >    public ConcurrentHashMapV8() {
806      }
807  
808 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
809 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
808 >    /**
809 >     * Creates a new, empty map with an initial table size
810 >     * accommodating the specified number of elements without the need
811 >     * to dynamically resize.
812 >     *
813 >     * @param initialCapacity The implementation performs internal
814 >     * sizing to accommodate this many elements.
815 >     * @throws IllegalArgumentException if the initial capacity of
816 >     * elements is negative
817 >     */
818 >    public ConcurrentHashMapV8(int initialCapacity) {
819 >        if (initialCapacity < 0)
820 >            throw new IllegalArgumentException();
821 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
822 >                   MAXIMUM_CAPACITY :
823 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
824 >        this.sizeCtl = cap;
825      }
826  
827 <    private static final void setTabAt(Node[] tab, int i, Node v) {
828 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
827 >    /**
828 >     * Creates a new map with the same mappings as the given map.
829 >     *
830 >     * @param m the map
831 >     */
832 >    public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
833 >        this.sizeCtl = DEFAULT_CAPACITY;
834 >        putAll(m);
835 >    }
836 >
837 >    /**
838 >     * Creates a new, empty map with an initial table size based on
839 >     * the given number of elements ({@code initialCapacity}) and
840 >     * initial table density ({@code loadFactor}).
841 >     *
842 >     * @param initialCapacity the initial capacity. The implementation
843 >     * performs internal sizing to accommodate this many elements,
844 >     * given the specified load factor.
845 >     * @param loadFactor the load factor (table density) for
846 >     * establishing the initial table size
847 >     * @throws IllegalArgumentException if the initial capacity of
848 >     * elements is negative or the load factor is nonpositive
849 >     *
850 >     * @since 1.6
851 >     */
852 >    public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
853 >        this(initialCapacity, loadFactor, 1);
854      }
855  
856 <    private static final Node relaxedTabAt(Node[] tab, int i) {
857 <        return (Node)UNSAFE.getObject(tab, ((long)i<<ASHIFT)+ABASE);
856 >    /**
857 >     * Creates a new, empty map with an initial table size based on
858 >     * the given number of elements ({@code initialCapacity}), table
859 >     * density ({@code loadFactor}), and number of concurrently
860 >     * updating threads ({@code concurrencyLevel}).
861 >     *
862 >     * @param initialCapacity the initial capacity. The implementation
863 >     * performs internal sizing to accommodate this many elements,
864 >     * given the specified load factor.
865 >     * @param loadFactor the load factor (table density) for
866 >     * establishing the initial table size
867 >     * @param concurrencyLevel the estimated number of concurrently
868 >     * updating threads. The implementation may use this value as
869 >     * a sizing hint.
870 >     * @throws IllegalArgumentException if the initial capacity is
871 >     * negative or the load factor or concurrencyLevel are
872 >     * nonpositive
873 >     */
874 >    public ConcurrentHashMapV8(int initialCapacity,
875 >                             float loadFactor, int concurrencyLevel) {
876 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
877 >            throw new IllegalArgumentException();
878 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
879 >            initialCapacity = concurrencyLevel;   // as estimated threads
880 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
881 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
882 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
883 >        this.sizeCtl = cap;
884      }
885  
886 <    private static final void relaxedSetTabAt(Node[] tab, int i, Node v) {
887 <        UNSAFE.putObject(tab, ((long)i<<ASHIFT)+ABASE, v);
886 >    // Original (since JDK1.2) Map methods
887 >
888 >    /**
889 >     * {@inheritDoc}
890 >     */
891 >    public int size() {
892 >        long n = sumCount();
893 >        return ((n < 0L) ? 0 :
894 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
895 >                (int)n);
896      }
897  
898 <    /* ---------------- Access and update operations -------------- */
898 >    /**
899 >     * {@inheritDoc}
900 >     */
901 >    public boolean isEmpty() {
902 >        return sumCount() <= 0L; // ignore transient negative values
903 >    }
904  
905 <   /** Implementation for get and containsKey */
906 <    private final Object internalGet(Object k) {
907 <        int h = spread(k.hashCode());
908 <        Node[] tab = table;
909 <        retry: while (tab != null) {
910 <            Node e = tabAt(tab, (tab.length - 1) & h);
911 <            while (e != null) {
912 <                int eh = e.hash;
913 <                if (eh == h) {
914 <                    Object ek = e.key, ev = e.val;
915 <                    if (ev != null && ek != null && (k == ek || k.equals(ek)))
916 <                        return ev;
917 <                }
918 <                else if (eh < 0) { // bin was moved during resize
919 <                    tab = (Node[])e.key;
920 <                    continue retry;
921 <                }
922 <                e = e.next;
905 >    /**
906 >     * Returns the value to which the specified key is mapped,
907 >     * or {@code null} if this map contains no mapping for the key.
908 >     *
909 >     * <p>More formally, if this map contains a mapping from a key
910 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
911 >     * then this method returns {@code v}; otherwise it returns
912 >     * {@code null}.  (There can be at most one such mapping.)
913 >     *
914 >     * @throws NullPointerException if the specified key is null
915 >     */
916 >    public V get(Object key) {
917 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
918 >        int h = spread(key.hashCode());
919 >        if ((tab = table) != null && (n = tab.length) > 0 &&
920 >            (e = tabAt(tab, (n - 1) & h)) != null) {
921 >            if ((eh = e.hash) == h) {
922 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
923 >                    return e.val;
924 >            }
925 >            else if (eh < 0)
926 >                return (p = e.find(h, key)) != null ? p.val : null;
927 >            while ((e = e.next) != null) {
928 >                if (e.hash == h &&
929 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
930 >                    return e.val;
931              }
364            break;
932          }
933          return null;
934      }
935  
936 +    /**
937 +     * Tests if the specified object is a key in this table.
938 +     *
939 +     * @param  key possible key
940 +     * @return {@code true} if and only if the specified object
941 +     *         is a key in this table, as determined by the
942 +     *         {@code equals} method; {@code false} otherwise
943 +     * @throws NullPointerException if the specified key is null
944 +     */
945 +    public boolean containsKey(Object key) {
946 +        return get(key) != null;
947 +    }
948 +
949 +    /**
950 +     * Returns {@code true} if this map maps one or more keys to the
951 +     * specified value. Note: This method may require a full traversal
952 +     * of the map, and is much slower than method {@code containsKey}.
953 +     *
954 +     * @param value value whose presence in this map is to be tested
955 +     * @return {@code true} if this map maps one or more keys to the
956 +     *         specified value
957 +     * @throws NullPointerException if the specified value is null
958 +     */
959 +    public boolean containsValue(Object value) {
960 +        if (value == null)
961 +            throw new NullPointerException();
962 +        Node<K,V>[] t;
963 +        if ((t = table) != null) {
964 +            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
965 +            for (Node<K,V> p; (p = it.advance()) != null; ) {
966 +                V v;
967 +                if ((v = p.val) == value || (v != null && value.equals(v)))
968 +                    return true;
969 +            }
970 +        }
971 +        return false;
972 +    }
973 +
974 +    /**
975 +     * Maps the specified key to the specified value in this table.
976 +     * Neither the key nor the value can be null.
977 +     *
978 +     * <p>The value can be retrieved by calling the {@code get} method
979 +     * with a key that is equal to the original key.
980 +     *
981 +     * @param key key with which the specified value is to be associated
982 +     * @param value value to be associated with the specified key
983 +     * @return the previous value associated with {@code key}, or
984 +     *         {@code null} if there was no mapping for {@code key}
985 +     * @throws NullPointerException if the specified key or value is null
986 +     */
987 +    public V put(K key, V value) {
988 +        return putVal(key, value, false);
989 +    }
990  
991      /** Implementation for put and putIfAbsent */
992 <    private final Object internalPut(Object k, Object v, boolean replace) {
993 <        int h = spread(k.hashCode());
994 <        Object oldVal = null;  // the previous value or null if none
995 <        Node[] tab = table;
996 <        for (;;) {
997 <            Node e; int i;
998 <            if (tab == null)
999 <                tab = grow(0);
1000 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1001 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1002 <                    break;
992 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
993 >        if (key == null || value == null) throw new NullPointerException();
994 >        int hash = spread(key.hashCode());
995 >        int binCount = 0;
996 >        for (Node<K,V>[] tab = table;;) {
997 >            Node<K,V> f; int n, i, fh;
998 >            if (tab == null || (n = tab.length) == 0)
999 >                tab = initTable();
1000 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1001 >                if (casTabAt(tab, i, null,
1002 >                             new Node<K,V>(hash, key, value, null)))
1003 >                    break;                   // no lock when adding to empty bin
1004              }
1005 <            else if (e.hash < 0)
1006 <                tab = (Node[])e.key;
1005 >            else if ((fh = f.hash) == MOVED)
1006 >                tab = helpTransfer(tab, f);
1007              else {
1008 <                boolean validated = false;
1009 <                boolean checkSize = false;
1010 <                synchronized (e) {
1011 <                    if (tabAt(tab, i) == e) {
1012 <                        validated = true;
1013 <                        for (Node first = e;;) {
1014 <                            Object ek, ev;
1015 <                            if (e.hash == h &&
1016 <                                (ek = e.key) != null &&
1017 <                                (ev = e.val) != null &&
1018 <                                (k == ek || k.equals(ek))) {
1019 <                                oldVal = ev;
1020 <                                if (replace)
1021 <                                    e.val = v;
1022 <                                break;
1008 >                V oldVal = null;
1009 >                synchronized (f) {
1010 >                    if (tabAt(tab, i) == f) {
1011 >                        if (fh >= 0) {
1012 >                            binCount = 1;
1013 >                            for (Node<K,V> e = f;; ++binCount) {
1014 >                                K ek;
1015 >                                if (e.hash == hash &&
1016 >                                    ((ek = e.key) == key ||
1017 >                                     (ek != null && key.equals(ek)))) {
1018 >                                    oldVal = e.val;
1019 >                                    if (!onlyIfAbsent)
1020 >                                        e.val = value;
1021 >                                    break;
1022 >                                }
1023 >                                Node<K,V> pred = e;
1024 >                                if ((e = e.next) == null) {
1025 >                                    pred.next = new Node<K,V>(hash, key,
1026 >                                                              value, null);
1027 >                                    break;
1028 >                                }
1029                              }
1030 <                            Node last = e;
1031 <                            if ((e = e.next) == null) {
1032 <                                last.next = new Node(h, k, v, null);
1033 <                                if (last != first || tab.length <= 64)
1034 <                                    checkSize = true;
1035 <                                break;
1030 >                        }
1031 >                        else if (f instanceof TreeBin) {
1032 >                            Node<K,V> p;
1033 >                            binCount = 2;
1034 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1035 >                                                           value)) != null) {
1036 >                                oldVal = p.val;
1037 >                                if (!onlyIfAbsent)
1038 >                                    p.val = value;
1039                              }
1040                          }
1041                      }
1042                  }
1043 <                if (validated) {
1044 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1045 <                        resizing == 0 && counter.sum() >= threshold)
1046 <                        grow(0);
1043 >                if (binCount != 0) {
1044 >                    if (binCount >= TREEIFY_THRESHOLD)
1045 >                        treeifyBin(tab, i);
1046 >                    if (oldVal != null)
1047 >                        return oldVal;
1048                      break;
1049                  }
1050              }
1051          }
1052 <        if (oldVal == null)
1053 <            counter.increment();
1054 <        return oldVal;
1052 >        addCount(1L, binCount);
1053 >        return null;
1054 >    }
1055 >
1056 >    /**
1057 >     * Copies all of the mappings from the specified map to this one.
1058 >     * These mappings replace any mappings that this map had for any of the
1059 >     * keys currently in the specified map.
1060 >     *
1061 >     * @param m mappings to be stored in this map
1062 >     */
1063 >    public void putAll(Map<? extends K, ? extends V> m) {
1064 >        tryPresize(m.size());
1065 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1066 >            putVal(e.getKey(), e.getValue(), false);
1067 >    }
1068 >
1069 >    /**
1070 >     * Removes the key (and its corresponding value) from this map.
1071 >     * This method does nothing if the key is not in the map.
1072 >     *
1073 >     * @param  key the key that needs to be removed
1074 >     * @return the previous value associated with {@code key}, or
1075 >     *         {@code null} if there was no mapping for {@code key}
1076 >     * @throws NullPointerException if the specified key is null
1077 >     */
1078 >    public V remove(Object key) {
1079 >        return replaceNode(key, null, null);
1080      }
1081  
1082      /**
# Line 427 | Line 1084 | public class ConcurrentHashMapV8<K, V>
1084       * Replaces node value with v, conditional upon match of cv if
1085       * non-null.  If resulting value is null, delete.
1086       */
1087 <    private final Object internalReplace(Object k, Object v, Object cv) {
1088 <        int h = spread(k.hashCode());
1089 <        Object oldVal = null;
1090 <        Node e; int i;
1091 <        Node[] tab = table;
1092 <        while (tab != null &&
1093 <               (e = tabAt(tab, i = (tab.length - 1) & h)) != null) {
1094 <            if (e.hash < 0)
1095 <                tab = (Node[])e.key;
1087 >    final V replaceNode(Object key, V value, Object cv) {
1088 >        int hash = spread(key.hashCode());
1089 >        for (Node<K,V>[] tab = table;;) {
1090 >            Node<K,V> f; int n, i, fh;
1091 >            if (tab == null || (n = tab.length) == 0 ||
1092 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1093 >                break;
1094 >            else if ((fh = f.hash) == MOVED)
1095 >                tab = helpTransfer(tab, f);
1096              else {
1097 +                V oldVal = null;
1098                  boolean validated = false;
1099 <                boolean deleted = false;
1100 <                synchronized (e) {
1101 <                    if (tabAt(tab, i) == e) {
1102 <                        validated = true;
1103 <                        Node pred = null;
1104 <                        do {
1105 <                            Object ek, ev;
1106 <                            if (e.hash == h &&
1107 <                                (ek = e.key) != null &&
1108 <                                (ev = e.val) != null &&
1109 <                                (k == ek || k.equals(ek))) {
1110 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1111 <                                    oldVal = ev;
1112 <                                    if ((e.val = v) == null) {
1113 <                                        deleted = true;
1114 <                                        Node en = e.next;
1115 <                                        if (pred != null)
458 <                                            pred.next = en;
1099 >                synchronized (f) {
1100 >                    if (tabAt(tab, i) == f) {
1101 >                        if (fh >= 0) {
1102 >                            validated = true;
1103 >                            for (Node<K,V> e = f, pred = null;;) {
1104 >                                K ek;
1105 >                                if (e.hash == hash &&
1106 >                                    ((ek = e.key) == key ||
1107 >                                     (ek != null && key.equals(ek)))) {
1108 >                                    V ev = e.val;
1109 >                                    if (cv == null || cv == ev ||
1110 >                                        (ev != null && cv.equals(ev))) {
1111 >                                        oldVal = ev;
1112 >                                        if (value != null)
1113 >                                            e.val = value;
1114 >                                        else if (pred != null)
1115 >                                            pred.next = e.next;
1116                                          else
1117 <                                            setTabAt(tab, i, en);
1117 >                                            setTabAt(tab, i, e.next);
1118                                      }
1119 +                                    break;
1120 +                                }
1121 +                                pred = e;
1122 +                                if ((e = e.next) == null)
1123 +                                    break;
1124 +                            }
1125 +                        }
1126 +                        else if (f instanceof TreeBin) {
1127 +                            validated = true;
1128 +                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1129 +                            TreeNode<K,V> r, p;
1130 +                            if ((r = t.root) != null &&
1131 +                                (p = r.findTreeNode(hash, key, null)) != null) {
1132 +                                V pv = p.val;
1133 +                                if (cv == null || cv == pv ||
1134 +                                    (pv != null && cv.equals(pv))) {
1135 +                                    oldVal = pv;
1136 +                                    if (value != null)
1137 +                                        p.val = value;
1138 +                                    else if (t.removeTreeNode(p))
1139 +                                        setTabAt(tab, i, untreeify(t.first));
1140                                  }
463                                break;
1141                              }
1142 <                            pred = e;
466 <                        } while ((e = e.next) != null);
1142 >                        }
1143                      }
1144                  }
1145                  if (validated) {
1146 <                    if (deleted)
1147 <                        counter.decrement();
1146 >                    if (oldVal != null) {
1147 >                        if (value == null)
1148 >                            addCount(-1L, -1);
1149 >                        return oldVal;
1150 >                    }
1151                      break;
1152                  }
1153              }
1154          }
1155 <        return oldVal;
1155 >        return null;
1156      }
1157  
1158 <    /** Implementation for computeIfAbsent and compute */
1159 <    @SuppressWarnings("unchecked")
1160 <    private final V internalCompute(K k,
1161 <                                    MappingFunction<? super K, ? extends V> f,
1162 <                                    boolean replace) {
1163 <        int h = spread(k.hashCode());
1164 <        V val = null;
1165 <        boolean added = false;
1166 <        Node[] tab = table;
1158 >    /**
1159 >     * Removes all of the mappings from this map.
1160 >     */
1161 >    public void clear() {
1162 >        long delta = 0L; // negative number of deletions
1163 >        int i = 0;
1164 >        Node<K,V>[] tab = table;
1165 >        while (tab != null && i < tab.length) {
1166 >            int fh;
1167 >            Node<K,V> f = tabAt(tab, i);
1168 >            if (f == null)
1169 >                ++i;
1170 >            else if ((fh = f.hash) == MOVED) {
1171 >                tab = helpTransfer(tab, f);
1172 >                i = 0; // restart
1173 >            }
1174 >            else {
1175 >                synchronized (f) {
1176 >                    if (tabAt(tab, i) == f) {
1177 >                        Node<K,V> p = (fh >= 0 ? f :
1178 >                                       (f instanceof TreeBin) ?
1179 >                                       ((TreeBin<K,V>)f).first : null);
1180 >                        while (p != null) {
1181 >                            --delta;
1182 >                            p = p.next;
1183 >                        }
1184 >                        setTabAt(tab, i++, null);
1185 >                    }
1186 >                }
1187 >            }
1188 >        }
1189 >        if (delta != 0L)
1190 >            addCount(delta, -1);
1191 >    }
1192 >
1193 >    /**
1194 >     * Returns a {@link Set} view of the keys contained in this map.
1195 >     * The set is backed by the map, so changes to the map are
1196 >     * reflected in the set, and vice-versa. The set supports element
1197 >     * removal, which removes the corresponding mapping from this map,
1198 >     * via the {@code Iterator.remove}, {@code Set.remove},
1199 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1200 >     * operations.  It does not support the {@code add} or
1201 >     * {@code addAll} operations.
1202 >     *
1203 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1204 >     * that will never throw {@link ConcurrentModificationException},
1205 >     * and guarantees to traverse elements as they existed upon
1206 >     * construction of the iterator, and may (but is not guaranteed to)
1207 >     * reflect any modifications subsequent to construction.
1208 >     *
1209 >     * @return the set view
1210 >     */
1211 >    public KeySetView<K,V> keySet() {
1212 >        KeySetView<K,V> ks;
1213 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1214 >    }
1215 >
1216 >    /**
1217 >     * Returns a {@link Collection} view of the values contained in this map.
1218 >     * The collection is backed by the map, so changes to the map are
1219 >     * reflected in the collection, and vice-versa.  The collection
1220 >     * supports element removal, which removes the corresponding
1221 >     * mapping from this map, via the {@code Iterator.remove},
1222 >     * {@code Collection.remove}, {@code removeAll},
1223 >     * {@code retainAll}, and {@code clear} operations.  It does not
1224 >     * support the {@code add} or {@code addAll} operations.
1225 >     *
1226 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1227 >     * that will never throw {@link ConcurrentModificationException},
1228 >     * and guarantees to traverse elements as they existed upon
1229 >     * construction of the iterator, and may (but is not guaranteed to)
1230 >     * reflect any modifications subsequent to construction.
1231 >     *
1232 >     * @return the collection view
1233 >     */
1234 >    public Collection<V> values() {
1235 >        ValuesView<K,V> vs;
1236 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1237 >    }
1238 >
1239 >    /**
1240 >     * Returns a {@link Set} view of the mappings contained in this map.
1241 >     * The set is backed by the map, so changes to the map are
1242 >     * reflected in the set, and vice-versa.  The set supports element
1243 >     * removal, which removes the corresponding mapping from the map,
1244 >     * via the {@code Iterator.remove}, {@code Set.remove},
1245 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1246 >     * operations.
1247 >     *
1248 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1249 >     * that will never throw {@link ConcurrentModificationException},
1250 >     * and guarantees to traverse elements as they existed upon
1251 >     * construction of the iterator, and may (but is not guaranteed to)
1252 >     * reflect any modifications subsequent to construction.
1253 >     *
1254 >     * @return the set view
1255 >     */
1256 >    public Set<Map.Entry<K,V>> entrySet() {
1257 >        EntrySetView<K,V> es;
1258 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1259 >    }
1260 >
1261 >    /**
1262 >     * Returns the hash code value for this {@link Map}, i.e.,
1263 >     * the sum of, for each key-value pair in the map,
1264 >     * {@code key.hashCode() ^ value.hashCode()}.
1265 >     *
1266 >     * @return the hash code value for this map
1267 >     */
1268 >    public int hashCode() {
1269 >        int h = 0;
1270 >        Node<K,V>[] t;
1271 >        if ((t = table) != null) {
1272 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1273 >            for (Node<K,V> p; (p = it.advance()) != null; )
1274 >                h += p.key.hashCode() ^ p.val.hashCode();
1275 >        }
1276 >        return h;
1277 >    }
1278 >
1279 >    /**
1280 >     * Returns a string representation of this map.  The string
1281 >     * representation consists of a list of key-value mappings (in no
1282 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1283 >     * mappings are separated by the characters {@code ", "} (comma
1284 >     * and space).  Each key-value mapping is rendered as the key
1285 >     * followed by an equals sign ("{@code =}") followed by the
1286 >     * associated value.
1287 >     *
1288 >     * @return a string representation of this map
1289 >     */
1290 >    public String toString() {
1291 >        Node<K,V>[] t;
1292 >        int f = (t = table) == null ? 0 : t.length;
1293 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1294 >        StringBuilder sb = new StringBuilder();
1295 >        sb.append('{');
1296 >        Node<K,V> p;
1297 >        if ((p = it.advance()) != null) {
1298 >            for (;;) {
1299 >                K k = p.key;
1300 >                V v = p.val;
1301 >                sb.append(k == this ? "(this Map)" : k);
1302 >                sb.append('=');
1303 >                sb.append(v == this ? "(this Map)" : v);
1304 >                if ((p = it.advance()) == null)
1305 >                    break;
1306 >                sb.append(',').append(' ');
1307 >            }
1308 >        }
1309 >        return sb.append('}').toString();
1310 >    }
1311 >
1312 >    /**
1313 >     * Compares the specified object with this map for equality.
1314 >     * Returns {@code true} if the given object is a map with the same
1315 >     * mappings as this map.  This operation may return misleading
1316 >     * results if either map is concurrently modified during execution
1317 >     * of this method.
1318 >     *
1319 >     * @param o object to be compared for equality with this map
1320 >     * @return {@code true} if the specified object is equal to this map
1321 >     */
1322 >    public boolean equals(Object o) {
1323 >        if (o != this) {
1324 >            if (!(o instanceof Map))
1325 >                return false;
1326 >            Map<?,?> m = (Map<?,?>) o;
1327 >            Node<K,V>[] t;
1328 >            int f = (t = table) == null ? 0 : t.length;
1329 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1330 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1331 >                V val = p.val;
1332 >                Object v = m.get(p.key);
1333 >                if (v == null || (v != val && !v.equals(val)))
1334 >                    return false;
1335 >            }
1336 >            for (Map.Entry<?,?> e : m.entrySet()) {
1337 >                Object mk, mv, v;
1338 >                if ((mk = e.getKey()) == null ||
1339 >                    (mv = e.getValue()) == null ||
1340 >                    (v = get(mk)) == null ||
1341 >                    (mv != v && !mv.equals(v)))
1342 >                    return false;
1343 >            }
1344 >        }
1345 >        return true;
1346 >    }
1347 >
1348 >    /**
1349 >     * Stripped-down version of helper class used in previous version,
1350 >     * declared for the sake of serialization compatibility
1351 >     */
1352 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1353 >        private static final long serialVersionUID = 2249069246763182397L;
1354 >        final float loadFactor;
1355 >        Segment(float lf) { this.loadFactor = lf; }
1356 >    }
1357 >
1358 >    /**
1359 >     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1360 >     * stream (i.e., serializes it).
1361 >     * @param s the stream
1362 >     * @serialData
1363 >     * the key (Object) and value (Object)
1364 >     * for each key-value mapping, followed by a null pair.
1365 >     * The key-value mappings are emitted in no particular order.
1366 >     */
1367 >    private void writeObject(java.io.ObjectOutputStream s)
1368 >        throws java.io.IOException {
1369 >        // For serialization compatibility
1370 >        // Emulate segment calculation from previous version of this class
1371 >        int sshift = 0;
1372 >        int ssize = 1;
1373 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1374 >            ++sshift;
1375 >            ssize <<= 1;
1376 >        }
1377 >        int segmentShift = 32 - sshift;
1378 >        int segmentMask = ssize - 1;
1379 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1380 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1381 >        for (int i = 0; i < segments.length; ++i)
1382 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1383 >        s.putFields().put("segments", segments);
1384 >        s.putFields().put("segmentShift", segmentShift);
1385 >        s.putFields().put("segmentMask", segmentMask);
1386 >        s.writeFields();
1387 >
1388 >        Node<K,V>[] t;
1389 >        if ((t = table) != null) {
1390 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1391 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1392 >                s.writeObject(p.key);
1393 >                s.writeObject(p.val);
1394 >            }
1395 >        }
1396 >        s.writeObject(null);
1397 >        s.writeObject(null);
1398 >        segments = null; // throw away
1399 >    }
1400 >
1401 >    /**
1402 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1403 >     * @param s the stream
1404 >     */
1405 >    private void readObject(java.io.ObjectInputStream s)
1406 >        throws java.io.IOException, ClassNotFoundException {
1407 >        /*
1408 >         * To improve performance in typical cases, we create nodes
1409 >         * while reading, then place in table once size is known.
1410 >         * However, we must also validate uniqueness and deal with
1411 >         * overpopulated bins while doing so, which requires
1412 >         * specialized versions of putVal mechanics.
1413 >         */
1414 >        sizeCtl = -1; // force exclusion for table construction
1415 >        s.defaultReadObject();
1416 >        long size = 0L;
1417 >        Node<K,V> p = null;
1418          for (;;) {
1419 <            Node e; int i;
1420 <            if (tab == null)
1421 <                tab = grow(0);
1422 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1423 <                Node node = new Node(h, k, null, null);
1424 <                boolean validated = false;
1425 <                synchronized (node) {
1426 <                    if (casTabAt(tab, i, null, node)) {
1427 <                        validated = true;
1419 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1420 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1421 >            if (k != null && v != null) {
1422 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1423 >                ++size;
1424 >            }
1425 >            else
1426 >                break;
1427 >        }
1428 >        if (size == 0L)
1429 >            sizeCtl = 0;
1430 >        else {
1431 >            int n;
1432 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1433 >                n = MAXIMUM_CAPACITY;
1434 >            else {
1435 >                int sz = (int)size;
1436 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1437 >            }
1438 >            @SuppressWarnings({"rawtypes","unchecked"})
1439 >                Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1440 >            int mask = n - 1;
1441 >            long added = 0L;
1442 >            while (p != null) {
1443 >                boolean insertAtFront;
1444 >                Node<K,V> next = p.next, first;
1445 >                int h = p.hash, j = h & mask;
1446 >                if ((first = tabAt(tab, j)) == null)
1447 >                    insertAtFront = true;
1448 >                else {
1449 >                    K k = p.key;
1450 >                    if (first.hash < 0) {
1451 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1452 >                        if (t.putTreeVal(h, k, p.val) == null)
1453 >                            ++added;
1454 >                        insertAtFront = false;
1455 >                    }
1456 >                    else {
1457 >                        int binCount = 0;
1458 >                        insertAtFront = true;
1459 >                        Node<K,V> q; K qk;
1460 >                        for (q = first; q != null; q = q.next) {
1461 >                            if (q.hash == h &&
1462 >                                ((qk = q.key) == k ||
1463 >                                 (qk != null && k.equals(qk)))) {
1464 >                                insertAtFront = false;
1465 >                                break;
1466 >                            }
1467 >                            ++binCount;
1468 >                        }
1469 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1470 >                            insertAtFront = false;
1471 >                            ++added;
1472 >                            p.next = first;
1473 >                            TreeNode<K,V> hd = null, tl = null;
1474 >                            for (q = p; q != null; q = q.next) {
1475 >                                TreeNode<K,V> t = new TreeNode<K,V>
1476 >                                    (q.hash, q.key, q.val, null, null);
1477 >                                if ((t.prev = tl) == null)
1478 >                                    hd = t;
1479 >                                else
1480 >                                    tl.next = t;
1481 >                                tl = t;
1482 >                            }
1483 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1484 >                        }
1485 >                    }
1486 >                }
1487 >                if (insertAtFront) {
1488 >                    ++added;
1489 >                    p.next = first;
1490 >                    setTabAt(tab, j, p);
1491 >                }
1492 >                p = next;
1493 >            }
1494 >            table = tab;
1495 >            sizeCtl = n - (n >>> 2);
1496 >            baseCount = added;
1497 >        }
1498 >    }
1499 >
1500 >    // ConcurrentMap methods
1501 >
1502 >    /**
1503 >     * {@inheritDoc}
1504 >     *
1505 >     * @return the previous value associated with the specified key,
1506 >     *         or {@code null} if there was no mapping for the key
1507 >     * @throws NullPointerException if the specified key or value is null
1508 >     */
1509 >    public V putIfAbsent(K key, V value) {
1510 >        return putVal(key, value, true);
1511 >    }
1512 >
1513 >    /**
1514 >     * {@inheritDoc}
1515 >     *
1516 >     * @throws NullPointerException if the specified key is null
1517 >     */
1518 >    public boolean remove(Object key, Object value) {
1519 >        if (key == null)
1520 >            throw new NullPointerException();
1521 >        return value != null && replaceNode(key, null, value) != null;
1522 >    }
1523 >
1524 >    /**
1525 >     * {@inheritDoc}
1526 >     *
1527 >     * @throws NullPointerException if any of the arguments are null
1528 >     */
1529 >    public boolean replace(K key, V oldValue, V newValue) {
1530 >        if (key == null || oldValue == null || newValue == null)
1531 >            throw new NullPointerException();
1532 >        return replaceNode(key, newValue, oldValue) != null;
1533 >    }
1534 >
1535 >    /**
1536 >     * {@inheritDoc}
1537 >     *
1538 >     * @return the previous value associated with the specified key,
1539 >     *         or {@code null} if there was no mapping for the key
1540 >     * @throws NullPointerException if the specified key or value is null
1541 >     */
1542 >    public V replace(K key, V value) {
1543 >        if (key == null || value == null)
1544 >            throw new NullPointerException();
1545 >        return replaceNode(key, value, null);
1546 >    }
1547 >
1548 >    // Overrides of JDK8+ Map extension method defaults
1549 >
1550 >    /**
1551 >     * Returns the value to which the specified key is mapped, or the
1552 >     * given default value if this map contains no mapping for the
1553 >     * key.
1554 >     *
1555 >     * @param key the key whose associated value is to be returned
1556 >     * @param defaultValue the value to return if this map contains
1557 >     * no mapping for the given key
1558 >     * @return the mapping for the key, if present; else the default value
1559 >     * @throws NullPointerException if the specified key is null
1560 >     */
1561 >    public V getOrDefault(Object key, V defaultValue) {
1562 >        V v;
1563 >        return (v = get(key)) == null ? defaultValue : v;
1564 >    }
1565 >
1566 >    public void forEach(BiAction<? super K, ? super V> action) {
1567 >        if (action == null) throw new NullPointerException();
1568 >        Node<K,V>[] t;
1569 >        if ((t = table) != null) {
1570 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1571 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1572 >                action.apply(p.key, p.val);
1573 >            }
1574 >        }
1575 >    }
1576 >
1577 >    public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1578 >        if (function == null) throw new NullPointerException();
1579 >        Node<K,V>[] t;
1580 >        if ((t = table) != null) {
1581 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1582 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1583 >                V oldValue = p.val;
1584 >                for (K key = p.key;;) {
1585 >                    V newValue = function.apply(key, oldValue);
1586 >                    if (newValue == null)
1587 >                        throw new NullPointerException();
1588 >                    if (replaceNode(key, newValue, oldValue) != null ||
1589 >                        (oldValue = get(key)) == null)
1590 >                        break;
1591 >                }
1592 >            }
1593 >        }
1594 >    }
1595 >
1596 >    /**
1597 >     * If the specified key is not already associated with a value,
1598 >     * attempts to compute its value using the given mapping function
1599 >     * and enters it into this map unless {@code null}.  The entire
1600 >     * method invocation is performed atomically, so the function is
1601 >     * applied at most once per key.  Some attempted update operations
1602 >     * on this map by other threads may be blocked while computation
1603 >     * is in progress, so the computation should be short and simple,
1604 >     * and must not attempt to update any other mappings of this map.
1605 >     *
1606 >     * @param key key with which the specified value is to be associated
1607 >     * @param mappingFunction the function to compute a value
1608 >     * @return the current (existing or computed) value associated with
1609 >     *         the specified key, or null if the computed value is null
1610 >     * @throws NullPointerException if the specified key or mappingFunction
1611 >     *         is null
1612 >     * @throws IllegalStateException if the computation detectably
1613 >     *         attempts a recursive update to this map that would
1614 >     *         otherwise never complete
1615 >     * @throws RuntimeException or Error if the mappingFunction does so,
1616 >     *         in which case the mapping is left unestablished
1617 >     */
1618 >    public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1619 >        if (key == null || mappingFunction == null)
1620 >            throw new NullPointerException();
1621 >        int h = spread(key.hashCode());
1622 >        V val = null;
1623 >        int binCount = 0;
1624 >        for (Node<K,V>[] tab = table;;) {
1625 >            Node<K,V> f; int n, i, fh;
1626 >            if (tab == null || (n = tab.length) == 0)
1627 >                tab = initTable();
1628 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1629 >                Node<K,V> r = new ReservationNode<K,V>();
1630 >                synchronized (r) {
1631 >                    if (casTabAt(tab, i, null, r)) {
1632 >                        binCount = 1;
1633 >                        Node<K,V> node = null;
1634                          try {
1635 <                            val = f.map(k);
1636 <                            if (val != null) {
1637 <                                node.val = val;
1635 >                            if ((val = mappingFunction.apply(key)) != null)
1636 >                                node = new Node<K,V>(h, key, val, null);
1637 >                        } finally {
1638 >                            setTabAt(tab, i, node);
1639 >                        }
1640 >                    }
1641 >                }
1642 >                if (binCount != 0)
1643 >                    break;
1644 >            }
1645 >            else if ((fh = f.hash) == MOVED)
1646 >                tab = helpTransfer(tab, f);
1647 >            else {
1648 >                boolean added = false;
1649 >                synchronized (f) {
1650 >                    if (tabAt(tab, i) == f) {
1651 >                        if (fh >= 0) {
1652 >                            binCount = 1;
1653 >                            for (Node<K,V> e = f;; ++binCount) {
1654 >                                K ek; V ev;
1655 >                                if (e.hash == h &&
1656 >                                    ((ek = e.key) == key ||
1657 >                                     (ek != null && key.equals(ek)))) {
1658 >                                    val = e.val;
1659 >                                    break;
1660 >                                }
1661 >                                Node<K,V> pred = e;
1662 >                                if ((e = e.next) == null) {
1663 >                                    if ((val = mappingFunction.apply(key)) != null) {
1664 >                                        added = true;
1665 >                                        pred.next = new Node<K,V>(h, key, val, null);
1666 >                                    }
1667 >                                    break;
1668 >                                }
1669 >                            }
1670 >                        }
1671 >                        else if (f instanceof TreeBin) {
1672 >                            binCount = 2;
1673 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1674 >                            TreeNode<K,V> r, p;
1675 >                            if ((r = t.root) != null &&
1676 >                                (p = r.findTreeNode(h, key, null)) != null)
1677 >                                val = p.val;
1678 >                            else if ((val = mappingFunction.apply(key)) != null) {
1679                                  added = true;
1680 +                                t.putTreeVal(h, key, val);
1681 +                            }
1682 +                        }
1683 +                    }
1684 +                }
1685 +                if (binCount != 0) {
1686 +                    if (binCount >= TREEIFY_THRESHOLD)
1687 +                        treeifyBin(tab, i);
1688 +                    if (!added)
1689 +                        return val;
1690 +                    break;
1691 +                }
1692 +            }
1693 +        }
1694 +        if (val != null)
1695 +            addCount(1L, binCount);
1696 +        return val;
1697 +    }
1698 +
1699 +    /**
1700 +     * If the value for the specified key is present, attempts to
1701 +     * compute a new mapping given the key and its current mapped
1702 +     * value.  The entire method invocation is performed atomically.
1703 +     * Some attempted update operations on this map by other threads
1704 +     * may be blocked while computation is in progress, so the
1705 +     * computation should be short and simple, and must not attempt to
1706 +     * update any other mappings of this map.
1707 +     *
1708 +     * @param key key with which a value may be associated
1709 +     * @param remappingFunction the function to compute a value
1710 +     * @return the new value associated with the specified key, or null if none
1711 +     * @throws NullPointerException if the specified key or remappingFunction
1712 +     *         is null
1713 +     * @throws IllegalStateException if the computation detectably
1714 +     *         attempts a recursive update to this map that would
1715 +     *         otherwise never complete
1716 +     * @throws RuntimeException or Error if the remappingFunction does so,
1717 +     *         in which case the mapping is unchanged
1718 +     */
1719 +    public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1720 +        if (key == null || remappingFunction == null)
1721 +            throw new NullPointerException();
1722 +        int h = spread(key.hashCode());
1723 +        V val = null;
1724 +        int delta = 0;
1725 +        int binCount = 0;
1726 +        for (Node<K,V>[] tab = table;;) {
1727 +            Node<K,V> f; int n, i, fh;
1728 +            if (tab == null || (n = tab.length) == 0)
1729 +                tab = initTable();
1730 +            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1731 +                break;
1732 +            else if ((fh = f.hash) == MOVED)
1733 +                tab = helpTransfer(tab, f);
1734 +            else {
1735 +                synchronized (f) {
1736 +                    if (tabAt(tab, i) == f) {
1737 +                        if (fh >= 0) {
1738 +                            binCount = 1;
1739 +                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1740 +                                K ek;
1741 +                                if (e.hash == h &&
1742 +                                    ((ek = e.key) == key ||
1743 +                                     (ek != null && key.equals(ek)))) {
1744 +                                    val = remappingFunction.apply(key, e.val);
1745 +                                    if (val != null)
1746 +                                        e.val = val;
1747 +                                    else {
1748 +                                        delta = -1;
1749 +                                        Node<K,V> en = e.next;
1750 +                                        if (pred != null)
1751 +                                            pred.next = en;
1752 +                                        else
1753 +                                            setTabAt(tab, i, en);
1754 +                                    }
1755 +                                    break;
1756 +                                }
1757 +                                pred = e;
1758 +                                if ((e = e.next) == null)
1759 +                                    break;
1760 +                            }
1761 +                        }
1762 +                        else if (f instanceof TreeBin) {
1763 +                            binCount = 2;
1764 +                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1765 +                            TreeNode<K,V> r, p;
1766 +                            if ((r = t.root) != null &&
1767 +                                (p = r.findTreeNode(h, key, null)) != null) {
1768 +                                val = remappingFunction.apply(key, p.val);
1769 +                                if (val != null)
1770 +                                    p.val = val;
1771 +                                else {
1772 +                                    delta = -1;
1773 +                                    if (t.removeTreeNode(p))
1774 +                                        setTabAt(tab, i, untreeify(t.first));
1775 +                                }
1776 +                            }
1777 +                        }
1778 +                    }
1779 +                }
1780 +                if (binCount != 0)
1781 +                    break;
1782 +            }
1783 +        }
1784 +        if (delta != 0)
1785 +            addCount((long)delta, binCount);
1786 +        return val;
1787 +    }
1788 +
1789 +    /**
1790 +     * Attempts to compute a mapping for the specified key and its
1791 +     * current mapped value (or {@code null} if there is no current
1792 +     * mapping). The entire method invocation is performed atomically.
1793 +     * Some attempted update operations on this map by other threads
1794 +     * may be blocked while computation is in progress, so the
1795 +     * computation should be short and simple, and must not attempt to
1796 +     * update any other mappings of this Map.
1797 +     *
1798 +     * @param key key with which the specified value is to be associated
1799 +     * @param remappingFunction the function to compute a value
1800 +     * @return the new value associated with the specified key, or null if none
1801 +     * @throws NullPointerException if the specified key or remappingFunction
1802 +     *         is null
1803 +     * @throws IllegalStateException if the computation detectably
1804 +     *         attempts a recursive update to this map that would
1805 +     *         otherwise never complete
1806 +     * @throws RuntimeException or Error if the remappingFunction does so,
1807 +     *         in which case the mapping is unchanged
1808 +     */
1809 +    public V compute(K key,
1810 +                     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1811 +        if (key == null || remappingFunction == null)
1812 +            throw new NullPointerException();
1813 +        int h = spread(key.hashCode());
1814 +        V val = null;
1815 +        int delta = 0;
1816 +        int binCount = 0;
1817 +        for (Node<K,V>[] tab = table;;) {
1818 +            Node<K,V> f; int n, i, fh;
1819 +            if (tab == null || (n = tab.length) == 0)
1820 +                tab = initTable();
1821 +            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1822 +                Node<K,V> r = new ReservationNode<K,V>();
1823 +                synchronized (r) {
1824 +                    if (casTabAt(tab, i, null, r)) {
1825 +                        binCount = 1;
1826 +                        Node<K,V> node = null;
1827 +                        try {
1828 +                            if ((val = remappingFunction.apply(key, null)) != null) {
1829 +                                delta = 1;
1830 +                                node = new Node<K,V>(h, key, val, null);
1831                              }
1832                          } finally {
1833 <                            if (!added)
506 <                                setTabAt(tab, i, null);
1833 >                            setTabAt(tab, i, node);
1834                          }
1835                      }
1836                  }
1837 <                if (validated)
1837 >                if (binCount != 0)
1838                      break;
1839              }
1840 <            else if (e.hash < 0)
1841 <                tab = (Node[])e.key;
515 <            else if (Thread.holdsLock(e))
516 <                throw new IllegalStateException("Recursive map computation");
1840 >            else if ((fh = f.hash) == MOVED)
1841 >                tab = helpTransfer(tab, f);
1842              else {
1843 <                boolean validated = false;
1844 <                boolean checkSize = false;
1845 <                synchronized (e) {
1846 <                    if (tabAt(tab, i) == e) {
1847 <                        validated = true;
1848 <                        for (Node first = e;;) {
1849 <                            Object ek, ev, fv;
1850 <                            if (e.hash == h &&
1851 <                                (ek = e.key) != null &&
1852 <                                (ev = e.val) != null &&
1853 <                                (k == ek || k.equals(ek))) {
1854 <                                if (replace && (fv = f.map(k)) != null)
1855 <                                    ev = e.val = fv;
1856 <                                val = (V)ev;
1857 <                                break;
1843 >                synchronized (f) {
1844 >                    if (tabAt(tab, i) == f) {
1845 >                        if (fh >= 0) {
1846 >                            binCount = 1;
1847 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1848 >                                K ek;
1849 >                                if (e.hash == h &&
1850 >                                    ((ek = e.key) == key ||
1851 >                                     (ek != null && key.equals(ek)))) {
1852 >                                    val = remappingFunction.apply(key, e.val);
1853 >                                    if (val != null)
1854 >                                        e.val = val;
1855 >                                    else {
1856 >                                        delta = -1;
1857 >                                        Node<K,V> en = e.next;
1858 >                                        if (pred != null)
1859 >                                            pred.next = en;
1860 >                                        else
1861 >                                            setTabAt(tab, i, en);
1862 >                                    }
1863 >                                    break;
1864 >                                }
1865 >                                pred = e;
1866 >                                if ((e = e.next) == null) {
1867 >                                    val = remappingFunction.apply(key, null);
1868 >                                    if (val != null) {
1869 >                                        delta = 1;
1870 >                                        pred.next =
1871 >                                            new Node<K,V>(h, key, val, null);
1872 >                                    }
1873 >                                    break;
1874 >                                }
1875                              }
1876 <                            Node last = e;
1877 <                            if ((e = e.next) == null) {
1878 <                                if ((val = f.map(k)) != null) {
1879 <                                    last.next = new Node(h, k, val, null);
1880 <                                    added = true;
1881 <                                    if (last != first || tab.length <= 64)
1882 <                                        checkSize = true;
1876 >                        }
1877 >                        else if (f instanceof TreeBin) {
1878 >                            binCount = 1;
1879 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1880 >                            TreeNode<K,V> r, p;
1881 >                            if ((r = t.root) != null)
1882 >                                p = r.findTreeNode(h, key, null);
1883 >                            else
1884 >                                p = null;
1885 >                            V pv = (p == null) ? null : p.val;
1886 >                            val = remappingFunction.apply(key, pv);
1887 >                            if (val != null) {
1888 >                                if (p != null)
1889 >                                    p.val = val;
1890 >                                else {
1891 >                                    delta = 1;
1892 >                                    t.putTreeVal(h, key, val);
1893                                  }
1894 <                                break;
1894 >                            }
1895 >                            else if (p != null) {
1896 >                                delta = -1;
1897 >                                if (t.removeTreeNode(p))
1898 >                                    setTabAt(tab, i, untreeify(t.first));
1899                              }
1900                          }
1901                      }
1902                  }
1903 <                if (validated) {
1904 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1905 <                        resizing == 0 && counter.sum() >= threshold)
550 <                        grow(0);
1903 >                if (binCount != 0) {
1904 >                    if (binCount >= TREEIFY_THRESHOLD)
1905 >                        treeifyBin(tab, i);
1906                      break;
1907                  }
1908              }
1909          }
1910 <        if (added)
1911 <            counter.increment();
1910 >        if (delta != 0)
1911 >            addCount((long)delta, binCount);
1912          return val;
1913      }
1914  
1915 <    /*
1916 <     * Reclassifies nodes in each bin to new table.  Because we are
1917 <     * using power-of-two expansion, the elements from each bin must
1918 <     * either stay at same index, or move with a power of two
1919 <     * offset. We eliminate unnecessary node creation by catching
1920 <     * cases where old nodes can be reused because their next fields
1921 <     * won't change.  Statistically, at the default threshold, only
1922 <     * about one-sixth of them need cloning when a table doubles. The
1923 <     * nodes they replace will be garbage collectable as soon as they
1924 <     * are no longer referenced by any reader thread that may be in
1925 <     * the midst of concurrently traversing table.
1926 <     *
1927 <     * Transfers are done from the bottom up to preserve iterator
1928 <     * traversability. On each step, the old bin is locked,
1929 <     * moved/copied, and then replaced with a forwarding node.
1930 <     */
1931 <    private static final void transfer(Node[] tab, Node[] nextTab) {
1932 <        int n = tab.length;
1933 <        int mask = nextTab.length - 1;
1934 <        Node fwd = new Node(MOVED, nextTab, null, null);
1935 <        for (int i = n - 1; i >= 0; --i) {
1936 <            for (Node e;;) {
1937 <                if ((e = tabAt(tab, i)) == null) {
1938 <                    if (casTabAt(tab, i, e, fwd))
1939 <                        break;
1915 >    /**
1916 >     * If the specified key is not already associated with a
1917 >     * (non-null) value, associates it with the given value.
1918 >     * Otherwise, replaces the value with the results of the given
1919 >     * remapping function, or removes if {@code null}. The entire
1920 >     * method invocation is performed atomically.  Some attempted
1921 >     * update operations on this map by other threads may be blocked
1922 >     * while computation is in progress, so the computation should be
1923 >     * short and simple, and must not attempt to update any other
1924 >     * mappings of this Map.
1925 >     *
1926 >     * @param key key with which the specified value is to be associated
1927 >     * @param value the value to use if absent
1928 >     * @param remappingFunction the function to recompute a value if present
1929 >     * @return the new value associated with the specified key, or null if none
1930 >     * @throws NullPointerException if the specified key or the
1931 >     *         remappingFunction is null
1932 >     * @throws RuntimeException or Error if the remappingFunction does so,
1933 >     *         in which case the mapping is unchanged
1934 >     */
1935 >    public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1936 >        if (key == null || value == null || remappingFunction == null)
1937 >            throw new NullPointerException();
1938 >        int h = spread(key.hashCode());
1939 >        V val = null;
1940 >        int delta = 0;
1941 >        int binCount = 0;
1942 >        for (Node<K,V>[] tab = table;;) {
1943 >            Node<K,V> f; int n, i, fh;
1944 >            if (tab == null || (n = tab.length) == 0)
1945 >                tab = initTable();
1946 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1947 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1948 >                    delta = 1;
1949 >                    val = value;
1950 >                    break;
1951                  }
1952 <                else {
1953 <                    int idx = e.hash & mask;
1954 <                    boolean validated = false;
1955 <                    synchronized (e) {
1956 <                        if (tabAt(tab, i) == e) {
1957 <                            validated = true;
1958 <                            Node lastRun = e;
1959 <                            for (Node p = e.next; p != null; p = p.next) {
1960 <                                int j = p.hash & mask;
1961 <                                if (j != idx) {
1962 <                                    idx = j;
1963 <                                    lastRun = p;
1952 >            }
1953 >            else if ((fh = f.hash) == MOVED)
1954 >                tab = helpTransfer(tab, f);
1955 >            else {
1956 >                synchronized (f) {
1957 >                    if (tabAt(tab, i) == f) {
1958 >                        if (fh >= 0) {
1959 >                            binCount = 1;
1960 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1961 >                                K ek;
1962 >                                if (e.hash == h &&
1963 >                                    ((ek = e.key) == key ||
1964 >                                     (ek != null && key.equals(ek)))) {
1965 >                                    val = remappingFunction.apply(e.val, value);
1966 >                                    if (val != null)
1967 >                                        e.val = val;
1968 >                                    else {
1969 >                                        delta = -1;
1970 >                                        Node<K,V> en = e.next;
1971 >                                        if (pred != null)
1972 >                                            pred.next = en;
1973 >                                        else
1974 >                                            setTabAt(tab, i, en);
1975 >                                    }
1976 >                                    break;
1977 >                                }
1978 >                                pred = e;
1979 >                                if ((e = e.next) == null) {
1980 >                                    delta = 1;
1981 >                                    val = value;
1982 >                                    pred.next =
1983 >                                        new Node<K,V>(h, key, val, null);
1984 >                                    break;
1985                                  }
1986                              }
1987 <                            relaxedSetTabAt(nextTab, idx, lastRun);
1988 <                            for (Node p = e; p != lastRun; p = p.next) {
1989 <                                int h = p.hash;
1990 <                                int j = h & mask;
1991 <                                Node r = relaxedTabAt(nextTab, j);
1992 <                                relaxedSetTabAt(nextTab, j,
1993 <                                                new Node(h, p.key, p.val, r));
1987 >                        }
1988 >                        else if (f instanceof TreeBin) {
1989 >                            binCount = 2;
1990 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1991 >                            TreeNode<K,V> r = t.root;
1992 >                            TreeNode<K,V> p = (r == null) ? null :
1993 >                                r.findTreeNode(h, key, null);
1994 >                            val = (p == null) ? value :
1995 >                                remappingFunction.apply(p.val, value);
1996 >                            if (val != null) {
1997 >                                if (p != null)
1998 >                                    p.val = val;
1999 >                                else {
2000 >                                    delta = 1;
2001 >                                    t.putTreeVal(h, key, val);
2002 >                                }
2003 >                            }
2004 >                            else if (p != null) {
2005 >                                delta = -1;
2006 >                                if (t.removeTreeNode(p))
2007 >                                    setTabAt(tab, i, untreeify(t.first));
2008                              }
608                            setTabAt(tab, i, fwd);
2009                          }
2010                      }
2011 <                    if (validated)
2012 <                        break;
2011 >                }
2012 >                if (binCount != 0) {
2013 >                    if (binCount >= TREEIFY_THRESHOLD)
2014 >                        treeifyBin(tab, i);
2015 >                    break;
2016                  }
2017              }
2018          }
2019 +        if (delta != 0)
2020 +            addCount((long)delta, binCount);
2021 +        return val;
2022      }
2023  
2024 +    // Hashtable legacy methods
2025 +
2026      /**
2027 <     * If not already resizing, initializes or creates next table and
2028 <     * transfers bins. Rechecks occupancy after a transfer to see if
2029 <     * another resize is already needed because resizings are lagging
2030 <     * additions.
2031 <     *
2032 <     * @param sizeHint overridden capacity target (nonzero only from putAll)
2033 <     * @return current table
2034 <     */
2035 <    private final Node[] grow(int sizeHint) {
2036 <        if (resizing == 0 &&
2037 <            UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) {
2038 <            try {
2027 >     * Legacy method testing if some key maps into the specified value
2028 >     * in this table.  This method is identical in functionality to
2029 >     * {@link #containsValue(Object)}, and exists solely to ensure
2030 >     * full compatibility with class {@link java.util.Hashtable},
2031 >     * which supported this method prior to introduction of the
2032 >     * Java Collections framework.
2033 >     *
2034 >     * @param  value a value to search for
2035 >     * @return {@code true} if and only if some key maps to the
2036 >     *         {@code value} argument in this table as
2037 >     *         determined by the {@code equals} method;
2038 >     *         {@code false} otherwise
2039 >     * @throws NullPointerException if the specified value is null
2040 >     */
2041 >    @Deprecated public boolean contains(Object value) {
2042 >        return containsValue(value);
2043 >    }
2044 >
2045 >    /**
2046 >     * Returns an enumeration of the keys in this table.
2047 >     *
2048 >     * @return an enumeration of the keys in this table
2049 >     * @see #keySet()
2050 >     */
2051 >    public Enumeration<K> keys() {
2052 >        Node<K,V>[] t;
2053 >        int f = (t = table) == null ? 0 : t.length;
2054 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2055 >    }
2056 >
2057 >    /**
2058 >     * Returns an enumeration of the values in this table.
2059 >     *
2060 >     * @return an enumeration of the values in this table
2061 >     * @see #values()
2062 >     */
2063 >    public Enumeration<V> elements() {
2064 >        Node<K,V>[] t;
2065 >        int f = (t = table) == null ? 0 : t.length;
2066 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2067 >    }
2068 >
2069 >    // ConcurrentHashMapV8-only methods
2070 >
2071 >    /**
2072 >     * Returns the number of mappings. This method should be used
2073 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2074 >     * contain more mappings than can be represented as an int. The
2075 >     * value returned is an estimate; the actual count may differ if
2076 >     * there are concurrent insertions or removals.
2077 >     *
2078 >     * @return the number of mappings
2079 >     * @since 1.8
2080 >     */
2081 >    public long mappingCount() {
2082 >        long n = sumCount();
2083 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2084 >    }
2085 >
2086 >    /**
2087 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2088 >     * from the given type to {@code Boolean.TRUE}.
2089 >     *
2090 >     * @return the new set
2091 >     * @since 1.8
2092 >     */
2093 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2094 >        return new KeySetView<K,Boolean>
2095 >            (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2096 >    }
2097 >
2098 >    /**
2099 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2100 >     * from the given type to {@code Boolean.TRUE}.
2101 >     *
2102 >     * @param initialCapacity The implementation performs internal
2103 >     * sizing to accommodate this many elements.
2104 >     * @return the new set
2105 >     * @throws IllegalArgumentException if the initial capacity of
2106 >     * elements is negative
2107 >     * @since 1.8
2108 >     */
2109 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2110 >        return new KeySetView<K,Boolean>
2111 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2112 >    }
2113 >
2114 >    /**
2115 >     * Returns a {@link Set} view of the keys in this map, using the
2116 >     * given common mapped value for any additions (i.e., {@link
2117 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2118 >     * This is of course only appropriate if it is acceptable to use
2119 >     * the same value for all additions from this view.
2120 >     *
2121 >     * @param mappedValue the mapped value to use for any additions
2122 >     * @return the set view
2123 >     * @throws NullPointerException if the mappedValue is null
2124 >     */
2125 >    public KeySetView<K,V> keySet(V mappedValue) {
2126 >        if (mappedValue == null)
2127 >            throw new NullPointerException();
2128 >        return new KeySetView<K,V>(this, mappedValue);
2129 >    }
2130 >
2131 >    /* ---------------- Special Nodes -------------- */
2132 >
2133 >    /**
2134 >     * A node inserted at head of bins during transfer operations.
2135 >     */
2136 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2137 >        final Node<K,V>[] nextTable;
2138 >        ForwardingNode(Node<K,V>[] tab) {
2139 >            super(MOVED, null, null, null);
2140 >            this.nextTable = tab;
2141 >        }
2142 >
2143 >        Node<K,V> find(int h, Object k) {
2144 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2145 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2146 >                Node<K,V> e; int n;
2147 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2148 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2149 >                    return null;
2150                  for (;;) {
2151 <                    int cap, n;
2152 <                    Node[] tab = table;
2153 <                    if (tab == null) {
2154 <                        int c = initCap;
2155 <                        if (c < sizeHint)
2156 <                            c = sizeHint;
2157 <                        if (c == DEFAULT_CAPACITY)
2158 <                            cap = c;
640 <                        else if (c >= MAXIMUM_CAPACITY)
641 <                            cap = MAXIMUM_CAPACITY;
642 <                        else {
643 <                            cap = MINIMUM_CAPACITY;
644 <                            while (cap < c)
645 <                                cap <<= 1;
2151 >                    int eh; K ek;
2152 >                    if ((eh = e.hash) == h &&
2153 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2154 >                        return e;
2155 >                    if (eh < 0) {
2156 >                        if (e instanceof ForwardingNode) {
2157 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2158 >                            continue outer;
2159                          }
2160 +                        else
2161 +                            return e.find(h, k);
2162                      }
2163 <                    else if ((n = tab.length) < MAXIMUM_CAPACITY &&
2164 <                             (sizeHint <= 0 || n < sizeHint))
2165 <                        cap = n << 1;
2166 <                    else
2167 <                        break;
2168 <                    threshold = (int)(cap * loadFactor) - THRESHOLD_OFFSET;
2169 <                    Node[] nextTab = new Node[cap];
2170 <                    if (tab != null)
2171 <                        transfer(tab, nextTab);
2172 <                    table = nextTab;
2173 <                    if (tab == null || cap >= MAXIMUM_CAPACITY ||
2174 <                        ((sizeHint > 0) ? cap >= sizeHint :
2175 <                         counter.sum() < threshold))
2163 >                    if ((e = e.next) == null)
2164 >                        return null;
2165 >                }
2166 >            }
2167 >        }
2168 >    }
2169 >
2170 >    /**
2171 >     * A place-holder node used in computeIfAbsent and compute
2172 >     */
2173 >    static final class ReservationNode<K,V> extends Node<K,V> {
2174 >        ReservationNode() {
2175 >            super(RESERVED, null, null, null);
2176 >        }
2177 >
2178 >        Node<K,V> find(int h, Object k) {
2179 >            return null;
2180 >        }
2181 >    }
2182 >
2183 >    /* ---------------- Table Initialization and Resizing -------------- */
2184 >
2185 >    /**
2186 >     * Initializes table, using the size recorded in sizeCtl.
2187 >     */
2188 >    private final Node<K,V>[] initTable() {
2189 >        Node<K,V>[] tab; int sc;
2190 >        while ((tab = table) == null || tab.length == 0) {
2191 >            if ((sc = sizeCtl) < 0)
2192 >                Thread.yield(); // lost initialization race; just spin
2193 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2194 >                try {
2195 >                    if ((tab = table) == null || tab.length == 0) {
2196 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2197 >                        @SuppressWarnings({"rawtypes","unchecked"})
2198 >                            Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2199 >                        table = tab = nt;
2200 >                        sc = n - (n >>> 2);
2201 >                    }
2202 >                } finally {
2203 >                    sizeCtl = sc;
2204 >                }
2205 >                break;
2206 >            }
2207 >        }
2208 >        return tab;
2209 >    }
2210 >
2211 >    /**
2212 >     * Adds to count, and if table is too small and not already
2213 >     * resizing, initiates transfer. If already resizing, helps
2214 >     * perform transfer if work is available.  Rechecks occupancy
2215 >     * after a transfer to see if another resize is already needed
2216 >     * because resizings are lagging additions.
2217 >     *
2218 >     * @param x the count to add
2219 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2220 >     */
2221 >    private final void addCount(long x, int check) {
2222 >        CounterCell[] as; long b, s;
2223 >        if ((as = counterCells) != null ||
2224 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2225 >            CounterHashCode hc; CounterCell a; long v; int m;
2226 >            boolean uncontended = true;
2227 >            if ((hc = threadCounterHashCode.get()) == null ||
2228 >                as == null || (m = as.length - 1) < 0 ||
2229 >                (a = as[m & hc.code]) == null ||
2230 >                !(uncontended =
2231 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2232 >                fullAddCount(x, hc, uncontended);
2233 >                return;
2234 >            }
2235 >            if (check <= 1)
2236 >                return;
2237 >            s = sumCount();
2238 >        }
2239 >        if (check >= 0) {
2240 >            Node<K,V>[] tab, nt; int sc;
2241 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2242 >                   tab.length < MAXIMUM_CAPACITY) {
2243 >                if (sc < 0) {
2244 >                    if (sc == -1 || transferIndex <= transferOrigin ||
2245 >                        (nt = nextTable) == null)
2246                          break;
2247 +                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2248 +                        transfer(tab, nt);
2249                  }
2250 <            } finally {
2251 <                resizing = 0;
2250 >                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2251 >                    transfer(tab, null);
2252 >                s = sumCount();
2253              }
2254          }
2255 <        else if (table == null)
2256 <            Thread.yield(); // lost initialization race; just spin
2255 >    }
2256 >
2257 >    /**
2258 >     * Helps transfer if a resize is in progress.
2259 >     */
2260 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2261 >        Node<K,V>[] nextTab; int sc;
2262 >        if ((f instanceof ForwardingNode) &&
2263 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2264 >            if (nextTab == nextTable && tab == table &&
2265 >                transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2266 >                U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2267 >                transfer(tab, nextTab);
2268 >            return nextTab;
2269 >        }
2270          return table;
2271      }
2272  
2273      /**
2274 <     * Implementation for putAll and constructor with Map
2275 <     * argument. Tries to first override initial capacity or grow
2276 <     * based on map size to pre-allocate table space.
2274 >     * Tries to presize table to accommodate the given number of elements.
2275 >     *
2276 >     * @param size number of elements (doesn't need to be perfectly accurate)
2277       */
2278 <    private final void internalPutAll(Map<? extends K, ? extends V> m) {
2279 <        int s = m.size();
2280 <        grow((s >= (MAXIMUM_CAPACITY >>> 1)) ? s : s + (s >>> 1));
2281 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
2282 <            Object k = e.getKey();
2283 <            Object v = e.getValue();
2284 <            if (k == null || v == null)
2285 <                throw new NullPointerException();
2286 <            internalPut(k, v, true);
2278 >    private final void tryPresize(int size) {
2279 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2280 >            tableSizeFor(size + (size >>> 1) + 1);
2281 >        int sc;
2282 >        while ((sc = sizeCtl) >= 0) {
2283 >            Node<K,V>[] tab = table; int n;
2284 >            if (tab == null || (n = tab.length) == 0) {
2285 >                n = (sc > c) ? sc : c;
2286 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2287 >                    try {
2288 >                        if (table == tab) {
2289 >                            @SuppressWarnings({"rawtypes","unchecked"})
2290 >                                Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2291 >                            table = nt;
2292 >                            sc = n - (n >>> 2);
2293 >                        }
2294 >                    } finally {
2295 >                        sizeCtl = sc;
2296 >                    }
2297 >                }
2298 >            }
2299 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2300 >                break;
2301 >            else if (tab == table &&
2302 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2303 >                transfer(tab, null);
2304          }
2305      }
2306  
2307      /**
2308 <     * Implementation for clear. Steps through each bin, removing all nodes.
2308 >     * Moves and/or copies the nodes in each bin to new table. See
2309 >     * above for explanation.
2310       */
2311 <    private final void internalClear() {
2312 <        long deletions = 0L;
2313 <        int i = 0;
2314 <        Node[] tab = table;
2315 <        while (tab != null && i < tab.length) {
2316 <            Node e = tabAt(tab, i);
2317 <            if (e == null)
2318 <                ++i;
2319 <            else if (e.hash < 0)
2320 <                tab = (Node[])e.key;
2311 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2312 >        int n = tab.length, stride;
2313 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2314 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2315 >        if (nextTab == null) {            // initiating
2316 >            try {
2317 >                @SuppressWarnings({"rawtypes","unchecked"})
2318 >                    Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2319 >                nextTab = nt;
2320 >            } catch (Throwable ex) {      // try to cope with OOME
2321 >                sizeCtl = Integer.MAX_VALUE;
2322 >                return;
2323 >            }
2324 >            nextTable = nextTab;
2325 >            transferOrigin = n;
2326 >            transferIndex = n;
2327 >            ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2328 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
2329 >                int nextk = (k > stride) ? k - stride : 0;
2330 >                for (int m = nextk; m < k; ++m)
2331 >                    nextTab[m] = rev;
2332 >                for (int m = n + nextk; m < n + k; ++m)
2333 >                    nextTab[m] = rev;
2334 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2335 >            }
2336 >        }
2337 >        int nextn = nextTab.length;
2338 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2339 >        boolean advance = true;
2340 >        boolean finishing = false; // to ensure sweep before committing nextTab
2341 >        for (int i = 0, bound = 0;;) {
2342 >            int nextIndex, nextBound, fh; Node<K,V> f;
2343 >            while (advance) {
2344 >                if (--i >= bound || finishing)
2345 >                    advance = false;
2346 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
2347 >                    i = -1;
2348 >                    advance = false;
2349 >                }
2350 >                else if (U.compareAndSwapInt
2351 >                         (this, TRANSFERINDEX, nextIndex,
2352 >                          nextBound = (nextIndex > stride ?
2353 >                                       nextIndex - stride : 0))) {
2354 >                    bound = nextBound;
2355 >                    i = nextIndex - 1;
2356 >                    advance = false;
2357 >                }
2358 >            }
2359 >            if (i < 0 || i >= n || i + n >= nextn) {
2360 >                if (finishing) {
2361 >                    nextTable = null;
2362 >                    table = nextTab;
2363 >                    sizeCtl = (n << 1) - (n >>> 1);
2364 >                    return;
2365 >                }
2366 >                for (int sc;;) {
2367 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2368 >                        if (sc != -1)
2369 >                            return;
2370 >                        finishing = advance = true;
2371 >                        i = n; // recheck before commit
2372 >                        break;
2373 >                    }
2374 >                }
2375 >            }
2376 >            else if ((f = tabAt(tab, i)) == null) {
2377 >                if (casTabAt(tab, i, null, fwd)) {
2378 >                    setTabAt(nextTab, i, null);
2379 >                    setTabAt(nextTab, i + n, null);
2380 >                    advance = true;
2381 >                }
2382 >            }
2383 >            else if ((fh = f.hash) == MOVED)
2384 >                advance = true; // already processed
2385              else {
2386 <                boolean validated = false;
2387 <                synchronized (e) {
2388 <                    if (tabAt(tab, i) == e) {
2389 <                        validated = true;
2390 <                        do {
2391 <                            if (e.val != null) {
2392 <                                e.val = null;
2393 <                                ++deletions;
2386 >                synchronized (f) {
2387 >                    if (tabAt(tab, i) == f) {
2388 >                        Node<K,V> ln, hn;
2389 >                        if (fh >= 0) {
2390 >                            int runBit = fh & n;
2391 >                            Node<K,V> lastRun = f;
2392 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2393 >                                int b = p.hash & n;
2394 >                                if (b != runBit) {
2395 >                                    runBit = b;
2396 >                                    lastRun = p;
2397 >                                }
2398 >                            }
2399 >                            if (runBit == 0) {
2400 >                                ln = lastRun;
2401 >                                hn = null;
2402                              }
2403 <                        } while ((e = e.next) != null);
2404 <                        setTabAt(tab, i, null);
2403 >                            else {
2404 >                                hn = lastRun;
2405 >                                ln = null;
2406 >                            }
2407 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2408 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2409 >                                if ((ph & n) == 0)
2410 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2411 >                                else
2412 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2413 >                            }
2414 >                            setTabAt(nextTab, i, ln);
2415 >                            setTabAt(nextTab, i + n, hn);
2416 >                            setTabAt(tab, i, fwd);
2417 >                            advance = true;
2418 >                        }
2419 >                        else if (f instanceof TreeBin) {
2420 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2421 >                            TreeNode<K,V> lo = null, loTail = null;
2422 >                            TreeNode<K,V> hi = null, hiTail = null;
2423 >                            int lc = 0, hc = 0;
2424 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2425 >                                int h = e.hash;
2426 >                                TreeNode<K,V> p = new TreeNode<K,V>
2427 >                                    (h, e.key, e.val, null, null);
2428 >                                if ((h & n) == 0) {
2429 >                                    if ((p.prev = loTail) == null)
2430 >                                        lo = p;
2431 >                                    else
2432 >                                        loTail.next = p;
2433 >                                    loTail = p;
2434 >                                    ++lc;
2435 >                                }
2436 >                                else {
2437 >                                    if ((p.prev = hiTail) == null)
2438 >                                        hi = p;
2439 >                                    else
2440 >                                        hiTail.next = p;
2441 >                                    hiTail = p;
2442 >                                    ++hc;
2443 >                                }
2444 >                            }
2445 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2446 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2447 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2448 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2449 >                            setTabAt(nextTab, i, ln);
2450 >                            setTabAt(nextTab, i + n, hn);
2451 >                            setTabAt(tab, i, fwd);
2452 >                            advance = true;
2453 >                        }
2454                      }
2455                  }
2456 <                if (validated) {
2457 <                    ++i;
2458 <                    if (deletions > THRESHOLD_OFFSET) { // bound lag in counts
2459 <                        counter.add(-deletions);
2460 <                        deletions = 0L;
2456 >            }
2457 >        }
2458 >    }
2459 >
2460 >    /* ---------------- Conversion from/to TreeBins -------------- */
2461 >
2462 >    /**
2463 >     * Replaces all linked nodes in bin at given index unless table is
2464 >     * too small, in which case resizes instead.
2465 >     */
2466 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2467 >        Node<K,V> b; int n, sc;
2468 >        if (tab != null) {
2469 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2470 >                if (tab == table && (sc = sizeCtl) >= 0 &&
2471 >                    U.compareAndSwapInt(this, SIZECTL, sc, -2))
2472 >                    transfer(tab, null);
2473 >            }
2474 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2475 >                synchronized (b) {
2476 >                    if (tabAt(tab, index) == b) {
2477 >                        TreeNode<K,V> hd = null, tl = null;
2478 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2479 >                            TreeNode<K,V> p =
2480 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2481 >                                                  null, null);
2482 >                            if ((p.prev = tl) == null)
2483 >                                hd = p;
2484 >                            else
2485 >                                tl.next = p;
2486 >                            tl = p;
2487 >                        }
2488 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2489                      }
2490                  }
2491              }
2492          }
725        if (deletions != 0L)
726            counter.add(-deletions);
2493      }
2494  
2495      /**
2496 <     * Base class for key, value, and entry iterators, plus internal
731 <     * implementations of public traversal-based methods, to avoid
732 <     * duplicating traversal code.
2496 >     * Returns a list on non-TreeNodes replacing those in given list.
2497       */
2498 <    class HashIterator {
2499 <        private Node next;          // the next entry to return
2500 <        private Node[] tab;         // current table; updated if resized
2501 <        private Node lastReturned;  // the last entry returned, for remove
2502 <        private Object nextVal;     // cached value of next
2503 <        private int index;          // index of bin to use next
2504 <        private int baseIndex;      // current index of initial table
2505 <        private final int baseSize; // initial table size
2498 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2499 >        Node<K,V> hd = null, tl = null;
2500 >        for (Node<K,V> q = b; q != null; q = q.next) {
2501 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2502 >            if (tl == null)
2503 >                hd = p;
2504 >            else
2505 >                tl.next = p;
2506 >            tl = p;
2507 >        }
2508 >        return hd;
2509 >    }
2510  
2511 <        HashIterator() {
2512 <            Node[] t = tab = table;
2513 <            if (t == null)
2514 <                baseSize = 0;
2515 <            else {
2516 <                baseSize = t.length;
2517 <                advance(null);
2518 <            }
2511 >    /* ---------------- TreeNodes -------------- */
2512 >
2513 >    /**
2514 >     * Nodes for use in TreeBins
2515 >     */
2516 >    static final class TreeNode<K,V> extends Node<K,V> {
2517 >        TreeNode<K,V> parent;  // red-black tree links
2518 >        TreeNode<K,V> left;
2519 >        TreeNode<K,V> right;
2520 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2521 >        boolean red;
2522 >
2523 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2524 >                 TreeNode<K,V> parent) {
2525 >            super(hash, key, val, next);
2526 >            this.parent = parent;
2527          }
2528  
2529 <        public final boolean hasNext()         { return next != null; }
2530 <        public final boolean hasMoreElements() { return next != null; }
2529 >        Node<K,V> find(int h, Object k) {
2530 >            return findTreeNode(h, k, null);
2531 >        }
2532  
2533          /**
2534 <         * Advances next.  Normally, iteration proceeds bin-by-bin
2535 <         * traversing lists.  However, if the table has been resized,
759 <         * then all future steps must traverse both the bin at the
760 <         * current index as well as at (index + baseSize); and so on
761 <         * for further resizings. To paranoically cope with potential
762 <         * (improper) sharing of iterators across threads, table reads
763 <         * are bounds-checked.
2534 >         * Returns the TreeNode (or null if not found) for the given key
2535 >         * starting at given root.
2536           */
2537 <        final void advance(Node e) {
2538 <            for (;;) {
2539 <                Node[] t; int i; // for bounds checks
2540 <                if (e != null) {
2541 <                    Object ek = e.key, ev = e.val;
2542 <                    if (ev != null && ek != null) {
2543 <                        nextVal = ev;
2544 <                        next = e;
2537 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2538 >            if (k != null) {
2539 >                TreeNode<K,V> p = this;
2540 >                do  {
2541 >                    int ph, dir; K pk; TreeNode<K,V> q;
2542 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2543 >                    if ((ph = p.hash) > h)
2544 >                        p = pl;
2545 >                    else if (ph < h)
2546 >                        p = pr;
2547 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2548 >                        return p;
2549 >                    else if (pl == null && pr == null)
2550                          break;
2551 <                    }
2552 <                    e = e.next;
2553 <                }
2554 <                else if (baseIndex < baseSize && (t = tab) != null &&
2555 <                         t.length > (i = index) && i >= 0) {
2556 <                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2557 <                        tab = (Node[])e.key;
2558 <                        e = null;
2559 <                    }
783 <                    else if (i + baseSize < t.length)
784 <                        index += baseSize;    // visit forwarded upper slots
2551 >                    else if ((kc != null ||
2552 >                              (kc = comparableClassFor(k)) != null) &&
2553 >                             (dir = compareComparables(kc, k, pk)) != 0)
2554 >                        p = (dir < 0) ? pl : pr;
2555 >                    else if (pl == null)
2556 >                        p = pr;
2557 >                    else if (pr == null ||
2558 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2559 >                        p = pl;
2560                      else
2561 <                        index = ++baseIndex;
2561 >                        return q;
2562 >                } while (p != null);
2563 >            }
2564 >            return null;
2565 >        }
2566 >    }
2567 >
2568 >    /* ---------------- TreeBins -------------- */
2569 >
2570 >    /**
2571 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2572 >     * keys or values, but instead point to list of TreeNodes and
2573 >     * their root. They also maintain a parasitic read-write lock
2574 >     * forcing writers (who hold bin lock) to wait for readers (who do
2575 >     * not) to complete before tree restructuring operations.
2576 >     */
2577 >    static final class TreeBin<K,V> extends Node<K,V> {
2578 >        TreeNode<K,V> root;
2579 >        volatile TreeNode<K,V> first;
2580 >        volatile Thread waiter;
2581 >        volatile int lockState;
2582 >        // values for lockState
2583 >        static final int WRITER = 1; // set while holding write lock
2584 >        static final int WAITER = 2; // set when waiting for write lock
2585 >        static final int READER = 4; // increment value for setting read lock
2586 >
2587 >        /**
2588 >         * Creates bin with initial set of nodes headed by b.
2589 >         */
2590 >        TreeBin(TreeNode<K,V> b) {
2591 >            super(TREEBIN, null, null, null);
2592 >            this.first = b;
2593 >            TreeNode<K,V> r = null;
2594 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2595 >                next = (TreeNode<K,V>)x.next;
2596 >                x.left = x.right = null;
2597 >                if (r == null) {
2598 >                    x.parent = null;
2599 >                    x.red = false;
2600 >                    r = x;
2601                  }
2602                  else {
2603 <                    next = null;
2604 <                    break;
2603 >                    Object key = x.key;
2604 >                    int hash = x.hash;
2605 >                    Class<?> kc = null;
2606 >                    for (TreeNode<K,V> p = r;;) {
2607 >                        int dir, ph;
2608 >                        if ((ph = p.hash) > hash)
2609 >                            dir = -1;
2610 >                        else if (ph < hash)
2611 >                            dir = 1;
2612 >                        else if ((kc != null ||
2613 >                                  (kc = comparableClassFor(key)) != null))
2614 >                            dir = compareComparables(kc, key, p.key);
2615 >                        else
2616 >                            dir = 0;
2617 >                        TreeNode<K,V> xp = p;
2618 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2619 >                            x.parent = xp;
2620 >                            if (dir <= 0)
2621 >                                xp.left = x;
2622 >                            else
2623 >                                xp.right = x;
2624 >                            r = balanceInsertion(r, x);
2625 >                            break;
2626 >                        }
2627 >                    }
2628                  }
2629              }
2630 +            this.root = r;
2631          }
2632  
2633 <        final Object nextKey() {
2634 <            Node e = next;
2635 <            if (e == null)
2636 <                throw new NoSuchElementException();
2637 <            Object k = e.key;
2638 <            advance((lastReturned = e).next);
801 <            return k;
2633 >        /**
2634 >         * Acquires write lock for tree restructuring.
2635 >         */
2636 >        private final void lockRoot() {
2637 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2638 >                contendedLock(); // offload to separate method
2639          }
2640  
2641 <        final Object nextValue() {
2642 <            Node e = next;
2643 <            if (e == null)
2644 <                throw new NoSuchElementException();
2645 <            Object v = nextVal;
809 <            advance((lastReturned = e).next);
810 <            return v;
2641 >        /**
2642 >         * Releases write lock for tree restructuring.
2643 >         */
2644 >        private final void unlockRoot() {
2645 >            lockState = 0;
2646          }
2647  
2648 <        final WriteThroughEntry nextEntry() {
2649 <            Node e = next;
2650 <            if (e == null)
2651 <                throw new NoSuchElementException();
2652 <            WriteThroughEntry entry =
2653 <                new WriteThroughEntry(e.key, nextVal);
2654 <            advance((lastReturned = e).next);
2655 <            return entry;
2648 >        /**
2649 >         * Possibly blocks awaiting root lock.
2650 >         */
2651 >        private final void contendedLock() {
2652 >            boolean waiting = false;
2653 >            for (int s;;) {
2654 >                if (((s = lockState) & WRITER) == 0) {
2655 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2656 >                        if (waiting)
2657 >                            waiter = null;
2658 >                        return;
2659 >                    }
2660 >                }
2661 >                else if ((s | WAITER) == 0) {
2662 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2663 >                        waiting = true;
2664 >                        waiter = Thread.currentThread();
2665 >                    }
2666 >                }
2667 >                else if (waiting)
2668 >                    LockSupport.park(this);
2669 >            }
2670          }
2671  
2672 <        public final void remove() {
2673 <            if (lastReturned == null)
2674 <                throw new IllegalStateException();
2675 <            ConcurrentHashMapV8.this.remove(lastReturned.key);
2676 <            lastReturned = null;
2672 >        /**
2673 >         * Returns matching node or null if none. Tries to search
2674 >         * using tree comparisons from root, but continues linear
2675 >         * search when lock not available.
2676 >         */
2677 >        final Node<K,V> find(int h, Object k) {
2678 >            if (k != null) {
2679 >                for (Node<K,V> e = first; e != null; e = e.next) {
2680 >                    int s; K ek;
2681 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2682 >                        if (e.hash == h &&
2683 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2684 >                            return e;
2685 >                    }
2686 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2687 >                                                 s + READER)) {
2688 >                        TreeNode<K,V> r, p;
2689 >                        try {
2690 >                            p = ((r = root) == null ? null :
2691 >                                 r.findTreeNode(h, k, null));
2692 >                        } finally {
2693 >                            Thread w;
2694 >                            int ls;
2695 >                            do {} while (!U.compareAndSwapInt
2696 >                                         (this, LOCKSTATE,
2697 >                                          ls = lockState, ls - READER));
2698 >                            if (ls == (READER|WAITER) && (w = waiter) != null)
2699 >                                LockSupport.unpark(w);
2700 >                        }
2701 >                        return p;
2702 >                    }
2703 >                }
2704 >            }
2705 >            return null;
2706          }
2707  
2708 <        /** Helper for serialization */
2709 <        final void writeEntries(java.io.ObjectOutputStream s)
2710 <            throws java.io.IOException {
2711 <            Node e;
2712 <            while ((e = next) != null) {
2713 <                s.writeObject(e.key);
2714 <                s.writeObject(nextVal);
2715 <                advance(e.next);
2708 >        /**
2709 >         * Finds or adds a node.
2710 >         * @return null if added
2711 >         */
2712 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2713 >            Class<?> kc = null;
2714 >            for (TreeNode<K,V> p = root;;) {
2715 >                int dir, ph; K pk; TreeNode<K,V> q, pr;
2716 >                if (p == null) {
2717 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2718 >                    break;
2719 >                }
2720 >                else if ((ph = p.hash) > h)
2721 >                    dir = -1;
2722 >                else if (ph < h)
2723 >                    dir = 1;
2724 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2725 >                    return p;
2726 >                else if ((kc == null &&
2727 >                          (kc = comparableClassFor(k)) == null) ||
2728 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2729 >                    if (p.left == null)
2730 >                        dir = 1;
2731 >                    else if ((pr = p.right) == null ||
2732 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2733 >                        dir = -1;
2734 >                    else
2735 >                        return q;
2736 >                }
2737 >                TreeNode<K,V> xp = p;
2738 >                if ((p = (dir < 0) ? p.left : p.right) == null) {
2739 >                    TreeNode<K,V> x, f = first;
2740 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2741 >                    if (f != null)
2742 >                        f.prev = x;
2743 >                    if (dir < 0)
2744 >                        xp.left = x;
2745 >                    else
2746 >                        xp.right = x;
2747 >                    if (!xp.red)
2748 >                        x.red = true;
2749 >                    else {
2750 >                        lockRoot();
2751 >                        try {
2752 >                            root = balanceInsertion(root, x);
2753 >                        } finally {
2754 >                            unlockRoot();
2755 >                        }
2756 >                    }
2757 >                    break;
2758 >                }
2759              }
2760 +            assert checkInvariants(root);
2761 +            return null;
2762          }
2763  
2764 <        /** Helper for containsValue */
2765 <        final boolean containsVal(Object value) {
2766 <            if (value != null) {
2767 <                Node e;
2768 <                while ((e = next) != null) {
2769 <                    Object v = nextVal;
2770 <                    if (value == v || value.equals(v))
2771 <                        return true;
2772 <                    advance(e.next);
2764 >        /**
2765 >         * Removes the given node, that must be present before this
2766 >         * call.  This is messier than typical red-black deletion code
2767 >         * because we cannot swap the contents of an interior node
2768 >         * with a leaf successor that is pinned by "next" pointers
2769 >         * that are accessible independently of lock. So instead we
2770 >         * swap the tree linkages.
