--- jsr166/src/jsr166e/ConcurrentHashMapV8.java 2011/08/30 18:31:54 1.12 +++ jsr166/src/jsr166e/ConcurrentHashMapV8.java 2011/09/21 11:42:08 1.26 @@ -6,6 +6,7 @@ package jsr166e; import jsr166e.LongAdder; +import java.util.Arrays; import java.util.Map; import java.util.Set; import java.util.Collection; @@ -19,6 +20,7 @@ import java.util.Enumeration; import java.util.ConcurrentModificationException; import java.util.NoSuchElementException; import java.util.concurrent.ConcurrentMap; +import java.util.concurrent.locks.LockSupport; import java.io.Serializable; /** @@ -49,14 +51,28 @@ import java.io.Serializable; * are typically useful only when a map is not undergoing concurrent * updates in other threads. Otherwise the results of these methods * reflect transient states that may be adequate for monitoring - * purposes, but not for program control. + * or estimation purposes, but not for program control. * - *

Resizing this or any other kind of hash table is a relatively - * slow operation, so, when possible, it is a good idea to provide - * estimates of expected table sizes in constructors. Also, for - * compatibility with previous versions of this class, constructors - * may optionally specify an expected {@code concurrencyLevel} as an - * additional hint for internal sizing. + *

The table is dynamically expanded when there are too many + * collisions (i.e., keys that have distinct hash codes but fall into + * the same slot modulo the table size), with the expected average + * effect of maintaining roughly two bins per mapping (corresponding + * to a 0.75 load factor threshold for resizing). There may be much + * variance around this average as mappings are added and removed, but + * overall, this maintains a commonly accepted time/space tradeoff for + * hash tables. However, resizing this or any other kind of hash + * table may be a relatively slow operation. When possible, it is a + * good idea to provide a size estimate as an optional {@code + * initialCapacity} constructor argument. An additional optional + * {@code loadFactor} constructor argument provides a further means of + * customizing initial table capacity by specifying the table density + * to be used in calculating the amount of space to allocate for the + * given number of elements. Also, for compatibility with previous + * versions of this class, constructors may optionally specify an + * expected {@code concurrencyLevel} as an additional hint for + * internal sizing. Note that using many keys with exactly the same + * {@code hashCode{}} is a sure way to slow down performance of any + * hash table. * *

This class and its views and iterators implement all of the * optional methods of the {@link Map} and {@link Iterator} @@ -108,194 +124,264 @@ public class ConcurrentHashMapV8 * The primary design goal of this hash table is to maintain * concurrent readability (typically method get(), but also * iterators and related methods) while minimizing update - * contention. + * contention. Secondary goals are to keep space consumption about + * the same or better than java.util.HashMap, and to support high + * initial insertion rates on an empty table by many threads. * * Each key-value mapping is held in a Node. Because Node fields * can contain special values, they are defined using plain Object * types. Similarly in turn, all internal methods that use them - * work off Object types. All public generic-typed methods relay - * in/out of these internal methods, supplying casts as needed. + * work off Object types. And similarly, so do the internal + * methods of auxiliary iterator and view classes. All public + * generic typed methods relay in/out of these internal methods, + * supplying null-checks and casts as needed. * * The table is lazily initialized to a power-of-two size upon the - * first insertion. Each bin in the table contains a (typically - * short) list of Nodes. Table accesses require volatile/atomic - * reads, writes, and CASes. Because there is no other way to - * arrange this without adding further indirections, we use - * intrinsics (sun.misc.Unsafe) operations. The lists of nodes - * within bins are always accurately traversable under volatile - * reads, so long as lookups check hash code and non-nullness of - * key and value before checking key equality. (All valid hash - * codes are nonnegative. Negative values are reserved for special - * forwarding nodes; see below.) - * - * A bin may be locked during update (insert, delete, and replace) - * operations. We do not want to waste the space required to - * associate a distinct lock object with each bin, so instead use - * the first node of a bin list itself as a lock, using builtin - * "synchronized" locks. These save space and we can live with - * only plain block-structured lock/unlock operations. Using the - * first node of a list as a lock does not by itself suffice - * though: When a node is locked, any update must first validate - * that it is still the first node, and retry if not. (Because new - * nodes are always appended to lists, once a node is first in a - * bin, it remains first until deleted or the bin becomes - * invalidated.) However, update operations can and sometimes do - * still traverse the bin until the point of update, which helps - * reduce cache misses on retries. This is a converse of sorts to - * the lazy locking technique described by Herlihy & Shavit. If - * there is no existing node during a put operation, then one can - * be CAS'ed in (without need for lock except in computeIfAbsent); - * the CAS serves as validation. This is on average the most - * common case for put operations -- under random hash codes, the - * distribution of nodes in bins follows a Poisson distribution - * (see http://en.wikipedia.org/wiki/Poisson_distribution) with a - * parameter of 0.5 on average under the default loadFactor of - * 0.75. The expected number of locks covering different elements - * (i.e., bins with 2 or more nodes) is approximately 10% at - * steady state under default settings. Lock contention - * probability for two threads accessing arbitrary distinct - * elements is, roughly, 1 / (8 * #elements). - * - * The table is resized when occupancy exceeds a threshold. Only - * a single thread performs the resize (using field "resizing", to - * arrange exclusion), but the table otherwise remains usable for - * both reads and updates. Resizing proceeds by transferring bins, - * one by one, from the table to the next table. Upon transfer, - * the old table bin contains only a special forwarding node (with - * negative hash code ("MOVED")) that contains the next table as + * first insertion. Each bin in the table contains a list of + * Nodes (most often, zero or one Node). Table accesses require + * volatile/atomic reads, writes, and CASes. Because there is no + * other way to arrange this without adding further indirections, + * we use intrinsics (sun.misc.Unsafe) operations. The lists of + * nodes within bins are always accurately traversable under + * volatile reads, so long as lookups check hash code and + * non-nullness of value before checking key equality. + * + * We use the top two bits of Node hash fields for control + * purposes -- they are available anyway because of addressing + * constraints. As explained further below, these top bits are + * usd as follows: + * 00 - Normal + * 01 - Locked + * 11 - Locked and may have a thread waiting for lock + * 10 - Node is a forwarding node + * + * The lower 30 bits of each Node's hash field contain a + * transformation (for better randomization -- method "spread") of + * the key's hash code, except for forwarding nodes, for which the + * lower bits are zero (and so always have hash field == "MOVED"). + * + * Insertion (via put or putIfAbsent) of the first node in an + * empty bin is performed by just CASing it to the bin. This is + * by far the most common case for put operations. Other update + * operations (insert, delete, and replace) require locks. We do + * not want to waste the space required to associate a distinct + * lock object with each bin, so instead use the first node of a + * bin list itself as a lock. Blocking support for these locks + * relies on the builtin "synchronized" monitors. However, we + * also need a tryLock construction, so we overlay these by using + * bits of the Node hash field for lock control (see above), and + * so normally use builtin monitors only for blocking and + * signalling using wait/notifyAll constructions. See + * Node.tryAwaitLock. + * + * Using the first node of a list as a lock does not by itself + * suffice though: When a node is locked, any update must first + * validate that it is still the first node after locking it, and + * retry if not. Because new nodes are always appended to lists, + * once a node is first in a bin, it remains first until deleted + * or the bin becomes invalidated. However, operations that only + * conditionally update may inspect nodes until the point of + * update. This is a converse of sorts to the lazy locking + * technique described by Herlihy & Shavit. + * + * The main disadvantage of per-bin locks is that other update + * operations on other nodes in a bin list protected by the same + * lock can stall, for example when user equals() or mapping + * functions take a long time. However, statistically, this is + * not a common enough problem to outweigh the time/space overhead + * of alternatives: Under random hash codes, the frequency of + * nodes in bins follows a Poisson distribution + * (http://en.wikipedia.org/wiki/Poisson_distribution) with a + * parameter of about 0.5 on average, given the resizing threshold + * of 0.75, although with a large variance because of resizing + * granularity. Ignoring variance, the expected occurrences of + * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The + * first few values are: + * + * 0: 0.607 + * 1: 0.303 + * 2: 0.076 + * 3: 0.012 + * more: 0.002 + * + * Lock contention probability for two threads accessing distinct + * elements is roughly 1 / (8 * #elements). Function "spread" + * performs hashCode randomization that improves the likelihood + * that these assumptions hold unless users define exactly the + * same value for too many hashCodes. + * + * The table is resized when occupancy exceeds an occupancy + * threshold (nominally, 0.75, but see below). Only a single + * thread performs the resize (using field "sizeCtl", to arrange + * exclusion), but the table otherwise remains usable for reads + * and updates. Resizing proceeds by transferring bins, one by + * one, from the table to the next table. Because we are using + * power-of-two expansion, the elements from each bin must either + * stay at same index, or move with a power of two offset. We + * eliminate unnecessary node creation by catching cases where old + * nodes can be reused because their next fields won't change. On + * average, only about one-sixth of them need cloning when a table + * doubles. The nodes they replace will be garbage collectable as + * soon as they are no longer referenced by any reader thread that + * may be in the midst of concurrently traversing table. Upon + * transfer, the old table bin contains only a special forwarding + * node (with hash field "MOVED") that contains the next table as * its key. On encountering a forwarding node, access and update - * operations restart, using the new table. To ensure concurrent - * readability of traversals, transfers must proceed from the last - * bin (table.length - 1) up towards the first. Any traversal - * starting from the first bin can then arrange to move to the new - * table for the rest of the traversal without revisiting nodes. - * This constrains bin transfers to a particular order, and so can - * block indefinitely waiting for the next lock, and other threads - * cannot help with the transfer. However, expected stalls are - * infrequent enough to not warrant the additional overhead and - * complexity of access and iteration schemes that could admit - * out-of-order or concurrent bin transfers. - * - * A similar traversal scheme (not yet implemented) can apply to - * partial traversals during partitioned aggregate operations. - * Also, read-only operations give up if ever forwarded to a null - * table, which provides support for shutdown-style clearing, - * which is also not currently implemented. + * operations restart, using the new table. + * + * Each bin transfer requires its bin lock. However, unlike other + * cases, a transfer can skip a bin if it fails to acquire its + * lock, and revisit it later. Method rebuild maintains a buffer + * of TRANSFER_BUFFER_SIZE bins that have been skipped because of + * failure to acquire a lock, and blocks only if none are + * available (i.e., only very rarely). The transfer operation + * must also ensure that all accessible bins in both the old and + * new table are usable by any traversal. When there are no lock + * acquisition failures, this is arranged simply by proceeding + * from the last bin (table.length - 1) up towards the first. + * Upon seeing a forwarding node, traversals (see class + * InternalIterator) arrange to move to the new table without + * revisiting nodes. However, when any node is skipped during a + * transfer, all earlier table bins may have become visible, so + * are initialized with a reverse-forwarding node back to the old + * table until the new ones are established. (This sometimes + * requires transiently locking a forwarding node, which is + * possible under the above encoding.) These more expensive + * mechanics trigger only when necessary. + * + * The traversal scheme also applies to partial traversals of + * ranges of bins (via an alternate InternalIterator constructor) + * to support partitioned aggregate operations (that are not + * otherwise implemented yet). Also, read-only operations give up + * if ever forwarded to a null table, which provides support for + * shutdown-style clearing, which is also not currently + * implemented. + * + * Lazy table initialization minimizes footprint until first use, + * and also avoids resizings when the first operation is from a + * putAll, constructor with map argument, or deserialization. + * These cases attempt to override the initial capacity settings, + * but harmlessly fail to take effect in cases of races. * * The element count is maintained using a LongAdder, which avoids * contention on updates but can encounter cache thrashing if read - * too frequently during concurrent updates. To avoid reading so + * too frequently during concurrent access. To avoid reading so * often, resizing is normally attempted only upon adding to a bin - * already holding two or more nodes. Under the default threshold - * (0.75), and uniform hash distributions, the probability of this - * occurring at threshold is around 13%, meaning that only about 1 - * in 8 puts check threshold (and after resizing, many fewer do - * so). But this approximation has high variance for small table - * sizes, so we check on any collision for sizes <= 64. Further, - * to increase the probability that a resize occurs soon enough, we - * offset the threshold (see THRESHOLD_OFFSET) by the expected - * number of puts between checks. This is currently set to 8, in - * accord with the default load factor. In practice, this is - * rarely overridden, and in any case is close enough to other - * plausible values not to waste dynamic probability computation - * for more precision. + * already holding two or more nodes. Under uniform hash + * distributions, the probability of this occurring at threshold + * is around 13%, meaning that only about 1 in 8 puts check + * threshold (and after resizing, many fewer do so). But this + * approximation has high variance for small table sizes, so we + * check on any collision for sizes <= 64. + * + * Maintaining API and serialization compatibility with previous + * versions of this class introduces several oddities. Mainly: We + * leave untouched but unused constructor arguments refering to + * concurrencyLevel. We accept a loadFactor constructor argument, + * but apply it only to initial table capacity (which is the only + * time that we can guarantee to honor it.) We also declare an + * unused "Segment" class that is instantiated in minimal form + * only when serializing. */ /* ---------------- Constants -------------- */ /** - * The smallest allowed table capacity. Must be a power of 2, at - * least 2. + * The largest possible table capacity. This value must be + * exactly 1<<30 to stay within Java array allocation and indexing + * bounds for power of two table sizes, and is further required + * because the top two bits of 32bit hash fields are used for + * control purposes. */ - static final int MINIMUM_CAPACITY = 2; + private static final int MAXIMUM_CAPACITY = 1 << 30; /** - * The largest allowed table capacity. Must be a power of 2, at - * most 1<<30. + * The default initial table capacity. Must be a power of 2 + * (i.e., at least 1) and at most MAXIMUM_CAPACITY. */ - static final int MAXIMUM_CAPACITY = 1 << 30; + private static final int DEFAULT_CAPACITY = 16; /** - * The default initial table capacity. Must be a power of 2, at - * least MINIMUM_CAPACITY and at most MAXIMUM_CAPACITY. + * The largest possible (non-power of two) array size. + * Needed by toArray and related methods. */ - static final int DEFAULT_CAPACITY = 16; + static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** - * The default load factor for this table, used when not otherwise - * specified in a constructor. + * The default concurrency level for this table. Unused but + * defined for compatibility with previous versions of this class. */ - static final float DEFAULT_LOAD_FACTOR = 0.75f; + private static final int DEFAULT_CONCURRENCY_LEVEL = 16; /** - * The default concurrency level for this table. Unused, but - * defined for compatibility with previous versions of this class. + * The load factor for this table. Overrides of this value in + * constructors affect only the initial table capacity. The + * actual floating point value isn't normally used -- it is + * simpler to use expressions such as {@code n - (n >>> 2)} for + * the associated resizing threshold. */ - static final int DEFAULT_CONCURRENCY_LEVEL = 16; + private static final float LOAD_FACTOR = 0.75f; /** - * The count value to offset thresholds to compensate for checking - * for resizing only when inserting into bins with two or more - * elements. See above for explanation. + * The buffer size for skipped bins during transfers. The + * value is arbitrary but should be large enough to avoid + * most locking stalls during resizes. */ - static final int THRESHOLD_OFFSET = 8; + private static final int TRANSFER_BUFFER_SIZE = 32; - /** - * Special node hash value indicating to use table in node.key - * Must be negative. + /* + * Encodings for special uses of Node hash fields. See above for + * explanation. */ - static final int MOVED = -1; + static final int MOVED = 0x80000000; // hash field for fowarding nodes + static final int LOCKED = 0x40000000; // set/tested only as a bit + static final int WAITING = 0xc0000000; // both bits set/tested together + static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash /* ---------------- Fields -------------- */ /** * The array of bins. Lazily initialized upon first insertion. - * Size is always a power of two. Accessed directly by inner - * classes. + * Size is always a power of two. Accessed directly by iterators. */ transient volatile Node[] table; - /** The counter maintaining number of elements. */ + /** + * The counter maintaining number of elements. + */ private transient final LongAdder counter; - /** Nonzero when table is being initialized or resized. Updated via CAS. */ - private transient volatile int resizing; - /** The target load factor for the table. */ - private transient float loadFactor; - /** The next element count value upon which to resize the table. */ - private transient int threshold; - /** The initial capacity of the table. */ - private transient int initCap; + + /** + * Table initialization and resizing control. When negative, the + * table is being initialized or resized. Otherwise, when table is + * null, holds the initial table size to use upon creation, or 0 + * for default. After initialization, holds the next element count + * value upon which to resize the table. + */ + private transient volatile int sizeCtl; // views - transient Set keySet; - transient Set> entrySet; - transient Collection values; + private transient KeySet keySet; + private transient Values values; + private transient EntrySet entrySet; /** For serialization compatibility. Null unless serialized; see below */ - Segment[] segments; + private Segment[] segments; - /** - * Applies a supplemental hash function to a given hashCode, which - * defends against poor quality hash functions. The result must - * be non-negative, and for reasonable performance must have good - * avalanche properties; i.e., that each bit of the argument - * affects each bit (except sign bit) of the result. - */ - private static final int spread(int h) { - // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/ - h ^= h >>> 16; - h *= 0x85ebca6b; - h ^= h >>> 13; - h *= 0xc2b2ae35; - return (h >>> 16) ^ (h & 0x7fffffff); // mask out sign bit - } + /* ---------------- Nodes -------------- */ /** * Key-value entry. Note that this is never exported out as a - * user-visible Map.Entry. + * user-visible Map.Entry (see WriteThroughEntry and SnapshotEntry + * below). Nodes with a negative hash field are special, and do + * not contain user keys or values. Otherwise, keys are never + * null, and null val fields indicate that a node is in the + * process of being deleted or created. For purposes of read-only + * access, a key may be read before a val, but can only be used + * after checking val to be non-null. */ static final class Node { - final int hash; + volatile int hash; final Object key; volatile Object val; volatile Node next; @@ -306,21 +392,87 @@ public class ConcurrentHashMapV8 this.val = val; this.next = next; } + + /** CompareAndSet the hash field */ + final boolean casHash(int cmp, int val) { + return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val); + } + + /** The number of spins before blocking for a lock */ + static final int MAX_SPINS = + Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1; + + /** + * Spins a while if LOCKED bit set and this node is the first + * of its bin, and then sets WAITING bits on hash field and + * blocks (once) if they are still set. It is OK for this + * method to return even if lock is not available upon exit, + * which enables these simple single-wait mechanics. + * + * The corresponding signalling operation is performed within + * callers: Upon detecting that WAITING has been set when + * unlocking lock (via a failed CAS from non-waiting LOCKED + * state), unlockers acquire the sync lock and perform a + * notifyAll. + */ + final void tryAwaitLock(Node[] tab, int i) { + if (tab != null && i >= 0 && i < tab.length) { // bounds check + int spins = MAX_SPINS, h; + while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) { + if (spins >= 0) { + if (--spins == MAX_SPINS >>> 1) + Thread.yield(); // heuristically yield mid-way + } + else if (casHash(h, h | WAITING)) { + synchronized (this) { + if (tabAt(tab, i) == this && + (hash & WAITING) == WAITING) { + try { + wait(); + } catch (InterruptedException ie) { + Thread.currentThread().interrupt(); + } + } + else + notifyAll(); // possibly won race vs signaller + } + break; + } + } + } + } + + // Unsafe mechanics for casHash + private static final sun.misc.Unsafe UNSAFE; + private static final long hashOffset; + + static { + try { + UNSAFE = getUnsafe(); + Class k = Node.class; + hashOffset = UNSAFE.objectFieldOffset + (k.getDeclaredField("hash")); + } catch (Exception e) { + throw new Error(e); + } + } } + /* ---------------- Table element access -------------- */ + /* * Volatile access methods are used for table elements as well as - * elements of in-progress next table while resizing. Uses in - * access and update methods are null checked by callers, and - * implicitly bounds-checked, relying on the invariants that tab - * arrays have non-zero size, and all indices are masked with - * (tab.length - 1) which is never negative and always less than - * length. The "relaxed" non-volatile forms are used only during - * table initialization. The only other usage is in - * HashIterator.advance, which performs explicit checks. + * elements of in-progress next table while resizing. Uses are + * null checked by callers, and implicitly bounds-checked, relying + * on the invariants that tab arrays have non-zero size, and all + * indices are masked with (tab.length - 1) which is never + * negative and always less than length. Note that, to be correct + * wrt arbitrary concurrency errors by users, bounds checks must + * operate on local variables, which accounts for some odd-looking + * inline assignments below. */ - static final Node tabAt(Node[] tab, int i) { // used in HashIterator + static final Node tabAt(Node[] tab, int i) { // used by InternalIterator return (Node)UNSAFE.getObjectVolatile(tab, ((long)i< UNSAFE.putObjectVolatile(tab, ((long)i<>> 16; + h *= 0x85ebca6b; + h ^= h >>> 13; + h *= 0xc2b2ae35; + return ((h >>> 16) ^ h) & HASH_BITS; // mask out top bits } - /* ---------------- Access and update operations -------------- */ - - /** Implementation for get and containsKey */ + /** Implementation for get and containsKey */ private final Object internalGet(Object k) { int h = spread(k.hashCode()); - Node[] tab = table; - retry: while (tab != null) { - Node e = tabAt(tab, (tab.length - 1) & h); - while (e != null) { - int eh = e.hash; - if (eh == h) { - Object ek = e.key, ev = e.val; - if (ev != null && ek != null && (k == ek || k.equals(ek))) - return ev; - } - else if (eh < 0) { // bin was moved during resize - tab = (Node[])e.key; + retry: for (Node[] tab = table; tab != null;) { + Node e; Object ek, ev; int eh; // locals to read fields once + for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) { + if ((eh = e.hash) == MOVED) { + tab = (Node[])e.key; // restart with new table continue retry; } - e = e.next; + if ((eh & HASH_BITS) == h && (ev = e.val) != null && + ((ek = e.key) == k || k.equals(ek))) + return ev; } break; } return null; } - /** Implementation for put and putIfAbsent */ private final Object internalPut(Object k, Object v, boolean replace) { int h = spread(k.hashCode()); - Object oldVal = null; // the previous value or null if none - Node[] tab = table; - for (;;) { - Node e; int i; + Object oldVal = null; // previous value or null if none + for (Node[] tab = table;;) { + int i; Node f; int fh; Object fk, fv; if (tab == null) - tab = grow(0); - else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) { + tab = initTable(); + else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) { if (casTabAt(tab, i, null, new Node(h, k, v, null))) - break; + break; // no lock when adding to empty bin } - else if (e.hash < 0) - tab = (Node[])e.key; - else { + else if ((fh = f.hash) == MOVED) + tab = (Node[])f.key; + else if (!replace && (fh & HASH_BITS) == h && (fv = f.val) != null && + ((fk = f.key) == k || k.equals(fk))) { + oldVal = fv; // precheck 1st node for putIfAbsent + break; + } + else if ((fh & LOCKED) != 0) + f.tryAwaitLock(tab, i); + else if (f.casHash(fh, fh | LOCKED)) { boolean validated = false; boolean checkSize = false; - synchronized (e) { - if (tabAt(tab, i) == e) { - validated = true; - for (Node first = e;;) { + try { + if (tabAt(tab, i) == f) { + validated = true; // retry if 1st already deleted + for (Node e = f;;) { Object ek, ev; - if (e.hash == h && - (ek = e.key) != null && + if ((e.hash & HASH_BITS) == h && (ev = e.val) != null && - (k == ek || k.equals(ek))) { + ((ek = e.key) == k || k.equals(ek))) { oldVal = ev; if (replace) e.val = v; @@ -402,23 +562,29 @@ public class ConcurrentHashMapV8 Node last = e; if ((e = e.next) == null) { last.next = new Node(h, k, v, null); - if (last != first || tab.length <= 64) + if (last != f || tab.length <= 64) checkSize = true; break; } } } + } finally { // unlock and signal if needed + if (!f.casHash(fh | LOCKED, fh)) { + f.hash = fh; + synchronized (f) { f.notifyAll(); }; + } } if (validated) { + int sc; if (checkSize && tab.length < MAXIMUM_CAPACITY && - resizing == 0 && counter.sum() >= threshold) - grow(0); + (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc) + growTable(); break; } } } if (oldVal == null) - counter.increment(); + counter.increment(); // update counter outside of locks return oldVal; } @@ -430,25 +596,28 @@ public class ConcurrentHashMapV8 private final Object internalReplace(Object k, Object v, Object cv) { int h = spread(k.hashCode()); Object oldVal = null; - Node e; int i; - Node[] tab = table; - while (tab != null && - (e = tabAt(tab, i = (tab.length - 1) & h)) != null) { - if (e.hash < 0) - tab = (Node[])e.key; - else { + for (Node[] tab = table;;) { + Node f; int i, fh; + if (tab == null || + (f = tabAt(tab, i = (tab.length - 1) & h)) == null) + break; + else if ((fh = f.hash) == MOVED) + tab = (Node[])f.key; + else if ((fh & HASH_BITS) != h && f.next == null) // precheck + break; // rules out possible existence + else if ((fh & LOCKED) != 0) + f.tryAwaitLock(tab, i); + else if (f.casHash(fh, fh | LOCKED)) { boolean validated = false; boolean deleted = false; - synchronized (e) { - if (tabAt(tab, i) == e) { + try { + if (tabAt(tab, i) == f) { validated = true; - Node pred = null; - do { + for (Node e = f, pred = null;;) { Object ek, ev; - if (e.hash == h && - (ek = e.key) != null && - (ev = e.val) != null && - (k == ek || k.equals(ek))) { + if ((e.hash & HASH_BITS) == h && + ((ev = e.val) != null) && + ((ek = e.key) == k || k.equals(ek))) { if (cv == null || cv == ev || cv.equals(ev)) { oldVal = ev; if ((e.val = v) == null) { @@ -463,7 +632,14 @@ public class ConcurrentHashMapV8 break; } pred = e; - } while ((e = e.next) != null); + if ((e = e.next) == null) + break; + } + } + } finally { + if (!f.casHash(fh | LOCKED, fh)) { + f.hash = fh; + synchronized (f) { f.notifyAll(); }; } } if (validated) { @@ -476,78 +652,93 @@ public class ConcurrentHashMapV8 return oldVal; } - /** Implementation for computeIfAbsent and compute */ + /** Implementation for computeIfAbsent and compute. Like put, but messier. */ + // Todo: Somehow reinstate non-termination check @SuppressWarnings("unchecked") private final V internalCompute(K k, - MappingFunction f, + MappingFunction fn, boolean replace) { int h = spread(k.hashCode()); V val = null; boolean added = false; Node[] tab = table; - for (;;) { - Node e; int i; + outer:for (;;) { + Node f; int i, fh; Object fk, fv; if (tab == null) - tab = grow(0); - else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) { - Node node = new Node(h, k, null, null); + tab = initTable(); + else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) { + Node node = new Node(fh = h | LOCKED, k, null, null); boolean validated = false; - synchronized (node) { - if (casTabAt(tab, i, null, node)) { - validated = true; - try { - val = f.map(k); - if (val != null) { - node.val = val; - added = true; - } - } finally { - if (!added) - setTabAt(tab, i, null); + if (casTabAt(tab, i, null, node)) { + validated = true; + try { + val = fn.map(k); + if (val != null) { + node.val = val; + added = true; + } + } finally { + if (!added) + setTabAt(tab, i, null); + if (!node.casHash(fh, h)) { + node.hash = h; + synchronized (node) { node.notifyAll(); }; } } } if (validated) break; } - else if (e.hash < 0) - tab = (Node[])e.key; - else if (Thread.holdsLock(e)) - throw new IllegalStateException("Recursive map computation"); - else { + else if ((fh = f.hash) == MOVED) + tab = (Node[])f.key; + else if (!replace && (fh & HASH_BITS) == h && (fv = f.val) != null && + ((fk = f.key) == k || k.equals(fk))) { + if (tabAt(tab, i) == f) { + val = (V)fv; + break; + } + } + else if ((fh & LOCKED) != 0) + f.tryAwaitLock(tab, i); + else if (f.casHash(fh, fh | LOCKED)) { boolean validated = false; boolean checkSize = false; - synchronized (e) { - if (tabAt(tab, i) == e) { + try { + if (tabAt(tab, i) == f) { validated = true; - for (Node first = e;;) { - Object ek, ev, fv; - if (e.hash == h && - (ek = e.key) != null && + for (Node e = f;;) { + Object ek, ev, v; + if ((e.hash & HASH_BITS) == h && (ev = e.val) != null && - (k == ek || k.equals(ek))) { - if (replace && (fv = f.map(k)) != null) - ev = e.val = fv; + ((ek = e.key) == k || k.equals(ek))) { + if (replace && (v = fn.map(k)) != null) + ev = e.val = v; val = (V)ev; break; } Node last = e; if ((e = e.next) == null) { - if ((val = f.map(k)) != null) { + if ((val = fn.map(k)) != null) { last.next = new Node(h, k, val, null); added = true; - if (last != first || tab.length <= 64) + if (last != f || tab.length <= 64) checkSize = true; } break; } } } + } finally { + if (!f.casHash(fh | LOCKED, fh)) { + f.hash = fh; + synchronized (f) { f.notifyAll(); }; + } } if (validated) { + int sc; if (checkSize && tab.length < MAXIMUM_CAPACITY && - resizing == 0 && counter.sum() >= threshold) - grow(0); + (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc) + growTable(); break; } } @@ -557,432 +748,421 @@ public class ConcurrentHashMapV8 return val; } - /* - * Reclassifies nodes in each bin to new table. Because we are - * using power-of-two expansion, the elements from each bin must - * either stay at same index, or move with a power of two - * offset. We eliminate unnecessary node creation by catching - * cases where old nodes can be reused because their next fields - * won't change. Statistically, at the default threshold, only - * about one-sixth of them need cloning when a table doubles. The - * nodes they replace will be garbage collectable as soon as they - * are no longer referenced by any reader thread that may be in - * the midst of concurrently traversing table. - * - * Transfers are done from the bottom up to preserve iterator - * traversability. On each step, the old bin is locked, - * moved/copied, and then replaced with a forwarding node. + /** + * Implementation for clear. Steps through each bin, removing all nodes. */ - private static final void transfer(Node[] tab, Node[] nextTab) { - int n = tab.length; - int mask = nextTab.length - 1; - Node fwd = new Node(MOVED, nextTab, null, null); - for (int i = n - 1; i >= 0; --i) { - for (Node e;;) { - if ((e = tabAt(tab, i)) == null) { - if (casTabAt(tab, i, e, fwd)) - break; - } - else { - int idx = e.hash & mask; - boolean validated = false; - synchronized (e) { - if (tabAt(tab, i) == e) { - validated = true; - Node lastRun = e; - for (Node p = e.next; p != null; p = p.next) { - int j = p.hash & mask; - if (j != idx) { - idx = j; - lastRun = p; - } - } - relaxedSetTabAt(nextTab, idx, lastRun); - for (Node p = e; p != lastRun; p = p.next) { - int h = p.hash; - int j = h & mask; - Node r = relaxedTabAt(nextTab, j); - relaxedSetTabAt(nextTab, j, - new Node(h, p.key, p.val, r)); + private final void internalClear() { + long delta = 0L; // negative number of deletions + int i = 0; + Node[] tab = table; + while (tab != null && i < tab.length) { + int fh; + Node f = tabAt(tab, i); + if (f == null) + ++i; + else if ((fh = f.hash) == MOVED) + tab = (Node[])f.key; + else if ((fh & LOCKED) != 0) + f.tryAwaitLock(tab, i); + else if (f.casHash(fh, fh | LOCKED)) { + boolean validated = false; + try { + if (tabAt(tab, i) == f) { + validated = true; + for (Node e = f; e != null; e = e.next) { + if (e.val != null) { // currently always true + e.val = null; + --delta; } - setTabAt(tab, i, fwd); } + setTabAt(tab, i, null); + } + } finally { + if (!f.casHash(fh | LOCKED, fh)) { + f.hash = fh; + synchronized (f) { f.notifyAll(); }; } - if (validated) - break; } + if (validated) + ++i; } } + counter.add(delta); } + /* ----------------Table Initialization and Resizing -------------- */ + /** - * If not already resizing, initializes or creates next table and - * transfers bins. Rechecks occupancy after a transfer to see if - * another resize is already needed because resizings are lagging - * additions. - * - * @param sizeHint overridden capacity target (nonzero only from putAll) - * @return current table - */ - private final Node[] grow(int sizeHint) { - if (resizing == 0 && - UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) { - try { - for (;;) { - int cap, n; - Node[] tab = table; - if (tab == null) { - int c = initCap; - if (c < sizeHint) - c = sizeHint; - if (c == DEFAULT_CAPACITY) - cap = c; - else if (c >= MAXIMUM_CAPACITY) - cap = MAXIMUM_CAPACITY; - else { - cap = MINIMUM_CAPACITY; - while (cap < c) - cap <<= 1; - } + * Returns a power of two table size for the given desired capacity. + * See Hackers Delight, sec 3.2 + */ + private static final int tableSizeFor(int c) { + int n = c - 1; + n |= n >>> 1; + n |= n >>> 2; + n |= n >>> 4; + n |= n >>> 8; + n |= n >>> 16; + return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; + } + + /** + * Initializes table, using the size recorded in sizeCtl. + */ + private final Node[] initTable() { + Node[] tab; int sc; + while ((tab = table) == null) { + if ((sc = sizeCtl) < 0) + Thread.yield(); // lost initialization race; just spin + else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) { + try { + if ((tab = table) == null) { + int n = (sc > 0) ? sc : DEFAULT_CAPACITY; + tab = table = new Node[n]; + sc = n - (n >>> 2) - 1; } - else if ((n = tab.length) < MAXIMUM_CAPACITY && - (sizeHint <= 0 || n < sizeHint)) - cap = n << 1; - else - break; - threshold = (int)(cap * loadFactor) - THRESHOLD_OFFSET; - Node[] nextTab = new Node[cap]; - if (tab != null) - transfer(tab, nextTab); - table = nextTab; - if (tab == null || cap >= MAXIMUM_CAPACITY || - ((sizeHint > 0) ? cap >= sizeHint : - counter.sum() < threshold)) - break; + } finally { + sizeCtl = sc; } - } finally { - resizing = 0; + break; } } - else if (table == null) - Thread.yield(); // lost initialization race; just spin - return table; + return tab; } /** - * Implementation for putAll and constructor with Map - * argument. Tries to first override initial capacity or grow - * based on map size to pre-allocate table space. + * If not already resizing, creates next table and transfers bins. + * Rechecks occupancy after a transfer to see if another resize is + * already needed because resizings are lagging additions. */ - private final void internalPutAll(Map m) { - int s = m.size(); - grow((s >= (MAXIMUM_CAPACITY >>> 1)) ? s : s + (s >>> 1)); - for (Map.Entry e : m.entrySet()) { - Object k = e.getKey(); - Object v = e.getValue(); - if (k == null || v == null) - throw new NullPointerException(); - internalPut(k, v, true); + private final void growTable() { + int sc = sizeCtl; + if (sc >= 0 && UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) { + try { + Node[] tab; int n; + while ((tab = table) != null && + (n = tab.length) > 0 && n < MAXIMUM_CAPACITY && + counter.sum() >= (long)sc) { + table = rebuild(tab); + sc = (n << 1) - (n >>> 1) - 1; + } + } finally { + sizeCtl = sc; + } } } - /** - * Implementation for clear. Steps through each bin, removing all nodes. + /* + * Moves and/or copies the nodes in each bin to new table. See + * above for explanation. + * + * @return the new table */ - private final void internalClear() { - long deletions = 0L; - int i = 0; - Node[] tab = table; - while (tab != null && i < tab.length) { - Node e = tabAt(tab, i); - if (e == null) - ++i; - else if (e.hash < 0) - tab = (Node[])e.key; - else { + private static final Node[] rebuild(Node[] tab) { + int n = tab.length; + Node[] nextTab = new Node[n << 1]; + Node fwd = new Node(MOVED, nextTab, null, null); + int[] buffer = null; // holds bins to revisit; null until needed + Node rev = null; // reverse forwarder; null until needed + int nbuffered = 0; // the number of bins in buffer list + int bufferIndex = 0; // buffer index of current buffered bin + int bin = n - 1; // current non-buffered bin or -1 if none + + for (int i = bin;;) { // start upwards sweep + int fh; Node f; + if ((f = tabAt(tab, i)) == null) { + if (bin >= 0) { // no lock needed (or available) + if (!casTabAt(tab, i, f, fwd)) + continue; + } + else { // transiently use a locked forwarding node + Node g = new Node(MOVED|LOCKED, nextTab, null, null); + if (!casTabAt(tab, i, f, g)) + continue; + setTabAt(nextTab, i, null); + setTabAt(nextTab, i + n, null); + setTabAt(tab, i, fwd); + if (!g.casHash(MOVED|LOCKED, MOVED)) { + g.hash = MOVED; + synchronized (g) { g.notifyAll(); } + } + } + } + else if (((fh = f.hash) & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) { boolean validated = false; - synchronized (e) { - if (tabAt(tab, i) == e) { + try { // split to lo and hi lists; copying as needed + if (tabAt(tab, i) == f) { validated = true; - do { - if (e.val != null) { - e.val = null; - ++deletions; + Node e = f, lastRun = f; + Node lo = null, hi = null; + int runBit = e.hash & n; + for (Node p = e.next; p != null; p = p.next) { + int b = p.hash & n; + if (b != runBit) { + runBit = b; + lastRun = p; } - } while ((e = e.next) != null); - setTabAt(tab, i, null); + } + if (runBit == 0) + lo = lastRun; + else + hi = lastRun; + for (Node p = e; p != lastRun; p = p.next) { + int ph = p.hash & HASH_BITS; + Object pk = p.key, pv = p.val; + if ((ph & n) == 0) + lo = new Node(ph, pk, pv, lo); + else + hi = new Node(ph, pk, pv, hi); + } + setTabAt(nextTab, i, lo); + setTabAt(nextTab, i + n, hi); + setTabAt(tab, i, fwd); } - } - if (validated) { - ++i; - if (deletions > THRESHOLD_OFFSET) { // bound lag in counts - counter.add(-deletions); - deletions = 0L; + } finally { + if (!f.casHash(fh | LOCKED, fh)) { + f.hash = fh; + synchronized (f) { f.notifyAll(); }; } } + if (!validated) + continue; } - } - if (deletions != 0L) - counter.add(-deletions); - } - - /** - * Base class for key, value, and entry iterators, plus internal - * implementations of public traversal-based methods, to avoid - * duplicating traversal code. - */ - class HashIterator { - private Node next; // the next entry to return - private Node[] tab; // current table; updated if resized - private Node lastReturned; // the last entry returned, for remove - private Object nextVal; // cached value of next - private int index; // index of bin to use next - private int baseIndex; // current index of initial table - private final int baseSize; // initial table size - - HashIterator() { - Node[] t = tab = table; - if (t == null) - baseSize = 0; else { - baseSize = t.length; - advance(null); - } - } - - public final boolean hasNext() { return next != null; } - public final boolean hasMoreElements() { return next != null; } - - /** - * Advances next. Normally, iteration proceeds bin-by-bin - * traversing lists. However, if the table has been resized, - * then all future steps must traverse both the bin at the - * current index as well as at (index + baseSize); and so on - * for further resizings. To paranoically cope with potential - * (improper) sharing of iterators across threads, table reads - * are bounds-checked. - */ - final void advance(Node e) { - for (;;) { - Node[] t; int i; // for bounds checks - if (e != null) { - Object ek = e.key, ev = e.val; - if (ev != null && ek != null) { - nextVal = ev; - next = e; - break; - } - e = e.next; - } - else if (baseIndex < baseSize && (t = tab) != null && - t.length > (i = index) && i >= 0) { - if ((e = tabAt(t, i)) != null && e.hash < 0) { - tab = (Node[])e.key; - e = null; - } - else if (i + baseSize < t.length) - index += baseSize; // visit forwarded upper slots - else - index = ++baseIndex; + if (buffer == null) // initialize buffer for revisits + buffer = new int[TRANSFER_BUFFER_SIZE]; + if (bin < 0 && bufferIndex > 0) { + int j = buffer[--bufferIndex]; + buffer[bufferIndex] = i; + i = j; // swap with another bin + continue; } - else { - next = null; - break; + if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) { + f.tryAwaitLock(tab, i); + continue; // no other options -- block } + if (rev == null) // initialize reverse-forwarder + rev = new Node(MOVED, tab, null, null); + if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0) + continue; // recheck before adding to list + buffer[nbuffered++] = i; + setTabAt(nextTab, i, rev); // install place-holders + setTabAt(nextTab, i + n, rev); } - } - final Object nextKey() { - Node e = next; - if (e == null) - throw new NoSuchElementException(); - Object k = e.key; - advance((lastReturned = e).next); - return k; - } - - final Object nextValue() { - Node e = next; - if (e == null) - throw new NoSuchElementException(); - Object v = nextVal; - advance((lastReturned = e).next); - return v; - } - - final WriteThroughEntry nextEntry() { - Node e = next; - if (e == null) - throw new NoSuchElementException(); - WriteThroughEntry entry = - new WriteThroughEntry(e.key, nextVal); - advance((lastReturned = e).next); - return entry; - } - - public final void remove() { - if (lastReturned == null) - throw new IllegalStateException(); - ConcurrentHashMapV8.this.remove(lastReturned.key); - lastReturned = null; - } - - /** Helper for serialization */ - final void writeEntries(java.io.ObjectOutputStream s) - throws java.io.IOException { - Node e; - while ((e = next) != null) { - s.writeObject(e.key); - s.writeObject(nextVal); - advance(e.next); + if (bin > 0) + i = --bin; + else if (buffer != null && nbuffered > 0) { + bin = -1; + i = buffer[bufferIndex = --nbuffered]; } + else + return nextTab; } + } - /** Helper for containsValue */ - final boolean containsVal(Object value) { - if (value != null) { - Node e; - while ((e = next) != null) { - Object v = nextVal; - if (value == v || value.equals(v)) - return true; - advance(e.next); - } - } - return false; - } + /* ----------------Table Traversal -------------- */ - /** Helper for Map.hashCode */ - final int mapHashCode() { - int h = 0; - Node e; - while ((e = next) != null) { - h += e.key.hashCode() ^ nextVal.hashCode(); - advance(e.next); - } - return h; - } - - /** Helper for Map.toString */ - final String mapToString() { - Node e = next; - if (e == null) - return "{}"; - StringBuilder sb = new StringBuilder(); - sb.append('{'); - for (;;) { - sb.append(e.key == this ? "(this Map)" : e.key); - sb.append('='); - sb.append(nextVal == this ? "(this Map)" : nextVal); - advance(e.next); - if ((e = next) != null) - sb.append(',').append(' '); - else - return sb.append('}').toString(); - } + /** + * Encapsulates traversal for methods such as containsValue; also + * serves as a base class for other iterators. + * + * At each step, the iterator snapshots the key ("nextKey") and + * value ("nextVal") of a valid node (i.e., one that, at point of + * snapshot, has a nonnull user value). Because val fields can + * change (including to null, indicating deletion), field nextVal + * might not be accurate at point of use, but still maintains the + * weak consistency property of holding a value that was once + * valid. + * + * Internal traversals directly access these fields, as in: + * {@code while (it.next != null) { process(it.nextKey); it.advance(); }} + * + * Exported iterators (subclasses of ViewIterator) extract key, + * value, or key-value pairs as return values of Iterator.next(), + * and encapsulate the it.next check as hasNext(); + * + * The iterator visits each valid node that was reachable upon + * iterator construction once. It might miss some that were added + * to a bin after the bin was visited, which is OK wrt consistency + * guarantees. Maintaining this property in the face of possible + * ongoing resizes requires a fair amount of bookkeeping state + * that is difficult to optimize away amidst volatile accesses. + * Even so, traversal maintains reasonable throughput. + * + * Normally, iteration proceeds bin-by-bin traversing lists. + * However, if the table has been resized, then all future steps + * must traverse both the bin at the current index as well as at + * (index + baseSize); and so on for further resizings. To + * paranoically cope with potential sharing by users of iterators + * across threads, iteration terminates if a bounds checks fails + * for a table read. + * + * The range-based constructor enables creation of parallel + * range-splitting traversals. (Not yet implemented.) + */ + static class InternalIterator { + Node next; // the next entry to use + Node last; // the last entry used + Object nextKey; // cached key field of next + Object nextVal; // cached val field of next + Node[] tab; // current table; updated if resized + int index; // index of bin to use next + int baseIndex; // current index of initial table + final int baseLimit; // index bound for initial table + final int baseSize; // initial table size + + /** Creates iterator for all entries in the table. */ + InternalIterator(Node[] tab) { + this.tab = tab; + baseLimit = baseSize = (tab == null) ? 0 : tab.length; + index = baseIndex = 0; + next = null; + advance(); + } + + /** Creates iterator for the given range of the table */ + InternalIterator(Node[] tab, int lo, int hi) { + this.tab = tab; + baseSize = (tab == null) ? 0 : tab.length; + baseLimit = (hi <= baseSize) ? hi : baseSize; + index = baseIndex = lo; + next = null; + advance(); + } + + /** Advances next. See above for explanation. */ + final void advance() { + Node e = last = next; + outer: do { + if (e != null) // advance past used/skipped node + e = e.next; + while (e == null) { // get to next non-null bin + Node[] t; int b, i, n; // checks must use locals + if ((b = baseIndex) >= baseLimit || (i = index) < 0 || + (t = tab) == null || i >= (n = t.length)) + break outer; + else if ((e = tabAt(t, i)) != null && e.hash == MOVED) + tab = (Node[])e.key; // restarts due to null val + else // visit upper slots if present + index = (i += baseSize) < n ? i : (baseIndex = b + 1); + } + nextKey = e.key; + } while ((nextVal = e.val) == null);// skip deleted or special nodes + next = e; } } /* ---------------- Public operations -------------- */ /** - * Creates a new, empty map with the specified initial - * capacity, load factor and concurrency level. - * - * @param initialCapacity the initial capacity. The implementation - * performs internal sizing to accommodate this many elements. - * @param loadFactor the load factor threshold, used to control resizing. - * Resizing may be performed when the average number of elements per - * bin exceeds this threshold. - * @param concurrencyLevel the estimated number of concurrently - * updating threads. The implementation may use this value as - * a sizing hint. - * @throws IllegalArgumentException if the initial capacity is - * negative or the load factor or concurrencyLevel are - * nonpositive. + * Creates a new, empty map with the default initial table size (16), */ - public ConcurrentHashMapV8(int initialCapacity, - float loadFactor, int concurrencyLevel) { - if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) - throw new IllegalArgumentException(); - this.initCap = initialCapacity; - this.loadFactor = loadFactor; + public ConcurrentHashMapV8() { this.counter = new LongAdder(); } /** - * Creates a new, empty map with the specified initial capacity - * and load factor and with the default concurrencyLevel (16). + * Creates a new, empty map with an initial table size + * accommodating the specified number of elements without the need + * to dynamically resize. * * @param initialCapacity The implementation performs internal * sizing to accommodate this many elements. - * @param loadFactor the load factor threshold, used to control resizing. - * Resizing may be performed when the average number of elements per - * bin exceeds this threshold. * @throws IllegalArgumentException if the initial capacity of - * elements is negative or the load factor is nonpositive - * - * @since 1.6 + * elements is negative */ - public ConcurrentHashMapV8(int initialCapacity, float loadFactor) { - this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL); + public ConcurrentHashMapV8(int initialCapacity) { + if (initialCapacity < 0) + throw new IllegalArgumentException(); + int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ? + MAXIMUM_CAPACITY : + tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1)); + this.counter = new LongAdder(); + this.sizeCtl = cap; } /** - * Creates a new, empty map with the specified initial capacity, - * and with default load factor (0.75) and concurrencyLevel (16). + * Creates a new map with the same mappings as the given map. * - * @param initialCapacity the initial capacity. The implementation - * performs internal sizing to accommodate this many elements. - * @throws IllegalArgumentException if the initial capacity of - * elements is negative. + * @param m the map */ - public ConcurrentHashMapV8(int initialCapacity) { - this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); + public ConcurrentHashMapV8(Map m) { + this.counter = new LongAdder(); + this.sizeCtl = DEFAULT_CAPACITY; + putAll(m); } /** - * Creates a new, empty map with a default initial capacity (16), - * load factor (0.75) and concurrencyLevel (16). + * Creates a new, empty map with an initial table size based on + * the given number of elements ({@code initialCapacity}) and + * initial table density ({@code loadFactor}). + * + * @param initialCapacity the initial capacity. The implementation + * performs internal sizing to accommodate this many elements, + * given the specified load factor. + * @param loadFactor the load factor (table density) for + * establishing the initial table size + * @throws IllegalArgumentException if the initial capacity of + * elements is negative or the load factor is nonpositive + * + * @since 1.6 */ - public ConcurrentHashMapV8() { - this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); + public ConcurrentHashMapV8(int initialCapacity, float loadFactor) { + this(initialCapacity, loadFactor, 1); } /** - * Creates a new map with the same mappings as the given map. - * The map is created with a capacity of 1.5 times the number - * of mappings in the given map or 16 (whichever is greater), - * and a default load factor (0.75) and concurrencyLevel (16). + * Creates a new, empty map with an initial table size based on + * the given number of elements ({@code initialCapacity}), table + * density ({@code loadFactor}), and number of concurrently + * updating threads ({@code concurrencyLevel}). * - * @param m the map + * @param initialCapacity the initial capacity. The implementation + * performs internal sizing to accommodate this many elements, + * given the specified load factor. + * @param loadFactor the load factor (table density) for + * establishing the initial table size + * @param concurrencyLevel the estimated number of concurrently + * updating threads. The implementation may use this value as + * a sizing hint. + * @throws IllegalArgumentException if the initial capacity is + * negative or the load factor or concurrencyLevel are + * nonpositive */ - public ConcurrentHashMapV8(Map m) { - this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); - if (m == null) - throw new NullPointerException(); - internalPutAll(m); + public ConcurrentHashMapV8(int initialCapacity, + float loadFactor, int concurrencyLevel) { + if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0) + throw new IllegalArgumentException(); + if (initialCapacity < concurrencyLevel) // Use at least as many bins + initialCapacity = concurrencyLevel; // as estimated threads + long size = (long)(1.0 + (long)initialCapacity / loadFactor); + int cap = ((size >= (long)MAXIMUM_CAPACITY) ? + MAXIMUM_CAPACITY: tableSizeFor((int)size)); + this.counter = new LongAdder(); + this.sizeCtl = cap; } /** - * Returns {@code true} if this map contains no key-value mappings. - * - * @return {@code true} if this map contains no key-value mappings + * {@inheritDoc} */ public boolean isEmpty() { return counter.sum() <= 0L; // ignore transient negative values } /** - * Returns the number of key-value mappings in this map. If the - * map contains more than {@code Integer.MAX_VALUE} elements, returns - * {@code Integer.MAX_VALUE}. - * - * @return the number of key-value mappings in this map + * {@inheritDoc} */ public int size() { long n = counter.sum(); - return ((n >>> 31) == 0) ? (int)n : (n < 0L) ? 0 : Integer.MAX_VALUE; + return ((n < 0L) ? 0 : + (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE : + (int)n); + } + + final long longSize() { // accurate version of size needed for views + long n = counter.sum(); + return (n < 0L) ? 0L : n; } /** @@ -1009,7 +1189,7 @@ public class ConcurrentHashMapV8 * @param key possible key * @return {@code true} if and only if the specified object * is a key in this table, as determined by the - * {@code equals} method; {@code false} otherwise. + * {@code equals} method; {@code false} otherwise * @throws NullPointerException if the specified key is null */ public boolean containsKey(Object key) { @@ -1020,9 +1200,8 @@ public class ConcurrentHashMapV8 /** * Returns {@code true} if this map maps one or more keys to the - * specified value. Note: This method requires a full internal - * traversal of the hash table, and so is much slower than - * method {@code containsKey}. + * specified value. Note: This method may require a full traversal + * of the map, and is much slower than method {@code containsKey}. * * @param value value whose presence in this map is to be tested * @return {@code true} if this map maps one or more keys to the @@ -1032,7 +1211,14 @@ public class ConcurrentHashMapV8 public boolean containsValue(Object value) { if (value == null) throw new NullPointerException(); - return new HashIterator().containsVal(value); + Object v; + InternalIterator it = new InternalIterator(table); + while (it.next != null) { + if ((v = it.nextVal) == value || value.equals(v)) + return true; + it.advance(); + } + return false; } /** @@ -1098,22 +1284,47 @@ public class ConcurrentHashMapV8 public void putAll(Map m) { if (m == null) throw new NullPointerException(); - internalPutAll(m); + /* + * If uninitialized, try to preallocate big enough table + */ + if (table == null) { + int size = m.size(); + int n = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY : + tableSizeFor(size + (size >>> 1) + 1); + int sc = sizeCtl; + if (n < sc) + n = sc; + if (sc >= 0 && + UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) { + try { + if (table == null) { + table = new Node[n]; + sc = n - (n >>> 2) - 1; + } + } finally { + sizeCtl = sc; + } + } + } + for (Map.Entry e : m.entrySet()) { + Object ek = e.getKey(), ev = e.getValue(); + if (ek == null || ev == null) + throw new NullPointerException(); + internalPut(ek, ev, true); + } } /** * If the specified key is not already associated with a value, * computes its value using the given mappingFunction, and if * non-null, enters it into the map. This is equivalent to - * - *

-     *   if (map.containsKey(key))
-     *       return map.get(key);
-     *   value = mappingFunction.map(key);
-     *   if (value != null)
-     *      map.put(key, value);
-     *   return value;
-     * 
+ *
 {@code
+     * if (map.containsKey(key))
+     *   return map.get(key);
+     * value = mappingFunction.map(key);
+     * if (value != null)
+     *   map.put(key, value);
+     * return value;}
* * except that the action is performed atomically. Some attempted * update operations on this map by other threads may be blocked @@ -1122,23 +1333,22 @@ public class ConcurrentHashMapV8 * mappings of this Map. The most appropriate usage is to * construct a new object serving as an initial mapped value, or * memoized result, as in: - *
{@code
+     *  
 {@code
      * map.computeIfAbsent(key, new MappingFunction() {
-     *   public V map(K k) { return new Value(f(k)); }};
-     * }
+ * public V map(K k) { return new Value(f(k)); }});}
* * @param key key with which the specified value is to be associated * @param mappingFunction the function to compute a value * @return the current (existing or computed) value associated with * the specified key, or {@code null} if the computation - * returned {@code null}. + * returned {@code null} * @throws NullPointerException if the specified key or mappingFunction - * is null, + * is null * @throws IllegalStateException if the computation detectably * attempts a recursive update to this map that would - * otherwise never complete. + * otherwise never complete * @throws RuntimeException or Error if the mappingFunction does so, - * in which case the mapping is left unestablished. + * in which case the mapping is left unestablished */ public V computeIfAbsent(K key, MappingFunction mappingFunction) { if (key == null || mappingFunction == null) @@ -1150,15 +1360,13 @@ public class ConcurrentHashMapV8 * Computes the value associated with the given key using the given * mappingFunction, and if non-null, enters it into the map. This * is equivalent to - * - *
-     *   value = mappingFunction.map(key);
-     *   if (value != null)
-     *      map.put(key, value);
-     *   else
-     *      value = map.get(key);
-     *   return value;
-     * 
+ *
 {@code
+     * value = mappingFunction.map(key);
+     * if (value != null)
+     *   map.put(key, value);
+     * else
+     *   value = map.get(key);
+     * return value;}
* * except that the action is performed atomically. Some attempted * update operations on this map by other threads may be blocked @@ -1170,14 +1378,14 @@ public class ConcurrentHashMapV8 * @param mappingFunction the function to compute a value * @return the current value associated with * the specified key, or {@code null} if the computation - * returned {@code null} and the value was not otherwise present. + * returned {@code null} and the value was not otherwise present * @throws NullPointerException if the specified key or mappingFunction - * is null, + * is null * @throws IllegalStateException if the computation detectably * attempts a recursive update to this map that would - * otherwise never complete. + * otherwise never complete * @throws RuntimeException or Error if the mappingFunction does so, - * in which case the mapping is unchanged. + * in which case the mapping is unchanged */ public V compute(K key, MappingFunction mappingFunction) { if (key == null || mappingFunction == null) @@ -1263,8 +1471,8 @@ public class ConcurrentHashMapV8 * reflect any modifications subsequent to construction. */ public Set keySet() { - Set ks = keySet; - return (ks != null) ? ks : (keySet = new KeySet()); + KeySet ks = keySet; + return (ks != null) ? ks : (keySet = new KeySet(this)); } /** @@ -1284,8 +1492,8 @@ public class ConcurrentHashMapV8 * reflect any modifications subsequent to construction. */ public Collection values() { - Collection vs = values; - return (vs != null) ? vs : (values = new Values()); + Values vs = values; + return (vs != null) ? vs : (values = new Values(this)); } /** @@ -1305,8 +1513,8 @@ public class ConcurrentHashMapV8 * reflect any modifications subsequent to construction. */ public Set> entrySet() { - Set> es = entrySet; - return (es != null) ? es : (entrySet = new EntrySet()); + EntrySet es = entrySet; + return (es != null) ? es : (entrySet = new EntrySet(this)); } /** @@ -1316,7 +1524,7 @@ public class ConcurrentHashMapV8 * @see #keySet() */ public Enumeration keys() { - return new KeyIterator(); + return new KeyIterator(this); } /** @@ -1326,7 +1534,7 @@ public class ConcurrentHashMapV8 * @see #values() */ public Enumeration elements() { - return new ValueIterator(); + return new ValueIterator(this); } /** @@ -1337,7 +1545,13 @@ public class ConcurrentHashMapV8 * @return the hash code value for this map */ public int hashCode() { - return new HashIterator().mapHashCode(); + int h = 0; + InternalIterator it = new InternalIterator(table); + while (it.next != null) { + h += it.nextKey.hashCode() ^ it.nextVal.hashCode(); + it.advance(); + } + return h; } /** @@ -1352,7 +1566,22 @@ public class ConcurrentHashMapV8 * @return a string representation of this map */ public String toString() { - return new HashIterator().mapToString(); + InternalIterator it = new InternalIterator(table); + StringBuilder sb = new StringBuilder(); + sb.append('{'); + if (it.next != null) { + for (;;) { + Object k = it.nextKey, v = it.nextVal; + sb.append(k == this ? "(this Map)" : k); + sb.append('='); + sb.append(v == this ? "(this Map)" : v); + it.advance(); + if (it.next == null) + break; + sb.append(',').append(' '); + } + } + return sb.append('}').toString(); } /** @@ -1366,37 +1595,150 @@ public class ConcurrentHashMapV8 * @return {@code true} if the specified object is equal to this map */ public boolean equals(Object o) { - if (o == this) - return true; - if (!(o instanceof Map)) - return false; - Map m = (Map) o; - try { - for (Map.Entry e : this.entrySet()) - if (! e.getValue().equals(m.get(e.getKey()))) + if (o != this) { + if (!(o instanceof Map)) + return false; + Map m = (Map) o; + InternalIterator it = new InternalIterator(table); + while (it.next != null) { + Object val = it.nextVal; + Object v = m.get(it.nextKey); + if (v == null || (v != val && !v.equals(val))) return false; + it.advance(); + } for (Map.Entry e : m.entrySet()) { - Object k = e.getKey(); - Object v = e.getValue(); - if (k == null || v == null || !v.equals(get(k))) + Object mk, mv, v; + if ((mk = e.getKey()) == null || + (mv = e.getValue()) == null || + (v = internalGet(mk)) == null || + (mv != v && !mv.equals(v))) return false; } - return true; - } catch (ClassCastException unused) { - return false; - } catch (NullPointerException unused) { - return false; } + return true; } + /* ----------------Iterators -------------- */ + /** - * Custom Entry class used by EntryIterator.next(), that relays - * setValue changes to the underlying map. + * Base class for key, value, and entry iterators. Adds a map + * reference to InternalIterator to support Iterator.remove. */ - final class WriteThroughEntry extends AbstractMap.SimpleEntry { + static abstract class ViewIterator extends InternalIterator { + final ConcurrentHashMapV8 map; + ViewIterator(ConcurrentHashMapV8 map) { + super(map.table); + this.map = map; + } + + public final void remove() { + if (last == null) + throw new IllegalStateException(); + map.remove(last.key); + last = null; + } + + public final boolean hasNext() { return next != null; } + public final boolean hasMoreElements() { return next != null; } + } + + static final class KeyIterator extends ViewIterator + implements Iterator, Enumeration { + KeyIterator(ConcurrentHashMapV8 map) { super(map); } + + @SuppressWarnings("unchecked") + public final K next() { + if (next == null) + throw new NoSuchElementException(); + Object k = nextKey; + advance(); + return (K)k; + } + + public final K nextElement() { return next(); } + } + + static final class ValueIterator extends ViewIterator + implements Iterator, Enumeration { + ValueIterator(ConcurrentHashMapV8 map) { super(map); } + + @SuppressWarnings("unchecked") + public final V next() { + if (next == null) + throw new NoSuchElementException(); + Object v = nextVal; + advance(); + return (V)v; + } + + public final V nextElement() { return next(); } + } + + static final class EntryIterator extends ViewIterator + implements Iterator> { + EntryIterator(ConcurrentHashMapV8 map) { super(map); } + + @SuppressWarnings("unchecked") + public final Map.Entry next() { + if (next == null) + throw new NoSuchElementException(); + Object k = nextKey; + Object v = nextVal; + advance(); + return new WriteThroughEntry((K)k, (V)v, map); + } + } + + static final class SnapshotEntryIterator extends ViewIterator + implements Iterator> { + SnapshotEntryIterator(ConcurrentHashMapV8 map) { super(map); } + @SuppressWarnings("unchecked") - WriteThroughEntry(Object k, Object v) { - super((K)k, (V)v); + public final Map.Entry next() { + if (next == null) + throw new NoSuchElementException(); + Object k = nextKey; + Object v = nextVal; + advance(); + return new SnapshotEntry((K)k, (V)v); + } + } + + /** + * Base of writeThrough and Snapshot entry classes + */ + static abstract class MapEntry implements Map.Entry { + final K key; // non-null + V val; // non-null + MapEntry(K key, V val) { this.key = key; this.val = val; } + public final K getKey() { return key; } + public final V getValue() { return val; } + public final int hashCode() { return key.hashCode() ^ val.hashCode(); } + public final String toString(){ return key + "=" + val; } + + public final boolean equals(Object o) { + Object k, v; Map.Entry e; + return ((o instanceof Map.Entry) && + (k = (e = (Map.Entry)o).getKey()) != null && + (v = e.getValue()) != null && + (k == key || k.equals(key)) && + (v == val || v.equals(val))); + } + + public abstract V setValue(V value); + } + + /** + * Entry used by EntryIterator.next(), that relays setValue + * changes to the underlying map. + */ + static final class WriteThroughEntry extends MapEntry + implements Map.Entry { + final ConcurrentHashMapV8 map; + WriteThroughEntry(K key, V val, ConcurrentHashMapV8 map) { + super(key, val); + this.map = map; } /** @@ -1408,110 +1750,265 @@ public class ConcurrentHashMapV8 * removed in which case the put will re-establish). We do not * and cannot guarantee more. */ - public V setValue(V value) { + public final V setValue(V value) { if (value == null) throw new NullPointerException(); - V v = super.setValue(value); - ConcurrentHashMapV8.this.put(getKey(), value); + V v = val; + val = value; + map.put(key, value); return v; } } - final class KeyIterator extends HashIterator - implements Iterator, Enumeration { - @SuppressWarnings("unchecked") - public final K next() { return (K)super.nextKey(); } - @SuppressWarnings("unchecked") - public final K nextElement() { return (K)super.nextKey(); } + /** + * Internal version of entry, that doesn't write though changes + */ + static final class SnapshotEntry extends MapEntry + implements Map.Entry { + SnapshotEntry(K key, V val) { super(key, val); } + public final V setValue(V value) { // only locally update + if (value == null) throw new NullPointerException(); + V v = val; + val = value; + return v; + } } - final class ValueIterator extends HashIterator - implements Iterator, Enumeration { - @SuppressWarnings("unchecked") - public final V next() { return (V)super.nextValue(); } + /* ----------------Views -------------- */ + + /** + * Base class for views. This is done mainly to allow adding + * customized parallel traversals (not yet implemented.) + */ + static abstract class MapView { + final ConcurrentHashMapV8 map; + MapView(ConcurrentHashMapV8 map) { this.map = map; } + public final int size() { return map.size(); } + public final boolean isEmpty() { return map.isEmpty(); } + public final void clear() { map.clear(); } + + // implementations below rely on concrete classes supplying these + abstract Iterator iter(); + abstract public boolean contains(Object o); + abstract public boolean remove(Object o); + + private static final String oomeMsg = "Required array size too large"; + + public final Object[] toArray() { + long sz = map.longSize(); + if (sz > (long)(MAX_ARRAY_SIZE)) + throw new OutOfMemoryError(oomeMsg); + int n = (int)sz; + Object[] r = new Object[n]; + int i = 0; + Iterator it = iter(); + while (it.hasNext()) { + if (i == n) { + if (n >= MAX_ARRAY_SIZE) + throw new OutOfMemoryError(oomeMsg); + if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1) + n = MAX_ARRAY_SIZE; + else + n += (n >>> 1) + 1; + r = Arrays.copyOf(r, n); + } + r[i++] = it.next(); + } + return (i == n) ? r : Arrays.copyOf(r, i); + } + @SuppressWarnings("unchecked") - public final V nextElement() { return (V)super.nextValue(); } - } + public final T[] toArray(T[] a) { + long sz = map.longSize(); + if (sz > (long)(MAX_ARRAY_SIZE)) + throw new OutOfMemoryError(oomeMsg); + int m = (int)sz; + T[] r = (a.length >= m) ? a : + (T[])java.lang.reflect.Array + .newInstance(a.getClass().getComponentType(), m); + int n = r.length; + int i = 0; + Iterator it = iter(); + while (it.hasNext()) { + if (i == n) { + if (n >= MAX_ARRAY_SIZE) + throw new OutOfMemoryError(oomeMsg); + if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1) + n = MAX_ARRAY_SIZE; + else + n += (n >>> 1) + 1; + r = Arrays.copyOf(r, n); + } + r[i++] = (T)it.next(); + } + if (a == r && i < n) { + r[i] = null; // null-terminate + return r; + } + return (i == n) ? r : Arrays.copyOf(r, i); + } - final class EntryIterator extends HashIterator - implements Iterator> { - public final Map.Entry next() { return super.nextEntry(); } - } + public final int hashCode() { + int h = 0; + for (Iterator it = iter(); it.hasNext();) + h += it.next().hashCode(); + return h; + } + + public final String toString() { + StringBuilder sb = new StringBuilder(); + sb.append('['); + Iterator it = iter(); + if (it.hasNext()) { + for (;;) { + Object e = it.next(); + sb.append(e == this ? "(this Collection)" : e); + if (!it.hasNext()) + break; + sb.append(',').append(' '); + } + } + return sb.append(']').toString(); + } - final class KeySet extends AbstractSet { - public int size() { - return ConcurrentHashMapV8.this.size(); + public final boolean containsAll(Collection c) { + if (c != this) { + for (Iterator it = c.iterator(); it.hasNext();) { + Object e = it.next(); + if (e == null || !contains(e)) + return false; + } + } + return true; } - public boolean isEmpty() { - return ConcurrentHashMapV8.this.isEmpty(); + + public final boolean removeAll(Collection c) { + boolean modified = false; + for (Iterator it = iter(); it.hasNext();) { + if (c.contains(it.next())) { + it.remove(); + modified = true; + } + } + return modified; } - public void clear() { - ConcurrentHashMapV8.this.clear(); + + public final boolean retainAll(Collection c) { + boolean modified = false; + for (Iterator it = iter(); it.hasNext();) { + if (!c.contains(it.next())) { + it.remove(); + modified = true; + } + } + return modified; } - public Iterator iterator() { - return new KeyIterator(); + + } + + static final class KeySet extends MapView implements Set { + KeySet(ConcurrentHashMapV8 map) { super(map); } + public final boolean contains(Object o) { return map.containsKey(o); } + public final boolean remove(Object o) { return map.remove(o) != null; } + + public final Iterator iterator() { + return new KeyIterator(map); } - public boolean contains(Object o) { - return ConcurrentHashMapV8.this.containsKey(o); + final Iterator iter() { + return new KeyIterator(map); } - public boolean remove(Object o) { - return ConcurrentHashMapV8.this.remove(o) != null; + public final boolean add(K e) { + throw new UnsupportedOperationException(); + } + public final boolean addAll(Collection c) { + throw new UnsupportedOperationException(); + } + public boolean equals(Object o) { + Set c; + return ((o instanceof Set) && + ((c = (Set)o) == this || + (containsAll(c) && c.containsAll(this)))); } } - final class Values extends AbstractCollection { - public int size() { - return ConcurrentHashMapV8.this.size(); + static final class Values extends MapView + implements Collection { + Values(ConcurrentHashMapV8 map) { super(map); } + public final boolean contains(Object o) { return map.containsValue(o); } + + public final boolean remove(Object o) { + if (o != null) { + Iterator it = new ValueIterator(map); + while (it.hasNext()) { + if (o.equals(it.next())) { + it.remove(); + return true; + } + } + } + return false; } - public boolean isEmpty() { - return ConcurrentHashMapV8.this.isEmpty(); + public final Iterator iterator() { + return new ValueIterator(map); } - public void clear() { - ConcurrentHashMapV8.this.clear(); + final Iterator iter() { + return new ValueIterator(map); } - public Iterator iterator() { - return new ValueIterator(); + public final boolean add(V e) { + throw new UnsupportedOperationException(); } - public boolean contains(Object o) { - return ConcurrentHashMapV8.this.containsValue(o); + public final boolean addAll(Collection c) { + throw new UnsupportedOperationException(); } } - final class EntrySet extends AbstractSet> { - public int size() { - return ConcurrentHashMapV8.this.size(); + static final class EntrySet extends MapView + implements Set> { + EntrySet(ConcurrentHashMapV8 map) { super(map); } + + public final boolean contains(Object o) { + Object k, v, r; Map.Entry e; + return ((o instanceof Map.Entry) && + (k = (e = (Map.Entry)o).getKey()) != null && + (r = map.get(k)) != null && + (v = e.getValue()) != null && + (v == r || v.equals(r))); } - public boolean isEmpty() { - return ConcurrentHashMapV8.this.isEmpty(); + + public final boolean remove(Object o) { + Object k, v; Map.Entry e; + return ((o instanceof Map.Entry) && + (k = (e = (Map.Entry)o).getKey()) != null && + (v = e.getValue()) != null && + map.remove(k, v)); } - public void clear() { - ConcurrentHashMapV8.this.clear(); + + public final Iterator> iterator() { + return new EntryIterator(map); } - public Iterator> iterator() { - return new EntryIterator(); + final Iterator iter() { + return new SnapshotEntryIterator(map); } - public boolean contains(Object o) { - if (!(o instanceof Map.Entry)) - return false; - Map.Entry e = (Map.Entry)o; - V v = ConcurrentHashMapV8.this.get(e.getKey()); - return v != null && v.equals(e.getValue()); + public final boolean add(Entry e) { + throw new UnsupportedOperationException(); } - public boolean remove(Object o) { - if (!(o instanceof Map.Entry)) - return false; - Map.Entry e = (Map.Entry)o; - return ConcurrentHashMapV8.this.remove(e.getKey(), e.getValue()); + public final boolean addAll(Collection> c) { + throw new UnsupportedOperationException(); + } + public boolean equals(Object o) { + Set c; + return ((o instanceof Set) && + ((c = (Set)o) == this || + (containsAll(c) && c.containsAll(this)))); } } /* ---------------- Serialization Support -------------- */ /** - * Helper class used in previous version, declared for the sake of - * serialization compatibility + * Stripped-down version of helper class used in previous version, + * declared for the sake of serialization compatibility */ - static class Segment extends java.util.concurrent.locks.ReentrantLock - implements Serializable { + static class Segment implements Serializable { private static final long serialVersionUID = 2249069246763182397L; final float loadFactor; Segment(float lf) { this.loadFactor = lf; } @@ -1533,10 +2030,15 @@ public class ConcurrentHashMapV8 segments = (Segment[]) new Segment[DEFAULT_CONCURRENCY_LEVEL]; for (int i = 0; i < segments.length; ++i) - segments[i] = new Segment(loadFactor); + segments[i] = new Segment(LOAD_FACTOR); } s.defaultWriteObject(); - new HashIterator().writeEntries(s); + InternalIterator it = new InternalIterator(table); + while (it.next != null) { + s.writeObject(it.nextKey); + s.writeObject(it.nextVal); + it.advance(); + } s.writeObject(null); s.writeObject(null); segments = null; // throw away @@ -1550,30 +2052,68 @@ public class ConcurrentHashMapV8 private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); - // find load factor in a segment, if one exists - if (segments != null && segments.length != 0) - this.loadFactor = segments[0].loadFactor; - else - this.loadFactor = DEFAULT_LOAD_FACTOR; - this.initCap = DEFAULT_CAPACITY; - LongAdder ct = new LongAdder(); // force final field write - UNSAFE.putObjectVolatile(this, counterOffset, ct); this.segments = null; // unneeded + // initialize transient final field + UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder()); - // Read the keys and values, and put the mappings in the table + // Create all nodes, then place in table once size is known + long size = 0L; + Node p = null; for (;;) { - K key = (K) s.readObject(); - V value = (V) s.readObject(); - if (key == null) + K k = (K) s.readObject(); + V v = (V) s.readObject(); + if (k != null && v != null) { + p = new Node(spread(k.hashCode()), k, v, p); + ++size; + } + else break; - put(key, value); + } + if (p != null) { + boolean init = false; + int n; + if (size >= (long)(MAXIMUM_CAPACITY >>> 1)) + n = MAXIMUM_CAPACITY; + else { + int sz = (int)size; + n = tableSizeFor(sz + (sz >>> 1) + 1); + } + int sc = sizeCtl; + if (n > sc && + UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) { + try { + if (table == null) { + init = true; + Node[] tab = new Node[n]; + int mask = n - 1; + while (p != null) { + int j = p.hash & mask; + Node next = p.next; + p.next = tabAt(tab, j); + setTabAt(tab, j, p); + p = next; + } + table = tab; + counter.add(size); + sc = n - (n >>> 2) - 1; + } + } finally { + sizeCtl = sc; + } + } + if (!init) { // Can only happen if unsafely published. + while (p != null) { + internalPut(p.key, p.val, true); + p = p.next; + } + } } } // Unsafe mechanics private static final sun.misc.Unsafe UNSAFE; private static final long counterOffset; - private static final long resizingOffset; + private static final long sizeCtlOffset; private static final long ABASE; private static final int ASHIFT; @@ -1584,8 +2124,8 @@ public class ConcurrentHashMapV8 Class k = ConcurrentHashMapV8.class; counterOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("counter")); - resizingOffset = UNSAFE.objectFieldOffset - (k.getDeclaredField("resizing")); + sizeCtlOffset = UNSAFE.objectFieldOffset + (k.getDeclaredField("sizeCtl")); Class sc = Node[].class; ABASE = UNSAFE.arrayBaseOffset(sc); ss = UNSAFE.arrayIndexScale(sc);