--- jsr166/src/jsr166e/ConcurrentHashMapV8.java 2011/08/29 17:06:20 1.2 +++ jsr166/src/jsr166e/ConcurrentHashMapV8.java 2012/07/18 01:30:54 1.51 @@ -6,6 +6,7 @@ package jsr166e; import jsr166e.LongAdder; +import java.util.Arrays; import java.util.Map; import java.util.Set; import java.util.Collection; @@ -19,6 +20,9 @@ import java.util.Enumeration; import java.util.ConcurrentModificationException; import java.util.NoSuchElementException; import java.util.concurrent.ConcurrentMap; +import java.util.concurrent.ThreadLocalRandom; +import java.util.concurrent.locks.LockSupport; +import java.util.concurrent.locks.AbstractQueuedSynchronizer; import java.io.Serializable; /** @@ -49,14 +53,28 @@ import java.io.Serializable; * are typically useful only when a map is not undergoing concurrent * updates in other threads. Otherwise the results of these methods * reflect transient states that may be adequate for monitoring - * purposes, but not for program control. + * or estimation purposes, but not for program control. * - *

Resizing this or any other kind of hash table is a relatively - * slow operation, so, when possible, it is a good idea to provide - * estimates of expected table sizes in constructors. Also, for - * compatability with previous versions of this class, constructors - * may optionally specify an expected {@code concurrencyLevel} as an - * additional hint for internal sizing. + *

The table is dynamically expanded when there are too many + * collisions (i.e., keys that have distinct hash codes but fall into + * the same slot modulo the table size), with the expected average + * effect of maintaining roughly two bins per mapping (corresponding + * to a 0.75 load factor threshold for resizing). There may be much + * variance around this average as mappings are added and removed, but + * overall, this maintains a commonly accepted time/space tradeoff for + * hash tables. However, resizing this or any other kind of hash + * table may be a relatively slow operation. When possible, it is a + * good idea to provide a size estimate as an optional {@code + * initialCapacity} constructor argument. An additional optional + * {@code loadFactor} constructor argument provides a further means of + * customizing initial table capacity by specifying the table density + * to be used in calculating the amount of space to allocate for the + * given number of elements. Also, for compatibility with previous + * versions of this class, constructors may optionally specify an + * expected {@code concurrencyLevel} as an additional hint for + * internal sizing. Note that using many keys with exactly the same + * {@code hashCode()} is a sure way to slow down performance of any + * hash table. * *

This class and its views and iterators implement all of the * optional methods of the {@link Map} and {@link Iterator} @@ -82,216 +100,432 @@ public class ConcurrentHashMapV8 private static final long serialVersionUID = 7249069246763182397L; /** - * A function computing a mapping from the given key to a value, - * or null if there is no mapping. This is a - * place-holder for an upcoming JDK8 interface. + * A function computing a mapping from the given key to a value. + * This is a place-holder for an upcoming JDK8 interface. */ public static interface MappingFunction { /** - * Returns a value for the given key, or null if there is no - * mapping. If this function throws an (unchecked) exception, - * the exception is rethrown to its caller, and no mapping is - * recorded. Because this function is invoked within - * atomicity control, the computation should be short and - * simple. The most common usage is to construct a new object - * serving as an initial mapped value. + * Returns a value for the given key, or null if there is no mapping. * * @param key the (non-null) key - * @return a value, or null if none + * @return a value for the key, or null if none */ V map(K key); } + /** + * A function computing a new mapping given a key and its current + * mapped value (or {@code null} if there is no current + * mapping). This is a place-holder for an upcoming JDK8 + * interface. + */ + public static interface RemappingFunction { + /** + * Returns a new value given a key and its current value. + * + * @param key the (non-null) key + * @param value the current value, or null if there is no mapping + * @return a value for the key, or null if none + */ + V remap(K key, V value); + } + + /** + * A partitionable iterator. A Spliterator can be traversed + * directly, but can also be partitioned (before traversal) by + * creating another Spliterator that covers a non-overlapping + * portion of the elements, and so may be amenable to parallel + * execution. + * + *

This interface exports a subset of expected JDK8 + * functionality. + * + *

Sample usage: Here is one (of the several) ways to compute + * the sum of the values held in a map using the ForkJoin + * framework. As illustrated here, Spliterators are well suited to + * designs in which a task repeatedly splits off half its work + * into forked subtasks until small enough to process directly, + * and then joins these subtasks. Variants of this style can also + * be used in completion-based designs. + * + *

+     * {@code ConcurrentHashMapV8 m = ...
+     * // Uses parallel depth of log2 of size / (parallelism * slack of 8).
+     * int depth = 32 - Integer.numberOfLeadingZeros(m.size() / (aForkJoinPool.getParallelism() * 8));
+     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), depth, null));
+     * // ...
+     * static class SumValues extends RecursiveTask {
+     *   final Spliterator s;
+     *   final int depth;             // number of splits before processing
+     *   final SumValues nextJoin;    // records forked subtasks to join
+     *   SumValues(Spliterator s, int depth, SumValues nextJoin) {
+     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
+     *   }
+     *   public Long compute() {
+     *     long sum = 0;
+     *     SumValues subtasks = null; // fork subtasks
+     *     for (int d = depth - 1; d >= 0; --d)
+     *       (subtasks = new SumValues(s.split(), d, subtasks)).fork();
+     *     while (s.hasNext())        // directly process remaining elements
+     *       sum += s.next();
+     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
+     *       sum += t.join();         // collect subtask results
+     *     return sum;
+     *   }
+     * }
+     * }
+ */ + public static interface Spliterator extends Iterator { + /** + * Returns a Spliterator covering approximately half of the + * elements, guaranteed not to overlap with those subsequently + * returned by this Spliterator. After invoking this method, + * the current Spliterator will not produce any of + * the elements of the returned Spliterator, but the two + * Spliterators together will produce all of the elements that + * would have been produced by this Spliterator had this + * method not been called. The exact number of elements + * produced by the returned Spliterator is not guaranteed, and + * may be zero (i.e., with {@code hasNext()} reporting {@code + * false}) if this Spliterator cannot be further split. + * + * @return a Spliterator covering approximately half of the + * elements + * @throws IllegalStateException if this Spliterator has + * already commenced traversing elements + */ + Spliterator split(); + } + /* * Overview: * * The primary design goal of this hash table is to maintain * concurrent readability (typically method get(), but also * iterators and related methods) while minimizing update - * contention. + * contention. Secondary goals are to keep space consumption about + * the same or better than java.util.HashMap, and to support high + * initial insertion rates on an empty table by many threads. * * Each key-value mapping is held in a Node. Because Node fields * can contain special values, they are defined using plain Object * types. Similarly in turn, all internal methods that use them - * work off Object types. All public generic-typed methods relay - * in/out of these internal methods, supplying casts as needed. + * work off Object types. And similarly, so do the internal + * methods of auxiliary iterator and view classes. All public + * generic typed methods relay in/out of these internal methods, + * supplying null-checks and casts as needed. This also allows + * many of the public methods to be factored into a smaller number + * of internal methods (although sadly not so for the five + * variants of put-related operations). The validation-based + * approach explained below leads to a lot of code sprawl because + * retry-control precludes factoring into smaller methods. * * The table is lazily initialized to a power-of-two size upon the - * first insertion. Each bin in the table contains a (typically - * short) list of Nodes. Table accesses require volatile/atomic - * reads, writes, and CASes. Because there is no other way to - * arrange this without adding further indirections, we use - * intrinsics (sun.misc.Unsafe) operations. The lists of nodes - * within bins are always accurately traversable under volatile - * reads, so long as lookups check hash code and non-nullness of - * key and value before checking key equality. (All valid hash - * codes are nonnegative. Negative values are reserved for special - * forwarding nodes; see below.) - * - * A bin may be locked during update (insert, delete, and replace) - * operations. We do not want to waste the space required to - * associate a distinct lock object with each bin, so instead use - * the first node of a bin list itself as a lock, using builtin - * "synchronized" locks. These save space and we can live with - * only plain block-structured lock/unlock operations. Using the - * first node of a list as a lock does not by itself suffice - * though: When a node is locked, any update must first validate - * that it is still the first node, and retry if not. (Because new - * nodes are always appended to lists, once a node is first in a - * bin, it remains first until deleted or the bin becomes - * invalidated.) However, update operations can and usually do - * still traverse the bin until the point of update, which helps - * reduce cache misses on retries. This is a converse of sorts to - * the lazy locking technique described by Herlihy & Shavit. If - * there is no existing node during a put operation, then one can - * be CAS'ed in (without need for lock except in computeIfAbsent); - * the CAS serves as validation. This is on average the most - * common case for put operations. The expected number of locks - * covering different elements (i.e., bins with 2 or more nodes) - * is approximately 10% at steady state under default settings. - * Lock contention probability for two threads accessing arbitrary - * distinct elements is thus less than 1% even for small tables. - * - * The table is resized when occupancy exceeds a threshold. Only - * a single thread performs the resize (using field "resizing", to - * arrange exclusion), but the table otherwise remains usable for - * both reads and updates. Resizing proceeds by transferring bins, - * one by one, from the table to the next table. Upon transfer, - * the old table bin contains only a special forwarding node (with - * negative hash code ("MOVED")) that contains the next table as + * first insertion. Each bin in the table normally contains a + * list of Nodes (most often, the list has only zero or one Node). + * Table accesses require volatile/atomic reads, writes, and + * CASes. Because there is no other way to arrange this without + * adding further indirections, we use intrinsics + * (sun.misc.Unsafe) operations. The lists of nodes within bins + * are always accurately traversable under volatile reads, so long + * as lookups check hash code and non-nullness of value before + * checking key equality. + * + * We use the top two bits of Node hash fields for control + * purposes -- they are available anyway because of addressing + * constraints. As explained further below, these top bits are + * used as follows: + * 00 - Normal + * 01 - Locked + * 11 - Locked and may have a thread waiting for lock + * 10 - Node is a forwarding node + * + * The lower 30 bits of each Node's hash field contain a + * transformation of the key's hash code, except for forwarding + * nodes, for which the lower bits are zero (and so always have + * hash field == MOVED). + * + * Insertion (via put or its variants) of the first node in an + * empty bin is performed by just CASing it to the bin. This is + * by far the most common case for put operations under most + * key/hash distributions. Other update operations (insert, + * delete, and replace) require locks. We do not want to waste + * the space required to associate a distinct lock object with + * each bin, so instead use the first node of a bin list itself as + * a lock. Blocking support for these locks relies on the builtin + * "synchronized" monitors. However, we also need a tryLock + * construction, so we overlay these by using bits of the Node + * hash field for lock control (see above), and so normally use + * builtin monitors only for blocking and signalling using + * wait/notifyAll constructions. See Node.tryAwaitLock. + * + * Using the first node of a list as a lock does not by itself + * suffice though: When a node is locked, any update must first + * validate that it is still the first node after locking it, and + * retry if not. Because new nodes are always appended to lists, + * once a node is first in a bin, it remains first until deleted + * or the bin becomes invalidated (upon resizing). However, + * operations that only conditionally update may inspect nodes + * until the point of update. This is a converse of sorts to the + * lazy locking technique described by Herlihy & Shavit. + * + * The main disadvantage of per-bin locks is that other update + * operations on other nodes in a bin list protected by the same + * lock can stall, for example when user equals() or mapping + * functions take a long time. However, statistically, under + * random hash codes, this is not a common problem. Ideally, the + * frequency of nodes in bins follows a Poisson distribution + * (http://en.wikipedia.org/wiki/Poisson_distribution) with a + * parameter of about 0.5 on average, given the resizing threshold + * of 0.75, although with a large variance because of resizing + * granularity. Ignoring variance, the expected occurrences of + * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The + * first values are: + * + * 0: 0.60653066 + * 1: 0.30326533 + * 2: 0.07581633 + * 3: 0.01263606 + * 4: 0.00157952 + * 5: 0.00015795 + * 6: 0.00001316 + * 7: 0.00000094 + * 8: 0.00000006 + * more: less than 1 in ten million + * + * Lock contention probability for two threads accessing distinct + * elements is roughly 1 / (8 * #elements) under random hashes. + * + * Actual hash code distributions encountered in practice + * sometimes deviate significantly from uniform randomness. This + * includes the case when N > (1<<30), so some keys MUST collide. + * Similarly for dumb or hostile usages in which multiple keys are + * designed to have identical hash codes. Also, although we guard + * against the worst effects of this (see method spread), sets of + * hashes may differ only in bits that do not impact their bin + * index for a given power-of-two mask. So we use a secondary + * strategy that applies when the number of nodes in a bin exceeds + * a threshold, and at least one of the keys implements + * Comparable. These TreeBins use a balanced tree to hold nodes + * (a specialized form of red-black trees), bounding search time + * to O(log N). Each search step in a TreeBin is around twice as + * slow as in a regular list, but given that N cannot exceed + * (1<<64) (before running out of addresses) this bounds search + * steps, lock hold times, etc, to reasonable constants (roughly + * 100 nodes inspected per operation worst case) so long as keys + * are Comparable (which is very common -- String, Long, etc). + * TreeBin nodes (TreeNodes) also maintain the same "next" + * traversal pointers as regular nodes, so can be traversed in + * iterators in the same way. + * + * The table is resized when occupancy exceeds a percentage + * threshold (nominally, 0.75, but see below). Only a single + * thread performs the resize (using field "sizeCtl", to arrange + * exclusion), but the table otherwise remains usable for reads + * and updates. Resizing proceeds by transferring bins, one by + * one, from the table to the next table. Because we are using + * power-of-two expansion, the elements from each bin must either + * stay at same index, or move with a power of two offset. We + * eliminate unnecessary node creation by catching cases where old + * nodes can be reused because their next fields won't change. On + * average, only about one-sixth of them need cloning when a table + * doubles. The nodes they replace will be garbage collectable as + * soon as they are no longer referenced by any reader thread that + * may be in the midst of concurrently traversing table. Upon + * transfer, the old table bin contains only a special forwarding + * node (with hash field "MOVED") that contains the next table as * its key. On encountering a forwarding node, access and update - * operations restart, using the new table. To ensure concurrent - * readability of traversals, transfers must proceed from the last - * bin (table.length - 1) up towards the first. Any traversal - * starting from the first bin can then arrange to move to the new - * table for the rest of the traversal without revisiting nodes. - * This constrains bin transfers to a particular order, and so can - * block indefinitely waiting for the next lock, and other threads - * cannot help with the transfer. However, expected stalls are - * infrequent enough to not warrant the additional overhead and - * complexity of access and iteration schemes that could admit - * out-of-order or concurrent bin transfers. - * - * A similar traversal scheme (not yet implemented) can apply to - * partial traversals during partitioned aggregate operations. - * Also, read-only operations give up if ever forwarded to a null - * table, which provides support for shutdown-style clearing, - * which is also not currently implemented. + * operations restart, using the new table. + * + * Each bin transfer requires its bin lock. However, unlike other + * cases, a transfer can skip a bin if it fails to acquire its + * lock, and revisit it later (unless it is a TreeBin). Method + * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that + * have been skipped because of failure to acquire a lock, and + * blocks only if none are available (i.e., only very rarely). + * The transfer operation must also ensure that all accessible + * bins in both the old and new table are usable by any traversal. + * When there are no lock acquisition failures, this is arranged + * simply by proceeding from the last bin (table.length - 1) up + * towards the first. Upon seeing a forwarding node, traversals + * (see class InternalIterator) arrange to move to the new table + * without revisiting nodes. However, when any node is skipped + * during a transfer, all earlier table bins may have become + * visible, so are initialized with a reverse-forwarding node back + * to the old table until the new ones are established. (This + * sometimes requires transiently locking a forwarding node, which + * is possible under the above encoding.) These more expensive + * mechanics trigger only when necessary. + * + * The traversal scheme also applies to partial traversals of + * ranges of bins (via an alternate InternalIterator constructor) + * to support partitioned aggregate operations. Also, read-only + * operations give up if ever forwarded to a null table, which + * provides support for shutdown-style clearing, which is also not + * currently implemented. + * + * Lazy table initialization minimizes footprint until first use, + * and also avoids resizings when the first operation is from a + * putAll, constructor with map argument, or deserialization. + * These cases attempt to override the initial capacity settings, + * but harmlessly fail to take effect in cases of races. * * The element count is maintained using a LongAdder, which avoids * contention on updates but can encounter cache thrashing if read - * too frequently during concurrent updates. To avoid reading so - * often, resizing is normally attempted only upon adding to a bin - * already holding two or more nodes. Under the default threshold - * (0.75), and uniform hash distributions, the probability of this - * occurring at threshold is around 13%, meaning that only about 1 - * in 8 puts check threshold (and after resizing, many fewer do - * so). But this approximation has high variance for small table - * sizes, so we check on any collision for sizes <= 64. Further, - * to increase the probablity that a resize occurs soon enough, we - * offset the threshold (see THRESHOLD_OFFSET) by the expected - * number of puts between checks. This is currently set to 8, in - * accord with the default load factor. In practice, this is - * rarely overridden, and in any case is close enough to other - * plausible values not to waste dynamic probablity computation - * for more precision. + * too frequently during concurrent access. To avoid reading so + * often, resizing is attempted either when a bin lock is + * contended, or upon adding to a bin already holding two or more + * nodes (checked before adding in the xIfAbsent methods, after + * adding in others). Under uniform hash distributions, the + * probability of this occurring at threshold is around 13%, + * meaning that only about 1 in 8 puts check threshold (and after + * resizing, many fewer do so). But this approximation has high + * variance for small table sizes, so we check on any collision + * for sizes <= 64. The bulk putAll operation further reduces + * contention by only committing count updates upon these size + * checks. + * + * Maintaining API and serialization compatibility with previous + * versions of this class introduces several oddities. Mainly: We + * leave untouched but unused constructor arguments refering to + * concurrencyLevel. We accept a loadFactor constructor argument, + * but apply it only to initial table capacity (which is the only + * time that we can guarantee to honor it.) We also declare an + * unused "Segment" class that is instantiated in minimal form + * only when serializing. */ /* ---------------- Constants -------------- */ /** - * The smallest allowed table capacity. Must be a power of 2, at - * least 2. + * The largest possible table capacity. This value must be + * exactly 1<<30 to stay within Java array allocation and indexing + * bounds for power of two table sizes, and is further required + * because the top two bits of 32bit hash fields are used for + * control purposes. */ - static final int MINIMUM_CAPACITY = 2; + private static final int MAXIMUM_CAPACITY = 1 << 30; /** - * The largest allowed table capacity. Must be a power of 2, at - * most 1<<30. + * The default initial table capacity. Must be a power of 2 + * (i.e., at least 1) and at most MAXIMUM_CAPACITY. */ - static final int MAXIMUM_CAPACITY = 1 << 30; + private static final int DEFAULT_CAPACITY = 16; /** - * The default initial table capacity. Must be a power of 2, at - * least MINIMUM_CAPACITY and at most MAXIMUM_CAPACITY + * The largest possible (non-power of two) array size. + * Needed by toArray and related methods. */ - static final int DEFAULT_CAPACITY = 16; + static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** - * The default load factor for this table, used when not otherwise - * specified in a constructor. + * The default concurrency level for this table. Unused but + * defined for compatibility with previous versions of this class. */ - static final float DEFAULT_LOAD_FACTOR = 0.75f; + private static final int DEFAULT_CONCURRENCY_LEVEL = 16; /** - * The default concurrency level for this table. Unused, but - * defined for compatibility with previous versions of this class. + * The load factor for this table. Overrides of this value in + * constructors affect only the initial table capacity. The + * actual floating point value isn't normally used -- it is + * simpler to use expressions such as {@code n - (n >>> 2)} for + * the associated resizing threshold. */ - static final int DEFAULT_CONCURRENCY_LEVEL = 16; + private static final float LOAD_FACTOR = 0.75f; /** - * The count value to offset thesholds to compensate for checking - * for resizing only when inserting into bins with two or more - * elements. See above for explanation. + * The buffer size for skipped bins during transfers. The + * value is arbitrary but should be large enough to avoid + * most locking stalls during resizes. */ - static final int THRESHOLD_OFFSET = 8; + private static final int TRANSFER_BUFFER_SIZE = 32; /** - * Special node hash value indicating to use table in node.key - * Must be negative. + * The bin count threshold for using a tree rather than list for a + * bin. The value reflects the approximate break-even point for + * using tree-based operations. + */ + private static final int TREE_THRESHOLD = 8; + + /* + * Encodings for special uses of Node hash fields. See above for + * explanation. */ - static final int MOVED = -1; + static final int MOVED = 0x80000000; // hash field for forwarding nodes + static final int LOCKED = 0x40000000; // set/tested only as a bit + static final int WAITING = 0xc0000000; // both bits set/tested together + static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash /* ---------------- Fields -------------- */ /** * The array of bins. Lazily initialized upon first insertion. - * Size is always a power of two. Accessed directly by inner - * classes. + * Size is always a power of two. Accessed directly by iterators. */ transient volatile Node[] table; - /** The counter maintaining number of elements. */ + /** + * The counter maintaining number of elements. + */ private transient final LongAdder counter; - /** Nonzero when table is being initialized or resized. Updated via CAS. */ - private transient volatile int resizing; - /** The target load factor for the table. */ - private transient float loadFactor; - /** The next element count value upon which to resize the table. */ - private transient int threshold; - /** The initial capacity of the table. */ - private transient int initCap; + + /** + * Table initialization and resizing control. When negative, the + * table is being initialized or resized. Otherwise, when table is + * null, holds the initial table size to use upon creation, or 0 + * for default. After initialization, holds the next element count + * value upon which to resize the table. + */ + private transient volatile int sizeCtl; // views - transient Set keySet; - transient Set> entrySet; - transient Collection values; - - /** For serialization compatability. Null unless serialized; see below */ - Segment[] segments; + private transient KeySet keySet; + private transient Values values; + private transient EntrySet entrySet; - /** - * Applies a supplemental hash function to a given hashCode, which - * defends against poor quality hash functions. The result must - * be non-negative, and for reasonable performance must have good - * avalanche properties; i.e., that each bit of the argument - * affects each bit (except sign bit) of the result. + /** For serialization compatibility. Null unless serialized; see below */ + private Segment[] segments; + + /* ---------------- Table element access -------------- */ + + /* + * Volatile access methods are used for table elements as well as + * elements of in-progress next table while resizing. Uses are + * null checked by callers, and implicitly bounds-checked, relying + * on the invariants that tab arrays have non-zero size, and all + * indices are masked with (tab.length - 1) which is never + * negative and always less than length. Note that, to be correct + * wrt arbitrary concurrency errors by users, bounds checks must + * operate on local variables, which accounts for some odd-looking + * inline assignments below. */ - private static final int spread(int h) { - // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/ - h ^= h >>> 16; - h *= 0x85ebca6b; - h ^= h >>> 13; - h *= 0xc2b2ae35; - return (h >>> 16) ^ (h & 0x7fffffff); // mask out sign bit + + static final Node tabAt(Node[] tab, int i) { // used by InternalIterator + return (Node)UNSAFE.getObjectVolatile(tab, ((long)i< this.val = val; this.next = next; } - } - /* - * Volatile access nethods are used for table elements as well as - * elements of in-progress next table while resizing. Uses in - * access and update methods are null checked by callers, and - * implicitly bounds-checked, relying on the invariants that tab - * arrays have non-zero size, and all indices are masked with - * (tab.length - 1) which is never negative and always less than - * length. The "relaxed" non-volatile forms are used only during - * table initialization. The only other usage is in - * HashIterator.advance, which performs explicit checks. - */ + /** CompareAndSet the hash field */ + final boolean casHash(int cmp, int val) { + return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val); + } - static final Node tabAt(Node[] tab, int i) { // used in HashIterator - return (Node)UNSAFE.getObjectVolatile(tab, ((long)i< 1 ? 64 : 1; - private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) { - return UNSAFE.compareAndSwapObject(tab, ((long)i<= 0 && i < tab.length) { // bounds check + int r = ThreadLocalRandom.current().nextInt(); // randomize spins + int spins = MAX_SPINS, h; + while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) { + if (spins >= 0) { + r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift + if (r >= 0 && --spins == 0) + Thread.yield(); // yield before block + } + else if (casHash(h, h | WAITING)) { + synchronized (this) { + if (tabAt(tab, i) == this && + (hash & WAITING) == WAITING) { + try { + wait(); + } catch (InterruptedException ie) { + Thread.currentThread().interrupt(); + } + } + else + notifyAll(); // possibly won race vs signaller + } + break; + } + } + } + } - private static final void setTabAt(Node[] tab, int i, Node v) { - UNSAFE.putObjectVolatile(tab, ((long)i< k = Node.class; + hashOffset = UNSAFE.objectFieldOffset + (k.getDeclaredField("hash")); + } catch (Exception e) { + throw new Error(e); + } + } } - private static final void relaxedSetTabAt(Node[] tab, int i, Node v) { - UNSAFE.putObject(tab, ((long)i< + * for the same T, so we cannot invoke compareTo among them. To + * handle this, the tree is ordered primarily by hash value, then + * by getClass().getName() order, and then by Comparator order + * among elements of the same class. On lookup at a node, if + * elements are not comparable or compare as 0, both left and + * right children may need to be searched in the case of tied hash + * values. (This corresponds to the full list search that would be + * necessary if all elements were non-Comparable and had tied + * hashes.) The red-black balancing code is updated from + * pre-jdk-collections + * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java) + * based in turn on Cormen, Leiserson, and Rivest "Introduction to + * Algorithms" (CLR). + * + * TreeBins also maintain a separate locking discipline than + * regular bins. Because they are forwarded via special MOVED + * nodes at bin heads (which can never change once established), + * we cannot use those nodes as locks. Instead, TreeBin + * extends AbstractQueuedSynchronizer to support a simple form of + * read-write lock. For update operations and table validation, + * the exclusive form of lock behaves in the same way as bin-head + * locks. However, lookups use shared read-lock mechanics to allow + * multiple readers in the absence of writers. Additionally, + * these lookups do not ever block: While the lock is not + * available, they proceed along the slow traversal path (via + * next-pointers) until the lock becomes available or the list is + * exhausted, whichever comes first. (These cases are not fast, + * but maximize aggregate expected throughput.) The AQS mechanics + * for doing this are straightforward. The lock state is held as + * AQS getState(). Read counts are negative; the write count (1) + * is positive. There are no signalling preferences among readers + * and writers. Since we don't need to export full Lock API, we + * just override the minimal AQS methods and use them directly. + */ + static final class TreeBin extends AbstractQueuedSynchronizer { + private static final long serialVersionUID = 2249069246763182397L; + transient TreeNode root; // root of tree + transient TreeNode first; // head of next-pointer list - /** Implementation for get and containsKey **/ - private final Object internalGet(Object k) { - int h = spread(k.hashCode()); - Node[] tab = table; - retry: while (tab != null) { - Node e = tabAt(tab, (tab.length - 1) & h); - while (e != null) { - int eh = e.hash; - if (eh == h) { - Object ek = e.key, ev = e.val; - if (ev != null && ek != null && (k == ek || k.equals(ek))) - return ev; - } - else if (eh < 0) { // bin was moved during resize - tab = (Node[])e.key; - continue retry; + /* AQS overrides */ + public final boolean isHeldExclusively() { return getState() > 0; } + public final boolean tryAcquire(int ignore) { + if (compareAndSetState(0, 1)) { + setExclusiveOwnerThread(Thread.currentThread()); + return true; + } + return false; + } + public final boolean tryRelease(int ignore) { + setExclusiveOwnerThread(null); + setState(0); + return true; + } + public final int tryAcquireShared(int ignore) { + for (int c;;) { + if ((c = getState()) > 0) + return -1; + if (compareAndSetState(c, c -1)) + return 1; + } + } + public final boolean tryReleaseShared(int ignore) { + int c; + do {} while (!compareAndSetState(c = getState(), c + 1)); + return c == -1; + } + + /** From CLR */ + private void rotateLeft(TreeNode p) { + if (p != null) { + TreeNode r = p.right, pp, rl; + if ((rl = p.right = r.left) != null) + rl.parent = p; + if ((pp = r.parent = p.parent) == null) + root = r; + else if (pp.left == p) + pp.left = r; + else + pp.right = r; + r.left = p; + p.parent = r; + } + } + + /** From CLR */ + private void rotateRight(TreeNode p) { + if (p != null) { + TreeNode l = p.left, pp, lr; + if ((lr = p.left = l.right) != null) + lr.parent = p; + if ((pp = l.parent = p.parent) == null) + root = l; + else if (pp.right == p) + pp.right = l; + else + pp.left = l; + l.right = p; + p.parent = l; + } + } + + /** + * Return the TreeNode (or null if not found) for the given key + * starting at given root. + */ + @SuppressWarnings("unchecked") // suppress Comparable cast warning + final TreeNode getTreeNode(int h, Object k, TreeNode p) { + Class c = k.getClass(); + while (p != null) { + int dir, ph; Object pk; Class pc; + if ((ph = p.hash) == h) { + if ((pk = p.key) == k || k.equals(pk)) + return p; + if (c != (pc = pk.getClass()) || + !(k instanceof Comparable) || + (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) { + dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName()); + TreeNode r = null, s = null, pl, pr; + if (dir >= 0) { + if ((pl = p.left) != null && h <= pl.hash) + s = pl; + } + else if ((pr = p.right) != null && h >= pr.hash) + s = pr; + if (s != null && (r = getTreeNode(h, k, s)) != null) + return r; + } } - e = e.next; + else + dir = (h < ph) ? -1 : 1; + p = (dir > 0) ? p.right : p.left; } - break; + return null; } - return null; - } - /** Implementation for put and putIfAbsent **/ - private final Object internalPut(Object k, Object v, boolean replace) { - int h = spread(k.hashCode()); - Object oldVal = null; // the previous value or null if none - Node[] tab = table; - for (;;) { - Node e; int i; - if (tab == null) - tab = grow(0); - else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) { - if (casTabAt(tab, i, null, new Node(h, k, v, null))) + /** + * Wrapper for getTreeNode used by CHM.get. Tries to obtain + * read-lock to call getTreeNode, but during failure to get + * lock, searches along next links. + */ + final Object getValue(int h, Object k) { + Node r = null; + int c = getState(); // Must read lock state first + for (Node e = first; e != null; e = e.next) { + if (c <= 0 && compareAndSetState(c, c - 1)) { + try { + r = getTreeNode(h, k, root); + } finally { + releaseShared(0); + } break; + } + else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) { + r = e; + break; + } + else + c = getState(); + } + return r == null ? null : r.val; + } + + /** + * Finds or adds a node. + * @return null if added + */ + @SuppressWarnings("unchecked") // suppress Comparable cast warning + final TreeNode putTreeNode(int h, Object k, Object v) { + Class c = k.getClass(); + TreeNode pp = root, p = null; + int dir = 0; + while (pp != null) { // find existing node or leaf to insert at + int ph; Object pk; Class pc; + p = pp; + if ((ph = p.hash) == h) { + if ((pk = p.key) == k || k.equals(pk)) + return p; + if (c != (pc = pk.getClass()) || + !(k instanceof Comparable) || + (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) { + dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName()); + TreeNode r = null, s = null, pl, pr; + if (dir >= 0) { + if ((pl = p.left) != null && h <= pl.hash) + s = pl; + } + else if ((pr = p.right) != null && h >= pr.hash) + s = pr; + if (s != null && (r = getTreeNode(h, k, s)) != null) + return r; + } + } + else + dir = (h < ph) ? -1 : 1; + pp = (dir > 0) ? p.right : p.left; + } + + TreeNode f = first; + TreeNode x = first = new TreeNode(h, k, v, f, p); + if (p == null) + root = x; + else { // attach and rebalance; adapted from CLR + TreeNode xp, xpp; + if (f != null) + f.prev = x; + if (dir <= 0) + p.left = x; + else + p.right = x; + x.red = true; + while (x != null && (xp = x.parent) != null && xp.red && + (xpp = xp.parent) != null) { + TreeNode xppl = xpp.left; + if (xp == xppl) { + TreeNode y = xpp.right; + if (y != null && y.red) { + y.red = false; + xp.red = false; + xpp.red = true; + x = xpp; + } + else { + if (x == xp.right) { + rotateLeft(x = xp); + xpp = (xp = x.parent) == null ? null : xp.parent; + } + if (xp != null) { + xp.red = false; + if (xpp != null) { + xpp.red = true; + rotateRight(xpp); + } + } + } + } + else { + TreeNode y = xppl; + if (y != null && y.red) { + y.red = false; + xp.red = false; + xpp.red = true; + x = xpp; + } + else { + if (x == xp.left) { + rotateRight(x = xp); + xpp = (xp = x.parent) == null ? null : xp.parent; + } + if (xp != null) { + xp.red = false; + if (xpp != null) { + xpp.red = true; + rotateLeft(xpp); + } + } + } + } + } + TreeNode r = root; + if (r != null && r.red) + r.red = false; + } + return null; + } + + /** + * Removes the given node, that must be present before this + * call. This is messier than typical red-black deletion code + * because we cannot swap the contents of an interior node + * with a leaf successor that is pinned by "next" pointers + * that are accessible independently of lock. So instead we + * swap the tree linkages. + */ + final void deleteTreeNode(TreeNode p) { + TreeNode next = (TreeNode)p.next; // unlink traversal pointers + TreeNode pred = p.prev; + if (pred == null) + first = next; + else + pred.next = next; + if (next != null) + next.prev = pred; + TreeNode replacement; + TreeNode pl = p.left; + TreeNode pr = p.right; + if (pl != null && pr != null) { + TreeNode s = pr, sl; + while ((sl = s.left) != null) // find successor + s = sl; + boolean c = s.red; s.red = p.red; p.red = c; // swap colors + TreeNode sr = s.right; + TreeNode pp = p.parent; + if (s == pr) { // p was s's direct parent + p.parent = s; + s.right = p; + } + else { + TreeNode sp = s.parent; + if ((p.parent = sp) != null) { + if (s == sp.left) + sp.left = p; + else + sp.right = p; + } + if ((s.right = pr) != null) + pr.parent = s; + } + p.left = null; + if ((p.right = sr) != null) + sr.parent = p; + if ((s.left = pl) != null) + pl.parent = s; + if ((s.parent = pp) == null) + root = s; + else if (p == pp.left) + pp.left = s; + else + pp.right = s; + replacement = sr; + } + else + replacement = (pl != null) ? pl : pr; + TreeNode pp = p.parent; + if (replacement == null) { + if (pp == null) { + root = null; + return; + } + replacement = p; } - else if (e.hash < 0) - tab = (Node[])e.key; else { - boolean validated = false; - boolean checkSize = false; - synchronized(e) { - Node first = e; - for (;;) { - Object ek, ev; - if ((ev = e.val) == null) - break; - if (e.hash == h && (ek = e.key) != null && - (k == ek || k.equals(ek))) { - if (tabAt(tab, i) == first) { - validated = true; - oldVal = ev; - if (replace) - e.val = v; + replacement.parent = pp; + if (pp == null) + root = replacement; + else if (p == pp.left) + pp.left = replacement; + else + pp.right = replacement; + p.left = p.right = p.parent = null; + } + if (!p.red) { // rebalance, from CLR + TreeNode x = replacement; + while (x != null) { + TreeNode xp, xpl; + if (x.red || (xp = x.parent) == null) { + x.red = false; + break; + } + if (x == (xpl = xp.left)) { + TreeNode sib = xp.right; + if (sib != null && sib.red) { + sib.red = false; + xp.red = true; + rotateLeft(xp); + sib = (xp = x.parent) == null ? null : xp.right; + } + if (sib == null) + x = xp; + else { + TreeNode sl = sib.left, sr = sib.right; + if ((sr == null || !sr.red) && + (sl == null || !sl.red)) { + sib.red = true; + x = xp; + } + else { + if (sr == null || !sr.red) { + if (sl != null) + sl.red = false; + sib.red = true; + rotateRight(sib); + sib = (xp = x.parent) == null ? null : xp.right; + } + if (sib != null) { + sib.red = (xp == null) ? false : xp.red; + if ((sr = sib.right) != null) + sr.red = false; + } + if (xp != null) { + xp.red = false; + rotateLeft(xp); + } + x = root; } - break; } - Node last = e; - if ((e = e.next) == null) { - if (tabAt(tab, i) == first) { - validated = true; - last.next = new Node(h, k, v, null); - if (last != first || tab.length <= 64) - checkSize = true; + } + else { // symmetric + TreeNode sib = xpl; + if (sib != null && sib.red) { + sib.red = false; + xp.red = true; + rotateRight(xp); + sib = (xp = x.parent) == null ? null : xp.left; + } + if (sib == null) + x = xp; + else { + TreeNode sl = sib.left, sr = sib.right; + if ((sl == null || !sl.red) && + (sr == null || !sr.red)) { + sib.red = true; + x = xp; + } + else { + if (sl == null || !sl.red) { + if (sr != null) + sr.red = false; + sib.red = true; + rotateLeft(sib); + sib = (xp = x.parent) == null ? null : xp.left; + } + if (sib != null) { + sib.red = (xp == null) ? false : xp.red; + if ((sl = sib.left) != null) + sl.red = false; + } + if (xp != null) { + xp.red = false; + rotateRight(xp); + } + x = root; } - break; } } } - if (validated) { - if (checkSize && tab.length < MAXIMUM_CAPACITY && - resizing == 0 && counter.sum() >= threshold) - grow(0); - break; + } + if (p == replacement && (pp = p.parent) != null) { + if (p == pp.left) // detach pointers + pp.left = null; + else if (p == pp.right) + pp.right = null; + p.parent = null; + } + } + } + + /* ---------------- Collision reduction methods -------------- */ + + /** + * Spreads higher bits to lower, and also forces top 2 bits to 0. + * Because the table uses power-of-two masking, sets of hashes + * that vary only in bits above the current mask will always + * collide. (Among known examples are sets of Float keys holding + * consecutive whole numbers in small tables.) To counter this, + * we apply a transform that spreads the impact of higher bits + * downward. There is a tradeoff between speed, utility, and + * quality of bit-spreading. Because many common sets of hashes + * are already reasonably distributed across bits (so don't benefit + * from spreading), and because we use trees to handle large sets + * of collisions in bins, we don't need excessively high quality. + */ + private static final int spread(int h) { + h ^= (h >>> 18) ^ (h >>> 12); + return (h ^ (h >>> 10)) & HASH_BITS; + } + + /** + * Replaces a list bin with a tree bin. Call only when locked. + * Fails to replace if the given key is non-comparable or table + * is, or needs, resizing. + */ + private final void replaceWithTreeBin(Node[] tab, int index, Object key) { + if ((key instanceof Comparable) && + (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) { + TreeBin t = new TreeBin(); + for (Node e = tabAt(tab, index); e != null; e = e.next) + t.putTreeNode(e.hash & HASH_BITS, e.key, e.val); + setTabAt(tab, index, new Node(MOVED, t, null, null)); + } + } + + /* ---------------- Internal access and update methods -------------- */ + + /** Implementation for get and containsKey */ + private final Object internalGet(Object k) { + int h = spread(k.hashCode()); + retry: for (Node[] tab = table; tab != null;) { + Node e, p; Object ek, ev; int eh; // locals to read fields once + for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) { + if ((eh = e.hash) == MOVED) { + if ((ek = e.key) instanceof TreeBin) // search TreeBin + return ((TreeBin)ek).getValue(h, k); + else { // restart with new table + tab = (Node[])ek; + continue retry; + } } + else if ((eh & HASH_BITS) == h && (ev = e.val) != null && + ((ek = e.key) == k || k.equals(ek))) + return ev; } + break; } - if (oldVal == null) - counter.increment(); - return oldVal; + return null; } /** - * Covers the four public remove/replace methods: Replaces node - * value with v, conditional upon match of cv if non-null. If - * resulting value is null, delete. + * Implementation for the four public remove/replace methods: + * Replaces node value with v, conditional upon match of cv if + * non-null. If resulting value is null, delete. */ private final Object internalReplace(Object k, Object v, Object cv) { int h = spread(k.hashCode()); Object oldVal = null; - Node e; int i; - Node[] tab = table; - while (tab != null && - (e = tabAt(tab, i = (tab.length - 1) & h)) != null) { - if (e.hash < 0) - tab = (Node[])e.key; - else { + for (Node[] tab = table;;) { + Node f; int i, fh; Object fk; + if (tab == null || + (f = tabAt(tab, i = (tab.length - 1) & h)) == null) + break; + else if ((fh = f.hash) == MOVED) { + if ((fk = f.key) instanceof TreeBin) { + TreeBin t = (TreeBin)fk; + boolean validated = false; + boolean deleted = false; + t.acquire(0); + try { + if (tabAt(tab, i) == f) { + validated = true; + TreeNode p = t.getTreeNode(h, k, t.root); + if (p != null) { + Object pv = p.val; + if (cv == null || cv == pv || cv.equals(pv)) { + oldVal = pv; + if ((p.val = v) == null) { + deleted = true; + t.deleteTreeNode(p); + } + } + } + } + } finally { + t.release(0); + } + if (validated) { + if (deleted) + counter.add(-1L); + break; + } + } + else + tab = (Node[])fk; + } + else if ((fh & HASH_BITS) != h && f.next == null) // precheck + break; // rules out possible existence + else if ((fh & LOCKED) != 0) { + checkForResize(); // try resizing if can't get lock + f.tryAwaitLock(tab, i); + } + else if (f.casHash(fh, fh | LOCKED)) { boolean validated = false; boolean deleted = false; - synchronized(e) { - Node pred = null; - Node first = e; - for (;;) { - Object ek, ev; - if ((ev = e.val) == null) - break; - if (e.hash == h && (ek = e.key) != null && - (k == ek || k.equals(ek))) { - if (tabAt(tab, i) == first) { - validated = true; + try { + if (tabAt(tab, i) == f) { + validated = true; + for (Node e = f, pred = null;;) { + Object ek, ev; + if ((e.hash & HASH_BITS) == h && + ((ev = e.val) != null) && + ((ek = e.key) == k || k.equals(ek))) { if (cv == null || cv == ev || cv.equals(ev)) { oldVal = ev; if ((e.val = v) == null) { @@ -460,20 +1201,22 @@ public class ConcurrentHashMapV8 setTabAt(tab, i, en); } } + break; } - break; - } - pred = e; - if ((e = e.next) == null) { - if (tabAt(tab, i) == first) - validated = true; - break; + pred = e; + if ((e = e.next) == null) + break; } } + } finally { + if (!f.casHash(fh | LOCKED, fh)) { + f.hash = fh; + synchronized (f) { f.notifyAll(); }; + } } if (validated) { if (deleted) - counter.decrement(); + counter.add(-1L); break; } } @@ -481,509 +1224,1138 @@ public class ConcurrentHashMapV8 return oldVal; } - /** Implementation for computeIfAbsent and compute */ - @SuppressWarnings("unchecked") - private final V internalCompute(K k, - MappingFunction f, - boolean replace) { + /* + * Internal versions of the five insertion methods, each a + * little more complicated than the last. All have + * the same basic structure as the first (internalPut): + * 1. If table uninitialized, create + * 2. If bin empty, try to CAS new node + * 3. If bin stale, use new table + * 4. if bin converted to TreeBin, validate and relay to TreeBin methods + * 5. Lock and validate; if valid, scan and add or update + * + * The others interweave other checks and/or alternative actions: + * * Plain put checks for and performs resize after insertion. + * * putIfAbsent prescans for mapping without lock (and fails to add + * if present), which also makes pre-emptive resize checks worthwhile. + * * computeIfAbsent extends form used in putIfAbsent with additional + * mechanics to deal with, calls, potential exceptions and null + * returns from function call. + * * compute uses the same function-call mechanics, but without + * the prescans + * * putAll attempts to pre-allocate enough table space + * and more lazily performs count updates and checks. + * + * Someday when details settle down a bit more, it might be worth + * some factoring to reduce sprawl. + */ + + /** Implementation for put */ + private final Object internalPut(Object k, Object v) { int h = spread(k.hashCode()); - V val = null; - boolean added = false; - boolean validated = false; - Node[] tab = table; - do { - Node e; int i; + int count = 0; + for (Node[] tab = table;;) { + int i; Node f; int fh; Object fk; if (tab == null) - tab = grow(0); - else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) { - Node node = new Node(h, k, null, null); - synchronized(node) { - if (casTabAt(tab, i, null, node)) { - validated = true; - try { - val = f.map(k); - if (val != null) { - node.val = val; - added = true; + tab = initTable(); + else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) { + if (casTabAt(tab, i, null, new Node(h, k, v, null))) + break; // no lock when adding to empty bin + } + else if ((fh = f.hash) == MOVED) { + if ((fk = f.key) instanceof TreeBin) { + TreeBin t = (TreeBin)fk; + Object oldVal = null; + t.acquire(0); + try { + if (tabAt(tab, i) == f) { + count = 2; + TreeNode p = t.putTreeNode(h, k, v); + if (p != null) { + oldVal = p.val; + p.val = v; } - } finally { - if (!added) - setTabAt(tab, i, null); } + } finally { + t.release(0); + } + if (count != 0) { + if (oldVal != null) + return oldVal; + break; } } + else + tab = (Node[])fk; } - else if (e.hash < 0) - tab = (Node[])e.key; + else if ((fh & LOCKED) != 0) { + checkForResize(); + f.tryAwaitLock(tab, i); + } + else if (f.casHash(fh, fh | LOCKED)) { + Object oldVal = null; + try { // needed in case equals() throws + if (tabAt(tab, i) == f) { + count = 1; + for (Node e = f;; ++count) { + Object ek, ev; + if ((e.hash & HASH_BITS) == h && + (ev = e.val) != null && + ((ek = e.key) == k || k.equals(ek))) { + oldVal = ev; + e.val = v; + break; + } + Node last = e; + if ((e = e.next) == null) { + last.next = new Node(h, k, v, null); + if (count >= TREE_THRESHOLD) + replaceWithTreeBin(tab, i, k); + break; + } + } + } + } finally { // unlock and signal if needed + if (!f.casHash(fh | LOCKED, fh)) { + f.hash = fh; + synchronized (f) { f.notifyAll(); }; + } + } + if (count != 0) { + if (oldVal != null) + return oldVal; + if (tab.length <= 64) + count = 2; + break; + } + } + } + counter.add(1L); + if (count > 1) + checkForResize(); + return null; + } + + /** Implementation for putIfAbsent */ + private final Object internalPutIfAbsent(Object k, Object v) { + int h = spread(k.hashCode()); + int count = 0; + for (Node[] tab = table;;) { + int i; Node f; int fh; Object fk, fv; + if (tab == null) + tab = initTable(); + else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) { + if (casTabAt(tab, i, null, new Node(h, k, v, null))) + break; + } + else if ((fh = f.hash) == MOVED) { + if ((fk = f.key) instanceof TreeBin) { + TreeBin t = (TreeBin)fk; + Object oldVal = null; + t.acquire(0); + try { + if (tabAt(tab, i) == f) { + count = 2; + TreeNode p = t.putTreeNode(h, k, v); + if (p != null) + oldVal = p.val; + } + } finally { + t.release(0); + } + if (count != 0) { + if (oldVal != null) + return oldVal; + break; + } + } + else + tab = (Node[])fk; + } + else if ((fh & HASH_BITS) == h && (fv = f.val) != null && + ((fk = f.key) == k || k.equals(fk))) + return fv; else { - boolean checkSize = false; - synchronized(e) { - Node first = e; - for (;;) { + Node g = f.next; + if (g != null) { // at least 2 nodes -- search and maybe resize + for (Node e = g;;) { Object ek, ev; - if ((ev = e.val) == null) + if ((e.hash & HASH_BITS) == h && (ev = e.val) != null && + ((ek = e.key) == k || k.equals(ek))) + return ev; + if ((e = e.next) == null) { + checkForResize(); break; - if (e.hash == h && (ek = e.key) != null && - (k == ek || k.equals(ek))) { - if (tabAt(tab, i) == first) { - validated = true; - if (replace && (ev = f.map(k)) != null) - e.val = ev; - val = (V)ev; + } + } + } + if (((fh = f.hash) & LOCKED) != 0) { + checkForResize(); + f.tryAwaitLock(tab, i); + } + else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) { + Object oldVal = null; + try { + if (tabAt(tab, i) == f) { + count = 1; + for (Node e = f;; ++count) { + Object ek, ev; + if ((e.hash & HASH_BITS) == h && + (ev = e.val) != null && + ((ek = e.key) == k || k.equals(ek))) { + oldVal = ev; + break; + } + Node last = e; + if ((e = e.next) == null) { + last.next = new Node(h, k, v, null); + if (count >= TREE_THRESHOLD) + replaceWithTreeBin(tab, i, k); + break; + } + } + } + } finally { + if (!f.casHash(fh | LOCKED, fh)) { + f.hash = fh; + synchronized (f) { f.notifyAll(); }; + } + } + if (count != 0) { + if (oldVal != null) + return oldVal; + if (tab.length <= 64) + count = 2; + break; + } + } + } + } + counter.add(1L); + if (count > 1) + checkForResize(); + return null; + } + + /** Implementation for computeIfAbsent */ + private final Object internalComputeIfAbsent(K k, + MappingFunction mf) { + int h = spread(k.hashCode()); + Object val = null; + int count = 0; + for (Node[] tab = table;;) { + Node f; int i, fh; Object fk, fv; + if (tab == null) + tab = initTable(); + else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) { + Node node = new Node(fh = h | LOCKED, k, null, null); + if (casTabAt(tab, i, null, node)) { + count = 1; + try { + if ((val = mf.map(k)) != null) + node.val = val; + } finally { + if (val == null) + setTabAt(tab, i, null); + if (!node.casHash(fh, h)) { + node.hash = h; + synchronized (node) { node.notifyAll(); }; + } + } + } + if (count != 0) + break; + } + else if ((fh = f.hash) == MOVED) { + if ((fk = f.key) instanceof TreeBin) { + TreeBin t = (TreeBin)fk; + boolean added = false; + t.acquire(0); + try { + if (tabAt(tab, i) == f) { + count = 1; + TreeNode p = t.getTreeNode(h, k, t.root); + if (p != null) + val = p.val; + else if ((val = mf.map(k)) != null) { + added = true; + count = 2; + t.putTreeNode(h, k, val); } - break; } - Node last = e; + } finally { + t.release(0); + } + if (count != 0) { + if (!added) + return val; + break; + } + } + else + tab = (Node[])fk; + } + else if ((fh & HASH_BITS) == h && (fv = f.val) != null && + ((fk = f.key) == k || k.equals(fk))) + return fv; + else { + Node g = f.next; + if (g != null) { + for (Node e = g;;) { + Object ek, ev; + if ((e.hash & HASH_BITS) == h && (ev = e.val) != null && + ((ek = e.key) == k || k.equals(ek))) + return ev; if ((e = e.next) == null) { - if (tabAt(tab, i) == first) { - validated = true; - if ((val = f.map(k)) != null) { - last.next = new Node(h, k, val, null); - added = true; - if (last != first || tab.length <= 64) - checkSize = true; + checkForResize(); + break; + } + } + } + if (((fh = f.hash) & LOCKED) != 0) { + checkForResize(); + f.tryAwaitLock(tab, i); + } + else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) { + boolean added = false; + try { + if (tabAt(tab, i) == f) { + count = 1; + for (Node e = f;; ++count) { + Object ek, ev; + if ((e.hash & HASH_BITS) == h && + (ev = e.val) != null && + ((ek = e.key) == k || k.equals(ek))) { + val = ev; + break; + } + Node last = e; + if ((e = e.next) == null) { + if ((val = mf.map(k)) != null) { + added = true; + last.next = new Node(h, k, val, null); + if (count >= TREE_THRESHOLD) + replaceWithTreeBin(tab, i, k); + } + break; } } - break; } + } finally { + if (!f.casHash(fh | LOCKED, fh)) { + f.hash = fh; + synchronized (f) { f.notifyAll(); }; + } + } + if (count != 0) { + if (!added) + return val; + if (tab.length <= 64) + count = 2; + break; } } - if (checkSize && tab.length < MAXIMUM_CAPACITY && - resizing == 0 && counter.sum() >= threshold) - grow(0); - } - } while (!validated); - if (added) - counter.increment(); + } + } + if (val != null) { + counter.add(1L); + if (count > 1) + checkForResize(); + } return val; } - /* - * Reclassifies nodes in each bin to new table. Because we are - * using power-of-two expansion, the elements from each bin must - * either stay at same index, or move with a power of two - * offset. We eliminate unnecessary node creation by catching - * cases where old nodes can be reused because their next fields - * won't change. Statistically, at the default threshold, only - * about one-sixth of them need cloning when a table doubles. The - * nodes they replace will be garbage collectable as soon as they - * are no longer referenced by any reader thread that may be in - * the midst of concurrently traversing table. - * - * Transfers are done from the bottom up to preserve iterator - * traversability. On each step, the old bin is locked, - * moved/copied, and then replaced with a forwarding node. - */ - private static final void transfer(Node[] tab, Node[] nextTab) { - int n = tab.length; - int mask = nextTab.length - 1; - Node fwd = new Node(MOVED, nextTab, null, null); - for (int i = n - 1; i >= 0; --i) { - for (Node e;;) { - if ((e = tabAt(tab, i)) == null) { - if (casTabAt(tab, i, e, fwd)) + /** Implementation for compute */ + @SuppressWarnings("unchecked") + private final Object internalCompute(K k, + RemappingFunction mf) { + int h = spread(k.hashCode()); + Object val = null; + int delta = 0; + int count = 0; + for (Node[] tab = table;;) { + Node f; int i, fh; Object fk; + if (tab == null) + tab = initTable(); + else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) { + Node node = new Node(fh = h | LOCKED, k, null, null); + if (casTabAt(tab, i, null, node)) { + try { + count = 1; + if ((val = mf.remap(k, null)) != null) { + node.val = val; + delta = 1; + } + } finally { + if (delta == 0) + setTabAt(tab, i, null); + if (!node.casHash(fh, h)) { + node.hash = h; + synchronized (node) { node.notifyAll(); }; + } + } + } + if (count != 0) + break; + } + else if ((fh = f.hash) == MOVED) { + if ((fk = f.key) instanceof TreeBin) { + TreeBin t = (TreeBin)fk; + t.acquire(0); + try { + if (tabAt(tab, i) == f) { + count = 1; + TreeNode p = t.getTreeNode(h, k, t.root); + Object pv = (p == null) ? null : p.val; + if ((val = mf.remap(k, (V)pv)) != null) { + if (p != null) + p.val = val; + else { + count = 2; + delta = 1; + t.putTreeNode(h, k, val); + } + } + else if (p != null) { + delta = -1; + t.deleteTreeNode(p); + } + } + } finally { + t.release(0); + } + if (count != 0) break; } - else { - boolean validated = false; - synchronized(e) { - int idx = e.hash & mask; - Node lastRun = e; - for (Node p = e.next; p != null; p = p.next) { - int j = p.hash & mask; - if (j != idx) { - idx = j; - lastRun = p; + else + tab = (Node[])fk; + } + else if ((fh & LOCKED) != 0) { + checkForResize(); + f.tryAwaitLock(tab, i); + } + else if (f.casHash(fh, fh | LOCKED)) { + try { + if (tabAt(tab, i) == f) { + count = 1; + for (Node e = f, pred = null;; ++count) { + Object ek, ev; + if ((e.hash & HASH_BITS) == h && + (ev = e.val) != null && + ((ek = e.key) == k || k.equals(ek))) { + val = mf.remap(k, (V)ev); + if (val != null) + e.val = val; + else { + delta = -1; + Node en = e.next; + if (pred != null) + pred.next = en; + else + setTabAt(tab, i, en); + } + break; + } + pred = e; + if ((e = e.next) == null) { + if ((val = mf.remap(k, null)) != null) { + pred.next = new Node(h, k, val, null); + delta = 1; + if (count >= TREE_THRESHOLD) + replaceWithTreeBin(tab, i, k); + } + break; } } - if (tabAt(tab, i) == e) { - validated = true; - relaxedSetTabAt(nextTab, idx, lastRun); - for (Node p = e; p != lastRun; p = p.next) { - int h = p.hash; - int j = h & mask; - Node r = relaxedTabAt(nextTab, j); - relaxedSetTabAt(nextTab, j, - new Node(h, p.key, p.val, r)); + } + } finally { + if (!f.casHash(fh | LOCKED, fh)) { + f.hash = fh; + synchronized (f) { f.notifyAll(); }; + } + } + if (count != 0) { + if (tab.length <= 64) + count = 2; + break; + } + } + } + if (delta != 0) { + counter.add((long)delta); + if (count > 1) + checkForResize(); + } + return val; + } + + /** Implementation for putAll */ + private final void internalPutAll(Map m) { + tryPresize(m.size()); + long delta = 0L; // number of uncommitted additions + boolean npe = false; // to throw exception on exit for nulls + try { // to clean up counts on other exceptions + for (Map.Entry entry : m.entrySet()) { + Object k, v; + if (entry == null || (k = entry.getKey()) == null || + (v = entry.getValue()) == null) { + npe = true; + break; + } + int h = spread(k.hashCode()); + for (Node[] tab = table;;) { + int i; Node f; int fh; Object fk; + if (tab == null) + tab = initTable(); + else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){ + if (casTabAt(tab, i, null, new Node(h, k, v, null))) { + ++delta; + break; + } + } + else if ((fh = f.hash) == MOVED) { + if ((fk = f.key) instanceof TreeBin) { + TreeBin t = (TreeBin)fk; + boolean validated = false; + t.acquire(0); + try { + if (tabAt(tab, i) == f) { + validated = true; + TreeNode p = t.getTreeNode(h, k, t.root); + if (p != null) + p.val = v; + else { + t.putTreeNode(h, k, v); + ++delta; + } + } + } finally { + t.release(0); } - setTabAt(tab, i, fwd); + if (validated) + break; + } + else + tab = (Node[])fk; + } + else if ((fh & LOCKED) != 0) { + counter.add(delta); + delta = 0L; + checkForResize(); + f.tryAwaitLock(tab, i); + } + else if (f.casHash(fh, fh | LOCKED)) { + int count = 0; + try { + if (tabAt(tab, i) == f) { + count = 1; + for (Node e = f;; ++count) { + Object ek, ev; + if ((e.hash & HASH_BITS) == h && + (ev = e.val) != null && + ((ek = e.key) == k || k.equals(ek))) { + e.val = v; + break; + } + Node last = e; + if ((e = e.next) == null) { + ++delta; + last.next = new Node(h, k, v, null); + if (count >= TREE_THRESHOLD) + replaceWithTreeBin(tab, i, k); + break; + } + } + } + } finally { + if (!f.casHash(fh | LOCKED, fh)) { + f.hash = fh; + synchronized (f) { f.notifyAll(); }; + } + } + if (count != 0) { + if (count > 1) { + counter.add(delta); + delta = 0L; + checkForResize(); + } + break; } } - if (validated) - break; } } + } finally { + if (delta != 0) + counter.add(delta); } + if (npe) + throw new NullPointerException(); } + /* ---------------- Table Initialization and Resizing -------------- */ + /** - * If not already resizing, initializes or creates next table and - * transfers bins. Rechecks occupancy after a transfer to see if - * another resize is already needed because resizings are lagging - * additions. - * - * @param sizeHint overridden capacity target (nonzero only from putAll) - * @return current table - */ - private final Node[] grow(int sizeHint) { - if (resizing == 0 && - UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) { - try { - for (;;) { - int cap, n; - Node[] tab = table; - if (tab == null) { - int c = initCap; - if (c < sizeHint) - c = sizeHint; - if (c == DEFAULT_CAPACITY) - cap = c; - else if (c >= MAXIMUM_CAPACITY) - cap = MAXIMUM_CAPACITY; - else { - cap = MINIMUM_CAPACITY; - while (cap < c) - cap <<= 1; - } + * Returns a power of two table size for the given desired capacity. + * See Hackers Delight, sec 3.2 + */ + private static final int tableSizeFor(int c) { + int n = c - 1; + n |= n >>> 1; + n |= n >>> 2; + n |= n >>> 4; + n |= n >>> 8; + n |= n >>> 16; + return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; + } + + /** + * Initializes table, using the size recorded in sizeCtl. + */ + private final Node[] initTable() { + Node[] tab; int sc; + while ((tab = table) == null) { + if ((sc = sizeCtl) < 0) + Thread.yield(); // lost initialization race; just spin + else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) { + try { + if ((tab = table) == null) { + int n = (sc > 0) ? sc : DEFAULT_CAPACITY; + tab = table = new Node[n]; + sc = n - (n >>> 2); } - else if ((n = tab.length) < MAXIMUM_CAPACITY && - (sizeHint <= 0 || n < sizeHint)) - cap = n << 1; - else - break; - threshold = (int)(cap * loadFactor) - THRESHOLD_OFFSET; - Node[] nextTab = new Node[cap]; - if (tab != null) - transfer(tab, nextTab); - table = nextTab; - if (tab == null || cap >= MAXIMUM_CAPACITY || - (sizeHint > 0 && cap >= sizeHint) || - counter.sum() < threshold) - break; + } finally { + sizeCtl = sc; } - } finally { - resizing = 0; + break; } } - else if (table == null) - Thread.yield(); // lost initialization race; just spin - return table; + return tab; } /** - * Implementation for putAll and constructor with Map - * argument. Tries to first override initial capacity or grow - * based on map size to pre-allocate table space. + * If table is too small and not already resizing, creates next + * table and transfers bins. Rechecks occupancy after a transfer + * to see if another resize is already needed because resizings + * are lagging additions. */ - private final void internalPutAll(Map m) { - int s = m.size(); - grow((s >= (MAXIMUM_CAPACITY >>> 1))? s : s + (s >>> 1)); - for (Map.Entry e : m.entrySet()) { - Object k = e.getKey(); - Object v = e.getValue(); - if (k == null || v == null) - throw new NullPointerException(); - internalPut(k, v, true); + private final void checkForResize() { + Node[] tab; int n, sc; + while ((tab = table) != null && + (n = tab.length) < MAXIMUM_CAPACITY && + (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc && + UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) { + try { + if (tab == table) { + table = rebuild(tab); + sc = (n << 1) - (n >>> 1); + } + } finally { + sizeCtl = sc; + } } } /** - * Implementation for clear. Steps through each bin, removing all nodes. + * Tries to presize table to accommodate the given number of elements. + * + * @param size number of elements (doesn't need to be perfectly accurate) */ - private final void internalClear() { - long deletions = 0L; - int i = 0; - Node[] tab = table; - while (tab != null && i < tab.length) { - Node e = tabAt(tab, i); - if (e == null) - ++i; - else if (e.hash < 0) - tab = (Node[])e.key; - else { + private final void tryPresize(int size) { + int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY : + tableSizeFor(size + (size >>> 1) + 1); + int sc; + while ((sc = sizeCtl) >= 0) { + Node[] tab = table; int n; + if (tab == null || (n = tab.length) == 0) { + n = (sc > c) ? sc : c; + if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) { + try { + if (table == tab) { + table = new Node[n]; + sc = n - (n >>> 2); + } + } finally { + sizeCtl = sc; + } + } + } + else if (c <= sc || n >= MAXIMUM_CAPACITY) + break; + else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) { + try { + if (table == tab) { + table = rebuild(tab); + sc = (n << 1) - (n >>> 1); + } + } finally { + sizeCtl = sc; + } + } + } + } + + /* + * Moves and/or copies the nodes in each bin to new table. See + * above for explanation. + * + * @return the new table + */ + private static final Node[] rebuild(Node[] tab) { + int n = tab.length; + Node[] nextTab = new Node[n << 1]; + Node fwd = new Node(MOVED, nextTab, null, null); + int[] buffer = null; // holds bins to revisit; null until needed + Node rev = null; // reverse forwarder; null until needed + int nbuffered = 0; // the number of bins in buffer list + int bufferIndex = 0; // buffer index of current buffered bin + int bin = n - 1; // current non-buffered bin or -1 if none + + for (int i = bin;;) { // start upwards sweep + int fh; Node f; + if ((f = tabAt(tab, i)) == null) { + if (bin >= 0) { // no lock needed (or available) + if (!casTabAt(tab, i, f, fwd)) + continue; + } + else { // transiently use a locked forwarding node + Node g = new Node(MOVED|LOCKED, nextTab, null, null); + if (!casTabAt(tab, i, f, g)) + continue; + setTabAt(nextTab, i, null); + setTabAt(nextTab, i + n, null); + setTabAt(tab, i, fwd); + if (!g.casHash(MOVED|LOCKED, MOVED)) { + g.hash = MOVED; + synchronized (g) { g.notifyAll(); } + } + } + } + else if ((fh = f.hash) == MOVED) { + Object fk = f.key; + if (fk instanceof TreeBin) { + TreeBin t = (TreeBin)fk; + boolean validated = false; + t.acquire(0); + try { + if (tabAt(tab, i) == f) { + validated = true; + splitTreeBin(nextTab, i, t); + setTabAt(tab, i, fwd); + } + } finally { + t.release(0); + } + if (!validated) + continue; + } + } + else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) { boolean validated = false; - synchronized(e) { - if (tabAt(tab, i) == e) { + try { // split to lo and hi lists; copying as needed + if (tabAt(tab, i) == f) { validated = true; - do { - if (e.val != null) { - e.val = null; - ++deletions; - } - } while ((e = e.next) != null); - setTabAt(tab, i, null); + splitBin(nextTab, i, f); + setTabAt(tab, i, fwd); } - } - if (validated) { - ++i; - if (deletions > THRESHOLD_OFFSET) { // bound lag in counts - counter.add(-deletions); - deletions = 0L; + } finally { + if (!f.casHash(fh | LOCKED, fh)) { + f.hash = fh; + synchronized (f) { f.notifyAll(); }; } } + if (!validated) + continue; + } + else { + if (buffer == null) // initialize buffer for revisits + buffer = new int[TRANSFER_BUFFER_SIZE]; + if (bin < 0 && bufferIndex > 0) { + int j = buffer[--bufferIndex]; + buffer[bufferIndex] = i; + i = j; // swap with another bin + continue; + } + if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) { + f.tryAwaitLock(tab, i); + continue; // no other options -- block + } + if (rev == null) // initialize reverse-forwarder + rev = new Node(MOVED, tab, null, null); + if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0) + continue; // recheck before adding to list + buffer[nbuffered++] = i; + setTabAt(nextTab, i, rev); // install place-holders + setTabAt(nextTab, i + n, rev); + } + + if (bin > 0) + i = --bin; + else if (buffer != null && nbuffered > 0) { + bin = -1; + i = buffer[bufferIndex = --nbuffered]; } + else + return nextTab; } - if (deletions != 0L) - counter.add(-deletions); } /** - * Base class for key, value, and entry iterators, plus internal - * implementations of public traversal-based methods, to avoid - * duplicating traversal code. + * Splits a normal bin with list headed by e into lo and hi parts; + * installs in given table. */ - class HashIterator { - private Node next; // the next entry to return - private Node[] tab; // current table; updated if resized - private Node lastReturned; // the last entry returned, for remove - private Object nextVal; // cached value of next - private int index; // index of bin to use next - private int baseIndex; // current index of initial table - private final int baseSize; // initial table size + private static void splitBin(Node[] nextTab, int i, Node e) { + int bit = nextTab.length >>> 1; // bit to split on + int runBit = e.hash & bit; + Node lastRun = e, lo = null, hi = null; + for (Node p = e.next; p != null; p = p.next) { + int b = p.hash & bit; + if (b != runBit) { + runBit = b; + lastRun = p; + } + } + if (runBit == 0) + lo = lastRun; + else + hi = lastRun; + for (Node p = e; p != lastRun; p = p.next) { + int ph = p.hash & HASH_BITS; + Object pk = p.key, pv = p.val; + if ((ph & bit) == 0) + lo = new Node(ph, pk, pv, lo); + else + hi = new Node(ph, pk, pv, hi); + } + setTabAt(nextTab, i, lo); + setTabAt(nextTab, i + bit, hi); + } - HashIterator() { - Node[] t = tab = table; - if (t == null) - baseSize = 0; + /** + * Splits a tree bin into lo and hi parts; installs in given table. + */ + private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) { + int bit = nextTab.length >>> 1; + TreeBin lt = new TreeBin(); + TreeBin ht = new TreeBin(); + int lc = 0, hc = 0; + for (Node e = t.first; e != null; e = e.next) { + int h = e.hash & HASH_BITS; + Object k = e.key, v = e.val; + if ((h & bit) == 0) { + ++lc; + lt.putTreeNode(h, k, v); + } else { - baseSize = t.length; - advance(null); + ++hc; + ht.putTreeNode(h, k, v); } } + Node ln, hn; // throw away trees if too small + if (lc <= (TREE_THRESHOLD >>> 1)) { + ln = null; + for (Node p = lt.first; p != null; p = p.next) + ln = new Node(p.hash, p.key, p.val, ln); + } + else + ln = new Node(MOVED, lt, null, null); + setTabAt(nextTab, i, ln); + if (hc <= (TREE_THRESHOLD >>> 1)) { + hn = null; + for (Node p = ht.first; p != null; p = p.next) + hn = new Node(p.hash, p.key, p.val, hn); + } + else + hn = new Node(MOVED, ht, null, null); + setTabAt(nextTab, i + bit, hn); + } - public final boolean hasNext() { return next != null; } - public final boolean hasMoreElements() { return next != null; } - - /** - * Advances next. Normally, iteration proceeds bin-by-bin - * traversing lists. However, if the table has been resized, - * then all future steps must traverse both the bin at the - * current index as well as at (index + baseSize); and so on - * for further resizings. To paranoically cope with potential - * (improper) sharing of iterators across threads, table reads - * are bounds-checked. - */ - final void advance(Node e) { - for (;;) { - Node[] t; int i; // for bounds checks - if (e != null) { - Object ek = e.key, ev = e.val; - if (ev != null && ek != null) { - nextVal = ev; - next = e; - break; + /** + * Implementation for clear. Steps through each bin, removing all + * nodes. + */ + private final void internalClear() { + long delta = 0L; // negative number of deletions + int i = 0; + Node[] tab = table; + while (tab != null && i < tab.length) { + int fh; Object fk; + Node f = tabAt(tab, i); + if (f == null) + ++i; + else if ((fh = f.hash) == MOVED) { + if ((fk = f.key) instanceof TreeBin) { + TreeBin t = (TreeBin)fk; + t.acquire(0); + try { + if (tabAt(tab, i) == f) { + for (Node p = t.first; p != null; p = p.next) { + p.val = null; + --delta; + } + t.first = null; + t.root = null; + ++i; + } + } finally { + t.release(0); } - e = e.next; } - else if (baseIndex < baseSize && (t = tab) != null && - t.length > (i = index) && i >= 0) { - if ((e = tabAt(t, i)) != null && e.hash < 0) { - tab = (Node[])e.key; - e = null; + else + tab = (Node[])fk; + } + else if ((fh & LOCKED) != 0) { + counter.add(delta); // opportunistically update count + delta = 0L; + f.tryAwaitLock(tab, i); + } + else if (f.casHash(fh, fh | LOCKED)) { + try { + if (tabAt(tab, i) == f) { + for (Node e = f; e != null; e = e.next) { + e.val = null; + --delta; + } + setTabAt(tab, i, null); + ++i; + } + } finally { + if (!f.casHash(fh | LOCKED, fh)) { + f.hash = fh; + synchronized (f) { f.notifyAll(); }; } - else if (i + baseSize < t.length) - index += baseSize; // visit forwarded upper slots - else - index = ++baseIndex; - } - else { - next = null; - break; } } } + if (delta != 0) + counter.add(delta); + } - final Object nextKey() { - Node e = next; - if (e == null) - throw new NoSuchElementException(); - Object k = e.key; - advance((lastReturned = e).next); - return k; - } + /* ----------------Table Traversal -------------- */ - final Object nextValue() { - Node e = next; - if (e == null) - throw new NoSuchElementException(); - Object v = nextVal; - advance((lastReturned = e).next); - return v; + /** + * Encapsulates traversal for methods such as containsValue; also + * serves as a base class for other iterators. + * + * At each step, the iterator snapshots the key ("nextKey") and + * value ("nextVal") of a valid node (i.e., one that, at point of + * snapshot, has a non-null user value). Because val fields can + * change (including to null, indicating deletion), field nextVal + * might not be accurate at point of use, but still maintains the + * weak consistency property of holding a value that was once + * valid. + * + * Internal traversals directly access these fields, as in: + * {@code while (it.advance() != null) { process(it.nextKey); }} + * + * Exported iterators must track whether the iterator has advanced + * (in hasNext vs next) (by setting/checking/nulling field + * nextVal), and then extract key, value, or key-value pairs as + * return values of next(). + * + * The iterator visits once each still-valid node that was + * reachable upon iterator construction. It might miss some that + * were added to a bin after the bin was visited, which is OK wrt + * consistency guarantees. Maintaining this property in the face + * of possible ongoing resizes requires a fair amount of + * bookkeeping state that is difficult to optimize away amidst + * volatile accesses. Even so, traversal maintains reasonable + * throughput. + * + * Normally, iteration proceeds bin-by-bin traversing lists. + * However, if the table has been resized, then all future steps + * must traverse both the bin at the current index as well as at + * (index + baseSize); and so on for further resizings. To + * paranoically cope with potential sharing by users of iterators + * across threads, iteration terminates if a bounds checks fails + * for a table read. + */ + static class InternalIterator { + final ConcurrentHashMapV8 map; + Node next; // the next entry to use + Node last; // the last entry used + Object nextKey; // cached key field of next + Object nextVal; // cached val field of next + Node[] tab; // current table; updated if resized + int index; // index of bin to use next + int baseIndex; // current index of initial table + int baseLimit; // index bound for initial table + final int baseSize; // initial table size + + /** Creates iterator for all entries in the table. */ + InternalIterator(ConcurrentHashMapV8 map) { + this.tab = (this.map = map).table; + baseLimit = baseSize = (tab == null) ? 0 : tab.length; + } + + /** Creates iterator for clone() and split() methods. */ + InternalIterator(InternalIterator it, boolean split) { + this.map = it.map; + this.tab = it.tab; + this.baseSize = it.baseSize; + int lo = it.baseIndex; + int hi = this.baseLimit = it.baseLimit; + this.index = this.baseIndex = + (split) ? (it.baseLimit = (lo + hi + 1) >>> 1) : lo; } - final WriteThroughEntry nextEntry() { - Node e = next; - if (e == null) - throw new NoSuchElementException(); - WriteThroughEntry entry = - new WriteThroughEntry(e.key, nextVal); - advance((lastReturned = e).next); - return entry; + /** + * Advances next; returns nextVal or null if terminated. + * See above for explanation. + */ + final Object advance() { + Node e = last = next; + Object ev = null; + outer: do { + if (e != null) // advance past used/skipped node + e = e.next; + while (e == null) { // get to next non-null bin + Node[] t; int b, i, n; Object ek; // checks must use locals + if ((b = baseIndex) >= baseLimit || (i = index) < 0 || + (t = tab) == null || i >= (n = t.length)) + break outer; + else if ((e = tabAt(t, i)) != null && e.hash == MOVED) { + if ((ek = e.key) instanceof TreeBin) + e = ((TreeBin)ek).first; + else { + tab = (Node[])ek; + continue; // restarts due to null val + } + } // visit upper slots if present + index = (i += baseSize) < n ? i : (baseIndex = b + 1); + } + nextKey = e.key; + } while ((ev = e.val) == null); // skip deleted or special nodes + next = e; + return nextVal = ev; } public final void remove() { - if (lastReturned == null) + if (nextVal == null) + advance(); + Node e = last; + if (e == null) throw new IllegalStateException(); - ConcurrentHashMapV8.this.remove(lastReturned.key); - lastReturned = null; + last = null; + map.remove(e.key); } - /** Helper for serialization */ - final void writeEntries(java.io.ObjectOutputStream s) - throws java.io.IOException { - Node e; - while ((e = next) != null) { - s.writeObject(e.key); - s.writeObject(nextVal); - advance(e.next); - } - } - - /** Helper for containsValue */ - final boolean containsVal(Object value) { - if (value != null) { - Node e; - while ((e = next) != null) { - Object v = nextVal; - if (value == v || value.equals(v)) - return true; - advance(e.next); - } - } - return false; + public final boolean hasNext() { + return nextVal != null || advance() != null; } - /** Helper for Map.hashCode */ - final int mapHashCode() { - int h = 0; - Node e; - while ((e = next) != null) { - h += e.key.hashCode() ^ nextVal.hashCode(); - advance(e.next); - } - return h; - } - - /** Helper for Map.toString */ - final String mapToString() { - Node e = next; - if (e == null) - return "{}"; - StringBuilder sb = new StringBuilder(); - sb.append('{'); - for (;;) { - sb.append(e.key == this ? "(this Map)" : e.key); - sb.append('='); - sb.append(nextVal == this ? "(this Map)" : nextVal); - advance(e.next); - if ((e = next) != null) - sb.append(',').append(' '); - else - return sb.append('}').toString(); - } - } + public final boolean hasMoreElements() { return hasNext(); } } /* ---------------- Public operations -------------- */ /** - * Creates a new, empty map with the specified initial - * capacity, load factor and concurrency level. - * - * @param initialCapacity the initial capacity. The implementation - * performs internal sizing to accommodate this many elements. - * @param loadFactor the load factor threshold, used to control resizing. - * Resizing may be performed when the average number of elements per - * bin exceeds this threshold. - * @param concurrencyLevel the estimated number of concurrently - * updating threads. The implementation may use this value as - * a sizing hint. - * @throws IllegalArgumentException if the initial capacity is - * negative or the load factor or concurrencyLevel are - * nonpositive. + * Creates a new, empty map with the default initial table size (16). */ - public ConcurrentHashMapV8(int initialCapacity, - float loadFactor, int concurrencyLevel) { - if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) - throw new IllegalArgumentException(); - this.initCap = initialCapacity; - this.loadFactor = loadFactor; + public ConcurrentHashMapV8() { this.counter = new LongAdder(); } /** - * Creates a new, empty map with the specified initial capacity - * and load factor and with the default concurrencyLevel (16). + * Creates a new, empty map with an initial table size + * accommodating the specified number of elements without the need + * to dynamically resize. * * @param initialCapacity The implementation performs internal * sizing to accommodate this many elements. - * @param loadFactor the load factor threshold, used to control resizing. - * Resizing may be performed when the average number of elements per - * bin exceeds this threshold. * @throws IllegalArgumentException if the initial capacity of - * elements is negative or the load factor is nonpositive - * - * @since 1.6 + * elements is negative */ - public ConcurrentHashMapV8(int initialCapacity, float loadFactor) { - this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL); + public ConcurrentHashMapV8(int initialCapacity) { + if (initialCapacity < 0) + throw new IllegalArgumentException(); + int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ? + MAXIMUM_CAPACITY : + tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1)); + this.counter = new LongAdder(); + this.sizeCtl = cap; } /** - * Creates a new, empty map with the specified initial capacity, - * and with default load factor (0.75) and concurrencyLevel (16). + * Creates a new map with the same mappings as the given map. * - * @param initialCapacity the initial capacity. The implementation - * performs internal sizing to accommodate this many elements. - * @throws IllegalArgumentException if the initial capacity of - * elements is negative. + * @param m the map */ - public ConcurrentHashMapV8(int initialCapacity) { - this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); + public ConcurrentHashMapV8(Map m) { + this.counter = new LongAdder(); + this.sizeCtl = DEFAULT_CAPACITY; + internalPutAll(m); } /** - * Creates a new, empty map with a default initial capacity (16), - * load factor (0.75) and concurrencyLevel (16). + * Creates a new, empty map with an initial table size based on + * the given number of elements ({@code initialCapacity}) and + * initial table density ({@code loadFactor}). + * + * @param initialCapacity the initial capacity. The implementation + * performs internal sizing to accommodate this many elements, + * given the specified load factor. + * @param loadFactor the load factor (table density) for + * establishing the initial table size + * @throws IllegalArgumentException if the initial capacity of + * elements is negative or the load factor is nonpositive + * + * @since 1.6 */ - public ConcurrentHashMapV8() { - this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); + public ConcurrentHashMapV8(int initialCapacity, float loadFactor) { + this(initialCapacity, loadFactor, 1); } /** - * Creates a new map with the same mappings as the given map. - * The map is created with a capacity of 1.5 times the number - * of mappings in the given map or 16 (whichever is greater), - * and a default load factor (0.75) and concurrencyLevel (16). + * Creates a new, empty map with an initial table size based on + * the given number of elements ({@code initialCapacity}), table + * density ({@code loadFactor}), and number of concurrently + * updating threads ({@code concurrencyLevel}). * - * @param m the map + * @param initialCapacity the initial capacity. The implementation + * performs internal sizing to accommodate this many elements, + * given the specified load factor. + * @param loadFactor the load factor (table density) for + * establishing the initial table size + * @param concurrencyLevel the estimated number of concurrently + * updating threads. The implementation may use this value as + * a sizing hint. + * @throws IllegalArgumentException if the initial capacity is + * negative or the load factor or concurrencyLevel are + * nonpositive */ - public ConcurrentHashMapV8(Map m) { - this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); - if (m == null) - throw new NullPointerException(); - internalPutAll(m); + public ConcurrentHashMapV8(int initialCapacity, + float loadFactor, int concurrencyLevel) { + if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0) + throw new IllegalArgumentException(); + if (initialCapacity < concurrencyLevel) // Use at least as many bins + initialCapacity = concurrencyLevel; // as estimated threads + long size = (long)(1.0 + (long)initialCapacity / loadFactor); + int cap = (size >= (long)MAXIMUM_CAPACITY) ? + MAXIMUM_CAPACITY : tableSizeFor((int)size); + this.counter = new LongAdder(); + this.sizeCtl = cap; } /** - * Returns {@code true} if this map contains no key-value mappings. - * - * @return {@code true} if this map contains no key-value mappings + * {@inheritDoc} */ public boolean isEmpty() { return counter.sum() <= 0L; // ignore transient negative values } /** - * Returns the number of key-value mappings in this map. If the - * map contains more than {@code Integer.MAX_VALUE} elements, returns - * {@code Integer.MAX_VALUE}. - * - * @return the number of key-value mappings in this map + * {@inheritDoc} */ public int size() { long n = counter.sum(); - return n <= 0L? 0 : n >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)n; + return ((n < 0L) ? 0 : + (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE : + (int)n); + } + + final long longSize() { // accurate version of size needed for views + long n = counter.sum(); + return (n < 0L) ? 0L : n; } /** @@ -1010,7 +2382,7 @@ public class ConcurrentHashMapV8 * @param key possible key * @return {@code true} if and only if the specified object * is a key in this table, as determined by the - * {@code equals} method; {@code false} otherwise. + * {@code equals} method; {@code false} otherwise * @throws NullPointerException if the specified key is null */ public boolean containsKey(Object key) { @@ -1021,9 +2393,8 @@ public class ConcurrentHashMapV8 /** * Returns {@code true} if this map maps one or more keys to the - * specified value. Note: This method requires a full internal - * traversal of the hash table, and so is much slower than - * method {@code containsKey}. + * specified value. Note: This method may require a full traversal + * of the map, and is much slower than method {@code containsKey}. * * @param value value whose presence in this map is to be tested * @return {@code true} if this map maps one or more keys to the @@ -1033,7 +2404,13 @@ public class ConcurrentHashMapV8 public boolean containsValue(Object value) { if (value == null) throw new NullPointerException(); - return new HashIterator().containsVal(value); + Object v; + InternalIterator it = new InternalIterator(this); + while ((v = it.advance()) != null) { + if (v == value || value.equals(v)) + return true; + } + return false; } /** @@ -1072,7 +2449,7 @@ public class ConcurrentHashMapV8 public V put(K key, V value) { if (key == null || value == null) throw new NullPointerException(); - return (V)internalPut(key, value, true); + return (V)internalPut(key, value); } /** @@ -1086,7 +2463,7 @@ public class ConcurrentHashMapV8 public V putIfAbsent(K key, V value) { if (key == null || value == null) throw new NullPointerException(); - return (V)internalPut(key, value, false); + return (V)internalPutIfAbsent(key, value); } /** @@ -1097,81 +2474,101 @@ public class ConcurrentHashMapV8 * @param m mappings to be stored in this map */ public void putAll(Map m) { - if (m == null) - throw new NullPointerException(); internalPutAll(m); } /** * If the specified key is not already associated with a value, - * computes its value using the given mappingFunction, and if - * non-null, enters it into the map. This is equivalent to - * - *
-     *   if (map.containsKey(key))
-     *       return map.get(key);
-     *   value = mappingFunction.map(key);
-     *   if (value != null)
-     *      map.put(key, value);
-     *   return value;
-     * 
- * - * except that the action is performed atomically. Some attempted - * operations on this map by other threads may be blocked while - * computation is in progress, so the computation should be short - * and simple, and must not attempt to update any other mappings - * of this Map. The most common usage is to construct a new object - * serving as an initial mapped value, or memoized result. + * computes its value using the given mappingFunction and enters + * it into the map unless null. This is equivalent to + *
 {@code
+     * if (map.containsKey(key))
+     *   return map.get(key);
+     * value = mappingFunction.map(key);
+     * if (value != null)
+     *   map.put(key, value);
+     * return value;}
+ * + * except that the action is performed atomically. If the + * function returns {@code null} no mapping is recorded. If the + * function itself throws an (unchecked) exception, the exception + * is rethrown to its caller, and no mapping is recorded. Some + * attempted update operations on this map by other threads may be + * blocked while computation is in progress, so the computation + * should be short and simple, and must not attempt to update any + * other mappings of this Map. The most appropriate usage is to + * construct a new object serving as an initial mapped value, or + * memoized result, as in: + * + *
 {@code
+     * map.computeIfAbsent(key, new MappingFunction() {
+     *   public V map(K k) { return new Value(f(k)); }});}
* * @param key key with which the specified value is to be associated * @param mappingFunction the function to compute a value * @return the current (existing or computed) value associated with - * the specified key, or {@code null} if the computation - * returned {@code null}. + * the specified key, or null if the computed value is null. * @throws NullPointerException if the specified key or mappingFunction - * is null, + * is null + * @throws IllegalStateException if the computation detectably + * attempts a recursive update to this map that would + * otherwise never complete * @throws RuntimeException or Error if the mappingFunction does so, - * in which case the mapping is left unestablished. + * in which case the mapping is left unestablished */ + @SuppressWarnings("unchecked") public V computeIfAbsent(K key, MappingFunction mappingFunction) { if (key == null || mappingFunction == null) throw new NullPointerException(); - return internalCompute(key, mappingFunction, false); + return (V)internalComputeIfAbsent(key, mappingFunction); } /** - * Computes the value associated with he given key using the given - * mappingFunction, and if non-null, enters it into the map. This - * is equivalent to - * - *
-     *   value = mappingFunction.map(key);
+     * Computes a new mapping value given a key and
+     * its current mapped value (or {@code null} if there is no current
+     * mapping). This is equivalent to
+     *  
 {@code
+     *   value = remappingFunction.remap(key, map.get(key));
      *   if (value != null)
-     *      map.put(key, value);
+     *     map.put(key, value);
      *   else
-     *      return map.get(key);
-     * 
+ * map.remove(key); + * }
* - * except that the action is performed atomically. Some attempted - * operations on this map by other threads may be blocked while - * computation is in progress, so the computation should be short - * and simple, and must not attempt to update any other mappings - * of this Map. + * except that the action is performed atomically. If the + * function returns {@code null}, the mapping is removed. If the + * function itself throws an (unchecked) exception, the exception + * is rethrown to its caller, and the current mapping is left + * unchanged. Some attempted update operations on this map by + * other threads may be blocked while computation is in progress, + * so the computation should be short and simple, and must not + * attempt to update any other mappings of this Map. For example, + * to either create or append new messages to a value mapping: + * + *
 {@code
+     * Map map = ...;
+     * final String msg = ...;
+     * map.compute(key, new RemappingFunction() {
+     *   public String remap(Key k, String v) {
+     *    return (v == null) ? msg : v + msg;});}}
* * @param key key with which the specified value is to be associated - * @param mappingFunction the function to compute a value - * @return the current value associated with - * the specified key, or {@code null} if the computation - * returned {@code null} and the value was not otherwise present. - * @throws NullPointerException if the specified key or mappingFunction - * is null, - * @throws RuntimeException or Error if the mappingFunction does so, - * in which case the mapping is unchanged. + * @param remappingFunction the function to compute a value + * @return the new value associated with + * the specified key, or null if none. + * @throws NullPointerException if the specified key or remappingFunction + * is null + * @throws IllegalStateException if the computation detectably + * attempts a recursive update to this map that would + * otherwise never complete + * @throws RuntimeException or Error if the remappingFunction does so, + * in which case the mapping is unchanged */ - public V compute(K key, MappingFunction mappingFunction) { - if (key == null || mappingFunction == null) + @SuppressWarnings("unchecked") + public V compute(K key, RemappingFunction remappingFunction) { + if (key == null || remappingFunction == null) throw new NullPointerException(); - return internalCompute(key, mappingFunction, true); + return (V)internalCompute(key, remappingFunction); } /** @@ -1187,7 +2584,7 @@ public class ConcurrentHashMapV8 public V remove(Object key) { if (key == null) throw new NullPointerException(); - return (V)internalReplace(key, null, null); + return (V)internalReplace(key, null, null); } /** @@ -1211,7 +2608,7 @@ public class ConcurrentHashMapV8 public boolean replace(K key, V oldValue, V newValue) { if (key == null || oldValue == null || newValue == null) throw new NullPointerException(); - return internalReplace(key, newValue, oldValue) != null; + return internalReplace(key, newValue, oldValue) != null; } /** @@ -1225,7 +2622,7 @@ public class ConcurrentHashMapV8 public V replace(K key, V value) { if (key == null || value == null) throw new NullPointerException(); - return (V)internalReplace(key, value, null); + return (V)internalReplace(key, value, null); } /** @@ -1252,8 +2649,8 @@ public class ConcurrentHashMapV8 * reflect any modifications subsequent to construction. */ public Set keySet() { - Set ks = keySet; - return (ks != null) ? ks : (keySet = new KeySet()); + KeySet ks = keySet; + return (ks != null) ? ks : (keySet = new KeySet(this)); } /** @@ -1273,8 +2670,8 @@ public class ConcurrentHashMapV8 * reflect any modifications subsequent to construction. */ public Collection values() { - Collection vs = values; - return (vs != null) ? vs : (values = new Values()); + Values vs = values; + return (vs != null) ? vs : (values = new Values(this)); } /** @@ -1294,8 +2691,8 @@ public class ConcurrentHashMapV8 * reflect any modifications subsequent to construction. */ public Set> entrySet() { - Set> es = entrySet; - return (es != null) ? es : (entrySet = new EntrySet()); + EntrySet es = entrySet; + return (es != null) ? es : (entrySet = new EntrySet(this)); } /** @@ -1305,7 +2702,7 @@ public class ConcurrentHashMapV8 * @see #keySet() */ public Enumeration keys() { - return new KeyIterator(); + return new KeyIterator(this); } /** @@ -1315,7 +2712,34 @@ public class ConcurrentHashMapV8 * @see #values() */ public Enumeration elements() { - return new ValueIterator(); + return new ValueIterator(this); + } + + /** + * Returns a partionable iterator of the keys in this map. + * + * @return a partionable iterator of the keys in this map + */ + public Spliterator keySpliterator() { + return new KeyIterator(this); + } + + /** + * Returns a partionable iterator of the values in this map. + * + * @return a partionable iterator of the values in this map + */ + public Spliterator valueSpliterator() { + return new ValueIterator(this); + } + + /** + * Returns a partionable iterator of the entries in this map. + * + * @return a partionable iterator of the entries in this map + */ + public Spliterator> entrySpliterator() { + return new EntryIterator(this); } /** @@ -1326,7 +2750,13 @@ public class ConcurrentHashMapV8 * @return the hash code value for this map */ public int hashCode() { - return new HashIterator().mapHashCode(); + int h = 0; + InternalIterator it = new InternalIterator(this); + Object v; + while ((v = it.advance()) != null) { + h += it.nextKey.hashCode() ^ v.hashCode(); + } + return h; } /** @@ -1341,7 +2771,22 @@ public class ConcurrentHashMapV8 * @return a string representation of this map */ public String toString() { - return new HashIterator().mapToString(); + InternalIterator it = new InternalIterator(this); + StringBuilder sb = new StringBuilder(); + sb.append('{'); + Object v; + if ((v = it.advance()) != null) { + for (;;) { + Object k = it.nextKey; + sb.append(k == this ? "(this Map)" : k); + sb.append('='); + sb.append(v == this ? "(this Map)" : v); + if ((v = it.advance()) == null) + break; + sb.append(',').append(' '); + } + } + return sb.append('}').toString(); } /** @@ -1355,152 +2800,382 @@ public class ConcurrentHashMapV8 * @return {@code true} if the specified object is equal to this map */ public boolean equals(Object o) { - if (o == this) - return true; - if (!(o instanceof Map)) - return false; - Map m = (Map) o; - try { - for (Map.Entry e : this.entrySet()) - if (! e.getValue().equals(m.get(e.getKey()))) + if (o != this) { + if (!(o instanceof Map)) + return false; + Map m = (Map) o; + InternalIterator it = new InternalIterator(this); + Object val; + while ((val = it.advance()) != null) { + Object v = m.get(it.nextKey); + if (v == null || (v != val && !v.equals(val))) return false; + } for (Map.Entry e : m.entrySet()) { - Object k = e.getKey(); - Object v = e.getValue(); - if (k == null || v == null || !v.equals(get(k))) + Object mk, mv, v; + if ((mk = e.getKey()) == null || + (mv = e.getValue()) == null || + (v = internalGet(mk)) == null || + (mv != v && !mv.equals(v))) return false; } - return true; - } catch (ClassCastException unused) { - return false; - } catch (NullPointerException unused) { - return false; + } + return true; + } + + /* ----------------Iterators -------------- */ + + static final class KeyIterator extends InternalIterator + implements Spliterator, Enumeration { + KeyIterator(ConcurrentHashMapV8 map) { super(map); } + KeyIterator(InternalIterator it, boolean split) { + super(it, split); + } + public KeyIterator split() { + if (last != null || (next != null && nextVal == null)) + throw new IllegalStateException(); + return new KeyIterator(this, true); + } + public KeyIterator clone() { + if (last != null || (next != null && nextVal == null)) + throw new IllegalStateException(); + return new KeyIterator(this, false); + } + + @SuppressWarnings("unchecked") + public final K next() { + if (nextVal == null && advance() == null) + throw new NoSuchElementException(); + Object k = nextKey; + nextVal = null; + return (K) k; + } + + public final K nextElement() { return next(); } + } + + static final class ValueIterator extends InternalIterator + implements Spliterator, Enumeration { + ValueIterator(ConcurrentHashMapV8 map) { super(map); } + ValueIterator(InternalIterator it, boolean split) { + super(it, split); + } + public ValueIterator split() { + if (last != null || (next != null && nextVal == null)) + throw new IllegalStateException(); + return new ValueIterator(this, true); + } + + public ValueIterator clone() { + if (last != null || (next != null && nextVal == null)) + throw new IllegalStateException(); + return new ValueIterator(this, false); + } + + @SuppressWarnings("unchecked") + public final V next() { + Object v; + if ((v = nextVal) == null && (v = advance()) == null) + throw new NoSuchElementException(); + nextVal = null; + return (V) v; + } + + public final V nextElement() { return next(); } + } + + static final class EntryIterator extends InternalIterator + implements Spliterator> { + EntryIterator(ConcurrentHashMapV8 map) { super(map); } + EntryIterator(InternalIterator it, boolean split) { + super(it, split); + } + public EntryIterator split() { + if (last != null || (next != null && nextVal == null)) + throw new IllegalStateException(); + return new EntryIterator(this, true); + } + public EntryIterator clone() { + if (last != null || (next != null && nextVal == null)) + throw new IllegalStateException(); + return new EntryIterator(this, false); + } + + @SuppressWarnings("unchecked") + public final Map.Entry next() { + Object v; + if ((v = nextVal) == null && (v = advance()) == null) + throw new NoSuchElementException(); + Object k = nextKey; + nextVal = null; + return new MapEntry((K)k, (V)v, map); } } /** - * Custom Entry class used by EntryIterator.next(), that relays - * setValue changes to the underlying map. + * Exported Entry for iterators */ - final class WriteThroughEntry extends AbstractMap.SimpleEntry { - @SuppressWarnings("unchecked") - WriteThroughEntry(Object k, Object v) { - super((K)k, (V)v); + static final class MapEntry implements Map.Entry { + final K key; // non-null + V val; // non-null + final ConcurrentHashMapV8 map; + MapEntry(K key, V val, ConcurrentHashMapV8 map) { + this.key = key; + this.val = val; + this.map = map; + } + public final K getKey() { return key; } + public final V getValue() { return val; } + public final int hashCode() { return key.hashCode() ^ val.hashCode(); } + public final String toString(){ return key + "=" + val; } + + public final boolean equals(Object o) { + Object k, v; Map.Entry e; + return ((o instanceof Map.Entry) && + (k = (e = (Map.Entry)o).getKey()) != null && + (v = e.getValue()) != null && + (k == key || k.equals(key)) && + (v == val || v.equals(val))); } /** * Sets our entry's value and writes through to the map. The - * value to return is somewhat arbitrary here. Since a - * WriteThroughEntry does not necessarily track asynchronous - * changes, the most recent "previous" value could be - * different from what we return (or could even have been - * removed in which case the put will re-establish). We do not - * and cannot guarantee more. + * value to return is somewhat arbitrary here. Since we do not + * necessarily track asynchronous changes, the most recent + * "previous" value could be different from what we return (or + * could even have been removed in which case the put will + * re-establish). We do not and cannot guarantee more. */ - public V setValue(V value) { + public final V setValue(V value) { if (value == null) throw new NullPointerException(); - V v = super.setValue(value); - ConcurrentHashMapV8.this.put(getKey(), value); + V v = val; + val = value; + map.put(key, value); return v; } } - final class KeyIterator extends HashIterator - implements Iterator, Enumeration { - @SuppressWarnings("unchecked") - public final K next() { return (K)super.nextKey(); } - @SuppressWarnings("unchecked") - public final K nextElement() { return (K)super.nextKey(); } - } - - final class ValueIterator extends HashIterator - implements Iterator, Enumeration { - @SuppressWarnings("unchecked") - public final V next() { return (V)super.nextValue(); } - @SuppressWarnings("unchecked") - public final V nextElement() { return (V)super.nextValue(); } - } + /* ----------------Views -------------- */ - final class EntryIterator extends HashIterator - implements Iterator> { - public final Map.Entry next() { return super.nextEntry(); } - } + /** + * Base class for views. + */ + static abstract class MapView { + final ConcurrentHashMapV8 map; + MapView(ConcurrentHashMapV8 map) { this.map = map; } + public final int size() { return map.size(); } + public final boolean isEmpty() { return map.isEmpty(); } + public final void clear() { map.clear(); } + + // implementations below rely on concrete classes supplying these + abstract public Iterator iterator(); + abstract public boolean contains(Object o); + abstract public boolean remove(Object o); + + private static final String oomeMsg = "Required array size too large"; + + public final Object[] toArray() { + long sz = map.longSize(); + if (sz > (long)(MAX_ARRAY_SIZE)) + throw new OutOfMemoryError(oomeMsg); + int n = (int)sz; + Object[] r = new Object[n]; + int i = 0; + Iterator it = iterator(); + while (it.hasNext()) { + if (i == n) { + if (n >= MAX_ARRAY_SIZE) + throw new OutOfMemoryError(oomeMsg); + if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1) + n = MAX_ARRAY_SIZE; + else + n += (n >>> 1) + 1; + r = Arrays.copyOf(r, n); + } + r[i++] = it.next(); + } + return (i == n) ? r : Arrays.copyOf(r, i); + } - final class KeySet extends AbstractSet { - public int size() { - return ConcurrentHashMapV8.this.size(); + @SuppressWarnings("unchecked") + public final T[] toArray(T[] a) { + long sz = map.longSize(); + if (sz > (long)(MAX_ARRAY_SIZE)) + throw new OutOfMemoryError(oomeMsg); + int m = (int)sz; + T[] r = (a.length >= m) ? a : + (T[])java.lang.reflect.Array + .newInstance(a.getClass().getComponentType(), m); + int n = r.length; + int i = 0; + Iterator it = iterator(); + while (it.hasNext()) { + if (i == n) { + if (n >= MAX_ARRAY_SIZE) + throw new OutOfMemoryError(oomeMsg); + if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1) + n = MAX_ARRAY_SIZE; + else + n += (n >>> 1) + 1; + r = Arrays.copyOf(r, n); + } + r[i++] = (T)it.next(); + } + if (a == r && i < n) { + r[i] = null; // null-terminate + return r; + } + return (i == n) ? r : Arrays.copyOf(r, i); } - public boolean isEmpty() { - return ConcurrentHashMapV8.this.isEmpty(); + + public final int hashCode() { + int h = 0; + for (Iterator it = iterator(); it.hasNext();) + h += it.next().hashCode(); + return h; } - public void clear() { - ConcurrentHashMapV8.this.clear(); + + public final String toString() { + StringBuilder sb = new StringBuilder(); + sb.append('['); + Iterator it = iterator(); + if (it.hasNext()) { + for (;;) { + Object e = it.next(); + sb.append(e == this ? "(this Collection)" : e); + if (!it.hasNext()) + break; + sb.append(',').append(' '); + } + } + return sb.append(']').toString(); } - public Iterator iterator() { - return new KeyIterator(); + + public final boolean containsAll(Collection c) { + if (c != this) { + for (Iterator it = c.iterator(); it.hasNext();) { + Object e = it.next(); + if (e == null || !contains(e)) + return false; + } + } + return true; } - public boolean contains(Object o) { - return ConcurrentHashMapV8.this.containsKey(o); + + public final boolean removeAll(Collection c) { + boolean modified = false; + for (Iterator it = iterator(); it.hasNext();) { + if (c.contains(it.next())) { + it.remove(); + modified = true; + } + } + return modified; } - public boolean remove(Object o) { - return ConcurrentHashMapV8.this.remove(o) != null; + + public final boolean retainAll(Collection c) { + boolean modified = false; + for (Iterator it = iterator(); it.hasNext();) { + if (!c.contains(it.next())) { + it.remove(); + modified = true; + } + } + return modified; } + } - final class Values extends AbstractCollection { - public int size() { - return ConcurrentHashMapV8.this.size(); - } - public boolean isEmpty() { - return ConcurrentHashMapV8.this.isEmpty(); + static final class KeySet extends MapView implements Set { + KeySet(ConcurrentHashMapV8 map) { super(map); } + public final boolean contains(Object o) { return map.containsKey(o); } + public final boolean remove(Object o) { return map.remove(o) != null; } + public final Iterator iterator() { + return new KeyIterator(map); } - public void clear() { - ConcurrentHashMapV8.this.clear(); + public final boolean add(K e) { + throw new UnsupportedOperationException(); } - public Iterator iterator() { - return new ValueIterator(); + public final boolean addAll(Collection c) { + throw new UnsupportedOperationException(); } - public boolean contains(Object o) { - return ConcurrentHashMapV8.this.containsValue(o); + public boolean equals(Object o) { + Set c; + return ((o instanceof Set) && + ((c = (Set)o) == this || + (containsAll(c) && c.containsAll(this)))); } } - final class EntrySet extends AbstractSet> { - public int size() { - return ConcurrentHashMapV8.this.size(); + static final class Values extends MapView + implements Collection { + Values(ConcurrentHashMapV8 map) { super(map); } + public final boolean contains(Object o) { return map.containsValue(o); } + public final boolean remove(Object o) { + if (o != null) { + Iterator it = new ValueIterator(map); + while (it.hasNext()) { + if (o.equals(it.next())) { + it.remove(); + return true; + } + } + } + return false; } - public boolean isEmpty() { - return ConcurrentHashMapV8.this.isEmpty(); + public final Iterator iterator() { + return new ValueIterator(map); } - public void clear() { - ConcurrentHashMapV8.this.clear(); + public final boolean add(V e) { + throw new UnsupportedOperationException(); } - public Iterator> iterator() { - return new EntryIterator(); + public final boolean addAll(Collection c) { + throw new UnsupportedOperationException(); } - public boolean contains(Object o) { - if (!(o instanceof Map.Entry)) - return false; - Map.Entry e = (Map.Entry)o; - V v = ConcurrentHashMapV8.this.get(e.getKey()); - return v != null && v.equals(e.getValue()); - } - public boolean remove(Object o) { - if (!(o instanceof Map.Entry)) - return false; - Map.Entry e = (Map.Entry)o; - return ConcurrentHashMapV8.this.remove(e.getKey(), e.getValue()); + } + + static final class EntrySet extends MapView + implements Set> { + EntrySet(ConcurrentHashMapV8 map) { super(map); } + public final boolean contains(Object o) { + Object k, v, r; Map.Entry e; + return ((o instanceof Map.Entry) && + (k = (e = (Map.Entry)o).getKey()) != null && + (r = map.get(k)) != null && + (v = e.getValue()) != null && + (v == r || v.equals(r))); + } + public final boolean remove(Object o) { + Object k, v; Map.Entry e; + return ((o instanceof Map.Entry) && + (k = (e = (Map.Entry)o).getKey()) != null && + (v = e.getValue()) != null && + map.remove(k, v)); + } + public final Iterator> iterator() { + return new EntryIterator(map); + } + public final boolean add(Entry e) { + throw new UnsupportedOperationException(); + } + public final boolean addAll(Collection> c) { + throw new UnsupportedOperationException(); + } + public boolean equals(Object o) { + Set c; + return ((o instanceof Set) && + ((c = (Set)o) == this || + (containsAll(c) && c.containsAll(this)))); } } /* ---------------- Serialization Support -------------- */ /** - * Helper class used in previous version, declared for the sake of - * serialization compatibility + * Stripped-down version of helper class used in previous version, + * declared for the sake of serialization compatibility */ - static class Segment extends java.util.concurrent.locks.ReentrantLock - implements Serializable { + static class Segment implements Serializable { private static final long serialVersionUID = 2249069246763182397L; final float loadFactor; Segment(float lf) { this.loadFactor = lf; } @@ -1522,48 +3197,107 @@ public class ConcurrentHashMapV8 segments = (Segment[]) new Segment[DEFAULT_CONCURRENCY_LEVEL]; for (int i = 0; i < segments.length; ++i) - segments[i] = new Segment(loadFactor); + segments[i] = new Segment(LOAD_FACTOR); } s.defaultWriteObject(); - new HashIterator().writeEntries(s); + InternalIterator it = new InternalIterator(this); + Object v; + while ((v = it.advance()) != null) { + s.writeObject(it.nextKey); + s.writeObject(v); + } s.writeObject(null); s.writeObject(null); segments = null; // throw away } /** - * Reconstitutes the instance from a - * stream (i.e., deserializes it). + * Reconstitutes the instance from a stream (that is, deserializes it). * @param s the stream */ @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); - // find load factor in a segment, if one exists - if (segments != null && segments.length != 0) - this.loadFactor = segments[0].loadFactor; - else - this.loadFactor = DEFAULT_LOAD_FACTOR; - this.initCap = DEFAULT_CAPACITY; - LongAdder ct = new LongAdder(); // force final field write - UNSAFE.putObjectVolatile(this, counterOffset, ct); this.segments = null; // unneeded + // initialize transient final field + UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder()); - // Read the keys and values, and put the mappings in the table + // Create all nodes, then place in table once size is known + long size = 0L; + Node p = null; for (;;) { - K key = (K) s.readObject(); - V value = (V) s.readObject(); - if (key == null) + K k = (K) s.readObject(); + V v = (V) s.readObject(); + if (k != null && v != null) { + int h = spread(k.hashCode()); + p = new Node(h, k, v, p); + ++size; + } + else break; - put(key, value); + } + if (p != null) { + boolean init = false; + int n; + if (size >= (long)(MAXIMUM_CAPACITY >>> 1)) + n = MAXIMUM_CAPACITY; + else { + int sz = (int)size; + n = tableSizeFor(sz + (sz >>> 1) + 1); + } + int sc = sizeCtl; + boolean collide = false; + if (n > sc && + UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) { + try { + if (table == null) { + init = true; + Node[] tab = new Node[n]; + int mask = n - 1; + while (p != null) { + int j = p.hash & mask; + Node next = p.next; + Node q = p.next = tabAt(tab, j); + setTabAt(tab, j, p); + if (!collide && q != null && q.hash == p.hash) + collide = true; + p = next; + } + table = tab; + counter.add(size); + sc = n - (n >>> 2); + } + } finally { + sizeCtl = sc; + } + if (collide) { // rescan and convert to TreeBins + Node[] tab = table; + for (int i = 0; i < tab.length; ++i) { + int c = 0; + for (Node e = tabAt(tab, i); e != null; e = e.next) { + if (++c > TREE_THRESHOLD && + (e.key instanceof Comparable)) { + replaceWithTreeBin(tab, i, e.key); + break; + } + } + } + } + } + if (!init) { // Can only happen if unsafely published. + while (p != null) { + internalPut(p.key, p.val); + p = p.next; + } + } } } // Unsafe mechanics private static final sun.misc.Unsafe UNSAFE; private static final long counterOffset; - private static final long resizingOffset; + private static final long sizeCtlOffset; private static final long ABASE; private static final int ASHIFT; @@ -1574,8 +3308,8 @@ public class ConcurrentHashMapV8 Class k = ConcurrentHashMapV8.class; counterOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("counter")); - resizingOffset = UNSAFE.objectFieldOffset - (k.getDeclaredField("resizing")); + sizeCtlOffset = UNSAFE.objectFieldOffset + (k.getDeclaredField("sizeCtl")); Class sc = Node[].class; ABASE = UNSAFE.arrayBaseOffset(sc); ss = UNSAFE.arrayIndexScale(sc);