2771 >         *
2772 >         * @return true if now too small, so should be untreeified
2773 >         */
2774 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2775 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2776 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2777 >            TreeNode<K,V> r, rl;
2778 >            if (pred == null)
2779 >                first = next;
2780 >            else
2781 >                pred.next = next;
2782 >            if (next != null)
2783 >                next.prev = pred;
2784 >            if (first == null) {
2785 >                root = null;
2786 >                return true;
2787 >            }
2788 >            if ((r = root) == null || r.right == null || // too small
2789 >                (rl = r.left) == null || rl.left == null)
2790 >                return true;
2791 >            lockRoot();
2792 >            try {
2793 >                TreeNode<K,V> replacement;
2794 >                TreeNode<K,V> pl = p.left;
2795 >                TreeNode<K,V> pr = p.right;
2796 >                if (pl != null && pr != null) {
2797 >                    TreeNode<K,V> s = pr, sl;
2798 >                    while ((sl = s.left) != null) // find successor
2799 >                        s = sl;
2800 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2801 >                    TreeNode<K,V> sr = s.right;
2802 >                    TreeNode<K,V> pp = p.parent;
2803 >                    if (s == pr) { // p was s's direct parent
2804 >                        p.parent = s;
2805 >                        s.right = p;
2806 >                    }
2807 >                    else {
2808 >                        TreeNode<K,V> sp = s.parent;
2809 >                        if ((p.parent = sp) != null) {
2810 >                            if (s == sp.left)
2811 >                                sp.left = p;
2812 >                            else
2813 >                                sp.right = p;
2814 >                        }
2815 >                        if ((s.right = pr) != null)
2816 >                            pr.parent = s;
2817 >                    }
2818 >                    p.left = null;
2819 >                    if ((p.right = sr) != null)
2820 >                        sr.parent = p;
2821 >                    if ((s.left = pl) != null)
2822 >                        pl.parent = s;
2823 >                    if ((s.parent = pp) == null)
2824 >                        r = s;
2825 >                    else if (p == pp.left)
2826 >                        pp.left = s;
2827 >                    else
2828 >                        pp.right = s;
2829 >                    if (sr != null)
2830 >                        replacement = sr;
2831 >                    else
2832 >                        replacement = p;
2833 >                }
2834 >                else if (pl != null)
2835 >                    replacement = pl;
2836 >                else if (pr != null)
2837 >                    replacement = pr;
2838 >                else
2839 >                    replacement = p;
2840 >                if (replacement != p) {
2841 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2842 >                    if (pp == null)
2843 >                        r = replacement;
2844 >                    else if (p == pp.left)
2845 >                        pp.left = replacement;
2846 >                    else
2847 >                        pp.right = replacement;
2848 >                    p.left = p.right = p.parent = null;
2849                  }
2850 +
2851 +                root = (p.red) ? r : balanceDeletion(r, replacement);
2852 +
2853 +                if (p == replacement) {  // detach pointers
2854 +                    TreeNode<K,V> pp;
2855 +                    if ((pp = p.parent) != null) {
2856 +                        if (p == pp.left)
2857 +                            pp.left = null;
2858 +                        else if (p == pp.right)
2859 +                            pp.right = null;
2860 +                        p.parent = null;
2861 +                    }
2862 +                }
2863 +            } finally {
2864 +                unlockRoot();
2865              }
2866 +            assert checkInvariants(root);
2867              return false;
2868          }
2869  
2870 <        /** Helper for Map.hashCode */
2871 <        final int mapHashCode() {
2872 <            int h = 0;
2873 <            Node e;
2874 <            while ((e = next) != null) {
2875 <                h += e.key.hashCode() ^ nextVal.hashCode();
2876 <                advance(e.next);
2870 >        /* ------------------------------------------------------------ */
2871 >        // Red-black tree methods, all adapted from CLR
2872 >
2873 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2874 >                                              TreeNode<K,V> p) {
2875 >            TreeNode<K,V> r, pp, rl;
2876 >            if (p != null && (r = p.right) != null) {
2877 >                if ((rl = p.right = r.left) != null)
2878 >                    rl.parent = p;
2879 >                if ((pp = r.parent = p.parent) == null)
2880 >                    (root = r).red = false;
2881 >                else if (pp.left == p)
2882 >                    pp.left = r;
2883 >                else
2884 >                    pp.right = r;
2885 >                r.left = p;
2886 >                p.parent = r;
2887              }
2888 <            return h;
2888 >            return root;
2889          }
2890  
2891 <        /** Helper for Map.toString */
2892 <        final String mapToString() {
2893 <            Node e = next;
2894 <            if (e == null)
2895 <                return "{}";
2896 <            StringBuilder sb = new StringBuilder();
2897 <            sb.append('{');
2898 <            for (;;) {
2899 <                sb.append(e.key   == this ? "(this Map)" : e.key);
2900 <                sb.append('=');
876 <                sb.append(nextVal == this ? "(this Map)" : nextVal);
877 <                advance(e.next);
878 <                if ((e = next) != null)
879 <                    sb.append(',').append(' ');
2891 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2892 >                                               TreeNode<K,V> p) {
2893 >            TreeNode<K,V> l, pp, lr;
2894 >            if (p != null && (l = p.left) != null) {
2895 >                if ((lr = p.left = l.right) != null)
2896 >                    lr.parent = p;
2897 >                if ((pp = l.parent = p.parent) == null)
2898 >                    (root = l).red = false;
2899 >                else if (pp.right == p)
2900 >                    pp.right = l;
2901                  else
2902 <                    return sb.append('}').toString();
2902 >                    pp.left = l;
2903 >                l.right = p;
2904 >                p.parent = l;
2905 >            }
2906 >            return root;
2907 >        }
2908 >
2909 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2910 >                                                    TreeNode<K,V> x) {
2911 >            x.red = true;
2912 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2913 >                if ((xp = x.parent) == null) {
2914 >                    x.red = false;
2915 >                    return x;
2916 >                }
2917 >                else if (!xp.red || (xpp = xp.parent) == null)
2918 >                    return root;
2919 >                if (xp == (xppl = xpp.left)) {
2920 >                    if ((xppr = xpp.right) != null && xppr.red) {
2921 >                        xppr.red = false;
2922 >                        xp.red = false;
2923 >                        xpp.red = true;
2924 >                        x = xpp;
2925 >                    }
2926 >                    else {
2927 >                        if (x == xp.right) {
2928 >                            root = rotateLeft(root, x = xp);
2929 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2930 >                        }
2931 >                        if (xp != null) {
2932 >                            xp.red = false;
2933 >                            if (xpp != null) {
2934 >                                xpp.red = true;
2935 >                                root = rotateRight(root, xpp);
2936 >                            }
2937 >                        }
2938 >                    }
2939 >                }
2940 >                else {
2941 >                    if (xppl != null && xppl.red) {
2942 >                        xppl.red = false;
2943 >                        xp.red = false;
2944 >                        xpp.red = true;
2945 >                        x = xpp;
2946 >                    }
2947 >                    else {
2948 >                        if (x == xp.left) {
2949 >                            root = rotateRight(root, x = xp);
2950 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2951 >                        }
2952 >                        if (xp != null) {
2953 >                            xp.red = false;
2954 >                            if (xpp != null) {
2955 >                                xpp.red = true;
2956 >                                root = rotateLeft(root, xpp);
2957 >                            }
2958 >                        }
2959 >                    }
2960 >                }
2961 >            }
2962 >        }
2963 >
2964 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2965 >                                                   TreeNode<K,V> x) {
2966 >            for (TreeNode<K,V> xp, xpl, xpr;;)  {
2967 >                if (x == null || x == root)
2968 >                    return root;
2969 >                else if ((xp = x.parent) == null) {
2970 >                    x.red = false;
2971 >                    return x;
2972 >                }
2973 >                else if (x.red) {
2974 >                    x.red = false;
2975 >                    return root;
2976 >                }
2977 >                else if ((xpl = xp.left) == x) {
2978 >                    if ((xpr = xp.right) != null && xpr.red) {
2979 >                        xpr.red = false;
2980 >                        xp.red = true;
2981 >                        root = rotateLeft(root, xp);
2982 >                        xpr = (xp = x.parent) == null ? null : xp.right;
2983 >                    }
2984 >                    if (xpr == null)
2985 >                        x = xp;
2986 >                    else {
2987 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
2988 >                        if ((sr == null || !sr.red) &&
2989 >                            (sl == null || !sl.red)) {
2990 >                            xpr.red = true;
2991 >                            x = xp;
2992 >                        }
2993 >                        else {
2994 >                            if (sr == null || !sr.red) {
2995 >                                if (sl != null)
2996 >                                    sl.red = false;
2997 >                                xpr.red = true;
2998 >                                root = rotateRight(root, xpr);
2999 >                                xpr = (xp = x.parent) == null ?
3000 >                                    null : xp.right;
3001 >                            }
3002 >                            if (xpr != null) {
3003 >                                xpr.red = (xp == null) ? false : xp.red;
3004 >                                if ((sr = xpr.right) != null)
3005 >                                    sr.red = false;
3006 >                            }
3007 >                            if (xp != null) {
3008 >                                xp.red = false;
3009 >                                root = rotateLeft(root, xp);
3010 >                            }
3011 >                            x = root;
3012 >                        }
3013 >                    }
3014 >                }
3015 >                else { // symmetric
3016 >                    if (xpl != null && xpl.red) {
3017 >                        xpl.red = false;
3018 >                        xp.red = true;
3019 >                        root = rotateRight(root, xp);
3020 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3021 >                    }
3022 >                    if (xpl == null)
3023 >                        x = xp;
3024 >                    else {
3025 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3026 >                        if ((sl == null || !sl.red) &&
3027 >                            (sr == null || !sr.red)) {
3028 >                            xpl.red = true;
3029 >                            x = xp;
3030 >                        }
3031 >                        else {
3032 >                            if (sl == null || !sl.red) {
3033 >                                if (sr != null)
3034 >                                    sr.red = false;
3035 >                                xpl.red = true;
3036 >                                root = rotateLeft(root, xpl);
3037 >                                xpl = (xp = x.parent) == null ?
3038 >                                    null : xp.left;
3039 >                            }
3040 >                            if (xpl != null) {
3041 >                                xpl.red = (xp == null) ? false : xp.red;
3042 >                                if ((sl = xpl.left) != null)
3043 >                                    sl.red = false;
3044 >                            }
3045 >                            if (xp != null) {
3046 >                                xp.red = false;
3047 >                                root = rotateRight(root, xp);
3048 >                            }
3049 >                            x = root;
3050 >                        }
3051 >                    }
3052 >                }
3053 >            }
3054 >        }
3055 >
3056 >        /**
3057 >         * Recursive invariant check
3058 >         */
3059 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3060 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3061 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3062 >            if (tb != null && tb.next != t)
3063 >                return false;
3064 >            if (tn != null && tn.prev != t)
3065 >                return false;
3066 >            if (tp != null && t != tp.left && t != tp.right)
3067 >                return false;
3068 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3069 >                return false;
3070 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3071 >                return false;
3072 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3073 >                return false;
3074 >            if (tl != null && !checkInvariants(tl))
3075 >                return false;
3076 >            if (tr != null && !checkInvariants(tr))
3077 >                return false;
3078 >            return true;
3079 >        }
3080 >
3081 >        private static final sun.misc.Unsafe U;
3082 >        private static final long LOCKSTATE;
3083 >        static {
3084 >            try {
3085 >                U = getUnsafe();
3086 >                Class<?> k = TreeBin.class;
3087 >                LOCKSTATE = U.objectFieldOffset
3088 >                    (k.getDeclaredField("lockState"));
3089 >            } catch (Exception e) {
3090 >                throw new Error(e);
3091              }
3092          }
3093      }
3094  
3095 <    /* ---------------- Public operations -------------- */
3095 >    /* ----------------Table Traversal -------------- */
3096  
3097      /**
3098 <     * Creates a new, empty map with the specified initial
3099 <     * capacity, load factor and concurrency level.
3098 >     * Encapsulates traversal for methods such as containsValue; also
3099 >     * serves as a base class for other iterators and spliterators.
3100       *
3101 <     * @param initialCapacity the initial capacity. The implementation
3102 <     * performs internal sizing to accommodate this many elements.
3103 <     * @param loadFactor  the load factor threshold, used to control resizing.
3104 <     * Resizing may be performed when the average number of elements per
3105 <     * bin exceeds this threshold.
3106 <     * @param concurrencyLevel the estimated number of concurrently
3107 <     * updating threads. The implementation may use this value as
3108 <     * a sizing hint.
3109 <     * @throws IllegalArgumentException if the initial capacity is
3110 <     * negative or the load factor or concurrencyLevel are
3111 <     * nonpositive.
3112 <     */
3113 <    public ConcurrentHashMapV8(int initialCapacity,
3114 <                               float loadFactor, int concurrencyLevel) {
3115 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
3116 <            throw new IllegalArgumentException();
3117 <        this.initCap = initialCapacity;
3118 <        this.loadFactor = loadFactor;
3119 <        this.counter = new LongAdder();
3101 >     * Method advance visits once each still-valid node that was
3102 >     * reachable upon iterator construction. It might miss some that
3103 >     * were added to a bin after the bin was visited, which is OK wrt
3104 >     * consistency guarantees. Maintaining this property in the face
3105 >     * of possible ongoing resizes requires a fair amount of
3106 >     * bookkeeping state that is difficult to optimize away amidst
3107 >     * volatile accesses.  Even so, traversal maintains reasonable
3108 >     * throughput.
3109 >     *
3110 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3111 >     * However, if the table has been resized, then all future steps
3112 >     * must traverse both the bin at the current index as well as at
3113 >     * (index + baseSize); and so on for further resizings. To
3114 >     * paranoically cope with potential sharing by users of iterators
3115 >     * across threads, iteration terminates if a bounds checks fails
3116 >     * for a table read.
3117 >     */
3118 >    static class Traverser<K,V> {
3119 >        Node<K,V>[] tab;        // current table; updated if resized
3120 >        Node<K,V> next;         // the next entry to use
3121 >        int index;              // index of bin to use next
3122 >        int baseIndex;          // current index of initial table
3123 >        int baseLimit;          // index bound for initial table
3124 >        final int baseSize;     // initial table size
3125 >
3126 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3127 >            this.tab = tab;
3128 >            this.baseSize = size;
3129 >            this.baseIndex = this.index = index;
3130 >            this.baseLimit = limit;
3131 >            this.next = null;
3132 >        }
3133 >
3134 >        /**
3135 >         * Advances if possible, returning next valid node, or null if none.
3136 >         */
3137 >        final Node<K,V> advance() {
3138 >            Node<K,V> e;
3139 >            if ((e = next) != null)
3140 >                e = e.next;
3141 >            for (;;) {
3142 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
3143 >                if (e != null)
3144 >                    return next = e;
3145 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3146 >                    (n = t.length) <= (i = index) || i < 0)
3147 >                    return next = null;
3148 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
3149 >                    if (e instanceof ForwardingNode) {
3150 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3151 >                        e = null;
3152 >                        continue;
3153 >                    }
3154 >                    else if (e instanceof TreeBin)
3155 >                        e = ((TreeBin<K,V>)e).first;
3156 >                    else
3157 >                        e = null;
3158 >                }
3159 >                if ((index += baseSize) >= n)
3160 >                    index = ++baseIndex;    // visit upper slots if present
3161 >            }
3162 >        }
3163      }
3164  
3165      /**
3166 <     * Creates a new, empty map with the specified initial capacity
3167 <     * and load factor and with the default concurrencyLevel (16).
916 <     *
917 <     * @param initialCapacity The implementation performs internal
918 <     * sizing to accommodate this many elements.
919 <     * @param loadFactor  the load factor threshold, used to control resizing.
920 <     * Resizing may be performed when the average number of elements per
921 <     * bin exceeds this threshold.
922 <     * @throws IllegalArgumentException if the initial capacity of
923 <     * elements is negative or the load factor is nonpositive
924 <     *
925 <     * @since 1.6
3166 >     * Base of key, value, and entry Iterators. Adds fields to
3167 >     * Traverser to support iterator.remove.
3168       */
3169 <    public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
3170 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
3169 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3170 >        final ConcurrentHashMapV8<K,V> map;
3171 >        Node<K,V> lastReturned;
3172 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3173 >                    ConcurrentHashMapV8<K,V> map) {
3174 >            super(tab, size, index, limit);
3175 >            this.map = map;
3176 >            advance();
3177 >        }
3178 >
3179 >        public final boolean hasNext() { return next != null; }
3180 >        public final boolean hasMoreElements() { return next != null; }
3181 >
3182 >        public final void remove() {
3183 >            Node<K,V> p;
3184 >            if ((p = lastReturned) == null)
3185 >                throw new IllegalStateException();
3186 >            lastReturned = null;
3187 >            map.replaceNode(p.key, null, null);
3188 >        }
3189 >    }
3190 >
3191 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3192 >        implements Iterator<K>, Enumeration<K> {
3193 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3194 >                    ConcurrentHashMapV8<K,V> map) {
3195 >            super(tab, index, size, limit, map);
3196 >        }
3197 >
3198 >        public final K next() {
3199 >            Node<K,V> p;
3200 >            if ((p = next) == null)
3201 >                throw new NoSuchElementException();
3202 >            K k = p.key;
3203 >            lastReturned = p;
3204 >            advance();
3205 >            return k;
3206 >        }
3207 >
3208 >        public final K nextElement() { return next(); }
3209 >    }
3210 >
3211 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3212 >        implements Iterator<V>, Enumeration<V> {
3213 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3214 >                      ConcurrentHashMapV8<K,V> map) {
3215 >            super(tab, index, size, limit, map);
3216 >        }
3217 >
3218 >        public final V next() {
3219 >            Node<K,V> p;
3220 >            if ((p = next) == null)
3221 >                throw new NoSuchElementException();
3222 >            V v = p.val;
3223 >            lastReturned = p;
3224 >            advance();
3225 >            return v;
3226 >        }
3227 >
3228 >        public final V nextElement() { return next(); }
3229 >    }
3230 >
3231 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3232 >        implements Iterator<Map.Entry<K,V>> {
3233 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3234 >                      ConcurrentHashMapV8<K,V> map) {
3235 >            super(tab, index, size, limit, map);
3236 >        }
3237 >
3238 >        public final Map.Entry<K,V> next() {
3239 >            Node<K,V> p;
3240 >            if ((p = next) == null)
3241 >                throw new NoSuchElementException();
3242 >            K k = p.key;
3243 >            V v = p.val;
3244 >            lastReturned = p;
3245 >            advance();
3246 >            return new MapEntry<K,V>(k, v, map);
3247 >        }
3248      }
3249  
3250      /**
3251 <     * Creates a new, empty map with the specified initial capacity,
933 <     * and with default load factor (0.75) and concurrencyLevel (16).
934 <     *
935 <     * @param initialCapacity the initial capacity. The implementation
936 <     * performs internal sizing to accommodate this many elements.
937 <     * @throws IllegalArgumentException if the initial capacity of
938 <     * elements is negative.
3251 >     * Exported Entry for EntryIterator
3252       */
3253 <    public ConcurrentHashMapV8(int initialCapacity) {
3254 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
3253 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3254 >        final K key; // non-null
3255 >        V val;       // non-null
3256 >        final ConcurrentHashMapV8<K,V> map;
3257 >        MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3258 >            this.key = key;
3259 >            this.val = val;
3260 >            this.map = map;
3261 >        }
3262 >        public K getKey()        { return key; }
3263 >        public V getValue()      { return val; }
3264 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3265 >        public String toString() { return key + "=" + val; }
3266 >
3267 >        public boolean equals(Object o) {
3268 >            Object k, v; Map.Entry<?,?> e;
3269 >            return ((o instanceof Map.Entry) &&
3270 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3271 >                    (v = e.getValue()) != null &&
3272 >                    (k == key || k.equals(key)) &&
3273 >                    (v == val || v.equals(val)));
3274 >        }
3275 >
3276 >        /**
3277 >         * Sets our entry's value and writes through to the map. The
3278 >         * value to return is somewhat arbitrary here. Since we do not
3279 >         * necessarily track asynchronous changes, the most recent
3280 >         * "previous" value could be different from what we return (or
3281 >         * could even have been removed, in which case the put will
3282 >         * re-establish). We do not and cannot guarantee more.
3283 >         */
3284 >        public V setValue(V value) {
3285 >            if (value == null) throw new NullPointerException();
3286 >            V v = val;
3287 >            val = value;
3288 >            map.put(key, value);
3289 >            return v;
3290 >        }
3291      }
3292  
3293 +    static final class KeySpliterator<K,V> extends Traverser<K,V>
3294 +        implements ConcurrentHashMapSpliterator<K> {
3295 +        long est;               // size estimate
3296 +        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3297 +                       long est) {
3298 +            super(tab, size, index, limit);
3299 +            this.est = est;
3300 +        }
3301 +
3302 +        public ConcurrentHashMapSpliterator<K> trySplit() {
3303 +            int i, f, h;
3304 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3305 +                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3306 +                                        f, est >>>= 1);
3307 +        }
3308 +
3309 +        public void forEachRemaining(Action<? super K> action) {
3310 +            if (action == null) throw new NullPointerException();
3311 +            for (Node<K,V> p; (p = advance()) != null;)
3312 +                action.apply(p.key);
3313 +        }
3314 +
3315 +        public boolean tryAdvance(Action<? super K> action) {
3316 +            if (action == null) throw new NullPointerException();
3317 +            Node<K,V> p;
3318 +            if ((p = advance()) == null)
3319 +                return false;
3320 +            action.apply(p.key);
3321 +            return true;
3322 +        }
3323 +
3324 +        public long estimateSize() { return est; }
3325 +
3326 +    }
3327 +
3328 +    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3329 +        implements ConcurrentHashMapSpliterator<V> {
3330 +        long est;               // size estimate
3331 +        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3332 +                         long est) {
3333 +            super(tab, size, index, limit);
3334 +            this.est = est;
3335 +        }
3336 +
3337 +        public ConcurrentHashMapSpliterator<V> trySplit() {
3338 +            int i, f, h;
3339 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3340 +                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3341 +                                          f, est >>>= 1);
3342 +        }
3343 +
3344 +        public void forEachRemaining(Action<? super V> action) {
3345 +            if (action == null) throw new NullPointerException();
3346 +            for (Node<K,V> p; (p = advance()) != null;)
3347 +                action.apply(p.val);
3348 +        }
3349 +
3350 +        public boolean tryAdvance(Action<? super V> action) {
3351 +            if (action == null) throw new NullPointerException();
3352 +            Node<K,V> p;
3353 +            if ((p = advance()) == null)
3354 +                return false;
3355 +            action.apply(p.val);
3356 +            return true;
3357 +        }
3358 +
3359 +        public long estimateSize() { return est; }
3360 +
3361 +    }
3362 +
3363 +    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3364 +        implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3365 +        final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3366 +        long est;               // size estimate
3367 +        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3368 +                         long est, ConcurrentHashMapV8<K,V> map) {
3369 +            super(tab, size, index, limit);
3370 +            this.map = map;
3371 +            this.est = est;
3372 +        }
3373 +
3374 +        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3375 +            int i, f, h;
3376 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3377 +                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3378 +                                          f, est >>>= 1, map);
3379 +        }
3380 +
3381 +        public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3382 +            if (action == null) throw new NullPointerException();
3383 +            for (Node<K,V> p; (p = advance()) != null; )
3384 +                action.apply(new MapEntry<K,V>(p.key, p.val, map));
3385 +        }
3386 +
3387 +        public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3388 +            if (action == null) throw new NullPointerException();
3389 +            Node<K,V> p;
3390 +            if ((p = advance()) == null)
3391 +                return false;
3392 +            action.apply(new MapEntry<K,V>(p.key, p.val, map));
3393 +            return true;
3394 +        }
3395 +
3396 +        public long estimateSize() { return est; }
3397 +
3398 +    }
3399 +
3400 +    // Parallel bulk operations
3401 +
3402      /**
3403 <     * Creates a new, empty map with a default initial capacity (16),
3404 <     * load factor (0.75) and concurrencyLevel (16).
3403 >     * Computes initial batch value for bulk tasks. The returned value
3404 >     * is approximately exp2 of the number of times (minus one) to
3405 >     * split task by two before executing leaf action. This value is
3406 >     * faster to compute and more convenient to use as a guide to
3407 >     * splitting than is the depth, since it is used while dividing by
3408 >     * two anyway.
3409       */
3410 <    public ConcurrentHashMapV8() {
3411 <        this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
3410 >    final int batchFor(long b) {
3411 >        long n;
3412 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3413 >            return 0;
3414 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3415 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3416      }
3417  
3418      /**
3419 <     * Creates a new map with the same mappings as the given map.
954 <     * The map is created with a capacity of 1.5 times the number
955 <     * of mappings in the given map or 16 (whichever is greater),
956 <     * and a default load factor (0.75) and concurrencyLevel (16).
3419 >     * Performs the given action for each (key, value).
3420       *
3421 <     * @param m the map
3421 >     * @param parallelismThreshold the (estimated) number of elements
3422 >     * needed for this operation to be executed in parallel
3423 >     * @param action the action
3424 >     * @since 1.8
3425       */
3426 <    public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
3427 <        this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
3428 <        if (m == null)
3429 <            throw new NullPointerException();
3430 <        internalPutAll(m);
3426 >    public void forEach(long parallelismThreshold,
3427 >                        BiAction<? super K,? super V> action) {
3428 >        if (action == null) throw new NullPointerException();
3429 >        new ForEachMappingTask<K,V>
3430 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3431 >             action).invoke();
3432      }
3433  
3434      /**
3435 <     * Returns {@code true} if this map contains no key-value mappings.
3435 >     * Performs the given action for each non-null transformation
3436 >     * of each (key, value).
3437       *
3438 <     * @return {@code true} if this map contains no key-value mappings
3438 >     * @param parallelismThreshold the (estimated) number of elements
3439 >     * needed for this operation to be executed in parallel
3440 >     * @param transformer a function returning the transformation
3441 >     * for an element, or null if there is no transformation (in
3442 >     * which case the action is not applied)
3443 >     * @param action the action
3444 >     * @since 1.8
3445       */
3446 <    public boolean isEmpty() {
3447 <        return counter.sum() <= 0L; // ignore transient negative values
3446 >    public <U> void forEach(long parallelismThreshold,
3447 >                            BiFun<? super K, ? super V, ? extends U> transformer,
3448 >                            Action<? super U> action) {
3449 >        if (transformer == null || action == null)
3450 >            throw new NullPointerException();
3451 >        new ForEachTransformedMappingTask<K,V,U>
3452 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3453 >             transformer, action).invoke();
3454      }
3455  
3456      /**
3457 <     * Returns the number of key-value mappings in this map.  If the
3458 <     * map contains more than {@code Integer.MAX_VALUE} elements, returns
3459 <     * {@code Integer.MAX_VALUE}.
3460 <     *
3461 <     * @return the number of key-value mappings in this map
3462 <     */
3463 <    public int size() {
3464 <        long n = counter.sum();
3465 <        return ((n >>> 31) == 0) ? (int)n : (n < 0L) ? 0 : Integer.MAX_VALUE;
3457 >     * Returns a non-null result from applying the given search
3458 >     * function on each (key, value), or null if none.  Upon
3459 >     * success, further element processing is suppressed and the
3460 >     * results of any other parallel invocations of the search
3461 >     * function are ignored.
3462 >     *
3463 >     * @param parallelismThreshold the (estimated) number of elements
3464 >     * needed for this operation to be executed in parallel
3465 >     * @param searchFunction a function returning a non-null
3466 >     * result on success, else null
3467 >     * @return a non-null result from applying the given search
3468 >     * function on each (key, value), or null if none
3469 >     * @since 1.8
3470 >     */
3471 >    public <U> U search(long parallelismThreshold,
3472 >                        BiFun<? super K, ? super V, ? extends U> searchFunction) {
3473 >        if (searchFunction == null) throw new NullPointerException();
3474 >        return new SearchMappingsTask<K,V,U>
3475 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3476 >             searchFunction, new AtomicReference<U>()).invoke();
3477      }
3478  
3479      /**
3480 <     * Returns the value to which the specified key is mapped,
3481 <     * or {@code null} if this map contains no mapping for the key.
3482 <     *
3483 <     * <p>More formally, if this map contains a mapping from a key
3484 <     * {@code k} to a value {@code v} such that {@code key.equals(k)},
3485 <     * then this method returns {@code v}; otherwise it returns
3486 <     * {@code null}.  (There can be at most one such mapping.)
3487 <     *
3488 <     * @throws NullPointerException if the specified key is null
3489 <     */
3490 <    @SuppressWarnings("unchecked")
3491 <    public V get(Object key) {
3492 <        if (key == null)
3480 >     * Returns the result of accumulating the given transformation
3481 >     * of all (key, value) pairs using the given reducer to
3482 >     * combine values, or null if none.
3483 >     *
3484 >     * @param parallelismThreshold the (estimated) number of elements
3485 >     * needed for this operation to be executed in parallel
3486 >     * @param transformer a function returning the transformation
3487 >     * for an element, or null if there is no transformation (in
3488 >     * which case it is not combined)
3489 >     * @param reducer a commutative associative combining function
3490 >     * @return the result of accumulating the given transformation
3491 >     * of all (key, value) pairs
3492 >     * @since 1.8
3493 >     */
3494 >    public <U> U reduce(long parallelismThreshold,
3495 >                        BiFun<? super K, ? super V, ? extends U> transformer,
3496 >                        BiFun<? super U, ? super U, ? extends U> reducer) {
3497 >        if (transformer == null || reducer == null)
3498              throw new NullPointerException();
3499 <        return (V)internalGet(key);
3499 >        return new MapReduceMappingsTask<K,V,U>
3500 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3501 >             null, transformer, reducer).invoke();
3502      }
3503  
3504      /**
3505 <     * Tests if the specified object is a key in this table.
3506 <     *
3507 <     * @param  key   possible key
3508 <     * @return {@code true} if and only if the specified object
3509 <     *         is a key in this table, as determined by the
3510 <     *         {@code equals} method; {@code false} otherwise.
3511 <     * @throws NullPointerException if the specified key is null
3512 <     */
3513 <    public boolean containsKey(Object key) {
3514 <        if (key == null)
3505 >     * Returns the result of accumulating the given transformation
3506 >     * of all (key, value) pairs using the given reducer to
3507 >     * combine values, and the given basis as an identity value.
3508 >     *
3509 >     * @param parallelismThreshold the (estimated) number of elements
3510 >     * needed for this operation to be executed in parallel
3511 >     * @param transformer a function returning the transformation
3512 >     * for an element
3513 >     * @param basis the identity (initial default value) for the reduction
3514 >     * @param reducer a commutative associative combining function
3515 >     * @return the result of accumulating the given transformation
3516 >     * of all (key, value) pairs
3517 >     * @since 1.8
3518 >     */
3519 >    public double reduceToDouble(long parallelismThreshold,
3520 >                                 ObjectByObjectToDouble<? super K, ? super V> transformer,
3521 >                                 double basis,
3522 >                                 DoubleByDoubleToDouble reducer) {
3523 >        if (transformer == null || reducer == null)
3524              throw new NullPointerException();
3525 <        return internalGet(key) != null;
3525 >        return new MapReduceMappingsToDoubleTask<K,V>
3526 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3527 >             null, transformer, basis, reducer).invoke();
3528      }
3529  
3530      /**
3531 <     * Returns {@code true} if this map maps one or more keys to the
3532 <     * specified value. Note: This method requires a full internal
3533 <     * traversal of the hash table, and so is much slower than
3534 <     * method {@code containsKey}.
3535 <     *
3536 <     * @param value value whose presence in this map is to be tested
3537 <     * @return {@code true} if this map maps one or more keys to the
3538 <     *         specified value
3539 <     * @throws NullPointerException if the specified value is null
3540 <     */
3541 <    public boolean containsValue(Object value) {
3542 <        if (value == null)
3531 >     * Returns the result of accumulating the given transformation
3532 >     * of all (key, value) pairs using the given reducer to
3533 >     * combine values, and the given basis as an identity value.
3534 >     *
3535 >     * @param parallelismThreshold the (estimated) number of elements
3536 >     * needed for this operation to be executed in parallel
3537 >     * @param transformer a function returning the transformation
3538 >     * for an element
3539 >     * @param basis the identity (initial default value) for the reduction
3540 >     * @param reducer a commutative associative combining function
3541 >     * @return the result of accumulating the given transformation
3542 >     * of all (key, value) pairs
3543 >     * @since 1.8
3544 >     */
3545 >    public long reduceToLong(long parallelismThreshold,
3546 >                             ObjectByObjectToLong<? super K, ? super V> transformer,
3547 >                             long basis,
3548 >                             LongByLongToLong reducer) {
3549 >        if (transformer == null || reducer == null)
3550              throw new NullPointerException();
3551 <        return new HashIterator().containsVal(value);
3551 >        return new MapReduceMappingsToLongTask<K,V>
3552 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3553 >             null, transformer, basis, reducer).invoke();
3554      }
3555  
3556      /**
3557 <     * Legacy method testing if some key maps into the specified value
3558 <     * in this table.  This method is identical in functionality to
3559 <     * {@link #containsValue}, and exists solely to ensure
3560 <     * full compatibility with class {@link java.util.Hashtable},
3561 <     * which supported this method prior to introduction of the
3562 <     * Java Collections framework.
3563 <     *
3564 <     * @param  value a value to search for
3565 <     * @return {@code true} if and only if some key maps to the
3566 <     *         {@code value} argument in this table as
3567 <     *         determined by the {@code equals} method;
3568 <     *         {@code false} otherwise
3569 <     * @throws NullPointerException if the specified value is null
3570 <     */
3571 <    public boolean contains(Object value) {
3572 <        return containsValue(value);
3557 >     * Returns the result of accumulating the given transformation
3558 >     * of all (key, value) pairs using the given reducer to
3559 >     * combine values, and the given basis as an identity value.
3560 >     *
3561 >     * @param parallelismThreshold the (estimated) number of elements
3562 >     * needed for this operation to be executed in parallel
3563 >     * @param transformer a function returning the transformation
3564 >     * for an element
3565 >     * @param basis the identity (initial default value) for the reduction
3566 >     * @param reducer a commutative associative combining function
3567 >     * @return the result of accumulating the given transformation
3568 >     * of all (key, value) pairs
3569 >     * @since 1.8
3570 >     */
3571 >    public int reduceToInt(long parallelismThreshold,
3572 >                           ObjectByObjectToInt<? super K, ? super V> transformer,
3573 >                           int basis,
3574 >                           IntByIntToInt reducer) {
3575 >        if (transformer == null || reducer == null)
3576 >            throw new NullPointerException();
3577 >        return new MapReduceMappingsToIntTask<K,V>
3578 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3579 >             null, transformer, basis, reducer).invoke();
3580      }
3581  
3582      /**
3583 <     * Maps the specified key to the specified value in this table.
1059 <     * Neither the key nor the value can be null.
3583 >     * Performs the given action for each key.
3584       *
3585 <     * <p> The value can be retrieved by calling the {@code get} method
3586 <     * with a key that is equal to the original key.
3587 <     *
3588 <     * @param key key with which the specified value is to be associated
1065 <     * @param value value to be associated with the specified key
1066 <     * @return the previous value associated with {@code key}, or
1067 <     *         {@code null} if there was no mapping for {@code key}
1068 <     * @throws NullPointerException if the specified key or value is null
3585 >     * @param parallelismThreshold the (estimated) number of elements
3586 >     * needed for this operation to be executed in parallel
3587 >     * @param action the action
3588 >     * @since 1.8
3589       */
3590 <    @SuppressWarnings("unchecked")
3591 <    public V put(K key, V value) {
3592 <        if (key == null || value == null)
3593 <            throw new NullPointerException();
3594 <        return (V)internalPut(key, value, true);
3590 >    public void forEachKey(long parallelismThreshold,
3591 >                           Action<? super K> action) {
3592 >        if (action == null) throw new NullPointerException();
3593 >        new ForEachKeyTask<K,V>
3594 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3595 >             action).invoke();
3596      }
3597  
3598      /**
3599 <     * {@inheritDoc}
3599 >     * Performs the given action for each non-null transformation
3600 >     * of each key.
3601       *
3602 <     * @return the previous value associated with the specified key,
3603 <     *         or {@code null} if there was no mapping for the key
3604 <     * @throws NullPointerException if the specified key or value is null
3602 >     * @param parallelismThreshold the (estimated) number of elements
3603 >     * needed for this operation to be executed in parallel
3604 >     * @param transformer a function returning the transformation
3605 >     * for an element, or null if there is no transformation (in
3606 >     * which case the action is not applied)
3607 >     * @param action the action
3608 >     * @since 1.8
3609       */
3610 <    @SuppressWarnings("unchecked")
3611 <    public V putIfAbsent(K key, V value) {
3612 <        if (key == null || value == null)
3610 >    public <U> void forEachKey(long parallelismThreshold,
3611 >                               Fun<? super K, ? extends U> transformer,
3612 >                               Action<? super U> action) {
3613 >        if (transformer == null || action == null)
3614              throw new NullPointerException();
3615 <        return (V)internalPut(key, value, false);
3615 >        new ForEachTransformedKeyTask<K,V,U>
3616 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3617 >             transformer, action).invoke();
3618 >    }
3619 >
3620 >    /**
3621 >     * Returns a non-null result from applying the given search
3622 >     * function on each key, or null if none. Upon success,
3623 >     * further element processing is suppressed and the results of
3624 >     * any other parallel invocations of the search function are
3625 >     * ignored.
3626 >     *
3627 >     * @param parallelismThreshold the (estimated) number of elements
3628 >     * needed for this operation to be executed in parallel
3629 >     * @param searchFunction a function returning a non-null
3630 >     * result on success, else null
3631 >     * @return a non-null result from applying the given search
3632 >     * function on each key, or null if none
3633 >     * @since 1.8
3634 >     */
3635 >    public <U> U searchKeys(long parallelismThreshold,
3636 >                            Fun<? super K, ? extends U> searchFunction) {
3637 >        if (searchFunction == null) throw new NullPointerException();
3638 >        return new SearchKeysTask<K,V,U>
3639 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3640 >             searchFunction, new AtomicReference<U>()).invoke();
3641 >    }
3642 >
3643 >    /**
3644 >     * Returns the result of accumulating all keys using the given
3645 >     * reducer to combine values, or null if none.
3646 >     *
3647 >     * @param parallelismThreshold the (estimated) number of elements
3648 >     * needed for this operation to be executed in parallel
3649 >     * @param reducer a commutative associative combining function
3650 >     * @return the result of accumulating all keys using the given
3651 >     * reducer to combine values, or null if none
3652 >     * @since 1.8
3653 >     */
3654 >    public K reduceKeys(long parallelismThreshold,
3655 >                        BiFun<? super K, ? super K, ? extends K> reducer) {
3656 >        if (reducer == null) throw new NullPointerException();
3657 >        return new ReduceKeysTask<K,V>
3658 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3659 >             null, reducer).invoke();
3660 >    }
3661 >
3662 >    /**
3663 >     * Returns the result of accumulating the given transformation
3664 >     * of all keys using the given reducer to combine values, or
3665 >     * null if none.
3666 >     *
3667 >     * @param parallelismThreshold the (estimated) number of elements
3668 >     * needed for this operation to be executed in parallel
3669 >     * @param transformer a function returning the transformation
3670 >     * for an element, or null if there is no transformation (in
3671 >     * which case it is not combined)
3672 >     * @param reducer a commutative associative combining function
3673 >     * @return the result of accumulating the given transformation
3674 >     * of all keys
3675 >     * @since 1.8
3676 >     */
3677 >    public <U> U reduceKeys(long parallelismThreshold,
3678 >                            Fun<? super K, ? extends U> transformer,
3679 >         BiFun<? super U, ? super U, ? extends U> reducer) {
3680 >        if (transformer == null || reducer == null)
3681 >            throw new NullPointerException();
3682 >        return new MapReduceKeysTask<K,V,U>
3683 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3684 >             null, transformer, reducer).invoke();
3685      }
3686  
3687      /**
3688 <     * Copies all of the mappings from the specified map to this one.
3689 <     * These mappings replace any mappings that this map had for any of the
3690 <     * keys currently in the specified map.
3691 <     *
3692 <     * @param m mappings to be stored in this map
3693 <     */
3694 <    public void putAll(Map<? extends K, ? extends V> m) {
3695 <        if (m == null)
3688 >     * Returns the result of accumulating the given transformation
3689 >     * of all keys using the given reducer to combine values, and
3690 >     * the given basis as an identity value.
3691 >     *
3692 >     * @param parallelismThreshold the (estimated) number of elements
3693 >     * needed for this operation to be executed in parallel
3694 >     * @param transformer a function returning the transformation
3695 >     * for an element
3696 >     * @param basis the identity (initial default value) for the reduction
3697 >     * @param reducer a commutative associative combining function
3698 >     * @return the result of accumulating the given transformation
3699 >     * of all keys
3700 >     * @since 1.8
3701 >     */
3702 >    public double reduceKeysToDouble(long parallelismThreshold,
3703 >                                     ObjectToDouble<? super K> transformer,
3704 >                                     double basis,
3705 >                                     DoubleByDoubleToDouble reducer) {
3706 >        if (transformer == null || reducer == null)
3707              throw new NullPointerException();
3708 <        internalPutAll(m);
3708 >        return new MapReduceKeysToDoubleTask<K,V>
3709 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3710 >             null, transformer, basis, reducer).invoke();
3711      }
3712  
3713      /**
3714 <     * If the specified key is not already associated with a value,
3715 <     * computes its value using the given mappingFunction, and if
3716 <     * non-null, enters it into the map.  This is equivalent to
3717 <     *  <pre> {@code
3718 <     * if (map.containsKey(key))
3719 <     *   return map.get(key);
3720 <     * value = mappingFunction.map(key);
3721 <     * if (value != null)
3722 <     *   map.put(key, value);
3723 <     * return value;}</pre>
3724 <     *
3725 <     * except that the action is performed atomically.  Some attempted
3726 <     * update operations on this map by other threads may be blocked
3727 <     * while computation is in progress, so the computation should be
3728 <     * short and simple, and must not attempt to update any other
3729 <     * mappings of this Map. The most appropriate usage is to
3730 <     * construct a new object serving as an initial mapped value, or
3731 <     * memoized result, as in:
3732 <     *  <pre> {@code
1124 <     * map.computeIfAbsent(key, new MappingFunction<K, V>() {
1125 <     *   public V map(K k) { return new Value(f(k)); }});}</pre>
1126 <     *
1127 <     * @param key key with which the specified value is to be associated
1128 <     * @param mappingFunction the function to compute a value
1129 <     * @return the current (existing or computed) value associated with
1130 <     *         the specified key, or {@code null} if the computation
1131 <     *         returned {@code null}.
1132 <     * @throws NullPointerException if the specified key or mappingFunction
1133 <     *         is null,
1134 <     * @throws IllegalStateException if the computation detectably
1135 <     *         attempts a recursive update to this map that would
1136 <     *         otherwise never complete.
1137 <     * @throws RuntimeException or Error if the mappingFunction does so,
1138 <     *         in which case the mapping is left unestablished.
1139 <     */
1140 <    public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
1141 <        if (key == null || mappingFunction == null)
3714 >     * Returns the result of accumulating the given transformation
3715 >     * of all keys using the given reducer to combine values, and
3716 >     * the given basis as an identity value.
3717 >     *
3718 >     * @param parallelismThreshold the (estimated) number of elements
3719 >     * needed for this operation to be executed in parallel
3720 >     * @param transformer a function returning the transformation
3721 >     * for an element
3722 >     * @param basis the identity (initial default value) for the reduction
3723 >     * @param reducer a commutative associative combining function
3724 >     * @return the result of accumulating the given transformation
3725 >     * of all keys
3726 >     * @since 1.8
3727 >     */
3728 >    public long reduceKeysToLong(long parallelismThreshold,
3729 >                                 ObjectToLong<? super K> transformer,
3730 >                                 long basis,
3731 >                                 LongByLongToLong reducer) {
3732 >        if (transformer == null || reducer == null)
3733              throw new NullPointerException();
3734 <        return internalCompute(key, mappingFunction, false);
3734 >        return new MapReduceKeysToLongTask<K,V>
3735 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3736 >             null, transformer, basis, reducer).invoke();
3737      }
3738  
3739      /**
3740 <     * Computes the value associated with the given key using the given
3741 <     * mappingFunction, and if non-null, enters it into the map.  This
3742 <     * is equivalent to
3743 <     *  <pre> {@code
3744 <     * value = mappingFunction.map(key);
3745 <     * if (value != null)
3746 <     *   map.put(key, value);
3747 <     * else
3748 <     *   value = map.get(key);
3749 <     * return value;}</pre>
3750 <     *
3751 <     * except that the action is performed atomically.  Some attempted
3752 <     * update operations on this map by other threads may be blocked
3753 <     * while computation is in progress, so the computation should be
3754 <     * short and simple, and must not attempt to update any other
3755 <     * mappings of this Map.
3756 <     *
3757 <     * @param key key with which the specified value is to be associated
3758 <     * @param mappingFunction the function to compute a value
1166 <     * @return the current value associated with
1167 <     *         the specified key, or {@code null} if the computation
1168 <     *         returned {@code null} and the value was not otherwise present.
1169 <     * @throws NullPointerException if the specified key or mappingFunction
1170 <     *         is null,
1171 <     * @throws IllegalStateException if the computation detectably
1172 <     *         attempts a recursive update to this map that would
1173 <     *         otherwise never complete.
1174 <     * @throws RuntimeException or Error if the mappingFunction does so,
1175 <     *         in which case the mapping is unchanged.
1176 <     */
1177 <    public V compute(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
1178 <        if (key == null || mappingFunction == null)
3740 >     * Returns the result of accumulating the given transformation
3741 >     * of all keys using the given reducer to combine values, and
3742 >     * the given basis as an identity value.
3743 >     *
3744 >     * @param parallelismThreshold the (estimated) number of elements
3745 >     * needed for this operation to be executed in parallel
3746 >     * @param transformer a function returning the transformation
3747 >     * for an element
3748 >     * @param basis the identity (initial default value) for the reduction
3749 >     * @param reducer a commutative associative combining function
3750 >     * @return the result of accumulating the given transformation
3751 >     * of all keys
3752 >     * @since 1.8
3753 >     */
3754 >    public int reduceKeysToInt(long parallelismThreshold,
3755 >                               ObjectToInt<? super K> transformer,
3756 >                               int basis,
3757 >                               IntByIntToInt reducer) {
3758 >        if (transformer == null || reducer == null)
3759              throw new NullPointerException();
3760 <        return internalCompute(key, mappingFunction, true);
3760 >        return new MapReduceKeysToIntTask<K,V>
3761 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3762 >             null, transformer, basis, reducer).invoke();
3763      }
3764  
3765      /**
3766 <     * Removes the key (and its corresponding value) from this map.
1185 <     * This method does nothing if the key is not in the map.
3766 >     * Performs the given action for each value.
3767       *
3768 <     * @param  key the key that needs to be removed
3769 <     * @return the previous value associated with {@code key}, or
3770 <     *         {@code null} if there was no mapping for {@code key}
3771 <     * @throws NullPointerException if the specified key is null
3768 >     * @param parallelismThreshold the (estimated) number of elements
3769 >     * needed for this operation to be executed in parallel
3770 >     * @param action the action
3771 >     * @since 1.8
3772       */
3773 <    @SuppressWarnings("unchecked")
3774 <    public V remove(Object key) {
3775 <        if (key == null)
3773 >    public void forEachValue(long parallelismThreshold,
3774 >                             Action<? super V> action) {
3775 >        if (action == null)
3776              throw new NullPointerException();
3777 <        return (V)internalReplace(key, null, null);
3777 >        new ForEachValueTask<K,V>
3778 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3779 >             action).invoke();
3780      }
3781  
3782      /**
3783 <     * {@inheritDoc}
3784 <     *
3785 <     * @throws NullPointerException if the specified key is null
3786 <     */
3787 <    public boolean remove(Object key, Object value) {
3788 <        if (key == null)
3783 >     * Performs the given action for each non-null transformation
3784 >     * of each value.
3785 >     *
3786 >     * @param parallelismThreshold the (estimated) number of elements
3787 >     * needed for this operation to be executed in parallel
3788 >     * @param transformer a function returning the transformation
3789 >     * for an element, or null if there is no transformation (in
3790 >     * which case the action is not applied)
3791 >     * @param action the action
3792 >     * @since 1.8
3793 >     */
3794 >    public <U> void forEachValue(long parallelismThreshold,
3795 >                                 Fun<? super V, ? extends U> transformer,
3796 >                                 Action<? super U> action) {
3797 >        if (transformer == null || action == null)
3798              throw new NullPointerException();
3799 <        if (value == null)
3800 <            return false;
3801 <        return internalReplace(key, null, value) != null;
3799 >        new ForEachTransformedValueTask<K,V,U>
3800 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3801 >             transformer, action).invoke();
3802 >    }
3803 >
3804 >    /**
3805 >     * Returns a non-null result from applying the given search
3806 >     * function on each value, or null if none.  Upon success,
3807 >     * further element processing is suppressed and the results of
3808 >     * any other parallel invocations of the search function are
3809 >     * ignored.
3810 >     *
3811 >     * @param parallelismThreshold the (estimated) number of elements
3812 >     * needed for this operation to be executed in parallel
3813 >     * @param searchFunction a function returning a non-null
3814 >     * result on success, else null
3815 >     * @return a non-null result from applying the given search
3816 >     * function on each value, or null if none
3817 >     * @since 1.8
3818 >     */
3819 >    public <U> U searchValues(long parallelismThreshold,
3820 >                              Fun<? super V, ? extends U> searchFunction) {
3821 >        if (searchFunction == null) throw new NullPointerException();
3822 >        return new SearchValuesTask<K,V,U>
3823 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3824 >             searchFunction, new AtomicReference<U>()).invoke();
3825 >    }
3826 >
3827 >    /**
3828 >     * Returns the result of accumulating all values using the
3829 >     * given reducer to combine values, or null if none.
3830 >     *
3831 >     * @param parallelismThreshold the (estimated) number of elements
3832 >     * needed for this operation to be executed in parallel
3833 >     * @param reducer a commutative associative combining function
3834 >     * @return the result of accumulating all values
3835 >     * @since 1.8
3836 >     */
3837 >    public V reduceValues(long parallelismThreshold,
3838 >                          BiFun<? super V, ? super V, ? extends V> reducer) {
3839 >        if (reducer == null) throw new NullPointerException();
3840 >        return new ReduceValuesTask<K,V>
3841 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3842 >             null, reducer).invoke();
3843 >    }
3844 >
3845 >    /**
3846 >     * Returns the result of accumulating the given transformation
3847 >     * of all values using the given reducer to combine values, or
3848 >     * null if none.
3849 >     *
3850 >     * @param parallelismThreshold the (estimated) number of elements
3851 >     * needed for this operation to be executed in parallel
3852 >     * @param transformer a function returning the transformation
3853 >     * for an element, or null if there is no transformation (in
3854 >     * which case it is not combined)
3855 >     * @param reducer a commutative associative combining function
3856 >     * @return the result of accumulating the given transformation
3857 >     * of all values
3858 >     * @since 1.8
3859 >     */
3860 >    public <U> U reduceValues(long parallelismThreshold,
3861 >                              Fun<? super V, ? extends U> transformer,
3862 >                              BiFun<? super U, ? super U, ? extends U> reducer) {
3863 >        if (transformer == null || reducer == null)
3864 >            throw new NullPointerException();
3865 >        return new MapReduceValuesTask<K,V,U>
3866 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3867 >             null, transformer, reducer).invoke();
3868      }
3869  
3870      /**
3871 <     * {@inheritDoc}
3872 <     *
3873 <     * @throws NullPointerException if any of the arguments are null
3874 <     */
3875 <    public boolean replace(K key, V oldValue, V newValue) {
3876 <        if (key == null || oldValue == null || newValue == null)
3871 >     * Returns the result of accumulating the given transformation
3872 >     * of all values using the given reducer to combine values,
3873 >     * and the given basis as an identity value.
3874 >     *
3875 >     * @param parallelismThreshold the (estimated) number of elements
3876 >     * needed for this operation to be executed in parallel
3877 >     * @param transformer a function returning the transformation
3878 >     * for an element
3879 >     * @param basis the identity (initial default value) for the reduction
3880 >     * @param reducer a commutative associative combining function
3881 >     * @return the result of accumulating the given transformation
3882 >     * of all values
3883 >     * @since 1.8
3884 >     */
3885 >    public double reduceValuesToDouble(long parallelismThreshold,
3886 >                                       ObjectToDouble<? super V> transformer,
3887 >                                       double basis,
3888 >                                       DoubleByDoubleToDouble reducer) {
3889 >        if (transformer == null || reducer == null)
3890              throw new NullPointerException();
3891 <        return internalReplace(key, newValue, oldValue) != null;
3891 >        return new MapReduceValuesToDoubleTask<K,V>
3892 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3893 >             null, transformer, basis, reducer).invoke();
3894      }
3895  
3896      /**
3897 <     * {@inheritDoc}
3898 <     *
3899 <     * @return the previous value associated with the specified key,
3900 <     *         or {@code null} if there was no mapping for the key
3901 <     * @throws NullPointerException if the specified key or value is null
3902 <     */
3903 <    @SuppressWarnings("unchecked")
3904 <    public V replace(K key, V value) {
3905 <        if (key == null || value == null)
3897 >     * Returns the result of accumulating the given transformation
3898 >     * of all values using the given reducer to combine values,
3899 >     * and the given basis as an identity value.
3900 >     *
3901 >     * @param parallelismThreshold the (estimated) number of elements
3902 >     * needed for this operation to be executed in parallel
3903 >     * @param transformer a function returning the transformation
3904 >     * for an element
3905 >     * @param basis the identity (initial default value) for the reduction
3906 >     * @param reducer a commutative associative combining function
3907 >     * @return the result of accumulating the given transformation
3908 >     * of all values
3909 >     * @since 1.8
3910 >     */
3911 >    public long reduceValuesToLong(long parallelismThreshold,
3912 >                                   ObjectToLong<? super V> transformer,
3913 >                                   long basis,
3914 >                                   LongByLongToLong reducer) {
3915 >        if (transformer == null || reducer == null)
3916              throw new NullPointerException();
3917 <        return (V)internalReplace(key, value, null);
3917 >        return new MapReduceValuesToLongTask<K,V>
3918 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3919 >             null, transformer, basis, reducer).invoke();
3920      }
3921  
3922      /**
3923 <     * Removes all of the mappings from this map.
3924 <     */
3925 <    public void clear() {
3926 <        internalClear();
3923 >     * Returns the result of accumulating the given transformation
3924 >     * of all values using the given reducer to combine values,
3925 >     * and the given basis as an identity value.
3926 >     *
3927 >     * @param parallelismThreshold the (estimated) number of elements
3928 >     * needed for this operation to be executed in parallel
3929 >     * @param transformer a function returning the transformation
3930 >     * for an element
3931 >     * @param basis the identity (initial default value) for the reduction
3932 >     * @param reducer a commutative associative combining function
3933 >     * @return the result of accumulating the given transformation
3934 >     * of all values
3935 >     * @since 1.8
3936 >     */
3937 >    public int reduceValuesToInt(long parallelismThreshold,
3938 >                                 ObjectToInt<? super V> transformer,
3939 >                                 int basis,
3940 >                                 IntByIntToInt reducer) {
3941 >        if (transformer == null || reducer == null)
3942 >            throw new NullPointerException();
3943 >        return new MapReduceValuesToIntTask<K,V>
3944 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3945 >             null, transformer, basis, reducer).invoke();
3946      }
3947  
3948      /**
3949 <     * Returns a {@link Set} view of the keys contained in this map.
1246 <     * The set is backed by the map, so changes to the map are
1247 <     * reflected in the set, and vice-versa.  The set supports element
1248 <     * removal, which removes the corresponding mapping from this map,
1249 <     * via the {@code Iterator.remove}, {@code Set.remove},
1250 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
1251 <     * operations.  It does not support the {@code add} or
1252 <     * {@code addAll} operations.
3949 >     * Performs the given action for each entry.
3950       *
3951 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
3952 <     * that will never throw {@link ConcurrentModificationException},
3953 <     * and guarantees to traverse elements as they existed upon
3954 <     * construction of the iterator, and may (but is not guaranteed to)
1258 <     * reflect any modifications subsequent to construction.
3951 >     * @param parallelismThreshold the (estimated) number of elements
3952 >     * needed for this operation to be executed in parallel
3953 >     * @param action the action
3954 >     * @since 1.8
3955       */
3956 <    public Set<K> keySet() {
3957 <        Set<K> ks = keySet;
3958 <        return (ks != null) ? ks : (keySet = new KeySet());
3956 >    public void forEachEntry(long parallelismThreshold,
3957 >                             Action<? super Map.Entry<K,V>> action) {
3958 >        if (action == null) throw new NullPointerException();
3959 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
3960 >                                  action).invoke();
3961      }
3962  
3963      /**
3964 <     * Returns a {@link Collection} view of the values contained in this map.
3965 <     * The collection is backed by the map, so changes to the map are
1268 <     * reflected in the collection, and vice-versa.  The collection
1269 <     * supports element removal, which removes the corresponding
1270 <     * mapping from this map, via the {@code Iterator.remove},
1271 <     * {@code Collection.remove}, {@code removeAll},
1272 <     * {@code retainAll}, and {@code clear} operations.  It does not
1273 <     * support the {@code add} or {@code addAll} operations.
3964 >     * Performs the given action for each non-null transformation
3965 >     * of each entry.
3966       *
3967 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
3968 <     * that will never throw {@link ConcurrentModificationException},
3969 <     * and guarantees to traverse elements as they existed upon
3970 <     * construction of the iterator, and may (but is not guaranteed to)
3971 <     * reflect any modifications subsequent to construction.
3967 >     * @param parallelismThreshold the (estimated) number of elements
3968 >     * needed for this operation to be executed in parallel
3969 >     * @param transformer a function returning the transformation
3970 >     * for an element, or null if there is no transformation (in
3971 >     * which case the action is not applied)
3972 >     * @param action the action
3973 >     * @since 1.8
3974       */
3975 <    public Collection<V> values() {
3976 <        Collection<V> vs = values;
3977 <        return (vs != null) ? vs : (values = new Values());
3975 >    public <U> void forEachEntry(long parallelismThreshold,
3976 >                                 Fun<Map.Entry<K,V>, ? extends U> transformer,
3977 >                                 Action<? super U> action) {
3978 >        if (transformer == null || action == null)
3979 >            throw new NullPointerException();
3980 >        new ForEachTransformedEntryTask<K,V,U>
3981 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3982 >             transformer, action).invoke();
3983 >    }
3984 >
3985 >    /**
3986 >     * Returns a non-null result from applying the given search
3987 >     * function on each entry, or null if none.  Upon success,
3988 >     * further element processing is suppressed and the results of
3989 >     * any other parallel invocations of the search function are
3990 >     * ignored.
3991 >     *
3992 >     * @param parallelismThreshold the (estimated) number of elements
3993 >     * needed for this operation to be executed in parallel
3994 >     * @param searchFunction a function returning a non-null
3995 >     * result on success, else null
3996 >     * @return a non-null result from applying the given search
3997 >     * function on each entry, or null if none
3998 >     * @since 1.8
3999 >     */
4000 >    public <U> U searchEntries(long parallelismThreshold,
4001 >                               Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4002 >        if (searchFunction == null) throw new NullPointerException();
4003 >        return new SearchEntriesTask<K,V,U>
4004 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4005 >             searchFunction, new AtomicReference<U>()).invoke();
4006 >    }
4007 >
4008 >    /**
4009 >     * Returns the result of accumulating all entries using the
4010 >     * given reducer to combine values, or null if none.
4011 >     *
4012 >     * @param parallelismThreshold the (estimated) number of elements
4013 >     * needed for this operation to be executed in parallel
4014 >     * @param reducer a commutative associative combining function
4015 >     * @return the result of accumulating all entries
4016 >     * @since 1.8
4017 >     */
4018 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4019 >                                        BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4020 >        if (reducer == null) throw new NullPointerException();
4021 >        return new ReduceEntriesTask<K,V>
4022 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4023 >             null, reducer).invoke();
4024 >    }
4025 >
4026 >    /**
4027 >     * Returns the result of accumulating the given transformation
4028 >     * of all entries using the given reducer to combine values,
4029 >     * or null if none.
4030 >     *
4031 >     * @param parallelismThreshold the (estimated) number of elements
4032 >     * needed for this operation to be executed in parallel
4033 >     * @param transformer a function returning the transformation
4034 >     * for an element, or null if there is no transformation (in
4035 >     * which case it is not combined)
4036 >     * @param reducer a commutative associative combining function
4037 >     * @return the result of accumulating the given transformation
4038 >     * of all entries
4039 >     * @since 1.8
4040 >     */
4041 >    public <U> U reduceEntries(long parallelismThreshold,
4042 >                               Fun<Map.Entry<K,V>, ? extends U> transformer,
4043 >                               BiFun<? super U, ? super U, ? extends U> reducer) {
4044 >        if (transformer == null || reducer == null)
4045 >            throw new NullPointerException();
4046 >        return new MapReduceEntriesTask<K,V,U>
4047 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4048 >             null, transformer, reducer).invoke();
4049      }
4050  
4051      /**
4052 <     * Returns a {@link Set} view of the mappings contained in this map.
4053 <     * The set is backed by the map, so changes to the map are
4054 <     * reflected in the set, and vice-versa.  The set supports element
4055 <     * removal, which removes the corresponding mapping from the map,
4056 <     * via the {@code Iterator.remove}, {@code Set.remove},
4057 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
4058 <     * operations.  It does not support the {@code add} or
4059 <     * {@code addAll} operations.
4060 <     *
4061 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4062 <     * that will never throw {@link ConcurrentModificationException},
4063 <     * and guarantees to traverse elements as they existed upon
4064 <     * construction of the iterator, and may (but is not guaranteed to)
4065 <     * reflect any modifications subsequent to construction.
4066 <     */
4067 <    public Set<Map.Entry<K,V>> entrySet() {
4068 <        Set<Map.Entry<K,V>> es = entrySet;
4069 <        return (es != null) ? es : (entrySet = new EntrySet());
4052 >     * Returns the result of accumulating the given transformation
4053 >     * of all entries using the given reducer to combine values,
4054 >     * and the given basis as an identity value.
4055 >     *
4056 >     * @param parallelismThreshold the (estimated) number of elements
4057 >     * needed for this operation to be executed in parallel
4058 >     * @param transformer a function returning the transformation
4059 >     * for an element
4060 >     * @param basis the identity (initial default value) for the reduction
4061 >     * @param reducer a commutative associative combining function
4062 >     * @return the result of accumulating the given transformation
4063 >     * of all entries
4064 >     * @since 1.8
4065 >     */
4066 >    public double reduceEntriesToDouble(long parallelismThreshold,
4067 >                                        ObjectToDouble<Map.Entry<K,V>> transformer,
4068 >                                        double basis,
4069 >                                        DoubleByDoubleToDouble reducer) {
4070 >        if (transformer == null || reducer == null)
4071 >            throw new NullPointerException();
4072 >        return new MapReduceEntriesToDoubleTask<K,V>
4073 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4074 >             null, transformer, basis, reducer).invoke();
4075      }
4076  
4077      /**
4078 <     * Returns an enumeration of the keys in this table.
4079 <     *
4080 <     * @return an enumeration of the keys in this table
4081 <     * @see #keySet()
4082 <     */
4083 <    public Enumeration<K> keys() {
4084 <        return new KeyIterator();
4078 >     * Returns the result of accumulating the given transformation
4079 >     * of all entries using the given reducer to combine values,
4080 >     * and the given basis as an identity value.
4081 >     *
4082 >     * @param parallelismThreshold the (estimated) number of elements
4083 >     * needed for this operation to be executed in parallel
4084 >     * @param transformer a function returning the transformation
4085 >     * for an element
4086 >     * @param basis the identity (initial default value) for the reduction
4087 >     * @param reducer a commutative associative combining function
4088 >     * @return the result of accumulating the given transformation
4089 >     * of all entries
4090 >     * @since 1.8
4091 >     */
4092 >    public long reduceEntriesToLong(long parallelismThreshold,
4093 >                                    ObjectToLong<Map.Entry<K,V>> transformer,
4094 >                                    long basis,
4095 >                                    LongByLongToLong reducer) {
4096 >        if (transformer == null || reducer == null)
4097 >            throw new NullPointerException();
4098 >        return new MapReduceEntriesToLongTask<K,V>
4099 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4100 >             null, transformer, basis, reducer).invoke();
4101      }
4102  
4103      /**
4104 <     * Returns an enumeration of the values in this table.
4105 <     *
4106 <     * @return an enumeration of the values in this table
4107 <     * @see #values()
4108 <     */
4109 <    public Enumeration<V> elements() {
4110 <        return new ValueIterator();
4104 >     * Returns the result of accumulating the given transformation
4105 >     * of all entries using the given reducer to combine values,
4106 >     * and the given basis as an identity value.
4107 >     *
4108 >     * @param parallelismThreshold the (estimated) number of elements
4109 >     * needed for this operation to be executed in parallel
4110 >     * @param transformer a function returning the transformation
4111 >     * for an element
4112 >     * @param basis the identity (initial default value) for the reduction
4113 >     * @param reducer a commutative associative combining function
4114 >     * @return the result of accumulating the given transformation
4115 >     * of all entries
4116 >     * @since 1.8
4117 >     */
4118 >    public int reduceEntriesToInt(long parallelismThreshold,
4119 >                                  ObjectToInt<Map.Entry<K,V>> transformer,
4120 >                                  int basis,
4121 >                                  IntByIntToInt reducer) {
4122 >        if (transformer == null || reducer == null)
4123 >            throw new NullPointerException();
4124 >        return new MapReduceEntriesToIntTask<K,V>
4125 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4126 >             null, transformer, basis, reducer).invoke();
4127      }
4128  
4129 +
4130 +    /* ----------------Views -------------- */
4131 +
4132      /**
4133 <     * Returns the hash code value for this {@link Map}, i.e.,
1329 <     * the sum of, for each key-value pair in the map,
1330 <     * {@code key.hashCode() ^ value.hashCode()}.
1331 <     *
1332 <     * @return the hash code value for this map
4133 >     * Base class for views.
4134       */
4135 <    public int hashCode() {
4136 <        return new HashIterator().mapHashCode();
4135 >    abstract static class CollectionView<K,V,E>
4136 >        implements Collection<E>, java.io.Serializable {
4137 >        private static final long serialVersionUID = 7249069246763182397L;
4138 >        final ConcurrentHashMapV8<K,V> map;
4139 >        CollectionView(ConcurrentHashMapV8<K,V> map)  { this.map = map; }
4140 >
4141 >        /**
4142 >         * Returns the map backing this view.
4143 >         *
4144 >         * @return the map backing this view
4145 >         */
4146 >        public ConcurrentHashMapV8<K,V> getMap() { return map; }
4147 >
4148 >        /**
4149 >         * Removes all of the elements from this view, by removing all
4150 >         * the mappings from the map backing this view.
4151 >         */
4152 >        public final void clear()      { map.clear(); }
4153 >        public final int size()        { return map.size(); }
4154 >        public final boolean isEmpty() { return map.isEmpty(); }
4155 >
4156 >        // implementations below rely on concrete classes supplying these
4157 >        // abstract methods
4158 >        /**
4159 >         * Returns a "weakly consistent" iterator that will never
4160 >         * throw {@link ConcurrentModificationException}, and
4161 >         * guarantees to traverse elements as they existed upon
4162 >         * construction of the iterator, and may (but is not
4163 >         * guaranteed to) reflect any modifications subsequent to
4164 >         * construction.
4165 >         */
4166 >        public abstract Iterator<E> iterator();
4167 >        public abstract boolean contains(Object o);
4168 >        public abstract boolean remove(Object o);
4169 >
4170 >        private static final String oomeMsg = "Required array size too large";
4171 >
4172 >        public final Object[] toArray() {
4173 >            long sz = map.mappingCount();
4174 >            if (sz > MAX_ARRAY_SIZE)
4175 >                throw new OutOfMemoryError(oomeMsg);
4176 >            int n = (int)sz;
4177 >            Object[] r = new Object[n];
4178 >            int i = 0;
4179 >            for (E e : this) {
4180 >                if (i == n) {
4181 >                    if (n >= MAX_ARRAY_SIZE)
4182 >                        throw new OutOfMemoryError(oomeMsg);
4183 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4184 >                        n = MAX_ARRAY_SIZE;
4185 >                    else
4186 >                        n += (n >>> 1) + 1;
4187 >                    r = Arrays.copyOf(r, n);
4188 >                }
4189 >                r[i++] = e;
4190 >            }
4191 >            return (i == n) ? r : Arrays.copyOf(r, i);
4192 >        }
4193 >
4194 >        @SuppressWarnings("unchecked")
4195 >        public final <T> T[] toArray(T[] a) {
4196 >            long sz = map.mappingCount();
4197 >            if (sz > MAX_ARRAY_SIZE)
4198 >                throw new OutOfMemoryError(oomeMsg);
4199 >            int m = (int)sz;
4200 >            T[] r = (a.length >= m) ? a :
4201 >                (T[])java.lang.reflect.Array
4202 >                .newInstance(a.getClass().getComponentType(), m);
4203 >            int n = r.length;
4204 >            int i = 0;
4205 >            for (E e : this) {
4206 >                if (i == n) {
4207 >                    if (n >= MAX_ARRAY_SIZE)
4208 >                        throw new OutOfMemoryError(oomeMsg);
4209 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4210 >                        n = MAX_ARRAY_SIZE;
4211 >                    else
4212 >                        n += (n >>> 1) + 1;
4213 >                    r = Arrays.copyOf(r, n);
4214 >                }
4215 >                r[i++] = (T)e;
4216 >            }
4217 >            if (a == r && i < n) {
4218 >                r[i] = null; // null-terminate
4219 >                return r;
4220 >            }
4221 >            return (i == n) ? r : Arrays.copyOf(r, i);
4222 >        }
4223 >
4224 >        /**
4225 >         * Returns a string representation of this collection.
4226 >         * The string representation consists of the string representations
4227 >         * of the collection's elements in the order they are returned by
4228 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4229 >         * Adjacent elements are separated by the characters {@code ", "}
4230 >         * (comma and space).  Elements are converted to strings as by
4231 >         * {@link String#valueOf(Object)}.
4232 >         *
4233 >         * @return a string representation of this collection
4234 >         */
4235 >        public final String toString() {
4236 >            StringBuilder sb = new StringBuilder();
4237 >            sb.append('[');
4238 >            Iterator<E> it = iterator();
4239 >            if (it.hasNext()) {
4240 >                for (;;) {
4241 >                    Object e = it.next();
4242 >                    sb.append(e == this ? "(this Collection)" : e);
4243 >                    if (!it.hasNext())
4244 >                        break;
4245 >                    sb.append(',').append(' ');
4246 >                }
4247 >            }
4248 >            return sb.append(']').toString();
4249 >        }
4250 >
4251 >        public final boolean containsAll(Collection<?> c) {
4252 >            if (c != this) {
4253 >                for (Object e : c) {
4254 >                    if (e == null || !contains(e))
4255 >                        return false;
4256 >                }
4257 >            }
4258 >            return true;
4259 >        }
4260 >
4261 >        public final boolean removeAll(Collection<?> c) {
4262 >            boolean modified = false;
4263 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4264 >                if (c.contains(it.next())) {
4265 >                    it.remove();
4266 >                    modified = true;
4267 >                }
4268 >            }
4269 >            return modified;
4270 >        }
4271 >
4272 >        public final boolean retainAll(Collection<?> c) {
4273 >            boolean modified = false;
4274 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4275 >                if (!c.contains(it.next())) {
4276 >                    it.remove();
4277 >                    modified = true;
4278 >                }
4279 >            }
4280 >            return modified;
4281 >        }
4282 >
4283      }
4284  
4285      /**
4286 <     * Returns a string representation of this map.  The string
4287 <     * representation consists of a list of key-value mappings (in no
4288 <     * particular order) enclosed in braces ("{@code {}}").  Adjacent
4289 <     * mappings are separated by the characters {@code ", "} (comma
4290 <     * and space).  Each key-value mapping is rendered as the key
4291 <     * followed by an equals sign ("{@code =}") followed by the
4292 <     * associated value.
4286 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4287 >     * which additions may optionally be enabled by mapping to a
4288 >     * common value.  This class cannot be directly instantiated.
4289 >     * See {@link #keySet() keySet()},
4290 >     * {@link #keySet(Object) keySet(V)},
4291 >     * {@link #newKeySet() newKeySet()},
4292 >     * {@link #newKeySet(int) newKeySet(int)}.
4293       *
4294 <     * @return a string representation of this map
4294 >     * @since 1.8
4295       */
4296 <    public String toString() {
4297 <        return new HashIterator().mapToString();
4296 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4297 >        implements Set<K>, java.io.Serializable {
4298 >        private static final long serialVersionUID = 7249069246763182397L;
4299 >        private final V value;
4300 >        KeySetView(ConcurrentHashMapV8<K,V> map, V value) {  // non-public
4301 >            super(map);
4302 >            this.value = value;
4303 >        }
4304 >
4305 >        /**
4306 >         * Returns the default mapped value for additions,
4307 >         * or {@code null} if additions are not supported.
4308 >         *
4309 >         * @return the default mapped value for additions, or {@code null}
4310 >         * if not supported
4311 >         */
4312 >        public V getMappedValue() { return value; }
4313 >
4314 >        /**
4315 >         * {@inheritDoc}
4316 >         * @throws NullPointerException if the specified key is null
4317 >         */
4318 >        public boolean contains(Object o) { return map.containsKey(o); }
4319 >
4320 >        /**
4321 >         * Removes the key from this map view, by removing the key (and its
4322 >         * corresponding value) from the backing map.  This method does
4323 >         * nothing if the key is not in the map.
4324 >         *
4325 >         * @param  o the key to be removed from the backing map
4326 >         * @return {@code true} if the backing map contained the specified key
4327 >         * @throws NullPointerException if the specified key is null
4328 >         */
4329 >        public boolean remove(Object o) { return map.remove(o) != null; }
4330 >
4331 >        /**
4332 >         * @return an iterator over the keys of the backing map
4333 >         */
4334 >        public Iterator<K> iterator() {
4335 >            Node<K,V>[] t;
4336 >            ConcurrentHashMapV8<K,V> m = map;
4337 >            int f = (t = m.table) == null ? 0 : t.length;
4338 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4339 >        }
4340 >
4341 >        /**
4342 >         * Adds the specified key to this set view by mapping the key to
4343 >         * the default mapped value in the backing map, if defined.
4344 >         *
4345 >         * @param e key to be added
4346 >         * @return {@code true} if this set changed as a result of the call
4347 >         * @throws NullPointerException if the specified key is null
4348 >         * @throws UnsupportedOperationException if no default mapped value
4349 >         * for additions was provided
4350 >         */
4351 >        public boolean add(K e) {
4352 >            V v;
4353 >            if ((v = value) == null)
4354 >                throw new UnsupportedOperationException();
4355 >            return map.putVal(e, v, true) == null;
4356 >        }
4357 >
4358 >        /**
4359 >         * Adds all of the elements in the specified collection to this set,
4360 >         * as if by calling {@link #add} on each one.
4361 >         *
4362 >         * @param c the elements to be inserted into this set
4363 >         * @return {@code true} if this set changed as a result of the call
4364 >         * @throws NullPointerException if the collection or any of its
4365 >         * elements are {@code null}
4366 >         * @throws UnsupportedOperationException if no default mapped value
4367 >         * for additions was provided
4368 >         */
4369 >        public boolean addAll(Collection<? extends K> c) {
4370 >            boolean added = false;
4371 >            V v;
4372 >            if ((v = value) == null)
4373 >                throw new UnsupportedOperationException();
4374 >            for (K e : c) {
4375 >                if (map.putVal(e, v, true) == null)
4376 >                    added = true;
4377 >            }
4378 >            return added;
4379 >        }
4380 >
4381 >        public int hashCode() {
4382 >            int h = 0;
4383 >            for (K e : this)
4384 >                h += e.hashCode();
4385 >            return h;
4386 >        }
4387 >
4388 >        public boolean equals(Object o) {
4389 >            Set<?> c;
4390 >            return ((o instanceof Set) &&
4391 >                    ((c = (Set<?>)o) == this ||
4392 >                     (containsAll(c) && c.containsAll(this))));
4393 >        }
4394 >
4395 >        public ConcurrentHashMapSpliterator<K> spliterator() {
4396 >            Node<K,V>[] t;
4397 >            ConcurrentHashMapV8<K,V> m = map;
4398 >            long n = m.sumCount();
4399 >            int f = (t = m.table) == null ? 0 : t.length;
4400 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4401 >        }
4402 >
4403 >        public void forEach(Action<? super K> action) {
4404 >            if (action == null) throw new NullPointerException();
4405 >            Node<K,V>[] t;
4406 >            if ((t = map.table) != null) {
4407 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4408 >                for (Node<K,V> p; (p = it.advance()) != null; )
4409 >                    action.apply(p.key);
4410 >            }
4411 >        }
4412      }
4413  
4414      /**
4415 <     * Compares the specified object with this map for equality.
4416 <     * Returns {@code true} if the given object is a map with the same
4417 <     * mappings as this map.  This operation may return misleading
1357 <     * results if either map is concurrently modified during execution
1358 <     * of this method.
1359 <     *
1360 <     * @param o object to be compared for equality with this map
1361 <     * @return {@code true} if the specified object is equal to this map
4415 >     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4416 >     * values, in which additions are disabled. This class cannot be
4417 >     * directly instantiated. See {@link #values()}.
4418       */
4419 <    public boolean equals(Object o) {
4420 <        if (o == this)
4421 <            return true;
4422 <        if (!(o instanceof Map))
4423 <            return false;
4424 <        Map<?,?> m = (Map<?,?>) o;
4425 <        try {
4426 <            for (Map.Entry<K,V> e : this.entrySet())
4427 <                if (! e.getValue().equals(m.get(e.getKey())))
4428 <                    return false;
4429 <            for (Map.Entry<?,?> e : m.entrySet()) {
4430 <                Object k = e.getKey();
4431 <                Object v = e.getValue();
4432 <                if (k == null || v == null || !v.equals(get(k)))
4433 <                    return false;
4419 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4420 >        implements Collection<V>, java.io.Serializable {
4421 >        private static final long serialVersionUID = 2249069246763182397L;
4422 >        ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4423 >        public final boolean contains(Object o) {
4424 >            return map.containsValue(o);
4425 >        }
4426 >
4427 >        public final boolean remove(Object o) {
4428 >            if (o != null) {
4429 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4430 >                    if (o.equals(it.next())) {
4431 >                        it.remove();
4432 >                        return true;
4433 >                    }
4434 >                }
4435              }
1379            return true;
1380        } catch (ClassCastException unused) {
1381            return false;
1382        } catch (NullPointerException unused) {
4436              return false;
4437          }
4438 +
4439 +        public final Iterator<V> iterator() {
4440 +            ConcurrentHashMapV8<K,V> m = map;
4441 +            Node<K,V>[] t;
4442 +            int f = (t = m.table) == null ? 0 : t.length;
4443 +            return new ValueIterator<K,V>(t, f, 0, f, m);
4444 +        }
4445 +
4446 +        public final boolean add(V e) {
4447 +            throw new UnsupportedOperationException();
4448 +        }
4449 +        public final boolean addAll(Collection<? extends V> c) {
4450 +            throw new UnsupportedOperationException();
4451 +        }
4452 +
4453 +        public ConcurrentHashMapSpliterator<V> spliterator() {
4454 +            Node<K,V>[] t;
4455 +            ConcurrentHashMapV8<K,V> m = map;
4456 +            long n = m.sumCount();
4457 +            int f = (t = m.table) == null ? 0 : t.length;
4458 +            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4459 +        }
4460 +
4461 +        public void forEach(Action<? super V> action) {
4462 +            if (action == null) throw new NullPointerException();
4463 +            Node<K,V>[] t;
4464 +            if ((t = map.table) != null) {
4465 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4466 +                for (Node<K,V> p; (p = it.advance()) != null; )
4467 +                    action.apply(p.val);
4468 +            }
4469 +        }
4470      }
4471  
4472      /**
4473 <     * Custom Entry class used by EntryIterator.next(), that relays
4474 <     * setValue changes to the underlying map.
4473 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4474 >     * entries.  This class cannot be directly instantiated. See
4475 >     * {@link #entrySet()}.
4476       */
4477 <    final class WriteThroughEntry extends AbstractMap.SimpleEntry<K,V> {
4478 <        @SuppressWarnings("unchecked")
4479 <        WriteThroughEntry(Object k, Object v) {
4480 <            super((K)k, (V)v);
4477 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4478 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4479 >        private static final long serialVersionUID = 2249069246763182397L;
4480 >        EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4481 >
4482 >        public boolean contains(Object o) {
4483 >            Object k, v, r; Map.Entry<?,?> e;
4484 >            return ((o instanceof Map.Entry) &&
4485 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4486 >                    (r = map.get(k)) != null &&
4487 >                    (v = e.getValue()) != null &&
4488 >                    (v == r || v.equals(r)));
4489 >        }
4490 >
4491 >        public boolean remove(Object o) {
4492 >            Object k, v; Map.Entry<?,?> e;
4493 >            return ((o instanceof Map.Entry) &&
4494 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4495 >                    (v = e.getValue()) != null &&
4496 >                    map.remove(k, v));
4497          }
4498  
4499          /**
4500 <         * Sets our entry's value and writes through to the map. The
1399 <         * value to return is somewhat arbitrary here. Since a
1400 <         * WriteThroughEntry does not necessarily track asynchronous
1401 <         * changes, the most recent "previous" value could be
1402 <         * different from what we return (or could even have been
1403 <         * removed in which case the put will re-establish). We do not
1404 <         * and cannot guarantee more.
4500 >         * @return an iterator over the entries of the backing map
4501           */
4502 <        public V setValue(V value) {
4503 <            if (value == null) throw new NullPointerException();
4504 <            V v = super.setValue(value);
4505 <            ConcurrentHashMapV8.this.put(getKey(), value);
4506 <            return v;
4502 >        public Iterator<Map.Entry<K,V>> iterator() {
4503 >            ConcurrentHashMapV8<K,V> m = map;
4504 >            Node<K,V>[] t;
4505 >            int f = (t = m.table) == null ? 0 : t.length;
4506 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4507 >        }
4508 >
4509 >        public boolean add(Entry<K,V> e) {
4510 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4511 >        }
4512 >
4513 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4514 >            boolean added = false;
4515 >            for (Entry<K,V> e : c) {
4516 >                if (add(e))
4517 >                    added = true;
4518 >            }
4519 >            return added;
4520 >        }
4521 >
4522 >        public final int hashCode() {
4523 >            int h = 0;
4524 >            Node<K,V>[] t;
4525 >            if ((t = map.table) != null) {
4526 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4527 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4528 >                    h += p.hashCode();
4529 >                }
4530 >            }
4531 >            return h;
4532          }
4533 +
4534 +        public final boolean equals(Object o) {
4535 +            Set<?> c;
4536 +            return ((o instanceof Set) &&
4537 +                    ((c = (Set<?>)o) == this ||
4538 +                     (containsAll(c) && c.containsAll(this))));
4539 +        }
4540 +
4541 +        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4542 +            Node<K,V>[] t;
4543 +            ConcurrentHashMapV8<K,V> m = map;
4544 +            long n = m.sumCount();
4545 +            int f = (t = m.table) == null ? 0 : t.length;
4546 +            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4547 +        }
4548 +
4549 +        public void forEach(Action<? super Map.Entry<K,V>> action) {
4550 +            if (action == null) throw new NullPointerException();
4551 +            Node<K,V>[] t;
4552 +            if ((t = map.table) != null) {
4553 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4554 +                for (Node<K,V> p; (p = it.advance()) != null; )
4555 +                    action.apply(new MapEntry<K,V>(p.key, p.val, map));
4556 +            }
4557 +        }
4558 +
4559      }
4560  
4561 <    final class KeyIterator extends HashIterator
4562 <        implements Iterator<K>, Enumeration<K> {
4563 <        @SuppressWarnings("unchecked")
4564 <        public final K next()        { return (K)super.nextKey(); }
4565 <        @SuppressWarnings("unchecked")
4566 <        public final K nextElement() { return (K)super.nextKey(); }
4561 >    // -------------------------------------------------------
4562 >
4563 >    /**
4564 >     * Base class for bulk tasks. Repeats some fields and code from
4565 >     * class Traverser, because we need to subclass CountedCompleter.
4566 >     */
4567 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4568 >        Node<K,V>[] tab;        // same as Traverser
4569 >        Node<K,V> next;
4570 >        int index;
4571 >        int baseIndex;
4572 >        int baseLimit;
4573 >        final int baseSize;
4574 >        int batch;              // split control
4575 >
4576 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4577 >            super(par);
4578 >            this.batch = b;
4579 >            this.index = this.baseIndex = i;
4580 >            if ((this.tab = t) == null)
4581 >                this.baseSize = this.baseLimit = 0;
4582 >            else if (par == null)
4583 >                this.baseSize = this.baseLimit = t.length;
4584 >            else {
4585 >                this.baseLimit = f;
4586 >                this.baseSize = par.baseSize;
4587 >            }
4588 >        }
4589 >
4590 >        /**
4591 >         * Same as Traverser version
4592 >         */
4593 >        final Node<K,V> advance() {
4594 >            Node<K,V> e;
4595 >            if ((e = next) != null)
4596 >                e = e.next;
4597 >            for (;;) {
4598 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4599 >                if (e != null)
4600 >                    return next = e;
4601 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4602 >                    (n = t.length) <= (i = index) || i < 0)
4603 >                    return next = null;
4604 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4605 >                    if (e instanceof ForwardingNode) {
4606 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4607 >                        e = null;
4608 >                        continue;
4609 >                    }
4610 >                    else if (e instanceof TreeBin)
4611 >                        e = ((TreeBin<K,V>)e).first;
4612 >                    else
4613 >                        e = null;
4614 >                }
4615 >                if ((index += baseSize) >= n)
4616 >                    index = ++baseIndex;    // visit upper slots if present
4617 >            }
4618 >        }
4619      }
4620  
4621 <    final class ValueIterator extends HashIterator
4622 <        implements Iterator<V>, Enumeration<V> {
4623 <        @SuppressWarnings("unchecked")
4624 <        public final V next()        { return (V)super.nextValue(); }
4625 <        @SuppressWarnings("unchecked")
4626 <        public final V nextElement() { return (V)super.nextValue(); }
4621 >    /*
4622 >     * Task classes. Coded in a regular but ugly format/style to
4623 >     * simplify checks that each variant differs in the right way from
4624 >     * others. The null screenings exist because compilers cannot tell
4625 >     * that we've already null-checked task arguments, so we force
4626 >     * simplest hoisted bypass to help avoid convoluted traps.
4627 >     */
4628 >    @SuppressWarnings("serial")
4629 >    static final class ForEachKeyTask<K,V>
4630 >        extends BulkTask<K,V,Void> {
4631 >        final Action<? super K> action;
4632 >        ForEachKeyTask
4633 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4634 >             Action<? super K> action) {
4635 >            super(p, b, i, f, t);
4636 >            this.action = action;
4637 >        }
4638 >        public final void compute() {
4639 >            final Action<? super K> action;
4640 >            if ((action = this.action) != null) {
4641 >                for (int i = baseIndex, f, h; batch > 0 &&
4642 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4643 >                    addToPendingCount(1);
4644 >                    new ForEachKeyTask<K,V>
4645 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4646 >                         action).fork();
4647 >                }
4648 >                for (Node<K,V> p; (p = advance()) != null;)
4649 >                    action.apply(p.key);
4650 >                propagateCompletion();
4651 >            }
4652 >        }
4653      }
4654  
4655 <    final class EntryIterator extends HashIterator
4656 <        implements Iterator<Entry<K,V>> {
4657 <        public final Map.Entry<K,V> next() { return super.nextEntry(); }
4655 >    @SuppressWarnings("serial")
4656 >    static final class ForEachValueTask<K,V>
4657 >        extends BulkTask<K,V,Void> {
4658 >        final Action<? super V> action;
4659 >        ForEachValueTask
4660 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4661 >             Action<? super V> action) {
4662 >            super(p, b, i, f, t);
4663 >            this.action = action;
4664 >        }
4665 >        public final void compute() {
4666 >            final Action<? super V> action;
4667 >            if ((action = this.action) != null) {
4668 >                for (int i = baseIndex, f, h; batch > 0 &&
4669 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4670 >                    addToPendingCount(1);
4671 >                    new ForEachValueTask<K,V>
4672 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4673 >                         action).fork();
4674 >                }
4675 >                for (Node<K,V> p; (p = advance()) != null;)
4676 >                    action.apply(p.val);
4677 >                propagateCompletion();
4678 >            }
4679 >        }
4680      }
4681  
4682 <    final class KeySet extends AbstractSet<K> {
4683 <        public int size() {
4684 <            return ConcurrentHashMapV8.this.size();
4682 >    @SuppressWarnings("serial")
4683 >    static final class ForEachEntryTask<K,V>
4684 >        extends BulkTask<K,V,Void> {
4685 >        final Action<? super Entry<K,V>> action;
4686 >        ForEachEntryTask
4687 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4688 >             Action<? super Entry<K,V>> action) {
4689 >            super(p, b, i, f, t);
4690 >            this.action = action;
4691 >        }
4692 >        public final void compute() {
4693 >            final Action<? super Entry<K,V>> action;
4694 >            if ((action = this.action) != null) {
4695 >                for (int i = baseIndex, f, h; batch > 0 &&
4696 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4697 >                    addToPendingCount(1);
4698 >                    new ForEachEntryTask<K,V>
4699 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4700 >                         action).fork();
4701 >                }
4702 >                for (Node<K,V> p; (p = advance()) != null; )
4703 >                    action.apply(p);
4704 >                propagateCompletion();
4705 >            }
4706          }
4707 <        public boolean isEmpty() {
4708 <            return ConcurrentHashMapV8.this.isEmpty();
4707 >    }
4708 >
4709 >    @SuppressWarnings("serial")
4710 >    static final class ForEachMappingTask<K,V>
4711 >        extends BulkTask<K,V,Void> {
4712 >        final BiAction<? super K, ? super V> action;
4713 >        ForEachMappingTask
4714 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4715 >             BiAction<? super K,? super V> action) {
4716 >            super(p, b, i, f, t);
4717 >            this.action = action;
4718 >        }
4719 >        public final void compute() {
4720 >            final BiAction<? super K, ? super V> action;
4721 >            if ((action = this.action) != null) {
4722 >                for (int i = baseIndex, f, h; batch > 0 &&
4723 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4724 >                    addToPendingCount(1);
4725 >                    new ForEachMappingTask<K,V>
4726 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4727 >                         action).fork();
4728 >                }
4729 >                for (Node<K,V> p; (p = advance()) != null; )
4730 >                    action.apply(p.key, p.val);
4731 >                propagateCompletion();
4732 >            }
4733          }
4734 <        public void clear() {
4735 <            ConcurrentHashMapV8.this.clear();
4734 >    }
4735 >
4736 >    @SuppressWarnings("serial")
4737 >    static final class ForEachTransformedKeyTask<K,V,U>
4738 >        extends BulkTask<K,V,Void> {
4739 >        final Fun<? super K, ? extends U> transformer;
4740 >        final Action<? super U> action;
4741 >        ForEachTransformedKeyTask
4742 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4743 >             Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4744 >            super(p, b, i, f, t);
4745 >            this.transformer = transformer; this.action = action;
4746 >        }
4747 >        public final void compute() {
4748 >            final Fun<? super K, ? extends U> transformer;
4749 >            final Action<? super U> action;
4750 >            if ((transformer = this.transformer) != null &&
4751 >                (action = this.action) != null) {
4752 >                for (int i = baseIndex, f, h; batch > 0 &&
4753 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4754 >                    addToPendingCount(1);
4755 >                    new ForEachTransformedKeyTask<K,V,U>
4756 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4757 >                         transformer, action).fork();
4758 >                }
4759 >                for (Node<K,V> p; (p = advance()) != null; ) {
4760 >                    U u;
4761 >                    if ((u = transformer.apply(p.key)) != null)
4762 >                        action.apply(u);
4763 >                }
4764 >                propagateCompletion();
4765 >            }
4766          }
4767 <        public Iterator<K> iterator() {
4768 <            return new KeyIterator();
4767 >    }
4768 >
4769 >    @SuppressWarnings("serial")
4770 >    static final class ForEachTransformedValueTask<K,V,U>
4771 >        extends BulkTask<K,V,Void> {
4772 >        final Fun<? super V, ? extends U> transformer;
4773 >        final Action<? super U> action;
4774 >        ForEachTransformedValueTask
4775 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4776 >             Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4777 >            super(p, b, i, f, t);
4778 >            this.transformer = transformer; this.action = action;
4779 >        }
4780 >        public final void compute() {
4781 >            final Fun<? super V, ? extends U> transformer;
4782 >            final Action<? super U> action;
4783 >            if ((transformer = this.transformer) != null &&
4784 >                (action = this.action) != null) {
4785 >                for (int i = baseIndex, f, h; batch > 0 &&
4786 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4787 >                    addToPendingCount(1);
4788 >                    new ForEachTransformedValueTask<K,V,U>
4789 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4790 >                         transformer, action).fork();
4791 >                }
4792 >                for (Node<K,V> p; (p = advance()) != null; ) {
4793 >                    U u;
4794 >                    if ((u = transformer.apply(p.val)) != null)
4795 >                        action.apply(u);
4796 >                }
4797 >                propagateCompletion();
4798 >            }
4799          }
4800 <        public boolean contains(Object o) {
4801 <            return ConcurrentHashMapV8.this.containsKey(o);
4800 >    }
4801 >
4802 >    @SuppressWarnings("serial")
4803 >    static final class ForEachTransformedEntryTask<K,V,U>
4804 >        extends BulkTask<K,V,Void> {
4805 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
4806 >        final Action<? super U> action;
4807 >        ForEachTransformedEntryTask
4808 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4809 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4810 >            super(p, b, i, f, t);
4811 >            this.transformer = transformer; this.action = action;
4812 >        }
4813 >        public final void compute() {
4814 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
4815 >            final Action<? super U> action;
4816 >            if ((transformer = this.transformer) != null &&
4817 >                (action = this.action) != null) {
4818 >                for (int i = baseIndex, f, h; batch > 0 &&
4819 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4820 >                    addToPendingCount(1);
4821 >                    new ForEachTransformedEntryTask<K,V,U>
4822 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4823 >                         transformer, action).fork();
4824 >                }
4825 >                for (Node<K,V> p; (p = advance()) != null; ) {
4826 >                    U u;
4827 >                    if ((u = transformer.apply(p)) != null)
4828 >                        action.apply(u);
4829 >                }
4830 >                propagateCompletion();
4831 >            }
4832          }
4833 <        public boolean remove(Object o) {
4834 <            return ConcurrentHashMapV8.this.remove(o) != null;
4833 >    }
4834 >
4835 >    @SuppressWarnings("serial")
4836 >    static final class ForEachTransformedMappingTask<K,V,U>
4837 >        extends BulkTask<K,V,Void> {
4838 >        final BiFun<? super K, ? super V, ? extends U> transformer;
4839 >        final Action<? super U> action;
4840 >        ForEachTransformedMappingTask
4841 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4842 >             BiFun<? super K, ? super V, ? extends U> transformer,
4843 >             Action<? super U> action) {
4844 >            super(p, b, i, f, t);
4845 >            this.transformer = transformer; this.action = action;
4846 >        }
4847 >        public final void compute() {
4848 >            final BiFun<? super K, ? super V, ? extends U> transformer;
4849 >            final Action<? super U> action;
4850 >            if ((transformer = this.transformer) != null &&
4851 >                (action = this.action) != null) {
4852 >                for (int i = baseIndex, f, h; batch > 0 &&
4853 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4854 >                    addToPendingCount(1);
4855 >                    new ForEachTransformedMappingTask<K,V,U>
4856 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4857 >                         transformer, action).fork();
4858 >                }
4859 >                for (Node<K,V> p; (p = advance()) != null; ) {
4860 >                    U u;
4861 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4862 >                        action.apply(u);
4863 >                }
4864 >                propagateCompletion();
4865 >            }
4866          }
4867      }
4868  
4869 <    final class Values extends AbstractCollection<V> {
4870 <        public int size() {
4871 <            return ConcurrentHashMapV8.this.size();
4869 >    @SuppressWarnings("serial")
4870 >    static final class SearchKeysTask<K,V,U>
4871 >        extends BulkTask<K,V,U> {
4872 >        final Fun<? super K, ? extends U> searchFunction;
4873 >        final AtomicReference<U> result;
4874 >        SearchKeysTask
4875 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4876 >             Fun<? super K, ? extends U> searchFunction,
4877 >             AtomicReference<U> result) {
4878 >            super(p, b, i, f, t);
4879 >            this.searchFunction = searchFunction; this.result = result;
4880 >        }
4881 >        public final U getRawResult() { return result.get(); }
4882 >        public final void compute() {
4883 >            final Fun<? super K, ? extends U> searchFunction;
4884 >            final AtomicReference<U> result;
4885 >            if ((searchFunction = this.searchFunction) != null &&
4886 >                (result = this.result) != null) {
4887 >                for (int i = baseIndex, f, h; batch > 0 &&
4888 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4889 >                    if (result.get() != null)
4890 >                        return;
4891 >                    addToPendingCount(1);
4892 >                    new SearchKeysTask<K,V,U>
4893 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4894 >                         searchFunction, result).fork();
4895 >                }
4896 >                while (result.get() == null) {
4897 >                    U u;
4898 >                    Node<K,V> p;
4899 >                    if ((p = advance()) == null) {
4900 >                        propagateCompletion();
4901 >                        break;
4902 >                    }
4903 >                    if ((u = searchFunction.apply(p.key)) != null) {
4904 >                        if (result.compareAndSet(null, u))
4905 >                            quietlyCompleteRoot();
4906 >                        break;
4907 >                    }
4908 >                }
4909 >            }
4910          }
4911 <        public boolean isEmpty() {
4912 <            return ConcurrentHashMapV8.this.isEmpty();
4911 >    }
4912 >
4913 >    @SuppressWarnings("serial")
4914 >    static final class SearchValuesTask<K,V,U>
4915 >        extends BulkTask<K,V,U> {
4916 >        final Fun<? super V, ? extends U> searchFunction;
4917 >        final AtomicReference<U> result;
4918 >        SearchValuesTask
4919 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4920 >             Fun<? super V, ? extends U> searchFunction,
4921 >             AtomicReference<U> result) {
4922 >            super(p, b, i, f, t);
4923 >            this.searchFunction = searchFunction; this.result = result;
4924 >        }
4925 >        public final U getRawResult() { return result.get(); }
4926 >        public final void compute() {
4927 >            final Fun<? super V, ? extends U> searchFunction;
4928 >            final AtomicReference<U> result;
4929 >            if ((searchFunction = this.searchFunction) != null &&
4930 >                (result = this.result) != null) {
4931 >                for (int i = baseIndex, f, h; batch > 0 &&
4932 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4933 >                    if (result.get() != null)
4934 >                        return;
4935 >                    addToPendingCount(1);
4936 >                    new SearchValuesTask<K,V,U>
4937 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4938 >                         searchFunction, result).fork();
4939 >                }
4940 >                while (result.get() == null) {
4941 >                    U u;
4942 >                    Node<K,V> p;
4943 >                    if ((p = advance()) == null) {
4944 >                        propagateCompletion();
4945 >                        break;
4946 >                    }
4947 >                    if ((u = searchFunction.apply(p.val)) != null) {
4948 >                        if (result.compareAndSet(null, u))
4949 >                            quietlyCompleteRoot();
4950 >                        break;
4951 >                    }
4952 >                }
4953 >            }
4954          }
4955 <        public void clear() {
4956 <            ConcurrentHashMapV8.this.clear();
4955 >    }
4956 >
4957 >    @SuppressWarnings("serial")
4958 >    static final class SearchEntriesTask<K,V,U>
4959 >        extends BulkTask<K,V,U> {
4960 >        final Fun<Entry<K,V>, ? extends U> searchFunction;
4961 >        final AtomicReference<U> result;
4962 >        SearchEntriesTask
4963 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4964 >             Fun<Entry<K,V>, ? extends U> searchFunction,
4965 >             AtomicReference<U> result) {
4966 >            super(p, b, i, f, t);
4967 >            this.searchFunction = searchFunction; this.result = result;
4968 >        }
4969 >        public final U getRawResult() { return result.get(); }
4970 >        public final void compute() {
4971 >            final Fun<Entry<K,V>, ? extends U> searchFunction;
4972 >            final AtomicReference<U> result;
4973 >            if ((searchFunction = this.searchFunction) != null &&
4974 >                (result = this.result) != null) {
4975 >                for (int i = baseIndex, f, h; batch > 0 &&
4976 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4977 >                    if (result.get() != null)
4978 >                        return;
4979 >                    addToPendingCount(1);
4980 >                    new SearchEntriesTask<K,V,U>
4981 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4982 >                         searchFunction, result).fork();
4983 >                }
4984 >                while (result.get() == null) {
4985 >                    U u;
4986 >                    Node<K,V> p;
4987 >                    if ((p = advance()) == null) {
4988 >                        propagateCompletion();
4989 >                        break;
4990 >                    }
4991 >                    if ((u = searchFunction.apply(p)) != null) {
4992 >                        if (result.compareAndSet(null, u))
4993 >                            quietlyCompleteRoot();
4994 >                        return;
4995 >                    }
4996 >                }
4997 >            }
4998          }
4999 <        public Iterator<V> iterator() {
5000 <            return new ValueIterator();
4999 >    }
5000 >
5001 >    @SuppressWarnings("serial")
5002 >    static final class SearchMappingsTask<K,V,U>
5003 >        extends BulkTask<K,V,U> {
5004 >        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5005 >        final AtomicReference<U> result;
5006 >        SearchMappingsTask
5007 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5008 >             BiFun<? super K, ? super V, ? extends U> searchFunction,
5009 >             AtomicReference<U> result) {
5010 >            super(p, b, i, f, t);
5011 >            this.searchFunction = searchFunction; this.result = result;
5012 >        }
5013 >        public final U getRawResult() { return result.get(); }
5014 >        public final void compute() {
5015 >            final BiFun<? super K, ? super V, ? extends U> searchFunction;
5016 >            final AtomicReference<U> result;
5017 >            if ((searchFunction = this.searchFunction) != null &&
5018 >                (result = this.result) != null) {
5019 >                for (int i = baseIndex, f, h; batch > 0 &&
5020 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5021 >                    if (result.get() != null)
5022 >                        return;
5023 >                    addToPendingCount(1);
5024 >                    new SearchMappingsTask<K,V,U>
5025 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5026 >                         searchFunction, result).fork();
5027 >                }
5028 >                while (result.get() == null) {
5029 >                    U u;
5030 >                    Node<K,V> p;
5031 >                    if ((p = advance()) == null) {
5032 >                        propagateCompletion();
5033 >                        break;
5034 >                    }
5035 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5036 >                        if (result.compareAndSet(null, u))
5037 >                            quietlyCompleteRoot();
5038 >                        break;
5039 >                    }
5040 >                }
5041 >            }
5042          }
5043 <        public boolean contains(Object o) {
5044 <            return ConcurrentHashMapV8.this.containsValue(o);
5043 >    }
5044 >
5045 >    @SuppressWarnings("serial")
5046 >    static final class ReduceKeysTask<K,V>
5047 >        extends BulkTask<K,V,K> {
5048 >        final BiFun<? super K, ? super K, ? extends K> reducer;
5049 >        K result;
5050 >        ReduceKeysTask<K,V> rights, nextRight;
5051 >        ReduceKeysTask
5052 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5053 >             ReduceKeysTask<K,V> nextRight,
5054 >             BiFun<? super K, ? super K, ? extends K> reducer) {
5055 >            super(p, b, i, f, t); this.nextRight = nextRight;
5056 >            this.reducer = reducer;
5057 >        }
5058 >        public final K getRawResult() { return result; }
5059 >        public final void compute() {
5060 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5061 >            if ((reducer = this.reducer) != null) {
5062 >                for (int i = baseIndex, f, h; batch > 0 &&
5063 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5064 >                    addToPendingCount(1);
5065 >                    (rights = new ReduceKeysTask<K,V>
5066 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5067 >                      rights, reducer)).fork();
5068 >                }
5069 >                K r = null;
5070 >                for (Node<K,V> p; (p = advance()) != null; ) {
5071 >                    K u = p.key;
5072 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5073 >                }
5074 >                result = r;
5075 >                CountedCompleter<?> c;
5076 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5077 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5078 >                        t = (ReduceKeysTask<K,V>)c,
5079 >                        s = t.rights;
5080 >                    while (s != null) {
5081 >                        K tr, sr;
5082 >                        if ((sr = s.result) != null)
5083 >                            t.result = (((tr = t.result) == null) ? sr :
5084 >                                        reducer.apply(tr, sr));
5085 >                        s = t.rights = s.nextRight;
5086 >                    }
5087 >                }
5088 >            }
5089          }
5090      }
5091  
5092 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
5093 <        public int size() {
5094 <            return ConcurrentHashMapV8.this.size();
5092 >    @SuppressWarnings("serial")
5093 >    static final class ReduceValuesTask<K,V>
5094 >        extends BulkTask<K,V,V> {
5095 >        final BiFun<? super V, ? super V, ? extends V> reducer;
5096 >        V result;
5097 >        ReduceValuesTask<K,V> rights, nextRight;
5098 >        ReduceValuesTask
5099 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5100 >             ReduceValuesTask<K,V> nextRight,
5101 >             BiFun<? super V, ? super V, ? extends V> reducer) {
5102 >            super(p, b, i, f, t); this.nextRight = nextRight;
5103 >            this.reducer = reducer;
5104 >        }
5105 >        public final V getRawResult() { return result; }
5106 >        public final void compute() {
5107 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5108 >            if ((reducer = this.reducer) != null) {
5109 >                for (int i = baseIndex, f, h; batch > 0 &&
5110 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5111 >                    addToPendingCount(1);
5112 >                    (rights = new ReduceValuesTask<K,V>
5113 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5114 >                      rights, reducer)).fork();
5115 >                }
5116 >                V r = null;
5117 >                for (Node<K,V> p; (p = advance()) != null; ) {
5118 >                    V v = p.val;
5119 >                    r = (r == null) ? v : reducer.apply(r, v);
5120 >                }
5121 >                result = r;
5122 >                CountedCompleter<?> c;
5123 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5124 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5125 >                        t = (ReduceValuesTask<K,V>)c,
5126 >                        s = t.rights;
5127 >                    while (s != null) {
5128 >                        V tr, sr;
5129 >                        if ((sr = s.result) != null)
5130 >                            t.result = (((tr = t.result) == null) ? sr :
5131 >                                        reducer.apply(tr, sr));
5132 >                        s = t.rights = s.nextRight;
5133 >                    }
5134 >                }
5135 >            }
5136          }
5137 <        public boolean isEmpty() {
5138 <            return ConcurrentHashMapV8.this.isEmpty();
5137 >    }
5138 >
5139 >    @SuppressWarnings("serial")
5140 >    static final class ReduceEntriesTask<K,V>
5141 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5142 >        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5143 >        Map.Entry<K,V> result;
5144 >        ReduceEntriesTask<K,V> rights, nextRight;
5145 >        ReduceEntriesTask
5146 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5147 >             ReduceEntriesTask<K,V> nextRight,
5148 >             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5149 >            super(p, b, i, f, t); this.nextRight = nextRight;
5150 >            this.reducer = reducer;
5151 >        }
5152 >        public final Map.Entry<K,V> getRawResult() { return result; }
5153 >        public final void compute() {
5154 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5155 >            if ((reducer = this.reducer) != null) {
5156 >                for (int i = baseIndex, f, h; batch > 0 &&
5157 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5158 >                    addToPendingCount(1);
5159 >                    (rights = new ReduceEntriesTask<K,V>
5160 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5161 >                      rights, reducer)).fork();
5162 >                }
5163 >                Map.Entry<K,V> r = null;
5164 >                for (Node<K,V> p; (p = advance()) != null; )
5165 >                    r = (r == null) ? p : reducer.apply(r, p);
5166 >                result = r;
5167 >                CountedCompleter<?> c;
5168 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5169 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5170 >                        t = (ReduceEntriesTask<K,V>)c,
5171 >                        s = t.rights;
5172 >                    while (s != null) {
5173 >                        Map.Entry<K,V> tr, sr;
5174 >                        if ((sr = s.result) != null)
5175 >                            t.result = (((tr = t.result) == null) ? sr :
5176 >                                        reducer.apply(tr, sr));
5177 >                        s = t.rights = s.nextRight;
5178 >                    }
5179 >                }
5180 >            }
5181          }
5182 <        public void clear() {
5183 <            ConcurrentHashMapV8.this.clear();
5182 >    }
5183 >
5184 >    @SuppressWarnings("serial")
5185 >    static final class MapReduceKeysTask<K,V,U>
5186 >        extends BulkTask<K,V,U> {
5187 >        final Fun<? super K, ? extends U> transformer;
5188 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5189 >        U result;
5190 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5191 >        MapReduceKeysTask
5192 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5193 >             MapReduceKeysTask<K,V,U> nextRight,
5194 >             Fun<? super K, ? extends U> transformer,
5195 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5196 >            super(p, b, i, f, t); this.nextRight = nextRight;
5197 >            this.transformer = transformer;
5198 >            this.reducer = reducer;
5199 >        }
5200 >        public final U getRawResult() { return result; }
5201 >        public final void compute() {
5202 >            final Fun<? super K, ? extends U> transformer;
5203 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5204 >            if ((transformer = this.transformer) != null &&
5205 >                (reducer = this.reducer) != null) {
5206 >                for (int i = baseIndex, f, h; batch > 0 &&
5207 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5208 >                    addToPendingCount(1);
5209 >                    (rights = new MapReduceKeysTask<K,V,U>
5210 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5211 >                      rights, transformer, reducer)).fork();
5212 >                }
5213 >                U r = null;
5214 >                for (Node<K,V> p; (p = advance()) != null; ) {
5215 >                    U u;
5216 >                    if ((u = transformer.apply(p.key)) != null)
5217 >                        r = (r == null) ? u : reducer.apply(r, u);
5218 >                }
5219 >                result = r;
5220 >                CountedCompleter<?> c;
5221 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5222 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5223 >                        t = (MapReduceKeysTask<K,V,U>)c,
5224 >                        s = t.rights;
5225 >                    while (s != null) {
5226 >                        U tr, sr;
5227 >                        if ((sr = s.result) != null)
5228 >                            t.result = (((tr = t.result) == null) ? sr :
5229 >                                        reducer.apply(tr, sr));
5230 >                        s = t.rights = s.nextRight;
5231 >                    }
5232 >                }
5233 >            }
5234          }
5235 <        public Iterator<Map.Entry<K,V>> iterator() {
5236 <            return new EntryIterator();
5235 >    }
5236 >
5237 >    @SuppressWarnings("serial")
5238 >    static final class MapReduceValuesTask<K,V,U>
5239 >        extends BulkTask<K,V,U> {
5240 >        final Fun<? super V, ? extends U> transformer;
5241 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5242 >        U result;
5243 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5244 >        MapReduceValuesTask
5245 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5246 >             MapReduceValuesTask<K,V,U> nextRight,
5247 >             Fun<? super V, ? extends U> transformer,
5248 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5249 >            super(p, b, i, f, t); this.nextRight = nextRight;
5250 >            this.transformer = transformer;
5251 >            this.reducer = reducer;
5252 >        }
5253 >        public final U getRawResult() { return result; }
5254 >        public final void compute() {
5255 >            final Fun<? super V, ? extends U> transformer;
5256 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5257 >            if ((transformer = this.transformer) != null &&
5258 >                (reducer = this.reducer) != null) {
5259 >                for (int i = baseIndex, f, h; batch > 0 &&
5260 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5261 >                    addToPendingCount(1);
5262 >                    (rights = new MapReduceValuesTask<K,V,U>
5263 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5264 >                      rights, transformer, reducer)).fork();
5265 >                }
5266 >                U r = null;
5267 >                for (Node<K,V> p; (p = advance()) != null; ) {
5268 >                    U u;
5269 >                    if ((u = transformer.apply(p.val)) != null)
5270 >                        r = (r == null) ? u : reducer.apply(r, u);
5271 >                }
5272 >                result = r;
5273 >                CountedCompleter<?> c;
5274 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5275 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5276 >                        t = (MapReduceValuesTask<K,V,U>)c,
5277 >                        s = t.rights;
5278 >                    while (s != null) {
5279 >                        U tr, sr;
5280 >                        if ((sr = s.result) != null)
5281 >                            t.result = (((tr = t.result) == null) ? sr :
5282 >                                        reducer.apply(tr, sr));
5283 >                        s = t.rights = s.nextRight;
5284 >                    }
5285 >                }
5286 >            }
5287          }
5288 <        public boolean contains(Object o) {
5289 <            if (!(o instanceof Map.Entry))
5290 <                return false;
5291 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
5292 <            V v = ConcurrentHashMapV8.this.get(e.getKey());
5293 <            return v != null && v.equals(e.getValue());
5288 >    }
5289 >
5290 >    @SuppressWarnings("serial")
5291 >    static final class MapReduceEntriesTask<K,V,U>
5292 >        extends BulkTask<K,V,U> {
5293 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5294 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5295 >        U result;
5296 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5297 >        MapReduceEntriesTask
5298 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5299 >             MapReduceEntriesTask<K,V,U> nextRight,
5300 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5301 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5302 >            super(p, b, i, f, t); this.nextRight = nextRight;
5303 >            this.transformer = transformer;
5304 >            this.reducer = reducer;
5305 >        }
5306 >        public final U getRawResult() { return result; }
5307 >        public final void compute() {
5308 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5309 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5310 >            if ((transformer = this.transformer) != null &&
5311 >                (reducer = this.reducer) != null) {
5312 >                for (int i = baseIndex, f, h; batch > 0 &&
5313 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5314 >                    addToPendingCount(1);
5315 >                    (rights = new MapReduceEntriesTask<K,V,U>
5316 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5317 >                      rights, transformer, reducer)).fork();
5318 >                }
5319 >                U r = null;
5320 >                for (Node<K,V> p; (p = advance()) != null; ) {
5321 >                    U u;
5322 >                    if ((u = transformer.apply(p)) != null)
5323 >                        r = (r == null) ? u : reducer.apply(r, u);
5324 >                }
5325 >                result = r;
5326 >                CountedCompleter<?> c;
5327 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5328 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5329 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5330 >                        s = t.rights;
5331 >                    while (s != null) {
5332 >                        U tr, sr;
5333 >                        if ((sr = s.result) != null)
5334 >                            t.result = (((tr = t.result) == null) ? sr :
5335 >                                        reducer.apply(tr, sr));
5336 >                        s = t.rights = s.nextRight;
5337 >                    }
5338 >                }
5339 >            }
5340          }
5341 <        public boolean remove(Object o) {
5342 <            if (!(o instanceof Map.Entry))
5343 <                return false;
5344 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
5345 <            return ConcurrentHashMapV8.this.remove(e.getKey(), e.getValue());
5341 >    }
5342 >
5343 >    @SuppressWarnings("serial")
5344 >    static final class MapReduceMappingsTask<K,V,U>
5345 >        extends BulkTask<K,V,U> {
5346 >        final BiFun<? super K, ? super V, ? extends U> transformer;
5347 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5348 >        U result;
5349 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5350 >        MapReduceMappingsTask
5351 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5352 >             MapReduceMappingsTask<K,V,U> nextRight,
5353 >             BiFun<? super K, ? super V, ? extends U> transformer,
5354 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5355 >            super(p, b, i, f, t); this.nextRight = nextRight;
5356 >            this.transformer = transformer;
5357 >            this.reducer = reducer;
5358 >        }
5359 >        public final U getRawResult() { return result; }
5360 >        public final void compute() {
5361 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5362 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5363 >            if ((transformer = this.transformer) != null &&
5364 >                (reducer = this.reducer) != null) {
5365 >                for (int i = baseIndex, f, h; batch > 0 &&
5366 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5367 >                    addToPendingCount(1);
5368 >                    (rights = new MapReduceMappingsTask<K,V,U>
5369 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5370 >                      rights, transformer, reducer)).fork();
5371 >                }
5372 >                U r = null;
5373 >                for (Node<K,V> p; (p = advance()) != null; ) {
5374 >                    U u;
5375 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5376 >                        r = (r == null) ? u : reducer.apply(r, u);
5377 >                }
5378 >                result = r;
5379 >                CountedCompleter<?> c;
5380 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5381 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5382 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5383 >                        s = t.rights;
5384 >                    while (s != null) {
5385 >                        U tr, sr;
5386 >                        if ((sr = s.result) != null)
5387 >                            t.result = (((tr = t.result) == null) ? sr :
5388 >                                        reducer.apply(tr, sr));
5389 >                        s = t.rights = s.nextRight;
5390 >                    }
5391 >                }
5392 >            }
5393          }
5394      }
5395  
5396 <    /* ---------------- Serialization Support -------------- */
5396 >    @SuppressWarnings("serial")
5397 >    static final class MapReduceKeysToDoubleTask<K,V>
5398 >        extends BulkTask<K,V,Double> {
5399 >        final ObjectToDouble<? super K> transformer;
5400 >        final DoubleByDoubleToDouble reducer;
5401 >        final double basis;
5402 >        double result;
5403 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5404 >        MapReduceKeysToDoubleTask
5405 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5406 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5407 >             ObjectToDouble<? super K> transformer,
5408 >             double basis,
5409 >             DoubleByDoubleToDouble reducer) {
5410 >            super(p, b, i, f, t); this.nextRight = nextRight;
5411 >            this.transformer = transformer;
5412 >            this.basis = basis; this.reducer = reducer;
5413 >        }
5414 >        public final Double getRawResult() { return result; }
5415 >        public final void compute() {
5416 >            final ObjectToDouble<? super K> transformer;
5417 >            final DoubleByDoubleToDouble reducer;
5418 >            if ((transformer = this.transformer) != null &&
5419 >                (reducer = this.reducer) != null) {
5420 >                double r = this.basis;
5421 >                for (int i = baseIndex, f, h; batch > 0 &&
5422 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5423 >                    addToPendingCount(1);
5424 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5425 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5426 >                      rights, transformer, r, reducer)).fork();
5427 >                }
5428 >                for (Node<K,V> p; (p = advance()) != null; )
5429 >                    r = reducer.apply(r, transformer.apply(p.key));
5430 >                result = r;
5431 >                CountedCompleter<?> c;
5432 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5433 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5434 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5435 >                        s = t.rights;
5436 >                    while (s != null) {
5437 >                        t.result = reducer.apply(t.result, s.result);
5438 >                        s = t.rights = s.nextRight;
5439 >                    }
5440 >                }
5441 >            }
5442 >        }
5443 >    }
5444 >
5445 >    @SuppressWarnings("serial")
5446 >    static final class MapReduceValuesToDoubleTask<K,V>
5447 >        extends BulkTask<K,V,Double> {
5448 >        final ObjectToDouble<? super V> transformer;
5449 >        final DoubleByDoubleToDouble reducer;
5450 >        final double basis;
5451 >        double result;
5452 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5453 >        MapReduceValuesToDoubleTask
5454 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5455 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5456 >             ObjectToDouble<? super V> transformer,
5457 >             double basis,
5458 >             DoubleByDoubleToDouble reducer) {
5459 >            super(p, b, i, f, t); this.nextRight = nextRight;
5460 >            this.transformer = transformer;
5461 >            this.basis = basis; this.reducer = reducer;
5462 >        }
5463 >        public final Double getRawResult() { return result; }
5464 >        public final void compute() {
5465 >            final ObjectToDouble<? super V> transformer;
5466 >            final DoubleByDoubleToDouble reducer;
5467 >            if ((transformer = this.transformer) != null &&
5468 >                (reducer = this.reducer) != null) {
5469 >                double r = this.basis;
5470 >                for (int i = baseIndex, f, h; batch > 0 &&
5471 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5472 >                    addToPendingCount(1);
5473 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5474 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5475 >                      rights, transformer, r, reducer)).fork();
5476 >                }
5477 >                for (Node<K,V> p; (p = advance()) != null; )
5478 >                    r = reducer.apply(r, transformer.apply(p.val));
5479 >                result = r;
5480 >                CountedCompleter<?> c;
5481 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5482 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5483 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5484 >                        s = t.rights;
5485 >                    while (s != null) {
5486 >                        t.result = reducer.apply(t.result, s.result);
5487 >                        s = t.rights = s.nextRight;
5488 >                    }
5489 >                }
5490 >            }
5491 >        }
5492 >    }
5493 >
5494 >    @SuppressWarnings("serial")
5495 >    static final class MapReduceEntriesToDoubleTask<K,V>
5496 >        extends BulkTask<K,V,Double> {
5497 >        final ObjectToDouble<Map.Entry<K,V>> transformer;
5498 >        final DoubleByDoubleToDouble reducer;
5499 >        final double basis;
5500 >        double result;
5501 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5502 >        MapReduceEntriesToDoubleTask
5503 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5504 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5505 >             ObjectToDouble<Map.Entry<K,V>> transformer,
5506 >             double basis,
5507 >             DoubleByDoubleToDouble reducer) {
5508 >            super(p, b, i, f, t); this.nextRight = nextRight;
5509 >            this.transformer = transformer;
5510 >            this.basis = basis; this.reducer = reducer;
5511 >        }
5512 >        public final Double getRawResult() { return result; }
5513 >        public final void compute() {
5514 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
5515 >            final DoubleByDoubleToDouble reducer;
5516 >            if ((transformer = this.transformer) != null &&
5517 >                (reducer = this.reducer) != null) {
5518 >                double r = this.basis;
5519 >                for (int i = baseIndex, f, h; batch > 0 &&
5520 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5521 >                    addToPendingCount(1);
5522 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5523 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5524 >                      rights, transformer, r, reducer)).fork();
5525 >                }
5526 >                for (Node<K,V> p; (p = advance()) != null; )
5527 >                    r = reducer.apply(r, transformer.apply(p));
5528 >                result = r;
5529 >                CountedCompleter<?> c;
5530 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5531 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5532 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5533 >                        s = t.rights;
5534 >                    while (s != null) {
5535 >                        t.result = reducer.apply(t.result, s.result);
5536 >                        s = t.rights = s.nextRight;
5537 >                    }
5538 >                }
5539 >            }
5540 >        }
5541 >    }
5542 >
5543 >    @SuppressWarnings("serial")
5544 >    static final class MapReduceMappingsToDoubleTask<K,V>
5545 >        extends BulkTask<K,V,Double> {
5546 >        final ObjectByObjectToDouble<? super K, ? super V> transformer;
5547 >        final DoubleByDoubleToDouble reducer;
5548 >        final double basis;
5549 >        double result;
5550 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5551 >        MapReduceMappingsToDoubleTask
5552 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5553 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5554 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
5555 >             double basis,
5556 >             DoubleByDoubleToDouble reducer) {
5557 >            super(p, b, i, f, t); this.nextRight = nextRight;
5558 >            this.transformer = transformer;
5559 >            this.basis = basis; this.reducer = reducer;
5560 >        }
5561 >        public final Double getRawResult() { return result; }
5562 >        public final void compute() {
5563 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
5564 >            final DoubleByDoubleToDouble reducer;
5565 >            if ((transformer = this.transformer) != null &&
5566 >                (reducer = this.reducer) != null) {
5567 >                double r = this.basis;
5568 >                for (int i = baseIndex, f, h; batch > 0 &&
5569 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5570 >                    addToPendingCount(1);
5571 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5572 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5573 >                      rights, transformer, r, reducer)).fork();
5574 >                }
5575 >                for (Node<K,V> p; (p = advance()) != null; )
5576 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5577 >                result = r;
5578 >                CountedCompleter<?> c;
5579 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5580 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5581 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5582 >                        s = t.rights;
5583 >                    while (s != null) {
5584 >                        t.result = reducer.apply(t.result, s.result);
5585 >                        s = t.rights = s.nextRight;
5586 >                    }
5587 >                }
5588 >            }
5589 >        }
5590 >    }
5591 >
5592 >    @SuppressWarnings("serial")
5593 >    static final class MapReduceKeysToLongTask<K,V>
5594 >        extends BulkTask<K,V,Long> {
5595 >        final ObjectToLong<? super K> transformer;
5596 >        final LongByLongToLong reducer;
5597 >        final long basis;
5598 >        long result;
5599 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5600 >        MapReduceKeysToLongTask
5601 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5602 >             MapReduceKeysToLongTask<K,V> nextRight,
5603 >             ObjectToLong<? super K> transformer,
5604 >             long basis,
5605 >             LongByLongToLong reducer) {
5606 >            super(p, b, i, f, t); this.nextRight = nextRight;
5607 >            this.transformer = transformer;
5608 >            this.basis = basis; this.reducer = reducer;
5609 >        }
5610 >        public final Long getRawResult() { return result; }
5611 >        public final void compute() {
5612 >            final ObjectToLong<? super K> transformer;
5613 >            final LongByLongToLong reducer;
5614 >            if ((transformer = this.transformer) != null &&
5615 >                (reducer = this.reducer) != null) {
5616 >                long r = this.basis;
5617 >                for (int i = baseIndex, f, h; batch > 0 &&
5618 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5619 >                    addToPendingCount(1);
5620 >                    (rights = new MapReduceKeysToLongTask<K,V>
5621 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5622 >                      rights, transformer, r, reducer)).fork();
5623 >                }
5624 >                for (Node<K,V> p; (p = advance()) != null; )
5625 >                    r = reducer.apply(r, transformer.apply(p.key));
5626 >                result = r;
5627 >                CountedCompleter<?> c;
5628 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5629 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5630 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5631 >                        s = t.rights;
5632 >                    while (s != null) {
5633 >                        t.result = reducer.apply(t.result, s.result);
5634 >                        s = t.rights = s.nextRight;
5635 >                    }
5636 >                }
5637 >            }
5638 >        }
5639 >    }
5640 >
5641 >    @SuppressWarnings("serial")
5642 >    static final class MapReduceValuesToLongTask<K,V>
5643 >        extends BulkTask<K,V,Long> {
5644 >        final ObjectToLong<? super V> transformer;
5645 >        final LongByLongToLong reducer;
5646 >        final long basis;
5647 >        long result;
5648 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5649 >        MapReduceValuesToLongTask
5650 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5651 >             MapReduceValuesToLongTask<K,V> nextRight,
5652 >             ObjectToLong<? super V> transformer,
5653 >             long basis,
5654 >             LongByLongToLong reducer) {
5655 >            super(p, b, i, f, t); this.nextRight = nextRight;
5656 >            this.transformer = transformer;
5657 >            this.basis = basis; this.reducer = reducer;
5658 >        }
5659 >        public final Long getRawResult() { return result; }
5660 >        public final void compute() {
5661 >            final ObjectToLong<? super V> transformer;
5662 >            final LongByLongToLong reducer;
5663 >            if ((transformer = this.transformer) != null &&
5664 >                (reducer = this.reducer) != null) {
5665 >                long r = this.basis;
5666 >                for (int i = baseIndex, f, h; batch > 0 &&
5667 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5668 >                    addToPendingCount(1);
5669 >                    (rights = new MapReduceValuesToLongTask<K,V>
5670 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5671 >                      rights, transformer, r, reducer)).fork();
5672 >                }
5673 >                for (Node<K,V> p; (p = advance()) != null; )
5674 >                    r = reducer.apply(r, transformer.apply(p.val));
5675 >                result = r;
5676 >                CountedCompleter<?> c;
5677 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5678 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5679 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5680 >                        s = t.rights;
5681 >                    while (s != null) {
5682 >                        t.result = reducer.apply(t.result, s.result);
5683 >                        s = t.rights = s.nextRight;
5684 >                    }
5685 >                }
5686 >            }
5687 >        }
5688 >    }
5689 >
5690 >    @SuppressWarnings("serial")
5691 >    static final class MapReduceEntriesToLongTask<K,V>
5692 >        extends BulkTask<K,V,Long> {
5693 >        final ObjectToLong<Map.Entry<K,V>> transformer;
5694 >        final LongByLongToLong reducer;
5695 >        final long basis;
5696 >        long result;
5697 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
5698 >        MapReduceEntriesToLongTask
5699 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5700 >             MapReduceEntriesToLongTask<K,V> nextRight,
5701 >             ObjectToLong<Map.Entry<K,V>> transformer,
5702 >             long basis,
5703 >             LongByLongToLong reducer) {
5704 >            super(p, b, i, f, t); this.nextRight = nextRight;
5705 >            this.transformer = transformer;
5706 >            this.basis = basis; this.reducer = reducer;
5707 >        }
5708 >        public final Long getRawResult() { return result; }
5709 >        public final void compute() {
5710 >            final ObjectToLong<Map.Entry<K,V>> transformer;
5711 >            final LongByLongToLong reducer;
5712 >            if ((transformer = this.transformer) != null &&
5713 >                (reducer = this.reducer) != null) {
5714 >                long r = this.basis;
5715 >                for (int i = baseIndex, f, h; batch > 0 &&
5716 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5717 >                    addToPendingCount(1);
5718 >                    (rights = new MapReduceEntriesToLongTask<K,V>
5719 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5720 >                      rights, transformer, r, reducer)).fork();
5721 >                }
5722 >                for (Node<K,V> p; (p = advance()) != null; )
5723 >                    r = reducer.apply(r, transformer.apply(p));
5724 >                result = r;
5725 >                CountedCompleter<?> c;
5726 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5727 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5728 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5729 >                        s = t.rights;
5730 >                    while (s != null) {
5731 >                        t.result = reducer.apply(t.result, s.result);
5732 >                        s = t.rights = s.nextRight;
5733 >                    }
5734 >                }
5735 >            }
5736 >        }
5737 >    }
5738 >
5739 >    @SuppressWarnings("serial")
5740 >    static final class MapReduceMappingsToLongTask<K,V>
5741 >        extends BulkTask<K,V,Long> {
5742 >        final ObjectByObjectToLong<? super K, ? super V> transformer;
5743 >        final LongByLongToLong reducer;
5744 >        final long basis;
5745 >        long result;
5746 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
5747 >        MapReduceMappingsToLongTask
5748 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5749 >             MapReduceMappingsToLongTask<K,V> nextRight,
5750 >             ObjectByObjectToLong<? super K, ? super V> transformer,
5751 >             long basis,
5752 >             LongByLongToLong reducer) {
5753 >            super(p, b, i, f, t); this.nextRight = nextRight;
5754 >            this.transformer = transformer;
5755 >            this.basis = basis; this.reducer = reducer;
5756 >        }
5757 >        public final Long getRawResult() { return result; }
5758 >        public final void compute() {
5759 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
5760 >            final LongByLongToLong reducer;
5761 >            if ((transformer = this.transformer) != null &&
5762 >                (reducer = this.reducer) != null) {
5763 >                long r = this.basis;
5764 >                for (int i = baseIndex, f, h; batch > 0 &&
5765 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5766 >                    addToPendingCount(1);
5767 >                    (rights = new MapReduceMappingsToLongTask<K,V>
5768 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5769 >                      rights, transformer, r, reducer)).fork();
5770 >                }
5771 >                for (Node<K,V> p; (p = advance()) != null; )
5772 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5773 >                result = r;
5774 >                CountedCompleter<?> c;
5775 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5776 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5777 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
5778 >                        s = t.rights;
5779 >                    while (s != null) {
5780 >                        t.result = reducer.apply(t.result, s.result);
5781 >                        s = t.rights = s.nextRight;
5782 >                    }
5783 >                }
5784 >            }
5785 >        }
5786 >    }
5787 >
5788 >    @SuppressWarnings("serial")
5789 >    static final class MapReduceKeysToIntTask<K,V>
5790 >        extends BulkTask<K,V,Integer> {
5791 >        final ObjectToInt<? super K> transformer;
5792 >        final IntByIntToInt reducer;
5793 >        final int basis;
5794 >        int result;
5795 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
5796 >        MapReduceKeysToIntTask
5797 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5798 >             MapReduceKeysToIntTask<K,V> nextRight,
5799 >             ObjectToInt<? super K> transformer,
5800 >             int basis,
5801 >             IntByIntToInt reducer) {
5802 >            super(p, b, i, f, t); this.nextRight = nextRight;
5803 >            this.transformer = transformer;
5804 >            this.basis = basis; this.reducer = reducer;
5805 >        }
5806 >        public final Integer getRawResult() { return result; }
5807 >        public final void compute() {
5808 >            final ObjectToInt<? super K> transformer;
5809 >            final IntByIntToInt reducer;
5810 >            if ((transformer = this.transformer) != null &&
5811 >                (reducer = this.reducer) != null) {
5812 >                int r = this.basis;
5813 >                for (int i = baseIndex, f, h; batch > 0 &&
5814 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5815 >                    addToPendingCount(1);
5816 >                    (rights = new MapReduceKeysToIntTask<K,V>
5817 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5818 >                      rights, transformer, r, reducer)).fork();
5819 >                }
5820 >                for (Node<K,V> p; (p = advance()) != null; )
5821 >                    r = reducer.apply(r, transformer.apply(p.key));
5822 >                result = r;
5823 >                CountedCompleter<?> c;
5824 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5825 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5826 >                        t = (MapReduceKeysToIntTask<K,V>)c,
5827 >                        s = t.rights;
5828 >                    while (s != null) {
5829 >                        t.result = reducer.apply(t.result, s.result);
5830 >                        s = t.rights = s.nextRight;
5831 >                    }
5832 >                }
5833 >            }
5834 >        }
5835 >    }
5836 >
5837 >    @SuppressWarnings("serial")
5838 >    static final class MapReduceValuesToIntTask<K,V>
5839 >        extends BulkTask<K,V,Integer> {
5840 >        final ObjectToInt<? super V> transformer;
5841 >        final IntByIntToInt reducer;
5842 >        final int basis;
5843 >        int result;
5844 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
5845 >        MapReduceValuesToIntTask
5846 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5847 >             MapReduceValuesToIntTask<K,V> nextRight,
5848 >             ObjectToInt<? super V> transformer,
5849 >             int basis,
5850 >             IntByIntToInt reducer) {
5851 >            super(p, b, i, f, t); this.nextRight = nextRight;
5852 >            this.transformer = transformer;
5853 >            this.basis = basis; this.reducer = reducer;
5854 >        }
5855 >        public final Integer getRawResult() { return result; }
5856 >        public final void compute() {
5857 >            final ObjectToInt<? super V> transformer;
5858 >            final IntByIntToInt reducer;
5859 >            if ((transformer = this.transformer) != null &&
5860 >                (reducer = this.reducer) != null) {
5861 >                int r = this.basis;
5862 >                for (int i = baseIndex, f, h; batch > 0 &&
5863 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5864 >                    addToPendingCount(1);
5865 >                    (rights = new MapReduceValuesToIntTask<K,V>
5866 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5867 >                      rights, transformer, r, reducer)).fork();
5868 >                }
5869 >                for (Node<K,V> p; (p = advance()) != null; )
5870 >                    r = reducer.apply(r, transformer.apply(p.val));
5871 >                result = r;
5872 >                CountedCompleter<?> c;
5873 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5874 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5875 >                        t = (MapReduceValuesToIntTask<K,V>)c,
5876 >                        s = t.rights;
5877 >                    while (s != null) {
5878 >                        t.result = reducer.apply(t.result, s.result);
5879 >                        s = t.rights = s.nextRight;
5880 >                    }
5881 >                }
5882 >            }
5883 >        }
5884 >    }
5885 >
5886 >    @SuppressWarnings("serial")
5887 >    static final class MapReduceEntriesToIntTask<K,V>
5888 >        extends BulkTask<K,V,Integer> {
5889 >        final ObjectToInt<Map.Entry<K,V>> transformer;
5890 >        final IntByIntToInt reducer;
5891 >        final int basis;
5892 >        int result;
5893 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
5894 >        MapReduceEntriesToIntTask
5895 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5896 >             MapReduceEntriesToIntTask<K,V> nextRight,
5897 >             ObjectToInt<Map.Entry<K,V>> transformer,
5898 >             int basis,
5899 >             IntByIntToInt reducer) {
5900 >            super(p, b, i, f, t); this.nextRight = nextRight;
5901 >            this.transformer = transformer;
5902 >            this.basis = basis; this.reducer = reducer;
5903 >        }
5904 >        public final Integer getRawResult() { return result; }
5905 >        public final void compute() {
5906 >            final ObjectToInt<Map.Entry<K,V>> transformer;
5907 >            final IntByIntToInt reducer;
5908 >            if ((transformer = this.transformer) != null &&
5909 >                (reducer = this.reducer) != null) {
5910 >                int r = this.basis;
5911 >                for (int i = baseIndex, f, h; batch > 0 &&
5912 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5913 >                    addToPendingCount(1);
5914 >                    (rights = new MapReduceEntriesToIntTask<K,V>
5915 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5916 >                      rights, transformer, r, reducer)).fork();
5917 >                }
5918 >                for (Node<K,V> p; (p = advance()) != null; )
5919 >                    r = reducer.apply(r, transformer.apply(p));
5920 >                result = r;
5921 >                CountedCompleter<?> c;
5922 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5923 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5924 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
5925 >                        s = t.rights;
5926 >                    while (s != null) {
5927 >                        t.result = reducer.apply(t.result, s.result);
5928 >                        s = t.rights = s.nextRight;
5929 >                    }
5930 >                }
5931 >            }
5932 >        }
5933 >    }
5934 >
5935 >    @SuppressWarnings("serial")
5936 >    static final class MapReduceMappingsToIntTask<K,V>
5937 >        extends BulkTask<K,V,Integer> {
5938 >        final ObjectByObjectToInt<? super K, ? super V> transformer;
5939 >        final IntByIntToInt reducer;
5940 >        final int basis;
5941 >        int result;
5942 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
5943 >        MapReduceMappingsToIntTask
5944 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5945 >             MapReduceMappingsToIntTask<K,V> nextRight,
5946 >             ObjectByObjectToInt<? super K, ? super V> transformer,
5947 >             int basis,
5948 >             IntByIntToInt reducer) {
5949 >            super(p, b, i, f, t); this.nextRight = nextRight;
5950 >            this.transformer = transformer;
5951 >            this.basis = basis; this.reducer = reducer;
5952 >        }
5953 >        public final Integer getRawResult() { return result; }
5954 >        public final void compute() {
5955 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
5956 >            final IntByIntToInt reducer;
5957 >            if ((transformer = this.transformer) != null &&
5958 >                (reducer = this.reducer) != null) {
5959 >                int r = this.basis;
5960 >                for (int i = baseIndex, f, h; batch > 0 &&
5961 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5962 >                    addToPendingCount(1);
5963 >                    (rights = new MapReduceMappingsToIntTask<K,V>
5964 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5965 >                      rights, transformer, r, reducer)).fork();
5966 >                }
5967 >                for (Node<K,V> p; (p = advance()) != null; )
5968 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5969 >                result = r;
5970 >                CountedCompleter<?> c;
5971 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5972 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
5973 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
5974 >                        s = t.rights;
5975 >                    while (s != null) {
5976 >                        t.result = reducer.apply(t.result, s.result);
5977 >                        s = t.rights = s.nextRight;
5978 >                    }
5979 >                }
5980 >            }
5981 >        }
5982 >    }
5983 >
5984 >    /* ---------------- Counters -------------- */
5985 >
5986 >    // Adapted from LongAdder and Striped64.
5987 >    // See their internal docs for explanation.
5988 >
5989 >    // A padded cell for distributing counts
5990 >    static final class CounterCell {
5991 >        volatile long p0, p1, p2, p3, p4, p5, p6;
5992 >        volatile long value;
5993 >        volatile long q0, q1, q2, q3, q4, q5, q6;
5994 >        CounterCell(long x) { value = x; }
5995 >    }
5996  
5997      /**
5998 <     * Helper class used in previous version, declared for the sake of
5999 <     * serialization compatibility
5998 >     * Holder for the thread-local hash code determining which
5999 >     * CounterCell to use. The code is initialized via the
6000 >     * counterHashCodeGenerator, but may be moved upon collisions.
6001       */
6002 <    static class Segment<K,V> extends java.util.concurrent.locks.ReentrantLock
6003 <        implements Serializable {
1510 <        private static final long serialVersionUID = 2249069246763182397L;
1511 <        final float loadFactor;
1512 <        Segment(float lf) { this.loadFactor = lf; }
6002 >    static final class CounterHashCode {
6003 >        int code;
6004      }
6005  
6006      /**
6007 <     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1517 <     * stream (i.e., serializes it).
1518 <     * @param s the stream
1519 <     * @serialData
1520 <     * the key (Object) and value (Object)
1521 <     * for each key-value mapping, followed by a null pair.
1522 <     * The key-value mappings are emitted in no particular order.
6007 >     * Generates initial value for per-thread CounterHashCodes.
6008       */
6009 <    @SuppressWarnings("unchecked")
1525 <    private void writeObject(java.io.ObjectOutputStream s)
1526 <            throws java.io.IOException {
1527 <        if (segments == null) { // for serialization compatibility
1528 <            segments = (Segment<K,V>[])
1529 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1530 <            for (int i = 0; i < segments.length; ++i)
1531 <                segments[i] = new Segment<K,V>(loadFactor);
1532 <        }
1533 <        s.defaultWriteObject();
1534 <        new HashIterator().writeEntries(s);
1535 <        s.writeObject(null);
1536 <        s.writeObject(null);
1537 <        segments = null; // throw away
1538 <    }
6009 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6010  
6011      /**
6012 <     * Reconstitutes the instance from a stream (that is, deserializes it).
6013 <     * @param s the stream
6012 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
6013 >     * for explanation.
6014       */
6015 <    @SuppressWarnings("unchecked")
6016 <    private void readObject(java.io.ObjectInputStream s)
6017 <            throws java.io.IOException, ClassNotFoundException {
6018 <        s.defaultReadObject();
6019 <        // find load factor in a segment, if one exists
6020 <        if (segments != null && segments.length != 0)
6021 <            this.loadFactor = segments[0].loadFactor;
6022 <        else
6023 <            this.loadFactor = DEFAULT_LOAD_FACTOR;
6024 <        this.initCap = DEFAULT_CAPACITY;
6025 <        LongAdder ct = new LongAdder(); // force final field write
6026 <        UNSAFE.putObjectVolatile(this, counterOffset, ct);
6027 <        this.segments = null; // unneeded
6015 >    static final int SEED_INCREMENT = 0x61c88647;
6016 >
6017 >    /**
6018 >     * Per-thread counter hash codes. Shared across all instances.
6019 >     */
6020 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6021 >        new ThreadLocal<CounterHashCode>();
6022 >
6023 >
6024 >    final long sumCount() {
6025 >        CounterCell[] as = counterCells; CounterCell a;
6026 >        long sum = baseCount;
6027 >        if (as != null) {
6028 >            for (int i = 0; i < as.length; ++i) {
6029 >                if ((a = as[i]) != null)
6030 >                    sum += a.value;
6031 >            }
6032 >        }
6033 >        return sum;
6034 >    }
6035  
6036 <        // Read the keys and values, and put the mappings in the table
6036 >    // See LongAdder version for explanation
6037 >    private final void fullAddCount(long x, CounterHashCode hc,
6038 >                                    boolean wasUncontended) {
6039 >        int h;
6040 >        if (hc == null) {
6041 >            hc = new CounterHashCode();
6042 >            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6043 >            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6044 >            threadCounterHashCode.set(hc);
6045 >        }
6046 >        else
6047 >            h = hc.code;
6048 >        boolean collide = false;                // True if last slot nonempty
6049          for (;;) {
6050 <            K key = (K) s.readObject();
6051 <            V value = (V) s.readObject();
6052 <            if (key == null)
6053 <                break;
6054 <            put(key, value);
6050 >            CounterCell[] as; CounterCell a; int n; long v;
6051 >            if ((as = counterCells) != null && (n = as.length) > 0) {
6052 >                if ((a = as[(n - 1) & h]) == null) {
6053 >                    if (cellsBusy == 0) {            // Try to attach new Cell
6054 >                        CounterCell r = new CounterCell(x); // Optimistic create
6055 >                        if (cellsBusy == 0 &&
6056 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6057 >                            boolean created = false;
6058 >                            try {               // Recheck under lock
6059 >                                CounterCell[] rs; int m, j;
6060 >                                if ((rs = counterCells) != null &&
6061 >                                    (m = rs.length) > 0 &&
6062 >                                    rs[j = (m - 1) & h] == null) {
6063 >                                    rs[j] = r;
6064 >                                    created = true;
6065 >                                }
6066 >                            } finally {
6067 >                                cellsBusy = 0;
6068 >                            }
6069 >                            if (created)
6070 >                                break;
6071 >                            continue;           // Slot is now non-empty
6072 >                        }
6073 >                    }
6074 >                    collide = false;
6075 >                }
6076 >                else if (!wasUncontended)       // CAS already known to fail
6077 >                    wasUncontended = true;      // Continue after rehash
6078 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6079 >                    break;
6080 >                else if (counterCells != as || n >= NCPU)
6081 >                    collide = false;            // At max size or stale
6082 >                else if (!collide)
6083 >                    collide = true;
6084 >                else if (cellsBusy == 0 &&
6085 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6086 >                    try {
6087 >                        if (counterCells == as) {// Expand table unless stale
6088 >                            CounterCell[] rs = new CounterCell[n << 1];
6089 >                            for (int i = 0; i < n; ++i)
6090 >                                rs[i] = as[i];
6091 >                            counterCells = rs;
6092 >                        }
6093 >                    } finally {
6094 >                        cellsBusy = 0;
6095 >                    }
6096 >                    collide = false;
6097 >                    continue;                   // Retry with expanded table
6098 >                }
6099 >                h ^= h << 13;                   // Rehash
6100 >                h ^= h >>> 17;
6101 >                h ^= h << 5;
6102 >            }
6103 >            else if (cellsBusy == 0 && counterCells == as &&
6104 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6105 >                boolean init = false;
6106 >                try {                           // Initialize table
6107 >                    if (counterCells == as) {
6108 >                        CounterCell[] rs = new CounterCell[2];
6109 >                        rs[h & 1] = new CounterCell(x);
6110 >                        counterCells = rs;
6111 >                        init = true;
6112 >                    }
6113 >                } finally {
6114 >                    cellsBusy = 0;
6115 >                }
6116 >                if (init)
6117 >                    break;
6118 >            }
6119 >            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6120 >                break;                          // Fall back on using base
6121          }
6122 +        hc.code = h;                            // Record index for next time
6123      }
6124  
6125      // Unsafe mechanics
6126 <    private static final sun.misc.Unsafe UNSAFE;
6127 <    private static final long counterOffset;
6128 <    private static final long resizingOffset;
6126 >    private static final sun.misc.Unsafe U;
6127 >    private static final long SIZECTL;
6128 >    private static final long TRANSFERINDEX;
6129 >    private static final long TRANSFERORIGIN;
6130 >    private static final long BASECOUNT;
6131 >    private static final long CELLSBUSY;
6132 >    private static final long CELLVALUE;
6133      private static final long ABASE;
6134      private static final int ASHIFT;
6135  
6136      static {
1576        int ss;
6137          try {
6138 <            UNSAFE = getUnsafe();
6138 >            U = getUnsafe();
6139              Class<?> k = ConcurrentHashMapV8.class;
6140 <            counterOffset = UNSAFE.objectFieldOffset
6141 <                (k.getDeclaredField("counter"));
6142 <            resizingOffset = UNSAFE.objectFieldOffset
6143 <                (k.getDeclaredField("resizing"));
6144 <            Class<?> sc = Node[].class;
6145 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6146 <            ss = UNSAFE.arrayIndexScale(sc);
6140 >            SIZECTL = U.objectFieldOffset
6141 >                (k.getDeclaredField("sizeCtl"));
6142 >            TRANSFERINDEX = U.objectFieldOffset
6143 >                (k.getDeclaredField("transferIndex"));
6144 >            TRANSFERORIGIN = U.objectFieldOffset
6145 >                (k.getDeclaredField("transferOrigin"));
6146 >            BASECOUNT = U.objectFieldOffset
6147 >                (k.getDeclaredField("baseCount"));
6148 >            CELLSBUSY = U.objectFieldOffset
6149 >                (k.getDeclaredField("cellsBusy"));
6150 >            Class<?> ck = CounterCell.class;
6151 >            CELLVALUE = U.objectFieldOffset
6152 >                (ck.getDeclaredField("value"));
6153 >            Class<?> ak = Node[].class;
6154 >            ABASE = U.arrayBaseOffset(ak);
6155 >            int scale = U.arrayIndexScale(ak);
6156 >            if ((scale & (scale - 1)) != 0)
6157 >                throw new Error("data type scale not a power of two");
6158 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6159          } catch (Exception e) {
6160              throw new Error(e);
6161          }
1590        if ((ss & (ss-1)) != 0)
1591            throw new Error("data type scale not a power of two");
1592        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6162      }
6163  
6164      /**
# Line 1602 | Line 6171 | public class ConcurrentHashMapV8<K, V>
6171      private static sun.misc.Unsafe getUnsafe() {
6172          try {
6173              return sun.misc.Unsafe.getUnsafe();
6174 <        } catch (SecurityException se) {
6175 <            try {
6176 <                return java.security.AccessController.doPrivileged
6177 <                    (new java.security
6178 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6179 <                        public sun.misc.Unsafe run() throws Exception {
6180 <                            java.lang.reflect.Field f = sun.misc
6181 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6182 <                            f.setAccessible(true);
6183 <                            return (sun.misc.Unsafe) f.get(null);
6184 <                        }});
6185 <            } catch (java.security.PrivilegedActionException e) {
6186 <                throw new RuntimeException("Could not initialize intrinsics",
6187 <                                           e.getCause());
6188 <            }
6174 >        } catch (SecurityException tryReflectionInstead) {}
6175 >        try {
6176 >            return java.security.AccessController.doPrivileged
6177 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6178 >                public sun.misc.Unsafe run() throws Exception {
6179 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6180 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6181 >                        f.setAccessible(true);
6182 >                        Object x = f.get(null);
6183 >                        if (k.isInstance(x))
6184 >                            return k.cast(x);
6185 >                    }
6186 >                    throw new NoSuchFieldError("the Unsafe");
6187 >                }});
6188 >        } catch (java.security.PrivilegedActionException e) {
6189 >            throw new RuntimeException("Could not initialize intrinsics",
6190 >                                       e.getCause());
6191          }
6192      }
1622
6193   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines