ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.22 by jsr166, Sat Sep 10 19:33:14 2011 UTC vs.
Revision 1.90 by dl, Tue Jan 22 20:17:55 2013 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166e;
8 < import jsr166e.LongAdder;
8 >
9 > import java.util.Comparator;
10 > import java.util.Arrays;
11   import java.util.Map;
12   import java.util.Set;
13   import java.util.Collection;
# Line 19 | Line 21 | import java.util.Enumeration;
21   import java.util.ConcurrentModificationException;
22   import java.util.NoSuchElementException;
23   import java.util.concurrent.ConcurrentMap;
24 + import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 + import java.util.concurrent.atomic.AtomicInteger;
26 + import java.util.concurrent.atomic.AtomicReference;
27   import java.io.Serializable;
28  
29   /**
# Line 33 | Line 38 | import java.io.Serializable;
38   * interoperable with {@code Hashtable} in programs that rely on its
39   * thread safety but not on its synchronization details.
40   *
41 < * <p> Retrieval operations (including {@code get}) generally do not
41 > * <p>Retrieval operations (including {@code get}) generally do not
42   * block, so may overlap with update operations (including {@code put}
43   * and {@code remove}). Retrievals reflect the results of the most
44   * recently <em>completed</em> update operations holding upon their
45 < * onset.  For aggregate operations such as {@code putAll} and {@code
46 < * clear}, concurrent retrievals may reflect insertion or removal of
47 < * only some entries.  Similarly, Iterators and Enumerations return
48 < * elements reflecting the state of the hash table at some point at or
49 < * since the creation of the iterator/enumeration.  They do
50 < * <em>not</em> throw {@link ConcurrentModificationException}.
51 < * However, iterators are designed to be used by only one thread at a
52 < * time.  Bear in mind that the results of aggregate status methods
53 < * including {@code size}, {@code isEmpty}, and {@code containsValue}
54 < * are typically useful only when a map is not undergoing concurrent
55 < * updates in other threads.  Otherwise the results of these methods
56 < * reflect transient states that may be adequate for monitoring
57 < * or estimation purposes, but not for program control.
45 > * onset. (More formally, an update operation for a given key bears a
46 > * <em>happens-before</em> relation with any (non-null) retrieval for
47 > * that key reporting the updated value.)  For aggregate operations
48 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
49 > * reflect insertion or removal of only some entries.  Similarly,
50 > * Iterators and Enumerations return elements reflecting the state of
51 > * the hash table at some point at or since the creation of the
52 > * iterator/enumeration.  They do <em>not</em> throw {@link
53 > * ConcurrentModificationException}.  However, iterators are designed
54 > * to be used by only one thread at a time.  Bear in mind that the
55 > * results of aggregate status methods including {@code size}, {@code
56 > * isEmpty}, and {@code containsValue} are typically useful only when
57 > * a map is not undergoing concurrent updates in other threads.
58 > * Otherwise the results of these methods reflect transient states
59 > * that may be adequate for monitoring or estimation purposes, but not
60 > * for program control.
61   *
62 < * <p> The table is dynamically expanded when there are too many
62 > * <p>The table is dynamically expanded when there are too many
63   * collisions (i.e., keys that have distinct hash codes but fall into
64   * the same slot modulo the table size), with the expected average
65 < * effect of maintaining roughly two bins per mapping. There may be
66 < * much variance around this average as mappings are added and
67 < * removed, but overall, this maintains a commonly accepted time/space
68 < * tradeoff for hash tables.  However, resizing this or any other kind
69 < * of hash table may be a relatively slow operation. When possible, it
70 < * is a good idea to provide a size estimate as an optional {@code
65 > * effect of maintaining roughly two bins per mapping (corresponding
66 > * to a 0.75 load factor threshold for resizing). There may be much
67 > * variance around this average as mappings are added and removed, but
68 > * overall, this maintains a commonly accepted time/space tradeoff for
69 > * hash tables.  However, resizing this or any other kind of hash
70 > * table may be a relatively slow operation. When possible, it is a
71 > * good idea to provide a size estimate as an optional {@code
72   * initialCapacity} constructor argument. An additional optional
73   * {@code loadFactor} constructor argument provides a further means of
74   * customizing initial table capacity by specifying the table density
# Line 68 | Line 77 | import java.io.Serializable;
77   * versions of this class, constructors may optionally specify an
78   * expected {@code concurrencyLevel} as an additional hint for
79   * internal sizing.  Note that using many keys with exactly the same
80 < * {@code hashCode{}} is a sure way to slow down performance of any
80 > * {@code hashCode()} is a sure way to slow down performance of any
81   * hash table.
82   *
83 + * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
84 + * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
85 + * (using {@link #keySet(Object)} when only keys are of interest, and the
86 + * mapped values are (perhaps transiently) not used or all take the
87 + * same mapping value.
88 + *
89 + * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
90 + * form of histogram or multiset) by using {@link LongAdder} values
91 + * and initializing via {@link #computeIfAbsent}. For example, to add
92 + * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
93 + * can use {@code freqs.computeIfAbsent(k -> new
94 + * LongAdder()).increment();}
95 + *
96   * <p>This class and its views and iterators implement all of the
97   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
98   * interfaces.
99   *
100 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
100 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
101   * does <em>not</em> allow {@code null} to be used as a key or value.
102   *
103 + * <p>ConcurrentHashMapV8s support sequential and parallel operations
104 + * bulk operations. (Parallel forms use the {@link
105 + * ForkJoinPool#commonPool()}). Tasks that may be used in other
106 + * contexts are available in class {@link ForkJoinTasks}. These
107 + * operations are designed to be safely, and often sensibly, applied
108 + * even with maps that are being concurrently updated by other
109 + * threads; for example, when computing a snapshot summary of the
110 + * values in a shared registry.  There are three kinds of operation,
111 + * each with four forms, accepting functions with Keys, Values,
112 + * Entries, and (Key, Value) arguments and/or return values. Because
113 + * the elements of a ConcurrentHashMapV8 are not ordered in any
114 + * particular way, and may be processed in different orders in
115 + * different parallel executions, the correctness of supplied
116 + * functions should not depend on any ordering, or on any other
117 + * objects or values that may transiently change while computation is
118 + * in progress; and except for forEach actions, should ideally be
119 + * side-effect-free.
120 + *
121 + * <ul>
122 + * <li> forEach: Perform a given action on each element.
123 + * A variant form applies a given transformation on each element
124 + * before performing the action.</li>
125 + *
126 + * <li> search: Return the first available non-null result of
127 + * applying a given function on each element; skipping further
128 + * search when a result is found.</li>
129 + *
130 + * <li> reduce: Accumulate each element.  The supplied reduction
131 + * function cannot rely on ordering (more formally, it should be
132 + * both associative and commutative).  There are five variants:
133 + *
134 + * <ul>
135 + *
136 + * <li> Plain reductions. (There is not a form of this method for
137 + * (key, value) function arguments since there is no corresponding
138 + * return type.)</li>
139 + *
140 + * <li> Mapped reductions that accumulate the results of a given
141 + * function applied to each element.</li>
142 + *
143 + * <li> Reductions to scalar doubles, longs, and ints, using a
144 + * given basis value.</li>
145 + *
146 + * </li>
147 + * </ul>
148 + * </ul>
149 + *
150 + * <p>The concurrency properties of bulk operations follow
151 + * from those of ConcurrentHashMapV8: Any non-null result returned
152 + * from {@code get(key)} and related access methods bears a
153 + * happens-before relation with the associated insertion or
154 + * update.  The result of any bulk operation reflects the
155 + * composition of these per-element relations (but is not
156 + * necessarily atomic with respect to the map as a whole unless it
157 + * is somehow known to be quiescent).  Conversely, because keys
158 + * and values in the map are never null, null serves as a reliable
159 + * atomic indicator of the current lack of any result.  To
160 + * maintain this property, null serves as an implicit basis for
161 + * all non-scalar reduction operations. For the double, long, and
162 + * int versions, the basis should be one that, when combined with
163 + * any other value, returns that other value (more formally, it
164 + * should be the identity element for the reduction). Most common
165 + * reductions have these properties; for example, computing a sum
166 + * with basis 0 or a minimum with basis MAX_VALUE.
167 + *
168 + * <p>Search and transformation functions provided as arguments
169 + * should similarly return null to indicate the lack of any result
170 + * (in which case it is not used). In the case of mapped
171 + * reductions, this also enables transformations to serve as
172 + * filters, returning null (or, in the case of primitive
173 + * specializations, the identity basis) if the element should not
174 + * be combined. You can create compound transformations and
175 + * filterings by composing them yourself under this "null means
176 + * there is nothing there now" rule before using them in search or
177 + * reduce operations.
178 + *
179 + * <p>Methods accepting and/or returning Entry arguments maintain
180 + * key-value associations. They may be useful for example when
181 + * finding the key for the greatest value. Note that "plain" Entry
182 + * arguments can be supplied using {@code new
183 + * AbstractMap.SimpleEntry(k,v)}.
184 + *
185 + * <p>Bulk operations may complete abruptly, throwing an
186 + * exception encountered in the application of a supplied
187 + * function. Bear in mind when handling such exceptions that other
188 + * concurrently executing functions could also have thrown
189 + * exceptions, or would have done so if the first exception had
190 + * not occurred.
191 + *
192 + * <p>Speedups for parallel compared to sequential forms are common
193 + * but not guaranteed.  Parallel operations involving brief functions
194 + * on small maps may execute more slowly than sequential forms if the
195 + * underlying work to parallelize the computation is more expensive
196 + * than the computation itself.  Similarly, parallelization may not
197 + * lead to much actual parallelism if all processors are busy
198 + * performing unrelated tasks.
199 + *
200 + * <p>All arguments to all task methods must be non-null.
201 + *
202 + * <p><em>jsr166e note: During transition, this class
203 + * uses nested functional interfaces with different names but the
204 + * same forms as those expected for JDK8.</em>
205 + *
206   * <p>This class is a member of the
207   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
208   * Java Collections Framework</a>.
209   *
85 * <p><em>jsr166e note: This class is a candidate replacement for
86 * java.util.concurrent.ConcurrentHashMap.<em>
87 *
210   * @since 1.5
211   * @author Doug Lea
212   * @param <K> the type of keys maintained by this map
213   * @param <V> the type of mapped values
214   */
215   public class ConcurrentHashMapV8<K, V>
216 <        implements ConcurrentMap<K, V>, Serializable {
216 >    implements ConcurrentMap<K, V>, Serializable {
217      private static final long serialVersionUID = 7249069246763182397L;
218  
219      /**
220 <     * A function computing a mapping from the given key to a value,
221 <     * or {@code null} if there is no mapping. This is a place-holder
222 <     * for an upcoming JDK8 interface.
223 <     */
224 <    public static interface MappingFunction<K, V> {
225 <        /**
226 <         * Returns a value for the given key, or null if there is no
227 <         * mapping. If this function throws an (unchecked) exception,
228 <         * the exception is rethrown to its caller, and no mapping is
229 <         * recorded.  Because this function is invoked within
230 <         * atomicity control, the computation should be short and
231 <         * simple. The most common usage is to construct a new object
232 <         * serving as an initial mapped value.
220 >     * A partitionable iterator. A Spliterator can be traversed
221 >     * directly, but can also be partitioned (before traversal) by
222 >     * creating another Spliterator that covers a non-overlapping
223 >     * portion of the elements, and so may be amenable to parallel
224 >     * execution.
225 >     *
226 >     * <p>This interface exports a subset of expected JDK8
227 >     * functionality.
228 >     *
229 >     * <p>Sample usage: Here is one (of the several) ways to compute
230 >     * the sum of the values held in a map using the ForkJoin
231 >     * framework. As illustrated here, Spliterators are well suited to
232 >     * designs in which a task repeatedly splits off half its work
233 >     * into forked subtasks until small enough to process directly,
234 >     * and then joins these subtasks. Variants of this style can also
235 >     * be used in completion-based designs.
236 >     *
237 >     * <pre>
238 >     * {@code ConcurrentHashMapV8<String, Long> m = ...
239 >     * // split as if have 8 * parallelism, for load balance
240 >     * int n = m.size();
241 >     * int p = aForkJoinPool.getParallelism() * 8;
242 >     * int split = (n < p)? n : p;
243 >     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
244 >     * // ...
245 >     * static class SumValues extends RecursiveTask<Long> {
246 >     *   final Spliterator<Long> s;
247 >     *   final int split;             // split while > 1
248 >     *   final SumValues nextJoin;    // records forked subtasks to join
249 >     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
250 >     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
251 >     *   }
252 >     *   public Long compute() {
253 >     *     long sum = 0;
254 >     *     SumValues subtasks = null; // fork subtasks
255 >     *     for (int s = split >>> 1; s > 0; s >>>= 1)
256 >     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
257 >     *     while (s.hasNext())        // directly process remaining elements
258 >     *       sum += s.next();
259 >     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
260 >     *       sum += t.join();         // collect subtask results
261 >     *     return sum;
262 >     *   }
263 >     * }
264 >     * }</pre>
265 >     */
266 >    public static interface Spliterator<T> extends Iterator<T> {
267 >        /**
268 >         * Returns a Spliterator covering approximately half of the
269 >         * elements, guaranteed not to overlap with those subsequently
270 >         * returned by this Spliterator.  After invoking this method,
271 >         * the current Spliterator will <em>not</em> produce any of
272 >         * the elements of the returned Spliterator, but the two
273 >         * Spliterators together will produce all of the elements that
274 >         * would have been produced by this Spliterator had this
275 >         * method not been called. The exact number of elements
276 >         * produced by the returned Spliterator is not guaranteed, and
277 >         * may be zero (i.e., with {@code hasNext()} reporting {@code
278 >         * false}) if this Spliterator cannot be further split.
279           *
280 <         * @param key the (non-null) key
281 <         * @return a value, or null if none
280 >         * @return a Spliterator covering approximately half of the
281 >         * elements
282 >         * @throws IllegalStateException if this Spliterator has
283 >         * already commenced traversing elements
284           */
285 <        V map(K key);
285 >        Spliterator<T> split();
286      }
287  
288      /*
# Line 121 | Line 291 | public class ConcurrentHashMapV8<K, V>
291       * The primary design goal of this hash table is to maintain
292       * concurrent readability (typically method get(), but also
293       * iterators and related methods) while minimizing update
294 <     * contention.
295 <     *
296 <     * Each key-value mapping is held in a Node.  Because Node fields
297 <     * can contain special values, they are defined using plain Object
298 <     * types. Similarly in turn, all internal methods that use them
299 <     * work off Object types. And similarly, so do the internal
300 <     * methods of auxiliary iterator and view classes.  All public
301 <     * generic typed methods relay in/out of these internal methods,
302 <     * supplying null-checks and casts as needed.
294 >     * contention. Secondary goals are to keep space consumption about
295 >     * the same or better than java.util.HashMap, and to support high
296 >     * initial insertion rates on an empty table by many threads.
297 >     *
298 >     * Each key-value mapping is held in a Node.  Because Node key
299 >     * fields can contain special values, they are defined using plain
300 >     * Object types (not type "K"). This leads to a lot of explicit
301 >     * casting (and many explicit warning suppressions to tell
302 >     * compilers not to complain about it). It also allows some of the
303 >     * public methods to be factored into a smaller number of internal
304 >     * methods (although sadly not so for the five variants of
305 >     * put-related operations). The validation-based approach
306 >     * explained below leads to a lot of code sprawl because
307 >     * retry-control precludes factoring into smaller methods.
308       *
309       * The table is lazily initialized to a power-of-two size upon the
310 <     * first insertion.  Each bin in the table contains a list of
311 <     * Nodes (most often, zero or one Node).  Table accesses require
312 <     * volatile/atomic reads, writes, and CASes.  Because there is no
313 <     * other way to arrange this without adding further indirections,
314 <     * we use intrinsics (sun.misc.Unsafe) operations.  The lists of
315 <     * nodes within bins are always accurately traversable under
316 <     * volatile reads, so long as lookups check hash code and
317 <     * non-nullness of value before checking key equality. (All valid
318 <     * hash codes are nonnegative. Negative values are reserved for
319 <     * special forwarding nodes; see below.)
310 >     * first insertion.  Each bin in the table normally contains a
311 >     * list of Nodes (most often, the list has only zero or one Node).
312 >     * Table accesses require volatile/atomic reads, writes, and
313 >     * CASes.  Because there is no other way to arrange this without
314 >     * adding further indirections, we use intrinsics
315 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
316 >     * are always accurately traversable under volatile reads, so long
317 >     * as lookups check hash code and non-nullness of value before
318 >     * checking key equality.
319 >     *
320 >     * We use the top (sign) bit of Node hash fields for control
321 >     * purposes -- it is available anyway because of addressing
322 >     * constraints.  Nodes with negative hash fields are forwarding
323 >     * nodes to either TreeBins or resized tables.  The lower 31 bits
324 >     * of each normal Node's hash field contain a transformation of
325 >     * the key's hash code.
326       *
327 <     * Insertion (via put or putIfAbsent) of the first node in an
327 >     * Insertion (via put or its variants) of the first node in an
328       * empty bin is performed by just CASing it to the bin.  This is
329 <     * on average by far the most common case for put operations.
330 <     * Other update operations (insert, delete, and replace) require
331 <     * locks.  We do not want to waste the space required to associate
332 <     * a distinct lock object with each bin, so instead use the first
333 <     * node of a bin list itself as a lock, using plain "synchronized"
334 <     * locks. These save space and we can live with block-structured
335 <     * lock/unlock operations. Using the first node of a list as a
336 <     * lock does not by itself suffice though: When a node is locked,
337 <     * any update must first validate that it is still the first node,
338 <     * and retry if not. Because new nodes are always appended to
339 <     * lists, once a node is first in a bin, it remains first until
340 <     * deleted or the bin becomes invalidated.  However, operations
341 <     * that only conditionally update can and sometimes do inspect
342 <     * nodes until the point of update. This is a converse of sorts to
343 <     * the lazy locking technique described by Herlihy & Shavit.
329 >     * by far the most common case for put operations under most
330 >     * key/hash distributions.  Other update operations (insert,
331 >     * delete, and replace) require locks.  We do not want to waste
332 >     * the space required to associate a distinct lock object with
333 >     * each bin, so instead use the first node of a bin list itself as
334 >     * a lock. Locking support for these locks relies on builtin
335 >     * "synchronized" monitors.
336 >     *
337 >     * Using the first node of a list as a lock does not by itself
338 >     * suffice though: When a node is locked, any update must first
339 >     * validate that it is still the first node after locking it, and
340 >     * retry if not. Because new nodes are always appended to lists,
341 >     * once a node is first in a bin, it remains first until deleted
342 >     * or the bin becomes invalidated (upon resizing).  However,
343 >     * operations that only conditionally update may inspect nodes
344 >     * until the point of update. This is a converse of sorts to the
345 >     * lazy locking technique described by Herlihy & Shavit.
346       *
347 <     * The main disadvantage of this approach is that most update
347 >     * The main disadvantage of per-bin locks is that other update
348       * operations on other nodes in a bin list protected by the same
349       * lock can stall, for example when user equals() or mapping
350 <     * functions take a long time.  However, statistically, this is
351 <     * not a common enough problem to outweigh the time/space overhead
352 <     * of alternatives: Under random hash codes, the frequency of
170 <     * nodes in bins follows a Poisson distribution
350 >     * functions take a long time.  However, statistically, under
351 >     * random hash codes, this is not a common problem.  Ideally, the
352 >     * frequency of nodes in bins follows a Poisson distribution
353       * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
354       * parameter of about 0.5 on average, given the resizing threshold
355       * of 0.75, although with a large variance because of resizing
356       * granularity. Ignoring variance, the expected occurrences of
357       * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
358 <     * first few values are:
358 >     * first values are:
359       *
360 <     * 0:    0.607
361 <     * 1:    0.303
362 <     * 2:    0.076
363 <     * 3:    0.012
364 <     * more: 0.002
360 >     * 0:    0.60653066
361 >     * 1:    0.30326533
362 >     * 2:    0.07581633
363 >     * 3:    0.01263606
364 >     * 4:    0.00157952
365 >     * 5:    0.00015795
366 >     * 6:    0.00001316
367 >     * 7:    0.00000094
368 >     * 8:    0.00000006
369 >     * more: less than 1 in ten million
370       *
371       * Lock contention probability for two threads accessing distinct
372 <     * elements is roughly 1 / (8 * #elements).  Function "spread"
373 <     * performs hashCode randomization that improves the likelihood
374 <     * that these assumptions hold unless users define exactly the
375 <     * same value for too many hashCodes.
376 <     *
377 <     * The table is resized when occupancy exceeds a threshold.  Only
378 <     * a single thread performs the resize (using field "resizing", to
379 <     * arrange exclusion), but the table otherwise remains usable for
380 <     * reads and updates. Resizing proceeds by transferring bins, one
381 <     * by one, from the table to the next table.  Upon transfer, the
382 <     * old table bin contains only a special forwarding node (with
383 <     * negative hash field) that contains the next table as its
384 <     * key. On encountering a forwarding node, access and update
385 <     * operations restart, using the new table. To ensure concurrent
386 <     * readability of traversals, transfers must proceed from the last
387 <     * bin (table.length - 1) up towards the first.  Upon seeing a
388 <     * forwarding node, traversals (see class InternalIterator)
389 <     * arrange to move to the new table for the rest of the traversal
390 <     * without revisiting nodes.  This constrains bin transfers to a
391 <     * particular order, and so can block indefinitely waiting for the
392 <     * next lock, and other threads cannot help with the transfer.
393 <     * However, expected stalls are infrequent enough to not warrant
394 <     * the additional overhead of access and iteration schemes that
395 <     * could admit out-of-order or concurrent bin transfers.
396 <     *
397 <     * This traversal scheme also applies to partial traversals of
398 <     * ranges of bins (via an alternate InternalIterator constructor)
399 <     * to support partitioned aggregate operations (that are not
400 <     * otherwise implemented yet).  Also, read-only operations give up
401 <     * if ever forwarded to a null table, which provides support for
402 <     * shutdown-style clearing, which is also not currently
403 <     * implemented.
372 >     * elements is roughly 1 / (8 * #elements) under random hashes.
373 >     *
374 >     * Actual hash code distributions encountered in practice
375 >     * sometimes deviate significantly from uniform randomness.  This
376 >     * includes the case when N > (1<<30), so some keys MUST collide.
377 >     * Similarly for dumb or hostile usages in which multiple keys are
378 >     * designed to have identical hash codes. Also, although we guard
379 >     * against the worst effects of this (see method spread), sets of
380 >     * hashes may differ only in bits that do not impact their bin
381 >     * index for a given power-of-two mask.  So we use a secondary
382 >     * strategy that applies when the number of nodes in a bin exceeds
383 >     * a threshold, and at least one of the keys implements
384 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
385 >     * (a specialized form of red-black trees), bounding search time
386 >     * to O(log N).  Each search step in a TreeBin is around twice as
387 >     * slow as in a regular list, but given that N cannot exceed
388 >     * (1<<64) (before running out of addresses) this bounds search
389 >     * steps, lock hold times, etc, to reasonable constants (roughly
390 >     * 100 nodes inspected per operation worst case) so long as keys
391 >     * are Comparable (which is very common -- String, Long, etc).
392 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
393 >     * traversal pointers as regular nodes, so can be traversed in
394 >     * iterators in the same way.
395 >     *
396 >     * The table is resized when occupancy exceeds a percentage
397 >     * threshold (nominally, 0.75, but see below).  Any thread
398 >     * noticing an overfull bin may assist in resizing after the
399 >     * initiating thread allocates and sets up the replacement
400 >     * array. However, rather than stalling, these other threads may
401 >     * proceed with insertions etc.  The use of TreeBins shields us
402 >     * from the worst case effects of overfilling while resizes are in
403 >     * progress.  Resizing proceeds by transferring bins, one by one,
404 >     * from the table to the next table. To enable concurrency, the
405 >     * next table must be (incrementally) prefilled with place-holders
406 >     * serving as reverse forwarders to the old table.  Because we are
407 >     * using power-of-two expansion, the elements from each bin must
408 >     * either stay at same index, or move with a power of two
409 >     * offset. We eliminate unnecessary node creation by catching
410 >     * cases where old nodes can be reused because their next fields
411 >     * won't change.  On average, only about one-sixth of them need
412 >     * cloning when a table doubles. The nodes they replace will be
413 >     * garbage collectable as soon as they are no longer referenced by
414 >     * any reader thread that may be in the midst of concurrently
415 >     * traversing table.  Upon transfer, the old table bin contains
416 >     * only a special forwarding node (with hash field "MOVED") that
417 >     * contains the next table as its key. On encountering a
418 >     * forwarding node, access and update operations restart, using
419 >     * the new table.
420 >     *
421 >     * Each bin transfer requires its bin lock, which can stall
422 >     * waiting for locks while resizing. However, because other
423 >     * threads can join in and help resize rather than contend for
424 >     * locks, average aggregate waits become shorter as resizing
425 >     * progresses.  The transfer operation must also ensure that all
426 >     * accessible bins in both the old and new table are usable by any
427 >     * traversal.  This is arranged by proceeding from the last bin
428 >     * (table.length - 1) up towards the first.  Upon seeing a
429 >     * forwarding node, traversals (see class Traverser) arrange to
430 >     * move to the new table without revisiting nodes.  However, to
431 >     * ensure that no intervening nodes are skipped, bin splitting can
432 >     * only begin after the associated reverse-forwarders are in
433 >     * place.
434 >     *
435 >     * The traversal scheme also applies to partial traversals of
436 >     * ranges of bins (via an alternate Traverser constructor)
437 >     * to support partitioned aggregate operations.  Also, read-only
438 >     * operations give up if ever forwarded to a null table, which
439 >     * provides support for shutdown-style clearing, which is also not
440 >     * currently implemented.
441       *
442       * Lazy table initialization minimizes footprint until first use,
443       * and also avoids resizings when the first operation is from a
444       * putAll, constructor with map argument, or deserialization.
445 <     * These cases attempt to override the targetCapacity used in
446 <     * growTable. These harmlessly fail to take effect in cases of
447 <     * races with other ongoing resizings. Uses of the threshold and
448 <     * targetCapacity during attempted initializations or resizings
449 <     * are racy but fall back on checks to preserve correctness.
450 <     *
451 <     * The element count is maintained using a LongAdder, which avoids
452 <     * contention on updates but can encounter cache thrashing if read
453 <     * too frequently during concurrent access. To avoid reading so
454 <     * often, resizing is normally attempted only upon adding to a bin
455 <     * already holding two or more nodes. Under uniform hash
445 >     * These cases attempt to override the initial capacity settings,
446 >     * but harmlessly fail to take effect in cases of races.
447 >     *
448 >     * The element count is maintained using a specialization of
449 >     * LongAdder. We need to incorporate a specialization rather than
450 >     * just use a LongAdder in order to access implicit
451 >     * contention-sensing that leads to creation of multiple
452 >     * CounterCells.  The counter mechanics avoid contention on
453 >     * updates but can encounter cache thrashing if read too
454 >     * frequently during concurrent access. To avoid reading so often,
455 >     * resizing under contention is attempted only upon adding to a
456 >     * bin already holding two or more nodes. Under uniform hash
457       * distributions, the probability of this occurring at threshold
458       * is around 13%, meaning that only about 1 in 8 puts check
459 <     * threshold (and after resizing, many fewer do so). But this
460 <     * approximation has high variance for small table sizes, so we
461 <     * check on any collision for sizes <= 64.  Further, to increase
237 <     * the probability that a resize occurs soon enough, we offset the
238 <     * threshold (see THRESHOLD_OFFSET) by the expected number of puts
239 <     * between checks.
459 >     * threshold (and after resizing, many fewer do so). The bulk
460 >     * putAll operation further reduces contention by only committing
461 >     * count updates upon these size checks.
462       *
463       * Maintaining API and serialization compatibility with previous
464       * versions of this class introduces several oddities. Mainly: We
465       * leave untouched but unused constructor arguments refering to
466 <     * concurrencyLevel. We also declare an unused "Segment" class
467 <     * that is instantiated in minimal form only when serializing.
466 >     * concurrencyLevel. We accept a loadFactor constructor argument,
467 >     * but apply it only to initial table capacity (which is the only
468 >     * time that we can guarantee to honor it.) We also declare an
469 >     * unused "Segment" class that is instantiated in minimal form
470 >     * only when serializing.
471       */
472  
473      /* ---------------- Constants -------------- */
# Line 250 | Line 475 | public class ConcurrentHashMapV8<K, V>
475      /**
476       * The largest possible table capacity.  This value must be
477       * exactly 1<<30 to stay within Java array allocation and indexing
478 <     * bounds for power of two table sizes.
478 >     * bounds for power of two table sizes, and is further required
479 >     * because the top two bits of 32bit hash fields are used for
480 >     * control purposes.
481       */
482      private static final int MAXIMUM_CAPACITY = 1 << 30;
483  
# Line 261 | Line 488 | public class ConcurrentHashMapV8<K, V>
488      private static final int DEFAULT_CAPACITY = 16;
489  
490      /**
491 +     * The largest possible (non-power of two) array size.
492 +     * Needed by toArray and related methods.
493 +     */
494 +    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
495 +
496 +    /**
497 +     * The default concurrency level for this table. Unused but
498 +     * defined for compatibility with previous versions of this class.
499 +     */
500 +    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
501 +
502 +    /**
503       * The load factor for this table. Overrides of this value in
504       * constructors affect only the initial table capacity.  The
505 <     * actual floating point value isn't normally used, because it is
506 <     * simpler to rely on the expression {@code n - (n >>> 2)} for the
507 <     * associated resizing threshold.
505 >     * actual floating point value isn't normally used -- it is
506 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
507 >     * the associated resizing threshold.
508       */
509      private static final float LOAD_FACTOR = 0.75f;
510  
511      /**
512 <     * The count value to offset thresholds to compensate for checking
513 <     * for the need to resize only when inserting into bins with two
514 <     * or more elements. See above for explanation.
512 >     * The bin count threshold for using a tree rather than list for a
513 >     * bin.  The value reflects the approximate break-even point for
514 >     * using tree-based operations.
515       */
516 <    private static final int THRESHOLD_OFFSET = 8;
516 >    private static final int TREE_THRESHOLD = 8;
517  
518      /**
519 <     * The default concurrency level for this table. Unused except as
520 <     * a sizing hint, but defined for compatibility with previous
521 <     * versions of this class.
519 >     * Minimum number of rebinnings per transfer step. Ranges are
520 >     * subdivided to allow multiple resizer threads.  This value
521 >     * serves as a lower bound to avoid resizers encountering
522 >     * excessive memory contention.  The value should be at least
523 >     * DEFAULT_CAPACITY.
524       */
525 <    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
525 >    private static final int MIN_TRANSFER_STRIDE = 16;
526  
527 <    /* ---------------- Nodes -------------- */
527 >    /*
528 >     * Encodings for Node hash fields. See above for explanation.
529 >     */
530 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
531 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
532 >
533 >    /** Number of CPUS, to place bounds on some sizings */
534 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
535 >
536 >    /* ---------------- Counters -------------- */
537 >
538 >    // Adapted from LongAdder and Striped64.
539 >    // See their internal docs for explanation.
540 >
541 >    // A padded cell for distributing counts
542 >    static final class CounterCell {
543 >        volatile long p0, p1, p2, p3, p4, p5, p6;
544 >        volatile long value;
545 >        volatile long q0, q1, q2, q3, q4, q5, q6;
546 >        CounterCell(long x) { value = x; }
547 >    }
548  
549      /**
550 <     * Key-value entry. Note that this is never exported out as a
551 <     * user-visible Map.Entry. Nodes with a negative hash field are
552 <     * special, and do not contain user keys or values.  Otherwise,
292 <     * keys are never null, and null val fields indicate that a node
293 <     * is in the process of being deleted or created. For purposes of
294 <     * read-only, access, a key may be read before a val, but can only
295 <     * be used after checking val.  (For an update operation, when a
296 <     * lock is held on a node, order doesn't matter.)
550 >     * Holder for the thread-local hash code determining which
551 >     * CounterCell to use. The code is initialized via the
552 >     * counterHashCodeGenerator, but may be moved upon collisions.
553       */
554 <    static final class Node {
555 <        final int hash;
300 <        final Object key;
301 <        volatile Object val;
302 <        volatile Node next;
303 <
304 <        Node(int hash, Object key, Object val, Node next) {
305 <            this.hash = hash;
306 <            this.key = key;
307 <            this.val = val;
308 <            this.next = next;
309 <        }
554 >    static final class CounterHashCode {
555 >        int code;
556      }
557  
558      /**
559 <     * Sign bit of node hash value indicating to use table in node.key.
559 >     * Generates initial value for per-thread CounterHashCodes
560 >     */
561 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
562 >
563 >    /**
564 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
565 >     * for explanation.
566 >     */
567 >    static final int SEED_INCREMENT = 0x61c88647;
568 >
569 >    /**
570 >     * Per-thread counter hash codes. Shared across all instances.
571       */
572 <    private static final int SIGN_BIT = 0x80000000;
572 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
573 >        new ThreadLocal<CounterHashCode>();
574  
575      /* ---------------- Fields -------------- */
576  
# Line 320 | Line 578 | public class ConcurrentHashMapV8<K, V>
578       * The array of bins. Lazily initialized upon first insertion.
579       * Size is always a power of two. Accessed directly by iterators.
580       */
581 <    transient volatile Node[] table;
581 >    transient volatile Node<V>[] table;
582  
583 <    /** The counter maintaining number of elements. */
584 <    private transient final LongAdder counter;
585 <    /** Nonzero when table is being initialized or resized. Updated via CAS. */
586 <    private transient volatile int resizing;
587 <    /** The next element count value upon which to resize the table. */
588 <    private transient int threshold;
589 <    /** The target capacity; volatile to cover initialization races. */
590 <    private transient volatile int targetCapacity;
583 >    /**
584 >     * The next table to use; non-null only while resizing.
585 >     */
586 >    private transient volatile Node<V>[] nextTable;
587 >
588 >    /**
589 >     * Base counter value, used mainly when there is no contention,
590 >     * but also as a fallback during table initialization
591 >     * races. Updated via CAS.
592 >     */
593 >    private transient volatile long baseCount;
594 >
595 >    /**
596 >     * Table initialization and resizing control.  When negative, the
597 >     * table is being initialized or resized: -1 for initialization,
598 >     * else -(1 + the number of active resizing threads).  Otherwise,
599 >     * when table is null, holds the initial table size to use upon
600 >     * creation, or 0 for default. After initialization, holds the
601 >     * next element count value upon which to resize the table.
602 >     */
603 >    private transient volatile int sizeCtl;
604 >
605 >    /**
606 >     * The next table index (plus one) to split while resizing.
607 >     */
608 >    private transient volatile int transferIndex;
609 >
610 >    /**
611 >     * The least available table index to split while resizing.
612 >     */
613 >    private transient volatile int transferOrigin;
614 >
615 >    /**
616 >     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
617 >     */
618 >    private transient volatile int counterBusy;
619 >
620 >    /**
621 >     * Table of counter cells. When non-null, size is a power of 2.
622 >     */
623 >    private transient volatile CounterCell[] counterCells;
624  
625      // views
626 <    private transient KeySet<K,V> keySet;
627 <    private transient Values<K,V> values;
628 <    private transient EntrySet<K,V> entrySet;
626 >    private transient KeySetView<K,V> keySet;
627 >    private transient ValuesView<K,V> values;
628 >    private transient EntrySetView<K,V> entrySet;
629  
630      /** For serialization compatibility. Null unless serialized; see below */
631      private Segment<K,V>[] segments;
# Line 353 | Line 644 | public class ConcurrentHashMapV8<K, V>
644       * inline assignments below.
645       */
646  
647 <    static final Node tabAt(Node[] tab, int i) { // used by InternalIterator
648 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
647 >    @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
648 >        (Node<V>[] tab, int i) { // used by Traverser
649 >        return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
650      }
651  
652 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
653 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
652 >    private static final <V> boolean casTabAt
653 >        (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
654 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
655      }
656  
657 <    private static final void setTabAt(Node[] tab, int i, Node v) {
658 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
657 >    private static final <V> void setTabAt
658 >        (Node<V>[] tab, int i, Node<V> v) {
659 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
660      }
661  
662 <    /* ----------------Table Initialization and Resizing -------------- */
662 >    /* ---------------- Nodes -------------- */
663  
664      /**
665 <     * Returns a power of two table size for the given desired capacity.
666 <     * See Hackers Delight, sec 3.2
665 >     * Key-value entry. Note that this is never exported out as a
666 >     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
667 >     * field of MOVED are special, and do not contain user keys or
668 >     * values.  Otherwise, keys are never null, and null val fields
669 >     * indicate that a node is in the process of being deleted or
670 >     * created. For purposes of read-only access, a key may be read
671 >     * before a val, but can only be used after checking val to be
672 >     * non-null.
673       */
674 <    private static final int tableSizeFor(int c) {
675 <        int n = c - 1;
676 <        n |= n >>> 1;
677 <        n |= n >>> 2;
678 <        n |= n >>> 4;
679 <        n |= n >>> 8;
680 <        n |= n >>> 16;
681 <        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
674 >    static class Node<V> {
675 >        final int hash;
676 >        final Object key;
677 >        volatile V val;
678 >        volatile Node<V> next;
679 >
680 >        Node(int hash, Object key, V val, Node<V> next) {
681 >            this.hash = hash;
682 >            this.key = key;
683 >            this.val = val;
684 >            this.next = next;
685 >        }
686      }
687  
688 +    /* ---------------- TreeBins -------------- */
689 +
690      /**
691 <     * If not already resizing, initializes or creates next table and
692 <     * transfers bins. Initial table size uses the capacity recorded
693 <     * in targetCapacity.  Rechecks occupancy after a transfer to see
694 <     * if another resize is already needed because resizings are
695 <     * lagging additions.
696 <     *
697 <     * @return current table
698 <     */
699 <    private final Node[] growTable() {
700 <        if (resizing == 0 &&
701 <            UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) {
702 <            try {
397 <                for (;;) {
398 <                    Node[] tab = table;
399 <                    int n, c, m;
400 <                    if (tab == null)
401 <                        n = (c = targetCapacity) > 0 ? c : DEFAULT_CAPACITY;
402 <                    else if ((m = tab.length) < MAXIMUM_CAPACITY &&
403 <                             counter.sum() >= (long)threshold)
404 <                        n = m << 1;
405 <                    else
406 <                        break;
407 <                    threshold = n - (n >>> 2) - THRESHOLD_OFFSET;
408 <                    Node[] nextTab = new Node[n];
409 <                    if (tab != null)
410 <                        transfer(tab, nextTab,
411 <                                 new Node(SIGN_BIT, nextTab, null, null));
412 <                    table = nextTab;
413 <                    if (tab == null)
414 <                        break;
415 <                }
416 <            } finally {
417 <                resizing = 0;
418 <            }
691 >     * Nodes for use in TreeBins
692 >     */
693 >    static final class TreeNode<V> extends Node<V> {
694 >        TreeNode<V> parent;  // red-black tree links
695 >        TreeNode<V> left;
696 >        TreeNode<V> right;
697 >        TreeNode<V> prev;    // needed to unlink next upon deletion
698 >        boolean red;
699 >
700 >        TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
701 >            super(hash, key, val, next);
702 >            this.parent = parent;
703          }
420        else if (table == null)
421            Thread.yield(); // lost initialization race; just spin
422        return table;
704      }
705  
706      /**
707 <     * Reclassifies nodes in each bin to new table.  Because we are
708 <     * using power-of-two expansion, the elements from each bin must
428 <     * either stay at same index, or move with a power of two
429 <     * offset. We eliminate unnecessary node creation by catching
430 <     * cases where old nodes can be reused because their next fields
431 <     * won't change.  Statistically, only about one-sixth of them need
432 <     * cloning when a table doubles. The nodes they replace will be
433 <     * garbage collectable as soon as they are no longer referenced by
434 <     * any reader thread that may be in the midst of concurrently
435 <     * traversing table.
707 >     * A specialized form of red-black tree for use in bins
708 >     * whose size exceeds a threshold.
709       *
710 <     * Transfers are done from the bottom up to preserve iterator
711 <     * traversability. On each step, the old bin is locked,
712 <     * moved/copied, and then replaced with a forwarding node.
713 <     */
714 <    private static final void transfer(Node[] tab, Node[] nextTab, Node fwd) {
715 <        int n = tab.length;
716 <        Node ignore = nextTab[n + n - 1]; // force bounds check
717 <        for (int i = n - 1; i >= 0; --i) {
718 <            for (Node e;;) {
719 <                if ((e = tabAt(tab, i)) != null) {
720 <                    boolean validated = false;
721 <                    synchronized (e) {
722 <                        if (tabAt(tab, i) == e) {
723 <                            validated = true;
724 <                            Node lo = null, hi = null, lastRun = e;
725 <                            int runBit = e.hash & n;
726 <                            for (Node p = e.next; p != null; p = p.next) {
727 <                                int b = p.hash & n;
728 <                                if (b != runBit) {
729 <                                    runBit = b;
730 <                                    lastRun = p;
710 >     * TreeBins use a special form of comparison for search and
711 >     * related operations (which is the main reason we cannot use
712 >     * existing collections such as TreeMaps). TreeBins contain
713 >     * Comparable elements, but may contain others, as well as
714 >     * elements that are Comparable but not necessarily Comparable<T>
715 >     * for the same T, so we cannot invoke compareTo among them. To
716 >     * handle this, the tree is ordered primarily by hash value, then
717 >     * by getClass().getName() order, and then by Comparator order
718 >     * among elements of the same class.  On lookup at a node, if
719 >     * elements are not comparable or compare as 0, both left and
720 >     * right children may need to be searched in the case of tied hash
721 >     * values. (This corresponds to the full list search that would be
722 >     * necessary if all elements were non-Comparable and had tied
723 >     * hashes.)  The red-black balancing code is updated from
724 >     * pre-jdk-collections
725 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
726 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
727 >     * Algorithms" (CLR).
728 >     *
729 >     * TreeBins also maintain a separate locking discipline than
730 >     * regular bins. Because they are forwarded via special MOVED
731 >     * nodes at bin heads (which can never change once established),
732 >     * we cannot use those nodes as locks. Instead, TreeBin
733 >     * extends AbstractQueuedSynchronizer to support a simple form of
734 >     * read-write lock. For update operations and table validation,
735 >     * the exclusive form of lock behaves in the same way as bin-head
736 >     * locks. However, lookups use shared read-lock mechanics to allow
737 >     * multiple readers in the absence of writers.  Additionally,
738 >     * these lookups do not ever block: While the lock is not
739 >     * available, they proceed along the slow traversal path (via
740 >     * next-pointers) until the lock becomes available or the list is
741 >     * exhausted, whichever comes first. (These cases are not fast,
742 >     * but maximize aggregate expected throughput.)  The AQS mechanics
743 >     * for doing this are straightforward.  The lock state is held as
744 >     * AQS getState().  Read counts are negative; the write count (1)
745 >     * is positive.  There are no signalling preferences among readers
746 >     * and writers. Since we don't need to export full Lock API, we
747 >     * just override the minimal AQS methods and use them directly.
748 >     */
749 >    static final class TreeBin<V> extends AbstractQueuedSynchronizer {
750 >        private static final long serialVersionUID = 2249069246763182397L;
751 >        transient TreeNode<V> root;  // root of tree
752 >        transient TreeNode<V> first; // head of next-pointer list
753 >
754 >        /* AQS overrides */
755 >        public final boolean isHeldExclusively() { return getState() > 0; }
756 >        public final boolean tryAcquire(int ignore) {
757 >            if (compareAndSetState(0, 1)) {
758 >                setExclusiveOwnerThread(Thread.currentThread());
759 >                return true;
760 >            }
761 >            return false;
762 >        }
763 >        public final boolean tryRelease(int ignore) {
764 >            setExclusiveOwnerThread(null);
765 >            setState(0);
766 >            return true;
767 >        }
768 >        public final int tryAcquireShared(int ignore) {
769 >            for (int c;;) {
770 >                if ((c = getState()) > 0)
771 >                    return -1;
772 >                if (compareAndSetState(c, c -1))
773 >                    return 1;
774 >            }
775 >        }
776 >        public final boolean tryReleaseShared(int ignore) {
777 >            int c;
778 >            do {} while (!compareAndSetState(c = getState(), c + 1));
779 >            return c == -1;
780 >        }
781 >
782 >        /** From CLR */
783 >        private void rotateLeft(TreeNode<V> p) {
784 >            if (p != null) {
785 >                TreeNode<V> r = p.right, pp, rl;
786 >                if ((rl = p.right = r.left) != null)
787 >                    rl.parent = p;
788 >                if ((pp = r.parent = p.parent) == null)
789 >                    root = r;
790 >                else if (pp.left == p)
791 >                    pp.left = r;
792 >                else
793 >                    pp.right = r;
794 >                r.left = p;
795 >                p.parent = r;
796 >            }
797 >        }
798 >
799 >        /** From CLR */
800 >        private void rotateRight(TreeNode<V> p) {
801 >            if (p != null) {
802 >                TreeNode<V> l = p.left, pp, lr;
803 >                if ((lr = p.left = l.right) != null)
804 >                    lr.parent = p;
805 >                if ((pp = l.parent = p.parent) == null)
806 >                    root = l;
807 >                else if (pp.right == p)
808 >                    pp.right = l;
809 >                else
810 >                    pp.left = l;
811 >                l.right = p;
812 >                p.parent = l;
813 >            }
814 >        }
815 >
816 >        /**
817 >         * Returns the TreeNode (or null if not found) for the given key
818 >         * starting at given root.
819 >         */
820 >        @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
821 >            (int h, Object k, TreeNode<V> p) {
822 >            Class<?> c = k.getClass();
823 >            while (p != null) {
824 >                int dir, ph;  Object pk; Class<?> pc;
825 >                if ((ph = p.hash) == h) {
826 >                    if ((pk = p.key) == k || k.equals(pk))
827 >                        return p;
828 >                    if (c != (pc = pk.getClass()) ||
829 >                        !(k instanceof Comparable) ||
830 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
831 >                        if ((dir = (c == pc) ? 0 :
832 >                             c.getName().compareTo(pc.getName())) == 0) {
833 >                            TreeNode<V> r = null, pl, pr; // check both sides
834 >                            if ((pr = p.right) != null && h >= pr.hash &&
835 >                                (r = getTreeNode(h, k, pr)) != null)
836 >                                return r;
837 >                            else if ((pl = p.left) != null && h <= pl.hash)
838 >                                dir = -1;
839 >                            else // nothing there
840 >                                return null;
841 >                        }
842 >                    }
843 >                }
844 >                else
845 >                    dir = (h < ph) ? -1 : 1;
846 >                p = (dir > 0) ? p.right : p.left;
847 >            }
848 >            return null;
849 >        }
850 >
851 >        /**
852 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
853 >         * read-lock to call getTreeNode, but during failure to get
854 >         * lock, searches along next links.
855 >         */
856 >        final V getValue(int h, Object k) {
857 >            Node<V> r = null;
858 >            int c = getState(); // Must read lock state first
859 >            for (Node<V> e = first; e != null; e = e.next) {
860 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
861 >                    try {
862 >                        r = getTreeNode(h, k, root);
863 >                    } finally {
864 >                        releaseShared(0);
865 >                    }
866 >                    break;
867 >                }
868 >                else if (e.hash == h && k.equals(e.key)) {
869 >                    r = e;
870 >                    break;
871 >                }
872 >                else
873 >                    c = getState();
874 >            }
875 >            return r == null ? null : r.val;
876 >        }
877 >
878 >        /**
879 >         * Finds or adds a node.
880 >         * @return null if added
881 >         */
882 >        @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
883 >            (int h, Object k, V v) {
884 >            Class<?> c = k.getClass();
885 >            TreeNode<V> pp = root, p = null;
886 >            int dir = 0;
887 >            while (pp != null) { // find existing node or leaf to insert at
888 >                int ph;  Object pk; Class<?> pc;
889 >                p = pp;
890 >                if ((ph = p.hash) == h) {
891 >                    if ((pk = p.key) == k || k.equals(pk))
892 >                        return p;
893 >                    if (c != (pc = pk.getClass()) ||
894 >                        !(k instanceof Comparable) ||
895 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
896 >                        TreeNode<V> s = null, r = null, pr;
897 >                        if ((dir = (c == pc) ? 0 :
898 >                             c.getName().compareTo(pc.getName())) == 0) {
899 >                            if ((pr = p.right) != null && h >= pr.hash &&
900 >                                (r = getTreeNode(h, k, pr)) != null)
901 >                                return r;
902 >                            else // continue left
903 >                                dir = -1;
904 >                        }
905 >                        else if ((pr = p.right) != null && h >= pr.hash)
906 >                            s = pr;
907 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
908 >                            return r;
909 >                    }
910 >                }
911 >                else
912 >                    dir = (h < ph) ? -1 : 1;
913 >                pp = (dir > 0) ? p.right : p.left;
914 >            }
915 >
916 >            TreeNode<V> f = first;
917 >            TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
918 >            if (p == null)
919 >                root = x;
920 >            else { // attach and rebalance; adapted from CLR
921 >                TreeNode<V> xp, xpp;
922 >                if (f != null)
923 >                    f.prev = x;
924 >                if (dir <= 0)
925 >                    p.left = x;
926 >                else
927 >                    p.right = x;
928 >                x.red = true;
929 >                while (x != null && (xp = x.parent) != null && xp.red &&
930 >                       (xpp = xp.parent) != null) {
931 >                    TreeNode<V> xppl = xpp.left;
932 >                    if (xp == xppl) {
933 >                        TreeNode<V> y = xpp.right;
934 >                        if (y != null && y.red) {
935 >                            y.red = false;
936 >                            xp.red = false;
937 >                            xpp.red = true;
938 >                            x = xpp;
939 >                        }
940 >                        else {
941 >                            if (x == xp.right) {
942 >                                rotateLeft(x = xp);
943 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
944 >                            }
945 >                            if (xp != null) {
946 >                                xp.red = false;
947 >                                if (xpp != null) {
948 >                                    xpp.red = true;
949 >                                    rotateRight(xpp);
950                                  }
951                              }
460                            if (runBit == 0)
461                                lo = lastRun;
462                            else
463                                hi = lastRun;
464                            for (Node p = e; p != lastRun; p = p.next) {
465                                int ph = p.hash;
466                                Object pk = p.key, pv = p.val;
467                                if ((ph & n) == 0)
468                                    lo = new Node(ph, pk, pv, lo);
469                                else
470                                    hi = new Node(ph, pk, pv, hi);
471                            }
472                            setTabAt(nextTab, i, lo);
473                            setTabAt(nextTab, i + n, hi);
474                            setTabAt(tab, i, fwd);
952                          }
953                      }
954 <                    if (validated)
954 >                    else {
955 >                        TreeNode<V> y = xppl;
956 >                        if (y != null && y.red) {
957 >                            y.red = false;
958 >                            xp.red = false;
959 >                            xpp.red = true;
960 >                            x = xpp;
961 >                        }
962 >                        else {
963 >                            if (x == xp.left) {
964 >                                rotateRight(x = xp);
965 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
966 >                            }
967 >                            if (xp != null) {
968 >                                xp.red = false;
969 >                                if (xpp != null) {
970 >                                    xpp.red = true;
971 >                                    rotateLeft(xpp);
972 >                                }
973 >                            }
974 >                        }
975 >                    }
976 >                }
977 >                TreeNode<V> r = root;
978 >                if (r != null && r.red)
979 >                    r.red = false;
980 >            }
981 >            return null;
982 >        }
983 >
984 >        /**
985 >         * Removes the given node, that must be present before this
986 >         * call.  This is messier than typical red-black deletion code
987 >         * because we cannot swap the contents of an interior node
988 >         * with a leaf successor that is pinned by "next" pointers
989 >         * that are accessible independently of lock. So instead we
990 >         * swap the tree linkages.
991 >         */
992 >        final void deleteTreeNode(TreeNode<V> p) {
993 >            TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
994 >            TreeNode<V> pred = p.prev;
995 >            if (pred == null)
996 >                first = next;
997 >            else
998 >                pred.next = next;
999 >            if (next != null)
1000 >                next.prev = pred;
1001 >            TreeNode<V> replacement;
1002 >            TreeNode<V> pl = p.left;
1003 >            TreeNode<V> pr = p.right;
1004 >            if (pl != null && pr != null) {
1005 >                TreeNode<V> s = pr, sl;
1006 >                while ((sl = s.left) != null) // find successor
1007 >                    s = sl;
1008 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1009 >                TreeNode<V> sr = s.right;
1010 >                TreeNode<V> pp = p.parent;
1011 >                if (s == pr) { // p was s's direct parent
1012 >                    p.parent = s;
1013 >                    s.right = p;
1014 >                }
1015 >                else {
1016 >                    TreeNode<V> sp = s.parent;
1017 >                    if ((p.parent = sp) != null) {
1018 >                        if (s == sp.left)
1019 >                            sp.left = p;
1020 >                        else
1021 >                            sp.right = p;
1022 >                    }
1023 >                    if ((s.right = pr) != null)
1024 >                        pr.parent = s;
1025 >                }
1026 >                p.left = null;
1027 >                if ((p.right = sr) != null)
1028 >                    sr.parent = p;
1029 >                if ((s.left = pl) != null)
1030 >                    pl.parent = s;
1031 >                if ((s.parent = pp) == null)
1032 >                    root = s;
1033 >                else if (p == pp.left)
1034 >                    pp.left = s;
1035 >                else
1036 >                    pp.right = s;
1037 >                replacement = sr;
1038 >            }
1039 >            else
1040 >                replacement = (pl != null) ? pl : pr;
1041 >            TreeNode<V> pp = p.parent;
1042 >            if (replacement == null) {
1043 >                if (pp == null) {
1044 >                    root = null;
1045 >                    return;
1046 >                }
1047 >                replacement = p;
1048 >            }
1049 >            else {
1050 >                replacement.parent = pp;
1051 >                if (pp == null)
1052 >                    root = replacement;
1053 >                else if (p == pp.left)
1054 >                    pp.left = replacement;
1055 >                else
1056 >                    pp.right = replacement;
1057 >                p.left = p.right = p.parent = null;
1058 >            }
1059 >            if (!p.red) { // rebalance, from CLR
1060 >                TreeNode<V> x = replacement;
1061 >                while (x != null) {
1062 >                    TreeNode<V> xp, xpl;
1063 >                    if (x.red || (xp = x.parent) == null) {
1064 >                        x.red = false;
1065                          break;
1066 +                    }
1067 +                    if (x == (xpl = xp.left)) {
1068 +                        TreeNode<V> sib = xp.right;
1069 +                        if (sib != null && sib.red) {
1070 +                            sib.red = false;
1071 +                            xp.red = true;
1072 +                            rotateLeft(xp);
1073 +                            sib = (xp = x.parent) == null ? null : xp.right;
1074 +                        }
1075 +                        if (sib == null)
1076 +                            x = xp;
1077 +                        else {
1078 +                            TreeNode<V> sl = sib.left, sr = sib.right;
1079 +                            if ((sr == null || !sr.red) &&
1080 +                                (sl == null || !sl.red)) {
1081 +                                sib.red = true;
1082 +                                x = xp;
1083 +                            }
1084 +                            else {
1085 +                                if (sr == null || !sr.red) {
1086 +                                    if (sl != null)
1087 +                                        sl.red = false;
1088 +                                    sib.red = true;
1089 +                                    rotateRight(sib);
1090 +                                    sib = (xp = x.parent) == null ?
1091 +                                        null : xp.right;
1092 +                                }
1093 +                                if (sib != null) {
1094 +                                    sib.red = (xp == null) ? false : xp.red;
1095 +                                    if ((sr = sib.right) != null)
1096 +                                        sr.red = false;
1097 +                                }
1098 +                                if (xp != null) {
1099 +                                    xp.red = false;
1100 +                                    rotateLeft(xp);
1101 +                                }
1102 +                                x = root;
1103 +                            }
1104 +                        }
1105 +                    }
1106 +                    else { // symmetric
1107 +                        TreeNode<V> sib = xpl;
1108 +                        if (sib != null && sib.red) {
1109 +                            sib.red = false;
1110 +                            xp.red = true;
1111 +                            rotateRight(xp);
1112 +                            sib = (xp = x.parent) == null ? null : xp.left;
1113 +                        }
1114 +                        if (sib == null)
1115 +                            x = xp;
1116 +                        else {
1117 +                            TreeNode<V> sl = sib.left, sr = sib.right;
1118 +                            if ((sl == null || !sl.red) &&
1119 +                                (sr == null || !sr.red)) {
1120 +                                sib.red = true;
1121 +                                x = xp;
1122 +                            }
1123 +                            else {
1124 +                                if (sl == null || !sl.red) {
1125 +                                    if (sr != null)
1126 +                                        sr.red = false;
1127 +                                    sib.red = true;
1128 +                                    rotateLeft(sib);
1129 +                                    sib = (xp = x.parent) == null ?
1130 +                                        null : xp.left;
1131 +                                }
1132 +                                if (sib != null) {
1133 +                                    sib.red = (xp == null) ? false : xp.red;
1134 +                                    if ((sl = sib.left) != null)
1135 +                                        sl.red = false;
1136 +                                }
1137 +                                if (xp != null) {
1138 +                                    xp.red = false;
1139 +                                    rotateRight(xp);
1140 +                                }
1141 +                                x = root;
1142 +                            }
1143 +                        }
1144 +                    }
1145                  }
1146 <                else if (casTabAt(tab, i, e, fwd))
1147 <                    break;
1146 >            }
1147 >            if (p == replacement && (pp = p.parent) != null) {
1148 >                if (p == pp.left) // detach pointers
1149 >                    pp.left = null;
1150 >                else if (p == pp.right)
1151 >                    pp.right = null;
1152 >                p.parent = null;
1153              }
1154          }
1155      }
1156  
1157 <    /* ---------------- Internal access and update methods -------------- */
1157 >    /* ---------------- Collision reduction methods -------------- */
1158  
1159      /**
1160 <     * Applies a supplemental hash function to a given hashCode, which
1161 <     * defends against poor quality hash functions.  The result must
1162 <     * be non-negative, and for reasonable performance must have good
1163 <     * avalanche properties; i.e., that each bit of the argument
1164 <     * affects each bit (except sign bit) of the result.
1160 >     * Spreads higher bits to lower, and also forces top bit to 0.
1161 >     * Because the table uses power-of-two masking, sets of hashes
1162 >     * that vary only in bits above the current mask will always
1163 >     * collide. (Among known examples are sets of Float keys holding
1164 >     * consecutive whole numbers in small tables.)  To counter this,
1165 >     * we apply a transform that spreads the impact of higher bits
1166 >     * downward. There is a tradeoff between speed, utility, and
1167 >     * quality of bit-spreading. Because many common sets of hashes
1168 >     * are already reasonably distributed across bits (so don't benefit
1169 >     * from spreading), and because we use trees to handle large sets
1170 >     * of collisions in bins, we don't need excessively high quality.
1171       */
1172      private static final int spread(int h) {
1173 <        // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/
1174 <        h ^= h >>> 16;
1175 <        h *= 0x85ebca6b;
1176 <        h ^= h >>> 13;
1177 <        h *= 0xc2b2ae35;
1178 <        return (h >>> 16) ^ (h & 0x7fffffff); // mask out sign bit
1173 >        h ^= (h >>> 18) ^ (h >>> 12);
1174 >        return (h ^ (h >>> 10)) & HASH_BITS;
1175 >    }
1176 >
1177 >    /**
1178 >     * Replaces a list bin with a tree bin if key is comparable.  Call
1179 >     * only when locked.
1180 >     */
1181 >    private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1182 >        if (key instanceof Comparable) {
1183 >            TreeBin<V> t = new TreeBin<V>();
1184 >            for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1185 >                t.putTreeNode(e.hash, e.key, e.val);
1186 >            setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1187 >        }
1188      }
1189  
1190 +    /* ---------------- Internal access and update methods -------------- */
1191 +
1192      /** Implementation for get and containsKey */
1193 <    private final Object internalGet(Object k) {
1193 >    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1194          int h = spread(k.hashCode());
1195 <        retry: for (Node[] tab = table; tab != null;) {
1196 <            Node e; Object ek, ev; int eh;  // locals to read fields once
1195 >        retry: for (Node<V>[] tab = table; tab != null;) {
1196 >            Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1197              for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1198 <                if ((eh = e.hash) == h) {
1199 <                    if ((ev = e.val) != null &&
1200 <                        ((ek = e.key) == k || k.equals(ek)))
1201 <                        return ev;
1202 <                }
1203 <                else if (eh < 0) {          // sign bit set
1204 <                    tab = (Node[])e.key;    // bin was moved during resize
517 <                    continue retry;
1198 >                if ((eh = e.hash) < 0) {
1199 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1200 >                        return ((TreeBin<V>)ek).getValue(h, k);
1201 >                    else {                      // restart with new table
1202 >                        tab = (Node<V>[])ek;
1203 >                        continue retry;
1204 >                    }
1205                  }
1206 +                else if (eh == h && (ev = e.val) != null &&
1207 +                         ((ek = e.key) == k || k.equals(ek)))
1208 +                    return ev;
1209              }
1210              break;
1211          }
1212          return null;
1213      }
1214  
1215 +    /**
1216 +     * Implementation for the four public remove/replace methods:
1217 +     * Replaces node value with v, conditional upon match of cv if
1218 +     * non-null.  If resulting value is null, delete.
1219 +     */
1220 +    @SuppressWarnings("unchecked") private final V internalReplace
1221 +        (Object k, V v, Object cv) {
1222 +        int h = spread(k.hashCode());
1223 +        V oldVal = null;
1224 +        for (Node<V>[] tab = table;;) {
1225 +            Node<V> f; int i, fh; Object fk;
1226 +            if (tab == null ||
1227 +                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1228 +                break;
1229 +            else if ((fh = f.hash) < 0) {
1230 +                if ((fk = f.key) instanceof TreeBin) {
1231 +                    TreeBin<V> t = (TreeBin<V>)fk;
1232 +                    boolean validated = false;
1233 +                    boolean deleted = false;
1234 +                    t.acquire(0);
1235 +                    try {
1236 +                        if (tabAt(tab, i) == f) {
1237 +                            validated = true;
1238 +                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1239 +                            if (p != null) {
1240 +                                V pv = p.val;
1241 +                                if (cv == null || cv == pv || cv.equals(pv)) {
1242 +                                    oldVal = pv;
1243 +                                    if ((p.val = v) == null) {
1244 +                                        deleted = true;
1245 +                                        t.deleteTreeNode(p);
1246 +                                    }
1247 +                                }
1248 +                            }
1249 +                        }
1250 +                    } finally {
1251 +                        t.release(0);
1252 +                    }
1253 +                    if (validated) {
1254 +                        if (deleted)
1255 +                            addCount(-1L, -1);
1256 +                        break;
1257 +                    }
1258 +                }
1259 +                else
1260 +                    tab = (Node<V>[])fk;
1261 +            }
1262 +            else if (fh != h && f.next == null) // precheck
1263 +                break;                          // rules out possible existence
1264 +            else {
1265 +                boolean validated = false;
1266 +                boolean deleted = false;
1267 +                synchronized (f) {
1268 +                    if (tabAt(tab, i) == f) {
1269 +                        validated = true;
1270 +                        for (Node<V> e = f, pred = null;;) {
1271 +                            Object ek; V ev;
1272 +                            if (e.hash == h &&
1273 +                                ((ev = e.val) != null) &&
1274 +                                ((ek = e.key) == k || k.equals(ek))) {
1275 +                                if (cv == null || cv == ev || cv.equals(ev)) {
1276 +                                    oldVal = ev;
1277 +                                    if ((e.val = v) == null) {
1278 +                                        deleted = true;
1279 +                                        Node<V> en = e.next;
1280 +                                        if (pred != null)
1281 +                                            pred.next = en;
1282 +                                        else
1283 +                                            setTabAt(tab, i, en);
1284 +                                    }
1285 +                                }
1286 +                                break;
1287 +                            }
1288 +                            pred = e;
1289 +                            if ((e = e.next) == null)
1290 +                                break;
1291 +                        }
1292 +                    }
1293 +                }
1294 +                if (validated) {
1295 +                    if (deleted)
1296 +                        addCount(-1L, -1);
1297 +                    break;
1298 +                }
1299 +            }
1300 +        }
1301 +        return oldVal;
1302 +    }
1303 +
1304 +    /*
1305 +     * Internal versions of insertion methods
1306 +     * All have the same basic structure as the first (internalPut):
1307 +     *  1. If table uninitialized, create
1308 +     *  2. If bin empty, try to CAS new node
1309 +     *  3. If bin stale, use new table
1310 +     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1311 +     *  5. Lock and validate; if valid, scan and add or update
1312 +     *
1313 +     * The putAll method differs mainly in attempting to pre-allocate
1314 +     * enough table space, and also more lazily performs count updates
1315 +     * and checks.
1316 +     *
1317 +     * Most of the function-accepting methods can't be factored nicely
1318 +     * because they require different functional forms, so instead
1319 +     * sprawl out similar mechanics.
1320 +     */
1321 +
1322      /** Implementation for put and putIfAbsent */
1323 <    private final Object internalPut(Object k, Object v, boolean replace) {
1323 >    @SuppressWarnings("unchecked") private final V internalPut
1324 >        (K k, V v, boolean onlyIfAbsent) {
1325 >        if (k == null || v == null) throw new NullPointerException();
1326          int h = spread(k.hashCode());
1327 <        Object oldVal = null;               // previous value or null if none
1328 <        for (Node[] tab = table;;) {
1329 <            Node e; int i; Object ek, ev;
1327 >        int len = 0;
1328 >        for (Node<V>[] tab = table;;) {
1329 >            int i, fh; Node<V> f; Object fk; V fv;
1330              if (tab == null)
1331 <                tab = growTable();
1332 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1333 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1331 >                tab = initTable();
1332 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1333 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1334                      break;                   // no lock when adding to empty bin
1335              }
1336 <            else if (e.hash < 0)             // resized -- restart with new table
1337 <                tab = (Node[])e.key;
1338 <            else if (!replace && e.hash == h && (ev = e.val) != null &&
1339 <                     ((ek = e.key) == k || k.equals(ek))) {
1340 <                if (tabAt(tab, i) == e) {    // inspect and validate 1st node
1341 <                    oldVal = ev;             // without lock for putIfAbsent
1342 <                    break;
1336 >            else if ((fh = f.hash) < 0) {
1337 >                if ((fk = f.key) instanceof TreeBin) {
1338 >                    TreeBin<V> t = (TreeBin<V>)fk;
1339 >                    V oldVal = null;
1340 >                    t.acquire(0);
1341 >                    try {
1342 >                        if (tabAt(tab, i) == f) {
1343 >                            len = 2;
1344 >                            TreeNode<V> p = t.putTreeNode(h, k, v);
1345 >                            if (p != null) {
1346 >                                oldVal = p.val;
1347 >                                if (!onlyIfAbsent)
1348 >                                    p.val = v;
1349 >                            }
1350 >                        }
1351 >                    } finally {
1352 >                        t.release(0);
1353 >                    }
1354 >                    if (len != 0) {
1355 >                        if (oldVal != null)
1356 >                            return oldVal;
1357 >                        break;
1358 >                    }
1359                  }
1360 +                else
1361 +                    tab = (Node<V>[])fk;
1362              }
1363 +            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1364 +                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1365 +                return fv;
1366              else {
1367 <                boolean validated = false;
1368 <                boolean checkSize = false;
1369 <                synchronized (e) {           // lock the 1st node of bin list
1370 <                    if (tabAt(tab, i) == e) {
1371 <                        validated = true;    // retry if 1st already deleted
1372 <                        for (Node first = e;;) {
1367 >                V oldVal = null;
1368 >                synchronized (f) {
1369 >                    if (tabAt(tab, i) == f) {
1370 >                        len = 1;
1371 >                        for (Node<V> e = f;; ++len) {
1372 >                            Object ek; V ev;
1373                              if (e.hash == h &&
1374 <                                ((ek = e.key) == k || k.equals(ek)) &&
1375 <                                (ev = e.val) != null) {
1374 >                                (ev = e.val) != null &&
1375 >                                ((ek = e.key) == k || k.equals(ek))) {
1376                                  oldVal = ev;
1377 <                                if (replace)
1377 >                                if (!onlyIfAbsent)
1378                                      e.val = v;
1379                                  break;
1380                              }
1381 <                            Node last = e;
1381 >                            Node<V> last = e;
1382                              if ((e = e.next) == null) {
1383 <                                last.next = new Node(h, k, v, null);
1384 <                                if (last != first || tab.length <= 64)
1385 <                                    checkSize = true;
1383 >                                last.next = new Node<V>(h, k, v, null);
1384 >                                if (len >= TREE_THRESHOLD)
1385 >                                    replaceWithTreeBin(tab, i, k);
1386                                  break;
1387                              }
1388                          }
1389                      }
1390                  }
1391 <                if (validated) {
1392 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1393 <                        resizing == 0 && counter.sum() >= (long)threshold)
574 <                        growTable();
1391 >                if (len != 0) {
1392 >                    if (oldVal != null)
1393 >                        return oldVal;
1394                      break;
1395                  }
1396              }
1397          }
1398 <        if (oldVal == null)
1399 <            counter.increment();             // update counter outside of locks
581 <        return oldVal;
1398 >        addCount(1L, len);
1399 >        return null;
1400      }
1401  
1402 <    /**
1403 <     * Implementation for the four public remove/replace methods:
1404 <     * Replaces node value with v, conditional upon match of cv if
1405 <     * non-null.  If resulting value is null, delete.
1406 <     */
589 <    private final Object internalReplace(Object k, Object v, Object cv) {
1402 >    /** Implementation for computeIfAbsent */
1403 >    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1404 >        (K k, Fun<? super K, ? extends V> mf) {
1405 >        if (k == null || mf == null)
1406 >            throw new NullPointerException();
1407          int h = spread(k.hashCode());
1408 <        for (Node[] tab = table;;) {
1409 <            Node e; int i;
1410 <            if (tab == null ||
1411 <                (e = tabAt(tab, i = (tab.length - 1) & h)) == null)
1412 <                return null;
1413 <            else if (e.hash < 0)
1414 <                tab = (Node[])e.key;
1408 >        V val = null;
1409 >        int len = 0;
1410 >        for (Node<V>[] tab = table;;) {
1411 >            Node<V> f; int i; Object fk;
1412 >            if (tab == null)
1413 >                tab = initTable();
1414 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1415 >                Node<V> node = new Node<V>(h, k, null, null);
1416 >                synchronized (node) {
1417 >                    if (casTabAt(tab, i, null, node)) {
1418 >                        len = 1;
1419 >                        try {
1420 >                            if ((val = mf.apply(k)) != null)
1421 >                                node.val = val;
1422 >                        } finally {
1423 >                            if (val == null)
1424 >                                setTabAt(tab, i, null);
1425 >                        }
1426 >                    }
1427 >                }
1428 >                if (len != 0)
1429 >                    break;
1430 >            }
1431 >            else if (f.hash < 0) {
1432 >                if ((fk = f.key) instanceof TreeBin) {
1433 >                    TreeBin<V> t = (TreeBin<V>)fk;
1434 >                    boolean added = false;
1435 >                    t.acquire(0);
1436 >                    try {
1437 >                        if (tabAt(tab, i) == f) {
1438 >                            len = 1;
1439 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1440 >                            if (p != null)
1441 >                                val = p.val;
1442 >                            else if ((val = mf.apply(k)) != null) {
1443 >                                added = true;
1444 >                                len = 2;
1445 >                                t.putTreeNode(h, k, val);
1446 >                            }
1447 >                        }
1448 >                    } finally {
1449 >                        t.release(0);
1450 >                    }
1451 >                    if (len != 0) {
1452 >                        if (!added)
1453 >                            return val;
1454 >                        break;
1455 >                    }
1456 >                }
1457 >                else
1458 >                    tab = (Node<V>[])fk;
1459 >            }
1460              else {
1461 <                Object oldVal = null;
1462 <                boolean validated = false;
1463 <                boolean deleted = false;
1464 <                synchronized (e) {
1465 <                    if (tabAt(tab, i) == e) {
1466 <                        validated = true;
1467 <                        Node pred = null;
1468 <                        do {
1469 <                            Object ek, ev;
1461 >                for (Node<V> e = f; e != null; e = e.next) { // prescan
1462 >                    Object ek; V ev;
1463 >                    if (e.hash == h && (ev = e.val) != null &&
1464 >                        ((ek = e.key) == k || k.equals(ek)))
1465 >                        return ev;
1466 >                }
1467 >                boolean added = false;
1468 >                synchronized (f) {
1469 >                    if (tabAt(tab, i) == f) {
1470 >                        len = 1;
1471 >                        for (Node<V> e = f;; ++len) {
1472 >                            Object ek; V ev;
1473                              if (e.hash == h &&
1474 <                                ((ek = e.key) == k || k.equals(ek)) &&
1475 <                                ((ev = e.val) != null)) {
1476 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1477 <                                    oldVal = ev;
1478 <                                    if ((e.val = v) == null) {
1479 <                                        deleted = true;
1480 <                                        Node en = e.next;
1481 <                                        if (pred != null)
1482 <                                            pred.next = en;
1483 <                                        else
1484 <                                            setTabAt(tab, i, en);
1485 <                                    }
1474 >                                (ev = e.val) != null &&
1475 >                                ((ek = e.key) == k || k.equals(ek))) {
1476 >                                val = ev;
1477 >                                break;
1478 >                            }
1479 >                            Node<V> last = e;
1480 >                            if ((e = e.next) == null) {
1481 >                                if ((val = mf.apply(k)) != null) {
1482 >                                    added = true;
1483 >                                    last.next = new Node<V>(h, k, val, null);
1484 >                                    if (len >= TREE_THRESHOLD)
1485 >                                        replaceWithTreeBin(tab, i, k);
1486                                  }
1487                                  break;
1488                              }
1489 <                        } while ((e = (pred = e).next) != null);
1489 >                        }
1490                      }
1491                  }
1492 <                if (validated) {
1493 <                    if (deleted)
1494 <                        counter.decrement();
1495 <                    return oldVal;
1492 >                if (len != 0) {
1493 >                    if (!added)
1494 >                        return val;
1495 >                    break;
1496                  }
1497              }
1498          }
1499 +        if (val != null)
1500 +            addCount(1L, len);
1501 +        return val;
1502      }
1503  
1504 <    /** Implementation for computeIfAbsent and compute. Like put, but messier. */
1505 <    @SuppressWarnings("unchecked")
1506 <    private final V internalCompute(K k,
1507 <                                    MappingFunction<? super K, ? extends V> f,
1508 <                                    boolean replace) {
1504 >    /** Implementation for compute */
1505 >    @SuppressWarnings("unchecked") private final V internalCompute
1506 >        (K k, boolean onlyIfPresent,
1507 >         BiFun<? super K, ? super V, ? extends V> mf) {
1508 >        if (k == null || mf == null)
1509 >            throw new NullPointerException();
1510          int h = spread(k.hashCode());
1511          V val = null;
1512 <        boolean added = false;
1513 <        Node[] tab = table;
1514 <        outer:for (;;) {
1515 <            Node e; int i; Object ek, ev;
1512 >        int delta = 0;
1513 >        int len = 0;
1514 >        for (Node<V>[] tab = table;;) {
1515 >            Node<V> f; int i, fh; Object fk;
1516              if (tab == null)
1517 <                tab = growTable();
1518 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1519 <                Node node = new Node(h, k, null, null);
1520 <                boolean validated = false;
1521 <                synchronized (node) {  // must lock while computing value
1517 >                tab = initTable();
1518 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1519 >                if (onlyIfPresent)
1520 >                    break;
1521 >                Node<V> node = new Node<V>(h, k, null, null);
1522 >                synchronized (node) {
1523                      if (casTabAt(tab, i, null, node)) {
654                        validated = true;
1524                          try {
1525 <                            val = f.map(k);
1526 <                            if (val != null) {
1525 >                            len = 1;
1526 >                            if ((val = mf.apply(k, null)) != null) {
1527                                  node.val = val;
1528 <                                added = true;
1528 >                                delta = 1;
1529                              }
1530                          } finally {
1531 <                            if (!added)
1531 >                            if (delta == 0)
1532                                  setTabAt(tab, i, null);
1533                          }
1534                      }
1535                  }
1536 <                if (validated)
1536 >                if (len != 0)
1537                      break;
1538              }
1539 <            else if (e.hash < 0)
1540 <                tab = (Node[])e.key;
1541 <            else if (!replace && e.hash == h && (ev = e.val) != null &&
1542 <                     ((ek = e.key) == k || k.equals(ek))) {
1543 <                if (tabAt(tab, i) == e) {
1544 <                    val = (V)ev;
1545 <                    break;
1539 >            else if ((fh = f.hash) < 0) {
1540 >                if ((fk = f.key) instanceof TreeBin) {
1541 >                    TreeBin<V> t = (TreeBin<V>)fk;
1542 >                    t.acquire(0);
1543 >                    try {
1544 >                        if (tabAt(tab, i) == f) {
1545 >                            len = 1;
1546 >                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1547 >                            if (p == null && onlyIfPresent)
1548 >                                break;
1549 >                            V pv = (p == null) ? null : p.val;
1550 >                            if ((val = mf.apply(k, pv)) != null) {
1551 >                                if (p != null)
1552 >                                    p.val = val;
1553 >                                else {
1554 >                                    len = 2;
1555 >                                    delta = 1;
1556 >                                    t.putTreeNode(h, k, val);
1557 >                                }
1558 >                            }
1559 >                            else if (p != null) {
1560 >                                delta = -1;
1561 >                                t.deleteTreeNode(p);
1562 >                            }
1563 >                        }
1564 >                    } finally {
1565 >                        t.release(0);
1566 >                    }
1567 >                    if (len != 0)
1568 >                        break;
1569                  }
1570 +                else
1571 +                    tab = (Node<V>[])fk;
1572              }
679            else if (Thread.holdsLock(e))
680                throw new IllegalStateException("Recursive map computation");
1573              else {
1574 <                boolean validated = false;
1575 <                boolean checkSize = false;
1576 <                synchronized (e) {
1577 <                    if (tabAt(tab, i) == e) {
1578 <                        validated = true;
687 <                        for (Node first = e;;) {
1574 >                synchronized (f) {
1575 >                    if (tabAt(tab, i) == f) {
1576 >                        len = 1;
1577 >                        for (Node<V> e = f, pred = null;; ++len) {
1578 >                            Object ek; V ev;
1579                              if (e.hash == h &&
1580 <                                ((ek = e.key) == k || k.equals(ek)) &&
1581 <                                ((ev = e.val) != null)) {
1582 <                                Object fv;
1583 <                                if (replace && (fv = f.map(k)) != null)
1584 <                                    ev = e.val = fv;
1585 <                                val = (V)ev;
1580 >                                (ev = e.val) != null &&
1581 >                                ((ek = e.key) == k || k.equals(ek))) {
1582 >                                val = mf.apply(k, ev);
1583 >                                if (val != null)
1584 >                                    e.val = val;
1585 >                                else {
1586 >                                    delta = -1;
1587 >                                    Node<V> en = e.next;
1588 >                                    if (pred != null)
1589 >                                        pred.next = en;
1590 >                                    else
1591 >                                        setTabAt(tab, i, en);
1592 >                                }
1593                                  break;
1594                              }
1595 <                            Node last = e;
1595 >                            pred = e;
1596                              if ((e = e.next) == null) {
1597 <                                if ((val = f.map(k)) != null) {
1598 <                                    last.next = new Node(h, k, val, null);
1599 <                                    added = true;
1600 <                                    if (last != first || tab.length <= 64)
1601 <                                        checkSize = true;
1597 >                                if (!onlyIfPresent &&
1598 >                                    (val = mf.apply(k, null)) != null) {
1599 >                                    pred.next = new Node<V>(h, k, val, null);
1600 >                                    delta = 1;
1601 >                                    if (len >= TREE_THRESHOLD)
1602 >                                        replaceWithTreeBin(tab, i, k);
1603                                  }
1604                                  break;
1605                              }
1606                          }
1607                      }
1608                  }
1609 <                if (validated) {
1610 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1611 <                        resizing == 0 && counter.sum() >= (long)threshold)
1612 <                        growTable();
1609 >                if (len != 0)
1610 >                    break;
1611 >            }
1612 >        }
1613 >        if (delta != 0)
1614 >            addCount((long)delta, len);
1615 >        return val;
1616 >    }
1617 >
1618 >    /** Implementation for merge */
1619 >    @SuppressWarnings("unchecked") private final V internalMerge
1620 >        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1621 >        if (k == null || v == null || mf == null)
1622 >            throw new NullPointerException();
1623 >        int h = spread(k.hashCode());
1624 >        V val = null;
1625 >        int delta = 0;
1626 >        int len = 0;
1627 >        for (Node<V>[] tab = table;;) {
1628 >            int i; Node<V> f; Object fk; V fv;
1629 >            if (tab == null)
1630 >                tab = initTable();
1631 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1632 >                if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1633 >                    delta = 1;
1634 >                    val = v;
1635                      break;
1636                  }
1637              }
1638 +            else if (f.hash < 0) {
1639 +                if ((fk = f.key) instanceof TreeBin) {
1640 +                    TreeBin<V> t = (TreeBin<V>)fk;
1641 +                    t.acquire(0);
1642 +                    try {
1643 +                        if (tabAt(tab, i) == f) {
1644 +                            len = 1;
1645 +                            TreeNode<V> p = t.getTreeNode(h, k, t.root);
1646 +                            val = (p == null) ? v : mf.apply(p.val, v);
1647 +                            if (val != null) {
1648 +                                if (p != null)
1649 +                                    p.val = val;
1650 +                                else {
1651 +                                    len = 2;
1652 +                                    delta = 1;
1653 +                                    t.putTreeNode(h, k, val);
1654 +                                }
1655 +                            }
1656 +                            else if (p != null) {
1657 +                                delta = -1;
1658 +                                t.deleteTreeNode(p);
1659 +                            }
1660 +                        }
1661 +                    } finally {
1662 +                        t.release(0);
1663 +                    }
1664 +                    if (len != 0)
1665 +                        break;
1666 +                }
1667 +                else
1668 +                    tab = (Node<V>[])fk;
1669 +            }
1670 +            else {
1671 +                synchronized (f) {
1672 +                    if (tabAt(tab, i) == f) {
1673 +                        len = 1;
1674 +                        for (Node<V> e = f, pred = null;; ++len) {
1675 +                            Object ek; V ev;
1676 +                            if (e.hash == h &&
1677 +                                (ev = e.val) != null &&
1678 +                                ((ek = e.key) == k || k.equals(ek))) {
1679 +                                val = mf.apply(ev, v);
1680 +                                if (val != null)
1681 +                                    e.val = val;
1682 +                                else {
1683 +                                    delta = -1;
1684 +                                    Node<V> en = e.next;
1685 +                                    if (pred != null)
1686 +                                        pred.next = en;
1687 +                                    else
1688 +                                        setTabAt(tab, i, en);
1689 +                                }
1690 +                                break;
1691 +                            }
1692 +                            pred = e;
1693 +                            if ((e = e.next) == null) {
1694 +                                val = v;
1695 +                                pred.next = new Node<V>(h, k, val, null);
1696 +                                delta = 1;
1697 +                                if (len >= TREE_THRESHOLD)
1698 +                                    replaceWithTreeBin(tab, i, k);
1699 +                                break;
1700 +                            }
1701 +                        }
1702 +                    }
1703 +                }
1704 +                if (len != 0)
1705 +                    break;
1706 +            }
1707          }
1708 <        if (added)
1709 <            counter.increment();
1708 >        if (delta != 0)
1709 >            addCount((long)delta, len);
1710          return val;
1711      }
1712  
1713 +    /** Implementation for putAll */
1714 +    @SuppressWarnings("unchecked") private final void internalPutAll
1715 +        (Map<? extends K, ? extends V> m) {
1716 +        tryPresize(m.size());
1717 +        long delta = 0L;     // number of uncommitted additions
1718 +        boolean npe = false; // to throw exception on exit for nulls
1719 +        try {                // to clean up counts on other exceptions
1720 +            for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1721 +                Object k; V v;
1722 +                if (entry == null || (k = entry.getKey()) == null ||
1723 +                    (v = entry.getValue()) == null) {
1724 +                    npe = true;
1725 +                    break;
1726 +                }
1727 +                int h = spread(k.hashCode());
1728 +                for (Node<V>[] tab = table;;) {
1729 +                    int i; Node<V> f; int fh; Object fk;
1730 +                    if (tab == null)
1731 +                        tab = initTable();
1732 +                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1733 +                        if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1734 +                            ++delta;
1735 +                            break;
1736 +                        }
1737 +                    }
1738 +                    else if ((fh = f.hash) < 0) {
1739 +                        if ((fk = f.key) instanceof TreeBin) {
1740 +                            TreeBin<V> t = (TreeBin<V>)fk;
1741 +                            boolean validated = false;
1742 +                            t.acquire(0);
1743 +                            try {
1744 +                                if (tabAt(tab, i) == f) {
1745 +                                    validated = true;
1746 +                                    TreeNode<V> p = t.getTreeNode(h, k, t.root);
1747 +                                    if (p != null)
1748 +                                        p.val = v;
1749 +                                    else {
1750 +                                        t.putTreeNode(h, k, v);
1751 +                                        ++delta;
1752 +                                    }
1753 +                                }
1754 +                            } finally {
1755 +                                t.release(0);
1756 +                            }
1757 +                            if (validated)
1758 +                                break;
1759 +                        }
1760 +                        else
1761 +                            tab = (Node<V>[])fk;
1762 +                    }
1763 +                    else {
1764 +                        int len = 0;
1765 +                        synchronized (f) {
1766 +                            if (tabAt(tab, i) == f) {
1767 +                                len = 1;
1768 +                                for (Node<V> e = f;; ++len) {
1769 +                                    Object ek; V ev;
1770 +                                    if (e.hash == h &&
1771 +                                        (ev = e.val) != null &&
1772 +                                        ((ek = e.key) == k || k.equals(ek))) {
1773 +                                        e.val = v;
1774 +                                        break;
1775 +                                    }
1776 +                                    Node<V> last = e;
1777 +                                    if ((e = e.next) == null) {
1778 +                                        ++delta;
1779 +                                        last.next = new Node<V>(h, k, v, null);
1780 +                                        if (len >= TREE_THRESHOLD)
1781 +                                            replaceWithTreeBin(tab, i, k);
1782 +                                        break;
1783 +                                    }
1784 +                                }
1785 +                            }
1786 +                        }
1787 +                        if (len != 0) {
1788 +                            if (len > 1) {
1789 +                                addCount(delta, len);
1790 +                                delta = 0L;
1791 +                            }
1792 +                            break;
1793 +                        }
1794 +                    }
1795 +                }
1796 +            }
1797 +        } finally {
1798 +            if (delta != 0L)
1799 +                addCount(delta, 2);
1800 +        }
1801 +        if (npe)
1802 +            throw new NullPointerException();
1803 +    }
1804 +
1805      /**
1806 <     * Implementation for clear. Steps through each bin, removing all nodes.
1806 >     * Implementation for clear. Steps through each bin, removing all
1807 >     * nodes.
1808       */
1809 <    private final void internalClear() {
1809 >    @SuppressWarnings("unchecked") private final void internalClear() {
1810          long delta = 0L; // negative number of deletions
1811          int i = 0;
1812 <        Node[] tab = table;
1812 >        Node<V>[] tab = table;
1813          while (tab != null && i < tab.length) {
1814 <            Node e = tabAt(tab, i);
1815 <            if (e == null)
1814 >            Node<V> f = tabAt(tab, i);
1815 >            if (f == null)
1816                  ++i;
1817 <            else if (e.hash < 0)
1818 <                tab = (Node[])e.key;
1817 >            else if (f.hash < 0) {
1818 >                Object fk;
1819 >                if ((fk = f.key) instanceof TreeBin) {
1820 >                    TreeBin<V> t = (TreeBin<V>)fk;
1821 >                    t.acquire(0);
1822 >                    try {
1823 >                        if (tabAt(tab, i) == f) {
1824 >                            for (Node<V> p = t.first; p != null; p = p.next) {
1825 >                                if (p.val != null) { // (currently always true)
1826 >                                    p.val = null;
1827 >                                    --delta;
1828 >                                }
1829 >                            }
1830 >                            t.first = null;
1831 >                            t.root = null;
1832 >                            ++i;
1833 >                        }
1834 >                    } finally {
1835 >                        t.release(0);
1836 >                    }
1837 >                }
1838 >                else
1839 >                    tab = (Node<V>[])fk;
1840 >            }
1841              else {
1842 <                boolean validated = false;
1843 <                synchronized (e) {
1844 <                    if (tabAt(tab, i) == e) {
1845 <                        validated = true;
741 <                        Node en;
742 <                        do {
743 <                            en = e.next;
744 <                            if (e.val != null) { // currently always true
1842 >                synchronized (f) {
1843 >                    if (tabAt(tab, i) == f) {
1844 >                        for (Node<V> e = f; e != null; e = e.next) {
1845 >                            if (e.val != null) {  // (currently always true)
1846                                  e.val = null;
1847                                  --delta;
1848                              }
1849 <                        } while ((e = en) != null);
1849 >                        }
1850                          setTabAt(tab, i, null);
1851 +                        ++i;
1852 +                    }
1853 +                }
1854 +            }
1855 +        }
1856 +        if (delta != 0L)
1857 +            addCount(delta, -1);
1858 +    }
1859 +
1860 +    /* ---------------- Table Initialization and Resizing -------------- */
1861 +
1862 +    /**
1863 +     * Returns a power of two table size for the given desired capacity.
1864 +     * See Hackers Delight, sec 3.2
1865 +     */
1866 +    private static final int tableSizeFor(int c) {
1867 +        int n = c - 1;
1868 +        n |= n >>> 1;
1869 +        n |= n >>> 2;
1870 +        n |= n >>> 4;
1871 +        n |= n >>> 8;
1872 +        n |= n >>> 16;
1873 +        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1874 +    }
1875 +
1876 +    /**
1877 +     * Initializes table, using the size recorded in sizeCtl.
1878 +     */
1879 +    @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1880 +        Node<V>[] tab; int sc;
1881 +        while ((tab = table) == null) {
1882 +            if ((sc = sizeCtl) < 0)
1883 +                Thread.yield(); // lost initialization race; just spin
1884 +            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1885 +                try {
1886 +                    if ((tab = table) == null) {
1887 +                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1888 +                        @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1889 +                        table = tab = (Node<V>[])tb;
1890 +                        sc = n - (n >>> 2);
1891 +                    }
1892 +                } finally {
1893 +                    sizeCtl = sc;
1894 +                }
1895 +                break;
1896 +            }
1897 +        }
1898 +        return tab;
1899 +    }
1900 +
1901 +    /**
1902 +     * Adds to count, and if table is too small and not already
1903 +     * resizing, initiates transfer. If already resizing, helps
1904 +     * perform transfer if work is available.  Rechecks occupancy
1905 +     * after a transfer to see if another resize is already needed
1906 +     * because resizings are lagging additions.
1907 +     *
1908 +     * @param x the count to add
1909 +     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1910 +     */
1911 +    private final void addCount(long x, int check) {
1912 +        CounterCell[] as; long b, s;
1913 +        if ((as = counterCells) != null ||
1914 +            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1915 +            CounterHashCode hc; CounterCell a; long v; int m;
1916 +            boolean uncontended = true;
1917 +            if ((hc = threadCounterHashCode.get()) == null ||
1918 +                as == null || (m = as.length - 1) < 0 ||
1919 +                (a = as[m & hc.code]) == null ||
1920 +                !(uncontended =
1921 +                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1922 +                fullAddCount(x, hc, uncontended);
1923 +                return;
1924 +            }
1925 +            if (check <= 1)
1926 +                return;
1927 +            s = sumCount();
1928 +        }
1929 +        if (check >= 0) {
1930 +            Node<V>[] tab, nt; int sc;
1931 +            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1932 +                   tab.length < MAXIMUM_CAPACITY) {
1933 +                if (sc < 0) {
1934 +                    if (sc == -1 || transferIndex <= transferOrigin ||
1935 +                        (nt = nextTable) == null)
1936 +                        break;
1937 +                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1938 +                        transfer(tab, nt);
1939 +                }
1940 +                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1941 +                    transfer(tab, null);
1942 +                s = sumCount();
1943 +            }
1944 +        }
1945 +    }
1946 +
1947 +    /**
1948 +     * Tries to presize table to accommodate the given number of elements.
1949 +     *
1950 +     * @param size number of elements (doesn't need to be perfectly accurate)
1951 +     */
1952 +    @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1953 +        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1954 +            tableSizeFor(size + (size >>> 1) + 1);
1955 +        int sc;
1956 +        while ((sc = sizeCtl) >= 0) {
1957 +            Node<V>[] tab = table; int n;
1958 +            if (tab == null || (n = tab.length) == 0) {
1959 +                n = (sc > c) ? sc : c;
1960 +                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1961 +                    try {
1962 +                        if (table == tab) {
1963 +                            @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1964 +                            table = (Node<V>[])tb;
1965 +                            sc = n - (n >>> 2);
1966 +                        }
1967 +                    } finally {
1968 +                        sizeCtl = sc;
1969 +                    }
1970 +                }
1971 +            }
1972 +            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1973 +                break;
1974 +            else if (tab == table &&
1975 +                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1976 +                transfer(tab, null);
1977 +        }
1978 +    }
1979 +
1980 +    /*
1981 +     * Moves and/or copies the nodes in each bin to new table. See
1982 +     * above for explanation.
1983 +     */
1984 +    @SuppressWarnings("unchecked") private final void transfer
1985 +        (Node<V>[] tab, Node<V>[] nextTab) {
1986 +        int n = tab.length, stride;
1987 +        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1988 +            stride = MIN_TRANSFER_STRIDE; // subdivide range
1989 +        if (nextTab == null) {            // initiating
1990 +            try {
1991 +                @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1992 +                nextTab = (Node<V>[])tb;
1993 +            } catch (Throwable ex) {      // try to cope with OOME
1994 +                sizeCtl = Integer.MAX_VALUE;
1995 +                return;
1996 +            }
1997 +            nextTable = nextTab;
1998 +            transferOrigin = n;
1999 +            transferIndex = n;
2000 +            Node<V> rev = new Node<V>(MOVED, tab, null, null);
2001 +            for (int k = n; k > 0;) {    // progressively reveal ready slots
2002 +                int nextk = (k > stride) ? k - stride : 0;
2003 +                for (int m = nextk; m < k; ++m)
2004 +                    nextTab[m] = rev;
2005 +                for (int m = n + nextk; m < n + k; ++m)
2006 +                    nextTab[m] = rev;
2007 +                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2008 +            }
2009 +        }
2010 +        int nextn = nextTab.length;
2011 +        Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
2012 +        boolean advance = true;
2013 +        for (int i = 0, bound = 0;;) {
2014 +            int nextIndex, nextBound; Node<V> f; Object fk;
2015 +            while (advance) {
2016 +                if (--i >= bound)
2017 +                    advance = false;
2018 +                else if ((nextIndex = transferIndex) <= transferOrigin) {
2019 +                    i = -1;
2020 +                    advance = false;
2021 +                }
2022 +                else if (U.compareAndSwapInt
2023 +                         (this, TRANSFERINDEX, nextIndex,
2024 +                          nextBound = (nextIndex > stride ?
2025 +                                       nextIndex - stride : 0))) {
2026 +                    bound = nextBound;
2027 +                    i = nextIndex - 1;
2028 +                    advance = false;
2029 +                }
2030 +            }
2031 +            if (i < 0 || i >= n || i + n >= nextn) {
2032 +                for (int sc;;) {
2033 +                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2034 +                        if (sc == -1) {
2035 +                            nextTable = null;
2036 +                            table = nextTab;
2037 +                            sizeCtl = (n << 1) - (n >>> 1);
2038 +                        }
2039 +                        return;
2040 +                    }
2041 +                }
2042 +            }
2043 +            else if ((f = tabAt(tab, i)) == null) {
2044 +                if (casTabAt(tab, i, null, fwd)) {
2045 +                    setTabAt(nextTab, i, null);
2046 +                    setTabAt(nextTab, i + n, null);
2047 +                    advance = true;
2048 +                }
2049 +            }
2050 +            else if (f.hash >= 0) {
2051 +                synchronized (f) {
2052 +                    if (tabAt(tab, i) == f) {
2053 +                        int runBit = f.hash & n;
2054 +                        Node<V> lastRun = f, lo = null, hi = null;
2055 +                        for (Node<V> p = f.next; p != null; p = p.next) {
2056 +                            int b = p.hash & n;
2057 +                            if (b != runBit) {
2058 +                                runBit = b;
2059 +                                lastRun = p;
2060 +                            }
2061 +                        }
2062 +                        if (runBit == 0)
2063 +                            lo = lastRun;
2064 +                        else
2065 +                            hi = lastRun;
2066 +                        for (Node<V> p = f; p != lastRun; p = p.next) {
2067 +                            int ph = p.hash;
2068 +                            Object pk = p.key; V pv = p.val;
2069 +                            if ((ph & n) == 0)
2070 +                                lo = new Node<V>(ph, pk, pv, lo);
2071 +                            else
2072 +                                hi = new Node<V>(ph, pk, pv, hi);
2073 +                        }
2074 +                        setTabAt(nextTab, i, lo);
2075 +                        setTabAt(nextTab, i + n, hi);
2076 +                        setTabAt(tab, i, fwd);
2077 +                        advance = true;
2078 +                    }
2079 +                }
2080 +            }
2081 +            else if ((fk = f.key) instanceof TreeBin) {
2082 +                TreeBin<V> t = (TreeBin<V>)fk;
2083 +                t.acquire(0);
2084 +                try {
2085 +                    if (tabAt(tab, i) == f) {
2086 +                        TreeBin<V> lt = new TreeBin<V>();
2087 +                        TreeBin<V> ht = new TreeBin<V>();
2088 +                        int lc = 0, hc = 0;
2089 +                        for (Node<V> e = t.first; e != null; e = e.next) {
2090 +                            int h = e.hash;
2091 +                            Object k = e.key; V v = e.val;
2092 +                            if ((h & n) == 0) {
2093 +                                ++lc;
2094 +                                lt.putTreeNode(h, k, v);
2095 +                            }
2096 +                            else {
2097 +                                ++hc;
2098 +                                ht.putTreeNode(h, k, v);
2099 +                            }
2100 +                        }
2101 +                        Node<V> ln, hn; // throw away trees if too small
2102 +                        if (lc < TREE_THRESHOLD) {
2103 +                            ln = null;
2104 +                            for (Node<V> p = lt.first; p != null; p = p.next)
2105 +                                ln = new Node<V>(p.hash, p.key, p.val, ln);
2106 +                        }
2107 +                        else
2108 +                            ln = new Node<V>(MOVED, lt, null, null);
2109 +                        setTabAt(nextTab, i, ln);
2110 +                        if (hc < TREE_THRESHOLD) {
2111 +                            hn = null;
2112 +                            for (Node<V> p = ht.first; p != null; p = p.next)
2113 +                                hn = new Node<V>(p.hash, p.key, p.val, hn);
2114 +                        }
2115 +                        else
2116 +                            hn = new Node<V>(MOVED, ht, null, null);
2117 +                        setTabAt(nextTab, i + n, hn);
2118 +                        setTabAt(tab, i, fwd);
2119 +                        advance = true;
2120 +                    }
2121 +                } finally {
2122 +                    t.release(0);
2123 +                }
2124 +            }
2125 +            else
2126 +                advance = true; // already processed
2127 +        }
2128 +    }
2129 +
2130 +    /* ---------------- Counter support -------------- */
2131 +
2132 +    final long sumCount() {
2133 +        CounterCell[] as = counterCells; CounterCell a;
2134 +        long sum = baseCount;
2135 +        if (as != null) {
2136 +            for (int i = 0; i < as.length; ++i) {
2137 +                if ((a = as[i]) != null)
2138 +                    sum += a.value;
2139 +            }
2140 +        }
2141 +        return sum;
2142 +    }
2143 +
2144 +    // See LongAdder version for explanation
2145 +    private final void fullAddCount(long x, CounterHashCode hc,
2146 +                                    boolean wasUncontended) {
2147 +        int h;
2148 +        if (hc == null) {
2149 +            hc = new CounterHashCode();
2150 +            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
2151 +            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
2152 +            threadCounterHashCode.set(hc);
2153 +        }
2154 +        else
2155 +            h = hc.code;
2156 +        boolean collide = false;                // True if last slot nonempty
2157 +        for (;;) {
2158 +            CounterCell[] as; CounterCell a; int n; long v;
2159 +            if ((as = counterCells) != null && (n = as.length) > 0) {
2160 +                if ((a = as[(n - 1) & h]) == null) {
2161 +                    if (counterBusy == 0) {            // Try to attach new Cell
2162 +                        CounterCell r = new CounterCell(x); // Optimistic create
2163 +                        if (counterBusy == 0 &&
2164 +                            U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2165 +                            boolean created = false;
2166 +                            try {               // Recheck under lock
2167 +                                CounterCell[] rs; int m, j;
2168 +                                if ((rs = counterCells) != null &&
2169 +                                    (m = rs.length) > 0 &&
2170 +                                    rs[j = (m - 1) & h] == null) {
2171 +                                    rs[j] = r;
2172 +                                    created = true;
2173 +                                }
2174 +                            } finally {
2175 +                                counterBusy = 0;
2176 +                            }
2177 +                            if (created)
2178 +                                break;
2179 +                            continue;           // Slot is now non-empty
2180 +                        }
2181                      }
2182 +                    collide = false;
2183                  }
2184 <                if (validated)
2185 <                    ++i;
2184 >                else if (!wasUncontended)       // CAS already known to fail
2185 >                    wasUncontended = true;      // Continue after rehash
2186 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2187 >                    break;
2188 >                else if (counterCells != as || n >= NCPU)
2189 >                    collide = false;            // At max size or stale
2190 >                else if (!collide)
2191 >                    collide = true;
2192 >                else if (counterBusy == 0 &&
2193 >                         U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2194 >                    try {
2195 >                        if (counterCells == as) {// Expand table unless stale
2196 >                            CounterCell[] rs = new CounterCell[n << 1];
2197 >                            for (int i = 0; i < n; ++i)
2198 >                                rs[i] = as[i];
2199 >                            counterCells = rs;
2200 >                        }
2201 >                    } finally {
2202 >                        counterBusy = 0;
2203 >                    }
2204 >                    collide = false;
2205 >                    continue;                   // Retry with expanded table
2206 >                }
2207 >                h ^= h << 13;                   // Rehash
2208 >                h ^= h >>> 17;
2209 >                h ^= h << 5;
2210              }
2211 +            else if (counterBusy == 0 && counterCells == as &&
2212 +                     U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2213 +                boolean init = false;
2214 +                try {                           // Initialize table
2215 +                    if (counterCells == as) {
2216 +                        CounterCell[] rs = new CounterCell[2];
2217 +                        rs[h & 1] = new CounterCell(x);
2218 +                        counterCells = rs;
2219 +                        init = true;
2220 +                    }
2221 +                } finally {
2222 +                    counterBusy = 0;
2223 +                }
2224 +                if (init)
2225 +                    break;
2226 +            }
2227 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2228 +                break;                          // Fall back on using base
2229          }
2230 <        counter.add(delta);
2230 >        hc.code = h;                            // Record index for next time
2231      }
2232  
2233      /* ----------------Table Traversal -------------- */
2234  
2235      /**
2236       * Encapsulates traversal for methods such as containsValue; also
2237 <     * serves as a base class for other iterators.
2237 >     * serves as a base class for other iterators and bulk tasks.
2238       *
2239       * At each step, the iterator snapshots the key ("nextKey") and
2240       * value ("nextVal") of a valid node (i.e., one that, at point of
2241 <     * snapshot, has a nonnull user value). Because val fields can
2241 >     * snapshot, has a non-null user value). Because val fields can
2242       * change (including to null, indicating deletion), field nextVal
2243       * might not be accurate at point of use, but still maintains the
2244       * weak consistency property of holding a value that was once
2245 <     * valid.
2245 >     * valid. To support iterator.remove, the nextKey field is not
2246 >     * updated (nulled out) when the iterator cannot advance.
2247       *
2248       * Internal traversals directly access these fields, as in:
2249 <     * {@code while (it.next != null) { process(nextKey); it.advance(); }}
2249 >     * {@code while (it.advance() != null) { process(it.nextKey); }}
2250       *
2251 <     * Exported iterators (subclasses of ViewIterator) extract key,
2252 <     * value, or key-value pairs as return values of Iterator.next(),
2253 <     * and encapsulate the it.next check as hasNext();
2254 <     *
2255 <     * The iterator visits each valid node that was reachable upon
2256 <     * iterator construction once. It might miss some that were added
2257 <     * to a bin after the bin was visited, which is OK wrt consistency
2258 <     * guarantees. Maintaining this property in the face of possible
2259 <     * ongoing resizes requires a fair amount of bookkeeping state
2260 <     * that is difficult to optimize away amidst volatile accesses.
2261 <     * Even so, traversal maintains reasonable throughput.
2251 >     * Exported iterators must track whether the iterator has advanced
2252 >     * (in hasNext vs next) (by setting/checking/nulling field
2253 >     * nextVal), and then extract key, value, or key-value pairs as
2254 >     * return values of next().
2255 >     *
2256 >     * The iterator visits once each still-valid node that was
2257 >     * reachable upon iterator construction. It might miss some that
2258 >     * were added to a bin after the bin was visited, which is OK wrt
2259 >     * consistency guarantees. Maintaining this property in the face
2260 >     * of possible ongoing resizes requires a fair amount of
2261 >     * bookkeeping state that is difficult to optimize away amidst
2262 >     * volatile accesses.  Even so, traversal maintains reasonable
2263 >     * throughput.
2264       *
2265       * Normally, iteration proceeds bin-by-bin traversing lists.
2266       * However, if the table has been resized, then all future steps
# Line 793 | Line 2270 | public class ConcurrentHashMapV8<K, V>
2270       * across threads, iteration terminates if a bounds checks fails
2271       * for a table read.
2272       *
2273 <     * The range-based constructor enables creation of parallel
2274 <     * range-splitting traversals. (Not yet implemented.)
2273 >     * This class extends CountedCompleter to streamline parallel
2274 >     * iteration in bulk operations. This adds only a few fields of
2275 >     * space overhead, which is small enough in cases where it is not
2276 >     * needed to not worry about it.  Because CountedCompleter is
2277 >     * Serializable, but iterators need not be, we need to add warning
2278 >     * suppressions.
2279       */
2280 <    static class InternalIterator {
2281 <        Node next;           // the next entry to use
2282 <        Node last;           // the last entry used
2280 >    @SuppressWarnings("serial") static class Traverser<K,V,R>
2281 >        extends CountedCompleter<R> {
2282 >        final ConcurrentHashMapV8<K, V> map;
2283 >        Node<V> next;        // the next entry to use
2284          Object nextKey;      // cached key field of next
2285 <        Object nextVal;      // cached val field of next
2286 <        Node[] tab;          // current table; updated if resized
2285 >        V nextVal;           // cached val field of next
2286 >        Node<V>[] tab;       // current table; updated if resized
2287          int index;           // index of bin to use next
2288          int baseIndex;       // current index of initial table
2289 <        final int baseLimit; // index bound for initial table
2290 <        final int baseSize;  // initial table size
2289 >        int baseLimit;       // index bound for initial table
2290 >        int baseSize;        // initial table size
2291 >        int batch;           // split control
2292  
2293          /** Creates iterator for all entries in the table. */
2294 <        InternalIterator(Node[] tab) {
2295 <            this.tab = tab;
2296 <            baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2297 <            index = baseIndex = 0;
2298 <            next = null;
2299 <            advance();
2300 <        }
2301 <
2302 <        /** Creates iterator for the given range of the table */
2303 <        InternalIterator(Node[] tab, int lo, int hi) {
2304 <            this.tab = tab;
2305 <            baseSize = (tab == null) ? 0 : tab.length;
2306 <            baseLimit = (hi <= baseSize) ? hi : baseSize;
2307 <            index = baseIndex = lo;
2308 <            next = null;
2309 <            advance();
2310 <        }
2311 <
2312 <        /** Advances next. See above for explanation. */
2313 <        final void advance() {
2314 <            Node e = last = next;
2294 >        Traverser(ConcurrentHashMapV8<K, V> map) {
2295 >            this.map = map;
2296 >        }
2297 >
2298 >        /** Creates iterator for split() methods and task constructors */
2299 >        Traverser(ConcurrentHashMapV8<K,V> map, Traverser<K,V,?> it, int batch) {
2300 >            super(it);
2301 >            this.batch = batch;
2302 >            if ((this.map = map) != null && it != null) { // split parent
2303 >                Node<V>[] t;
2304 >                if ((t = it.tab) == null &&
2305 >                    (t = it.tab = map.table) != null)
2306 >                    it.baseLimit = it.baseSize = t.length;
2307 >                this.tab = t;
2308 >                this.baseSize = it.baseSize;
2309 >                int hi = this.baseLimit = it.baseLimit;
2310 >                it.baseLimit = this.index = this.baseIndex =
2311 >                    (hi + it.baseIndex + 1) >>> 1;
2312 >            }
2313 >        }
2314 >
2315 >        /**
2316 >         * Advances next; returns nextVal or null if terminated.
2317 >         * See above for explanation.
2318 >         */
2319 >        @SuppressWarnings("unchecked") final V advance() {
2320 >            Node<V> e = next;
2321 >            V ev = null;
2322              outer: do {
2323 <                if (e != null)                   // pass used or skipped node
2323 >                if (e != null)                  // advance past used/skipped node
2324                      e = e.next;
2325 <                while (e == null) {              // get to next non-null bin
2326 <                    Node[] t; int b, i, n;       // checks must use locals
2327 <                    if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2328 <                        (t = tab) == null || i >= (n = t.length))
2325 >                while (e == null) {             // get to next non-null bin
2326 >                    ConcurrentHashMapV8<K, V> m;
2327 >                    Node<V>[] t; int b, i, n; Object ek; //  must use locals
2328 >                    if ((t = tab) != null)
2329 >                        n = t.length;
2330 >                    else if ((m = map) != null && (t = tab = m.table) != null)
2331 >                        n = baseLimit = baseSize = t.length;
2332 >                    else
2333 >                        break outer;
2334 >                    if ((b = baseIndex) >= baseLimit ||
2335 >                        (i = index) < 0 || i >= n)
2336                          break outer;
2337 <                    else if ((e = tabAt(t, i)) != null && e.hash < 0)
2338 <                        tab = (Node[])e.key;     // restarts due to null val
2339 <                    else                         // visit upper slots if present
2340 <                        index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2337 >                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2338 >                        if ((ek = e.key) instanceof TreeBin)
2339 >                            e = ((TreeBin<V>)ek).first;
2340 >                        else {
2341 >                            tab = (Node<V>[])ek;
2342 >                            continue;           // restarts due to null val
2343 >                        }
2344 >                    }                           // visit upper slots if present
2345 >                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2346                  }
2347                  nextKey = e.key;
2348 <            } while ((nextVal = e.val) == null); // skip deleted or special nodes
2348 >            } while ((ev = e.val) == null);    // skip deleted or special nodes
2349              next = e;
2350 +            return nextVal = ev;
2351          }
2352 +
2353 +        public final void remove() {
2354 +            Object k = nextKey;
2355 +            if (k == null && (advance() == null || (k = nextKey) == null))
2356 +                throw new IllegalStateException();
2357 +            map.internalReplace(k, null, null);
2358 +        }
2359 +
2360 +        public final boolean hasNext() {
2361 +            return nextVal != null || advance() != null;
2362 +        }
2363 +
2364 +        public final boolean hasMoreElements() { return hasNext(); }
2365 +
2366 +        public void compute() { } // default no-op CountedCompleter body
2367 +
2368 +        /**
2369 +         * Returns a batch value > 0 if this task should (and must) be
2370 +         * split, if so, adding to pending count, and in any case
2371 +         * updating batch value. The initial batch value is approx
2372 +         * exp2 of the number of times (minus one) to split task by
2373 +         * two before executing leaf action. This value is faster to
2374 +         * compute and more convenient to use as a guide to splitting
2375 +         * than is the depth, since it is used while dividing by two
2376 +         * anyway.
2377 +         */
2378 +        final int preSplit() {
2379 +            ConcurrentHashMapV8<K, V> m; int b; Node<V>[] t;  ForkJoinPool pool;
2380 +            if ((b = batch) < 0 && (m = map) != null) { // force initialization
2381 +                if ((t = tab) == null && (t = tab = m.table) != null)
2382 +                    baseLimit = baseSize = t.length;
2383 +                if (t != null) {
2384 +                    long n = m.sumCount();
2385 +                    int par = ((pool = getPool()) == null) ?
2386 +                        ForkJoinPool.getCommonPoolParallelism() :
2387 +                        pool.getParallelism();
2388 +                    int sp = par << 3; // slack of 8
2389 +                    b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2390 +                }
2391 +            }
2392 +            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2393 +            if ((batch = b) > 0)
2394 +                addToPendingCount(1);
2395 +            return b;
2396 +        }
2397 +
2398      }
2399  
2400      /* ---------------- Public operations -------------- */
2401  
2402      /**
2403 <     * Creates a new, empty map with the default initial table size (16),
2403 >     * Creates a new, empty map with the default initial table size (16).
2404       */
2405      public ConcurrentHashMapV8() {
857        this.counter = new LongAdder();
858        this.targetCapacity = DEFAULT_CAPACITY;
2406      }
2407  
2408      /**
# Line 874 | Line 2421 | public class ConcurrentHashMapV8<K, V>
2421          int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2422                     MAXIMUM_CAPACITY :
2423                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2424 <        this.counter = new LongAdder();
878 <        this.targetCapacity = cap;
2424 >        this.sizeCtl = cap;
2425      }
2426  
2427      /**
# Line 884 | Line 2430 | public class ConcurrentHashMapV8<K, V>
2430       * @param m the map
2431       */
2432      public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2433 <        this.counter = new LongAdder();
2434 <        this.targetCapacity = DEFAULT_CAPACITY;
889 <        putAll(m);
2433 >        this.sizeCtl = DEFAULT_CAPACITY;
2434 >        internalPutAll(m);
2435      }
2436  
2437      /**
# Line 933 | Line 2478 | public class ConcurrentHashMapV8<K, V>
2478          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2479              initialCapacity = concurrencyLevel;   // as estimated threads
2480          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2481 <        int cap =  ((size >= (long)MAXIMUM_CAPACITY) ?
2482 <                    MAXIMUM_CAPACITY: tableSizeFor((int)size));
2483 <        this.counter = new LongAdder();
2484 <        this.targetCapacity = cap;
2481 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2482 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2483 >        this.sizeCtl = cap;
2484 >    }
2485 >
2486 >    /**
2487 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2488 >     * from the given type to {@code Boolean.TRUE}.
2489 >     *
2490 >     * @return the new set
2491 >     */
2492 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2493 >        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2494 >                                      Boolean.TRUE);
2495 >    }
2496 >
2497 >    /**
2498 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2499 >     * from the given type to {@code Boolean.TRUE}.
2500 >     *
2501 >     * @param initialCapacity The implementation performs internal
2502 >     * sizing to accommodate this many elements.
2503 >     * @throws IllegalArgumentException if the initial capacity of
2504 >     * elements is negative
2505 >     * @return the new set
2506 >     */
2507 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2508 >        return new KeySetView<K,Boolean>
2509 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2510      }
2511  
2512      /**
2513       * {@inheritDoc}
2514       */
2515      public boolean isEmpty() {
2516 <        return counter.sum() <= 0L; // ignore transient negative values
2516 >        return sumCount() <= 0L; // ignore transient negative values
2517      }
2518  
2519      /**
2520       * {@inheritDoc}
2521       */
2522      public int size() {
2523 <        long n = counter.sum();
2523 >        long n = sumCount();
2524          return ((n < 0L) ? 0 :
2525                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2526                  (int)n);
2527      }
2528  
2529      /**
2530 +     * Returns the number of mappings. This method should be used
2531 +     * instead of {@link #size} because a ConcurrentHashMapV8 may
2532 +     * contain more mappings than can be represented as an int. The
2533 +     * value returned is an estimate; the actual count may differ if
2534 +     * there are concurrent insertions or removals.
2535 +     *
2536 +     * @return the number of mappings
2537 +     */
2538 +    public long mappingCount() {
2539 +        long n = sumCount();
2540 +        return (n < 0L) ? 0L : n; // ignore transient negative values
2541 +    }
2542 +
2543 +    /**
2544       * Returns the value to which the specified key is mapped,
2545       * or {@code null} if this map contains no mapping for the key.
2546       *
# Line 967 | Line 2551 | public class ConcurrentHashMapV8<K, V>
2551       *
2552       * @throws NullPointerException if the specified key is null
2553       */
970    @SuppressWarnings("unchecked")
2554      public V get(Object key) {
2555 <        if (key == null)
2556 <            throw new NullPointerException();
2557 <        return (V)internalGet(key);
2555 >        return internalGet(key);
2556 >    }
2557 >
2558 >    /**
2559 >     * Returns the value to which the specified key is mapped,
2560 >     * or the given defaultValue if this map contains no mapping for the key.
2561 >     *
2562 >     * @param key the key
2563 >     * @param defaultValue the value to return if this map contains
2564 >     * no mapping for the given key
2565 >     * @return the mapping for the key, if present; else the defaultValue
2566 >     * @throws NullPointerException if the specified key is null
2567 >     */
2568 >    public V getValueOrDefault(Object key, V defaultValue) {
2569 >        V v;
2570 >        return (v = internalGet(key)) == null ? defaultValue : v;
2571      }
2572  
2573      /**
# Line 984 | Line 2580 | public class ConcurrentHashMapV8<K, V>
2580       * @throws NullPointerException if the specified key is null
2581       */
2582      public boolean containsKey(Object key) {
987        if (key == null)
988            throw new NullPointerException();
2583          return internalGet(key) != null;
2584      }
2585  
# Line 1002 | Line 2596 | public class ConcurrentHashMapV8<K, V>
2596      public boolean containsValue(Object value) {
2597          if (value == null)
2598              throw new NullPointerException();
2599 <        Object v;
2600 <        InternalIterator it = new InternalIterator(table);
2601 <        while (it.next != null) {
2602 <            if ((v = it.nextVal) == value || value.equals(v))
2599 >        V v;
2600 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2601 >        while ((v = it.advance()) != null) {
2602 >            if (v == value || value.equals(v))
2603                  return true;
1010            it.advance();
2604          }
2605          return false;
2606      }
# Line 1027 | Line 2620 | public class ConcurrentHashMapV8<K, V>
2620       *         {@code false} otherwise
2621       * @throws NullPointerException if the specified value is null
2622       */
2623 <    public boolean contains(Object value) {
2623 >    @Deprecated public boolean contains(Object value) {
2624          return containsValue(value);
2625      }
2626  
# Line 1035 | Line 2628 | public class ConcurrentHashMapV8<K, V>
2628       * Maps the specified key to the specified value in this table.
2629       * Neither the key nor the value can be null.
2630       *
2631 <     * <p> The value can be retrieved by calling the {@code get} method
2631 >     * <p>The value can be retrieved by calling the {@code get} method
2632       * with a key that is equal to the original key.
2633       *
2634       * @param key key with which the specified value is to be associated
# Line 1044 | Line 2637 | public class ConcurrentHashMapV8<K, V>
2637       *         {@code null} if there was no mapping for {@code key}
2638       * @throws NullPointerException if the specified key or value is null
2639       */
1047    @SuppressWarnings("unchecked")
2640      public V put(K key, V value) {
2641 <        if (key == null || value == null)
1050 <            throw new NullPointerException();
1051 <        return (V)internalPut(key, value, true);
2641 >        return internalPut(key, value, false);
2642      }
2643  
2644      /**
# Line 1058 | Line 2648 | public class ConcurrentHashMapV8<K, V>
2648       *         or {@code null} if there was no mapping for the key
2649       * @throws NullPointerException if the specified key or value is null
2650       */
1061    @SuppressWarnings("unchecked")
2651      public V putIfAbsent(K key, V value) {
2652 <        if (key == null || value == null)
1064 <            throw new NullPointerException();
1065 <        return (V)internalPut(key, value, false);
2652 >        return internalPut(key, value, true);
2653      }
2654  
2655      /**
# Line 1073 | Line 2660 | public class ConcurrentHashMapV8<K, V>
2660       * @param m mappings to be stored in this map
2661       */
2662      public void putAll(Map<? extends K, ? extends V> m) {
2663 <        if (m == null)
1077 <            throw new NullPointerException();
1078 <        /*
1079 <         * If uninitialized, try to adjust targetCapacity to
1080 <         * accommodate the given number of elements.
1081 <         */
1082 <        if (table == null) {
1083 <            int size = m.size();
1084 <            int cap = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1085 <                tableSizeFor(size + (size >>> 1) + 1);
1086 <            if (cap > targetCapacity)
1087 <                targetCapacity = cap;
1088 <        }
1089 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1090 <            put(e.getKey(), e.getValue());
2663 >        internalPutAll(m);
2664      }
2665  
2666      /**
2667       * If the specified key is not already associated with a value,
2668 <     * computes its value using the given mappingFunction, and if
2669 <     * non-null, enters it into the map.  This is equivalent to
2670 <     *  <pre> {@code
2668 >     * computes its value using the given mappingFunction and enters
2669 >     * it into the map unless null.  This is equivalent to
2670 >     * <pre> {@code
2671       * if (map.containsKey(key))
2672       *   return map.get(key);
2673 <     * value = mappingFunction.map(key);
2673 >     * value = mappingFunction.apply(key);
2674       * if (value != null)
2675       *   map.put(key, value);
2676       * return value;}</pre>
2677       *
2678 <     * except that the action is performed atomically.  Some attempted
2679 <     * update operations on this map by other threads may be blocked
2680 <     * while computation is in progress, so the computation should be
2681 <     * short and simple, and must not attempt to update any other
2682 <     * mappings of this Map. The most appropriate usage is to
2678 >     * except that the action is performed atomically.  If the
2679 >     * function returns {@code null} no mapping is recorded. If the
2680 >     * function itself throws an (unchecked) exception, the exception
2681 >     * is rethrown to its caller, and no mapping is recorded.  Some
2682 >     * attempted update operations on this map by other threads may be
2683 >     * blocked while computation is in progress, so the computation
2684 >     * should be short and simple, and must not attempt to update any
2685 >     * other mappings of this Map. The most appropriate usage is to
2686       * construct a new object serving as an initial mapped value, or
2687       * memoized result, as in:
2688 +     *
2689       *  <pre> {@code
2690 <     * map.computeIfAbsent(key, new MappingFunction<K, V>() {
2690 >     * map.computeIfAbsent(key, new Fun<K, V>() {
2691       *   public V map(K k) { return new Value(f(k)); }});}</pre>
2692       *
2693       * @param key key with which the specified value is to be associated
2694       * @param mappingFunction the function to compute a value
2695       * @return the current (existing or computed) value associated with
2696 <     *         the specified key, or {@code null} if the computation
1120 <     *         returned {@code null}
2696 >     *         the specified key, or null if the computed value is null
2697       * @throws NullPointerException if the specified key or mappingFunction
2698       *         is null
2699       * @throws IllegalStateException if the computation detectably
# Line 1126 | Line 2702 | public class ConcurrentHashMapV8<K, V>
2702       * @throws RuntimeException or Error if the mappingFunction does so,
2703       *         in which case the mapping is left unestablished
2704       */
2705 <    public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2706 <        if (key == null || mappingFunction == null)
2707 <            throw new NullPointerException();
1132 <        return internalCompute(key, mappingFunction, false);
2705 >    public V computeIfAbsent
2706 >        (K key, Fun<? super K, ? extends V> mappingFunction) {
2707 >        return internalComputeIfAbsent(key, mappingFunction);
2708      }
2709  
2710      /**
2711 <     * Computes the value associated with the given key using the given
2712 <     * mappingFunction, and if non-null, enters it into the map.  This
1138 <     * is equivalent to
2711 >     * If the given key is present, computes a new mapping value given a key and
2712 >     * its current mapped value. This is equivalent to
2713       *  <pre> {@code
2714 <     * value = mappingFunction.map(key);
2715 <     * if (value != null)
2716 <     *   map.put(key, value);
2717 <     * else
2718 <     *   value = map.get(key);
2719 <     * return value;}</pre>
2714 >     *   if (map.containsKey(key)) {
2715 >     *     value = remappingFunction.apply(key, map.get(key));
2716 >     *     if (value != null)
2717 >     *       map.put(key, value);
2718 >     *     else
2719 >     *       map.remove(key);
2720 >     *   }
2721 >     * }</pre>
2722 >     *
2723 >     * except that the action is performed atomically.  If the
2724 >     * function returns {@code null}, the mapping is removed.  If the
2725 >     * function itself throws an (unchecked) exception, the exception
2726 >     * is rethrown to its caller, and the current mapping is left
2727 >     * unchanged.  Some attempted update operations on this map by
2728 >     * other threads may be blocked while computation is in progress,
2729 >     * so the computation should be short and simple, and must not
2730 >     * attempt to update any other mappings of this Map. For example,
2731 >     * to either create or append new messages to a value mapping:
2732       *
2733 <     * except that the action is performed atomically.  Some attempted
2734 <     * update operations on this map by other threads may be blocked
2735 <     * while computation is in progress, so the computation should be
2736 <     * short and simple, and must not attempt to update any other
2737 <     * mappings of this Map.
2733 >     * @param key key with which the specified value is to be associated
2734 >     * @param remappingFunction the function to compute a value
2735 >     * @return the new value associated with the specified key, or null if none
2736 >     * @throws NullPointerException if the specified key or remappingFunction
2737 >     *         is null
2738 >     * @throws IllegalStateException if the computation detectably
2739 >     *         attempts a recursive update to this map that would
2740 >     *         otherwise never complete
2741 >     * @throws RuntimeException or Error if the remappingFunction does so,
2742 >     *         in which case the mapping is unchanged
2743 >     */
2744 >    public V computeIfPresent
2745 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2746 >        return internalCompute(key, true, remappingFunction);
2747 >    }
2748 >
2749 >    /**
2750 >     * Computes a new mapping value given a key and
2751 >     * its current mapped value (or {@code null} if there is no current
2752 >     * mapping). This is equivalent to
2753 >     *  <pre> {@code
2754 >     *   value = remappingFunction.apply(key, map.get(key));
2755 >     *   if (value != null)
2756 >     *     map.put(key, value);
2757 >     *   else
2758 >     *     map.remove(key);
2759 >     * }</pre>
2760 >     *
2761 >     * except that the action is performed atomically.  If the
2762 >     * function returns {@code null}, the mapping is removed.  If the
2763 >     * function itself throws an (unchecked) exception, the exception
2764 >     * is rethrown to its caller, and the current mapping is left
2765 >     * unchanged.  Some attempted update operations on this map by
2766 >     * other threads may be blocked while computation is in progress,
2767 >     * so the computation should be short and simple, and must not
2768 >     * attempt to update any other mappings of this Map. For example,
2769 >     * to either create or append new messages to a value mapping:
2770 >     *
2771 >     * <pre> {@code
2772 >     * Map<Key, String> map = ...;
2773 >     * final String msg = ...;
2774 >     * map.compute(key, new BiFun<Key, String, String>() {
2775 >     *   public String apply(Key k, String v) {
2776 >     *    return (v == null) ? msg : v + msg;});}}</pre>
2777       *
2778       * @param key key with which the specified value is to be associated
2779 <     * @param mappingFunction the function to compute a value
2780 <     * @return the current value associated with
2781 <     *         the specified key, or {@code null} if the computation
1157 <     *         returned {@code null} and the value was not otherwise present
1158 <     * @throws NullPointerException if the specified key or mappingFunction
2779 >     * @param remappingFunction the function to compute a value
2780 >     * @return the new value associated with the specified key, or null if none
2781 >     * @throws NullPointerException if the specified key or remappingFunction
2782       *         is null
2783       * @throws IllegalStateException if the computation detectably
2784       *         attempts a recursive update to this map that would
2785       *         otherwise never complete
2786 <     * @throws RuntimeException or Error if the mappingFunction does so,
2786 >     * @throws RuntimeException or Error if the remappingFunction does so,
2787       *         in which case the mapping is unchanged
2788       */
2789 <    public V compute(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2790 <        if (key == null || mappingFunction == null)
2791 <            throw new NullPointerException();
2792 <        return internalCompute(key, mappingFunction, true);
2789 >    public V compute
2790 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2791 >        return internalCompute(key, false, remappingFunction);
2792 >    }
2793 >
2794 >    /**
2795 >     * If the specified key is not already associated
2796 >     * with a value, associate it with the given value.
2797 >     * Otherwise, replace the value with the results of
2798 >     * the given remapping function. This is equivalent to:
2799 >     *  <pre> {@code
2800 >     *   if (!map.containsKey(key))
2801 >     *     map.put(value);
2802 >     *   else {
2803 >     *     newValue = remappingFunction.apply(map.get(key), value);
2804 >     *     if (value != null)
2805 >     *       map.put(key, value);
2806 >     *     else
2807 >     *       map.remove(key);
2808 >     *   }
2809 >     * }</pre>
2810 >     * except that the action is performed atomically.  If the
2811 >     * function returns {@code null}, the mapping is removed.  If the
2812 >     * function itself throws an (unchecked) exception, the exception
2813 >     * is rethrown to its caller, and the current mapping is left
2814 >     * unchanged.  Some attempted update operations on this map by
2815 >     * other threads may be blocked while computation is in progress,
2816 >     * so the computation should be short and simple, and must not
2817 >     * attempt to update any other mappings of this Map.
2818 >     */
2819 >    public V merge
2820 >        (K key, V value,
2821 >         BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2822 >        return internalMerge(key, value, remappingFunction);
2823      }
2824  
2825      /**
# Line 1178 | Line 2831 | public class ConcurrentHashMapV8<K, V>
2831       *         {@code null} if there was no mapping for {@code key}
2832       * @throws NullPointerException if the specified key is null
2833       */
1181    @SuppressWarnings("unchecked")
2834      public V remove(Object key) {
2835 <        if (key == null)
1184 <            throw new NullPointerException();
1185 <        return (V)internalReplace(key, null, null);
2835 >        return internalReplace(key, null, null);
2836      }
2837  
2838      /**
# Line 1191 | Line 2841 | public class ConcurrentHashMapV8<K, V>
2841       * @throws NullPointerException if the specified key is null
2842       */
2843      public boolean remove(Object key, Object value) {
2844 <        if (key == null)
1195 <            throw new NullPointerException();
1196 <        if (value == null)
1197 <            return false;
1198 <        return internalReplace(key, null, value) != null;
2844 >        return value != null && internalReplace(key, null, value) != null;
2845      }
2846  
2847      /**
# Line 1216 | Line 2862 | public class ConcurrentHashMapV8<K, V>
2862       *         or {@code null} if there was no mapping for the key
2863       * @throws NullPointerException if the specified key or value is null
2864       */
1219    @SuppressWarnings("unchecked")
2865      public V replace(K key, V value) {
2866          if (key == null || value == null)
2867              throw new NullPointerException();
2868 <        return (V)internalReplace(key, value, null);
2868 >        return internalReplace(key, value, null);
2869      }
2870  
2871      /**
# Line 1233 | Line 2878 | public class ConcurrentHashMapV8<K, V>
2878      /**
2879       * Returns a {@link Set} view of the keys contained in this map.
2880       * The set is backed by the map, so changes to the map are
2881 <     * reflected in the set, and vice-versa.  The set supports element
1237 <     * removal, which removes the corresponding mapping from this map,
1238 <     * via the {@code Iterator.remove}, {@code Set.remove},
1239 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
1240 <     * operations.  It does not support the {@code add} or
1241 <     * {@code addAll} operations.
2881 >     * reflected in the set, and vice-versa.
2882       *
2883 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2884 <     * that will never throw {@link ConcurrentModificationException},
2885 <     * and guarantees to traverse elements as they existed upon
2886 <     * construction of the iterator, and may (but is not guaranteed to)
2887 <     * reflect any modifications subsequent to construction.
2883 >     * @return the set view
2884 >     */
2885 >    public KeySetView<K,V> keySet() {
2886 >        KeySetView<K,V> ks = keySet;
2887 >        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2888 >    }
2889 >
2890 >    /**
2891 >     * Returns a {@link Set} view of the keys in this map, using the
2892 >     * given common mapped value for any additions (i.e., {@link
2893 >     * Collection#add} and {@link Collection#addAll}). This is of
2894 >     * course only appropriate if it is acceptable to use the same
2895 >     * value for all additions from this view.
2896 >     *
2897 >     * @param mappedValue the mapped value to use for any
2898 >     * additions.
2899 >     * @return the set view
2900 >     * @throws NullPointerException if the mappedValue is null
2901       */
2902 <    public Set<K> keySet() {
2903 <        KeySet<K,V> ks = keySet;
2904 <        return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
2902 >    public KeySetView<K,V> keySet(V mappedValue) {
2903 >        if (mappedValue == null)
2904 >            throw new NullPointerException();
2905 >        return new KeySetView<K,V>(this, mappedValue);
2906      }
2907  
2908      /**
2909       * Returns a {@link Collection} view of the values contained in this map.
2910       * The collection is backed by the map, so changes to the map are
2911 <     * reflected in the collection, and vice-versa.  The collection
1258 <     * supports element removal, which removes the corresponding
1259 <     * mapping from this map, via the {@code Iterator.remove},
1260 <     * {@code Collection.remove}, {@code removeAll},
1261 <     * {@code retainAll}, and {@code clear} operations.  It does not
1262 <     * support the {@code add} or {@code addAll} operations.
1263 <     *
1264 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1265 <     * that will never throw {@link ConcurrentModificationException},
1266 <     * and guarantees to traverse elements as they existed upon
1267 <     * construction of the iterator, and may (but is not guaranteed to)
1268 <     * reflect any modifications subsequent to construction.
2911 >     * reflected in the collection, and vice-versa.
2912       */
2913 <    public Collection<V> values() {
2914 <        Values<K,V> vs = values;
2915 <        return (vs != null) ? vs : (values = new Values<K,V>(this));
2913 >    public ValuesView<K,V> values() {
2914 >        ValuesView<K,V> vs = values;
2915 >        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2916      }
2917  
2918      /**
# Line 1289 | Line 2932 | public class ConcurrentHashMapV8<K, V>
2932       * reflect any modifications subsequent to construction.
2933       */
2934      public Set<Map.Entry<K,V>> entrySet() {
2935 <        EntrySet<K,V> es = entrySet;
2936 <        return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2935 >        EntrySetView<K,V> es = entrySet;
2936 >        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2937      }
2938  
2939      /**
# Line 1314 | Line 2957 | public class ConcurrentHashMapV8<K, V>
2957      }
2958  
2959      /**
2960 +     * Returns a partitionable iterator of the keys in this map.
2961 +     *
2962 +     * @return a partitionable iterator of the keys in this map
2963 +     */
2964 +    public Spliterator<K> keySpliterator() {
2965 +        return new KeyIterator<K,V>(this);
2966 +    }
2967 +
2968 +    /**
2969 +     * Returns a partitionable iterator of the values in this map.
2970 +     *
2971 +     * @return a partitionable iterator of the values in this map
2972 +     */
2973 +    public Spliterator<V> valueSpliterator() {
2974 +        return new ValueIterator<K,V>(this);
2975 +    }
2976 +
2977 +    /**
2978 +     * Returns a partitionable iterator of the entries in this map.
2979 +     *
2980 +     * @return a partitionable iterator of the entries in this map
2981 +     */
2982 +    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2983 +        return new EntryIterator<K,V>(this);
2984 +    }
2985 +
2986 +    /**
2987       * Returns the hash code value for this {@link Map}, i.e.,
2988       * the sum of, for each key-value pair in the map,
2989       * {@code key.hashCode() ^ value.hashCode()}.
# Line 1322 | Line 2992 | public class ConcurrentHashMapV8<K, V>
2992       */
2993      public int hashCode() {
2994          int h = 0;
2995 <        InternalIterator it = new InternalIterator(table);
2996 <        while (it.next != null) {
2997 <            h += it.nextKey.hashCode() ^ it.nextVal.hashCode();
2998 <            it.advance();
2995 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2996 >        V v;
2997 >        while ((v = it.advance()) != null) {
2998 >            h += it.nextKey.hashCode() ^ v.hashCode();
2999          }
3000          return h;
3001      }
# Line 1342 | Line 3012 | public class ConcurrentHashMapV8<K, V>
3012       * @return a string representation of this map
3013       */
3014      public String toString() {
3015 <        InternalIterator it = new InternalIterator(table);
3015 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3016          StringBuilder sb = new StringBuilder();
3017          sb.append('{');
3018 <        if (it.next != null) {
3018 >        V v;
3019 >        if ((v = it.advance()) != null) {
3020              for (;;) {
3021 <                Object k = it.nextKey, v = it.nextVal;
3021 >                Object k = it.nextKey;
3022                  sb.append(k == this ? "(this Map)" : k);
3023                  sb.append('=');
3024                  sb.append(v == this ? "(this Map)" : v);
3025 <                it.advance();
1355 <                if (it.next == null)
3025 >                if ((v = it.advance()) == null)
3026                      break;
3027                  sb.append(',').append(' ');
3028              }
# Line 1375 | Line 3045 | public class ConcurrentHashMapV8<K, V>
3045              if (!(o instanceof Map))
3046                  return false;
3047              Map<?,?> m = (Map<?,?>) o;
3048 <            InternalIterator it = new InternalIterator(table);
3049 <            while (it.next != null) {
3050 <                Object val = it.nextVal;
3048 >            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3049 >            V val;
3050 >            while ((val = it.advance()) != null) {
3051                  Object v = m.get(it.nextKey);
3052                  if (v == null || (v != val && !v.equals(val)))
3053                      return false;
1384                it.advance();
3054              }
3055              for (Map.Entry<?,?> e : m.entrySet()) {
3056                  Object mk, mv, v;
# Line 1397 | Line 3066 | public class ConcurrentHashMapV8<K, V>
3066  
3067      /* ----------------Iterators -------------- */
3068  
3069 <    /**
3070 <     * Base class for key, value, and entry iterators.  Adds a map
3071 <     * reference to InternalIterator to support Iterator.remove.
3072 <     */
3073 <    static abstract class ViewIterator<K,V> extends InternalIterator {
3074 <        final ConcurrentHashMapV8<K, V> map;
1406 <        ViewIterator(ConcurrentHashMapV8<K, V> map) {
1407 <            super(map.table);
1408 <            this.map = map;
3069 >    @SuppressWarnings("serial") static final class KeyIterator<K,V>
3070 >        extends Traverser<K,V,Object>
3071 >        implements Spliterator<K>, Enumeration<K> {
3072 >        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3073 >        KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3074 >            super(map, it, -1);
3075          }
3076 <
3077 <        public final void remove() {
1412 <            if (last == null)
3076 >        public KeyIterator<K,V> split() {
3077 >            if (nextKey != null)
3078                  throw new IllegalStateException();
3079 <            map.remove(last.key);
1415 <            last = null;
3079 >            return new KeyIterator<K,V>(map, this);
3080          }
3081 <
3082 <        public final boolean hasNext()         { return next != null; }
1419 <        public final boolean hasMoreElements() { return next != null; }
1420 <    }
1421 <
1422 <    static final class KeyIterator<K,V> extends ViewIterator<K,V>
1423 <        implements Iterator<K>, Enumeration<K> {
1424 <        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
1425 <
1426 <        @SuppressWarnings("unchecked")
1427 <        public final K next() {
1428 <            if (next == null)
3081 >        @SuppressWarnings("unchecked") public final K next() {
3082 >            if (nextVal == null && advance() == null)
3083                  throw new NoSuchElementException();
3084              Object k = nextKey;
3085 <            advance();
3086 <            return (K)k;
3085 >            nextVal = null;
3086 >            return (K) k;
3087          }
3088  
3089          public final K nextElement() { return next(); }
3090      }
3091  
3092 <    static final class ValueIterator<K,V> extends ViewIterator<K,V>
3093 <        implements Iterator<V>, Enumeration<V> {
3092 >    @SuppressWarnings("serial") static final class ValueIterator<K,V>
3093 >        extends Traverser<K,V,Object>
3094 >        implements Spliterator<V>, Enumeration<V> {
3095          ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3096 +        ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3097 +            super(map, it, -1);
3098 +        }
3099 +        public ValueIterator<K,V> split() {
3100 +            if (nextKey != null)
3101 +                throw new IllegalStateException();
3102 +            return new ValueIterator<K,V>(map, this);
3103 +        }
3104  
1442        @SuppressWarnings("unchecked")
3105          public final V next() {
3106 <            if (next == null)
3106 >            V v;
3107 >            if ((v = nextVal) == null && (v = advance()) == null)
3108                  throw new NoSuchElementException();
3109 <            Object v = nextVal;
3110 <            advance();
1448 <            return (V)v;
3109 >            nextVal = null;
3110 >            return v;
3111          }
3112  
3113          public final V nextElement() { return next(); }
3114      }
3115  
3116 <    static final class EntryIterator<K,V> extends ViewIterator<K,V>
3117 <        implements Iterator<Map.Entry<K,V>> {
3116 >    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3117 >        extends Traverser<K,V,Object>
3118 >        implements Spliterator<Map.Entry<K,V>> {
3119          EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3120 +        EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3121 +            super(map, it, -1);
3122 +        }
3123 +        public EntryIterator<K,V> split() {
3124 +            if (nextKey != null)
3125 +                throw new IllegalStateException();
3126 +            return new EntryIterator<K,V>(map, this);
3127 +        }
3128  
3129 <        @SuppressWarnings("unchecked")
3130 <        public final Map.Entry<K,V> next() {
3131 <            if (next == null)
3129 >        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3130 >            V v;
3131 >            if ((v = nextVal) == null && (v = advance()) == null)
3132                  throw new NoSuchElementException();
3133              Object k = nextKey;
3134 <            Object v = nextVal;
3135 <            advance();
1465 <            return new WriteThroughEntry<K,V>(map, (K)k, (V)v);
3134 >            nextVal = null;
3135 >            return new MapEntry<K,V>((K)k, v, map);
3136          }
3137      }
3138  
3139      /**
3140 <     * Custom Entry class used by EntryIterator.next(), that relays
1471 <     * setValue changes to the underlying map.
3140 >     * Exported Entry for iterators
3141       */
3142 <    static final class WriteThroughEntry<K,V> implements Map.Entry<K, V> {
1474 <        final ConcurrentHashMapV8<K, V> map;
3142 >    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3143          final K key; // non-null
3144          V val;       // non-null
3145 <        WriteThroughEntry(ConcurrentHashMapV8<K, V> map, K key, V val) {
3146 <            this.map = map; this.key = key; this.val = val;
3145 >        final ConcurrentHashMapV8<K, V> map;
3146 >        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3147 >            this.key = key;
3148 >            this.val = val;
3149 >            this.map = map;
3150          }
1480
3151          public final K getKey()       { return key; }
3152          public final V getValue()     { return val; }
3153          public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
# Line 1494 | Line 3164 | public class ConcurrentHashMapV8<K, V>
3164  
3165          /**
3166           * Sets our entry's value and writes through to the map. The
3167 <         * value to return is somewhat arbitrary here. Since a
3168 <         * WriteThroughEntry does not necessarily track asynchronous
3169 <         * changes, the most recent "previous" value could be
3170 <         * different from what we return (or could even have been
3171 <         * removed in which case the put will re-establish). We do not
1502 <         * and cannot guarantee more.
3167 >         * value to return is somewhat arbitrary here. Since we do not
3168 >         * necessarily track asynchronous changes, the most recent
3169 >         * "previous" value could be different from what we return (or
3170 >         * could even have been removed in which case the put will
3171 >         * re-establish). We do not and cannot guarantee more.
3172           */
3173          public final V setValue(V value) {
3174              if (value == null) throw new NullPointerException();
# Line 1510 | Line 3179 | public class ConcurrentHashMapV8<K, V>
3179          }
3180      }
3181  
3182 <    /* ----------------Views -------------- */
3183 <
3184 <    /*
1516 <     * These currently just extend java.util.AbstractX classes, but
1517 <     * may need a new custom base to support partitioned traversal.
3182 >    /**
3183 >     * Returns exportable snapshot entry for the given key and value
3184 >     * when write-through can't or shouldn't be used.
3185       */
3186 <
3187 <    static final class KeySet<K,V> extends AbstractSet<K> {
1521 <        final ConcurrentHashMapV8<K, V> map;
1522 <        KeySet(ConcurrentHashMapV8<K, V> map)   { this.map = map; }
1523 <
1524 <        public final int size()                 { return map.size(); }
1525 <        public final boolean isEmpty()          { return map.isEmpty(); }
1526 <        public final void clear()               { map.clear(); }
1527 <        public final boolean contains(Object o) { return map.containsKey(o); }
1528 <        public final boolean remove(Object o)   { return map.remove(o) != null; }
1529 <        public final Iterator<K> iterator() {
1530 <            return new KeyIterator<K,V>(map);
1531 <        }
1532 <    }
1533 <
1534 <    static final class Values<K,V> extends AbstractCollection<V> {
1535 <        final ConcurrentHashMapV8<K, V> map;
1536 <        Values(ConcurrentHashMapV8<K, V> map)   { this.map = map; }
1537 <
1538 <        public final int size()                 { return map.size(); }
1539 <        public final boolean isEmpty()          { return map.isEmpty(); }
1540 <        public final void clear()               { map.clear(); }
1541 <        public final boolean contains(Object o) { return map.containsValue(o); }
1542 <        public final Iterator<V> iterator() {
1543 <            return new ValueIterator<K,V>(map);
1544 <        }
1545 <    }
1546 <
1547 <    static final class EntrySet<K,V> extends AbstractSet<Map.Entry<K,V>> {
1548 <        final ConcurrentHashMapV8<K, V> map;
1549 <        EntrySet(ConcurrentHashMapV8<K, V> map) { this.map = map; }
1550 <
1551 <        public final int size()                 { return map.size(); }
1552 <        public final boolean isEmpty()          { return map.isEmpty(); }
1553 <        public final void clear()               { map.clear(); }
1554 <        public final Iterator<Map.Entry<K,V>> iterator() {
1555 <            return new EntryIterator<K,V>(map);
1556 <        }
1557 <
1558 <        public final boolean contains(Object o) {
1559 <            Object k, v, r; Map.Entry<?,?> e;
1560 <            return ((o instanceof Map.Entry) &&
1561 <                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
1562 <                    (r = map.get(k)) != null &&
1563 <                    (v = e.getValue()) != null &&
1564 <                    (v == r || v.equals(r)));
1565 <        }
1566 <
1567 <        public final boolean remove(Object o) {
1568 <            Object k, v; Map.Entry<?,?> e;
1569 <            return ((o instanceof Map.Entry) &&
1570 <                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
1571 <                    (v = e.getValue()) != null &&
1572 <                    map.remove(k, v));
1573 <        }
3186 >    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3187 >        return new AbstractMap.SimpleEntry<K,V>(k, v);
3188      }
3189  
3190      /* ---------------- Serialization Support -------------- */
# Line 1594 | Line 3208 | public class ConcurrentHashMapV8<K, V>
3208       * for each key-value mapping, followed by a null pair.
3209       * The key-value mappings are emitted in no particular order.
3210       */
3211 <    @SuppressWarnings("unchecked")
3212 <    private void writeObject(java.io.ObjectOutputStream s)
3213 <            throws java.io.IOException {
3211 >    @SuppressWarnings("unchecked") private void writeObject
3212 >        (java.io.ObjectOutputStream s)
3213 >        throws java.io.IOException {
3214          if (segments == null) { // for serialization compatibility
3215              segments = (Segment<K,V>[])
3216                  new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
# Line 1604 | Line 3218 | public class ConcurrentHashMapV8<K, V>
3218                  segments[i] = new Segment<K,V>(LOAD_FACTOR);
3219          }
3220          s.defaultWriteObject();
3221 <        InternalIterator it = new InternalIterator(table);
3222 <        while (it.next != null) {
3221 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3222 >        V v;
3223 >        while ((v = it.advance()) != null) {
3224              s.writeObject(it.nextKey);
3225 <            s.writeObject(it.nextVal);
1611 <            it.advance();
3225 >            s.writeObject(v);
3226          }
3227          s.writeObject(null);
3228          s.writeObject(null);
# Line 1619 | Line 3233 | public class ConcurrentHashMapV8<K, V>
3233       * Reconstitutes the instance from a stream (that is, deserializes it).
3234       * @param s the stream
3235       */
3236 <    @SuppressWarnings("unchecked")
3237 <    private void readObject(java.io.ObjectInputStream s)
3238 <            throws java.io.IOException, ClassNotFoundException {
3236 >    @SuppressWarnings("unchecked") private void readObject
3237 >        (java.io.ObjectInputStream s)
3238 >        throws java.io.IOException, ClassNotFoundException {
3239          s.defaultReadObject();
3240          this.segments = null; // unneeded
1627        // initialize transient final field
1628        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
1629        this.targetCapacity = DEFAULT_CAPACITY;
3241  
3242          // Create all nodes, then place in table once size is known
3243          long size = 0L;
3244 <        Node p = null;
3244 >        Node<V> p = null;
3245          for (;;) {
3246              K k = (K) s.readObject();
3247              V v = (V) s.readObject();
3248              if (k != null && v != null) {
3249 <                p = new Node(spread(k.hashCode()), k, v, p);
3249 >                int h = spread(k.hashCode());
3250 >                p = new Node<V>(h, k, v, p);
3251                  ++size;
3252              }
3253              else
# Line 1643 | Line 3255 | public class ConcurrentHashMapV8<K, V>
3255          }
3256          if (p != null) {
3257              boolean init = false;
3258 <            if (resizing == 0 &&
3259 <                UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) {
3258 >            int n;
3259 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3260 >                n = MAXIMUM_CAPACITY;
3261 >            else {
3262 >                int sz = (int)size;
3263 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
3264 >            }
3265 >            int sc = sizeCtl;
3266 >            boolean collide = false;
3267 >            if (n > sc &&
3268 >                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3269                  try {
3270                      if (table == null) {
3271                          init = true;
3272 <                        int n;
3273 <                        if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1653 <                            n = MAXIMUM_CAPACITY;
1654 <                        else {
1655 <                            int sz = (int)size;
1656 <                            n = tableSizeFor(sz + (sz >>> 1) + 1);
1657 <                        }
1658 <                        threshold = n - (n >>> 2) - THRESHOLD_OFFSET;
1659 <                        Node[] tab = new Node[n];
3272 >                        @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3273 >                        Node<V>[] tab = (Node<V>[])rt;
3274                          int mask = n - 1;
3275                          while (p != null) {
3276                              int j = p.hash & mask;
3277 <                            Node next = p.next;
3278 <                            p.next = tabAt(tab, j);
3277 >                            Node<V> next = p.next;
3278 >                            Node<V> q = p.next = tabAt(tab, j);
3279                              setTabAt(tab, j, p);
3280 +                            if (!collide && q != null && q.hash == p.hash)
3281 +                                collide = true;
3282                              p = next;
3283                          }
3284                          table = tab;
3285 <                        counter.add(size);
3285 >                        addCount(size, -1);
3286 >                        sc = n - (n >>> 2);
3287                      }
3288                  } finally {
3289 <                    resizing = 0;
3289 >                    sizeCtl = sc;
3290 >                }
3291 >                if (collide) { // rescan and convert to TreeBins
3292 >                    Node<V>[] tab = table;
3293 >                    for (int i = 0; i < tab.length; ++i) {
3294 >                        int c = 0;
3295 >                        for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3296 >                            if (++c > TREE_THRESHOLD &&
3297 >                                (e.key instanceof Comparable)) {
3298 >                                replaceWithTreeBin(tab, i, e.key);
3299 >                                break;
3300 >                            }
3301 >                        }
3302 >                    }
3303                  }
3304              }
3305              if (!init) { // Can only happen if unsafely published.
3306                  while (p != null) {
3307 <                    internalPut(p.key, p.val, true);
3307 >                    internalPut((K)p.key, p.val, false);
3308                      p = p.next;
3309                  }
3310              }
3311          }
3312      }
3313  
3314 +    // -------------------------------------------------------
3315 +
3316 +    // Sams
3317 +    /** Interface describing a void action of one argument */
3318 +    public interface Action<A> { void apply(A a); }
3319 +    /** Interface describing a void action of two arguments */
3320 +    public interface BiAction<A,B> { void apply(A a, B b); }
3321 +    /** Interface describing a function of one argument */
3322 +    public interface Fun<A,T> { T apply(A a); }
3323 +    /** Interface describing a function of two arguments */
3324 +    public interface BiFun<A,B,T> { T apply(A a, B b); }
3325 +    /** Interface describing a function of no arguments */
3326 +    public interface Generator<T> { T apply(); }
3327 +    /** Interface describing a function mapping its argument to a double */
3328 +    public interface ObjectToDouble<A> { double apply(A a); }
3329 +    /** Interface describing a function mapping its argument to a long */
3330 +    public interface ObjectToLong<A> { long apply(A a); }
3331 +    /** Interface describing a function mapping its argument to an int */
3332 +    public interface ObjectToInt<A> {int apply(A a); }
3333 +    /** Interface describing a function mapping two arguments to a double */
3334 +    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3335 +    /** Interface describing a function mapping two arguments to a long */
3336 +    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3337 +    /** Interface describing a function mapping two arguments to an int */
3338 +    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3339 +    /** Interface describing a function mapping a double to a double */
3340 +    public interface DoubleToDouble { double apply(double a); }
3341 +    /** Interface describing a function mapping a long to a long */
3342 +    public interface LongToLong { long apply(long a); }
3343 +    /** Interface describing a function mapping an int to an int */
3344 +    public interface IntToInt { int apply(int a); }
3345 +    /** Interface describing a function mapping two doubles to a double */
3346 +    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3347 +    /** Interface describing a function mapping two longs to a long */
3348 +    public interface LongByLongToLong { long apply(long a, long b); }
3349 +    /** Interface describing a function mapping two ints to an int */
3350 +    public interface IntByIntToInt { int apply(int a, int b); }
3351 +
3352 +
3353 +    // -------------------------------------------------------
3354 +
3355 +    // Sequential bulk operations
3356 +
3357 +    /**
3358 +     * Performs the given action for each (key, value).
3359 +     *
3360 +     * @param action the action
3361 +     */
3362 +    @SuppressWarnings("unchecked") public void forEachSequentially
3363 +        (BiAction<K,V> action) {
3364 +        if (action == null) throw new NullPointerException();
3365 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3366 +        V v;
3367 +        while ((v = it.advance()) != null)
3368 +            action.apply((K)it.nextKey, v);
3369 +    }
3370 +
3371 +    /**
3372 +     * Performs the given action for each non-null transformation
3373 +     * of each (key, value).
3374 +     *
3375 +     * @param transformer a function returning the transformation
3376 +     * for an element, or null of there is no transformation (in
3377 +     * which case the action is not applied).
3378 +     * @param action the action
3379 +     */
3380 +    @SuppressWarnings("unchecked") public <U> void forEachSequentially
3381 +        (BiFun<? super K, ? super V, ? extends U> transformer,
3382 +         Action<U> action) {
3383 +        if (transformer == null || action == null)
3384 +            throw new NullPointerException();
3385 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3386 +        V v; U u;
3387 +        while ((v = it.advance()) != null) {
3388 +            if ((u = transformer.apply((K)it.nextKey, v)) != null)
3389 +                action.apply(u);
3390 +        }
3391 +    }
3392 +
3393 +    /**
3394 +     * Returns a non-null result from applying the given search
3395 +     * function on each (key, value), or null if none.
3396 +     *
3397 +     * @param searchFunction a function returning a non-null
3398 +     * result on success, else null
3399 +     * @return a non-null result from applying the given search
3400 +     * function on each (key, value), or null if none
3401 +     */
3402 +    @SuppressWarnings("unchecked") public <U> U searchSequentially
3403 +        (BiFun<? super K, ? super V, ? extends U> searchFunction) {
3404 +        if (searchFunction == null) throw new NullPointerException();
3405 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3406 +        V v; U u;
3407 +        while ((v = it.advance()) != null) {
3408 +            if ((u = searchFunction.apply((K)it.nextKey, v)) != null)
3409 +                return u;
3410 +        }
3411 +        return null;
3412 +    }
3413 +
3414 +    /**
3415 +     * Returns the result of accumulating the given transformation
3416 +     * of all (key, value) pairs using the given reducer to
3417 +     * combine values, or null if none.
3418 +     *
3419 +     * @param transformer a function returning the transformation
3420 +     * for an element, or null of there is no transformation (in
3421 +     * which case it is not combined).
3422 +     * @param reducer a commutative associative combining function
3423 +     * @return the result of accumulating the given transformation
3424 +     * of all (key, value) pairs
3425 +     */
3426 +    @SuppressWarnings("unchecked") public <U> U reduceSequentially
3427 +        (BiFun<? super K, ? super V, ? extends U> transformer,
3428 +         BiFun<? super U, ? super U, ? extends U> reducer) {
3429 +        if (transformer == null || reducer == null)
3430 +            throw new NullPointerException();
3431 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3432 +        U r = null, u; V v;
3433 +        while ((v = it.advance()) != null) {
3434 +            if ((u = transformer.apply((K)it.nextKey, v)) != null)
3435 +                r = (r == null) ? u : reducer.apply(r, u);
3436 +        }
3437 +        return r;
3438 +    }
3439 +
3440 +    /**
3441 +     * Returns the result of accumulating the given transformation
3442 +     * of all (key, value) pairs using the given reducer to
3443 +     * combine values, and the given basis as an identity value.
3444 +     *
3445 +     * @param transformer a function returning the transformation
3446 +     * for an element
3447 +     * @param basis the identity (initial default value) for the reduction
3448 +     * @param reducer a commutative associative combining function
3449 +     * @return the result of accumulating the given transformation
3450 +     * of all (key, value) pairs
3451 +     */
3452 +    @SuppressWarnings("unchecked") public double reduceToDoubleSequentially
3453 +        (ObjectByObjectToDouble<? super K, ? super V> transformer,
3454 +         double basis,
3455 +         DoubleByDoubleToDouble reducer) {
3456 +        if (transformer == null || reducer == null)
3457 +            throw new NullPointerException();
3458 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3459 +        double r = basis; V v;
3460 +        while ((v = it.advance()) != null)
3461 +            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3462 +        return r;
3463 +    }
3464 +
3465 +    /**
3466 +     * Returns the result of accumulating the given transformation
3467 +     * of all (key, value) pairs using the given reducer to
3468 +     * combine values, and the given basis as an identity value.
3469 +     *
3470 +     * @param transformer a function returning the transformation
3471 +     * for an element
3472 +     * @param basis the identity (initial default value) for the reduction
3473 +     * @param reducer a commutative associative combining function
3474 +     * @return the result of accumulating the given transformation
3475 +     * of all (key, value) pairs
3476 +     */
3477 +    @SuppressWarnings("unchecked") public long reduceToLongSequentially
3478 +        (ObjectByObjectToLong<? super K, ? super V> transformer,
3479 +         long basis,
3480 +         LongByLongToLong reducer) {
3481 +        if (transformer == null || reducer == null)
3482 +            throw new NullPointerException();
3483 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3484 +        long r = basis; V v;
3485 +        while ((v = it.advance()) != null)
3486 +            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3487 +        return r;
3488 +    }
3489 +
3490 +    /**
3491 +     * Returns the result of accumulating the given transformation
3492 +     * of all (key, value) pairs using the given reducer to
3493 +     * combine values, and the given basis as an identity value.
3494 +     *
3495 +     * @param transformer a function returning the transformation
3496 +     * for an element
3497 +     * @param basis the identity (initial default value) for the reduction
3498 +     * @param reducer a commutative associative combining function
3499 +     * @return the result of accumulating the given transformation
3500 +     * of all (key, value) pairs
3501 +     */
3502 +    @SuppressWarnings("unchecked") public int reduceToIntSequentially
3503 +        (ObjectByObjectToInt<? super K, ? super V> transformer,
3504 +         int basis,
3505 +         IntByIntToInt reducer) {
3506 +        if (transformer == null || reducer == null)
3507 +            throw new NullPointerException();
3508 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3509 +        int r = basis; V v;
3510 +        while ((v = it.advance()) != null)
3511 +            r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3512 +        return r;
3513 +    }
3514 +
3515 +    /**
3516 +     * Performs the given action for each key.
3517 +     *
3518 +     * @param action the action
3519 +     */
3520 +    @SuppressWarnings("unchecked") public void forEachKeySequentially
3521 +        (Action<K> action) {
3522 +        if (action == null) throw new NullPointerException();
3523 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3524 +        while (it.advance() != null)
3525 +            action.apply((K)it.nextKey);
3526 +    }
3527 +
3528 +    /**
3529 +     * Performs the given action for each non-null transformation
3530 +     * of each key.
3531 +     *
3532 +     * @param transformer a function returning the transformation
3533 +     * for an element, or null of there is no transformation (in
3534 +     * which case the action is not applied).
3535 +     * @param action the action
3536 +     */
3537 +    @SuppressWarnings("unchecked") public <U> void forEachKeySequentially
3538 +        (Fun<? super K, ? extends U> transformer,
3539 +         Action<U> action) {
3540 +        if (transformer == null || action == null)
3541 +            throw new NullPointerException();
3542 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3543 +        U u;
3544 +        while (it.advance() != null) {
3545 +            if ((u = transformer.apply((K)it.nextKey)) != null)
3546 +                action.apply(u);
3547 +        }
3548 +        ForkJoinTasks.forEachKey
3549 +            (this, transformer, action).invoke();
3550 +    }
3551 +
3552 +    /**
3553 +     * Returns a non-null result from applying the given search
3554 +     * function on each key, or null if none.
3555 +     *
3556 +     * @param searchFunction a function returning a non-null
3557 +     * result on success, else null
3558 +     * @return a non-null result from applying the given search
3559 +     * function on each key, or null if none
3560 +     */
3561 +    @SuppressWarnings("unchecked") public <U> U searchKeysSequentially
3562 +        (Fun<? super K, ? extends U> searchFunction) {
3563 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3564 +        U u;
3565 +        while (it.advance() != null) {
3566 +            if ((u = searchFunction.apply((K)it.nextKey)) != null)
3567 +                return u;
3568 +        }
3569 +        return null;
3570 +    }
3571 +
3572 +    /**
3573 +     * Returns the result of accumulating all keys using the given
3574 +     * reducer to combine values, or null if none.
3575 +     *
3576 +     * @param reducer a commutative associative combining function
3577 +     * @return the result of accumulating all keys using the given
3578 +     * reducer to combine values, or null if none
3579 +     */
3580 +    @SuppressWarnings("unchecked") public K reduceKeysSequentially
3581 +        (BiFun<? super K, ? super K, ? extends K> reducer) {
3582 +        if (reducer == null) throw new NullPointerException();
3583 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3584 +        K r = null;
3585 +        while (it.advance() != null) {
3586 +            K u = (K)it.nextKey;
3587 +            r = (r == null) ? u : reducer.apply(r, u);
3588 +        }
3589 +        return r;
3590 +    }
3591 +
3592 +    /**
3593 +     * Returns the result of accumulating the given transformation
3594 +     * of all keys using the given reducer to combine values, or
3595 +     * null if none.
3596 +     *
3597 +     * @param transformer a function returning the transformation
3598 +     * for an element, or null of there is no transformation (in
3599 +     * which case it is not combined).
3600 +     * @param reducer a commutative associative combining function
3601 +     * @return the result of accumulating the given transformation
3602 +     * of all keys
3603 +     */
3604 +    @SuppressWarnings("unchecked") public <U> U reduceKeysSequentially
3605 +        (Fun<? super K, ? extends U> transformer,
3606 +         BiFun<? super U, ? super U, ? extends U> reducer) {
3607 +        if (transformer == null || reducer == null)
3608 +            throw new NullPointerException();
3609 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3610 +        U r = null, u;
3611 +        while (it.advance() != null) {
3612 +            if ((u = transformer.apply((K)it.nextKey)) != null)
3613 +                r = (r == null) ? u : reducer.apply(r, u);
3614 +        }
3615 +        return r;
3616 +    }
3617 +
3618 +    /**
3619 +     * Returns the result of accumulating the given transformation
3620 +     * of all keys using the given reducer to combine values, and
3621 +     * the given basis as an identity value.
3622 +     *
3623 +     * @param transformer a function returning the transformation
3624 +     * for an element
3625 +     * @param basis the identity (initial default value) for the reduction
3626 +     * @param reducer a commutative associative combining function
3627 +     * @return  the result of accumulating the given transformation
3628 +     * of all keys
3629 +     */
3630 +    @SuppressWarnings("unchecked") public double reduceKeysToDoubleSequentially
3631 +        (ObjectToDouble<? super K> transformer,
3632 +         double basis,
3633 +         DoubleByDoubleToDouble reducer) {
3634 +        if (transformer == null || reducer == null)
3635 +            throw new NullPointerException();
3636 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3637 +        double r = basis;
3638 +        while (it.advance() != null)
3639 +            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3640 +        return r;
3641 +    }
3642 +
3643 +    /**
3644 +     * Returns the result of accumulating the given transformation
3645 +     * of all keys using the given reducer to combine values, and
3646 +     * the given basis as an identity value.
3647 +     *
3648 +     * @param transformer a function returning the transformation
3649 +     * for an element
3650 +     * @param basis the identity (initial default value) for the reduction
3651 +     * @param reducer a commutative associative combining function
3652 +     * @return the result of accumulating the given transformation
3653 +     * of all keys
3654 +     */
3655 +    @SuppressWarnings("unchecked") public long reduceKeysToLongSequentially
3656 +        (ObjectToLong<? super K> transformer,
3657 +         long basis,
3658 +         LongByLongToLong reducer) {
3659 +        if (transformer == null || reducer == null)
3660 +            throw new NullPointerException();
3661 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3662 +        long r = basis;
3663 +        while (it.advance() != null)
3664 +            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3665 +        return r;
3666 +    }
3667 +
3668 +    /**
3669 +     * Returns the result of accumulating the given transformation
3670 +     * of all keys using the given reducer to combine values, and
3671 +     * the given basis as an identity value.
3672 +     *
3673 +     * @param transformer a function returning the transformation
3674 +     * for an element
3675 +     * @param basis the identity (initial default value) for the reduction
3676 +     * @param reducer a commutative associative combining function
3677 +     * @return the result of accumulating the given transformation
3678 +     * of all keys
3679 +     */
3680 +    @SuppressWarnings("unchecked") public int reduceKeysToIntSequentially
3681 +        (ObjectToInt<? super K> transformer,
3682 +         int basis,
3683 +         IntByIntToInt reducer) {
3684 +        if (transformer == null || reducer == null)
3685 +            throw new NullPointerException();
3686 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3687 +        int r = basis;
3688 +        while (it.advance() != null)
3689 +            r = reducer.apply(r, transformer.apply((K)it.nextKey));
3690 +        return r;
3691 +    }
3692 +
3693 +    /**
3694 +     * Performs the given action for each value.
3695 +     *
3696 +     * @param action the action
3697 +     */
3698 +    public void forEachValueSequentially(Action<V> action) {
3699 +        if (action == null) throw new NullPointerException();
3700 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3701 +        V v;
3702 +        while ((v = it.advance()) != null)
3703 +            action.apply(v);
3704 +    }
3705 +
3706 +    /**
3707 +     * Performs the given action for each non-null transformation
3708 +     * of each value.
3709 +     *
3710 +     * @param transformer a function returning the transformation
3711 +     * for an element, or null of there is no transformation (in
3712 +     * which case the action is not applied).
3713 +     */
3714 +    public <U> void forEachValueSequentially
3715 +        (Fun<? super V, ? extends U> transformer,
3716 +         Action<U> action) {
3717 +        if (transformer == null || action == null)
3718 +            throw new NullPointerException();
3719 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3720 +        V v; U u;
3721 +        while ((v = it.advance()) != null) {
3722 +            if ((u = transformer.apply(v)) != null)
3723 +                action.apply(u);
3724 +        }
3725 +    }
3726 +
3727 +    /**
3728 +     * Returns a non-null result from applying the given search
3729 +     * function on each value, or null if none.
3730 +     *
3731 +     * @param searchFunction a function returning a non-null
3732 +     * result on success, else null
3733 +     * @return a non-null result from applying the given search
3734 +     * function on each value, or null if none
3735 +     */
3736 +    public <U> U searchValuesSequentially
3737 +        (Fun<? super V, ? extends U> searchFunction) {
3738 +        if (searchFunction == null) throw new NullPointerException();
3739 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3740 +        V v; U u;
3741 +        while ((v = it.advance()) != null) {
3742 +            if ((u = searchFunction.apply(v)) != null)
3743 +                return u;
3744 +        }
3745 +        return null;
3746 +    }
3747 +
3748 +    /**
3749 +     * Returns the result of accumulating all values using the
3750 +     * given reducer to combine values, or null if none.
3751 +     *
3752 +     * @param reducer a commutative associative combining function
3753 +     * @return  the result of accumulating all values
3754 +     */
3755 +    public V reduceValuesSequentially
3756 +        (BiFun<? super V, ? super V, ? extends V> reducer) {
3757 +        if (reducer == null) throw new NullPointerException();
3758 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3759 +        V r = null; V v;
3760 +        while ((v = it.advance()) != null)
3761 +            r = (r == null) ? v : reducer.apply(r, v);
3762 +        return r;
3763 +    }
3764 +
3765 +    /**
3766 +     * Returns the result of accumulating the given transformation
3767 +     * of all values using the given reducer to combine values, or
3768 +     * null if none.
3769 +     *
3770 +     * @param transformer a function returning the transformation
3771 +     * for an element, or null of there is no transformation (in
3772 +     * which case it is not combined).
3773 +     * @param reducer a commutative associative combining function
3774 +     * @return the result of accumulating the given transformation
3775 +     * of all values
3776 +     */
3777 +    public <U> U reduceValuesSequentially
3778 +        (Fun<? super V, ? extends U> transformer,
3779 +         BiFun<? super U, ? super U, ? extends U> reducer) {
3780 +        if (transformer == null || reducer == null)
3781 +            throw new NullPointerException();
3782 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3783 +        U r = null, u; V v;
3784 +        while ((v = it.advance()) != null) {
3785 +            if ((u = transformer.apply(v)) != null)
3786 +                r = (r == null) ? u : reducer.apply(r, u);
3787 +        }
3788 +        return r;
3789 +    }
3790 +
3791 +    /**
3792 +     * Returns the result of accumulating the given transformation
3793 +     * of all values using the given reducer to combine values,
3794 +     * and the given basis as an identity value.
3795 +     *
3796 +     * @param transformer a function returning the transformation
3797 +     * for an element
3798 +     * @param basis the identity (initial default value) for the reduction
3799 +     * @param reducer a commutative associative combining function
3800 +     * @return the result of accumulating the given transformation
3801 +     * of all values
3802 +     */
3803 +    public double reduceValuesToDoubleSequentially
3804 +        (ObjectToDouble<? super V> transformer,
3805 +         double basis,
3806 +         DoubleByDoubleToDouble reducer) {
3807 +        if (transformer == null || reducer == null)
3808 +            throw new NullPointerException();
3809 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3810 +        double r = basis; V v;
3811 +        while ((v = it.advance()) != null)
3812 +            r = reducer.apply(r, transformer.apply(v));
3813 +        return r;
3814 +    }
3815 +
3816 +    /**
3817 +     * Returns the result of accumulating the given transformation
3818 +     * of all values using the given reducer to combine values,
3819 +     * and the given basis as an identity value.
3820 +     *
3821 +     * @param transformer a function returning the transformation
3822 +     * for an element
3823 +     * @param basis the identity (initial default value) for the reduction
3824 +     * @param reducer a commutative associative combining function
3825 +     * @return the result of accumulating the given transformation
3826 +     * of all values
3827 +     */
3828 +    public long reduceValuesToLongSequentially
3829 +        (ObjectToLong<? super V> transformer,
3830 +         long basis,
3831 +         LongByLongToLong reducer) {
3832 +        if (transformer == null || reducer == null)
3833 +            throw new NullPointerException();
3834 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3835 +        long r = basis; V v;
3836 +        while ((v = it.advance()) != null)
3837 +            r = reducer.apply(r, transformer.apply(v));
3838 +        return r;
3839 +    }
3840 +
3841 +    /**
3842 +     * Returns the result of accumulating the given transformation
3843 +     * of all values using the given reducer to combine values,
3844 +     * and the given basis as an identity value.
3845 +     *
3846 +     * @param transformer a function returning the transformation
3847 +     * for an element
3848 +     * @param basis the identity (initial default value) for the reduction
3849 +     * @param reducer a commutative associative combining function
3850 +     * @return the result of accumulating the given transformation
3851 +     * of all values
3852 +     */
3853 +    public int reduceValuesToIntSequentially
3854 +        (ObjectToInt<? super V> transformer,
3855 +         int basis,
3856 +         IntByIntToInt reducer) {
3857 +        if (transformer == null || reducer == null)
3858 +            throw new NullPointerException();
3859 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3860 +        int r = basis; V v;
3861 +        while ((v = it.advance()) != null)
3862 +            r = reducer.apply(r, transformer.apply(v));
3863 +        return r;
3864 +    }
3865 +
3866 +    /**
3867 +     * Performs the given action for each entry.
3868 +     *
3869 +     * @param action the action
3870 +     */
3871 +    @SuppressWarnings("unchecked") public void forEachEntrySequentially
3872 +        (Action<Map.Entry<K,V>> action) {
3873 +        if (action == null) throw new NullPointerException();
3874 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3875 +        V v;
3876 +        while ((v = it.advance()) != null)
3877 +            action.apply(entryFor((K)it.nextKey, v));
3878 +    }
3879 +
3880 +    /**
3881 +     * Performs the given action for each non-null transformation
3882 +     * of each entry.
3883 +     *
3884 +     * @param transformer a function returning the transformation
3885 +     * for an element, or null of there is no transformation (in
3886 +     * which case the action is not applied).
3887 +     * @param action the action
3888 +     */
3889 +    @SuppressWarnings("unchecked") public <U> void forEachEntrySequentially
3890 +        (Fun<Map.Entry<K,V>, ? extends U> transformer,
3891 +         Action<U> action) {
3892 +        if (transformer == null || action == null)
3893 +            throw new NullPointerException();
3894 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3895 +        V v; U u;
3896 +        while ((v = it.advance()) != null) {
3897 +            if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3898 +                action.apply(u);
3899 +        }
3900 +    }
3901 +
3902 +    /**
3903 +     * Returns a non-null result from applying the given search
3904 +     * function on each entry, or null if none.
3905 +     *
3906 +     * @param searchFunction a function returning a non-null
3907 +     * result on success, else null
3908 +     * @return a non-null result from applying the given search
3909 +     * function on each entry, or null if none
3910 +     */
3911 +    @SuppressWarnings("unchecked") public <U> U searchEntriesSequentially
3912 +        (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3913 +        if (searchFunction == null) throw new NullPointerException();
3914 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3915 +        V v; U u;
3916 +        while ((v = it.advance()) != null) {
3917 +            if ((u = searchFunction.apply(entryFor((K)it.nextKey, v))) != null)
3918 +                return u;
3919 +        }
3920 +        return null;
3921 +    }
3922 +
3923 +    /**
3924 +     * Returns the result of accumulating all entries using the
3925 +     * given reducer to combine values, or null if none.
3926 +     *
3927 +     * @param reducer a commutative associative combining function
3928 +     * @return the result of accumulating all entries
3929 +     */
3930 +    @SuppressWarnings("unchecked") public Map.Entry<K,V> reduceEntriesSequentially
3931 +        (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3932 +        if (reducer == null) throw new NullPointerException();
3933 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3934 +        Map.Entry<K,V> r = null; V v;
3935 +        while ((v = it.advance()) != null) {
3936 +            Map.Entry<K,V> u = entryFor((K)it.nextKey, v);
3937 +            r = (r == null) ? u : reducer.apply(r, u);
3938 +        }
3939 +        return r;
3940 +    }
3941 +
3942 +    /**
3943 +     * Returns the result of accumulating the given transformation
3944 +     * of all entries using the given reducer to combine values,
3945 +     * or null if none.
3946 +     *
3947 +     * @param transformer a function returning the transformation
3948 +     * for an element, or null of there is no transformation (in
3949 +     * which case it is not combined).
3950 +     * @param reducer a commutative associative combining function
3951 +     * @return the result of accumulating the given transformation
3952 +     * of all entries
3953 +     */
3954 +    @SuppressWarnings("unchecked") public <U> U reduceEntriesSequentially
3955 +        (Fun<Map.Entry<K,V>, ? extends U> transformer,
3956 +         BiFun<? super U, ? super U, ? extends U> reducer) {
3957 +        if (transformer == null || reducer == null)
3958 +            throw new NullPointerException();
3959 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3960 +        U r = null, u; V v;
3961 +        while ((v = it.advance()) != null) {
3962 +            if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3963 +                r = (r == null) ? u : reducer.apply(r, u);
3964 +        }
3965 +        return r;
3966 +    }
3967 +
3968 +    /**
3969 +     * Returns the result of accumulating the given transformation
3970 +     * of all entries using the given reducer to combine values,
3971 +     * and the given basis as an identity value.
3972 +     *
3973 +     * @param transformer a function returning the transformation
3974 +     * for an element
3975 +     * @param basis the identity (initial default value) for the reduction
3976 +     * @param reducer a commutative associative combining function
3977 +     * @return the result of accumulating the given transformation
3978 +     * of all entries
3979 +     */
3980 +    @SuppressWarnings("unchecked") public double reduceEntriesToDoubleSequentially
3981 +        (ObjectToDouble<Map.Entry<K,V>> transformer,
3982 +         double basis,
3983 +         DoubleByDoubleToDouble reducer) {
3984 +        if (transformer == null || reducer == null)
3985 +            throw new NullPointerException();
3986 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3987 +        double r = basis; V v;
3988 +        while ((v = it.advance()) != null)
3989 +            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
3990 +        return r;
3991 +    }
3992 +
3993 +    /**
3994 +     * Returns the result of accumulating the given transformation
3995 +     * of all entries using the given reducer to combine values,
3996 +     * and the given basis as an identity value.
3997 +     *
3998 +     * @param transformer a function returning the transformation
3999 +     * for an element
4000 +     * @param basis the identity (initial default value) for the reduction
4001 +     * @param reducer a commutative associative combining function
4002 +     * @return  the result of accumulating the given transformation
4003 +     * of all entries
4004 +     */
4005 +    @SuppressWarnings("unchecked") public long reduceEntriesToLongSequentially
4006 +        (ObjectToLong<Map.Entry<K,V>> transformer,
4007 +         long basis,
4008 +         LongByLongToLong reducer) {
4009 +        if (transformer == null || reducer == null)
4010 +            throw new NullPointerException();
4011 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4012 +        long r = basis; V v;
4013 +        while ((v = it.advance()) != null)
4014 +            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
4015 +        return r;
4016 +    }
4017 +
4018 +    /**
4019 +     * Returns the result of accumulating the given transformation
4020 +     * of all entries using the given reducer to combine values,
4021 +     * and the given basis as an identity value.
4022 +     *
4023 +     * @param transformer a function returning the transformation
4024 +     * for an element
4025 +     * @param basis the identity (initial default value) for the reduction
4026 +     * @param reducer a commutative associative combining function
4027 +     * @return the result of accumulating the given transformation
4028 +     * of all entries
4029 +     */
4030 +    @SuppressWarnings("unchecked") public int reduceEntriesToIntSequentially
4031 +        (ObjectToInt<Map.Entry<K,V>> transformer,
4032 +         int basis,
4033 +         IntByIntToInt reducer) {
4034 +        if (transformer == null || reducer == null)
4035 +            throw new NullPointerException();
4036 +        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4037 +        int r = basis; V v;
4038 +        while ((v = it.advance()) != null)
4039 +            r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
4040 +        return r;
4041 +    }
4042 +
4043 +    // Parallel bulk operations
4044 +
4045 +    /**
4046 +     * Performs the given action for each (key, value).
4047 +     *
4048 +     * @param action the action
4049 +     */
4050 +    public void forEachInParallel(BiAction<K,V> action) {
4051 +        ForkJoinTasks.forEach
4052 +            (this, action).invoke();
4053 +    }
4054 +
4055 +    /**
4056 +     * Performs the given action for each non-null transformation
4057 +     * of each (key, value).
4058 +     *
4059 +     * @param transformer a function returning the transformation
4060 +     * for an element, or null of there is no transformation (in
4061 +     * which case the action is not applied).
4062 +     * @param action the action
4063 +     */
4064 +    public <U> void forEachInParallel
4065 +        (BiFun<? super K, ? super V, ? extends U> transformer,
4066 +                            Action<U> action) {
4067 +        ForkJoinTasks.forEach
4068 +            (this, transformer, action).invoke();
4069 +    }
4070 +
4071 +    /**
4072 +     * Returns a non-null result from applying the given search
4073 +     * function on each (key, value), or null if none.  Upon
4074 +     * success, further element processing is suppressed and the
4075 +     * results of any other parallel invocations of the search
4076 +     * function are ignored.
4077 +     *
4078 +     * @param searchFunction a function returning a non-null
4079 +     * result on success, else null
4080 +     * @return a non-null result from applying the given search
4081 +     * function on each (key, value), or null if none
4082 +     */
4083 +    public <U> U searchInParallel
4084 +        (BiFun<? super K, ? super V, ? extends U> searchFunction) {
4085 +        return ForkJoinTasks.search
4086 +            (this, searchFunction).invoke();
4087 +    }
4088 +
4089 +    /**
4090 +     * Returns the result of accumulating the given transformation
4091 +     * of all (key, value) pairs using the given reducer to
4092 +     * combine values, or null if none.
4093 +     *
4094 +     * @param transformer a function returning the transformation
4095 +     * for an element, or null of there is no transformation (in
4096 +     * which case it is not combined).
4097 +     * @param reducer a commutative associative combining function
4098 +     * @return the result of accumulating the given transformation
4099 +     * of all (key, value) pairs
4100 +     */
4101 +    public <U> U reduceInParallel
4102 +        (BiFun<? super K, ? super V, ? extends U> transformer,
4103 +         BiFun<? super U, ? super U, ? extends U> reducer) {
4104 +        return ForkJoinTasks.reduce
4105 +            (this, transformer, reducer).invoke();
4106 +    }
4107 +
4108 +    /**
4109 +     * Returns the result of accumulating the given transformation
4110 +     * of all (key, value) pairs using the given reducer to
4111 +     * combine values, and the given basis as an identity value.
4112 +     *
4113 +     * @param transformer a function returning the transformation
4114 +     * for an element
4115 +     * @param basis the identity (initial default value) for the reduction
4116 +     * @param reducer a commutative associative combining function
4117 +     * @return the result of accumulating the given transformation
4118 +     * of all (key, value) pairs
4119 +     */
4120 +    public double reduceToDoubleInParallel
4121 +        (ObjectByObjectToDouble<? super K, ? super V> transformer,
4122 +         double basis,
4123 +         DoubleByDoubleToDouble reducer) {
4124 +        return ForkJoinTasks.reduceToDouble
4125 +            (this, transformer, basis, reducer).invoke();
4126 +    }
4127 +
4128 +    /**
4129 +     * Returns the result of accumulating the given transformation
4130 +     * of all (key, value) pairs using the given reducer to
4131 +     * combine values, and the given basis as an identity value.
4132 +     *
4133 +     * @param transformer a function returning the transformation
4134 +     * for an element
4135 +     * @param basis the identity (initial default value) for the reduction
4136 +     * @param reducer a commutative associative combining function
4137 +     * @return the result of accumulating the given transformation
4138 +     * of all (key, value) pairs
4139 +     */
4140 +    public long reduceToLongInParallel
4141 +        (ObjectByObjectToLong<? super K, ? super V> transformer,
4142 +         long basis,
4143 +         LongByLongToLong reducer) {
4144 +        return ForkJoinTasks.reduceToLong
4145 +            (this, transformer, basis, reducer).invoke();
4146 +    }
4147 +
4148 +    /**
4149 +     * Returns the result of accumulating the given transformation
4150 +     * of all (key, value) pairs using the given reducer to
4151 +     * combine values, and the given basis as an identity value.
4152 +     *
4153 +     * @param transformer a function returning the transformation
4154 +     * for an element
4155 +     * @param basis the identity (initial default value) for the reduction
4156 +     * @param reducer a commutative associative combining function
4157 +     * @return the result of accumulating the given transformation
4158 +     * of all (key, value) pairs
4159 +     */
4160 +    public int reduceToIntInParallel
4161 +        (ObjectByObjectToInt<? super K, ? super V> transformer,
4162 +         int basis,
4163 +         IntByIntToInt reducer) {
4164 +        return ForkJoinTasks.reduceToInt
4165 +            (this, transformer, basis, reducer).invoke();
4166 +    }
4167 +
4168 +    /**
4169 +     * Performs the given action for each key.
4170 +     *
4171 +     * @param action the action
4172 +     */
4173 +    public void forEachKeyInParallel(Action<K> action) {
4174 +        ForkJoinTasks.forEachKey
4175 +            (this, action).invoke();
4176 +    }
4177 +
4178 +    /**
4179 +     * Performs the given action for each non-null transformation
4180 +     * of each key.
4181 +     *
4182 +     * @param transformer a function returning the transformation
4183 +     * for an element, or null of there is no transformation (in
4184 +     * which case the action is not applied).
4185 +     * @param action the action
4186 +     */
4187 +    public <U> void forEachKeyInParallel
4188 +        (Fun<? super K, ? extends U> transformer,
4189 +         Action<U> action) {
4190 +        ForkJoinTasks.forEachKey
4191 +            (this, transformer, action).invoke();
4192 +    }
4193 +
4194 +    /**
4195 +     * Returns a non-null result from applying the given search
4196 +     * function on each key, or null if none. Upon success,
4197 +     * further element processing is suppressed and the results of
4198 +     * any other parallel invocations of the search function are
4199 +     * ignored.
4200 +     *
4201 +     * @param searchFunction a function returning a non-null
4202 +     * result on success, else null
4203 +     * @return a non-null result from applying the given search
4204 +     * function on each key, or null if none
4205 +     */
4206 +    public <U> U searchKeysInParallel
4207 +        (Fun<? super K, ? extends U> searchFunction) {
4208 +        return ForkJoinTasks.searchKeys
4209 +            (this, searchFunction).invoke();
4210 +    }
4211 +
4212 +    /**
4213 +     * Returns the result of accumulating all keys using the given
4214 +     * reducer to combine values, or null if none.
4215 +     *
4216 +     * @param reducer a commutative associative combining function
4217 +     * @return the result of accumulating all keys using the given
4218 +     * reducer to combine values, or null if none
4219 +     */
4220 +    public K reduceKeysInParallel
4221 +        (BiFun<? super K, ? super K, ? extends K> reducer) {
4222 +        return ForkJoinTasks.reduceKeys
4223 +            (this, reducer).invoke();
4224 +    }
4225 +
4226 +    /**
4227 +     * Returns the result of accumulating the given transformation
4228 +     * of all keys using the given reducer to combine values, or
4229 +     * null if none.
4230 +     *
4231 +     * @param transformer a function returning the transformation
4232 +     * for an element, or null of there is no transformation (in
4233 +     * which case it is not combined).
4234 +     * @param reducer a commutative associative combining function
4235 +     * @return the result of accumulating the given transformation
4236 +     * of all keys
4237 +     */
4238 +    public <U> U reduceKeysInParallel
4239 +        (Fun<? super K, ? extends U> transformer,
4240 +         BiFun<? super U, ? super U, ? extends U> reducer) {
4241 +        return ForkJoinTasks.reduceKeys
4242 +            (this, transformer, reducer).invoke();
4243 +    }
4244 +
4245 +    /**
4246 +     * Returns the result of accumulating the given transformation
4247 +     * of all keys using the given reducer to combine values, and
4248 +     * the given basis as an identity value.
4249 +     *
4250 +     * @param transformer a function returning the transformation
4251 +     * for an element
4252 +     * @param basis the identity (initial default value) for the reduction
4253 +     * @param reducer a commutative associative combining function
4254 +     * @return  the result of accumulating the given transformation
4255 +     * of all keys
4256 +     */
4257 +    public double reduceKeysToDoubleInParallel
4258 +        (ObjectToDouble<? super K> transformer,
4259 +         double basis,
4260 +         DoubleByDoubleToDouble reducer) {
4261 +        return ForkJoinTasks.reduceKeysToDouble
4262 +            (this, transformer, basis, reducer).invoke();
4263 +    }
4264 +
4265 +    /**
4266 +     * Returns the result of accumulating the given transformation
4267 +     * of all keys using the given reducer to combine values, and
4268 +     * the given basis as an identity value.
4269 +     *
4270 +     * @param transformer a function returning the transformation
4271 +     * for an element
4272 +     * @param basis the identity (initial default value) for the reduction
4273 +     * @param reducer a commutative associative combining function
4274 +     * @return the result of accumulating the given transformation
4275 +     * of all keys
4276 +     */
4277 +    public long reduceKeysToLongInParallel
4278 +        (ObjectToLong<? super K> transformer,
4279 +         long basis,
4280 +         LongByLongToLong reducer) {
4281 +        return ForkJoinTasks.reduceKeysToLong
4282 +            (this, transformer, basis, reducer).invoke();
4283 +    }
4284 +
4285 +    /**
4286 +     * Returns the result of accumulating the given transformation
4287 +     * of all keys using the given reducer to combine values, and
4288 +     * the given basis as an identity value.
4289 +     *
4290 +     * @param transformer a function returning the transformation
4291 +     * for an element
4292 +     * @param basis the identity (initial default value) for the reduction
4293 +     * @param reducer a commutative associative combining function
4294 +     * @return the result of accumulating the given transformation
4295 +     * of all keys
4296 +     */
4297 +    public int reduceKeysToIntInParallel
4298 +        (ObjectToInt<? super K> transformer,
4299 +         int basis,
4300 +         IntByIntToInt reducer) {
4301 +        return ForkJoinTasks.reduceKeysToInt
4302 +            (this, transformer, basis, reducer).invoke();
4303 +    }
4304 +
4305 +    /**
4306 +     * Performs the given action for each value.
4307 +     *
4308 +     * @param action the action
4309 +     */
4310 +    public void forEachValueInParallel(Action<V> action) {
4311 +        ForkJoinTasks.forEachValue
4312 +            (this, action).invoke();
4313 +    }
4314 +
4315 +    /**
4316 +     * Performs the given action for each non-null transformation
4317 +     * of each value.
4318 +     *
4319 +     * @param transformer a function returning the transformation
4320 +     * for an element, or null of there is no transformation (in
4321 +     * which case the action is not applied).
4322 +     */
4323 +    public <U> void forEachValueInParallel
4324 +        (Fun<? super V, ? extends U> transformer,
4325 +         Action<U> action) {
4326 +        ForkJoinTasks.forEachValue
4327 +            (this, transformer, action).invoke();
4328 +    }
4329 +
4330 +    /**
4331 +     * Returns a non-null result from applying the given search
4332 +     * function on each value, or null if none.  Upon success,
4333 +     * further element processing is suppressed and the results of
4334 +     * any other parallel invocations of the search function are
4335 +     * ignored.
4336 +     *
4337 +     * @param searchFunction a function returning a non-null
4338 +     * result on success, else null
4339 +     * @return a non-null result from applying the given search
4340 +     * function on each value, or null if none
4341 +     */
4342 +    public <U> U searchValuesInParallel
4343 +        (Fun<? super V, ? extends U> searchFunction) {
4344 +        return ForkJoinTasks.searchValues
4345 +            (this, searchFunction).invoke();
4346 +    }
4347 +
4348 +    /**
4349 +     * Returns the result of accumulating all values using the
4350 +     * given reducer to combine values, or null if none.
4351 +     *
4352 +     * @param reducer a commutative associative combining function
4353 +     * @return  the result of accumulating all values
4354 +     */
4355 +    public V reduceValuesInParallel
4356 +        (BiFun<? super V, ? super V, ? extends V> reducer) {
4357 +        return ForkJoinTasks.reduceValues
4358 +            (this, reducer).invoke();
4359 +    }
4360 +
4361 +    /**
4362 +     * Returns the result of accumulating the given transformation
4363 +     * of all values using the given reducer to combine values, or
4364 +     * null if none.
4365 +     *
4366 +     * @param transformer a function returning the transformation
4367 +     * for an element, or null of there is no transformation (in
4368 +     * which case it is not combined).
4369 +     * @param reducer a commutative associative combining function
4370 +     * @return the result of accumulating the given transformation
4371 +     * of all values
4372 +     */
4373 +    public <U> U reduceValuesInParallel
4374 +        (Fun<? super V, ? extends U> transformer,
4375 +         BiFun<? super U, ? super U, ? extends U> reducer) {
4376 +        return ForkJoinTasks.reduceValues
4377 +            (this, transformer, reducer).invoke();
4378 +    }
4379 +
4380 +    /**
4381 +     * Returns the result of accumulating the given transformation
4382 +     * of all values using the given reducer to combine values,
4383 +     * and the given basis as an identity value.
4384 +     *
4385 +     * @param transformer a function returning the transformation
4386 +     * for an element
4387 +     * @param basis the identity (initial default value) for the reduction
4388 +     * @param reducer a commutative associative combining function
4389 +     * @return the result of accumulating the given transformation
4390 +     * of all values
4391 +     */
4392 +    public double reduceValuesToDoubleInParallel
4393 +        (ObjectToDouble<? super V> transformer,
4394 +         double basis,
4395 +         DoubleByDoubleToDouble reducer) {
4396 +        return ForkJoinTasks.reduceValuesToDouble
4397 +            (this, transformer, basis, reducer).invoke();
4398 +    }
4399 +
4400 +    /**
4401 +     * Returns the result of accumulating the given transformation
4402 +     * of all values using the given reducer to combine values,
4403 +     * and the given basis as an identity value.
4404 +     *
4405 +     * @param transformer a function returning the transformation
4406 +     * for an element
4407 +     * @param basis the identity (initial default value) for the reduction
4408 +     * @param reducer a commutative associative combining function
4409 +     * @return the result of accumulating the given transformation
4410 +     * of all values
4411 +     */
4412 +    public long reduceValuesToLongInParallel
4413 +        (ObjectToLong<? super V> transformer,
4414 +         long basis,
4415 +         LongByLongToLong reducer) {
4416 +        return ForkJoinTasks.reduceValuesToLong
4417 +            (this, transformer, basis, reducer).invoke();
4418 +    }
4419 +
4420 +    /**
4421 +     * Returns the result of accumulating the given transformation
4422 +     * of all values using the given reducer to combine values,
4423 +     * and the given basis as an identity value.
4424 +     *
4425 +     * @param transformer a function returning the transformation
4426 +     * for an element
4427 +     * @param basis the identity (initial default value) for the reduction
4428 +     * @param reducer a commutative associative combining function
4429 +     * @return the result of accumulating the given transformation
4430 +     * of all values
4431 +     */
4432 +    public int reduceValuesToIntInParallel
4433 +        (ObjectToInt<? super V> transformer,
4434 +         int basis,
4435 +         IntByIntToInt reducer) {
4436 +        return ForkJoinTasks.reduceValuesToInt
4437 +            (this, transformer, basis, reducer).invoke();
4438 +    }
4439 +
4440 +    /**
4441 +     * Performs the given action for each entry.
4442 +     *
4443 +     * @param action the action
4444 +     */
4445 +    public void forEachEntryInParallel(Action<Map.Entry<K,V>> action) {
4446 +        ForkJoinTasks.forEachEntry
4447 +            (this, action).invoke();
4448 +    }
4449 +
4450 +    /**
4451 +     * Performs the given action for each non-null transformation
4452 +     * of each entry.
4453 +     *
4454 +     * @param transformer a function returning the transformation
4455 +     * for an element, or null of there is no transformation (in
4456 +     * which case the action is not applied).
4457 +     * @param action the action
4458 +     */
4459 +    public <U> void forEachEntryInParallel
4460 +        (Fun<Map.Entry<K,V>, ? extends U> transformer,
4461 +         Action<U> action) {
4462 +        ForkJoinTasks.forEachEntry
4463 +            (this, transformer, action).invoke();
4464 +    }
4465 +
4466 +    /**
4467 +     * Returns a non-null result from applying the given search
4468 +     * function on each entry, or null if none.  Upon success,
4469 +     * further element processing is suppressed and the results of
4470 +     * any other parallel invocations of the search function are
4471 +     * ignored.
4472 +     *
4473 +     * @param searchFunction a function returning a non-null
4474 +     * result on success, else null
4475 +     * @return a non-null result from applying the given search
4476 +     * function on each entry, or null if none
4477 +     */
4478 +    public <U> U searchEntriesInParallel
4479 +        (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4480 +        return ForkJoinTasks.searchEntries
4481 +            (this, searchFunction).invoke();
4482 +    }
4483 +
4484 +    /**
4485 +     * Returns the result of accumulating all entries using the
4486 +     * given reducer to combine values, or null if none.
4487 +     *
4488 +     * @param reducer a commutative associative combining function
4489 +     * @return the result of accumulating all entries
4490 +     */
4491 +    public Map.Entry<K,V> reduceEntriesInParallel
4492 +        (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4493 +        return ForkJoinTasks.reduceEntries
4494 +            (this, reducer).invoke();
4495 +    }
4496 +
4497 +    /**
4498 +     * Returns the result of accumulating the given transformation
4499 +     * of all entries using the given reducer to combine values,
4500 +     * or null if none.
4501 +     *
4502 +     * @param transformer a function returning the transformation
4503 +     * for an element, or null of there is no transformation (in
4504 +     * which case it is not combined).
4505 +     * @param reducer a commutative associative combining function
4506 +     * @return the result of accumulating the given transformation
4507 +     * of all entries
4508 +     */
4509 +    public <U> U reduceEntriesInParallel
4510 +        (Fun<Map.Entry<K,V>, ? extends U> transformer,
4511 +         BiFun<? super U, ? super U, ? extends U> reducer) {
4512 +        return ForkJoinTasks.reduceEntries
4513 +            (this, transformer, reducer).invoke();
4514 +    }
4515 +
4516 +    /**
4517 +     * Returns the result of accumulating the given transformation
4518 +     * of all entries using the given reducer to combine values,
4519 +     * and the given basis as an identity value.
4520 +     *
4521 +     * @param transformer a function returning the transformation
4522 +     * for an element
4523 +     * @param basis the identity (initial default value) for the reduction
4524 +     * @param reducer a commutative associative combining function
4525 +     * @return the result of accumulating the given transformation
4526 +     * of all entries
4527 +     */
4528 +    public double reduceEntriesToDoubleInParallel
4529 +        (ObjectToDouble<Map.Entry<K,V>> transformer,
4530 +         double basis,
4531 +         DoubleByDoubleToDouble reducer) {
4532 +        return ForkJoinTasks.reduceEntriesToDouble
4533 +            (this, transformer, basis, reducer).invoke();
4534 +    }
4535 +
4536 +    /**
4537 +     * Returns the result of accumulating the given transformation
4538 +     * of all entries using the given reducer to combine values,
4539 +     * and the given basis as an identity value.
4540 +     *
4541 +     * @param transformer a function returning the transformation
4542 +     * for an element
4543 +     * @param basis the identity (initial default value) for the reduction
4544 +     * @param reducer a commutative associative combining function
4545 +     * @return  the result of accumulating the given transformation
4546 +     * of all entries
4547 +     */
4548 +    public long reduceEntriesToLongInParallel
4549 +        (ObjectToLong<Map.Entry<K,V>> transformer,
4550 +         long basis,
4551 +         LongByLongToLong reducer) {
4552 +        return ForkJoinTasks.reduceEntriesToLong
4553 +            (this, transformer, basis, reducer).invoke();
4554 +    }
4555 +
4556 +    /**
4557 +     * Returns the result of accumulating the given transformation
4558 +     * of all entries using the given reducer to combine values,
4559 +     * and the given basis as an identity value.
4560 +     *
4561 +     * @param transformer a function returning the transformation
4562 +     * for an element
4563 +     * @param basis the identity (initial default value) for the reduction
4564 +     * @param reducer a commutative associative combining function
4565 +     * @return the result of accumulating the given transformation
4566 +     * of all entries
4567 +     */
4568 +    public int reduceEntriesToIntInParallel
4569 +        (ObjectToInt<Map.Entry<K,V>> transformer,
4570 +         int basis,
4571 +         IntByIntToInt reducer) {
4572 +        return ForkJoinTasks.reduceEntriesToInt
4573 +            (this, transformer, basis, reducer).invoke();
4574 +    }
4575 +
4576 +
4577 +    /* ----------------Views -------------- */
4578 +
4579 +    /**
4580 +     * Base class for views.
4581 +     */
4582 +    abstract static class CHMView<K, V> {
4583 +        final ConcurrentHashMapV8<K, V> map;
4584 +        CHMView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
4585 +
4586 +        /**
4587 +         * Returns the map backing this view.
4588 +         *
4589 +         * @return the map backing this view
4590 +         */
4591 +        public ConcurrentHashMapV8<K,V> getMap() { return map; }
4592 +
4593 +        public final int size()                 { return map.size(); }
4594 +        public final boolean isEmpty()          { return map.isEmpty(); }
4595 +        public final void clear()               { map.clear(); }
4596 +
4597 +        // implementations below rely on concrete classes supplying these
4598 +        public abstract Iterator<?> iterator();
4599 +        public abstract boolean contains(Object o);
4600 +        public abstract boolean remove(Object o);
4601 +
4602 +        private static final String oomeMsg = "Required array size too large";
4603 +
4604 +        public final Object[] toArray() {
4605 +            long sz = map.mappingCount();
4606 +            if (sz > (long)(MAX_ARRAY_SIZE))
4607 +                throw new OutOfMemoryError(oomeMsg);
4608 +            int n = (int)sz;
4609 +            Object[] r = new Object[n];
4610 +            int i = 0;
4611 +            Iterator<?> it = iterator();
4612 +            while (it.hasNext()) {
4613 +                if (i == n) {
4614 +                    if (n >= MAX_ARRAY_SIZE)
4615 +                        throw new OutOfMemoryError(oomeMsg);
4616 +                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4617 +                        n = MAX_ARRAY_SIZE;
4618 +                    else
4619 +                        n += (n >>> 1) + 1;
4620 +                    r = Arrays.copyOf(r, n);
4621 +                }
4622 +                r[i++] = it.next();
4623 +            }
4624 +            return (i == n) ? r : Arrays.copyOf(r, i);
4625 +        }
4626 +
4627 +        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4628 +            long sz = map.mappingCount();
4629 +            if (sz > (long)(MAX_ARRAY_SIZE))
4630 +                throw new OutOfMemoryError(oomeMsg);
4631 +            int m = (int)sz;
4632 +            T[] r = (a.length >= m) ? a :
4633 +                (T[])java.lang.reflect.Array
4634 +                .newInstance(a.getClass().getComponentType(), m);
4635 +            int n = r.length;
4636 +            int i = 0;
4637 +            Iterator<?> it = iterator();
4638 +            while (it.hasNext()) {
4639 +                if (i == n) {
4640 +                    if (n >= MAX_ARRAY_SIZE)
4641 +                        throw new OutOfMemoryError(oomeMsg);
4642 +                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4643 +                        n = MAX_ARRAY_SIZE;
4644 +                    else
4645 +                        n += (n >>> 1) + 1;
4646 +                    r = Arrays.copyOf(r, n);
4647 +                }
4648 +                r[i++] = (T)it.next();
4649 +            }
4650 +            if (a == r && i < n) {
4651 +                r[i] = null; // null-terminate
4652 +                return r;
4653 +            }
4654 +            return (i == n) ? r : Arrays.copyOf(r, i);
4655 +        }
4656 +
4657 +        public final int hashCode() {
4658 +            int h = 0;
4659 +            for (Iterator<?> it = iterator(); it.hasNext();)
4660 +                h += it.next().hashCode();
4661 +            return h;
4662 +        }
4663 +
4664 +        public final String toString() {
4665 +            StringBuilder sb = new StringBuilder();
4666 +            sb.append('[');
4667 +            Iterator<?> it = iterator();
4668 +            if (it.hasNext()) {
4669 +                for (;;) {
4670 +                    Object e = it.next();
4671 +                    sb.append(e == this ? "(this Collection)" : e);
4672 +                    if (!it.hasNext())
4673 +                        break;
4674 +                    sb.append(',').append(' ');
4675 +                }
4676 +            }
4677 +            return sb.append(']').toString();
4678 +        }
4679 +
4680 +        public final boolean containsAll(Collection<?> c) {
4681 +            if (c != this) {
4682 +                for (Iterator<?> it = c.iterator(); it.hasNext();) {
4683 +                    Object e = it.next();
4684 +                    if (e == null || !contains(e))
4685 +                        return false;
4686 +                }
4687 +            }
4688 +            return true;
4689 +        }
4690 +
4691 +        public final boolean removeAll(Collection<?> c) {
4692 +            boolean modified = false;
4693 +            for (Iterator<?> it = iterator(); it.hasNext();) {
4694 +                if (c.contains(it.next())) {
4695 +                    it.remove();
4696 +                    modified = true;
4697 +                }
4698 +            }
4699 +            return modified;
4700 +        }
4701 +
4702 +        public final boolean retainAll(Collection<?> c) {
4703 +            boolean modified = false;
4704 +            for (Iterator<?> it = iterator(); it.hasNext();) {
4705 +                if (!c.contains(it.next())) {
4706 +                    it.remove();
4707 +                    modified = true;
4708 +                }
4709 +            }
4710 +            return modified;
4711 +        }
4712 +
4713 +    }
4714 +
4715 +    /**
4716 +     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4717 +     * which additions may optionally be enabled by mapping to a
4718 +     * common value.  This class cannot be directly instantiated. See
4719 +     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4720 +     * {@link #newKeySet(int)}.
4721 +     */
4722 +    public static class KeySetView<K,V> extends CHMView<K,V>
4723 +        implements Set<K>, java.io.Serializable {
4724 +        private static final long serialVersionUID = 7249069246763182397L;
4725 +        private final V value;
4726 +        KeySetView(ConcurrentHashMapV8<K, V> map, V value) {  // non-public
4727 +            super(map);
4728 +            this.value = value;
4729 +        }
4730 +
4731 +        /**
4732 +         * Returns the default mapped value for additions,
4733 +         * or {@code null} if additions are not supported.
4734 +         *
4735 +         * @return the default mapped value for additions, or {@code null}
4736 +         * if not supported.
4737 +         */
4738 +        public V getMappedValue() { return value; }
4739 +
4740 +        // implement Set API
4741 +
4742 +        public boolean contains(Object o) { return map.containsKey(o); }
4743 +        public boolean remove(Object o)   { return map.remove(o) != null; }
4744 +
4745 +        /**
4746 +         * Returns a "weakly consistent" iterator that will never
4747 +         * throw {@link ConcurrentModificationException}, and
4748 +         * guarantees to traverse elements as they existed upon
4749 +         * construction of the iterator, and may (but is not
4750 +         * guaranteed to) reflect any modifications subsequent to
4751 +         * construction.
4752 +         *
4753 +         * @return an iterator over the keys of this map
4754 +         */
4755 +        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4756 +        public boolean add(K e) {
4757 +            V v;
4758 +            if ((v = value) == null)
4759 +                throw new UnsupportedOperationException();
4760 +            if (e == null)
4761 +                throw new NullPointerException();
4762 +            return map.internalPut(e, v, true) == null;
4763 +        }
4764 +        public boolean addAll(Collection<? extends K> c) {
4765 +            boolean added = false;
4766 +            V v;
4767 +            if ((v = value) == null)
4768 +                throw new UnsupportedOperationException();
4769 +            for (K e : c) {
4770 +                if (e == null)
4771 +                    throw new NullPointerException();
4772 +                if (map.internalPut(e, v, true) == null)
4773 +                    added = true;
4774 +            }
4775 +            return added;
4776 +        }
4777 +        public boolean equals(Object o) {
4778 +            Set<?> c;
4779 +            return ((o instanceof Set) &&
4780 +                    ((c = (Set<?>)o) == this ||
4781 +                     (containsAll(c) && c.containsAll(this))));
4782 +        }
4783 +    }
4784 +
4785 +    /**
4786 +     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4787 +     * values, in which additions are disabled. This class cannot be
4788 +     * directly instantiated. See {@link #values},
4789 +     *
4790 +     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4791 +     * that will never throw {@link ConcurrentModificationException},
4792 +     * and guarantees to traverse elements as they existed upon
4793 +     * construction of the iterator, and may (but is not guaranteed to)
4794 +     * reflect any modifications subsequent to construction.
4795 +     */
4796 +    public static final class ValuesView<K,V> extends CHMView<K,V>
4797 +        implements Collection<V> {
4798 +        ValuesView(ConcurrentHashMapV8<K, V> map)   { super(map); }
4799 +        public final boolean contains(Object o) { return map.containsValue(o); }
4800 +        public final boolean remove(Object o) {
4801 +            if (o != null) {
4802 +                Iterator<V> it = new ValueIterator<K,V>(map);
4803 +                while (it.hasNext()) {
4804 +                    if (o.equals(it.next())) {
4805 +                        it.remove();
4806 +                        return true;
4807 +                    }
4808 +                }
4809 +            }
4810 +            return false;
4811 +        }
4812 +
4813 +        /**
4814 +         * Returns a "weakly consistent" iterator that will never
4815 +         * throw {@link ConcurrentModificationException}, and
4816 +         * guarantees to traverse elements as they existed upon
4817 +         * construction of the iterator, and may (but is not
4818 +         * guaranteed to) reflect any modifications subsequent to
4819 +         * construction.
4820 +         *
4821 +         * @return an iterator over the values of this map
4822 +         */
4823 +        public final Iterator<V> iterator() {
4824 +            return new ValueIterator<K,V>(map);
4825 +        }
4826 +        public final boolean add(V e) {
4827 +            throw new UnsupportedOperationException();
4828 +        }
4829 +        public final boolean addAll(Collection<? extends V> c) {
4830 +            throw new UnsupportedOperationException();
4831 +        }
4832 +
4833 +    }
4834 +
4835 +    /**
4836 +     * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4837 +     * entries.  This class cannot be directly instantiated. See
4838 +     * {@link #entrySet}.
4839 +     */
4840 +    public static final class EntrySetView<K,V> extends CHMView<K,V>
4841 +        implements Set<Map.Entry<K,V>> {
4842 +        EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4843 +        public final boolean contains(Object o) {
4844 +            Object k, v, r; Map.Entry<?,?> e;
4845 +            return ((o instanceof Map.Entry) &&
4846 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4847 +                    (r = map.get(k)) != null &&
4848 +                    (v = e.getValue()) != null &&
4849 +                    (v == r || v.equals(r)));
4850 +        }
4851 +        public final boolean remove(Object o) {
4852 +            Object k, v; Map.Entry<?,?> e;
4853 +            return ((o instanceof Map.Entry) &&
4854 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4855 +                    (v = e.getValue()) != null &&
4856 +                    map.remove(k, v));
4857 +        }
4858 +
4859 +        /**
4860 +         * Returns a "weakly consistent" iterator that will never
4861 +         * throw {@link ConcurrentModificationException}, and
4862 +         * guarantees to traverse elements as they existed upon
4863 +         * construction of the iterator, and may (but is not
4864 +         * guaranteed to) reflect any modifications subsequent to
4865 +         * construction.
4866 +         *
4867 +         * @return an iterator over the entries of this map
4868 +         */
4869 +        public final Iterator<Map.Entry<K,V>> iterator() {
4870 +            return new EntryIterator<K,V>(map);
4871 +        }
4872 +
4873 +        public final boolean add(Entry<K,V> e) {
4874 +            K key = e.getKey();
4875 +            V value = e.getValue();
4876 +            if (key == null || value == null)
4877 +                throw new NullPointerException();
4878 +            return map.internalPut(key, value, false) == null;
4879 +        }
4880 +        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4881 +            boolean added = false;
4882 +            for (Entry<K,V> e : c) {
4883 +                if (add(e))
4884 +                    added = true;
4885 +            }
4886 +            return added;
4887 +        }
4888 +        public boolean equals(Object o) {
4889 +            Set<?> c;
4890 +            return ((o instanceof Set) &&
4891 +                    ((c = (Set<?>)o) == this ||
4892 +                     (containsAll(c) && c.containsAll(this))));
4893 +        }
4894 +    }
4895 +
4896 +    // ---------------------------------------------------------------------
4897 +
4898 +    /**
4899 +     * Predefined tasks for performing bulk parallel operations on
4900 +     * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4901 +     * for bulk operations. Each method has the same name, but returns
4902 +     * a task rather than invoking it. These methods may be useful in
4903 +     * custom applications such as submitting a task without waiting
4904 +     * for completion, using a custom pool, or combining with other
4905 +     * tasks.
4906 +     */
4907 +    public static class ForkJoinTasks {
4908 +        private ForkJoinTasks() {}
4909 +
4910 +        /**
4911 +         * Returns a task that when invoked, performs the given
4912 +         * action for each (key, value)
4913 +         *
4914 +         * @param map the map
4915 +         * @param action the action
4916 +         * @return the task
4917 +         */
4918 +        public static <K,V> ForkJoinTask<Void> forEach
4919 +            (ConcurrentHashMapV8<K,V> map,
4920 +             BiAction<K,V> action) {
4921 +            if (action == null) throw new NullPointerException();
4922 +            return new ForEachMappingTask<K,V>(map, null, -1, action);
4923 +        }
4924 +
4925 +        /**
4926 +         * Returns a task that when invoked, performs the given
4927 +         * action for each non-null transformation of each (key, value)
4928 +         *
4929 +         * @param map the map
4930 +         * @param transformer a function returning the transformation
4931 +         * for an element, or null if there is no transformation (in
4932 +         * which case the action is not applied)
4933 +         * @param action the action
4934 +         * @return the task
4935 +         */
4936 +        public static <K,V,U> ForkJoinTask<Void> forEach
4937 +            (ConcurrentHashMapV8<K,V> map,
4938 +             BiFun<? super K, ? super V, ? extends U> transformer,
4939 +             Action<U> action) {
4940 +            if (transformer == null || action == null)
4941 +                throw new NullPointerException();
4942 +            return new ForEachTransformedMappingTask<K,V,U>
4943 +                (map, null, -1, transformer, action);
4944 +        }
4945 +
4946 +        /**
4947 +         * Returns a task that when invoked, returns a non-null result
4948 +         * from applying the given search function on each (key,
4949 +         * value), or null if none. Upon success, further element
4950 +         * processing is suppressed and the results of any other
4951 +         * parallel invocations of the search function are ignored.
4952 +         *
4953 +         * @param map the map
4954 +         * @param searchFunction a function returning a non-null
4955 +         * result on success, else null
4956 +         * @return the task
4957 +         */
4958 +        public static <K,V,U> ForkJoinTask<U> search
4959 +            (ConcurrentHashMapV8<K,V> map,
4960 +             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4961 +            if (searchFunction == null) throw new NullPointerException();
4962 +            return new SearchMappingsTask<K,V,U>
4963 +                (map, null, -1, searchFunction,
4964 +                 new AtomicReference<U>());
4965 +        }
4966 +
4967 +        /**
4968 +         * Returns a task that when invoked, returns the result of
4969 +         * accumulating the given transformation of all (key, value) pairs
4970 +         * using the given reducer to combine values, or null if none.
4971 +         *
4972 +         * @param map the map
4973 +         * @param transformer a function returning the transformation
4974 +         * for an element, or null if there is no transformation (in
4975 +         * which case it is not combined).
4976 +         * @param reducer a commutative associative combining function
4977 +         * @return the task
4978 +         */
4979 +        public static <K,V,U> ForkJoinTask<U> reduce
4980 +            (ConcurrentHashMapV8<K,V> map,
4981 +             BiFun<? super K, ? super V, ? extends U> transformer,
4982 +             BiFun<? super U, ? super U, ? extends U> reducer) {
4983 +            if (transformer == null || reducer == null)
4984 +                throw new NullPointerException();
4985 +            return new MapReduceMappingsTask<K,V,U>
4986 +                (map, null, -1, null, transformer, reducer);
4987 +        }
4988 +
4989 +        /**
4990 +         * Returns a task that when invoked, returns the result of
4991 +         * accumulating the given transformation of all (key, value) pairs
4992 +         * using the given reducer to combine values, and the given
4993 +         * basis as an identity value.
4994 +         *
4995 +         * @param map the map
4996 +         * @param transformer a function returning the transformation
4997 +         * for an element
4998 +         * @param basis the identity (initial default value) for the reduction
4999 +         * @param reducer a commutative associative combining function
5000 +         * @return the task
5001 +         */
5002 +        public static <K,V> ForkJoinTask<Double> reduceToDouble
5003 +            (ConcurrentHashMapV8<K,V> map,
5004 +             ObjectByObjectToDouble<? super K, ? super V> transformer,
5005 +             double basis,
5006 +             DoubleByDoubleToDouble reducer) {
5007 +            if (transformer == null || reducer == null)
5008 +                throw new NullPointerException();
5009 +            return new MapReduceMappingsToDoubleTask<K,V>
5010 +                (map, null, -1, null, transformer, basis, reducer);
5011 +        }
5012 +
5013 +        /**
5014 +         * Returns a task that when invoked, returns the result of
5015 +         * accumulating the given transformation of all (key, value) pairs
5016 +         * using the given reducer to combine values, and the given
5017 +         * basis as an identity value.
5018 +         *
5019 +         * @param map the map
5020 +         * @param transformer a function returning the transformation
5021 +         * for an element
5022 +         * @param basis the identity (initial default value) for the reduction
5023 +         * @param reducer a commutative associative combining function
5024 +         * @return the task
5025 +         */
5026 +        public static <K,V> ForkJoinTask<Long> reduceToLong
5027 +            (ConcurrentHashMapV8<K,V> map,
5028 +             ObjectByObjectToLong<? super K, ? super V> transformer,
5029 +             long basis,
5030 +             LongByLongToLong reducer) {
5031 +            if (transformer == null || reducer == null)
5032 +                throw new NullPointerException();
5033 +            return new MapReduceMappingsToLongTask<K,V>
5034 +                (map, null, -1, null, transformer, basis, reducer);
5035 +        }
5036 +
5037 +        /**
5038 +         * Returns a task that when invoked, returns the result of
5039 +         * accumulating the given transformation of all (key, value) pairs
5040 +         * using the given reducer to combine values, and the given
5041 +         * basis as an identity value.
5042 +         *
5043 +         * @param transformer a function returning the transformation
5044 +         * for an element
5045 +         * @param basis the identity (initial default value) for the reduction
5046 +         * @param reducer a commutative associative combining function
5047 +         * @return the task
5048 +         */
5049 +        public static <K,V> ForkJoinTask<Integer> reduceToInt
5050 +            (ConcurrentHashMapV8<K,V> map,
5051 +             ObjectByObjectToInt<? super K, ? super V> transformer,
5052 +             int basis,
5053 +             IntByIntToInt reducer) {
5054 +            if (transformer == null || reducer == null)
5055 +                throw new NullPointerException();
5056 +            return new MapReduceMappingsToIntTask<K,V>
5057 +                (map, null, -1, null, transformer, basis, reducer);
5058 +        }
5059 +
5060 +        /**
5061 +         * Returns a task that when invoked, performs the given action
5062 +         * for each key.
5063 +         *
5064 +         * @param map the map
5065 +         * @param action the action
5066 +         * @return the task
5067 +         */
5068 +        public static <K,V> ForkJoinTask<Void> forEachKey
5069 +            (ConcurrentHashMapV8<K,V> map,
5070 +             Action<K> action) {
5071 +            if (action == null) throw new NullPointerException();
5072 +            return new ForEachKeyTask<K,V>(map, null, -1, action);
5073 +        }
5074 +
5075 +        /**
5076 +         * Returns a task that when invoked, performs the given action
5077 +         * for each non-null transformation of each key.
5078 +         *
5079 +         * @param map the map
5080 +         * @param transformer a function returning the transformation
5081 +         * for an element, or null if there is no transformation (in
5082 +         * which case the action is not applied)
5083 +         * @param action the action
5084 +         * @return the task
5085 +         */
5086 +        public static <K,V,U> ForkJoinTask<Void> forEachKey
5087 +            (ConcurrentHashMapV8<K,V> map,
5088 +             Fun<? super K, ? extends U> transformer,
5089 +             Action<U> action) {
5090 +            if (transformer == null || action == null)
5091 +                throw new NullPointerException();
5092 +            return new ForEachTransformedKeyTask<K,V,U>
5093 +                (map, null, -1, transformer, action);
5094 +        }
5095 +
5096 +        /**
5097 +         * Returns a task that when invoked, returns a non-null result
5098 +         * from applying the given search function on each key, or
5099 +         * null if none.  Upon success, further element processing is
5100 +         * suppressed and the results of any other parallel
5101 +         * invocations of the search function are ignored.
5102 +         *
5103 +         * @param map the map
5104 +         * @param searchFunction a function returning a non-null
5105 +         * result on success, else null
5106 +         * @return the task
5107 +         */
5108 +        public static <K,V,U> ForkJoinTask<U> searchKeys
5109 +            (ConcurrentHashMapV8<K,V> map,
5110 +             Fun<? super K, ? extends U> searchFunction) {
5111 +            if (searchFunction == null) throw new NullPointerException();
5112 +            return new SearchKeysTask<K,V,U>
5113 +                (map, null, -1, searchFunction,
5114 +                 new AtomicReference<U>());
5115 +        }
5116 +
5117 +        /**
5118 +         * Returns a task that when invoked, returns the result of
5119 +         * accumulating all keys using the given reducer to combine
5120 +         * values, or null if none.
5121 +         *
5122 +         * @param map the map
5123 +         * @param reducer a commutative associative combining function
5124 +         * @return the task
5125 +         */
5126 +        public static <K,V> ForkJoinTask<K> reduceKeys
5127 +            (ConcurrentHashMapV8<K,V> map,
5128 +             BiFun<? super K, ? super K, ? extends K> reducer) {
5129 +            if (reducer == null) throw new NullPointerException();
5130 +            return new ReduceKeysTask<K,V>
5131 +                (map, null, -1, null, reducer);
5132 +        }
5133 +
5134 +        /**
5135 +         * Returns a task that when invoked, returns the result of
5136 +         * accumulating the given transformation of all keys using the given
5137 +         * reducer to combine values, or null if none.
5138 +         *
5139 +         * @param map the map
5140 +         * @param transformer a function returning the transformation
5141 +         * for an element, or null if there is no transformation (in
5142 +         * which case it is not combined).
5143 +         * @param reducer a commutative associative combining function
5144 +         * @return the task
5145 +         */
5146 +        public static <K,V,U> ForkJoinTask<U> reduceKeys
5147 +            (ConcurrentHashMapV8<K,V> map,
5148 +             Fun<? super K, ? extends U> transformer,
5149 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5150 +            if (transformer == null || reducer == null)
5151 +                throw new NullPointerException();
5152 +            return new MapReduceKeysTask<K,V,U>
5153 +                (map, null, -1, null, transformer, reducer);
5154 +        }
5155 +
5156 +        /**
5157 +         * Returns a task that when invoked, returns the result of
5158 +         * accumulating the given transformation of all keys using the given
5159 +         * reducer to combine values, and the given basis as an
5160 +         * identity value.
5161 +         *
5162 +         * @param map the map
5163 +         * @param transformer a function returning the transformation
5164 +         * for an element
5165 +         * @param basis the identity (initial default value) for the reduction
5166 +         * @param reducer a commutative associative combining function
5167 +         * @return the task
5168 +         */
5169 +        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5170 +            (ConcurrentHashMapV8<K,V> map,
5171 +             ObjectToDouble<? super K> transformer,
5172 +             double basis,
5173 +             DoubleByDoubleToDouble reducer) {
5174 +            if (transformer == null || reducer == null)
5175 +                throw new NullPointerException();
5176 +            return new MapReduceKeysToDoubleTask<K,V>
5177 +                (map, null, -1, null, transformer, basis, reducer);
5178 +        }
5179 +
5180 +        /**
5181 +         * Returns a task that when invoked, returns the result of
5182 +         * accumulating the given transformation of all keys using the given
5183 +         * reducer to combine values, and the given basis as an
5184 +         * identity value.
5185 +         *
5186 +         * @param map the map
5187 +         * @param transformer a function returning the transformation
5188 +         * for an element
5189 +         * @param basis the identity (initial default value) for the reduction
5190 +         * @param reducer a commutative associative combining function
5191 +         * @return the task
5192 +         */
5193 +        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5194 +            (ConcurrentHashMapV8<K,V> map,
5195 +             ObjectToLong<? super K> transformer,
5196 +             long basis,
5197 +             LongByLongToLong reducer) {
5198 +            if (transformer == null || reducer == null)
5199 +                throw new NullPointerException();
5200 +            return new MapReduceKeysToLongTask<K,V>
5201 +                (map, null, -1, null, transformer, basis, reducer);
5202 +        }
5203 +
5204 +        /**
5205 +         * Returns a task that when invoked, returns the result of
5206 +         * accumulating the given transformation of all keys using the given
5207 +         * reducer to combine values, and the given basis as an
5208 +         * identity value.
5209 +         *
5210 +         * @param map the map
5211 +         * @param transformer a function returning the transformation
5212 +         * for an element
5213 +         * @param basis the identity (initial default value) for the reduction
5214 +         * @param reducer a commutative associative combining function
5215 +         * @return the task
5216 +         */
5217 +        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5218 +            (ConcurrentHashMapV8<K,V> map,
5219 +             ObjectToInt<? super K> transformer,
5220 +             int basis,
5221 +             IntByIntToInt reducer) {
5222 +            if (transformer == null || reducer == null)
5223 +                throw new NullPointerException();
5224 +            return new MapReduceKeysToIntTask<K,V>
5225 +                (map, null, -1, null, transformer, basis, reducer);
5226 +        }
5227 +
5228 +        /**
5229 +         * Returns a task that when invoked, performs the given action
5230 +         * for each value.
5231 +         *
5232 +         * @param map the map
5233 +         * @param action the action
5234 +         */
5235 +        public static <K,V> ForkJoinTask<Void> forEachValue
5236 +            (ConcurrentHashMapV8<K,V> map,
5237 +             Action<V> action) {
5238 +            if (action == null) throw new NullPointerException();
5239 +            return new ForEachValueTask<K,V>(map, null, -1, action);
5240 +        }
5241 +
5242 +        /**
5243 +         * Returns a task that when invoked, performs the given action
5244 +         * for each non-null transformation of each value.
5245 +         *
5246 +         * @param map the map
5247 +         * @param transformer a function returning the transformation
5248 +         * for an element, or null if there is no transformation (in
5249 +         * which case the action is not applied)
5250 +         * @param action the action
5251 +         */
5252 +        public static <K,V,U> ForkJoinTask<Void> forEachValue
5253 +            (ConcurrentHashMapV8<K,V> map,
5254 +             Fun<? super V, ? extends U> transformer,
5255 +             Action<U> action) {
5256 +            if (transformer == null || action == null)
5257 +                throw new NullPointerException();
5258 +            return new ForEachTransformedValueTask<K,V,U>
5259 +                (map, null, -1, transformer, action);
5260 +        }
5261 +
5262 +        /**
5263 +         * Returns a task that when invoked, returns a non-null result
5264 +         * from applying the given search function on each value, or
5265 +         * null if none.  Upon success, further element processing is
5266 +         * suppressed and the results of any other parallel
5267 +         * invocations of the search function are ignored.
5268 +         *
5269 +         * @param map the map
5270 +         * @param searchFunction a function returning a non-null
5271 +         * result on success, else null
5272 +         * @return the task
5273 +         */
5274 +        public static <K,V,U> ForkJoinTask<U> searchValues
5275 +            (ConcurrentHashMapV8<K,V> map,
5276 +             Fun<? super V, ? extends U> searchFunction) {
5277 +            if (searchFunction == null) throw new NullPointerException();
5278 +            return new SearchValuesTask<K,V,U>
5279 +                (map, null, -1, searchFunction,
5280 +                 new AtomicReference<U>());
5281 +        }
5282 +
5283 +        /**
5284 +         * Returns a task that when invoked, returns the result of
5285 +         * accumulating all values using the given reducer to combine
5286 +         * values, or null if none.
5287 +         *
5288 +         * @param map the map
5289 +         * @param reducer a commutative associative combining function
5290 +         * @return the task
5291 +         */
5292 +        public static <K,V> ForkJoinTask<V> reduceValues
5293 +            (ConcurrentHashMapV8<K,V> map,
5294 +             BiFun<? super V, ? super V, ? extends V> reducer) {
5295 +            if (reducer == null) throw new NullPointerException();
5296 +            return new ReduceValuesTask<K,V>
5297 +                (map, null, -1, null, reducer);
5298 +        }
5299 +
5300 +        /**
5301 +         * Returns a task that when invoked, returns the result of
5302 +         * accumulating the given transformation of all values using the
5303 +         * given reducer to combine values, or null if none.
5304 +         *
5305 +         * @param map the map
5306 +         * @param transformer a function returning the transformation
5307 +         * for an element, or null if there is no transformation (in
5308 +         * which case it is not combined).
5309 +         * @param reducer a commutative associative combining function
5310 +         * @return the task
5311 +         */
5312 +        public static <K,V,U> ForkJoinTask<U> reduceValues
5313 +            (ConcurrentHashMapV8<K,V> map,
5314 +             Fun<? super V, ? extends U> transformer,
5315 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5316 +            if (transformer == null || reducer == null)
5317 +                throw new NullPointerException();
5318 +            return new MapReduceValuesTask<K,V,U>
5319 +                (map, null, -1, null, transformer, reducer);
5320 +        }
5321 +
5322 +        /**
5323 +         * Returns a task that when invoked, returns the result of
5324 +         * accumulating the given transformation of all values using the
5325 +         * given reducer to combine values, and the given basis as an
5326 +         * identity value.
5327 +         *
5328 +         * @param map the map
5329 +         * @param transformer a function returning the transformation
5330 +         * for an element
5331 +         * @param basis the identity (initial default value) for the reduction
5332 +         * @param reducer a commutative associative combining function
5333 +         * @return the task
5334 +         */
5335 +        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5336 +            (ConcurrentHashMapV8<K,V> map,
5337 +             ObjectToDouble<? super V> transformer,
5338 +             double basis,
5339 +             DoubleByDoubleToDouble reducer) {
5340 +            if (transformer == null || reducer == null)
5341 +                throw new NullPointerException();
5342 +            return new MapReduceValuesToDoubleTask<K,V>
5343 +                (map, null, -1, null, transformer, basis, reducer);
5344 +        }
5345 +
5346 +        /**
5347 +         * Returns a task that when invoked, returns the result of
5348 +         * accumulating the given transformation of all values using the
5349 +         * given reducer to combine values, and the given basis as an
5350 +         * identity value.
5351 +         *
5352 +         * @param map the map
5353 +         * @param transformer a function returning the transformation
5354 +         * for an element
5355 +         * @param basis the identity (initial default value) for the reduction
5356 +         * @param reducer a commutative associative combining function
5357 +         * @return the task
5358 +         */
5359 +        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5360 +            (ConcurrentHashMapV8<K,V> map,
5361 +             ObjectToLong<? super V> transformer,
5362 +             long basis,
5363 +             LongByLongToLong reducer) {
5364 +            if (transformer == null || reducer == null)
5365 +                throw new NullPointerException();
5366 +            return new MapReduceValuesToLongTask<K,V>
5367 +                (map, null, -1, null, transformer, basis, reducer);
5368 +        }
5369 +
5370 +        /**
5371 +         * Returns a task that when invoked, returns the result of
5372 +         * accumulating the given transformation of all values using the
5373 +         * given reducer to combine values, and the given basis as an
5374 +         * identity value.
5375 +         *
5376 +         * @param map the map
5377 +         * @param transformer a function returning the transformation
5378 +         * for an element
5379 +         * @param basis the identity (initial default value) for the reduction
5380 +         * @param reducer a commutative associative combining function
5381 +         * @return the task
5382 +         */
5383 +        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5384 +            (ConcurrentHashMapV8<K,V> map,
5385 +             ObjectToInt<? super V> transformer,
5386 +             int basis,
5387 +             IntByIntToInt reducer) {
5388 +            if (transformer == null || reducer == null)
5389 +                throw new NullPointerException();
5390 +            return new MapReduceValuesToIntTask<K,V>
5391 +                (map, null, -1, null, transformer, basis, reducer);
5392 +        }
5393 +
5394 +        /**
5395 +         * Returns a task that when invoked, perform the given action
5396 +         * for each entry.
5397 +         *
5398 +         * @param map the map
5399 +         * @param action the action
5400 +         */
5401 +        public static <K,V> ForkJoinTask<Void> forEachEntry
5402 +            (ConcurrentHashMapV8<K,V> map,
5403 +             Action<Map.Entry<K,V>> action) {
5404 +            if (action == null) throw new NullPointerException();
5405 +            return new ForEachEntryTask<K,V>(map, null, -1, action);
5406 +        }
5407 +
5408 +        /**
5409 +         * Returns a task that when invoked, perform the given action
5410 +         * for each non-null transformation of each entry.
5411 +         *
5412 +         * @param map the map
5413 +         * @param transformer a function returning the transformation
5414 +         * for an element, or null if there is no transformation (in
5415 +         * which case the action is not applied)
5416 +         * @param action the action
5417 +         */
5418 +        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5419 +            (ConcurrentHashMapV8<K,V> map,
5420 +             Fun<Map.Entry<K,V>, ? extends U> transformer,
5421 +             Action<U> action) {
5422 +            if (transformer == null || action == null)
5423 +                throw new NullPointerException();
5424 +            return new ForEachTransformedEntryTask<K,V,U>
5425 +                (map, null, -1, transformer, action);
5426 +        }
5427 +
5428 +        /**
5429 +         * Returns a task that when invoked, returns a non-null result
5430 +         * from applying the given search function on each entry, or
5431 +         * null if none.  Upon success, further element processing is
5432 +         * suppressed and the results of any other parallel
5433 +         * invocations of the search function are ignored.
5434 +         *
5435 +         * @param map the map
5436 +         * @param searchFunction a function returning a non-null
5437 +         * result on success, else null
5438 +         * @return the task
5439 +         */
5440 +        public static <K,V,U> ForkJoinTask<U> searchEntries
5441 +            (ConcurrentHashMapV8<K,V> map,
5442 +             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5443 +            if (searchFunction == null) throw new NullPointerException();
5444 +            return new SearchEntriesTask<K,V,U>
5445 +                (map, null, -1, searchFunction,
5446 +                 new AtomicReference<U>());
5447 +        }
5448 +
5449 +        /**
5450 +         * Returns a task that when invoked, returns the result of
5451 +         * accumulating all entries using the given reducer to combine
5452 +         * values, or null if none.
5453 +         *
5454 +         * @param map the map
5455 +         * @param reducer a commutative associative combining function
5456 +         * @return the task
5457 +         */
5458 +        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5459 +            (ConcurrentHashMapV8<K,V> map,
5460 +             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5461 +            if (reducer == null) throw new NullPointerException();
5462 +            return new ReduceEntriesTask<K,V>
5463 +                (map, null, -1, null, reducer);
5464 +        }
5465 +
5466 +        /**
5467 +         * Returns a task that when invoked, returns the result of
5468 +         * accumulating the given transformation of all entries using the
5469 +         * given reducer to combine values, or null if none.
5470 +         *
5471 +         * @param map the map
5472 +         * @param transformer a function returning the transformation
5473 +         * for an element, or null if there is no transformation (in
5474 +         * which case it is not combined).
5475 +         * @param reducer a commutative associative combining function
5476 +         * @return the task
5477 +         */
5478 +        public static <K,V,U> ForkJoinTask<U> reduceEntries
5479 +            (ConcurrentHashMapV8<K,V> map,
5480 +             Fun<Map.Entry<K,V>, ? extends U> transformer,
5481 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5482 +            if (transformer == null || reducer == null)
5483 +                throw new NullPointerException();
5484 +            return new MapReduceEntriesTask<K,V,U>
5485 +                (map, null, -1, null, transformer, reducer);
5486 +        }
5487 +
5488 +        /**
5489 +         * Returns a task that when invoked, returns the result of
5490 +         * accumulating the given transformation of all entries using the
5491 +         * given reducer to combine values, and the given basis as an
5492 +         * identity value.
5493 +         *
5494 +         * @param map the map
5495 +         * @param transformer a function returning the transformation
5496 +         * for an element
5497 +         * @param basis the identity (initial default value) for the reduction
5498 +         * @param reducer a commutative associative combining function
5499 +         * @return the task
5500 +         */
5501 +        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5502 +            (ConcurrentHashMapV8<K,V> map,
5503 +             ObjectToDouble<Map.Entry<K,V>> transformer,
5504 +             double basis,
5505 +             DoubleByDoubleToDouble reducer) {
5506 +            if (transformer == null || reducer == null)
5507 +                throw new NullPointerException();
5508 +            return new MapReduceEntriesToDoubleTask<K,V>
5509 +                (map, null, -1, null, transformer, basis, reducer);
5510 +        }
5511 +
5512 +        /**
5513 +         * Returns a task that when invoked, returns the result of
5514 +         * accumulating the given transformation of all entries using the
5515 +         * given reducer to combine values, and the given basis as an
5516 +         * identity value.
5517 +         *
5518 +         * @param map the map
5519 +         * @param transformer a function returning the transformation
5520 +         * for an element
5521 +         * @param basis the identity (initial default value) for the reduction
5522 +         * @param reducer a commutative associative combining function
5523 +         * @return the task
5524 +         */
5525 +        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5526 +            (ConcurrentHashMapV8<K,V> map,
5527 +             ObjectToLong<Map.Entry<K,V>> transformer,
5528 +             long basis,
5529 +             LongByLongToLong reducer) {
5530 +            if (transformer == null || reducer == null)
5531 +                throw new NullPointerException();
5532 +            return new MapReduceEntriesToLongTask<K,V>
5533 +                (map, null, -1, null, transformer, basis, reducer);
5534 +        }
5535 +
5536 +        /**
5537 +         * Returns a task that when invoked, returns the result of
5538 +         * accumulating the given transformation of all entries using the
5539 +         * given reducer to combine values, and the given basis as an
5540 +         * identity value.
5541 +         *
5542 +         * @param map the map
5543 +         * @param transformer a function returning the transformation
5544 +         * for an element
5545 +         * @param basis the identity (initial default value) for the reduction
5546 +         * @param reducer a commutative associative combining function
5547 +         * @return the task
5548 +         */
5549 +        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5550 +            (ConcurrentHashMapV8<K,V> map,
5551 +             ObjectToInt<Map.Entry<K,V>> transformer,
5552 +             int basis,
5553 +             IntByIntToInt reducer) {
5554 +            if (transformer == null || reducer == null)
5555 +                throw new NullPointerException();
5556 +            return new MapReduceEntriesToIntTask<K,V>
5557 +                (map, null, -1, null, transformer, basis, reducer);
5558 +        }
5559 +    }
5560 +
5561 +    // -------------------------------------------------------
5562 +
5563 +    /*
5564 +     * Task classes. Coded in a regular but ugly format/style to
5565 +     * simplify checks that each variant differs in the right way from
5566 +     * others. The null screenings exist because compilers cannot tell
5567 +     * that we've already null-checked task arguments, so we force
5568 +     * simplest hoisted bypass to help avoid convoluted traps.
5569 +     */
5570 +
5571 +    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5572 +        extends Traverser<K,V,Void> {
5573 +        final Action<K> action;
5574 +        ForEachKeyTask
5575 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5576 +             Action<K> action) {
5577 +            super(m, p, b);
5578 +            this.action = action;
5579 +        }
5580 +        @SuppressWarnings("unchecked") public final void compute() {
5581 +            final Action<K> action;
5582 +            if ((action = this.action) != null) {
5583 +                for (int b; (b = preSplit()) > 0;)
5584 +                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
5585 +                while (advance() != null)
5586 +                    action.apply((K)nextKey);
5587 +                propagateCompletion();
5588 +            }
5589 +        }
5590 +    }
5591 +
5592 +    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5593 +        extends Traverser<K,V,Void> {
5594 +        final Action<V> action;
5595 +        ForEachValueTask
5596 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5597 +             Action<V> action) {
5598 +            super(m, p, b);
5599 +            this.action = action;
5600 +        }
5601 +        @SuppressWarnings("unchecked") public final void compute() {
5602 +            final Action<V> action;
5603 +            if ((action = this.action) != null) {
5604 +                for (int b; (b = preSplit()) > 0;)
5605 +                    new ForEachValueTask<K,V>(map, this, b, action).fork();
5606 +                V v;
5607 +                while ((v = advance()) != null)
5608 +                    action.apply(v);
5609 +                propagateCompletion();
5610 +            }
5611 +        }
5612 +    }
5613 +
5614 +    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5615 +        extends Traverser<K,V,Void> {
5616 +        final Action<Entry<K,V>> action;
5617 +        ForEachEntryTask
5618 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5619 +             Action<Entry<K,V>> action) {
5620 +            super(m, p, b);
5621 +            this.action = action;
5622 +        }
5623 +        @SuppressWarnings("unchecked") public final void compute() {
5624 +            final Action<Entry<K,V>> action;
5625 +            if ((action = this.action) != null) {
5626 +                for (int b; (b = preSplit()) > 0;)
5627 +                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
5628 +                V v;
5629 +                while ((v = advance()) != null)
5630 +                    action.apply(entryFor((K)nextKey, v));
5631 +                propagateCompletion();
5632 +            }
5633 +        }
5634 +    }
5635 +
5636 +    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5637 +        extends Traverser<K,V,Void> {
5638 +        final BiAction<K,V> action;
5639 +        ForEachMappingTask
5640 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5641 +             BiAction<K,V> action) {
5642 +            super(m, p, b);
5643 +            this.action = action;
5644 +        }
5645 +        @SuppressWarnings("unchecked") public final void compute() {
5646 +            final BiAction<K,V> action;
5647 +            if ((action = this.action) != null) {
5648 +                for (int b; (b = preSplit()) > 0;)
5649 +                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
5650 +                V v;
5651 +                while ((v = advance()) != null)
5652 +                    action.apply((K)nextKey, v);
5653 +                propagateCompletion();
5654 +            }
5655 +        }
5656 +    }
5657 +
5658 +    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5659 +        extends Traverser<K,V,Void> {
5660 +        final Fun<? super K, ? extends U> transformer;
5661 +        final Action<U> action;
5662 +        ForEachTransformedKeyTask
5663 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5664 +             Fun<? super K, ? extends U> transformer, Action<U> action) {
5665 +            super(m, p, b);
5666 +            this.transformer = transformer; this.action = action;
5667 +        }
5668 +        @SuppressWarnings("unchecked") public final void compute() {
5669 +            final Fun<? super K, ? extends U> transformer;
5670 +            final Action<U> action;
5671 +            if ((transformer = this.transformer) != null &&
5672 +                (action = this.action) != null) {
5673 +                for (int b; (b = preSplit()) > 0;)
5674 +                    new ForEachTransformedKeyTask<K,V,U>
5675 +                        (map, this, b, transformer, action).fork();
5676 +                U u;
5677 +                while (advance() != null) {
5678 +                    if ((u = transformer.apply((K)nextKey)) != null)
5679 +                        action.apply(u);
5680 +                }
5681 +                propagateCompletion();
5682 +            }
5683 +        }
5684 +    }
5685 +
5686 +    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5687 +        extends Traverser<K,V,Void> {
5688 +        final Fun<? super V, ? extends U> transformer;
5689 +        final Action<U> action;
5690 +        ForEachTransformedValueTask
5691 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5692 +             Fun<? super V, ? extends U> transformer, Action<U> action) {
5693 +            super(m, p, b);
5694 +            this.transformer = transformer; this.action = action;
5695 +        }
5696 +        @SuppressWarnings("unchecked") public final void compute() {
5697 +            final Fun<? super V, ? extends U> transformer;
5698 +            final Action<U> action;
5699 +            if ((transformer = this.transformer) != null &&
5700 +                (action = this.action) != null) {
5701 +                for (int b; (b = preSplit()) > 0;)
5702 +                    new ForEachTransformedValueTask<K,V,U>
5703 +                        (map, this, b, transformer, action).fork();
5704 +                V v; U u;
5705 +                while ((v = advance()) != null) {
5706 +                    if ((u = transformer.apply(v)) != null)
5707 +                        action.apply(u);
5708 +                }
5709 +                propagateCompletion();
5710 +            }
5711 +        }
5712 +    }
5713 +
5714 +    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5715 +        extends Traverser<K,V,Void> {
5716 +        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5717 +        final Action<U> action;
5718 +        ForEachTransformedEntryTask
5719 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5720 +             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
5721 +            super(m, p, b);
5722 +            this.transformer = transformer; this.action = action;
5723 +        }
5724 +        @SuppressWarnings("unchecked") public final void compute() {
5725 +            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5726 +            final Action<U> action;
5727 +            if ((transformer = this.transformer) != null &&
5728 +                (action = this.action) != null) {
5729 +                for (int b; (b = preSplit()) > 0;)
5730 +                    new ForEachTransformedEntryTask<K,V,U>
5731 +                        (map, this, b, transformer, action).fork();
5732 +                V v; U u;
5733 +                while ((v = advance()) != null) {
5734 +                    if ((u = transformer.apply(entryFor((K)nextKey,
5735 +                                                        v))) != null)
5736 +                        action.apply(u);
5737 +                }
5738 +                propagateCompletion();
5739 +            }
5740 +        }
5741 +    }
5742 +
5743 +    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5744 +        extends Traverser<K,V,Void> {
5745 +        final BiFun<? super K, ? super V, ? extends U> transformer;
5746 +        final Action<U> action;
5747 +        ForEachTransformedMappingTask
5748 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5749 +             BiFun<? super K, ? super V, ? extends U> transformer,
5750 +             Action<U> action) {
5751 +            super(m, p, b);
5752 +            this.transformer = transformer; this.action = action;
5753 +        }
5754 +        @SuppressWarnings("unchecked") public final void compute() {
5755 +            final BiFun<? super K, ? super V, ? extends U> transformer;
5756 +            final Action<U> action;
5757 +            if ((transformer = this.transformer) != null &&
5758 +                (action = this.action) != null) {
5759 +                for (int b; (b = preSplit()) > 0;)
5760 +                    new ForEachTransformedMappingTask<K,V,U>
5761 +                        (map, this, b, transformer, action).fork();
5762 +                V v; U u;
5763 +                while ((v = advance()) != null) {
5764 +                    if ((u = transformer.apply((K)nextKey, v)) != null)
5765 +                        action.apply(u);
5766 +                }
5767 +                propagateCompletion();
5768 +            }
5769 +        }
5770 +    }
5771 +
5772 +    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5773 +        extends Traverser<K,V,U> {
5774 +        final Fun<? super K, ? extends U> searchFunction;
5775 +        final AtomicReference<U> result;
5776 +        SearchKeysTask
5777 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5778 +             Fun<? super K, ? extends U> searchFunction,
5779 +             AtomicReference<U> result) {
5780 +            super(m, p, b);
5781 +            this.searchFunction = searchFunction; this.result = result;
5782 +        }
5783 +        public final U getRawResult() { return result.get(); }
5784 +        @SuppressWarnings("unchecked") public final void compute() {
5785 +            final Fun<? super K, ? extends U> searchFunction;
5786 +            final AtomicReference<U> result;
5787 +            if ((searchFunction = this.searchFunction) != null &&
5788 +                (result = this.result) != null) {
5789 +                for (int b;;) {
5790 +                    if (result.get() != null)
5791 +                        return;
5792 +                    if ((b = preSplit()) <= 0)
5793 +                        break;
5794 +                    new SearchKeysTask<K,V,U>
5795 +                        (map, this, b, searchFunction, result).fork();
5796 +                }
5797 +                while (result.get() == null) {
5798 +                    U u;
5799 +                    if (advance() == null) {
5800 +                        propagateCompletion();
5801 +                        break;
5802 +                    }
5803 +                    if ((u = searchFunction.apply((K)nextKey)) != null) {
5804 +                        if (result.compareAndSet(null, u))
5805 +                            quietlyCompleteRoot();
5806 +                        break;
5807 +                    }
5808 +                }
5809 +            }
5810 +        }
5811 +    }
5812 +
5813 +    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5814 +        extends Traverser<K,V,U> {
5815 +        final Fun<? super V, ? extends U> searchFunction;
5816 +        final AtomicReference<U> result;
5817 +        SearchValuesTask
5818 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5819 +             Fun<? super V, ? extends U> searchFunction,
5820 +             AtomicReference<U> result) {
5821 +            super(m, p, b);
5822 +            this.searchFunction = searchFunction; this.result = result;
5823 +        }
5824 +        public final U getRawResult() { return result.get(); }
5825 +        @SuppressWarnings("unchecked") public final void compute() {
5826 +            final Fun<? super V, ? extends U> searchFunction;
5827 +            final AtomicReference<U> result;
5828 +            if ((searchFunction = this.searchFunction) != null &&
5829 +                (result = this.result) != null) {
5830 +                for (int b;;) {
5831 +                    if (result.get() != null)
5832 +                        return;
5833 +                    if ((b = preSplit()) <= 0)
5834 +                        break;
5835 +                    new SearchValuesTask<K,V,U>
5836 +                        (map, this, b, searchFunction, result).fork();
5837 +                }
5838 +                while (result.get() == null) {
5839 +                    V v; U u;
5840 +                    if ((v = advance()) == null) {
5841 +                        propagateCompletion();
5842 +                        break;
5843 +                    }
5844 +                    if ((u = searchFunction.apply(v)) != null) {
5845 +                        if (result.compareAndSet(null, u))
5846 +                            quietlyCompleteRoot();
5847 +                        break;
5848 +                    }
5849 +                }
5850 +            }
5851 +        }
5852 +    }
5853 +
5854 +    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5855 +        extends Traverser<K,V,U> {
5856 +        final Fun<Entry<K,V>, ? extends U> searchFunction;
5857 +        final AtomicReference<U> result;
5858 +        SearchEntriesTask
5859 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5860 +             Fun<Entry<K,V>, ? extends U> searchFunction,
5861 +             AtomicReference<U> result) {
5862 +            super(m, p, b);
5863 +            this.searchFunction = searchFunction; this.result = result;
5864 +        }
5865 +        public final U getRawResult() { return result.get(); }
5866 +        @SuppressWarnings("unchecked") public final void compute() {
5867 +            final Fun<Entry<K,V>, ? extends U> searchFunction;
5868 +            final AtomicReference<U> result;
5869 +            if ((searchFunction = this.searchFunction) != null &&
5870 +                (result = this.result) != null) {
5871 +                for (int b;;) {
5872 +                    if (result.get() != null)
5873 +                        return;
5874 +                    if ((b = preSplit()) <= 0)
5875 +                        break;
5876 +                    new SearchEntriesTask<K,V,U>
5877 +                        (map, this, b, searchFunction, result).fork();
5878 +                }
5879 +                while (result.get() == null) {
5880 +                    V v; U u;
5881 +                    if ((v = advance()) == null) {
5882 +                        propagateCompletion();
5883 +                        break;
5884 +                    }
5885 +                    if ((u = searchFunction.apply(entryFor((K)nextKey,
5886 +                                                           v))) != null) {
5887 +                        if (result.compareAndSet(null, u))
5888 +                            quietlyCompleteRoot();
5889 +                        return;
5890 +                    }
5891 +                }
5892 +            }
5893 +        }
5894 +    }
5895 +
5896 +    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5897 +        extends Traverser<K,V,U> {
5898 +        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5899 +        final AtomicReference<U> result;
5900 +        SearchMappingsTask
5901 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5902 +             BiFun<? super K, ? super V, ? extends U> searchFunction,
5903 +             AtomicReference<U> result) {
5904 +            super(m, p, b);
5905 +            this.searchFunction = searchFunction; this.result = result;
5906 +        }
5907 +        public final U getRawResult() { return result.get(); }
5908 +        @SuppressWarnings("unchecked") public final void compute() {
5909 +            final BiFun<? super K, ? super V, ? extends U> searchFunction;
5910 +            final AtomicReference<U> result;
5911 +            if ((searchFunction = this.searchFunction) != null &&
5912 +                (result = this.result) != null) {
5913 +                for (int b;;) {
5914 +                    if (result.get() != null)
5915 +                        return;
5916 +                    if ((b = preSplit()) <= 0)
5917 +                        break;
5918 +                    new SearchMappingsTask<K,V,U>
5919 +                        (map, this, b, searchFunction, result).fork();
5920 +                }
5921 +                while (result.get() == null) {
5922 +                    V v; U u;
5923 +                    if ((v = advance()) == null) {
5924 +                        propagateCompletion();
5925 +                        break;
5926 +                    }
5927 +                    if ((u = searchFunction.apply((K)nextKey, v)) != null) {
5928 +                        if (result.compareAndSet(null, u))
5929 +                            quietlyCompleteRoot();
5930 +                        break;
5931 +                    }
5932 +                }
5933 +            }
5934 +        }
5935 +    }
5936 +
5937 +    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5938 +        extends Traverser<K,V,K> {
5939 +        final BiFun<? super K, ? super K, ? extends K> reducer;
5940 +        K result;
5941 +        ReduceKeysTask<K,V> rights, nextRight;
5942 +        ReduceKeysTask
5943 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5944 +             ReduceKeysTask<K,V> nextRight,
5945 +             BiFun<? super K, ? super K, ? extends K> reducer) {
5946 +            super(m, p, b); this.nextRight = nextRight;
5947 +            this.reducer = reducer;
5948 +        }
5949 +        public final K getRawResult() { return result; }
5950 +        @SuppressWarnings("unchecked") public final void compute() {
5951 +            final BiFun<? super K, ? super K, ? extends K> reducer;
5952 +            if ((reducer = this.reducer) != null) {
5953 +                for (int b; (b = preSplit()) > 0;)
5954 +                    (rights = new ReduceKeysTask<K,V>
5955 +                     (map, this, b, rights, reducer)).fork();
5956 +                K r = null;
5957 +                while (advance() != null) {
5958 +                    K u = (K)nextKey;
5959 +                    r = (r == null) ? u : reducer.apply(r, u);
5960 +                }
5961 +                result = r;
5962 +                CountedCompleter<?> c;
5963 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5964 +                    ReduceKeysTask<K,V>
5965 +                        t = (ReduceKeysTask<K,V>)c,
5966 +                        s = t.rights;
5967 +                    while (s != null) {
5968 +                        K tr, sr;
5969 +                        if ((sr = s.result) != null)
5970 +                            t.result = (((tr = t.result) == null) ? sr :
5971 +                                        reducer.apply(tr, sr));
5972 +                        s = t.rights = s.nextRight;
5973 +                    }
5974 +                }
5975 +            }
5976 +        }
5977 +    }
5978 +
5979 +    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5980 +        extends Traverser<K,V,V> {
5981 +        final BiFun<? super V, ? super V, ? extends V> reducer;
5982 +        V result;
5983 +        ReduceValuesTask<K,V> rights, nextRight;
5984 +        ReduceValuesTask
5985 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5986 +             ReduceValuesTask<K,V> nextRight,
5987 +             BiFun<? super V, ? super V, ? extends V> reducer) {
5988 +            super(m, p, b); this.nextRight = nextRight;
5989 +            this.reducer = reducer;
5990 +        }
5991 +        public final V getRawResult() { return result; }
5992 +        @SuppressWarnings("unchecked") public final void compute() {
5993 +            final BiFun<? super V, ? super V, ? extends V> reducer;
5994 +            if ((reducer = this.reducer) != null) {
5995 +                for (int b; (b = preSplit()) > 0;)
5996 +                    (rights = new ReduceValuesTask<K,V>
5997 +                     (map, this, b, rights, reducer)).fork();
5998 +                V r = null;
5999 +                V v;
6000 +                while ((v = advance()) != null) {
6001 +                    V u = v;
6002 +                    r = (r == null) ? u : reducer.apply(r, u);
6003 +                }
6004 +                result = r;
6005 +                CountedCompleter<?> c;
6006 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6007 +                    ReduceValuesTask<K,V>
6008 +                        t = (ReduceValuesTask<K,V>)c,
6009 +                        s = t.rights;
6010 +                    while (s != null) {
6011 +                        V tr, sr;
6012 +                        if ((sr = s.result) != null)
6013 +                            t.result = (((tr = t.result) == null) ? sr :
6014 +                                        reducer.apply(tr, sr));
6015 +                        s = t.rights = s.nextRight;
6016 +                    }
6017 +                }
6018 +            }
6019 +        }
6020 +    }
6021 +
6022 +    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6023 +        extends Traverser<K,V,Map.Entry<K,V>> {
6024 +        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6025 +        Map.Entry<K,V> result;
6026 +        ReduceEntriesTask<K,V> rights, nextRight;
6027 +        ReduceEntriesTask
6028 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6029 +             ReduceEntriesTask<K,V> nextRight,
6030 +             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6031 +            super(m, p, b); this.nextRight = nextRight;
6032 +            this.reducer = reducer;
6033 +        }
6034 +        public final Map.Entry<K,V> getRawResult() { return result; }
6035 +        @SuppressWarnings("unchecked") public final void compute() {
6036 +            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6037 +            if ((reducer = this.reducer) != null) {
6038 +                for (int b; (b = preSplit()) > 0;)
6039 +                    (rights = new ReduceEntriesTask<K,V>
6040 +                     (map, this, b, rights, reducer)).fork();
6041 +                Map.Entry<K,V> r = null;
6042 +                V v;
6043 +                while ((v = advance()) != null) {
6044 +                    Map.Entry<K,V> u = entryFor((K)nextKey, v);
6045 +                    r = (r == null) ? u : reducer.apply(r, u);
6046 +                }
6047 +                result = r;
6048 +                CountedCompleter<?> c;
6049 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6050 +                    ReduceEntriesTask<K,V>
6051 +                        t = (ReduceEntriesTask<K,V>)c,
6052 +                        s = t.rights;
6053 +                    while (s != null) {
6054 +                        Map.Entry<K,V> tr, sr;
6055 +                        if ((sr = s.result) != null)
6056 +                            t.result = (((tr = t.result) == null) ? sr :
6057 +                                        reducer.apply(tr, sr));
6058 +                        s = t.rights = s.nextRight;
6059 +                    }
6060 +                }
6061 +            }
6062 +        }
6063 +    }
6064 +
6065 +    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6066 +        extends Traverser<K,V,U> {
6067 +        final Fun<? super K, ? extends U> transformer;
6068 +        final BiFun<? super U, ? super U, ? extends U> reducer;
6069 +        U result;
6070 +        MapReduceKeysTask<K,V,U> rights, nextRight;
6071 +        MapReduceKeysTask
6072 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6073 +             MapReduceKeysTask<K,V,U> nextRight,
6074 +             Fun<? super K, ? extends U> transformer,
6075 +             BiFun<? super U, ? super U, ? extends U> reducer) {
6076 +            super(m, p, b); this.nextRight = nextRight;
6077 +            this.transformer = transformer;
6078 +            this.reducer = reducer;
6079 +        }
6080 +        public final U getRawResult() { return result; }
6081 +        @SuppressWarnings("unchecked") public final void compute() {
6082 +            final Fun<? super K, ? extends U> transformer;
6083 +            final BiFun<? super U, ? super U, ? extends U> reducer;
6084 +            if ((transformer = this.transformer) != null &&
6085 +                (reducer = this.reducer) != null) {
6086 +                for (int b; (b = preSplit()) > 0;)
6087 +                    (rights = new MapReduceKeysTask<K,V,U>
6088 +                     (map, this, b, rights, transformer, reducer)).fork();
6089 +                U r = null, u;
6090 +                while (advance() != null) {
6091 +                    if ((u = transformer.apply((K)nextKey)) != null)
6092 +                        r = (r == null) ? u : reducer.apply(r, u);
6093 +                }
6094 +                result = r;
6095 +                CountedCompleter<?> c;
6096 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6097 +                    MapReduceKeysTask<K,V,U>
6098 +                        t = (MapReduceKeysTask<K,V,U>)c,
6099 +                        s = t.rights;
6100 +                    while (s != null) {
6101 +                        U tr, sr;
6102 +                        if ((sr = s.result) != null)
6103 +                            t.result = (((tr = t.result) == null) ? sr :
6104 +                                        reducer.apply(tr, sr));
6105 +                        s = t.rights = s.nextRight;
6106 +                    }
6107 +                }
6108 +            }
6109 +        }
6110 +    }
6111 +
6112 +    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6113 +        extends Traverser<K,V,U> {
6114 +        final Fun<? super V, ? extends U> transformer;
6115 +        final BiFun<? super U, ? super U, ? extends U> reducer;
6116 +        U result;
6117 +        MapReduceValuesTask<K,V,U> rights, nextRight;
6118 +        MapReduceValuesTask
6119 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6120 +             MapReduceValuesTask<K,V,U> nextRight,
6121 +             Fun<? super V, ? extends U> transformer,
6122 +             BiFun<? super U, ? super U, ? extends U> reducer) {
6123 +            super(m, p, b); this.nextRight = nextRight;
6124 +            this.transformer = transformer;
6125 +            this.reducer = reducer;
6126 +        }
6127 +        public final U getRawResult() { return result; }
6128 +        @SuppressWarnings("unchecked") public final void compute() {
6129 +            final Fun<? super V, ? extends U> transformer;
6130 +            final BiFun<? super U, ? super U, ? extends U> reducer;
6131 +            if ((transformer = this.transformer) != null &&
6132 +                (reducer = this.reducer) != null) {
6133 +                for (int b; (b = preSplit()) > 0;)
6134 +                    (rights = new MapReduceValuesTask<K,V,U>
6135 +                     (map, this, b, rights, transformer, reducer)).fork();
6136 +                U r = null, u;
6137 +                V v;
6138 +                while ((v = advance()) != null) {
6139 +                    if ((u = transformer.apply(v)) != null)
6140 +                        r = (r == null) ? u : reducer.apply(r, u);
6141 +                }
6142 +                result = r;
6143 +                CountedCompleter<?> c;
6144 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6145 +                    MapReduceValuesTask<K,V,U>
6146 +                        t = (MapReduceValuesTask<K,V,U>)c,
6147 +                        s = t.rights;
6148 +                    while (s != null) {
6149 +                        U tr, sr;
6150 +                        if ((sr = s.result) != null)
6151 +                            t.result = (((tr = t.result) == null) ? sr :
6152 +                                        reducer.apply(tr, sr));
6153 +                        s = t.rights = s.nextRight;
6154 +                    }
6155 +                }
6156 +            }
6157 +        }
6158 +    }
6159 +
6160 +    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6161 +        extends Traverser<K,V,U> {
6162 +        final Fun<Map.Entry<K,V>, ? extends U> transformer;
6163 +        final BiFun<? super U, ? super U, ? extends U> reducer;
6164 +        U result;
6165 +        MapReduceEntriesTask<K,V,U> rights, nextRight;
6166 +        MapReduceEntriesTask
6167 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6168 +             MapReduceEntriesTask<K,V,U> nextRight,
6169 +             Fun<Map.Entry<K,V>, ? extends U> transformer,
6170 +             BiFun<? super U, ? super U, ? extends U> reducer) {
6171 +            super(m, p, b); this.nextRight = nextRight;
6172 +            this.transformer = transformer;
6173 +            this.reducer = reducer;
6174 +        }
6175 +        public final U getRawResult() { return result; }
6176 +        @SuppressWarnings("unchecked") public final void compute() {
6177 +            final Fun<Map.Entry<K,V>, ? extends U> transformer;
6178 +            final BiFun<? super U, ? super U, ? extends U> reducer;
6179 +            if ((transformer = this.transformer) != null &&
6180 +                (reducer = this.reducer) != null) {
6181 +                for (int b; (b = preSplit()) > 0;)
6182 +                    (rights = new MapReduceEntriesTask<K,V,U>
6183 +                     (map, this, b, rights, transformer, reducer)).fork();
6184 +                U r = null, u;
6185 +                V v;
6186 +                while ((v = advance()) != null) {
6187 +                    if ((u = transformer.apply(entryFor((K)nextKey,
6188 +                                                        v))) != null)
6189 +                        r = (r == null) ? u : reducer.apply(r, u);
6190 +                }
6191 +                result = r;
6192 +                CountedCompleter<?> c;
6193 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6194 +                    MapReduceEntriesTask<K,V,U>
6195 +                        t = (MapReduceEntriesTask<K,V,U>)c,
6196 +                        s = t.rights;
6197 +                    while (s != null) {
6198 +                        U tr, sr;
6199 +                        if ((sr = s.result) != null)
6200 +                            t.result = (((tr = t.result) == null) ? sr :
6201 +                                        reducer.apply(tr, sr));
6202 +                        s = t.rights = s.nextRight;
6203 +                    }
6204 +                }
6205 +            }
6206 +        }
6207 +    }
6208 +
6209 +    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6210 +        extends Traverser<K,V,U> {
6211 +        final BiFun<? super K, ? super V, ? extends U> transformer;
6212 +        final BiFun<? super U, ? super U, ? extends U> reducer;
6213 +        U result;
6214 +        MapReduceMappingsTask<K,V,U> rights, nextRight;
6215 +        MapReduceMappingsTask
6216 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6217 +             MapReduceMappingsTask<K,V,U> nextRight,
6218 +             BiFun<? super K, ? super V, ? extends U> transformer,
6219 +             BiFun<? super U, ? super U, ? extends U> reducer) {
6220 +            super(m, p, b); this.nextRight = nextRight;
6221 +            this.transformer = transformer;
6222 +            this.reducer = reducer;
6223 +        }
6224 +        public final U getRawResult() { return result; }
6225 +        @SuppressWarnings("unchecked") public final void compute() {
6226 +            final BiFun<? super K, ? super V, ? extends U> transformer;
6227 +            final BiFun<? super U, ? super U, ? extends U> reducer;
6228 +            if ((transformer = this.transformer) != null &&
6229 +                (reducer = this.reducer) != null) {
6230 +                for (int b; (b = preSplit()) > 0;)
6231 +                    (rights = new MapReduceMappingsTask<K,V,U>
6232 +                     (map, this, b, rights, transformer, reducer)).fork();
6233 +                U r = null, u;
6234 +                V v;
6235 +                while ((v = advance()) != null) {
6236 +                    if ((u = transformer.apply((K)nextKey, v)) != null)
6237 +                        r = (r == null) ? u : reducer.apply(r, u);
6238 +                }
6239 +                result = r;
6240 +                CountedCompleter<?> c;
6241 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6242 +                    MapReduceMappingsTask<K,V,U>
6243 +                        t = (MapReduceMappingsTask<K,V,U>)c,
6244 +                        s = t.rights;
6245 +                    while (s != null) {
6246 +                        U tr, sr;
6247 +                        if ((sr = s.result) != null)
6248 +                            t.result = (((tr = t.result) == null) ? sr :
6249 +                                        reducer.apply(tr, sr));
6250 +                        s = t.rights = s.nextRight;
6251 +                    }
6252 +                }
6253 +            }
6254 +        }
6255 +    }
6256 +
6257 +    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6258 +        extends Traverser<K,V,Double> {
6259 +        final ObjectToDouble<? super K> transformer;
6260 +        final DoubleByDoubleToDouble reducer;
6261 +        final double basis;
6262 +        double result;
6263 +        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6264 +        MapReduceKeysToDoubleTask
6265 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6266 +             MapReduceKeysToDoubleTask<K,V> nextRight,
6267 +             ObjectToDouble<? super K> transformer,
6268 +             double basis,
6269 +             DoubleByDoubleToDouble reducer) {
6270 +            super(m, p, b); this.nextRight = nextRight;
6271 +            this.transformer = transformer;
6272 +            this.basis = basis; this.reducer = reducer;
6273 +        }
6274 +        public final Double getRawResult() { return result; }
6275 +        @SuppressWarnings("unchecked") public final void compute() {
6276 +            final ObjectToDouble<? super K> transformer;
6277 +            final DoubleByDoubleToDouble reducer;
6278 +            if ((transformer = this.transformer) != null &&
6279 +                (reducer = this.reducer) != null) {
6280 +                double r = this.basis;
6281 +                for (int b; (b = preSplit()) > 0;)
6282 +                    (rights = new MapReduceKeysToDoubleTask<K,V>
6283 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6284 +                while (advance() != null)
6285 +                    r = reducer.apply(r, transformer.apply((K)nextKey));
6286 +                result = r;
6287 +                CountedCompleter<?> c;
6288 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6289 +                    MapReduceKeysToDoubleTask<K,V>
6290 +                        t = (MapReduceKeysToDoubleTask<K,V>)c,
6291 +                        s = t.rights;
6292 +                    while (s != null) {
6293 +                        t.result = reducer.apply(t.result, s.result);
6294 +                        s = t.rights = s.nextRight;
6295 +                    }
6296 +                }
6297 +            }
6298 +        }
6299 +    }
6300 +
6301 +    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6302 +        extends Traverser<K,V,Double> {
6303 +        final ObjectToDouble<? super V> transformer;
6304 +        final DoubleByDoubleToDouble reducer;
6305 +        final double basis;
6306 +        double result;
6307 +        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6308 +        MapReduceValuesToDoubleTask
6309 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6310 +             MapReduceValuesToDoubleTask<K,V> nextRight,
6311 +             ObjectToDouble<? super V> transformer,
6312 +             double basis,
6313 +             DoubleByDoubleToDouble reducer) {
6314 +            super(m, p, b); this.nextRight = nextRight;
6315 +            this.transformer = transformer;
6316 +            this.basis = basis; this.reducer = reducer;
6317 +        }
6318 +        public final Double getRawResult() { return result; }
6319 +        @SuppressWarnings("unchecked") public final void compute() {
6320 +            final ObjectToDouble<? super V> transformer;
6321 +            final DoubleByDoubleToDouble reducer;
6322 +            if ((transformer = this.transformer) != null &&
6323 +                (reducer = this.reducer) != null) {
6324 +                double r = this.basis;
6325 +                for (int b; (b = preSplit()) > 0;)
6326 +                    (rights = new MapReduceValuesToDoubleTask<K,V>
6327 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6328 +                V v;
6329 +                while ((v = advance()) != null)
6330 +                    r = reducer.apply(r, transformer.apply(v));
6331 +                result = r;
6332 +                CountedCompleter<?> c;
6333 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6334 +                    MapReduceValuesToDoubleTask<K,V>
6335 +                        t = (MapReduceValuesToDoubleTask<K,V>)c,
6336 +                        s = t.rights;
6337 +                    while (s != null) {
6338 +                        t.result = reducer.apply(t.result, s.result);
6339 +                        s = t.rights = s.nextRight;
6340 +                    }
6341 +                }
6342 +            }
6343 +        }
6344 +    }
6345 +
6346 +    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6347 +        extends Traverser<K,V,Double> {
6348 +        final ObjectToDouble<Map.Entry<K,V>> transformer;
6349 +        final DoubleByDoubleToDouble reducer;
6350 +        final double basis;
6351 +        double result;
6352 +        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6353 +        MapReduceEntriesToDoubleTask
6354 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6355 +             MapReduceEntriesToDoubleTask<K,V> nextRight,
6356 +             ObjectToDouble<Map.Entry<K,V>> transformer,
6357 +             double basis,
6358 +             DoubleByDoubleToDouble reducer) {
6359 +            super(m, p, b); this.nextRight = nextRight;
6360 +            this.transformer = transformer;
6361 +            this.basis = basis; this.reducer = reducer;
6362 +        }
6363 +        public final Double getRawResult() { return result; }
6364 +        @SuppressWarnings("unchecked") public final void compute() {
6365 +            final ObjectToDouble<Map.Entry<K,V>> transformer;
6366 +            final DoubleByDoubleToDouble reducer;
6367 +            if ((transformer = this.transformer) != null &&
6368 +                (reducer = this.reducer) != null) {
6369 +                double r = this.basis;
6370 +                for (int b; (b = preSplit()) > 0;)
6371 +                    (rights = new MapReduceEntriesToDoubleTask<K,V>
6372 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6373 +                V v;
6374 +                while ((v = advance()) != null)
6375 +                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6376 +                                                                    v)));
6377 +                result = r;
6378 +                CountedCompleter<?> c;
6379 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6380 +                    MapReduceEntriesToDoubleTask<K,V>
6381 +                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
6382 +                        s = t.rights;
6383 +                    while (s != null) {
6384 +                        t.result = reducer.apply(t.result, s.result);
6385 +                        s = t.rights = s.nextRight;
6386 +                    }
6387 +                }
6388 +            }
6389 +        }
6390 +    }
6391 +
6392 +    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6393 +        extends Traverser<K,V,Double> {
6394 +        final ObjectByObjectToDouble<? super K, ? super V> transformer;
6395 +        final DoubleByDoubleToDouble reducer;
6396 +        final double basis;
6397 +        double result;
6398 +        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6399 +        MapReduceMappingsToDoubleTask
6400 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6401 +             MapReduceMappingsToDoubleTask<K,V> nextRight,
6402 +             ObjectByObjectToDouble<? super K, ? super V> transformer,
6403 +             double basis,
6404 +             DoubleByDoubleToDouble reducer) {
6405 +            super(m, p, b); this.nextRight = nextRight;
6406 +            this.transformer = transformer;
6407 +            this.basis = basis; this.reducer = reducer;
6408 +        }
6409 +        public final Double getRawResult() { return result; }
6410 +        @SuppressWarnings("unchecked") public final void compute() {
6411 +            final ObjectByObjectToDouble<? super K, ? super V> transformer;
6412 +            final DoubleByDoubleToDouble reducer;
6413 +            if ((transformer = this.transformer) != null &&
6414 +                (reducer = this.reducer) != null) {
6415 +                double r = this.basis;
6416 +                for (int b; (b = preSplit()) > 0;)
6417 +                    (rights = new MapReduceMappingsToDoubleTask<K,V>
6418 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6419 +                V v;
6420 +                while ((v = advance()) != null)
6421 +                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
6422 +                result = r;
6423 +                CountedCompleter<?> c;
6424 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6425 +                    MapReduceMappingsToDoubleTask<K,V>
6426 +                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
6427 +                        s = t.rights;
6428 +                    while (s != null) {
6429 +                        t.result = reducer.apply(t.result, s.result);
6430 +                        s = t.rights = s.nextRight;
6431 +                    }
6432 +                }
6433 +            }
6434 +        }
6435 +    }
6436 +
6437 +    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6438 +        extends Traverser<K,V,Long> {
6439 +        final ObjectToLong<? super K> transformer;
6440 +        final LongByLongToLong reducer;
6441 +        final long basis;
6442 +        long result;
6443 +        MapReduceKeysToLongTask<K,V> rights, nextRight;
6444 +        MapReduceKeysToLongTask
6445 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6446 +             MapReduceKeysToLongTask<K,V> nextRight,
6447 +             ObjectToLong<? super K> transformer,
6448 +             long basis,
6449 +             LongByLongToLong reducer) {
6450 +            super(m, p, b); this.nextRight = nextRight;
6451 +            this.transformer = transformer;
6452 +            this.basis = basis; this.reducer = reducer;
6453 +        }
6454 +        public final Long getRawResult() { return result; }
6455 +        @SuppressWarnings("unchecked") public final void compute() {
6456 +            final ObjectToLong<? super K> transformer;
6457 +            final LongByLongToLong reducer;
6458 +            if ((transformer = this.transformer) != null &&
6459 +                (reducer = this.reducer) != null) {
6460 +                long r = this.basis;
6461 +                for (int b; (b = preSplit()) > 0;)
6462 +                    (rights = new MapReduceKeysToLongTask<K,V>
6463 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6464 +                while (advance() != null)
6465 +                    r = reducer.apply(r, transformer.apply((K)nextKey));
6466 +                result = r;
6467 +                CountedCompleter<?> c;
6468 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6469 +                    MapReduceKeysToLongTask<K,V>
6470 +                        t = (MapReduceKeysToLongTask<K,V>)c,
6471 +                        s = t.rights;
6472 +                    while (s != null) {
6473 +                        t.result = reducer.apply(t.result, s.result);
6474 +                        s = t.rights = s.nextRight;
6475 +                    }
6476 +                }
6477 +            }
6478 +        }
6479 +    }
6480 +
6481 +    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6482 +        extends Traverser<K,V,Long> {
6483 +        final ObjectToLong<? super V> transformer;
6484 +        final LongByLongToLong reducer;
6485 +        final long basis;
6486 +        long result;
6487 +        MapReduceValuesToLongTask<K,V> rights, nextRight;
6488 +        MapReduceValuesToLongTask
6489 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6490 +             MapReduceValuesToLongTask<K,V> nextRight,
6491 +             ObjectToLong<? super V> transformer,
6492 +             long basis,
6493 +             LongByLongToLong reducer) {
6494 +            super(m, p, b); this.nextRight = nextRight;
6495 +            this.transformer = transformer;
6496 +            this.basis = basis; this.reducer = reducer;
6497 +        }
6498 +        public final Long getRawResult() { return result; }
6499 +        @SuppressWarnings("unchecked") public final void compute() {
6500 +            final ObjectToLong<? super V> transformer;
6501 +            final LongByLongToLong reducer;
6502 +            if ((transformer = this.transformer) != null &&
6503 +                (reducer = this.reducer) != null) {
6504 +                long r = this.basis;
6505 +                for (int b; (b = preSplit()) > 0;)
6506 +                    (rights = new MapReduceValuesToLongTask<K,V>
6507 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6508 +                V v;
6509 +                while ((v = advance()) != null)
6510 +                    r = reducer.apply(r, transformer.apply(v));
6511 +                result = r;
6512 +                CountedCompleter<?> c;
6513 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6514 +                    MapReduceValuesToLongTask<K,V>
6515 +                        t = (MapReduceValuesToLongTask<K,V>)c,
6516 +                        s = t.rights;
6517 +                    while (s != null) {
6518 +                        t.result = reducer.apply(t.result, s.result);
6519 +                        s = t.rights = s.nextRight;
6520 +                    }
6521 +                }
6522 +            }
6523 +        }
6524 +    }
6525 +
6526 +    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6527 +        extends Traverser<K,V,Long> {
6528 +        final ObjectToLong<Map.Entry<K,V>> transformer;
6529 +        final LongByLongToLong reducer;
6530 +        final long basis;
6531 +        long result;
6532 +        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6533 +        MapReduceEntriesToLongTask
6534 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6535 +             MapReduceEntriesToLongTask<K,V> nextRight,
6536 +             ObjectToLong<Map.Entry<K,V>> transformer,
6537 +             long basis,
6538 +             LongByLongToLong reducer) {
6539 +            super(m, p, b); this.nextRight = nextRight;
6540 +            this.transformer = transformer;
6541 +            this.basis = basis; this.reducer = reducer;
6542 +        }
6543 +        public final Long getRawResult() { return result; }
6544 +        @SuppressWarnings("unchecked") public final void compute() {
6545 +            final ObjectToLong<Map.Entry<K,V>> transformer;
6546 +            final LongByLongToLong reducer;
6547 +            if ((transformer = this.transformer) != null &&
6548 +                (reducer = this.reducer) != null) {
6549 +                long r = this.basis;
6550 +                for (int b; (b = preSplit()) > 0;)
6551 +                    (rights = new MapReduceEntriesToLongTask<K,V>
6552 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6553 +                V v;
6554 +                while ((v = advance()) != null)
6555 +                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6556 +                                                                    v)));
6557 +                result = r;
6558 +                CountedCompleter<?> c;
6559 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6560 +                    MapReduceEntriesToLongTask<K,V>
6561 +                        t = (MapReduceEntriesToLongTask<K,V>)c,
6562 +                        s = t.rights;
6563 +                    while (s != null) {
6564 +                        t.result = reducer.apply(t.result, s.result);
6565 +                        s = t.rights = s.nextRight;
6566 +                    }
6567 +                }
6568 +            }
6569 +        }
6570 +    }
6571 +
6572 +    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6573 +        extends Traverser<K,V,Long> {
6574 +        final ObjectByObjectToLong<? super K, ? super V> transformer;
6575 +        final LongByLongToLong reducer;
6576 +        final long basis;
6577 +        long result;
6578 +        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6579 +        MapReduceMappingsToLongTask
6580 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6581 +             MapReduceMappingsToLongTask<K,V> nextRight,
6582 +             ObjectByObjectToLong<? super K, ? super V> transformer,
6583 +             long basis,
6584 +             LongByLongToLong reducer) {
6585 +            super(m, p, b); this.nextRight = nextRight;
6586 +            this.transformer = transformer;
6587 +            this.basis = basis; this.reducer = reducer;
6588 +        }
6589 +        public final Long getRawResult() { return result; }
6590 +        @SuppressWarnings("unchecked") public final void compute() {
6591 +            final ObjectByObjectToLong<? super K, ? super V> transformer;
6592 +            final LongByLongToLong reducer;
6593 +            if ((transformer = this.transformer) != null &&
6594 +                (reducer = this.reducer) != null) {
6595 +                long r = this.basis;
6596 +                for (int b; (b = preSplit()) > 0;)
6597 +                    (rights = new MapReduceMappingsToLongTask<K,V>
6598 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6599 +                V v;
6600 +                while ((v = advance()) != null)
6601 +                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
6602 +                result = r;
6603 +                CountedCompleter<?> c;
6604 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6605 +                    MapReduceMappingsToLongTask<K,V>
6606 +                        t = (MapReduceMappingsToLongTask<K,V>)c,
6607 +                        s = t.rights;
6608 +                    while (s != null) {
6609 +                        t.result = reducer.apply(t.result, s.result);
6610 +                        s = t.rights = s.nextRight;
6611 +                    }
6612 +                }
6613 +            }
6614 +        }
6615 +    }
6616 +
6617 +    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6618 +        extends Traverser<K,V,Integer> {
6619 +        final ObjectToInt<? super K> transformer;
6620 +        final IntByIntToInt reducer;
6621 +        final int basis;
6622 +        int result;
6623 +        MapReduceKeysToIntTask<K,V> rights, nextRight;
6624 +        MapReduceKeysToIntTask
6625 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6626 +             MapReduceKeysToIntTask<K,V> nextRight,
6627 +             ObjectToInt<? super K> transformer,
6628 +             int basis,
6629 +             IntByIntToInt reducer) {
6630 +            super(m, p, b); this.nextRight = nextRight;
6631 +            this.transformer = transformer;
6632 +            this.basis = basis; this.reducer = reducer;
6633 +        }
6634 +        public final Integer getRawResult() { return result; }
6635 +        @SuppressWarnings("unchecked") public final void compute() {
6636 +            final ObjectToInt<? super K> transformer;
6637 +            final IntByIntToInt reducer;
6638 +            if ((transformer = this.transformer) != null &&
6639 +                (reducer = this.reducer) != null) {
6640 +                int r = this.basis;
6641 +                for (int b; (b = preSplit()) > 0;)
6642 +                    (rights = new MapReduceKeysToIntTask<K,V>
6643 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6644 +                while (advance() != null)
6645 +                    r = reducer.apply(r, transformer.apply((K)nextKey));
6646 +                result = r;
6647 +                CountedCompleter<?> c;
6648 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6649 +                    MapReduceKeysToIntTask<K,V>
6650 +                        t = (MapReduceKeysToIntTask<K,V>)c,
6651 +                        s = t.rights;
6652 +                    while (s != null) {
6653 +                        t.result = reducer.apply(t.result, s.result);
6654 +                        s = t.rights = s.nextRight;
6655 +                    }
6656 +                }
6657 +            }
6658 +        }
6659 +    }
6660 +
6661 +    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6662 +        extends Traverser<K,V,Integer> {
6663 +        final ObjectToInt<? super V> transformer;
6664 +        final IntByIntToInt reducer;
6665 +        final int basis;
6666 +        int result;
6667 +        MapReduceValuesToIntTask<K,V> rights, nextRight;
6668 +        MapReduceValuesToIntTask
6669 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6670 +             MapReduceValuesToIntTask<K,V> nextRight,
6671 +             ObjectToInt<? super V> transformer,
6672 +             int basis,
6673 +             IntByIntToInt reducer) {
6674 +            super(m, p, b); this.nextRight = nextRight;
6675 +            this.transformer = transformer;
6676 +            this.basis = basis; this.reducer = reducer;
6677 +        }
6678 +        public final Integer getRawResult() { return result; }
6679 +        @SuppressWarnings("unchecked") public final void compute() {
6680 +            final ObjectToInt<? super V> transformer;
6681 +            final IntByIntToInt reducer;
6682 +            if ((transformer = this.transformer) != null &&
6683 +                (reducer = this.reducer) != null) {
6684 +                int r = this.basis;
6685 +                for (int b; (b = preSplit()) > 0;)
6686 +                    (rights = new MapReduceValuesToIntTask<K,V>
6687 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6688 +                V v;
6689 +                while ((v = advance()) != null)
6690 +                    r = reducer.apply(r, transformer.apply(v));
6691 +                result = r;
6692 +                CountedCompleter<?> c;
6693 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6694 +                    MapReduceValuesToIntTask<K,V>
6695 +                        t = (MapReduceValuesToIntTask<K,V>)c,
6696 +                        s = t.rights;
6697 +                    while (s != null) {
6698 +                        t.result = reducer.apply(t.result, s.result);
6699 +                        s = t.rights = s.nextRight;
6700 +                    }
6701 +                }
6702 +            }
6703 +        }
6704 +    }
6705 +
6706 +    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6707 +        extends Traverser<K,V,Integer> {
6708 +        final ObjectToInt<Map.Entry<K,V>> transformer;
6709 +        final IntByIntToInt reducer;
6710 +        final int basis;
6711 +        int result;
6712 +        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6713 +        MapReduceEntriesToIntTask
6714 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6715 +             MapReduceEntriesToIntTask<K,V> nextRight,
6716 +             ObjectToInt<Map.Entry<K,V>> transformer,
6717 +             int basis,
6718 +             IntByIntToInt reducer) {
6719 +            super(m, p, b); this.nextRight = nextRight;
6720 +            this.transformer = transformer;
6721 +            this.basis = basis; this.reducer = reducer;
6722 +        }
6723 +        public final Integer getRawResult() { return result; }
6724 +        @SuppressWarnings("unchecked") public final void compute() {
6725 +            final ObjectToInt<Map.Entry<K,V>> transformer;
6726 +            final IntByIntToInt reducer;
6727 +            if ((transformer = this.transformer) != null &&
6728 +                (reducer = this.reducer) != null) {
6729 +                int r = this.basis;
6730 +                for (int b; (b = preSplit()) > 0;)
6731 +                    (rights = new MapReduceEntriesToIntTask<K,V>
6732 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6733 +                V v;
6734 +                while ((v = advance()) != null)
6735 +                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6736 +                                                                    v)));
6737 +                result = r;
6738 +                CountedCompleter<?> c;
6739 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6740 +                    MapReduceEntriesToIntTask<K,V>
6741 +                        t = (MapReduceEntriesToIntTask<K,V>)c,
6742 +                        s = t.rights;
6743 +                    while (s != null) {
6744 +                        t.result = reducer.apply(t.result, s.result);
6745 +                        s = t.rights = s.nextRight;
6746 +                    }
6747 +                }
6748 +            }
6749 +        }
6750 +    }
6751 +
6752 +    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6753 +        extends Traverser<K,V,Integer> {
6754 +        final ObjectByObjectToInt<? super K, ? super V> transformer;
6755 +        final IntByIntToInt reducer;
6756 +        final int basis;
6757 +        int result;
6758 +        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6759 +        MapReduceMappingsToIntTask
6760 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6761 +             MapReduceMappingsToIntTask<K,V> nextRight,
6762 +             ObjectByObjectToInt<? super K, ? super V> transformer,
6763 +             int basis,
6764 +             IntByIntToInt reducer) {
6765 +            super(m, p, b); this.nextRight = nextRight;
6766 +            this.transformer = transformer;
6767 +            this.basis = basis; this.reducer = reducer;
6768 +        }
6769 +        public final Integer getRawResult() { return result; }
6770 +        @SuppressWarnings("unchecked") public final void compute() {
6771 +            final ObjectByObjectToInt<? super K, ? super V> transformer;
6772 +            final IntByIntToInt reducer;
6773 +            if ((transformer = this.transformer) != null &&
6774 +                (reducer = this.reducer) != null) {
6775 +                int r = this.basis;
6776 +                for (int b; (b = preSplit()) > 0;)
6777 +                    (rights = new MapReduceMappingsToIntTask<K,V>
6778 +                     (map, this, b, rights, transformer, r, reducer)).fork();
6779 +                V v;
6780 +                while ((v = advance()) != null)
6781 +                    r = reducer.apply(r, transformer.apply((K)nextKey, v));
6782 +                result = r;
6783 +                CountedCompleter<?> c;
6784 +                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6785 +                    MapReduceMappingsToIntTask<K,V>
6786 +                        t = (MapReduceMappingsToIntTask<K,V>)c,
6787 +                        s = t.rights;
6788 +                    while (s != null) {
6789 +                        t.result = reducer.apply(t.result, s.result);
6790 +                        s = t.rights = s.nextRight;
6791 +                    }
6792 +                }
6793 +            }
6794 +        }
6795 +    }
6796 +
6797      // Unsafe mechanics
6798 <    private static final sun.misc.Unsafe UNSAFE;
6799 <    private static final long counterOffset;
6800 <    private static final long resizingOffset;
6798 >    private static final sun.misc.Unsafe U;
6799 >    private static final long SIZECTL;
6800 >    private static final long TRANSFERINDEX;
6801 >    private static final long TRANSFERORIGIN;
6802 >    private static final long BASECOUNT;
6803 >    private static final long COUNTERBUSY;
6804 >    private static final long CELLVALUE;
6805      private static final long ABASE;
6806      private static final int ASHIFT;
6807  
6808      static {
1692        int ss;
6809          try {
6810 <            UNSAFE = getUnsafe();
6810 >            U = getUnsafe();
6811              Class<?> k = ConcurrentHashMapV8.class;
6812 <            counterOffset = UNSAFE.objectFieldOffset
6813 <                (k.getDeclaredField("counter"));
6814 <            resizingOffset = UNSAFE.objectFieldOffset
6815 <                (k.getDeclaredField("resizing"));
6812 >            SIZECTL = U.objectFieldOffset
6813 >                (k.getDeclaredField("sizeCtl"));
6814 >            TRANSFERINDEX = U.objectFieldOffset
6815 >                (k.getDeclaredField("transferIndex"));
6816 >            TRANSFERORIGIN = U.objectFieldOffset
6817 >                (k.getDeclaredField("transferOrigin"));
6818 >            BASECOUNT = U.objectFieldOffset
6819 >                (k.getDeclaredField("baseCount"));
6820 >            COUNTERBUSY = U.objectFieldOffset
6821 >                (k.getDeclaredField("counterBusy"));
6822 >            Class<?> ck = CounterCell.class;
6823 >            CELLVALUE = U.objectFieldOffset
6824 >                (ck.getDeclaredField("value"));
6825              Class<?> sc = Node[].class;
6826 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6827 <            ss = UNSAFE.arrayIndexScale(sc);
6826 >            ABASE = U.arrayBaseOffset(sc);
6827 >            int scale = U.arrayIndexScale(sc);
6828 >            if ((scale & (scale - 1)) != 0)
6829 >                throw new Error("data type scale not a power of two");
6830 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6831          } catch (Exception e) {
6832              throw new Error(e);
6833          }
1706        if ((ss & (ss-1)) != 0)
1707            throw new Error("data type scale not a power of two");
1708        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6834      }
6835  
6836      /**
# Line 1718 | Line 6843 | public class ConcurrentHashMapV8<K, V>
6843      private static sun.misc.Unsafe getUnsafe() {
6844          try {
6845              return sun.misc.Unsafe.getUnsafe();
6846 <        } catch (SecurityException se) {
6847 <            try {
6848 <                return java.security.AccessController.doPrivileged
6849 <                    (new java.security
6850 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6851 <                        public sun.misc.Unsafe run() throws Exception {
6852 <                            java.lang.reflect.Field f = sun.misc
6853 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6854 <                            f.setAccessible(true);
6855 <                            return (sun.misc.Unsafe) f.get(null);
6856 <                        }});
6857 <            } catch (java.security.PrivilegedActionException e) {
6858 <                throw new RuntimeException("Could not initialize intrinsics",
6859 <                                           e.getCause());
6860 <            }
6846 >        } catch (SecurityException tryReflectionInstead) {}
6847 >        try {
6848 >            return java.security.AccessController.doPrivileged
6849 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6850 >                public sun.misc.Unsafe run() throws Exception {
6851 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6852 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6853 >                        f.setAccessible(true);
6854 >                        Object x = f.get(null);
6855 >                        if (k.isInstance(x))
6856 >                            return k.cast(x);
6857 >                    }
6858 >                    throw new NoSuchFieldError("the Unsafe");
6859 >                }});
6860 >        } catch (java.security.PrivilegedActionException e) {
6861 >            throw new RuntimeException("Could not initialize intrinsics",
6862 >                                       e.getCause());
6863          }
6864      }
1738
6865   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines