ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.19 by jsr166, Sat Sep 10 01:38:28 2011 UTC vs.
Revision 1.82 by dl, Thu Dec 13 20:34:00 2012 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166e;
8 < import jsr166e.LongAdder;
8 >
9 > import java.util.Comparator;
10 > import java.util.Arrays;
11   import java.util.Map;
12   import java.util.Set;
13   import java.util.Collection;
# Line 19 | Line 21 | import java.util.Enumeration;
21   import java.util.ConcurrentModificationException;
22   import java.util.NoSuchElementException;
23   import java.util.concurrent.ConcurrentMap;
24 + import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 + import java.util.concurrent.atomic.AtomicInteger;
26 + import java.util.concurrent.atomic.AtomicReference;
27   import java.io.Serializable;
28  
29   /**
# Line 33 | Line 38 | import java.io.Serializable;
38   * interoperable with {@code Hashtable} in programs that rely on its
39   * thread safety but not on its synchronization details.
40   *
41 < * <p> Retrieval operations (including {@code get}) generally do not
41 > * <p>Retrieval operations (including {@code get}) generally do not
42   * block, so may overlap with update operations (including {@code put}
43   * and {@code remove}). Retrievals reflect the results of the most
44   * recently <em>completed</em> update operations holding upon their
45 < * onset.  For aggregate operations such as {@code putAll} and {@code
46 < * clear}, concurrent retrievals may reflect insertion or removal of
47 < * only some entries.  Similarly, Iterators and Enumerations return
48 < * elements reflecting the state of the hash table at some point at or
49 < * since the creation of the iterator/enumeration.  They do
50 < * <em>not</em> throw {@link ConcurrentModificationException}.
51 < * However, iterators are designed to be used by only one thread at a
52 < * time.  Bear in mind that the results of aggregate status methods
53 < * including {@code size}, {@code isEmpty}, and {@code containsValue}
54 < * are typically useful only when a map is not undergoing concurrent
55 < * updates in other threads.  Otherwise the results of these methods
56 < * reflect transient states that may be adequate for monitoring
57 < * or estimation purposes, but not for program control.
45 > * onset. (More formally, an update operation for a given key bears a
46 > * <em>happens-before</em> relation with any (non-null) retrieval for
47 > * that key reporting the updated value.)  For aggregate operations
48 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
49 > * reflect insertion or removal of only some entries.  Similarly,
50 > * Iterators and Enumerations return elements reflecting the state of
51 > * the hash table at some point at or since the creation of the
52 > * iterator/enumeration.  They do <em>not</em> throw {@link
53 > * ConcurrentModificationException}.  However, iterators are designed
54 > * to be used by only one thread at a time.  Bear in mind that the
55 > * results of aggregate status methods including {@code size}, {@code
56 > * isEmpty}, and {@code containsValue} are typically useful only when
57 > * a map is not undergoing concurrent updates in other threads.
58 > * Otherwise the results of these methods reflect transient states
59 > * that may be adequate for monitoring or estimation purposes, but not
60 > * for program control.
61   *
62 < * <p> The table is dynamically expanded when there are too many
62 > * <p>The table is dynamically expanded when there are too many
63   * collisions (i.e., keys that have distinct hash codes but fall into
64   * the same slot modulo the table size), with the expected average
65 < * effect of maintaining roughly two bins per mapping. There may be
66 < * much variance around this average as mappings are added and
67 < * removed, but overall, this maintains a commonly accepted time/space
68 < * tradeoff for hash tables.  However, resizing this or any other kind
69 < * of hash table may be a relatively slow operation. When possible, it
70 < * is a good idea to provide a size estimate as an optional {@code
65 > * effect of maintaining roughly two bins per mapping (corresponding
66 > * to a 0.75 load factor threshold for resizing). There may be much
67 > * variance around this average as mappings are added and removed, but
68 > * overall, this maintains a commonly accepted time/space tradeoff for
69 > * hash tables.  However, resizing this or any other kind of hash
70 > * table may be a relatively slow operation. When possible, it is a
71 > * good idea to provide a size estimate as an optional {@code
72   * initialCapacity} constructor argument. An additional optional
73   * {@code loadFactor} constructor argument provides a further means of
74   * customizing initial table capacity by specifying the table density
# Line 68 | Line 77 | import java.io.Serializable;
77   * versions of this class, constructors may optionally specify an
78   * expected {@code concurrencyLevel} as an additional hint for
79   * internal sizing.  Note that using many keys with exactly the same
80 < * {@code hashCode{}} is a sure way to slow down performance of any
80 > * {@code hashCode()} is a sure way to slow down performance of any
81   * hash table.
82   *
83 + * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
84 + * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
85 + * (using {@link #keySet(Object)} when only keys are of interest, and the
86 + * mapped values are (perhaps transiently) not used or all take the
87 + * same mapping value.
88 + *
89 + * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
90 + * form of histogram or multiset) by using {@link LongAdder} values
91 + * and initializing via {@link #computeIfAbsent}. For example, to add
92 + * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
93 + * can use {@code freqs.computeIfAbsent(k -> new
94 + * LongAdder()).increment();}
95 + *
96   * <p>This class and its views and iterators implement all of the
97   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
98   * interfaces.
99   *
100 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
100 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
101   * does <em>not</em> allow {@code null} to be used as a key or value.
102   *
103 + * <p>ConcurrentHashMapV8s support parallel operations using the {@link
104 + * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
105 + * are available in class {@link ForkJoinTasks}). These operations are
106 + * designed to be safely, and often sensibly, applied even with maps
107 + * that are being concurrently updated by other threads; for example,
108 + * when computing a snapshot summary of the values in a shared
109 + * registry.  There are three kinds of operation, each with four
110 + * forms, accepting functions with Keys, Values, Entries, and (Key,
111 + * Value) arguments and/or return values. (The first three forms are
112 + * also available via the {@link #keySet()}, {@link #values()} and
113 + * {@link #entrySet()} views). Because the elements of a
114 + * ConcurrentHashMapV8 are not ordered in any particular way, and may be
115 + * processed in different orders in different parallel executions, the
116 + * correctness of supplied functions should not depend on any
117 + * ordering, or on any other objects or values that may transiently
118 + * change while computation is in progress; and except for forEach
119 + * actions, should ideally be side-effect-free.
120 + *
121 + * <ul>
122 + * <li> forEach: Perform a given action on each element.
123 + * A variant form applies a given transformation on each element
124 + * before performing the action.</li>
125 + *
126 + * <li> search: Return the first available non-null result of
127 + * applying a given function on each element; skipping further
128 + * search when a result is found.</li>
129 + *
130 + * <li> reduce: Accumulate each element.  The supplied reduction
131 + * function cannot rely on ordering (more formally, it should be
132 + * both associative and commutative).  There are five variants:
133 + *
134 + * <ul>
135 + *
136 + * <li> Plain reductions. (There is not a form of this method for
137 + * (key, value) function arguments since there is no corresponding
138 + * return type.)</li>
139 + *
140 + * <li> Mapped reductions that accumulate the results of a given
141 + * function applied to each element.</li>
142 + *
143 + * <li> Reductions to scalar doubles, longs, and ints, using a
144 + * given basis value.</li>
145 + *
146 + * </li>
147 + * </ul>
148 + * </ul>
149 + *
150 + * <p>The concurrency properties of bulk operations follow
151 + * from those of ConcurrentHashMapV8: Any non-null result returned
152 + * from {@code get(key)} and related access methods bears a
153 + * happens-before relation with the associated insertion or
154 + * update.  The result of any bulk operation reflects the
155 + * composition of these per-element relations (but is not
156 + * necessarily atomic with respect to the map as a whole unless it
157 + * is somehow known to be quiescent).  Conversely, because keys
158 + * and values in the map are never null, null serves as a reliable
159 + * atomic indicator of the current lack of any result.  To
160 + * maintain this property, null serves as an implicit basis for
161 + * all non-scalar reduction operations. For the double, long, and
162 + * int versions, the basis should be one that, when combined with
163 + * any other value, returns that other value (more formally, it
164 + * should be the identity element for the reduction). Most common
165 + * reductions have these properties; for example, computing a sum
166 + * with basis 0 or a minimum with basis MAX_VALUE.
167 + *
168 + * <p>Search and transformation functions provided as arguments
169 + * should similarly return null to indicate the lack of any result
170 + * (in which case it is not used). In the case of mapped
171 + * reductions, this also enables transformations to serve as
172 + * filters, returning null (or, in the case of primitive
173 + * specializations, the identity basis) if the element should not
174 + * be combined. You can create compound transformations and
175 + * filterings by composing them yourself under this "null means
176 + * there is nothing there now" rule before using them in search or
177 + * reduce operations.
178 + *
179 + * <p>Methods accepting and/or returning Entry arguments maintain
180 + * key-value associations. They may be useful for example when
181 + * finding the key for the greatest value. Note that "plain" Entry
182 + * arguments can be supplied using {@code new
183 + * AbstractMap.SimpleEntry(k,v)}.
184 + *
185 + * <p>Bulk operations may complete abruptly, throwing an
186 + * exception encountered in the application of a supplied
187 + * function. Bear in mind when handling such exceptions that other
188 + * concurrently executing functions could also have thrown
189 + * exceptions, or would have done so if the first exception had
190 + * not occurred.
191 + *
192 + * <p>Parallel speedups for bulk operations compared to sequential
193 + * processing are common but not guaranteed.  Operations involving
194 + * brief functions on small maps may execute more slowly than
195 + * sequential loops if the underlying work to parallelize the
196 + * computation is more expensive than the computation itself.
197 + * Similarly, parallelization may not lead to much actual parallelism
198 + * if all processors are busy performing unrelated tasks.
199 + *
200 + * <p>All arguments to all task methods must be non-null.
201 + *
202 + * <p><em>jsr166e note: During transition, this class
203 + * uses nested functional interfaces with different names but the
204 + * same forms as those expected for JDK8.</em>
205 + *
206   * <p>This class is a member of the
207   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
208   * Java Collections Framework</a>.
209   *
210 < * <p><em>jsr166e note: This class is a candidate replacement for
86 < * java.util.concurrent.ConcurrentHashMap.<em>
87 < *
88 < * @since 1.8
210 > * @since 1.5
211   * @author Doug Lea
212   * @param <K> the type of keys maintained by this map
213   * @param <V> the type of mapped values
214   */
215   public class ConcurrentHashMapV8<K, V>
216 <        implements ConcurrentMap<K, V>, Serializable {
216 >    implements ConcurrentMap<K, V>, Serializable {
217      private static final long serialVersionUID = 7249069246763182397L;
218  
219      /**
220 <     * A function computing a mapping from the given key to a value,
221 <     * or {@code null} if there is no mapping. This is a place-holder
222 <     * for an upcoming JDK8 interface.
223 <     */
224 <    public static interface MappingFunction<K, V> {
225 <        /**
226 <         * Returns a value for the given key, or null if there is no
227 <         * mapping. If this function throws an (unchecked) exception,
228 <         * the exception is rethrown to its caller, and no mapping is
229 <         * recorded.  Because this function is invoked within
230 <         * atomicity control, the computation should be short and
231 <         * simple. The most common usage is to construct a new object
232 <         * serving as an initial mapped value.
220 >     * A partitionable iterator. A Spliterator can be traversed
221 >     * directly, but can also be partitioned (before traversal) by
222 >     * creating another Spliterator that covers a non-overlapping
223 >     * portion of the elements, and so may be amenable to parallel
224 >     * execution.
225 >     *
226 >     * <p>This interface exports a subset of expected JDK8
227 >     * functionality.
228 >     *
229 >     * <p>Sample usage: Here is one (of the several) ways to compute
230 >     * the sum of the values held in a map using the ForkJoin
231 >     * framework. As illustrated here, Spliterators are well suited to
232 >     * designs in which a task repeatedly splits off half its work
233 >     * into forked subtasks until small enough to process directly,
234 >     * and then joins these subtasks. Variants of this style can also
235 >     * be used in completion-based designs.
236 >     *
237 >     * <pre>
238 >     * {@code ConcurrentHashMapV8<String, Long> m = ...
239 >     * // split as if have 8 * parallelism, for load balance
240 >     * int n = m.size();
241 >     * int p = aForkJoinPool.getParallelism() * 8;
242 >     * int split = (n < p)? n : p;
243 >     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
244 >     * // ...
245 >     * static class SumValues extends RecursiveTask<Long> {
246 >     *   final Spliterator<Long> s;
247 >     *   final int split;             // split while > 1
248 >     *   final SumValues nextJoin;    // records forked subtasks to join
249 >     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
250 >     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
251 >     *   }
252 >     *   public Long compute() {
253 >     *     long sum = 0;
254 >     *     SumValues subtasks = null; // fork subtasks
255 >     *     for (int s = split >>> 1; s > 0; s >>>= 1)
256 >     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
257 >     *     while (s.hasNext())        // directly process remaining elements
258 >     *       sum += s.next();
259 >     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
260 >     *       sum += t.join();         // collect subtask results
261 >     *     return sum;
262 >     *   }
263 >     * }
264 >     * }</pre>
265 >     */
266 >    public static interface Spliterator<T> extends Iterator<T> {
267 >        /**
268 >         * Returns a Spliterator covering approximately half of the
269 >         * elements, guaranteed not to overlap with those subsequently
270 >         * returned by this Spliterator.  After invoking this method,
271 >         * the current Spliterator will <em>not</em> produce any of
272 >         * the elements of the returned Spliterator, but the two
273 >         * Spliterators together will produce all of the elements that
274 >         * would have been produced by this Spliterator had this
275 >         * method not been called. The exact number of elements
276 >         * produced by the returned Spliterator is not guaranteed, and
277 >         * may be zero (i.e., with {@code hasNext()} reporting {@code
278 >         * false}) if this Spliterator cannot be further split.
279           *
280 <         * @param key the (non-null) key
281 <         * @return a value, or null if none
280 >         * @return a Spliterator covering approximately half of the
281 >         * elements
282 >         * @throws IllegalStateException if this Spliterator has
283 >         * already commenced traversing elements
284           */
285 <        V map(K key);
285 >        Spliterator<T> split();
286      }
287  
288      /*
# Line 121 | Line 291 | public class ConcurrentHashMapV8<K, V>
291       * The primary design goal of this hash table is to maintain
292       * concurrent readability (typically method get(), but also
293       * iterators and related methods) while minimizing update
294 <     * contention.
294 >     * contention. Secondary goals are to keep space consumption about
295 >     * the same or better than java.util.HashMap, and to support high
296 >     * initial insertion rates on an empty table by many threads.
297       *
298       * Each key-value mapping is held in a Node.  Because Node fields
299       * can contain special values, they are defined using plain Object
300       * types. Similarly in turn, all internal methods that use them
301       * work off Object types. And similarly, so do the internal
302 <     * methods of auxiliary iterator and view classes.  All public
303 <     * generic typed methods relay in/out of these internal methods,
304 <     * supplying null-checks and casts as needed.
302 >     * methods of auxiliary iterator and view classes. This also
303 >     * allows many of the public methods to be factored into a smaller
304 >     * number of internal methods (although sadly not so for the five
305 >     * variants of put-related operations). The validation-based
306 >     * approach explained below leads to a lot of code sprawl because
307 >     * retry-control precludes factoring into smaller methods.
308       *
309       * The table is lazily initialized to a power-of-two size upon the
310 <     * first insertion.  Each bin in the table contains a list of
311 <     * Nodes (most often, zero or one Node).  Table accesses require
312 <     * volatile/atomic reads, writes, and CASes.  Because there is no
313 <     * other way to arrange this without adding further indirections,
314 <     * we use intrinsics (sun.misc.Unsafe) operations.  The lists of
315 <     * nodes within bins are always accurately traversable under
316 <     * volatile reads, so long as lookups check hash code and
317 <     * non-nullness of value before checking key equality. (All valid
318 <     * hash codes are nonnegative. Negative values are reserved for
319 <     * special forwarding nodes; see below.)
310 >     * first insertion.  Each bin in the table normally contains a
311 >     * list of Nodes (most often, the list has only zero or one Node).
312 >     * Table accesses require volatile/atomic reads, writes, and
313 >     * CASes.  Because there is no other way to arrange this without
314 >     * adding further indirections, we use intrinsics
315 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
316 >     * are always accurately traversable under volatile reads, so long
317 >     * as lookups check hash code and non-nullness of value before
318 >     * checking key equality.
319 >     *
320 >     * We use the top (sign) bit of Node hash fields for control
321 >     * purposes -- it is available anyway because of addressing
322 >     * constraints.  Nodes with negative hash fields are forwarding
323 >     * nodes to either TreeBins or resized tables.  The lower 31 bits
324 >     * of each normal Node's hash field contain a transformation of
325 >     * the key's hash code.
326       *
327 <     * Insertion (via put or putIfAbsent) of the first node in an
327 >     * Insertion (via put or its variants) of the first node in an
328       * empty bin is performed by just CASing it to the bin.  This is
329 <     * on average by far the most common case for put operations.
330 <     * Other update operations (insert, delete, and replace) require
331 <     * locks.  We do not want to waste the space required to associate
332 <     * a distinct lock object with each bin, so instead use the first
333 <     * node of a bin list itself as a lock, using plain "synchronized"
334 <     * locks. These save space and we can live with block-structured
335 <     * lock/unlock operations. Using the first node of a list as a
336 <     * lock does not by itself suffice though: When a node is locked,
337 <     * any update must first validate that it is still the first node,
338 <     * and retry if not. Because new nodes are always appended to
339 <     * lists, once a node is first in a bin, it remains first until
340 <     * deleted or the bin becomes invalidated.  However, operations
341 <     * that only conditionally update can and sometimes do inspect
342 <     * nodes until the point of update. This is a converse of sorts to
343 <     * the lazy locking technique described by Herlihy & Shavit.
329 >     * by far the most common case for put operations under most
330 >     * key/hash distributions.  Other update operations (insert,
331 >     * delete, and replace) require locks.  We do not want to waste
332 >     * the space required to associate a distinct lock object with
333 >     * each bin, so instead use the first node of a bin list itself as
334 >     * a lock. Locking support for these locks relies on builtin
335 >     * "synchronized" monitors.
336 >     *
337 >     * Using the first node of a list as a lock does not by itself
338 >     * suffice though: When a node is locked, any update must first
339 >     * validate that it is still the first node after locking it, and
340 >     * retry if not. Because new nodes are always appended to lists,
341 >     * once a node is first in a bin, it remains first until deleted
342 >     * or the bin becomes invalidated (upon resizing).  However,
343 >     * operations that only conditionally update may inspect nodes
344 >     * until the point of update. This is a converse of sorts to the
345 >     * lazy locking technique described by Herlihy & Shavit.
346       *
347 <     * The main disadvantage of this approach is that most update
347 >     * The main disadvantage of per-bin locks is that other update
348       * operations on other nodes in a bin list protected by the same
349       * lock can stall, for example when user equals() or mapping
350 <     * functions take a long time.  However, statistically, this is
351 <     * not a common enough problem to outweigh the time/space overhead
352 <     * of alternatives: Under random hash codes, the frequency of
170 <     * nodes in bins follows a Poisson distribution
350 >     * functions take a long time.  However, statistically, under
351 >     * random hash codes, this is not a common problem.  Ideally, the
352 >     * frequency of nodes in bins follows a Poisson distribution
353       * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
354       * parameter of about 0.5 on average, given the resizing threshold
355       * of 0.75, although with a large variance because of resizing
356       * granularity. Ignoring variance, the expected occurrences of
357       * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
358 <     * first few values are:
358 >     * first values are:
359       *
360 <     * 0:    0.607
361 <     * 1:    0.303
362 <     * 2:    0.076
363 <     * 3:    0.012
364 <     * more: 0.002
360 >     * 0:    0.60653066
361 >     * 1:    0.30326533
362 >     * 2:    0.07581633
363 >     * 3:    0.01263606
364 >     * 4:    0.00157952
365 >     * 5:    0.00015795
366 >     * 6:    0.00001316
367 >     * 7:    0.00000094
368 >     * 8:    0.00000006
369 >     * more: less than 1 in ten million
370       *
371       * Lock contention probability for two threads accessing distinct
372 <     * elements is roughly 1 / (8 * #elements).  Function "spread"
373 <     * performs hashCode randomization that improves the likelihood
374 <     * that these assumptions hold unless users define exactly the
375 <     * same value for too many hashCodes.
376 <     *
377 <     * The table is resized when occupancy exceeds a threshold.  Only
378 <     * a single thread performs the resize (using field "resizing", to
379 <     * arrange exclusion), but the table otherwise remains usable for
380 <     * reads and updates. Resizing proceeds by transferring bins, one
381 <     * by one, from the table to the next table.  Upon transfer, the
382 <     * old table bin contains only a special forwarding node (with
383 <     * negative hash field) that contains the next table as its
384 <     * key. On encountering a forwarding node, access and update
385 <     * operations restart, using the new table. To ensure concurrent
386 <     * readability of traversals, transfers must proceed from the last
387 <     * bin (table.length - 1) up towards the first.  Upon seeing a
388 <     * forwarding node, traversals (see class InternalIterator)
389 <     * arrange to move to the new table for the rest of the traversal
390 <     * without revisiting nodes.  This constrains bin transfers to a
391 <     * particular order, and so can block indefinitely waiting for the
392 <     * next lock, and other threads cannot help with the transfer.
393 <     * However, expected stalls are infrequent enough to not warrant
394 <     * the additional overhead of access and iteration schemes that
395 <     * could admit out-of-order or concurrent bin transfers.
396 <     *
397 <     * This traversal scheme also applies to partial traversals of
398 <     * ranges of bins (via an alternate InternalIterator constructor)
399 <     * to support partitioned aggregate operations (that are not
400 <     * otherwise implemented yet).  Also, read-only operations give up
401 <     * if ever forwarded to a null table, which provides support for
402 <     * shutdown-style clearing, which is also not currently
403 <     * implemented.
372 >     * elements is roughly 1 / (8 * #elements) under random hashes.
373 >     *
374 >     * Actual hash code distributions encountered in practice
375 >     * sometimes deviate significantly from uniform randomness.  This
376 >     * includes the case when N > (1<<30), so some keys MUST collide.
377 >     * Similarly for dumb or hostile usages in which multiple keys are
378 >     * designed to have identical hash codes. Also, although we guard
379 >     * against the worst effects of this (see method spread), sets of
380 >     * hashes may differ only in bits that do not impact their bin
381 >     * index for a given power-of-two mask.  So we use a secondary
382 >     * strategy that applies when the number of nodes in a bin exceeds
383 >     * a threshold, and at least one of the keys implements
384 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
385 >     * (a specialized form of red-black trees), bounding search time
386 >     * to O(log N).  Each search step in a TreeBin is around twice as
387 >     * slow as in a regular list, but given that N cannot exceed
388 >     * (1<<64) (before running out of addresses) this bounds search
389 >     * steps, lock hold times, etc, to reasonable constants (roughly
390 >     * 100 nodes inspected per operation worst case) so long as keys
391 >     * are Comparable (which is very common -- String, Long, etc).
392 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
393 >     * traversal pointers as regular nodes, so can be traversed in
394 >     * iterators in the same way.
395 >     *
396 >     * The table is resized when occupancy exceeds a percentage
397 >     * threshold (nominally, 0.75, but see below).  Any thread
398 >     * noticing an overfull bin may assist in resizing after the
399 >     * initiating thread allocates and sets up the replacement
400 >     * array. However, rather than stalling, these other threads may
401 >     * proceed with insertions etc.  The use of TreeBins shields us
402 >     * from the worst case effects of overfilling while resizes are in
403 >     * progress.  Resizing proceeds by transferring bins, one by one,
404 >     * from the table to the next table. To enable concurrency, the
405 >     * next table must be (incrementally) prefilled with place-holders
406 >     * serving as reverse forwarders to the old table.  Because we are
407 >     * using power-of-two expansion, the elements from each bin must
408 >     * either stay at same index, or move with a power of two
409 >     * offset. We eliminate unnecessary node creation by catching
410 >     * cases where old nodes can be reused because their next fields
411 >     * won't change.  On average, only about one-sixth of them need
412 >     * cloning when a table doubles. The nodes they replace will be
413 >     * garbage collectable as soon as they are no longer referenced by
414 >     * any reader thread that may be in the midst of concurrently
415 >     * traversing table.  Upon transfer, the old table bin contains
416 >     * only a special forwarding node (with hash field "MOVED") that
417 >     * contains the next table as its key. On encountering a
418 >     * forwarding node, access and update operations restart, using
419 >     * the new table.
420 >     *
421 >     * Each bin transfer requires its bin lock, which can stall
422 >     * waiting for locks while resizing. However, because other
423 >     * threads can join in and help resize rather than contend for
424 >     * locks, average aggregate waits become shorter as resizing
425 >     * progresses.  The transfer operation must also ensure that all
426 >     * accessible bins in both the old and new table are usable by any
427 >     * traversal.  This is arranged by proceeding from the last bin
428 >     * (table.length - 1) up towards the first.  Upon seeing a
429 >     * forwarding node, traversals (see class Traverser) arrange to
430 >     * move to the new table without revisiting nodes.  However, to
431 >     * ensure that no intervening nodes are skipped, bin splitting can
432 >     * only begin after the associated reverse-forwarders are in
433 >     * place.
434 >     *
435 >     * The traversal scheme also applies to partial traversals of
436 >     * ranges of bins (via an alternate Traverser constructor)
437 >     * to support partitioned aggregate operations.  Also, read-only
438 >     * operations give up if ever forwarded to a null table, which
439 >     * provides support for shutdown-style clearing, which is also not
440 >     * currently implemented.
441       *
442       * Lazy table initialization minimizes footprint until first use,
443       * and also avoids resizings when the first operation is from a
444       * putAll, constructor with map argument, or deserialization.
445 <     * These cases attempt to override the targetCapacity used in
446 <     * growTable. These harmlessly fail to take effect in cases of
447 <     * races with other ongoing resizings. Uses of the threshold and
448 <     * targetCapacity during attempted initializations or resizings
449 <     * are racy but fall back on checks to preserve correctness.
450 <     *
451 <     * The element count is maintained using a LongAdder, which avoids
452 <     * contention on updates but can encounter cache thrashing if read
453 <     * too frequently during concurrent access. To avoid reading so
454 <     * often, resizing is normally attempted only upon adding to a bin
455 <     * already holding two or more nodes. Under uniform hash
445 >     * These cases attempt to override the initial capacity settings,
446 >     * but harmlessly fail to take effect in cases of races.
447 >     *
448 >     * The element count is maintained using a specialization of
449 >     * LongAdder. We need to incorporate a specialization rather than
450 >     * just use a LongAdder in order to access implicit
451 >     * contention-sensing that leads to creation of multiple
452 >     * CounterCells.  The counter mechanics avoid contention on
453 >     * updates but can encounter cache thrashing if read too
454 >     * frequently during concurrent access. To avoid reading so often,
455 >     * resizing under contention is attempted only upon adding to a
456 >     * bin already holding two or more nodes. Under uniform hash
457       * distributions, the probability of this occurring at threshold
458       * is around 13%, meaning that only about 1 in 8 puts check
459 <     * threshold (and after resizing, many fewer do so). But this
460 <     * approximation has high variance for small table sizes, so we
461 <     * check on any collision for sizes <= 64.  Further, to increase
237 <     * the probability that a resize occurs soon enough, we offset the
238 <     * threshold (see THRESHOLD_OFFSET) by the expected number of puts
239 <     * between checks.
459 >     * threshold (and after resizing, many fewer do so). The bulk
460 >     * putAll operation further reduces contention by only committing
461 >     * count updates upon these size checks.
462       *
463       * Maintaining API and serialization compatibility with previous
464       * versions of this class introduces several oddities. Mainly: We
465       * leave untouched but unused constructor arguments refering to
466 <     * concurrencyLevel. We also declare an unused "Segment" class
467 <     * that is instantiated in minimal form only when serializing.
466 >     * concurrencyLevel. We accept a loadFactor constructor argument,
467 >     * but apply it only to initial table capacity (which is the only
468 >     * time that we can guarantee to honor it.) We also declare an
469 >     * unused "Segment" class that is instantiated in minimal form
470 >     * only when serializing.
471       */
472  
473      /* ---------------- Constants -------------- */
# Line 250 | Line 475 | public class ConcurrentHashMapV8<K, V>
475      /**
476       * The largest possible table capacity.  This value must be
477       * exactly 1<<30 to stay within Java array allocation and indexing
478 <     * bounds for power of two table sizes.
478 >     * bounds for power of two table sizes, and is further required
479 >     * because the top two bits of 32bit hash fields are used for
480 >     * control purposes.
481       */
482      private static final int MAXIMUM_CAPACITY = 1 << 30;
483  
# Line 261 | Line 488 | public class ConcurrentHashMapV8<K, V>
488      private static final int DEFAULT_CAPACITY = 16;
489  
490      /**
491 +     * The largest possible (non-power of two) array size.
492 +     * Needed by toArray and related methods.
493 +     */
494 +    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
495 +
496 +    /**
497 +     * The default concurrency level for this table. Unused but
498 +     * defined for compatibility with previous versions of this class.
499 +     */
500 +    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
501 +
502 +    /**
503       * The load factor for this table. Overrides of this value in
504       * constructors affect only the initial table capacity.  The
505 <     * actual floating point value isn't normally used, because it is
506 <     * simpler to rely on the expression {@code n - (n >>> 2)} for the
507 <     * associated resizing threshold.
505 >     * actual floating point value isn't normally used -- it is
506 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
507 >     * the associated resizing threshold.
508       */
509      private static final float LOAD_FACTOR = 0.75f;
510  
511      /**
512 <     * The count value to offset thresholds to compensate for checking
513 <     * for the need to resize only when inserting into bins with two
514 <     * or more elements. See above for explanation.
512 >     * The bin count threshold for using a tree rather than list for a
513 >     * bin.  The value reflects the approximate break-even point for
514 >     * using tree-based operations.
515       */
516 <    private static final int THRESHOLD_OFFSET = 8;
516 >    private static final int TREE_THRESHOLD = 8;
517  
518      /**
519 <     * The default concurrency level for this table. Unused except as
520 <     * a sizing hint, but defined for compatibility with previous
521 <     * versions of this class.
519 >     * Minimum number of rebinnings per transfer step. Ranges are
520 >     * subdivided to allow multiple resizer threads.  This value
521 >     * serves as a lower bound to avoid resizers encountering
522 >     * excessive memory contention.  The value should be at least
523 >     * DEFAULT_CAPACITY.
524       */
525 <    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
525 >    private static final int MIN_TRANSFER_STRIDE = 16;
526  
527 <    /* ---------------- Nodes -------------- */
527 >    /*
528 >     * Encodings for Node hash fields. See above for explanation.
529 >     */
530 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
531 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
532 >
533 >    /** Number of CPUS, to place bounds on some sizings */
534 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
535 >
536 >    /* ---------------- Counters -------------- */
537 >
538 >    // Adapted from LongAdder and Striped64.
539 >    // See their internal docs for explanation.
540 >
541 >    // A padded cell for distributing counts
542 >    static final class CounterCell {
543 >        volatile long p0, p1, p2, p3, p4, p5, p6;
544 >        volatile long value;
545 >        volatile long q0, q1, q2, q3, q4, q5, q6;
546 >        CounterCell(long x) { value = x; }
547 >    }
548  
549      /**
550 <     * Key-value entry. Note that this is never exported out as a
551 <     * user-visible Map.Entry. Nodes with a negative hash field are
552 <     * special, and do not contain user keys or values.  Otherwise,
292 <     * keys are never null, and null val fields indicate that a node
293 <     * is in the process of being deleted or created. For purposes of
294 <     * read-only, access, a key may be read before a val, but can only
295 <     * be used after checking val.  (For an update operation, when a
296 <     * lock is held on a node, order doesn't matter.)
550 >     * Holder for the thread-local hash code determining which
551 >     * CounterCell to use. The code is initialized via the
552 >     * counterHashCodeGenerator, but may be moved upon collisions.
553       */
554 <    static final class Node {
555 <        final int hash;
300 <        final Object key;
301 <        volatile Object val;
302 <        volatile Node next;
303 <
304 <        Node(int hash, Object key, Object val, Node next) {
305 <            this.hash = hash;
306 <            this.key = key;
307 <            this.val = val;
308 <            this.next = next;
309 <        }
554 >    static final class CounterHashCode {
555 >        int code;
556      }
557  
558      /**
559 <     * Sign bit of node hash value indicating to use table in node.key.
559 >     * Generates initial value for per-thread CounterHashCodes
560 >     */
561 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
562 >
563 >    /**
564 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
565 >     * for explanation.
566       */
567 <    private static final int SIGN_BIT = 0x80000000;
567 >    static final int SEED_INCREMENT = 0x61c88647;
568 >
569 >    /**
570 >     * Per-thread counter hash codes. Shared across all instances
571 >     */
572 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
573 >        new ThreadLocal<CounterHashCode>();
574  
575      /* ---------------- Fields -------------- */
576  
# Line 322 | Line 580 | public class ConcurrentHashMapV8<K, V>
580       */
581      transient volatile Node[] table;
582  
583 <    /** The counter maintaining number of elements. */
584 <    private transient final LongAdder counter;
585 <    /** Nonzero when table is being initialized or resized. Updated via CAS. */
586 <    private transient volatile int resizing;
587 <    /** The next element count value upon which to resize the table. */
588 <    private transient int threshold;
589 <    /** The target capacity; volatile to cover initialization races. */
590 <    private transient volatile int targetCapacity;
583 >    /**
584 >     * The next table to use; non-null only while resizing.
585 >     */
586 >    private transient volatile Node[] nextTable;
587 >
588 >    /**
589 >     * Base counter value, used mainly when there is no contention,
590 >     * but also as a fallback during table initialization
591 >     * races. Updated via CAS.
592 >     */
593 >    private transient volatile long baseCount;
594 >
595 >    /**
596 >     * Table initialization and resizing control.  When negative, the
597 >     * table is being initialized or resized: -1 for initialization,
598 >     * else -(1 + the number of active resizing threads).  Otherwise,
599 >     * when table is null, holds the initial table size to use upon
600 >     * creation, or 0 for default. After initialization, holds the
601 >     * next element count value upon which to resize the table.
602 >     */
603 >    private transient volatile int sizeCtl;
604 >
605 >    /**
606 >     * The next table index (plus one) to split while resizing.
607 >     */
608 >    private transient volatile int transferIndex;
609 >
610 >    /**
611 >     * The least available table index to split while resizing.
612 >     */
613 >    private transient volatile int transferOrigin;
614 >
615 >    /**
616 >     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
617 >     */
618 >    private transient volatile int counterBusy;
619 >
620 >    /**
621 >     * Table of counter cells. When non-null, size is a power of 2.
622 >     */
623 >    private transient volatile CounterCell[] counterCells;
624  
625      // views
626 <    private transient KeySet<K,V> keySet;
627 <    private transient Values<K,V> values;
628 <    private transient EntrySet<K,V> entrySet;
626 >    private transient KeySetView<K,V> keySet;
627 >    private transient ValuesView<K,V> values;
628 >    private transient EntrySetView<K,V> entrySet;
629  
630      /** For serialization compatibility. Null unless serialized; see below */
631      private Segment<K,V>[] segments;
# Line 353 | Line 644 | public class ConcurrentHashMapV8<K, V>
644       * inline assignments below.
645       */
646  
647 <    static final Node tabAt(Node[] tab, int i) { // used by InternalIterator
648 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
647 >    static final Node tabAt(Node[] tab, int i) { // used by Traverser
648 >        return (Node)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
649      }
650  
651      private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
652 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
652 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
653      }
654  
655      private static final void setTabAt(Node[] tab, int i, Node v) {
656 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
656 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
657      }
658  
659 <    /* ----------------Table Initialization and Resizing -------------- */
659 >    /* ---------------- Nodes -------------- */
660  
661      /**
662 <     * Returns a power of two table size for the given desired capacity.
663 <     * See Hackers Delight, sec 3.2
662 >     * Key-value entry. Note that this is never exported out as a
663 >     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
664 >     * field of MOVED are special, and do not contain user keys or
665 >     * values.  Otherwise, keys are never null, and null val fields
666 >     * indicate that a node is in the process of being deleted or
667 >     * created. For purposes of read-only access, a key may be read
668 >     * before a val, but can only be used after checking val to be
669 >     * non-null.
670       */
671 <    private static final int tableSizeFor(int c) {
672 <        int n = c - 1;
673 <        n |= n >>> 1;
674 <        n |= n >>> 2;
675 <        n |= n >>> 4;
676 <        n |= n >>> 8;
677 <        n |= n >>> 16;
678 <        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
671 >    static class Node {
672 >        final int hash;
673 >        final Object key;
674 >        volatile Object val;
675 >        volatile Node next;
676 >
677 >        Node(int hash, Object key, Object val, Node next) {
678 >            this.hash = hash;
679 >            this.key = key;
680 >            this.val = val;
681 >            this.next = next;
682 >        }
683      }
684  
685 +    /* ---------------- TreeBins -------------- */
686 +
687      /**
688 <     * If not already resizing, initializes or creates next table and
689 <     * transfers bins. Initial table size uses the capacity recorded
690 <     * in targetCapacity.  Rechecks occupancy after a transfer to see
691 <     * if another resize is already needed because resizings are
692 <     * lagging additions.
693 <     *
694 <     * @return current table
695 <     */
696 <    private final Node[] growTable() {
697 <        if (resizing == 0 &&
698 <            UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) {
699 <            try {
397 <                for (;;) {
398 <                    Node[] tab = table;
399 <                    int n, c, m;
400 <                    if (tab == null)
401 <                        n = (c = targetCapacity) > 0 ? c : DEFAULT_CAPACITY;
402 <                    else if ((m = tab.length) < MAXIMUM_CAPACITY &&
403 <                             counter.sum() >= (long)threshold)
404 <                        n = m << 1;
405 <                    else
406 <                        break;
407 <                    threshold = n - (n >>> 2) - THRESHOLD_OFFSET;
408 <                    Node[] nextTab = new Node[n];
409 <                    if (tab != null)
410 <                        transfer(tab, nextTab,
411 <                                 new Node(SIGN_BIT, nextTab, null, null));
412 <                    table = nextTab;
413 <                    if (tab == null)
414 <                        break;
415 <                }
416 <            } finally {
417 <                resizing = 0;
418 <            }
688 >     * Nodes for use in TreeBins
689 >     */
690 >    static final class TreeNode extends Node {
691 >        TreeNode parent;  // red-black tree links
692 >        TreeNode left;
693 >        TreeNode right;
694 >        TreeNode prev;    // needed to unlink next upon deletion
695 >        boolean red;
696 >
697 >        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
698 >            super(hash, key, val, next);
699 >            this.parent = parent;
700          }
420        else if (table == null)
421            Thread.yield(); // lost initialization race; just spin
422        return table;
701      }
702  
703 <    /*
704 <     * Reclassifies nodes in each bin to new table.  Because we are
705 <     * using power-of-two expansion, the elements from each bin must
428 <     * either stay at same index, or move with a power of two
429 <     * offset. We eliminate unnecessary node creation by catching
430 <     * cases where old nodes can be reused because their next fields
431 <     * won't change.  Statistically, only about one-sixth of them need
432 <     * cloning when a table doubles. The nodes they replace will be
433 <     * garbage collectable as soon as they are no longer referenced by
434 <     * any reader thread that may be in the midst of concurrently
435 <     * traversing table.
703 >    /**
704 >     * A specialized form of red-black tree for use in bins
705 >     * whose size exceeds a threshold.
706       *
707 <     * Transfers are done from the bottom up to preserve iterator
708 <     * traversability. On each step, the old bin is locked,
709 <     * moved/copied, and then replaced with a forwarding node.
710 <     */
711 <    private static final void transfer(Node[] tab, Node[] nextTab, Node fwd) {
712 <        int n = tab.length;
713 <        Node ignore = nextTab[n + n - 1]; // force bounds check
714 <        for (int i = n - 1; i >= 0; --i) {
715 <            for (Node e;;) {
716 <                if ((e = tabAt(tab, i)) != null) {
717 <                    boolean validated = false;
718 <                    synchronized (e) {
719 <                        if (tabAt(tab, i) == e) {
720 <                            validated = true;
721 <                            Node lo = null, hi = null, lastRun = e;
722 <                            int runBit = e.hash & n;
723 <                            for (Node p = e.next; p != null; p = p.next) {
724 <                                int b = p.hash & n;
725 <                                if (b != runBit) {
726 <                                    runBit = b;
727 <                                    lastRun = p;
707 >     * TreeBins use a special form of comparison for search and
708 >     * related operations (which is the main reason we cannot use
709 >     * existing collections such as TreeMaps). TreeBins contain
710 >     * Comparable elements, but may contain others, as well as
711 >     * elements that are Comparable but not necessarily Comparable<T>
712 >     * for the same T, so we cannot invoke compareTo among them. To
713 >     * handle this, the tree is ordered primarily by hash value, then
714 >     * by getClass().getName() order, and then by Comparator order
715 >     * among elements of the same class.  On lookup at a node, if
716 >     * elements are not comparable or compare as 0, both left and
717 >     * right children may need to be searched in the case of tied hash
718 >     * values. (This corresponds to the full list search that would be
719 >     * necessary if all elements were non-Comparable and had tied
720 >     * hashes.)  The red-black balancing code is updated from
721 >     * pre-jdk-collections
722 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
723 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
724 >     * Algorithms" (CLR).
725 >     *
726 >     * TreeBins also maintain a separate locking discipline than
727 >     * regular bins. Because they are forwarded via special MOVED
728 >     * nodes at bin heads (which can never change once established),
729 >     * we cannot use those nodes as locks. Instead, TreeBin
730 >     * extends AbstractQueuedSynchronizer to support a simple form of
731 >     * read-write lock. For update operations and table validation,
732 >     * the exclusive form of lock behaves in the same way as bin-head
733 >     * locks. However, lookups use shared read-lock mechanics to allow
734 >     * multiple readers in the absence of writers.  Additionally,
735 >     * these lookups do not ever block: While the lock is not
736 >     * available, they proceed along the slow traversal path (via
737 >     * next-pointers) until the lock becomes available or the list is
738 >     * exhausted, whichever comes first. (These cases are not fast,
739 >     * but maximize aggregate expected throughput.)  The AQS mechanics
740 >     * for doing this are straightforward.  The lock state is held as
741 >     * AQS getState().  Read counts are negative; the write count (1)
742 >     * is positive.  There are no signalling preferences among readers
743 >     * and writers. Since we don't need to export full Lock API, we
744 >     * just override the minimal AQS methods and use them directly.
745 >     */
746 >    static final class TreeBin extends AbstractQueuedSynchronizer {
747 >        private static final long serialVersionUID = 2249069246763182397L;
748 >        transient TreeNode root;  // root of tree
749 >        transient TreeNode first; // head of next-pointer list
750 >
751 >        /* AQS overrides */
752 >        public final boolean isHeldExclusively() { return getState() > 0; }
753 >        public final boolean tryAcquire(int ignore) {
754 >            if (compareAndSetState(0, 1)) {
755 >                setExclusiveOwnerThread(Thread.currentThread());
756 >                return true;
757 >            }
758 >            return false;
759 >        }
760 >        public final boolean tryRelease(int ignore) {
761 >            setExclusiveOwnerThread(null);
762 >            setState(0);
763 >            return true;
764 >        }
765 >        public final int tryAcquireShared(int ignore) {
766 >            for (int c;;) {
767 >                if ((c = getState()) > 0)
768 >                    return -1;
769 >                if (compareAndSetState(c, c -1))
770 >                    return 1;
771 >            }
772 >        }
773 >        public final boolean tryReleaseShared(int ignore) {
774 >            int c;
775 >            do {} while (!compareAndSetState(c = getState(), c + 1));
776 >            return c == -1;
777 >        }
778 >
779 >        /** From CLR */
780 >        private void rotateLeft(TreeNode p) {
781 >            if (p != null) {
782 >                TreeNode r = p.right, pp, rl;
783 >                if ((rl = p.right = r.left) != null)
784 >                    rl.parent = p;
785 >                if ((pp = r.parent = p.parent) == null)
786 >                    root = r;
787 >                else if (pp.left == p)
788 >                    pp.left = r;
789 >                else
790 >                    pp.right = r;
791 >                r.left = p;
792 >                p.parent = r;
793 >            }
794 >        }
795 >
796 >        /** From CLR */
797 >        private void rotateRight(TreeNode p) {
798 >            if (p != null) {
799 >                TreeNode l = p.left, pp, lr;
800 >                if ((lr = p.left = l.right) != null)
801 >                    lr.parent = p;
802 >                if ((pp = l.parent = p.parent) == null)
803 >                    root = l;
804 >                else if (pp.right == p)
805 >                    pp.right = l;
806 >                else
807 >                    pp.left = l;
808 >                l.right = p;
809 >                p.parent = l;
810 >            }
811 >        }
812 >
813 >        /**
814 >         * Returns the TreeNode (or null if not found) for the given key
815 >         * starting at given root.
816 >         */
817 >        @SuppressWarnings("unchecked") final TreeNode getTreeNode
818 >            (int h, Object k, TreeNode p) {
819 >            Class<?> c = k.getClass();
820 >            while (p != null) {
821 >                int dir, ph;  Object pk; Class<?> pc;
822 >                if ((ph = p.hash) == h) {
823 >                    if ((pk = p.key) == k || k.equals(pk))
824 >                        return p;
825 >                    if (c != (pc = pk.getClass()) ||
826 >                        !(k instanceof Comparable) ||
827 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
828 >                        if ((dir = (c == pc) ? 0 :
829 >                             c.getName().compareTo(pc.getName())) == 0) {
830 >                            TreeNode r = null, pl, pr; // check both sides
831 >                            if ((pr = p.right) != null && h >= pr.hash &&
832 >                                (r = getTreeNode(h, k, pr)) != null)
833 >                                return r;
834 >                            else if ((pl = p.left) != null && h <= pl.hash)
835 >                                dir = -1;
836 >                            else // nothing there
837 >                                return null;
838 >                        }
839 >                    }
840 >                }
841 >                else
842 >                    dir = (h < ph) ? -1 : 1;
843 >                p = (dir > 0) ? p.right : p.left;
844 >            }
845 >            return null;
846 >        }
847 >
848 >        /**
849 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
850 >         * read-lock to call getTreeNode, but during failure to get
851 >         * lock, searches along next links.
852 >         */
853 >        final Object getValue(int h, Object k) {
854 >            Node r = null;
855 >            int c = getState(); // Must read lock state first
856 >            for (Node e = first; e != null; e = e.next) {
857 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
858 >                    try {
859 >                        r = getTreeNode(h, k, root);
860 >                    } finally {
861 >                        releaseShared(0);
862 >                    }
863 >                    break;
864 >                }
865 >                else if (e.hash == h && k.equals(e.key)) {
866 >                    r = e;
867 >                    break;
868 >                }
869 >                else
870 >                    c = getState();
871 >            }
872 >            return r == null ? null : r.val;
873 >        }
874 >
875 >        /**
876 >         * Finds or adds a node.
877 >         * @return null if added
878 >         */
879 >        @SuppressWarnings("unchecked") final TreeNode putTreeNode
880 >            (int h, Object k, Object v) {
881 >            Class<?> c = k.getClass();
882 >            TreeNode pp = root, p = null;
883 >            int dir = 0;
884 >            while (pp != null) { // find existing node or leaf to insert at
885 >                int ph;  Object pk; Class<?> pc;
886 >                p = pp;
887 >                if ((ph = p.hash) == h) {
888 >                    if ((pk = p.key) == k || k.equals(pk))
889 >                        return p;
890 >                    if (c != (pc = pk.getClass()) ||
891 >                        !(k instanceof Comparable) ||
892 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
893 >                        TreeNode s = null, r = null, pr;
894 >                        if ((dir = (c == pc) ? 0 :
895 >                             c.getName().compareTo(pc.getName())) == 0) {
896 >                            if ((pr = p.right) != null && h >= pr.hash &&
897 >                                (r = getTreeNode(h, k, pr)) != null)
898 >                                return r;
899 >                            else // continue left
900 >                                dir = -1;
901 >                        }
902 >                        else if ((pr = p.right) != null && h >= pr.hash)
903 >                            s = pr;
904 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
905 >                            return r;
906 >                    }
907 >                }
908 >                else
909 >                    dir = (h < ph) ? -1 : 1;
910 >                pp = (dir > 0) ? p.right : p.left;
911 >            }
912 >
913 >            TreeNode f = first;
914 >            TreeNode x = first = new TreeNode(h, k, v, f, p);
915 >            if (p == null)
916 >                root = x;
917 >            else { // attach and rebalance; adapted from CLR
918 >                TreeNode xp, xpp;
919 >                if (f != null)
920 >                    f.prev = x;
921 >                if (dir <= 0)
922 >                    p.left = x;
923 >                else
924 >                    p.right = x;
925 >                x.red = true;
926 >                while (x != null && (xp = x.parent) != null && xp.red &&
927 >                       (xpp = xp.parent) != null) {
928 >                    TreeNode xppl = xpp.left;
929 >                    if (xp == xppl) {
930 >                        TreeNode y = xpp.right;
931 >                        if (y != null && y.red) {
932 >                            y.red = false;
933 >                            xp.red = false;
934 >                            xpp.red = true;
935 >                            x = xpp;
936 >                        }
937 >                        else {
938 >                            if (x == xp.right) {
939 >                                rotateLeft(x = xp);
940 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
941 >                            }
942 >                            if (xp != null) {
943 >                                xp.red = false;
944 >                                if (xpp != null) {
945 >                                    xpp.red = true;
946 >                                    rotateRight(xpp);
947 >                                }
948 >                            }
949 >                        }
950 >                    }
951 >                    else {
952 >                        TreeNode y = xppl;
953 >                        if (y != null && y.red) {
954 >                            y.red = false;
955 >                            xp.red = false;
956 >                            xpp.red = true;
957 >                            x = xpp;
958 >                        }
959 >                        else {
960 >                            if (x == xp.left) {
961 >                                rotateRight(x = xp);
962 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
963 >                            }
964 >                            if (xp != null) {
965 >                                xp.red = false;
966 >                                if (xpp != null) {
967 >                                    xpp.red = true;
968 >                                    rotateLeft(xpp);
969                                  }
970                              }
460                            if (runBit == 0)
461                                lo = lastRun;
462                            else
463                                hi = lastRun;
464                            for (Node p = e; p != lastRun; p = p.next) {
465                                int ph = p.hash;
466                                Object pk = p.key, pv = p.val;
467                                if ((ph & n) == 0)
468                                    lo = new Node(ph, pk, pv, lo);
469                                else
470                                    hi = new Node(ph, pk, pv, hi);
471                            }
472                            setTabAt(nextTab, i, lo);
473                            setTabAt(nextTab, i + n, hi);
474                            setTabAt(tab, i, fwd);
971                          }
972                      }
973 <                    if (validated)
973 >                }
974 >                TreeNode r = root;
975 >                if (r != null && r.red)
976 >                    r.red = false;
977 >            }
978 >            return null;
979 >        }
980 >
981 >        /**
982 >         * Removes the given node, that must be present before this
983 >         * call.  This is messier than typical red-black deletion code
984 >         * because we cannot swap the contents of an interior node
985 >         * with a leaf successor that is pinned by "next" pointers
986 >         * that are accessible independently of lock. So instead we
987 >         * swap the tree linkages.
988 >         */
989 >        final void deleteTreeNode(TreeNode p) {
990 >            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
991 >            TreeNode pred = p.prev;
992 >            if (pred == null)
993 >                first = next;
994 >            else
995 >                pred.next = next;
996 >            if (next != null)
997 >                next.prev = pred;
998 >            TreeNode replacement;
999 >            TreeNode pl = p.left;
1000 >            TreeNode pr = p.right;
1001 >            if (pl != null && pr != null) {
1002 >                TreeNode s = pr, sl;
1003 >                while ((sl = s.left) != null) // find successor
1004 >                    s = sl;
1005 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1006 >                TreeNode sr = s.right;
1007 >                TreeNode pp = p.parent;
1008 >                if (s == pr) { // p was s's direct parent
1009 >                    p.parent = s;
1010 >                    s.right = p;
1011 >                }
1012 >                else {
1013 >                    TreeNode sp = s.parent;
1014 >                    if ((p.parent = sp) != null) {
1015 >                        if (s == sp.left)
1016 >                            sp.left = p;
1017 >                        else
1018 >                            sp.right = p;
1019 >                    }
1020 >                    if ((s.right = pr) != null)
1021 >                        pr.parent = s;
1022 >                }
1023 >                p.left = null;
1024 >                if ((p.right = sr) != null)
1025 >                    sr.parent = p;
1026 >                if ((s.left = pl) != null)
1027 >                    pl.parent = s;
1028 >                if ((s.parent = pp) == null)
1029 >                    root = s;
1030 >                else if (p == pp.left)
1031 >                    pp.left = s;
1032 >                else
1033 >                    pp.right = s;
1034 >                replacement = sr;
1035 >            }
1036 >            else
1037 >                replacement = (pl != null) ? pl : pr;
1038 >            TreeNode pp = p.parent;
1039 >            if (replacement == null) {
1040 >                if (pp == null) {
1041 >                    root = null;
1042 >                    return;
1043 >                }
1044 >                replacement = p;
1045 >            }
1046 >            else {
1047 >                replacement.parent = pp;
1048 >                if (pp == null)
1049 >                    root = replacement;
1050 >                else if (p == pp.left)
1051 >                    pp.left = replacement;
1052 >                else
1053 >                    pp.right = replacement;
1054 >                p.left = p.right = p.parent = null;
1055 >            }
1056 >            if (!p.red) { // rebalance, from CLR
1057 >                TreeNode x = replacement;
1058 >                while (x != null) {
1059 >                    TreeNode xp, xpl;
1060 >                    if (x.red || (xp = x.parent) == null) {
1061 >                        x.red = false;
1062                          break;
1063 +                    }
1064 +                    if (x == (xpl = xp.left)) {
1065 +                        TreeNode sib = xp.right;
1066 +                        if (sib != null && sib.red) {
1067 +                            sib.red = false;
1068 +                            xp.red = true;
1069 +                            rotateLeft(xp);
1070 +                            sib = (xp = x.parent) == null ? null : xp.right;
1071 +                        }
1072 +                        if (sib == null)
1073 +                            x = xp;
1074 +                        else {
1075 +                            TreeNode sl = sib.left, sr = sib.right;
1076 +                            if ((sr == null || !sr.red) &&
1077 +                                (sl == null || !sl.red)) {
1078 +                                sib.red = true;
1079 +                                x = xp;
1080 +                            }
1081 +                            else {
1082 +                                if (sr == null || !sr.red) {
1083 +                                    if (sl != null)
1084 +                                        sl.red = false;
1085 +                                    sib.red = true;
1086 +                                    rotateRight(sib);
1087 +                                    sib = (xp = x.parent) == null ?
1088 +                                        null : xp.right;
1089 +                                }
1090 +                                if (sib != null) {
1091 +                                    sib.red = (xp == null) ? false : xp.red;
1092 +                                    if ((sr = sib.right) != null)
1093 +                                        sr.red = false;
1094 +                                }
1095 +                                if (xp != null) {
1096 +                                    xp.red = false;
1097 +                                    rotateLeft(xp);
1098 +                                }
1099 +                                x = root;
1100 +                            }
1101 +                        }
1102 +                    }
1103 +                    else { // symmetric
1104 +                        TreeNode sib = xpl;
1105 +                        if (sib != null && sib.red) {
1106 +                            sib.red = false;
1107 +                            xp.red = true;
1108 +                            rotateRight(xp);
1109 +                            sib = (xp = x.parent) == null ? null : xp.left;
1110 +                        }
1111 +                        if (sib == null)
1112 +                            x = xp;
1113 +                        else {
1114 +                            TreeNode sl = sib.left, sr = sib.right;
1115 +                            if ((sl == null || !sl.red) &&
1116 +                                (sr == null || !sr.red)) {
1117 +                                sib.red = true;
1118 +                                x = xp;
1119 +                            }
1120 +                            else {
1121 +                                if (sl == null || !sl.red) {
1122 +                                    if (sr != null)
1123 +                                        sr.red = false;
1124 +                                    sib.red = true;
1125 +                                    rotateLeft(sib);
1126 +                                    sib = (xp = x.parent) == null ?
1127 +                                        null : xp.left;
1128 +                                }
1129 +                                if (sib != null) {
1130 +                                    sib.red = (xp == null) ? false : xp.red;
1131 +                                    if ((sl = sib.left) != null)
1132 +                                        sl.red = false;
1133 +                                }
1134 +                                if (xp != null) {
1135 +                                    xp.red = false;
1136 +                                    rotateRight(xp);
1137 +                                }
1138 +                                x = root;
1139 +                            }
1140 +                        }
1141 +                    }
1142                  }
1143 <                else if (casTabAt(tab, i, e, fwd))
1144 <                    break;
1143 >            }
1144 >            if (p == replacement && (pp = p.parent) != null) {
1145 >                if (p == pp.left) // detach pointers
1146 >                    pp.left = null;
1147 >                else if (p == pp.right)
1148 >                    pp.right = null;
1149 >                p.parent = null;
1150              }
1151          }
1152      }
1153  
1154 <    /* ---------------- Internal access and update methods -------------- */
1154 >    /* ---------------- Collision reduction methods -------------- */
1155  
1156      /**
1157 <     * Applies a supplemental hash function to a given hashCode, which
1158 <     * defends against poor quality hash functions.  The result must
1159 <     * be non-negative, and for reasonable performance must have good
1160 <     * avalanche properties; i.e., that each bit of the argument
1161 <     * affects each bit (except sign bit) of the result.
1157 >     * Spreads higher bits to lower, and also forces top bit to 0.
1158 >     * Because the table uses power-of-two masking, sets of hashes
1159 >     * that vary only in bits above the current mask will always
1160 >     * collide. (Among known examples are sets of Float keys holding
1161 >     * consecutive whole numbers in small tables.)  To counter this,
1162 >     * we apply a transform that spreads the impact of higher bits
1163 >     * downward. There is a tradeoff between speed, utility, and
1164 >     * quality of bit-spreading. Because many common sets of hashes
1165 >     * are already reasonably distributed across bits (so don't benefit
1166 >     * from spreading), and because we use trees to handle large sets
1167 >     * of collisions in bins, we don't need excessively high quality.
1168       */
1169      private static final int spread(int h) {
1170 <        // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/
1171 <        h ^= h >>> 16;
1172 <        h *= 0x85ebca6b;
1173 <        h ^= h >>> 13;
1174 <        h *= 0xc2b2ae35;
1175 <        return (h >>> 16) ^ (h & 0x7fffffff); // mask out sign bit
1170 >        h ^= (h >>> 18) ^ (h >>> 12);
1171 >        return (h ^ (h >>> 10)) & HASH_BITS;
1172 >    }
1173 >
1174 >    /**
1175 >     * Replaces a list bin with a tree bin if key is comparable.  Call
1176 >     * only when locked.
1177 >     */
1178 >    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1179 >        if (key instanceof Comparable) {
1180 >            TreeBin t = new TreeBin();
1181 >            for (Node e = tabAt(tab, index); e != null; e = e.next)
1182 >                t.putTreeNode(e.hash, e.key, e.val);
1183 >            setTabAt(tab, index, new Node(MOVED, t, null, null));
1184 >        }
1185      }
1186  
1187 +    /* ---------------- Internal access and update methods -------------- */
1188 +
1189      /** Implementation for get and containsKey */
1190 <    private final Object internalGet(Object k) {
1190 >    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1191          int h = spread(k.hashCode());
1192          retry: for (Node[] tab = table; tab != null;) {
1193 <            Node e; Object ek, ev; int eh;  // locals to read fields once
1193 >            Node e; Object ek, ev; int eh;      // locals to read fields once
1194              for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1195 <                if ((eh = e.hash) == h) {
1196 <                    if ((ev = e.val) != null &&
1197 <                        ((ek = e.key) == k || k.equals(ek)))
1198 <                        return ev;
1199 <                }
1200 <                else if (eh < 0) {          // sign bit set
1201 <                    tab = (Node[])e.key;    // bin was moved during resize
517 <                    continue retry;
1195 >                if ((eh = e.hash) < 0) {
1196 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1197 >                        return (V)((TreeBin)ek).getValue(h, k);
1198 >                    else {                        // restart with new table
1199 >                        tab = (Node[])ek;
1200 >                        continue retry;
1201 >                    }
1202                  }
1203 +                else if (eh == h && (ev = e.val) != null &&
1204 +                         ((ek = e.key) == k || k.equals(ek)))
1205 +                    return (V)ev;
1206              }
1207              break;
1208          }
1209          return null;
1210      }
1211  
1212 +    /**
1213 +     * Implementation for the four public remove/replace methods:
1214 +     * Replaces node value with v, conditional upon match of cv if
1215 +     * non-null.  If resulting value is null, delete.
1216 +     */
1217 +    @SuppressWarnings("unchecked") private final V internalReplace
1218 +        (Object k, V v, Object cv) {
1219 +        int h = spread(k.hashCode());
1220 +        Object oldVal = null;
1221 +        for (Node[] tab = table;;) {
1222 +            Node f; int i, fh; Object fk;
1223 +            if (tab == null ||
1224 +                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1225 +                break;
1226 +            else if ((fh = f.hash) < 0) {
1227 +                if ((fk = f.key) instanceof TreeBin) {
1228 +                    TreeBin t = (TreeBin)fk;
1229 +                    boolean validated = false;
1230 +                    boolean deleted = false;
1231 +                    t.acquire(0);
1232 +                    try {
1233 +                        if (tabAt(tab, i) == f) {
1234 +                            validated = true;
1235 +                            TreeNode p = t.getTreeNode(h, k, t.root);
1236 +                            if (p != null) {
1237 +                                Object pv = p.val;
1238 +                                if (cv == null || cv == pv || cv.equals(pv)) {
1239 +                                    oldVal = pv;
1240 +                                    if ((p.val = v) == null) {
1241 +                                        deleted = true;
1242 +                                        t.deleteTreeNode(p);
1243 +                                    }
1244 +                                }
1245 +                            }
1246 +                        }
1247 +                    } finally {
1248 +                        t.release(0);
1249 +                    }
1250 +                    if (validated) {
1251 +                        if (deleted)
1252 +                            addCount(-1L, -1);
1253 +                        break;
1254 +                    }
1255 +                }
1256 +                else
1257 +                    tab = (Node[])fk;
1258 +            }
1259 +            else if (fh != h && f.next == null) // precheck
1260 +                break;                          // rules out possible existence
1261 +            else {
1262 +                boolean validated = false;
1263 +                boolean deleted = false;
1264 +                synchronized(f) {
1265 +                    if (tabAt(tab, i) == f) {
1266 +                        validated = true;
1267 +                        for (Node e = f, pred = null;;) {
1268 +                            Object ek, ev;
1269 +                            if (e.hash == h &&
1270 +                                ((ev = e.val) != null) &&
1271 +                                ((ek = e.key) == k || k.equals(ek))) {
1272 +                                if (cv == null || cv == ev || cv.equals(ev)) {
1273 +                                    oldVal = ev;
1274 +                                    if ((e.val = v) == null) {
1275 +                                        deleted = true;
1276 +                                        Node en = e.next;
1277 +                                        if (pred != null)
1278 +                                            pred.next = en;
1279 +                                        else
1280 +                                            setTabAt(tab, i, en);
1281 +                                    }
1282 +                                }
1283 +                                break;
1284 +                            }
1285 +                            pred = e;
1286 +                            if ((e = e.next) == null)
1287 +                                break;
1288 +                        }
1289 +                    }
1290 +                }
1291 +                if (validated) {
1292 +                    if (deleted)
1293 +                        addCount(-1L, -1);
1294 +                    break;
1295 +                }
1296 +            }
1297 +        }
1298 +        return (V)oldVal;
1299 +    }
1300 +
1301 +    /*
1302 +     * Internal versions of insertion methods
1303 +     * All have the same basic structure as the first (internalPut):
1304 +     *  1. If table uninitialized, create
1305 +     *  2. If bin empty, try to CAS new node
1306 +     *  3. If bin stale, use new table
1307 +     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1308 +     *  5. Lock and validate; if valid, scan and add or update
1309 +     *
1310 +     * The putAll method differs mainly in attempting to pre-allocate
1311 +     * enough table space, and also more lazily performs count updates
1312 +     * and checks.
1313 +     *
1314 +     * Most of the function-accepting methods can't be factored nicely
1315 +     * because they require different functional forms, so instead
1316 +     * sprawl out similar mechanics.
1317 +     */
1318 +
1319      /** Implementation for put and putIfAbsent */
1320 <    private final Object internalPut(Object k, Object v, boolean replace) {
1320 >    @SuppressWarnings("unchecked") private final V internalPut
1321 >        (K k, V v, boolean onlyIfAbsent) {
1322 >        if (k == null || v == null) throw new NullPointerException();
1323          int h = spread(k.hashCode());
1324 <        Object oldVal = null;               // previous value or null if none
1324 >        int len = 0;
1325          for (Node[] tab = table;;) {
1326 <            Node e; int i; Object ek, ev;
1326 >            int i, fh; Node f; Object fk, fv;
1327              if (tab == null)
1328 <                tab = growTable();
1329 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1328 >                tab = initTable();
1329 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1330                  if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1331                      break;                   // no lock when adding to empty bin
1332              }
1333 <            else if (e.hash < 0)             // resized -- restart with new table
1334 <                tab = (Node[])e.key;
1335 <            else if (!replace && e.hash == h && (ev = e.val) != null &&
1336 <                     ((ek = e.key) == k || k.equals(ek))) {
1337 <                if (tabAt(tab, i) == e) {    // inspect and validate 1st node
1338 <                    oldVal = ev;             // without lock for putIfAbsent
1339 <                    break;
1333 >            else if ((fh = f.hash) < 0) {
1334 >                if ((fk = f.key) instanceof TreeBin) {
1335 >                    TreeBin t = (TreeBin)fk;
1336 >                    Object oldVal = null;
1337 >                    t.acquire(0);
1338 >                    try {
1339 >                        if (tabAt(tab, i) == f) {
1340 >                            len = 2;
1341 >                            TreeNode p = t.putTreeNode(h, k, v);
1342 >                            if (p != null) {
1343 >                                oldVal = p.val;
1344 >                                if (!onlyIfAbsent)
1345 >                                    p.val = v;
1346 >                            }
1347 >                        }
1348 >                    } finally {
1349 >                        t.release(0);
1350 >                    }
1351 >                    if (len != 0) {
1352 >                        if (oldVal != null)
1353 >                            return (V)oldVal;
1354 >                        break;
1355 >                    }
1356                  }
1357 +                else
1358 +                    tab = (Node[])fk;
1359              }
1360 +            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1361 +                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1362 +                return (V)fv;
1363              else {
1364 <                boolean validated = false;
1365 <                boolean checkSize = false;
1366 <                synchronized (e) {           // lock the 1st node of bin list
1367 <                    if (tabAt(tab, i) == e) {
1368 <                        validated = true;    // retry if 1st already deleted
1369 <                        for (Node first = e;;) {
1364 >                Object oldVal = null;
1365 >                synchronized(f) {
1366 >                    if (tabAt(tab, i) == f) {
1367 >                        len = 1;
1368 >                        for (Node e = f;; ++len) {
1369 >                            Object ek, ev;
1370                              if (e.hash == h &&
1371 <                                ((ek = e.key) == k || k.equals(ek)) &&
1372 <                                (ev = e.val) != null) {
1371 >                                (ev = e.val) != null &&
1372 >                                ((ek = e.key) == k || k.equals(ek))) {
1373                                  oldVal = ev;
1374 <                                if (replace)
1374 >                                if (!onlyIfAbsent)
1375                                      e.val = v;
1376                                  break;
1377                              }
1378                              Node last = e;
1379                              if ((e = e.next) == null) {
1380                                  last.next = new Node(h, k, v, null);
1381 <                                if (last != first || tab.length <= 64)
1382 <                                    checkSize = true;
1381 >                                if (len >= TREE_THRESHOLD)
1382 >                                    replaceWithTreeBin(tab, i, k);
1383                                  break;
1384                              }
1385                          }
1386                      }
1387                  }
1388 <                if (validated) {
1389 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1390 <                        resizing == 0 && counter.sum() >= (long)threshold)
574 <                        growTable();
1388 >                if (len != 0) {
1389 >                    if (oldVal != null)
1390 >                        return (V)oldVal;
1391                      break;
1392                  }
1393              }
1394          }
1395 <        if (oldVal == null)
1396 <            counter.increment();             // update counter outside of locks
581 <        return oldVal;
1395 >        addCount(1L, len);
1396 >        return null;
1397      }
1398  
1399 <    /**
1400 <     * Implementation for the four public remove/replace methods:
1401 <     * Replaces node value with v, conditional upon match of cv if
1402 <     * non-null.  If resulting value is null, delete.
1403 <     */
589 <    private final Object internalReplace(Object k, Object v, Object cv) {
1399 >    /** Implementation for computeIfAbsent */
1400 >    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1401 >        (K k, Fun<? super K, ?> mf) {
1402 >        if (k == null || mf == null)
1403 >            throw new NullPointerException();
1404          int h = spread(k.hashCode());
1405 +        Object val = null;
1406 +        int len = 0;
1407          for (Node[] tab = table;;) {
1408 <            Node e; int i;
1409 <            if (tab == null ||
1410 <                (e = tabAt(tab, i = (tab.length - 1) & h)) == null)
1411 <                return null;
1412 <            else if (e.hash < 0)
1413 <                tab = (Node[])e.key;
1408 >            Node f; int i; Object fk;
1409 >            if (tab == null)
1410 >                tab = initTable();
1411 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1412 >                Node node = new Node(h, k, null, null);
1413 >                synchronized(node) {
1414 >                    if (casTabAt(tab, i, null, node)) {
1415 >                        len = 1;
1416 >                        try {
1417 >                            if ((val = mf.apply(k)) != null)
1418 >                                node.val = val;
1419 >                        } finally {
1420 >                            if (val == null)
1421 >                                setTabAt(tab, i, null);
1422 >                        }
1423 >                    }
1424 >                }
1425 >                if (len != 0)
1426 >                    break;
1427 >            }
1428 >            else if (f.hash < 0) {
1429 >                if ((fk = f.key) instanceof TreeBin) {
1430 >                    TreeBin t = (TreeBin)fk;
1431 >                    boolean added = false;
1432 >                    t.acquire(0);
1433 >                    try {
1434 >                        if (tabAt(tab, i) == f) {
1435 >                            len = 1;
1436 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1437 >                            if (p != null)
1438 >                                val = p.val;
1439 >                            else if ((val = mf.apply(k)) != null) {
1440 >                                added = true;
1441 >                                len = 2;
1442 >                                t.putTreeNode(h, k, val);
1443 >                            }
1444 >                        }
1445 >                    } finally {
1446 >                        t.release(0);
1447 >                    }
1448 >                    if (len != 0) {
1449 >                        if (!added)
1450 >                            return (V)val;
1451 >                        break;
1452 >                    }
1453 >                }
1454 >                else
1455 >                    tab = (Node[])fk;
1456 >            }
1457              else {
1458 <                Object oldVal = null;
1459 <                boolean validated = false;
1460 <                boolean deleted = false;
1461 <                synchronized (e) {
1462 <                    if (tabAt(tab, i) == e) {
1463 <                        validated = true;
1464 <                        Node pred = null;
1465 <                        do {
1458 >                for (Node e = f; e != null; e = e.next) { // prescan
1459 >                    Object ek, ev;
1460 >                    if (e.hash == h && (ev = e.val) != null &&
1461 >                        ((ek = e.key) == k || k.equals(ek)))
1462 >                        return (V)ev;
1463 >                }
1464 >                boolean added = false;
1465 >                synchronized(f) {
1466 >                    if (tabAt(tab, i) == f) {
1467 >                        len = 1;
1468 >                        for (Node e = f;; ++len) {
1469                              Object ek, ev;
1470                              if (e.hash == h &&
1471 <                                ((ek = e.key) == k || k.equals(ek)) &&
1472 <                                ((ev = e.val) != null)) {
1473 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1474 <                                    oldVal = ev;
1475 <                                    if ((e.val = v) == null) {
1476 <                                        deleted = true;
1477 <                                        Node en = e.next;
1478 <                                        if (pred != null)
1479 <                                            pred.next = en;
1480 <                                        else
1481 <                                            setTabAt(tab, i, en);
1482 <                                    }
1471 >                                (ev = e.val) != null &&
1472 >                                ((ek = e.key) == k || k.equals(ek))) {
1473 >                                val = ev;
1474 >                                break;
1475 >                            }
1476 >                            Node last = e;
1477 >                            if ((e = e.next) == null) {
1478 >                                if ((val = mf.apply(k)) != null) {
1479 >                                    added = true;
1480 >                                    last.next = new Node(h, k, val, null);
1481 >                                    if (len >= TREE_THRESHOLD)
1482 >                                        replaceWithTreeBin(tab, i, k);
1483                                  }
1484                                  break;
1485                              }
1486 <                        } while ((e = (pred = e).next) != null);
1486 >                        }
1487                      }
1488                  }
1489 <                if (validated) {
1490 <                    if (deleted)
1491 <                        counter.decrement();
1492 <                    return oldVal;
1489 >                if (len != 0) {
1490 >                    if (!added)
1491 >                        return (V)val;
1492 >                    break;
1493                  }
1494              }
1495          }
1496 +        if (val != null)
1497 +            addCount(1L, len);
1498 +        return (V)val;
1499      }
1500  
1501 <    /** Implementation for computeIfAbsent and compute. Like put, but messier. */
1502 <    @SuppressWarnings("unchecked")
1503 <    private final V internalCompute(K k,
1504 <                                    MappingFunction<? super K, ? extends V> f,
1505 <                                    boolean replace) {
1501 >    /** Implementation for compute */
1502 >    @SuppressWarnings("unchecked") private final V internalCompute
1503 >        (K k, boolean onlyIfPresent,
1504 >         BiFun<? super K, ? super V, ? extends V> mf) {
1505 >        if (k == null || mf == null)
1506 >            throw new NullPointerException();
1507          int h = spread(k.hashCode());
1508 <        V val = null;
1509 <        boolean added = false;
1510 <        Node[] tab = table;
1511 <        outer:for (;;) {
1512 <            Node e; int i; Object ek, ev;
1508 >        Object val = null;
1509 >        int delta = 0;
1510 >        int len = 0;
1511 >        for (Node[] tab = table;;) {
1512 >            Node f; int i, fh; Object fk;
1513              if (tab == null)
1514 <                tab = growTable();
1515 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1514 >                tab = initTable();
1515 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1516 >                if (onlyIfPresent)
1517 >                    break;
1518                  Node node = new Node(h, k, null, null);
1519 <                boolean validated = false;
652 <                synchronized (node) {  // must lock while computing value
1519 >                synchronized(node) {
1520                      if (casTabAt(tab, i, null, node)) {
654                        validated = true;
1521                          try {
1522 <                            val = f.map(k);
1523 <                            if (val != null) {
1522 >                            len = 1;
1523 >                            if ((val = mf.apply(k, null)) != null) {
1524                                  node.val = val;
1525 <                                added = true;
1525 >                                delta = 1;
1526                              }
1527                          } finally {
1528 <                            if (!added)
1528 >                            if (delta == 0)
1529                                  setTabAt(tab, i, null);
1530                          }
1531                      }
1532                  }
1533 <                if (validated)
1533 >                if (len != 0)
1534                      break;
1535              }
1536 <            else if (e.hash < 0)
1537 <                tab = (Node[])e.key;
1538 <            else if (!replace && e.hash == h && (ev = e.val) != null &&
1539 <                     ((ek = e.key) == k || k.equals(ek))) {
1540 <                if (tabAt(tab, i) == e) {
1541 <                    val = (V)ev;
1542 <                    break;
1536 >            else if ((fh = f.hash) < 0) {
1537 >                if ((fk = f.key) instanceof TreeBin) {
1538 >                    TreeBin t = (TreeBin)fk;
1539 >                    t.acquire(0);
1540 >                    try {
1541 >                        if (tabAt(tab, i) == f) {
1542 >                            len = 1;
1543 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1544 >                            if (p == null && onlyIfPresent)
1545 >                                break;
1546 >                            Object pv = (p == null) ? null : p.val;
1547 >                            if ((val = mf.apply(k, (V)pv)) != null) {
1548 >                                if (p != null)
1549 >                                    p.val = val;
1550 >                                else {
1551 >                                    len = 2;
1552 >                                    delta = 1;
1553 >                                    t.putTreeNode(h, k, val);
1554 >                                }
1555 >                            }
1556 >                            else if (p != null) {
1557 >                                delta = -1;
1558 >                                t.deleteTreeNode(p);
1559 >                            }
1560 >                        }
1561 >                    } finally {
1562 >                        t.release(0);
1563 >                    }
1564 >                    if (len != 0)
1565 >                        break;
1566                  }
1567 +                else
1568 +                    tab = (Node[])fk;
1569              }
679            else if (Thread.holdsLock(e))
680                throw new IllegalStateException("Recursive map computation");
1570              else {
1571 <                boolean validated = false;
1572 <                boolean checkSize = false;
1573 <                synchronized (e) {
1574 <                    if (tabAt(tab, i) == e) {
1575 <                        validated = true;
687 <                        for (Node first = e;;) {
1571 >                synchronized(f) {
1572 >                    if (tabAt(tab, i) == f) {
1573 >                        len = 1;
1574 >                        for (Node e = f, pred = null;; ++len) {
1575 >                            Object ek, ev;
1576                              if (e.hash == h &&
1577 <                                ((ek = e.key) == k || k.equals(ek)) &&
1578 <                                ((ev = e.val) != null)) {
1579 <                                Object fv;
1580 <                                if (replace && (fv = f.map(k)) != null)
1581 <                                    ev = e.val = fv;
1582 <                                val = (V)ev;
1577 >                                (ev = e.val) != null &&
1578 >                                ((ek = e.key) == k || k.equals(ek))) {
1579 >                                val = mf.apply(k, (V)ev);
1580 >                                if (val != null)
1581 >                                    e.val = val;
1582 >                                else {
1583 >                                    delta = -1;
1584 >                                    Node en = e.next;
1585 >                                    if (pred != null)
1586 >                                        pred.next = en;
1587 >                                    else
1588 >                                        setTabAt(tab, i, en);
1589 >                                }
1590                                  break;
1591                              }
1592 <                            Node last = e;
1592 >                            pred = e;
1593                              if ((e = e.next) == null) {
1594 <                                if ((val = f.map(k)) != null) {
1595 <                                    last.next = new Node(h, k, val, null);
1596 <                                    added = true;
1597 <                                    if (last != first || tab.length <= 64)
1598 <                                        checkSize = true;
1594 >                                if (!onlyIfPresent &&
1595 >                                    (val = mf.apply(k, null)) != null) {
1596 >                                    pred.next = new Node(h, k, val, null);
1597 >                                    delta = 1;
1598 >                                    if (len >= TREE_THRESHOLD)
1599 >                                        replaceWithTreeBin(tab, i, k);
1600                                  }
1601                                  break;
1602                              }
1603                          }
1604                      }
1605                  }
1606 <                if (validated) {
1607 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1608 <                        resizing == 0 && counter.sum() >= (long)threshold)
1609 <                        growTable();
1606 >                if (len != 0)
1607 >                    break;
1608 >            }
1609 >        }
1610 >        if (delta != 0)
1611 >            addCount((long)delta, len);
1612 >        return (V)val;
1613 >    }
1614 >
1615 >    /** Implementation for merge */
1616 >    @SuppressWarnings("unchecked") private final V internalMerge
1617 >        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1618 >        if (k == null || v == null || mf == null)
1619 >            throw new NullPointerException();
1620 >        int h = spread(k.hashCode());
1621 >        Object val = null;
1622 >        int delta = 0;
1623 >        int len = 0;
1624 >        for (Node[] tab = table;;) {
1625 >            int i; Node f; Object fk, fv;
1626 >            if (tab == null)
1627 >                tab = initTable();
1628 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1629 >                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1630 >                    delta = 1;
1631 >                    val = v;
1632 >                    break;
1633 >                }
1634 >            }
1635 >            else if (f.hash < 0) {
1636 >                if ((fk = f.key) instanceof TreeBin) {
1637 >                    TreeBin t = (TreeBin)fk;
1638 >                    t.acquire(0);
1639 >                    try {
1640 >                        if (tabAt(tab, i) == f) {
1641 >                            len = 1;
1642 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1643 >                            val = (p == null) ? v : mf.apply((V)p.val, v);
1644 >                            if (val != null) {
1645 >                                if (p != null)
1646 >                                    p.val = val;
1647 >                                else {
1648 >                                    len = 2;
1649 >                                    delta = 1;
1650 >                                    t.putTreeNode(h, k, val);
1651 >                                }
1652 >                            }
1653 >                            else if (p != null) {
1654 >                                delta = -1;
1655 >                                t.deleteTreeNode(p);
1656 >                            }
1657 >                        }
1658 >                    } finally {
1659 >                        t.release(0);
1660 >                    }
1661 >                    if (len != 0)
1662 >                        break;
1663 >                }
1664 >                else
1665 >                    tab = (Node[])fk;
1666 >            }
1667 >            else {
1668 >                synchronized(f) {
1669 >                    if (tabAt(tab, i) == f) {
1670 >                        len = 1;
1671 >                        for (Node e = f, pred = null;; ++len) {
1672 >                            Object ek, ev;
1673 >                            if (e.hash == h &&
1674 >                                (ev = e.val) != null &&
1675 >                                ((ek = e.key) == k || k.equals(ek))) {
1676 >                                val = mf.apply((V)ev, v);
1677 >                                if (val != null)
1678 >                                    e.val = val;
1679 >                                else {
1680 >                                    delta = -1;
1681 >                                    Node en = e.next;
1682 >                                    if (pred != null)
1683 >                                        pred.next = en;
1684 >                                    else
1685 >                                        setTabAt(tab, i, en);
1686 >                                }
1687 >                                break;
1688 >                            }
1689 >                            pred = e;
1690 >                            if ((e = e.next) == null) {
1691 >                                val = v;
1692 >                                pred.next = new Node(h, k, val, null);
1693 >                                delta = 1;
1694 >                                if (len >= TREE_THRESHOLD)
1695 >                                    replaceWithTreeBin(tab, i, k);
1696 >                                break;
1697 >                            }
1698 >                        }
1699 >                    }
1700 >                }
1701 >                if (len != 0)
1702 >                    break;
1703 >            }
1704 >        }
1705 >        if (delta != 0)
1706 >            addCount((long)delta, len);
1707 >        return (V)val;
1708 >    }
1709 >
1710 >    /** Implementation for putAll */
1711 >    private final void internalPutAll(Map<?, ?> m) {
1712 >        tryPresize(m.size());
1713 >        long delta = 0L;     // number of uncommitted additions
1714 >        boolean npe = false; // to throw exception on exit for nulls
1715 >        try {                // to clean up counts on other exceptions
1716 >            for (Map.Entry<?, ?> entry : m.entrySet()) {
1717 >                Object k, v;
1718 >                if (entry == null || (k = entry.getKey()) == null ||
1719 >                    (v = entry.getValue()) == null) {
1720 >                    npe = true;
1721                      break;
1722                  }
1723 +                int h = spread(k.hashCode());
1724 +                for (Node[] tab = table;;) {
1725 +                    int i; Node f; int fh; Object fk;
1726 +                    if (tab == null)
1727 +                        tab = initTable();
1728 +                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1729 +                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1730 +                            ++delta;
1731 +                            break;
1732 +                        }
1733 +                    }
1734 +                    else if ((fh = f.hash) < 0) {
1735 +                        if ((fk = f.key) instanceof TreeBin) {
1736 +                            TreeBin t = (TreeBin)fk;
1737 +                            boolean validated = false;
1738 +                            t.acquire(0);
1739 +                            try {
1740 +                                if (tabAt(tab, i) == f) {
1741 +                                    validated = true;
1742 +                                    TreeNode p = t.getTreeNode(h, k, t.root);
1743 +                                    if (p != null)
1744 +                                        p.val = v;
1745 +                                    else {
1746 +                                        t.putTreeNode(h, k, v);
1747 +                                        ++delta;
1748 +                                    }
1749 +                                }
1750 +                            } finally {
1751 +                                t.release(0);
1752 +                            }
1753 +                            if (validated)
1754 +                                break;
1755 +                        }
1756 +                        else
1757 +                            tab = (Node[])fk;
1758 +                    }
1759 +                    else {
1760 +                        int len = 0;
1761 +                        synchronized(f) {
1762 +                            if (tabAt(tab, i) == f) {
1763 +                                len = 1;
1764 +                                for (Node e = f;; ++len) {
1765 +                                    Object ek, ev;
1766 +                                    if (e.hash == h &&
1767 +                                        (ev = e.val) != null &&
1768 +                                        ((ek = e.key) == k || k.equals(ek))) {
1769 +                                        e.val = v;
1770 +                                        break;
1771 +                                    }
1772 +                                    Node last = e;
1773 +                                    if ((e = e.next) == null) {
1774 +                                        ++delta;
1775 +                                        last.next = new Node(h, k, v, null);
1776 +                                        if (len >= TREE_THRESHOLD)
1777 +                                            replaceWithTreeBin(tab, i, k);
1778 +                                        break;
1779 +                                    }
1780 +                                }
1781 +                            }
1782 +                        }
1783 +                        if (len != 0) {
1784 +                            if (len > 1)
1785 +                                addCount(delta, len);
1786 +                            break;
1787 +                        }
1788 +                    }
1789 +                }
1790              }
1791 +        } finally {
1792 +            if (delta != 0L)
1793 +                addCount(delta, 2);
1794          }
1795 <        if (added)
1796 <            counter.increment();
720 <        return val;
1795 >        if (npe)
1796 >            throw new NullPointerException();
1797      }
1798  
1799      /**
1800 <     * Implementation for clear. Steps through each bin, removing all nodes.
1800 >     * Implementation for clear. Steps through each bin, removing all
1801 >     * nodes.
1802       */
1803      private final void internalClear() {
1804          long delta = 0L; // negative number of deletions
1805          int i = 0;
1806          Node[] tab = table;
1807          while (tab != null && i < tab.length) {
1808 <            Node e = tabAt(tab, i);
1809 <            if (e == null)
1808 >            Node f = tabAt(tab, i);
1809 >            if (f == null)
1810                  ++i;
1811 <            else if (e.hash < 0)
1812 <                tab = (Node[])e.key;
1811 >            else if (f.hash < 0) {
1812 >                Object fk;
1813 >                if ((fk = f.key) instanceof TreeBin) {
1814 >                    TreeBin t = (TreeBin)fk;
1815 >                    t.acquire(0);
1816 >                    try {
1817 >                        if (tabAt(tab, i) == f) {
1818 >                            for (Node p = t.first; p != null; p = p.next) {
1819 >                                if (p.val != null) { // (currently always true)
1820 >                                    p.val = null;
1821 >                                    --delta;
1822 >                                }
1823 >                            }
1824 >                            t.first = null;
1825 >                            t.root = null;
1826 >                            ++i;
1827 >                        }
1828 >                    } finally {
1829 >                        t.release(0);
1830 >                    }
1831 >                }
1832 >                else
1833 >                    tab = (Node[])fk;
1834 >            }
1835              else {
1836 <                boolean validated = false;
1837 <                synchronized (e) {
1838 <                    if (tabAt(tab, i) == e) {
1839 <                        validated = true;
741 <                        Node en;
742 <                        do {
743 <                            en = e.next;
744 <                            if (e.val != null) { // currently always true
1836 >                synchronized(f) {
1837 >                    if (tabAt(tab, i) == f) {
1838 >                        for (Node e = f; e != null; e = e.next) {
1839 >                            if (e.val != null) {  // (currently always true)
1840                                  e.val = null;
1841                                  --delta;
1842                              }
1843 <                        } while ((e = en) != null);
1843 >                        }
1844                          setTabAt(tab, i, null);
1845 +                        ++i;
1846 +                    }
1847 +                }
1848 +            }
1849 +        }
1850 +        if (delta != 0L)
1851 +            addCount(delta, -1);
1852 +    }
1853 +
1854 +    /* ---------------- Table Initialization and Resizing -------------- */
1855 +
1856 +    /**
1857 +     * Returns a power of two table size for the given desired capacity.
1858 +     * See Hackers Delight, sec 3.2
1859 +     */
1860 +    private static final int tableSizeFor(int c) {
1861 +        int n = c - 1;
1862 +        n |= n >>> 1;
1863 +        n |= n >>> 2;
1864 +        n |= n >>> 4;
1865 +        n |= n >>> 8;
1866 +        n |= n >>> 16;
1867 +        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1868 +    }
1869 +
1870 +    /**
1871 +     * Initializes table, using the size recorded in sizeCtl.
1872 +     */
1873 +    private final Node[] initTable() {
1874 +        Node[] tab; int sc;
1875 +        while ((tab = table) == null) {
1876 +            if ((sc = sizeCtl) < 0)
1877 +                Thread.yield(); // lost initialization race; just spin
1878 +            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1879 +                try {
1880 +                    if ((tab = table) == null) {
1881 +                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1882 +                        tab = table = new Node[n];
1883 +                        sc = n - (n >>> 2);
1884 +                    }
1885 +                } finally {
1886 +                    sizeCtl = sc;
1887 +                }
1888 +                break;
1889 +            }
1890 +        }
1891 +        return tab;
1892 +    }
1893 +
1894 +    /**
1895 +     * Adds to count, and if table is too small and not already
1896 +     * resizing, initiates transfer. If already resizing, helps
1897 +     * perform transfer if work is available.  Rechecks occupancy
1898 +     * after a transfer to see if another resize is already needed
1899 +     * because resizings are lagging additions.
1900 +     *
1901 +     * @param x the count to add
1902 +     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1903 +     */
1904 +    private final void addCount(long x, int check) {
1905 +        CounterCell[] as; long b, s;
1906 +        if ((as = counterCells) != null ||
1907 +            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1908 +            CounterHashCode hc; CounterCell a; long v; int m;
1909 +            boolean uncontended = true;
1910 +            if ((hc = threadCounterHashCode.get()) == null ||
1911 +                as == null || (m = as.length - 1) < 0 ||
1912 +                (a = as[m & hc.code]) == null ||
1913 +                !(uncontended =
1914 +                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1915 +                fullAddCount(x, hc, uncontended);
1916 +                return;
1917 +            }
1918 +            if (check <= 1)
1919 +                return;
1920 +            s = sumCount();
1921 +        }
1922 +        if (check >= 0) {
1923 +            Node[] tab, nt; int sc;
1924 +            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1925 +                   tab.length < MAXIMUM_CAPACITY) {
1926 +                if (sc < 0) {
1927 +                    if (sc == -1 || transferIndex <= transferOrigin ||
1928 +                        (nt = nextTable) == null)
1929 +                        break;
1930 +                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1931 +                        transfer(tab, nt);
1932 +                }
1933 +                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1934 +                    transfer(tab, null);
1935 +                s = sumCount();
1936 +            }
1937 +        }
1938 +    }
1939 +
1940 +    /**
1941 +     * Tries to presize table to accommodate the given number of elements.
1942 +     *
1943 +     * @param size number of elements (doesn't need to be perfectly accurate)
1944 +     */
1945 +    private final void tryPresize(int size) {
1946 +        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1947 +            tableSizeFor(size + (size >>> 1) + 1);
1948 +        int sc;
1949 +        while ((sc = sizeCtl) >= 0) {
1950 +            Node[] tab = table; int n;
1951 +            if (tab == null || (n = tab.length) == 0) {
1952 +                n = (sc > c) ? sc : c;
1953 +                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1954 +                    try {
1955 +                        if (table == tab) {
1956 +                            table = new Node[n];
1957 +                            sc = n - (n >>> 2);
1958 +                        }
1959 +                    } finally {
1960 +                        sizeCtl = sc;
1961 +                    }
1962 +                }
1963 +            }
1964 +            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1965 +                break;
1966 +            else if (tab == table &&
1967 +                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1968 +                transfer(tab, null);
1969 +        }
1970 +    }
1971 +
1972 +    /*
1973 +     * Moves and/or copies the nodes in each bin to new table. See
1974 +     * above for explanation.
1975 +     */
1976 +    private final void transfer(Node[] tab, Node[] nextTab) {
1977 +        int n = tab.length, stride;
1978 +        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1979 +            stride = MIN_TRANSFER_STRIDE; // subdivide range
1980 +        if (nextTab == null) {            // initiating
1981 +            try {
1982 +                nextTab = new Node[n << 1];
1983 +            } catch(Throwable ex) {       // try to cope with OOME
1984 +                sizeCtl = Integer.MAX_VALUE;
1985 +                return;
1986 +            }
1987 +            nextTable = nextTab;
1988 +            transferOrigin = n;
1989 +            transferIndex = n;
1990 +            Node rev = new Node(MOVED, tab, null, null);
1991 +            for (int k = n; k > 0;) {    // progressively reveal ready slots
1992 +                int nextk = k > stride? k - stride : 0;
1993 +                for (int m = nextk; m < k; ++m)
1994 +                    nextTab[m] = rev;
1995 +                for (int m = n + nextk; m < n + k; ++m)
1996 +                    nextTab[m] = rev;
1997 +                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1998 +            }
1999 +        }
2000 +        int nextn = nextTab.length;
2001 +        Node fwd = new Node(MOVED, nextTab, null, null);
2002 +        boolean advance = true;
2003 +        for (int i = 0, bound = 0;;) {
2004 +            int nextIndex, nextBound; Node f; Object fk;
2005 +            while (advance) {
2006 +                if (--i >= bound)
2007 +                    advance = false;
2008 +                else if ((nextIndex = transferIndex) <= transferOrigin) {
2009 +                    i = -1;
2010 +                    advance = false;
2011 +                }
2012 +                else if (U.compareAndSwapInt
2013 +                         (this, TRANSFERINDEX, nextIndex,
2014 +                          nextBound = (nextIndex > stride?
2015 +                                       nextIndex - stride : 0))) {
2016 +                    bound = nextBound;
2017 +                    i = nextIndex - 1;
2018 +                    advance = false;
2019 +                }
2020 +            }
2021 +            if (i < 0 || i >= n || i + n >= nextn) {
2022 +                for (int sc;;) {
2023 +                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2024 +                        if (sc == -1) {
2025 +                            nextTable = null;
2026 +                            table = nextTab;
2027 +                            sizeCtl = (n << 1) - (n >>> 1);
2028 +                        }
2029 +                        return;
2030 +                    }
2031 +                }
2032 +            }
2033 +            else if ((f = tabAt(tab, i)) == null) {
2034 +                if (casTabAt(tab, i, null, fwd)) {
2035 +                    setTabAt(nextTab, i, null);
2036 +                    setTabAt(nextTab, i + n, null);
2037 +                    advance = true;
2038 +                }
2039 +            }
2040 +            else if (f.hash >= 0) {
2041 +                synchronized(f) {
2042 +                    if (tabAt(tab, i) == f) {
2043 +                        int runBit = f.hash & n;
2044 +                        Node lastRun = f, lo = null, hi = null;
2045 +                        for (Node p = f.next; p != null; p = p.next) {
2046 +                            int b = p.hash & n;
2047 +                            if (b != runBit) {
2048 +                                runBit = b;
2049 +                                lastRun = p;
2050 +                            }
2051 +                        }
2052 +                        if (runBit == 0)
2053 +                            lo = lastRun;
2054 +                        else
2055 +                            hi = lastRun;
2056 +                        for (Node p = f; p != lastRun; p = p.next) {
2057 +                            int ph = p.hash;
2058 +                            Object pk = p.key, pv = p.val;
2059 +                            if ((ph & n) == 0)
2060 +                                lo = new Node(ph, pk, pv, lo);
2061 +                            else
2062 +                                hi = new Node(ph, pk, pv, hi);
2063 +                        }
2064 +                        setTabAt(nextTab, i, lo);
2065 +                        setTabAt(nextTab, i + n, hi);
2066 +                        setTabAt(tab, i, fwd);
2067 +                        advance = true;
2068 +                    }
2069 +                }
2070 +            }
2071 +            else if ((fk = f.key) instanceof TreeBin) {
2072 +                TreeBin t = (TreeBin)fk;
2073 +                t.acquire(0);
2074 +                try {
2075 +                    if (tabAt(tab, i) == f) {
2076 +                        TreeBin lt = new TreeBin();
2077 +                        TreeBin ht = new TreeBin();
2078 +                        int lc = 0, hc = 0;
2079 +                        for (Node e = t.first; e != null; e = e.next) {
2080 +                            int h = e.hash;
2081 +                            Object k = e.key, v = e.val;
2082 +                            if ((h & n) == 0) {
2083 +                                ++lc;
2084 +                                lt.putTreeNode(h, k, v);
2085 +                            }
2086 +                            else {
2087 +                                ++hc;
2088 +                                ht.putTreeNode(h, k, v);
2089 +                            }
2090 +                        }
2091 +                        Node ln, hn; // throw away trees if too small
2092 +                        if (lc < TREE_THRESHOLD) {
2093 +                            ln = null;
2094 +                            for (Node p = lt.first; p != null; p = p.next)
2095 +                                ln = new Node(p.hash, p.key, p.val, ln);
2096 +                        }
2097 +                        else
2098 +                            ln = new Node(MOVED, lt, null, null);
2099 +                        setTabAt(nextTab, i, ln);
2100 +                        if (hc < TREE_THRESHOLD) {
2101 +                            hn = null;
2102 +                            for (Node p = ht.first; p != null; p = p.next)
2103 +                                hn = new Node(p.hash, p.key, p.val, hn);
2104 +                        }
2105 +                        else
2106 +                            hn = new Node(MOVED, ht, null, null);
2107 +                        setTabAt(nextTab, i + n, hn);
2108 +                        setTabAt(tab, i, fwd);
2109 +                        advance = true;
2110 +                    }
2111 +                } finally {
2112 +                    t.release(0);
2113 +                }
2114 +            }
2115 +            else
2116 +                advance = true; // already processed
2117 +        }
2118 +    }
2119 +
2120 +    /* ---------------- Counter support -------------- */
2121 +
2122 +    final long sumCount() {
2123 +        CounterCell[] as = counterCells; CounterCell a;
2124 +        long sum = baseCount;
2125 +        if (as != null) {
2126 +            for (int i = 0; i < as.length; ++i) {
2127 +                if ((a = as[i]) != null)
2128 +                    sum += a.value;
2129 +            }
2130 +        }
2131 +        return sum;
2132 +    }
2133 +
2134 +    // See LongAdder version for explanation
2135 +    private final void fullAddCount(long x, CounterHashCode hc,
2136 +                                    boolean wasUncontended) {
2137 +        int h;
2138 +        if (hc == null) {
2139 +            hc = new CounterHashCode();
2140 +            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
2141 +            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
2142 +            threadCounterHashCode.set(hc);
2143 +        }
2144 +        else
2145 +            h = hc.code;
2146 +        boolean collide = false;                // True if last slot nonempty
2147 +        for (;;) {
2148 +            CounterCell[] as; CounterCell a; int n; long v;
2149 +            if ((as = counterCells) != null && (n = as.length) > 0) {
2150 +                if ((a = as[(n - 1) & h]) == null) {
2151 +                    if (counterBusy == 0) {            // Try to attach new Cell
2152 +                        CounterCell r = new CounterCell(x); // Optimistic create
2153 +                        if (counterBusy == 0 &&
2154 +                            U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2155 +                            boolean created = false;
2156 +                            try {               // Recheck under lock
2157 +                                CounterCell[] rs; int m, j;
2158 +                                if ((rs = counterCells) != null &&
2159 +                                    (m = rs.length) > 0 &&
2160 +                                    rs[j = (m - 1) & h] == null) {
2161 +                                    rs[j] = r;
2162 +                                    created = true;
2163 +                                }
2164 +                            } finally {
2165 +                                counterBusy = 0;
2166 +                            }
2167 +                            if (created)
2168 +                                break;
2169 +                            continue;           // Slot is now non-empty
2170 +                        }
2171                      }
2172 +                    collide = false;
2173                  }
2174 <                if (validated)
2175 <                    ++i;
2174 >                else if (!wasUncontended)       // CAS already known to fail
2175 >                    wasUncontended = true;      // Continue after rehash
2176 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2177 >                    break;
2178 >                else if (counterCells != as || n >= NCPU)
2179 >                    collide = false;            // At max size or stale
2180 >                else if (!collide)
2181 >                    collide = true;
2182 >                else if (counterBusy == 0 &&
2183 >                         U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2184 >                    try {
2185 >                        if (counterCells == as) {// Expand table unless stale
2186 >                            CounterCell[] rs = new CounterCell[n << 1];
2187 >                            for (int i = 0; i < n; ++i)
2188 >                                rs[i] = as[i];
2189 >                            counterCells = rs;
2190 >                        }
2191 >                    } finally {
2192 >                        counterBusy = 0;
2193 >                    }
2194 >                    collide = false;
2195 >                    continue;                   // Retry with expanded table
2196 >                }
2197 >                h ^= h << 13;                   // Rehash
2198 >                h ^= h >>> 17;
2199 >                h ^= h << 5;
2200              }
2201 +            else if (counterBusy == 0 && counterCells == as &&
2202 +                     U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2203 +                boolean init = false;
2204 +                try {                           // Initialize table
2205 +                    if (counterCells == as) {
2206 +                        CounterCell[] rs = new CounterCell[2];
2207 +                        rs[h & 1] = new CounterCell(x);
2208 +                        counterCells = rs;
2209 +                        init = true;
2210 +                    }
2211 +                } finally {
2212 +                    counterBusy = 0;
2213 +                }
2214 +                if (init)
2215 +                    break;
2216 +            }
2217 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2218 +                break;                          // Fall back on using base
2219          }
2220 <        counter.add(delta);
2220 >        hc.code = h;                            // Record index for next time
2221      }
2222  
2223      /* ----------------Table Traversal -------------- */
2224  
2225      /**
2226       * Encapsulates traversal for methods such as containsValue; also
2227 <     * serves as a base class for other iterators.
2227 >     * serves as a base class for other iterators and bulk tasks.
2228       *
2229       * At each step, the iterator snapshots the key ("nextKey") and
2230       * value ("nextVal") of a valid node (i.e., one that, at point of
2231 <     * snapshot, has a nonnull user value). Because val fields can
2231 >     * snapshot, has a non-null user value). Because val fields can
2232       * change (including to null, indicating deletion), field nextVal
2233       * might not be accurate at point of use, but still maintains the
2234       * weak consistency property of holding a value that was once
2235 <     * valid.
2235 >     * valid. To support iterator.remove, the nextKey field is not
2236 >     * updated (nulled out) when the iterator cannot advance.
2237       *
2238       * Internal traversals directly access these fields, as in:
2239 <     * {@code while (it.next != null) { process(nextKey); it.advance(); }}
2239 >     * {@code while (it.advance() != null) { process(it.nextKey); }}
2240       *
2241 <     * Exported iterators (subclasses of ViewIterator) extract key,
2242 <     * value, or key-value pairs as return values of Iterator.next(),
2243 <     * and encapsulate the it.next check as hasNext();
2244 <     *
2245 <     * The iterator visits each valid node that was reachable upon
2246 <     * iterator construction once. It might miss some that were added
2247 <     * to a bin after the bin was visited, which is OK wrt consistency
2248 <     * guarantees. Maintaining this property in the face of possible
2249 <     * ongoing resizes requires a fair amount of bookkeeping state
2250 <     * that is difficult to optimize away amidst volatile accesses.
2251 <     * Even so, traversal maintains reasonable throughput.
2241 >     * Exported iterators must track whether the iterator has advanced
2242 >     * (in hasNext vs next) (by setting/checking/nulling field
2243 >     * nextVal), and then extract key, value, or key-value pairs as
2244 >     * return values of next().
2245 >     *
2246 >     * The iterator visits once each still-valid node that was
2247 >     * reachable upon iterator construction. It might miss some that
2248 >     * were added to a bin after the bin was visited, which is OK wrt
2249 >     * consistency guarantees. Maintaining this property in the face
2250 >     * of possible ongoing resizes requires a fair amount of
2251 >     * bookkeeping state that is difficult to optimize away amidst
2252 >     * volatile accesses.  Even so, traversal maintains reasonable
2253 >     * throughput.
2254       *
2255       * Normally, iteration proceeds bin-by-bin traversing lists.
2256       * However, if the table has been resized, then all future steps
# Line 793 | Line 2260 | public class ConcurrentHashMapV8<K, V>
2260       * across threads, iteration terminates if a bounds checks fails
2261       * for a table read.
2262       *
2263 <     * The range-based constructor enables creation of parallel
2264 <     * range-splitting traversals. (Not yet implemented.)
2263 >     * This class extends CountedCompleter to streamline parallel
2264 >     * iteration in bulk operations. This adds only a few fields of
2265 >     * space overhead, which is small enough in cases where it is not
2266 >     * needed to not worry about it.  Because CountedCompleter is
2267 >     * Serializable, but iterators need not be, we need to add warning
2268 >     * suppressions.
2269       */
2270 <    static class InternalIterator {
2270 >    @SuppressWarnings("serial") static class Traverser<K,V,R>
2271 >        extends CountedCompleter<R> {
2272 >        final ConcurrentHashMapV8<K, V> map;
2273          Node next;           // the next entry to use
801        Node last;           // the last entry used
2274          Object nextKey;      // cached key field of next
2275          Object nextVal;      // cached val field of next
2276          Node[] tab;          // current table; updated if resized
2277          int index;           // index of bin to use next
2278          int baseIndex;       // current index of initial table
2279 <        final int baseLimit; // index bound for initial table
2280 <        final int baseSize;  // initial table size
2279 >        int baseLimit;       // index bound for initial table
2280 >        int baseSize;        // initial table size
2281 >        int batch;           // split control
2282  
2283          /** Creates iterator for all entries in the table. */
2284 <        InternalIterator(Node[] tab) {
2285 <            this.tab = tab;
2286 <            baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2287 <            index = baseIndex = 0;
2288 <            next = null;
2289 <            advance();
2290 <        }
2291 <
2292 <        /** Creates iterator for the given range of the table */
2293 <        InternalIterator(Node[] tab, int lo, int hi) {
2294 <            this.tab = tab;
2295 <            baseSize = (tab == null) ? 0 : tab.length;
2296 <            baseLimit = (hi <= baseSize) ? hi : baseSize;
2297 <            index = baseIndex = lo;
2298 <            next = null;
2299 <            advance();
2300 <        }
2301 <
2302 <        /** Advances next. See above for explanation. */
2303 <        final void advance() {
2304 <            Node e = last = next;
2284 >        Traverser(ConcurrentHashMapV8<K, V> map) {
2285 >            this.map = map;
2286 >        }
2287 >
2288 >        /** Creates iterator for split() methods and task constructors */
2289 >        Traverser(ConcurrentHashMapV8<K,V> map, Traverser<K,V,?> it, int batch) {
2290 >            super(it);
2291 >            this.batch = batch;
2292 >            if ((this.map = map) != null && it != null) { // split parent
2293 >                Node[] t;
2294 >                if ((t = it.tab) == null &&
2295 >                    (t = it.tab = map.table) != null)
2296 >                    it.baseLimit = it.baseSize = t.length;
2297 >                this.tab = t;
2298 >                this.baseSize = it.baseSize;
2299 >                int hi = this.baseLimit = it.baseLimit;
2300 >                it.baseLimit = this.index = this.baseIndex =
2301 >                    (hi + it.baseIndex + 1) >>> 1;
2302 >            }
2303 >        }
2304 >
2305 >        /**
2306 >         * Advances next; returns nextVal or null if terminated.
2307 >         * See above for explanation.
2308 >         */
2309 >        final Object advance() {
2310 >            Node e = next;
2311 >            Object ev = null;
2312              outer: do {
2313 <                if (e != null)                   // pass used or skipped node
2313 >                if (e != null)                  // advance past used/skipped node
2314                      e = e.next;
2315 <                while (e == null) {              // get to next non-null bin
2316 <                    Node[] t; int b, i, n;       // checks must use locals
2317 <                    if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2318 <                        (t = tab) == null || i >= (n = t.length))
2315 >                while (e == null) {             // get to next non-null bin
2316 >                    ConcurrentHashMapV8<K, V> m;
2317 >                    Node[] t; int b, i, n; Object ek; // checks must use locals
2318 >                    if ((t = tab) != null)
2319 >                        n = t.length;
2320 >                    else if ((m = map) != null && (t = tab = m.table) != null)
2321 >                        n = baseLimit = baseSize = t.length;
2322 >                    else
2323                          break outer;
2324 <                    else if ((e = tabAt(t, i)) != null && e.hash < 0)
2325 <                        tab = (Node[])e.key;     // restarts due to null val
2326 <                    else                         // visit upper slots if present
2327 <                        index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2324 >                    if ((b = baseIndex) >= baseLimit ||
2325 >                        (i = index) < 0 || i >= n)
2326 >                        break outer;
2327 >                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2328 >                        if ((ek = e.key) instanceof TreeBin)
2329 >                            e = ((TreeBin)ek).first;
2330 >                        else {
2331 >                            tab = (Node[])ek;
2332 >                            continue;           // restarts due to null val
2333 >                        }
2334 >                    }                           // visit upper slots if present
2335 >                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2336                  }
2337                  nextKey = e.key;
2338 <            } while ((nextVal = e.val) == null); // skip deleted or special nodes
2338 >            } while ((ev = e.val) == null);    // skip deleted or special nodes
2339              next = e;
2340 +            return nextVal = ev;
2341          }
2342 +
2343 +        public final void remove() {
2344 +            Object k = nextKey;
2345 +            if (k == null && (advance() == null || (k = nextKey) == null))
2346 +                throw new IllegalStateException();
2347 +            map.internalReplace(k, null, null);
2348 +        }
2349 +
2350 +        public final boolean hasNext() {
2351 +            return nextVal != null || advance() != null;
2352 +        }
2353 +
2354 +        public final boolean hasMoreElements() { return hasNext(); }
2355 +
2356 +        public void compute() { } // default no-op CountedCompleter body
2357 +
2358 +        /**
2359 +         * Returns a batch value > 0 if this task should (and must) be
2360 +         * split, if so, adding to pending count, and in any case
2361 +         * updating batch value. The initial batch value is approx
2362 +         * exp2 of the number of times (minus one) to split task by
2363 +         * two before executing leaf action. This value is faster to
2364 +         * compute and more convenient to use as a guide to splitting
2365 +         * than is the depth, since it is used while dividing by two
2366 +         * anyway.
2367 +         */
2368 +        final int preSplit() {
2369 +            ConcurrentHashMapV8<K, V> m; int b; Node[] t;  ForkJoinPool pool;
2370 +            if ((b = batch) < 0 && (m = map) != null) { // force initialization
2371 +                if ((t = tab) == null && (t = tab = m.table) != null)
2372 +                    baseLimit = baseSize = t.length;
2373 +                if (t != null) {
2374 +                    long n = m.sumCount();
2375 +                    int par = ((pool = getPool()) == null) ?
2376 +                        ForkJoinPool.getCommonPoolParallelism() :
2377 +                        pool.getParallelism();
2378 +                    int sp = par << 3; // slack of 8
2379 +                    b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2380 +                }
2381 +            }
2382 +            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2383 +            if ((batch = b) > 0)
2384 +                addToPendingCount(1);
2385 +            return b;
2386 +        }
2387 +
2388      }
2389  
2390      /* ---------------- Public operations -------------- */
2391  
2392      /**
2393 <     * Creates a new, empty map with the default initial table size (16),
2393 >     * Creates a new, empty map with the default initial table size (16).
2394       */
2395      public ConcurrentHashMapV8() {
857        this.counter = new LongAdder();
858        this.targetCapacity = DEFAULT_CAPACITY;
2396      }
2397  
2398      /**
# Line 874 | Line 2411 | public class ConcurrentHashMapV8<K, V>
2411          int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2412                     MAXIMUM_CAPACITY :
2413                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2414 <        this.counter = new LongAdder();
878 <        this.targetCapacity = cap;
2414 >        this.sizeCtl = cap;
2415      }
2416  
2417      /**
# Line 884 | Line 2420 | public class ConcurrentHashMapV8<K, V>
2420       * @param m the map
2421       */
2422      public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2423 <        this.counter = new LongAdder();
2424 <        this.targetCapacity = DEFAULT_CAPACITY;
889 <        putAll(m);
2423 >        this.sizeCtl = DEFAULT_CAPACITY;
2424 >        internalPutAll(m);
2425      }
2426  
2427      /**
# Line 901 | Line 2436 | public class ConcurrentHashMapV8<K, V>
2436       * establishing the initial table size
2437       * @throws IllegalArgumentException if the initial capacity of
2438       * elements is negative or the load factor is nonpositive
2439 +     *
2440 +     * @since 1.6
2441       */
2442      public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2443          this(initialCapacity, loadFactor, 1);
# Line 931 | Line 2468 | public class ConcurrentHashMapV8<K, V>
2468          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2469              initialCapacity = concurrencyLevel;   // as estimated threads
2470          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2471 <        int cap =  ((size >= (long)MAXIMUM_CAPACITY) ?
2472 <                    MAXIMUM_CAPACITY: tableSizeFor((int)size));
2473 <        this.counter = new LongAdder();
2474 <        this.targetCapacity = cap;
2471 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2472 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2473 >        this.sizeCtl = cap;
2474 >    }
2475 >
2476 >    /**
2477 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2478 >     * from the given type to {@code Boolean.TRUE}.
2479 >     *
2480 >     * @return the new set
2481 >     */
2482 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2483 >        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2484 >                                      Boolean.TRUE);
2485 >    }
2486 >
2487 >    /**
2488 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2489 >     * from the given type to {@code Boolean.TRUE}.
2490 >     *
2491 >     * @param initialCapacity The implementation performs internal
2492 >     * sizing to accommodate this many elements.
2493 >     * @throws IllegalArgumentException if the initial capacity of
2494 >     * elements is negative
2495 >     * @return the new set
2496 >     */
2497 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2498 >        return new KeySetView<K,Boolean>
2499 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2500      }
2501  
2502      /**
2503       * {@inheritDoc}
2504       */
2505      public boolean isEmpty() {
2506 <        return counter.sum() <= 0L; // ignore transient negative values
2506 >        return sumCount() <= 0L; // ignore transient negative values
2507      }
2508  
2509      /**
2510       * {@inheritDoc}
2511       */
2512      public int size() {
2513 <        long n = counter.sum();
2513 >        long n = sumCount();
2514          return ((n < 0L) ? 0 :
2515                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2516                  (int)n);
2517      }
2518  
2519      /**
2520 +     * Returns the number of mappings. This method should be used
2521 +     * instead of {@link #size} because a ConcurrentHashMapV8 may
2522 +     * contain more mappings than can be represented as an int. The
2523 +     * value returned is an estimate; the actual count may differ if
2524 +     * there are concurrent insertions or removals.
2525 +     *
2526 +     * @return the number of mappings
2527 +     */
2528 +    public long mappingCount() {
2529 +        long n = sumCount();
2530 +        return (n < 0L) ? 0L : n; // ignore transient negative values
2531 +    }
2532 +
2533 +    /**
2534       * Returns the value to which the specified key is mapped,
2535       * or {@code null} if this map contains no mapping for the key.
2536       *
# Line 965 | Line 2541 | public class ConcurrentHashMapV8<K, V>
2541       *
2542       * @throws NullPointerException if the specified key is null
2543       */
968    @SuppressWarnings("unchecked")
2544      public V get(Object key) {
2545 <        if (key == null)
2546 <            throw new NullPointerException();
2547 <        return (V)internalGet(key);
2545 >        return internalGet(key);
2546 >    }
2547 >
2548 >    /**
2549 >     * Returns the value to which the specified key is mapped,
2550 >     * or the given defaultValue if this map contains no mapping for the key.
2551 >     *
2552 >     * @param key the key
2553 >     * @param defaultValue the value to return if this map contains
2554 >     * no mapping for the given key
2555 >     * @return the mapping for the key, if present; else the defaultValue
2556 >     * @throws NullPointerException if the specified key is null
2557 >     */
2558 >    public V getValueOrDefault(Object key, V defaultValue) {
2559 >        V v;
2560 >        return (v = internalGet(key)) == null ? defaultValue : v;
2561      }
2562  
2563      /**
# Line 982 | Line 2570 | public class ConcurrentHashMapV8<K, V>
2570       * @throws NullPointerException if the specified key is null
2571       */
2572      public boolean containsKey(Object key) {
985        if (key == null)
986            throw new NullPointerException();
2573          return internalGet(key) != null;
2574      }
2575  
# Line 1001 | Line 2587 | public class ConcurrentHashMapV8<K, V>
2587          if (value == null)
2588              throw new NullPointerException();
2589          Object v;
2590 <        InternalIterator it = new InternalIterator(table);
2591 <        while (it.next != null) {
2592 <            if ((v = it.nextVal) == value || value.equals(v))
2590 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2591 >        while ((v = it.advance()) != null) {
2592 >            if (v == value || value.equals(v))
2593                  return true;
1008            it.advance();
2594          }
2595          return false;
2596      }
# Line 1033 | Line 2618 | public class ConcurrentHashMapV8<K, V>
2618       * Maps the specified key to the specified value in this table.
2619       * Neither the key nor the value can be null.
2620       *
2621 <     * <p> The value can be retrieved by calling the {@code get} method
2621 >     * <p>The value can be retrieved by calling the {@code get} method
2622       * with a key that is equal to the original key.
2623       *
2624       * @param key key with which the specified value is to be associated
# Line 1042 | Line 2627 | public class ConcurrentHashMapV8<K, V>
2627       *         {@code null} if there was no mapping for {@code key}
2628       * @throws NullPointerException if the specified key or value is null
2629       */
1045    @SuppressWarnings("unchecked")
2630      public V put(K key, V value) {
2631 <        if (key == null || value == null)
1048 <            throw new NullPointerException();
1049 <        return (V)internalPut(key, value, true);
2631 >        return internalPut(key, value, false);
2632      }
2633  
2634      /**
# Line 1056 | Line 2638 | public class ConcurrentHashMapV8<K, V>
2638       *         or {@code null} if there was no mapping for the key
2639       * @throws NullPointerException if the specified key or value is null
2640       */
1059    @SuppressWarnings("unchecked")
2641      public V putIfAbsent(K key, V value) {
2642 <        if (key == null || value == null)
1062 <            throw new NullPointerException();
1063 <        return (V)internalPut(key, value, false);
2642 >        return internalPut(key, value, true);
2643      }
2644  
2645      /**
# Line 1071 | Line 2650 | public class ConcurrentHashMapV8<K, V>
2650       * @param m mappings to be stored in this map
2651       */
2652      public void putAll(Map<? extends K, ? extends V> m) {
2653 <        if (m == null)
1075 <            throw new NullPointerException();
1076 <        /*
1077 <         * If uninitialized, try to adjust targetCapacity to
1078 <         * accommodate the given number of elements.
1079 <         */
1080 <        if (table == null) {
1081 <            int size = m.size();
1082 <            int cap = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1083 <                tableSizeFor(size + (size >>> 1) + 1);
1084 <            if (cap > targetCapacity)
1085 <                targetCapacity = cap;
1086 <        }
1087 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1088 <            put(e.getKey(), e.getValue());
2653 >        internalPutAll(m);
2654      }
2655  
2656      /**
2657       * If the specified key is not already associated with a value,
2658 <     * computes its value using the given mappingFunction, and if
2659 <     * non-null, enters it into the map.  This is equivalent to
2660 <     *  <pre> {@code
2658 >     * computes its value using the given mappingFunction and enters
2659 >     * it into the map unless null.  This is equivalent to
2660 >     * <pre> {@code
2661       * if (map.containsKey(key))
2662       *   return map.get(key);
2663 <     * value = mappingFunction.map(key);
2663 >     * value = mappingFunction.apply(key);
2664       * if (value != null)
2665       *   map.put(key, value);
2666       * return value;}</pre>
2667       *
2668 <     * except that the action is performed atomically.  Some attempted
2669 <     * update operations on this map by other threads may be blocked
2670 <     * while computation is in progress, so the computation should be
2671 <     * short and simple, and must not attempt to update any other
2672 <     * mappings of this Map. The most appropriate usage is to
2668 >     * except that the action is performed atomically.  If the
2669 >     * function returns {@code null} no mapping is recorded. If the
2670 >     * function itself throws an (unchecked) exception, the exception
2671 >     * is rethrown to its caller, and no mapping is recorded.  Some
2672 >     * attempted update operations on this map by other threads may be
2673 >     * blocked while computation is in progress, so the computation
2674 >     * should be short and simple, and must not attempt to update any
2675 >     * other mappings of this Map. The most appropriate usage is to
2676       * construct a new object serving as an initial mapped value, or
2677       * memoized result, as in:
2678 +     *
2679       *  <pre> {@code
2680 <     * map.computeIfAbsent(key, new MappingFunction<K, V>() {
2680 >     * map.computeIfAbsent(key, new Fun<K, V>() {
2681       *   public V map(K k) { return new Value(f(k)); }});}</pre>
2682       *
2683       * @param key key with which the specified value is to be associated
2684       * @param mappingFunction the function to compute a value
2685       * @return the current (existing or computed) value associated with
2686 <     *         the specified key, or {@code null} if the computation
1118 <     *         returned {@code null}
2686 >     *         the specified key, or null if the computed value is null
2687       * @throws NullPointerException if the specified key or mappingFunction
2688       *         is null
2689       * @throws IllegalStateException if the computation detectably
# Line 1124 | Line 2692 | public class ConcurrentHashMapV8<K, V>
2692       * @throws RuntimeException or Error if the mappingFunction does so,
2693       *         in which case the mapping is left unestablished
2694       */
2695 <    public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2696 <        if (key == null || mappingFunction == null)
2697 <            throw new NullPointerException();
1130 <        return internalCompute(key, mappingFunction, false);
2695 >    public V computeIfAbsent
2696 >        (K key, Fun<? super K, ? extends V> mappingFunction) {
2697 >        return internalComputeIfAbsent(key, mappingFunction);
2698      }
2699  
2700      /**
2701 <     * Computes the value associated with the given key using the given
2702 <     * mappingFunction, and if non-null, enters it into the map.  This
1136 <     * is equivalent to
2701 >     * If the given key is present, computes a new mapping value given a key and
2702 >     * its current mapped value. This is equivalent to
2703       *  <pre> {@code
2704 <     * value = mappingFunction.map(key);
2705 <     * if (value != null)
2706 <     *   map.put(key, value);
2707 <     * else
2708 <     *   value = map.get(key);
2709 <     * return value;}</pre>
2704 >     *   if (map.containsKey(key)) {
2705 >     *     value = remappingFunction.apply(key, map.get(key));
2706 >     *     if (value != null)
2707 >     *       map.put(key, value);
2708 >     *     else
2709 >     *       map.remove(key);
2710 >     *   }
2711 >     * }</pre>
2712 >     *
2713 >     * except that the action is performed atomically.  If the
2714 >     * function returns {@code null}, the mapping is removed.  If the
2715 >     * function itself throws an (unchecked) exception, the exception
2716 >     * is rethrown to its caller, and the current mapping is left
2717 >     * unchanged.  Some attempted update operations on this map by
2718 >     * other threads may be blocked while computation is in progress,
2719 >     * so the computation should be short and simple, and must not
2720 >     * attempt to update any other mappings of this Map. For example,
2721 >     * to either create or append new messages to a value mapping:
2722       *
2723 <     * except that the action is performed atomically.  Some attempted
2724 <     * update operations on this map by other threads may be blocked
2725 <     * while computation is in progress, so the computation should be
2726 <     * short and simple, and must not attempt to update any other
2727 <     * mappings of this Map.
2723 >     * @param key key with which the specified value is to be associated
2724 >     * @param remappingFunction the function to compute a value
2725 >     * @return the new value associated with the specified key, or null if none
2726 >     * @throws NullPointerException if the specified key or remappingFunction
2727 >     *         is null
2728 >     * @throws IllegalStateException if the computation detectably
2729 >     *         attempts a recursive update to this map that would
2730 >     *         otherwise never complete
2731 >     * @throws RuntimeException or Error if the remappingFunction does so,
2732 >     *         in which case the mapping is unchanged
2733 >     */
2734 >    public V computeIfPresent
2735 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2736 >        return internalCompute(key, true, remappingFunction);
2737 >    }
2738 >
2739 >    /**
2740 >     * Computes a new mapping value given a key and
2741 >     * its current mapped value (or {@code null} if there is no current
2742 >     * mapping). This is equivalent to
2743 >     *  <pre> {@code
2744 >     *   value = remappingFunction.apply(key, map.get(key));
2745 >     *   if (value != null)
2746 >     *     map.put(key, value);
2747 >     *   else
2748 >     *     map.remove(key);
2749 >     * }</pre>
2750 >     *
2751 >     * except that the action is performed atomically.  If the
2752 >     * function returns {@code null}, the mapping is removed.  If the
2753 >     * function itself throws an (unchecked) exception, the exception
2754 >     * is rethrown to its caller, and the current mapping is left
2755 >     * unchanged.  Some attempted update operations on this map by
2756 >     * other threads may be blocked while computation is in progress,
2757 >     * so the computation should be short and simple, and must not
2758 >     * attempt to update any other mappings of this Map. For example,
2759 >     * to either create or append new messages to a value mapping:
2760 >     *
2761 >     * <pre> {@code
2762 >     * Map<Key, String> map = ...;
2763 >     * final String msg = ...;
2764 >     * map.compute(key, new BiFun<Key, String, String>() {
2765 >     *   public String apply(Key k, String v) {
2766 >     *    return (v == null) ? msg : v + msg;});}}</pre>
2767       *
2768       * @param key key with which the specified value is to be associated
2769 <     * @param mappingFunction the function to compute a value
2770 <     * @return the current value associated with
2771 <     *         the specified key, or {@code null} if the computation
1155 <     *         returned {@code null} and the value was not otherwise present
1156 <     * @throws NullPointerException if the specified key or mappingFunction
2769 >     * @param remappingFunction the function to compute a value
2770 >     * @return the new value associated with the specified key, or null if none
2771 >     * @throws NullPointerException if the specified key or remappingFunction
2772       *         is null
2773       * @throws IllegalStateException if the computation detectably
2774       *         attempts a recursive update to this map that would
2775       *         otherwise never complete
2776 <     * @throws RuntimeException or Error if the mappingFunction does so,
2776 >     * @throws RuntimeException or Error if the remappingFunction does so,
2777       *         in which case the mapping is unchanged
2778       */
2779 <    public V compute(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2780 <        if (key == null || mappingFunction == null)
2781 <            throw new NullPointerException();
2782 <        return internalCompute(key, mappingFunction, true);
2779 >    public V compute
2780 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2781 >        return internalCompute(key, false, remappingFunction);
2782 >    }
2783 >
2784 >    /**
2785 >     * If the specified key is not already associated
2786 >     * with a value, associate it with the given value.
2787 >     * Otherwise, replace the value with the results of
2788 >     * the given remapping function. This is equivalent to:
2789 >     *  <pre> {@code
2790 >     *   if (!map.containsKey(key))
2791 >     *     map.put(value);
2792 >     *   else {
2793 >     *     newValue = remappingFunction.apply(map.get(key), value);
2794 >     *     if (value != null)
2795 >     *       map.put(key, value);
2796 >     *     else
2797 >     *       map.remove(key);
2798 >     *   }
2799 >     * }</pre>
2800 >     * except that the action is performed atomically.  If the
2801 >     * function returns {@code null}, the mapping is removed.  If the
2802 >     * function itself throws an (unchecked) exception, the exception
2803 >     * is rethrown to its caller, and the current mapping is left
2804 >     * unchanged.  Some attempted update operations on this map by
2805 >     * other threads may be blocked while computation is in progress,
2806 >     * so the computation should be short and simple, and must not
2807 >     * attempt to update any other mappings of this Map.
2808 >     */
2809 >    public V merge
2810 >        (K key, V value,
2811 >         BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2812 >        return internalMerge(key, value, remappingFunction);
2813      }
2814  
2815      /**
# Line 1176 | Line 2821 | public class ConcurrentHashMapV8<K, V>
2821       *         {@code null} if there was no mapping for {@code key}
2822       * @throws NullPointerException if the specified key is null
2823       */
1179    @SuppressWarnings("unchecked")
2824      public V remove(Object key) {
2825 <        if (key == null)
1182 <            throw new NullPointerException();
1183 <        return (V)internalReplace(key, null, null);
2825 >        return internalReplace(key, null, null);
2826      }
2827  
2828      /**
# Line 1189 | Line 2831 | public class ConcurrentHashMapV8<K, V>
2831       * @throws NullPointerException if the specified key is null
2832       */
2833      public boolean remove(Object key, Object value) {
2834 <        if (key == null)
1193 <            throw new NullPointerException();
1194 <        if (value == null)
1195 <            return false;
1196 <        return internalReplace(key, null, value) != null;
2834 >        return value != null && internalReplace(key, null, value) != null;
2835      }
2836  
2837      /**
# Line 1214 | Line 2852 | public class ConcurrentHashMapV8<K, V>
2852       *         or {@code null} if there was no mapping for the key
2853       * @throws NullPointerException if the specified key or value is null
2854       */
1217    @SuppressWarnings("unchecked")
2855      public V replace(K key, V value) {
2856          if (key == null || value == null)
2857              throw new NullPointerException();
2858 <        return (V)internalReplace(key, value, null);
2858 >        return internalReplace(key, value, null);
2859      }
2860  
2861      /**
# Line 1231 | Line 2868 | public class ConcurrentHashMapV8<K, V>
2868      /**
2869       * Returns a {@link Set} view of the keys contained in this map.
2870       * The set is backed by the map, so changes to the map are
2871 <     * reflected in the set, and vice-versa.  The set supports element
1235 <     * removal, which removes the corresponding mapping from this map,
1236 <     * via the {@code Iterator.remove}, {@code Set.remove},
1237 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
1238 <     * operations.  It does not support the {@code add} or
1239 <     * {@code addAll} operations.
2871 >     * reflected in the set, and vice-versa.
2872       *
2873 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2874 <     * that will never throw {@link ConcurrentModificationException},
2875 <     * and guarantees to traverse elements as they existed upon
2876 <     * construction of the iterator, and may (but is not guaranteed to)
2877 <     * reflect any modifications subsequent to construction.
2873 >     * @return the set view
2874 >     */
2875 >    public KeySetView<K,V> keySet() {
2876 >        KeySetView<K,V> ks = keySet;
2877 >        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2878 >    }
2879 >
2880 >    /**
2881 >     * Returns a {@link Set} view of the keys in this map, using the
2882 >     * given common mapped value for any additions (i.e., {@link
2883 >     * Collection#add} and {@link Collection#addAll}). This is of
2884 >     * course only appropriate if it is acceptable to use the same
2885 >     * value for all additions from this view.
2886 >     *
2887 >     * @param mappedValue the mapped value to use for any
2888 >     * additions.
2889 >     * @return the set view
2890 >     * @throws NullPointerException if the mappedValue is null
2891       */
2892 <    public Set<K> keySet() {
2893 <        KeySet<K,V> ks = keySet;
2894 <        return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
2892 >    public KeySetView<K,V> keySet(V mappedValue) {
2893 >        if (mappedValue == null)
2894 >            throw new NullPointerException();
2895 >        return new KeySetView<K,V>(this, mappedValue);
2896      }
2897  
2898      /**
2899       * Returns a {@link Collection} view of the values contained in this map.
2900       * The collection is backed by the map, so changes to the map are
2901 <     * reflected in the collection, and vice-versa.  The collection
1256 <     * supports element removal, which removes the corresponding
1257 <     * mapping from this map, via the {@code Iterator.remove},
1258 <     * {@code Collection.remove}, {@code removeAll},
1259 <     * {@code retainAll}, and {@code clear} operations.  It does not
1260 <     * support the {@code add} or {@code addAll} operations.
1261 <     *
1262 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1263 <     * that will never throw {@link ConcurrentModificationException},
1264 <     * and guarantees to traverse elements as they existed upon
1265 <     * construction of the iterator, and may (but is not guaranteed to)
1266 <     * reflect any modifications subsequent to construction.
2901 >     * reflected in the collection, and vice-versa.
2902       */
2903 <    public Collection<V> values() {
2904 <        Values<K,V> vs = values;
2905 <        return (vs != null) ? vs : (values = new Values<K,V>(this));
2903 >    public ValuesView<K,V> values() {
2904 >        ValuesView<K,V> vs = values;
2905 >        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2906      }
2907  
2908      /**
# Line 1287 | Line 2922 | public class ConcurrentHashMapV8<K, V>
2922       * reflect any modifications subsequent to construction.
2923       */
2924      public Set<Map.Entry<K,V>> entrySet() {
2925 <        EntrySet<K,V> es = entrySet;
2926 <        return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2925 >        EntrySetView<K,V> es = entrySet;
2926 >        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2927      }
2928  
2929      /**
# Line 1312 | Line 2947 | public class ConcurrentHashMapV8<K, V>
2947      }
2948  
2949      /**
2950 +     * Returns a partitionable iterator of the keys in this map.
2951 +     *
2952 +     * @return a partitionable iterator of the keys in this map
2953 +     */
2954 +    public Spliterator<K> keySpliterator() {
2955 +        return new KeyIterator<K,V>(this);
2956 +    }
2957 +
2958 +    /**
2959 +     * Returns a partitionable iterator of the values in this map.
2960 +     *
2961 +     * @return a partitionable iterator of the values in this map
2962 +     */
2963 +    public Spliterator<V> valueSpliterator() {
2964 +        return new ValueIterator<K,V>(this);
2965 +    }
2966 +
2967 +    /**
2968 +     * Returns a partitionable iterator of the entries in this map.
2969 +     *
2970 +     * @return a partitionable iterator of the entries in this map
2971 +     */
2972 +    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2973 +        return new EntryIterator<K,V>(this);
2974 +    }
2975 +
2976 +    /**
2977       * Returns the hash code value for this {@link Map}, i.e.,
2978       * the sum of, for each key-value pair in the map,
2979       * {@code key.hashCode() ^ value.hashCode()}.
# Line 1320 | Line 2982 | public class ConcurrentHashMapV8<K, V>
2982       */
2983      public int hashCode() {
2984          int h = 0;
2985 <        InternalIterator it = new InternalIterator(table);
2986 <        while (it.next != null) {
2987 <            h += it.nextKey.hashCode() ^ it.nextVal.hashCode();
2988 <            it.advance();
2985 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2986 >        Object v;
2987 >        while ((v = it.advance()) != null) {
2988 >            h += it.nextKey.hashCode() ^ v.hashCode();
2989          }
2990          return h;
2991      }
# Line 1340 | Line 3002 | public class ConcurrentHashMapV8<K, V>
3002       * @return a string representation of this map
3003       */
3004      public String toString() {
3005 <        InternalIterator it = new InternalIterator(table);
3005 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3006          StringBuilder sb = new StringBuilder();
3007          sb.append('{');
3008 <        if (it.next != null) {
3008 >        Object v;
3009 >        if ((v = it.advance()) != null) {
3010              for (;;) {
3011 <                Object k = it.nextKey, v = it.nextVal;
3011 >                Object k = it.nextKey;
3012                  sb.append(k == this ? "(this Map)" : k);
3013                  sb.append('=');
3014                  sb.append(v == this ? "(this Map)" : v);
3015 <                it.advance();
1353 <                if (it.next == null)
3015 >                if ((v = it.advance()) == null)
3016                      break;
3017                  sb.append(',').append(' ');
3018              }
# Line 1373 | Line 3035 | public class ConcurrentHashMapV8<K, V>
3035              if (!(o instanceof Map))
3036                  return false;
3037              Map<?,?> m = (Map<?,?>) o;
3038 <            InternalIterator it = new InternalIterator(table);
3039 <            while (it.next != null) {
3040 <                Object val = it.nextVal;
3038 >            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3039 >            Object val;
3040 >            while ((val = it.advance()) != null) {
3041                  Object v = m.get(it.nextKey);
3042                  if (v == null || (v != val && !v.equals(val)))
3043                      return false;
1382                it.advance();
3044              }
3045              for (Map.Entry<?,?> e : m.entrySet()) {
3046                  Object mk, mv, v;
# Line 1395 | Line 3056 | public class ConcurrentHashMapV8<K, V>
3056  
3057      /* ----------------Iterators -------------- */
3058  
3059 <    /**
3060 <     * Base class for key, value, and entry iterators.  Adds a map
3061 <     * reference to InternalIterator to support Iterator.remove.
3062 <     */
3063 <    static abstract class ViewIterator<K,V> extends InternalIterator {
3064 <        final ConcurrentHashMapV8<K, V> map;
1404 <        ViewIterator(ConcurrentHashMapV8<K, V> map) {
1405 <            super(map.table);
1406 <            this.map = map;
3059 >    @SuppressWarnings("serial") static final class KeyIterator<K,V>
3060 >        extends Traverser<K,V,Object>
3061 >        implements Spliterator<K>, Enumeration<K> {
3062 >        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3063 >        KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3064 >            super(map, it, -1);
3065          }
3066 <
3067 <        public final void remove() {
1410 <            if (last == null)
3066 >        public KeyIterator<K,V> split() {
3067 >            if (nextKey != null)
3068                  throw new IllegalStateException();
3069 <            map.remove(last.key);
1413 <            last = null;
3069 >            return new KeyIterator<K,V>(map, this);
3070          }
3071 <
3072 <        public final boolean hasNext()         { return next != null; }
1417 <        public final boolean hasMoreElements() { return next != null; }
1418 <    }
1419 <
1420 <    static final class KeyIterator<K,V> extends ViewIterator<K,V>
1421 <        implements Iterator<K>, Enumeration<K> {
1422 <        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
1423 <
1424 <        @SuppressWarnings("unchecked")
1425 <        public final K next() {
1426 <            if (next == null)
3071 >        @SuppressWarnings("unchecked") public final K next() {
3072 >            if (nextVal == null && advance() == null)
3073                  throw new NoSuchElementException();
3074              Object k = nextKey;
3075 <            advance();
3076 <            return (K)k;
3075 >            nextVal = null;
3076 >            return (K) k;
3077          }
3078  
3079          public final K nextElement() { return next(); }
3080      }
3081  
3082 <    static final class ValueIterator<K,V> extends ViewIterator<K,V>
3083 <        implements Iterator<V>, Enumeration<V> {
3082 >    @SuppressWarnings("serial") static final class ValueIterator<K,V>
3083 >        extends Traverser<K,V,Object>
3084 >        implements Spliterator<V>, Enumeration<V> {
3085          ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3086 +        ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3087 +            super(map, it, -1);
3088 +        }
3089 +        public ValueIterator<K,V> split() {
3090 +            if (nextKey != null)
3091 +                throw new IllegalStateException();
3092 +            return new ValueIterator<K,V>(map, this);
3093 +        }
3094  
3095 <        @SuppressWarnings("unchecked")
3096 <        public final V next() {
3097 <            if (next == null)
3095 >        @SuppressWarnings("unchecked") public final V next() {
3096 >            Object v;
3097 >            if ((v = nextVal) == null && (v = advance()) == null)
3098                  throw new NoSuchElementException();
3099 <            Object v = nextVal;
3100 <            advance();
1446 <            return (V)v;
3099 >            nextVal = null;
3100 >            return (V) v;
3101          }
3102  
3103          public final V nextElement() { return next(); }
3104      }
3105  
3106 <    static final class EntryIterator<K,V> extends ViewIterator<K,V>
3107 <        implements Iterator<Map.Entry<K,V>> {
3106 >    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3107 >        extends Traverser<K,V,Object>
3108 >        implements Spliterator<Map.Entry<K,V>> {
3109          EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3110 +        EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3111 +            super(map, it, -1);
3112 +        }
3113 +        public EntryIterator<K,V> split() {
3114 +            if (nextKey != null)
3115 +                throw new IllegalStateException();
3116 +            return new EntryIterator<K,V>(map, this);
3117 +        }
3118  
3119 <        @SuppressWarnings("unchecked")
3120 <        public final Map.Entry<K,V> next() {
3121 <            if (next == null)
3119 >        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3120 >            Object v;
3121 >            if ((v = nextVal) == null && (v = advance()) == null)
3122                  throw new NoSuchElementException();
3123              Object k = nextKey;
3124 <            Object v = nextVal;
3125 <            advance();
1463 <            return new WriteThroughEntry<K,V>(map, (K)k, (V)v);
3124 >            nextVal = null;
3125 >            return new MapEntry<K,V>((K)k, (V)v, map);
3126          }
3127      }
3128  
3129      /**
3130 <     * Custom Entry class used by EntryIterator.next(), that relays
1469 <     * setValue changes to the underlying map.
3130 >     * Exported Entry for iterators
3131       */
3132 <    static final class WriteThroughEntry<K,V> implements Map.Entry<K, V> {
1472 <        final ConcurrentHashMapV8<K, V> map;
3132 >    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3133          final K key; // non-null
3134          V val;       // non-null
3135 <        WriteThroughEntry(ConcurrentHashMapV8<K, V> map, K key, V val) {
3136 <            this.map = map; this.key = key; this.val = val;
3135 >        final ConcurrentHashMapV8<K, V> map;
3136 >        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3137 >            this.key = key;
3138 >            this.val = val;
3139 >            this.map = map;
3140          }
1478
3141          public final K getKey()       { return key; }
3142          public final V getValue()     { return val; }
3143          public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
# Line 1492 | Line 3154 | public class ConcurrentHashMapV8<K, V>
3154  
3155          /**
3156           * Sets our entry's value and writes through to the map. The
3157 <         * value to return is somewhat arbitrary here. Since a
3158 <         * WriteThroughEntry does not necessarily track asynchronous
3159 <         * changes, the most recent "previous" value could be
3160 <         * different from what we return (or could even have been
3161 <         * removed in which case the put will re-establish). We do not
1500 <         * and cannot guarantee more.
3157 >         * value to return is somewhat arbitrary here. Since we do not
3158 >         * necessarily track asynchronous changes, the most recent
3159 >         * "previous" value could be different from what we return (or
3160 >         * could even have been removed in which case the put will
3161 >         * re-establish). We do not and cannot guarantee more.
3162           */
3163          public final V setValue(V value) {
3164              if (value == null) throw new NullPointerException();
# Line 1508 | Line 3169 | public class ConcurrentHashMapV8<K, V>
3169          }
3170      }
3171  
3172 <    /* ----------------Views -------------- */
3173 <
3174 <    /*
1514 <     * These currently just extend java.util.AbstractX classes, but
1515 <     * may need a new custom base to support partitioned traversal.
3172 >    /**
3173 >     * Returns exportable snapshot entry for the given key and value
3174 >     * when write-through can't or shouldn't be used.
3175       */
3176 <
3177 <    static final class KeySet<K,V> extends AbstractSet<K> {
1519 <        final ConcurrentHashMapV8<K, V> map;
1520 <        KeySet(ConcurrentHashMapV8<K, V> map)   { this.map = map; }
1521 <
1522 <        public final int size()                 { return map.size(); }
1523 <        public final boolean isEmpty()          { return map.isEmpty(); }
1524 <        public final void clear()               { map.clear(); }
1525 <        public final boolean contains(Object o) { return map.containsKey(o); }
1526 <        public final boolean remove(Object o)   { return map.remove(o) != null; }
1527 <        public final Iterator<K> iterator() {
1528 <            return new KeyIterator<K,V>(map);
1529 <        }
1530 <    }
1531 <
1532 <    static final class Values<K,V> extends AbstractCollection<V> {
1533 <        final ConcurrentHashMapV8<K, V> map;
1534 <        Values(ConcurrentHashMapV8<K, V> map)   { this.map = map; }
1535 <
1536 <        public final int size()                 { return map.size(); }
1537 <        public final boolean isEmpty()          { return map.isEmpty(); }
1538 <        public final void clear()               { map.clear(); }
1539 <        public final boolean contains(Object o) { return map.containsValue(o); }
1540 <        public final Iterator<V> iterator() {
1541 <            return new ValueIterator<K,V>(map);
1542 <        }
1543 <    }
1544 <
1545 <    static final class EntrySet<K,V> extends AbstractSet<Map.Entry<K,V>> {
1546 <        final ConcurrentHashMapV8<K, V> map;
1547 <        EntrySet(ConcurrentHashMapV8<K, V> map) { this.map = map; }
1548 <
1549 <        public final int size()                 { return map.size(); }
1550 <        public final boolean isEmpty()          { return map.isEmpty(); }
1551 <        public final void clear()               { map.clear(); }
1552 <        public final Iterator<Map.Entry<K,V>> iterator() {
1553 <            return new EntryIterator<K,V>(map);
1554 <        }
1555 <
1556 <        public final boolean contains(Object o) {
1557 <            Object k, v, r; Map.Entry<?,?> e;
1558 <            return ((o instanceof Map.Entry) &&
1559 <                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
1560 <                    (r = map.get(k)) != null &&
1561 <                    (v = e.getValue()) != null &&
1562 <                    (v == r || v.equals(r)));
1563 <        }
1564 <
1565 <        public final boolean remove(Object o) {
1566 <            Object k, v; Map.Entry<?,?> e;
1567 <            return ((o instanceof Map.Entry) &&
1568 <                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
1569 <                    (v = e.getValue()) != null &&
1570 <                    map.remove(k, v));
1571 <        }
3176 >    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3177 >        return new AbstractMap.SimpleEntry<K,V>(k, v);
3178      }
3179  
3180      /* ---------------- Serialization Support -------------- */
# Line 1592 | Line 3198 | public class ConcurrentHashMapV8<K, V>
3198       * for each key-value mapping, followed by a null pair.
3199       * The key-value mappings are emitted in no particular order.
3200       */
3201 <    @SuppressWarnings("unchecked")
3202 <    private void writeObject(java.io.ObjectOutputStream s)
3203 <            throws java.io.IOException {
3201 >    @SuppressWarnings("unchecked") private void writeObject
3202 >        (java.io.ObjectOutputStream s)
3203 >        throws java.io.IOException {
3204          if (segments == null) { // for serialization compatibility
3205              segments = (Segment<K,V>[])
3206                  new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
# Line 1602 | Line 3208 | public class ConcurrentHashMapV8<K, V>
3208                  segments[i] = new Segment<K,V>(LOAD_FACTOR);
3209          }
3210          s.defaultWriteObject();
3211 <        InternalIterator it = new InternalIterator(table);
3212 <        while (it.next != null) {
3211 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3212 >        Object v;
3213 >        while ((v = it.advance()) != null) {
3214              s.writeObject(it.nextKey);
3215 <            s.writeObject(it.nextVal);
1609 <            it.advance();
3215 >            s.writeObject(v);
3216          }
3217          s.writeObject(null);
3218          s.writeObject(null);
# Line 1617 | Line 3223 | public class ConcurrentHashMapV8<K, V>
3223       * Reconstitutes the instance from a stream (that is, deserializes it).
3224       * @param s the stream
3225       */
3226 <    @SuppressWarnings("unchecked")
3227 <    private void readObject(java.io.ObjectInputStream s)
3228 <            throws java.io.IOException, ClassNotFoundException {
3226 >    @SuppressWarnings("unchecked") private void readObject
3227 >        (java.io.ObjectInputStream s)
3228 >        throws java.io.IOException, ClassNotFoundException {
3229          s.defaultReadObject();
3230          this.segments = null; // unneeded
1625        // initalize transient final field
1626        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
1627        this.targetCapacity = DEFAULT_CAPACITY;
3231  
3232          // Create all nodes, then place in table once size is known
3233          long size = 0L;
# Line 1633 | Line 3236 | public class ConcurrentHashMapV8<K, V>
3236              K k = (K) s.readObject();
3237              V v = (V) s.readObject();
3238              if (k != null && v != null) {
3239 <                p = new Node(spread(k.hashCode()), k, v, p);
3239 >                int h = spread(k.hashCode());
3240 >                p = new Node(h, k, v, p);
3241                  ++size;
3242              }
3243              else
# Line 1641 | Line 3245 | public class ConcurrentHashMapV8<K, V>
3245          }
3246          if (p != null) {
3247              boolean init = false;
3248 <            if (resizing == 0 &&
3249 <                UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) {
3248 >            int n;
3249 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3250 >                n = MAXIMUM_CAPACITY;
3251 >            else {
3252 >                int sz = (int)size;
3253 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
3254 >            }
3255 >            int sc = sizeCtl;
3256 >            boolean collide = false;
3257 >            if (n > sc &&
3258 >                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3259                  try {
3260                      if (table == null) {
3261                          init = true;
1649                        int n;
1650                        if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1651                            n = MAXIMUM_CAPACITY;
1652                        else {
1653                            int sz = (int)size;
1654                            n = tableSizeFor(sz + (sz >>> 1) + 1);
1655                        }
1656                        threshold = n - (n >>> 2) - THRESHOLD_OFFSET;
3262                          Node[] tab = new Node[n];
3263                          int mask = n - 1;
3264                          while (p != null) {
3265                              int j = p.hash & mask;
3266                              Node next = p.next;
3267 <                            p.next = tabAt(tab, j);
3267 >                            Node q = p.next = tabAt(tab, j);
3268                              setTabAt(tab, j, p);
3269 +                            if (!collide && q != null && q.hash == p.hash)
3270 +                                collide = true;
3271                              p = next;
3272                          }
3273                          table = tab;
3274 <                        counter.add(size);
3274 >                        addCount(size, -1);
3275 >                        sc = n - (n >>> 2);
3276                      }
3277                  } finally {
3278 <                    resizing = 0;
3278 >                    sizeCtl = sc;
3279 >                }
3280 >                if (collide) { // rescan and convert to TreeBins
3281 >                    Node[] tab = table;
3282 >                    for (int i = 0; i < tab.length; ++i) {
3283 >                        int c = 0;
3284 >                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3285 >                            if (++c > TREE_THRESHOLD &&
3286 >                                (e.key instanceof Comparable)) {
3287 >                                replaceWithTreeBin(tab, i, e.key);
3288 >                                break;
3289 >                            }
3290 >                        }
3291 >                    }
3292                  }
3293              }
3294              if (!init) { // Can only happen if unsafely published.
3295                  while (p != null) {
3296 <                    internalPut(p.key, p.val, true);
3296 >                    internalPut((K)p.key, (V)p.val, false);
3297                      p = p.next;
3298                  }
3299              }
3300          }
3301      }
3302  
3303 +    // -------------------------------------------------------
3304 +
3305 +    // Sams
3306 +    /** Interface describing a void action of one argument */
3307 +    public interface Action<A> { void apply(A a); }
3308 +    /** Interface describing a void action of two arguments */
3309 +    public interface BiAction<A,B> { void apply(A a, B b); }
3310 +    /** Interface describing a function of one argument */
3311 +    public interface Fun<A,T> { T apply(A a); }
3312 +    /** Interface describing a function of two arguments */
3313 +    public interface BiFun<A,B,T> { T apply(A a, B b); }
3314 +    /** Interface describing a function of no arguments */
3315 +    public interface Generator<T> { T apply(); }
3316 +    /** Interface describing a function mapping its argument to a double */
3317 +    public interface ObjectToDouble<A> { double apply(A a); }
3318 +    /** Interface describing a function mapping its argument to a long */
3319 +    public interface ObjectToLong<A> { long apply(A a); }
3320 +    /** Interface describing a function mapping its argument to an int */
3321 +    public interface ObjectToInt<A> {int apply(A a); }
3322 +    /** Interface describing a function mapping two arguments to a double */
3323 +    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3324 +    /** Interface describing a function mapping two arguments to a long */
3325 +    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3326 +    /** Interface describing a function mapping two arguments to an int */
3327 +    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3328 +    /** Interface describing a function mapping a double to a double */
3329 +    public interface DoubleToDouble { double apply(double a); }
3330 +    /** Interface describing a function mapping a long to a long */
3331 +    public interface LongToLong { long apply(long a); }
3332 +    /** Interface describing a function mapping an int to an int */
3333 +    public interface IntToInt { int apply(int a); }
3334 +    /** Interface describing a function mapping two doubles to a double */
3335 +    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3336 +    /** Interface describing a function mapping two longs to a long */
3337 +    public interface LongByLongToLong { long apply(long a, long b); }
3338 +    /** Interface describing a function mapping two ints to an int */
3339 +    public interface IntByIntToInt { int apply(int a, int b); }
3340 +
3341 +
3342 +    // -------------------------------------------------------
3343 +
3344 +    /**
3345 +     * Performs the given action for each (key, value).
3346 +     *
3347 +     * @param action the action
3348 +     */
3349 +    public void forEach(BiAction<K,V> action) {
3350 +        ForkJoinTasks.forEach
3351 +            (this, action).invoke();
3352 +    }
3353 +
3354 +    /**
3355 +     * Performs the given action for each non-null transformation
3356 +     * of each (key, value).
3357 +     *
3358 +     * @param transformer a function returning the transformation
3359 +     * for an element, or null of there is no transformation (in
3360 +     * which case the action is not applied).
3361 +     * @param action the action
3362 +     */
3363 +    public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3364 +                            Action<U> action) {
3365 +        ForkJoinTasks.forEach
3366 +            (this, transformer, action).invoke();
3367 +    }
3368 +
3369 +    /**
3370 +     * Returns a non-null result from applying the given search
3371 +     * function on each (key, value), or null if none.  Upon
3372 +     * success, further element processing is suppressed and the
3373 +     * results of any other parallel invocations of the search
3374 +     * function are ignored.
3375 +     *
3376 +     * @param searchFunction a function returning a non-null
3377 +     * result on success, else null
3378 +     * @return a non-null result from applying the given search
3379 +     * function on each (key, value), or null if none
3380 +     */
3381 +    public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3382 +        return ForkJoinTasks.search
3383 +            (this, searchFunction).invoke();
3384 +    }
3385 +
3386 +    /**
3387 +     * Returns the result of accumulating the given transformation
3388 +     * of all (key, value) pairs using the given reducer to
3389 +     * combine values, or null if none.
3390 +     *
3391 +     * @param transformer a function returning the transformation
3392 +     * for an element, or null of there is no transformation (in
3393 +     * which case it is not combined).
3394 +     * @param reducer a commutative associative combining function
3395 +     * @return the result of accumulating the given transformation
3396 +     * of all (key, value) pairs
3397 +     */
3398 +    public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3399 +                        BiFun<? super U, ? super U, ? extends U> reducer) {
3400 +        return ForkJoinTasks.reduce
3401 +            (this, transformer, reducer).invoke();
3402 +    }
3403 +
3404 +    /**
3405 +     * Returns the result of accumulating the given transformation
3406 +     * of all (key, value) pairs using the given reducer to
3407 +     * combine values, and the given basis as an identity value.
3408 +     *
3409 +     * @param transformer a function returning the transformation
3410 +     * for an element
3411 +     * @param basis the identity (initial default value) for the reduction
3412 +     * @param reducer a commutative associative combining function
3413 +     * @return the result of accumulating the given transformation
3414 +     * of all (key, value) pairs
3415 +     */
3416 +    public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3417 +                                 double basis,
3418 +                                 DoubleByDoubleToDouble reducer) {
3419 +        return ForkJoinTasks.reduceToDouble
3420 +            (this, transformer, basis, reducer).invoke();
3421 +    }
3422 +
3423 +    /**
3424 +     * Returns the result of accumulating the given transformation
3425 +     * of all (key, value) pairs using the given reducer to
3426 +     * combine values, and the given basis as an identity value.
3427 +     *
3428 +     * @param transformer a function returning the transformation
3429 +     * for an element
3430 +     * @param basis the identity (initial default value) for the reduction
3431 +     * @param reducer a commutative associative combining function
3432 +     * @return the result of accumulating the given transformation
3433 +     * of all (key, value) pairs
3434 +     */
3435 +    public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3436 +                             long basis,
3437 +                             LongByLongToLong reducer) {
3438 +        return ForkJoinTasks.reduceToLong
3439 +            (this, transformer, basis, reducer).invoke();
3440 +    }
3441 +
3442 +    /**
3443 +     * Returns the result of accumulating the given transformation
3444 +     * of all (key, value) pairs using the given reducer to
3445 +     * combine values, and the given basis as an identity value.
3446 +     *
3447 +     * @param transformer a function returning the transformation
3448 +     * for an element
3449 +     * @param basis the identity (initial default value) for the reduction
3450 +     * @param reducer a commutative associative combining function
3451 +     * @return the result of accumulating the given transformation
3452 +     * of all (key, value) pairs
3453 +     */
3454 +    public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3455 +                           int basis,
3456 +                           IntByIntToInt reducer) {
3457 +        return ForkJoinTasks.reduceToInt
3458 +            (this, transformer, basis, reducer).invoke();
3459 +    }
3460 +
3461 +    /**
3462 +     * Performs the given action for each key.
3463 +     *
3464 +     * @param action the action
3465 +     */
3466 +    public void forEachKey(Action<K> action) {
3467 +        ForkJoinTasks.forEachKey
3468 +            (this, action).invoke();
3469 +    }
3470 +
3471 +    /**
3472 +     * Performs the given action for each non-null transformation
3473 +     * of each key.
3474 +     *
3475 +     * @param transformer a function returning the transformation
3476 +     * for an element, or null of there is no transformation (in
3477 +     * which case the action is not applied).
3478 +     * @param action the action
3479 +     */
3480 +    public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3481 +                               Action<U> action) {
3482 +        ForkJoinTasks.forEachKey
3483 +            (this, transformer, action).invoke();
3484 +    }
3485 +
3486 +    /**
3487 +     * Returns a non-null result from applying the given search
3488 +     * function on each key, or null if none. Upon success,
3489 +     * further element processing is suppressed and the results of
3490 +     * any other parallel invocations of the search function are
3491 +     * ignored.
3492 +     *
3493 +     * @param searchFunction a function returning a non-null
3494 +     * result on success, else null
3495 +     * @return a non-null result from applying the given search
3496 +     * function on each key, or null if none
3497 +     */
3498 +    public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3499 +        return ForkJoinTasks.searchKeys
3500 +            (this, searchFunction).invoke();
3501 +    }
3502 +
3503 +    /**
3504 +     * Returns the result of accumulating all keys using the given
3505 +     * reducer to combine values, or null if none.
3506 +     *
3507 +     * @param reducer a commutative associative combining function
3508 +     * @return the result of accumulating all keys using the given
3509 +     * reducer to combine values, or null if none
3510 +     */
3511 +    public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3512 +        return ForkJoinTasks.reduceKeys
3513 +            (this, reducer).invoke();
3514 +    }
3515 +
3516 +    /**
3517 +     * Returns the result of accumulating the given transformation
3518 +     * of all keys using the given reducer to combine values, or
3519 +     * null if none.
3520 +     *
3521 +     * @param transformer a function returning the transformation
3522 +     * for an element, or null of there is no transformation (in
3523 +     * which case it is not combined).
3524 +     * @param reducer a commutative associative combining function
3525 +     * @return the result of accumulating the given transformation
3526 +     * of all keys
3527 +     */
3528 +    public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3529 +                            BiFun<? super U, ? super U, ? extends U> reducer) {
3530 +        return ForkJoinTasks.reduceKeys
3531 +            (this, transformer, reducer).invoke();
3532 +    }
3533 +
3534 +    /**
3535 +     * Returns the result of accumulating the given transformation
3536 +     * of all keys using the given reducer to combine values, and
3537 +     * the given basis as an identity value.
3538 +     *
3539 +     * @param transformer a function returning the transformation
3540 +     * for an element
3541 +     * @param basis the identity (initial default value) for the reduction
3542 +     * @param reducer a commutative associative combining function
3543 +     * @return  the result of accumulating the given transformation
3544 +     * of all keys
3545 +     */
3546 +    public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3547 +                                     double basis,
3548 +                                     DoubleByDoubleToDouble reducer) {
3549 +        return ForkJoinTasks.reduceKeysToDouble
3550 +            (this, transformer, basis, reducer).invoke();
3551 +    }
3552 +
3553 +    /**
3554 +     * Returns the result of accumulating the given transformation
3555 +     * of all keys using the given reducer to combine values, and
3556 +     * the given basis as an identity value.
3557 +     *
3558 +     * @param transformer a function returning the transformation
3559 +     * for an element
3560 +     * @param basis the identity (initial default value) for the reduction
3561 +     * @param reducer a commutative associative combining function
3562 +     * @return the result of accumulating the given transformation
3563 +     * of all keys
3564 +     */
3565 +    public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3566 +                                 long basis,
3567 +                                 LongByLongToLong reducer) {
3568 +        return ForkJoinTasks.reduceKeysToLong
3569 +            (this, transformer, basis, reducer).invoke();
3570 +    }
3571 +
3572 +    /**
3573 +     * Returns the result of accumulating the given transformation
3574 +     * of all keys using the given reducer to combine values, and
3575 +     * the given basis as an identity value.
3576 +     *
3577 +     * @param transformer a function returning the transformation
3578 +     * for an element
3579 +     * @param basis the identity (initial default value) for the reduction
3580 +     * @param reducer a commutative associative combining function
3581 +     * @return the result of accumulating the given transformation
3582 +     * of all keys
3583 +     */
3584 +    public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3585 +                               int basis,
3586 +                               IntByIntToInt reducer) {
3587 +        return ForkJoinTasks.reduceKeysToInt
3588 +            (this, transformer, basis, reducer).invoke();
3589 +    }
3590 +
3591 +    /**
3592 +     * Performs the given action for each value.
3593 +     *
3594 +     * @param action the action
3595 +     */
3596 +    public void forEachValue(Action<V> action) {
3597 +        ForkJoinTasks.forEachValue
3598 +            (this, action).invoke();
3599 +    }
3600 +
3601 +    /**
3602 +     * Performs the given action for each non-null transformation
3603 +     * of each value.
3604 +     *
3605 +     * @param transformer a function returning the transformation
3606 +     * for an element, or null of there is no transformation (in
3607 +     * which case the action is not applied).
3608 +     */
3609 +    public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3610 +                                 Action<U> action) {
3611 +        ForkJoinTasks.forEachValue
3612 +            (this, transformer, action).invoke();
3613 +    }
3614 +
3615 +    /**
3616 +     * Returns a non-null result from applying the given search
3617 +     * function on each value, or null if none.  Upon success,
3618 +     * further element processing is suppressed and the results of
3619 +     * any other parallel invocations of the search function are
3620 +     * ignored.
3621 +     *
3622 +     * @param searchFunction a function returning a non-null
3623 +     * result on success, else null
3624 +     * @return a non-null result from applying the given search
3625 +     * function on each value, or null if none
3626 +     *
3627 +     */
3628 +    public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3629 +        return ForkJoinTasks.searchValues
3630 +            (this, searchFunction).invoke();
3631 +    }
3632 +
3633 +    /**
3634 +     * Returns the result of accumulating all values using the
3635 +     * given reducer to combine values, or null if none.
3636 +     *
3637 +     * @param reducer a commutative associative combining function
3638 +     * @return  the result of accumulating all values
3639 +     */
3640 +    public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3641 +        return ForkJoinTasks.reduceValues
3642 +            (this, reducer).invoke();
3643 +    }
3644 +
3645 +    /**
3646 +     * Returns the result of accumulating the given transformation
3647 +     * of all values using the given reducer to combine values, or
3648 +     * null if none.
3649 +     *
3650 +     * @param transformer a function returning the transformation
3651 +     * for an element, or null of there is no transformation (in
3652 +     * which case it is not combined).
3653 +     * @param reducer a commutative associative combining function
3654 +     * @return the result of accumulating the given transformation
3655 +     * of all values
3656 +     */
3657 +    public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3658 +                              BiFun<? super U, ? super U, ? extends U> reducer) {
3659 +        return ForkJoinTasks.reduceValues
3660 +            (this, transformer, reducer).invoke();
3661 +    }
3662 +
3663 +    /**
3664 +     * Returns the result of accumulating the given transformation
3665 +     * of all values using the given reducer to combine values,
3666 +     * and the given basis as an identity value.
3667 +     *
3668 +     * @param transformer a function returning the transformation
3669 +     * for an element
3670 +     * @param basis the identity (initial default value) for the reduction
3671 +     * @param reducer a commutative associative combining function
3672 +     * @return the result of accumulating the given transformation
3673 +     * of all values
3674 +     */
3675 +    public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3676 +                                       double basis,
3677 +                                       DoubleByDoubleToDouble reducer) {
3678 +        return ForkJoinTasks.reduceValuesToDouble
3679 +            (this, transformer, basis, reducer).invoke();
3680 +    }
3681 +
3682 +    /**
3683 +     * Returns the result of accumulating the given transformation
3684 +     * of all values using the given reducer to combine values,
3685 +     * and the given basis as an identity value.
3686 +     *
3687 +     * @param transformer a function returning the transformation
3688 +     * for an element
3689 +     * @param basis the identity (initial default value) for the reduction
3690 +     * @param reducer a commutative associative combining function
3691 +     * @return the result of accumulating the given transformation
3692 +     * of all values
3693 +     */
3694 +    public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3695 +                                   long basis,
3696 +                                   LongByLongToLong reducer) {
3697 +        return ForkJoinTasks.reduceValuesToLong
3698 +            (this, transformer, basis, reducer).invoke();
3699 +    }
3700 +
3701 +    /**
3702 +     * Returns the result of accumulating the given transformation
3703 +     * of all values using the given reducer to combine values,
3704 +     * and the given basis as an identity value.
3705 +     *
3706 +     * @param transformer a function returning the transformation
3707 +     * for an element
3708 +     * @param basis the identity (initial default value) for the reduction
3709 +     * @param reducer a commutative associative combining function
3710 +     * @return the result of accumulating the given transformation
3711 +     * of all values
3712 +     */
3713 +    public int reduceValuesToInt(ObjectToInt<? super V> transformer,
3714 +                                 int basis,
3715 +                                 IntByIntToInt reducer) {
3716 +        return ForkJoinTasks.reduceValuesToInt
3717 +            (this, transformer, basis, reducer).invoke();
3718 +    }
3719 +
3720 +    /**
3721 +     * Performs the given action for each entry.
3722 +     *
3723 +     * @param action the action
3724 +     */
3725 +    public void forEachEntry(Action<Map.Entry<K,V>> action) {
3726 +        ForkJoinTasks.forEachEntry
3727 +            (this, action).invoke();
3728 +    }
3729 +
3730 +    /**
3731 +     * Performs the given action for each non-null transformation
3732 +     * of each entry.
3733 +     *
3734 +     * @param transformer a function returning the transformation
3735 +     * for an element, or null of there is no transformation (in
3736 +     * which case the action is not applied).
3737 +     * @param action the action
3738 +     */
3739 +    public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
3740 +                                 Action<U> action) {
3741 +        ForkJoinTasks.forEachEntry
3742 +            (this, transformer, action).invoke();
3743 +    }
3744 +
3745 +    /**
3746 +     * Returns a non-null result from applying the given search
3747 +     * function on each entry, or null if none.  Upon success,
3748 +     * further element processing is suppressed and the results of
3749 +     * any other parallel invocations of the search function are
3750 +     * ignored.
3751 +     *
3752 +     * @param searchFunction a function returning a non-null
3753 +     * result on success, else null
3754 +     * @return a non-null result from applying the given search
3755 +     * function on each entry, or null if none
3756 +     */
3757 +    public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3758 +        return ForkJoinTasks.searchEntries
3759 +            (this, searchFunction).invoke();
3760 +    }
3761 +
3762 +    /**
3763 +     * Returns the result of accumulating all entries using the
3764 +     * given reducer to combine values, or null if none.
3765 +     *
3766 +     * @param reducer a commutative associative combining function
3767 +     * @return the result of accumulating all entries
3768 +     */
3769 +    public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3770 +        return ForkJoinTasks.reduceEntries
3771 +            (this, reducer).invoke();
3772 +    }
3773 +
3774 +    /**
3775 +     * Returns the result of accumulating the given transformation
3776 +     * of all entries using the given reducer to combine values,
3777 +     * or null if none.
3778 +     *
3779 +     * @param transformer a function returning the transformation
3780 +     * for an element, or null of there is no transformation (in
3781 +     * which case it is not combined).
3782 +     * @param reducer a commutative associative combining function
3783 +     * @return the result of accumulating the given transformation
3784 +     * of all entries
3785 +     */
3786 +    public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
3787 +                               BiFun<? super U, ? super U, ? extends U> reducer) {
3788 +        return ForkJoinTasks.reduceEntries
3789 +            (this, transformer, reducer).invoke();
3790 +    }
3791 +
3792 +    /**
3793 +     * Returns the result of accumulating the given transformation
3794 +     * of all entries using the given reducer to combine values,
3795 +     * and the given basis as an identity value.
3796 +     *
3797 +     * @param transformer a function returning the transformation
3798 +     * for an element
3799 +     * @param basis the identity (initial default value) for the reduction
3800 +     * @param reducer a commutative associative combining function
3801 +     * @return the result of accumulating the given transformation
3802 +     * of all entries
3803 +     */
3804 +    public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
3805 +                                        double basis,
3806 +                                        DoubleByDoubleToDouble reducer) {
3807 +        return ForkJoinTasks.reduceEntriesToDouble
3808 +            (this, transformer, basis, reducer).invoke();
3809 +    }
3810 +
3811 +    /**
3812 +     * Returns the result of accumulating the given transformation
3813 +     * of all entries using the given reducer to combine values,
3814 +     * and the given basis as an identity value.
3815 +     *
3816 +     * @param transformer a function returning the transformation
3817 +     * for an element
3818 +     * @param basis the identity (initial default value) for the reduction
3819 +     * @param reducer a commutative associative combining function
3820 +     * @return  the result of accumulating the given transformation
3821 +     * of all entries
3822 +     */
3823 +    public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
3824 +                                    long basis,
3825 +                                    LongByLongToLong reducer) {
3826 +        return ForkJoinTasks.reduceEntriesToLong
3827 +            (this, transformer, basis, reducer).invoke();
3828 +    }
3829 +
3830 +    /**
3831 +     * Returns the result of accumulating the given transformation
3832 +     * of all entries using the given reducer to combine values,
3833 +     * and the given basis as an identity value.
3834 +     *
3835 +     * @param transformer a function returning the transformation
3836 +     * for an element
3837 +     * @param basis the identity (initial default value) for the reduction
3838 +     * @param reducer a commutative associative combining function
3839 +     * @return the result of accumulating the given transformation
3840 +     * of all entries
3841 +     */
3842 +    public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
3843 +                                  int basis,
3844 +                                  IntByIntToInt reducer) {
3845 +        return ForkJoinTasks.reduceEntriesToInt
3846 +            (this, transformer, basis, reducer).invoke();
3847 +    }
3848 +
3849 +    /* ----------------Views -------------- */
3850 +
3851 +    /**
3852 +     * Base class for views.
3853 +     */
3854 +    static abstract class CHMView<K, V> {
3855 +        final ConcurrentHashMapV8<K, V> map;
3856 +        CHMView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
3857 +
3858 +        /**
3859 +         * Returns the map backing this view.
3860 +         *
3861 +         * @return the map backing this view
3862 +         */
3863 +        public ConcurrentHashMapV8<K,V> getMap() { return map; }
3864 +
3865 +        public final int size()                 { return map.size(); }
3866 +        public final boolean isEmpty()          { return map.isEmpty(); }
3867 +        public final void clear()               { map.clear(); }
3868 +
3869 +        // implementations below rely on concrete classes supplying these
3870 +        abstract public Iterator<?> iterator();
3871 +        abstract public boolean contains(Object o);
3872 +        abstract public boolean remove(Object o);
3873 +
3874 +        private static final String oomeMsg = "Required array size too large";
3875 +
3876 +        public final Object[] toArray() {
3877 +            long sz = map.mappingCount();
3878 +            if (sz > (long)(MAX_ARRAY_SIZE))
3879 +                throw new OutOfMemoryError(oomeMsg);
3880 +            int n = (int)sz;
3881 +            Object[] r = new Object[n];
3882 +            int i = 0;
3883 +            Iterator<?> it = iterator();
3884 +            while (it.hasNext()) {
3885 +                if (i == n) {
3886 +                    if (n >= MAX_ARRAY_SIZE)
3887 +                        throw new OutOfMemoryError(oomeMsg);
3888 +                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3889 +                        n = MAX_ARRAY_SIZE;
3890 +                    else
3891 +                        n += (n >>> 1) + 1;
3892 +                    r = Arrays.copyOf(r, n);
3893 +                }
3894 +                r[i++] = it.next();
3895 +            }
3896 +            return (i == n) ? r : Arrays.copyOf(r, i);
3897 +        }
3898 +
3899 +        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
3900 +            long sz = map.mappingCount();
3901 +            if (sz > (long)(MAX_ARRAY_SIZE))
3902 +                throw new OutOfMemoryError(oomeMsg);
3903 +            int m = (int)sz;
3904 +            T[] r = (a.length >= m) ? a :
3905 +                (T[])java.lang.reflect.Array
3906 +                .newInstance(a.getClass().getComponentType(), m);
3907 +            int n = r.length;
3908 +            int i = 0;
3909 +            Iterator<?> it = iterator();
3910 +            while (it.hasNext()) {
3911 +                if (i == n) {
3912 +                    if (n >= MAX_ARRAY_SIZE)
3913 +                        throw new OutOfMemoryError(oomeMsg);
3914 +                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3915 +                        n = MAX_ARRAY_SIZE;
3916 +                    else
3917 +                        n += (n >>> 1) + 1;
3918 +                    r = Arrays.copyOf(r, n);
3919 +                }
3920 +                r[i++] = (T)it.next();
3921 +            }
3922 +            if (a == r && i < n) {
3923 +                r[i] = null; // null-terminate
3924 +                return r;
3925 +            }
3926 +            return (i == n) ? r : Arrays.copyOf(r, i);
3927 +        }
3928 +
3929 +        public final int hashCode() {
3930 +            int h = 0;
3931 +            for (Iterator<?> it = iterator(); it.hasNext();)
3932 +                h += it.next().hashCode();
3933 +            return h;
3934 +        }
3935 +
3936 +        public final String toString() {
3937 +            StringBuilder sb = new StringBuilder();
3938 +            sb.append('[');
3939 +            Iterator<?> it = iterator();
3940 +            if (it.hasNext()) {
3941 +                for (;;) {
3942 +                    Object e = it.next();
3943 +                    sb.append(e == this ? "(this Collection)" : e);
3944 +                    if (!it.hasNext())
3945 +                        break;
3946 +                    sb.append(',').append(' ');
3947 +                }
3948 +            }
3949 +            return sb.append(']').toString();
3950 +        }
3951 +
3952 +        public final boolean containsAll(Collection<?> c) {
3953 +            if (c != this) {
3954 +                for (Iterator<?> it = c.iterator(); it.hasNext();) {
3955 +                    Object e = it.next();
3956 +                    if (e == null || !contains(e))
3957 +                        return false;
3958 +                }
3959 +            }
3960 +            return true;
3961 +        }
3962 +
3963 +        public final boolean removeAll(Collection<?> c) {
3964 +            boolean modified = false;
3965 +            for (Iterator<?> it = iterator(); it.hasNext();) {
3966 +                if (c.contains(it.next())) {
3967 +                    it.remove();
3968 +                    modified = true;
3969 +                }
3970 +            }
3971 +            return modified;
3972 +        }
3973 +
3974 +        public final boolean retainAll(Collection<?> c) {
3975 +            boolean modified = false;
3976 +            for (Iterator<?> it = iterator(); it.hasNext();) {
3977 +                if (!c.contains(it.next())) {
3978 +                    it.remove();
3979 +                    modified = true;
3980 +                }
3981 +            }
3982 +            return modified;
3983 +        }
3984 +
3985 +    }
3986 +
3987 +    /**
3988 +     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
3989 +     * which additions may optionally be enabled by mapping to a
3990 +     * common value.  This class cannot be directly instantiated. See
3991 +     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
3992 +     * {@link #newKeySet(int)}.
3993 +     */
3994 +    public static class KeySetView<K,V> extends CHMView<K,V>
3995 +        implements Set<K>, java.io.Serializable {
3996 +        private static final long serialVersionUID = 7249069246763182397L;
3997 +        private final V value;
3998 +        KeySetView(ConcurrentHashMapV8<K, V> map, V value) {  // non-public
3999 +            super(map);
4000 +            this.value = value;
4001 +        }
4002 +
4003 +        /**
4004 +         * Returns the default mapped value for additions,
4005 +         * or {@code null} if additions are not supported.
4006 +         *
4007 +         * @return the default mapped value for additions, or {@code null}
4008 +         * if not supported.
4009 +         */
4010 +        public V getMappedValue() { return value; }
4011 +
4012 +        // implement Set API
4013 +
4014 +        public boolean contains(Object o) { return map.containsKey(o); }
4015 +        public boolean remove(Object o)   { return map.remove(o) != null; }
4016 +
4017 +        /**
4018 +         * Returns a "weakly consistent" iterator that will never
4019 +         * throw {@link ConcurrentModificationException}, and
4020 +         * guarantees to traverse elements as they existed upon
4021 +         * construction of the iterator, and may (but is not
4022 +         * guaranteed to) reflect any modifications subsequent to
4023 +         * construction.
4024 +         *
4025 +         * @return an iterator over the keys of this map
4026 +         */
4027 +        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4028 +        public boolean add(K e) {
4029 +            V v;
4030 +            if ((v = value) == null)
4031 +                throw new UnsupportedOperationException();
4032 +            if (e == null)
4033 +                throw new NullPointerException();
4034 +            return map.internalPut(e, v, true) == null;
4035 +        }
4036 +        public boolean addAll(Collection<? extends K> c) {
4037 +            boolean added = false;
4038 +            V v;
4039 +            if ((v = value) == null)
4040 +                throw new UnsupportedOperationException();
4041 +            for (K e : c) {
4042 +                if (e == null)
4043 +                    throw new NullPointerException();
4044 +                if (map.internalPut(e, v, true) == null)
4045 +                    added = true;
4046 +            }
4047 +            return added;
4048 +        }
4049 +        public boolean equals(Object o) {
4050 +            Set<?> c;
4051 +            return ((o instanceof Set) &&
4052 +                    ((c = (Set<?>)o) == this ||
4053 +                     (containsAll(c) && c.containsAll(this))));
4054 +        }
4055 +
4056 +        /**
4057 +         * Performs the given action for each key.
4058 +         *
4059 +         * @param action the action
4060 +         */
4061 +        public void forEach(Action<K> action) {
4062 +            ForkJoinTasks.forEachKey
4063 +                (map, action).invoke();
4064 +        }
4065 +
4066 +        /**
4067 +         * Performs the given action for each non-null transformation
4068 +         * of each key.
4069 +         *
4070 +         * @param transformer a function returning the transformation
4071 +         * for an element, or null of there is no transformation (in
4072 +         * which case the action is not applied).
4073 +         * @param action the action
4074 +         */
4075 +        public <U> void forEach(Fun<? super K, ? extends U> transformer,
4076 +                                Action<U> action) {
4077 +            ForkJoinTasks.forEachKey
4078 +                (map, transformer, action).invoke();
4079 +        }
4080 +
4081 +        /**
4082 +         * Returns a non-null result from applying the given search
4083 +         * function on each key, or null if none. Upon success,
4084 +         * further element processing is suppressed and the results of
4085 +         * any other parallel invocations of the search function are
4086 +         * ignored.
4087 +         *
4088 +         * @param searchFunction a function returning a non-null
4089 +         * result on success, else null
4090 +         * @return a non-null result from applying the given search
4091 +         * function on each key, or null if none
4092 +         */
4093 +        public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4094 +            return ForkJoinTasks.searchKeys
4095 +                (map, searchFunction).invoke();
4096 +        }
4097 +
4098 +        /**
4099 +         * Returns the result of accumulating all keys using the given
4100 +         * reducer to combine values, or null if none.
4101 +         *
4102 +         * @param reducer a commutative associative combining function
4103 +         * @return the result of accumulating all keys using the given
4104 +         * reducer to combine values, or null if none
4105 +         */
4106 +        public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4107 +            return ForkJoinTasks.reduceKeys
4108 +                (map, reducer).invoke();
4109 +        }
4110 +
4111 +        /**
4112 +         * Returns the result of accumulating the given transformation
4113 +         * of all keys using the given reducer to combine values, and
4114 +         * the given basis as an identity value.
4115 +         *
4116 +         * @param transformer a function returning the transformation
4117 +         * for an element
4118 +         * @param basis the identity (initial default value) for the reduction
4119 +         * @param reducer a commutative associative combining function
4120 +         * @return  the result of accumulating the given transformation
4121 +         * of all keys
4122 +         */
4123 +        public double reduceToDouble(ObjectToDouble<? super K> transformer,
4124 +                                     double basis,
4125 +                                     DoubleByDoubleToDouble reducer) {
4126 +            return ForkJoinTasks.reduceKeysToDouble
4127 +                (map, transformer, basis, reducer).invoke();
4128 +        }
4129 +
4130 +        /**
4131 +         * Returns the result of accumulating the given transformation
4132 +         * of all keys using the given reducer to combine values, and
4133 +         * the given basis as an identity value.
4134 +         *
4135 +         * @param transformer a function returning the transformation
4136 +         * for an element
4137 +         * @param basis the identity (initial default value) for the reduction
4138 +         * @param reducer a commutative associative combining function
4139 +         * @return the result of accumulating the given transformation
4140 +         * of all keys
4141 +         */
4142 +        public long reduceToLong(ObjectToLong<? super K> transformer,
4143 +                                 long basis,
4144 +                                 LongByLongToLong reducer) {
4145 +            return ForkJoinTasks.reduceKeysToLong
4146 +                (map, transformer, basis, reducer).invoke();
4147 +        }
4148 +
4149 +        /**
4150 +         * Returns the result of accumulating the given transformation
4151 +         * of all keys using the given reducer to combine values, and
4152 +         * the given basis as an identity value.
4153 +         *
4154 +         * @param transformer a function returning the transformation
4155 +         * for an element
4156 +         * @param basis the identity (initial default value) for the reduction
4157 +         * @param reducer a commutative associative combining function
4158 +         * @return the result of accumulating the given transformation
4159 +         * of all keys
4160 +         */
4161 +        public int reduceToInt(ObjectToInt<? super K> transformer,
4162 +                               int basis,
4163 +                               IntByIntToInt reducer) {
4164 +            return ForkJoinTasks.reduceKeysToInt
4165 +                (map, transformer, basis, reducer).invoke();
4166 +        }
4167 +
4168 +    }
4169 +
4170 +    /**
4171 +     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4172 +     * values, in which additions are disabled. This class cannot be
4173 +     * directly instantiated. See {@link #values},
4174 +     *
4175 +     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4176 +     * that will never throw {@link ConcurrentModificationException},
4177 +     * and guarantees to traverse elements as they existed upon
4178 +     * construction of the iterator, and may (but is not guaranteed to)
4179 +     * reflect any modifications subsequent to construction.
4180 +     */
4181 +    public static final class ValuesView<K,V> extends CHMView<K,V>
4182 +        implements Collection<V> {
4183 +        ValuesView(ConcurrentHashMapV8<K, V> map)   { super(map); }
4184 +        public final boolean contains(Object o) { return map.containsValue(o); }
4185 +        public final boolean remove(Object o) {
4186 +            if (o != null) {
4187 +                Iterator<V> it = new ValueIterator<K,V>(map);
4188 +                while (it.hasNext()) {
4189 +                    if (o.equals(it.next())) {
4190 +                        it.remove();
4191 +                        return true;
4192 +                    }
4193 +                }
4194 +            }
4195 +            return false;
4196 +        }
4197 +
4198 +        /**
4199 +         * Returns a "weakly consistent" iterator that will never
4200 +         * throw {@link ConcurrentModificationException}, and
4201 +         * guarantees to traverse elements as they existed upon
4202 +         * construction of the iterator, and may (but is not
4203 +         * guaranteed to) reflect any modifications subsequent to
4204 +         * construction.
4205 +         *
4206 +         * @return an iterator over the values of this map
4207 +         */
4208 +        public final Iterator<V> iterator() {
4209 +            return new ValueIterator<K,V>(map);
4210 +        }
4211 +        public final boolean add(V e) {
4212 +            throw new UnsupportedOperationException();
4213 +        }
4214 +        public final boolean addAll(Collection<? extends V> c) {
4215 +            throw new UnsupportedOperationException();
4216 +        }
4217 +
4218 +        /**
4219 +         * Performs the given action for each value.
4220 +         *
4221 +         * @param action the action
4222 +         */
4223 +        public void forEach(Action<V> action) {
4224 +            ForkJoinTasks.forEachValue
4225 +                (map, action).invoke();
4226 +        }
4227 +
4228 +        /**
4229 +         * Performs the given action for each non-null transformation
4230 +         * of each value.
4231 +         *
4232 +         * @param transformer a function returning the transformation
4233 +         * for an element, or null of there is no transformation (in
4234 +         * which case the action is not applied).
4235 +         */
4236 +        public <U> void forEach(Fun<? super V, ? extends U> transformer,
4237 +                                     Action<U> action) {
4238 +            ForkJoinTasks.forEachValue
4239 +                (map, transformer, action).invoke();
4240 +        }
4241 +
4242 +        /**
4243 +         * Returns a non-null result from applying the given search
4244 +         * function on each value, or null if none.  Upon success,
4245 +         * further element processing is suppressed and the results of
4246 +         * any other parallel invocations of the search function are
4247 +         * ignored.
4248 +         *
4249 +         * @param searchFunction a function returning a non-null
4250 +         * result on success, else null
4251 +         * @return a non-null result from applying the given search
4252 +         * function on each value, or null if none
4253 +         *
4254 +         */
4255 +        public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4256 +            return ForkJoinTasks.searchValues
4257 +                (map, searchFunction).invoke();
4258 +        }
4259 +
4260 +        /**
4261 +         * Returns the result of accumulating all values using the
4262 +         * given reducer to combine values, or null if none.
4263 +         *
4264 +         * @param reducer a commutative associative combining function
4265 +         * @return  the result of accumulating all values
4266 +         */
4267 +        public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4268 +            return ForkJoinTasks.reduceValues
4269 +                (map, reducer).invoke();
4270 +        }
4271 +
4272 +        /**
4273 +         * Returns the result of accumulating the given transformation
4274 +         * of all values using the given reducer to combine values, or
4275 +         * null if none.
4276 +         *
4277 +         * @param transformer a function returning the transformation
4278 +         * for an element, or null of there is no transformation (in
4279 +         * which case it is not combined).
4280 +         * @param reducer a commutative associative combining function
4281 +         * @return the result of accumulating the given transformation
4282 +         * of all values
4283 +         */
4284 +        public <U> U reduce(Fun<? super V, ? extends U> transformer,
4285 +                            BiFun<? super U, ? super U, ? extends U> reducer) {
4286 +            return ForkJoinTasks.reduceValues
4287 +                (map, transformer, reducer).invoke();
4288 +        }
4289 +
4290 +        /**
4291 +         * Returns the result of accumulating the given transformation
4292 +         * of all values using the given reducer to combine values,
4293 +         * and the given basis as an identity value.
4294 +         *
4295 +         * @param transformer a function returning the transformation
4296 +         * for an element
4297 +         * @param basis the identity (initial default value) for the reduction
4298 +         * @param reducer a commutative associative combining function
4299 +         * @return the result of accumulating the given transformation
4300 +         * of all values
4301 +         */
4302 +        public double reduceToDouble(ObjectToDouble<? super V> transformer,
4303 +                                     double basis,
4304 +                                     DoubleByDoubleToDouble reducer) {
4305 +            return ForkJoinTasks.reduceValuesToDouble
4306 +                (map, transformer, basis, reducer).invoke();
4307 +        }
4308 +
4309 +        /**
4310 +         * Returns the result of accumulating the given transformation
4311 +         * of all values using the given reducer to combine values,
4312 +         * and the given basis as an identity value.
4313 +         *
4314 +         * @param transformer a function returning the transformation
4315 +         * for an element
4316 +         * @param basis the identity (initial default value) for the reduction
4317 +         * @param reducer a commutative associative combining function
4318 +         * @return the result of accumulating the given transformation
4319 +         * of all values
4320 +         */
4321 +        public long reduceToLong(ObjectToLong<? super V> transformer,
4322 +                                 long basis,
4323 +                                 LongByLongToLong reducer) {
4324 +            return ForkJoinTasks.reduceValuesToLong
4325 +                (map, transformer, basis, reducer).invoke();
4326 +        }
4327 +
4328 +        /**
4329 +         * Returns the result of accumulating the given transformation
4330 +         * of all values using the given reducer to combine values,
4331 +         * and the given basis as an identity value.
4332 +         *
4333 +         * @param transformer a function returning the transformation
4334 +         * for an element
4335 +         * @param basis the identity (initial default value) for the reduction
4336 +         * @param reducer a commutative associative combining function
4337 +         * @return the result of accumulating the given transformation
4338 +         * of all values
4339 +         */
4340 +        public int reduceToInt(ObjectToInt<? super V> transformer,
4341 +                               int basis,
4342 +                               IntByIntToInt reducer) {
4343 +            return ForkJoinTasks.reduceValuesToInt
4344 +                (map, transformer, basis, reducer).invoke();
4345 +        }
4346 +
4347 +    }
4348 +
4349 +    /**
4350 +     * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4351 +     * entries.  This class cannot be directly instantiated. See
4352 +     * {@link #entrySet}.
4353 +     */
4354 +    public static final class EntrySetView<K,V> extends CHMView<K,V>
4355 +        implements Set<Map.Entry<K,V>> {
4356 +        EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4357 +        public final boolean contains(Object o) {
4358 +            Object k, v, r; Map.Entry<?,?> e;
4359 +            return ((o instanceof Map.Entry) &&
4360 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4361 +                    (r = map.get(k)) != null &&
4362 +                    (v = e.getValue()) != null &&
4363 +                    (v == r || v.equals(r)));
4364 +        }
4365 +        public final boolean remove(Object o) {
4366 +            Object k, v; Map.Entry<?,?> e;
4367 +            return ((o instanceof Map.Entry) &&
4368 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4369 +                    (v = e.getValue()) != null &&
4370 +                    map.remove(k, v));
4371 +        }
4372 +
4373 +        /**
4374 +         * Returns a "weakly consistent" iterator that will never
4375 +         * throw {@link ConcurrentModificationException}, and
4376 +         * guarantees to traverse elements as they existed upon
4377 +         * construction of the iterator, and may (but is not
4378 +         * guaranteed to) reflect any modifications subsequent to
4379 +         * construction.
4380 +         *
4381 +         * @return an iterator over the entries of this map
4382 +         */
4383 +        public final Iterator<Map.Entry<K,V>> iterator() {
4384 +            return new EntryIterator<K,V>(map);
4385 +        }
4386 +
4387 +        public final boolean add(Entry<K,V> e) {
4388 +            K key = e.getKey();
4389 +            V value = e.getValue();
4390 +            if (key == null || value == null)
4391 +                throw new NullPointerException();
4392 +            return map.internalPut(key, value, false) == null;
4393 +        }
4394 +        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4395 +            boolean added = false;
4396 +            for (Entry<K,V> e : c) {
4397 +                if (add(e))
4398 +                    added = true;
4399 +            }
4400 +            return added;
4401 +        }
4402 +        public boolean equals(Object o) {
4403 +            Set<?> c;
4404 +            return ((o instanceof Set) &&
4405 +                    ((c = (Set<?>)o) == this ||
4406 +                     (containsAll(c) && c.containsAll(this))));
4407 +        }
4408 +
4409 +        /**
4410 +         * Performs the given action for each entry.
4411 +         *
4412 +         * @param action the action
4413 +         */
4414 +        public void forEach(Action<Map.Entry<K,V>> action) {
4415 +            ForkJoinTasks.forEachEntry
4416 +                (map, action).invoke();
4417 +        }
4418 +
4419 +        /**
4420 +         * Performs the given action for each non-null transformation
4421 +         * of each entry.
4422 +         *
4423 +         * @param transformer a function returning the transformation
4424 +         * for an element, or null of there is no transformation (in
4425 +         * which case the action is not applied).
4426 +         * @param action the action
4427 +         */
4428 +        public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4429 +                                Action<U> action) {
4430 +            ForkJoinTasks.forEachEntry
4431 +                (map, transformer, action).invoke();
4432 +        }
4433 +
4434 +        /**
4435 +         * Returns a non-null result from applying the given search
4436 +         * function on each entry, or null if none.  Upon success,
4437 +         * further element processing is suppressed and the results of
4438 +         * any other parallel invocations of the search function are
4439 +         * ignored.
4440 +         *
4441 +         * @param searchFunction a function returning a non-null
4442 +         * result on success, else null
4443 +         * @return a non-null result from applying the given search
4444 +         * function on each entry, or null if none
4445 +         */
4446 +        public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4447 +            return ForkJoinTasks.searchEntries
4448 +                (map, searchFunction).invoke();
4449 +        }
4450 +
4451 +        /**
4452 +         * Returns the result of accumulating all entries using the
4453 +         * given reducer to combine values, or null if none.
4454 +         *
4455 +         * @param reducer a commutative associative combining function
4456 +         * @return the result of accumulating all entries
4457 +         */
4458 +        public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4459 +            return ForkJoinTasks.reduceEntries
4460 +                (map, reducer).invoke();
4461 +        }
4462 +
4463 +        /**
4464 +         * Returns the result of accumulating the given transformation
4465 +         * of all entries using the given reducer to combine values,
4466 +         * or null if none.
4467 +         *
4468 +         * @param transformer a function returning the transformation
4469 +         * for an element, or null of there is no transformation (in
4470 +         * which case it is not combined).
4471 +         * @param reducer a commutative associative combining function
4472 +         * @return the result of accumulating the given transformation
4473 +         * of all entries
4474 +         */
4475 +        public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4476 +                            BiFun<? super U, ? super U, ? extends U> reducer) {
4477 +            return ForkJoinTasks.reduceEntries
4478 +                (map, transformer, reducer).invoke();
4479 +        }
4480 +
4481 +        /**
4482 +         * Returns the result of accumulating the given transformation
4483 +         * of all entries using the given reducer to combine values,
4484 +         * and the given basis as an identity value.
4485 +         *
4486 +         * @param transformer a function returning the transformation
4487 +         * for an element
4488 +         * @param basis the identity (initial default value) for the reduction
4489 +         * @param reducer a commutative associative combining function
4490 +         * @return the result of accumulating the given transformation
4491 +         * of all entries
4492 +         */
4493 +        public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4494 +                                     double basis,
4495 +                                     DoubleByDoubleToDouble reducer) {
4496 +            return ForkJoinTasks.reduceEntriesToDouble
4497 +                (map, transformer, basis, reducer).invoke();
4498 +        }
4499 +
4500 +        /**
4501 +         * Returns the result of accumulating the given transformation
4502 +         * of all entries using the given reducer to combine values,
4503 +         * and the given basis as an identity value.
4504 +         *
4505 +         * @param transformer a function returning the transformation
4506 +         * for an element
4507 +         * @param basis the identity (initial default value) for the reduction
4508 +         * @param reducer a commutative associative combining function
4509 +         * @return  the result of accumulating the given transformation
4510 +         * of all entries
4511 +         */
4512 +        public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4513 +                                 long basis,
4514 +                                 LongByLongToLong reducer) {
4515 +            return ForkJoinTasks.reduceEntriesToLong
4516 +                (map, transformer, basis, reducer).invoke();
4517 +        }
4518 +
4519 +        /**
4520 +         * Returns the result of accumulating the given transformation
4521 +         * of all entries using the given reducer to combine values,
4522 +         * and the given basis as an identity value.
4523 +         *
4524 +         * @param transformer a function returning the transformation
4525 +         * for an element
4526 +         * @param basis the identity (initial default value) for the reduction
4527 +         * @param reducer a commutative associative combining function
4528 +         * @return the result of accumulating the given transformation
4529 +         * of all entries
4530 +         */
4531 +        public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4532 +                               int basis,
4533 +                               IntByIntToInt reducer) {
4534 +            return ForkJoinTasks.reduceEntriesToInt
4535 +                (map, transformer, basis, reducer).invoke();
4536 +        }
4537 +
4538 +    }
4539 +
4540 +    // ---------------------------------------------------------------------
4541 +
4542 +    /**
4543 +     * Predefined tasks for performing bulk parallel operations on
4544 +     * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4545 +     * for bulk operations. Each method has the same name, but returns
4546 +     * a task rather than invoking it. These methods may be useful in
4547 +     * custom applications such as submitting a task without waiting
4548 +     * for completion, using a custom pool, or combining with other
4549 +     * tasks.
4550 +     */
4551 +    public static class ForkJoinTasks {
4552 +        private ForkJoinTasks() {}
4553 +
4554 +        /**
4555 +         * Returns a task that when invoked, performs the given
4556 +         * action for each (key, value)
4557 +         *
4558 +         * @param map the map
4559 +         * @param action the action
4560 +         * @return the task
4561 +         */
4562 +        public static <K,V> ForkJoinTask<Void> forEach
4563 +            (ConcurrentHashMapV8<K,V> map,
4564 +             BiAction<K,V> action) {
4565 +            if (action == null) throw new NullPointerException();
4566 +            return new ForEachMappingTask<K,V>(map, null, -1, action);
4567 +        }
4568 +
4569 +        /**
4570 +         * Returns a task that when invoked, performs the given
4571 +         * action for each non-null transformation of each (key, value)
4572 +         *
4573 +         * @param map the map
4574 +         * @param transformer a function returning the transformation
4575 +         * for an element, or null if there is no transformation (in
4576 +         * which case the action is not applied)
4577 +         * @param action the action
4578 +         * @return the task
4579 +         */
4580 +        public static <K,V,U> ForkJoinTask<Void> forEach
4581 +            (ConcurrentHashMapV8<K,V> map,
4582 +             BiFun<? super K, ? super V, ? extends U> transformer,
4583 +             Action<U> action) {
4584 +            if (transformer == null || action == null)
4585 +                throw new NullPointerException();
4586 +            return new ForEachTransformedMappingTask<K,V,U>
4587 +                (map, null, -1, transformer, action);
4588 +        }
4589 +
4590 +        /**
4591 +         * Returns a task that when invoked, returns a non-null result
4592 +         * from applying the given search function on each (key,
4593 +         * value), or null if none. Upon success, further element
4594 +         * processing is suppressed and the results of any other
4595 +         * parallel invocations of the search function are ignored.
4596 +         *
4597 +         * @param map the map
4598 +         * @param searchFunction a function returning a non-null
4599 +         * result on success, else null
4600 +         * @return the task
4601 +         */
4602 +        public static <K,V,U> ForkJoinTask<U> search
4603 +            (ConcurrentHashMapV8<K,V> map,
4604 +             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4605 +            if (searchFunction == null) throw new NullPointerException();
4606 +            return new SearchMappingsTask<K,V,U>
4607 +                (map, null, -1, searchFunction,
4608 +                 new AtomicReference<U>());
4609 +        }
4610 +
4611 +        /**
4612 +         * Returns a task that when invoked, returns the result of
4613 +         * accumulating the given transformation of all (key, value) pairs
4614 +         * using the given reducer to combine values, or null if none.
4615 +         *
4616 +         * @param map the map
4617 +         * @param transformer a function returning the transformation
4618 +         * for an element, or null if there is no transformation (in
4619 +         * which case it is not combined).
4620 +         * @param reducer a commutative associative combining function
4621 +         * @return the task
4622 +         */
4623 +        public static <K,V,U> ForkJoinTask<U> reduce
4624 +            (ConcurrentHashMapV8<K,V> map,
4625 +             BiFun<? super K, ? super V, ? extends U> transformer,
4626 +             BiFun<? super U, ? super U, ? extends U> reducer) {
4627 +            if (transformer == null || reducer == null)
4628 +                throw new NullPointerException();
4629 +            return new MapReduceMappingsTask<K,V,U>
4630 +                (map, null, -1, null, transformer, reducer);
4631 +        }
4632 +
4633 +        /**
4634 +         * Returns a task that when invoked, returns the result of
4635 +         * accumulating the given transformation of all (key, value) pairs
4636 +         * using the given reducer to combine values, and the given
4637 +         * basis as an identity value.
4638 +         *
4639 +         * @param map the map
4640 +         * @param transformer a function returning the transformation
4641 +         * for an element
4642 +         * @param basis the identity (initial default value) for the reduction
4643 +         * @param reducer a commutative associative combining function
4644 +         * @return the task
4645 +         */
4646 +        public static <K,V> ForkJoinTask<Double> reduceToDouble
4647 +            (ConcurrentHashMapV8<K,V> map,
4648 +             ObjectByObjectToDouble<? super K, ? super V> transformer,
4649 +             double basis,
4650 +             DoubleByDoubleToDouble reducer) {
4651 +            if (transformer == null || reducer == null)
4652 +                throw new NullPointerException();
4653 +            return new MapReduceMappingsToDoubleTask<K,V>
4654 +                (map, null, -1, null, transformer, basis, reducer);
4655 +        }
4656 +
4657 +        /**
4658 +         * Returns a task that when invoked, returns the result of
4659 +         * accumulating the given transformation of all (key, value) pairs
4660 +         * using the given reducer to combine values, and the given
4661 +         * basis as an identity value.
4662 +         *
4663 +         * @param map the map
4664 +         * @param transformer a function returning the transformation
4665 +         * for an element
4666 +         * @param basis the identity (initial default value) for the reduction
4667 +         * @param reducer a commutative associative combining function
4668 +         * @return the task
4669 +         */
4670 +        public static <K,V> ForkJoinTask<Long> reduceToLong
4671 +            (ConcurrentHashMapV8<K,V> map,
4672 +             ObjectByObjectToLong<? super K, ? super V> transformer,
4673 +             long basis,
4674 +             LongByLongToLong reducer) {
4675 +            if (transformer == null || reducer == null)
4676 +                throw new NullPointerException();
4677 +            return new MapReduceMappingsToLongTask<K,V>
4678 +                (map, null, -1, null, transformer, basis, reducer);
4679 +        }
4680 +
4681 +        /**
4682 +         * Returns a task that when invoked, returns the result of
4683 +         * accumulating the given transformation of all (key, value) pairs
4684 +         * using the given reducer to combine values, and the given
4685 +         * basis as an identity value.
4686 +         *
4687 +         * @param transformer a function returning the transformation
4688 +         * for an element
4689 +         * @param basis the identity (initial default value) for the reduction
4690 +         * @param reducer a commutative associative combining function
4691 +         * @return the task
4692 +         */
4693 +        public static <K,V> ForkJoinTask<Integer> reduceToInt
4694 +            (ConcurrentHashMapV8<K,V> map,
4695 +             ObjectByObjectToInt<? super K, ? super V> transformer,
4696 +             int basis,
4697 +             IntByIntToInt reducer) {
4698 +            if (transformer == null || reducer == null)
4699 +                throw new NullPointerException();
4700 +            return new MapReduceMappingsToIntTask<K,V>
4701 +                (map, null, -1, null, transformer, basis, reducer);
4702 +        }
4703 +
4704 +        /**
4705 +         * Returns a task that when invoked, performs the given action
4706 +         * for each key.
4707 +         *
4708 +         * @param map the map
4709 +         * @param action the action
4710 +         * @return the task
4711 +         */
4712 +        public static <K,V> ForkJoinTask<Void> forEachKey
4713 +            (ConcurrentHashMapV8<K,V> map,
4714 +             Action<K> action) {
4715 +            if (action == null) throw new NullPointerException();
4716 +            return new ForEachKeyTask<K,V>(map, null, -1, action);
4717 +        }
4718 +
4719 +        /**
4720 +         * Returns a task that when invoked, performs the given action
4721 +         * for each non-null transformation of each key.
4722 +         *
4723 +         * @param map the map
4724 +         * @param transformer a function returning the transformation
4725 +         * for an element, or null if there is no transformation (in
4726 +         * which case the action is not applied)
4727 +         * @param action the action
4728 +         * @return the task
4729 +         */
4730 +        public static <K,V,U> ForkJoinTask<Void> forEachKey
4731 +            (ConcurrentHashMapV8<K,V> map,
4732 +             Fun<? super K, ? extends U> transformer,
4733 +             Action<U> action) {
4734 +            if (transformer == null || action == null)
4735 +                throw new NullPointerException();
4736 +            return new ForEachTransformedKeyTask<K,V,U>
4737 +                (map, null, -1, transformer, action);
4738 +        }
4739 +
4740 +        /**
4741 +         * Returns a task that when invoked, returns a non-null result
4742 +         * from applying the given search function on each key, or
4743 +         * null if none.  Upon success, further element processing is
4744 +         * suppressed and the results of any other parallel
4745 +         * invocations of the search function are ignored.
4746 +         *
4747 +         * @param map the map
4748 +         * @param searchFunction a function returning a non-null
4749 +         * result on success, else null
4750 +         * @return the task
4751 +         */
4752 +        public static <K,V,U> ForkJoinTask<U> searchKeys
4753 +            (ConcurrentHashMapV8<K,V> map,
4754 +             Fun<? super K, ? extends U> searchFunction) {
4755 +            if (searchFunction == null) throw new NullPointerException();
4756 +            return new SearchKeysTask<K,V,U>
4757 +                (map, null, -1, searchFunction,
4758 +                 new AtomicReference<U>());
4759 +        }
4760 +
4761 +        /**
4762 +         * Returns a task that when invoked, returns the result of
4763 +         * accumulating all keys using the given reducer to combine
4764 +         * values, or null if none.
4765 +         *
4766 +         * @param map the map
4767 +         * @param reducer a commutative associative combining function
4768 +         * @return the task
4769 +         */
4770 +        public static <K,V> ForkJoinTask<K> reduceKeys
4771 +            (ConcurrentHashMapV8<K,V> map,
4772 +             BiFun<? super K, ? super K, ? extends K> reducer) {
4773 +            if (reducer == null) throw new NullPointerException();
4774 +            return new ReduceKeysTask<K,V>
4775 +                (map, null, -1, null, reducer);
4776 +        }
4777 +
4778 +        /**
4779 +         * Returns a task that when invoked, returns the result of
4780 +         * accumulating the given transformation of all keys using the given
4781 +         * reducer to combine values, or null if none.
4782 +         *
4783 +         * @param map the map
4784 +         * @param transformer a function returning the transformation
4785 +         * for an element, or null if there is no transformation (in
4786 +         * which case it is not combined).
4787 +         * @param reducer a commutative associative combining function
4788 +         * @return the task
4789 +         */
4790 +        public static <K,V,U> ForkJoinTask<U> reduceKeys
4791 +            (ConcurrentHashMapV8<K,V> map,
4792 +             Fun<? super K, ? extends U> transformer,
4793 +             BiFun<? super U, ? super U, ? extends U> reducer) {
4794 +            if (transformer == null || reducer == null)
4795 +                throw new NullPointerException();
4796 +            return new MapReduceKeysTask<K,V,U>
4797 +                (map, null, -1, null, transformer, reducer);
4798 +        }
4799 +
4800 +        /**
4801 +         * Returns a task that when invoked, returns the result of
4802 +         * accumulating the given transformation of all keys using the given
4803 +         * reducer to combine values, and the given basis as an
4804 +         * identity value.
4805 +         *
4806 +         * @param map the map
4807 +         * @param transformer a function returning the transformation
4808 +         * for an element
4809 +         * @param basis the identity (initial default value) for the reduction
4810 +         * @param reducer a commutative associative combining function
4811 +         * @return the task
4812 +         */
4813 +        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4814 +            (ConcurrentHashMapV8<K,V> map,
4815 +             ObjectToDouble<? super K> transformer,
4816 +             double basis,
4817 +             DoubleByDoubleToDouble reducer) {
4818 +            if (transformer == null || reducer == null)
4819 +                throw new NullPointerException();
4820 +            return new MapReduceKeysToDoubleTask<K,V>
4821 +                (map, null, -1, null, transformer, basis, reducer);
4822 +        }
4823 +
4824 +        /**
4825 +         * Returns a task that when invoked, returns the result of
4826 +         * accumulating the given transformation of all keys using the given
4827 +         * reducer to combine values, and the given basis as an
4828 +         * identity value.
4829 +         *
4830 +         * @param map the map
4831 +         * @param transformer a function returning the transformation
4832 +         * for an element
4833 +         * @param basis the identity (initial default value) for the reduction
4834 +         * @param reducer a commutative associative combining function
4835 +         * @return the task
4836 +         */
4837 +        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4838 +            (ConcurrentHashMapV8<K,V> map,
4839 +             ObjectToLong<? super K> transformer,
4840 +             long basis,
4841 +             LongByLongToLong reducer) {
4842 +            if (transformer == null || reducer == null)
4843 +                throw new NullPointerException();
4844 +            return new MapReduceKeysToLongTask<K,V>
4845 +                (map, null, -1, null, transformer, basis, reducer);
4846 +        }
4847 +
4848 +        /**
4849 +         * Returns a task that when invoked, returns the result of
4850 +         * accumulating the given transformation of all keys using the given
4851 +         * reducer to combine values, and the given basis as an
4852 +         * identity value.
4853 +         *
4854 +         * @param map the map
4855 +         * @param transformer a function returning the transformation
4856 +         * for an element
4857 +         * @param basis the identity (initial default value) for the reduction
4858 +         * @param reducer a commutative associative combining function
4859 +         * @return the task
4860 +         */
4861 +        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4862 +            (ConcurrentHashMapV8<K,V> map,
4863 +             ObjectToInt<? super K> transformer,
4864 +             int basis,
4865 +             IntByIntToInt reducer) {
4866 +            if (transformer == null || reducer == null)
4867 +                throw new NullPointerException();
4868 +            return new MapReduceKeysToIntTask<K,V>
4869 +                (map, null, -1, null, transformer, basis, reducer);
4870 +        }
4871 +
4872 +        /**
4873 +         * Returns a task that when invoked, performs the given action
4874 +         * for each value.
4875 +         *
4876 +         * @param map the map
4877 +         * @param action the action
4878 +         */
4879 +        public static <K,V> ForkJoinTask<Void> forEachValue
4880 +            (ConcurrentHashMapV8<K,V> map,
4881 +             Action<V> action) {
4882 +            if (action == null) throw new NullPointerException();
4883 +            return new ForEachValueTask<K,V>(map, null, -1, action);
4884 +        }
4885 +
4886 +        /**
4887 +         * Returns a task that when invoked, performs the given action
4888 +         * for each non-null transformation of each value.
4889 +         *
4890 +         * @param map the map
4891 +         * @param transformer a function returning the transformation
4892 +         * for an element, or null if there is no transformation (in
4893 +         * which case the action is not applied)
4894 +         * @param action the action
4895 +         */
4896 +        public static <K,V,U> ForkJoinTask<Void> forEachValue
4897 +            (ConcurrentHashMapV8<K,V> map,
4898 +             Fun<? super V, ? extends U> transformer,
4899 +             Action<U> action) {
4900 +            if (transformer == null || action == null)
4901 +                throw new NullPointerException();
4902 +            return new ForEachTransformedValueTask<K,V,U>
4903 +                (map, null, -1, transformer, action);
4904 +        }
4905 +
4906 +        /**
4907 +         * Returns a task that when invoked, returns a non-null result
4908 +         * from applying the given search function on each value, or
4909 +         * null if none.  Upon success, further element processing is
4910 +         * suppressed and the results of any other parallel
4911 +         * invocations of the search function are ignored.
4912 +         *
4913 +         * @param map the map
4914 +         * @param searchFunction a function returning a non-null
4915 +         * result on success, else null
4916 +         * @return the task
4917 +         */
4918 +        public static <K,V,U> ForkJoinTask<U> searchValues
4919 +            (ConcurrentHashMapV8<K,V> map,
4920 +             Fun<? super V, ? extends U> searchFunction) {
4921 +            if (searchFunction == null) throw new NullPointerException();
4922 +            return new SearchValuesTask<K,V,U>
4923 +                (map, null, -1, searchFunction,
4924 +                 new AtomicReference<U>());
4925 +        }
4926 +
4927 +        /**
4928 +         * Returns a task that when invoked, returns the result of
4929 +         * accumulating all values using the given reducer to combine
4930 +         * values, or null if none.
4931 +         *
4932 +         * @param map the map
4933 +         * @param reducer a commutative associative combining function
4934 +         * @return the task
4935 +         */
4936 +        public static <K,V> ForkJoinTask<V> reduceValues
4937 +            (ConcurrentHashMapV8<K,V> map,
4938 +             BiFun<? super V, ? super V, ? extends V> reducer) {
4939 +            if (reducer == null) throw new NullPointerException();
4940 +            return new ReduceValuesTask<K,V>
4941 +                (map, null, -1, null, reducer);
4942 +        }
4943 +
4944 +        /**
4945 +         * Returns a task that when invoked, returns the result of
4946 +         * accumulating the given transformation of all values using the
4947 +         * given reducer to combine values, or null if none.
4948 +         *
4949 +         * @param map the map
4950 +         * @param transformer a function returning the transformation
4951 +         * for an element, or null if there is no transformation (in
4952 +         * which case it is not combined).
4953 +         * @param reducer a commutative associative combining function
4954 +         * @return the task
4955 +         */
4956 +        public static <K,V,U> ForkJoinTask<U> reduceValues
4957 +            (ConcurrentHashMapV8<K,V> map,
4958 +             Fun<? super V, ? extends U> transformer,
4959 +             BiFun<? super U, ? super U, ? extends U> reducer) {
4960 +            if (transformer == null || reducer == null)
4961 +                throw new NullPointerException();
4962 +            return new MapReduceValuesTask<K,V,U>
4963 +                (map, null, -1, null, transformer, reducer);
4964 +        }
4965 +
4966 +        /**
4967 +         * Returns a task that when invoked, returns the result of
4968 +         * accumulating the given transformation of all values using the
4969 +         * given reducer to combine values, and the given basis as an
4970 +         * identity value.
4971 +         *
4972 +         * @param map the map
4973 +         * @param transformer a function returning the transformation
4974 +         * for an element
4975 +         * @param basis the identity (initial default value) for the reduction
4976 +         * @param reducer a commutative associative combining function
4977 +         * @return the task
4978 +         */
4979 +        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4980 +            (ConcurrentHashMapV8<K,V> map,
4981 +             ObjectToDouble<? super V> transformer,
4982 +             double basis,
4983 +             DoubleByDoubleToDouble reducer) {
4984 +            if (transformer == null || reducer == null)
4985 +                throw new NullPointerException();
4986 +            return new MapReduceValuesToDoubleTask<K,V>
4987 +                (map, null, -1, null, transformer, basis, reducer);
4988 +        }
4989 +
4990 +        /**
4991 +         * Returns a task that when invoked, returns the result of
4992 +         * accumulating the given transformation of all values using the
4993 +         * given reducer to combine values, and the given basis as an
4994 +         * identity value.
4995 +         *
4996 +         * @param map the map
4997 +         * @param transformer a function returning the transformation
4998 +         * for an element
4999 +         * @param basis the identity (initial default value) for the reduction
5000 +         * @param reducer a commutative associative combining function
5001 +         * @return the task
5002 +         */
5003 +        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5004 +            (ConcurrentHashMapV8<K,V> map,
5005 +             ObjectToLong<? super V> transformer,
5006 +             long basis,
5007 +             LongByLongToLong reducer) {
5008 +            if (transformer == null || reducer == null)
5009 +                throw new NullPointerException();
5010 +            return new MapReduceValuesToLongTask<K,V>
5011 +                (map, null, -1, null, transformer, basis, reducer);
5012 +        }
5013 +
5014 +        /**
5015 +         * Returns a task that when invoked, returns the result of
5016 +         * accumulating the given transformation of all values using the
5017 +         * given reducer to combine values, and the given basis as an
5018 +         * identity value.
5019 +         *
5020 +         * @param map the map
5021 +         * @param transformer a function returning the transformation
5022 +         * for an element
5023 +         * @param basis the identity (initial default value) for the reduction
5024 +         * @param reducer a commutative associative combining function
5025 +         * @return the task
5026 +         */
5027 +        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5028 +            (ConcurrentHashMapV8<K,V> map,
5029 +             ObjectToInt<? super V> transformer,
5030 +             int basis,
5031 +             IntByIntToInt reducer) {
5032 +            if (transformer == null || reducer == null)
5033 +                throw new NullPointerException();
5034 +            return new MapReduceValuesToIntTask<K,V>
5035 +                (map, null, -1, null, transformer, basis, reducer);
5036 +        }
5037 +
5038 +        /**
5039 +         * Returns a task that when invoked, perform the given action
5040 +         * for each entry.
5041 +         *
5042 +         * @param map the map
5043 +         * @param action the action
5044 +         */
5045 +        public static <K,V> ForkJoinTask<Void> forEachEntry
5046 +            (ConcurrentHashMapV8<K,V> map,
5047 +             Action<Map.Entry<K,V>> action) {
5048 +            if (action == null) throw new NullPointerException();
5049 +            return new ForEachEntryTask<K,V>(map, null, -1, action);
5050 +        }
5051 +
5052 +        /**
5053 +         * Returns a task that when invoked, perform the given action
5054 +         * for each non-null transformation of each entry.
5055 +         *
5056 +         * @param map the map
5057 +         * @param transformer a function returning the transformation
5058 +         * for an element, or null if there is no transformation (in
5059 +         * which case the action is not applied)
5060 +         * @param action the action
5061 +         */
5062 +        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5063 +            (ConcurrentHashMapV8<K,V> map,
5064 +             Fun<Map.Entry<K,V>, ? extends U> transformer,
5065 +             Action<U> action) {
5066 +            if (transformer == null || action == null)
5067 +                throw new NullPointerException();
5068 +            return new ForEachTransformedEntryTask<K,V,U>
5069 +                (map, null, -1, transformer, action);
5070 +        }
5071 +
5072 +        /**
5073 +         * Returns a task that when invoked, returns a non-null result
5074 +         * from applying the given search function on each entry, or
5075 +         * null if none.  Upon success, further element processing is
5076 +         * suppressed and the results of any other parallel
5077 +         * invocations of the search function are ignored.
5078 +         *
5079 +         * @param map the map
5080 +         * @param searchFunction a function returning a non-null
5081 +         * result on success, else null
5082 +         * @return the task
5083 +         */
5084 +        public static <K,V,U> ForkJoinTask<U> searchEntries
5085 +            (ConcurrentHashMapV8<K,V> map,
5086 +             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5087 +            if (searchFunction == null) throw new NullPointerException();
5088 +            return new SearchEntriesTask<K,V,U>
5089 +                (map, null, -1, searchFunction,
5090 +                 new AtomicReference<U>());
5091 +        }
5092 +
5093 +        /**
5094 +         * Returns a task that when invoked, returns the result of
5095 +         * accumulating all entries using the given reducer to combine
5096 +         * values, or null if none.
5097 +         *
5098 +         * @param map the map
5099 +         * @param reducer a commutative associative combining function
5100 +         * @return the task
5101 +         */
5102 +        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5103 +            (ConcurrentHashMapV8<K,V> map,
5104 +             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5105 +            if (reducer == null) throw new NullPointerException();
5106 +            return new ReduceEntriesTask<K,V>
5107 +                (map, null, -1, null, reducer);
5108 +        }
5109 +
5110 +        /**
5111 +         * Returns a task that when invoked, returns the result of
5112 +         * accumulating the given transformation of all entries using the
5113 +         * given reducer to combine values, or null if none.
5114 +         *
5115 +         * @param map the map
5116 +         * @param transformer a function returning the transformation
5117 +         * for an element, or null if there is no transformation (in
5118 +         * which case it is not combined).
5119 +         * @param reducer a commutative associative combining function
5120 +         * @return the task
5121 +         */
5122 +        public static <K,V,U> ForkJoinTask<U> reduceEntries
5123 +            (ConcurrentHashMapV8<K,V> map,
5124 +             Fun<Map.Entry<K,V>, ? extends U> transformer,
5125 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5126 +            if (transformer == null || reducer == null)
5127 +                throw new NullPointerException();
5128 +            return new MapReduceEntriesTask<K,V,U>
5129 +                (map, null, -1, null, transformer, reducer);
5130 +        }
5131 +
5132 +        /**
5133 +         * Returns a task that when invoked, returns the result of
5134 +         * accumulating the given transformation of all entries using the
5135 +         * given reducer to combine values, and the given basis as an
5136 +         * identity value.
5137 +         *
5138 +         * @param map the map
5139 +         * @param transformer a function returning the transformation
5140 +         * for an element
5141 +         * @param basis the identity (initial default value) for the reduction
5142 +         * @param reducer a commutative associative combining function
5143 +         * @return the task
5144 +         */
5145 +        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5146 +            (ConcurrentHashMapV8<K,V> map,
5147 +             ObjectToDouble<Map.Entry<K,V>> transformer,
5148 +             double basis,
5149 +             DoubleByDoubleToDouble reducer) {
5150 +            if (transformer == null || reducer == null)
5151 +                throw new NullPointerException();
5152 +            return new MapReduceEntriesToDoubleTask<K,V>
5153 +                (map, null, -1, null, transformer, basis, reducer);
5154 +        }
5155 +
5156 +        /**
5157 +         * Returns a task that when invoked, returns the result of
5158 +         * accumulating the given transformation of all entries using the
5159 +         * given reducer to combine values, and the given basis as an
5160 +         * identity value.
5161 +         *
5162 +         * @param map the map
5163 +         * @param transformer a function returning the transformation
5164 +         * for an element
5165 +         * @param basis the identity (initial default value) for the reduction
5166 +         * @param reducer a commutative associative combining function
5167 +         * @return the task
5168 +         */
5169 +        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5170 +            (ConcurrentHashMapV8<K,V> map,
5171 +             ObjectToLong<Map.Entry<K,V>> transformer,
5172 +             long basis,
5173 +             LongByLongToLong reducer) {
5174 +            if (transformer == null || reducer == null)
5175 +                throw new NullPointerException();
5176 +            return new MapReduceEntriesToLongTask<K,V>
5177 +                (map, null, -1, null, transformer, basis, reducer);
5178 +        }
5179 +
5180 +        /**
5181 +         * Returns a task that when invoked, returns the result of
5182 +         * accumulating the given transformation of all entries using the
5183 +         * given reducer to combine values, and the given basis as an
5184 +         * identity value.
5185 +         *
5186 +         * @param map the map
5187 +         * @param transformer a function returning the transformation
5188 +         * for an element
5189 +         * @param basis the identity (initial default value) for the reduction
5190 +         * @param reducer a commutative associative combining function
5191 +         * @return the task
5192 +         */
5193 +        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5194 +            (ConcurrentHashMapV8<K,V> map,
5195 +             ObjectToInt<Map.Entry<K,V>> transformer,
5196 +             int basis,
5197 +             IntByIntToInt reducer) {
5198 +            if (transformer == null || reducer == null)
5199 +                throw new NullPointerException();
5200 +            return new MapReduceEntriesToIntTask<K,V>
5201 +                (map, null, -1, null, transformer, basis, reducer);
5202 +        }
5203 +    }
5204 +
5205 +    // -------------------------------------------------------
5206 +
5207 +    /*
5208 +     * Task classes. Coded in a regular but ugly format/style to
5209 +     * simplify checks that each variant differs in the right way from
5210 +     * others. The null screenings exist because compilers cannot tell
5211 +     * that we've already null-checked task arguments, so we force
5212 +     * simplest hoisted bypass to help avoid convoluted traps.
5213 +     */
5214 +
5215 +    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5216 +        extends Traverser<K,V,Void> {
5217 +        final Action<K> action;
5218 +        ForEachKeyTask
5219 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5220 +             Action<K> action) {
5221 +            super(m, p, b);
5222 +            this.action = action;
5223 +        }
5224 +        @SuppressWarnings("unchecked") public final void compute() {
5225 +            final Action<K> action;
5226 +            if ((action = this.action) != null) {
5227 +                for (int b; (b = preSplit()) > 0;)
5228 +                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
5229 +                while (advance() != null)
5230 +                    action.apply((K)nextKey);
5231 +                propagateCompletion();
5232 +            }
5233 +        }
5234 +    }
5235 +
5236 +    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5237 +        extends Traverser<K,V,Void> {
5238 +        final Action<V> action;
5239 +        ForEachValueTask
5240 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5241 +             Action<V> action) {
5242 +            super(m, p, b);
5243 +            this.action = action;
5244 +        }
5245 +        @SuppressWarnings("unchecked") public final void compute() {
5246 +            final Action<V> action;
5247 +            if ((action = this.action) != null) {
5248 +                for (int b; (b = preSplit()) > 0;)
5249 +                    new ForEachValueTask<K,V>(map, this, b, action).fork();
5250 +                Object v;
5251 +                while ((v = advance()) != null)
5252 +                    action.apply((V)v);
5253 +                propagateCompletion();
5254 +            }
5255 +        }
5256 +    }
5257 +
5258 +    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5259 +        extends Traverser<K,V,Void> {
5260 +        final Action<Entry<K,V>> action;
5261 +        ForEachEntryTask
5262 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5263 +             Action<Entry<K,V>> action) {
5264 +            super(m, p, b);
5265 +            this.action = action;
5266 +        }
5267 +        @SuppressWarnings("unchecked") public final void compute() {
5268 +            final Action<Entry<K,V>> action;
5269 +            if ((action = this.action) != null) {
5270 +                for (int b; (b = preSplit()) > 0;)
5271 +                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
5272 +                Object v;
5273 +                while ((v = advance()) != null)
5274 +                    action.apply(entryFor((K)nextKey, (V)v));
5275 +                propagateCompletion();
5276 +            }
5277 +        }
5278 +    }
5279 +
5280 +    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5281 +        extends Traverser<K,V,Void> {
5282 +        final BiAction<K,V> action;
5283 +        ForEachMappingTask
5284 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5285 +             BiAction<K,V> action) {
5286 +            super(m, p, b);
5287 +            this.action = action;
5288 +        }
5289 +        @SuppressWarnings("unchecked") public final void compute() {
5290 +            final BiAction<K,V> action;
5291 +            if ((action = this.action) != null) {
5292 +                for (int b; (b = preSplit()) > 0;)
5293 +                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
5294 +                Object v;
5295 +                while ((v = advance()) != null)
5296 +                    action.apply((K)nextKey, (V)v);
5297 +                propagateCompletion();
5298 +            }
5299 +        }
5300 +    }
5301 +
5302 +    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5303 +        extends Traverser<K,V,Void> {
5304 +        final Fun<? super K, ? extends U> transformer;
5305 +        final Action<U> action;
5306 +        ForEachTransformedKeyTask
5307 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5308 +             Fun<? super K, ? extends U> transformer, Action<U> action) {
5309 +            super(m, p, b);
5310 +            this.transformer = transformer; this.action = action;
5311 +        }
5312 +        @SuppressWarnings("unchecked") public final void compute() {
5313 +            final Fun<? super K, ? extends U> transformer;
5314 +            final Action<U> action;
5315 +            if ((transformer = this.transformer) != null &&
5316 +                (action = this.action) != null) {
5317 +                for (int b; (b = preSplit()) > 0;)
5318 +                    new ForEachTransformedKeyTask<K,V,U>
5319 +                        (map, this, b, transformer, action).fork();
5320 +                U u;
5321 +                while (advance() != null) {
5322 +                    if ((u = transformer.apply((K)nextKey)) != null)
5323 +                        action.apply(u);
5324 +                }
5325 +                propagateCompletion();
5326 +            }
5327 +        }
5328 +    }
5329 +
5330 +    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5331 +        extends Traverser<K,V,Void> {
5332 +        final Fun<? super V, ? extends U> transformer;
5333 +        final Action<U> action;
5334 +        ForEachTransformedValueTask
5335 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5336 +             Fun<? super V, ? extends U> transformer, Action<U> action) {
5337 +            super(m, p, b);
5338 +            this.transformer = transformer; this.action = action;
5339 +        }
5340 +        @SuppressWarnings("unchecked") public final void compute() {
5341 +            final Fun<? super V, ? extends U> transformer;
5342 +            final Action<U> action;
5343 +            if ((transformer = this.transformer) != null &&
5344 +                (action = this.action) != null) {
5345 +                for (int b; (b = preSplit()) > 0;)
5346 +                    new ForEachTransformedValueTask<K,V,U>
5347 +                        (map, this, b, transformer, action).fork();
5348 +                Object v; U u;
5349 +                while ((v = advance()) != null) {
5350 +                    if ((u = transformer.apply((V)v)) != null)
5351 +                        action.apply(u);
5352 +                }
5353 +                propagateCompletion();
5354 +            }
5355 +        }
5356 +    }
5357 +
5358 +    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5359 +        extends Traverser<K,V,Void> {
5360 +        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5361 +        final Action<U> action;
5362 +        ForEachTransformedEntryTask
5363 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5364 +             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
5365 +            super(m, p, b);
5366 +            this.transformer = transformer; this.action = action;
5367 +        }
5368 +        @SuppressWarnings("unchecked") public final void compute() {
5369 +            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5370 +            final Action<U> action;
5371 +            if ((transformer = this.transformer) != null &&
5372 +                (action = this.action) != null) {
5373 +                for (int b; (b = preSplit()) > 0;)
5374 +                    new ForEachTransformedEntryTask<K,V,U>
5375 +                        (map, this, b, transformer, action).fork();
5376 +                Object v; U u;
5377 +                while ((v = advance()) != null) {
5378 +                    if ((u = transformer.apply(entryFor((K)nextKey,
5379 +                                                        (V)v))) != null)
5380 +                        action.apply(u);
5381 +                }
5382 +                propagateCompletion();
5383 +            }
5384 +        }
5385 +    }
5386 +
5387 +    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5388 +        extends Traverser<K,V,Void> {
5389 +        final BiFun<? super K, ? super V, ? extends U> transformer;
5390 +        final Action<U> action;
5391 +        ForEachTransformedMappingTask
5392 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5393 +             BiFun<? super K, ? super V, ? extends U> transformer,
5394 +             Action<U> action) {
5395 +            super(m, p, b);
5396 +            this.transformer = transformer; this.action = action;
5397 +        }
5398 +        @SuppressWarnings("unchecked") public final void compute() {
5399 +            final BiFun<? super K, ? super V, ? extends U> transformer;
5400 +            final Action<U> action;
5401 +            if ((transformer = this.transformer) != null &&
5402 +                (action = this.action) != null) {
5403 +                for (int b; (b = preSplit()) > 0;)
5404 +                    new ForEachTransformedMappingTask<K,V,U>
5405 +                        (map, this, b, transformer, action).fork();
5406 +                Object v; U u;
5407 +                while ((v = advance()) != null) {
5408 +                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5409 +                        action.apply(u);
5410 +                }
5411 +                propagateCompletion();
5412 +            }
5413 +        }
5414 +    }
5415 +
5416 +    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5417 +        extends Traverser<K,V,U> {
5418 +        final Fun<? super K, ? extends U> searchFunction;
5419 +        final AtomicReference<U> result;
5420 +        SearchKeysTask
5421 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5422 +             Fun<? super K, ? extends U> searchFunction,
5423 +             AtomicReference<U> result) {
5424 +            super(m, p, b);
5425 +            this.searchFunction = searchFunction; this.result = result;
5426 +        }
5427 +        public final U getRawResult() { return result.get(); }
5428 +        @SuppressWarnings("unchecked") public final void compute() {
5429 +            final Fun<? super K, ? extends U> searchFunction;
5430 +            final AtomicReference<U> result;
5431 +            if ((searchFunction = this.searchFunction) != null &&
5432 +                (result = this.result) != null) {
5433 +                for (int b;;) {
5434 +                    if (result.get() != null)
5435 +                        return;
5436 +                    if ((b = preSplit()) <= 0)
5437 +                        break;
5438 +                    new SearchKeysTask<K,V,U>
5439 +                        (map, this, b, searchFunction, result).fork();
5440 +                }
5441 +                while (result.get() == null) {
5442 +                    U u;
5443 +                    if (advance() == null) {
5444 +                        propagateCompletion();
5445 +                        break;
5446 +                    }
5447 +                    if ((u = searchFunction.apply((K)nextKey)) != null) {
5448 +                        if (result.compareAndSet(null, u))
5449 +                            quietlyCompleteRoot();
5450 +                        break;
5451 +                    }
5452 +                }
5453 +            }
5454 +        }
5455 +    }
5456 +
5457 +    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5458 +        extends Traverser<K,V,U> {
5459 +        final Fun<? super V, ? extends U> searchFunction;
5460 +        final AtomicReference<U> result;
5461 +        SearchValuesTask
5462 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5463 +             Fun<? super V, ? extends U> searchFunction,
5464 +             AtomicReference<U> result) {
5465 +            super(m, p, b);
5466 +            this.searchFunction = searchFunction; this.result = result;
5467 +        }
5468 +        public final U getRawResult() { return result.get(); }
5469 +        @SuppressWarnings("unchecked") public final void compute() {
5470 +            final Fun<? super V, ? extends U> searchFunction;
5471 +            final AtomicReference<U> result;
5472 +            if ((searchFunction = this.searchFunction) != null &&
5473 +                (result = this.result) != null) {
5474 +                for (int b;;) {
5475 +                    if (result.get() != null)
5476 +                        return;
5477 +                    if ((b = preSplit()) <= 0)
5478 +                        break;
5479 +                    new SearchValuesTask<K,V,U>
5480 +                        (map, this, b, searchFunction, result).fork();
5481 +                }
5482 +                while (result.get() == null) {
5483 +                    Object v; U u;
5484 +                    if ((v = advance()) == null) {
5485 +                        propagateCompletion();
5486 +                        break;
5487 +                    }
5488 +                    if ((u = searchFunction.apply((V)v)) != null) {
5489 +                        if (result.compareAndSet(null, u))
5490 +                            quietlyCompleteRoot();
5491 +                        break;
5492 +                    }
5493 +                }
5494 +            }
5495 +        }
5496 +    }
5497 +
5498 +    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5499 +        extends Traverser<K,V,U> {
5500 +        final Fun<Entry<K,V>, ? extends U> searchFunction;
5501 +        final AtomicReference<U> result;
5502 +        SearchEntriesTask
5503 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5504 +             Fun<Entry<K,V>, ? extends U> searchFunction,
5505 +             AtomicReference<U> result) {
5506 +            super(m, p, b);
5507 +            this.searchFunction = searchFunction; this.result = result;
5508 +        }
5509 +        public final U getRawResult() { return result.get(); }
5510 +        @SuppressWarnings("unchecked") public final void compute() {
5511 +            final Fun<Entry<K,V>, ? extends U> searchFunction;
5512 +            final AtomicReference<U> result;
5513 +            if ((searchFunction = this.searchFunction) != null &&
5514 +                (result = this.result) != null) {
5515 +                for (int b;;) {
5516 +                    if (result.get() != null)
5517 +                        return;
5518 +                    if ((b = preSplit()) <= 0)
5519 +                        break;
5520 +                    new SearchEntriesTask<K,V,U>
5521 +                        (map, this, b, searchFunction, result).fork();
5522 +                }
5523 +                while (result.get() == null) {
5524 +                    Object v; U u;
5525 +                    if ((v = advance()) == null) {
5526 +                        propagateCompletion();
5527 +                        break;
5528 +                    }
5529 +                    if ((u = searchFunction.apply(entryFor((K)nextKey,
5530 +                                                           (V)v))) != null) {
5531 +                        if (result.compareAndSet(null, u))
5532 +                            quietlyCompleteRoot();
5533 +                        return;
5534 +                    }
5535 +                }
5536 +            }
5537 +        }
5538 +    }
5539 +
5540 +    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5541 +        extends Traverser<K,V,U> {
5542 +        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5543 +        final AtomicReference<U> result;
5544 +        SearchMappingsTask
5545 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5546 +             BiFun<? super K, ? super V, ? extends U> searchFunction,
5547 +             AtomicReference<U> result) {
5548 +            super(m, p, b);
5549 +            this.searchFunction = searchFunction; this.result = result;
5550 +        }
5551 +        public final U getRawResult() { return result.get(); }
5552 +        @SuppressWarnings("unchecked") public final void compute() {
5553 +            final BiFun<? super K, ? super V, ? extends U> searchFunction;
5554 +            final AtomicReference<U> result;
5555 +            if ((searchFunction = this.searchFunction) != null &&
5556 +                (result = this.result) != null) {
5557 +                for (int b;;) {
5558 +                    if (result.get() != null)
5559 +                        return;
5560 +                    if ((b = preSplit()) <= 0)
5561 +                        break;
5562 +                    new SearchMappingsTask<K,V,U>
5563 +                        (map, this, b, searchFunction, result).fork();
5564 +                }
5565 +                while (result.get() == null) {
5566 +                    Object v; U u;
5567 +                    if ((v = advance()) == null) {
5568 +                        propagateCompletion();
5569 +                        break;
5570 +                    }
5571 +                    if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5572 +                        if (result.compareAndSet(null, u))
5573 +                            quietlyCompleteRoot();
5574 +                        break;
5575 +                    }
5576 +                }
5577 +            }
5578 +        }
5579 +    }
5580 +
5581 +    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5582 +        extends Traverser<K,V,K> {
5583 +        final BiFun<? super K, ? super K, ? extends K> reducer;
5584 +        K result;
5585 +        ReduceKeysTask<K,V> rights, nextRight;
5586 +        ReduceKeysTask
5587 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5588 +             ReduceKeysTask<K,V> nextRight,
5589 +             BiFun<? super K, ? super K, ? extends K> reducer) {
5590 +            super(m, p, b); this.nextRight = nextRight;
5591 +            this.reducer = reducer;
5592 +        }
5593 +        public final K getRawResult() { return result; }
5594 +        @SuppressWarnings("unchecked") public final void compute() {
5595 +            final BiFun<? super K, ? super K, ? extends K> reducer;
5596 +            if ((reducer = this.reducer) != null) {
5597 +                for (int b; (b = preSplit()) > 0;)
5598 +                    (rights = new ReduceKeysTask<K,V>
5599 +                     (map, this, b, rights, reducer)).fork();
5600 +                K r = null;
5601 +                while (advance() != null) {
5602 +                    K u = (K)nextKey;
5603 +                    r = (r == null) ? u : reducer.apply(r, u);
5604 +                }
5605 +                result = r;
5606 +                CountedCompleter<?> c;
5607 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5608 +                    ReduceKeysTask<K,V>
5609 +                        t = (ReduceKeysTask<K,V>)c,
5610 +                        s = t.rights;
5611 +                    while (s != null) {
5612 +                        K tr, sr;
5613 +                        if ((sr = s.result) != null)
5614 +                            t.result = (((tr = t.result) == null) ? sr :
5615 +                                        reducer.apply(tr, sr));
5616 +                        s = t.rights = s.nextRight;
5617 +                    }
5618 +                }
5619 +            }
5620 +        }
5621 +    }
5622 +
5623 +    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5624 +        extends Traverser<K,V,V> {
5625 +        final BiFun<? super V, ? super V, ? extends V> reducer;
5626 +        V result;
5627 +        ReduceValuesTask<K,V> rights, nextRight;
5628 +        ReduceValuesTask
5629 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5630 +             ReduceValuesTask<K,V> nextRight,
5631 +             BiFun<? super V, ? super V, ? extends V> reducer) {
5632 +            super(m, p, b); this.nextRight = nextRight;
5633 +            this.reducer = reducer;
5634 +        }
5635 +        public final V getRawResult() { return result; }
5636 +        @SuppressWarnings("unchecked") public final void compute() {
5637 +            final BiFun<? super V, ? super V, ? extends V> reducer;
5638 +            if ((reducer = this.reducer) != null) {
5639 +                for (int b; (b = preSplit()) > 0;)
5640 +                    (rights = new ReduceValuesTask<K,V>
5641 +                     (map, this, b, rights, reducer)).fork();
5642 +                V r = null;
5643 +                Object v;
5644 +                while ((v = advance()) != null) {
5645 +                    V u = (V)v;
5646 +                    r = (r == null) ? u : reducer.apply(r, u);
5647 +                }
5648 +                result = r;
5649 +                CountedCompleter<?> c;
5650 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5651 +                    ReduceValuesTask<K,V>
5652 +                        t = (ReduceValuesTask<K,V>)c,
5653 +                        s = t.rights;
5654 +                    while (s != null) {
5655 +                        V tr, sr;
5656 +                        if ((sr = s.result) != null)
5657 +                            t.result = (((tr = t.result) == null) ? sr :
5658 +                                        reducer.apply(tr, sr));
5659 +                        s = t.rights = s.nextRight;
5660 +                    }
5661 +                }
5662 +            }
5663 +        }
5664 +    }
5665 +
5666 +    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5667 +        extends Traverser<K,V,Map.Entry<K,V>> {
5668 +        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5669 +        Map.Entry<K,V> result;
5670 +        ReduceEntriesTask<K,V> rights, nextRight;
5671 +        ReduceEntriesTask
5672 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5673 +             ReduceEntriesTask<K,V> nextRight,
5674 +             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5675 +            super(m, p, b); this.nextRight = nextRight;
5676 +            this.reducer = reducer;
5677 +        }
5678 +        public final Map.Entry<K,V> getRawResult() { return result; }
5679 +        @SuppressWarnings("unchecked") public final void compute() {
5680 +            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5681 +            if ((reducer = this.reducer) != null) {
5682 +                for (int b; (b = preSplit()) > 0;)
5683 +                    (rights = new ReduceEntriesTask<K,V>
5684 +                     (map, this, b, rights, reducer)).fork();
5685 +                Map.Entry<K,V> r = null;
5686 +                Object v;
5687 +                while ((v = advance()) != null) {
5688 +                    Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5689 +                    r = (r == null) ? u : reducer.apply(r, u);
5690 +                }
5691 +                result = r;
5692 +                CountedCompleter<?> c;
5693 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5694 +                    ReduceEntriesTask<K,V>
5695 +                        t = (ReduceEntriesTask<K,V>)c,
5696 +                        s = t.rights;
5697 +                    while (s != null) {
5698 +                        Map.Entry<K,V> tr, sr;
5699 +                        if ((sr = s.result) != null)
5700 +                            t.result = (((tr = t.result) == null) ? sr :
5701 +                                        reducer.apply(tr, sr));
5702 +                        s = t.rights = s.nextRight;
5703 +                    }
5704 +                }
5705 +            }
5706 +        }
5707 +    }
5708 +
5709 +    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5710 +        extends Traverser<K,V,U> {
5711 +        final Fun<? super K, ? extends U> transformer;
5712 +        final BiFun<? super U, ? super U, ? extends U> reducer;
5713 +        U result;
5714 +        MapReduceKeysTask<K,V,U> rights, nextRight;
5715 +        MapReduceKeysTask
5716 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5717 +             MapReduceKeysTask<K,V,U> nextRight,
5718 +             Fun<? super K, ? extends U> transformer,
5719 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5720 +            super(m, p, b); this.nextRight = nextRight;
5721 +            this.transformer = transformer;
5722 +            this.reducer = reducer;
5723 +        }
5724 +        public final U getRawResult() { return result; }
5725 +        @SuppressWarnings("unchecked") public final void compute() {
5726 +            final Fun<? super K, ? extends U> transformer;
5727 +            final BiFun<? super U, ? super U, ? extends U> reducer;
5728 +            if ((transformer = this.transformer) != null &&
5729 +                (reducer = this.reducer) != null) {
5730 +                for (int b; (b = preSplit()) > 0;)
5731 +                    (rights = new MapReduceKeysTask<K,V,U>
5732 +                     (map, this, b, rights, transformer, reducer)).fork();
5733 +                U r = null, u;
5734 +                while (advance() != null) {
5735 +                    if ((u = transformer.apply((K)nextKey)) != null)
5736 +                        r = (r == null) ? u : reducer.apply(r, u);
5737 +                }
5738 +                result = r;
5739 +                CountedCompleter<?> c;
5740 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5741 +                    MapReduceKeysTask<K,V,U>
5742 +                        t = (MapReduceKeysTask<K,V,U>)c,
5743 +                        s = t.rights;
5744 +                    while (s != null) {
5745 +                        U tr, sr;
5746 +                        if ((sr = s.result) != null)
5747 +                            t.result = (((tr = t.result) == null) ? sr :
5748 +                                        reducer.apply(tr, sr));
5749 +                        s = t.rights = s.nextRight;
5750 +                    }
5751 +                }
5752 +            }
5753 +        }
5754 +    }
5755 +
5756 +    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5757 +        extends Traverser<K,V,U> {
5758 +        final Fun<? super V, ? extends U> transformer;
5759 +        final BiFun<? super U, ? super U, ? extends U> reducer;
5760 +        U result;
5761 +        MapReduceValuesTask<K,V,U> rights, nextRight;
5762 +        MapReduceValuesTask
5763 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5764 +             MapReduceValuesTask<K,V,U> nextRight,
5765 +             Fun<? super V, ? extends U> transformer,
5766 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5767 +            super(m, p, b); this.nextRight = nextRight;
5768 +            this.transformer = transformer;
5769 +            this.reducer = reducer;
5770 +        }
5771 +        public final U getRawResult() { return result; }
5772 +        @SuppressWarnings("unchecked") public final void compute() {
5773 +            final Fun<? super V, ? extends U> transformer;
5774 +            final BiFun<? super U, ? super U, ? extends U> reducer;
5775 +            if ((transformer = this.transformer) != null &&
5776 +                (reducer = this.reducer) != null) {
5777 +                for (int b; (b = preSplit()) > 0;)
5778 +                    (rights = new MapReduceValuesTask<K,V,U>
5779 +                     (map, this, b, rights, transformer, reducer)).fork();
5780 +                U r = null, u;
5781 +                Object v;
5782 +                while ((v = advance()) != null) {
5783 +                    if ((u = transformer.apply((V)v)) != null)
5784 +                        r = (r == null) ? u : reducer.apply(r, u);
5785 +                }
5786 +                result = r;
5787 +                CountedCompleter<?> c;
5788 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5789 +                    MapReduceValuesTask<K,V,U>
5790 +                        t = (MapReduceValuesTask<K,V,U>)c,
5791 +                        s = t.rights;
5792 +                    while (s != null) {
5793 +                        U tr, sr;
5794 +                        if ((sr = s.result) != null)
5795 +                            t.result = (((tr = t.result) == null) ? sr :
5796 +                                        reducer.apply(tr, sr));
5797 +                        s = t.rights = s.nextRight;
5798 +                    }
5799 +                }
5800 +            }
5801 +        }
5802 +    }
5803 +
5804 +    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5805 +        extends Traverser<K,V,U> {
5806 +        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5807 +        final BiFun<? super U, ? super U, ? extends U> reducer;
5808 +        U result;
5809 +        MapReduceEntriesTask<K,V,U> rights, nextRight;
5810 +        MapReduceEntriesTask
5811 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5812 +             MapReduceEntriesTask<K,V,U> nextRight,
5813 +             Fun<Map.Entry<K,V>, ? extends U> transformer,
5814 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5815 +            super(m, p, b); this.nextRight = nextRight;
5816 +            this.transformer = transformer;
5817 +            this.reducer = reducer;
5818 +        }
5819 +        public final U getRawResult() { return result; }
5820 +        @SuppressWarnings("unchecked") public final void compute() {
5821 +            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5822 +            final BiFun<? super U, ? super U, ? extends U> reducer;
5823 +            if ((transformer = this.transformer) != null &&
5824 +                (reducer = this.reducer) != null) {
5825 +                for (int b; (b = preSplit()) > 0;)
5826 +                    (rights = new MapReduceEntriesTask<K,V,U>
5827 +                     (map, this, b, rights, transformer, reducer)).fork();
5828 +                U r = null, u;
5829 +                Object v;
5830 +                while ((v = advance()) != null) {
5831 +                    if ((u = transformer.apply(entryFor((K)nextKey,
5832 +                                                        (V)v))) != null)
5833 +                        r = (r == null) ? u : reducer.apply(r, u);
5834 +                }
5835 +                result = r;
5836 +                CountedCompleter<?> c;
5837 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5838 +                    MapReduceEntriesTask<K,V,U>
5839 +                        t = (MapReduceEntriesTask<K,V,U>)c,
5840 +                        s = t.rights;
5841 +                    while (s != null) {
5842 +                        U tr, sr;
5843 +                        if ((sr = s.result) != null)
5844 +                            t.result = (((tr = t.result) == null) ? sr :
5845 +                                        reducer.apply(tr, sr));
5846 +                        s = t.rights = s.nextRight;
5847 +                    }
5848 +                }
5849 +            }
5850 +        }
5851 +    }
5852 +
5853 +    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5854 +        extends Traverser<K,V,U> {
5855 +        final BiFun<? super K, ? super V, ? extends U> transformer;
5856 +        final BiFun<? super U, ? super U, ? extends U> reducer;
5857 +        U result;
5858 +        MapReduceMappingsTask<K,V,U> rights, nextRight;
5859 +        MapReduceMappingsTask
5860 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5861 +             MapReduceMappingsTask<K,V,U> nextRight,
5862 +             BiFun<? super K, ? super V, ? extends U> transformer,
5863 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5864 +            super(m, p, b); this.nextRight = nextRight;
5865 +            this.transformer = transformer;
5866 +            this.reducer = reducer;
5867 +        }
5868 +        public final U getRawResult() { return result; }
5869 +        @SuppressWarnings("unchecked") public final void compute() {
5870 +            final BiFun<? super K, ? super V, ? extends U> transformer;
5871 +            final BiFun<? super U, ? super U, ? extends U> reducer;
5872 +            if ((transformer = this.transformer) != null &&
5873 +                (reducer = this.reducer) != null) {
5874 +                for (int b; (b = preSplit()) > 0;)
5875 +                    (rights = new MapReduceMappingsTask<K,V,U>
5876 +                     (map, this, b, rights, transformer, reducer)).fork();
5877 +                U r = null, u;
5878 +                Object v;
5879 +                while ((v = advance()) != null) {
5880 +                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5881 +                        r = (r == null) ? u : reducer.apply(r, u);
5882 +                }
5883 +                result = r;
5884 +                CountedCompleter<?> c;
5885 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5886 +                    MapReduceMappingsTask<K,V,U>
5887 +                        t = (MapReduceMappingsTask<K,V,U>)c,
5888 +                        s = t.rights;
5889 +                    while (s != null) {
5890 +                        U tr, sr;
5891 +                        if ((sr = s.result) != null)
5892 +                            t.result = (((tr = t.result) == null) ? sr :
5893 +                                        reducer.apply(tr, sr));
5894 +                        s = t.rights = s.nextRight;
5895 +                    }
5896 +                }
5897 +            }
5898 +        }
5899 +    }
5900 +
5901 +    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5902 +        extends Traverser<K,V,Double> {
5903 +        final ObjectToDouble<? super K> transformer;
5904 +        final DoubleByDoubleToDouble reducer;
5905 +        final double basis;
5906 +        double result;
5907 +        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5908 +        MapReduceKeysToDoubleTask
5909 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5910 +             MapReduceKeysToDoubleTask<K,V> nextRight,
5911 +             ObjectToDouble<? super K> transformer,
5912 +             double basis,
5913 +             DoubleByDoubleToDouble reducer) {
5914 +            super(m, p, b); this.nextRight = nextRight;
5915 +            this.transformer = transformer;
5916 +            this.basis = basis; this.reducer = reducer;
5917 +        }
5918 +        public final Double getRawResult() { return result; }
5919 +        @SuppressWarnings("unchecked") public final void compute() {
5920 +            final ObjectToDouble<? super K> transformer;
5921 +            final DoubleByDoubleToDouble reducer;
5922 +            if ((transformer = this.transformer) != null &&
5923 +                (reducer = this.reducer) != null) {
5924 +                double r = this.basis;
5925 +                for (int b; (b = preSplit()) > 0;)
5926 +                    (rights = new MapReduceKeysToDoubleTask<K,V>
5927 +                     (map, this, b, rights, transformer, r, reducer)).fork();
5928 +                while (advance() != null)
5929 +                    r = reducer.apply(r, transformer.apply((K)nextKey));
5930 +                result = r;
5931 +                CountedCompleter<?> c;
5932 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5933 +                    MapReduceKeysToDoubleTask<K,V>
5934 +                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5935 +                        s = t.rights;
5936 +                    while (s != null) {
5937 +                        t.result = reducer.apply(t.result, s.result);
5938 +                        s = t.rights = s.nextRight;
5939 +                    }
5940 +                }
5941 +            }
5942 +        }
5943 +    }
5944 +
5945 +    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5946 +        extends Traverser<K,V,Double> {
5947 +        final ObjectToDouble<? super V> transformer;
5948 +        final DoubleByDoubleToDouble reducer;
5949 +        final double basis;
5950 +        double result;
5951 +        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5952 +        MapReduceValuesToDoubleTask
5953 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5954 +             MapReduceValuesToDoubleTask<K,V> nextRight,
5955 +             ObjectToDouble<? super V> transformer,
5956 +             double basis,
5957 +             DoubleByDoubleToDouble reducer) {
5958 +            super(m, p, b); this.nextRight = nextRight;
5959 +            this.transformer = transformer;
5960 +            this.basis = basis; this.reducer = reducer;
5961 +        }
5962 +        public final Double getRawResult() { return result; }
5963 +        @SuppressWarnings("unchecked") public final void compute() {
5964 +            final ObjectToDouble<? super V> transformer;
5965 +            final DoubleByDoubleToDouble reducer;
5966 +            if ((transformer = this.transformer) != null &&
5967 +                (reducer = this.reducer) != null) {
5968 +                double r = this.basis;
5969 +                for (int b; (b = preSplit()) > 0;)
5970 +                    (rights = new MapReduceValuesToDoubleTask<K,V>
5971 +                     (map, this, b, rights, transformer, r, reducer)).fork();
5972 +                Object v;
5973 +                while ((v = advance()) != null)
5974 +                    r = reducer.apply(r, transformer.apply((V)v));
5975 +                result = r;
5976 +                CountedCompleter<?> c;
5977 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5978 +                    MapReduceValuesToDoubleTask<K,V>
5979 +                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5980 +                        s = t.rights;
5981 +                    while (s != null) {
5982 +                        t.result = reducer.apply(t.result, s.result);
5983 +                        s = t.rights = s.nextRight;
5984 +                    }
5985 +                }
5986 +            }
5987 +        }
5988 +    }
5989 +
5990 +    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
5991 +        extends Traverser<K,V,Double> {
5992 +        final ObjectToDouble<Map.Entry<K,V>> transformer;
5993 +        final DoubleByDoubleToDouble reducer;
5994 +        final double basis;
5995 +        double result;
5996 +        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5997 +        MapReduceEntriesToDoubleTask
5998 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5999 +             MapReduceEntriesToDoubleTask<K,V> nextRight,
6000 +             ObjectToDouble<Map.Entry<K,V>> transformer,
6001 +             double basis,
6002 +             DoubleByDoubleToDouble reducer) {
6003 +            super(m, p, b); this.nextRight = nextRight;
6004 +            this.transformer = transformer;
6005 +            this.basis = basis; this.reducer = reducer;
6006 +        }
6007 +        public final Double getRawResult() { return result; }
6008 +        @SuppressWarnings("unchecked") public final void compute() {
6009 +            final ObjectToDouble<Map.Entry<K,V>> transformer;
6010 +            final DoubleByDoubleToDouble reducer;
6011 +            if ((transformer = this.transformer) != null &&
6012 +                (reducer = this.reducer) != null) {
6013 +                double r = this.basis;
6014 +                for (int b; (b = preSplit()) > 0;)
6015 +                    (rights = new MapReduceEntriesToDoubleTask<K,V>
6016 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6017 +                Object v;
6018 +                while ((v = advance()) != null)
6019 +                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6020 +                                                                    (V)v)));
6021 +                result = r;
6022 +                CountedCompleter<?> c;
6023 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6024 +                    MapReduceEntriesToDoubleTask<K,V>
6025 +                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
6026 +                        s = t.rights;
6027 +                    while (s != null) {
6028 +                        t.result = reducer.apply(t.result, s.result);
6029 +                        s = t.rights = s.nextRight;
6030 +                    }
6031 +                }
6032 +            }
6033 +        }
6034 +    }
6035 +
6036 +    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6037 +        extends Traverser<K,V,Double> {
6038 +        final ObjectByObjectToDouble<? super K, ? super V> transformer;
6039 +        final DoubleByDoubleToDouble reducer;
6040 +        final double basis;
6041 +        double result;
6042 +        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6043 +        MapReduceMappingsToDoubleTask
6044 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6045 +             MapReduceMappingsToDoubleTask<K,V> nextRight,
6046 +             ObjectByObjectToDouble<? super K, ? super V> transformer,
6047 +             double basis,
6048 +             DoubleByDoubleToDouble reducer) {
6049 +            super(m, p, b); this.nextRight = nextRight;
6050 +            this.transformer = transformer;
6051 +            this.basis = basis; this.reducer = reducer;
6052 +        }
6053 +        public final Double getRawResult() { return result; }
6054 +        @SuppressWarnings("unchecked") public final void compute() {
6055 +            final ObjectByObjectToDouble<? super K, ? super V> transformer;
6056 +            final DoubleByDoubleToDouble reducer;
6057 +            if ((transformer = this.transformer) != null &&
6058 +                (reducer = this.reducer) != null) {
6059 +                double r = this.basis;
6060 +                for (int b; (b = preSplit()) > 0;)
6061 +                    (rights = new MapReduceMappingsToDoubleTask<K,V>
6062 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6063 +                Object v;
6064 +                while ((v = advance()) != null)
6065 +                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6066 +                result = r;
6067 +                CountedCompleter<?> c;
6068 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6069 +                    MapReduceMappingsToDoubleTask<K,V>
6070 +                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
6071 +                        s = t.rights;
6072 +                    while (s != null) {
6073 +                        t.result = reducer.apply(t.result, s.result);
6074 +                        s = t.rights = s.nextRight;
6075 +                    }
6076 +                }
6077 +            }
6078 +        }
6079 +    }
6080 +
6081 +    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6082 +        extends Traverser<K,V,Long> {
6083 +        final ObjectToLong<? super K> transformer;
6084 +        final LongByLongToLong reducer;
6085 +        final long basis;
6086 +        long result;
6087 +        MapReduceKeysToLongTask<K,V> rights, nextRight;
6088 +        MapReduceKeysToLongTask
6089 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6090 +             MapReduceKeysToLongTask<K,V> nextRight,
6091 +             ObjectToLong<? super K> transformer,
6092 +             long basis,
6093 +             LongByLongToLong reducer) {
6094 +            super(m, p, b); this.nextRight = nextRight;
6095 +            this.transformer = transformer;
6096 +            this.basis = basis; this.reducer = reducer;
6097 +        }
6098 +        public final Long getRawResult() { return result; }
6099 +        @SuppressWarnings("unchecked") public final void compute() {
6100 +            final ObjectToLong<? super K> transformer;
6101 +            final LongByLongToLong reducer;
6102 +            if ((transformer = this.transformer) != null &&
6103 +                (reducer = this.reducer) != null) {
6104 +                long r = this.basis;
6105 +                for (int b; (b = preSplit()) > 0;)
6106 +                    (rights = new MapReduceKeysToLongTask<K,V>
6107 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6108 +                while (advance() != null)
6109 +                    r = reducer.apply(r, transformer.apply((K)nextKey));
6110 +                result = r;
6111 +                CountedCompleter<?> c;
6112 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6113 +                    MapReduceKeysToLongTask<K,V>
6114 +                        t = (MapReduceKeysToLongTask<K,V>)c,
6115 +                        s = t.rights;
6116 +                    while (s != null) {
6117 +                        t.result = reducer.apply(t.result, s.result);
6118 +                        s = t.rights = s.nextRight;
6119 +                    }
6120 +                }
6121 +            }
6122 +        }
6123 +    }
6124 +
6125 +    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6126 +        extends Traverser<K,V,Long> {
6127 +        final ObjectToLong<? super V> transformer;
6128 +        final LongByLongToLong reducer;
6129 +        final long basis;
6130 +        long result;
6131 +        MapReduceValuesToLongTask<K,V> rights, nextRight;
6132 +        MapReduceValuesToLongTask
6133 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6134 +             MapReduceValuesToLongTask<K,V> nextRight,
6135 +             ObjectToLong<? super V> transformer,
6136 +             long basis,
6137 +             LongByLongToLong reducer) {
6138 +            super(m, p, b); this.nextRight = nextRight;
6139 +            this.transformer = transformer;
6140 +            this.basis = basis; this.reducer = reducer;
6141 +        }
6142 +        public final Long getRawResult() { return result; }
6143 +        @SuppressWarnings("unchecked") public final void compute() {
6144 +            final ObjectToLong<? super V> transformer;
6145 +            final LongByLongToLong reducer;
6146 +            if ((transformer = this.transformer) != null &&
6147 +                (reducer = this.reducer) != null) {
6148 +                long r = this.basis;
6149 +                for (int b; (b = preSplit()) > 0;)
6150 +                    (rights = new MapReduceValuesToLongTask<K,V>
6151 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6152 +                Object v;
6153 +                while ((v = advance()) != null)
6154 +                    r = reducer.apply(r, transformer.apply((V)v));
6155 +                result = r;
6156 +                CountedCompleter<?> c;
6157 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6158 +                    MapReduceValuesToLongTask<K,V>
6159 +                        t = (MapReduceValuesToLongTask<K,V>)c,
6160 +                        s = t.rights;
6161 +                    while (s != null) {
6162 +                        t.result = reducer.apply(t.result, s.result);
6163 +                        s = t.rights = s.nextRight;
6164 +                    }
6165 +                }
6166 +            }
6167 +        }
6168 +    }
6169 +
6170 +    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6171 +        extends Traverser<K,V,Long> {
6172 +        final ObjectToLong<Map.Entry<K,V>> transformer;
6173 +        final LongByLongToLong reducer;
6174 +        final long basis;
6175 +        long result;
6176 +        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6177 +        MapReduceEntriesToLongTask
6178 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6179 +             MapReduceEntriesToLongTask<K,V> nextRight,
6180 +             ObjectToLong<Map.Entry<K,V>> transformer,
6181 +             long basis,
6182 +             LongByLongToLong reducer) {
6183 +            super(m, p, b); this.nextRight = nextRight;
6184 +            this.transformer = transformer;
6185 +            this.basis = basis; this.reducer = reducer;
6186 +        }
6187 +        public final Long getRawResult() { return result; }
6188 +        @SuppressWarnings("unchecked") public final void compute() {
6189 +            final ObjectToLong<Map.Entry<K,V>> transformer;
6190 +            final LongByLongToLong reducer;
6191 +            if ((transformer = this.transformer) != null &&
6192 +                (reducer = this.reducer) != null) {
6193 +                long r = this.basis;
6194 +                for (int b; (b = preSplit()) > 0;)
6195 +                    (rights = new MapReduceEntriesToLongTask<K,V>
6196 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6197 +                Object v;
6198 +                while ((v = advance()) != null)
6199 +                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6200 +                                                                    (V)v)));
6201 +                result = r;
6202 +                CountedCompleter<?> c;
6203 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6204 +                    MapReduceEntriesToLongTask<K,V>
6205 +                        t = (MapReduceEntriesToLongTask<K,V>)c,
6206 +                        s = t.rights;
6207 +                    while (s != null) {
6208 +                        t.result = reducer.apply(t.result, s.result);
6209 +                        s = t.rights = s.nextRight;
6210 +                    }
6211 +                }
6212 +            }
6213 +        }
6214 +    }
6215 +
6216 +    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6217 +        extends Traverser<K,V,Long> {
6218 +        final ObjectByObjectToLong<? super K, ? super V> transformer;
6219 +        final LongByLongToLong reducer;
6220 +        final long basis;
6221 +        long result;
6222 +        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6223 +        MapReduceMappingsToLongTask
6224 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6225 +             MapReduceMappingsToLongTask<K,V> nextRight,
6226 +             ObjectByObjectToLong<? super K, ? super V> transformer,
6227 +             long basis,
6228 +             LongByLongToLong reducer) {
6229 +            super(m, p, b); this.nextRight = nextRight;
6230 +            this.transformer = transformer;
6231 +            this.basis = basis; this.reducer = reducer;
6232 +        }
6233 +        public final Long getRawResult() { return result; }
6234 +        @SuppressWarnings("unchecked") public final void compute() {
6235 +            final ObjectByObjectToLong<? super K, ? super V> transformer;
6236 +            final LongByLongToLong reducer;
6237 +            if ((transformer = this.transformer) != null &&
6238 +                (reducer = this.reducer) != null) {
6239 +                long r = this.basis;
6240 +                for (int b; (b = preSplit()) > 0;)
6241 +                    (rights = new MapReduceMappingsToLongTask<K,V>
6242 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6243 +                Object v;
6244 +                while ((v = advance()) != null)
6245 +                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6246 +                result = r;
6247 +                CountedCompleter<?> c;
6248 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6249 +                    MapReduceMappingsToLongTask<K,V>
6250 +                        t = (MapReduceMappingsToLongTask<K,V>)c,
6251 +                        s = t.rights;
6252 +                    while (s != null) {
6253 +                        t.result = reducer.apply(t.result, s.result);
6254 +                        s = t.rights = s.nextRight;
6255 +                    }
6256 +                }
6257 +            }
6258 +        }
6259 +    }
6260 +
6261 +    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6262 +        extends Traverser<K,V,Integer> {
6263 +        final ObjectToInt<? super K> transformer;
6264 +        final IntByIntToInt reducer;
6265 +        final int basis;
6266 +        int result;
6267 +        MapReduceKeysToIntTask<K,V> rights, nextRight;
6268 +        MapReduceKeysToIntTask
6269 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6270 +             MapReduceKeysToIntTask<K,V> nextRight,
6271 +             ObjectToInt<? super K> transformer,
6272 +             int basis,
6273 +             IntByIntToInt reducer) {
6274 +            super(m, p, b); this.nextRight = nextRight;
6275 +            this.transformer = transformer;
6276 +            this.basis = basis; this.reducer = reducer;
6277 +        }
6278 +        public final Integer getRawResult() { return result; }
6279 +        @SuppressWarnings("unchecked") public final void compute() {
6280 +            final ObjectToInt<? super K> transformer;
6281 +            final IntByIntToInt reducer;
6282 +            if ((transformer = this.transformer) != null &&
6283 +                (reducer = this.reducer) != null) {
6284 +                int r = this.basis;
6285 +                for (int b; (b = preSplit()) > 0;)
6286 +                    (rights = new MapReduceKeysToIntTask<K,V>
6287 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6288 +                while (advance() != null)
6289 +                    r = reducer.apply(r, transformer.apply((K)nextKey));
6290 +                result = r;
6291 +                CountedCompleter<?> c;
6292 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6293 +                    MapReduceKeysToIntTask<K,V>
6294 +                        t = (MapReduceKeysToIntTask<K,V>)c,
6295 +                        s = t.rights;
6296 +                    while (s != null) {
6297 +                        t.result = reducer.apply(t.result, s.result);
6298 +                        s = t.rights = s.nextRight;
6299 +                    }
6300 +                }
6301 +            }
6302 +        }
6303 +    }
6304 +
6305 +    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6306 +        extends Traverser<K,V,Integer> {
6307 +        final ObjectToInt<? super V> transformer;
6308 +        final IntByIntToInt reducer;
6309 +        final int basis;
6310 +        int result;
6311 +        MapReduceValuesToIntTask<K,V> rights, nextRight;
6312 +        MapReduceValuesToIntTask
6313 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6314 +             MapReduceValuesToIntTask<K,V> nextRight,
6315 +             ObjectToInt<? super V> transformer,
6316 +             int basis,
6317 +             IntByIntToInt reducer) {
6318 +            super(m, p, b); this.nextRight = nextRight;
6319 +            this.transformer = transformer;
6320 +            this.basis = basis; this.reducer = reducer;
6321 +        }
6322 +        public final Integer getRawResult() { return result; }
6323 +        @SuppressWarnings("unchecked") public final void compute() {
6324 +            final ObjectToInt<? super V> transformer;
6325 +            final IntByIntToInt reducer;
6326 +            if ((transformer = this.transformer) != null &&
6327 +                (reducer = this.reducer) != null) {
6328 +                int r = this.basis;
6329 +                for (int b; (b = preSplit()) > 0;)
6330 +                    (rights = new MapReduceValuesToIntTask<K,V>
6331 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6332 +                Object v;
6333 +                while ((v = advance()) != null)
6334 +                    r = reducer.apply(r, transformer.apply((V)v));
6335 +                result = r;
6336 +                CountedCompleter<?> c;
6337 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6338 +                    MapReduceValuesToIntTask<K,V>
6339 +                        t = (MapReduceValuesToIntTask<K,V>)c,
6340 +                        s = t.rights;
6341 +                    while (s != null) {
6342 +                        t.result = reducer.apply(t.result, s.result);
6343 +                        s = t.rights = s.nextRight;
6344 +                    }
6345 +                }
6346 +            }
6347 +        }
6348 +    }
6349 +
6350 +    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6351 +        extends Traverser<K,V,Integer> {
6352 +        final ObjectToInt<Map.Entry<K,V>> transformer;
6353 +        final IntByIntToInt reducer;
6354 +        final int basis;
6355 +        int result;
6356 +        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6357 +        MapReduceEntriesToIntTask
6358 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6359 +             MapReduceEntriesToIntTask<K,V> nextRight,
6360 +             ObjectToInt<Map.Entry<K,V>> transformer,
6361 +             int basis,
6362 +             IntByIntToInt reducer) {
6363 +            super(m, p, b); this.nextRight = nextRight;
6364 +            this.transformer = transformer;
6365 +            this.basis = basis; this.reducer = reducer;
6366 +        }
6367 +        public final Integer getRawResult() { return result; }
6368 +        @SuppressWarnings("unchecked") public final void compute() {
6369 +            final ObjectToInt<Map.Entry<K,V>> transformer;
6370 +            final IntByIntToInt reducer;
6371 +            if ((transformer = this.transformer) != null &&
6372 +                (reducer = this.reducer) != null) {
6373 +                int r = this.basis;
6374 +                for (int b; (b = preSplit()) > 0;)
6375 +                    (rights = new MapReduceEntriesToIntTask<K,V>
6376 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6377 +                Object v;
6378 +                while ((v = advance()) != null)
6379 +                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6380 +                                                                    (V)v)));
6381 +                result = r;
6382 +                CountedCompleter<?> c;
6383 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6384 +                    MapReduceEntriesToIntTask<K,V>
6385 +                        t = (MapReduceEntriesToIntTask<K,V>)c,
6386 +                        s = t.rights;
6387 +                    while (s != null) {
6388 +                        t.result = reducer.apply(t.result, s.result);
6389 +                        s = t.rights = s.nextRight;
6390 +                    }
6391 +                }
6392 +            }
6393 +        }
6394 +    }
6395 +
6396 +    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6397 +        extends Traverser<K,V,Integer> {
6398 +        final ObjectByObjectToInt<? super K, ? super V> transformer;
6399 +        final IntByIntToInt reducer;
6400 +        final int basis;
6401 +        int result;
6402 +        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6403 +        MapReduceMappingsToIntTask
6404 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6405 +             MapReduceMappingsToIntTask<K,V> nextRight,
6406 +             ObjectByObjectToInt<? super K, ? super V> transformer,
6407 +             int basis,
6408 +             IntByIntToInt reducer) {
6409 +            super(m, p, b); this.nextRight = nextRight;
6410 +            this.transformer = transformer;
6411 +            this.basis = basis; this.reducer = reducer;
6412 +        }
6413 +        public final Integer getRawResult() { return result; }
6414 +        @SuppressWarnings("unchecked") public final void compute() {
6415 +            final ObjectByObjectToInt<? super K, ? super V> transformer;
6416 +            final IntByIntToInt reducer;
6417 +            if ((transformer = this.transformer) != null &&
6418 +                (reducer = this.reducer) != null) {
6419 +                int r = this.basis;
6420 +                for (int b; (b = preSplit()) > 0;)
6421 +                    (rights = new MapReduceMappingsToIntTask<K,V>
6422 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6423 +                Object v;
6424 +                while ((v = advance()) != null)
6425 +                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6426 +                result = r;
6427 +                CountedCompleter<?> c;
6428 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6429 +                    MapReduceMappingsToIntTask<K,V>
6430 +                        t = (MapReduceMappingsToIntTask<K,V>)c,
6431 +                        s = t.rights;
6432 +                    while (s != null) {
6433 +                        t.result = reducer.apply(t.result, s.result);
6434 +                        s = t.rights = s.nextRight;
6435 +                    }
6436 +                }
6437 +            }
6438 +        }
6439 +    }
6440 +
6441      // Unsafe mechanics
6442 <    private static final sun.misc.Unsafe UNSAFE;
6443 <    private static final long counterOffset;
6444 <    private static final long resizingOffset;
6442 >    private static final sun.misc.Unsafe U;
6443 >    private static final long SIZECTL;
6444 >    private static final long TRANSFERINDEX;
6445 >    private static final long TRANSFERORIGIN;
6446 >    private static final long BASECOUNT;
6447 >    private static final long COUNTERBUSY;
6448 >    private static final long CELLVALUE;
6449      private static final long ABASE;
6450      private static final int ASHIFT;
6451  
6452      static {
6453          int ss;
6454          try {
6455 <            UNSAFE = getUnsafe();
6455 >            U = getUnsafe();
6456              Class<?> k = ConcurrentHashMapV8.class;
6457 <            counterOffset = UNSAFE.objectFieldOffset
6458 <                (k.getDeclaredField("counter"));
6459 <            resizingOffset = UNSAFE.objectFieldOffset
6460 <                (k.getDeclaredField("resizing"));
6457 >            SIZECTL = U.objectFieldOffset
6458 >                (k.getDeclaredField("sizeCtl"));
6459 >            TRANSFERINDEX = U.objectFieldOffset
6460 >                (k.getDeclaredField("transferIndex"));
6461 >            TRANSFERORIGIN = U.objectFieldOffset
6462 >                (k.getDeclaredField("transferOrigin"));
6463 >            BASECOUNT = U.objectFieldOffset
6464 >                (k.getDeclaredField("baseCount"));
6465 >            COUNTERBUSY = U.objectFieldOffset
6466 >                (k.getDeclaredField("counterBusy"));
6467 >            Class<?> ck = CounterCell.class;
6468 >            CELLVALUE = U.objectFieldOffset
6469 >                (ck.getDeclaredField("value"));
6470              Class<?> sc = Node[].class;
6471 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6472 <            ss = UNSAFE.arrayIndexScale(sc);
6471 >            ABASE = U.arrayBaseOffset(sc);
6472 >            ss = U.arrayIndexScale(sc);
6473 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6474          } catch (Exception e) {
6475              throw new Error(e);
6476          }
6477          if ((ss & (ss-1)) != 0)
6478              throw new Error("data type scale not a power of two");
1706        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6479      }
6480  
6481      /**
# Line 1733 | Line 6505 | public class ConcurrentHashMapV8<K, V>
6505              }
6506          }
6507      }
1736
6508   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines