ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.17 by jsr166, Sat Sep 10 00:53:14 2011 UTC vs.
Revision 1.118 by dl, Sun Dec 1 16:08:12 2013 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166e;
8 < import jsr166e.LongAdder;
9 < import java.util.Map;
10 < import java.util.Set;
11 < import java.util.Collection;
8 >
9 > import jsr166e.ForkJoinPool;
10 >
11 > import java.io.ObjectStreamField;
12 > import java.io.Serializable;
13 > import java.lang.reflect.ParameterizedType;
14 > import java.lang.reflect.Type;
15   import java.util.AbstractMap;
16 < import java.util.AbstractSet;
17 < import java.util.AbstractCollection;
18 < import java.util.Hashtable;
16 > import java.util.Arrays;
17 > import java.util.Collection;
18 > import java.util.Comparator;
19 > import java.util.ConcurrentModificationException;
20 > import java.util.Enumeration;
21   import java.util.HashMap;
22 + import java.util.Hashtable;
23   import java.util.Iterator;
24 < import java.util.Enumeration;
19 < import java.util.ConcurrentModificationException;
24 > import java.util.Map;
25   import java.util.NoSuchElementException;
26 + import java.util.Set;
27   import java.util.concurrent.ConcurrentMap;
28 < import java.io.Serializable;
28 > import java.util.concurrent.atomic.AtomicReference;
29 > import java.util.concurrent.atomic.AtomicInteger;
30 > import java.util.concurrent.locks.LockSupport;
31 > import java.util.concurrent.locks.ReentrantLock;
32  
33   /**
34   * A hash table supporting full concurrency of retrievals and
# Line 33 | Line 42 | import java.io.Serializable;
42   * interoperable with {@code Hashtable} in programs that rely on its
43   * thread safety but not on its synchronization details.
44   *
45 < * <p> Retrieval operations (including {@code get}) generally do not
45 > * <p>Retrieval operations (including {@code get}) generally do not
46   * block, so may overlap with update operations (including {@code put}
47   * and {@code remove}). Retrievals reflect the results of the most
48   * recently <em>completed</em> update operations holding upon their
49 < * onset.  For aggregate operations such as {@code putAll} and {@code
50 < * clear}, concurrent retrievals may reflect insertion or removal of
51 < * only some entries.  Similarly, Iterators and Enumerations return
52 < * elements reflecting the state of the hash table at some point at or
53 < * since the creation of the iterator/enumeration.  They do
54 < * <em>not</em> throw {@link ConcurrentModificationException}.
55 < * However, iterators are designed to be used by only one thread at a
56 < * time.  Bear in mind that the results of aggregate status methods
57 < * including {@code size}, {@code isEmpty}, and {@code containsValue}
58 < * are typically useful only when a map is not undergoing concurrent
59 < * updates in other threads.  Otherwise the results of these methods
60 < * reflect transient states that may be adequate for monitoring
61 < * or estimation purposes, but not for program control.
49 > * onset. (More formally, an update operation for a given key bears a
50 > * <em>happens-before</em> relation with any (non-null) retrieval for
51 > * that key reporting the updated value.)  For aggregate operations
52 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
53 > * reflect insertion or removal of only some entries.  Similarly,
54 > * Iterators and Enumerations return elements reflecting the state of
55 > * the hash table at some point at or since the creation of the
56 > * iterator/enumeration.  They do <em>not</em> throw {@link
57 > * ConcurrentModificationException}.  However, iterators are designed
58 > * to be used by only one thread at a time.  Bear in mind that the
59 > * results of aggregate status methods including {@code size}, {@code
60 > * isEmpty}, and {@code containsValue} are typically useful only when
61 > * a map is not undergoing concurrent updates in other threads.
62 > * Otherwise the results of these methods reflect transient states
63 > * that may be adequate for monitoring or estimation purposes, but not
64 > * for program control.
65   *
66 < * <p> The table is dynamically expanded when there are too many
66 > * <p>The table is dynamically expanded when there are too many
67   * collisions (i.e., keys that have distinct hash codes but fall into
68   * the same slot modulo the table size), with the expected average
69 < * effect of maintaining roughly two bins per mapping. There may be
70 < * much variance around this average as mappings are added and
71 < * removed, but overall, this maintains a commonly accepted time/space
72 < * tradeoff for hash tables.  However, resizing this or any other kind
73 < * of hash table may be a relatively slow operation. When possible, it
74 < * is a good idea to provide a size estimate as an optional {@code
69 > * effect of maintaining roughly two bins per mapping (corresponding
70 > * to a 0.75 load factor threshold for resizing). There may be much
71 > * variance around this average as mappings are added and removed, but
72 > * overall, this maintains a commonly accepted time/space tradeoff for
73 > * hash tables.  However, resizing this or any other kind of hash
74 > * table may be a relatively slow operation. When possible, it is a
75 > * good idea to provide a size estimate as an optional {@code
76   * initialCapacity} constructor argument. An additional optional
77   * {@code loadFactor} constructor argument provides a further means of
78   * customizing initial table capacity by specifying the table density
# Line 68 | Line 81 | import java.io.Serializable;
81   * versions of this class, constructors may optionally specify an
82   * expected {@code concurrencyLevel} as an additional hint for
83   * internal sizing.  Note that using many keys with exactly the same
84 < * {@code hashCode{}} is a sure way to slow down performance of any
85 < * hash table.
84 > * {@code hashCode()} is a sure way to slow down performance of any
85 > * hash table. To ameliorate impact, when keys are {@link Comparable},
86 > * this class may use comparison order among keys to help break ties.
87 > *
88 > * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
89 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
90 > * (using {@link #keySet(Object)} when only keys are of interest, and the
91 > * mapped values are (perhaps transiently) not used or all take the
92 > * same mapping value.
93   *
94   * <p>This class and its views and iterators implement all of the
95   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
96   * interfaces.
97   *
98 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
98 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
99   * does <em>not</em> allow {@code null} to be used as a key or value.
100   *
101 + * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
102 + * operations that are designed
103 + * to be safely, and often sensibly, applied even with maps that are
104 + * being concurrently updated by other threads; for example, when
105 + * computing a snapshot summary of the values in a shared registry.
106 + * There are three kinds of operation, each with four forms, accepting
107 + * functions with Keys, Values, Entries, and (Key, Value) arguments
108 + * and/or return values. Because the elements of a ConcurrentHashMapV8
109 + * are not ordered in any particular way, and may be processed in
110 + * different orders in different parallel executions, the correctness
111 + * of supplied functions should not depend on any ordering, or on any
112 + * other objects or values that may transiently change while
113 + * computation is in progress; and except for forEach actions, should
114 + * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
115 + * objects do not support method {@code setValue}.
116 + *
117 + * <ul>
118 + * <li> forEach: Perform a given action on each element.
119 + * A variant form applies a given transformation on each element
120 + * before performing the action.</li>
121 + *
122 + * <li> search: Return the first available non-null result of
123 + * applying a given function on each element; skipping further
124 + * search when a result is found.</li>
125 + *
126 + * <li> reduce: Accumulate each element.  The supplied reduction
127 + * function cannot rely on ordering (more formally, it should be
128 + * both associative and commutative).  There are five variants:
129 + *
130 + * <ul>
131 + *
132 + * <li> Plain reductions. (There is not a form of this method for
133 + * (key, value) function arguments since there is no corresponding
134 + * return type.)</li>
135 + *
136 + * <li> Mapped reductions that accumulate the results of a given
137 + * function applied to each element.</li>
138 + *
139 + * <li> Reductions to scalar doubles, longs, and ints, using a
140 + * given basis value.</li>
141 + *
142 + * </ul>
143 + * </li>
144 + * </ul>
145 + *
146 + * <p>These bulk operations accept a {@code parallelismThreshold}
147 + * argument. Methods proceed sequentially if the current map size is
148 + * estimated to be less than the given threshold. Using a value of
149 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
150 + * of {@code 1} results in maximal parallelism by partitioning into
151 + * enough subtasks to fully utilize the {@link
152 + * ForkJoinPool#commonPool()} that is used for all parallel
153 + * computations. Normally, you would initially choose one of these
154 + * extreme values, and then measure performance of using in-between
155 + * values that trade off overhead versus throughput.
156 + *
157 + * <p>The concurrency properties of bulk operations follow
158 + * from those of ConcurrentHashMapV8: Any non-null result returned
159 + * from {@code get(key)} and related access methods bears a
160 + * happens-before relation with the associated insertion or
161 + * update.  The result of any bulk operation reflects the
162 + * composition of these per-element relations (but is not
163 + * necessarily atomic with respect to the map as a whole unless it
164 + * is somehow known to be quiescent).  Conversely, because keys
165 + * and values in the map are never null, null serves as a reliable
166 + * atomic indicator of the current lack of any result.  To
167 + * maintain this property, null serves as an implicit basis for
168 + * all non-scalar reduction operations. For the double, long, and
169 + * int versions, the basis should be one that, when combined with
170 + * any other value, returns that other value (more formally, it
171 + * should be the identity element for the reduction). Most common
172 + * reductions have these properties; for example, computing a sum
173 + * with basis 0 or a minimum with basis MAX_VALUE.
174 + *
175 + * <p>Search and transformation functions provided as arguments
176 + * should similarly return null to indicate the lack of any result
177 + * (in which case it is not used). In the case of mapped
178 + * reductions, this also enables transformations to serve as
179 + * filters, returning null (or, in the case of primitive
180 + * specializations, the identity basis) if the element should not
181 + * be combined. You can create compound transformations and
182 + * filterings by composing them yourself under this "null means
183 + * there is nothing there now" rule before using them in search or
184 + * reduce operations.
185 + *
186 + * <p>Methods accepting and/or returning Entry arguments maintain
187 + * key-value associations. They may be useful for example when
188 + * finding the key for the greatest value. Note that "plain" Entry
189 + * arguments can be supplied using {@code new
190 + * AbstractMap.SimpleEntry(k,v)}.
191 + *
192 + * <p>Bulk operations may complete abruptly, throwing an
193 + * exception encountered in the application of a supplied
194 + * function. Bear in mind when handling such exceptions that other
195 + * concurrently executing functions could also have thrown
196 + * exceptions, or would have done so if the first exception had
197 + * not occurred.
198 + *
199 + * <p>Speedups for parallel compared to sequential forms are common
200 + * but not guaranteed.  Parallel operations involving brief functions
201 + * on small maps may execute more slowly than sequential forms if the
202 + * underlying work to parallelize the computation is more expensive
203 + * than the computation itself.  Similarly, parallelization may not
204 + * lead to much actual parallelism if all processors are busy
205 + * performing unrelated tasks.
206 + *
207 + * <p>All arguments to all task methods must be non-null.
208 + *
209 + * <p><em>jsr166e note: During transition, this class
210 + * uses nested functional interfaces with different names but the
211 + * same forms as those expected for JDK8.</em>
212 + *
213   * <p>This class is a member of the
214   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
215   * Java Collections Framework</a>.
216   *
85 * <p><em>jsr166e note: This class is a candidate replacement for
86 * java.util.concurrent.ConcurrentHashMap.<em>
87 *
217   * @since 1.5
218   * @author Doug Lea
219   * @param <K> the type of keys maintained by this map
220   * @param <V> the type of mapped values
221   */
222 < public class ConcurrentHashMapV8<K, V>
223 <        implements ConcurrentMap<K, V>, Serializable {
222 > public class ConcurrentHashMapV8<K,V> extends AbstractMap<K,V>
223 >    implements ConcurrentMap<K,V>, Serializable {
224      private static final long serialVersionUID = 7249069246763182397L;
225  
226      /**
227 <     * A function computing a mapping from the given key to a value,
228 <     * or {@code null} if there is no mapping. This is a place-holder
229 <     * for an upcoming JDK8 interface.
230 <     */
231 <    public static interface MappingFunction<K, V> {
232 <        /**
233 <         * Returns a value for the given key, or null if there is no
234 <         * mapping. If this function throws an (unchecked) exception,
235 <         * the exception is rethrown to its caller, and no mapping is
236 <         * recorded.  Because this function is invoked within
108 <         * atomicity control, the computation should be short and
109 <         * simple. The most common usage is to construct a new object
110 <         * serving as an initial mapped value.
111 <         *
112 <         * @param key the (non-null) key
113 <         * @return a value, or null if none
227 >     * An object for traversing and partitioning elements of a source.
228 >     * This interface provides a subset of the functionality of JDK8
229 >     * java.util.Spliterator.
230 >     */
231 >    public static interface ConcurrentHashMapSpliterator<T> {
232 >        /**
233 >         * If possible, returns a new spliterator covering
234 >         * approximately one half of the elements, which will not be
235 >         * covered by this spliterator. Returns null if cannot be
236 >         * split.
237           */
238 <        V map(K key);
239 <    }
238 >        ConcurrentHashMapSpliterator<T> trySplit();
239 >        /**
240 >         * Returns an estimate of the number of elements covered by
241 >         * this Spliterator.
242 >         */
243 >        long estimateSize();
244 >
245 >        /** Applies the action to each untraversed element */
246 >        void forEachRemaining(Action<? super T> action);
247 >        /** If an element remains, applies the action and returns true. */
248 >        boolean tryAdvance(Action<? super T> action);
249 >    }
250 >
251 >    // Sams
252 >    /** Interface describing a void action of one argument */
253 >    public interface Action<A> { void apply(A a); }
254 >    /** Interface describing a void action of two arguments */
255 >    public interface BiAction<A,B> { void apply(A a, B b); }
256 >    /** Interface describing a function of one argument */
257 >    public interface Fun<A,T> { T apply(A a); }
258 >    /** Interface describing a function of two arguments */
259 >    public interface BiFun<A,B,T> { T apply(A a, B b); }
260 >    /** Interface describing a function mapping its argument to a double */
261 >    public interface ObjectToDouble<A> { double apply(A a); }
262 >    /** Interface describing a function mapping its argument to a long */
263 >    public interface ObjectToLong<A> { long apply(A a); }
264 >    /** Interface describing a function mapping its argument to an int */
265 >    public interface ObjectToInt<A> {int apply(A a); }
266 >    /** Interface describing a function mapping two arguments to a double */
267 >    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
268 >    /** Interface describing a function mapping two arguments to a long */
269 >    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
270 >    /** Interface describing a function mapping two arguments to an int */
271 >    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
272 >    /** Interface describing a function mapping two doubles to a double */
273 >    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
274 >    /** Interface describing a function mapping two longs to a long */
275 >    public interface LongByLongToLong { long apply(long a, long b); }
276 >    /** Interface describing a function mapping two ints to an int */
277 >    public interface IntByIntToInt { int apply(int a, int b); }
278 >
279  
280      /*
281       * Overview:
# Line 121 | Line 283 | public class ConcurrentHashMapV8<K, V>
283       * The primary design goal of this hash table is to maintain
284       * concurrent readability (typically method get(), but also
285       * iterators and related methods) while minimizing update
286 <     * contention.
287 <     *
288 <     * Each key-value mapping is held in a Node.  Because Node fields
289 <     * can contain special values, they are defined using plain Object
290 <     * types. Similarly in turn, all internal methods that use them
291 <     * work off Object types. And similarly, so do the internal
292 <     * methods of auxiliary iterator and view classes.  All public
293 <     * generic typed methods relay in/out of these internal methods,
294 <     * supplying null-checks and casts as needed.
286 >     * contention. Secondary goals are to keep space consumption about
287 >     * the same or better than java.util.HashMap, and to support high
288 >     * initial insertion rates on an empty table by many threads.
289 >     *
290 >     * This map usually acts as a binned (bucketed) hash table.  Each
291 >     * key-value mapping is held in a Node.  Most nodes are instances
292 >     * of the basic Node class with hash, key, value, and next
293 >     * fields. However, various subclasses exist: TreeNodes are
294 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
295 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
296 >     * of bins during resizing. ReservationNodes are used as
297 >     * placeholders while establishing values in computeIfAbsent and
298 >     * related methods.  The types TreeBin, ForwardingNode, and
299 >     * ReservationNode do not hold normal user keys, values, or
300 >     * hashes, and are readily distinguishable during search etc
301 >     * because they have negative hash fields and null key and value
302 >     * fields. (These special nodes are either uncommon or transient,
303 >     * so the impact of carrying around some unused fields is
304 >     * insignificant.)
305       *
306       * The table is lazily initialized to a power-of-two size upon the
307 <     * first insertion.  Each bin in the table contains a list of
308 <     * Nodes (most often, zero or one Node).  Table accesses require
309 <     * volatile/atomic reads, writes, and CASes.  Because there is no
310 <     * other way to arrange this without adding further indirections,
311 <     * we use intrinsics (sun.misc.Unsafe) operations.  The lists of
312 <     * nodes within bins are always accurately traversable under
313 <     * volatile reads, so long as lookups check hash code and
314 <     * non-nullness of value before checking key equality. (All valid
315 <     * hash codes are nonnegative. Negative values are reserved for
316 <     * special forwarding nodes; see below.)
307 >     * first insertion.  Each bin in the table normally contains a
308 >     * list of Nodes (most often, the list has only zero or one Node).
309 >     * Table accesses require volatile/atomic reads, writes, and
310 >     * CASes.  Because there is no other way to arrange this without
311 >     * adding further indirections, we use intrinsics
312 >     * (sun.misc.Unsafe) operations.
313 >     *
314 >     * We use the top (sign) bit of Node hash fields for control
315 >     * purposes -- it is available anyway because of addressing
316 >     * constraints.  Nodes with negative hash fields are specially
317 >     * handled or ignored in map methods.
318       *
319 <     * Insertion (via put or putIfAbsent) of the first node in an
319 >     * Insertion (via put or its variants) of the first node in an
320       * empty bin is performed by just CASing it to the bin.  This is
321 <     * on average by far the most common case for put operations.
322 <     * Other update operations (insert, delete, and replace) require
323 <     * locks.  We do not want to waste the space required to associate
324 <     * a distinct lock object with each bin, so instead use the first
325 <     * node of a bin list itself as a lock, using plain "synchronized"
326 <     * locks. These save space and we can live with block-structured
327 <     * lock/unlock operations. Using the first node of a list as a
328 <     * lock does not by itself suffice though: When a node is locked,
329 <     * any update must first validate that it is still the first node,
330 <     * and retry if not. Because new nodes are always appended to
331 <     * lists, once a node is first in a bin, it remains first until
332 <     * deleted or the bin becomes invalidated.  However, operations
333 <     * that only conditionally update can and sometimes do inspect
334 <     * nodes until the point of update. This is a converse of sorts to
162 <     * the lazy locking technique described by Herlihy & Shavit.
321 >     * by far the most common case for put operations under most
322 >     * key/hash distributions.  Other update operations (insert,
323 >     * delete, and replace) require locks.  We do not want to waste
324 >     * the space required to associate a distinct lock object with
325 >     * each bin, so instead use the first node of a bin list itself as
326 >     * a lock. Locking support for these locks relies on builtin
327 >     * "synchronized" monitors.
328 >     *
329 >     * Using the first node of a list as a lock does not by itself
330 >     * suffice though: When a node is locked, any update must first
331 >     * validate that it is still the first node after locking it, and
332 >     * retry if not. Because new nodes are always appended to lists,
333 >     * once a node is first in a bin, it remains first until deleted
334 >     * or the bin becomes invalidated (upon resizing).
335       *
336 <     * The main disadvantage of this approach is that most update
336 >     * The main disadvantage of per-bin locks is that other update
337       * operations on other nodes in a bin list protected by the same
338       * lock can stall, for example when user equals() or mapping
339 <     * functions take a long time.  However, statistically, this is
340 <     * not a common enough problem to outweigh the time/space overhead
341 <     * of alternatives: Under random hash codes, the frequency of
170 <     * nodes in bins follows a Poisson distribution
339 >     * functions take a long time.  However, statistically, under
340 >     * random hash codes, this is not a common problem.  Ideally, the
341 >     * frequency of nodes in bins follows a Poisson distribution
342       * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
343       * parameter of about 0.5 on average, given the resizing threshold
344       * of 0.75, although with a large variance because of resizing
345       * granularity. Ignoring variance, the expected occurrences of
346       * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
347 <     * first few values are:
347 >     * first values are:
348       *
349 <     * 0:    0.607
350 <     * 1:    0.303
351 <     * 2:    0.076
352 <     * 3:    0.012
353 <     * more: 0.002
349 >     * 0:    0.60653066
350 >     * 1:    0.30326533
351 >     * 2:    0.07581633
352 >     * 3:    0.01263606
353 >     * 4:    0.00157952
354 >     * 5:    0.00015795
355 >     * 6:    0.00001316
356 >     * 7:    0.00000094
357 >     * 8:    0.00000006
358 >     * more: less than 1 in ten million
359       *
360       * Lock contention probability for two threads accessing distinct
361 <     * elements is roughly 1 / (8 * #elements).  Function "spread"
362 <     * performs hashCode randomization that improves the likelihood
363 <     * that these assumptions hold unless users define exactly the
364 <     * same value for too many hashCodes.
365 <     *
366 <     * The table is resized when occupancy exceeds a threshold.  Only
367 <     * a single thread performs the resize (using field "resizing", to
368 <     * arrange exclusion), but the table otherwise remains usable for
369 <     * reads and updates. Resizing proceeds by transferring bins, one
370 <     * by one, from the table to the next table.  Upon transfer, the
371 <     * old table bin contains only a special forwarding node (with
372 <     * negative hash field) that contains the next table as its
373 <     * key. On encountering a forwarding node, access and update
374 <     * operations restart, using the new table. To ensure concurrent
375 <     * readability of traversals, transfers must proceed from the last
376 <     * bin (table.length - 1) up towards the first.  Upon seeing a
377 <     * forwarding node, traversals (see class InternalIterator)
378 <     * arrange to move to the new table for the rest of the traversal
379 <     * without revisiting nodes.  This constrains bin transfers to a
380 <     * particular order, and so can block indefinitely waiting for the
381 <     * next lock, and other threads cannot help with the transfer.
382 <     * However, expected stalls are infrequent enough to not warrant
383 <     * the additional overhead of access and iteration schemes that
384 <     * could admit out-of-order or concurrent bin transfers.
385 <     *
386 <     * This traversal scheme also applies to partial traversals of
387 <     * ranges of bins (via an alternate InternalIterator constructor)
388 <     * to support partitioned aggregate operations (that are not
389 <     * otherwise implemented yet).  Also, read-only operations give up
390 <     * if ever forwarded to a null table, which provides support for
391 <     * shutdown-style clearing, which is also not currently
392 <     * implemented.
361 >     * elements is roughly 1 / (8 * #elements) under random hashes.
362 >     *
363 >     * Actual hash code distributions encountered in practice
364 >     * sometimes deviate significantly from uniform randomness.  This
365 >     * includes the case when N > (1<<30), so some keys MUST collide.
366 >     * Similarly for dumb or hostile usages in which multiple keys are
367 >     * designed to have identical hash codes or ones that differs only
368 >     * in masked-out high bits. So we use a secondary strategy that
369 >     * applies when the number of nodes in a bin exceeds a
370 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
371 >     * specialized form of red-black trees), bounding search time to
372 >     * O(log N).  Each search step in a TreeBin is at least twice as
373 >     * slow as in a regular list, but given that N cannot exceed
374 >     * (1<<64) (before running out of addresses) this bounds search
375 >     * steps, lock hold times, etc, to reasonable constants (roughly
376 >     * 100 nodes inspected per operation worst case) so long as keys
377 >     * are Comparable (which is very common -- String, Long, etc).
378 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
379 >     * traversal pointers as regular nodes, so can be traversed in
380 >     * iterators in the same way.
381 >     *
382 >     * The table is resized when occupancy exceeds a percentage
383 >     * threshold (nominally, 0.75, but see below).  Any thread
384 >     * noticing an overfull bin may assist in resizing after the
385 >     * initiating thread allocates and sets up the replacement array.
386 >     * However, rather than stalling, these other threads may proceed
387 >     * with insertions etc.  The use of TreeBins shields us from the
388 >     * worst case effects of overfilling while resizes are in
389 >     * progress.  Resizing proceeds by transferring bins, one by one,
390 >     * from the table to the next table. However, threads claim small
391 >     * blocks of indices to transfer (via field transferIndex) before
392 >     * doing so, reducing contention.  A generation stamp in field
393 >     * sizeCtl ensures that resizings do not overlap. Because we are
394 >     * using power-of-two expansion, the elements from each bin must
395 >     * either stay at same index, or move with a power of two
396 >     * offset. We eliminate unnecessary node creation by catching
397 >     * cases where old nodes can be reused because their next fields
398 >     * won't change.  On average, only about one-sixth of them need
399 >     * cloning when a table doubles. The nodes they replace will be
400 >     * garbage collectable as soon as they are no longer referenced by
401 >     * any reader thread that may be in the midst of concurrently
402 >     * traversing table.  Upon transfer, the old table bin contains
403 >     * only a special forwarding node (with hash field "MOVED") that
404 >     * contains the next table as its key. On encountering a
405 >     * forwarding node, access and update operations restart, using
406 >     * the new table.
407 >     *
408 >     * Each bin transfer requires its bin lock, which can stall
409 >     * waiting for locks while resizing. However, because other
410 >     * threads can join in and help resize rather than contend for
411 >     * locks, average aggregate waits become shorter as resizing
412 >     * progresses.  The transfer operation must also ensure that all
413 >     * accessible bins in both the old and new table are usable by any
414 >     * traversal.  This is arranged in part by proceeding from the
415 >     * last bin (table.length - 1) up towards the first.  Upon seeing
416 >     * a forwarding node, traversals (see class Traverser) arrange to
417 >     * move to the new table without revisiting nodes.  To ensure that
418 >     * no intervening nodes are skipped even when moved out of order,
419 >     * a stack (see class TableStack) is created on first encounter of
420 >     * a forwarding node during a traversal, to maintain its place if
421 >     * later processing the current table. The need for these
422 >     * save/restore mechanics is relatively rare, but when one
423 >     * forwarding node is encountered, typically many more will be.
424 >     * So Traversers use a simple caching scheme to avoid creating so
425 >     * many new TableStack nodes. (Thanks to Peter Levart for
426 >     * suggesting use of a stack here.)
427 >     *
428 >     * The traversal scheme also applies to partial traversals of
429 >     * ranges of bins (via an alternate Traverser constructor)
430 >     * to support partitioned aggregate operations.  Also, read-only
431 >     * operations give up if ever forwarded to a null table, which
432 >     * provides support for shutdown-style clearing, which is also not
433 >     * currently implemented.
434       *
435       * Lazy table initialization minimizes footprint until first use,
436       * and also avoids resizings when the first operation is from a
437       * putAll, constructor with map argument, or deserialization.
438 <     * These cases attempt to override the targetCapacity used in
439 <     * growTable. These harmlessly fail to take effect in cases of
440 <     * races with other ongoing resizings. Uses of the threshold and
441 <     * targetCapacity during attempted initializations or resizings
442 <     * are racy but fall back on checks to preserve correctness.
443 <     *
444 <     * The element count is maintained using a LongAdder, which avoids
445 <     * contention on updates but can encounter cache thrashing if read
446 <     * too frequently during concurrent access. To avoid reading so
447 <     * often, resizing is normally attempted only upon adding to a bin
448 <     * already holding two or more nodes. Under uniform hash
438 >     * These cases attempt to override the initial capacity settings,
439 >     * but harmlessly fail to take effect in cases of races.
440 >     *
441 >     * The element count is maintained using a specialization of
442 >     * LongAdder. We need to incorporate a specialization rather than
443 >     * just use a LongAdder in order to access implicit
444 >     * contention-sensing that leads to creation of multiple
445 >     * CounterCells.  The counter mechanics avoid contention on
446 >     * updates but can encounter cache thrashing if read too
447 >     * frequently during concurrent access. To avoid reading so often,
448 >     * resizing under contention is attempted only upon adding to a
449 >     * bin already holding two or more nodes. Under uniform hash
450       * distributions, the probability of this occurring at threshold
451       * is around 13%, meaning that only about 1 in 8 puts check
452 <     * threshold (and after resizing, many fewer do so). But this
453 <     * approximation has high variance for small table sizes, so we
454 <     * check on any collision for sizes <= 64.  Further, to increase
455 <     * the probability that a resize occurs soon enough, we offset the
456 <     * threshold (see THRESHOLD_OFFSET) by the expected number of puts
457 <     * between checks.
452 >     * threshold (and after resizing, many fewer do so).
453 >     *
454 >     * TreeBins use a special form of comparison for search and
455 >     * related operations (which is the main reason we cannot use
456 >     * existing collections such as TreeMaps). TreeBins contain
457 >     * Comparable elements, but may contain others, as well as
458 >     * elements that are Comparable but not necessarily Comparable for
459 >     * the same T, so we cannot invoke compareTo among them. To handle
460 >     * this, the tree is ordered primarily by hash value, then by
461 >     * Comparable.compareTo order if applicable.  On lookup at a node,
462 >     * if elements are not comparable or compare as 0 then both left
463 >     * and right children may need to be searched in the case of tied
464 >     * hash values. (This corresponds to the full list search that
465 >     * would be necessary if all elements were non-Comparable and had
466 >     * tied hashes.) On insertion, to keep a total ordering (or as
467 >     * close as is required here) across rebalancings, we compare
468 >     * classes and identityHashCodes as tie-breakers. The red-black
469 >     * balancing code is updated from pre-jdk-collections
470 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
471 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
472 >     * Algorithms" (CLR).
473 >     *
474 >     * TreeBins also require an additional locking mechanism.  While
475 >     * list traversal is always possible by readers even during
476 >     * updates, tree traversal is not, mainly because of tree-rotations
477 >     * that may change the root node and/or its linkages.  TreeBins
478 >     * include a simple read-write lock mechanism parasitic on the
479 >     * main bin-synchronization strategy: Structural adjustments
480 >     * associated with an insertion or removal are already bin-locked
481 >     * (and so cannot conflict with other writers) but must wait for
482 >     * ongoing readers to finish. Since there can be only one such
483 >     * waiter, we use a simple scheme using a single "waiter" field to
484 >     * block writers.  However, readers need never block.  If the root
485 >     * lock is held, they proceed along the slow traversal path (via
486 >     * next-pointers) until the lock becomes available or the list is
487 >     * exhausted, whichever comes first. These cases are not fast, but
488 >     * maximize aggregate expected throughput.
489       *
490       * Maintaining API and serialization compatibility with previous
491       * versions of this class introduces several oddities. Mainly: We
492       * leave untouched but unused constructor arguments refering to
493 <     * concurrencyLevel. We also declare an unused "Segment" class
494 <     * that is instantiated in minimal form only when serializing.
493 >     * concurrencyLevel. We accept a loadFactor constructor argument,
494 >     * but apply it only to initial table capacity (which is the only
495 >     * time that we can guarantee to honor it.) We also declare an
496 >     * unused "Segment" class that is instantiated in minimal form
497 >     * only when serializing.
498 >     *
499 >     * Also, solely for compatibility with previous versions of this
500 >     * class, it extends AbstractMap, even though all of its methods
501 >     * are overridden, so it is just useless baggage.
502 >     *
503 >     * This file is organized to make things a little easier to follow
504 >     * while reading than they might otherwise: First the main static
505 >     * declarations and utilities, then fields, then main public
506 >     * methods (with a few factorings of multiple public methods into
507 >     * internal ones), then sizing methods, trees, traversers, and
508 >     * bulk operations.
509       */
510  
511      /* ---------------- Constants -------------- */
# Line 250 | Line 513 | public class ConcurrentHashMapV8<K, V>
513      /**
514       * The largest possible table capacity.  This value must be
515       * exactly 1<<30 to stay within Java array allocation and indexing
516 <     * bounds for power of two table sizes.
516 >     * bounds for power of two table sizes, and is further required
517 >     * because the top two bits of 32bit hash fields are used for
518 >     * control purposes.
519       */
520      private static final int MAXIMUM_CAPACITY = 1 << 30;
521  
# Line 261 | Line 526 | public class ConcurrentHashMapV8<K, V>
526      private static final int DEFAULT_CAPACITY = 16;
527  
528      /**
529 +     * The largest possible (non-power of two) array size.
530 +     * Needed by toArray and related methods.
531 +     */
532 +    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
533 +
534 +    /**
535 +     * The default concurrency level for this table. Unused but
536 +     * defined for compatibility with previous versions of this class.
537 +     */
538 +    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
539 +
540 +    /**
541       * The load factor for this table. Overrides of this value in
542       * constructors affect only the initial table capacity.  The
543 <     * actual floating point value isn't normally used, because it is
544 <     * simpler to rely on the expression {@code n - (n >>> 2)} for the
545 <     * associated resizing threshold.
543 >     * actual floating point value isn't normally used -- it is
544 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
545 >     * the associated resizing threshold.
546       */
547      private static final float LOAD_FACTOR = 0.75f;
548  
549      /**
550 <     * The count value to offset thresholds to compensate for checking
551 <     * for the need to resize only when inserting into bins with two
552 <     * or more elements. See above for explanation.
550 >     * The bin count threshold for using a tree rather than list for a
551 >     * bin.  Bins are converted to trees when adding an element to a
552 >     * bin with at least this many nodes. The value must be greater
553 >     * than 2, and should be at least 8 to mesh with assumptions in
554 >     * tree removal about conversion back to plain bins upon
555 >     * shrinkage.
556       */
557 <    private static final int THRESHOLD_OFFSET = 8;
557 >    static final int TREEIFY_THRESHOLD = 8;
558  
559      /**
560 <     * The default concurrency level for this table. Unused except as
561 <     * a sizing hint, but defined for compatibility with previous
562 <     * versions of this class.
560 >     * The bin count threshold for untreeifying a (split) bin during a
561 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
562 >     * most 6 to mesh with shrinkage detection under removal.
563       */
564 <    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
285 <
286 <    /* ---------------- Nodes -------------- */
564 >    static final int UNTREEIFY_THRESHOLD = 6;
565  
566      /**
567 <     * Key-value entry. Note that this is never exported out as a
568 <     * user-visible Map.Entry. Nodes with a negative hash field are
569 <     * special, and do not contain user keys or values.  Otherwise,
570 <     * keys are never null, and null val fields indicate that a node
293 <     * is in the process of being deleted or created. For purposes of
294 <     * read-only, access, a key may be read before a val, but can only
295 <     * be used after checking val.  (For an update operation, when a
296 <     * lock is held on a node, order doesn't matter.)
567 >     * The smallest table capacity for which bins may be treeified.
568 >     * (Otherwise the table is resized if too many nodes in a bin.)
569 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
570 >     * conflicts between resizing and treeification thresholds.
571       */
572 <    static final class Node {
299 <        final int hash;
300 <        final Object key;
301 <        volatile Object val;
302 <        volatile Node next;
572 >    static final int MIN_TREEIFY_CAPACITY = 64;
573  
574 <        Node(int hash, Object key, Object val, Node next) {
575 <            this.hash = hash;
576 <            this.key = key;
577 <            this.val = val;
578 <            this.next = next;
579 <        }
580 <    }
574 >    /**
575 >     * Minimum number of rebinnings per transfer step. Ranges are
576 >     * subdivided to allow multiple resizer threads.  This value
577 >     * serves as a lower bound to avoid resizers encountering
578 >     * excessive memory contention.  The value should be at least
579 >     * DEFAULT_CAPACITY.
580 >     */
581 >    private static final int MIN_TRANSFER_STRIDE = 16;
582  
583      /**
584 <     * Sign bit of node hash value indicating to use table in node.key.
584 >     * The number of bits used for generation stamp in sizeCtl.
585 >     * Must be at least 6 for 32bit arrays.
586       */
587 <    private static final int SIGN_BIT = 0x80000000;
587 >    private static int RESIZE_STAMP_BITS = 16;
588  
589 <    /* ---------------- Fields -------------- */
589 >    /**
590 >     * The maximum number of threads that can help resize.
591 >     * Must fit in 32 - RESIZE_STAMP_BITS bits.
592 >     */
593 >    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
594  
595      /**
596 <     * The array of bins. Lazily initialized upon first insertion.
321 <     * Size is always a power of two. Accessed directly by iterators.
596 >     * The bit shift for recording size stamp in sizeCtl.
597       */
598 <    transient volatile Node[] table;
598 >    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
599  
600 <    /** The counter maintaining number of elements. */
601 <    private transient final LongAdder counter;
602 <    /** Nonzero when table is being initialized or resized. Updated via CAS. */
603 <    private transient volatile int resizing;
604 <    /** The next element count value upon which to resize the table. */
605 <    private transient int threshold;
606 <    /** The target capacity; volatile to cover initialization races. */
607 <    private transient volatile int targetCapacity;
600 >    /*
601 >     * Encodings for Node hash fields. See above for explanation.
602 >     */
603 >    static final int MOVED     = -1; // hash for forwarding nodes
604 >    static final int TREEBIN   = -2; // hash for roots of trees
605 >    static final int RESERVED  = -3; // hash for transient reservations
606 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
607 >
608 >    /** Number of CPUS, to place bounds on some sizings */
609 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
610 >
611 >    /** For serialization compatibility. */
612 >    private static final ObjectStreamField[] serialPersistentFields = {
613 >        new ObjectStreamField("segments", Segment[].class),
614 >        new ObjectStreamField("segmentMask", Integer.TYPE),
615 >        new ObjectStreamField("segmentShift", Integer.TYPE)
616 >    };
617  
618 <    // views
335 <    private transient KeySet<K,V> keySet;
336 <    private transient Values<K,V> values;
337 <    private transient EntrySet<K,V> entrySet;
618 >    /* ---------------- Nodes -------------- */
619  
620 <    /** For serialization compatibility. Null unless serialized; see below */
621 <    private Segment<K,V>[] segments;
620 >    /**
621 >     * Key-value entry.  This class is never exported out as a
622 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
623 >     * MapEntry below), but can be used for read-only traversals used
624 >     * in bulk tasks.  Subclasses of Node with a negative hash field
625 >     * are special, and contain null keys and values (but are never
626 >     * exported).  Otherwise, keys and vals are never null.
627 >     */
628 >    static class Node<K,V> implements Map.Entry<K,V> {
629 >        final int hash;
630 >        final K key;
631 >        volatile V val;
632 >        volatile Node<K,V> next;
633  
634 <    /* ---------------- Table element access -------------- */
634 >        Node(int hash, K key, V val, Node<K,V> next) {
635 >            this.hash = hash;
636 >            this.key = key;
637 >            this.val = val;
638 >            this.next = next;
639 >        }
640  
641 <    /*
642 <     * Volatile access methods are used for table elements as well as
643 <     * elements of in-progress next table while resizing.  Uses are
644 <     * null checked by callers, and implicitly bounds-checked, relying
645 <     * on the invariants that tab arrays have non-zero size, and all
646 <     * indices are masked with (tab.length - 1) which is never
647 <     * negative and always less than length. Note that, to be correct
351 <     * wrt arbitrary concurrency errors by users, bounds checks must
352 <     * operate on local variables, which accounts for some odd-looking
353 <     * inline assignments below.
354 <     */
641 >        public final K getKey()       { return key; }
642 >        public final V getValue()     { return val; }
643 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
644 >        public final String toString(){ return key + "=" + val; }
645 >        public final V setValue(V value) {
646 >            throw new UnsupportedOperationException();
647 >        }
648  
649 <    static final Node tabAt(Node[] tab, int i) { // used by InternalIterator
650 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
651 <    }
649 >        public final boolean equals(Object o) {
650 >            Object k, v, u; Map.Entry<?,?> e;
651 >            return ((o instanceof Map.Entry) &&
652 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
653 >                    (v = e.getValue()) != null &&
654 >                    (k == key || k.equals(key)) &&
655 >                    (v == (u = val) || v.equals(u)));
656 >        }
657  
658 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
659 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
658 >        /**
659 >         * Virtualized support for map.get(); overridden in subclasses.
660 >         */
661 >        Node<K,V> find(int h, Object k) {
662 >            Node<K,V> e = this;
663 >            if (k != null) {
664 >                do {
665 >                    K ek;
666 >                    if (e.hash == h &&
667 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
668 >                        return e;
669 >                } while ((e = e.next) != null);
670 >            }
671 >            return null;
672 >        }
673      }
674  
675 <    private static final void setTabAt(Node[] tab, int i, Node v) {
365 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
366 <    }
675 >    /* ---------------- Static utilities -------------- */
676  
677 <    /* ----------------Table Initialization and Resizing -------------- */
677 >    /**
678 >     * Spreads (XORs) higher bits of hash to lower and also forces top
679 >     * bit to 0. Because the table uses power-of-two masking, sets of
680 >     * hashes that vary only in bits above the current mask will
681 >     * always collide. (Among known examples are sets of Float keys
682 >     * holding consecutive whole numbers in small tables.)  So we
683 >     * apply a transform that spreads the impact of higher bits
684 >     * downward. There is a tradeoff between speed, utility, and
685 >     * quality of bit-spreading. Because many common sets of hashes
686 >     * are already reasonably distributed (so don't benefit from
687 >     * spreading), and because we use trees to handle large sets of
688 >     * collisions in bins, we just XOR some shifted bits in the
689 >     * cheapest possible way to reduce systematic lossage, as well as
690 >     * to incorporate impact of the highest bits that would otherwise
691 >     * never be used in index calculations because of table bounds.
692 >     */
693 >    static final int spread(int h) {
694 >        return (h ^ (h >>> 16)) & HASH_BITS;
695 >    }
696  
697      /**
698       * Returns a power of two table size for the given desired capacity.
# Line 382 | Line 709 | public class ConcurrentHashMapV8<K, V>
709      }
710  
711      /**
712 <     * If not already resizing, initializes or creates next table and
713 <     * transfers bins. Initial table size uses the capacity recorded
714 <     * in targetCapacity.  Rechecks occupancy after a transfer to see
715 <     * if another resize is already needed because resizings are
716 <     * lagging additions.
717 <     *
718 <     * @return current table
719 <     */
720 <    private final Node[] growTable() {
721 <        if (resizing == 0 &&
722 <            UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) {
723 <            try {
724 <                for (;;) {
725 <                    Node[] tab = table;
726 <                    int n, c, m;
727 <                    if (tab == null)
401 <                        n = (c = targetCapacity) > 0 ? c : DEFAULT_CAPACITY;
402 <                    else if ((m = tab.length) < MAXIMUM_CAPACITY &&
403 <                             counter.sum() >= (long)threshold)
404 <                        n = m << 1;
405 <                    else
406 <                        break;
407 <                    threshold = n - (n >>> 2) - THRESHOLD_OFFSET;
408 <                    Node[] nextTab = new Node[n];
409 <                    if (tab != null)
410 <                        transfer(tab, nextTab,
411 <                                 new Node(SIGN_BIT, nextTab, null, null));
412 <                    table = nextTab;
413 <                    if (tab == null)
414 <                        break;
712 >     * Returns x's Class if it is of the form "class C implements
713 >     * Comparable<C>", else null.
714 >     */
715 >    static Class<?> comparableClassFor(Object x) {
716 >        if (x instanceof Comparable) {
717 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
718 >            if ((c = x.getClass()) == String.class) // bypass checks
719 >                return c;
720 >            if ((ts = c.getGenericInterfaces()) != null) {
721 >                for (int i = 0; i < ts.length; ++i) {
722 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
723 >                        ((p = (ParameterizedType)t).getRawType() ==
724 >                         Comparable.class) &&
725 >                        (as = p.getActualTypeArguments()) != null &&
726 >                        as.length == 1 && as[0] == c) // type arg is c
727 >                        return c;
728                  }
416            } finally {
417                resizing = 0;
729              }
730          }
731 <        else if (table == null)
421 <            Thread.yield(); // lost initialization race; just spin
422 <        return table;
731 >        return null;
732      }
733  
734 <    /*
735 <     * Reclassifies nodes in each bin to new table.  Because we are
736 <     * using power-of-two expansion, the elements from each bin must
737 <     * either stay at same index, or move with a power of two
738 <     * offset. We eliminate unnecessary node creation by catching
739 <     * cases where old nodes can be reused because their next fields
740 <     * won't change.  Statistically, only about one-sixth of them need
741 <     * cloning when a table doubles. The nodes they replace will be
433 <     * garbage collectable as soon as they are no longer referenced by
434 <     * any reader thread that may be in the midst of concurrently
435 <     * traversing table.
436 <     *
437 <     * Transfers are done from the bottom up to preserve iterator
438 <     * traversability. On each step, the old bin is locked,
439 <     * moved/copied, and then replaced with a forwarding node.
440 <     */
441 <    private static final void transfer(Node[] tab, Node[] nextTab, Node fwd) {
442 <        int n = tab.length;
443 <        Node ignore = nextTab[n + n - 1]; // force bounds check
444 <        for (int i = n - 1; i >= 0; --i) {
445 <            for (Node e;;) {
446 <                if ((e = tabAt(tab, i)) != null) {
447 <                    boolean validated = false;
448 <                    synchronized (e) {
449 <                        if (tabAt(tab, i) == e) {
450 <                            validated = true;
451 <                            Node lo = null, hi = null, lastRun = e;
452 <                            int runBit = e.hash & n;
453 <                            for (Node p = e.next; p != null; p = p.next) {
454 <                                int b = p.hash & n;
455 <                                if (b != runBit) {
456 <                                    runBit = b;
457 <                                    lastRun = p;
458 <                                }
459 <                            }
460 <                            if (runBit == 0)
461 <                                lo = lastRun;
462 <                            else
463 <                                hi = lastRun;
464 <                            for (Node p = e; p != lastRun; p = p.next) {
465 <                                int ph = p.hash;
466 <                                Object pk = p.key, pv = p.val;
467 <                                if ((ph & n) == 0)
468 <                                    lo = new Node(ph, pk, pv, lo);
469 <                                else
470 <                                    hi = new Node(ph, pk, pv, hi);
471 <                            }
472 <                            setTabAt(nextTab, i, lo);
473 <                            setTabAt(nextTab, i + n, hi);
474 <                            setTabAt(tab, i, fwd);
475 <                        }
476 <                    }
477 <                    if (validated)
478 <                        break;
479 <                }
480 <                else if (casTabAt(tab, i, e, fwd))
481 <                    break;
482 <            }
483 <        }
734 >    /**
735 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
736 >     * class), else 0.
737 >     */
738 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
739 >    static int compareComparables(Class<?> kc, Object k, Object x) {
740 >        return (x == null || x.getClass() != kc ? 0 :
741 >                ((Comparable)k).compareTo(x));
742      }
743  
744 <    /* ---------------- Internal access and update methods -------------- */
744 >    /* ---------------- Table element access -------------- */
745  
746 <    /**
747 <     * Applies a supplemental hash function to a given hashCode, which
748 <     * defends against poor quality hash functions.  The result must
749 <     * be non-negative, and for reasonable performance must have good
750 <     * avalanche properties; i.e., that each bit of the argument
751 <     * affects each bit (except sign bit) of the result.
752 <     */
753 <    private static final int spread(int h) {
754 <        // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/
755 <        h ^= h >>> 16;
756 <        h *= 0x85ebca6b;
757 <        h ^= h >>> 13;
758 <        h *= 0xc2b2ae35;
759 <        return (h >>> 16) ^ (h & 0x7fffffff); // mask out sign bit
760 <    }
761 <
762 <    /** Implementation for get and containsKey */
763 <    private final Object internalGet(Object k) {
764 <        int h = spread(k.hashCode());
507 <        retry: for (Node[] tab = table; tab != null;) {
508 <            Node e; Object ek, ev; int eh;  // locals to read fields once
509 <            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
510 <                if ((eh = e.hash) == h) {
511 <                    if ((ev = e.val) != null &&
512 <                        ((ek = e.key) == k || k.equals(ek)))
513 <                        return ev;
514 <                }
515 <                else if (eh < 0) {          // sign bit set
516 <                    tab = (Node[])e.key;    // bin was moved during resize
517 <                    continue retry;
518 <                }
519 <            }
520 <            break;
521 <        }
522 <        return null;
746 >    /*
747 >     * Volatile access methods are used for table elements as well as
748 >     * elements of in-progress next table while resizing.  All uses of
749 >     * the tab arguments must be null checked by callers.  All callers
750 >     * also paranoically precheck that tab's length is not zero (or an
751 >     * equivalent check), thus ensuring that any index argument taking
752 >     * the form of a hash value anded with (length - 1) is a valid
753 >     * index.  Note that, to be correct wrt arbitrary concurrency
754 >     * errors by users, these checks must operate on local variables,
755 >     * which accounts for some odd-looking inline assignments below.
756 >     * Note that calls to setTabAt always occur within locked regions,
757 >     * and so in principle require only release ordering, not
758 >     * full volatile semantics, but are currently coded as volatile
759 >     * writes to be conservative.
760 >     */
761 >
762 >    @SuppressWarnings("unchecked")
763 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
764 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
765      }
766  
767 <    /** Implementation for put and putIfAbsent */
768 <    private final Object internalPut(Object k, Object v, boolean replace) {
769 <        int h = spread(k.hashCode());
770 <        Object oldVal = null;               // previous value or null if none
771 <        for (Node[] tab = table;;) {
772 <            Node e; int i; Object ek, ev;
773 <            if (tab == null)
532 <                tab = growTable();
533 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
534 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
535 <                    break;                   // no lock when adding to empty bin
536 <            }
537 <            else if (e.hash < 0)             // resized -- restart with new table
538 <                tab = (Node[])e.key;
539 <            else if (!replace && e.hash == h && (ev = e.val) != null &&
540 <                     ((ek = e.key) == k || k.equals(ek))) {
541 <                if (tabAt(tab, i) == e) {    // inspect and validate 1st node
542 <                    oldVal = ev;             // without lock for putIfAbsent
543 <                    break;
544 <                }
545 <            }
546 <            else {
547 <                boolean validated = false;
548 <                boolean checkSize = false;
549 <                synchronized (e) {           // lock the 1st node of bin list
550 <                    if (tabAt(tab, i) == e) {
551 <                        validated = true;    // retry if 1st already deleted
552 <                        for (Node first = e;;) {
553 <                            if (e.hash == h &&
554 <                                ((ek = e.key) == k || k.equals(ek)) &&
555 <                                (ev = e.val) != null) {
556 <                                oldVal = ev;
557 <                                if (replace)
558 <                                    e.val = v;
559 <                                break;
560 <                            }
561 <                            Node last = e;
562 <                            if ((e = e.next) == null) {
563 <                                last.next = new Node(h, k, v, null);
564 <                                if (last != first || tab.length <= 64)
565 <                                    checkSize = true;
566 <                                break;
567 <                            }
568 <                        }
569 <                    }
570 <                }
571 <                if (validated) {
572 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
573 <                        resizing == 0 && counter.sum() >= (long)threshold)
574 <                        growTable();
575 <                    break;
576 <                }
577 <            }
578 <        }
579 <        if (oldVal == null)
580 <            counter.increment();             // update counter outside of locks
581 <        return oldVal;
767 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
768 >                                        Node<K,V> c, Node<K,V> v) {
769 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
770 >    }
771 >
772 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
773 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
774      }
775  
776 +    /* ---------------- Fields -------------- */
777 +
778      /**
779 <     * Implementation for the four public remove/replace methods:
780 <     * Replaces node value with v, conditional upon match of cv if
587 <     * non-null.  If resulting value is null, delete.
779 >     * The array of bins. Lazily initialized upon first insertion.
780 >     * Size is always a power of two. Accessed directly by iterators.
781       */
782 <    private final Object internalReplace(Object k, Object v, Object cv) {
590 <        int h = spread(k.hashCode());
591 <        for (Node[] tab = table;;) {
592 <            Node e; int i;
593 <            if (tab == null ||
594 <                (e = tabAt(tab, i = (tab.length - 1) & h)) == null)
595 <                return null;
596 <            else if (e.hash < 0)
597 <                tab = (Node[])e.key;
598 <            else {
599 <                Object oldVal = null;
600 <                boolean validated = false;
601 <                boolean deleted = false;
602 <                synchronized (e) {
603 <                    if (tabAt(tab, i) == e) {
604 <                        validated = true;
605 <                        Node pred = null;
606 <                        do {
607 <                            Object ek, ev;
608 <                            if (e.hash == h &&
609 <                                ((ek = e.key) == k || k.equals(ek)) &&
610 <                                ((ev = e.val) != null)) {
611 <                                if (cv == null || cv == ev || cv.equals(ev)) {
612 <                                    oldVal = ev;
613 <                                    if ((e.val = v) == null) {
614 <                                        deleted = true;
615 <                                        Node en = e.next;
616 <                                        if (pred != null)
617 <                                            pred.next = en;
618 <                                        else
619 <                                            setTabAt(tab, i, en);
620 <                                    }
621 <                                }
622 <                                break;
623 <                            }
624 <                        } while ((e = (pred = e).next) != null);
625 <                    }
626 <                }
627 <                if (validated) {
628 <                    if (deleted)
629 <                        counter.decrement();
630 <                    return oldVal;
631 <                }
632 <            }
633 <        }
634 <    }
782 >    transient volatile Node<K,V>[] table;
783  
784 <    /** Implementation for computeIfAbsent and compute. Like put, but messier. */
785 <    @SuppressWarnings("unchecked")
786 <    private final V internalCompute(K k,
787 <                                    MappingFunction<? super K, ? extends V> f,
640 <                                    boolean replace) {
641 <        int h = spread(k.hashCode());
642 <        V val = null;
643 <        boolean added = false;
644 <        Node[] tab = table;
645 <        outer:for (;;) {
646 <            Node e; int i; Object ek, ev;
647 <            if (tab == null)
648 <                tab = growTable();
649 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
650 <                Node node = new Node(h, k, null, null);
651 <                boolean validated = false;
652 <                synchronized (node) {  // must lock while computing value
653 <                    if (casTabAt(tab, i, null, node)) {
654 <                        validated = true;
655 <                        try {
656 <                            val = f.map(k);
657 <                            if (val != null) {
658 <                                node.val = val;
659 <                                added = true;
660 <                            }
661 <                        } finally {
662 <                            if (!added)
663 <                                setTabAt(tab, i, null);
664 <                        }
665 <                    }
666 <                }
667 <                if (validated)
668 <                    break;
669 <            }
670 <            else if (e.hash < 0)
671 <                tab = (Node[])e.key;
672 <            else if (!replace && e.hash == h && (ev = e.val) != null &&
673 <                     ((ek = e.key) == k || k.equals(ek))) {
674 <                if (tabAt(tab, i) == e) {
675 <                    val = (V)ev;
676 <                    break;
677 <                }
678 <            }
679 <            else if (Thread.holdsLock(e))
680 <                throw new IllegalStateException("Recursive map computation");
681 <            else {
682 <                boolean validated = false;
683 <                boolean checkSize = false;
684 <                synchronized (e) {
685 <                    if (tabAt(tab, i) == e) {
686 <                        validated = true;
687 <                        for (Node first = e;;) {
688 <                            if (e.hash == h &&
689 <                                ((ek = e.key) == k || k.equals(ek)) &&
690 <                                ((ev = e.val) != null)) {
691 <                                Object fv;
692 <                                if (replace && (fv = f.map(k)) != null)
693 <                                    ev = e.val = fv;
694 <                                val = (V)ev;
695 <                                break;
696 <                            }
697 <                            Node last = e;
698 <                            if ((e = e.next) == null) {
699 <                                if ((val = f.map(k)) != null) {
700 <                                    last.next = new Node(h, k, val, null);
701 <                                    added = true;
702 <                                    if (last != first || tab.length <= 64)
703 <                                        checkSize = true;
704 <                                }
705 <                                break;
706 <                            }
707 <                        }
708 <                    }
709 <                }
710 <                if (validated) {
711 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
712 <                        resizing == 0 && counter.sum() >= (long)threshold)
713 <                        growTable();
714 <                    break;
715 <                }
716 <            }
717 <        }
718 <        if (added)
719 <            counter.increment();
720 <        return val;
721 <    }
784 >    /**
785 >     * The next table to use; non-null only while resizing.
786 >     */
787 >    private transient volatile Node<K,V>[] nextTable;
788  
789      /**
790 <     * Implementation for clear. Steps through each bin, removing all nodes.
790 >     * Base counter value, used mainly when there is no contention,
791 >     * but also as a fallback during table initialization
792 >     * races. Updated via CAS.
793       */
794 <    private final void internalClear() {
727 <        long delta = 0L; // negative number of deletions
728 <        int i = 0;
729 <        Node[] tab = table;
730 <        while (tab != null && i < tab.length) {
731 <            Node e = tabAt(tab, i);
732 <            if (e == null)
733 <                ++i;
734 <            else if (e.hash < 0)
735 <                tab = (Node[])e.key;
736 <            else {
737 <                boolean validated = false;
738 <                synchronized (e) {
739 <                    if (tabAt(tab, i) == e) {
740 <                        validated = true;
741 <                        Node en;
742 <                        do {
743 <                            en = e.next;
744 <                            if (e.val != null) { // currently always true
745 <                                e.val = null;
746 <                                --delta;
747 <                            }
748 <                        } while ((e = en) != null);
749 <                        setTabAt(tab, i, null);
750 <                    }
751 <                }
752 <                if (validated)
753 <                    ++i;
754 <            }
755 <        }
756 <        counter.add(delta);
757 <    }
794 >    private transient volatile long baseCount;
795  
796 <    /* ----------------Table Traversal -------------- */
796 >    /**
797 >     * Table initialization and resizing control.  When negative, the
798 >     * table is being initialized or resized: -1 for initialization,
799 >     * else -(1 + the number of active resizing threads).  Otherwise,
800 >     * when table is null, holds the initial table size to use upon
801 >     * creation, or 0 for default. After initialization, holds the
802 >     * next element count value upon which to resize the table.
803 >     */
804 >    private transient volatile int sizeCtl;
805  
806      /**
807 <     * Encapsulates traversal for methods such as containsValue; also
763 <     * serves as a base class for other iterators.
764 <     *
765 <     * At each step, the iterator snapshots the key ("nextKey") and
766 <     * value ("nextVal") of a valid node (i.e., one that, at point of
767 <     * snapshot, has a nonnull user value). Because val fields can
768 <     * change (including to null, indicating deletion), field nextVal
769 <     * might not be accurate at point of use, but still maintains the
770 <     * weak consistency property of holding a value that was once
771 <     * valid.
772 <     *
773 <     * Internal traversals directly access these fields, as in:
774 <     * {@code while (it.next != null) { process(nextKey); it.advance(); }}
775 <     *
776 <     * Exported iterators (subclasses of ViewIterator) extract key,
777 <     * value, or key-value pairs as return values of Iterator.next(),
778 <     * and encapsulate the it.next check as hasNext();
779 <     *
780 <     * The iterator visits each valid node that was reachable upon
781 <     * iterator construction once. It might miss some that were added
782 <     * to a bin after the bin was visited, which is OK wrt consistency
783 <     * guarantees. Maintaining this property in the face of possible
784 <     * ongoing resizes requires a fair amount of bookkeeping state
785 <     * that is difficult to optimize away amidst volatile accesses.
786 <     * Even so, traversal maintains reasonable throughput.
787 <     *
788 <     * Normally, iteration proceeds bin-by-bin traversing lists.
789 <     * However, if the table has been resized, then all future steps
790 <     * must traverse both the bin at the current index as well as at
791 <     * (index + baseSize); and so on for further resizings. To
792 <     * paranoically cope with potential sharing by users of iterators
793 <     * across threads, iteration terminates if a bounds checks fails
794 <     * for a table read.
795 <     *
796 <     * The range-based constructor enables creation of parallel
797 <     * range-splitting traversals. (Not yet implemented.)
807 >     * The next table index (plus one) to split while resizing.
808       */
809 <    static class InternalIterator {
800 <        Node next;           // the next entry to use
801 <        Node last;           // the last entry used
802 <        Object nextKey;      // cached key field of next
803 <        Object nextVal;      // cached val field of next
804 <        Node[] tab;          // current table; updated if resized
805 <        int index;           // index of bin to use next
806 <        int baseIndex;       // current index of initial table
807 <        final int baseLimit; // index bound for initial table
808 <        final int baseSize;  // initial table size
809 >    private transient volatile int transferIndex;
810  
811 <        /** Creates iterator for all entries in the table. */
812 <        InternalIterator(Node[] tab) {
813 <            this.tab = tab;
814 <            baseLimit = baseSize = (tab == null) ? 0 : tab.length;
814 <            index = baseIndex = 0;
815 <            next = null;
816 <            advance();
817 <        }
811 >    /**
812 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
813 >     */
814 >    private transient volatile int cellsBusy;
815  
816 <        /** Creates iterator for the given range of the table */
817 <        InternalIterator(Node[] tab, int lo, int hi) {
818 <            this.tab = tab;
819 <            baseSize = (tab == null) ? 0 : tab.length;
820 <            baseLimit = (hi <= baseSize) ? hi : baseSize;
821 <            index = baseIndex = lo;
822 <            next = null;
823 <            advance();
824 <        }
816 >    /**
817 >     * Table of counter cells. When non-null, size is a power of 2.
818 >     */
819 >    private transient volatile CounterCell[] counterCells;
820 >
821 >    // views
822 >    private transient KeySetView<K,V> keySet;
823 >    private transient ValuesView<K,V> values;
824 >    private transient EntrySetView<K,V> entrySet;
825  
829        /** Advances next. See above for explanation. */
830        final void advance() {
831            Node e = last = next;
832            outer: do {
833                if (e != null)                   // pass used or skipped node
834                    e = e.next;
835                while (e == null) {              // get to next non-null bin
836                    Node[] t; int b, i, n;       // checks must use locals
837                    if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
838                        (t = tab) == null || i >= (n = t.length))
839                        break outer;
840                    else if ((e = tabAt(t, i)) != null && e.hash < 0)
841                        tab = (Node[])e.key;     // restarts due to null val
842                    else                         // visit upper slots if present
843                        index = (i += baseSize) < n ? i : (baseIndex = b + 1);
844                }
845                nextKey = e.key;
846            } while ((nextVal = e.val) == null); // skip deleted or special nodes
847            next = e;
848        }
849    }
826  
827      /* ---------------- Public operations -------------- */
828  
829      /**
830 <     * Creates a new, empty map with the default initial table size (16),
830 >     * Creates a new, empty map with the default initial table size (16).
831       */
832      public ConcurrentHashMapV8() {
857        this.counter = new LongAdder();
858        this.targetCapacity = DEFAULT_CAPACITY;
833      }
834  
835      /**
# Line 866 | Line 840 | public class ConcurrentHashMapV8<K, V>
840       * @param initialCapacity The implementation performs internal
841       * sizing to accommodate this many elements.
842       * @throws IllegalArgumentException if the initial capacity of
843 <     * elements is negative.
843 >     * elements is negative
844       */
845      public ConcurrentHashMapV8(int initialCapacity) {
846          if (initialCapacity < 0)
# Line 874 | Line 848 | public class ConcurrentHashMapV8<K, V>
848          int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
849                     MAXIMUM_CAPACITY :
850                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
851 <        this.counter = new LongAdder();
878 <        this.targetCapacity = cap;
851 >        this.sizeCtl = cap;
852      }
853  
854      /**
# Line 884 | Line 857 | public class ConcurrentHashMapV8<K, V>
857       * @param m the map
858       */
859      public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
860 <        this.counter = new LongAdder();
888 <        this.targetCapacity = DEFAULT_CAPACITY;
860 >        this.sizeCtl = DEFAULT_CAPACITY;
861          putAll(m);
862      }
863  
# Line 898 | Line 870 | public class ConcurrentHashMapV8<K, V>
870       * performs internal sizing to accommodate this many elements,
871       * given the specified load factor.
872       * @param loadFactor the load factor (table density) for
873 <     * establishing the initial table size.
873 >     * establishing the initial table size
874       * @throws IllegalArgumentException if the initial capacity of
875       * elements is negative or the load factor is nonpositive
876       *
# Line 918 | Line 890 | public class ConcurrentHashMapV8<K, V>
890       * performs internal sizing to accommodate this many elements,
891       * given the specified load factor.
892       * @param loadFactor the load factor (table density) for
893 <     * establishing the initial table size.
893 >     * establishing the initial table size
894       * @param concurrencyLevel the estimated number of concurrently
895       * updating threads. The implementation may use this value as
896       * a sizing hint.
897       * @throws IllegalArgumentException if the initial capacity is
898       * negative or the load factor or concurrencyLevel are
899 <     * nonpositive.
899 >     * nonpositive
900       */
901      public ConcurrentHashMapV8(int initialCapacity,
902 <                               float loadFactor, int concurrencyLevel) {
902 >                             float loadFactor, int concurrencyLevel) {
903          if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
904              throw new IllegalArgumentException();
905          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
906              initialCapacity = concurrencyLevel;   // as estimated threads
907          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
908 <        int cap =  ((size >= (long)MAXIMUM_CAPACITY) ?
909 <                    MAXIMUM_CAPACITY: tableSizeFor((int)size));
910 <        this.counter = new LongAdder();
939 <        this.targetCapacity = cap;
908 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
909 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
910 >        this.sizeCtl = cap;
911      }
912  
913 <    /**
943 <     * {@inheritDoc}
944 <     */
945 <    public boolean isEmpty() {
946 <        return counter.sum() <= 0L; // ignore transient negative values
947 <    }
913 >    // Original (since JDK1.2) Map methods
914  
915      /**
916       * {@inheritDoc}
917       */
918      public int size() {
919 <        long n = counter.sum();
919 >        long n = sumCount();
920          return ((n < 0L) ? 0 :
921                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
922                  (int)n);
923      }
924  
925      /**
926 +     * {@inheritDoc}
927 +     */
928 +    public boolean isEmpty() {
929 +        return sumCount() <= 0L; // ignore transient negative values
930 +    }
931 +
932 +    /**
933       * Returns the value to which the specified key is mapped,
934       * or {@code null} if this map contains no mapping for the key.
935       *
# Line 967 | Line 940 | public class ConcurrentHashMapV8<K, V>
940       *
941       * @throws NullPointerException if the specified key is null
942       */
970    @SuppressWarnings("unchecked")
943      public V get(Object key) {
944 <        if (key == null)
945 <            throw new NullPointerException();
946 <        return (V)internalGet(key);
944 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
945 >        int h = spread(key.hashCode());
946 >        if ((tab = table) != null && (n = tab.length) > 0 &&
947 >            (e = tabAt(tab, (n - 1) & h)) != null) {
948 >            if ((eh = e.hash) == h) {
949 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
950 >                    return e.val;
951 >            }
952 >            else if (eh < 0)
953 >                return (p = e.find(h, key)) != null ? p.val : null;
954 >            while ((e = e.next) != null) {
955 >                if (e.hash == h &&
956 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
957 >                    return e.val;
958 >            }
959 >        }
960 >        return null;
961      }
962  
963      /**
964       * Tests if the specified object is a key in this table.
965       *
966 <     * @param  key   possible key
966 >     * @param  key possible key
967       * @return {@code true} if and only if the specified object
968       *         is a key in this table, as determined by the
969 <     *         {@code equals} method; {@code false} otherwise.
969 >     *         {@code equals} method; {@code false} otherwise
970       * @throws NullPointerException if the specified key is null
971       */
972      public boolean containsKey(Object key) {
973 <        if (key == null)
988 <            throw new NullPointerException();
989 <        return internalGet(key) != null;
973 >        return get(key) != null;
974      }
975  
976      /**
# Line 1002 | Line 986 | public class ConcurrentHashMapV8<K, V>
986      public boolean containsValue(Object value) {
987          if (value == null)
988              throw new NullPointerException();
989 <        Object v;
990 <        InternalIterator it = new InternalIterator(table);
991 <        while (it.next != null) {
992 <            if ((v = it.nextVal) == value || value.equals(v))
993 <                return true;
994 <            it.advance();
989 >        Node<K,V>[] t;
990 >        if ((t = table) != null) {
991 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
992 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
993 >                V v;
994 >                if ((v = p.val) == value || (v != null && value.equals(v)))
995 >                    return true;
996 >            }
997          }
998          return false;
999      }
1000  
1001      /**
1016     * Legacy method testing if some key maps into the specified value
1017     * in this table.  This method is identical in functionality to
1018     * {@link #containsValue}, and exists solely to ensure
1019     * full compatibility with class {@link java.util.Hashtable},
1020     * which supported this method prior to introduction of the
1021     * Java Collections framework.
1022     *
1023     * @param  value a value to search for
1024     * @return {@code true} if and only if some key maps to the
1025     *         {@code value} argument in this table as
1026     *         determined by the {@code equals} method;
1027     *         {@code false} otherwise
1028     * @throws NullPointerException if the specified value is null
1029     */
1030    public boolean contains(Object value) {
1031        return containsValue(value);
1032    }
1033
1034    /**
1002       * Maps the specified key to the specified value in this table.
1003       * Neither the key nor the value can be null.
1004       *
1005 <     * <p> The value can be retrieved by calling the {@code get} method
1005 >     * <p>The value can be retrieved by calling the {@code get} method
1006       * with a key that is equal to the original key.
1007       *
1008       * @param key key with which the specified value is to be associated
# Line 1044 | Line 1011 | public class ConcurrentHashMapV8<K, V>
1011       *         {@code null} if there was no mapping for {@code key}
1012       * @throws NullPointerException if the specified key or value is null
1013       */
1047    @SuppressWarnings("unchecked")
1014      public V put(K key, V value) {
1015 <        if (key == null || value == null)
1050 <            throw new NullPointerException();
1051 <        return (V)internalPut(key, value, true);
1015 >        return putVal(key, value, false);
1016      }
1017  
1018 <    /**
1019 <     * {@inheritDoc}
1020 <     *
1021 <     * @return the previous value associated with the specified key,
1022 <     *         or {@code null} if there was no mapping for the key
1023 <     * @throws NullPointerException if the specified key or value is null
1024 <     */
1025 <    @SuppressWarnings("unchecked")
1026 <    public V putIfAbsent(K key, V value) {
1027 <        if (key == null || value == null)
1028 <            throw new NullPointerException();
1029 <        return (V)internalPut(key, value, false);
1018 >    /** Implementation for put and putIfAbsent */
1019 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
1020 >        if (key == null || value == null) throw new NullPointerException();
1021 >        int hash = spread(key.hashCode());
1022 >        int binCount = 0;
1023 >        for (Node<K,V>[] tab = table;;) {
1024 >            Node<K,V> f; int n, i, fh;
1025 >            if (tab == null || (n = tab.length) == 0)
1026 >                tab = initTable();
1027 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1028 >                if (casTabAt(tab, i, null,
1029 >                             new Node<K,V>(hash, key, value, null)))
1030 >                    break;                   // no lock when adding to empty bin
1031 >            }
1032 >            else if ((fh = f.hash) == MOVED)
1033 >                tab = helpTransfer(tab, f);
1034 >            else {
1035 >                V oldVal = null;
1036 >                synchronized (f) {
1037 >                    if (tabAt(tab, i) == f) {
1038 >                        if (fh >= 0) {
1039 >                            binCount = 1;
1040 >                            for (Node<K,V> e = f;; ++binCount) {
1041 >                                K ek;
1042 >                                if (e.hash == hash &&
1043 >                                    ((ek = e.key) == key ||
1044 >                                     (ek != null && key.equals(ek)))) {
1045 >                                    oldVal = e.val;
1046 >                                    if (!onlyIfAbsent)
1047 >                                        e.val = value;
1048 >                                    break;
1049 >                                }
1050 >                                Node<K,V> pred = e;
1051 >                                if ((e = e.next) == null) {
1052 >                                    pred.next = new Node<K,V>(hash, key,
1053 >                                                              value, null);
1054 >                                    break;
1055 >                                }
1056 >                            }
1057 >                        }
1058 >                        else if (f instanceof TreeBin) {
1059 >                            Node<K,V> p;
1060 >                            binCount = 2;
1061 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1062 >                                                           value)) != null) {
1063 >                                oldVal = p.val;
1064 >                                if (!onlyIfAbsent)
1065 >                                    p.val = value;
1066 >                            }
1067 >                        }
1068 >                    }
1069 >                }
1070 >                if (binCount != 0) {
1071 >                    if (binCount >= TREEIFY_THRESHOLD)
1072 >                        treeifyBin(tab, i);
1073 >                    if (oldVal != null)
1074 >                        return oldVal;
1075 >                    break;
1076 >                }
1077 >            }
1078 >        }
1079 >        addCount(1L, binCount);
1080 >        return null;
1081      }
1082  
1083      /**
# Line 1073 | Line 1088 | public class ConcurrentHashMapV8<K, V>
1088       * @param m mappings to be stored in this map
1089       */
1090      public void putAll(Map<? extends K, ? extends V> m) {
1091 <        if (m == null)
1077 <            throw new NullPointerException();
1078 <        /*
1079 <         * If uninitialized, try to adjust targetCapacity to
1080 <         * accommodate the given number of elements.
1081 <         */
1082 <        if (table == null) {
1083 <            int size = m.size();
1084 <            int cap = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1085 <                tableSizeFor(size + (size >>> 1) + 1);
1086 <            if (cap > targetCapacity)
1087 <                targetCapacity = cap;
1088 <        }
1091 >        tryPresize(m.size());
1092          for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1093 <            put(e.getKey(), e.getValue());
1091 <    }
1092 <
1093 <    /**
1094 <     * If the specified key is not already associated with a value,
1095 <     * computes its value using the given mappingFunction, and if
1096 <     * non-null, enters it into the map.  This is equivalent to
1097 <     *  <pre> {@code
1098 <     * if (map.containsKey(key))
1099 <     *   return map.get(key);
1100 <     * value = mappingFunction.map(key);
1101 <     * if (value != null)
1102 <     *   map.put(key, value);
1103 <     * return value;}</pre>
1104 <     *
1105 <     * except that the action is performed atomically.  Some attempted
1106 <     * update operations on this map by other threads may be blocked
1107 <     * while computation is in progress, so the computation should be
1108 <     * short and simple, and must not attempt to update any other
1109 <     * mappings of this Map. The most appropriate usage is to
1110 <     * construct a new object serving as an initial mapped value, or
1111 <     * memoized result, as in:
1112 <     *  <pre> {@code
1113 <     * map.computeIfAbsent(key, new MappingFunction<K, V>() {
1114 <     *   public V map(K k) { return new Value(f(k)); }});}</pre>
1115 <     *
1116 <     * @param key key with which the specified value is to be associated
1117 <     * @param mappingFunction the function to compute a value
1118 <     * @return the current (existing or computed) value associated with
1119 <     *         the specified key, or {@code null} if the computation
1120 <     *         returned {@code null}.
1121 <     * @throws NullPointerException if the specified key or mappingFunction
1122 <     *         is null,
1123 <     * @throws IllegalStateException if the computation detectably
1124 <     *         attempts a recursive update to this map that would
1125 <     *         otherwise never complete.
1126 <     * @throws RuntimeException or Error if the mappingFunction does so,
1127 <     *         in which case the mapping is left unestablished.
1128 <     */
1129 <    public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
1130 <        if (key == null || mappingFunction == null)
1131 <            throw new NullPointerException();
1132 <        return internalCompute(key, mappingFunction, false);
1133 <    }
1134 <
1135 <    /**
1136 <     * Computes the value associated with the given key using the given
1137 <     * mappingFunction, and if non-null, enters it into the map.  This
1138 <     * is equivalent to
1139 <     *  <pre> {@code
1140 <     * value = mappingFunction.map(key);
1141 <     * if (value != null)
1142 <     *   map.put(key, value);
1143 <     * else
1144 <     *   value = map.get(key);
1145 <     * return value;}</pre>
1146 <     *
1147 <     * except that the action is performed atomically.  Some attempted
1148 <     * update operations on this map by other threads may be blocked
1149 <     * while computation is in progress, so the computation should be
1150 <     * short and simple, and must not attempt to update any other
1151 <     * mappings of this Map.
1152 <     *
1153 <     * @param key key with which the specified value is to be associated
1154 <     * @param mappingFunction the function to compute a value
1155 <     * @return the current value associated with
1156 <     *         the specified key, or {@code null} if the computation
1157 <     *         returned {@code null} and the value was not otherwise present.
1158 <     * @throws NullPointerException if the specified key or mappingFunction
1159 <     *         is null,
1160 <     * @throws IllegalStateException if the computation detectably
1161 <     *         attempts a recursive update to this map that would
1162 <     *         otherwise never complete.
1163 <     * @throws RuntimeException or Error if the mappingFunction does so,
1164 <     *         in which case the mapping is unchanged.
1165 <     */
1166 <    public V compute(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
1167 <        if (key == null || mappingFunction == null)
1168 <            throw new NullPointerException();
1169 <        return internalCompute(key, mappingFunction, true);
1093 >            putVal(e.getKey(), e.getValue(), false);
1094      }
1095  
1096      /**
# Line 1178 | Line 1102 | public class ConcurrentHashMapV8<K, V>
1102       *         {@code null} if there was no mapping for {@code key}
1103       * @throws NullPointerException if the specified key is null
1104       */
1181    @SuppressWarnings("unchecked")
1105      public V remove(Object key) {
1106 <        if (key == null)
1184 <            throw new NullPointerException();
1185 <        return (V)internalReplace(key, null, null);
1186 <    }
1187 <
1188 <    /**
1189 <     * {@inheritDoc}
1190 <     *
1191 <     * @throws NullPointerException if the specified key is null
1192 <     */
1193 <    public boolean remove(Object key, Object value) {
1194 <        if (key == null)
1195 <            throw new NullPointerException();
1196 <        if (value == null)
1197 <            return false;
1198 <        return internalReplace(key, null, value) != null;
1106 >        return replaceNode(key, null, null);
1107      }
1108  
1109      /**
1110 <     * {@inheritDoc}
1111 <     *
1112 <     * @throws NullPointerException if any of the arguments are null
1205 <     */
1206 <    public boolean replace(K key, V oldValue, V newValue) {
1207 <        if (key == null || oldValue == null || newValue == null)
1208 <            throw new NullPointerException();
1209 <        return internalReplace(key, newValue, oldValue) != null;
1210 <    }
1211 <
1212 <    /**
1213 <     * {@inheritDoc}
1214 <     *
1215 <     * @return the previous value associated with the specified key,
1216 <     *         or {@code null} if there was no mapping for the key
1217 <     * @throws NullPointerException if the specified key or value is null
1110 >     * Implementation for the four public remove/replace methods:
1111 >     * Replaces node value with v, conditional upon match of cv if
1112 >     * non-null.  If resulting value is null, delete.
1113       */
1114 <    @SuppressWarnings("unchecked")
1115 <    public V replace(K key, V value) {
1116 <        if (key == null || value == null)
1117 <            throw new NullPointerException();
1118 <        return (V)internalReplace(key, value, null);
1114 >    final V replaceNode(Object key, V value, Object cv) {
1115 >        int hash = spread(key.hashCode());
1116 >        for (Node<K,V>[] tab = table;;) {
1117 >            Node<K,V> f; int n, i, fh;
1118 >            if (tab == null || (n = tab.length) == 0 ||
1119 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1120 >                break;
1121 >            else if ((fh = f.hash) == MOVED)
1122 >                tab = helpTransfer(tab, f);
1123 >            else {
1124 >                V oldVal = null;
1125 >                boolean validated = false;
1126 >                synchronized (f) {
1127 >                    if (tabAt(tab, i) == f) {
1128 >                        if (fh >= 0) {
1129 >                            validated = true;
1130 >                            for (Node<K,V> e = f, pred = null;;) {
1131 >                                K ek;
1132 >                                if (e.hash == hash &&
1133 >                                    ((ek = e.key) == key ||
1134 >                                     (ek != null && key.equals(ek)))) {
1135 >                                    V ev = e.val;
1136 >                                    if (cv == null || cv == ev ||
1137 >                                        (ev != null && cv.equals(ev))) {
1138 >                                        oldVal = ev;
1139 >                                        if (value != null)
1140 >                                            e.val = value;
1141 >                                        else if (pred != null)
1142 >                                            pred.next = e.next;
1143 >                                        else
1144 >                                            setTabAt(tab, i, e.next);
1145 >                                    }
1146 >                                    break;
1147 >                                }
1148 >                                pred = e;
1149 >                                if ((e = e.next) == null)
1150 >                                    break;
1151 >                            }
1152 >                        }
1153 >                        else if (f instanceof TreeBin) {
1154 >                            validated = true;
1155 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1156 >                            TreeNode<K,V> r, p;
1157 >                            if ((r = t.root) != null &&
1158 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1159 >                                V pv = p.val;
1160 >                                if (cv == null || cv == pv ||
1161 >                                    (pv != null && cv.equals(pv))) {
1162 >                                    oldVal = pv;
1163 >                                    if (value != null)
1164 >                                        p.val = value;
1165 >                                    else if (t.removeTreeNode(p))
1166 >                                        setTabAt(tab, i, untreeify(t.first));
1167 >                                }
1168 >                            }
1169 >                        }
1170 >                    }
1171 >                }
1172 >                if (validated) {
1173 >                    if (oldVal != null) {
1174 >                        if (value == null)
1175 >                            addCount(-1L, -1);
1176 >                        return oldVal;
1177 >                    }
1178 >                    break;
1179 >                }
1180 >            }
1181 >        }
1182 >        return null;
1183      }
1184  
1185      /**
1186       * Removes all of the mappings from this map.
1187       */
1188      public void clear() {
1189 <        internalClear();
1189 >        long delta = 0L; // negative number of deletions
1190 >        int i = 0;
1191 >        Node<K,V>[] tab = table;
1192 >        while (tab != null && i < tab.length) {
1193 >            int fh;
1194 >            Node<K,V> f = tabAt(tab, i);
1195 >            if (f == null)
1196 >                ++i;
1197 >            else if ((fh = f.hash) == MOVED) {
1198 >                tab = helpTransfer(tab, f);
1199 >                i = 0; // restart
1200 >            }
1201 >            else {
1202 >                synchronized (f) {
1203 >                    if (tabAt(tab, i) == f) {
1204 >                        Node<K,V> p = (fh >= 0 ? f :
1205 >                                       (f instanceof TreeBin) ?
1206 >                                       ((TreeBin<K,V>)f).first : null);
1207 >                        while (p != null) {
1208 >                            --delta;
1209 >                            p = p.next;
1210 >                        }
1211 >                        setTabAt(tab, i++, null);
1212 >                    }
1213 >                }
1214 >            }
1215 >        }
1216 >        if (delta != 0L)
1217 >            addCount(delta, -1);
1218      }
1219  
1220      /**
1221       * Returns a {@link Set} view of the keys contained in this map.
1222       * The set is backed by the map, so changes to the map are
1223 <     * reflected in the set, and vice-versa.  The set supports element
1223 >     * reflected in the set, and vice-versa. The set supports element
1224       * removal, which removes the corresponding mapping from this map,
1225       * via the {@code Iterator.remove}, {@code Set.remove},
1226       * {@code removeAll}, {@code retainAll}, and {@code clear}
# Line 1245 | Line 1232 | public class ConcurrentHashMapV8<K, V>
1232       * and guarantees to traverse elements as they existed upon
1233       * construction of the iterator, and may (but is not guaranteed to)
1234       * reflect any modifications subsequent to construction.
1235 +     *
1236 +     * @return the set view
1237       */
1238 <    public Set<K> keySet() {
1239 <        KeySet<K,V> ks = keySet;
1240 <        return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
1238 >    public KeySetView<K,V> keySet() {
1239 >        KeySetView<K,V> ks;
1240 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1241      }
1242  
1243      /**
# Line 1266 | Line 1255 | public class ConcurrentHashMapV8<K, V>
1255       * and guarantees to traverse elements as they existed upon
1256       * construction of the iterator, and may (but is not guaranteed to)
1257       * reflect any modifications subsequent to construction.
1258 +     *
1259 +     * @return the collection view
1260       */
1261      public Collection<V> values() {
1262 <        Values<K,V> vs = values;
1263 <        return (vs != null) ? vs : (values = new Values<K,V>(this));
1262 >        ValuesView<K,V> vs;
1263 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1264      }
1265  
1266      /**
# Line 1279 | Line 1270 | public class ConcurrentHashMapV8<K, V>
1270       * removal, which removes the corresponding mapping from the map,
1271       * via the {@code Iterator.remove}, {@code Set.remove},
1272       * {@code removeAll}, {@code retainAll}, and {@code clear}
1273 <     * operations.  It does not support the {@code add} or
1283 <     * {@code addAll} operations.
1273 >     * operations.
1274       *
1275       * <p>The view's {@code iterator} is a "weakly consistent" iterator
1276       * that will never throw {@link ConcurrentModificationException},
1277       * and guarantees to traverse elements as they existed upon
1278       * construction of the iterator, and may (but is not guaranteed to)
1279       * reflect any modifications subsequent to construction.
1290     */
1291    public Set<Map.Entry<K,V>> entrySet() {
1292        EntrySet<K,V> es = entrySet;
1293        return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
1294    }
1295
1296    /**
1297     * Returns an enumeration of the keys in this table.
1298     *
1299     * @return an enumeration of the keys in this table
1300     * @see #keySet()
1301     */
1302    public Enumeration<K> keys() {
1303        return new KeyIterator<K,V>(this);
1304    }
1305
1306    /**
1307     * Returns an enumeration of the values in this table.
1280       *
1281 <     * @return an enumeration of the values in this table
1310 <     * @see #values()
1281 >     * @return the set view
1282       */
1283 <    public Enumeration<V> elements() {
1284 <        return new ValueIterator<K,V>(this);
1283 >    public Set<Map.Entry<K,V>> entrySet() {
1284 >        EntrySetView<K,V> es;
1285 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1286      }
1287  
1288      /**
# Line 1322 | Line 1294 | public class ConcurrentHashMapV8<K, V>
1294       */
1295      public int hashCode() {
1296          int h = 0;
1297 <        InternalIterator it = new InternalIterator(table);
1298 <        while (it.next != null) {
1299 <            h += it.nextKey.hashCode() ^ it.nextVal.hashCode();
1300 <            it.advance();
1297 >        Node<K,V>[] t;
1298 >        if ((t = table) != null) {
1299 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1300 >            for (Node<K,V> p; (p = it.advance()) != null; )
1301 >                h += p.key.hashCode() ^ p.val.hashCode();
1302          }
1303          return h;
1304      }
# Line 1342 | Line 1315 | public class ConcurrentHashMapV8<K, V>
1315       * @return a string representation of this map
1316       */
1317      public String toString() {
1318 <        InternalIterator it = new InternalIterator(table);
1318 >        Node<K,V>[] t;
1319 >        int f = (t = table) == null ? 0 : t.length;
1320 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1321          StringBuilder sb = new StringBuilder();
1322          sb.append('{');
1323 <        if (it.next != null) {
1323 >        Node<K,V> p;
1324 >        if ((p = it.advance()) != null) {
1325              for (;;) {
1326 <                Object k = it.nextKey, v = it.nextVal;
1326 >                K k = p.key;
1327 >                V v = p.val;
1328                  sb.append(k == this ? "(this Map)" : k);
1329                  sb.append('=');
1330                  sb.append(v == this ? "(this Map)" : v);
1331 <                it.advance();
1355 <                if (it.next == null)
1331 >                if ((p = it.advance()) == null)
1332                      break;
1333                  sb.append(',').append(' ');
1334              }
# Line 1375 | Line 1351 | public class ConcurrentHashMapV8<K, V>
1351              if (!(o instanceof Map))
1352                  return false;
1353              Map<?,?> m = (Map<?,?>) o;
1354 <            InternalIterator it = new InternalIterator(table);
1355 <            while (it.next != null) {
1356 <                Object val = it.nextVal;
1357 <                Object v = m.get(it.nextKey);
1354 >            Node<K,V>[] t;
1355 >            int f = (t = table) == null ? 0 : t.length;
1356 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1357 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1358 >                V val = p.val;
1359 >                Object v = m.get(p.key);
1360                  if (v == null || (v != val && !v.equals(val)))
1361                      return false;
1384                it.advance();
1362              }
1363              for (Map.Entry<?,?> e : m.entrySet()) {
1364                  Object mk, mv, v;
1365                  if ((mk = e.getKey()) == null ||
1366                      (mv = e.getValue()) == null ||
1367 <                    (v = internalGet(mk)) == null ||
1367 >                    (v = get(mk)) == null ||
1368                      (mv != v && !mv.equals(v)))
1369                      return false;
1370              }
# Line 1395 | Line 1372 | public class ConcurrentHashMapV8<K, V>
1372          return true;
1373      }
1374  
1375 <    /* ----------------Iterators -------------- */
1375 >    /**
1376 >     * Stripped-down version of helper class used in previous version,
1377 >     * declared for the sake of serialization compatibility
1378 >     */
1379 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1380 >        private static final long serialVersionUID = 2249069246763182397L;
1381 >        final float loadFactor;
1382 >        Segment(float lf) { this.loadFactor = lf; }
1383 >    }
1384 >
1385 >    /**
1386 >     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1387 >     * stream (i.e., serializes it).
1388 >     * @param s the stream
1389 >     * @throws java.io.IOException if an I/O error occurs
1390 >     * @serialData
1391 >     * the key (Object) and value (Object)
1392 >     * for each key-value mapping, followed by a null pair.
1393 >     * The key-value mappings are emitted in no particular order.
1394 >     */
1395 >    private void writeObject(java.io.ObjectOutputStream s)
1396 >        throws java.io.IOException {
1397 >        // For serialization compatibility
1398 >        // Emulate segment calculation from previous version of this class
1399 >        int sshift = 0;
1400 >        int ssize = 1;
1401 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1402 >            ++sshift;
1403 >            ssize <<= 1;
1404 >        }
1405 >        int segmentShift = 32 - sshift;
1406 >        int segmentMask = ssize - 1;
1407 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1408 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1409 >        for (int i = 0; i < segments.length; ++i)
1410 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1411 >        s.putFields().put("segments", segments);
1412 >        s.putFields().put("segmentShift", segmentShift);
1413 >        s.putFields().put("segmentMask", segmentMask);
1414 >        s.writeFields();
1415 >
1416 >        Node<K,V>[] t;
1417 >        if ((t = table) != null) {
1418 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1419 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1420 >                s.writeObject(p.key);
1421 >                s.writeObject(p.val);
1422 >            }
1423 >        }
1424 >        s.writeObject(null);
1425 >        s.writeObject(null);
1426 >        segments = null; // throw away
1427 >    }
1428 >
1429 >    /**
1430 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1431 >     * @param s the stream
1432 >     * @throws ClassNotFoundException if the class of a serialized object
1433 >     *         could not be found
1434 >     * @throws java.io.IOException if an I/O error occurs
1435 >     */
1436 >    private void readObject(java.io.ObjectInputStream s)
1437 >        throws java.io.IOException, ClassNotFoundException {
1438 >        /*
1439 >         * To improve performance in typical cases, we create nodes
1440 >         * while reading, then place in table once size is known.
1441 >         * However, we must also validate uniqueness and deal with
1442 >         * overpopulated bins while doing so, which requires
1443 >         * specialized versions of putVal mechanics.
1444 >         */
1445 >        sizeCtl = -1; // force exclusion for table construction
1446 >        s.defaultReadObject();
1447 >        long size = 0L;
1448 >        Node<K,V> p = null;
1449 >        for (;;) {
1450 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1451 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1452 >            if (k != null && v != null) {
1453 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1454 >                ++size;
1455 >            }
1456 >            else
1457 >                break;
1458 >        }
1459 >        if (size == 0L)
1460 >            sizeCtl = 0;
1461 >        else {
1462 >            int n;
1463 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1464 >                n = MAXIMUM_CAPACITY;
1465 >            else {
1466 >                int sz = (int)size;
1467 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1468 >            }
1469 >            @SuppressWarnings("unchecked")
1470 >                Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1471 >            int mask = n - 1;
1472 >            long added = 0L;
1473 >            while (p != null) {
1474 >                boolean insertAtFront;
1475 >                Node<K,V> next = p.next, first;
1476 >                int h = p.hash, j = h & mask;
1477 >                if ((first = tabAt(tab, j)) == null)
1478 >                    insertAtFront = true;
1479 >                else {
1480 >                    K k = p.key;
1481 >                    if (first.hash < 0) {
1482 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1483 >                        if (t.putTreeVal(h, k, p.val) == null)
1484 >                            ++added;
1485 >                        insertAtFront = false;
1486 >                    }
1487 >                    else {
1488 >                        int binCount = 0;
1489 >                        insertAtFront = true;
1490 >                        Node<K,V> q; K qk;
1491 >                        for (q = first; q != null; q = q.next) {
1492 >                            if (q.hash == h &&
1493 >                                ((qk = q.key) == k ||
1494 >                                 (qk != null && k.equals(qk)))) {
1495 >                                insertAtFront = false;
1496 >                                break;
1497 >                            }
1498 >                            ++binCount;
1499 >                        }
1500 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1501 >                            insertAtFront = false;
1502 >                            ++added;
1503 >                            p.next = first;
1504 >                            TreeNode<K,V> hd = null, tl = null;
1505 >                            for (q = p; q != null; q = q.next) {
1506 >                                TreeNode<K,V> t = new TreeNode<K,V>
1507 >                                    (q.hash, q.key, q.val, null, null);
1508 >                                if ((t.prev = tl) == null)
1509 >                                    hd = t;
1510 >                                else
1511 >                                    tl.next = t;
1512 >                                tl = t;
1513 >                            }
1514 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1515 >                        }
1516 >                    }
1517 >                }
1518 >                if (insertAtFront) {
1519 >                    ++added;
1520 >                    p.next = first;
1521 >                    setTabAt(tab, j, p);
1522 >                }
1523 >                p = next;
1524 >            }
1525 >            table = tab;
1526 >            sizeCtl = n - (n >>> 2);
1527 >            baseCount = added;
1528 >        }
1529 >    }
1530 >
1531 >    // ConcurrentMap methods
1532 >
1533 >    /**
1534 >     * {@inheritDoc}
1535 >     *
1536 >     * @return the previous value associated with the specified key,
1537 >     *         or {@code null} if there was no mapping for the key
1538 >     * @throws NullPointerException if the specified key or value is null
1539 >     */
1540 >    public V putIfAbsent(K key, V value) {
1541 >        return putVal(key, value, true);
1542 >    }
1543 >
1544 >    /**
1545 >     * {@inheritDoc}
1546 >     *
1547 >     * @throws NullPointerException if the specified key is null
1548 >     */
1549 >    public boolean remove(Object key, Object value) {
1550 >        if (key == null)
1551 >            throw new NullPointerException();
1552 >        return value != null && replaceNode(key, null, value) != null;
1553 >    }
1554 >
1555 >    /**
1556 >     * {@inheritDoc}
1557 >     *
1558 >     * @throws NullPointerException if any of the arguments are null
1559 >     */
1560 >    public boolean replace(K key, V oldValue, V newValue) {
1561 >        if (key == null || oldValue == null || newValue == null)
1562 >            throw new NullPointerException();
1563 >        return replaceNode(key, newValue, oldValue) != null;
1564 >    }
1565 >
1566 >    /**
1567 >     * {@inheritDoc}
1568 >     *
1569 >     * @return the previous value associated with the specified key,
1570 >     *         or {@code null} if there was no mapping for the key
1571 >     * @throws NullPointerException if the specified key or value is null
1572 >     */
1573 >    public V replace(K key, V value) {
1574 >        if (key == null || value == null)
1575 >            throw new NullPointerException();
1576 >        return replaceNode(key, value, null);
1577 >    }
1578 >
1579 >    // Overrides of JDK8+ Map extension method defaults
1580 >
1581 >    /**
1582 >     * Returns the value to which the specified key is mapped, or the
1583 >     * given default value if this map contains no mapping for the
1584 >     * key.
1585 >     *
1586 >     * @param key the key whose associated value is to be returned
1587 >     * @param defaultValue the value to return if this map contains
1588 >     * no mapping for the given key
1589 >     * @return the mapping for the key, if present; else the default value
1590 >     * @throws NullPointerException if the specified key is null
1591 >     */
1592 >    public V getOrDefault(Object key, V defaultValue) {
1593 >        V v;
1594 >        return (v = get(key)) == null ? defaultValue : v;
1595 >    }
1596 >
1597 >    public void forEach(BiAction<? super K, ? super V> action) {
1598 >        if (action == null) throw new NullPointerException();
1599 >        Node<K,V>[] t;
1600 >        if ((t = table) != null) {
1601 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1602 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1603 >                action.apply(p.key, p.val);
1604 >            }
1605 >        }
1606 >    }
1607 >
1608 >    public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1609 >        if (function == null) throw new NullPointerException();
1610 >        Node<K,V>[] t;
1611 >        if ((t = table) != null) {
1612 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1613 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1614 >                V oldValue = p.val;
1615 >                for (K key = p.key;;) {
1616 >                    V newValue = function.apply(key, oldValue);
1617 >                    if (newValue == null)
1618 >                        throw new NullPointerException();
1619 >                    if (replaceNode(key, newValue, oldValue) != null ||
1620 >                        (oldValue = get(key)) == null)
1621 >                        break;
1622 >                }
1623 >            }
1624 >        }
1625 >    }
1626 >
1627 >    /**
1628 >     * If the specified key is not already associated with a value,
1629 >     * attempts to compute its value using the given mapping function
1630 >     * and enters it into this map unless {@code null}.  The entire
1631 >     * method invocation is performed atomically, so the function is
1632 >     * applied at most once per key.  Some attempted update operations
1633 >     * on this map by other threads may be blocked while computation
1634 >     * is in progress, so the computation should be short and simple,
1635 >     * and must not attempt to update any other mappings of this map.
1636 >     *
1637 >     * @param key key with which the specified value is to be associated
1638 >     * @param mappingFunction the function to compute a value
1639 >     * @return the current (existing or computed) value associated with
1640 >     *         the specified key, or null if the computed value is null
1641 >     * @throws NullPointerException if the specified key or mappingFunction
1642 >     *         is null
1643 >     * @throws IllegalStateException if the computation detectably
1644 >     *         attempts a recursive update to this map that would
1645 >     *         otherwise never complete
1646 >     * @throws RuntimeException or Error if the mappingFunction does so,
1647 >     *         in which case the mapping is left unestablished
1648 >     */
1649 >    public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1650 >        if (key == null || mappingFunction == null)
1651 >            throw new NullPointerException();
1652 >        int h = spread(key.hashCode());
1653 >        V val = null;
1654 >        int binCount = 0;
1655 >        for (Node<K,V>[] tab = table;;) {
1656 >            Node<K,V> f; int n, i, fh;
1657 >            if (tab == null || (n = tab.length) == 0)
1658 >                tab = initTable();
1659 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1660 >                Node<K,V> r = new ReservationNode<K,V>();
1661 >                synchronized (r) {
1662 >                    if (casTabAt(tab, i, null, r)) {
1663 >                        binCount = 1;
1664 >                        Node<K,V> node = null;
1665 >                        try {
1666 >                            if ((val = mappingFunction.apply(key)) != null)
1667 >                                node = new Node<K,V>(h, key, val, null);
1668 >                        } finally {
1669 >                            setTabAt(tab, i, node);
1670 >                        }
1671 >                    }
1672 >                }
1673 >                if (binCount != 0)
1674 >                    break;
1675 >            }
1676 >            else if ((fh = f.hash) == MOVED)
1677 >                tab = helpTransfer(tab, f);
1678 >            else {
1679 >                boolean added = false;
1680 >                synchronized (f) {
1681 >                    if (tabAt(tab, i) == f) {
1682 >                        if (fh >= 0) {
1683 >                            binCount = 1;
1684 >                            for (Node<K,V> e = f;; ++binCount) {
1685 >                                K ek; V ev;
1686 >                                if (e.hash == h &&
1687 >                                    ((ek = e.key) == key ||
1688 >                                     (ek != null && key.equals(ek)))) {
1689 >                                    val = e.val;
1690 >                                    break;
1691 >                                }
1692 >                                Node<K,V> pred = e;
1693 >                                if ((e = e.next) == null) {
1694 >                                    if ((val = mappingFunction.apply(key)) != null) {
1695 >                                        added = true;
1696 >                                        pred.next = new Node<K,V>(h, key, val, null);
1697 >                                    }
1698 >                                    break;
1699 >                                }
1700 >                            }
1701 >                        }
1702 >                        else if (f instanceof TreeBin) {
1703 >                            binCount = 2;
1704 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1705 >                            TreeNode<K,V> r, p;
1706 >                            if ((r = t.root) != null &&
1707 >                                (p = r.findTreeNode(h, key, null)) != null)
1708 >                                val = p.val;
1709 >                            else if ((val = mappingFunction.apply(key)) != null) {
1710 >                                added = true;
1711 >                                t.putTreeVal(h, key, val);
1712 >                            }
1713 >                        }
1714 >                    }
1715 >                }
1716 >                if (binCount != 0) {
1717 >                    if (binCount >= TREEIFY_THRESHOLD)
1718 >                        treeifyBin(tab, i);
1719 >                    if (!added)
1720 >                        return val;
1721 >                    break;
1722 >                }
1723 >            }
1724 >        }
1725 >        if (val != null)
1726 >            addCount(1L, binCount);
1727 >        return val;
1728 >    }
1729 >
1730 >    /**
1731 >     * If the value for the specified key is present, attempts to
1732 >     * compute a new mapping given the key and its current mapped
1733 >     * value.  The entire method invocation is performed atomically.
1734 >     * Some attempted update operations on this map by other threads
1735 >     * may be blocked while computation is in progress, so the
1736 >     * computation should be short and simple, and must not attempt to
1737 >     * update any other mappings of this map.
1738 >     *
1739 >     * @param key key with which a value may be associated
1740 >     * @param remappingFunction the function to compute a value
1741 >     * @return the new value associated with the specified key, or null if none
1742 >     * @throws NullPointerException if the specified key or remappingFunction
1743 >     *         is null
1744 >     * @throws IllegalStateException if the computation detectably
1745 >     *         attempts a recursive update to this map that would
1746 >     *         otherwise never complete
1747 >     * @throws RuntimeException or Error if the remappingFunction does so,
1748 >     *         in which case the mapping is unchanged
1749 >     */
1750 >    public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1751 >        if (key == null || remappingFunction == null)
1752 >            throw new NullPointerException();
1753 >        int h = spread(key.hashCode());
1754 >        V val = null;
1755 >        int delta = 0;
1756 >        int binCount = 0;
1757 >        for (Node<K,V>[] tab = table;;) {
1758 >            Node<K,V> f; int n, i, fh;
1759 >            if (tab == null || (n = tab.length) == 0)
1760 >                tab = initTable();
1761 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1762 >                break;
1763 >            else if ((fh = f.hash) == MOVED)
1764 >                tab = helpTransfer(tab, f);
1765 >            else {
1766 >                synchronized (f) {
1767 >                    if (tabAt(tab, i) == f) {
1768 >                        if (fh >= 0) {
1769 >                            binCount = 1;
1770 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1771 >                                K ek;
1772 >                                if (e.hash == h &&
1773 >                                    ((ek = e.key) == key ||
1774 >                                     (ek != null && key.equals(ek)))) {
1775 >                                    val = remappingFunction.apply(key, e.val);
1776 >                                    if (val != null)
1777 >                                        e.val = val;
1778 >                                    else {
1779 >                                        delta = -1;
1780 >                                        Node<K,V> en = e.next;
1781 >                                        if (pred != null)
1782 >                                            pred.next = en;
1783 >                                        else
1784 >                                            setTabAt(tab, i, en);
1785 >                                    }
1786 >                                    break;
1787 >                                }
1788 >                                pred = e;
1789 >                                if ((e = e.next) == null)
1790 >                                    break;
1791 >                            }
1792 >                        }
1793 >                        else if (f instanceof TreeBin) {
1794 >                            binCount = 2;
1795 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1796 >                            TreeNode<K,V> r, p;
1797 >                            if ((r = t.root) != null &&
1798 >                                (p = r.findTreeNode(h, key, null)) != null) {
1799 >                                val = remappingFunction.apply(key, p.val);
1800 >                                if (val != null)
1801 >                                    p.val = val;
1802 >                                else {
1803 >                                    delta = -1;
1804 >                                    if (t.removeTreeNode(p))
1805 >                                        setTabAt(tab, i, untreeify(t.first));
1806 >                                }
1807 >                            }
1808 >                        }
1809 >                    }
1810 >                }
1811 >                if (binCount != 0)
1812 >                    break;
1813 >            }
1814 >        }
1815 >        if (delta != 0)
1816 >            addCount((long)delta, binCount);
1817 >        return val;
1818 >    }
1819 >
1820 >    /**
1821 >     * Attempts to compute a mapping for the specified key and its
1822 >     * current mapped value (or {@code null} if there is no current
1823 >     * mapping). The entire method invocation is performed atomically.
1824 >     * Some attempted update operations on this map by other threads
1825 >     * may be blocked while computation is in progress, so the
1826 >     * computation should be short and simple, and must not attempt to
1827 >     * update any other mappings of this Map.
1828 >     *
1829 >     * @param key key with which the specified value is to be associated
1830 >     * @param remappingFunction the function to compute a value
1831 >     * @return the new value associated with the specified key, or null if none
1832 >     * @throws NullPointerException if the specified key or remappingFunction
1833 >     *         is null
1834 >     * @throws IllegalStateException if the computation detectably
1835 >     *         attempts a recursive update to this map that would
1836 >     *         otherwise never complete
1837 >     * @throws RuntimeException or Error if the remappingFunction does so,
1838 >     *         in which case the mapping is unchanged
1839 >     */
1840 >    public V compute(K key,
1841 >                     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1842 >        if (key == null || remappingFunction == null)
1843 >            throw new NullPointerException();
1844 >        int h = spread(key.hashCode());
1845 >        V val = null;
1846 >        int delta = 0;
1847 >        int binCount = 0;
1848 >        for (Node<K,V>[] tab = table;;) {
1849 >            Node<K,V> f; int n, i, fh;
1850 >            if (tab == null || (n = tab.length) == 0)
1851 >                tab = initTable();
1852 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1853 >                Node<K,V> r = new ReservationNode<K,V>();
1854 >                synchronized (r) {
1855 >                    if (casTabAt(tab, i, null, r)) {
1856 >                        binCount = 1;
1857 >                        Node<K,V> node = null;
1858 >                        try {
1859 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1860 >                                delta = 1;
1861 >                                node = new Node<K,V>(h, key, val, null);
1862 >                            }
1863 >                        } finally {
1864 >                            setTabAt(tab, i, node);
1865 >                        }
1866 >                    }
1867 >                }
1868 >                if (binCount != 0)
1869 >                    break;
1870 >            }
1871 >            else if ((fh = f.hash) == MOVED)
1872 >                tab = helpTransfer(tab, f);
1873 >            else {
1874 >                synchronized (f) {
1875 >                    if (tabAt(tab, i) == f) {
1876 >                        if (fh >= 0) {
1877 >                            binCount = 1;
1878 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1879 >                                K ek;
1880 >                                if (e.hash == h &&
1881 >                                    ((ek = e.key) == key ||
1882 >                                     (ek != null && key.equals(ek)))) {
1883 >                                    val = remappingFunction.apply(key, e.val);
1884 >                                    if (val != null)
1885 >                                        e.val = val;
1886 >                                    else {
1887 >                                        delta = -1;
1888 >                                        Node<K,V> en = e.next;
1889 >                                        if (pred != null)
1890 >                                            pred.next = en;
1891 >                                        else
1892 >                                            setTabAt(tab, i, en);
1893 >                                    }
1894 >                                    break;
1895 >                                }
1896 >                                pred = e;
1897 >                                if ((e = e.next) == null) {
1898 >                                    val = remappingFunction.apply(key, null);
1899 >                                    if (val != null) {
1900 >                                        delta = 1;
1901 >                                        pred.next =
1902 >                                            new Node<K,V>(h, key, val, null);
1903 >                                    }
1904 >                                    break;
1905 >                                }
1906 >                            }
1907 >                        }
1908 >                        else if (f instanceof TreeBin) {
1909 >                            binCount = 1;
1910 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1911 >                            TreeNode<K,V> r, p;
1912 >                            if ((r = t.root) != null)
1913 >                                p = r.findTreeNode(h, key, null);
1914 >                            else
1915 >                                p = null;
1916 >                            V pv = (p == null) ? null : p.val;
1917 >                            val = remappingFunction.apply(key, pv);
1918 >                            if (val != null) {
1919 >                                if (p != null)
1920 >                                    p.val = val;
1921 >                                else {
1922 >                                    delta = 1;
1923 >                                    t.putTreeVal(h, key, val);
1924 >                                }
1925 >                            }
1926 >                            else if (p != null) {
1927 >                                delta = -1;
1928 >                                if (t.removeTreeNode(p))
1929 >                                    setTabAt(tab, i, untreeify(t.first));
1930 >                            }
1931 >                        }
1932 >                    }
1933 >                }
1934 >                if (binCount != 0) {
1935 >                    if (binCount >= TREEIFY_THRESHOLD)
1936 >                        treeifyBin(tab, i);
1937 >                    break;
1938 >                }
1939 >            }
1940 >        }
1941 >        if (delta != 0)
1942 >            addCount((long)delta, binCount);
1943 >        return val;
1944 >    }
1945  
1946      /**
1947 <     * Base class for key, value, and entry iterators.  Adds a map
1948 <     * reference to InternalIterator to support Iterator.remove.
1947 >     * If the specified key is not already associated with a
1948 >     * (non-null) value, associates it with the given value.
1949 >     * Otherwise, replaces the value with the results of the given
1950 >     * remapping function, or removes if {@code null}. The entire
1951 >     * method invocation is performed atomically.  Some attempted
1952 >     * update operations on this map by other threads may be blocked
1953 >     * while computation is in progress, so the computation should be
1954 >     * short and simple, and must not attempt to update any other
1955 >     * mappings of this Map.
1956 >     *
1957 >     * @param key key with which the specified value is to be associated
1958 >     * @param value the value to use if absent
1959 >     * @param remappingFunction the function to recompute a value if present
1960 >     * @return the new value associated with the specified key, or null if none
1961 >     * @throws NullPointerException if the specified key or the
1962 >     *         remappingFunction is null
1963 >     * @throws RuntimeException or Error if the remappingFunction does so,
1964 >     *         in which case the mapping is unchanged
1965       */
1966 <    static abstract class ViewIterator<K,V> extends InternalIterator {
1967 <        final ConcurrentHashMapV8<K, V> map;
1968 <        ViewIterator(ConcurrentHashMapV8<K, V> map) {
1969 <            super(map.table);
1966 >    public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1967 >        if (key == null || value == null || remappingFunction == null)
1968 >            throw new NullPointerException();
1969 >        int h = spread(key.hashCode());
1970 >        V val = null;
1971 >        int delta = 0;
1972 >        int binCount = 0;
1973 >        for (Node<K,V>[] tab = table;;) {
1974 >            Node<K,V> f; int n, i, fh;
1975 >            if (tab == null || (n = tab.length) == 0)
1976 >                tab = initTable();
1977 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1978 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1979 >                    delta = 1;
1980 >                    val = value;
1981 >                    break;
1982 >                }
1983 >            }
1984 >            else if ((fh = f.hash) == MOVED)
1985 >                tab = helpTransfer(tab, f);
1986 >            else {
1987 >                synchronized (f) {
1988 >                    if (tabAt(tab, i) == f) {
1989 >                        if (fh >= 0) {
1990 >                            binCount = 1;
1991 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1992 >                                K ek;
1993 >                                if (e.hash == h &&
1994 >                                    ((ek = e.key) == key ||
1995 >                                     (ek != null && key.equals(ek)))) {
1996 >                                    val = remappingFunction.apply(e.val, value);
1997 >                                    if (val != null)
1998 >                                        e.val = val;
1999 >                                    else {
2000 >                                        delta = -1;
2001 >                                        Node<K,V> en = e.next;
2002 >                                        if (pred != null)
2003 >                                            pred.next = en;
2004 >                                        else
2005 >                                            setTabAt(tab, i, en);
2006 >                                    }
2007 >                                    break;
2008 >                                }
2009 >                                pred = e;
2010 >                                if ((e = e.next) == null) {
2011 >                                    delta = 1;
2012 >                                    val = value;
2013 >                                    pred.next =
2014 >                                        new Node<K,V>(h, key, val, null);
2015 >                                    break;
2016 >                                }
2017 >                            }
2018 >                        }
2019 >                        else if (f instanceof TreeBin) {
2020 >                            binCount = 2;
2021 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2022 >                            TreeNode<K,V> r = t.root;
2023 >                            TreeNode<K,V> p = (r == null) ? null :
2024 >                                r.findTreeNode(h, key, null);
2025 >                            val = (p == null) ? value :
2026 >                                remappingFunction.apply(p.val, value);
2027 >                            if (val != null) {
2028 >                                if (p != null)
2029 >                                    p.val = val;
2030 >                                else {
2031 >                                    delta = 1;
2032 >                                    t.putTreeVal(h, key, val);
2033 >                                }
2034 >                            }
2035 >                            else if (p != null) {
2036 >                                delta = -1;
2037 >                                if (t.removeTreeNode(p))
2038 >                                    setTabAt(tab, i, untreeify(t.first));
2039 >                            }
2040 >                        }
2041 >                    }
2042 >                }
2043 >                if (binCount != 0) {
2044 >                    if (binCount >= TREEIFY_THRESHOLD)
2045 >                        treeifyBin(tab, i);
2046 >                    break;
2047 >                }
2048 >            }
2049 >        }
2050 >        if (delta != 0)
2051 >            addCount((long)delta, binCount);
2052 >        return val;
2053 >    }
2054 >
2055 >    // Hashtable legacy methods
2056 >
2057 >    /**
2058 >     * Legacy method testing if some key maps into the specified value
2059 >     * in this table.  This method is identical in functionality to
2060 >     * {@link #containsValue(Object)}, and exists solely to ensure
2061 >     * full compatibility with class {@link java.util.Hashtable},
2062 >     * which supported this method prior to introduction of the
2063 >     * Java Collections framework.
2064 >     *
2065 >     * @param  value a value to search for
2066 >     * @return {@code true} if and only if some key maps to the
2067 >     *         {@code value} argument in this table as
2068 >     *         determined by the {@code equals} method;
2069 >     *         {@code false} otherwise
2070 >     * @throws NullPointerException if the specified value is null
2071 >     */
2072 >    @Deprecated public boolean contains(Object value) {
2073 >        return containsValue(value);
2074 >    }
2075 >
2076 >    /**
2077 >     * Returns an enumeration of the keys in this table.
2078 >     *
2079 >     * @return an enumeration of the keys in this table
2080 >     * @see #keySet()
2081 >     */
2082 >    public Enumeration<K> keys() {
2083 >        Node<K,V>[] t;
2084 >        int f = (t = table) == null ? 0 : t.length;
2085 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2086 >    }
2087 >
2088 >    /**
2089 >     * Returns an enumeration of the values in this table.
2090 >     *
2091 >     * @return an enumeration of the values in this table
2092 >     * @see #values()
2093 >     */
2094 >    public Enumeration<V> elements() {
2095 >        Node<K,V>[] t;
2096 >        int f = (t = table) == null ? 0 : t.length;
2097 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2098 >    }
2099 >
2100 >    // ConcurrentHashMapV8-only methods
2101 >
2102 >    /**
2103 >     * Returns the number of mappings. This method should be used
2104 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2105 >     * contain more mappings than can be represented as an int. The
2106 >     * value returned is an estimate; the actual count may differ if
2107 >     * there are concurrent insertions or removals.
2108 >     *
2109 >     * @return the number of mappings
2110 >     * @since 1.8
2111 >     */
2112 >    public long mappingCount() {
2113 >        long n = sumCount();
2114 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2115 >    }
2116 >
2117 >    /**
2118 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2119 >     * from the given type to {@code Boolean.TRUE}.
2120 >     *
2121 >     * @return the new set
2122 >     * @since 1.8
2123 >     */
2124 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2125 >        return new KeySetView<K,Boolean>
2126 >            (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2127 >    }
2128 >
2129 >    /**
2130 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2131 >     * from the given type to {@code Boolean.TRUE}.
2132 >     *
2133 >     * @param initialCapacity The implementation performs internal
2134 >     * sizing to accommodate this many elements.
2135 >     * @return the new set
2136 >     * @throws IllegalArgumentException if the initial capacity of
2137 >     * elements is negative
2138 >     * @since 1.8
2139 >     */
2140 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2141 >        return new KeySetView<K,Boolean>
2142 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2143 >    }
2144 >
2145 >    /**
2146 >     * Returns a {@link Set} view of the keys in this map, using the
2147 >     * given common mapped value for any additions (i.e., {@link
2148 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2149 >     * This is of course only appropriate if it is acceptable to use
2150 >     * the same value for all additions from this view.
2151 >     *
2152 >     * @param mappedValue the mapped value to use for any additions
2153 >     * @return the set view
2154 >     * @throws NullPointerException if the mappedValue is null
2155 >     */
2156 >    public KeySetView<K,V> keySet(V mappedValue) {
2157 >        if (mappedValue == null)
2158 >            throw new NullPointerException();
2159 >        return new KeySetView<K,V>(this, mappedValue);
2160 >    }
2161 >
2162 >    /* ---------------- Special Nodes -------------- */
2163 >
2164 >    /**
2165 >     * A node inserted at head of bins during transfer operations.
2166 >     */
2167 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2168 >        final Node<K,V>[] nextTable;
2169 >        ForwardingNode(Node<K,V>[] tab) {
2170 >            super(MOVED, null, null, null);
2171 >            this.nextTable = tab;
2172 >        }
2173 >
2174 >        Node<K,V> find(int h, Object k) {
2175 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2176 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2177 >                Node<K,V> e; int n;
2178 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2179 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2180 >                    return null;
2181 >                for (;;) {
2182 >                    int eh; K ek;
2183 >                    if ((eh = e.hash) == h &&
2184 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2185 >                        return e;
2186 >                    if (eh < 0) {
2187 >                        if (e instanceof ForwardingNode) {
2188 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2189 >                            continue outer;
2190 >                        }
2191 >                        else
2192 >                            return e.find(h, k);
2193 >                    }
2194 >                    if ((e = e.next) == null)
2195 >                        return null;
2196 >                }
2197 >            }
2198 >        }
2199 >    }
2200 >
2201 >    /**
2202 >     * A place-holder node used in computeIfAbsent and compute
2203 >     */
2204 >    static final class ReservationNode<K,V> extends Node<K,V> {
2205 >        ReservationNode() {
2206 >            super(RESERVED, null, null, null);
2207 >        }
2208 >
2209 >        Node<K,V> find(int h, Object k) {
2210 >            return null;
2211 >        }
2212 >    }
2213 >
2214 >    /* ---------------- Table Initialization and Resizing -------------- */
2215 >
2216 >    /**
2217 >     * Returns the stamp bits for resizing a table of size n.
2218 >     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2219 >     */
2220 >    static final int resizeStamp(int n) {
2221 >        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2222 >    }
2223 >
2224 >    /**
2225 >     * Initializes table, using the size recorded in sizeCtl.
2226 >     */
2227 >    private final Node<K,V>[] initTable() {
2228 >        Node<K,V>[] tab; int sc;
2229 >        while ((tab = table) == null || tab.length == 0) {
2230 >            if ((sc = sizeCtl) < 0)
2231 >                Thread.yield(); // lost initialization race; just spin
2232 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2233 >                try {
2234 >                    if ((tab = table) == null || tab.length == 0) {
2235 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2236 >                        @SuppressWarnings("unchecked")
2237 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2238 >                        table = tab = nt;
2239 >                        sc = n - (n >>> 2);
2240 >                    }
2241 >                } finally {
2242 >                    sizeCtl = sc;
2243 >                }
2244 >                break;
2245 >            }
2246 >        }
2247 >        return tab;
2248 >    }
2249 >
2250 >    /**
2251 >     * Adds to count, and if table is too small and not already
2252 >     * resizing, initiates transfer. If already resizing, helps
2253 >     * perform transfer if work is available.  Rechecks occupancy
2254 >     * after a transfer to see if another resize is already needed
2255 >     * because resizings are lagging additions.
2256 >     *
2257 >     * @param x the count to add
2258 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2259 >     */
2260 >    private final void addCount(long x, int check) {
2261 >        CounterCell[] as; long b, s;
2262 >        if ((as = counterCells) != null ||
2263 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2264 >            CounterHashCode hc; CounterCell a; long v; int m;
2265 >            boolean uncontended = true;
2266 >            if ((hc = threadCounterHashCode.get()) == null ||
2267 >                as == null || (m = as.length - 1) < 0 ||
2268 >                (a = as[m & hc.code]) == null ||
2269 >                !(uncontended =
2270 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2271 >                fullAddCount(x, hc, uncontended);
2272 >                return;
2273 >            }
2274 >            if (check <= 1)
2275 >                return;
2276 >            s = sumCount();
2277 >        }
2278 >        if (check >= 0) {
2279 >            Node<K,V>[] tab, nt; int n, sc;
2280 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2281 >                   (n = tab.length) < MAXIMUM_CAPACITY) {
2282 >                int rs = resizeStamp(n);
2283 >                if (sc < 0) {
2284 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2285 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2286 >                        transferIndex <= 0)
2287 >                        break;
2288 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2289 >                        transfer(tab, nt);
2290 >                }
2291 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2292 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2293 >                    transfer(tab, null);
2294 >                s = sumCount();
2295 >            }
2296 >        }
2297 >    }
2298 >
2299 >    /**
2300 >     * Helps transfer if a resize is in progress.
2301 >     */
2302 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2303 >        Node<K,V>[] nextTab; int sc;
2304 >        if (tab != null && (f instanceof ForwardingNode) &&
2305 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2306 >            int rs = resizeStamp(tab.length);
2307 >            while (nextTab == nextTable && table == tab &&
2308 >                   (sc = sizeCtl) < 0) {
2309 >                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2310 >                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
2311 >                    break;
2312 >                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2313 >                    transfer(tab, nextTab);
2314 >                    break;
2315 >                }
2316 >            }
2317 >            return nextTab;
2318 >        }
2319 >        return table;
2320 >    }
2321 >
2322 >    /**
2323 >     * Tries to presize table to accommodate the given number of elements.
2324 >     *
2325 >     * @param size number of elements (doesn't need to be perfectly accurate)
2326 >     */
2327 >    private final void tryPresize(int size) {
2328 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2329 >            tableSizeFor(size + (size >>> 1) + 1);
2330 >        int sc;
2331 >        while ((sc = sizeCtl) >= 0) {
2332 >            Node<K,V>[] tab = table; int n;
2333 >            if (tab == null || (n = tab.length) == 0) {
2334 >                n = (sc > c) ? sc : c;
2335 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2336 >                    try {
2337 >                        if (table == tab) {
2338 >                            @SuppressWarnings("unchecked")
2339 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2340 >                            table = nt;
2341 >                            sc = n - (n >>> 2);
2342 >                        }
2343 >                    } finally {
2344 >                        sizeCtl = sc;
2345 >                    }
2346 >                }
2347 >            }
2348 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2349 >                break;
2350 >            else if (tab == table) {
2351 >                int rs = resizeStamp(n);
2352 >                if (sc < 0) {
2353 >                    Node<K,V>[] nt;
2354 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2355 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2356 >                        transferIndex <= 0)
2357 >                        break;
2358 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2359 >                        transfer(tab, nt);
2360 >                }
2361 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2362 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2363 >                    transfer(tab, null);
2364 >            }
2365 >        }
2366 >    }
2367 >
2368 >    /**
2369 >     * Moves and/or copies the nodes in each bin to new table. See
2370 >     * above for explanation.
2371 >     */
2372 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2373 >        int n = tab.length, stride;
2374 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2375 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2376 >        if (nextTab == null) {            // initiating
2377 >            try {
2378 >                @SuppressWarnings("unchecked")
2379 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2380 >                nextTab = nt;
2381 >            } catch (Throwable ex) {      // try to cope with OOME
2382 >                sizeCtl = Integer.MAX_VALUE;
2383 >                return;
2384 >            }
2385 >            nextTable = nextTab;
2386 >            transferIndex = n;
2387 >        }
2388 >        int nextn = nextTab.length;
2389 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2390 >        boolean advance = true;
2391 >        boolean finishing = false; // to ensure sweep before committing nextTab
2392 >        for (int i = 0, bound = 0;;) {
2393 >            Node<K,V> f; int fh;
2394 >            while (advance) {
2395 >                int nextIndex, nextBound;
2396 >                if (--i >= bound || finishing)
2397 >                    advance = false;
2398 >                else if ((nextIndex = transferIndex) <= 0) {
2399 >                    i = -1;
2400 >                    advance = false;
2401 >                }
2402 >                else if (U.compareAndSwapInt
2403 >                         (this, TRANSFERINDEX, nextIndex,
2404 >                          nextBound = (nextIndex > stride ?
2405 >                                       nextIndex - stride : 0))) {
2406 >                    bound = nextBound;
2407 >                    i = nextIndex - 1;
2408 >                    advance = false;
2409 >                }
2410 >            }
2411 >            if (i < 0 || i >= n || i + n >= nextn) {
2412 >                int sc;
2413 >                if (finishing) {
2414 >                    nextTable = null;
2415 >                    table = nextTab;
2416 >                    sizeCtl = (n << 1) - (n >>> 1);
2417 >                    return;
2418 >                }
2419 >                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2420 >                    if ((sc - 2) != resizeStamp(n))
2421 >                        return;
2422 >                    finishing = advance = true;
2423 >                    i = n; // recheck before commit
2424 >                }
2425 >            }
2426 >            else if ((f = tabAt(tab, i)) == null)
2427 >                advance = casTabAt(tab, i, null, fwd);
2428 >            else if ((fh = f.hash) == MOVED)
2429 >                advance = true; // already processed
2430 >            else {
2431 >                synchronized (f) {
2432 >                    if (tabAt(tab, i) == f) {
2433 >                        Node<K,V> ln, hn;
2434 >                        if (fh >= 0) {
2435 >                            int runBit = fh & n;
2436 >                            Node<K,V> lastRun = f;
2437 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2438 >                                int b = p.hash & n;
2439 >                                if (b != runBit) {
2440 >                                    runBit = b;
2441 >                                    lastRun = p;
2442 >                                }
2443 >                            }
2444 >                            if (runBit == 0) {
2445 >                                ln = lastRun;
2446 >                                hn = null;
2447 >                            }
2448 >                            else {
2449 >                                hn = lastRun;
2450 >                                ln = null;
2451 >                            }
2452 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2453 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2454 >                                if ((ph & n) == 0)
2455 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2456 >                                else
2457 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2458 >                            }
2459 >                            setTabAt(nextTab, i, ln);
2460 >                            setTabAt(nextTab, i + n, hn);
2461 >                            setTabAt(tab, i, fwd);
2462 >                            advance = true;
2463 >                        }
2464 >                        else if (f instanceof TreeBin) {
2465 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2466 >                            TreeNode<K,V> lo = null, loTail = null;
2467 >                            TreeNode<K,V> hi = null, hiTail = null;
2468 >                            int lc = 0, hc = 0;
2469 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2470 >                                int h = e.hash;
2471 >                                TreeNode<K,V> p = new TreeNode<K,V>
2472 >                                    (h, e.key, e.val, null, null);
2473 >                                if ((h & n) == 0) {
2474 >                                    if ((p.prev = loTail) == null)
2475 >                                        lo = p;
2476 >                                    else
2477 >                                        loTail.next = p;
2478 >                                    loTail = p;
2479 >                                    ++lc;
2480 >                                }
2481 >                                else {
2482 >                                    if ((p.prev = hiTail) == null)
2483 >                                        hi = p;
2484 >                                    else
2485 >                                        hiTail.next = p;
2486 >                                    hiTail = p;
2487 >                                    ++hc;
2488 >                                }
2489 >                            }
2490 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2491 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2492 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2493 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2494 >                            setTabAt(nextTab, i, ln);
2495 >                            setTabAt(nextTab, i + n, hn);
2496 >                            setTabAt(tab, i, fwd);
2497 >                            advance = true;
2498 >                        }
2499 >                    }
2500 >                }
2501 >            }
2502 >        }
2503 >    }
2504 >
2505 >    /* ---------------- Conversion from/to TreeBins -------------- */
2506 >
2507 >    /**
2508 >     * Replaces all linked nodes in bin at given index unless table is
2509 >     * too small, in which case resizes instead.
2510 >     */
2511 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2512 >        Node<K,V> b; int n, sc;
2513 >        if (tab != null) {
2514 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2515 >                tryPresize(n << 1);
2516 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2517 >                synchronized (b) {
2518 >                    if (tabAt(tab, index) == b) {
2519 >                        TreeNode<K,V> hd = null, tl = null;
2520 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2521 >                            TreeNode<K,V> p =
2522 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2523 >                                                  null, null);
2524 >                            if ((p.prev = tl) == null)
2525 >                                hd = p;
2526 >                            else
2527 >                                tl.next = p;
2528 >                            tl = p;
2529 >                        }
2530 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2531 >                    }
2532 >                }
2533 >            }
2534 >        }
2535 >    }
2536 >    /**
2537 >     * Returns a list on non-TreeNodes replacing those in given list.
2538 >     */
2539 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2540 >        Node<K,V> hd = null, tl = null;
2541 >        for (Node<K,V> q = b; q != null; q = q.next) {
2542 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2543 >            if (tl == null)
2544 >                hd = p;
2545 >            else
2546 >                tl.next = p;
2547 >            tl = p;
2548 >        }
2549 >        return hd;
2550 >    }
2551 >
2552 >    /* ---------------- TreeNodes -------------- */
2553 >
2554 >    /**
2555 >     * Nodes for use in TreeBins
2556 >     */
2557 >    static final class TreeNode<K,V> extends Node<K,V> {
2558 >        TreeNode<K,V> parent;  // red-black tree links
2559 >        TreeNode<K,V> left;
2560 >        TreeNode<K,V> right;
2561 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2562 >        boolean red;
2563 >
2564 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2565 >                 TreeNode<K,V> parent) {
2566 >            super(hash, key, val, next);
2567 >            this.parent = parent;
2568 >        }
2569 >
2570 >        Node<K,V> find(int h, Object k) {
2571 >            return findTreeNode(h, k, null);
2572 >        }
2573 >
2574 >        /**
2575 >         * Returns the TreeNode (or null if not found) for the given key
2576 >         * starting at given root.
2577 >         */
2578 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2579 >            if (k != null) {
2580 >                TreeNode<K,V> p = this;
2581 >                do  {
2582 >                    int ph, dir; K pk; TreeNode<K,V> q;
2583 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2584 >                    if ((ph = p.hash) > h)
2585 >                        p = pl;
2586 >                    else if (ph < h)
2587 >                        p = pr;
2588 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2589 >                        return p;
2590 >                    else if (pl == null)
2591 >                        p = pr;
2592 >                    else if (pr == null)
2593 >                        p = pl;
2594 >                    else if ((kc != null ||
2595 >                              (kc = comparableClassFor(k)) != null) &&
2596 >                             (dir = compareComparables(kc, k, pk)) != 0)
2597 >                        p = (dir < 0) ? pl : pr;
2598 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2599 >                        return q;
2600 >                    else
2601 >                        p = pl;
2602 >                } while (p != null);
2603 >            }
2604 >            return null;
2605 >        }
2606 >    }
2607 >
2608 >    /* ---------------- TreeBins -------------- */
2609 >
2610 >    /**
2611 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2612 >     * keys or values, but instead point to list of TreeNodes and
2613 >     * their root. They also maintain a parasitic read-write lock
2614 >     * forcing writers (who hold bin lock) to wait for readers (who do
2615 >     * not) to complete before tree restructuring operations.
2616 >     */
2617 >    static final class TreeBin<K,V> extends Node<K,V> {
2618 >        TreeNode<K,V> root;
2619 >        volatile TreeNode<K,V> first;
2620 >        volatile Thread waiter;
2621 >        volatile int lockState;
2622 >        // values for lockState
2623 >        static final int WRITER = 1; // set while holding write lock
2624 >        static final int WAITER = 2; // set when waiting for write lock
2625 >        static final int READER = 4; // increment value for setting read lock
2626 >
2627 >        /**
2628 >         * Tie-breaking utility for ordering insertions when equal
2629 >         * hashCodes and non-comparable. We don't require a total
2630 >         * order, just a consistent insertion rule to maintain
2631 >         * equivalence across rebalancings. Tie-breaking further than
2632 >         * necessary simplifies testing a bit.
2633 >         */
2634 >        static int tieBreakOrder(Object a, Object b) {
2635 >            int d;
2636 >            if (a == null || b == null ||
2637 >                (d = a.getClass().getName().
2638 >                 compareTo(b.getClass().getName())) == 0)
2639 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2640 >                     -1 : 1);
2641 >            return d;
2642 >        }
2643 >
2644 >        /**
2645 >         * Creates bin with initial set of nodes headed by b.
2646 >         */
2647 >        TreeBin(TreeNode<K,V> b) {
2648 >            super(TREEBIN, null, null, null);
2649 >            this.first = b;
2650 >            TreeNode<K,V> r = null;
2651 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2652 >                next = (TreeNode<K,V>)x.next;
2653 >                x.left = x.right = null;
2654 >                if (r == null) {
2655 >                    x.parent = null;
2656 >                    x.red = false;
2657 >                    r = x;
2658 >                }
2659 >                else {
2660 >                    K k = x.key;
2661 >                    int h = x.hash;
2662 >                    Class<?> kc = null;
2663 >                    for (TreeNode<K,V> p = r;;) {
2664 >                        int dir, ph;
2665 >                        K pk = p.key;
2666 >                        if ((ph = p.hash) > h)
2667 >                            dir = -1;
2668 >                        else if (ph < h)
2669 >                            dir = 1;
2670 >                        else if ((kc == null &&
2671 >                                  (kc = comparableClassFor(k)) == null) ||
2672 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2673 >                            dir = tieBreakOrder(k, pk);
2674 >                            TreeNode<K,V> xp = p;
2675 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2676 >                            x.parent = xp;
2677 >                            if (dir <= 0)
2678 >                                xp.left = x;
2679 >                            else
2680 >                                xp.right = x;
2681 >                            r = balanceInsertion(r, x);
2682 >                            break;
2683 >                        }
2684 >                    }
2685 >                }
2686 >            }
2687 >            this.root = r;
2688 >            assert checkInvariants(root);
2689 >        }
2690 >
2691 >        /**
2692 >         * Acquires write lock for tree restructuring.
2693 >         */
2694 >        private final void lockRoot() {
2695 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2696 >                contendedLock(); // offload to separate method
2697 >        }
2698 >
2699 >        /**
2700 >         * Releases write lock for tree restructuring.
2701 >         */
2702 >        private final void unlockRoot() {
2703 >            lockState = 0;
2704 >        }
2705 >
2706 >        /**
2707 >         * Possibly blocks awaiting root lock.
2708 >         */
2709 >        private final void contendedLock() {
2710 >            boolean waiting = false;
2711 >            for (int s;;) {
2712 >                if (((s = lockState) & ~WAITER) == 0) {
2713 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2714 >                        if (waiting)
2715 >                            waiter = null;
2716 >                        return;
2717 >                    }
2718 >                }
2719 >                else if ((s & WAITER) == 0) {
2720 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2721 >                        waiting = true;
2722 >                        waiter = Thread.currentThread();
2723 >                    }
2724 >                }
2725 >                else if (waiting)
2726 >                    LockSupport.park(this);
2727 >            }
2728 >        }
2729 >
2730 >        /**
2731 >         * Returns matching node or null if none. Tries to search
2732 >         * using tree comparisons from root, but continues linear
2733 >         * search when lock not available.
2734 >         */
2735 >        final Node<K,V> find(int h, Object k) {
2736 >            if (k != null) {
2737 >                for (Node<K,V> e = first; e != null; ) {
2738 >                    int s; K ek;
2739 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2740 >                        if (e.hash == h &&
2741 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2742 >                            return e;
2743 >                        e = e.next;
2744 >                    }
2745 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2746 >                                                 s + READER)) {
2747 >                        TreeNode<K,V> r, p;
2748 >                        try {
2749 >                            p = ((r = root) == null ? null :
2750 >                                 r.findTreeNode(h, k, null));
2751 >                        } finally {
2752 >                            Thread w;
2753 >                            int ls;
2754 >                            do {} while (!U.compareAndSwapInt
2755 >                                         (this, LOCKSTATE,
2756 >                                          ls = lockState, ls - READER));
2757 >                            if (ls == (READER|WAITER) && (w = waiter) != null)
2758 >                                LockSupport.unpark(w);
2759 >                        }
2760 >                        return p;
2761 >                    }
2762 >                }
2763 >            }
2764 >            return null;
2765 >        }
2766 >
2767 >        /**
2768 >         * Finds or adds a node.
2769 >         * @return null if added
2770 >         */
2771 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2772 >            Class<?> kc = null;
2773 >            boolean searched = false;
2774 >            for (TreeNode<K,V> p = root;;) {
2775 >                int dir, ph; K pk;
2776 >                if (p == null) {
2777 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2778 >                    break;
2779 >                }
2780 >                else if ((ph = p.hash) > h)
2781 >                    dir = -1;
2782 >                else if (ph < h)
2783 >                    dir = 1;
2784 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2785 >                    return p;
2786 >                else if ((kc == null &&
2787 >                          (kc = comparableClassFor(k)) == null) ||
2788 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2789 >                    if (!searched) {
2790 >                        TreeNode<K,V> q, ch;
2791 >                        searched = true;
2792 >                        if (((ch = p.left) != null &&
2793 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2794 >                            ((ch = p.right) != null &&
2795 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2796 >                            return q;
2797 >                    }
2798 >                    dir = tieBreakOrder(k, pk);
2799 >                }
2800 >
2801 >                TreeNode<K,V> xp = p;
2802 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2803 >                    TreeNode<K,V> x, f = first;
2804 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2805 >                    if (f != null)
2806 >                        f.prev = x;
2807 >                    if (dir <= 0)
2808 >                        xp.left = x;
2809 >                    else
2810 >                        xp.right = x;
2811 >                    if (!xp.red)
2812 >                        x.red = true;
2813 >                    else {
2814 >                        lockRoot();
2815 >                        try {
2816 >                            root = balanceInsertion(root, x);
2817 >                        } finally {
2818 >                            unlockRoot();
2819 >                        }
2820 >                    }
2821 >                    break;
2822 >                }
2823 >            }
2824 >            assert checkInvariants(root);
2825 >            return null;
2826 >        }
2827 >
2828 >        /**
2829 >         * Removes the given node, that must be present before this
2830 >         * call.  This is messier than typical red-black deletion code
2831 >         * because we cannot swap the contents of an interior node
2832 >         * with a leaf successor that is pinned by "next" pointers
2833 >         * that are accessible independently of lock. So instead we
2834 >         * swap the tree linkages.
2835 >         *
2836 >         * @return true if now too small, so should be untreeified
2837 >         */
2838 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2839 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2840 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2841 >            TreeNode<K,V> r, rl;
2842 >            if (pred == null)
2843 >                first = next;
2844 >            else
2845 >                pred.next = next;
2846 >            if (next != null)
2847 >                next.prev = pred;
2848 >            if (first == null) {
2849 >                root = null;
2850 >                return true;
2851 >            }
2852 >            if ((r = root) == null || r.right == null || // too small
2853 >                (rl = r.left) == null || rl.left == null)
2854 >                return true;
2855 >            lockRoot();
2856 >            try {
2857 >                TreeNode<K,V> replacement;
2858 >                TreeNode<K,V> pl = p.left;
2859 >                TreeNode<K,V> pr = p.right;
2860 >                if (pl != null && pr != null) {
2861 >                    TreeNode<K,V> s = pr, sl;
2862 >                    while ((sl = s.left) != null) // find successor
2863 >                        s = sl;
2864 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2865 >                    TreeNode<K,V> sr = s.right;
2866 >                    TreeNode<K,V> pp = p.parent;
2867 >                    if (s == pr) { // p was s's direct parent
2868 >                        p.parent = s;
2869 >                        s.right = p;
2870 >                    }
2871 >                    else {
2872 >                        TreeNode<K,V> sp = s.parent;
2873 >                        if ((p.parent = sp) != null) {
2874 >                            if (s == sp.left)
2875 >                                sp.left = p;
2876 >                            else
2877 >                                sp.right = p;
2878 >                        }
2879 >                        if ((s.right = pr) != null)
2880 >                            pr.parent = s;
2881 >                    }
2882 >                    p.left = null;
2883 >                    if ((p.right = sr) != null)
2884 >                        sr.parent = p;
2885 >                    if ((s.left = pl) != null)
2886 >                        pl.parent = s;
2887 >                    if ((s.parent = pp) == null)
2888 >                        r = s;
2889 >                    else if (p == pp.left)
2890 >                        pp.left = s;
2891 >                    else
2892 >                        pp.right = s;
2893 >                    if (sr != null)
2894 >                        replacement = sr;
2895 >                    else
2896 >                        replacement = p;
2897 >                }
2898 >                else if (pl != null)
2899 >                    replacement = pl;
2900 >                else if (pr != null)
2901 >                    replacement = pr;
2902 >                else
2903 >                    replacement = p;
2904 >                if (replacement != p) {
2905 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2906 >                    if (pp == null)
2907 >                        r = replacement;
2908 >                    else if (p == pp.left)
2909 >                        pp.left = replacement;
2910 >                    else
2911 >                        pp.right = replacement;
2912 >                    p.left = p.right = p.parent = null;
2913 >                }
2914 >
2915 >                root = (p.red) ? r : balanceDeletion(r, replacement);
2916 >
2917 >                if (p == replacement) {  // detach pointers
2918 >                    TreeNode<K,V> pp;
2919 >                    if ((pp = p.parent) != null) {
2920 >                        if (p == pp.left)
2921 >                            pp.left = null;
2922 >                        else if (p == pp.right)
2923 >                            pp.right = null;
2924 >                        p.parent = null;
2925 >                    }
2926 >                }
2927 >            } finally {
2928 >                unlockRoot();
2929 >            }
2930 >            assert checkInvariants(root);
2931 >            return false;
2932 >        }
2933 >
2934 >        /* ------------------------------------------------------------ */
2935 >        // Red-black tree methods, all adapted from CLR
2936 >
2937 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2938 >                                              TreeNode<K,V> p) {
2939 >            TreeNode<K,V> r, pp, rl;
2940 >            if (p != null && (r = p.right) != null) {
2941 >                if ((rl = p.right = r.left) != null)
2942 >                    rl.parent = p;
2943 >                if ((pp = r.parent = p.parent) == null)
2944 >                    (root = r).red = false;
2945 >                else if (pp.left == p)
2946 >                    pp.left = r;
2947 >                else
2948 >                    pp.right = r;
2949 >                r.left = p;
2950 >                p.parent = r;
2951 >            }
2952 >            return root;
2953 >        }
2954 >
2955 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2956 >                                               TreeNode<K,V> p) {
2957 >            TreeNode<K,V> l, pp, lr;
2958 >            if (p != null && (l = p.left) != null) {
2959 >                if ((lr = p.left = l.right) != null)
2960 >                    lr.parent = p;
2961 >                if ((pp = l.parent = p.parent) == null)
2962 >                    (root = l).red = false;
2963 >                else if (pp.right == p)
2964 >                    pp.right = l;
2965 >                else
2966 >                    pp.left = l;
2967 >                l.right = p;
2968 >                p.parent = l;
2969 >            }
2970 >            return root;
2971 >        }
2972 >
2973 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2974 >                                                    TreeNode<K,V> x) {
2975 >            x.red = true;
2976 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2977 >                if ((xp = x.parent) == null) {
2978 >                    x.red = false;
2979 >                    return x;
2980 >                }
2981 >                else if (!xp.red || (xpp = xp.parent) == null)
2982 >                    return root;
2983 >                if (xp == (xppl = xpp.left)) {
2984 >                    if ((xppr = xpp.right) != null && xppr.red) {
2985 >                        xppr.red = false;
2986 >                        xp.red = false;
2987 >                        xpp.red = true;
2988 >                        x = xpp;
2989 >                    }
2990 >                    else {
2991 >                        if (x == xp.right) {
2992 >                            root = rotateLeft(root, x = xp);
2993 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2994 >                        }
2995 >                        if (xp != null) {
2996 >                            xp.red = false;
2997 >                            if (xpp != null) {
2998 >                                xpp.red = true;
2999 >                                root = rotateRight(root, xpp);
3000 >                            }
3001 >                        }
3002 >                    }
3003 >                }
3004 >                else {
3005 >                    if (xppl != null && xppl.red) {
3006 >                        xppl.red = false;
3007 >                        xp.red = false;
3008 >                        xpp.red = true;
3009 >                        x = xpp;
3010 >                    }
3011 >                    else {
3012 >                        if (x == xp.left) {
3013 >                            root = rotateRight(root, x = xp);
3014 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3015 >                        }
3016 >                        if (xp != null) {
3017 >                            xp.red = false;
3018 >                            if (xpp != null) {
3019 >                                xpp.red = true;
3020 >                                root = rotateLeft(root, xpp);
3021 >                            }
3022 >                        }
3023 >                    }
3024 >                }
3025 >            }
3026 >        }
3027 >
3028 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3029 >                                                   TreeNode<K,V> x) {
3030 >            for (TreeNode<K,V> xp, xpl, xpr;;)  {
3031 >                if (x == null || x == root)
3032 >                    return root;
3033 >                else if ((xp = x.parent) == null) {
3034 >                    x.red = false;
3035 >                    return x;
3036 >                }
3037 >                else if (x.red) {
3038 >                    x.red = false;
3039 >                    return root;
3040 >                }
3041 >                else if ((xpl = xp.left) == x) {
3042 >                    if ((xpr = xp.right) != null && xpr.red) {
3043 >                        xpr.red = false;
3044 >                        xp.red = true;
3045 >                        root = rotateLeft(root, xp);
3046 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3047 >                    }
3048 >                    if (xpr == null)
3049 >                        x = xp;
3050 >                    else {
3051 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3052 >                        if ((sr == null || !sr.red) &&
3053 >                            (sl == null || !sl.red)) {
3054 >                            xpr.red = true;
3055 >                            x = xp;
3056 >                        }
3057 >                        else {
3058 >                            if (sr == null || !sr.red) {
3059 >                                if (sl != null)
3060 >                                    sl.red = false;
3061 >                                xpr.red = true;
3062 >                                root = rotateRight(root, xpr);
3063 >                                xpr = (xp = x.parent) == null ?
3064 >                                    null : xp.right;
3065 >                            }
3066 >                            if (xpr != null) {
3067 >                                xpr.red = (xp == null) ? false : xp.red;
3068 >                                if ((sr = xpr.right) != null)
3069 >                                    sr.red = false;
3070 >                            }
3071 >                            if (xp != null) {
3072 >                                xp.red = false;
3073 >                                root = rotateLeft(root, xp);
3074 >                            }
3075 >                            x = root;
3076 >                        }
3077 >                    }
3078 >                }
3079 >                else { // symmetric
3080 >                    if (xpl != null && xpl.red) {
3081 >                        xpl.red = false;
3082 >                        xp.red = true;
3083 >                        root = rotateRight(root, xp);
3084 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3085 >                    }
3086 >                    if (xpl == null)
3087 >                        x = xp;
3088 >                    else {
3089 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3090 >                        if ((sl == null || !sl.red) &&
3091 >                            (sr == null || !sr.red)) {
3092 >                            xpl.red = true;
3093 >                            x = xp;
3094 >                        }
3095 >                        else {
3096 >                            if (sl == null || !sl.red) {
3097 >                                if (sr != null)
3098 >                                    sr.red = false;
3099 >                                xpl.red = true;
3100 >                                root = rotateLeft(root, xpl);
3101 >                                xpl = (xp = x.parent) == null ?
3102 >                                    null : xp.left;
3103 >                            }
3104 >                            if (xpl != null) {
3105 >                                xpl.red = (xp == null) ? false : xp.red;
3106 >                                if ((sl = xpl.left) != null)
3107 >                                    sl.red = false;
3108 >                            }
3109 >                            if (xp != null) {
3110 >                                xp.red = false;
3111 >                                root = rotateRight(root, xp);
3112 >                            }
3113 >                            x = root;
3114 >                        }
3115 >                    }
3116 >                }
3117 >            }
3118 >        }
3119 >
3120 >        /**
3121 >         * Recursive invariant check
3122 >         */
3123 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3124 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3125 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3126 >            if (tb != null && tb.next != t)
3127 >                return false;
3128 >            if (tn != null && tn.prev != t)
3129 >                return false;
3130 >            if (tp != null && t != tp.left && t != tp.right)
3131 >                return false;
3132 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3133 >                return false;
3134 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3135 >                return false;
3136 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3137 >                return false;
3138 >            if (tl != null && !checkInvariants(tl))
3139 >                return false;
3140 >            if (tr != null && !checkInvariants(tr))
3141 >                return false;
3142 >            return true;
3143 >        }
3144 >
3145 >        private static final sun.misc.Unsafe U;
3146 >        private static final long LOCKSTATE;
3147 >        static {
3148 >            try {
3149 >                U = getUnsafe();
3150 >                Class<?> k = TreeBin.class;
3151 >                LOCKSTATE = U.objectFieldOffset
3152 >                    (k.getDeclaredField("lockState"));
3153 >            } catch (Exception e) {
3154 >                throw new Error(e);
3155 >            }
3156 >        }
3157 >    }
3158 >
3159 >    /* ----------------Table Traversal -------------- */
3160 >
3161 >    /**
3162 >     * Records the table, its length, and current traversal index for a
3163 >     * traverser that must process a region of a forwarded table before
3164 >     * proceeding with current table.
3165 >     */
3166 >    static final class TableStack<K,V> {
3167 >        int length;
3168 >        int index;
3169 >        Node<K,V>[] tab;
3170 >        TableStack<K,V> next;
3171 >    }
3172 >
3173 >    /**
3174 >     * Encapsulates traversal for methods such as containsValue; also
3175 >     * serves as a base class for other iterators and spliterators.
3176 >     *
3177 >     * Method advance visits once each still-valid node that was
3178 >     * reachable upon iterator construction. It might miss some that
3179 >     * were added to a bin after the bin was visited, which is OK wrt
3180 >     * consistency guarantees. Maintaining this property in the face
3181 >     * of possible ongoing resizes requires a fair amount of
3182 >     * bookkeeping state that is difficult to optimize away amidst
3183 >     * volatile accesses.  Even so, traversal maintains reasonable
3184 >     * throughput.
3185 >     *
3186 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3187 >     * However, if the table has been resized, then all future steps
3188 >     * must traverse both the bin at the current index as well as at
3189 >     * (index + baseSize); and so on for further resizings. To
3190 >     * paranoically cope with potential sharing by users of iterators
3191 >     * across threads, iteration terminates if a bounds checks fails
3192 >     * for a table read.
3193 >     */
3194 >    static class Traverser<K,V> {
3195 >        Node<K,V>[] tab;        // current table; updated if resized
3196 >        Node<K,V> next;         // the next entry to use
3197 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3198 >        int index;              // index of bin to use next
3199 >        int baseIndex;          // current index of initial table
3200 >        int baseLimit;          // index bound for initial table
3201 >        final int baseSize;     // initial table size
3202 >
3203 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3204 >            this.tab = tab;
3205 >            this.baseSize = size;
3206 >            this.baseIndex = this.index = index;
3207 >            this.baseLimit = limit;
3208 >            this.next = null;
3209 >        }
3210 >
3211 >        /**
3212 >         * Advances if possible, returning next valid node, or null if none.
3213 >         */
3214 >        final Node<K,V> advance() {
3215 >            Node<K,V> e;
3216 >            if ((e = next) != null)
3217 >                e = e.next;
3218 >            for (;;) {
3219 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3220 >                if (e != null)
3221 >                    return next = e;
3222 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3223 >                    (n = t.length) <= (i = index) || i < 0)
3224 >                    return next = null;
3225 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3226 >                    if (e instanceof ForwardingNode) {
3227 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3228 >                        e = null;
3229 >                        pushState(t, i, n);
3230 >                        continue;
3231 >                    }
3232 >                    else if (e instanceof TreeBin)
3233 >                        e = ((TreeBin<K,V>)e).first;
3234 >                    else
3235 >                        e = null;
3236 >                }
3237 >                if (stack != null)
3238 >                    recoverState(n);
3239 >                else if ((index = i + baseSize) >= n)
3240 >                    index = ++baseIndex; // visit upper slots if present
3241 >            }
3242 >        }
3243 >
3244 >        /**
3245 >         * Saves traversal state upon encountering a forwarding node.
3246 >         */
3247 >        private void pushState(Node<K,V>[] t, int i, int n) {
3248 >            TableStack<K,V> s = spare;  // reuse if possible
3249 >            if (s != null)
3250 >                spare = s.next;
3251 >            else
3252 >                s = new TableStack<K,V>();
3253 >            s.tab = t;
3254 >            s.length = n;
3255 >            s.index = i;
3256 >            s.next = stack;
3257 >            stack = s;
3258 >        }
3259 >
3260 >        /**
3261 >         * Possibly pops traversal state.
3262 >         *
3263 >         * @param n length of current table
3264 >         */
3265 >        private void recoverState(int n) {
3266 >            TableStack<K,V> s; int len;
3267 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3268 >                n = len;
3269 >                index = s.index;
3270 >                tab = s.tab;
3271 >                s.tab = null;
3272 >                TableStack<K,V> next = s.next;
3273 >                s.next = spare; // save for reuse
3274 >                stack = next;
3275 >                spare = s;
3276 >            }
3277 >            if (s == null && (index += baseSize) >= n)
3278 >                index = ++baseIndex;
3279 >        }
3280 >    }
3281 >
3282 >    /**
3283 >     * Base of key, value, and entry Iterators. Adds fields to
3284 >     * Traverser to support iterator.remove.
3285 >     */
3286 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3287 >        final ConcurrentHashMapV8<K,V> map;
3288 >        Node<K,V> lastReturned;
3289 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3290 >                    ConcurrentHashMapV8<K,V> map) {
3291 >            super(tab, size, index, limit);
3292              this.map = map;
3293 +            advance();
3294          }
3295  
3296 +        public final boolean hasNext() { return next != null; }
3297 +        public final boolean hasMoreElements() { return next != null; }
3298 +
3299          public final void remove() {
3300 <            if (last == null)
3300 >            Node<K,V> p;
3301 >            if ((p = lastReturned) == null)
3302                  throw new IllegalStateException();
3303 <            map.remove(last.key);
3304 <            last = null;
3303 >            lastReturned = null;
3304 >            map.replaceNode(p.key, null, null);
3305          }
1417
1418        public final boolean hasNext()         { return next != null; }
1419        public final boolean hasMoreElements() { return next != null; }
3306      }
3307  
3308 <    static final class KeyIterator<K,V> extends ViewIterator<K,V>
3308 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3309          implements Iterator<K>, Enumeration<K> {
3310 <        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3310 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3311 >                    ConcurrentHashMapV8<K,V> map) {
3312 >            super(tab, index, size, limit, map);
3313 >        }
3314  
1426        @SuppressWarnings("unchecked")
3315          public final K next() {
3316 <            if (next == null)
3316 >            Node<K,V> p;
3317 >            if ((p = next) == null)
3318                  throw new NoSuchElementException();
3319 <            Object k = nextKey;
3319 >            K k = p.key;
3320 >            lastReturned = p;
3321              advance();
3322 <            return (K)k;
3322 >            return k;
3323          }
3324  
3325          public final K nextElement() { return next(); }
3326      }
3327  
3328 <    static final class ValueIterator<K,V> extends ViewIterator<K,V>
3328 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3329          implements Iterator<V>, Enumeration<V> {
3330 <        ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3330 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3331 >                      ConcurrentHashMapV8<K,V> map) {
3332 >            super(tab, index, size, limit, map);
3333 >        }
3334  
1442        @SuppressWarnings("unchecked")
3335          public final V next() {
3336 <            if (next == null)
3336 >            Node<K,V> p;
3337 >            if ((p = next) == null)
3338                  throw new NoSuchElementException();
3339 <            Object v = nextVal;
3339 >            V v = p.val;
3340 >            lastReturned = p;
3341              advance();
3342 <            return (V)v;
3342 >            return v;
3343          }
3344  
3345          public final V nextElement() { return next(); }
3346      }
3347  
3348 <    static final class EntryIterator<K,V> extends ViewIterator<K,V>
3348 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3349          implements Iterator<Map.Entry<K,V>> {
3350 <        EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3350 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3351 >                      ConcurrentHashMapV8<K,V> map) {
3352 >            super(tab, index, size, limit, map);
3353 >        }
3354  
1458        @SuppressWarnings("unchecked")
3355          public final Map.Entry<K,V> next() {
3356 <            if (next == null)
3356 >            Node<K,V> p;
3357 >            if ((p = next) == null)
3358                  throw new NoSuchElementException();
3359 <            Object k = nextKey;
3360 <            Object v = nextVal;
3359 >            K k = p.key;
3360 >            V v = p.val;
3361 >            lastReturned = p;
3362              advance();
3363 <            return new WriteThroughEntry<K,V>(map, (K)k, (V)v);
3363 >            return new MapEntry<K,V>(k, v, map);
3364          }
3365      }
3366  
3367      /**
3368 <     * Custom Entry class used by EntryIterator.next(), that relays
1471 <     * setValue changes to the underlying map.
3368 >     * Exported Entry for EntryIterator
3369       */
3370 <    static final class WriteThroughEntry<K,V> implements Map.Entry<K, V> {
1474 <        final ConcurrentHashMapV8<K, V> map;
3370 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3371          final K key; // non-null
3372          V val;       // non-null
3373 <        WriteThroughEntry(ConcurrentHashMapV8<K, V> map, K key, V val) {
3374 <            this.map = map; this.key = key; this.val = val;
3373 >        final ConcurrentHashMapV8<K,V> map;
3374 >        MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3375 >            this.key = key;
3376 >            this.val = val;
3377 >            this.map = map;
3378          }
3379 +        public K getKey()        { return key; }
3380 +        public V getValue()      { return val; }
3381 +        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3382 +        public String toString() { return key + "=" + val; }
3383  
3384 <        public final K getKey()       { return key; }
1482 <        public final V getValue()     { return val; }
1483 <        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
1484 <        public final String toString(){ return key + "=" + val; }
1485 <
1486 <        public final boolean equals(Object o) {
3384 >        public boolean equals(Object o) {
3385              Object k, v; Map.Entry<?,?> e;
3386              return ((o instanceof Map.Entry) &&
3387                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 1494 | Line 3392 | public class ConcurrentHashMapV8<K, V>
3392  
3393          /**
3394           * Sets our entry's value and writes through to the map. The
3395 <         * value to return is somewhat arbitrary here. Since a
3396 <         * WriteThroughEntry does not necessarily track asynchronous
3397 <         * changes, the most recent "previous" value could be
3398 <         * different from what we return (or could even have been
3399 <         * removed in which case the put will re-establish). We do not
1502 <         * and cannot guarantee more.
3395 >         * value to return is somewhat arbitrary here. Since we do not
3396 >         * necessarily track asynchronous changes, the most recent
3397 >         * "previous" value could be different from what we return (or
3398 >         * could even have been removed, in which case the put will
3399 >         * re-establish). We do not and cannot guarantee more.
3400           */
3401 <        public final V setValue(V value) {
3401 >        public V setValue(V value) {
3402              if (value == null) throw new NullPointerException();
3403              V v = val;
3404              val = value;
# Line 1510 | Line 3407 | public class ConcurrentHashMapV8<K, V>
3407          }
3408      }
3409  
3410 +    static final class KeySpliterator<K,V> extends Traverser<K,V>
3411 +        implements ConcurrentHashMapSpliterator<K> {
3412 +        long est;               // size estimate
3413 +        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3414 +                       long est) {
3415 +            super(tab, size, index, limit);
3416 +            this.est = est;
3417 +        }
3418 +
3419 +        public ConcurrentHashMapSpliterator<K> trySplit() {
3420 +            int i, f, h;
3421 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3422 +                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3423 +                                        f, est >>>= 1);
3424 +        }
3425 +
3426 +        public void forEachRemaining(Action<? super K> action) {
3427 +            if (action == null) throw new NullPointerException();
3428 +            for (Node<K,V> p; (p = advance()) != null;)
3429 +                action.apply(p.key);
3430 +        }
3431 +
3432 +        public boolean tryAdvance(Action<? super K> action) {
3433 +            if (action == null) throw new NullPointerException();
3434 +            Node<K,V> p;
3435 +            if ((p = advance()) == null)
3436 +                return false;
3437 +            action.apply(p.key);
3438 +            return true;
3439 +        }
3440 +
3441 +        public long estimateSize() { return est; }
3442 +
3443 +    }
3444 +
3445 +    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3446 +        implements ConcurrentHashMapSpliterator<V> {
3447 +        long est;               // size estimate
3448 +        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3449 +                         long est) {
3450 +            super(tab, size, index, limit);
3451 +            this.est = est;
3452 +        }
3453 +
3454 +        public ConcurrentHashMapSpliterator<V> trySplit() {
3455 +            int i, f, h;
3456 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3457 +                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3458 +                                          f, est >>>= 1);
3459 +        }
3460 +
3461 +        public void forEachRemaining(Action<? super V> action) {
3462 +            if (action == null) throw new NullPointerException();
3463 +            for (Node<K,V> p; (p = advance()) != null;)
3464 +                action.apply(p.val);
3465 +        }
3466 +
3467 +        public boolean tryAdvance(Action<? super V> action) {
3468 +            if (action == null) throw new NullPointerException();
3469 +            Node<K,V> p;
3470 +            if ((p = advance()) == null)
3471 +                return false;
3472 +            action.apply(p.val);
3473 +            return true;
3474 +        }
3475 +
3476 +        public long estimateSize() { return est; }
3477 +
3478 +    }
3479 +
3480 +    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3481 +        implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3482 +        final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3483 +        long est;               // size estimate
3484 +        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3485 +                         long est, ConcurrentHashMapV8<K,V> map) {
3486 +            super(tab, size, index, limit);
3487 +            this.map = map;
3488 +            this.est = est;
3489 +        }
3490 +
3491 +        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3492 +            int i, f, h;
3493 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3494 +                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3495 +                                          f, est >>>= 1, map);
3496 +        }
3497 +
3498 +        public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3499 +            if (action == null) throw new NullPointerException();
3500 +            for (Node<K,V> p; (p = advance()) != null; )
3501 +                action.apply(new MapEntry<K,V>(p.key, p.val, map));
3502 +        }
3503 +
3504 +        public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3505 +            if (action == null) throw new NullPointerException();
3506 +            Node<K,V> p;
3507 +            if ((p = advance()) == null)
3508 +                return false;
3509 +            action.apply(new MapEntry<K,V>(p.key, p.val, map));
3510 +            return true;
3511 +        }
3512 +
3513 +        public long estimateSize() { return est; }
3514 +
3515 +    }
3516 +
3517 +    // Parallel bulk operations
3518 +
3519 +    /**
3520 +     * Computes initial batch value for bulk tasks. The returned value
3521 +     * is approximately exp2 of the number of times (minus one) to
3522 +     * split task by two before executing leaf action. This value is
3523 +     * faster to compute and more convenient to use as a guide to
3524 +     * splitting than is the depth, since it is used while dividing by
3525 +     * two anyway.
3526 +     */
3527 +    final int batchFor(long b) {
3528 +        long n;
3529 +        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3530 +            return 0;
3531 +        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3532 +        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3533 +    }
3534 +
3535 +    /**
3536 +     * Performs the given action for each (key, value).
3537 +     *
3538 +     * @param parallelismThreshold the (estimated) number of elements
3539 +     * needed for this operation to be executed in parallel
3540 +     * @param action the action
3541 +     * @since 1.8
3542 +     */
3543 +    public void forEach(long parallelismThreshold,
3544 +                        BiAction<? super K,? super V> action) {
3545 +        if (action == null) throw new NullPointerException();
3546 +        new ForEachMappingTask<K,V>
3547 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3548 +             action).invoke();
3549 +    }
3550 +
3551 +    /**
3552 +     * Performs the given action for each non-null transformation
3553 +     * of each (key, value).
3554 +     *
3555 +     * @param parallelismThreshold the (estimated) number of elements
3556 +     * needed for this operation to be executed in parallel
3557 +     * @param transformer a function returning the transformation
3558 +     * for an element, or null if there is no transformation (in
3559 +     * which case the action is not applied)
3560 +     * @param action the action
3561 +     * @since 1.8
3562 +     */
3563 +    public <U> void forEach(long parallelismThreshold,
3564 +                            BiFun<? super K, ? super V, ? extends U> transformer,
3565 +                            Action<? super U> action) {
3566 +        if (transformer == null || action == null)
3567 +            throw new NullPointerException();
3568 +        new ForEachTransformedMappingTask<K,V,U>
3569 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3570 +             transformer, action).invoke();
3571 +    }
3572 +
3573 +    /**
3574 +     * Returns a non-null result from applying the given search
3575 +     * function on each (key, value), or null if none.  Upon
3576 +     * success, further element processing is suppressed and the
3577 +     * results of any other parallel invocations of the search
3578 +     * function are ignored.
3579 +     *
3580 +     * @param parallelismThreshold the (estimated) number of elements
3581 +     * needed for this operation to be executed in parallel
3582 +     * @param searchFunction a function returning a non-null
3583 +     * result on success, else null
3584 +     * @return a non-null result from applying the given search
3585 +     * function on each (key, value), or null if none
3586 +     * @since 1.8
3587 +     */
3588 +    public <U> U search(long parallelismThreshold,
3589 +                        BiFun<? super K, ? super V, ? extends U> searchFunction) {
3590 +        if (searchFunction == null) throw new NullPointerException();
3591 +        return new SearchMappingsTask<K,V,U>
3592 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3593 +             searchFunction, new AtomicReference<U>()).invoke();
3594 +    }
3595 +
3596 +    /**
3597 +     * Returns the result of accumulating the given transformation
3598 +     * of all (key, value) pairs using the given reducer to
3599 +     * combine values, or null if none.
3600 +     *
3601 +     * @param parallelismThreshold the (estimated) number of elements
3602 +     * needed for this operation to be executed in parallel
3603 +     * @param transformer a function returning the transformation
3604 +     * for an element, or null if there is no transformation (in
3605 +     * which case it is not combined)
3606 +     * @param reducer a commutative associative combining function
3607 +     * @return the result of accumulating the given transformation
3608 +     * of all (key, value) pairs
3609 +     * @since 1.8
3610 +     */
3611 +    public <U> U reduce(long parallelismThreshold,
3612 +                        BiFun<? super K, ? super V, ? extends U> transformer,
3613 +                        BiFun<? super U, ? super U, ? extends U> reducer) {
3614 +        if (transformer == null || reducer == null)
3615 +            throw new NullPointerException();
3616 +        return new MapReduceMappingsTask<K,V,U>
3617 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3618 +             null, transformer, reducer).invoke();
3619 +    }
3620 +
3621 +    /**
3622 +     * Returns the result of accumulating the given transformation
3623 +     * of all (key, value) pairs using the given reducer to
3624 +     * combine values, and the given basis as an identity value.
3625 +     *
3626 +     * @param parallelismThreshold the (estimated) number of elements
3627 +     * needed for this operation to be executed in parallel
3628 +     * @param transformer a function returning the transformation
3629 +     * for an element
3630 +     * @param basis the identity (initial default value) for the reduction
3631 +     * @param reducer a commutative associative combining function
3632 +     * @return the result of accumulating the given transformation
3633 +     * of all (key, value) pairs
3634 +     * @since 1.8
3635 +     */
3636 +    public double reduceToDouble(long parallelismThreshold,
3637 +                                 ObjectByObjectToDouble<? super K, ? super V> transformer,
3638 +                                 double basis,
3639 +                                 DoubleByDoubleToDouble reducer) {
3640 +        if (transformer == null || reducer == null)
3641 +            throw new NullPointerException();
3642 +        return new MapReduceMappingsToDoubleTask<K,V>
3643 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3644 +             null, transformer, basis, reducer).invoke();
3645 +    }
3646 +
3647 +    /**
3648 +     * Returns the result of accumulating the given transformation
3649 +     * of all (key, value) pairs using the given reducer to
3650 +     * combine values, and the given basis as an identity value.
3651 +     *
3652 +     * @param parallelismThreshold the (estimated) number of elements
3653 +     * needed for this operation to be executed in parallel
3654 +     * @param transformer a function returning the transformation
3655 +     * for an element
3656 +     * @param basis the identity (initial default value) for the reduction
3657 +     * @param reducer a commutative associative combining function
3658 +     * @return the result of accumulating the given transformation
3659 +     * of all (key, value) pairs
3660 +     * @since 1.8
3661 +     */
3662 +    public long reduceToLong(long parallelismThreshold,
3663 +                             ObjectByObjectToLong<? super K, ? super V> transformer,
3664 +                             long basis,
3665 +                             LongByLongToLong reducer) {
3666 +        if (transformer == null || reducer == null)
3667 +            throw new NullPointerException();
3668 +        return new MapReduceMappingsToLongTask<K,V>
3669 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3670 +             null, transformer, basis, reducer).invoke();
3671 +    }
3672 +
3673 +    /**
3674 +     * Returns the result of accumulating the given transformation
3675 +     * of all (key, value) pairs using the given reducer to
3676 +     * combine values, and the given basis as an identity value.
3677 +     *
3678 +     * @param parallelismThreshold the (estimated) number of elements
3679 +     * needed for this operation to be executed in parallel
3680 +     * @param transformer a function returning the transformation
3681 +     * for an element
3682 +     * @param basis the identity (initial default value) for the reduction
3683 +     * @param reducer a commutative associative combining function
3684 +     * @return the result of accumulating the given transformation
3685 +     * of all (key, value) pairs
3686 +     * @since 1.8
3687 +     */
3688 +    public int reduceToInt(long parallelismThreshold,
3689 +                           ObjectByObjectToInt<? super K, ? super V> transformer,
3690 +                           int basis,
3691 +                           IntByIntToInt reducer) {
3692 +        if (transformer == null || reducer == null)
3693 +            throw new NullPointerException();
3694 +        return new MapReduceMappingsToIntTask<K,V>
3695 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3696 +             null, transformer, basis, reducer).invoke();
3697 +    }
3698 +
3699 +    /**
3700 +     * Performs the given action for each key.
3701 +     *
3702 +     * @param parallelismThreshold the (estimated) number of elements
3703 +     * needed for this operation to be executed in parallel
3704 +     * @param action the action
3705 +     * @since 1.8
3706 +     */
3707 +    public void forEachKey(long parallelismThreshold,
3708 +                           Action<? super K> action) {
3709 +        if (action == null) throw new NullPointerException();
3710 +        new ForEachKeyTask<K,V>
3711 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3712 +             action).invoke();
3713 +    }
3714 +
3715 +    /**
3716 +     * Performs the given action for each non-null transformation
3717 +     * of each key.
3718 +     *
3719 +     * @param parallelismThreshold the (estimated) number of elements
3720 +     * needed for this operation to be executed in parallel
3721 +     * @param transformer a function returning the transformation
3722 +     * for an element, or null if there is no transformation (in
3723 +     * which case the action is not applied)
3724 +     * @param action the action
3725 +     * @since 1.8
3726 +     */
3727 +    public <U> void forEachKey(long parallelismThreshold,
3728 +                               Fun<? super K, ? extends U> transformer,
3729 +                               Action<? super U> action) {
3730 +        if (transformer == null || action == null)
3731 +            throw new NullPointerException();
3732 +        new ForEachTransformedKeyTask<K,V,U>
3733 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3734 +             transformer, action).invoke();
3735 +    }
3736 +
3737 +    /**
3738 +     * Returns a non-null result from applying the given search
3739 +     * function on each key, or null if none. Upon success,
3740 +     * further element processing is suppressed and the results of
3741 +     * any other parallel invocations of the search function are
3742 +     * ignored.
3743 +     *
3744 +     * @param parallelismThreshold the (estimated) number of elements
3745 +     * needed for this operation to be executed in parallel
3746 +     * @param searchFunction a function returning a non-null
3747 +     * result on success, else null
3748 +     * @return a non-null result from applying the given search
3749 +     * function on each key, or null if none
3750 +     * @since 1.8
3751 +     */
3752 +    public <U> U searchKeys(long parallelismThreshold,
3753 +                            Fun<? super K, ? extends U> searchFunction) {
3754 +        if (searchFunction == null) throw new NullPointerException();
3755 +        return new SearchKeysTask<K,V,U>
3756 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3757 +             searchFunction, new AtomicReference<U>()).invoke();
3758 +    }
3759 +
3760 +    /**
3761 +     * Returns the result of accumulating all keys using the given
3762 +     * reducer to combine values, or null if none.
3763 +     *
3764 +     * @param parallelismThreshold the (estimated) number of elements
3765 +     * needed for this operation to be executed in parallel
3766 +     * @param reducer a commutative associative combining function
3767 +     * @return the result of accumulating all keys using the given
3768 +     * reducer to combine values, or null if none
3769 +     * @since 1.8
3770 +     */
3771 +    public K reduceKeys(long parallelismThreshold,
3772 +                        BiFun<? super K, ? super K, ? extends K> reducer) {
3773 +        if (reducer == null) throw new NullPointerException();
3774 +        return new ReduceKeysTask<K,V>
3775 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3776 +             null, reducer).invoke();
3777 +    }
3778 +
3779 +    /**
3780 +     * Returns the result of accumulating the given transformation
3781 +     * of all keys using the given reducer to combine values, or
3782 +     * null if none.
3783 +     *
3784 +     * @param parallelismThreshold the (estimated) number of elements
3785 +     * needed for this operation to be executed in parallel
3786 +     * @param transformer a function returning the transformation
3787 +     * for an element, or null if there is no transformation (in
3788 +     * which case it is not combined)
3789 +     * @param reducer a commutative associative combining function
3790 +     * @return the result of accumulating the given transformation
3791 +     * of all keys
3792 +     * @since 1.8
3793 +     */
3794 +    public <U> U reduceKeys(long parallelismThreshold,
3795 +                            Fun<? super K, ? extends U> transformer,
3796 +         BiFun<? super U, ? super U, ? extends U> reducer) {
3797 +        if (transformer == null || reducer == null)
3798 +            throw new NullPointerException();
3799 +        return new MapReduceKeysTask<K,V,U>
3800 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3801 +             null, transformer, reducer).invoke();
3802 +    }
3803 +
3804 +    /**
3805 +     * Returns the result of accumulating the given transformation
3806 +     * of all keys using the given reducer to combine values, and
3807 +     * the given basis as an identity value.
3808 +     *
3809 +     * @param parallelismThreshold the (estimated) number of elements
3810 +     * needed for this operation to be executed in parallel
3811 +     * @param transformer a function returning the transformation
3812 +     * for an element
3813 +     * @param basis the identity (initial default value) for the reduction
3814 +     * @param reducer a commutative associative combining function
3815 +     * @return the result of accumulating the given transformation
3816 +     * of all keys
3817 +     * @since 1.8
3818 +     */
3819 +    public double reduceKeysToDouble(long parallelismThreshold,
3820 +                                     ObjectToDouble<? super K> transformer,
3821 +                                     double basis,
3822 +                                     DoubleByDoubleToDouble reducer) {
3823 +        if (transformer == null || reducer == null)
3824 +            throw new NullPointerException();
3825 +        return new MapReduceKeysToDoubleTask<K,V>
3826 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3827 +             null, transformer, basis, reducer).invoke();
3828 +    }
3829 +
3830 +    /**
3831 +     * Returns the result of accumulating the given transformation
3832 +     * of all keys using the given reducer to combine values, and
3833 +     * the given basis as an identity value.
3834 +     *
3835 +     * @param parallelismThreshold the (estimated) number of elements
3836 +     * needed for this operation to be executed in parallel
3837 +     * @param transformer a function returning the transformation
3838 +     * for an element
3839 +     * @param basis the identity (initial default value) for the reduction
3840 +     * @param reducer a commutative associative combining function
3841 +     * @return the result of accumulating the given transformation
3842 +     * of all keys
3843 +     * @since 1.8
3844 +     */
3845 +    public long reduceKeysToLong(long parallelismThreshold,
3846 +                                 ObjectToLong<? super K> transformer,
3847 +                                 long basis,
3848 +                                 LongByLongToLong reducer) {
3849 +        if (transformer == null || reducer == null)
3850 +            throw new NullPointerException();
3851 +        return new MapReduceKeysToLongTask<K,V>
3852 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3853 +             null, transformer, basis, reducer).invoke();
3854 +    }
3855 +
3856 +    /**
3857 +     * Returns the result of accumulating the given transformation
3858 +     * of all keys using the given reducer to combine values, and
3859 +     * the given basis as an identity value.
3860 +     *
3861 +     * @param parallelismThreshold the (estimated) number of elements
3862 +     * needed for this operation to be executed in parallel
3863 +     * @param transformer a function returning the transformation
3864 +     * for an element
3865 +     * @param basis the identity (initial default value) for the reduction
3866 +     * @param reducer a commutative associative combining function
3867 +     * @return the result of accumulating the given transformation
3868 +     * of all keys
3869 +     * @since 1.8
3870 +     */
3871 +    public int reduceKeysToInt(long parallelismThreshold,
3872 +                               ObjectToInt<? super K> transformer,
3873 +                               int basis,
3874 +                               IntByIntToInt reducer) {
3875 +        if (transformer == null || reducer == null)
3876 +            throw new NullPointerException();
3877 +        return new MapReduceKeysToIntTask<K,V>
3878 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3879 +             null, transformer, basis, reducer).invoke();
3880 +    }
3881 +
3882 +    /**
3883 +     * Performs the given action for each value.
3884 +     *
3885 +     * @param parallelismThreshold the (estimated) number of elements
3886 +     * needed for this operation to be executed in parallel
3887 +     * @param action the action
3888 +     * @since 1.8
3889 +     */
3890 +    public void forEachValue(long parallelismThreshold,
3891 +                             Action<? super V> action) {
3892 +        if (action == null)
3893 +            throw new NullPointerException();
3894 +        new ForEachValueTask<K,V>
3895 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3896 +             action).invoke();
3897 +    }
3898 +
3899 +    /**
3900 +     * Performs the given action for each non-null transformation
3901 +     * of each value.
3902 +     *
3903 +     * @param parallelismThreshold the (estimated) number of elements
3904 +     * needed for this operation to be executed in parallel
3905 +     * @param transformer a function returning the transformation
3906 +     * for an element, or null if there is no transformation (in
3907 +     * which case the action is not applied)
3908 +     * @param action the action
3909 +     * @since 1.8
3910 +     */
3911 +    public <U> void forEachValue(long parallelismThreshold,
3912 +                                 Fun<? super V, ? extends U> transformer,
3913 +                                 Action<? super U> action) {
3914 +        if (transformer == null || action == null)
3915 +            throw new NullPointerException();
3916 +        new ForEachTransformedValueTask<K,V,U>
3917 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3918 +             transformer, action).invoke();
3919 +    }
3920 +
3921 +    /**
3922 +     * Returns a non-null result from applying the given search
3923 +     * function on each value, or null if none.  Upon success,
3924 +     * further element processing is suppressed and the results of
3925 +     * any other parallel invocations of the search function are
3926 +     * ignored.
3927 +     *
3928 +     * @param parallelismThreshold the (estimated) number of elements
3929 +     * needed for this operation to be executed in parallel
3930 +     * @param searchFunction a function returning a non-null
3931 +     * result on success, else null
3932 +     * @return a non-null result from applying the given search
3933 +     * function on each value, or null if none
3934 +     * @since 1.8
3935 +     */
3936 +    public <U> U searchValues(long parallelismThreshold,
3937 +                              Fun<? super V, ? extends U> searchFunction) {
3938 +        if (searchFunction == null) throw new NullPointerException();
3939 +        return new SearchValuesTask<K,V,U>
3940 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3941 +             searchFunction, new AtomicReference<U>()).invoke();
3942 +    }
3943 +
3944 +    /**
3945 +     * Returns the result of accumulating all values using the
3946 +     * given reducer to combine values, or null if none.
3947 +     *
3948 +     * @param parallelismThreshold the (estimated) number of elements
3949 +     * needed for this operation to be executed in parallel
3950 +     * @param reducer a commutative associative combining function
3951 +     * @return the result of accumulating all values
3952 +     * @since 1.8
3953 +     */
3954 +    public V reduceValues(long parallelismThreshold,
3955 +                          BiFun<? super V, ? super V, ? extends V> reducer) {
3956 +        if (reducer == null) throw new NullPointerException();
3957 +        return new ReduceValuesTask<K,V>
3958 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3959 +             null, reducer).invoke();
3960 +    }
3961 +
3962 +    /**
3963 +     * Returns the result of accumulating the given transformation
3964 +     * of all values using the given reducer to combine values, or
3965 +     * null if none.
3966 +     *
3967 +     * @param parallelismThreshold the (estimated) number of elements
3968 +     * needed for this operation to be executed in parallel
3969 +     * @param transformer a function returning the transformation
3970 +     * for an element, or null if there is no transformation (in
3971 +     * which case it is not combined)
3972 +     * @param reducer a commutative associative combining function
3973 +     * @return the result of accumulating the given transformation
3974 +     * of all values
3975 +     * @since 1.8
3976 +     */
3977 +    public <U> U reduceValues(long parallelismThreshold,
3978 +                              Fun<? super V, ? extends U> transformer,
3979 +                              BiFun<? super U, ? super U, ? extends U> reducer) {
3980 +        if (transformer == null || reducer == null)
3981 +            throw new NullPointerException();
3982 +        return new MapReduceValuesTask<K,V,U>
3983 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3984 +             null, transformer, reducer).invoke();
3985 +    }
3986 +
3987 +    /**
3988 +     * Returns the result of accumulating the given transformation
3989 +     * of all values using the given reducer to combine values,
3990 +     * and the given basis as an identity value.
3991 +     *
3992 +     * @param parallelismThreshold the (estimated) number of elements
3993 +     * needed for this operation to be executed in parallel
3994 +     * @param transformer a function returning the transformation
3995 +     * for an element
3996 +     * @param basis the identity (initial default value) for the reduction
3997 +     * @param reducer a commutative associative combining function
3998 +     * @return the result of accumulating the given transformation
3999 +     * of all values
4000 +     * @since 1.8
4001 +     */
4002 +    public double reduceValuesToDouble(long parallelismThreshold,
4003 +                                       ObjectToDouble<? super V> transformer,
4004 +                                       double basis,
4005 +                                       DoubleByDoubleToDouble reducer) {
4006 +        if (transformer == null || reducer == null)
4007 +            throw new NullPointerException();
4008 +        return new MapReduceValuesToDoubleTask<K,V>
4009 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4010 +             null, transformer, basis, reducer).invoke();
4011 +    }
4012 +
4013 +    /**
4014 +     * Returns the result of accumulating the given transformation
4015 +     * of all values using the given reducer to combine values,
4016 +     * and the given basis as an identity value.
4017 +     *
4018 +     * @param parallelismThreshold the (estimated) number of elements
4019 +     * needed for this operation to be executed in parallel
4020 +     * @param transformer a function returning the transformation
4021 +     * for an element
4022 +     * @param basis the identity (initial default value) for the reduction
4023 +     * @param reducer a commutative associative combining function
4024 +     * @return the result of accumulating the given transformation
4025 +     * of all values
4026 +     * @since 1.8
4027 +     */
4028 +    public long reduceValuesToLong(long parallelismThreshold,
4029 +                                   ObjectToLong<? super V> transformer,
4030 +                                   long basis,
4031 +                                   LongByLongToLong reducer) {
4032 +        if (transformer == null || reducer == null)
4033 +            throw new NullPointerException();
4034 +        return new MapReduceValuesToLongTask<K,V>
4035 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4036 +             null, transformer, basis, reducer).invoke();
4037 +    }
4038 +
4039 +    /**
4040 +     * Returns the result of accumulating the given transformation
4041 +     * of all values using the given reducer to combine values,
4042 +     * and the given basis as an identity value.
4043 +     *
4044 +     * @param parallelismThreshold the (estimated) number of elements
4045 +     * needed for this operation to be executed in parallel
4046 +     * @param transformer a function returning the transformation
4047 +     * for an element
4048 +     * @param basis the identity (initial default value) for the reduction
4049 +     * @param reducer a commutative associative combining function
4050 +     * @return the result of accumulating the given transformation
4051 +     * of all values
4052 +     * @since 1.8
4053 +     */
4054 +    public int reduceValuesToInt(long parallelismThreshold,
4055 +                                 ObjectToInt<? super V> transformer,
4056 +                                 int basis,
4057 +                                 IntByIntToInt reducer) {
4058 +        if (transformer == null || reducer == null)
4059 +            throw new NullPointerException();
4060 +        return new MapReduceValuesToIntTask<K,V>
4061 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4062 +             null, transformer, basis, reducer).invoke();
4063 +    }
4064 +
4065 +    /**
4066 +     * Performs the given action for each entry.
4067 +     *
4068 +     * @param parallelismThreshold the (estimated) number of elements
4069 +     * needed for this operation to be executed in parallel
4070 +     * @param action the action
4071 +     * @since 1.8
4072 +     */
4073 +    public void forEachEntry(long parallelismThreshold,
4074 +                             Action<? super Map.Entry<K,V>> action) {
4075 +        if (action == null) throw new NullPointerException();
4076 +        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4077 +                                  action).invoke();
4078 +    }
4079 +
4080 +    /**
4081 +     * Performs the given action for each non-null transformation
4082 +     * of each entry.
4083 +     *
4084 +     * @param parallelismThreshold the (estimated) number of elements
4085 +     * needed for this operation to be executed in parallel
4086 +     * @param transformer a function returning the transformation
4087 +     * for an element, or null if there is no transformation (in
4088 +     * which case the action is not applied)
4089 +     * @param action the action
4090 +     * @since 1.8
4091 +     */
4092 +    public <U> void forEachEntry(long parallelismThreshold,
4093 +                                 Fun<Map.Entry<K,V>, ? extends U> transformer,
4094 +                                 Action<? super U> action) {
4095 +        if (transformer == null || action == null)
4096 +            throw new NullPointerException();
4097 +        new ForEachTransformedEntryTask<K,V,U>
4098 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4099 +             transformer, action).invoke();
4100 +    }
4101 +
4102 +    /**
4103 +     * Returns a non-null result from applying the given search
4104 +     * function on each entry, or null if none.  Upon success,
4105 +     * further element processing is suppressed and the results of
4106 +     * any other parallel invocations of the search function are
4107 +     * ignored.
4108 +     *
4109 +     * @param parallelismThreshold the (estimated) number of elements
4110 +     * needed for this operation to be executed in parallel
4111 +     * @param searchFunction a function returning a non-null
4112 +     * result on success, else null
4113 +     * @return a non-null result from applying the given search
4114 +     * function on each entry, or null if none
4115 +     * @since 1.8
4116 +     */
4117 +    public <U> U searchEntries(long parallelismThreshold,
4118 +                               Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4119 +        if (searchFunction == null) throw new NullPointerException();
4120 +        return new SearchEntriesTask<K,V,U>
4121 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4122 +             searchFunction, new AtomicReference<U>()).invoke();
4123 +    }
4124 +
4125 +    /**
4126 +     * Returns the result of accumulating all entries using the
4127 +     * given reducer to combine values, or null if none.
4128 +     *
4129 +     * @param parallelismThreshold the (estimated) number of elements
4130 +     * needed for this operation to be executed in parallel
4131 +     * @param reducer a commutative associative combining function
4132 +     * @return the result of accumulating all entries
4133 +     * @since 1.8
4134 +     */
4135 +    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4136 +                                        BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4137 +        if (reducer == null) throw new NullPointerException();
4138 +        return new ReduceEntriesTask<K,V>
4139 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4140 +             null, reducer).invoke();
4141 +    }
4142 +
4143 +    /**
4144 +     * Returns the result of accumulating the given transformation
4145 +     * of all entries using the given reducer to combine values,
4146 +     * or null if none.
4147 +     *
4148 +     * @param parallelismThreshold the (estimated) number of elements
4149 +     * needed for this operation to be executed in parallel
4150 +     * @param transformer a function returning the transformation
4151 +     * for an element, or null if there is no transformation (in
4152 +     * which case it is not combined)
4153 +     * @param reducer a commutative associative combining function
4154 +     * @return the result of accumulating the given transformation
4155 +     * of all entries
4156 +     * @since 1.8
4157 +     */
4158 +    public <U> U reduceEntries(long parallelismThreshold,
4159 +                               Fun<Map.Entry<K,V>, ? extends U> transformer,
4160 +                               BiFun<? super U, ? super U, ? extends U> reducer) {
4161 +        if (transformer == null || reducer == null)
4162 +            throw new NullPointerException();
4163 +        return new MapReduceEntriesTask<K,V,U>
4164 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4165 +             null, transformer, reducer).invoke();
4166 +    }
4167 +
4168 +    /**
4169 +     * Returns the result of accumulating the given transformation
4170 +     * of all entries using the given reducer to combine values,
4171 +     * and the given basis as an identity value.
4172 +     *
4173 +     * @param parallelismThreshold the (estimated) number of elements
4174 +     * needed for this operation to be executed in parallel
4175 +     * @param transformer a function returning the transformation
4176 +     * for an element
4177 +     * @param basis the identity (initial default value) for the reduction
4178 +     * @param reducer a commutative associative combining function
4179 +     * @return the result of accumulating the given transformation
4180 +     * of all entries
4181 +     * @since 1.8
4182 +     */
4183 +    public double reduceEntriesToDouble(long parallelismThreshold,
4184 +                                        ObjectToDouble<Map.Entry<K,V>> transformer,
4185 +                                        double basis,
4186 +                                        DoubleByDoubleToDouble reducer) {
4187 +        if (transformer == null || reducer == null)
4188 +            throw new NullPointerException();
4189 +        return new MapReduceEntriesToDoubleTask<K,V>
4190 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4191 +             null, transformer, basis, reducer).invoke();
4192 +    }
4193 +
4194 +    /**
4195 +     * Returns the result of accumulating the given transformation
4196 +     * of all entries using the given reducer to combine values,
4197 +     * and the given basis as an identity value.
4198 +     *
4199 +     * @param parallelismThreshold the (estimated) number of elements
4200 +     * needed for this operation to be executed in parallel
4201 +     * @param transformer a function returning the transformation
4202 +     * for an element
4203 +     * @param basis the identity (initial default value) for the reduction
4204 +     * @param reducer a commutative associative combining function
4205 +     * @return the result of accumulating the given transformation
4206 +     * of all entries
4207 +     * @since 1.8
4208 +     */
4209 +    public long reduceEntriesToLong(long parallelismThreshold,
4210 +                                    ObjectToLong<Map.Entry<K,V>> transformer,
4211 +                                    long basis,
4212 +                                    LongByLongToLong reducer) {
4213 +        if (transformer == null || reducer == null)
4214 +            throw new NullPointerException();
4215 +        return new MapReduceEntriesToLongTask<K,V>
4216 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4217 +             null, transformer, basis, reducer).invoke();
4218 +    }
4219 +
4220 +    /**
4221 +     * Returns the result of accumulating the given transformation
4222 +     * of all entries using the given reducer to combine values,
4223 +     * and the given basis as an identity value.
4224 +     *
4225 +     * @param parallelismThreshold the (estimated) number of elements
4226 +     * needed for this operation to be executed in parallel
4227 +     * @param transformer a function returning the transformation
4228 +     * for an element
4229 +     * @param basis the identity (initial default value) for the reduction
4230 +     * @param reducer a commutative associative combining function
4231 +     * @return the result of accumulating the given transformation
4232 +     * of all entries
4233 +     * @since 1.8
4234 +     */
4235 +    public int reduceEntriesToInt(long parallelismThreshold,
4236 +                                  ObjectToInt<Map.Entry<K,V>> transformer,
4237 +                                  int basis,
4238 +                                  IntByIntToInt reducer) {
4239 +        if (transformer == null || reducer == null)
4240 +            throw new NullPointerException();
4241 +        return new MapReduceEntriesToIntTask<K,V>
4242 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4243 +             null, transformer, basis, reducer).invoke();
4244 +    }
4245 +
4246 +
4247      /* ----------------Views -------------- */
4248  
4249 <    /*
4250 <     * These currently just extend java.util.AbstractX classes, but
1517 <     * may need a new custom base to support partitioned traversal.
4249 >    /**
4250 >     * Base class for views.
4251       */
4252 +    abstract static class CollectionView<K,V,E>
4253 +        implements Collection<E>, java.io.Serializable {
4254 +        private static final long serialVersionUID = 7249069246763182397L;
4255 +        final ConcurrentHashMapV8<K,V> map;
4256 +        CollectionView(ConcurrentHashMapV8<K,V> map)  { this.map = map; }
4257  
4258 <    static final class KeySet<K,V> extends AbstractSet<K> {
4259 <        final ConcurrentHashMapV8<K, V> map;
4260 <        KeySet(ConcurrentHashMapV8<K, V> map)   { this.map = map; }
4258 >        /**
4259 >         * Returns the map backing this view.
4260 >         *
4261 >         * @return the map backing this view
4262 >         */
4263 >        public ConcurrentHashMapV8<K,V> getMap() { return map; }
4264  
4265 <        public final int size()                 { return map.size(); }
4266 <        public final boolean isEmpty()          { return map.isEmpty(); }
4267 <        public final void clear()               { map.clear(); }
4268 <        public final boolean contains(Object o) { return map.containsKey(o); }
4269 <        public final boolean remove(Object o)   { return map.remove(o) != null; }
4270 <        public final Iterator<K> iterator() {
4271 <            return new KeyIterator<K,V>(map);
4265 >        /**
4266 >         * Removes all of the elements from this view, by removing all
4267 >         * the mappings from the map backing this view.
4268 >         */
4269 >        public final void clear()      { map.clear(); }
4270 >        public final int size()        { return map.size(); }
4271 >        public final boolean isEmpty() { return map.isEmpty(); }
4272 >
4273 >        // implementations below rely on concrete classes supplying these
4274 >        // abstract methods
4275 >        /**
4276 >         * Returns a "weakly consistent" iterator that will never
4277 >         * throw {@link ConcurrentModificationException}, and
4278 >         * guarantees to traverse elements as they existed upon
4279 >         * construction of the iterator, and may (but is not
4280 >         * guaranteed to) reflect any modifications subsequent to
4281 >         * construction.
4282 >         */
4283 >        public abstract Iterator<E> iterator();
4284 >        public abstract boolean contains(Object o);
4285 >        public abstract boolean remove(Object o);
4286 >
4287 >        private static final String oomeMsg = "Required array size too large";
4288 >
4289 >        public final Object[] toArray() {
4290 >            long sz = map.mappingCount();
4291 >            if (sz > MAX_ARRAY_SIZE)
4292 >                throw new OutOfMemoryError(oomeMsg);
4293 >            int n = (int)sz;
4294 >            Object[] r = new Object[n];
4295 >            int i = 0;
4296 >            for (E e : this) {
4297 >                if (i == n) {
4298 >                    if (n >= MAX_ARRAY_SIZE)
4299 >                        throw new OutOfMemoryError(oomeMsg);
4300 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4301 >                        n = MAX_ARRAY_SIZE;
4302 >                    else
4303 >                        n += (n >>> 1) + 1;
4304 >                    r = Arrays.copyOf(r, n);
4305 >                }
4306 >                r[i++] = e;
4307 >            }
4308 >            return (i == n) ? r : Arrays.copyOf(r, i);
4309 >        }
4310 >
4311 >        @SuppressWarnings("unchecked")
4312 >        public final <T> T[] toArray(T[] a) {
4313 >            long sz = map.mappingCount();
4314 >            if (sz > MAX_ARRAY_SIZE)
4315 >                throw new OutOfMemoryError(oomeMsg);
4316 >            int m = (int)sz;
4317 >            T[] r = (a.length >= m) ? a :
4318 >                (T[])java.lang.reflect.Array
4319 >                .newInstance(a.getClass().getComponentType(), m);
4320 >            int n = r.length;
4321 >            int i = 0;
4322 >            for (E e : this) {
4323 >                if (i == n) {
4324 >                    if (n >= MAX_ARRAY_SIZE)
4325 >                        throw new OutOfMemoryError(oomeMsg);
4326 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4327 >                        n = MAX_ARRAY_SIZE;
4328 >                    else
4329 >                        n += (n >>> 1) + 1;
4330 >                    r = Arrays.copyOf(r, n);
4331 >                }
4332 >                r[i++] = (T)e;
4333 >            }
4334 >            if (a == r && i < n) {
4335 >                r[i] = null; // null-terminate
4336 >                return r;
4337 >            }
4338 >            return (i == n) ? r : Arrays.copyOf(r, i);
4339          }
1532    }
4340  
4341 <    static final class Values<K,V> extends AbstractCollection<V> {
4342 <        final ConcurrentHashMapV8<K, V> map;
4343 <        Values(ConcurrentHashMapV8<K, V> map)   { this.map = map; }
4341 >        /**
4342 >         * Returns a string representation of this collection.
4343 >         * The string representation consists of the string representations
4344 >         * of the collection's elements in the order they are returned by
4345 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4346 >         * Adjacent elements are separated by the characters {@code ", "}
4347 >         * (comma and space).  Elements are converted to strings as by
4348 >         * {@link String#valueOf(Object)}.
4349 >         *
4350 >         * @return a string representation of this collection
4351 >         */
4352 >        public final String toString() {
4353 >            StringBuilder sb = new StringBuilder();
4354 >            sb.append('[');
4355 >            Iterator<E> it = iterator();
4356 >            if (it.hasNext()) {
4357 >                for (;;) {
4358 >                    Object e = it.next();
4359 >                    sb.append(e == this ? "(this Collection)" : e);
4360 >                    if (!it.hasNext())
4361 >                        break;
4362 >                    sb.append(',').append(' ');
4363 >                }
4364 >            }
4365 >            return sb.append(']').toString();
4366 >        }
4367  
4368 <        public final int size()                 { return map.size(); }
4369 <        public final boolean isEmpty()          { return map.isEmpty(); }
4370 <        public final void clear()               { map.clear(); }
4371 <        public final boolean contains(Object o) { return map.containsValue(o); }
4372 <        public final Iterator<V> iterator() {
4373 <            return new ValueIterator<K,V>(map);
4368 >        public final boolean containsAll(Collection<?> c) {
4369 >            if (c != this) {
4370 >                for (Object e : c) {
4371 >                    if (e == null || !contains(e))
4372 >                        return false;
4373 >                }
4374 >            }
4375 >            return true;
4376 >        }
4377 >
4378 >        public final boolean removeAll(Collection<?> c) {
4379 >            boolean modified = false;
4380 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4381 >                if (c.contains(it.next())) {
4382 >                    it.remove();
4383 >                    modified = true;
4384 >                }
4385 >            }
4386 >            return modified;
4387 >        }
4388 >
4389 >        public final boolean retainAll(Collection<?> c) {
4390 >            boolean modified = false;
4391 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4392 >                if (!c.contains(it.next())) {
4393 >                    it.remove();
4394 >                    modified = true;
4395 >                }
4396 >            }
4397 >            return modified;
4398          }
4399 +
4400      }
4401  
4402 <    static final class EntrySet<K,V> extends AbstractSet<Map.Entry<K,V>> {
4403 <        final ConcurrentHashMapV8<K, V> map;
4404 <        EntrySet(ConcurrentHashMapV8<K, V> map) { this.map = map; }
4402 >    /**
4403 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4404 >     * which additions may optionally be enabled by mapping to a
4405 >     * common value.  This class cannot be directly instantiated.
4406 >     * See {@link #keySet() keySet()},
4407 >     * {@link #keySet(Object) keySet(V)},
4408 >     * {@link #newKeySet() newKeySet()},
4409 >     * {@link #newKeySet(int) newKeySet(int)}.
4410 >     *
4411 >     * @since 1.8
4412 >     */
4413 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4414 >        implements Set<K>, java.io.Serializable {
4415 >        private static final long serialVersionUID = 7249069246763182397L;
4416 >        private final V value;
4417 >        KeySetView(ConcurrentHashMapV8<K,V> map, V value) {  // non-public
4418 >            super(map);
4419 >            this.value = value;
4420 >        }
4421 >
4422 >        /**
4423 >         * Returns the default mapped value for additions,
4424 >         * or {@code null} if additions are not supported.
4425 >         *
4426 >         * @return the default mapped value for additions, or {@code null}
4427 >         * if not supported
4428 >         */
4429 >        public V getMappedValue() { return value; }
4430 >
4431 >        /**
4432 >         * {@inheritDoc}
4433 >         * @throws NullPointerException if the specified key is null
4434 >         */
4435 >        public boolean contains(Object o) { return map.containsKey(o); }
4436 >
4437 >        /**
4438 >         * Removes the key from this map view, by removing the key (and its
4439 >         * corresponding value) from the backing map.  This method does
4440 >         * nothing if the key is not in the map.
4441 >         *
4442 >         * @param  o the key to be removed from the backing map
4443 >         * @return {@code true} if the backing map contained the specified key
4444 >         * @throws NullPointerException if the specified key is null
4445 >         */
4446 >        public boolean remove(Object o) { return map.remove(o) != null; }
4447 >
4448 >        /**
4449 >         * @return an iterator over the keys of the backing map
4450 >         */
4451 >        public Iterator<K> iterator() {
4452 >            Node<K,V>[] t;
4453 >            ConcurrentHashMapV8<K,V> m = map;
4454 >            int f = (t = m.table) == null ? 0 : t.length;
4455 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4456 >        }
4457  
4458 <        public final int size()                 { return map.size(); }
4459 <        public final boolean isEmpty()          { return map.isEmpty(); }
4460 <        public final void clear()               { map.clear(); }
4461 <        public final Iterator<Map.Entry<K,V>> iterator() {
4462 <            return new EntryIterator<K,V>(map);
4458 >        /**
4459 >         * Adds the specified key to this set view by mapping the key to
4460 >         * the default mapped value in the backing map, if defined.
4461 >         *
4462 >         * @param e key to be added
4463 >         * @return {@code true} if this set changed as a result of the call
4464 >         * @throws NullPointerException if the specified key is null
4465 >         * @throws UnsupportedOperationException if no default mapped value
4466 >         * for additions was provided
4467 >         */
4468 >        public boolean add(K e) {
4469 >            V v;
4470 >            if ((v = value) == null)
4471 >                throw new UnsupportedOperationException();
4472 >            return map.putVal(e, v, true) == null;
4473 >        }
4474 >
4475 >        /**
4476 >         * Adds all of the elements in the specified collection to this set,
4477 >         * as if by calling {@link #add} on each one.
4478 >         *
4479 >         * @param c the elements to be inserted into this set
4480 >         * @return {@code true} if this set changed as a result of the call
4481 >         * @throws NullPointerException if the collection or any of its
4482 >         * elements are {@code null}
4483 >         * @throws UnsupportedOperationException if no default mapped value
4484 >         * for additions was provided
4485 >         */
4486 >        public boolean addAll(Collection<? extends K> c) {
4487 >            boolean added = false;
4488 >            V v;
4489 >            if ((v = value) == null)
4490 >                throw new UnsupportedOperationException();
4491 >            for (K e : c) {
4492 >                if (map.putVal(e, v, true) == null)
4493 >                    added = true;
4494 >            }
4495 >            return added;
4496 >        }
4497 >
4498 >        public int hashCode() {
4499 >            int h = 0;
4500 >            for (K e : this)
4501 >                h += e.hashCode();
4502 >            return h;
4503          }
4504  
4505 +        public boolean equals(Object o) {
4506 +            Set<?> c;
4507 +            return ((o instanceof Set) &&
4508 +                    ((c = (Set<?>)o) == this ||
4509 +                     (containsAll(c) && c.containsAll(this))));
4510 +        }
4511 +
4512 +        public ConcurrentHashMapSpliterator<K> spliterator() {
4513 +            Node<K,V>[] t;
4514 +            ConcurrentHashMapV8<K,V> m = map;
4515 +            long n = m.sumCount();
4516 +            int f = (t = m.table) == null ? 0 : t.length;
4517 +            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4518 +        }
4519 +
4520 +        public void forEach(Action<? super K> action) {
4521 +            if (action == null) throw new NullPointerException();
4522 +            Node<K,V>[] t;
4523 +            if ((t = map.table) != null) {
4524 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4525 +                for (Node<K,V> p; (p = it.advance()) != null; )
4526 +                    action.apply(p.key);
4527 +            }
4528 +        }
4529 +    }
4530 +
4531 +    /**
4532 +     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4533 +     * values, in which additions are disabled. This class cannot be
4534 +     * directly instantiated. See {@link #values()}.
4535 +     */
4536 +    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4537 +        implements Collection<V>, java.io.Serializable {
4538 +        private static final long serialVersionUID = 2249069246763182397L;
4539 +        ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4540          public final boolean contains(Object o) {
4541 +            return map.containsValue(o);
4542 +        }
4543 +
4544 +        public final boolean remove(Object o) {
4545 +            if (o != null) {
4546 +                for (Iterator<V> it = iterator(); it.hasNext();) {
4547 +                    if (o.equals(it.next())) {
4548 +                        it.remove();
4549 +                        return true;
4550 +                    }
4551 +                }
4552 +            }
4553 +            return false;
4554 +        }
4555 +
4556 +        public final Iterator<V> iterator() {
4557 +            ConcurrentHashMapV8<K,V> m = map;
4558 +            Node<K,V>[] t;
4559 +            int f = (t = m.table) == null ? 0 : t.length;
4560 +            return new ValueIterator<K,V>(t, f, 0, f, m);
4561 +        }
4562 +
4563 +        public final boolean add(V e) {
4564 +            throw new UnsupportedOperationException();
4565 +        }
4566 +        public final boolean addAll(Collection<? extends V> c) {
4567 +            throw new UnsupportedOperationException();
4568 +        }
4569 +
4570 +        public ConcurrentHashMapSpliterator<V> spliterator() {
4571 +            Node<K,V>[] t;
4572 +            ConcurrentHashMapV8<K,V> m = map;
4573 +            long n = m.sumCount();
4574 +            int f = (t = m.table) == null ? 0 : t.length;
4575 +            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4576 +        }
4577 +
4578 +        public void forEach(Action<? super V> action) {
4579 +            if (action == null) throw new NullPointerException();
4580 +            Node<K,V>[] t;
4581 +            if ((t = map.table) != null) {
4582 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4583 +                for (Node<K,V> p; (p = it.advance()) != null; )
4584 +                    action.apply(p.val);
4585 +            }
4586 +        }
4587 +    }
4588 +
4589 +    /**
4590 +     * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4591 +     * entries.  This class cannot be directly instantiated. See
4592 +     * {@link #entrySet()}.
4593 +     */
4594 +    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4595 +        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4596 +        private static final long serialVersionUID = 2249069246763182397L;
4597 +        EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4598 +
4599 +        public boolean contains(Object o) {
4600              Object k, v, r; Map.Entry<?,?> e;
4601              return ((o instanceof Map.Entry) &&
4602                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 1564 | Line 4605 | public class ConcurrentHashMapV8<K, V>
4605                      (v == r || v.equals(r)));
4606          }
4607  
4608 <        public final boolean remove(Object o) {
4608 >        public boolean remove(Object o) {
4609              Object k, v; Map.Entry<?,?> e;
4610              return ((o instanceof Map.Entry) &&
4611                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4612                      (v = e.getValue()) != null &&
4613                      map.remove(k, v));
4614          }
4615 +
4616 +        /**
4617 +         * @return an iterator over the entries of the backing map
4618 +         */
4619 +        public Iterator<Map.Entry<K,V>> iterator() {
4620 +            ConcurrentHashMapV8<K,V> m = map;
4621 +            Node<K,V>[] t;
4622 +            int f = (t = m.table) == null ? 0 : t.length;
4623 +            return new EntryIterator<K,V>(t, f, 0, f, m);
4624 +        }
4625 +
4626 +        public boolean add(Entry<K,V> e) {
4627 +            return map.putVal(e.getKey(), e.getValue(), false) == null;
4628 +        }
4629 +
4630 +        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4631 +            boolean added = false;
4632 +            for (Entry<K,V> e : c) {
4633 +                if (add(e))
4634 +                    added = true;
4635 +            }
4636 +            return added;
4637 +        }
4638 +
4639 +        public final int hashCode() {
4640 +            int h = 0;
4641 +            Node<K,V>[] t;
4642 +            if ((t = map.table) != null) {
4643 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4644 +                for (Node<K,V> p; (p = it.advance()) != null; ) {
4645 +                    h += p.hashCode();
4646 +                }
4647 +            }
4648 +            return h;
4649 +        }
4650 +
4651 +        public final boolean equals(Object o) {
4652 +            Set<?> c;
4653 +            return ((o instanceof Set) &&
4654 +                    ((c = (Set<?>)o) == this ||
4655 +                     (containsAll(c) && c.containsAll(this))));
4656 +        }
4657 +
4658 +        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4659 +            Node<K,V>[] t;
4660 +            ConcurrentHashMapV8<K,V> m = map;
4661 +            long n = m.sumCount();
4662 +            int f = (t = m.table) == null ? 0 : t.length;
4663 +            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4664 +        }
4665 +
4666 +        public void forEach(Action<? super Map.Entry<K,V>> action) {
4667 +            if (action == null) throw new NullPointerException();
4668 +            Node<K,V>[] t;
4669 +            if ((t = map.table) != null) {
4670 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4671 +                for (Node<K,V> p; (p = it.advance()) != null; )
4672 +                    action.apply(new MapEntry<K,V>(p.key, p.val, map));
4673 +            }
4674 +        }
4675 +
4676      }
4677  
4678 <    /* ---------------- Serialization Support -------------- */
4678 >    // -------------------------------------------------------
4679  
4680      /**
4681 <     * Stripped-down version of helper class used in previous version,
4682 <     * declared for the sake of serialization compatibility
4681 >     * Base class for bulk tasks. Repeats some fields and code from
4682 >     * class Traverser, because we need to subclass CountedCompleter.
4683       */
4684 <    static class Segment<K,V> implements Serializable {
4685 <        private static final long serialVersionUID = 2249069246763182397L;
4686 <        final float loadFactor;
4687 <        Segment(float lf) { this.loadFactor = lf; }
4684 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4685 >        Node<K,V>[] tab;        // same as Traverser
4686 >        Node<K,V> next;
4687 >        int index;
4688 >        int baseIndex;
4689 >        int baseLimit;
4690 >        final int baseSize;
4691 >        int batch;              // split control
4692 >
4693 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4694 >            super(par);
4695 >            this.batch = b;
4696 >            this.index = this.baseIndex = i;
4697 >            if ((this.tab = t) == null)
4698 >                this.baseSize = this.baseLimit = 0;
4699 >            else if (par == null)
4700 >                this.baseSize = this.baseLimit = t.length;
4701 >            else {
4702 >                this.baseLimit = f;
4703 >                this.baseSize = par.baseSize;
4704 >            }
4705 >        }
4706 >
4707 >        /**
4708 >         * Same as Traverser version
4709 >         */
4710 >        final Node<K,V> advance() {
4711 >            Node<K,V> e;
4712 >            if ((e = next) != null)
4713 >                e = e.next;
4714 >            for (;;) {
4715 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4716 >                if (e != null)
4717 >                    return next = e;
4718 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4719 >                    (n = t.length) <= (i = index) || i < 0)
4720 >                    return next = null;
4721 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4722 >                    if (e instanceof ForwardingNode) {
4723 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4724 >                        e = null;
4725 >                        continue;
4726 >                    }
4727 >                    else if (e instanceof TreeBin)
4728 >                        e = ((TreeBin<K,V>)e).first;
4729 >                    else
4730 >                        e = null;
4731 >                }
4732 >                if ((index += baseSize) >= n)
4733 >                    index = ++baseIndex;    // visit upper slots if present
4734 >            }
4735 >        }
4736 >    }
4737 >
4738 >    /*
4739 >     * Task classes. Coded in a regular but ugly format/style to
4740 >     * simplify checks that each variant differs in the right way from
4741 >     * others. The null screenings exist because compilers cannot tell
4742 >     * that we've already null-checked task arguments, so we force
4743 >     * simplest hoisted bypass to help avoid convoluted traps.
4744 >     */
4745 >    @SuppressWarnings("serial")
4746 >    static final class ForEachKeyTask<K,V>
4747 >        extends BulkTask<K,V,Void> {
4748 >        final Action<? super K> action;
4749 >        ForEachKeyTask
4750 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4751 >             Action<? super K> action) {
4752 >            super(p, b, i, f, t);
4753 >            this.action = action;
4754 >        }
4755 >        public final void compute() {
4756 >            final Action<? super K> action;
4757 >            if ((action = this.action) != null) {
4758 >                for (int i = baseIndex, f, h; batch > 0 &&
4759 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4760 >                    addToPendingCount(1);
4761 >                    new ForEachKeyTask<K,V>
4762 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4763 >                         action).fork();
4764 >                }
4765 >                for (Node<K,V> p; (p = advance()) != null;)
4766 >                    action.apply(p.key);
4767 >                propagateCompletion();
4768 >            }
4769 >        }
4770 >    }
4771 >
4772 >    @SuppressWarnings("serial")
4773 >    static final class ForEachValueTask<K,V>
4774 >        extends BulkTask<K,V,Void> {
4775 >        final Action<? super V> action;
4776 >        ForEachValueTask
4777 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4778 >             Action<? super V> action) {
4779 >            super(p, b, i, f, t);
4780 >            this.action = action;
4781 >        }
4782 >        public final void compute() {
4783 >            final Action<? super V> action;
4784 >            if ((action = this.action) != null) {
4785 >                for (int i = baseIndex, f, h; batch > 0 &&
4786 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4787 >                    addToPendingCount(1);
4788 >                    new ForEachValueTask<K,V>
4789 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4790 >                         action).fork();
4791 >                }
4792 >                for (Node<K,V> p; (p = advance()) != null;)
4793 >                    action.apply(p.val);
4794 >                propagateCompletion();
4795 >            }
4796 >        }
4797 >    }
4798 >
4799 >    @SuppressWarnings("serial")
4800 >    static final class ForEachEntryTask<K,V>
4801 >        extends BulkTask<K,V,Void> {
4802 >        final Action<? super Entry<K,V>> action;
4803 >        ForEachEntryTask
4804 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4805 >             Action<? super Entry<K,V>> action) {
4806 >            super(p, b, i, f, t);
4807 >            this.action = action;
4808 >        }
4809 >        public final void compute() {
4810 >            final Action<? super Entry<K,V>> action;
4811 >            if ((action = this.action) != null) {
4812 >                for (int i = baseIndex, f, h; batch > 0 &&
4813 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4814 >                    addToPendingCount(1);
4815 >                    new ForEachEntryTask<K,V>
4816 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4817 >                         action).fork();
4818 >                }
4819 >                for (Node<K,V> p; (p = advance()) != null; )
4820 >                    action.apply(p);
4821 >                propagateCompletion();
4822 >            }
4823 >        }
4824 >    }
4825 >
4826 >    @SuppressWarnings("serial")
4827 >    static final class ForEachMappingTask<K,V>
4828 >        extends BulkTask<K,V,Void> {
4829 >        final BiAction<? super K, ? super V> action;
4830 >        ForEachMappingTask
4831 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4832 >             BiAction<? super K,? super V> action) {
4833 >            super(p, b, i, f, t);
4834 >            this.action = action;
4835 >        }
4836 >        public final void compute() {
4837 >            final BiAction<? super K, ? super V> action;
4838 >            if ((action = this.action) != null) {
4839 >                for (int i = baseIndex, f, h; batch > 0 &&
4840 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4841 >                    addToPendingCount(1);
4842 >                    new ForEachMappingTask<K,V>
4843 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4844 >                         action).fork();
4845 >                }
4846 >                for (Node<K,V> p; (p = advance()) != null; )
4847 >                    action.apply(p.key, p.val);
4848 >                propagateCompletion();
4849 >            }
4850 >        }
4851 >    }
4852 >
4853 >    @SuppressWarnings("serial")
4854 >    static final class ForEachTransformedKeyTask<K,V,U>
4855 >        extends BulkTask<K,V,Void> {
4856 >        final Fun<? super K, ? extends U> transformer;
4857 >        final Action<? super U> action;
4858 >        ForEachTransformedKeyTask
4859 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4860 >             Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4861 >            super(p, b, i, f, t);
4862 >            this.transformer = transformer; this.action = action;
4863 >        }
4864 >        public final void compute() {
4865 >            final Fun<? super K, ? extends U> transformer;
4866 >            final Action<? super U> action;
4867 >            if ((transformer = this.transformer) != null &&
4868 >                (action = this.action) != null) {
4869 >                for (int i = baseIndex, f, h; batch > 0 &&
4870 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4871 >                    addToPendingCount(1);
4872 >                    new ForEachTransformedKeyTask<K,V,U>
4873 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4874 >                         transformer, action).fork();
4875 >                }
4876 >                for (Node<K,V> p; (p = advance()) != null; ) {
4877 >                    U u;
4878 >                    if ((u = transformer.apply(p.key)) != null)
4879 >                        action.apply(u);
4880 >                }
4881 >                propagateCompletion();
4882 >            }
4883 >        }
4884 >    }
4885 >
4886 >    @SuppressWarnings("serial")
4887 >    static final class ForEachTransformedValueTask<K,V,U>
4888 >        extends BulkTask<K,V,Void> {
4889 >        final Fun<? super V, ? extends U> transformer;
4890 >        final Action<? super U> action;
4891 >        ForEachTransformedValueTask
4892 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4893 >             Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4894 >            super(p, b, i, f, t);
4895 >            this.transformer = transformer; this.action = action;
4896 >        }
4897 >        public final void compute() {
4898 >            final Fun<? super V, ? extends U> transformer;
4899 >            final Action<? super U> action;
4900 >            if ((transformer = this.transformer) != null &&
4901 >                (action = this.action) != null) {
4902 >                for (int i = baseIndex, f, h; batch > 0 &&
4903 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4904 >                    addToPendingCount(1);
4905 >                    new ForEachTransformedValueTask<K,V,U>
4906 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4907 >                         transformer, action).fork();
4908 >                }
4909 >                for (Node<K,V> p; (p = advance()) != null; ) {
4910 >                    U u;
4911 >                    if ((u = transformer.apply(p.val)) != null)
4912 >                        action.apply(u);
4913 >                }
4914 >                propagateCompletion();
4915 >            }
4916 >        }
4917 >    }
4918 >
4919 >    @SuppressWarnings("serial")
4920 >    static final class ForEachTransformedEntryTask<K,V,U>
4921 >        extends BulkTask<K,V,Void> {
4922 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
4923 >        final Action<? super U> action;
4924 >        ForEachTransformedEntryTask
4925 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4926 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4927 >            super(p, b, i, f, t);
4928 >            this.transformer = transformer; this.action = action;
4929 >        }
4930 >        public final void compute() {
4931 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
4932 >            final Action<? super U> action;
4933 >            if ((transformer = this.transformer) != null &&
4934 >                (action = this.action) != null) {
4935 >                for (int i = baseIndex, f, h; batch > 0 &&
4936 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4937 >                    addToPendingCount(1);
4938 >                    new ForEachTransformedEntryTask<K,V,U>
4939 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4940 >                         transformer, action).fork();
4941 >                }
4942 >                for (Node<K,V> p; (p = advance()) != null; ) {
4943 >                    U u;
4944 >                    if ((u = transformer.apply(p)) != null)
4945 >                        action.apply(u);
4946 >                }
4947 >                propagateCompletion();
4948 >            }
4949 >        }
4950 >    }
4951 >
4952 >    @SuppressWarnings("serial")
4953 >    static final class ForEachTransformedMappingTask<K,V,U>
4954 >        extends BulkTask<K,V,Void> {
4955 >        final BiFun<? super K, ? super V, ? extends U> transformer;
4956 >        final Action<? super U> action;
4957 >        ForEachTransformedMappingTask
4958 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4959 >             BiFun<? super K, ? super V, ? extends U> transformer,
4960 >             Action<? super U> action) {
4961 >            super(p, b, i, f, t);
4962 >            this.transformer = transformer; this.action = action;
4963 >        }
4964 >        public final void compute() {
4965 >            final BiFun<? super K, ? super V, ? extends U> transformer;
4966 >            final Action<? super U> action;
4967 >            if ((transformer = this.transformer) != null &&
4968 >                (action = this.action) != null) {
4969 >                for (int i = baseIndex, f, h; batch > 0 &&
4970 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4971 >                    addToPendingCount(1);
4972 >                    new ForEachTransformedMappingTask<K,V,U>
4973 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4974 >                         transformer, action).fork();
4975 >                }
4976 >                for (Node<K,V> p; (p = advance()) != null; ) {
4977 >                    U u;
4978 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4979 >                        action.apply(u);
4980 >                }
4981 >                propagateCompletion();
4982 >            }
4983 >        }
4984 >    }
4985 >
4986 >    @SuppressWarnings("serial")
4987 >    static final class SearchKeysTask<K,V,U>
4988 >        extends BulkTask<K,V,U> {
4989 >        final Fun<? super K, ? extends U> searchFunction;
4990 >        final AtomicReference<U> result;
4991 >        SearchKeysTask
4992 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4993 >             Fun<? super K, ? extends U> searchFunction,
4994 >             AtomicReference<U> result) {
4995 >            super(p, b, i, f, t);
4996 >            this.searchFunction = searchFunction; this.result = result;
4997 >        }
4998 >        public final U getRawResult() { return result.get(); }
4999 >        public final void compute() {
5000 >            final Fun<? super K, ? extends U> searchFunction;
5001 >            final AtomicReference<U> result;
5002 >            if ((searchFunction = this.searchFunction) != null &&
5003 >                (result = this.result) != null) {
5004 >                for (int i = baseIndex, f, h; batch > 0 &&
5005 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5006 >                    if (result.get() != null)
5007 >                        return;
5008 >                    addToPendingCount(1);
5009 >                    new SearchKeysTask<K,V,U>
5010 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5011 >                         searchFunction, result).fork();
5012 >                }
5013 >                while (result.get() == null) {
5014 >                    U u;
5015 >                    Node<K,V> p;
5016 >                    if ((p = advance()) == null) {
5017 >                        propagateCompletion();
5018 >                        break;
5019 >                    }
5020 >                    if ((u = searchFunction.apply(p.key)) != null) {
5021 >                        if (result.compareAndSet(null, u))
5022 >                            quietlyCompleteRoot();
5023 >                        break;
5024 >                    }
5025 >                }
5026 >            }
5027 >        }
5028 >    }
5029 >
5030 >    @SuppressWarnings("serial")
5031 >    static final class SearchValuesTask<K,V,U>
5032 >        extends BulkTask<K,V,U> {
5033 >        final Fun<? super V, ? extends U> searchFunction;
5034 >        final AtomicReference<U> result;
5035 >        SearchValuesTask
5036 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5037 >             Fun<? super V, ? extends U> searchFunction,
5038 >             AtomicReference<U> result) {
5039 >            super(p, b, i, f, t);
5040 >            this.searchFunction = searchFunction; this.result = result;
5041 >        }
5042 >        public final U getRawResult() { return result.get(); }
5043 >        public final void compute() {
5044 >            final Fun<? super V, ? extends U> searchFunction;
5045 >            final AtomicReference<U> result;
5046 >            if ((searchFunction = this.searchFunction) != null &&
5047 >                (result = this.result) != null) {
5048 >                for (int i = baseIndex, f, h; batch > 0 &&
5049 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5050 >                    if (result.get() != null)
5051 >                        return;
5052 >                    addToPendingCount(1);
5053 >                    new SearchValuesTask<K,V,U>
5054 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5055 >                         searchFunction, result).fork();
5056 >                }
5057 >                while (result.get() == null) {
5058 >                    U u;
5059 >                    Node<K,V> p;
5060 >                    if ((p = advance()) == null) {
5061 >                        propagateCompletion();
5062 >                        break;
5063 >                    }
5064 >                    if ((u = searchFunction.apply(p.val)) != null) {
5065 >                        if (result.compareAndSet(null, u))
5066 >                            quietlyCompleteRoot();
5067 >                        break;
5068 >                    }
5069 >                }
5070 >            }
5071 >        }
5072 >    }
5073 >
5074 >    @SuppressWarnings("serial")
5075 >    static final class SearchEntriesTask<K,V,U>
5076 >        extends BulkTask<K,V,U> {
5077 >        final Fun<Entry<K,V>, ? extends U> searchFunction;
5078 >        final AtomicReference<U> result;
5079 >        SearchEntriesTask
5080 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5081 >             Fun<Entry<K,V>, ? extends U> searchFunction,
5082 >             AtomicReference<U> result) {
5083 >            super(p, b, i, f, t);
5084 >            this.searchFunction = searchFunction; this.result = result;
5085 >        }
5086 >        public final U getRawResult() { return result.get(); }
5087 >        public final void compute() {
5088 >            final Fun<Entry<K,V>, ? extends U> searchFunction;
5089 >            final AtomicReference<U> result;
5090 >            if ((searchFunction = this.searchFunction) != null &&
5091 >                (result = this.result) != null) {
5092 >                for (int i = baseIndex, f, h; batch > 0 &&
5093 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5094 >                    if (result.get() != null)
5095 >                        return;
5096 >                    addToPendingCount(1);
5097 >                    new SearchEntriesTask<K,V,U>
5098 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5099 >                         searchFunction, result).fork();
5100 >                }
5101 >                while (result.get() == null) {
5102 >                    U u;
5103 >                    Node<K,V> p;
5104 >                    if ((p = advance()) == null) {
5105 >                        propagateCompletion();
5106 >                        break;
5107 >                    }
5108 >                    if ((u = searchFunction.apply(p)) != null) {
5109 >                        if (result.compareAndSet(null, u))
5110 >                            quietlyCompleteRoot();
5111 >                        return;
5112 >                    }
5113 >                }
5114 >            }
5115 >        }
5116 >    }
5117 >
5118 >    @SuppressWarnings("serial")
5119 >    static final class SearchMappingsTask<K,V,U>
5120 >        extends BulkTask<K,V,U> {
5121 >        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5122 >        final AtomicReference<U> result;
5123 >        SearchMappingsTask
5124 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5125 >             BiFun<? super K, ? super V, ? extends U> searchFunction,
5126 >             AtomicReference<U> result) {
5127 >            super(p, b, i, f, t);
5128 >            this.searchFunction = searchFunction; this.result = result;
5129 >        }
5130 >        public final U getRawResult() { return result.get(); }
5131 >        public final void compute() {
5132 >            final BiFun<? super K, ? super V, ? extends U> searchFunction;
5133 >            final AtomicReference<U> result;
5134 >            if ((searchFunction = this.searchFunction) != null &&
5135 >                (result = this.result) != null) {
5136 >                for (int i = baseIndex, f, h; batch > 0 &&
5137 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5138 >                    if (result.get() != null)
5139 >                        return;
5140 >                    addToPendingCount(1);
5141 >                    new SearchMappingsTask<K,V,U>
5142 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5143 >                         searchFunction, result).fork();
5144 >                }
5145 >                while (result.get() == null) {
5146 >                    U u;
5147 >                    Node<K,V> p;
5148 >                    if ((p = advance()) == null) {
5149 >                        propagateCompletion();
5150 >                        break;
5151 >                    }
5152 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5153 >                        if (result.compareAndSet(null, u))
5154 >                            quietlyCompleteRoot();
5155 >                        break;
5156 >                    }
5157 >                }
5158 >            }
5159 >        }
5160 >    }
5161 >
5162 >    @SuppressWarnings("serial")
5163 >    static final class ReduceKeysTask<K,V>
5164 >        extends BulkTask<K,V,K> {
5165 >        final BiFun<? super K, ? super K, ? extends K> reducer;
5166 >        K result;
5167 >        ReduceKeysTask<K,V> rights, nextRight;
5168 >        ReduceKeysTask
5169 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5170 >             ReduceKeysTask<K,V> nextRight,
5171 >             BiFun<? super K, ? super K, ? extends K> reducer) {
5172 >            super(p, b, i, f, t); this.nextRight = nextRight;
5173 >            this.reducer = reducer;
5174 >        }
5175 >        public final K getRawResult() { return result; }
5176 >        public final void compute() {
5177 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5178 >            if ((reducer = this.reducer) != null) {
5179 >                for (int i = baseIndex, f, h; batch > 0 &&
5180 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5181 >                    addToPendingCount(1);
5182 >                    (rights = new ReduceKeysTask<K,V>
5183 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5184 >                      rights, reducer)).fork();
5185 >                }
5186 >                K r = null;
5187 >                for (Node<K,V> p; (p = advance()) != null; ) {
5188 >                    K u = p.key;
5189 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5190 >                }
5191 >                result = r;
5192 >                CountedCompleter<?> c;
5193 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5194 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5195 >                        t = (ReduceKeysTask<K,V>)c,
5196 >                        s = t.rights;
5197 >                    while (s != null) {
5198 >                        K tr, sr;
5199 >                        if ((sr = s.result) != null)
5200 >                            t.result = (((tr = t.result) == null) ? sr :
5201 >                                        reducer.apply(tr, sr));
5202 >                        s = t.rights = s.nextRight;
5203 >                    }
5204 >                }
5205 >            }
5206 >        }
5207 >    }
5208 >
5209 >    @SuppressWarnings("serial")
5210 >    static final class ReduceValuesTask<K,V>
5211 >        extends BulkTask<K,V,V> {
5212 >        final BiFun<? super V, ? super V, ? extends V> reducer;
5213 >        V result;
5214 >        ReduceValuesTask<K,V> rights, nextRight;
5215 >        ReduceValuesTask
5216 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5217 >             ReduceValuesTask<K,V> nextRight,
5218 >             BiFun<? super V, ? super V, ? extends V> reducer) {
5219 >            super(p, b, i, f, t); this.nextRight = nextRight;
5220 >            this.reducer = reducer;
5221 >        }
5222 >        public final V getRawResult() { return result; }
5223 >        public final void compute() {
5224 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5225 >            if ((reducer = this.reducer) != null) {
5226 >                for (int i = baseIndex, f, h; batch > 0 &&
5227 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5228 >                    addToPendingCount(1);
5229 >                    (rights = new ReduceValuesTask<K,V>
5230 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5231 >                      rights, reducer)).fork();
5232 >                }
5233 >                V r = null;
5234 >                for (Node<K,V> p; (p = advance()) != null; ) {
5235 >                    V v = p.val;
5236 >                    r = (r == null) ? v : reducer.apply(r, v);
5237 >                }
5238 >                result = r;
5239 >                CountedCompleter<?> c;
5240 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5241 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5242 >                        t = (ReduceValuesTask<K,V>)c,
5243 >                        s = t.rights;
5244 >                    while (s != null) {
5245 >                        V tr, sr;
5246 >                        if ((sr = s.result) != null)
5247 >                            t.result = (((tr = t.result) == null) ? sr :
5248 >                                        reducer.apply(tr, sr));
5249 >                        s = t.rights = s.nextRight;
5250 >                    }
5251 >                }
5252 >            }
5253 >        }
5254 >    }
5255 >
5256 >    @SuppressWarnings("serial")
5257 >    static final class ReduceEntriesTask<K,V>
5258 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5259 >        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5260 >        Map.Entry<K,V> result;
5261 >        ReduceEntriesTask<K,V> rights, nextRight;
5262 >        ReduceEntriesTask
5263 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5264 >             ReduceEntriesTask<K,V> nextRight,
5265 >             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5266 >            super(p, b, i, f, t); this.nextRight = nextRight;
5267 >            this.reducer = reducer;
5268 >        }
5269 >        public final Map.Entry<K,V> getRawResult() { return result; }
5270 >        public final void compute() {
5271 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5272 >            if ((reducer = this.reducer) != null) {
5273 >                for (int i = baseIndex, f, h; batch > 0 &&
5274 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5275 >                    addToPendingCount(1);
5276 >                    (rights = new ReduceEntriesTask<K,V>
5277 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5278 >                      rights, reducer)).fork();
5279 >                }
5280 >                Map.Entry<K,V> r = null;
5281 >                for (Node<K,V> p; (p = advance()) != null; )
5282 >                    r = (r == null) ? p : reducer.apply(r, p);
5283 >                result = r;
5284 >                CountedCompleter<?> c;
5285 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5286 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5287 >                        t = (ReduceEntriesTask<K,V>)c,
5288 >                        s = t.rights;
5289 >                    while (s != null) {
5290 >                        Map.Entry<K,V> tr, sr;
5291 >                        if ((sr = s.result) != null)
5292 >                            t.result = (((tr = t.result) == null) ? sr :
5293 >                                        reducer.apply(tr, sr));
5294 >                        s = t.rights = s.nextRight;
5295 >                    }
5296 >                }
5297 >            }
5298 >        }
5299 >    }
5300 >
5301 >    @SuppressWarnings("serial")
5302 >    static final class MapReduceKeysTask<K,V,U>
5303 >        extends BulkTask<K,V,U> {
5304 >        final Fun<? super K, ? extends U> transformer;
5305 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5306 >        U result;
5307 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5308 >        MapReduceKeysTask
5309 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5310 >             MapReduceKeysTask<K,V,U> nextRight,
5311 >             Fun<? super K, ? extends U> transformer,
5312 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5313 >            super(p, b, i, f, t); this.nextRight = nextRight;
5314 >            this.transformer = transformer;
5315 >            this.reducer = reducer;
5316 >        }
5317 >        public final U getRawResult() { return result; }
5318 >        public final void compute() {
5319 >            final Fun<? super K, ? extends U> transformer;
5320 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5321 >            if ((transformer = this.transformer) != null &&
5322 >                (reducer = this.reducer) != null) {
5323 >                for (int i = baseIndex, f, h; batch > 0 &&
5324 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5325 >                    addToPendingCount(1);
5326 >                    (rights = new MapReduceKeysTask<K,V,U>
5327 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5328 >                      rights, transformer, reducer)).fork();
5329 >                }
5330 >                U r = null;
5331 >                for (Node<K,V> p; (p = advance()) != null; ) {
5332 >                    U u;
5333 >                    if ((u = transformer.apply(p.key)) != null)
5334 >                        r = (r == null) ? u : reducer.apply(r, u);
5335 >                }
5336 >                result = r;
5337 >                CountedCompleter<?> c;
5338 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5339 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5340 >                        t = (MapReduceKeysTask<K,V,U>)c,
5341 >                        s = t.rights;
5342 >                    while (s != null) {
5343 >                        U tr, sr;
5344 >                        if ((sr = s.result) != null)
5345 >                            t.result = (((tr = t.result) == null) ? sr :
5346 >                                        reducer.apply(tr, sr));
5347 >                        s = t.rights = s.nextRight;
5348 >                    }
5349 >                }
5350 >            }
5351 >        }
5352 >    }
5353 >
5354 >    @SuppressWarnings("serial")
5355 >    static final class MapReduceValuesTask<K,V,U>
5356 >        extends BulkTask<K,V,U> {
5357 >        final Fun<? super V, ? extends U> transformer;
5358 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5359 >        U result;
5360 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5361 >        MapReduceValuesTask
5362 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5363 >             MapReduceValuesTask<K,V,U> nextRight,
5364 >             Fun<? super V, ? extends U> transformer,
5365 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5366 >            super(p, b, i, f, t); this.nextRight = nextRight;
5367 >            this.transformer = transformer;
5368 >            this.reducer = reducer;
5369 >        }
5370 >        public final U getRawResult() { return result; }
5371 >        public final void compute() {
5372 >            final Fun<? super V, ? extends U> transformer;
5373 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5374 >            if ((transformer = this.transformer) != null &&
5375 >                (reducer = this.reducer) != null) {
5376 >                for (int i = baseIndex, f, h; batch > 0 &&
5377 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5378 >                    addToPendingCount(1);
5379 >                    (rights = new MapReduceValuesTask<K,V,U>
5380 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5381 >                      rights, transformer, reducer)).fork();
5382 >                }
5383 >                U r = null;
5384 >                for (Node<K,V> p; (p = advance()) != null; ) {
5385 >                    U u;
5386 >                    if ((u = transformer.apply(p.val)) != null)
5387 >                        r = (r == null) ? u : reducer.apply(r, u);
5388 >                }
5389 >                result = r;
5390 >                CountedCompleter<?> c;
5391 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5392 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5393 >                        t = (MapReduceValuesTask<K,V,U>)c,
5394 >                        s = t.rights;
5395 >                    while (s != null) {
5396 >                        U tr, sr;
5397 >                        if ((sr = s.result) != null)
5398 >                            t.result = (((tr = t.result) == null) ? sr :
5399 >                                        reducer.apply(tr, sr));
5400 >                        s = t.rights = s.nextRight;
5401 >                    }
5402 >                }
5403 >            }
5404 >        }
5405 >    }
5406 >
5407 >    @SuppressWarnings("serial")
5408 >    static final class MapReduceEntriesTask<K,V,U>
5409 >        extends BulkTask<K,V,U> {
5410 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5411 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5412 >        U result;
5413 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5414 >        MapReduceEntriesTask
5415 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5416 >             MapReduceEntriesTask<K,V,U> nextRight,
5417 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5418 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5419 >            super(p, b, i, f, t); this.nextRight = nextRight;
5420 >            this.transformer = transformer;
5421 >            this.reducer = reducer;
5422 >        }
5423 >        public final U getRawResult() { return result; }
5424 >        public final void compute() {
5425 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5426 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5427 >            if ((transformer = this.transformer) != null &&
5428 >                (reducer = this.reducer) != null) {
5429 >                for (int i = baseIndex, f, h; batch > 0 &&
5430 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5431 >                    addToPendingCount(1);
5432 >                    (rights = new MapReduceEntriesTask<K,V,U>
5433 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5434 >                      rights, transformer, reducer)).fork();
5435 >                }
5436 >                U r = null;
5437 >                for (Node<K,V> p; (p = advance()) != null; ) {
5438 >                    U u;
5439 >                    if ((u = transformer.apply(p)) != null)
5440 >                        r = (r == null) ? u : reducer.apply(r, u);
5441 >                }
5442 >                result = r;
5443 >                CountedCompleter<?> c;
5444 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5445 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5446 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5447 >                        s = t.rights;
5448 >                    while (s != null) {
5449 >                        U tr, sr;
5450 >                        if ((sr = s.result) != null)
5451 >                            t.result = (((tr = t.result) == null) ? sr :
5452 >                                        reducer.apply(tr, sr));
5453 >                        s = t.rights = s.nextRight;
5454 >                    }
5455 >                }
5456 >            }
5457 >        }
5458 >    }
5459 >
5460 >    @SuppressWarnings("serial")
5461 >    static final class MapReduceMappingsTask<K,V,U>
5462 >        extends BulkTask<K,V,U> {
5463 >        final BiFun<? super K, ? super V, ? extends U> transformer;
5464 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5465 >        U result;
5466 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5467 >        MapReduceMappingsTask
5468 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5469 >             MapReduceMappingsTask<K,V,U> nextRight,
5470 >             BiFun<? super K, ? super V, ? extends U> transformer,
5471 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5472 >            super(p, b, i, f, t); this.nextRight = nextRight;
5473 >            this.transformer = transformer;
5474 >            this.reducer = reducer;
5475 >        }
5476 >        public final U getRawResult() { return result; }
5477 >        public final void compute() {
5478 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5479 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5480 >            if ((transformer = this.transformer) != null &&
5481 >                (reducer = this.reducer) != null) {
5482 >                for (int i = baseIndex, f, h; batch > 0 &&
5483 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5484 >                    addToPendingCount(1);
5485 >                    (rights = new MapReduceMappingsTask<K,V,U>
5486 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5487 >                      rights, transformer, reducer)).fork();
5488 >                }
5489 >                U r = null;
5490 >                for (Node<K,V> p; (p = advance()) != null; ) {
5491 >                    U u;
5492 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5493 >                        r = (r == null) ? u : reducer.apply(r, u);
5494 >                }
5495 >                result = r;
5496 >                CountedCompleter<?> c;
5497 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5498 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5499 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5500 >                        s = t.rights;
5501 >                    while (s != null) {
5502 >                        U tr, sr;
5503 >                        if ((sr = s.result) != null)
5504 >                            t.result = (((tr = t.result) == null) ? sr :
5505 >                                        reducer.apply(tr, sr));
5506 >                        s = t.rights = s.nextRight;
5507 >                    }
5508 >                }
5509 >            }
5510 >        }
5511 >    }
5512 >
5513 >    @SuppressWarnings("serial")
5514 >    static final class MapReduceKeysToDoubleTask<K,V>
5515 >        extends BulkTask<K,V,Double> {
5516 >        final ObjectToDouble<? super K> transformer;
5517 >        final DoubleByDoubleToDouble reducer;
5518 >        final double basis;
5519 >        double result;
5520 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5521 >        MapReduceKeysToDoubleTask
5522 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5523 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5524 >             ObjectToDouble<? super K> transformer,
5525 >             double basis,
5526 >             DoubleByDoubleToDouble reducer) {
5527 >            super(p, b, i, f, t); this.nextRight = nextRight;
5528 >            this.transformer = transformer;
5529 >            this.basis = basis; this.reducer = reducer;
5530 >        }
5531 >        public final Double getRawResult() { return result; }
5532 >        public final void compute() {
5533 >            final ObjectToDouble<? super K> transformer;
5534 >            final DoubleByDoubleToDouble reducer;
5535 >            if ((transformer = this.transformer) != null &&
5536 >                (reducer = this.reducer) != null) {
5537 >                double r = this.basis;
5538 >                for (int i = baseIndex, f, h; batch > 0 &&
5539 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5540 >                    addToPendingCount(1);
5541 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5542 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5543 >                      rights, transformer, r, reducer)).fork();
5544 >                }
5545 >                for (Node<K,V> p; (p = advance()) != null; )
5546 >                    r = reducer.apply(r, transformer.apply(p.key));
5547 >                result = r;
5548 >                CountedCompleter<?> c;
5549 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5550 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5551 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5552 >                        s = t.rights;
5553 >                    while (s != null) {
5554 >                        t.result = reducer.apply(t.result, s.result);
5555 >                        s = t.rights = s.nextRight;
5556 >                    }
5557 >                }
5558 >            }
5559 >        }
5560 >    }
5561 >
5562 >    @SuppressWarnings("serial")
5563 >    static final class MapReduceValuesToDoubleTask<K,V>
5564 >        extends BulkTask<K,V,Double> {
5565 >        final ObjectToDouble<? super V> transformer;
5566 >        final DoubleByDoubleToDouble reducer;
5567 >        final double basis;
5568 >        double result;
5569 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5570 >        MapReduceValuesToDoubleTask
5571 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5572 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5573 >             ObjectToDouble<? super V> transformer,
5574 >             double basis,
5575 >             DoubleByDoubleToDouble reducer) {
5576 >            super(p, b, i, f, t); this.nextRight = nextRight;
5577 >            this.transformer = transformer;
5578 >            this.basis = basis; this.reducer = reducer;
5579 >        }
5580 >        public final Double getRawResult() { return result; }
5581 >        public final void compute() {
5582 >            final ObjectToDouble<? super V> transformer;
5583 >            final DoubleByDoubleToDouble reducer;
5584 >            if ((transformer = this.transformer) != null &&
5585 >                (reducer = this.reducer) != null) {
5586 >                double r = this.basis;
5587 >                for (int i = baseIndex, f, h; batch > 0 &&
5588 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5589 >                    addToPendingCount(1);
5590 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5591 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5592 >                      rights, transformer, r, reducer)).fork();
5593 >                }
5594 >                for (Node<K,V> p; (p = advance()) != null; )
5595 >                    r = reducer.apply(r, transformer.apply(p.val));
5596 >                result = r;
5597 >                CountedCompleter<?> c;
5598 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5599 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5600 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5601 >                        s = t.rights;
5602 >                    while (s != null) {
5603 >                        t.result = reducer.apply(t.result, s.result);
5604 >                        s = t.rights = s.nextRight;
5605 >                    }
5606 >                }
5607 >            }
5608 >        }
5609 >    }
5610 >
5611 >    @SuppressWarnings("serial")
5612 >    static final class MapReduceEntriesToDoubleTask<K,V>
5613 >        extends BulkTask<K,V,Double> {
5614 >        final ObjectToDouble<Map.Entry<K,V>> transformer;
5615 >        final DoubleByDoubleToDouble reducer;
5616 >        final double basis;
5617 >        double result;
5618 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5619 >        MapReduceEntriesToDoubleTask
5620 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5621 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5622 >             ObjectToDouble<Map.Entry<K,V>> transformer,
5623 >             double basis,
5624 >             DoubleByDoubleToDouble reducer) {
5625 >            super(p, b, i, f, t); this.nextRight = nextRight;
5626 >            this.transformer = transformer;
5627 >            this.basis = basis; this.reducer = reducer;
5628 >        }
5629 >        public final Double getRawResult() { return result; }
5630 >        public final void compute() {
5631 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
5632 >            final DoubleByDoubleToDouble reducer;
5633 >            if ((transformer = this.transformer) != null &&
5634 >                (reducer = this.reducer) != null) {
5635 >                double r = this.basis;
5636 >                for (int i = baseIndex, f, h; batch > 0 &&
5637 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5638 >                    addToPendingCount(1);
5639 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5640 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5641 >                      rights, transformer, r, reducer)).fork();
5642 >                }
5643 >                for (Node<K,V> p; (p = advance()) != null; )
5644 >                    r = reducer.apply(r, transformer.apply(p));
5645 >                result = r;
5646 >                CountedCompleter<?> c;
5647 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5648 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5649 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5650 >                        s = t.rights;
5651 >                    while (s != null) {
5652 >                        t.result = reducer.apply(t.result, s.result);
5653 >                        s = t.rights = s.nextRight;
5654 >                    }
5655 >                }
5656 >            }
5657 >        }
5658 >    }
5659 >
5660 >    @SuppressWarnings("serial")
5661 >    static final class MapReduceMappingsToDoubleTask<K,V>
5662 >        extends BulkTask<K,V,Double> {
5663 >        final ObjectByObjectToDouble<? super K, ? super V> transformer;
5664 >        final DoubleByDoubleToDouble reducer;
5665 >        final double basis;
5666 >        double result;
5667 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5668 >        MapReduceMappingsToDoubleTask
5669 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5670 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5671 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
5672 >             double basis,
5673 >             DoubleByDoubleToDouble reducer) {
5674 >            super(p, b, i, f, t); this.nextRight = nextRight;
5675 >            this.transformer = transformer;
5676 >            this.basis = basis; this.reducer = reducer;
5677 >        }
5678 >        public final Double getRawResult() { return result; }
5679 >        public final void compute() {
5680 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
5681 >            final DoubleByDoubleToDouble reducer;
5682 >            if ((transformer = this.transformer) != null &&
5683 >                (reducer = this.reducer) != null) {
5684 >                double r = this.basis;
5685 >                for (int i = baseIndex, f, h; batch > 0 &&
5686 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5687 >                    addToPendingCount(1);
5688 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5689 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5690 >                      rights, transformer, r, reducer)).fork();
5691 >                }
5692 >                for (Node<K,V> p; (p = advance()) != null; )
5693 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5694 >                result = r;
5695 >                CountedCompleter<?> c;
5696 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5697 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5698 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5699 >                        s = t.rights;
5700 >                    while (s != null) {
5701 >                        t.result = reducer.apply(t.result, s.result);
5702 >                        s = t.rights = s.nextRight;
5703 >                    }
5704 >                }
5705 >            }
5706 >        }
5707 >    }
5708 >
5709 >    @SuppressWarnings("serial")
5710 >    static final class MapReduceKeysToLongTask<K,V>
5711 >        extends BulkTask<K,V,Long> {
5712 >        final ObjectToLong<? super K> transformer;
5713 >        final LongByLongToLong reducer;
5714 >        final long basis;
5715 >        long result;
5716 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5717 >        MapReduceKeysToLongTask
5718 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5719 >             MapReduceKeysToLongTask<K,V> nextRight,
5720 >             ObjectToLong<? super K> transformer,
5721 >             long basis,
5722 >             LongByLongToLong reducer) {
5723 >            super(p, b, i, f, t); this.nextRight = nextRight;
5724 >            this.transformer = transformer;
5725 >            this.basis = basis; this.reducer = reducer;
5726 >        }
5727 >        public final Long getRawResult() { return result; }
5728 >        public final void compute() {
5729 >            final ObjectToLong<? super K> transformer;
5730 >            final LongByLongToLong reducer;
5731 >            if ((transformer = this.transformer) != null &&
5732 >                (reducer = this.reducer) != null) {
5733 >                long r = this.basis;
5734 >                for (int i = baseIndex, f, h; batch > 0 &&
5735 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5736 >                    addToPendingCount(1);
5737 >                    (rights = new MapReduceKeysToLongTask<K,V>
5738 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5739 >                      rights, transformer, r, reducer)).fork();
5740 >                }
5741 >                for (Node<K,V> p; (p = advance()) != null; )
5742 >                    r = reducer.apply(r, transformer.apply(p.key));
5743 >                result = r;
5744 >                CountedCompleter<?> c;
5745 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5746 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5747 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5748 >                        s = t.rights;
5749 >                    while (s != null) {
5750 >                        t.result = reducer.apply(t.result, s.result);
5751 >                        s = t.rights = s.nextRight;
5752 >                    }
5753 >                }
5754 >            }
5755 >        }
5756 >    }
5757 >
5758 >    @SuppressWarnings("serial")
5759 >    static final class MapReduceValuesToLongTask<K,V>
5760 >        extends BulkTask<K,V,Long> {
5761 >        final ObjectToLong<? super V> transformer;
5762 >        final LongByLongToLong reducer;
5763 >        final long basis;
5764 >        long result;
5765 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5766 >        MapReduceValuesToLongTask
5767 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5768 >             MapReduceValuesToLongTask<K,V> nextRight,
5769 >             ObjectToLong<? super V> transformer,
5770 >             long basis,
5771 >             LongByLongToLong reducer) {
5772 >            super(p, b, i, f, t); this.nextRight = nextRight;
5773 >            this.transformer = transformer;
5774 >            this.basis = basis; this.reducer = reducer;
5775 >        }
5776 >        public final Long getRawResult() { return result; }
5777 >        public final void compute() {
5778 >            final ObjectToLong<? super V> transformer;
5779 >            final LongByLongToLong reducer;
5780 >            if ((transformer = this.transformer) != null &&
5781 >                (reducer = this.reducer) != null) {
5782 >                long r = this.basis;
5783 >                for (int i = baseIndex, f, h; batch > 0 &&
5784 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5785 >                    addToPendingCount(1);
5786 >                    (rights = new MapReduceValuesToLongTask<K,V>
5787 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5788 >                      rights, transformer, r, reducer)).fork();
5789 >                }
5790 >                for (Node<K,V> p; (p = advance()) != null; )
5791 >                    r = reducer.apply(r, transformer.apply(p.val));
5792 >                result = r;
5793 >                CountedCompleter<?> c;
5794 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5795 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5796 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5797 >                        s = t.rights;
5798 >                    while (s != null) {
5799 >                        t.result = reducer.apply(t.result, s.result);
5800 >                        s = t.rights = s.nextRight;
5801 >                    }
5802 >                }
5803 >            }
5804 >        }
5805 >    }
5806 >
5807 >    @SuppressWarnings("serial")
5808 >    static final class MapReduceEntriesToLongTask<K,V>
5809 >        extends BulkTask<K,V,Long> {
5810 >        final ObjectToLong<Map.Entry<K,V>> transformer;
5811 >        final LongByLongToLong reducer;
5812 >        final long basis;
5813 >        long result;
5814 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
5815 >        MapReduceEntriesToLongTask
5816 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5817 >             MapReduceEntriesToLongTask<K,V> nextRight,
5818 >             ObjectToLong<Map.Entry<K,V>> transformer,
5819 >             long basis,
5820 >             LongByLongToLong reducer) {
5821 >            super(p, b, i, f, t); this.nextRight = nextRight;
5822 >            this.transformer = transformer;
5823 >            this.basis = basis; this.reducer = reducer;
5824 >        }
5825 >        public final Long getRawResult() { return result; }
5826 >        public final void compute() {
5827 >            final ObjectToLong<Map.Entry<K,V>> transformer;
5828 >            final LongByLongToLong reducer;
5829 >            if ((transformer = this.transformer) != null &&
5830 >                (reducer = this.reducer) != null) {
5831 >                long r = this.basis;
5832 >                for (int i = baseIndex, f, h; batch > 0 &&
5833 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5834 >                    addToPendingCount(1);
5835 >                    (rights = new MapReduceEntriesToLongTask<K,V>
5836 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5837 >                      rights, transformer, r, reducer)).fork();
5838 >                }
5839 >                for (Node<K,V> p; (p = advance()) != null; )
5840 >                    r = reducer.apply(r, transformer.apply(p));
5841 >                result = r;
5842 >                CountedCompleter<?> c;
5843 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5844 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5845 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5846 >                        s = t.rights;
5847 >                    while (s != null) {
5848 >                        t.result = reducer.apply(t.result, s.result);
5849 >                        s = t.rights = s.nextRight;
5850 >                    }
5851 >                }
5852 >            }
5853 >        }
5854 >    }
5855 >
5856 >    @SuppressWarnings("serial")
5857 >    static final class MapReduceMappingsToLongTask<K,V>
5858 >        extends BulkTask<K,V,Long> {
5859 >        final ObjectByObjectToLong<? super K, ? super V> transformer;
5860 >        final LongByLongToLong reducer;
5861 >        final long basis;
5862 >        long result;
5863 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
5864 >        MapReduceMappingsToLongTask
5865 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5866 >             MapReduceMappingsToLongTask<K,V> nextRight,
5867 >             ObjectByObjectToLong<? super K, ? super V> transformer,
5868 >             long basis,
5869 >             LongByLongToLong reducer) {
5870 >            super(p, b, i, f, t); this.nextRight = nextRight;
5871 >            this.transformer = transformer;
5872 >            this.basis = basis; this.reducer = reducer;
5873 >        }
5874 >        public final Long getRawResult() { return result; }
5875 >        public final void compute() {
5876 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
5877 >            final LongByLongToLong reducer;
5878 >            if ((transformer = this.transformer) != null &&
5879 >                (reducer = this.reducer) != null) {
5880 >                long r = this.basis;
5881 >                for (int i = baseIndex, f, h; batch > 0 &&
5882 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5883 >                    addToPendingCount(1);
5884 >                    (rights = new MapReduceMappingsToLongTask<K,V>
5885 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5886 >                      rights, transformer, r, reducer)).fork();
5887 >                }
5888 >                for (Node<K,V> p; (p = advance()) != null; )
5889 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5890 >                result = r;
5891 >                CountedCompleter<?> c;
5892 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5893 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5894 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
5895 >                        s = t.rights;
5896 >                    while (s != null) {
5897 >                        t.result = reducer.apply(t.result, s.result);
5898 >                        s = t.rights = s.nextRight;
5899 >                    }
5900 >                }
5901 >            }
5902 >        }
5903 >    }
5904 >
5905 >    @SuppressWarnings("serial")
5906 >    static final class MapReduceKeysToIntTask<K,V>
5907 >        extends BulkTask<K,V,Integer> {
5908 >        final ObjectToInt<? super K> transformer;
5909 >        final IntByIntToInt reducer;
5910 >        final int basis;
5911 >        int result;
5912 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
5913 >        MapReduceKeysToIntTask
5914 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5915 >             MapReduceKeysToIntTask<K,V> nextRight,
5916 >             ObjectToInt<? super K> transformer,
5917 >             int basis,
5918 >             IntByIntToInt reducer) {
5919 >            super(p, b, i, f, t); this.nextRight = nextRight;
5920 >            this.transformer = transformer;
5921 >            this.basis = basis; this.reducer = reducer;
5922 >        }
5923 >        public final Integer getRawResult() { return result; }
5924 >        public final void compute() {
5925 >            final ObjectToInt<? super K> transformer;
5926 >            final IntByIntToInt reducer;
5927 >            if ((transformer = this.transformer) != null &&
5928 >                (reducer = this.reducer) != null) {
5929 >                int r = this.basis;
5930 >                for (int i = baseIndex, f, h; batch > 0 &&
5931 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5932 >                    addToPendingCount(1);
5933 >                    (rights = new MapReduceKeysToIntTask<K,V>
5934 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5935 >                      rights, transformer, r, reducer)).fork();
5936 >                }
5937 >                for (Node<K,V> p; (p = advance()) != null; )
5938 >                    r = reducer.apply(r, transformer.apply(p.key));
5939 >                result = r;
5940 >                CountedCompleter<?> c;
5941 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5942 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5943 >                        t = (MapReduceKeysToIntTask<K,V>)c,
5944 >                        s = t.rights;
5945 >                    while (s != null) {
5946 >                        t.result = reducer.apply(t.result, s.result);
5947 >                        s = t.rights = s.nextRight;
5948 >                    }
5949 >                }
5950 >            }
5951 >        }
5952 >    }
5953 >
5954 >    @SuppressWarnings("serial")
5955 >    static final class MapReduceValuesToIntTask<K,V>
5956 >        extends BulkTask<K,V,Integer> {
5957 >        final ObjectToInt<? super V> transformer;
5958 >        final IntByIntToInt reducer;
5959 >        final int basis;
5960 >        int result;
5961 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
5962 >        MapReduceValuesToIntTask
5963 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5964 >             MapReduceValuesToIntTask<K,V> nextRight,
5965 >             ObjectToInt<? super V> transformer,
5966 >             int basis,
5967 >             IntByIntToInt reducer) {
5968 >            super(p, b, i, f, t); this.nextRight = nextRight;
5969 >            this.transformer = transformer;
5970 >            this.basis = basis; this.reducer = reducer;
5971 >        }
5972 >        public final Integer getRawResult() { return result; }
5973 >        public final void compute() {
5974 >            final ObjectToInt<? super V> transformer;
5975 >            final IntByIntToInt reducer;
5976 >            if ((transformer = this.transformer) != null &&
5977 >                (reducer = this.reducer) != null) {
5978 >                int r = this.basis;
5979 >                for (int i = baseIndex, f, h; batch > 0 &&
5980 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5981 >                    addToPendingCount(1);
5982 >                    (rights = new MapReduceValuesToIntTask<K,V>
5983 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5984 >                      rights, transformer, r, reducer)).fork();
5985 >                }
5986 >                for (Node<K,V> p; (p = advance()) != null; )
5987 >                    r = reducer.apply(r, transformer.apply(p.val));
5988 >                result = r;
5989 >                CountedCompleter<?> c;
5990 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5991 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5992 >                        t = (MapReduceValuesToIntTask<K,V>)c,
5993 >                        s = t.rights;
5994 >                    while (s != null) {
5995 >                        t.result = reducer.apply(t.result, s.result);
5996 >                        s = t.rights = s.nextRight;
5997 >                    }
5998 >                }
5999 >            }
6000 >        }
6001 >    }
6002 >
6003 >    @SuppressWarnings("serial")
6004 >    static final class MapReduceEntriesToIntTask<K,V>
6005 >        extends BulkTask<K,V,Integer> {
6006 >        final ObjectToInt<Map.Entry<K,V>> transformer;
6007 >        final IntByIntToInt reducer;
6008 >        final int basis;
6009 >        int result;
6010 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6011 >        MapReduceEntriesToIntTask
6012 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6013 >             MapReduceEntriesToIntTask<K,V> nextRight,
6014 >             ObjectToInt<Map.Entry<K,V>> transformer,
6015 >             int basis,
6016 >             IntByIntToInt reducer) {
6017 >            super(p, b, i, f, t); this.nextRight = nextRight;
6018 >            this.transformer = transformer;
6019 >            this.basis = basis; this.reducer = reducer;
6020 >        }
6021 >        public final Integer getRawResult() { return result; }
6022 >        public final void compute() {
6023 >            final ObjectToInt<Map.Entry<K,V>> transformer;
6024 >            final IntByIntToInt reducer;
6025 >            if ((transformer = this.transformer) != null &&
6026 >                (reducer = this.reducer) != null) {
6027 >                int r = this.basis;
6028 >                for (int i = baseIndex, f, h; batch > 0 &&
6029 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6030 >                    addToPendingCount(1);
6031 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6032 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6033 >                      rights, transformer, r, reducer)).fork();
6034 >                }
6035 >                for (Node<K,V> p; (p = advance()) != null; )
6036 >                    r = reducer.apply(r, transformer.apply(p));
6037 >                result = r;
6038 >                CountedCompleter<?> c;
6039 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6040 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
6041 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6042 >                        s = t.rights;
6043 >                    while (s != null) {
6044 >                        t.result = reducer.apply(t.result, s.result);
6045 >                        s = t.rights = s.nextRight;
6046 >                    }
6047 >                }
6048 >            }
6049 >        }
6050 >    }
6051 >
6052 >    @SuppressWarnings("serial")
6053 >    static final class MapReduceMappingsToIntTask<K,V>
6054 >        extends BulkTask<K,V,Integer> {
6055 >        final ObjectByObjectToInt<? super K, ? super V> transformer;
6056 >        final IntByIntToInt reducer;
6057 >        final int basis;
6058 >        int result;
6059 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6060 >        MapReduceMappingsToIntTask
6061 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6062 >             MapReduceMappingsToIntTask<K,V> nextRight,
6063 >             ObjectByObjectToInt<? super K, ? super V> transformer,
6064 >             int basis,
6065 >             IntByIntToInt reducer) {
6066 >            super(p, b, i, f, t); this.nextRight = nextRight;
6067 >            this.transformer = transformer;
6068 >            this.basis = basis; this.reducer = reducer;
6069 >        }
6070 >        public final Integer getRawResult() { return result; }
6071 >        public final void compute() {
6072 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
6073 >            final IntByIntToInt reducer;
6074 >            if ((transformer = this.transformer) != null &&
6075 >                (reducer = this.reducer) != null) {
6076 >                int r = this.basis;
6077 >                for (int i = baseIndex, f, h; batch > 0 &&
6078 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6079 >                    addToPendingCount(1);
6080 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6081 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6082 >                      rights, transformer, r, reducer)).fork();
6083 >                }
6084 >                for (Node<K,V> p; (p = advance()) != null; )
6085 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
6086 >                result = r;
6087 >                CountedCompleter<?> c;
6088 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6089 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6090 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6091 >                        s = t.rights;
6092 >                    while (s != null) {
6093 >                        t.result = reducer.apply(t.result, s.result);
6094 >                        s = t.rights = s.nextRight;
6095 >                    }
6096 >                }
6097 >            }
6098 >        }
6099 >    }
6100 >
6101 >    /* ---------------- Counters -------------- */
6102 >
6103 >    // Adapted from LongAdder and Striped64.
6104 >    // See their internal docs for explanation.
6105 >
6106 >    // A padded cell for distributing counts
6107 >    static final class CounterCell {
6108 >        volatile long p0, p1, p2, p3, p4, p5, p6;
6109 >        volatile long value;
6110 >        volatile long q0, q1, q2, q3, q4, q5, q6;
6111 >        CounterCell(long x) { value = x; }
6112      }
6113  
6114      /**
6115 <     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
6116 <     * stream (i.e., serializes it).
6117 <     * @param s the stream
1592 <     * @serialData
1593 <     * the key (Object) and value (Object)
1594 <     * for each key-value mapping, followed by a null pair.
1595 <     * The key-value mappings are emitted in no particular order.
6115 >     * Holder for the thread-local hash code determining which
6116 >     * CounterCell to use. The code is initialized via the
6117 >     * counterHashCodeGenerator, but may be moved upon collisions.
6118       */
6119 <    @SuppressWarnings("unchecked")
6120 <    private void writeObject(java.io.ObjectOutputStream s)
1599 <            throws java.io.IOException {
1600 <        if (segments == null) { // for serialization compatibility
1601 <            segments = (Segment<K,V>[])
1602 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1603 <            for (int i = 0; i < segments.length; ++i)
1604 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
1605 <        }
1606 <        s.defaultWriteObject();
1607 <        InternalIterator it = new InternalIterator(table);
1608 <        while (it.next != null) {
1609 <            s.writeObject(it.nextKey);
1610 <            s.writeObject(it.nextVal);
1611 <            it.advance();
1612 <        }
1613 <        s.writeObject(null);
1614 <        s.writeObject(null);
1615 <        segments = null; // throw away
6119 >    static final class CounterHashCode {
6120 >        int code;
6121      }
6122  
6123      /**
6124 <     * Reconstitutes the instance from a stream (that is, deserializes it).
1620 <     * @param s the stream
6124 >     * Generates initial value for per-thread CounterHashCodes.
6125       */
6126 <    @SuppressWarnings("unchecked")
1623 <    private void readObject(java.io.ObjectInputStream s)
1624 <            throws java.io.IOException, ClassNotFoundException {
1625 <        s.defaultReadObject();
1626 <        this.segments = null; // unneeded
1627 <        // initalize transient final field
1628 <        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
1629 <        this.targetCapacity = DEFAULT_CAPACITY;
6126 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6127  
6128 <        // Create all nodes, then place in table once size is known
6129 <        long size = 0L;
6130 <        Node p = null;
6131 <        for (;;) {
6132 <            K k = (K) s.readObject();
6133 <            V v = (V) s.readObject();
6134 <            if (k != null && v != null) {
6135 <                p = new Node(spread(k.hashCode()), k, v, p);
6136 <                ++size;
6128 >    /**
6129 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
6130 >     * for explanation.
6131 >     */
6132 >    static final int SEED_INCREMENT = 0x61c88647;
6133 >
6134 >    /**
6135 >     * Per-thread counter hash codes. Shared across all instances.
6136 >     */
6137 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6138 >        new ThreadLocal<CounterHashCode>();
6139 >
6140 >
6141 >    final long sumCount() {
6142 >        CounterCell[] as = counterCells; CounterCell a;
6143 >        long sum = baseCount;
6144 >        if (as != null) {
6145 >            for (int i = 0; i < as.length; ++i) {
6146 >                if ((a = as[i]) != null)
6147 >                    sum += a.value;
6148              }
1641            else
1642                break;
6149          }
6150 <        if (p != null) {
6151 <            boolean init = false;
6152 <            if (resizing == 0 &&
6153 <                UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) {
6154 <                try {
6155 <                    if (table == null) {
6156 <                        init = true;
6157 <                        int n;
6158 <                        if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
6159 <                            n = MAXIMUM_CAPACITY;
6160 <                        else {
6161 <                            int sz = (int)size;
6162 <                            n = tableSizeFor(sz + (sz >>> 1) + 1);
6150 >        return sum;
6151 >    }
6152 >
6153 >    // See LongAdder version for explanation
6154 >    private final void fullAddCount(long x, CounterHashCode hc,
6155 >                                    boolean wasUncontended) {
6156 >        int h;
6157 >        if (hc == null) {
6158 >            hc = new CounterHashCode();
6159 >            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6160 >            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6161 >            threadCounterHashCode.set(hc);
6162 >        }
6163 >        else
6164 >            h = hc.code;
6165 >        boolean collide = false;                // True if last slot nonempty
6166 >        for (;;) {
6167 >            CounterCell[] as; CounterCell a; int n; long v;
6168 >            if ((as = counterCells) != null && (n = as.length) > 0) {
6169 >                if ((a = as[(n - 1) & h]) == null) {
6170 >                    if (cellsBusy == 0) {            // Try to attach new Cell
6171 >                        CounterCell r = new CounterCell(x); // Optimistic create
6172 >                        if (cellsBusy == 0 &&
6173 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6174 >                            boolean created = false;
6175 >                            try {               // Recheck under lock
6176 >                                CounterCell[] rs; int m, j;
6177 >                                if ((rs = counterCells) != null &&
6178 >                                    (m = rs.length) > 0 &&
6179 >                                    rs[j = (m - 1) & h] == null) {
6180 >                                    rs[j] = r;
6181 >                                    created = true;
6182 >                                }
6183 >                            } finally {
6184 >                                cellsBusy = 0;
6185 >                            }
6186 >                            if (created)
6187 >                                break;
6188 >                            continue;           // Slot is now non-empty
6189                          }
6190 <                        threshold = n - (n >>> 2) - THRESHOLD_OFFSET;
6191 <                        Node[] tab = new Node[n];
6192 <                        int mask = n - 1;
6193 <                        while (p != null) {
6194 <                            int j = p.hash & mask;
6195 <                            Node next = p.next;
6196 <                            p.next = tabAt(tab, j);
6197 <                            setTabAt(tab, j, p);
6198 <                            p = next;
6190 >                    }
6191 >                    collide = false;
6192 >                }
6193 >                else if (!wasUncontended)       // CAS already known to fail
6194 >                    wasUncontended = true;      // Continue after rehash
6195 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6196 >                    break;
6197 >                else if (counterCells != as || n >= NCPU)
6198 >                    collide = false;            // At max size or stale
6199 >                else if (!collide)
6200 >                    collide = true;
6201 >                else if (cellsBusy == 0 &&
6202 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6203 >                    try {
6204 >                        if (counterCells == as) {// Expand table unless stale
6205 >                            CounterCell[] rs = new CounterCell[n << 1];
6206 >                            for (int i = 0; i < n; ++i)
6207 >                                rs[i] = as[i];
6208 >                            counterCells = rs;
6209                          }
6210 <                        table = tab;
6211 <                        counter.add(size);
6210 >                    } finally {
6211 >                        cellsBusy = 0;
6212                      }
6213 <                } finally {
6214 <                    resizing = 0;
6213 >                    collide = false;
6214 >                    continue;                   // Retry with expanded table
6215                  }
6216 +                h ^= h << 13;                   // Rehash
6217 +                h ^= h >>> 17;
6218 +                h ^= h << 5;
6219              }
6220 <            if (!init) { // Can only happen if unsafely published.
6221 <                while (p != null) {
6222 <                    internalPut(p.key, p.val, true);
6223 <                    p = p.next;
6220 >            else if (cellsBusy == 0 && counterCells == as &&
6221 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6222 >                boolean init = false;
6223 >                try {                           // Initialize table
6224 >                    if (counterCells == as) {
6225 >                        CounterCell[] rs = new CounterCell[2];
6226 >                        rs[h & 1] = new CounterCell(x);
6227 >                        counterCells = rs;
6228 >                        init = true;
6229 >                    }
6230 >                } finally {
6231 >                    cellsBusy = 0;
6232                  }
6233 +                if (init)
6234 +                    break;
6235              }
6236 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6237 +                break;                          // Fall back on using base
6238          }
6239 +        hc.code = h;                            // Record index for next time
6240      }
6241  
6242      // Unsafe mechanics
6243 <    private static final sun.misc.Unsafe UNSAFE;
6244 <    private static final long counterOffset;
6245 <    private static final long resizingOffset;
6243 >    private static final sun.misc.Unsafe U;
6244 >    private static final long SIZECTL;
6245 >    private static final long TRANSFERINDEX;
6246 >    private static final long BASECOUNT;
6247 >    private static final long CELLSBUSY;
6248 >    private static final long CELLVALUE;
6249      private static final long ABASE;
6250      private static final int ASHIFT;
6251  
6252      static {
1692        int ss;
6253          try {
6254 <            UNSAFE = getUnsafe();
6254 >            U = getUnsafe();
6255              Class<?> k = ConcurrentHashMapV8.class;
6256 <            counterOffset = UNSAFE.objectFieldOffset
6257 <                (k.getDeclaredField("counter"));
6258 <            resizingOffset = UNSAFE.objectFieldOffset
6259 <                (k.getDeclaredField("resizing"));
6260 <            Class<?> sc = Node[].class;
6261 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6262 <            ss = UNSAFE.arrayIndexScale(sc);
6256 >            SIZECTL = U.objectFieldOffset
6257 >                (k.getDeclaredField("sizeCtl"));
6258 >            TRANSFERINDEX = U.objectFieldOffset
6259 >                (k.getDeclaredField("transferIndex"));
6260 >            BASECOUNT = U.objectFieldOffset
6261 >                (k.getDeclaredField("baseCount"));
6262 >            CELLSBUSY = U.objectFieldOffset
6263 >                (k.getDeclaredField("cellsBusy"));
6264 >            Class<?> ck = CounterCell.class;
6265 >            CELLVALUE = U.objectFieldOffset
6266 >                (ck.getDeclaredField("value"));
6267 >            Class<?> ak = Node[].class;
6268 >            ABASE = U.arrayBaseOffset(ak);
6269 >            int scale = U.arrayIndexScale(ak);
6270 >            if ((scale & (scale - 1)) != 0)
6271 >                throw new Error("data type scale not a power of two");
6272 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6273          } catch (Exception e) {
6274              throw new Error(e);
6275          }
1706        if ((ss & (ss-1)) != 0)
1707            throw new Error("data type scale not a power of two");
1708        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6276      }
6277  
6278      /**
# Line 1718 | Line 6285 | public class ConcurrentHashMapV8<K, V>
6285      private static sun.misc.Unsafe getUnsafe() {
6286          try {
6287              return sun.misc.Unsafe.getUnsafe();
6288 <        } catch (SecurityException se) {
6289 <            try {
6290 <                return java.security.AccessController.doPrivileged
6291 <                    (new java.security
6292 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6293 <                        public sun.misc.Unsafe run() throws Exception {
6294 <                            java.lang.reflect.Field f = sun.misc
6295 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6296 <                            f.setAccessible(true);
6297 <                            return (sun.misc.Unsafe) f.get(null);
6298 <                        }});
6299 <            } catch (java.security.PrivilegedActionException e) {
6300 <                throw new RuntimeException("Could not initialize intrinsics",
6301 <                                           e.getCause());
6302 <            }
6288 >        } catch (SecurityException tryReflectionInstead) {}
6289 >        try {
6290 >            return java.security.AccessController.doPrivileged
6291 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6292 >                public sun.misc.Unsafe run() throws Exception {
6293 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6294 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6295 >                        f.setAccessible(true);
6296 >                        Object x = f.get(null);
6297 >                        if (k.isInstance(x))
6298 >                            return k.cast(x);
6299 >                    }
6300 >                    throw new NoSuchFieldError("the Unsafe");
6301 >                }});
6302 >        } catch (java.security.PrivilegedActionException e) {
6303 >            throw new RuntimeException("Could not initialize intrinsics",
6304 >                                       e.getCause());
6305          }
6306      }
1738
6307   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines