ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.29 by dl, Mon Oct 3 11:20:47 2011 UTC vs.
Revision 1.106 by jsr166, Wed Jun 19 17:11:57 2013 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166e;
8 < import jsr166e.LongAdder;
8 >
9 > import jsr166e.ForkJoinPool;
10 >
11 > import java.io.ObjectStreamField;
12 > import java.io.Serializable;
13 > import java.lang.reflect.ParameterizedType;
14 > import java.lang.reflect.Type;
15   import java.util.Arrays;
10 import java.util.Map;
11 import java.util.Set;
16   import java.util.Collection;
17 < import java.util.AbstractMap;
18 < import java.util.AbstractSet;
19 < import java.util.AbstractCollection;
16 < import java.util.Hashtable;
17 > import java.util.Comparator;
18 > import java.util.ConcurrentModificationException;
19 > import java.util.Enumeration;
20   import java.util.HashMap;
21 + import java.util.Hashtable;
22   import java.util.Iterator;
23 < import java.util.Enumeration;
20 < import java.util.ConcurrentModificationException;
23 > import java.util.Map;
24   import java.util.NoSuchElementException;
25 + import java.util.Set;
26   import java.util.concurrent.ConcurrentMap;
27 + import java.util.concurrent.atomic.AtomicReference;
28 + import java.util.concurrent.atomic.AtomicInteger;
29   import java.util.concurrent.locks.LockSupport;
30 < import java.io.Serializable;
30 > import java.util.concurrent.locks.ReentrantLock;
31  
32   /**
33   * A hash table supporting full concurrency of retrievals and
# Line 35 | Line 41 | import java.io.Serializable;
41   * interoperable with {@code Hashtable} in programs that rely on its
42   * thread safety but not on its synchronization details.
43   *
44 < * <p> Retrieval operations (including {@code get}) generally do not
44 > * <p>Retrieval operations (including {@code get}) generally do not
45   * block, so may overlap with update operations (including {@code put}
46   * and {@code remove}). Retrievals reflect the results of the most
47   * recently <em>completed</em> update operations holding upon their
48 < * onset.  For aggregate operations such as {@code putAll} and {@code
49 < * clear}, concurrent retrievals may reflect insertion or removal of
50 < * only some entries.  Similarly, Iterators and Enumerations return
51 < * elements reflecting the state of the hash table at some point at or
52 < * since the creation of the iterator/enumeration.  They do
53 < * <em>not</em> throw {@link ConcurrentModificationException}.
54 < * However, iterators are designed to be used by only one thread at a
55 < * time.  Bear in mind that the results of aggregate status methods
56 < * including {@code size}, {@code isEmpty}, and {@code containsValue}
57 < * are typically useful only when a map is not undergoing concurrent
58 < * updates in other threads.  Otherwise the results of these methods
59 < * reflect transient states that may be adequate for monitoring
60 < * or estimation purposes, but not for program control.
48 > * onset. (More formally, an update operation for a given key bears a
49 > * <em>happens-before</em> relation with any (non-null) retrieval for
50 > * that key reporting the updated value.)  For aggregate operations
51 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
52 > * reflect insertion or removal of only some entries.  Similarly,
53 > * Iterators and Enumerations return elements reflecting the state of
54 > * the hash table at some point at or since the creation of the
55 > * iterator/enumeration.  They do <em>not</em> throw {@link
56 > * ConcurrentModificationException}.  However, iterators are designed
57 > * to be used by only one thread at a time.  Bear in mind that the
58 > * results of aggregate status methods including {@code size}, {@code
59 > * isEmpty}, and {@code containsValue} are typically useful only when
60 > * a map is not undergoing concurrent updates in other threads.
61 > * Otherwise the results of these methods reflect transient states
62 > * that may be adequate for monitoring or estimation purposes, but not
63 > * for program control.
64   *
65 < * <p> The table is dynamically expanded when there are too many
65 > * <p>The table is dynamically expanded when there are too many
66   * collisions (i.e., keys that have distinct hash codes but fall into
67   * the same slot modulo the table size), with the expected average
68   * effect of maintaining roughly two bins per mapping (corresponding
# Line 71 | Line 80 | import java.io.Serializable;
80   * versions of this class, constructors may optionally specify an
81   * expected {@code concurrencyLevel} as an additional hint for
82   * internal sizing.  Note that using many keys with exactly the same
83 < * {@code hashCode{}} is a sure way to slow down performance of any
84 < * hash table.
83 > * {@code hashCode()} is a sure way to slow down performance of any
84 > * hash table. To ameliorate impact, when keys are {@link Comparable},
85 > * this class may use comparison order among keys to help break ties.
86 > *
87 > * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
88 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
89 > * (using {@link #keySet(Object)} when only keys are of interest, and the
90 > * mapped values are (perhaps transiently) not used or all take the
91 > * same mapping value.
92   *
93   * <p>This class and its views and iterators implement all of the
94   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
95   * interfaces.
96   *
97 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
97 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
98   * does <em>not</em> allow {@code null} to be used as a key or value.
99   *
100 + * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
101 + * operations that are designed
102 + * to be safely, and often sensibly, applied even with maps that are
103 + * being concurrently updated by other threads; for example, when
104 + * computing a snapshot summary of the values in a shared registry.
105 + * There are three kinds of operation, each with four forms, accepting
106 + * functions with Keys, Values, Entries, and (Key, Value) arguments
107 + * and/or return values. Because the elements of a ConcurrentHashMapV8
108 + * are not ordered in any particular way, and may be processed in
109 + * different orders in different parallel executions, the correctness
110 + * of supplied functions should not depend on any ordering, or on any
111 + * other objects or values that may transiently change while
112 + * computation is in progress; and except for forEach actions, should
113 + * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
114 + * objects do not support method {@code setValue}.
115 + *
116 + * <ul>
117 + * <li> forEach: Perform a given action on each element.
118 + * A variant form applies a given transformation on each element
119 + * before performing the action.</li>
120 + *
121 + * <li> search: Return the first available non-null result of
122 + * applying a given function on each element; skipping further
123 + * search when a result is found.</li>
124 + *
125 + * <li> reduce: Accumulate each element.  The supplied reduction
126 + * function cannot rely on ordering (more formally, it should be
127 + * both associative and commutative).  There are five variants:
128 + *
129 + * <ul>
130 + *
131 + * <li> Plain reductions. (There is not a form of this method for
132 + * (key, value) function arguments since there is no corresponding
133 + * return type.)</li>
134 + *
135 + * <li> Mapped reductions that accumulate the results of a given
136 + * function applied to each element.</li>
137 + *
138 + * <li> Reductions to scalar doubles, longs, and ints, using a
139 + * given basis value.</li>
140 + *
141 + * </ul>
142 + * </li>
143 + * </ul>
144 + *
145 + * <p>These bulk operations accept a {@code parallelismThreshold}
146 + * argument. Methods proceed sequentially if the current map size is
147 + * estimated to be less than the given threshold. Using a value of
148 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
149 + * of {@code 1} results in maximal parallelism by partitioning into
150 + * enough subtasks to fully utilize the {@link
151 + * ForkJoinPool#commonPool()} that is used for all parallel
152 + * computations. Normally, you would initially choose one of these
153 + * extreme values, and then measure performance of using in-between
154 + * values that trade off overhead versus throughput.
155 + *
156 + * <p>The concurrency properties of bulk operations follow
157 + * from those of ConcurrentHashMapV8: Any non-null result returned
158 + * from {@code get(key)} and related access methods bears a
159 + * happens-before relation with the associated insertion or
160 + * update.  The result of any bulk operation reflects the
161 + * composition of these per-element relations (but is not
162 + * necessarily atomic with respect to the map as a whole unless it
163 + * is somehow known to be quiescent).  Conversely, because keys
164 + * and values in the map are never null, null serves as a reliable
165 + * atomic indicator of the current lack of any result.  To
166 + * maintain this property, null serves as an implicit basis for
167 + * all non-scalar reduction operations. For the double, long, and
168 + * int versions, the basis should be one that, when combined with
169 + * any other value, returns that other value (more formally, it
170 + * should be the identity element for the reduction). Most common
171 + * reductions have these properties; for example, computing a sum
172 + * with basis 0 or a minimum with basis MAX_VALUE.
173 + *
174 + * <p>Search and transformation functions provided as arguments
175 + * should similarly return null to indicate the lack of any result
176 + * (in which case it is not used). In the case of mapped
177 + * reductions, this also enables transformations to serve as
178 + * filters, returning null (or, in the case of primitive
179 + * specializations, the identity basis) if the element should not
180 + * be combined. You can create compound transformations and
181 + * filterings by composing them yourself under this "null means
182 + * there is nothing there now" rule before using them in search or
183 + * reduce operations.
184 + *
185 + * <p>Methods accepting and/or returning Entry arguments maintain
186 + * key-value associations. They may be useful for example when
187 + * finding the key for the greatest value. Note that "plain" Entry
188 + * arguments can be supplied using {@code new
189 + * AbstractMap.SimpleEntry(k,v)}.
190 + *
191 + * <p>Bulk operations may complete abruptly, throwing an
192 + * exception encountered in the application of a supplied
193 + * function. Bear in mind when handling such exceptions that other
194 + * concurrently executing functions could also have thrown
195 + * exceptions, or would have done so if the first exception had
196 + * not occurred.
197 + *
198 + * <p>Speedups for parallel compared to sequential forms are common
199 + * but not guaranteed.  Parallel operations involving brief functions
200 + * on small maps may execute more slowly than sequential forms if the
201 + * underlying work to parallelize the computation is more expensive
202 + * than the computation itself.  Similarly, parallelization may not
203 + * lead to much actual parallelism if all processors are busy
204 + * performing unrelated tasks.
205 + *
206 + * <p>All arguments to all task methods must be non-null.
207 + *
208 + * <p><em>jsr166e note: During transition, this class
209 + * uses nested functional interfaces with different names but the
210 + * same forms as those expected for JDK8.</em>
211 + *
212   * <p>This class is a member of the
213   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
214   * Java Collections Framework</a>.
215   *
88 * <p><em>jsr166e note: This class is a candidate replacement for
89 * java.util.concurrent.ConcurrentHashMap.<em>
90 *
216   * @since 1.5
217   * @author Doug Lea
218   * @param <K> the type of keys maintained by this map
219   * @param <V> the type of mapped values
220   */
221 < public class ConcurrentHashMapV8<K, V>
222 <        implements ConcurrentMap<K, V>, Serializable {
221 > public class ConcurrentHashMapV8<K,V>
222 >    implements ConcurrentMap<K,V>, Serializable {
223      private static final long serialVersionUID = 7249069246763182397L;
224  
225      /**
226 <     * A function computing a mapping from the given key to a value.
227 <     * This is a place-holder for an upcoming JDK8 interface.
226 >     * An object for traversing and partitioning elements of a source.
227 >     * This interface provides a subset of the functionality of JDK8
228 >     * java.util.Spliterator.
229       */
230 <    public static interface MappingFunction<K, V> {
230 >    public static interface ConcurrentHashMapSpliterator<T> {
231          /**
232 <         * Returns a non-null value for the given key.
233 <         *
234 <         * @param key the (non-null) key
235 <         * @return a non-null value
232 >         * If possible, returns a new spliterator covering
233 >         * approximately one half of the elements, which will not be
234 >         * covered by this spliterator. Returns null if cannot be
235 >         * split.
236           */
237 <        V map(K key);
112 <    }
113 <
114 <    /**
115 <     * A function computing a new mapping given a key and its current
116 <     * mapped value (or {@code null} if there is no current
117 <     * mapping). This is a place-holder for an upcoming JDK8
118 <     * interface.
119 <     */
120 <    public static interface RemappingFunction<K, V> {
237 >        ConcurrentHashMapSpliterator<T> trySplit();
238          /**
239 <         * Returns a new value given a key and its current value.
240 <         *
124 <         * @param key the (non-null) key
125 <         * @param value the current value, or null if there is no mapping
126 <         * @return a non-null value
239 >         * Returns an estimate of the number of elements covered by
240 >         * this Spliterator.
241           */
242 <        V remap(K key, V value);
243 <    }
242 >        long estimateSize();
243 >
244 >        /** Applies the action to each untraversed element */
245 >        void forEachRemaining(Action<? super T> action);
246 >        /** If an element remains, applies the action and returns true. */
247 >        boolean tryAdvance(Action<? super T> action);
248 >    }
249 >
250 >    // Sams
251 >    /** Interface describing a void action of one argument */
252 >    public interface Action<A> { void apply(A a); }
253 >    /** Interface describing a void action of two arguments */
254 >    public interface BiAction<A,B> { void apply(A a, B b); }
255 >    /** Interface describing a function of one argument */
256 >    public interface Fun<A,T> { T apply(A a); }
257 >    /** Interface describing a function of two arguments */
258 >    public interface BiFun<A,B,T> { T apply(A a, B b); }
259 >    /** Interface describing a function mapping its argument to a double */
260 >    public interface ObjectToDouble<A> { double apply(A a); }
261 >    /** Interface describing a function mapping its argument to a long */
262 >    public interface ObjectToLong<A> { long apply(A a); }
263 >    /** Interface describing a function mapping its argument to an int */
264 >    public interface ObjectToInt<A> {int apply(A a); }
265 >    /** Interface describing a function mapping two arguments to a double */
266 >    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
267 >    /** Interface describing a function mapping two arguments to a long */
268 >    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
269 >    /** Interface describing a function mapping two arguments to an int */
270 >    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
271 >    /** Interface describing a function mapping two doubles to a double */
272 >    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
273 >    /** Interface describing a function mapping two longs to a long */
274 >    public interface LongByLongToLong { long apply(long a, long b); }
275 >    /** Interface describing a function mapping two ints to an int */
276 >    public interface IntByIntToInt { int apply(int a, int b); }
277  
278      /*
279       * Overview:
# Line 138 | Line 285 | public class ConcurrentHashMapV8<K, V>
285       * the same or better than java.util.HashMap, and to support high
286       * initial insertion rates on an empty table by many threads.
287       *
288 <     * Each key-value mapping is held in a Node.  Because Node fields
289 <     * can contain special values, they are defined using plain Object
290 <     * types. Similarly in turn, all internal methods that use them
291 <     * work off Object types. And similarly, so do the internal
292 <     * methods of auxiliary iterator and view classes.  All public
293 <     * generic typed methods relay in/out of these internal methods,
294 <     * supplying null-checks and casts as needed. This also allows
295 <     * many of the public methods to be factored into a smaller number
296 <     * of internal methods (although sadly not so for the five
297 <     * sprawling variants of put-related operations).
288 >     * This map usually acts as a binned (bucketed) hash table.  Each
289 >     * key-value mapping is held in a Node.  Most nodes are instances
290 >     * of the basic Node class with hash, key, value, and next
291 >     * fields. However, various subclasses exist: TreeNodes are
292 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
293 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
294 >     * of bins during resizing. ReservationNodes are used as
295 >     * placeholders while establishing values in computeIfAbsent and
296 >     * related methods.  The types TreeBin, ForwardingNode, and
297 >     * ReservationNode do not hold normal user keys, values, or
298 >     * hashes, and are readily distinguishable during search etc
299 >     * because they have negative hash fields and null key and value
300 >     * fields. (These special nodes are either uncommon or transient,
301 >     * so the impact of carrying around some unused fields is
302 >     * insignficant.)
303       *
304       * The table is lazily initialized to a power-of-two size upon the
305 <     * first insertion.  Each bin in the table contains a list of
306 <     * Nodes (most often, the list has only zero or one Node).  Table
307 <     * accesses require volatile/atomic reads, writes, and CASes.
308 <     * Because there is no other way to arrange this without adding
309 <     * further indirections, we use intrinsics (sun.misc.Unsafe)
310 <     * operations.  The lists of nodes within bins are always
311 <     * accurately traversable under volatile reads, so long as lookups
312 <     * check hash code and non-nullness of value before checking key
313 <     * equality.
314 <     *
315 <     * We use the top two bits of Node hash fields for control
164 <     * purposes -- they are available anyway because of addressing
165 <     * constraints.  As explained further below, these top bits are
166 <     * used as follows:
167 <     *  00 - Normal
168 <     *  01 - Locked
169 <     *  11 - Locked and may have a thread waiting for lock
170 <     *  10 - Node is a forwarding node
171 <     *
172 <     * The lower 30 bits of each Node's hash field contain a
173 <     * transformation (for better randomization -- method "spread") of
174 <     * the key's hash code, except for forwarding nodes, for which the
175 <     * lower bits are zero (and so always have hash field == MOVED).
305 >     * first insertion.  Each bin in the table normally contains a
306 >     * list of Nodes (most often, the list has only zero or one Node).
307 >     * Table accesses require volatile/atomic reads, writes, and
308 >     * CASes.  Because there is no other way to arrange this without
309 >     * adding further indirections, we use intrinsics
310 >     * (sun.misc.Unsafe) operations.
311 >     *
312 >     * We use the top (sign) bit of Node hash fields for control
313 >     * purposes -- it is available anyway because of addressing
314 >     * constraints.  Nodes with negative hash fields are specially
315 >     * handled or ignored in map methods.
316       *
317       * Insertion (via put or its variants) of the first node in an
318       * empty bin is performed by just CASing it to the bin.  This is
319 <     * by far the most common case for put operations.  Other update
320 <     * operations (insert, delete, and replace) require locks.  We do
321 <     * not want to waste the space required to associate a distinct
322 <     * lock object with each bin, so instead use the first node of a
323 <     * bin list itself as a lock. Blocking support for these locks
324 <     * relies on the builtin "synchronized" monitors.  However, we
325 <     * also need a tryLock construction, so we overlay these by using
186 <     * bits of the Node hash field for lock control (see above), and
187 <     * so normally use builtin monitors only for blocking and
188 <     * signalling using wait/notifyAll constructions. See
189 <     * Node.tryAwaitLock.
319 >     * by far the most common case for put operations under most
320 >     * key/hash distributions.  Other update operations (insert,
321 >     * delete, and replace) require locks.  We do not want to waste
322 >     * the space required to associate a distinct lock object with
323 >     * each bin, so instead use the first node of a bin list itself as
324 >     * a lock. Locking support for these locks relies on builtin
325 >     * "synchronized" monitors.
326       *
327       * Using the first node of a list as a lock does not by itself
328       * suffice though: When a node is locked, any update must first
329       * validate that it is still the first node after locking it, and
330       * retry if not. Because new nodes are always appended to lists,
331       * once a node is first in a bin, it remains first until deleted
332 <     * or the bin becomes invalidated (upon resizing).  However,
197 <     * operations that only conditionally update may inspect nodes
198 <     * until the point of update. This is a converse of sorts to the
199 <     * lazy locking technique described by Herlihy & Shavit.
332 >     * or the bin becomes invalidated (upon resizing).
333       *
334       * The main disadvantage of per-bin locks is that other update
335       * operations on other nodes in a bin list protected by the same
336       * lock can stall, for example when user equals() or mapping
337 <     * functions take a long time.  However, statistically, this is
338 <     * not a common enough problem to outweigh the time/space overhead
339 <     * of alternatives: Under random hash codes, the frequency of
207 <     * nodes in bins follows a Poisson distribution
337 >     * functions take a long time.  However, statistically, under
338 >     * random hash codes, this is not a common problem.  Ideally, the
339 >     * frequency of nodes in bins follows a Poisson distribution
340       * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
341       * parameter of about 0.5 on average, given the resizing threshold
342       * of 0.75, although with a large variance because of resizing
343       * granularity. Ignoring variance, the expected occurrences of
344       * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
345 <     * first few values are:
345 >     * first values are:
346       *
347 <     * 0:    0.607
348 <     * 1:    0.303
349 <     * 2:    0.076
350 <     * 3:    0.012
351 <     * more: 0.002
347 >     * 0:    0.60653066
348 >     * 1:    0.30326533
349 >     * 2:    0.07581633
350 >     * 3:    0.01263606
351 >     * 4:    0.00157952
352 >     * 5:    0.00015795
353 >     * 6:    0.00001316
354 >     * 7:    0.00000094
355 >     * 8:    0.00000006
356 >     * more: less than 1 in ten million
357       *
358       * Lock contention probability for two threads accessing distinct
359 <     * elements is roughly 1 / (8 * #elements).  Function "spread"
360 <     * performs hashCode randomization that improves the likelihood
361 <     * that these assumptions hold unless users define exactly the
362 <     * same value for too many hashCodes.
363 <     *
364 <     * The table is resized when occupancy exceeds an occupancy
365 <     * threshold (nominally, 0.75, but see below).  Only a single
366 <     * thread performs the resize (using field "sizeCtl", to arrange
367 <     * exclusion), but the table otherwise remains usable for reads
368 <     * and updates. Resizing proceeds by transferring bins, one by
369 <     * one, from the table to the next table.  Because we are using
370 <     * power-of-two expansion, the elements from each bin must either
371 <     * stay at same index, or move with a power of two offset. We
372 <     * eliminate unnecessary node creation by catching cases where old
373 <     * nodes can be reused because their next fields won't change.  On
374 <     * average, only about one-sixth of them need cloning when a table
375 <     * doubles. The nodes they replace will be garbage collectable as
376 <     * soon as they are no longer referenced by any reader thread that
377 <     * may be in the midst of concurrently traversing table.  Upon
378 <     * transfer, the old table bin contains only a special forwarding
379 <     * node (with hash field "MOVED") that contains the next table as
380 <     * its key. On encountering a forwarding node, access and update
381 <     * operations restart, using the new table.
382 <     *
383 <     * Each bin transfer requires its bin lock. However, unlike other
384 <     * cases, a transfer can skip a bin if it fails to acquire its
385 <     * lock, and revisit it later. Method rebuild maintains a buffer
386 <     * of TRANSFER_BUFFER_SIZE bins that have been skipped because of
387 <     * failure to acquire a lock, and blocks only if none are
388 <     * available (i.e., only very rarely).  The transfer operation
389 <     * must also ensure that all accessible bins in both the old and
390 <     * new table are usable by any traversal.  When there are no lock
391 <     * acquisition failures, this is arranged simply by proceeding
392 <     * from the last bin (table.length - 1) up towards the first.
393 <     * Upon seeing a forwarding node, traversals (see class
394 <     * InternalIterator) arrange to move to the new table without
395 <     * revisiting nodes.  However, when any node is skipped during a
396 <     * transfer, all earlier table bins may have become visible, so
397 <     * are initialized with a reverse-forwarding node back to the old
398 <     * table until the new ones are established. (This sometimes
399 <     * requires transiently locking a forwarding node, which is
400 <     * possible under the above encoding.) These more expensive
401 <     * mechanics trigger only when necessary.
359 >     * elements is roughly 1 / (8 * #elements) under random hashes.
360 >     *
361 >     * Actual hash code distributions encountered in practice
362 >     * sometimes deviate significantly from uniform randomness.  This
363 >     * includes the case when N > (1<<30), so some keys MUST collide.
364 >     * Similarly for dumb or hostile usages in which multiple keys are
365 >     * designed to have identical hash codes or ones that differs only
366 >     * in masked-out high bits. So we use a secondary strategy that
367 >     * applies when the number of nodes in a bin exceeds a
368 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
369 >     * specialized form of red-black trees), bounding search time to
370 >     * O(log N).  Each search step in a TreeBin is at least twice as
371 >     * slow as in a regular list, but given that N cannot exceed
372 >     * (1<<64) (before running out of addresses) this bounds search
373 >     * steps, lock hold times, etc, to reasonable constants (roughly
374 >     * 100 nodes inspected per operation worst case) so long as keys
375 >     * are Comparable (which is very common -- String, Long, etc).
376 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
377 >     * traversal pointers as regular nodes, so can be traversed in
378 >     * iterators in the same way.
379 >     *
380 >     * The table is resized when occupancy exceeds a percentage
381 >     * threshold (nominally, 0.75, but see below).  Any thread
382 >     * noticing an overfull bin may assist in resizing after the
383 >     * initiating thread allocates and sets up the replacement
384 >     * array. However, rather than stalling, these other threads may
385 >     * proceed with insertions etc.  The use of TreeBins shields us
386 >     * from the worst case effects of overfilling while resizes are in
387 >     * progress.  Resizing proceeds by transferring bins, one by one,
388 >     * from the table to the next table. To enable concurrency, the
389 >     * next table must be (incrementally) prefilled with place-holders
390 >     * serving as reverse forwarders to the old table.  Because we are
391 >     * using power-of-two expansion, the elements from each bin must
392 >     * either stay at same index, or move with a power of two
393 >     * offset. We eliminate unnecessary node creation by catching
394 >     * cases where old nodes can be reused because their next fields
395 >     * won't change.  On average, only about one-sixth of them need
396 >     * cloning when a table doubles. The nodes they replace will be
397 >     * garbage collectable as soon as they are no longer referenced by
398 >     * any reader thread that may be in the midst of concurrently
399 >     * traversing table.  Upon transfer, the old table bin contains
400 >     * only a special forwarding node (with hash field "MOVED") that
401 >     * contains the next table as its key. On encountering a
402 >     * forwarding node, access and update operations restart, using
403 >     * the new table.
404 >     *
405 >     * Each bin transfer requires its bin lock, which can stall
406 >     * waiting for locks while resizing. However, because other
407 >     * threads can join in and help resize rather than contend for
408 >     * locks, average aggregate waits become shorter as resizing
409 >     * progresses.  The transfer operation must also ensure that all
410 >     * accessible bins in both the old and new table are usable by any
411 >     * traversal.  This is arranged by proceeding from the last bin
412 >     * (table.length - 1) up towards the first.  Upon seeing a
413 >     * forwarding node, traversals (see class Traverser) arrange to
414 >     * move to the new table without revisiting nodes.  However, to
415 >     * ensure that no intervening nodes are skipped, bin splitting can
416 >     * only begin after the associated reverse-forwarders are in
417 >     * place.
418       *
419       * The traversal scheme also applies to partial traversals of
420 <     * ranges of bins (via an alternate InternalIterator constructor)
421 <     * to support partitioned aggregate operations (that are not
422 <     * otherwise implemented yet).  Also, read-only operations give up
423 <     * if ever forwarded to a null table, which provides support for
424 <     * shutdown-style clearing, which is also not currently
272 <     * implemented.
420 >     * ranges of bins (via an alternate Traverser constructor)
421 >     * to support partitioned aggregate operations.  Also, read-only
422 >     * operations give up if ever forwarded to a null table, which
423 >     * provides support for shutdown-style clearing, which is also not
424 >     * currently implemented.
425       *
426       * Lazy table initialization minimizes footprint until first use,
427       * and also avoids resizings when the first operation is from a
# Line 277 | Line 429 | public class ConcurrentHashMapV8<K, V>
429       * These cases attempt to override the initial capacity settings,
430       * but harmlessly fail to take effect in cases of races.
431       *
432 <     * The element count is maintained using a LongAdder, which avoids
433 <     * contention on updates but can encounter cache thrashing if read
434 <     * too frequently during concurrent access. To avoid reading so
435 <     * often, resizing is attempted either when a bin lock is
436 <     * contended, or upon adding to a bin already holding two or more
437 <     * nodes (checked before adding in the xIfAbsent methods, after
438 <     * adding in others). Under uniform hash distributions, the
439 <     * probability of this occurring at threshold is around 13%,
440 <     * meaning that only about 1 in 8 puts check threshold (and after
441 <     * resizing, many fewer do so). But this approximation has high
442 <     * variance for small table sizes, so we check on any collision
443 <     * for sizes <= 64. The bulk putAll operation further reduces
444 <     * contention by only committing count updates upon these size
445 <     * checks.
432 >     * The element count is maintained using a specialization of
433 >     * LongAdder. We need to incorporate a specialization rather than
434 >     * just use a LongAdder in order to access implicit
435 >     * contention-sensing that leads to creation of multiple
436 >     * CounterCells.  The counter mechanics avoid contention on
437 >     * updates but can encounter cache thrashing if read too
438 >     * frequently during concurrent access. To avoid reading so often,
439 >     * resizing under contention is attempted only upon adding to a
440 >     * bin already holding two or more nodes. Under uniform hash
441 >     * distributions, the probability of this occurring at threshold
442 >     * is around 13%, meaning that only about 1 in 8 puts check
443 >     * threshold (and after resizing, many fewer do so).
444 >     *
445 >     * TreeBins use a special form of comparison for search and
446 >     * related operations (which is the main reason we cannot use
447 >     * existing collections such as TreeMaps). TreeBins contain
448 >     * Comparable elements, but may contain others, as well as
449 >     * elements that are Comparable but not necessarily Comparable
450 >     * for the same T, so we cannot invoke compareTo among them. To
451 >     * handle this, the tree is ordered primarily by hash value, then
452 >     * by Comparable.compareTo order if applicable.  On lookup at a
453 >     * node, if elements are not comparable or compare as 0 then both
454 >     * left and right children may need to be searched in the case of
455 >     * tied hash values. (This corresponds to the full list search
456 >     * that would be necessary if all elements were non-Comparable and
457 >     * had tied hashes.)  The red-black balancing code is updated from
458 >     * pre-jdk-collections
459 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
460 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
461 >     * Algorithms" (CLR).
462 >     *
463 >     * TreeBins also require an additional locking mechanism.  While
464 >     * list traversal is always possible by readers even during
465 >     * updates, tree traversal is not, mainly beause of tree-rotations
466 >     * that may change the root node and/or its linkages.  TreeBins
467 >     * include a simple read-write lock mechanism parasitic on the
468 >     * main bin-synchronization strategy: Structural adjustments
469 >     * associated with an insertion or removal are already bin-locked
470 >     * (and so cannot conflict with other writers) but must wait for
471 >     * ongoing readers to finish. Since there can be only one such
472 >     * waiter, we use a simple scheme using a single "waiter" field to
473 >     * block writers.  However, readers need never block.  If the root
474 >     * lock is held, they proceed along the slow traversal path (via
475 >     * next-pointers) until the lock becomes available or the list is
476 >     * exhausted, whichever comes first. These cases are not fast, but
477 >     * maximize aggregate expected throughput.
478       *
479       * Maintaining API and serialization compatibility with previous
480       * versions of this class introduces several oddities. Mainly: We
# Line 300 | Line 484 | public class ConcurrentHashMapV8<K, V>
484       * time that we can guarantee to honor it.) We also declare an
485       * unused "Segment" class that is instantiated in minimal form
486       * only when serializing.
487 +     *
488 +     * This file is organized to make things a little easier to follow
489 +     * while reading than they might otherwise: First the main static
490 +     * declarations and utilities, then fields, then main public
491 +     * methods (with a few factorings of multiple public methods into
492 +     * internal ones), then sizing methods, trees, traversers, and
493 +     * bulk operations.
494       */
495  
496      /* ---------------- Constants -------------- */
# Line 341 | Line 532 | public class ConcurrentHashMapV8<K, V>
532      private static final float LOAD_FACTOR = 0.75f;
533  
534      /**
535 <     * The buffer size for skipped bins during transfers. The
536 <     * value is arbitrary but should be large enough to avoid
537 <     * most locking stalls during resizes.
538 <     */
539 <    private static final int TRANSFER_BUFFER_SIZE = 32;
540 <
350 <    /*
351 <     * Encodings for special uses of Node hash fields. See above for
352 <     * explanation.
535 >     * The bin count threshold for using a tree rather than list for a
536 >     * bin.  Bins are converted to trees when adding an element to a
537 >     * bin with at least this many nodes. The value must be greater
538 >     * than 2, and should be at least 8 to mesh with assumptions in
539 >     * tree removal about conversion back to plain bins upon
540 >     * shrinkage.
541       */
542 <    static final int MOVED     = 0x80000000; // hash field for fowarding nodes
355 <    static final int LOCKED    = 0x40000000; // set/tested only as a bit
356 <    static final int WAITING   = 0xc0000000; // both bits set/tested together
357 <    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
358 <
359 <    /* ---------------- Fields -------------- */
542 >    static final int TREEIFY_THRESHOLD = 8;
543  
544      /**
545 <     * The array of bins. Lazily initialized upon first insertion.
546 <     * Size is always a power of two. Accessed directly by iterators.
545 >     * The bin count threshold for untreeifying a (split) bin during a
546 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
547 >     * most 6 to mesh with shrinkage detection under removal.
548       */
549 <    transient volatile Node[] table;
549 >    static final int UNTREEIFY_THRESHOLD = 6;
550  
551      /**
552 <     * The counter maintaining number of elements.
552 >     * The smallest table capacity for which bins may be treeified.
553 >     * (Otherwise the table is resized if too many nodes in a bin.)
554 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
555 >     * conflicts between resizing and treeification thresholds.
556       */
557 <    private transient final LongAdder counter;
557 >    static final int MIN_TREEIFY_CAPACITY = 64;
558  
559      /**
560 <     * Table initialization and resizing control.  When negative, the
561 <     * table is being initialized or resized. Otherwise, when table is
562 <     * null, holds the initial table size to use upon creation, or 0
563 <     * for default. After initialization, holds the next element count
564 <     * value upon which to resize the table.
560 >     * Minimum number of rebinnings per transfer step. Ranges are
561 >     * subdivided to allow multiple resizer threads.  This value
562 >     * serves as a lower bound to avoid resizers encountering
563 >     * excessive memory contention.  The value should be at least
564 >     * DEFAULT_CAPACITY.
565       */
566 <    private transient volatile int sizeCtl;
566 >    private static final int MIN_TRANSFER_STRIDE = 16;
567  
568 <    // views
569 <    private transient KeySet<K,V> keySet;
570 <    private transient Values<K,V> values;
571 <    private transient EntrySet<K,V> entrySet;
572 <
573 <    /** For serialization compatibility. Null unless serialized; see below */
574 <    private Segment<K,V>[] segments;
568 >    /*
569 >     * Encodings for Node hash fields. See above for explanation.
570 >     */
571 >    static final int MOVED     = 0x8fffffff; // (-1) hash for forwarding nodes
572 >    static final int TREEBIN   = 0x80000000; // hash for heads of treea
573 >    static final int RESERVED  = 0x80000001; // hash for transient reservations
574 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
575 >
576 >    /** Number of CPUS, to place bounds on some sizings */
577 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
578 >
579 >    /** For serialization compatibility. */
580 >    private static final ObjectStreamField[] serialPersistentFields = {
581 >        new ObjectStreamField("segments", Segment[].class),
582 >        new ObjectStreamField("segmentMask", Integer.TYPE),
583 >        new ObjectStreamField("segmentShift", Integer.TYPE)
584 >    };
585  
586      /* ---------------- Nodes -------------- */
587  
588      /**
589 <     * Key-value entry. Note that this is never exported out as a
590 <     * user-visible Map.Entry (see WriteThroughEntry and SnapshotEntry
591 <     * below). Nodes with a hash field of MOVED are special, and do
592 <     * not contain user keys or values.  Otherwise, keys are never
593 <     * null, and null val fields indicate that a node is in the
594 <     * process of being deleted or created. For purposes of read-only
595 <     * access, a key may be read before a val, but can only be used
596 <     * after checking val to be non-null.
597 <     */
598 <    static final class Node {
599 <        volatile int hash;
600 <        final Object key;
404 <        volatile Object val;
405 <        volatile Node next;
589 >     * Key-value entry.  This class is never exported out as a
590 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
591 >     * MapEntry below), but can be used for read-only traversals used
592 >     * in bulk tasks.  Subclasses of Node with a negativehash field
593 >     * are special, and contain null keys and values (but are never
594 >     * exported).  Otherwise, keys and vals are never null.
595 >     */
596 >    static class Node<K,V> implements Map.Entry<K,V> {
597 >        final int hash;
598 >        final K key;
599 >        volatile V val;
600 >        Node<K,V> next;
601  
602 <        Node(int hash, Object key, Object val, Node next) {
602 >        Node(int hash, K key, V val, Node<K,V> next) {
603              this.hash = hash;
604              this.key = key;
605              this.val = val;
606              this.next = next;
607          }
608  
609 <        /** CompareAndSet the hash field */
610 <        final boolean casHash(int cmp, int val) {
611 <            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
609 >        public final K getKey()       { return key; }
610 >        public final V getValue()     { return val; }
611 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
612 >        public final String toString(){ return key + "=" + val; }
613 >        public final V setValue(V value) {
614 >            throw new UnsupportedOperationException();
615          }
616  
617 <        /** The number of spins before blocking for a lock */
618 <        static final int MAX_SPINS =
619 <            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
620 <
621 <        /**
622 <         * Spins a while if LOCKED bit set and this node is the first
623 <         * of its bin, and then sets WAITING bits on hash field and
426 <         * blocks (once) if they are still set.  It is OK for this
427 <         * method to return even if lock is not available upon exit,
428 <         * which enables these simple single-wait mechanics.
429 <         *
430 <         * The corresponding signalling operation is performed within
431 <         * callers: Upon detecting that WAITING has been set when
432 <         * unlocking lock (via a failed CAS from non-waiting LOCKED
433 <         * state), unlockers acquire the sync lock and perform a
434 <         * notifyAll.
435 <         */
436 <        final void tryAwaitLock(Node[] tab, int i) {
437 <            if (tab != null && i >= 0 && i < tab.length) { // bounds check
438 <                int spins = MAX_SPINS, h;
439 <                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
440 <                    if (spins >= 0) {
441 <                        if (--spins == MAX_SPINS >>> 1)
442 <                            Thread.yield();  // heuristically yield mid-way
443 <                    }
444 <                    else if (casHash(h, h | WAITING)) {
445 <                        synchronized (this) {
446 <                            if (tabAt(tab, i) == this &&
447 <                                (hash & WAITING) == WAITING) {
448 <                                try {
449 <                                    wait();
450 <                                } catch (InterruptedException ie) {
451 <                                    Thread.currentThread().interrupt();
452 <                                }
453 <                            }
454 <                            else
455 <                                notifyAll(); // possibly won race vs signaller
456 <                        }
457 <                        break;
458 <                    }
459 <                }
460 <            }
617 >        public final boolean equals(Object o) {
618 >            Object k, v, u; Map.Entry<?,?> e;
619 >            return ((o instanceof Map.Entry) &&
620 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
621 >                    (v = e.getValue()) != null &&
622 >                    (k == key || k.equals(key)) &&
623 >                    (v == (u = val) || v.equals(u)));
624          }
625  
626 <        // Unsafe mechanics for casHash
627 <        private static final sun.misc.Unsafe UNSAFE;
628 <        private static final long hashOffset;
629 <
630 <        static {
631 <            try {
632 <                UNSAFE = getUnsafe();
633 <                Class<?> k = Node.class;
634 <                hashOffset = UNSAFE.objectFieldOffset
635 <                    (k.getDeclaredField("hash"));
636 <            } catch (Exception e) {
637 <                throw new Error(e);
638 <            }
626 >        /**
627 >         * Virtualized support for map.get(); overridden in subclasses.
628 >         */
629 >        Node<K,V> find(int h, Object k) {
630 >            Node<K,V> e = this;
631 >            if (k != null) {
632 >                do {
633 >                    K ek;
634 >                    if (e.hash == h &&
635 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
636 >                        return e;
637 >                } while ((e = e.next) != null);
638 >            }
639 >            return null;
640          }
641      }
642  
643 <    /* ---------------- Table element access -------------- */
644 <
645 <    /*
646 <     * Volatile access methods are used for table elements as well as
647 <     * elements of in-progress next table while resizing.  Uses are
648 <     * null checked by callers, and implicitly bounds-checked, relying
649 <     * on the invariants that tab arrays have non-zero size, and all
650 <     * indices are masked with (tab.length - 1) which is never
651 <     * negative and always less than length. Note that, to be correct
652 <     * wrt arbitrary concurrency errors by users, bounds checks must
653 <     * operate on local variables, which accounts for some odd-looking
654 <     * inline assignments below.
643 >    /* ---------------- Static utilities -------------- */
644 >
645 >    /**
646 >     * Spreads (XORs) higher bits of hash to lower and also forces top
647 >     * bit to 0. Because the table uses power-of-two masking, sets of
648 >     * hashes that vary only in bits above the current mask will
649 >     * always collide. (Among known examples are sets of Float keys
650 >     * holding consecutive whole numbers in small tables.)  So we
651 >     * apply a transform that spreads the impact of higher bits
652 >     * downward. There is a tradeoff between speed, utility, and
653 >     * quality of bit-spreading. Because many common sets of hashes
654 >     * are already reasonably distributed (so don't benefit from
655 >     * spreading), and because we use trees to handle large sets of
656 >     * collisions in bins, we just XOR some shifted bits in the
657 >     * cheapest possible way to reduce systematic lossage, as well as
658 >     * to incorporate impact of the highest bits that would otherwise
659 >     * never be used in index calculations because of table bounds.
660       */
661 <
662 <    static final Node tabAt(Node[] tab, int i) { // used by InternalIterator
494 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
495 <    }
496 <
497 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
498 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
499 <    }
500 <
501 <    private static final void setTabAt(Node[] tab, int i, Node v) {
502 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
661 >    static final int spread(int h) {
662 >        return (h ^ (h >>> 16)) & HASH_BITS;
663      }
664  
505    /* ---------------- Internal access and update methods -------------- */
506
665      /**
666 <     * Applies a supplemental hash function to a given hashCode, which
667 <     * defends against poor quality hash functions.  The result must
510 <     * be have the top 2 bits clear. For reasonable performance, this
511 <     * function must have good avalanche properties; i.e., that each
512 <     * bit of the argument affects each bit of the result. (Although
513 <     * we don't care about the unused top 2 bits.)
666 >     * Returns a power of two table size for the given desired capacity.
667 >     * See Hackers Delight, sec 3.2
668       */
669 <    private static final int spread(int h) {
670 <        // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/
671 <        // Despite two multiplies, this is often faster than others
672 <        // with comparable bit-spread properties.
673 <        h ^= h >>> 16;
674 <        h *= 0x85ebca6b;
675 <        h ^= h >>> 13;
676 <        h *= 0xc2b2ae35;
523 <        return ((h >>> 16) ^ h) & HASH_BITS; // mask out top bits
669 >    private static final int tableSizeFor(int c) {
670 >        int n = c - 1;
671 >        n |= n >>> 1;
672 >        n |= n >>> 2;
673 >        n |= n >>> 4;
674 >        n |= n >>> 8;
675 >        n |= n >>> 16;
676 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
677      }
678  
679 <    /** Implementation for get and containsKey */
680 <    private final Object internalGet(Object k) {
681 <        int h = spread(k.hashCode());
682 <        retry: for (Node[] tab = table; tab != null;) {
683 <            Node e; Object ek, ev; int eh;    // locals to read fields once
684 <            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
685 <                if ((eh = e.hash) == MOVED) {
686 <                    tab = (Node[])e.key;      // restart with new table
687 <                    continue retry;
679 >    /**
680 >     * Returns x's Class if it is of the form "class C implements
681 >     * Comparable<C>", else null.
682 >     */
683 >    static Class<?> comparableClassFor(Object x) {
684 >        if (x instanceof Comparable) {
685 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
686 >            if ((c = x.getClass()) == String.class) // bypass checks
687 >                return c;
688 >            if ((ts = c.getGenericInterfaces()) != null) {
689 >                for (int i = 0; i < ts.length; ++i) {
690 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
691 >                        ((p = (ParameterizedType)t).getRawType() ==
692 >                         Comparable.class) &&
693 >                        (as = p.getActualTypeArguments()) != null &&
694 >                        as.length == 1 && as[0] == c) // type arg is c
695 >                        return c;
696                  }
536                if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
537                    ((ek = e.key) == k || k.equals(ek)))
538                    return ev;
697              }
540            break;
698          }
699          return null;
700      }
701  
702      /**
703 <     * Implementation for the four public remove/replace methods:
704 <     * Replaces node value with v, conditional upon match of cv if
548 <     * non-null.  If resulting value is null, delete.
703 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
704 >     * class), else 0.
705       */
706 <    private final Object internalReplace(Object k, Object v, Object cv) {
707 <        int h = spread(k.hashCode());
708 <        Object oldVal = null;
709 <        for (Node[] tab = table;;) {
554 <            Node f; int i, fh;
555 <            if (tab == null ||
556 <                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
557 <                break;
558 <            else if ((fh = f.hash) == MOVED)
559 <                tab = (Node[])f.key;
560 <            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
561 <                break;                          // rules out possible existence
562 <            else if ((fh & LOCKED) != 0) {
563 <                checkForResize();               // try resizing if can't get lock
564 <                f.tryAwaitLock(tab, i);
565 <            }
566 <            else if (f.casHash(fh, fh | LOCKED)) {
567 <                boolean validated = false;
568 <                boolean deleted = false;
569 <                try {
570 <                    if (tabAt(tab, i) == f) {
571 <                        validated = true;
572 <                        for (Node e = f, pred = null;;) {
573 <                            Object ek, ev;
574 <                            if ((e.hash & HASH_BITS) == h &&
575 <                                ((ev = e.val) != null) &&
576 <                                ((ek = e.key) == k || k.equals(ek))) {
577 <                                if (cv == null || cv == ev || cv.equals(ev)) {
578 <                                    oldVal = ev;
579 <                                    if ((e.val = v) == null) {
580 <                                        deleted = true;
581 <                                        Node en = e.next;
582 <                                        if (pred != null)
583 <                                            pred.next = en;
584 <                                        else
585 <                                            setTabAt(tab, i, en);
586 <                                    }
587 <                                }
588 <                                break;
589 <                            }
590 <                            pred = e;
591 <                            if ((e = e.next) == null)
592 <                                break;
593 <                        }
594 <                    }
595 <                } finally {
596 <                    if (!f.casHash(fh | LOCKED, fh)) {
597 <                        f.hash = fh;
598 <                        synchronized(f) { f.notifyAll(); };
599 <                    }
600 <                }
601 <                if (validated) {
602 <                    if (deleted)
603 <                        counter.add(-1L);
604 <                    break;
605 <                }
606 <            }
607 <        }
608 <        return oldVal;
706 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
707 >    static int compareComparables(Class<?> kc, Object k, Object x) {
708 >        return (x == null || x.getClass() != kc ? 0 :
709 >                ((Comparable)k).compareTo(x));
710      }
711  
712 <    /*
612 <     * Internal versions of the five insertion methods, each a
613 <     * little more complicated than the last. All have
614 <     * the same basic structure as the first (internalPut):
615 <     *  1. If table uninitialized, create
616 <     *  2. If bin empty, try to CAS new node
617 <     *  3. If bin stale, use new table
618 <     *  4. Lock and validate; if valid, scan and add or update
619 <     *
620 <     * The others interweave other checks and/or alternative actions:
621 <     *  * Plain put checks for and performs resize after insertion.
622 <     *  * putIfAbsent prescans for mapping without lock (and fails to add
623 <     *    if present), which also makes pre-emptive resize checks worthwhile.
624 <     *  * computeIfAbsent extends form used in putIfAbsent with additional
625 <     *    mechanics to deal with, calls, potential exceptions and null
626 <     *    returns from function call.
627 <     *  * compute uses the same function-call mechanics, but without
628 <     *    the prescans
629 <     *  * putAll attempts to pre-allocate enough table space
630 <     *    and more lazily performs count updates and checks.
631 <     *
632 <     * Someday when details settle down a bit more, it might be worth
633 <     * some factoring to reduce sprawl.
634 <     */
635 <
636 <    /** Implementation for put */
637 <    private final Object internalPut(Object k, Object v) {
638 <        int h = spread(k.hashCode());
639 <        boolean checkSize = false;
640 <        for (Node[] tab = table;;) {
641 <            int i; Node f; int fh;
642 <            if (tab == null)
643 <                tab = initTable();
644 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
645 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
646 <                    break;                   // no lock when adding to empty bin
647 <            }
648 <            else if ((fh = f.hash) == MOVED)
649 <                tab = (Node[])f.key;
650 <            else if ((fh & LOCKED) != 0) {
651 <                checkForResize();
652 <                f.tryAwaitLock(tab, i);
653 <            }
654 <            else if (f.casHash(fh, fh | LOCKED)) {
655 <                Object oldVal = null;
656 <                boolean validated = false;
657 <                try {                        // needed in case equals() throws
658 <                    if (tabAt(tab, i) == f) {
659 <                        validated = true;    // retry if 1st already deleted
660 <                        for (Node e = f;;) {
661 <                            Object ek, ev;
662 <                            if ((e.hash & HASH_BITS) == h &&
663 <                                (ev = e.val) != null &&
664 <                                ((ek = e.key) == k || k.equals(ek))) {
665 <                                oldVal = ev;
666 <                                e.val = v;
667 <                                break;
668 <                            }
669 <                            Node last = e;
670 <                            if ((e = e.next) == null) {
671 <                                last.next = new Node(h, k, v, null);
672 <                                if (last != f || tab.length <= 64)
673 <                                    checkSize = true;
674 <                                break;
675 <                            }
676 <                        }
677 <                    }
678 <                } finally {                  // unlock and signal if needed
679 <                    if (!f.casHash(fh | LOCKED, fh)) {
680 <                        f.hash = fh;
681 <                        synchronized (f) { f.notifyAll(); };
682 <                    }
683 <                }
684 <                if (validated) {
685 <                    if (oldVal != null)
686 <                        return oldVal;
687 <                    break;
688 <                }
689 <            }
690 <        }
691 <        counter.add(1L);
692 <        if (checkSize)
693 <            checkForResize();
694 <        return null;
695 <    }
712 >    /* ---------------- Table element access -------------- */
713  
714 <    /** Implementation for putIfAbsent */
715 <    private final Object internalPutIfAbsent(Object k, Object v) {
716 <        int h = spread(k.hashCode());
717 <        for (Node[] tab = table;;) {
718 <            int i; Node f; int fh; Object fk, fv;
719 <            if (tab == null)
720 <                tab = initTable();
721 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
722 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
723 <                    break;
724 <            }
725 <            else if ((fh = f.hash) == MOVED)
726 <                tab = (Node[])f.key;
727 <            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
711 <                     ((fk = f.key) == k || k.equals(fk)))
712 <                return fv;
713 <            else {
714 <                Node g = f.next;
715 <                if (g != null) { // at least 2 nodes -- search and maybe resize
716 <                    for (Node e = g;;) {
717 <                        Object ek, ev;
718 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
719 <                            ((ek = e.key) == k || k.equals(ek)))
720 <                            return ev;
721 <                        if ((e = e.next) == null) {
722 <                            checkForResize();
723 <                            break;
724 <                        }
725 <                    }
726 <                }
727 <                if (((fh = f.hash) & LOCKED) != 0) {
728 <                    checkForResize();
729 <                    f.tryAwaitLock(tab, i);
730 <                }
731 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
732 <                    Object oldVal = null;
733 <                    boolean validated = false;
734 <                    try {
735 <                        if (tabAt(tab, i) == f) {
736 <                            validated = true;
737 <                            for (Node e = f;;) {
738 <                                Object ek, ev;
739 <                                if ((e.hash & HASH_BITS) == h &&
740 <                                    (ev = e.val) != null &&
741 <                                    ((ek = e.key) == k || k.equals(ek))) {
742 <                                    oldVal = ev;
743 <                                    break;
744 <                                }
745 <                                Node last = e;
746 <                                if ((e = e.next) == null) {
747 <                                    last.next = new Node(h, k, v, null);
748 <                                    break;
749 <                                }
750 <                            }
751 <                        }
752 <                    } finally {
753 <                        if (!f.casHash(fh | LOCKED, fh)) {
754 <                            f.hash = fh;
755 <                            synchronized(f) { f.notifyAll(); };
756 <                        }
757 <                    }
758 <                    if (validated) {
759 <                        if (oldVal != null)
760 <                            return oldVal;
761 <                        break;
762 <                    }
763 <                }
764 <            }
765 <        }
766 <        counter.add(1L);
767 <        return null;
768 <    }
714 >    /*
715 >     * Volatile access methods are used for table elements as well as
716 >     * elements of in-progress next table while resizing.  All uses of
717 >     * the tab arguments must be null checked by callers.  All callers
718 >     * also paranoically precheck that tab's length is not zero (or an
719 >     * equivalent check), thus ensuring that any index argument taking
720 >     * the form of a hash value anded with (length - 1) is a valid
721 >     * index.  Note that, to be correct wrt arbitrary concurrency
722 >     * errors by users, these checks must operate on local variables,
723 >     * which accounts for some odd-looking inline assignments below.
724 >     * Note that calls to setTabAt always occur within locked regions,
725 >     * and so do not need full volatile semantics, but still require
726 >     * ordering to maintain concurrent readability.
727 >     */
728  
729 <    /** Implementation for computeIfAbsent */
730 <    private final Object internalComputeIfAbsent(K k,
731 <                                                 MappingFunction<? super K, ?> mf) {
773 <        int h = spread(k.hashCode());
774 <        Object val = null;
775 <        for (Node[] tab = table;;) {
776 <            Node f; int i, fh; Object fk, fv;
777 <            if (tab == null)
778 <                tab = initTable();
779 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
780 <                Node node = new Node(fh = h | LOCKED, k, null, null);
781 <                boolean validated = false;
782 <                if (casTabAt(tab, i, null, node)) {
783 <                    validated = true;
784 <                    try {
785 <                        if ((val = mf.map(k)) != null)
786 <                            node.val = val;
787 <                    } finally {
788 <                        if (val == null)
789 <                            setTabAt(tab, i, null);
790 <                        if (!node.casHash(fh, h)) {
791 <                            node.hash = h;
792 <                            synchronized(node) { node.notifyAll(); };
793 <                        }
794 <                    }
795 <                }
796 <                if (validated)
797 <                    break;
798 <            }
799 <            else if ((fh = f.hash) == MOVED)
800 <                tab = (Node[])f.key;
801 <            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
802 <                     ((fk = f.key) == k || k.equals(fk)))
803 <                return fv;
804 <            else {
805 <                Node g = f.next;
806 <                if (g != null) {
807 <                    for (Node e = g;;) {
808 <                        Object ek, ev;
809 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
810 <                            ((ek = e.key) == k || k.equals(ek)))
811 <                            return ev;
812 <                        if ((e = e.next) == null) {
813 <                            checkForResize();
814 <                            break;
815 <                        }
816 <                    }
817 <                }
818 <                if (((fh = f.hash) & LOCKED) != 0) {
819 <                    checkForResize();
820 <                    f.tryAwaitLock(tab, i);
821 <                }
822 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
823 <                    boolean validated = false;
824 <                    try {
825 <                        if (tabAt(tab, i) == f) {
826 <                            validated = true;
827 <                            for (Node e = f;;) {
828 <                                Object ek, ev;
829 <                                if ((e.hash & HASH_BITS) == h &&
830 <                                    (ev = e.val) != null &&
831 <                                    ((ek = e.key) == k || k.equals(ek))) {
832 <                                    val = ev;
833 <                                    break;
834 <                                }
835 <                                Node last = e;
836 <                                if ((e = e.next) == null) {
837 <                                    if ((val = mf.map(k)) != null)
838 <                                        last.next = new Node(h, k, val, null);
839 <                                    break;
840 <                                }
841 <                            }
842 <                        }
843 <                    } finally {
844 <                        if (!f.casHash(fh | LOCKED, fh)) {
845 <                            f.hash = fh;
846 <                            synchronized(f) { f.notifyAll(); };
847 <                        }
848 <                    }
849 <                    if (validated)
850 <                        break;
851 <                }
852 <            }
853 <        }
854 <        if (val == null)
855 <            throw new NullPointerException();
856 <        counter.add(1L);
857 <        return val;
729 >    @SuppressWarnings("unchecked")
730 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
731 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
732      }
733  
734 <    /** Implementation for compute */
735 <    @SuppressWarnings("unchecked")
736 <    private final Object internalCompute(K k,
863 <                                         RemappingFunction<? super K, V> mf) {
864 <        int h = spread(k.hashCode());
865 <        Object val = null;
866 <        boolean added = false;
867 <        boolean checkSize = false;
868 <        for (Node[] tab = table;;) {
869 <            Node f; int i, fh;
870 <            if (tab == null)
871 <                tab = initTable();
872 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
873 <                Node node = new Node(fh = h | LOCKED, k, null, null);
874 <                boolean validated = false;
875 <                if (casTabAt(tab, i, null, node)) {
876 <                    validated = true;
877 <                    try {
878 <                        if ((val = mf.remap(k, null)) != null) {
879 <                            node.val = val;
880 <                            added = true;
881 <                        }
882 <                    } finally {
883 <                        if (!added)
884 <                            setTabAt(tab, i, null);
885 <                        if (!node.casHash(fh, h)) {
886 <                            node.hash = h;
887 <                            synchronized (node) { node.notifyAll(); };
888 <                        }
889 <                    }
890 <                }
891 <                if (validated)
892 <                    break;
893 <            }
894 <            else if ((fh = f.hash) == MOVED)
895 <                tab = (Node[])f.key;
896 <            else if ((fh & LOCKED) != 0) {
897 <                checkForResize();
898 <                f.tryAwaitLock(tab, i);
899 <            }
900 <            else if (f.casHash(fh, fh | LOCKED)) {
901 <                boolean validated = false;
902 <                try {
903 <                    if (tabAt(tab, i) == f) {
904 <                        validated = true;
905 <                        for (Node e = f;;) {
906 <                            Object ek, ev;
907 <                            if ((e.hash & HASH_BITS) == h &&
908 <                                (ev = e.val) != null &&
909 <                                ((ek = e.key) == k || k.equals(ek))) {
910 <                                val = mf.remap(k, (V)ev);
911 <                                if (val != null)
912 <                                    e.val = val;
913 <                                break;
914 <                            }
915 <                            Node last = e;
916 <                            if ((e = e.next) == null) {
917 <                                if ((val = mf.remap(k, null)) != null) {
918 <                                    last.next = new Node(h, k, val, null);
919 <                                    added = true;
920 <                                    if (last != f || tab.length <= 64)
921 <                                        checkSize = true;
922 <                                }
923 <                                break;
924 <                            }
925 <                        }
926 <                    }
927 <                } finally {
928 <                    if (!f.casHash(fh | LOCKED, fh)) {
929 <                        f.hash = fh;
930 <                        synchronized (f) { f.notifyAll(); };
931 <                    }
932 <                }
933 <                if (validated)
934 <                    break;
935 <            }
936 <        }
937 <        if (val == null)
938 <            throw new NullPointerException();
939 <        if (added) {
940 <            counter.add(1L);
941 <            if (checkSize)
942 <                checkForResize();
943 <        }
944 <        return val;
734 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
735 >                                        Node<K,V> c, Node<K,V> v) {
736 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
737      }
738  
739 <    /** Implementation for putAll */
740 <    private final void internalPutAll(Map<?, ?> m) {
949 <        tryPresize(m.size());
950 <        long delta = 0L;     // number of uncommitted additions
951 <        boolean npe = false; // to throw exception on exit for nulls
952 <        try {                // to clean up counts on other exceptions
953 <            for (Map.Entry<?, ?> entry : m.entrySet()) {
954 <                Object k, v;
955 <                if (entry == null || (k = entry.getKey()) == null ||
956 <                    (v = entry.getValue()) == null) {
957 <                    npe = true;
958 <                    break;
959 <                }
960 <                int h = spread(k.hashCode());
961 <                for (Node[] tab = table;;) {
962 <                    int i; Node f; int fh;
963 <                    if (tab == null)
964 <                        tab = initTable();
965 <                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
966 <                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
967 <                            ++delta;
968 <                            break;
969 <                        }
970 <                    }
971 <                    else if ((fh = f.hash) == MOVED)
972 <                        tab = (Node[])f.key;
973 <                    else if ((fh & LOCKED) != 0) {
974 <                        counter.add(delta);
975 <                        delta = 0L;
976 <                        checkForResize();
977 <                        f.tryAwaitLock(tab, i);
978 <                    }
979 <                    else if (f.casHash(fh, fh | LOCKED)) {
980 <                        boolean validated = false;
981 <                        boolean tooLong = false;
982 <                        try {
983 <                            if (tabAt(tab, i) == f) {
984 <                                validated = true;
985 <                                for (Node e = f;;) {
986 <                                    Object ek, ev;
987 <                                    if ((e.hash & HASH_BITS) == h &&
988 <                                        (ev = e.val) != null &&
989 <                                        ((ek = e.key) == k || k.equals(ek))) {
990 <                                        e.val = v;
991 <                                        break;
992 <                                    }
993 <                                    Node last = e;
994 <                                    if ((e = e.next) == null) {
995 <                                        ++delta;
996 <                                        last.next = new Node(h, k, v, null);
997 <                                        break;
998 <                                    }
999 <                                    tooLong = true;
1000 <                                }
1001 <                            }
1002 <                        } finally {
1003 <                            if (!f.casHash(fh | LOCKED, fh)) {
1004 <                                f.hash = fh;
1005 <                                synchronized(f) { f.notifyAll(); };
1006 <                            }
1007 <                        }
1008 <                        if (validated) {
1009 <                            if (tooLong) {
1010 <                                counter.add(delta);
1011 <                                delta = 0L;
1012 <                                checkForResize();
1013 <                            }
1014 <                            break;
1015 <                        }
1016 <                    }
1017 <                }
1018 <            }
1019 <        } finally {
1020 <            if (delta != 0)
1021 <                counter.add(delta);
1022 <        }
1023 <        if (npe)
1024 <            throw new NullPointerException();
739 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
740 >        U.putOrderedObject(tab, ((long)i << ASHIFT) + ABASE, v);
741      }
742  
743 <    /* ---------------- Table Initialization and Resizing -------------- */
743 >    /* ---------------- Fields -------------- */
744  
745      /**
746 <     * Returns a power of two table size for the given desired capacity.
747 <     * See Hackers Delight, sec 3.2
746 >     * The array of bins. Lazily initialized upon first insertion.
747 >     * Size is always a power of two. Accessed directly by iterators.
748       */
749 <    private static final int tableSizeFor(int c) {
1034 <        int n = c - 1;
1035 <        n |= n >>> 1;
1036 <        n |= n >>> 2;
1037 <        n |= n >>> 4;
1038 <        n |= n >>> 8;
1039 <        n |= n >>> 16;
1040 <        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1041 <    }
749 >    transient volatile Node<K,V>[] table;
750  
751      /**
752 <     * Initializes table, using the size recorded in sizeCtl.
752 >     * The next table to use; non-null only while resizing.
753       */
754 <    private final Node[] initTable() {
1047 <        Node[] tab; int sc;
1048 <        while ((tab = table) == null) {
1049 <            if ((sc = sizeCtl) < 0)
1050 <                Thread.yield(); // lost initialization race; just spin
1051 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1052 <                try {
1053 <                    if ((tab = table) == null) {
1054 <                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1055 <                        tab = table = new Node[n];
1056 <                        sc = n - (n >>> 2);
1057 <                    }
1058 <                } finally {
1059 <                    sizeCtl = sc;
1060 <                }
1061 <                break;
1062 <            }
1063 <        }
1064 <        return tab;
1065 <    }
754 >    private transient volatile Node<K,V>[] nextTable;
755  
756      /**
757 <     * If table is too small and not already resizing, creates next
758 <     * table and transfers bins.  Rechecks occupancy after a transfer
759 <     * to see if another resize is already needed because resizings
760 <     * are lagging additions.
761 <     */
1073 <    private final void checkForResize() {
1074 <        Node[] tab; int n, sc;
1075 <        while ((tab = table) != null &&
1076 <               (n = tab.length) < MAXIMUM_CAPACITY &&
1077 <               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1078 <               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1079 <            try {
1080 <                if (tab == table) {
1081 <                    table = rebuild(tab);
1082 <                    sc = (n << 1) - (n >>> 1);
1083 <                }
1084 <            } finally {
1085 <                sizeCtl = sc;
1086 <            }
1087 <        }
1088 <    }
757 >     * Base counter value, used mainly when there is no contention,
758 >     * but also as a fallback during table initialization
759 >     * races. Updated via CAS.
760 >     */
761 >    private transient volatile long baseCount;
762  
763      /**
764 <     * Tries to presize table to accommodate the given number of elements.
765 <     *
766 <     * @param size number of elements (doesn't need to be perfectly accurate)
764 >     * Table initialization and resizing control.  When negative, the
765 >     * table is being initialized or resized: -1 for initialization,
766 >     * else -(1 + the number of active resizing threads).  Otherwise,
767 >     * when table is null, holds the initial table size to use upon
768 >     * creation, or 0 for default. After initialization, holds the
769 >     * next element count value upon which to resize the table.
770       */
771 <    private final void tryPresize(int size) {
1096 <        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1097 <            tableSizeFor(size + (size >>> 1) + 1);
1098 <        int sc;
1099 <        while ((sc = sizeCtl) >= 0) {
1100 <            Node[] tab = table; int n;
1101 <            if (tab == null || (n = tab.length) == 0) {
1102 <                n = (sc > c)? sc : c;
1103 <                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1104 <                    try {
1105 <                        if (table == tab) {
1106 <                            table = new Node[n];
1107 <                            sc = n - (n >>> 2);
1108 <                        }
1109 <                    } finally {
1110 <                        sizeCtl = sc;
1111 <                    }
1112 <                }
1113 <            }
1114 <            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1115 <                break;
1116 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1117 <                try {
1118 <                    if (table == tab) {
1119 <                        table = rebuild(tab);
1120 <                        sc = (n << 1) - (n >>> 1);
1121 <                    }
1122 <                } finally {
1123 <                    sizeCtl = sc;
1124 <                }
1125 <            }
1126 <        }
1127 <    }
771 >    private transient volatile int sizeCtl;
772  
773 <    /*
774 <     * Moves and/or copies the nodes in each bin to new table. See
1131 <     * above for explanation.
1132 <     *
1133 <     * @return the new table
773 >    /**
774 >     * The next table index (plus one) to split while resizing.
775       */
776 <    private static final Node[] rebuild(Node[] tab) {
1136 <        int n = tab.length;
1137 <        Node[] nextTab = new Node[n << 1];
1138 <        Node fwd = new Node(MOVED, nextTab, null, null);
1139 <        int[] buffer = null;       // holds bins to revisit; null until needed
1140 <        Node rev = null;           // reverse forwarder; null until needed
1141 <        int nbuffered = 0;         // the number of bins in buffer list
1142 <        int bufferIndex = 0;       // buffer index of current buffered bin
1143 <        int bin = n - 1;           // current non-buffered bin or -1 if none
1144 <
1145 <        for (int i = bin;;) {      // start upwards sweep
1146 <            int fh; Node f;
1147 <            if ((f = tabAt(tab, i)) == null) {
1148 <                if (bin >= 0) {    // no lock needed (or available)
1149 <                    if (!casTabAt(tab, i, f, fwd))
1150 <                        continue;
1151 <                }
1152 <                else {             // transiently use a locked forwarding node
1153 <                    Node g =  new Node(MOVED|LOCKED, nextTab, null, null);
1154 <                    if (!casTabAt(tab, i, f, g))
1155 <                        continue;
1156 <                    setTabAt(nextTab, i, null);
1157 <                    setTabAt(nextTab, i + n, null);
1158 <                    setTabAt(tab, i, fwd);
1159 <                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
1160 <                        g.hash = MOVED;
1161 <                        synchronized (g) { g.notifyAll(); }
1162 <                    }
1163 <                }
1164 <            }
1165 <            else if (((fh = f.hash) & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
1166 <                boolean validated = false;
1167 <                try {              // split to lo and hi lists; copying as needed
1168 <                    if (tabAt(tab, i) == f) {
1169 <                        validated = true;
1170 <                        Node e = f, lastRun = f;
1171 <                        Node lo = null, hi = null;
1172 <                        int runBit = e.hash & n;
1173 <                        for (Node p = e.next; p != null; p = p.next) {
1174 <                            int b = p.hash & n;
1175 <                            if (b != runBit) {
1176 <                                runBit = b;
1177 <                                lastRun = p;
1178 <                            }
1179 <                        }
1180 <                        if (runBit == 0)
1181 <                            lo = lastRun;
1182 <                        else
1183 <                            hi = lastRun;
1184 <                        for (Node p = e; p != lastRun; p = p.next) {
1185 <                            int ph = p.hash & HASH_BITS;
1186 <                            Object pk = p.key, pv = p.val;
1187 <                            if ((ph & n) == 0)
1188 <                                lo = new Node(ph, pk, pv, lo);
1189 <                            else
1190 <                                hi = new Node(ph, pk, pv, hi);
1191 <                        }
1192 <                        setTabAt(nextTab, i, lo);
1193 <                        setTabAt(nextTab, i + n, hi);
1194 <                        setTabAt(tab, i, fwd);
1195 <                    }
1196 <                } finally {
1197 <                    if (!f.casHash(fh | LOCKED, fh)) {
1198 <                        f.hash = fh;
1199 <                        synchronized (f) { f.notifyAll(); };
1200 <                    }
1201 <                }
1202 <                if (!validated)
1203 <                    continue;
1204 <            }
1205 <            else {
1206 <                if (buffer == null) // initialize buffer for revisits
1207 <                    buffer = new int[TRANSFER_BUFFER_SIZE];
1208 <                if (bin < 0 && bufferIndex > 0) {
1209 <                    int j = buffer[--bufferIndex];
1210 <                    buffer[bufferIndex] = i;
1211 <                    i = j;         // swap with another bin
1212 <                    continue;
1213 <                }
1214 <                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
1215 <                    f.tryAwaitLock(tab, i);
1216 <                    continue;      // no other options -- block
1217 <                }
1218 <                if (rev == null)   // initialize reverse-forwarder
1219 <                    rev = new Node(MOVED, tab, null, null);
1220 <                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
1221 <                    continue;      // recheck before adding to list
1222 <                buffer[nbuffered++] = i;
1223 <                setTabAt(nextTab, i, rev);     // install place-holders
1224 <                setTabAt(nextTab, i + n, rev);
1225 <            }
1226 <
1227 <            if (bin > 0)
1228 <                i = --bin;
1229 <            else if (buffer != null && nbuffered > 0) {
1230 <                bin = -1;
1231 <                i = buffer[bufferIndex = --nbuffered];
1232 <            }
1233 <            else
1234 <                return nextTab;
1235 <        }
1236 <    }
776 >    private transient volatile int transferIndex;
777  
778      /**
779 <     * Implementation for clear. Steps through each bin, removing all
1240 <     * nodes.
779 >     * The least available table index to split while resizing.
780       */
781 <    private final void internalClear() {
1243 <        long delta = 0L; // negative number of deletions
1244 <        int i = 0;
1245 <        Node[] tab = table;
1246 <        while (tab != null && i < tab.length) {
1247 <            int fh;
1248 <            Node f = tabAt(tab, i);
1249 <            if (f == null)
1250 <                ++i;
1251 <            else if ((fh = f.hash) == MOVED)
1252 <                tab = (Node[])f.key;
1253 <            else if ((fh & LOCKED) != 0) {
1254 <                counter.add(delta); // opportunistically update count
1255 <                delta = 0L;
1256 <                f.tryAwaitLock(tab, i);
1257 <            }
1258 <            else if (f.casHash(fh, fh | LOCKED)) {
1259 <                boolean validated = false;
1260 <                try {
1261 <                    if (tabAt(tab, i) == f) {
1262 <                        validated = true;
1263 <                        for (Node e = f; e != null; e = e.next) {
1264 <                            if (e.val != null) { // currently always true
1265 <                                e.val = null;
1266 <                                --delta;
1267 <                            }
1268 <                        }
1269 <                        setTabAt(tab, i, null);
1270 <                    }
1271 <                } finally {
1272 <                    if (!f.casHash(fh | LOCKED, fh)) {
1273 <                        f.hash = fh;
1274 <                        synchronized(f) { f.notifyAll(); };
1275 <                    }
1276 <                }
1277 <                if (validated)
1278 <                    ++i;
1279 <            }
1280 <        }
1281 <        if (delta != 0)
1282 <            counter.add(delta);
1283 <    }
1284 <
1285 <
1286 <    /* ----------------Table Traversal -------------- */
781 >    private transient volatile int transferOrigin;
782  
783      /**
784 <     * Encapsulates traversal for methods such as containsValue; also
1290 <     * serves as a base class for other iterators.
1291 <     *
1292 <     * At each step, the iterator snapshots the key ("nextKey") and
1293 <     * value ("nextVal") of a valid node (i.e., one that, at point of
1294 <     * snapshot, has a nonnull user value). Because val fields can
1295 <     * change (including to null, indicating deletion), field nextVal
1296 <     * might not be accurate at point of use, but still maintains the
1297 <     * weak consistency property of holding a value that was once
1298 <     * valid.
1299 <     *
1300 <     * Internal traversals directly access these fields, as in:
1301 <     * {@code while (it.next != null) { process(it.nextKey); it.advance(); }}
1302 <     *
1303 <     * Exported iterators (subclasses of ViewIterator) extract key,
1304 <     * value, or key-value pairs as return values of Iterator.next(),
1305 <     * and encapsulate the it.next check as hasNext();
1306 <     *
1307 <     * The iterator visits once each still-valid node that was
1308 <     * reachable upon iterator construction. It might miss some that
1309 <     * were added to a bin after the bin was visited, which is OK wrt
1310 <     * consistency guarantees. Maintaining this property in the face
1311 <     * of possible ongoing resizes requires a fair amount of
1312 <     * bookkeeping state that is difficult to optimize away amidst
1313 <     * volatile accesses.  Even so, traversal maintains reasonable
1314 <     * throughput.
1315 <     *
1316 <     * Normally, iteration proceeds bin-by-bin traversing lists.
1317 <     * However, if the table has been resized, then all future steps
1318 <     * must traverse both the bin at the current index as well as at
1319 <     * (index + baseSize); and so on for further resizings. To
1320 <     * paranoically cope with potential sharing by users of iterators
1321 <     * across threads, iteration terminates if a bounds checks fails
1322 <     * for a table read.
1323 <     *
1324 <     * The range-based constructor enables creation of parallel
1325 <     * range-splitting traversals. (Not yet implemented.)
784 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
785       */
786 <    static class InternalIterator {
1328 <        Node next;           // the next entry to use
1329 <        Node last;           // the last entry used
1330 <        Object nextKey;      // cached key field of next
1331 <        Object nextVal;      // cached val field of next
1332 <        Node[] tab;          // current table; updated if resized
1333 <        int index;           // index of bin to use next
1334 <        int baseIndex;       // current index of initial table
1335 <        final int baseLimit; // index bound for initial table
1336 <        final int baseSize;  // initial table size
786 >    private transient volatile int cellsBusy;
787  
788 <        /** Creates iterator for all entries in the table. */
789 <        InternalIterator(Node[] tab) {
790 <            this.tab = tab;
791 <            baseLimit = baseSize = (tab == null) ? 0 : tab.length;
1342 <            index = baseIndex = 0;
1343 <            next = null;
1344 <            advance();
1345 <        }
788 >    /**
789 >     * Table of counter cells. When non-null, size is a power of 2.
790 >     */
791 >    private transient volatile CounterCell[] counterCells;
792  
793 <        /** Creates iterator for the given range of the table */
794 <        InternalIterator(Node[] tab, int lo, int hi) {
795 <            this.tab = tab;
796 <            baseSize = (tab == null) ? 0 : tab.length;
1351 <            baseLimit = (hi <= baseSize) ? hi : baseSize;
1352 <            index = baseIndex = (lo >= 0) ? lo : 0;
1353 <            next = null;
1354 <            advance();
1355 <        }
793 >    // views
794 >    private transient KeySetView<K,V> keySet;
795 >    private transient ValuesView<K,V> values;
796 >    private transient EntrySetView<K,V> entrySet;
797  
1357        /** Advances next. See above for explanation. */
1358        final void advance() {
1359            Node e = last = next;
1360            outer: do {
1361                if (e != null)                  // advance past used/skipped node
1362                    e = e.next;
1363                while (e == null) {             // get to next non-null bin
1364                    Node[] t; int b, i, n;      // checks must use locals
1365                    if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
1366                        (t = tab) == null || i >= (n = t.length))
1367                        break outer;
1368                    else if ((e = tabAt(t, i)) != null && e.hash == MOVED)
1369                        tab = (Node[])e.key;    // restarts due to null val
1370                    else                        // visit upper slots if present
1371                        index = (i += baseSize) < n ? i : (baseIndex = b + 1);
1372                }
1373                nextKey = e.key;
1374            } while ((nextVal = e.val) == null);// skip deleted or special nodes
1375            next = e;
1376        }
1377    }
798  
799      /* ---------------- Public operations -------------- */
800  
801      /**
802 <     * Creates a new, empty map with the default initial table size (16),
802 >     * Creates a new, empty map with the default initial table size (16).
803       */
804      public ConcurrentHashMapV8() {
1385        this.counter = new LongAdder();
805      }
806  
807      /**
# Line 1401 | Line 820 | public class ConcurrentHashMapV8<K, V>
820          int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
821                     MAXIMUM_CAPACITY :
822                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
1404        this.counter = new LongAdder();
823          this.sizeCtl = cap;
824      }
825  
# Line 1411 | Line 829 | public class ConcurrentHashMapV8<K, V>
829       * @param m the map
830       */
831      public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
1414        this.counter = new LongAdder();
832          this.sizeCtl = DEFAULT_CAPACITY;
833 <        internalPutAll(m);
833 >        putAll(m);
834      }
835  
836      /**
# Line 1454 | Line 871 | public class ConcurrentHashMapV8<K, V>
871       * nonpositive
872       */
873      public ConcurrentHashMapV8(int initialCapacity,
874 <                               float loadFactor, int concurrencyLevel) {
874 >                             float loadFactor, int concurrencyLevel) {
875          if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
876              throw new IllegalArgumentException();
877          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
878              initialCapacity = concurrencyLevel;   // as estimated threads
879          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
880 <        int cap =  ((size >= (long)MAXIMUM_CAPACITY) ?
881 <                    MAXIMUM_CAPACITY: tableSizeFor((int)size));
1465 <        this.counter = new LongAdder();
880 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
881 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
882          this.sizeCtl = cap;
883      }
884  
885 <    /**
1470 <     * {@inheritDoc}
1471 <     */
1472 <    public boolean isEmpty() {
1473 <        return counter.sum() <= 0L; // ignore transient negative values
1474 <    }
885 >    // Original (since JDK1.2) Map methods
886  
887      /**
888       * {@inheritDoc}
889       */
890      public int size() {
891 <        long n = counter.sum();
891 >        long n = sumCount();
892          return ((n < 0L) ? 0 :
893                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
894                  (int)n);
895      }
896  
897 <    final long longSize() { // accurate version of size needed for views
898 <        long n = counter.sum();
899 <        return (n < 0L) ? 0L : n;
897 >    /**
898 >     * {@inheritDoc}
899 >     */
900 >    public boolean isEmpty() {
901 >        return sumCount() <= 0L; // ignore transient negative values
902      }
903  
904      /**
# Line 1499 | Line 912 | public class ConcurrentHashMapV8<K, V>
912       *
913       * @throws NullPointerException if the specified key is null
914       */
1502    @SuppressWarnings("unchecked")
915      public V get(Object key) {
916 <        if (key == null)
917 <            throw new NullPointerException();
918 <        return (V)internalGet(key);
916 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
917 >        int h = spread(key.hashCode());
918 >        if ((tab = table) != null && (n = tab.length) > 0 &&
919 >            (e = tabAt(tab, (n - 1) & h)) != null) {
920 >            if ((eh = e.hash) == h) {
921 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
922 >                    return e.val;
923 >            }
924 >            else if (eh < 0)
925 >                return (p = e.find(h, key)) != null ? p.val : null;
926 >            while ((e = e.next) != null) {
927 >                if (e.hash == h &&
928 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
929 >                    return e.val;
930 >            }
931 >        }
932 >        return null;
933      }
934  
935      /**
936       * Tests if the specified object is a key in this table.
937       *
938 <     * @param  key   possible key
938 >     * @param  key possible key
939       * @return {@code true} if and only if the specified object
940       *         is a key in this table, as determined by the
941       *         {@code equals} method; {@code false} otherwise
942       * @throws NullPointerException if the specified key is null
943       */
944      public boolean containsKey(Object key) {
945 <        if (key == null)
1520 <            throw new NullPointerException();
1521 <        return internalGet(key) != null;
945 >        return get(key) != null;
946      }
947  
948      /**
# Line 1534 | Line 958 | public class ConcurrentHashMapV8<K, V>
958      public boolean containsValue(Object value) {
959          if (value == null)
960              throw new NullPointerException();
961 <        Object v;
962 <        InternalIterator it = new InternalIterator(table);
963 <        while (it.next != null) {
964 <            if ((v = it.nextVal) == value || value.equals(v))
965 <                return true;
966 <            it.advance();
961 >        Node<K,V>[] t;
962 >        if ((t = table) != null) {
963 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
964 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
965 >                V v;
966 >                if ((v = p.val) == value || (v != null && value.equals(v)))
967 >                    return true;
968 >            }
969          }
970          return false;
971      }
972  
973      /**
1548     * Legacy method testing if some key maps into the specified value
1549     * in this table.  This method is identical in functionality to
1550     * {@link #containsValue}, and exists solely to ensure
1551     * full compatibility with class {@link java.util.Hashtable},
1552     * which supported this method prior to introduction of the
1553     * Java Collections framework.
1554     *
1555     * @param  value a value to search for
1556     * @return {@code true} if and only if some key maps to the
1557     *         {@code value} argument in this table as
1558     *         determined by the {@code equals} method;
1559     *         {@code false} otherwise
1560     * @throws NullPointerException if the specified value is null
1561     */
1562    public boolean contains(Object value) {
1563        return containsValue(value);
1564    }
1565
1566    /**
974       * Maps the specified key to the specified value in this table.
975       * Neither the key nor the value can be null.
976       *
977 <     * <p> The value can be retrieved by calling the {@code get} method
977 >     * <p>The value can be retrieved by calling the {@code get} method
978       * with a key that is equal to the original key.
979       *
980       * @param key key with which the specified value is to be associated
# Line 1576 | Line 983 | public class ConcurrentHashMapV8<K, V>
983       *         {@code null} if there was no mapping for {@code key}
984       * @throws NullPointerException if the specified key or value is null
985       */
1579    @SuppressWarnings("unchecked")
986      public V put(K key, V value) {
987 <        if (key == null || value == null)
1582 <            throw new NullPointerException();
1583 <        return (V)internalPut(key, value);
987 >        return putVal(key, value, false);
988      }
989  
990 <    /**
991 <     * {@inheritDoc}
992 <     *
993 <     * @return the previous value associated with the specified key,
994 <     *         or {@code null} if there was no mapping for the key
995 <     * @throws NullPointerException if the specified key or value is null
996 <     */
997 <    @SuppressWarnings("unchecked")
998 <    public V putIfAbsent(K key, V value) {
999 <        if (key == null || value == null)
1000 <            throw new NullPointerException();
1001 <        return (V)internalPutIfAbsent(key, value);
990 >    /** Implementation for put and putIfAbsent */
991 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
992 >        if (key == null || value == null) throw new NullPointerException();
993 >        int hash = spread(key.hashCode());
994 >        int binCount = 0;
995 >        for (Node<K,V>[] tab = table;;) {
996 >            Node<K,V> f; int n, i, fh;
997 >            if (tab == null || (n = tab.length) == 0)
998 >                tab = initTable();
999 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1000 >                if (casTabAt(tab, i, null,
1001 >                             new Node<K,V>(hash, key, value, null)))
1002 >                    break;                   // no lock when adding to empty bin
1003 >            }
1004 >            else if ((fh = f.hash) == MOVED)
1005 >                tab = helpTransfer(tab, f);
1006 >            else {
1007 >                V oldVal = null;
1008 >                synchronized (f) {
1009 >                    if (tabAt(tab, i) == f) {
1010 >                        if (fh >= 0) {
1011 >                            binCount = 1;
1012 >                            for (Node<K,V> e = f;; ++binCount) {
1013 >                                K ek;
1014 >                                if (e.hash == hash &&
1015 >                                    ((ek = e.key) == key ||
1016 >                                     (ek != null && key.equals(ek)))) {
1017 >                                    oldVal = e.val;
1018 >                                    if (!onlyIfAbsent)
1019 >                                        e.val = value;
1020 >                                    break;
1021 >                                }
1022 >                                Node<K,V> pred = e;
1023 >                                if ((e = e.next) == null) {
1024 >                                    pred.next = new Node<K,V>(hash, key,
1025 >                                                              value, null);
1026 >                                    break;
1027 >                                }
1028 >                            }
1029 >                        }
1030 >                        else if (f instanceof TreeBin) {
1031 >                            Node<K,V> p;
1032 >                            binCount = 2;
1033 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1034 >                                                           value)) != null) {
1035 >                                oldVal = p.val;
1036 >                                if (!onlyIfAbsent)
1037 >                                    p.val = value;
1038 >                            }
1039 >                        }
1040 >                    }
1041 >                }
1042 >                if (binCount != 0) {
1043 >                    if (binCount >= TREEIFY_THRESHOLD)
1044 >                        treeifyBin(tab, i);
1045 >                    if (oldVal != null)
1046 >                        return oldVal;
1047 >                    break;
1048 >                }
1049 >            }
1050 >        }
1051 >        addCount(1L, binCount);
1052 >        return null;
1053      }
1054  
1055      /**
# Line 1605 | Line 1060 | public class ConcurrentHashMapV8<K, V>
1060       * @param m mappings to be stored in this map
1061       */
1062      public void putAll(Map<? extends K, ? extends V> m) {
1063 <        internalPutAll(m);
1064 <    }
1065 <
1611 <    /**
1612 <     * If the specified key is not already associated with a value,
1613 <     * computes its value using the given mappingFunction and
1614 <     * enters it into the map.  This is equivalent to
1615 <     * <pre> {@code
1616 <     * if (map.containsKey(key))
1617 <     *   return map.get(key);
1618 <     * value = mappingFunction.map(key);
1619 <     * map.put(key, value);
1620 <     * return value;}</pre>
1621 <     *
1622 <     * except that the action is performed atomically.  If the
1623 <     * function returns {@code null} (in which case a {@code
1624 <     * NullPointerException} is thrown), or the function itself throws
1625 <     * an (unchecked) exception, the exception is rethrown to its
1626 <     * caller, and no mapping is recorded.  Some attempted update
1627 <     * operations on this map by other threads may be blocked while
1628 <     * computation is in progress, so the computation should be short
1629 <     * and simple, and must not attempt to update any other mappings
1630 <     * of this Map. The most appropriate usage is to construct a new
1631 <     * object serving as an initial mapped value, or memoized result,
1632 <     * as in:
1633 <     *
1634 <     *  <pre> {@code
1635 <     * map.computeIfAbsent(key, new MappingFunction<K, V>() {
1636 <     *   public V map(K k) { return new Value(f(k)); }});}</pre>
1637 <     *
1638 <     * @param key key with which the specified value is to be associated
1639 <     * @param mappingFunction the function to compute a value
1640 <     * @return the current (existing or computed) value associated with
1641 <     *         the specified key.
1642 <     * @throws NullPointerException if the specified key, mappingFunction,
1643 <     *         or computed value is null
1644 <     * @throws IllegalStateException if the computation detectably
1645 <     *         attempts a recursive update to this map that would
1646 <     *         otherwise never complete
1647 <     * @throws RuntimeException or Error if the mappingFunction does so,
1648 <     *         in which case the mapping is left unestablished
1649 <     */
1650 <    @SuppressWarnings("unchecked")
1651 <    public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
1652 <        if (key == null || mappingFunction == null)
1653 <            throw new NullPointerException();
1654 <        return (V)internalComputeIfAbsent(key, mappingFunction);
1655 <    }
1656 <
1657 <    /**
1658 <     * Computes and enters a new mapping value given a key and
1659 <     * its current mapped value (or {@code null} if there is no current
1660 <     * mapping). This is equivalent to
1661 <     *  <pre> {@code
1662 <     *  map.put(key, remappingFunction.remap(key, map.get(key));
1663 <     * }</pre>
1664 <     *
1665 <     * except that the action is performed atomically.  If the
1666 <     * function returns {@code null} (in which case a {@code
1667 <     * NullPointerException} is thrown), or the function itself throws
1668 <     * an (unchecked) exception, the exception is rethrown to its
1669 <     * caller, and current mapping is left unchanged.  Some attempted
1670 <     * update operations on this map by other threads may be blocked
1671 <     * while computation is in progress, so the computation should be
1672 <     * short and simple, and must not attempt to update any other
1673 <     * mappings of this Map. For example, to either create or
1674 <     * append new messages to a value mapping:
1675 <     *
1676 <     * <pre> {@code
1677 <     * Map<Key, String> map = ...;
1678 <     * final String msg = ...;
1679 <     * map.compute(key, new RemappingFunction<Key, String>() {
1680 <     *   public String remap(Key k, String v) {
1681 <     *    return (v == null) ? msg : v + msg;});}}</pre>
1682 <     *
1683 <     * @param key key with which the specified value is to be associated
1684 <     * @param remappingFunction the function to compute a value
1685 <     * @return the new value associated with
1686 <     *         the specified key.
1687 <     * @throws NullPointerException if the specified key or remappingFunction
1688 <     *         or computed value is null
1689 <     * @throws IllegalStateException if the computation detectably
1690 <     *         attempts a recursive update to this map that would
1691 <     *         otherwise never complete
1692 <     * @throws RuntimeException or Error if the remappingFunction does so,
1693 <     *         in which case the mapping is unchanged
1694 <     */
1695 <    @SuppressWarnings("unchecked")
1696 <    public V compute(K key, RemappingFunction<? super K, V> remappingFunction) {
1697 <        if (key == null || remappingFunction == null)
1698 <            throw new NullPointerException();
1699 <        return (V)internalCompute(key, remappingFunction);
1063 >        tryPresize(m.size());
1064 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1065 >            putVal(e.getKey(), e.getValue(), false);
1066      }
1067  
1068      /**
# Line 1708 | Line 1074 | public class ConcurrentHashMapV8<K, V>
1074       *         {@code null} if there was no mapping for {@code key}
1075       * @throws NullPointerException if the specified key is null
1076       */
1711    @SuppressWarnings("unchecked")
1077      public V remove(Object key) {
1078 <        if (key == null)
1714 <            throw new NullPointerException();
1715 <        return (V)internalReplace(key, null, null);
1716 <    }
1717 <
1718 <    /**
1719 <     * {@inheritDoc}
1720 <     *
1721 <     * @throws NullPointerException if the specified key is null
1722 <     */
1723 <    public boolean remove(Object key, Object value) {
1724 <        if (key == null)
1725 <            throw new NullPointerException();
1726 <        if (value == null)
1727 <            return false;
1728 <        return internalReplace(key, null, value) != null;
1729 <    }
1730 <
1731 <    /**
1732 <     * {@inheritDoc}
1733 <     *
1734 <     * @throws NullPointerException if any of the arguments are null
1735 <     */
1736 <    public boolean replace(K key, V oldValue, V newValue) {
1737 <        if (key == null || oldValue == null || newValue == null)
1738 <            throw new NullPointerException();
1739 <        return internalReplace(key, newValue, oldValue) != null;
1078 >        return replaceNode(key, null, null);
1079      }
1080  
1081      /**
1082 <     * {@inheritDoc}
1083 <     *
1084 <     * @return the previous value associated with the specified key,
1746 <     *         or {@code null} if there was no mapping for the key
1747 <     * @throws NullPointerException if the specified key or value is null
1082 >     * Implementation for the four public remove/replace methods:
1083 >     * Replaces node value with v, conditional upon match of cv if
1084 >     * non-null.  If resulting value is null, delete.
1085       */
1086 <    @SuppressWarnings("unchecked")
1087 <    public V replace(K key, V value) {
1088 <        if (key == null || value == null)
1089 <            throw new NullPointerException();
1090 <        return (V)internalReplace(key, value, null);
1086 >    final V replaceNode(Object key, V value, Object cv) {
1087 >        int hash = spread(key.hashCode());
1088 >        for (Node<K,V>[] tab = table;;) {
1089 >            Node<K,V> f; int n, i, fh;
1090 >            if (tab == null || (n = tab.length) == 0 ||
1091 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1092 >                break;
1093 >            else if ((fh = f.hash) == MOVED)
1094 >                tab = helpTransfer(tab, f);
1095 >            else {
1096 >                V oldVal = null;
1097 >                boolean validated = false;
1098 >                synchronized (f) {
1099 >                    if (tabAt(tab, i) == f) {
1100 >                        if (fh >= 0) {
1101 >                            validated = true;
1102 >                            for (Node<K,V> e = f, pred = null;;) {
1103 >                                K ek;
1104 >                                if (e.hash == hash &&
1105 >                                    ((ek = e.key) == key ||
1106 >                                     (ek != null && key.equals(ek)))) {
1107 >                                    V ev = e.val;
1108 >                                    if (cv == null || cv == ev ||
1109 >                                        (ev != null && cv.equals(ev))) {
1110 >                                        oldVal = ev;
1111 >                                        if (value != null)
1112 >                                            e.val = value;
1113 >                                        else if (pred != null)
1114 >                                            pred.next = e.next;
1115 >                                        else
1116 >                                            setTabAt(tab, i, e.next);
1117 >                                    }
1118 >                                    break;
1119 >                                }
1120 >                                pred = e;
1121 >                                if ((e = e.next) == null)
1122 >                                    break;
1123 >                            }
1124 >                        }
1125 >                        else if (f instanceof TreeBin) {
1126 >                            validated = true;
1127 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1128 >                            TreeNode<K,V> r, p;
1129 >                            if ((r = t.root) != null &&
1130 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1131 >                                V pv = p.val;
1132 >                                if (cv == null || cv == pv ||
1133 >                                    (pv != null && cv.equals(pv))) {
1134 >                                    oldVal = pv;
1135 >                                    if (value != null)
1136 >                                        p.val = value;
1137 >                                    else if (t.removeTreeNode(p))
1138 >                                        setTabAt(tab, i, untreeify(t.first));
1139 >                                }
1140 >                            }
1141 >                        }
1142 >                    }
1143 >                }
1144 >                if (validated) {
1145 >                    if (oldVal != null) {
1146 >                        if (value == null)
1147 >                            addCount(-1L, -1);
1148 >                        return oldVal;
1149 >                    }
1150 >                    break;
1151 >                }
1152 >            }
1153 >        }
1154 >        return null;
1155      }
1156  
1157      /**
1158       * Removes all of the mappings from this map.
1159       */
1160      public void clear() {
1161 <        internalClear();
1161 >        long delta = 0L; // negative number of deletions
1162 >        int i = 0;
1163 >        Node<K,V>[] tab = table;
1164 >        while (tab != null && i < tab.length) {
1165 >            int fh;
1166 >            Node<K,V> f = tabAt(tab, i);
1167 >            if (f == null)
1168 >                ++i;
1169 >            else if ((fh = f.hash) == MOVED) {
1170 >                tab = helpTransfer(tab, f);
1171 >                i = 0; // restart
1172 >            }
1173 >            else {
1174 >                synchronized (f) {
1175 >                    if (tabAt(tab, i) == f) {
1176 >                        Node<K,V> p = (fh >= 0 ? f :
1177 >                                       (f instanceof TreeBin) ?
1178 >                                       ((TreeBin<K,V>)f).first : null);
1179 >                        while (p != null) {
1180 >                            --delta;
1181 >                            p = p.next;
1182 >                        }
1183 >                        setTabAt(tab, i++, null);
1184 >                    }
1185 >                }
1186 >            }
1187 >        }
1188 >        if (delta != 0L)
1189 >            addCount(delta, -1);
1190      }
1191  
1192      /**
1193       * Returns a {@link Set} view of the keys contained in this map.
1194       * The set is backed by the map, so changes to the map are
1195 <     * reflected in the set, and vice-versa.  The set supports element
1195 >     * reflected in the set, and vice-versa. The set supports element
1196       * removal, which removes the corresponding mapping from this map,
1197       * via the {@code Iterator.remove}, {@code Set.remove},
1198       * {@code removeAll}, {@code retainAll}, and {@code clear}
# Line 1775 | Line 1204 | public class ConcurrentHashMapV8<K, V>
1204       * and guarantees to traverse elements as they existed upon
1205       * construction of the iterator, and may (but is not guaranteed to)
1206       * reflect any modifications subsequent to construction.
1207 +     *
1208 +     * @return the set view
1209       */
1210 <    public Set<K> keySet() {
1211 <        KeySet<K,V> ks = keySet;
1212 <        return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
1210 >    public KeySetView<K,V> keySet() {
1211 >        KeySetView<K,V> ks;
1212 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1213      }
1214  
1215      /**
# Line 1796 | Line 1227 | public class ConcurrentHashMapV8<K, V>
1227       * and guarantees to traverse elements as they existed upon
1228       * construction of the iterator, and may (but is not guaranteed to)
1229       * reflect any modifications subsequent to construction.
1230 +     *
1231 +     * @return the collection view
1232       */
1233      public Collection<V> values() {
1234 <        Values<K,V> vs = values;
1235 <        return (vs != null) ? vs : (values = new Values<K,V>(this));
1234 >        ValuesView<K,V> vs;
1235 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1236      }
1237  
1238      /**
# Line 1809 | Line 1242 | public class ConcurrentHashMapV8<K, V>
1242       * removal, which removes the corresponding mapping from the map,
1243       * via the {@code Iterator.remove}, {@code Set.remove},
1244       * {@code removeAll}, {@code retainAll}, and {@code clear}
1245 <     * operations.  It does not support the {@code add} or
1813 <     * {@code addAll} operations.
1245 >     * operations.
1246       *
1247       * <p>The view's {@code iterator} is a "weakly consistent" iterator
1248       * that will never throw {@link ConcurrentModificationException},
1249       * and guarantees to traverse elements as they existed upon
1250       * construction of the iterator, and may (but is not guaranteed to)
1251       * reflect any modifications subsequent to construction.
1820     */
1821    public Set<Map.Entry<K,V>> entrySet() {
1822        EntrySet<K,V> es = entrySet;
1823        return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
1824    }
1825
1826    /**
1827     * Returns an enumeration of the keys in this table.
1828     *
1829     * @return an enumeration of the keys in this table
1830     * @see #keySet()
1831     */
1832    public Enumeration<K> keys() {
1833        return new KeyIterator<K,V>(this);
1834    }
1835
1836    /**
1837     * Returns an enumeration of the values in this table.
1252       *
1253 <     * @return an enumeration of the values in this table
1840 <     * @see #values()
1253 >     * @return the set view
1254       */
1255 <    public Enumeration<V> elements() {
1256 <        return new ValueIterator<K,V>(this);
1255 >    public Set<Map.Entry<K,V>> entrySet() {
1256 >        EntrySetView<K,V> es;
1257 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1258      }
1259  
1260      /**
# Line 1852 | Line 1266 | public class ConcurrentHashMapV8<K, V>
1266       */
1267      public int hashCode() {
1268          int h = 0;
1269 <        InternalIterator it = new InternalIterator(table);
1270 <        while (it.next != null) {
1271 <            h += it.nextKey.hashCode() ^ it.nextVal.hashCode();
1272 <            it.advance();
1269 >        Node<K,V>[] t;
1270 >        if ((t = table) != null) {
1271 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1272 >            for (Node<K,V> p; (p = it.advance()) != null; )
1273 >                h += p.key.hashCode() ^ p.val.hashCode();
1274          }
1275          return h;
1276      }
# Line 1872 | Line 1287 | public class ConcurrentHashMapV8<K, V>
1287       * @return a string representation of this map
1288       */
1289      public String toString() {
1290 <        InternalIterator it = new InternalIterator(table);
1290 >        Node<K,V>[] t;
1291 >        int f = (t = table) == null ? 0 : t.length;
1292 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1293          StringBuilder sb = new StringBuilder();
1294          sb.append('{');
1295 <        if (it.next != null) {
1295 >        Node<K,V> p;
1296 >        if ((p = it.advance()) != null) {
1297              for (;;) {
1298 <                Object k = it.nextKey, v = it.nextVal;
1298 >                K k = p.key;
1299 >                V v = p.val;
1300                  sb.append(k == this ? "(this Map)" : k);
1301                  sb.append('=');
1302                  sb.append(v == this ? "(this Map)" : v);
1303 <                it.advance();
1885 <                if (it.next == null)
1303 >                if ((p = it.advance()) == null)
1304                      break;
1305                  sb.append(',').append(' ');
1306              }
# Line 1905 | Line 1323 | public class ConcurrentHashMapV8<K, V>
1323              if (!(o instanceof Map))
1324                  return false;
1325              Map<?,?> m = (Map<?,?>) o;
1326 <            InternalIterator it = new InternalIterator(table);
1327 <            while (it.next != null) {
1328 <                Object val = it.nextVal;
1329 <                Object v = m.get(it.nextKey);
1326 >            Node<K,V>[] t;
1327 >            int f = (t = table) == null ? 0 : t.length;
1328 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1329 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1330 >                V val = p.val;
1331 >                Object v = m.get(p.key);
1332                  if (v == null || (v != val && !v.equals(val)))
1333                      return false;
1914                it.advance();
1334              }
1335              for (Map.Entry<?,?> e : m.entrySet()) {
1336                  Object mk, mv, v;
1337                  if ((mk = e.getKey()) == null ||
1338                      (mv = e.getValue()) == null ||
1339 <                    (v = internalGet(mk)) == null ||
1339 >                    (v = get(mk)) == null ||
1340                      (mv != v && !mv.equals(v)))
1341                      return false;
1342              }
# Line 1925 | Line 1344 | public class ConcurrentHashMapV8<K, V>
1344          return true;
1345      }
1346  
1347 <    /* ----------------Iterators -------------- */
1347 >    /**
1348 >     * Stripped-down version of helper class used in previous version,
1349 >     * declared for the sake of serialization compatibility
1350 >     */
1351 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1352 >        private static final long serialVersionUID = 2249069246763182397L;
1353 >        final float loadFactor;
1354 >        Segment(float lf) { this.loadFactor = lf; }
1355 >    }
1356 >
1357 >    /**
1358 >     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1359 >     * stream (i.e., serializes it).
1360 >     * @param s the stream
1361 >     * @serialData
1362 >     * the key (Object) and value (Object)
1363 >     * for each key-value mapping, followed by a null pair.
1364 >     * The key-value mappings are emitted in no particular order.
1365 >     */
1366 >    private void writeObject(java.io.ObjectOutputStream s)
1367 >        throws java.io.IOException {
1368 >        // For serialization compatibility
1369 >        // Emulate segment calculation from previous version of this class
1370 >        int sshift = 0;
1371 >        int ssize = 1;
1372 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1373 >            ++sshift;
1374 >            ssize <<= 1;
1375 >        }
1376 >        int segmentShift = 32 - sshift;
1377 >        int segmentMask = ssize - 1;
1378 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1379 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1380 >        for (int i = 0; i < segments.length; ++i)
1381 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1382 >        s.putFields().put("segments", segments);
1383 >        s.putFields().put("segmentShift", segmentShift);
1384 >        s.putFields().put("segmentMask", segmentMask);
1385 >        s.writeFields();
1386 >
1387 >        Node<K,V>[] t;
1388 >        if ((t = table) != null) {
1389 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1390 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1391 >                s.writeObject(p.key);
1392 >                s.writeObject(p.val);
1393 >            }
1394 >        }
1395 >        s.writeObject(null);
1396 >        s.writeObject(null);
1397 >        segments = null; // throw away
1398 >    }
1399 >
1400 >    /**
1401 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1402 >     * @param s the stream
1403 >     */
1404 >    private void readObject(java.io.ObjectInputStream s)
1405 >        throws java.io.IOException, ClassNotFoundException {
1406 >        /*
1407 >         * To improve performance in typical cases, we create nodes
1408 >         * while reading, then place in table once size is known.
1409 >         * However, we must also validate uniqueness and deal with
1410 >         * overpopulated bins while doing so, which requires
1411 >         * specialized versions of putVal mechanics.
1412 >         */
1413 >        sizeCtl = -1; // force exclusion for table construction
1414 >        s.defaultReadObject();
1415 >        long size = 0L;
1416 >        Node<K,V> p = null;
1417 >        for (;;) {
1418 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1419 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1420 >            if (k != null && v != null) {
1421 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1422 >                ++size;
1423 >            }
1424 >            else
1425 >                break;
1426 >        }
1427 >        if (size == 0L)
1428 >            sizeCtl = 0;
1429 >        else {
1430 >            int n;
1431 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1432 >                n = MAXIMUM_CAPACITY;
1433 >            else {
1434 >                int sz = (int)size;
1435 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1436 >            }
1437 >            @SuppressWarnings({"rawtypes","unchecked"})
1438 >                Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1439 >            int mask = n - 1;
1440 >            long added = 0L;
1441 >            while (p != null) {
1442 >                boolean insertAtFront;
1443 >                Node<K,V> next = p.next, first;
1444 >                int h = p.hash, j = h & mask;
1445 >                if ((first = tabAt(tab, j)) == null)
1446 >                    insertAtFront = true;
1447 >                else {
1448 >                    K k = p.key;
1449 >                    if (first.hash < 0) {
1450 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1451 >                        if (t.putTreeVal(h, k, p.val) == null)
1452 >                            ++added;
1453 >                        insertAtFront = false;
1454 >                    }
1455 >                    else {
1456 >                        int binCount = 0;
1457 >                        insertAtFront = true;
1458 >                        Node<K,V> q; K qk;
1459 >                        for (q = first; q != null; q = q.next) {
1460 >                            if (q.hash == h &&
1461 >                                ((qk = q.key) == k ||
1462 >                                 (qk != null && k.equals(qk)))) {
1463 >                                insertAtFront = false;
1464 >                                break;
1465 >                            }
1466 >                            ++binCount;
1467 >                        }
1468 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1469 >                            insertAtFront = false;
1470 >                            ++added;
1471 >                            p.next = first;
1472 >                            TreeNode<K,V> hd = null, tl = null;
1473 >                            for (q = p; q != null; q = q.next) {
1474 >                                TreeNode<K,V> t = new TreeNode<K,V>
1475 >                                    (q.hash, q.key, q.val, null, null);
1476 >                                if ((t.prev = tl) == null)
1477 >                                    hd = t;
1478 >                                else
1479 >                                    tl.next = t;
1480 >                                tl = t;
1481 >                            }
1482 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1483 >                        }
1484 >                    }
1485 >                }
1486 >                if (insertAtFront) {
1487 >                    ++added;
1488 >                    p.next = first;
1489 >                    setTabAt(tab, j, p);
1490 >                }
1491 >                p = next;
1492 >            }
1493 >            table = tab;
1494 >            sizeCtl = n - (n >>> 2);
1495 >            baseCount = added;
1496 >        }
1497 >    }
1498 >
1499 >    // ConcurrentMap methods
1500 >
1501 >    /**
1502 >     * {@inheritDoc}
1503 >     *
1504 >     * @return the previous value associated with the specified key,
1505 >     *         or {@code null} if there was no mapping for the key
1506 >     * @throws NullPointerException if the specified key or value is null
1507 >     */
1508 >    public V putIfAbsent(K key, V value) {
1509 >        return putVal(key, value, true);
1510 >    }
1511 >
1512 >    /**
1513 >     * {@inheritDoc}
1514 >     *
1515 >     * @throws NullPointerException if the specified key is null
1516 >     */
1517 >    public boolean remove(Object key, Object value) {
1518 >        if (key == null)
1519 >            throw new NullPointerException();
1520 >        return value != null && replaceNode(key, null, value) != null;
1521 >    }
1522 >
1523 >    /**
1524 >     * {@inheritDoc}
1525 >     *
1526 >     * @throws NullPointerException if any of the arguments are null
1527 >     */
1528 >    public boolean replace(K key, V oldValue, V newValue) {
1529 >        if (key == null || oldValue == null || newValue == null)
1530 >            throw new NullPointerException();
1531 >        return replaceNode(key, newValue, oldValue) != null;
1532 >    }
1533 >
1534 >    /**
1535 >     * {@inheritDoc}
1536 >     *
1537 >     * @return the previous value associated with the specified key,
1538 >     *         or {@code null} if there was no mapping for the key
1539 >     * @throws NullPointerException if the specified key or value is null
1540 >     */
1541 >    public V replace(K key, V value) {
1542 >        if (key == null || value == null)
1543 >            throw new NullPointerException();
1544 >        return replaceNode(key, value, null);
1545 >    }
1546 >
1547 >    // Overrides of JDK8+ Map extension method defaults
1548 >
1549 >    /**
1550 >     * Returns the value to which the specified key is mapped, or the
1551 >     * given default value if this map contains no mapping for the
1552 >     * key.
1553 >     *
1554 >     * @param key the key whose associated value is to be returned
1555 >     * @param defaultValue the value to return if this map contains
1556 >     * no mapping for the given key
1557 >     * @return the mapping for the key, if present; else the default value
1558 >     * @throws NullPointerException if the specified key is null
1559 >     */
1560 >    public V getOrDefault(Object key, V defaultValue) {
1561 >        V v;
1562 >        return (v = get(key)) == null ? defaultValue : v;
1563 >    }
1564 >
1565 >    public void forEach(BiAction<? super K, ? super V> action) {
1566 >        if (action == null) throw new NullPointerException();
1567 >        Node<K,V>[] t;
1568 >        if ((t = table) != null) {
1569 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1570 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1571 >                action.apply(p.key, p.val);
1572 >            }
1573 >        }
1574 >    }
1575 >
1576 >    public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1577 >        if (function == null) throw new NullPointerException();
1578 >        Node<K,V>[] t;
1579 >        if ((t = table) != null) {
1580 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1581 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1582 >                V oldValue = p.val;
1583 >                for (K key = p.key;;) {
1584 >                    V newValue = function.apply(key, oldValue);
1585 >                    if (newValue == null)
1586 >                        throw new NullPointerException();
1587 >                    if (replaceNode(key, newValue, oldValue) != null ||
1588 >                        (oldValue = get(key)) == null)
1589 >                        break;
1590 >                }
1591 >            }
1592 >        }
1593 >    }
1594 >
1595 >    /**
1596 >     * If the specified key is not already associated with a value,
1597 >     * attempts to compute its value using the given mapping function
1598 >     * and enters it into this map unless {@code null}.  The entire
1599 >     * method invocation is performed atomically, so the function is
1600 >     * applied at most once per key.  Some attempted update operations
1601 >     * on this map by other threads may be blocked while computation
1602 >     * is in progress, so the computation should be short and simple,
1603 >     * and must not attempt to update any other mappings of this map.
1604 >     *
1605 >     * @param key key with which the specified value is to be associated
1606 >     * @param mappingFunction the function to compute a value
1607 >     * @return the current (existing or computed) value associated with
1608 >     *         the specified key, or null if the computed value is null
1609 >     * @throws NullPointerException if the specified key or mappingFunction
1610 >     *         is null
1611 >     * @throws IllegalStateException if the computation detectably
1612 >     *         attempts a recursive update to this map that would
1613 >     *         otherwise never complete
1614 >     * @throws RuntimeException or Error if the mappingFunction does so,
1615 >     *         in which case the mapping is left unestablished
1616 >     */
1617 >    public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1618 >        if (key == null || mappingFunction == null)
1619 >            throw new NullPointerException();
1620 >        int h = spread(key.hashCode());
1621 >        V val = null;
1622 >        int binCount = 0;
1623 >        for (Node<K,V>[] tab = table;;) {
1624 >            Node<K,V> f; int n, i, fh;
1625 >            if (tab == null || (n = tab.length) == 0)
1626 >                tab = initTable();
1627 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1628 >                Node<K,V> r = new ReservationNode<K,V>();
1629 >                synchronized (r) {
1630 >                    if (casTabAt(tab, i, null, r)) {
1631 >                        binCount = 1;
1632 >                        Node<K,V> node = null;
1633 >                        try {
1634 >                            if ((val = mappingFunction.apply(key)) != null)
1635 >                                node = new Node<K,V>(h, key, val, null);
1636 >                        } finally {
1637 >                            setTabAt(tab, i, node);
1638 >                        }
1639 >                    }
1640 >                }
1641 >                if (binCount != 0)
1642 >                    break;
1643 >            }
1644 >            else if ((fh = f.hash) == MOVED)
1645 >                tab = helpTransfer(tab, f);
1646 >            else {
1647 >                boolean added = false;
1648 >                synchronized (f) {
1649 >                    if (tabAt(tab, i) == f) {
1650 >                        if (fh >= 0) {
1651 >                            binCount = 1;
1652 >                            for (Node<K,V> e = f;; ++binCount) {
1653 >                                K ek; V ev;
1654 >                                if (e.hash == h &&
1655 >                                    ((ek = e.key) == key ||
1656 >                                     (ek != null && key.equals(ek)))) {
1657 >                                    val = e.val;
1658 >                                    break;
1659 >                                }
1660 >                                Node<K,V> pred = e;
1661 >                                if ((e = e.next) == null) {
1662 >                                    if ((val = mappingFunction.apply(key)) != null) {
1663 >                                        added = true;
1664 >                                        pred.next = new Node<K,V>(h, key, val, null);
1665 >                                    }
1666 >                                    break;
1667 >                                }
1668 >                            }
1669 >                        }
1670 >                        else if (f instanceof TreeBin) {
1671 >                            binCount = 2;
1672 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1673 >                            TreeNode<K,V> r, p;
1674 >                            if ((r = t.root) != null &&
1675 >                                (p = r.findTreeNode(h, key, null)) != null)
1676 >                                val = p.val;
1677 >                            else if ((val = mappingFunction.apply(key)) != null) {
1678 >                                added = true;
1679 >                                t.putTreeVal(h, key, val);
1680 >                            }
1681 >                        }
1682 >                    }
1683 >                }
1684 >                if (binCount != 0) {
1685 >                    if (binCount >= TREEIFY_THRESHOLD)
1686 >                        treeifyBin(tab, i);
1687 >                    if (!added)
1688 >                        return val;
1689 >                    break;
1690 >                }
1691 >            }
1692 >        }
1693 >        if (val != null)
1694 >            addCount(1L, binCount);
1695 >        return val;
1696 >    }
1697 >
1698 >    /**
1699 >     * If the value for the specified key is present, attempts to
1700 >     * compute a new mapping given the key and its current mapped
1701 >     * value.  The entire method invocation is performed atomically.
1702 >     * Some attempted update operations on this map by other threads
1703 >     * may be blocked while computation is in progress, so the
1704 >     * computation should be short and simple, and must not attempt to
1705 >     * update any other mappings of this map.
1706 >     *
1707 >     * @param key key with which a value may be associated
1708 >     * @param remappingFunction the function to compute a value
1709 >     * @return the new value associated with the specified key, or null if none
1710 >     * @throws NullPointerException if the specified key or remappingFunction
1711 >     *         is null
1712 >     * @throws IllegalStateException if the computation detectably
1713 >     *         attempts a recursive update to this map that would
1714 >     *         otherwise never complete
1715 >     * @throws RuntimeException or Error if the remappingFunction does so,
1716 >     *         in which case the mapping is unchanged
1717 >     */
1718 >    public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1719 >        if (key == null || remappingFunction == null)
1720 >            throw new NullPointerException();
1721 >        int h = spread(key.hashCode());
1722 >        V val = null;
1723 >        int delta = 0;
1724 >        int binCount = 0;
1725 >        for (Node<K,V>[] tab = table;;) {
1726 >            Node<K,V> f; int n, i, fh;
1727 >            if (tab == null || (n = tab.length) == 0)
1728 >                tab = initTable();
1729 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1730 >                break;
1731 >            else if ((fh = f.hash) == MOVED)
1732 >                tab = helpTransfer(tab, f);
1733 >            else {
1734 >                synchronized (f) {
1735 >                    if (tabAt(tab, i) == f) {
1736 >                        if (fh >= 0) {
1737 >                            binCount = 1;
1738 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1739 >                                K ek;
1740 >                                if (e.hash == h &&
1741 >                                    ((ek = e.key) == key ||
1742 >                                     (ek != null && key.equals(ek)))) {
1743 >                                    val = remappingFunction.apply(key, e.val);
1744 >                                    if (val != null)
1745 >                                        e.val = val;
1746 >                                    else {
1747 >                                        delta = -1;
1748 >                                        Node<K,V> en = e.next;
1749 >                                        if (pred != null)
1750 >                                            pred.next = en;
1751 >                                        else
1752 >                                            setTabAt(tab, i, en);
1753 >                                    }
1754 >                                    break;
1755 >                                }
1756 >                                pred = e;
1757 >                                if ((e = e.next) == null)
1758 >                                    break;
1759 >                            }
1760 >                        }
1761 >                        else if (f instanceof TreeBin) {
1762 >                            binCount = 2;
1763 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1764 >                            TreeNode<K,V> r, p;
1765 >                            if ((r = t.root) != null &&
1766 >                                (p = r.findTreeNode(h, key, null)) != null) {
1767 >                                val = remappingFunction.apply(key, p.val);
1768 >                                if (val != null)
1769 >                                    p.val = val;
1770 >                                else {
1771 >                                    delta = -1;
1772 >                                    if (t.removeTreeNode(p))
1773 >                                        setTabAt(tab, i, untreeify(t.first));
1774 >                                }
1775 >                            }
1776 >                        }
1777 >                    }
1778 >                }
1779 >                if (binCount != 0)
1780 >                    break;
1781 >            }
1782 >        }
1783 >        if (delta != 0)
1784 >            addCount((long)delta, binCount);
1785 >        return val;
1786 >    }
1787 >
1788 >    /**
1789 >     * Attempts to compute a mapping for the specified key and its
1790 >     * current mapped value (or {@code null} if there is no current
1791 >     * mapping). The entire method invocation is performed atomically.
1792 >     * Some attempted update operations on this map by other threads
1793 >     * may be blocked while computation is in progress, so the
1794 >     * computation should be short and simple, and must not attempt to
1795 >     * update any other mappings of this Map.
1796 >     *
1797 >     * @param key key with which the specified value is to be associated
1798 >     * @param remappingFunction the function to compute a value
1799 >     * @return the new value associated with the specified key, or null if none
1800 >     * @throws NullPointerException if the specified key or remappingFunction
1801 >     *         is null
1802 >     * @throws IllegalStateException if the computation detectably
1803 >     *         attempts a recursive update to this map that would
1804 >     *         otherwise never complete
1805 >     * @throws RuntimeException or Error if the remappingFunction does so,
1806 >     *         in which case the mapping is unchanged
1807 >     */
1808 >    public V compute(K key,
1809 >                     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1810 >        if (key == null || remappingFunction == null)
1811 >            throw new NullPointerException();
1812 >        int h = spread(key.hashCode());
1813 >        V val = null;
1814 >        int delta = 0;
1815 >        int binCount = 0;
1816 >        for (Node<K,V>[] tab = table;;) {
1817 >            Node<K,V> f; int n, i, fh;
1818 >            if (tab == null || (n = tab.length) == 0)
1819 >                tab = initTable();
1820 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1821 >                Node<K,V> r = new ReservationNode<K,V>();
1822 >                synchronized (r) {
1823 >                    if (casTabAt(tab, i, null, r)) {
1824 >                        binCount = 1;
1825 >                        Node<K,V> node = null;
1826 >                        try {
1827 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1828 >                                delta = 1;
1829 >                                node = new Node<K,V>(h, key, val, null);
1830 >                            }
1831 >                        } finally {
1832 >                            setTabAt(tab, i, node);
1833 >                        }
1834 >                    }
1835 >                }
1836 >                if (binCount != 0)
1837 >                    break;
1838 >            }
1839 >            else if ((fh = f.hash) == MOVED)
1840 >                tab = helpTransfer(tab, f);
1841 >            else {
1842 >                synchronized (f) {
1843 >                    if (tabAt(tab, i) == f) {
1844 >                        if (fh >= 0) {
1845 >                            binCount = 1;
1846 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1847 >                                K ek;
1848 >                                if (e.hash == h &&
1849 >                                    ((ek = e.key) == key ||
1850 >                                     (ek != null && key.equals(ek)))) {
1851 >                                    val = remappingFunction.apply(key, e.val);
1852 >                                    if (val != null)
1853 >                                        e.val = val;
1854 >                                    else {
1855 >                                        delta = -1;
1856 >                                        Node<K,V> en = e.next;
1857 >                                        if (pred != null)
1858 >                                            pred.next = en;
1859 >                                        else
1860 >                                            setTabAt(tab, i, en);
1861 >                                    }
1862 >                                    break;
1863 >                                }
1864 >                                pred = e;
1865 >                                if ((e = e.next) == null) {
1866 >                                    val = remappingFunction.apply(key, null);
1867 >                                    if (val != null) {
1868 >                                        delta = 1;
1869 >                                        pred.next =
1870 >                                            new Node<K,V>(h, key, val, null);
1871 >                                    }
1872 >                                    break;
1873 >                                }
1874 >                            }
1875 >                        }
1876 >                        else if (f instanceof TreeBin) {
1877 >                            binCount = 1;
1878 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1879 >                            TreeNode<K,V> r, p;
1880 >                            if ((r = t.root) != null)
1881 >                                p = r.findTreeNode(h, key, null);
1882 >                            else
1883 >                                p = null;
1884 >                            V pv = (p == null) ? null : p.val;
1885 >                            val = remappingFunction.apply(key, pv);
1886 >                            if (val != null) {
1887 >                                if (p != null)
1888 >                                    p.val = val;
1889 >                                else {
1890 >                                    delta = 1;
1891 >                                    t.putTreeVal(h, key, val);
1892 >                                }
1893 >                            }
1894 >                            else if (p != null) {
1895 >                                delta = -1;
1896 >                                if (t.removeTreeNode(p))
1897 >                                    setTabAt(tab, i, untreeify(t.first));
1898 >                            }
1899 >                        }
1900 >                    }
1901 >                }
1902 >                if (binCount != 0) {
1903 >                    if (binCount >= TREEIFY_THRESHOLD)
1904 >                        treeifyBin(tab, i);
1905 >                    break;
1906 >                }
1907 >            }
1908 >        }
1909 >        if (delta != 0)
1910 >            addCount((long)delta, binCount);
1911 >        return val;
1912 >    }
1913  
1914      /**
1915 <     * Base class for key, value, and entry iterators.  Adds a map
1916 <     * reference to InternalIterator to support Iterator.remove.
1915 >     * If the specified key is not already associated with a
1916 >     * (non-null) value, associates it with the given value.
1917 >     * Otherwise, replaces the value with the results of the given
1918 >     * remapping function, or removes if {@code null}. The entire
1919 >     * method invocation is performed atomically.  Some attempted
1920 >     * update operations on this map by other threads may be blocked
1921 >     * while computation is in progress, so the computation should be
1922 >     * short and simple, and must not attempt to update any other
1923 >     * mappings of this Map.
1924 >     *
1925 >     * @param key key with which the specified value is to be associated
1926 >     * @param value the value to use if absent
1927 >     * @param remappingFunction the function to recompute a value if present
1928 >     * @return the new value associated with the specified key, or null if none
1929 >     * @throws NullPointerException if the specified key or the
1930 >     *         remappingFunction is null
1931 >     * @throws RuntimeException or Error if the remappingFunction does so,
1932 >     *         in which case the mapping is unchanged
1933       */
1934 <    static abstract class ViewIterator<K,V> extends InternalIterator {
1935 <        final ConcurrentHashMapV8<K, V> map;
1936 <        ViewIterator(ConcurrentHashMapV8<K, V> map) {
1937 <            super(map.table);
1934 >    public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1935 >        if (key == null || value == null || remappingFunction == null)
1936 >            throw new NullPointerException();
1937 >        int h = spread(key.hashCode());
1938 >        V val = null;
1939 >        int delta = 0;
1940 >        int binCount = 0;
1941 >        for (Node<K,V>[] tab = table;;) {
1942 >            Node<K,V> f; int n, i, fh;
1943 >            if (tab == null || (n = tab.length) == 0)
1944 >                tab = initTable();
1945 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1946 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1947 >                    delta = 1;
1948 >                    val = value;
1949 >                    break;
1950 >                }
1951 >            }
1952 >            else if ((fh = f.hash) == MOVED)
1953 >                tab = helpTransfer(tab, f);
1954 >            else {
1955 >                synchronized (f) {
1956 >                    if (tabAt(tab, i) == f) {
1957 >                        if (fh >= 0) {
1958 >                            binCount = 1;
1959 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1960 >                                K ek;
1961 >                                if (e.hash == h &&
1962 >                                    ((ek = e.key) == key ||
1963 >                                     (ek != null && key.equals(ek)))) {
1964 >                                    val = remappingFunction.apply(e.val, value);
1965 >                                    if (val != null)
1966 >                                        e.val = val;
1967 >                                    else {
1968 >                                        delta = -1;
1969 >                                        Node<K,V> en = e.next;
1970 >                                        if (pred != null)
1971 >                                            pred.next = en;
1972 >                                        else
1973 >                                            setTabAt(tab, i, en);
1974 >                                    }
1975 >                                    break;
1976 >                                }
1977 >                                pred = e;
1978 >                                if ((e = e.next) == null) {
1979 >                                    delta = 1;
1980 >                                    val = value;
1981 >                                    pred.next =
1982 >                                        new Node<K,V>(h, key, val, null);
1983 >                                    break;
1984 >                                }
1985 >                            }
1986 >                        }
1987 >                        else if (f instanceof TreeBin) {
1988 >                            binCount = 2;
1989 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1990 >                            TreeNode<K,V> r = t.root;
1991 >                            TreeNode<K,V> p = (r == null) ? null :
1992 >                                r.findTreeNode(h, key, null);
1993 >                            val = (p == null) ? value :
1994 >                                remappingFunction.apply(p.val, value);
1995 >                            if (val != null) {
1996 >                                if (p != null)
1997 >                                    p.val = val;
1998 >                                else {
1999 >                                    delta = 1;
2000 >                                    t.putTreeVal(h, key, val);
2001 >                                }
2002 >                            }
2003 >                            else if (p != null) {
2004 >                                delta = -1;
2005 >                                if (t.removeTreeNode(p))
2006 >                                    setTabAt(tab, i, untreeify(t.first));
2007 >                            }
2008 >                        }
2009 >                    }
2010 >                }
2011 >                if (binCount != 0) {
2012 >                    if (binCount >= TREEIFY_THRESHOLD)
2013 >                        treeifyBin(tab, i);
2014 >                    break;
2015 >                }
2016 >            }
2017 >        }
2018 >        if (delta != 0)
2019 >            addCount((long)delta, binCount);
2020 >        return val;
2021 >    }
2022 >
2023 >    // Hashtable legacy methods
2024 >
2025 >    /**
2026 >     * Legacy method testing if some key maps into the specified value
2027 >     * in this table.  This method is identical in functionality to
2028 >     * {@link #containsValue(Object)}, and exists solely to ensure
2029 >     * full compatibility with class {@link java.util.Hashtable},
2030 >     * which supported this method prior to introduction of the
2031 >     * Java Collections framework.
2032 >     *
2033 >     * @param  value a value to search for
2034 >     * @return {@code true} if and only if some key maps to the
2035 >     *         {@code value} argument in this table as
2036 >     *         determined by the {@code equals} method;
2037 >     *         {@code false} otherwise
2038 >     * @throws NullPointerException if the specified value is null
2039 >     */
2040 >    @Deprecated public boolean contains(Object value) {
2041 >        return containsValue(value);
2042 >    }
2043 >
2044 >    /**
2045 >     * Returns an enumeration of the keys in this table.
2046 >     *
2047 >     * @return an enumeration of the keys in this table
2048 >     * @see #keySet()
2049 >     */
2050 >    public Enumeration<K> keys() {
2051 >        Node<K,V>[] t;
2052 >        int f = (t = table) == null ? 0 : t.length;
2053 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2054 >    }
2055 >
2056 >    /**
2057 >     * Returns an enumeration of the values in this table.
2058 >     *
2059 >     * @return an enumeration of the values in this table
2060 >     * @see #values()
2061 >     */
2062 >    public Enumeration<V> elements() {
2063 >        Node<K,V>[] t;
2064 >        int f = (t = table) == null ? 0 : t.length;
2065 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2066 >    }
2067 >
2068 >    // ConcurrentHashMapV8-only methods
2069 >
2070 >    /**
2071 >     * Returns the number of mappings. This method should be used
2072 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2073 >     * contain more mappings than can be represented as an int. The
2074 >     * value returned is an estimate; the actual count may differ if
2075 >     * there are concurrent insertions or removals.
2076 >     *
2077 >     * @return the number of mappings
2078 >     * @since 1.8
2079 >     */
2080 >    public long mappingCount() {
2081 >        long n = sumCount();
2082 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2083 >    }
2084 >
2085 >    /**
2086 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2087 >     * from the given type to {@code Boolean.TRUE}.
2088 >     *
2089 >     * @return the new set
2090 >     * @since 1.8
2091 >     */
2092 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2093 >        return new KeySetView<K,Boolean>
2094 >            (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2095 >    }
2096 >
2097 >    /**
2098 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2099 >     * from the given type to {@code Boolean.TRUE}.
2100 >     *
2101 >     * @param initialCapacity The implementation performs internal
2102 >     * sizing to accommodate this many elements.
2103 >     * @throws IllegalArgumentException if the initial capacity of
2104 >     * elements is negative
2105 >     * @return the new set
2106 >     * @since 1.8
2107 >     */
2108 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2109 >        return new KeySetView<K,Boolean>
2110 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2111 >    }
2112 >
2113 >    /**
2114 >     * Returns a {@link Set} view of the keys in this map, using the
2115 >     * given common mapped value for any additions (i.e., {@link
2116 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2117 >     * This is of course only appropriate if it is acceptable to use
2118 >     * the same value for all additions from this view.
2119 >     *
2120 >     * @param mappedValue the mapped value to use for any additions
2121 >     * @return the set view
2122 >     * @throws NullPointerException if the mappedValue is null
2123 >     */
2124 >    public KeySetView<K,V> keySet(V mappedValue) {
2125 >        if (mappedValue == null)
2126 >            throw new NullPointerException();
2127 >        return new KeySetView<K,V>(this, mappedValue);
2128 >    }
2129 >
2130 >    /* ---------------- Special Nodes -------------- */
2131 >
2132 >    /**
2133 >     * A node inserted at head of bins during transfer operations.
2134 >     */
2135 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2136 >        final Node<K,V>[] nextTable;
2137 >        ForwardingNode(Node<K,V>[] tab) {
2138 >            super(MOVED, null, null, null);
2139 >            this.nextTable = tab;
2140 >        }
2141 >
2142 >        Node<K,V> find(int h, Object k) {
2143 >            Node<K,V> e; int n;
2144 >            Node<K,V>[] tab = nextTable;
2145 >            if (k != null && tab != null && (n = tab.length) > 0 &&
2146 >                (e = tabAt(tab, (n - 1) & h)) != null) {
2147 >                do {
2148 >                    int eh; K ek;
2149 >                    if ((eh = e.hash) == h &&
2150 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2151 >                        return e;
2152 >                    if (eh < 0)
2153 >                        return e.find(h, k);
2154 >                } while ((e = e.next) != null);
2155 >            }
2156 >            return null;
2157 >        }
2158 >    }
2159 >
2160 >    /**
2161 >     * A place-holder node used in computeIfAbsent and compute
2162 >     */
2163 >    static final class ReservationNode<K,V> extends Node<K,V> {
2164 >        ReservationNode() {
2165 >            super(RESERVED, null, null, null);
2166 >        }
2167 >
2168 >        Node<K,V> find(int h, Object k) {
2169 >            return null;
2170 >        }
2171 >    }
2172 >
2173 >    /* ---------------- Table Initialization and Resizing -------------- */
2174 >
2175 >    /**
2176 >     * Initializes table, using the size recorded in sizeCtl.
2177 >     */
2178 >    private final Node<K,V>[] initTable() {
2179 >        Node<K,V>[] tab; int sc;
2180 >        while ((tab = table) == null || tab.length == 0) {
2181 >            if ((sc = sizeCtl) < 0)
2182 >                Thread.yield(); // lost initialization race; just spin
2183 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2184 >                try {
2185 >                    if ((tab = table) == null || tab.length == 0) {
2186 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2187 >                        @SuppressWarnings({"rawtypes","unchecked"})
2188 >                            Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2189 >                        table = tab = nt;
2190 >                        sc = n - (n >>> 2);
2191 >                    }
2192 >                } finally {
2193 >                    sizeCtl = sc;
2194 >                }
2195 >                break;
2196 >            }
2197 >        }
2198 >        return tab;
2199 >    }
2200 >
2201 >    /**
2202 >     * Adds to count, and if table is too small and not already
2203 >     * resizing, initiates transfer. If already resizing, helps
2204 >     * perform transfer if work is available.  Rechecks occupancy
2205 >     * after a transfer to see if another resize is already needed
2206 >     * because resizings are lagging additions.
2207 >     *
2208 >     * @param x the count to add
2209 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2210 >     */
2211 >    private final void addCount(long x, int check) {
2212 >        CounterCell[] as; long b, s;
2213 >        if ((as = counterCells) != null ||
2214 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2215 >            CounterHashCode hc; CounterCell a; long v; int m;
2216 >            boolean uncontended = true;
2217 >            if ((hc = threadCounterHashCode.get()) == null ||
2218 >                as == null || (m = as.length - 1) < 0 ||
2219 >                (a = as[m & hc.code]) == null ||
2220 >                !(uncontended =
2221 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2222 >                fullAddCount(x, hc, uncontended);
2223 >                return;
2224 >            }
2225 >            if (check <= 1)
2226 >                return;
2227 >            s = sumCount();
2228 >        }
2229 >        if (check >= 0) {
2230 >            Node<K,V>[] tab, nt; int sc;
2231 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2232 >                   tab.length < MAXIMUM_CAPACITY) {
2233 >                if (sc < 0) {
2234 >                    if (sc == -1 || transferIndex <= transferOrigin ||
2235 >                        (nt = nextTable) == null)
2236 >                        break;
2237 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2238 >                        transfer(tab, nt);
2239 >                }
2240 >                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2241 >                    transfer(tab, null);
2242 >                s = sumCount();
2243 >            }
2244 >        }
2245 >    }
2246 >
2247 >    /**
2248 >     * Helps transfer if a resize is in progress.
2249 >     */
2250 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2251 >        Node<K,V>[] nextTab; int sc;
2252 >        if ((f instanceof ForwardingNode) &&
2253 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2254 >            if (nextTab == nextTable && tab == table &&
2255 >                transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2256 >                U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2257 >                transfer(tab, nextTab);
2258 >            return nextTab;
2259 >        }
2260 >        return table;
2261 >    }
2262 >
2263 >    /**
2264 >     * Tries to presize table to accommodate the given number of elements.
2265 >     *
2266 >     * @param size number of elements (doesn't need to be perfectly accurate)
2267 >     */
2268 >    private final void tryPresize(int size) {
2269 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2270 >            tableSizeFor(size + (size >>> 1) + 1);
2271 >        int sc;
2272 >        while ((sc = sizeCtl) >= 0) {
2273 >            Node<K,V>[] tab = table; int n;
2274 >            if (tab == null || (n = tab.length) == 0) {
2275 >                n = (sc > c) ? sc : c;
2276 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2277 >                    try {
2278 >                        if (table == tab) {
2279 >                            @SuppressWarnings({"rawtypes","unchecked"})
2280 >                                Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2281 >                            table = nt;
2282 >                            sc = n - (n >>> 2);
2283 >                        }
2284 >                    } finally {
2285 >                        sizeCtl = sc;
2286 >                    }
2287 >                }
2288 >            }
2289 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2290 >                break;
2291 >            else if (tab == table &&
2292 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2293 >                transfer(tab, null);
2294 >        }
2295 >    }
2296 >
2297 >    /**
2298 >     * Moves and/or copies the nodes in each bin to new table. See
2299 >     * above for explanation.
2300 >     */
2301 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2302 >        int n = tab.length, stride;
2303 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2304 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2305 >        if (nextTab == null) {            // initiating
2306 >            try {
2307 >                @SuppressWarnings({"rawtypes","unchecked"})
2308 >                    Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2309 >                nextTab = nt;
2310 >            } catch (Throwable ex) {      // try to cope with OOME
2311 >                sizeCtl = Integer.MAX_VALUE;
2312 >                return;
2313 >            }
2314 >            nextTable = nextTab;
2315 >            transferOrigin = n;
2316 >            transferIndex = n;
2317 >            ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2318 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
2319 >                int nextk = (k > stride) ? k - stride : 0;
2320 >                for (int m = nextk; m < k; ++m)
2321 >                    nextTab[m] = rev;
2322 >                for (int m = n + nextk; m < n + k; ++m)
2323 >                    nextTab[m] = rev;
2324 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2325 >            }
2326 >        }
2327 >        int nextn = nextTab.length;
2328 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2329 >        boolean advance = true;
2330 >        for (int i = 0, bound = 0;;) {
2331 >            int nextIndex, nextBound, fh; Node<K,V> f;
2332 >            while (advance) {
2333 >                if (--i >= bound)
2334 >                    advance = false;
2335 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
2336 >                    i = -1;
2337 >                    advance = false;
2338 >                }
2339 >                else if (U.compareAndSwapInt
2340 >                         (this, TRANSFERINDEX, nextIndex,
2341 >                          nextBound = (nextIndex > stride ?
2342 >                                       nextIndex - stride : 0))) {
2343 >                    bound = nextBound;
2344 >                    i = nextIndex - 1;
2345 >                    advance = false;
2346 >                }
2347 >            }
2348 >            if (i < 0 || i >= n || i + n >= nextn) {
2349 >                for (int sc;;) {
2350 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2351 >                        if (sc == -1) {
2352 >                            nextTable = null;
2353 >                            table = nextTab;
2354 >                            sizeCtl = (n << 1) - (n >>> 1);
2355 >                        }
2356 >                        return;
2357 >                    }
2358 >                }
2359 >            }
2360 >            else if ((f = tabAt(tab, i)) == null) {
2361 >                if (casTabAt(tab, i, null, fwd)) {
2362 >                    setTabAt(nextTab, i, null);
2363 >                    setTabAt(nextTab, i + n, null);
2364 >                    advance = true;
2365 >                }
2366 >            }
2367 >            else if ((fh = f.hash) == MOVED)
2368 >                advance = true; // already processed
2369 >            else {
2370 >                synchronized (f) {
2371 >                    if (tabAt(tab, i) == f) {
2372 >                        Node<K,V> ln, hn;
2373 >                        if (fh >= 0) {
2374 >                            int runBit = fh & n;
2375 >                            Node<K,V> lastRun = f;
2376 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2377 >                                int b = p.hash & n;
2378 >                                if (b != runBit) {
2379 >                                    runBit = b;
2380 >                                    lastRun = p;
2381 >                                }
2382 >                            }
2383 >                            if (runBit == 0) {
2384 >                                ln = lastRun;
2385 >                                hn = null;
2386 >                            }
2387 >                            else {
2388 >                                hn = lastRun;
2389 >                                ln = null;
2390 >                            }
2391 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2392 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2393 >                                if ((ph & n) == 0)
2394 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2395 >                                else
2396 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2397 >                            }
2398 >                        }
2399 >                        else if (f instanceof TreeBin) {
2400 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2401 >                            TreeNode<K,V> lo = null, loTail = null;
2402 >                            TreeNode<K,V> hi = null, hiTail = null;
2403 >                            int lc = 0, hc = 0;
2404 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2405 >                                int h = e.hash;
2406 >                                TreeNode<K,V> p = new TreeNode<K,V>
2407 >                                    (h, e.key, e.val, null, null);
2408 >                                if ((h & n) == 0) {
2409 >                                    if ((p.prev = loTail) == null)
2410 >                                        lo = p;
2411 >                                    else
2412 >                                        loTail.next = p;
2413 >                                    loTail = p;
2414 >                                    ++lc;
2415 >                                }
2416 >                                else {
2417 >                                    if ((p.prev = hiTail) == null)
2418 >                                        hi = p;
2419 >                                    else
2420 >                                        hiTail.next = p;
2421 >                                    hiTail = p;
2422 >                                    ++hc;
2423 >                                }
2424 >                            }
2425 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2426 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2427 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2428 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2429 >                        }
2430 >                        else
2431 >                            ln = hn = null;
2432 >                        setTabAt(nextTab, i, ln);
2433 >                        setTabAt(nextTab, i + n, hn);
2434 >                        setTabAt(tab, i, fwd);
2435 >                        advance = true;
2436 >                    }
2437 >                }
2438 >            }
2439 >        }
2440 >    }
2441 >
2442 >    /* ---------------- Conversion from/to TreeBins -------------- */
2443 >
2444 >    /**
2445 >     * Replaces all linked nodes in bin at given index unless table is
2446 >     * too small, in which case resizes instead.
2447 >     */
2448 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2449 >        Node<K,V> b; int n, sc;
2450 >        if (tab != null) {
2451 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2452 >                if (tab == table && (sc = sizeCtl) >= 0 &&
2453 >                    U.compareAndSwapInt(this, SIZECTL, sc, -2))
2454 >                    transfer(tab, null);
2455 >            }
2456 >            else if ((b = tabAt(tab, index)) != null) {
2457 >                synchronized (b) {
2458 >                    if (tabAt(tab, index) == b) {
2459 >                        TreeNode<K,V> hd = null, tl = null;
2460 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2461 >                            TreeNode<K,V> p =
2462 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2463 >                                                  null, null);
2464 >                            if ((p.prev = tl) == null)
2465 >                                hd = p;
2466 >                            else
2467 >                                tl.next = p;
2468 >                            tl = p;
2469 >                        }
2470 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2471 >                    }
2472 >                }
2473 >            }
2474 >        }
2475 >    }
2476 >
2477 >    /**
2478 >     * Returns a list on non-TreeNodes replacing those in given list.
2479 >     */
2480 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2481 >        Node<K,V> hd = null, tl = null;
2482 >        for (Node<K,V> q = b; q != null; q = q.next) {
2483 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2484 >            if (tl == null)
2485 >                hd = p;
2486 >            else
2487 >                tl.next = p;
2488 >            tl = p;
2489 >        }
2490 >        return hd;
2491 >    }
2492 >
2493 >    /* ---------------- TreeNodes -------------- */
2494 >
2495 >    /**
2496 >     * Nodes for use in TreeBins
2497 >     */
2498 >    static final class TreeNode<K,V> extends Node<K,V> {
2499 >        TreeNode<K,V> parent;  // red-black tree links
2500 >        TreeNode<K,V> left;
2501 >        TreeNode<K,V> right;
2502 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2503 >        boolean red;
2504 >
2505 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2506 >                 TreeNode<K,V> parent) {
2507 >            super(hash, key, val, next);
2508 >            this.parent = parent;
2509 >        }
2510 >
2511 >        Node<K,V> find(int h, Object k) {
2512 >            return findTreeNode(h, k, null);
2513 >        }
2514 >
2515 >        /**
2516 >         * Returns the TreeNode (or null if not found) for the given key
2517 >         * starting at given root.
2518 >         */
2519 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2520 >            if (k != null) {
2521 >                TreeNode<K,V> p = this;
2522 >                do  {
2523 >                    int ph, dir; K pk; TreeNode<K,V> q;
2524 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2525 >                    if ((ph = p.hash) > h)
2526 >                        p = pl;
2527 >                    else if (ph < h)
2528 >                        p = pr;
2529 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2530 >                        return p;
2531 >                    else if (pl == null && pr == null)
2532 >                        break;
2533 >                    else if ((kc != null ||
2534 >                              (kc = comparableClassFor(k)) != null) &&
2535 >                             (dir = compareComparables(kc, k, pk)) != 0)
2536 >                        p = (dir < 0) ? pl : pr;
2537 >                    else if (pl == null)
2538 >                        p = pr;
2539 >                    else if (pr == null ||
2540 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2541 >                        p = pl;
2542 >                    else
2543 >                        return q;
2544 >                } while (p != null);
2545 >            }
2546 >            return null;
2547 >        }
2548 >    }
2549 >
2550 >    /* ---------------- TreeBins -------------- */
2551 >
2552 >    /**
2553 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2554 >     * keys or values, but instead point to list of TreeNodes and
2555 >     * their root. They also maintain a parasitic read-write lock
2556 >     * forcing writers (who hold bin lock) to wait for readers (who do
2557 >     * not) to complete before tree restructuring operations.
2558 >     */
2559 >    static final class TreeBin<K,V> extends Node<K,V> {
2560 >        TreeNode<K,V> root;
2561 >        volatile TreeNode<K,V> first;
2562 >        volatile Thread waiter;
2563 >        volatile int lockState;
2564 >        // values for lockState
2565 >        static final int WRITER = 1; // set while holding write lock
2566 >        static final int WAITER = 2; // set when waiting for write lock
2567 >        static final int READER = 4; // increment value for setting read lock
2568 >
2569 >        /**
2570 >         * Creates bin with initial set of nodes headed by b.
2571 >         */
2572 >        TreeBin(TreeNode<K,V> b) {
2573 >            super(TREEBIN, null, null, null);
2574 >            this.first = b;
2575 >            TreeNode<K,V> r = null;
2576 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2577 >                next = (TreeNode<K,V>)x.next;
2578 >                x.left = x.right = null;
2579 >                if (r == null) {
2580 >                    x.parent = null;
2581 >                    x.red = false;
2582 >                    r = x;
2583 >                }
2584 >                else {
2585 >                    Object key = x.key;
2586 >                    int hash = x.hash;
2587 >                    Class<?> kc = null;
2588 >                    for (TreeNode<K,V> p = r;;) {
2589 >                        int dir, ph;
2590 >                        if ((ph = p.hash) > hash)
2591 >                            dir = -1;
2592 >                        else if (ph < hash)
2593 >                            dir = 1;
2594 >                        else if ((kc != null ||
2595 >                                  (kc = comparableClassFor(key)) != null))
2596 >                            dir = compareComparables(kc, key, p.key);
2597 >                        else
2598 >                            dir = 0;
2599 >                        TreeNode<K,V> xp = p;
2600 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2601 >                            x.parent = xp;
2602 >                            if (dir <= 0)
2603 >                                xp.left = x;
2604 >                            else
2605 >                                xp.right = x;
2606 >                            r = balanceInsertion(r, x);
2607 >                            break;
2608 >                        }
2609 >                    }
2610 >                }
2611 >            }
2612 >            this.root = r;
2613 >        }
2614 >
2615 >        /**
2616 >         * Acquires write lock for tree restructuring.
2617 >         */
2618 >        private final void lockRoot() {
2619 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2620 >                contendedLock(); // offload to separate method
2621 >        }
2622 >
2623 >        /**
2624 >         * Releases write lock for tree restructuring.
2625 >         */
2626 >        private final void unlockRoot() {
2627 >            lockState = 0;
2628 >        }
2629 >
2630 >        /**
2631 >         * Possibly blocks awaiting root lock.
2632 >         */
2633 >        private final void contendedLock() {
2634 >            boolean waiting = false;
2635 >            for (int s;;) {
2636 >                if (((s = lockState) & WRITER) == 0) {
2637 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2638 >                        if (waiting)
2639 >                            waiter = null;
2640 >                        return;
2641 >                    }
2642 >                }
2643 >                else if ((s | WAITER) == 0) {
2644 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2645 >                        waiting = true;
2646 >                        waiter = Thread.currentThread();
2647 >                    }
2648 >                }
2649 >                else if (waiting)
2650 >                    LockSupport.park(this);
2651 >            }
2652 >        }
2653 >
2654 >        /**
2655 >         * Returns matching node or null if none. Tries to search
2656 >         * using tree compareisons from root, but continues linear
2657 >         * search when lock not available.
2658 >         */
2659 >        final Node<K,V> find(int h, Object k) {
2660 >            if (k != null) {
2661 >                for (Node<K,V> e = first; e != null; e = e.next) {
2662 >                    int s; K ek;
2663 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2664 >                        if (e.hash == h &&
2665 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2666 >                            return e;
2667 >                    }
2668 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2669 >                                                 s + READER)) {
2670 >                        TreeNode<K,V> r, p;
2671 >                        try {
2672 >                            p = ((r = root) == null ? null :
2673 >                                 r.findTreeNode(h, k, null));
2674 >                        } finally {
2675 >                            Thread w;
2676 >                            int ls;
2677 >                            do {} while (!U.compareAndSwapInt
2678 >                                         (this, LOCKSTATE,
2679 >                                          ls = lockState, ls - READER));
2680 >                            if (ls == (READER|WAITER) && (w = waiter) != null)
2681 >                                LockSupport.unpark(w);
2682 >                        }
2683 >                        return p;
2684 >                    }
2685 >                }
2686 >            }
2687 >            return null;
2688 >        }
2689 >
2690 >        /**
2691 >         * Finds or adds a node.
2692 >         * @return null if added
2693 >         */
2694 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2695 >            Class<?> kc = null;
2696 >            for (TreeNode<K,V> p = root;;) {
2697 >                int dir, ph; K pk; TreeNode<K,V> q, pr;
2698 >                if (p == null) {
2699 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2700 >                    break;
2701 >                }
2702 >                else if ((ph = p.hash) > h)
2703 >                    dir = -1;
2704 >                else if (ph < h)
2705 >                    dir = 1;
2706 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2707 >                    return p;
2708 >                else if ((kc == null &&
2709 >                          (kc = comparableClassFor(k)) == null) ||
2710 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2711 >                    if (p.left == null)
2712 >                        dir = 1;
2713 >                    else if ((pr = p.right) == null ||
2714 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2715 >                        dir = -1;
2716 >                    else
2717 >                        return q;
2718 >                }
2719 >                TreeNode<K,V> xp = p;
2720 >                if ((p = (dir < 0) ? p.left : p.right) == null) {
2721 >                    TreeNode<K,V> x, f = first;
2722 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2723 >                    if (f != null)
2724 >                        f.prev = x;
2725 >                    if (dir < 0)
2726 >                        xp.left = x;
2727 >                    else
2728 >                        xp.right = x;
2729 >                    if (!xp.red)
2730 >                        x.red = true;
2731 >                    else {
2732 >                        lockRoot();
2733 >                        try {
2734 >                            root = balanceInsertion(root, x);
2735 >                        } finally {
2736 >                            unlockRoot();
2737 >                        }
2738 >                    }
2739 >                    break;
2740 >                }
2741 >            }
2742 >            assert checkInvariants(root);
2743 >            return null;
2744 >        }
2745 >
2746 >        /**
2747 >         * Removes the given node, that must be present before this
2748 >         * call.  This is messier than typical red-black deletion code
2749 >         * because we cannot swap the contents of an interior node
2750 >         * with a leaf successor that is pinned by "next" pointers
2751 >         * that are accessible independently of lock. So instead we
2752 >         * swap the tree linkages.
2753 >         *
2754 >         * @return true if now too small, so should be untreeified
2755 >         */
2756 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2757 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2758 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2759 >            TreeNode<K,V> r, rl;
2760 >            if (pred == null)
2761 >                first = next;
2762 >            else
2763 >                pred.next = next;
2764 >            if (next != null)
2765 >                next.prev = pred;
2766 >            if (first == null) {
2767 >                root = null;
2768 >                return true;
2769 >            }
2770 >            if ((r = root) == null || r.right == null || // too small
2771 >                (rl = r.left) == null || rl.left == null)
2772 >                return true;
2773 >            lockRoot();
2774 >            try {
2775 >                TreeNode<K,V> replacement;
2776 >                TreeNode<K,V> pl = p.left;
2777 >                TreeNode<K,V> pr = p.right;
2778 >                if (pl != null && pr != null) {
2779 >                    TreeNode<K,V> s = pr, sl;
2780 >                    while ((sl = s.left) != null) // find successor
2781 >                        s = sl;
2782 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2783 >                    TreeNode<K,V> sr = s.right;
2784 >                    TreeNode<K,V> pp = p.parent;
2785 >                    if (s == pr) { // p was s's direct parent
2786 >                        p.parent = s;
2787 >                        s.right = p;
2788 >                    }
2789 >                    else {
2790 >                        TreeNode<K,V> sp = s.parent;
2791 >                        if ((p.parent = sp) != null) {
2792 >                            if (s == sp.left)
2793 >                                sp.left = p;
2794 >                            else
2795 >                                sp.right = p;
2796 >                        }
2797 >                        if ((s.right = pr) != null)
2798 >                            pr.parent = s;
2799 >                    }
2800 >                    p.left = null;
2801 >                    if ((p.right = sr) != null)
2802 >                        sr.parent = p;
2803 >                    if ((s.left = pl) != null)
2804 >                        pl.parent = s;
2805 >                    if ((s.parent = pp) == null)
2806 >                        r = s;
2807 >                    else if (p == pp.left)
2808 >                        pp.left = s;
2809 >                    else
2810 >                        pp.right = s;
2811 >                    if (sr != null)
2812 >                        replacement = sr;
2813 >                    else
2814 >                        replacement = p;
2815 >                }
2816 >                else if (pl != null)
2817 >                    replacement = pl;
2818 >                else if (pr != null)
2819 >                    replacement = pr;
2820 >                else
2821 >                    replacement = p;
2822 >                if (replacement != p) {
2823 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2824 >                    if (pp == null)
2825 >                        r = replacement;
2826 >                    else if (p == pp.left)
2827 >                        pp.left = replacement;
2828 >                    else
2829 >                        pp.right = replacement;
2830 >                    p.left = p.right = p.parent = null;
2831 >                }
2832 >
2833 >                root = (p.red) ? r : balanceDeletion(r, replacement);
2834 >
2835 >                if (p == replacement) {  // detach pointers
2836 >                    TreeNode<K,V> pp;
2837 >                    if ((pp = p.parent) != null) {
2838 >                        if (p == pp.left)
2839 >                            pp.left = null;
2840 >                        else if (p == pp.right)
2841 >                            pp.right = null;
2842 >                        p.parent = null;
2843 >                    }
2844 >                }
2845 >            } finally {
2846 >                unlockRoot();
2847 >            }
2848 >            assert checkInvariants(root);
2849 >            return false;
2850 >        }
2851 >
2852 >        /* ------------------------------------------------------------ */
2853 >        // Red-black tree methods, all adapted from CLR
2854 >
2855 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2856 >                                              TreeNode<K,V> p) {
2857 >            TreeNode<K,V> r, pp, rl;
2858 >            if (p != null && (r = p.right) != null) {
2859 >                if ((rl = p.right = r.left) != null)
2860 >                    rl.parent = p;
2861 >                if ((pp = r.parent = p.parent) == null)
2862 >                    (root = r).red = false;
2863 >                else if (pp.left == p)
2864 >                    pp.left = r;
2865 >                else
2866 >                    pp.right = r;
2867 >                r.left = p;
2868 >                p.parent = r;
2869 >            }
2870 >            return root;
2871 >        }
2872 >
2873 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2874 >                                               TreeNode<K,V> p) {
2875 >            TreeNode<K,V> l, pp, lr;
2876 >            if (p != null && (l = p.left) != null) {
2877 >                if ((lr = p.left = l.right) != null)
2878 >                    lr.parent = p;
2879 >                if ((pp = l.parent = p.parent) == null)
2880 >                    (root = l).red = false;
2881 >                else if (pp.right == p)
2882 >                    pp.right = l;
2883 >                else
2884 >                    pp.left = l;
2885 >                l.right = p;
2886 >                p.parent = l;
2887 >            }
2888 >            return root;
2889 >        }
2890 >
2891 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2892 >                                                    TreeNode<K,V> x) {
2893 >            x.red = true;
2894 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2895 >                if ((xp = x.parent) == null) {
2896 >                    x.red = false;
2897 >                    return x;
2898 >                }
2899 >                else if (!xp.red || (xpp = xp.parent) == null)
2900 >                    return root;
2901 >                if (xp == (xppl = xpp.left)) {
2902 >                    if ((xppr = xpp.right) != null && xppr.red) {
2903 >                        xppr.red = false;
2904 >                        xp.red = false;
2905 >                        xpp.red = true;
2906 >                        x = xpp;
2907 >                    }
2908 >                    else {
2909 >                        if (x == xp.right) {
2910 >                            root = rotateLeft(root, x = xp);
2911 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2912 >                        }
2913 >                        if (xp != null) {
2914 >                            xp.red = false;
2915 >                            if (xpp != null) {
2916 >                                xpp.red = true;
2917 >                                root = rotateRight(root, xpp);
2918 >                            }
2919 >                        }
2920 >                    }
2921 >                }
2922 >                else {
2923 >                    if (xppl != null && xppl.red) {
2924 >                        xppl.red = false;
2925 >                        xp.red = false;
2926 >                        xpp.red = true;
2927 >                        x = xpp;
2928 >                    }
2929 >                    else {
2930 >                        if (x == xp.left) {
2931 >                            root = rotateRight(root, x = xp);
2932 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2933 >                        }
2934 >                        if (xp != null) {
2935 >                            xp.red = false;
2936 >                            if (xpp != null) {
2937 >                                xpp.red = true;
2938 >                                root = rotateLeft(root, xpp);
2939 >                            }
2940 >                        }
2941 >                    }
2942 >                }
2943 >            }
2944 >        }
2945 >
2946 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2947 >                                                   TreeNode<K,V> x) {
2948 >            for (TreeNode<K,V> xp, xpl, xpr;;)  {
2949 >                if (x == null || x == root)
2950 >                    return root;
2951 >                else if ((xp = x.parent) == null) {
2952 >                    x.red = false;
2953 >                    return x;
2954 >                }
2955 >                else if (x.red) {
2956 >                    x.red = false;
2957 >                    return root;
2958 >                }
2959 >                else if ((xpl = xp.left) == x) {
2960 >                    if ((xpr = xp.right) != null && xpr.red) {
2961 >                        xpr.red = false;
2962 >                        xp.red = true;
2963 >                        root = rotateLeft(root, xp);
2964 >                        xpr = (xp = x.parent) == null ? null : xp.right;
2965 >                    }
2966 >                    if (xpr == null)
2967 >                        x = xp;
2968 >                    else {
2969 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
2970 >                        if ((sr == null || !sr.red) &&
2971 >                            (sl == null || !sl.red)) {
2972 >                            xpr.red = true;
2973 >                            x = xp;
2974 >                        }
2975 >                        else {
2976 >                            if (sr == null || !sr.red) {
2977 >                                if (sl != null)
2978 >                                    sl.red = false;
2979 >                                xpr.red = true;
2980 >                                root = rotateRight(root, xpr);
2981 >                                xpr = (xp = x.parent) == null ?
2982 >                                    null : xp.right;
2983 >                            }
2984 >                            if (xpr != null) {
2985 >                                xpr.red = (xp == null) ? false : xp.red;
2986 >                                if ((sr = xpr.right) != null)
2987 >                                    sr.red = false;
2988 >                            }
2989 >                            if (xp != null) {
2990 >                                xp.red = false;
2991 >                                root = rotateLeft(root, xp);
2992 >                            }
2993 >                            x = root;
2994 >                        }
2995 >                    }
2996 >                }
2997 >                else { // symmetric
2998 >                    if (xpl != null && xpl.red) {
2999 >                        xpl.red = false;
3000 >                        xp.red = true;
3001 >                        root = rotateRight(root, xp);
3002 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3003 >                    }
3004 >                    if (xpl == null)
3005 >                        x = xp;
3006 >                    else {
3007 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3008 >                        if ((sl == null || !sl.red) &&
3009 >                            (sr == null || !sr.red)) {
3010 >                            xpl.red = true;
3011 >                            x = xp;
3012 >                        }
3013 >                        else {
3014 >                            if (sl == null || !sl.red) {
3015 >                                if (sr != null)
3016 >                                    sr.red = false;
3017 >                                xpl.red = true;
3018 >                                root = rotateLeft(root, xpl);
3019 >                                xpl = (xp = x.parent) == null ?
3020 >                                    null : xp.left;
3021 >                            }
3022 >                            if (xpl != null) {
3023 >                                xpl.red = (xp == null) ? false : xp.red;
3024 >                                if ((sl = xpl.left) != null)
3025 >                                    sl.red = false;
3026 >                            }
3027 >                            if (xp != null) {
3028 >                                xp.red = false;
3029 >                                root = rotateRight(root, xp);
3030 >                            }
3031 >                            x = root;
3032 >                        }
3033 >                    }
3034 >                }
3035 >            }
3036 >        }
3037 >
3038 >        /**
3039 >         * Recursive invariant check
3040 >         */
3041 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3042 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3043 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3044 >            if (tb != null && tb.next != t)
3045 >                return false;
3046 >            if (tn != null && tn.prev != t)
3047 >                return false;
3048 >            if (tp != null && t != tp.left && t != tp.right)
3049 >                return false;
3050 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3051 >                return false;
3052 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3053 >                return false;
3054 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3055 >                return false;
3056 >            if (tl != null && !checkInvariants(tl))
3057 >                return false;
3058 >            if (tr != null && !checkInvariants(tr))
3059 >                return false;
3060 >            return true;
3061 >        }
3062 >
3063 >        private static final sun.misc.Unsafe U;
3064 >        private static final long LOCKSTATE;
3065 >        static {
3066 >            try {
3067 >                U = getUnsafe();
3068 >                Class<?> k = TreeBin.class;
3069 >                LOCKSTATE = U.objectFieldOffset
3070 >                    (k.getDeclaredField("lockState"));
3071 >            } catch (Exception e) {
3072 >                throw new Error(e);
3073 >            }
3074 >        }
3075 >    }
3076 >
3077 >    /* ----------------Table Traversal -------------- */
3078 >
3079 >    /**
3080 >     * Encapsulates traversal for methods such as containsValue; also
3081 >     * serves as a base class for other iterators and spliterators.
3082 >     *
3083 >     * Method advance visits once each still-valid node that was
3084 >     * reachable upon iterator construction. It might miss some that
3085 >     * were added to a bin after the bin was visited, which is OK wrt
3086 >     * consistency guarantees. Maintaining this property in the face
3087 >     * of possible ongoing resizes requires a fair amount of
3088 >     * bookkeeping state that is difficult to optimize away amidst
3089 >     * volatile accesses.  Even so, traversal maintains reasonable
3090 >     * throughput.
3091 >     *
3092 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3093 >     * However, if the table has been resized, then all future steps
3094 >     * must traverse both the bin at the current index as well as at
3095 >     * (index + baseSize); and so on for further resizings. To
3096 >     * paranoically cope with potential sharing by users of iterators
3097 >     * across threads, iteration terminates if a bounds checks fails
3098 >     * for a table read.
3099 >     */
3100 >    static class Traverser<K,V> {
3101 >        Node<K,V>[] tab;        // current table; updated if resized
3102 >        Node<K,V> next;         // the next entry to use
3103 >        int index;              // index of bin to use next
3104 >        int baseIndex;          // current index of initial table
3105 >        int baseLimit;          // index bound for initial table
3106 >        final int baseSize;     // initial table size
3107 >
3108 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3109 >            this.tab = tab;
3110 >            this.baseSize = size;
3111 >            this.baseIndex = this.index = index;
3112 >            this.baseLimit = limit;
3113 >            this.next = null;
3114 >        }
3115 >
3116 >        /**
3117 >         * Advances if possible, returning next valid node, or null if none.
3118 >         */
3119 >        final Node<K,V> advance() {
3120 >            Node<K,V> e;
3121 >            if ((e = next) != null)
3122 >                e = e.next;
3123 >            for (;;) {
3124 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
3125 >                if (e != null)
3126 >                    return next = e;
3127 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3128 >                    (n = t.length) <= (i = index) || i < 0)
3129 >                    return next = null;
3130 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
3131 >                    if (e instanceof ForwardingNode) {
3132 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3133 >                        e = null;
3134 >                        continue;
3135 >                    }
3136 >                    else if (e instanceof TreeBin)
3137 >                        e = ((TreeBin<K,V>)e).first;
3138 >                    else
3139 >                        e = null;
3140 >                }
3141 >                if ((index += baseSize) >= n)
3142 >                    index = ++baseIndex;    // visit upper slots if present
3143 >            }
3144 >        }
3145 >    }
3146 >
3147 >    /**
3148 >     * Base of key, value, and entry Iterators. Adds fields to
3149 >     * Traverser to support iterator.remove.
3150 >     */
3151 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3152 >        final ConcurrentHashMapV8<K,V> map;
3153 >        Node<K,V> lastReturned;
3154 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3155 >                    ConcurrentHashMapV8<K,V> map) {
3156 >            super(tab, size, index, limit);
3157              this.map = map;
3158 +            advance();
3159          }
3160  
3161 +        public final boolean hasNext() { return next != null; }
3162 +        public final boolean hasMoreElements() { return next != null; }
3163 +
3164          public final void remove() {
3165 <            if (last == null)
3165 >            Node<K,V> p;
3166 >            if ((p = lastReturned) == null)
3167                  throw new IllegalStateException();
3168 <            map.remove(last.key);
3169 <            last = null;
3168 >            lastReturned = null;
3169 >            map.replaceNode(p.key, null, null);
3170          }
1947
1948        public final boolean hasNext()         { return next != null; }
1949        public final boolean hasMoreElements() { return next != null; }
3171      }
3172  
3173 <    static final class KeyIterator<K,V> extends ViewIterator<K,V>
3173 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3174          implements Iterator<K>, Enumeration<K> {
3175 <        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3175 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3176 >                    ConcurrentHashMapV8<K,V> map) {
3177 >            super(tab, index, size, limit, map);
3178 >        }
3179  
1956        @SuppressWarnings("unchecked")
3180          public final K next() {
3181 <            if (next == null)
3181 >            Node<K,V> p;
3182 >            if ((p = next) == null)
3183                  throw new NoSuchElementException();
3184 <            Object k = nextKey;
3184 >            K k = p.key;
3185 >            lastReturned = p;
3186              advance();
3187 <            return (K)k;
3187 >            return k;
3188          }
3189  
3190          public final K nextElement() { return next(); }
3191      }
3192  
3193 <    static final class ValueIterator<K,V> extends ViewIterator<K,V>
3193 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3194          implements Iterator<V>, Enumeration<V> {
3195 <        ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3195 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3196 >                      ConcurrentHashMapV8<K,V> map) {
3197 >            super(tab, index, size, limit, map);
3198 >        }
3199  
1972        @SuppressWarnings("unchecked")
3200          public final V next() {
3201 <            if (next == null)
3201 >            Node<K,V> p;
3202 >            if ((p = next) == null)
3203                  throw new NoSuchElementException();
3204 <            Object v = nextVal;
3204 >            V v = p.val;
3205 >            lastReturned = p;
3206              advance();
3207 <            return (V)v;
3207 >            return v;
3208          }
3209  
3210          public final V nextElement() { return next(); }
3211      }
3212  
3213 <    static final class EntryIterator<K,V> extends ViewIterator<K,V>
3213 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3214          implements Iterator<Map.Entry<K,V>> {
3215 <        EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3216 <
3217 <        @SuppressWarnings("unchecked")
1989 <        public final Map.Entry<K,V> next() {
1990 <            if (next == null)
1991 <                throw new NoSuchElementException();
1992 <            Object k = nextKey;
1993 <            Object v = nextVal;
1994 <            advance();
1995 <            return new WriteThroughEntry<K,V>((K)k, (V)v, map);
3215 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3216 >                      ConcurrentHashMapV8<K,V> map) {
3217 >            super(tab, index, size, limit, map);
3218          }
1997    }
3219  
1999    static final class SnapshotEntryIterator<K,V> extends ViewIterator<K,V>
2000        implements Iterator<Map.Entry<K,V>> {
2001        SnapshotEntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2002
2003        @SuppressWarnings("unchecked")
3220          public final Map.Entry<K,V> next() {
3221 <            if (next == null)
3221 >            Node<K,V> p;
3222 >            if ((p = next) == null)
3223                  throw new NoSuchElementException();
3224 <            Object k = nextKey;
3225 <            Object v = nextVal;
3224 >            K k = p.key;
3225 >            V v = p.val;
3226 >            lastReturned = p;
3227              advance();
3228 <            return new SnapshotEntry<K,V>((K)k, (V)v);
3228 >            return new MapEntry<K,V>(k, v, map);
3229          }
3230      }
3231  
3232      /**
3233 <     * Base of writeThrough and Snapshot entry classes
3233 >     * Exported Entry for EntryIterator
3234       */
3235 <    static abstract class MapEntry<K,V> implements Map.Entry<K, V> {
3235 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3236          final K key; // non-null
3237          V val;       // non-null
3238 <        MapEntry(K key, V val)        { this.key = key; this.val = val; }
3239 <        public final K getKey()       { return key; }
3240 <        public final V getValue()     { return val; }
3241 <        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3242 <        public final String toString(){ return key + "=" + val; }
3238 >        final ConcurrentHashMapV8<K,V> map;
3239 >        MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3240 >            this.key = key;
3241 >            this.val = val;
3242 >            this.map = map;
3243 >        }
3244 >        public K getKey()        { return key; }
3245 >        public V getValue()      { return val; }
3246 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3247 >        public String toString() { return key + "=" + val; }
3248  
3249 <        public final boolean equals(Object o) {
3249 >        public boolean equals(Object o) {
3250              Object k, v; Map.Entry<?,?> e;
3251              return ((o instanceof Map.Entry) &&
3252                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 2032 | Line 3255 | public class ConcurrentHashMapV8<K, V>
3255                      (v == val || v.equals(val)));
3256          }
3257  
2035        public abstract V setValue(V value);
2036    }
2037
2038    /**
2039     * Entry used by EntryIterator.next(), that relays setValue
2040     * changes to the underlying map.
2041     */
2042    static final class WriteThroughEntry<K,V> extends MapEntry<K,V>
2043        implements Map.Entry<K, V> {
2044        final ConcurrentHashMapV8<K, V> map;
2045        WriteThroughEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
2046            super(key, val);
2047            this.map = map;
2048        }
2049
3258          /**
3259           * Sets our entry's value and writes through to the map. The
3260 <         * value to return is somewhat arbitrary here. Since a
3261 <         * WriteThroughEntry does not necessarily track asynchronous
3262 <         * changes, the most recent "previous" value could be
3263 <         * different from what we return (or could even have been
3264 <         * removed in which case the put will re-establish). We do not
2057 <         * and cannot guarantee more.
3260 >         * value to return is somewhat arbitrary here. Since we do not
3261 >         * necessarily track asynchronous changes, the most recent
3262 >         * "previous" value could be different from what we return (or
3263 >         * could even have been removed, in which case the put will
3264 >         * re-establish). We do not and cannot guarantee more.
3265           */
3266 <        public final V setValue(V value) {
3266 >        public V setValue(V value) {
3267              if (value == null) throw new NullPointerException();
3268              V v = val;
3269              val = value;
# Line 2065 | Line 3272 | public class ConcurrentHashMapV8<K, V>
3272          }
3273      }
3274  
3275 +    static final class KeySpliterator<K,V> extends Traverser<K,V>
3276 +        implements ConcurrentHashMapSpliterator<K> {
3277 +        long est;               // size estimate
3278 +        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3279 +                       long est) {
3280 +            super(tab, size, index, limit);
3281 +            this.est = est;
3282 +        }
3283 +
3284 +        public ConcurrentHashMapSpliterator<K> trySplit() {
3285 +            int i, f, h;
3286 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3287 +                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3288 +                                        f, est >>>= 1);
3289 +        }
3290 +
3291 +        public void forEachRemaining(Action<? super K> action) {
3292 +            if (action == null) throw new NullPointerException();
3293 +            for (Node<K,V> p; (p = advance()) != null;)
3294 +                action.apply(p.key);
3295 +        }
3296 +
3297 +        public boolean tryAdvance(Action<? super K> action) {
3298 +            if (action == null) throw new NullPointerException();
3299 +            Node<K,V> p;
3300 +            if ((p = advance()) == null)
3301 +                return false;
3302 +            action.apply(p.key);
3303 +            return true;
3304 +        }
3305 +
3306 +        public long estimateSize() { return est; }
3307 +
3308 +    }
3309 +
3310 +    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3311 +        implements ConcurrentHashMapSpliterator<V> {
3312 +        long est;               // size estimate
3313 +        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3314 +                         long est) {
3315 +            super(tab, size, index, limit);
3316 +            this.est = est;
3317 +        }
3318 +
3319 +        public ConcurrentHashMapSpliterator<V> trySplit() {
3320 +            int i, f, h;
3321 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3322 +                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3323 +                                          f, est >>>= 1);
3324 +        }
3325 +
3326 +        public void forEachRemaining(Action<? super V> action) {
3327 +            if (action == null) throw new NullPointerException();
3328 +            for (Node<K,V> p; (p = advance()) != null;)
3329 +                action.apply(p.val);
3330 +        }
3331 +
3332 +        public boolean tryAdvance(Action<? super V> action) {
3333 +            if (action == null) throw new NullPointerException();
3334 +            Node<K,V> p;
3335 +            if ((p = advance()) == null)
3336 +                return false;
3337 +            action.apply(p.val);
3338 +            return true;
3339 +        }
3340 +
3341 +        public long estimateSize() { return est; }
3342 +
3343 +    }
3344 +
3345 +    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3346 +        implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3347 +        final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3348 +        long est;               // size estimate
3349 +        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3350 +                         long est, ConcurrentHashMapV8<K,V> map) {
3351 +            super(tab, size, index, limit);
3352 +            this.map = map;
3353 +            this.est = est;
3354 +        }
3355 +
3356 +        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3357 +            int i, f, h;
3358 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3359 +                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3360 +                                          f, est >>>= 1, map);
3361 +        }
3362 +
3363 +        public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3364 +            if (action == null) throw new NullPointerException();
3365 +            for (Node<K,V> p; (p = advance()) != null; )
3366 +                action.apply(new MapEntry<K,V>(p.key, p.val, map));
3367 +        }
3368 +
3369 +        public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3370 +            if (action == null) throw new NullPointerException();
3371 +            Node<K,V> p;
3372 +            if ((p = advance()) == null)
3373 +                return false;
3374 +            action.apply(new MapEntry<K,V>(p.key, p.val, map));
3375 +            return true;
3376 +        }
3377 +
3378 +        public long estimateSize() { return est; }
3379 +
3380 +    }
3381 +
3382 +    // Parallel bulk operations
3383 +
3384      /**
3385 <     * Internal version of entry, that doesn't write though changes
3385 >     * Computes initial batch value for bulk tasks. The returned value
3386 >     * is approximately exp2 of the number of times (minus one) to
3387 >     * split task by two before executing leaf action. This value is
3388 >     * faster to compute and more convenient to use as a guide to
3389 >     * splitting than is the depth, since it is used while dividing by
3390 >     * two anyway.
3391       */
3392 <    static final class SnapshotEntry<K,V> extends MapEntry<K,V>
3393 <        implements Map.Entry<K, V> {
3394 <        SnapshotEntry(K key, V val) { super(key, val); }
3395 <        public final V setValue(V value) { // only locally update
3396 <            if (value == null) throw new NullPointerException();
3397 <            V v = val;
3398 <            val = value;
3399 <            return v;
3400 <        }
3392 >    final int batchFor(long b) {
3393 >        long n;
3394 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3395 >            return 0;
3396 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3397 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3398 >    }
3399 >
3400 >    /**
3401 >     * Performs the given action for each (key, value).
3402 >     *
3403 >     * @param parallelismThreshold the (estimated) number of elements
3404 >     * needed for this operation to be executed in parallel
3405 >     * @param action the action
3406 >     * @since 1.8
3407 >     */
3408 >    public void forEach(long parallelismThreshold,
3409 >                        BiAction<? super K,? super V> action) {
3410 >        if (action == null) throw new NullPointerException();
3411 >        new ForEachMappingTask<K,V>
3412 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3413 >             action).invoke();
3414 >    }
3415 >
3416 >    /**
3417 >     * Performs the given action for each non-null transformation
3418 >     * of each (key, value).
3419 >     *
3420 >     * @param parallelismThreshold the (estimated) number of elements
3421 >     * needed for this operation to be executed in parallel
3422 >     * @param transformer a function returning the transformation
3423 >     * for an element, or null if there is no transformation (in
3424 >     * which case the action is not applied)
3425 >     * @param action the action
3426 >     * @since 1.8
3427 >     */
3428 >    public <U> void forEach(long parallelismThreshold,
3429 >                            BiFun<? super K, ? super V, ? extends U> transformer,
3430 >                            Action<? super U> action) {
3431 >        if (transformer == null || action == null)
3432 >            throw new NullPointerException();
3433 >        new ForEachTransformedMappingTask<K,V,U>
3434 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3435 >             transformer, action).invoke();
3436 >    }
3437 >
3438 >    /**
3439 >     * Returns a non-null result from applying the given search
3440 >     * function on each (key, value), or null if none.  Upon
3441 >     * success, further element processing is suppressed and the
3442 >     * results of any other parallel invocations of the search
3443 >     * function are ignored.
3444 >     *
3445 >     * @param parallelismThreshold the (estimated) number of elements
3446 >     * needed for this operation to be executed in parallel
3447 >     * @param searchFunction a function returning a non-null
3448 >     * result on success, else null
3449 >     * @return a non-null result from applying the given search
3450 >     * function on each (key, value), or null if none
3451 >     * @since 1.8
3452 >     */
3453 >    public <U> U search(long parallelismThreshold,
3454 >                        BiFun<? super K, ? super V, ? extends U> searchFunction) {
3455 >        if (searchFunction == null) throw new NullPointerException();
3456 >        return new SearchMappingsTask<K,V,U>
3457 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3458 >             searchFunction, new AtomicReference<U>()).invoke();
3459      }
3460  
3461 +    /**
3462 +     * Returns the result of accumulating the given transformation
3463 +     * of all (key, value) pairs using the given reducer to
3464 +     * combine values, or null if none.
3465 +     *
3466 +     * @param parallelismThreshold the (estimated) number of elements
3467 +     * needed for this operation to be executed in parallel
3468 +     * @param transformer a function returning the transformation
3469 +     * for an element, or null if there is no transformation (in
3470 +     * which case it is not combined)
3471 +     * @param reducer a commutative associative combining function
3472 +     * @return the result of accumulating the given transformation
3473 +     * of all (key, value) pairs
3474 +     * @since 1.8
3475 +     */
3476 +    public <U> U reduce(long parallelismThreshold,
3477 +                        BiFun<? super K, ? super V, ? extends U> transformer,
3478 +                        BiFun<? super U, ? super U, ? extends U> reducer) {
3479 +        if (transformer == null || reducer == null)
3480 +            throw new NullPointerException();
3481 +        return new MapReduceMappingsTask<K,V,U>
3482 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3483 +             null, transformer, reducer).invoke();
3484 +    }
3485 +
3486 +    /**
3487 +     * Returns the result of accumulating the given transformation
3488 +     * of all (key, value) pairs using the given reducer to
3489 +     * combine values, and the given basis as an identity value.
3490 +     *
3491 +     * @param parallelismThreshold the (estimated) number of elements
3492 +     * needed for this operation to be executed in parallel
3493 +     * @param transformer a function returning the transformation
3494 +     * for an element
3495 +     * @param basis the identity (initial default value) for the reduction
3496 +     * @param reducer a commutative associative combining function
3497 +     * @return the result of accumulating the given transformation
3498 +     * of all (key, value) pairs
3499 +     * @since 1.8
3500 +     */
3501 +    public double reduceToDoubleIn(long parallelismThreshold,
3502 +                                   ObjectByObjectToDouble<? super K, ? super V> transformer,
3503 +                                   double basis,
3504 +                                   DoubleByDoubleToDouble reducer) {
3505 +        if (transformer == null || reducer == null)
3506 +            throw new NullPointerException();
3507 +        return new MapReduceMappingsToDoubleTask<K,V>
3508 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3509 +             null, transformer, basis, reducer).invoke();
3510 +    }
3511 +
3512 +    /**
3513 +     * Returns the result of accumulating the given transformation
3514 +     * of all (key, value) pairs using the given reducer to
3515 +     * combine values, and the given basis as an identity value.
3516 +     *
3517 +     * @param parallelismThreshold the (estimated) number of elements
3518 +     * needed for this operation to be executed in parallel
3519 +     * @param transformer a function returning the transformation
3520 +     * for an element
3521 +     * @param basis the identity (initial default value) for the reduction
3522 +     * @param reducer a commutative associative combining function
3523 +     * @return the result of accumulating the given transformation
3524 +     * of all (key, value) pairs
3525 +     * @since 1.8
3526 +     */
3527 +    public long reduceToLong(long parallelismThreshold,
3528 +                             ObjectByObjectToLong<? super K, ? super V> transformer,
3529 +                             long basis,
3530 +                             LongByLongToLong reducer) {
3531 +        if (transformer == null || reducer == null)
3532 +            throw new NullPointerException();
3533 +        return new MapReduceMappingsToLongTask<K,V>
3534 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3535 +             null, transformer, basis, reducer).invoke();
3536 +    }
3537 +
3538 +    /**
3539 +     * Returns the result of accumulating the given transformation
3540 +     * of all (key, value) pairs using the given reducer to
3541 +     * combine values, and the given basis as an identity value.
3542 +     *
3543 +     * @param parallelismThreshold the (estimated) number of elements
3544 +     * needed for this operation to be executed in parallel
3545 +     * @param transformer a function returning the transformation
3546 +     * for an element
3547 +     * @param basis the identity (initial default value) for the reduction
3548 +     * @param reducer a commutative associative combining function
3549 +     * @return the result of accumulating the given transformation
3550 +     * of all (key, value) pairs
3551 +     * @since 1.8
3552 +     */
3553 +    public int reduceToInt(long parallelismThreshold,
3554 +                           ObjectByObjectToInt<? super K, ? super V> transformer,
3555 +                           int basis,
3556 +                           IntByIntToInt reducer) {
3557 +        if (transformer == null || reducer == null)
3558 +            throw new NullPointerException();
3559 +        return new MapReduceMappingsToIntTask<K,V>
3560 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3561 +             null, transformer, basis, reducer).invoke();
3562 +    }
3563 +
3564 +    /**
3565 +     * Performs the given action for each key.
3566 +     *
3567 +     * @param parallelismThreshold the (estimated) number of elements
3568 +     * needed for this operation to be executed in parallel
3569 +     * @param action the action
3570 +     * @since 1.8
3571 +     */
3572 +    public void forEachKey(long parallelismThreshold,
3573 +                           Action<? super K> action) {
3574 +        if (action == null) throw new NullPointerException();
3575 +        new ForEachKeyTask<K,V>
3576 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3577 +             action).invoke();
3578 +    }
3579 +
3580 +    /**
3581 +     * Performs the given action for each non-null transformation
3582 +     * of each key.
3583 +     *
3584 +     * @param parallelismThreshold the (estimated) number of elements
3585 +     * needed for this operation to be executed in parallel
3586 +     * @param transformer a function returning the transformation
3587 +     * for an element, or null if there is no transformation (in
3588 +     * which case the action is not applied)
3589 +     * @param action the action
3590 +     * @since 1.8
3591 +     */
3592 +    public <U> void forEachKey(long parallelismThreshold,
3593 +                               Fun<? super K, ? extends U> transformer,
3594 +                               Action<? super U> action) {
3595 +        if (transformer == null || action == null)
3596 +            throw new NullPointerException();
3597 +        new ForEachTransformedKeyTask<K,V,U>
3598 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3599 +             transformer, action).invoke();
3600 +    }
3601 +
3602 +    /**
3603 +     * Returns a non-null result from applying the given search
3604 +     * function on each key, or null if none. Upon success,
3605 +     * further element processing is suppressed and the results of
3606 +     * any other parallel invocations of the search function are
3607 +     * ignored.
3608 +     *
3609 +     * @param parallelismThreshold the (estimated) number of elements
3610 +     * needed for this operation to be executed in parallel
3611 +     * @param searchFunction a function returning a non-null
3612 +     * result on success, else null
3613 +     * @return a non-null result from applying the given search
3614 +     * function on each key, or null if none
3615 +     * @since 1.8
3616 +     */
3617 +    public <U> U searchKeys(long parallelismThreshold,
3618 +                            Fun<? super K, ? extends U> searchFunction) {
3619 +        if (searchFunction == null) throw new NullPointerException();
3620 +        return new SearchKeysTask<K,V,U>
3621 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3622 +             searchFunction, new AtomicReference<U>()).invoke();
3623 +    }
3624 +
3625 +    /**
3626 +     * Returns the result of accumulating all keys using the given
3627 +     * reducer to combine values, or null if none.
3628 +     *
3629 +     * @param parallelismThreshold the (estimated) number of elements
3630 +     * needed for this operation to be executed in parallel
3631 +     * @param reducer a commutative associative combining function
3632 +     * @return the result of accumulating all keys using the given
3633 +     * reducer to combine values, or null if none
3634 +     * @since 1.8
3635 +     */
3636 +    public K reduceKeys(long parallelismThreshold,
3637 +                        BiFun<? super K, ? super K, ? extends K> reducer) {
3638 +        if (reducer == null) throw new NullPointerException();
3639 +        return new ReduceKeysTask<K,V>
3640 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3641 +             null, reducer).invoke();
3642 +    }
3643 +
3644 +    /**
3645 +     * Returns the result of accumulating the given transformation
3646 +     * of all keys using the given reducer to combine values, or
3647 +     * null if none.
3648 +     *
3649 +     * @param parallelismThreshold the (estimated) number of elements
3650 +     * needed for this operation to be executed in parallel
3651 +     * @param transformer a function returning the transformation
3652 +     * for an element, or null if there is no transformation (in
3653 +     * which case it is not combined)
3654 +     * @param reducer a commutative associative combining function
3655 +     * @return the result of accumulating the given transformation
3656 +     * of all keys
3657 +     * @since 1.8
3658 +     */
3659 +    public <U> U reduceKeys(long parallelismThreshold,
3660 +                            Fun<? super K, ? extends U> transformer,
3661 +         BiFun<? super U, ? super U, ? extends U> reducer) {
3662 +        if (transformer == null || reducer == null)
3663 +            throw new NullPointerException();
3664 +        return new MapReduceKeysTask<K,V,U>
3665 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3666 +             null, transformer, reducer).invoke();
3667 +    }
3668 +
3669 +    /**
3670 +     * Returns the result of accumulating the given transformation
3671 +     * of all keys using the given reducer to combine values, and
3672 +     * the given basis as an identity value.
3673 +     *
3674 +     * @param parallelismThreshold the (estimated) number of elements
3675 +     * needed for this operation to be executed in parallel
3676 +     * @param transformer a function returning the transformation
3677 +     * for an element
3678 +     * @param basis the identity (initial default value) for the reduction
3679 +     * @param reducer a commutative associative combining function
3680 +     * @return the result of accumulating the given transformation
3681 +     * of all keys
3682 +     * @since 1.8
3683 +     */
3684 +    public double reduceKeysToDouble(long parallelismThreshold,
3685 +                                     ObjectToDouble<? super K> transformer,
3686 +                                     double basis,
3687 +                                     DoubleByDoubleToDouble reducer) {
3688 +        if (transformer == null || reducer == null)
3689 +            throw new NullPointerException();
3690 +        return new MapReduceKeysToDoubleTask<K,V>
3691 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3692 +             null, transformer, basis, reducer).invoke();
3693 +    }
3694 +
3695 +    /**
3696 +     * Returns the result of accumulating the given transformation
3697 +     * of all keys using the given reducer to combine values, and
3698 +     * the given basis as an identity value.
3699 +     *
3700 +     * @param parallelismThreshold the (estimated) number of elements
3701 +     * needed for this operation to be executed in parallel
3702 +     * @param transformer a function returning the transformation
3703 +     * for an element
3704 +     * @param basis the identity (initial default value) for the reduction
3705 +     * @param reducer a commutative associative combining function
3706 +     * @return the result of accumulating the given transformation
3707 +     * of all keys
3708 +     * @since 1.8
3709 +     */
3710 +    public long reduceKeysToLong(long parallelismThreshold,
3711 +                                 ObjectToLong<? super K> transformer,
3712 +                                 long basis,
3713 +                                 LongByLongToLong reducer) {
3714 +        if (transformer == null || reducer == null)
3715 +            throw new NullPointerException();
3716 +        return new MapReduceKeysToLongTask<K,V>
3717 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3718 +             null, transformer, basis, reducer).invoke();
3719 +    }
3720 +
3721 +    /**
3722 +     * Returns the result of accumulating the given transformation
3723 +     * of all keys using the given reducer to combine values, and
3724 +     * the given basis as an identity value.
3725 +     *
3726 +     * @param parallelismThreshold the (estimated) number of elements
3727 +     * needed for this operation to be executed in parallel
3728 +     * @param transformer a function returning the transformation
3729 +     * for an element
3730 +     * @param basis the identity (initial default value) for the reduction
3731 +     * @param reducer a commutative associative combining function
3732 +     * @return the result of accumulating the given transformation
3733 +     * of all keys
3734 +     * @since 1.8
3735 +     */
3736 +    public int reduceKeysToInt(long parallelismThreshold,
3737 +                               ObjectToInt<? super K> transformer,
3738 +                               int basis,
3739 +                               IntByIntToInt reducer) {
3740 +        if (transformer == null || reducer == null)
3741 +            throw new NullPointerException();
3742 +        return new MapReduceKeysToIntTask<K,V>
3743 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3744 +             null, transformer, basis, reducer).invoke();
3745 +    }
3746 +
3747 +    /**
3748 +     * Performs the given action for each value.
3749 +     *
3750 +     * @param parallelismThreshold the (estimated) number of elements
3751 +     * needed for this operation to be executed in parallel
3752 +     * @param action the action
3753 +     * @since 1.8
3754 +     */
3755 +    public void forEachValue(long parallelismThreshold,
3756 +                             Action<? super V> action) {
3757 +        if (action == null)
3758 +            throw new NullPointerException();
3759 +        new ForEachValueTask<K,V>
3760 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3761 +             action).invoke();
3762 +    }
3763 +
3764 +    /**
3765 +     * Performs the given action for each non-null transformation
3766 +     * of each value.
3767 +     *
3768 +     * @param parallelismThreshold the (estimated) number of elements
3769 +     * needed for this operation to be executed in parallel
3770 +     * @param transformer a function returning the transformation
3771 +     * for an element, or null if there is no transformation (in
3772 +     * which case the action is not applied)
3773 +     * @param action the action
3774 +     * @since 1.8
3775 +     */
3776 +    public <U> void forEachValue(long parallelismThreshold,
3777 +                                 Fun<? super V, ? extends U> transformer,
3778 +                                 Action<? super U> action) {
3779 +        if (transformer == null || action == null)
3780 +            throw new NullPointerException();
3781 +        new ForEachTransformedValueTask<K,V,U>
3782 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3783 +             transformer, action).invoke();
3784 +    }
3785 +
3786 +    /**
3787 +     * Returns a non-null result from applying the given search
3788 +     * function on each value, or null if none.  Upon success,
3789 +     * further element processing is suppressed and the results of
3790 +     * any other parallel invocations of the search function are
3791 +     * ignored.
3792 +     *
3793 +     * @param parallelismThreshold the (estimated) number of elements
3794 +     * needed for this operation to be executed in parallel
3795 +     * @param searchFunction a function returning a non-null
3796 +     * result on success, else null
3797 +     * @return a non-null result from applying the given search
3798 +     * function on each value, or null if none
3799 +     * @since 1.8
3800 +     */
3801 +    public <U> U searchValues(long parallelismThreshold,
3802 +                              Fun<? super V, ? extends U> searchFunction) {
3803 +        if (searchFunction == null) throw new NullPointerException();
3804 +        return new SearchValuesTask<K,V,U>
3805 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3806 +             searchFunction, new AtomicReference<U>()).invoke();
3807 +    }
3808 +
3809 +    /**
3810 +     * Returns the result of accumulating all values using the
3811 +     * given reducer to combine values, or null if none.
3812 +     *
3813 +     * @param parallelismThreshold the (estimated) number of elements
3814 +     * needed for this operation to be executed in parallel
3815 +     * @param reducer a commutative associative combining function
3816 +     * @return the result of accumulating all values
3817 +     * @since 1.8
3818 +     */
3819 +    public V reduceValues(long parallelismThreshold,
3820 +                          BiFun<? super V, ? super V, ? extends V> reducer) {
3821 +        if (reducer == null) throw new NullPointerException();
3822 +        return new ReduceValuesTask<K,V>
3823 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3824 +             null, reducer).invoke();
3825 +    }
3826 +
3827 +    /**
3828 +     * Returns the result of accumulating the given transformation
3829 +     * of all values using the given reducer to combine values, or
3830 +     * null if none.
3831 +     *
3832 +     * @param parallelismThreshold the (estimated) number of elements
3833 +     * needed for this operation to be executed in parallel
3834 +     * @param transformer a function returning the transformation
3835 +     * for an element, or null if there is no transformation (in
3836 +     * which case it is not combined)
3837 +     * @param reducer a commutative associative combining function
3838 +     * @return the result of accumulating the given transformation
3839 +     * of all values
3840 +     * @since 1.8
3841 +     */
3842 +    public <U> U reduceValues(long parallelismThreshold,
3843 +                              Fun<? super V, ? extends U> transformer,
3844 +                              BiFun<? super U, ? super U, ? extends U> reducer) {
3845 +        if (transformer == null || reducer == null)
3846 +            throw new NullPointerException();
3847 +        return new MapReduceValuesTask<K,V,U>
3848 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3849 +             null, transformer, reducer).invoke();
3850 +    }
3851 +
3852 +    /**
3853 +     * Returns the result of accumulating the given transformation
3854 +     * of all values using the given reducer to combine values,
3855 +     * and the given basis as an identity value.
3856 +     *
3857 +     * @param parallelismThreshold the (estimated) number of elements
3858 +     * needed for this operation to be executed in parallel
3859 +     * @param transformer a function returning the transformation
3860 +     * for an element
3861 +     * @param basis the identity (initial default value) for the reduction
3862 +     * @param reducer a commutative associative combining function
3863 +     * @return the result of accumulating the given transformation
3864 +     * of all values
3865 +     * @since 1.8
3866 +     */
3867 +    public double reduceValuesToDouble(long parallelismThreshold,
3868 +                                       ObjectToDouble<? super V> transformer,
3869 +                                       double basis,
3870 +                                       DoubleByDoubleToDouble reducer) {
3871 +        if (transformer == null || reducer == null)
3872 +            throw new NullPointerException();
3873 +        return new MapReduceValuesToDoubleTask<K,V>
3874 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3875 +             null, transformer, basis, reducer).invoke();
3876 +    }
3877 +
3878 +    /**
3879 +     * Returns the result of accumulating the given transformation
3880 +     * of all values using the given reducer to combine values,
3881 +     * and the given basis as an identity value.
3882 +     *
3883 +     * @param parallelismThreshold the (estimated) number of elements
3884 +     * needed for this operation to be executed in parallel
3885 +     * @param transformer a function returning the transformation
3886 +     * for an element
3887 +     * @param basis the identity (initial default value) for the reduction
3888 +     * @param reducer a commutative associative combining function
3889 +     * @return the result of accumulating the given transformation
3890 +     * of all values
3891 +     * @since 1.8
3892 +     */
3893 +    public long reduceValuesToLong(long parallelismThreshold,
3894 +                                   ObjectToLong<? super V> transformer,
3895 +                                   long basis,
3896 +                                   LongByLongToLong reducer) {
3897 +        if (transformer == null || reducer == null)
3898 +            throw new NullPointerException();
3899 +        return new MapReduceValuesToLongTask<K,V>
3900 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3901 +             null, transformer, basis, reducer).invoke();
3902 +    }
3903 +
3904 +    /**
3905 +     * Returns the result of accumulating the given transformation
3906 +     * of all values using the given reducer to combine values,
3907 +     * and the given basis as an identity value.
3908 +     *
3909 +     * @param parallelismThreshold the (estimated) number of elements
3910 +     * needed for this operation to be executed in parallel
3911 +     * @param transformer a function returning the transformation
3912 +     * for an element
3913 +     * @param basis the identity (initial default value) for the reduction
3914 +     * @param reducer a commutative associative combining function
3915 +     * @return the result of accumulating the given transformation
3916 +     * of all values
3917 +     * @since 1.8
3918 +     */
3919 +    public int reduceValuesToInt(long parallelismThreshold,
3920 +                                 ObjectToInt<? super V> transformer,
3921 +                                 int basis,
3922 +                                 IntByIntToInt reducer) {
3923 +        if (transformer == null || reducer == null)
3924 +            throw new NullPointerException();
3925 +        return new MapReduceValuesToIntTask<K,V>
3926 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3927 +             null, transformer, basis, reducer).invoke();
3928 +    }
3929 +
3930 +    /**
3931 +     * Performs the given action for each entry.
3932 +     *
3933 +     * @param parallelismThreshold the (estimated) number of elements
3934 +     * needed for this operation to be executed in parallel
3935 +     * @param action the action
3936 +     * @since 1.8
3937 +     */
3938 +    public void forEachEntry(long parallelismThreshold,
3939 +                             Action<? super Map.Entry<K,V>> action) {
3940 +        if (action == null) throw new NullPointerException();
3941 +        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
3942 +                                  action).invoke();
3943 +    }
3944 +
3945 +    /**
3946 +     * Performs the given action for each non-null transformation
3947 +     * of each entry.
3948 +     *
3949 +     * @param parallelismThreshold the (estimated) number of elements
3950 +     * needed for this operation to be executed in parallel
3951 +     * @param transformer a function returning the transformation
3952 +     * for an element, or null if there is no transformation (in
3953 +     * which case the action is not applied)
3954 +     * @param action the action
3955 +     * @since 1.8
3956 +     */
3957 +    public <U> void forEachEntry(long parallelismThreshold,
3958 +                                 Fun<Map.Entry<K,V>, ? extends U> transformer,
3959 +                                 Action<? super U> action) {
3960 +        if (transformer == null || action == null)
3961 +            throw new NullPointerException();
3962 +        new ForEachTransformedEntryTask<K,V,U>
3963 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3964 +             transformer, action).invoke();
3965 +    }
3966 +
3967 +    /**
3968 +     * Returns a non-null result from applying the given search
3969 +     * function on each entry, or null if none.  Upon success,
3970 +     * further element processing is suppressed and the results of
3971 +     * any other parallel invocations of the search function are
3972 +     * ignored.
3973 +     *
3974 +     * @param parallelismThreshold the (estimated) number of elements
3975 +     * needed for this operation to be executed in parallel
3976 +     * @param searchFunction a function returning a non-null
3977 +     * result on success, else null
3978 +     * @return a non-null result from applying the given search
3979 +     * function on each entry, or null if none
3980 +     * @since 1.8
3981 +     */
3982 +    public <U> U searchEntries(long parallelismThreshold,
3983 +                               Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3984 +        if (searchFunction == null) throw new NullPointerException();
3985 +        return new SearchEntriesTask<K,V,U>
3986 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3987 +             searchFunction, new AtomicReference<U>()).invoke();
3988 +    }
3989 +
3990 +    /**
3991 +     * Returns the result of accumulating all entries using the
3992 +     * given reducer to combine values, or null if none.
3993 +     *
3994 +     * @param parallelismThreshold the (estimated) number of elements
3995 +     * needed for this operation to be executed in parallel
3996 +     * @param reducer a commutative associative combining function
3997 +     * @return the result of accumulating all entries
3998 +     * @since 1.8
3999 +     */
4000 +    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4001 +                                        BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4002 +        if (reducer == null) throw new NullPointerException();
4003 +        return new ReduceEntriesTask<K,V>
4004 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4005 +             null, reducer).invoke();
4006 +    }
4007 +
4008 +    /**
4009 +     * Returns the result of accumulating the given transformation
4010 +     * of all entries using the given reducer to combine values,
4011 +     * or null if none.
4012 +     *
4013 +     * @param parallelismThreshold the (estimated) number of elements
4014 +     * needed for this operation to be executed in parallel
4015 +     * @param transformer a function returning the transformation
4016 +     * for an element, or null if there is no transformation (in
4017 +     * which case it is not combined)
4018 +     * @param reducer a commutative associative combining function
4019 +     * @return the result of accumulating the given transformation
4020 +     * of all entries
4021 +     * @since 1.8
4022 +     */
4023 +    public <U> U reduceEntries(long parallelismThreshold,
4024 +                               Fun<Map.Entry<K,V>, ? extends U> transformer,
4025 +                               BiFun<? super U, ? super U, ? extends U> reducer) {
4026 +        if (transformer == null || reducer == null)
4027 +            throw new NullPointerException();
4028 +        return new MapReduceEntriesTask<K,V,U>
4029 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4030 +             null, transformer, reducer).invoke();
4031 +    }
4032 +
4033 +    /**
4034 +     * Returns the result of accumulating the given transformation
4035 +     * of all entries using the given reducer to combine values,
4036 +     * and the given basis as an identity value.
4037 +     *
4038 +     * @param parallelismThreshold the (estimated) number of elements
4039 +     * needed for this operation to be executed in parallel
4040 +     * @param transformer a function returning the transformation
4041 +     * for an element
4042 +     * @param basis the identity (initial default value) for the reduction
4043 +     * @param reducer a commutative associative combining function
4044 +     * @return the result of accumulating the given transformation
4045 +     * of all entries
4046 +     * @since 1.8
4047 +     */
4048 +    public double reduceEntriesToDouble(long parallelismThreshold,
4049 +                                        ObjectToDouble<Map.Entry<K,V>> transformer,
4050 +                                        double basis,
4051 +                                        DoubleByDoubleToDouble reducer) {
4052 +        if (transformer == null || reducer == null)
4053 +            throw new NullPointerException();
4054 +        return new MapReduceEntriesToDoubleTask<K,V>
4055 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4056 +             null, transformer, basis, reducer).invoke();
4057 +    }
4058 +
4059 +    /**
4060 +     * Returns the result of accumulating the given transformation
4061 +     * of all entries using the given reducer to combine values,
4062 +     * and the given basis as an identity value.
4063 +     *
4064 +     * @param parallelismThreshold the (estimated) number of elements
4065 +     * needed for this operation to be executed in parallel
4066 +     * @param transformer a function returning the transformation
4067 +     * for an element
4068 +     * @param basis the identity (initial default value) for the reduction
4069 +     * @param reducer a commutative associative combining function
4070 +     * @return the result of accumulating the given transformation
4071 +     * of all entries
4072 +     * @since 1.8
4073 +     */
4074 +    public long reduceEntriesToLong(long parallelismThreshold,
4075 +                                    ObjectToLong<Map.Entry<K,V>> transformer,
4076 +                                    long basis,
4077 +                                    LongByLongToLong reducer) {
4078 +        if (transformer == null || reducer == null)
4079 +            throw new NullPointerException();
4080 +        return new MapReduceEntriesToLongTask<K,V>
4081 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4082 +             null, transformer, basis, reducer).invoke();
4083 +    }
4084 +
4085 +    /**
4086 +     * Returns the result of accumulating the given transformation
4087 +     * of all entries using the given reducer to combine values,
4088 +     * and the given basis as an identity value.
4089 +     *
4090 +     * @param parallelismThreshold the (estimated) number of elements
4091 +     * needed for this operation to be executed in parallel
4092 +     * @param transformer a function returning the transformation
4093 +     * for an element
4094 +     * @param basis the identity (initial default value) for the reduction
4095 +     * @param reducer a commutative associative combining function
4096 +     * @return the result of accumulating the given transformation
4097 +     * of all entries
4098 +     * @since 1.8
4099 +     */
4100 +    public int reduceEntriesToInt(long parallelismThreshold,
4101 +                                  ObjectToInt<Map.Entry<K,V>> transformer,
4102 +                                  int basis,
4103 +                                  IntByIntToInt reducer) {
4104 +        if (transformer == null || reducer == null)
4105 +            throw new NullPointerException();
4106 +        return new MapReduceEntriesToIntTask<K,V>
4107 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4108 +             null, transformer, basis, reducer).invoke();
4109 +    }
4110 +
4111 +
4112      /* ----------------Views -------------- */
4113  
4114      /**
4115 <     * Base class for views. This is done mainly to allow adding
2086 <     * customized parallel traversals (not yet implemented.)
4115 >     * Base class for views.
4116       */
4117 <    static abstract class MapView<K, V> {
4118 <        final ConcurrentHashMapV8<K, V> map;
4119 <        MapView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
4120 <        public final int size()                 { return map.size(); }
4121 <        public final boolean isEmpty()          { return map.isEmpty(); }
4122 <        public final void clear()               { map.clear(); }
4117 >    abstract static class CollectionView<K,V,E>
4118 >        implements Collection<E>, java.io.Serializable {
4119 >        private static final long serialVersionUID = 7249069246763182397L;
4120 >        final ConcurrentHashMapV8<K,V> map;
4121 >        CollectionView(ConcurrentHashMapV8<K,V> map)  { this.map = map; }
4122 >
4123 >        /**
4124 >         * Returns the map backing this view.
4125 >         *
4126 >         * @return the map backing this view
4127 >         */
4128 >        public ConcurrentHashMapV8<K,V> getMap() { return map; }
4129 >
4130 >        /**
4131 >         * Removes all of the elements from this view, by removing all
4132 >         * the mappings from the map backing this view.
4133 >         */
4134 >        public final void clear()      { map.clear(); }
4135 >        public final int size()        { return map.size(); }
4136 >        public final boolean isEmpty() { return map.isEmpty(); }
4137  
4138          // implementations below rely on concrete classes supplying these
4139 <        abstract Iterator<?> iter();
4140 <        abstract public boolean contains(Object o);
4141 <        abstract public boolean remove(Object o);
4139 >        // abstract methods
4140 >        /**
4141 >         * Returns a "weakly consistent" iterator that will never
4142 >         * throw {@link ConcurrentModificationException}, and
4143 >         * guarantees to traverse elements as they existed upon
4144 >         * construction of the iterator, and may (but is not
4145 >         * guaranteed to) reflect any modifications subsequent to
4146 >         * construction.
4147 >         */
4148 >        public abstract Iterator<E> iterator();
4149 >        public abstract boolean contains(Object o);
4150 >        public abstract boolean remove(Object o);
4151  
4152          private static final String oomeMsg = "Required array size too large";
4153  
4154          public final Object[] toArray() {
4155 <            long sz = map.longSize();
4156 <            if (sz > (long)(MAX_ARRAY_SIZE))
4155 >            long sz = map.mappingCount();
4156 >            if (sz > MAX_ARRAY_SIZE)
4157                  throw new OutOfMemoryError(oomeMsg);
4158              int n = (int)sz;
4159              Object[] r = new Object[n];
4160              int i = 0;
4161 <            Iterator<?> it = iter();
2110 <            while (it.hasNext()) {
4161 >            for (E e : this) {
4162                  if (i == n) {
4163                      if (n >= MAX_ARRAY_SIZE)
4164                          throw new OutOfMemoryError(oomeMsg);
# Line 2117 | Line 4168 | public class ConcurrentHashMapV8<K, V>
4168                          n += (n >>> 1) + 1;
4169                      r = Arrays.copyOf(r, n);
4170                  }
4171 <                r[i++] = it.next();
4171 >                r[i++] = e;
4172              }
4173              return (i == n) ? r : Arrays.copyOf(r, i);
4174          }
4175  
4176          @SuppressWarnings("unchecked")
4177          public final <T> T[] toArray(T[] a) {
4178 <            long sz = map.longSize();
4179 <            if (sz > (long)(MAX_ARRAY_SIZE))
4178 >            long sz = map.mappingCount();
4179 >            if (sz > MAX_ARRAY_SIZE)
4180                  throw new OutOfMemoryError(oomeMsg);
4181              int m = (int)sz;
4182              T[] r = (a.length >= m) ? a :
# Line 2133 | Line 4184 | public class ConcurrentHashMapV8<K, V>
4184                  .newInstance(a.getClass().getComponentType(), m);
4185              int n = r.length;
4186              int i = 0;
4187 <            Iterator<?> it = iter();
2137 <            while (it.hasNext()) {
4187 >            for (E e : this) {
4188                  if (i == n) {
4189                      if (n >= MAX_ARRAY_SIZE)
4190                          throw new OutOfMemoryError(oomeMsg);
# Line 2144 | Line 4194 | public class ConcurrentHashMapV8<K, V>
4194                          n += (n >>> 1) + 1;
4195                      r = Arrays.copyOf(r, n);
4196                  }
4197 <                r[i++] = (T)it.next();
4197 >                r[i++] = (T)e;
4198              }
4199              if (a == r && i < n) {
4200                  r[i] = null; // null-terminate
# Line 2153 | Line 4203 | public class ConcurrentHashMapV8<K, V>
4203              return (i == n) ? r : Arrays.copyOf(r, i);
4204          }
4205  
4206 <        public final int hashCode() {
4207 <            int h = 0;
4208 <            for (Iterator<?> it = iter(); it.hasNext();)
4209 <                h += it.next().hashCode();
4210 <            return h;
4211 <        }
4212 <
4206 >        /**
4207 >         * Returns a string representation of this collection.
4208 >         * The string representation consists of the string representations
4209 >         * of the collection's elements in the order they are returned by
4210 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4211 >         * Adjacent elements are separated by the characters {@code ", "}
4212 >         * (comma and space).  Elements are converted to strings as by
4213 >         * {@link String#valueOf(Object)}.
4214 >         *
4215 >         * @return a string representation of this collection
4216 >         */
4217          public final String toString() {
4218              StringBuilder sb = new StringBuilder();
4219              sb.append('[');
4220 <            Iterator<?> it = iter();
4220 >            Iterator<E> it = iterator();
4221              if (it.hasNext()) {
4222                  for (;;) {
4223                      Object e = it.next();
# Line 2178 | Line 4232 | public class ConcurrentHashMapV8<K, V>
4232  
4233          public final boolean containsAll(Collection<?> c) {
4234              if (c != this) {
4235 <                for (Iterator<?> it = c.iterator(); it.hasNext();) {
2182 <                    Object e = it.next();
4235 >                for (Object e : c) {
4236                      if (e == null || !contains(e))
4237                          return false;
4238                  }
# Line 2187 | Line 4240 | public class ConcurrentHashMapV8<K, V>
4240              return true;
4241          }
4242  
4243 <        public final boolean removeAll(Collection c) {
4243 >        public final boolean removeAll(Collection<?> c) {
4244              boolean modified = false;
4245 <            for (Iterator<?> it = iter(); it.hasNext();) {
4245 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4246                  if (c.contains(it.next())) {
4247                      it.remove();
4248                      modified = true;
# Line 2200 | Line 4253 | public class ConcurrentHashMapV8<K, V>
4253  
4254          public final boolean retainAll(Collection<?> c) {
4255              boolean modified = false;
4256 <            for (Iterator<?> it = iter(); it.hasNext();) {
4256 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4257                  if (!c.contains(it.next())) {
4258                      it.remove();
4259                      modified = true;
# Line 2211 | Line 4264 | public class ConcurrentHashMapV8<K, V>
4264  
4265      }
4266  
4267 <    static final class KeySet<K,V> extends MapView<K,V> implements Set<K> {
4268 <        KeySet(ConcurrentHashMapV8<K, V> map)   { super(map); }
4269 <        public final boolean contains(Object o) { return map.containsKey(o); }
4270 <        public final boolean remove(Object o)   { return map.remove(o) != null; }
4267 >    /**
4268 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4269 >     * which additions may optionally be enabled by mapping to a
4270 >     * common value.  This class cannot be directly instantiated.
4271 >     * See {@link #keySet() keySet()},
4272 >     * {@link #keySet(Object) keySet(V)},
4273 >     * {@link #newKeySet() newKeySet()},
4274 >     * {@link #newKeySet(int) newKeySet(int)}.
4275 >     *
4276 >     * @since 1.8
4277 >     */
4278 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4279 >        implements Set<K>, java.io.Serializable {
4280 >        private static final long serialVersionUID = 7249069246763182397L;
4281 >        private final V value;
4282 >        KeySetView(ConcurrentHashMapV8<K,V> map, V value) {  // non-public
4283 >            super(map);
4284 >            this.value = value;
4285 >        }
4286 >
4287 >        /**
4288 >         * Returns the default mapped value for additions,
4289 >         * or {@code null} if additions are not supported.
4290 >         *
4291 >         * @return the default mapped value for additions, or {@code null}
4292 >         * if not supported
4293 >         */
4294 >        public V getMappedValue() { return value; }
4295  
4296 <        public final Iterator<K> iterator() {
4297 <            return new KeyIterator<K,V>(map);
4296 >        /**
4297 >         * {@inheritDoc}
4298 >         * @throws NullPointerException if the specified key is null
4299 >         */
4300 >        public boolean contains(Object o) { return map.containsKey(o); }
4301 >
4302 >        /**
4303 >         * Removes the key from this map view, by removing the key (and its
4304 >         * corresponding value) from the backing map.  This method does
4305 >         * nothing if the key is not in the map.
4306 >         *
4307 >         * @param  o the key to be removed from the backing map
4308 >         * @return {@code true} if the backing map contained the specified key
4309 >         * @throws NullPointerException if the specified key is null
4310 >         */
4311 >        public boolean remove(Object o) { return map.remove(o) != null; }
4312 >
4313 >        /**
4314 >         * @return an iterator over the keys of the backing map
4315 >         */
4316 >        public Iterator<K> iterator() {
4317 >            Node<K,V>[] t;
4318 >            ConcurrentHashMapV8<K,V> m = map;
4319 >            int f = (t = m.table) == null ? 0 : t.length;
4320 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4321          }
4322 <        final Iterator<?> iter() {
4323 <            return new KeyIterator<K,V>(map);
4322 >
4323 >        /**
4324 >         * Adds the specified key to this set view by mapping the key to
4325 >         * the default mapped value in the backing map, if defined.
4326 >         *
4327 >         * @param e key to be added
4328 >         * @return {@code true} if this set changed as a result of the call
4329 >         * @throws NullPointerException if the specified key is null
4330 >         * @throws UnsupportedOperationException if no default mapped value
4331 >         * for additions was provided
4332 >         */
4333 >        public boolean add(K e) {
4334 >            V v;
4335 >            if ((v = value) == null)
4336 >                throw new UnsupportedOperationException();
4337 >            return map.putVal(e, v, true) == null;
4338          }
4339 <        public final boolean add(K e) {
4340 <            throw new UnsupportedOperationException();
4339 >
4340 >        /**
4341 >         * Adds all of the elements in the specified collection to this set,
4342 >         * as if by calling {@link #add} on each one.
4343 >         *
4344 >         * @param c the elements to be inserted into this set
4345 >         * @return {@code true} if this set changed as a result of the call
4346 >         * @throws NullPointerException if the collection or any of its
4347 >         * elements are {@code null}
4348 >         * @throws UnsupportedOperationException if no default mapped value
4349 >         * for additions was provided
4350 >         */
4351 >        public boolean addAll(Collection<? extends K> c) {
4352 >            boolean added = false;
4353 >            V v;
4354 >            if ((v = value) == null)
4355 >                throw new UnsupportedOperationException();
4356 >            for (K e : c) {
4357 >                if (map.putVal(e, v, true) == null)
4358 >                    added = true;
4359 >            }
4360 >            return added;
4361          }
4362 <        public final boolean addAll(Collection<? extends K> c) {
4363 <            throw new UnsupportedOperationException();
4362 >
4363 >        public int hashCode() {
4364 >            int h = 0;
4365 >            for (K e : this)
4366 >                h += e.hashCode();
4367 >            return h;
4368          }
4369 +
4370          public boolean equals(Object o) {
4371              Set<?> c;
4372              return ((o instanceof Set) &&
4373                      ((c = (Set<?>)o) == this ||
4374                       (containsAll(c) && c.containsAll(this))));
4375          }
4376 +
4377 +        public ConcurrentHashMapSpliterator<K> spliterator() {
4378 +            Node<K,V>[] t;
4379 +            ConcurrentHashMapV8<K,V> m = map;
4380 +            long n = m.sumCount();
4381 +            int f = (t = m.table) == null ? 0 : t.length;
4382 +            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4383 +        }
4384 +
4385 +        public void forEach(Action<? super K> action) {
4386 +            if (action == null) throw new NullPointerException();
4387 +            Node<K,V>[] t;
4388 +            if ((t = map.table) != null) {
4389 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4390 +                for (Node<K,V> p; (p = it.advance()) != null; )
4391 +                    action.apply(p.key);
4392 +            }
4393 +        }
4394      }
4395  
4396 <    static final class Values<K,V> extends MapView<K,V>
4397 <        implements Collection<V>  {
4398 <        Values(ConcurrentHashMapV8<K, V> map)   { super(map); }
4399 <        public final boolean contains(Object o) { return map.containsValue(o); }
4396 >    /**
4397 >     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4398 >     * values, in which additions are disabled. This class cannot be
4399 >     * directly instantiated. See {@link #values()}.
4400 >     */
4401 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4402 >        implements Collection<V>, java.io.Serializable {
4403 >        private static final long serialVersionUID = 2249069246763182397L;
4404 >        ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4405 >        public final boolean contains(Object o) {
4406 >            return map.containsValue(o);
4407 >        }
4408  
4409          public final boolean remove(Object o) {
4410              if (o != null) {
4411 <                Iterator<V> it = new ValueIterator<K,V>(map);
2247 <                while (it.hasNext()) {
4411 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4412                      if (o.equals(it.next())) {
4413                          it.remove();
4414                          return true;
# Line 2253 | Line 4417 | public class ConcurrentHashMapV8<K, V>
4417              }
4418              return false;
4419          }
4420 +
4421          public final Iterator<V> iterator() {
4422 <            return new ValueIterator<K,V>(map);
4423 <        }
4424 <        final Iterator<?> iter() {
4425 <            return new ValueIterator<K,V>(map);
4422 >            ConcurrentHashMapV8<K,V> m = map;
4423 >            Node<K,V>[] t;
4424 >            int f = (t = m.table) == null ? 0 : t.length;
4425 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4426          }
4427 +
4428          public final boolean add(V e) {
4429              throw new UnsupportedOperationException();
4430          }
4431          public final boolean addAll(Collection<? extends V> c) {
4432              throw new UnsupportedOperationException();
4433          }
4434 +
4435 +        public ConcurrentHashMapSpliterator<V> spliterator() {
4436 +            Node<K,V>[] t;
4437 +            ConcurrentHashMapV8<K,V> m = map;
4438 +            long n = m.sumCount();
4439 +            int f = (t = m.table) == null ? 0 : t.length;
4440 +            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4441 +        }
4442 +
4443 +        public void forEach(Action<? super V> action) {
4444 +            if (action == null) throw new NullPointerException();
4445 +            Node<K,V>[] t;
4446 +            if ((t = map.table) != null) {
4447 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4448 +                for (Node<K,V> p; (p = it.advance()) != null; )
4449 +                    action.apply(p.val);
4450 +            }
4451 +        }
4452      }
4453  
4454 <    static final class EntrySet<K,V>  extends MapView<K,V>
4455 <        implements Set<Map.Entry<K,V>> {
4456 <        EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
4454 >    /**
4455 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4456 >     * entries.  This class cannot be directly instantiated. See
4457 >     * {@link #entrySet()}.
4458 >     */
4459 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4460 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4461 >        private static final long serialVersionUID = 2249069246763182397L;
4462 >        EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4463  
4464 <        public final boolean contains(Object o) {
4464 >        public boolean contains(Object o) {
4465              Object k, v, r; Map.Entry<?,?> e;
4466              return ((o instanceof Map.Entry) &&
4467                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 2280 | Line 4470 | public class ConcurrentHashMapV8<K, V>
4470                      (v == r || v.equals(r)));
4471          }
4472  
4473 <        public final boolean remove(Object o) {
4473 >        public boolean remove(Object o) {
4474              Object k, v; Map.Entry<?,?> e;
4475              return ((o instanceof Map.Entry) &&
4476                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 2288 | Line 4478 | public class ConcurrentHashMapV8<K, V>
4478                      map.remove(k, v));
4479          }
4480  
4481 <        public final Iterator<Map.Entry<K,V>> iterator() {
4482 <            return new EntryIterator<K,V>(map);
4481 >        /**
4482 >         * @return an iterator over the entries of the backing map
4483 >         */
4484 >        public Iterator<Map.Entry<K,V>> iterator() {
4485 >            ConcurrentHashMapV8<K,V> m = map;
4486 >            Node<K,V>[] t;
4487 >            int f = (t = m.table) == null ? 0 : t.length;
4488 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4489          }
4490 <        final Iterator<?> iter() {
4491 <            return new SnapshotEntryIterator<K,V>(map);
4490 >
4491 >        public boolean add(Entry<K,V> e) {
4492 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4493          }
4494 <        public final boolean add(Entry<K,V> e) {
4495 <            throw new UnsupportedOperationException();
4494 >
4495 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4496 >            boolean added = false;
4497 >            for (Entry<K,V> e : c) {
4498 >                if (add(e))
4499 >                    added = true;
4500 >            }
4501 >            return added;
4502          }
4503 <        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4504 <            throw new UnsupportedOperationException();
4503 >
4504 >        public final int hashCode() {
4505 >            int h = 0;
4506 >            Node<K,V>[] t;
4507 >            if ((t = map.table) != null) {
4508 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4509 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4510 >                    h += p.hashCode();
4511 >                }
4512 >            }
4513 >            return h;
4514          }
4515 <        public boolean equals(Object o) {
4515 >
4516 >        public final boolean equals(Object o) {
4517              Set<?> c;
4518              return ((o instanceof Set) &&
4519                      ((c = (Set<?>)o) == this ||
4520                       (containsAll(c) && c.containsAll(this))));
4521          }
4522 +
4523 +        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4524 +            Node<K,V>[] t;
4525 +            ConcurrentHashMapV8<K,V> m = map;
4526 +            long n = m.sumCount();
4527 +            int f = (t = m.table) == null ? 0 : t.length;
4528 +            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4529 +        }
4530 +
4531 +        public void forEach(Action<? super Map.Entry<K,V>> action) {
4532 +            if (action == null) throw new NullPointerException();
4533 +            Node<K,V>[] t;
4534 +            if ((t = map.table) != null) {
4535 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4536 +                for (Node<K,V> p; (p = it.advance()) != null; )
4537 +                    action.apply(new MapEntry<K,V>(p.key, p.val, map));
4538 +            }
4539 +        }
4540 +
4541      }
4542  
4543 <    /* ---------------- Serialization Support -------------- */
4543 >    // -------------------------------------------------------
4544  
4545      /**
4546 <     * Stripped-down version of helper class used in previous version,
4547 <     * declared for the sake of serialization compatibility
4546 >     * Base class for bulk tasks. Repeats some fields and code from
4547 >     * class Traverser, because we need to subclass CountedCompleter.
4548       */
4549 <    static class Segment<K,V> implements Serializable {
4550 <        private static final long serialVersionUID = 2249069246763182397L;
4551 <        final float loadFactor;
4552 <        Segment(float lf) { this.loadFactor = lf; }
4549 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4550 >        Node<K,V>[] tab;        // same as Traverser
4551 >        Node<K,V> next;
4552 >        int index;
4553 >        int baseIndex;
4554 >        int baseLimit;
4555 >        final int baseSize;
4556 >        int batch;              // split control
4557 >
4558 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4559 >            super(par);
4560 >            this.batch = b;
4561 >            this.index = this.baseIndex = i;
4562 >            if ((this.tab = t) == null)
4563 >                this.baseSize = this.baseLimit = 0;
4564 >            else if (par == null)
4565 >                this.baseSize = this.baseLimit = t.length;
4566 >            else {
4567 >                this.baseLimit = f;
4568 >                this.baseSize = par.baseSize;
4569 >            }
4570 >        }
4571 >
4572 >        /**
4573 >         * Same as Traverser version
4574 >         */
4575 >        final Node<K,V> advance() {
4576 >            Node<K,V> e;
4577 >            if ((e = next) != null)
4578 >                e = e.next;
4579 >            for (;;) {
4580 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4581 >                if (e != null)
4582 >                    return next = e;
4583 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4584 >                    (n = t.length) <= (i = index) || i < 0)
4585 >                    return next = null;
4586 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4587 >                    if (e instanceof ForwardingNode) {
4588 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4589 >                        e = null;
4590 >                        continue;
4591 >                    }
4592 >                    else if (e instanceof TreeBin)
4593 >                        e = ((TreeBin<K,V>)e).first;
4594 >                    else
4595 >                        e = null;
4596 >                }
4597 >                if ((index += baseSize) >= n)
4598 >                    index = ++baseIndex;    // visit upper slots if present
4599 >            }
4600 >        }
4601 >    }
4602 >
4603 >    /*
4604 >     * Task classes. Coded in a regular but ugly format/style to
4605 >     * simplify checks that each variant differs in the right way from
4606 >     * others. The null screenings exist because compilers cannot tell
4607 >     * that we've already null-checked task arguments, so we force
4608 >     * simplest hoisted bypass to help avoid convoluted traps.
4609 >     */
4610 >    @SuppressWarnings("serial")
4611 >    static final class ForEachKeyTask<K,V>
4612 >        extends BulkTask<K,V,Void> {
4613 >        final Action<? super K> action;
4614 >        ForEachKeyTask
4615 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4616 >             Action<? super K> action) {
4617 >            super(p, b, i, f, t);
4618 >            this.action = action;
4619 >        }
4620 >        public final void compute() {
4621 >            final Action<? super K> action;
4622 >            if ((action = this.action) != null) {
4623 >                for (int i = baseIndex, f, h; batch > 0 &&
4624 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4625 >                    addToPendingCount(1);
4626 >                    new ForEachKeyTask<K,V>
4627 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4628 >                         action).fork();
4629 >                }
4630 >                for (Node<K,V> p; (p = advance()) != null;)
4631 >                    action.apply(p.key);
4632 >                propagateCompletion();
4633 >            }
4634 >        }
4635 >    }
4636 >
4637 >    @SuppressWarnings("serial")
4638 >    static final class ForEachValueTask<K,V>
4639 >        extends BulkTask<K,V,Void> {
4640 >        final Action<? super V> action;
4641 >        ForEachValueTask
4642 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4643 >             Action<? super V> action) {
4644 >            super(p, b, i, f, t);
4645 >            this.action = action;
4646 >        }
4647 >        public final void compute() {
4648 >            final Action<? super V> action;
4649 >            if ((action = this.action) != null) {
4650 >                for (int i = baseIndex, f, h; batch > 0 &&
4651 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4652 >                    addToPendingCount(1);
4653 >                    new ForEachValueTask<K,V>
4654 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4655 >                         action).fork();
4656 >                }
4657 >                for (Node<K,V> p; (p = advance()) != null;)
4658 >                    action.apply(p.val);
4659 >                propagateCompletion();
4660 >            }
4661 >        }
4662 >    }
4663 >
4664 >    @SuppressWarnings("serial")
4665 >    static final class ForEachEntryTask<K,V>
4666 >        extends BulkTask<K,V,Void> {
4667 >        final Action<? super Entry<K,V>> action;
4668 >        ForEachEntryTask
4669 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4670 >             Action<? super Entry<K,V>> action) {
4671 >            super(p, b, i, f, t);
4672 >            this.action = action;
4673 >        }
4674 >        public final void compute() {
4675 >            final Action<? super Entry<K,V>> action;
4676 >            if ((action = this.action) != null) {
4677 >                for (int i = baseIndex, f, h; batch > 0 &&
4678 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4679 >                    addToPendingCount(1);
4680 >                    new ForEachEntryTask<K,V>
4681 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4682 >                         action).fork();
4683 >                }
4684 >                for (Node<K,V> p; (p = advance()) != null; )
4685 >                    action.apply(p);
4686 >                propagateCompletion();
4687 >            }
4688 >        }
4689 >    }
4690 >
4691 >    @SuppressWarnings("serial")
4692 >    static final class ForEachMappingTask<K,V>
4693 >        extends BulkTask<K,V,Void> {
4694 >        final BiAction<? super K, ? super V> action;
4695 >        ForEachMappingTask
4696 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4697 >             BiAction<? super K,? super V> action) {
4698 >            super(p, b, i, f, t);
4699 >            this.action = action;
4700 >        }
4701 >        public final void compute() {
4702 >            final BiAction<? super K, ? super V> action;
4703 >            if ((action = this.action) != null) {
4704 >                for (int i = baseIndex, f, h; batch > 0 &&
4705 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4706 >                    addToPendingCount(1);
4707 >                    new ForEachMappingTask<K,V>
4708 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4709 >                         action).fork();
4710 >                }
4711 >                for (Node<K,V> p; (p = advance()) != null; )
4712 >                    action.apply(p.key, p.val);
4713 >                propagateCompletion();
4714 >            }
4715 >        }
4716 >    }
4717 >
4718 >    @SuppressWarnings("serial")
4719 >    static final class ForEachTransformedKeyTask<K,V,U>
4720 >        extends BulkTask<K,V,Void> {
4721 >        final Fun<? super K, ? extends U> transformer;
4722 >        final Action<? super U> action;
4723 >        ForEachTransformedKeyTask
4724 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4725 >             Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4726 >            super(p, b, i, f, t);
4727 >            this.transformer = transformer; this.action = action;
4728 >        }
4729 >        public final void compute() {
4730 >            final Fun<? super K, ? extends U> transformer;
4731 >            final Action<? super U> action;
4732 >            if ((transformer = this.transformer) != null &&
4733 >                (action = this.action) != null) {
4734 >                for (int i = baseIndex, f, h; batch > 0 &&
4735 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4736 >                    addToPendingCount(1);
4737 >                    new ForEachTransformedKeyTask<K,V,U>
4738 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4739 >                         transformer, action).fork();
4740 >                }
4741 >                for (Node<K,V> p; (p = advance()) != null; ) {
4742 >                    U u;
4743 >                    if ((u = transformer.apply(p.key)) != null)
4744 >                        action.apply(u);
4745 >                }
4746 >                propagateCompletion();
4747 >            }
4748 >        }
4749 >    }
4750 >
4751 >    @SuppressWarnings("serial")
4752 >    static final class ForEachTransformedValueTask<K,V,U>
4753 >        extends BulkTask<K,V,Void> {
4754 >        final Fun<? super V, ? extends U> transformer;
4755 >        final Action<? super U> action;
4756 >        ForEachTransformedValueTask
4757 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4758 >             Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4759 >            super(p, b, i, f, t);
4760 >            this.transformer = transformer; this.action = action;
4761 >        }
4762 >        public final void compute() {
4763 >            final Fun<? super V, ? extends U> transformer;
4764 >            final Action<? super U> action;
4765 >            if ((transformer = this.transformer) != null &&
4766 >                (action = this.action) != null) {
4767 >                for (int i = baseIndex, f, h; batch > 0 &&
4768 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4769 >                    addToPendingCount(1);
4770 >                    new ForEachTransformedValueTask<K,V,U>
4771 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4772 >                         transformer, action).fork();
4773 >                }
4774 >                for (Node<K,V> p; (p = advance()) != null; ) {
4775 >                    U u;
4776 >                    if ((u = transformer.apply(p.val)) != null)
4777 >                        action.apply(u);
4778 >                }
4779 >                propagateCompletion();
4780 >            }
4781 >        }
4782 >    }
4783 >
4784 >    @SuppressWarnings("serial")
4785 >    static final class ForEachTransformedEntryTask<K,V,U>
4786 >        extends BulkTask<K,V,Void> {
4787 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
4788 >        final Action<? super U> action;
4789 >        ForEachTransformedEntryTask
4790 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4791 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4792 >            super(p, b, i, f, t);
4793 >            this.transformer = transformer; this.action = action;
4794 >        }
4795 >        public final void compute() {
4796 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
4797 >            final Action<? super U> action;
4798 >            if ((transformer = this.transformer) != null &&
4799 >                (action = this.action) != null) {
4800 >                for (int i = baseIndex, f, h; batch > 0 &&
4801 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4802 >                    addToPendingCount(1);
4803 >                    new ForEachTransformedEntryTask<K,V,U>
4804 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4805 >                         transformer, action).fork();
4806 >                }
4807 >                for (Node<K,V> p; (p = advance()) != null; ) {
4808 >                    U u;
4809 >                    if ((u = transformer.apply(p)) != null)
4810 >                        action.apply(u);
4811 >                }
4812 >                propagateCompletion();
4813 >            }
4814 >        }
4815 >    }
4816 >
4817 >    @SuppressWarnings("serial")
4818 >    static final class ForEachTransformedMappingTask<K,V,U>
4819 >        extends BulkTask<K,V,Void> {
4820 >        final BiFun<? super K, ? super V, ? extends U> transformer;
4821 >        final Action<? super U> action;
4822 >        ForEachTransformedMappingTask
4823 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4824 >             BiFun<? super K, ? super V, ? extends U> transformer,
4825 >             Action<? super U> action) {
4826 >            super(p, b, i, f, t);
4827 >            this.transformer = transformer; this.action = action;
4828 >        }
4829 >        public final void compute() {
4830 >            final BiFun<? super K, ? super V, ? extends U> transformer;
4831 >            final Action<? super U> action;
4832 >            if ((transformer = this.transformer) != null &&
4833 >                (action = this.action) != null) {
4834 >                for (int i = baseIndex, f, h; batch > 0 &&
4835 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4836 >                    addToPendingCount(1);
4837 >                    new ForEachTransformedMappingTask<K,V,U>
4838 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4839 >                         transformer, action).fork();
4840 >                }
4841 >                for (Node<K,V> p; (p = advance()) != null; ) {
4842 >                    U u;
4843 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4844 >                        action.apply(u);
4845 >                }
4846 >                propagateCompletion();
4847 >            }
4848 >        }
4849 >    }
4850 >
4851 >    @SuppressWarnings("serial")
4852 >    static final class SearchKeysTask<K,V,U>
4853 >        extends BulkTask<K,V,U> {
4854 >        final Fun<? super K, ? extends U> searchFunction;
4855 >        final AtomicReference<U> result;
4856 >        SearchKeysTask
4857 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4858 >             Fun<? super K, ? extends U> searchFunction,
4859 >             AtomicReference<U> result) {
4860 >            super(p, b, i, f, t);
4861 >            this.searchFunction = searchFunction; this.result = result;
4862 >        }
4863 >        public final U getRawResult() { return result.get(); }
4864 >        public final void compute() {
4865 >            final Fun<? super K, ? extends U> searchFunction;
4866 >            final AtomicReference<U> result;
4867 >            if ((searchFunction = this.searchFunction) != null &&
4868 >                (result = this.result) != null) {
4869 >                for (int i = baseIndex, f, h; batch > 0 &&
4870 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4871 >                    if (result.get() != null)
4872 >                        return;
4873 >                    addToPendingCount(1);
4874 >                    new SearchKeysTask<K,V,U>
4875 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4876 >                         searchFunction, result).fork();
4877 >                }
4878 >                while (result.get() == null) {
4879 >                    U u;
4880 >                    Node<K,V> p;
4881 >                    if ((p = advance()) == null) {
4882 >                        propagateCompletion();
4883 >                        break;
4884 >                    }
4885 >                    if ((u = searchFunction.apply(p.key)) != null) {
4886 >                        if (result.compareAndSet(null, u))
4887 >                            quietlyCompleteRoot();
4888 >                        break;
4889 >                    }
4890 >                }
4891 >            }
4892 >        }
4893 >    }
4894 >
4895 >    @SuppressWarnings("serial")
4896 >    static final class SearchValuesTask<K,V,U>
4897 >        extends BulkTask<K,V,U> {
4898 >        final Fun<? super V, ? extends U> searchFunction;
4899 >        final AtomicReference<U> result;
4900 >        SearchValuesTask
4901 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4902 >             Fun<? super V, ? extends U> searchFunction,
4903 >             AtomicReference<U> result) {
4904 >            super(p, b, i, f, t);
4905 >            this.searchFunction = searchFunction; this.result = result;
4906 >        }
4907 >        public final U getRawResult() { return result.get(); }
4908 >        public final void compute() {
4909 >            final Fun<? super V, ? extends U> searchFunction;
4910 >            final AtomicReference<U> result;
4911 >            if ((searchFunction = this.searchFunction) != null &&
4912 >                (result = this.result) != null) {
4913 >                for (int i = baseIndex, f, h; batch > 0 &&
4914 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4915 >                    if (result.get() != null)
4916 >                        return;
4917 >                    addToPendingCount(1);
4918 >                    new SearchValuesTask<K,V,U>
4919 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4920 >                         searchFunction, result).fork();
4921 >                }
4922 >                while (result.get() == null) {
4923 >                    U u;
4924 >                    Node<K,V> p;
4925 >                    if ((p = advance()) == null) {
4926 >                        propagateCompletion();
4927 >                        break;
4928 >                    }
4929 >                    if ((u = searchFunction.apply(p.val)) != null) {
4930 >                        if (result.compareAndSet(null, u))
4931 >                            quietlyCompleteRoot();
4932 >                        break;
4933 >                    }
4934 >                }
4935 >            }
4936 >        }
4937 >    }
4938 >
4939 >    @SuppressWarnings("serial")
4940 >    static final class SearchEntriesTask<K,V,U>
4941 >        extends BulkTask<K,V,U> {
4942 >        final Fun<Entry<K,V>, ? extends U> searchFunction;
4943 >        final AtomicReference<U> result;
4944 >        SearchEntriesTask
4945 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4946 >             Fun<Entry<K,V>, ? extends U> searchFunction,
4947 >             AtomicReference<U> result) {
4948 >            super(p, b, i, f, t);
4949 >            this.searchFunction = searchFunction; this.result = result;
4950 >        }
4951 >        public final U getRawResult() { return result.get(); }
4952 >        public final void compute() {
4953 >            final Fun<Entry<K,V>, ? extends U> searchFunction;
4954 >            final AtomicReference<U> result;
4955 >            if ((searchFunction = this.searchFunction) != null &&
4956 >                (result = this.result) != null) {
4957 >                for (int i = baseIndex, f, h; batch > 0 &&
4958 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4959 >                    if (result.get() != null)
4960 >                        return;
4961 >                    addToPendingCount(1);
4962 >                    new SearchEntriesTask<K,V,U>
4963 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4964 >                         searchFunction, result).fork();
4965 >                }
4966 >                while (result.get() == null) {
4967 >                    U u;
4968 >                    Node<K,V> p;
4969 >                    if ((p = advance()) == null) {
4970 >                        propagateCompletion();
4971 >                        break;
4972 >                    }
4973 >                    if ((u = searchFunction.apply(p)) != null) {
4974 >                        if (result.compareAndSet(null, u))
4975 >                            quietlyCompleteRoot();
4976 >                        return;
4977 >                    }
4978 >                }
4979 >            }
4980 >        }
4981 >    }
4982 >
4983 >    @SuppressWarnings("serial")
4984 >    static final class SearchMappingsTask<K,V,U>
4985 >        extends BulkTask<K,V,U> {
4986 >        final BiFun<? super K, ? super V, ? extends U> searchFunction;
4987 >        final AtomicReference<U> result;
4988 >        SearchMappingsTask
4989 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4990 >             BiFun<? super K, ? super V, ? extends U> searchFunction,
4991 >             AtomicReference<U> result) {
4992 >            super(p, b, i, f, t);
4993 >            this.searchFunction = searchFunction; this.result = result;
4994 >        }
4995 >        public final U getRawResult() { return result.get(); }
4996 >        public final void compute() {
4997 >            final BiFun<? super K, ? super V, ? extends U> searchFunction;
4998 >            final AtomicReference<U> result;
4999 >            if ((searchFunction = this.searchFunction) != null &&
5000 >                (result = this.result) != null) {
5001 >                for (int i = baseIndex, f, h; batch > 0 &&
5002 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5003 >                    if (result.get() != null)
5004 >                        return;
5005 >                    addToPendingCount(1);
5006 >                    new SearchMappingsTask<K,V,U>
5007 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5008 >                         searchFunction, result).fork();
5009 >                }
5010 >                while (result.get() == null) {
5011 >                    U u;
5012 >                    Node<K,V> p;
5013 >                    if ((p = advance()) == null) {
5014 >                        propagateCompletion();
5015 >                        break;
5016 >                    }
5017 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5018 >                        if (result.compareAndSet(null, u))
5019 >                            quietlyCompleteRoot();
5020 >                        break;
5021 >                    }
5022 >                }
5023 >            }
5024 >        }
5025 >    }
5026 >
5027 >    @SuppressWarnings("serial")
5028 >    static final class ReduceKeysTask<K,V>
5029 >        extends BulkTask<K,V,K> {
5030 >        final BiFun<? super K, ? super K, ? extends K> reducer;
5031 >        K result;
5032 >        ReduceKeysTask<K,V> rights, nextRight;
5033 >        ReduceKeysTask
5034 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5035 >             ReduceKeysTask<K,V> nextRight,
5036 >             BiFun<? super K, ? super K, ? extends K> reducer) {
5037 >            super(p, b, i, f, t); this.nextRight = nextRight;
5038 >            this.reducer = reducer;
5039 >        }
5040 >        public final K getRawResult() { return result; }
5041 >        public final void compute() {
5042 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5043 >            if ((reducer = this.reducer) != null) {
5044 >                for (int i = baseIndex, f, h; batch > 0 &&
5045 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5046 >                    addToPendingCount(1);
5047 >                    (rights = new ReduceKeysTask<K,V>
5048 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5049 >                      rights, reducer)).fork();
5050 >                }
5051 >                K r = null;
5052 >                for (Node<K,V> p; (p = advance()) != null; ) {
5053 >                    K u = p.key;
5054 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5055 >                }
5056 >                result = r;
5057 >                CountedCompleter<?> c;
5058 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5059 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5060 >                        t = (ReduceKeysTask<K,V>)c,
5061 >                        s = t.rights;
5062 >                    while (s != null) {
5063 >                        K tr, sr;
5064 >                        if ((sr = s.result) != null)
5065 >                            t.result = (((tr = t.result) == null) ? sr :
5066 >                                        reducer.apply(tr, sr));
5067 >                        s = t.rights = s.nextRight;
5068 >                    }
5069 >                }
5070 >            }
5071 >        }
5072 >    }
5073 >
5074 >    @SuppressWarnings("serial")
5075 >    static final class ReduceValuesTask<K,V>
5076 >        extends BulkTask<K,V,V> {
5077 >        final BiFun<? super V, ? super V, ? extends V> reducer;
5078 >        V result;
5079 >        ReduceValuesTask<K,V> rights, nextRight;
5080 >        ReduceValuesTask
5081 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5082 >             ReduceValuesTask<K,V> nextRight,
5083 >             BiFun<? super V, ? super V, ? extends V> reducer) {
5084 >            super(p, b, i, f, t); this.nextRight = nextRight;
5085 >            this.reducer = reducer;
5086 >        }
5087 >        public final V getRawResult() { return result; }
5088 >        public final void compute() {
5089 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5090 >            if ((reducer = this.reducer) != null) {
5091 >                for (int i = baseIndex, f, h; batch > 0 &&
5092 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5093 >                    addToPendingCount(1);
5094 >                    (rights = new ReduceValuesTask<K,V>
5095 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5096 >                      rights, reducer)).fork();
5097 >                }
5098 >                V r = null;
5099 >                for (Node<K,V> p; (p = advance()) != null; ) {
5100 >                    V v = p.val;
5101 >                    r = (r == null) ? v : reducer.apply(r, v);
5102 >                }
5103 >                result = r;
5104 >                CountedCompleter<?> c;
5105 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5106 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5107 >                        t = (ReduceValuesTask<K,V>)c,
5108 >                        s = t.rights;
5109 >                    while (s != null) {
5110 >                        V tr, sr;
5111 >                        if ((sr = s.result) != null)
5112 >                            t.result = (((tr = t.result) == null) ? sr :
5113 >                                        reducer.apply(tr, sr));
5114 >                        s = t.rights = s.nextRight;
5115 >                    }
5116 >                }
5117 >            }
5118 >        }
5119 >    }
5120 >
5121 >    @SuppressWarnings("serial")
5122 >    static final class ReduceEntriesTask<K,V>
5123 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5124 >        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5125 >        Map.Entry<K,V> result;
5126 >        ReduceEntriesTask<K,V> rights, nextRight;
5127 >        ReduceEntriesTask
5128 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5129 >             ReduceEntriesTask<K,V> nextRight,
5130 >             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5131 >            super(p, b, i, f, t); this.nextRight = nextRight;
5132 >            this.reducer = reducer;
5133 >        }
5134 >        public final Map.Entry<K,V> getRawResult() { return result; }
5135 >        public final void compute() {
5136 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5137 >            if ((reducer = this.reducer) != null) {
5138 >                for (int i = baseIndex, f, h; batch > 0 &&
5139 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5140 >                    addToPendingCount(1);
5141 >                    (rights = new ReduceEntriesTask<K,V>
5142 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5143 >                      rights, reducer)).fork();
5144 >                }
5145 >                Map.Entry<K,V> r = null;
5146 >                for (Node<K,V> p; (p = advance()) != null; )
5147 >                    r = (r == null) ? p : reducer.apply(r, p);
5148 >                result = r;
5149 >                CountedCompleter<?> c;
5150 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5151 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5152 >                        t = (ReduceEntriesTask<K,V>)c,
5153 >                        s = t.rights;
5154 >                    while (s != null) {
5155 >                        Map.Entry<K,V> tr, sr;
5156 >                        if ((sr = s.result) != null)
5157 >                            t.result = (((tr = t.result) == null) ? sr :
5158 >                                        reducer.apply(tr, sr));
5159 >                        s = t.rights = s.nextRight;
5160 >                    }
5161 >                }
5162 >            }
5163 >        }
5164 >    }
5165 >
5166 >    @SuppressWarnings("serial")
5167 >    static final class MapReduceKeysTask<K,V,U>
5168 >        extends BulkTask<K,V,U> {
5169 >        final Fun<? super K, ? extends U> transformer;
5170 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5171 >        U result;
5172 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5173 >        MapReduceKeysTask
5174 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5175 >             MapReduceKeysTask<K,V,U> nextRight,
5176 >             Fun<? super K, ? extends U> transformer,
5177 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5178 >            super(p, b, i, f, t); this.nextRight = nextRight;
5179 >            this.transformer = transformer;
5180 >            this.reducer = reducer;
5181 >        }
5182 >        public final U getRawResult() { return result; }
5183 >        public final void compute() {
5184 >            final Fun<? super K, ? extends U> transformer;
5185 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5186 >            if ((transformer = this.transformer) != null &&
5187 >                (reducer = this.reducer) != null) {
5188 >                for (int i = baseIndex, f, h; batch > 0 &&
5189 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5190 >                    addToPendingCount(1);
5191 >                    (rights = new MapReduceKeysTask<K,V,U>
5192 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5193 >                      rights, transformer, reducer)).fork();
5194 >                }
5195 >                U r = null;
5196 >                for (Node<K,V> p; (p = advance()) != null; ) {
5197 >                    U u;
5198 >                    if ((u = transformer.apply(p.key)) != null)
5199 >                        r = (r == null) ? u : reducer.apply(r, u);
5200 >                }
5201 >                result = r;
5202 >                CountedCompleter<?> c;
5203 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5204 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5205 >                        t = (MapReduceKeysTask<K,V,U>)c,
5206 >                        s = t.rights;
5207 >                    while (s != null) {
5208 >                        U tr, sr;
5209 >                        if ((sr = s.result) != null)
5210 >                            t.result = (((tr = t.result) == null) ? sr :
5211 >                                        reducer.apply(tr, sr));
5212 >                        s = t.rights = s.nextRight;
5213 >                    }
5214 >                }
5215 >            }
5216 >        }
5217 >    }
5218 >
5219 >    @SuppressWarnings("serial")
5220 >    static final class MapReduceValuesTask<K,V,U>
5221 >        extends BulkTask<K,V,U> {
5222 >        final Fun<? super V, ? extends U> transformer;
5223 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5224 >        U result;
5225 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5226 >        MapReduceValuesTask
5227 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5228 >             MapReduceValuesTask<K,V,U> nextRight,
5229 >             Fun<? super V, ? extends U> transformer,
5230 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5231 >            super(p, b, i, f, t); this.nextRight = nextRight;
5232 >            this.transformer = transformer;
5233 >            this.reducer = reducer;
5234 >        }
5235 >        public final U getRawResult() { return result; }
5236 >        public final void compute() {
5237 >            final Fun<? super V, ? extends U> transformer;
5238 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5239 >            if ((transformer = this.transformer) != null &&
5240 >                (reducer = this.reducer) != null) {
5241 >                for (int i = baseIndex, f, h; batch > 0 &&
5242 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5243 >                    addToPendingCount(1);
5244 >                    (rights = new MapReduceValuesTask<K,V,U>
5245 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5246 >                      rights, transformer, reducer)).fork();
5247 >                }
5248 >                U r = null;
5249 >                for (Node<K,V> p; (p = advance()) != null; ) {
5250 >                    U u;
5251 >                    if ((u = transformer.apply(p.val)) != null)
5252 >                        r = (r == null) ? u : reducer.apply(r, u);
5253 >                }
5254 >                result = r;
5255 >                CountedCompleter<?> c;
5256 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5257 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5258 >                        t = (MapReduceValuesTask<K,V,U>)c,
5259 >                        s = t.rights;
5260 >                    while (s != null) {
5261 >                        U tr, sr;
5262 >                        if ((sr = s.result) != null)
5263 >                            t.result = (((tr = t.result) == null) ? sr :
5264 >                                        reducer.apply(tr, sr));
5265 >                        s = t.rights = s.nextRight;
5266 >                    }
5267 >                }
5268 >            }
5269 >        }
5270 >    }
5271 >
5272 >    @SuppressWarnings("serial")
5273 >    static final class MapReduceEntriesTask<K,V,U>
5274 >        extends BulkTask<K,V,U> {
5275 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5276 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5277 >        U result;
5278 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5279 >        MapReduceEntriesTask
5280 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5281 >             MapReduceEntriesTask<K,V,U> nextRight,
5282 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5283 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5284 >            super(p, b, i, f, t); this.nextRight = nextRight;
5285 >            this.transformer = transformer;
5286 >            this.reducer = reducer;
5287 >        }
5288 >        public final U getRawResult() { return result; }
5289 >        public final void compute() {
5290 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5291 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5292 >            if ((transformer = this.transformer) != null &&
5293 >                (reducer = this.reducer) != null) {
5294 >                for (int i = baseIndex, f, h; batch > 0 &&
5295 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5296 >                    addToPendingCount(1);
5297 >                    (rights = new MapReduceEntriesTask<K,V,U>
5298 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5299 >                      rights, transformer, reducer)).fork();
5300 >                }
5301 >                U r = null;
5302 >                for (Node<K,V> p; (p = advance()) != null; ) {
5303 >                    U u;
5304 >                    if ((u = transformer.apply(p)) != null)
5305 >                        r = (r == null) ? u : reducer.apply(r, u);
5306 >                }
5307 >                result = r;
5308 >                CountedCompleter<?> c;
5309 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5310 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5311 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5312 >                        s = t.rights;
5313 >                    while (s != null) {
5314 >                        U tr, sr;
5315 >                        if ((sr = s.result) != null)
5316 >                            t.result = (((tr = t.result) == null) ? sr :
5317 >                                        reducer.apply(tr, sr));
5318 >                        s = t.rights = s.nextRight;
5319 >                    }
5320 >                }
5321 >            }
5322 >        }
5323 >    }
5324 >
5325 >    @SuppressWarnings("serial")
5326 >    static final class MapReduceMappingsTask<K,V,U>
5327 >        extends BulkTask<K,V,U> {
5328 >        final BiFun<? super K, ? super V, ? extends U> transformer;
5329 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5330 >        U result;
5331 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5332 >        MapReduceMappingsTask
5333 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5334 >             MapReduceMappingsTask<K,V,U> nextRight,
5335 >             BiFun<? super K, ? super V, ? extends U> transformer,
5336 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5337 >            super(p, b, i, f, t); this.nextRight = nextRight;
5338 >            this.transformer = transformer;
5339 >            this.reducer = reducer;
5340 >        }
5341 >        public final U getRawResult() { return result; }
5342 >        public final void compute() {
5343 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5344 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5345 >            if ((transformer = this.transformer) != null &&
5346 >                (reducer = this.reducer) != null) {
5347 >                for (int i = baseIndex, f, h; batch > 0 &&
5348 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5349 >                    addToPendingCount(1);
5350 >                    (rights = new MapReduceMappingsTask<K,V,U>
5351 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5352 >                      rights, transformer, reducer)).fork();
5353 >                }
5354 >                U r = null;
5355 >                for (Node<K,V> p; (p = advance()) != null; ) {
5356 >                    U u;
5357 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5358 >                        r = (r == null) ? u : reducer.apply(r, u);
5359 >                }
5360 >                result = r;
5361 >                CountedCompleter<?> c;
5362 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5363 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5364 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5365 >                        s = t.rights;
5366 >                    while (s != null) {
5367 >                        U tr, sr;
5368 >                        if ((sr = s.result) != null)
5369 >                            t.result = (((tr = t.result) == null) ? sr :
5370 >                                        reducer.apply(tr, sr));
5371 >                        s = t.rights = s.nextRight;
5372 >                    }
5373 >                }
5374 >            }
5375 >        }
5376 >    }
5377 >
5378 >    @SuppressWarnings("serial")
5379 >    static final class MapReduceKeysToDoubleTask<K,V>
5380 >        extends BulkTask<K,V,Double> {
5381 >        final ObjectToDouble<? super K> transformer;
5382 >        final DoubleByDoubleToDouble reducer;
5383 >        final double basis;
5384 >        double result;
5385 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5386 >        MapReduceKeysToDoubleTask
5387 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5388 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5389 >             ObjectToDouble<? super K> transformer,
5390 >             double basis,
5391 >             DoubleByDoubleToDouble reducer) {
5392 >            super(p, b, i, f, t); this.nextRight = nextRight;
5393 >            this.transformer = transformer;
5394 >            this.basis = basis; this.reducer = reducer;
5395 >        }
5396 >        public final Double getRawResult() { return result; }
5397 >        public final void compute() {
5398 >            final ObjectToDouble<? super K> transformer;
5399 >            final DoubleByDoubleToDouble reducer;
5400 >            if ((transformer = this.transformer) != null &&
5401 >                (reducer = this.reducer) != null) {
5402 >                double r = this.basis;
5403 >                for (int i = baseIndex, f, h; batch > 0 &&
5404 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5405 >                    addToPendingCount(1);
5406 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5407 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5408 >                      rights, transformer, r, reducer)).fork();
5409 >                }
5410 >                for (Node<K,V> p; (p = advance()) != null; )
5411 >                    r = reducer.apply(r, transformer.apply(p.key));
5412 >                result = r;
5413 >                CountedCompleter<?> c;
5414 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5415 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5416 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5417 >                        s = t.rights;
5418 >                    while (s != null) {
5419 >                        t.result = reducer.apply(t.result, s.result);
5420 >                        s = t.rights = s.nextRight;
5421 >                    }
5422 >                }
5423 >            }
5424 >        }
5425 >    }
5426 >
5427 >    @SuppressWarnings("serial")
5428 >    static final class MapReduceValuesToDoubleTask<K,V>
5429 >        extends BulkTask<K,V,Double> {
5430 >        final ObjectToDouble<? super V> transformer;
5431 >        final DoubleByDoubleToDouble reducer;
5432 >        final double basis;
5433 >        double result;
5434 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5435 >        MapReduceValuesToDoubleTask
5436 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5437 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5438 >             ObjectToDouble<? super V> transformer,
5439 >             double basis,
5440 >             DoubleByDoubleToDouble reducer) {
5441 >            super(p, b, i, f, t); this.nextRight = nextRight;
5442 >            this.transformer = transformer;
5443 >            this.basis = basis; this.reducer = reducer;
5444 >        }
5445 >        public final Double getRawResult() { return result; }
5446 >        public final void compute() {
5447 >            final ObjectToDouble<? super V> transformer;
5448 >            final DoubleByDoubleToDouble reducer;
5449 >            if ((transformer = this.transformer) != null &&
5450 >                (reducer = this.reducer) != null) {
5451 >                double r = this.basis;
5452 >                for (int i = baseIndex, f, h; batch > 0 &&
5453 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5454 >                    addToPendingCount(1);
5455 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5456 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5457 >                      rights, transformer, r, reducer)).fork();
5458 >                }
5459 >                for (Node<K,V> p; (p = advance()) != null; )
5460 >                    r = reducer.apply(r, transformer.apply(p.val));
5461 >                result = r;
5462 >                CountedCompleter<?> c;
5463 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5464 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5465 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5466 >                        s = t.rights;
5467 >                    while (s != null) {
5468 >                        t.result = reducer.apply(t.result, s.result);
5469 >                        s = t.rights = s.nextRight;
5470 >                    }
5471 >                }
5472 >            }
5473 >        }
5474 >    }
5475 >
5476 >    @SuppressWarnings("serial")
5477 >    static final class MapReduceEntriesToDoubleTask<K,V>
5478 >        extends BulkTask<K,V,Double> {
5479 >        final ObjectToDouble<Map.Entry<K,V>> transformer;
5480 >        final DoubleByDoubleToDouble reducer;
5481 >        final double basis;
5482 >        double result;
5483 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5484 >        MapReduceEntriesToDoubleTask
5485 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5486 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5487 >             ObjectToDouble<Map.Entry<K,V>> transformer,
5488 >             double basis,
5489 >             DoubleByDoubleToDouble reducer) {
5490 >            super(p, b, i, f, t); this.nextRight = nextRight;
5491 >            this.transformer = transformer;
5492 >            this.basis = basis; this.reducer = reducer;
5493 >        }
5494 >        public final Double getRawResult() { return result; }
5495 >        public final void compute() {
5496 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
5497 >            final DoubleByDoubleToDouble reducer;
5498 >            if ((transformer = this.transformer) != null &&
5499 >                (reducer = this.reducer) != null) {
5500 >                double r = this.basis;
5501 >                for (int i = baseIndex, f, h; batch > 0 &&
5502 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5503 >                    addToPendingCount(1);
5504 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5505 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5506 >                      rights, transformer, r, reducer)).fork();
5507 >                }
5508 >                for (Node<K,V> p; (p = advance()) != null; )
5509 >                    r = reducer.apply(r, transformer.apply(p));
5510 >                result = r;
5511 >                CountedCompleter<?> c;
5512 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5513 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5514 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5515 >                        s = t.rights;
5516 >                    while (s != null) {
5517 >                        t.result = reducer.apply(t.result, s.result);
5518 >                        s = t.rights = s.nextRight;
5519 >                    }
5520 >                }
5521 >            }
5522 >        }
5523 >    }
5524 >
5525 >    @SuppressWarnings("serial")
5526 >    static final class MapReduceMappingsToDoubleTask<K,V>
5527 >        extends BulkTask<K,V,Double> {
5528 >        final ObjectByObjectToDouble<? super K, ? super V> transformer;
5529 >        final DoubleByDoubleToDouble reducer;
5530 >        final double basis;
5531 >        double result;
5532 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5533 >        MapReduceMappingsToDoubleTask
5534 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5535 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5536 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
5537 >             double basis,
5538 >             DoubleByDoubleToDouble reducer) {
5539 >            super(p, b, i, f, t); this.nextRight = nextRight;
5540 >            this.transformer = transformer;
5541 >            this.basis = basis; this.reducer = reducer;
5542 >        }
5543 >        public final Double getRawResult() { return result; }
5544 >        public final void compute() {
5545 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
5546 >            final DoubleByDoubleToDouble reducer;
5547 >            if ((transformer = this.transformer) != null &&
5548 >                (reducer = this.reducer) != null) {
5549 >                double r = this.basis;
5550 >                for (int i = baseIndex, f, h; batch > 0 &&
5551 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5552 >                    addToPendingCount(1);
5553 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5554 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5555 >                      rights, transformer, r, reducer)).fork();
5556 >                }
5557 >                for (Node<K,V> p; (p = advance()) != null; )
5558 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5559 >                result = r;
5560 >                CountedCompleter<?> c;
5561 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5562 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5563 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5564 >                        s = t.rights;
5565 >                    while (s != null) {
5566 >                        t.result = reducer.apply(t.result, s.result);
5567 >                        s = t.rights = s.nextRight;
5568 >                    }
5569 >                }
5570 >            }
5571 >        }
5572 >    }
5573 >
5574 >    @SuppressWarnings("serial")
5575 >    static final class MapReduceKeysToLongTask<K,V>
5576 >        extends BulkTask<K,V,Long> {
5577 >        final ObjectToLong<? super K> transformer;
5578 >        final LongByLongToLong reducer;
5579 >        final long basis;
5580 >        long result;
5581 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5582 >        MapReduceKeysToLongTask
5583 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5584 >             MapReduceKeysToLongTask<K,V> nextRight,
5585 >             ObjectToLong<? super K> transformer,
5586 >             long basis,
5587 >             LongByLongToLong reducer) {
5588 >            super(p, b, i, f, t); this.nextRight = nextRight;
5589 >            this.transformer = transformer;
5590 >            this.basis = basis; this.reducer = reducer;
5591 >        }
5592 >        public final Long getRawResult() { return result; }
5593 >        public final void compute() {
5594 >            final ObjectToLong<? super K> transformer;
5595 >            final LongByLongToLong reducer;
5596 >            if ((transformer = this.transformer) != null &&
5597 >                (reducer = this.reducer) != null) {
5598 >                long r = this.basis;
5599 >                for (int i = baseIndex, f, h; batch > 0 &&
5600 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5601 >                    addToPendingCount(1);
5602 >                    (rights = new MapReduceKeysToLongTask<K,V>
5603 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5604 >                      rights, transformer, r, reducer)).fork();
5605 >                }
5606 >                for (Node<K,V> p; (p = advance()) != null; )
5607 >                    r = reducer.apply(r, transformer.apply(p.key));
5608 >                result = r;
5609 >                CountedCompleter<?> c;
5610 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5611 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5612 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5613 >                        s = t.rights;
5614 >                    while (s != null) {
5615 >                        t.result = reducer.apply(t.result, s.result);
5616 >                        s = t.rights = s.nextRight;
5617 >                    }
5618 >                }
5619 >            }
5620 >        }
5621 >    }
5622 >
5623 >    @SuppressWarnings("serial")
5624 >    static final class MapReduceValuesToLongTask<K,V>
5625 >        extends BulkTask<K,V,Long> {
5626 >        final ObjectToLong<? super V> transformer;
5627 >        final LongByLongToLong reducer;
5628 >        final long basis;
5629 >        long result;
5630 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5631 >        MapReduceValuesToLongTask
5632 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5633 >             MapReduceValuesToLongTask<K,V> nextRight,
5634 >             ObjectToLong<? super V> transformer,
5635 >             long basis,
5636 >             LongByLongToLong reducer) {
5637 >            super(p, b, i, f, t); this.nextRight = nextRight;
5638 >            this.transformer = transformer;
5639 >            this.basis = basis; this.reducer = reducer;
5640 >        }
5641 >        public final Long getRawResult() { return result; }
5642 >        public final void compute() {
5643 >            final ObjectToLong<? super V> transformer;
5644 >            final LongByLongToLong reducer;
5645 >            if ((transformer = this.transformer) != null &&
5646 >                (reducer = this.reducer) != null) {
5647 >                long r = this.basis;
5648 >                for (int i = baseIndex, f, h; batch > 0 &&
5649 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5650 >                    addToPendingCount(1);
5651 >                    (rights = new MapReduceValuesToLongTask<K,V>
5652 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5653 >                      rights, transformer, r, reducer)).fork();
5654 >                }
5655 >                for (Node<K,V> p; (p = advance()) != null; )
5656 >                    r = reducer.apply(r, transformer.apply(p.val));
5657 >                result = r;
5658 >                CountedCompleter<?> c;
5659 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5660 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5661 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5662 >                        s = t.rights;
5663 >                    while (s != null) {
5664 >                        t.result = reducer.apply(t.result, s.result);
5665 >                        s = t.rights = s.nextRight;
5666 >                    }
5667 >                }
5668 >            }
5669 >        }
5670 >    }
5671 >
5672 >    @SuppressWarnings("serial")
5673 >    static final class MapReduceEntriesToLongTask<K,V>
5674 >        extends BulkTask<K,V,Long> {
5675 >        final ObjectToLong<Map.Entry<K,V>> transformer;
5676 >        final LongByLongToLong reducer;
5677 >        final long basis;
5678 >        long result;
5679 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
5680 >        MapReduceEntriesToLongTask
5681 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5682 >             MapReduceEntriesToLongTask<K,V> nextRight,
5683 >             ObjectToLong<Map.Entry<K,V>> transformer,
5684 >             long basis,
5685 >             LongByLongToLong reducer) {
5686 >            super(p, b, i, f, t); this.nextRight = nextRight;
5687 >            this.transformer = transformer;
5688 >            this.basis = basis; this.reducer = reducer;
5689 >        }
5690 >        public final Long getRawResult() { return result; }
5691 >        public final void compute() {
5692 >            final ObjectToLong<Map.Entry<K,V>> transformer;
5693 >            final LongByLongToLong reducer;
5694 >            if ((transformer = this.transformer) != null &&
5695 >                (reducer = this.reducer) != null) {
5696 >                long r = this.basis;
5697 >                for (int i = baseIndex, f, h; batch > 0 &&
5698 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5699 >                    addToPendingCount(1);
5700 >                    (rights = new MapReduceEntriesToLongTask<K,V>
5701 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5702 >                      rights, transformer, r, reducer)).fork();
5703 >                }
5704 >                for (Node<K,V> p; (p = advance()) != null; )
5705 >                    r = reducer.apply(r, transformer.apply(p));
5706 >                result = r;
5707 >                CountedCompleter<?> c;
5708 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5709 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5710 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5711 >                        s = t.rights;
5712 >                    while (s != null) {
5713 >                        t.result = reducer.apply(t.result, s.result);
5714 >                        s = t.rights = s.nextRight;
5715 >                    }
5716 >                }
5717 >            }
5718 >        }
5719 >    }
5720 >
5721 >    @SuppressWarnings("serial")
5722 >    static final class MapReduceMappingsToLongTask<K,V>
5723 >        extends BulkTask<K,V,Long> {
5724 >        final ObjectByObjectToLong<? super K, ? super V> transformer;
5725 >        final LongByLongToLong reducer;
5726 >        final long basis;
5727 >        long result;
5728 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
5729 >        MapReduceMappingsToLongTask
5730 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5731 >             MapReduceMappingsToLongTask<K,V> nextRight,
5732 >             ObjectByObjectToLong<? super K, ? super V> transformer,
5733 >             long basis,
5734 >             LongByLongToLong reducer) {
5735 >            super(p, b, i, f, t); this.nextRight = nextRight;
5736 >            this.transformer = transformer;
5737 >            this.basis = basis; this.reducer = reducer;
5738 >        }
5739 >        public final Long getRawResult() { return result; }
5740 >        public final void compute() {
5741 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
5742 >            final LongByLongToLong reducer;
5743 >            if ((transformer = this.transformer) != null &&
5744 >                (reducer = this.reducer) != null) {
5745 >                long r = this.basis;
5746 >                for (int i = baseIndex, f, h; batch > 0 &&
5747 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5748 >                    addToPendingCount(1);
5749 >                    (rights = new MapReduceMappingsToLongTask<K,V>
5750 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5751 >                      rights, transformer, r, reducer)).fork();
5752 >                }
5753 >                for (Node<K,V> p; (p = advance()) != null; )
5754 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5755 >                result = r;
5756 >                CountedCompleter<?> c;
5757 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5758 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5759 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
5760 >                        s = t.rights;
5761 >                    while (s != null) {
5762 >                        t.result = reducer.apply(t.result, s.result);
5763 >                        s = t.rights = s.nextRight;
5764 >                    }
5765 >                }
5766 >            }
5767 >        }
5768 >    }
5769 >
5770 >    @SuppressWarnings("serial")
5771 >    static final class MapReduceKeysToIntTask<K,V>
5772 >        extends BulkTask<K,V,Integer> {
5773 >        final ObjectToInt<? super K> transformer;
5774 >        final IntByIntToInt reducer;
5775 >        final int basis;
5776 >        int result;
5777 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
5778 >        MapReduceKeysToIntTask
5779 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5780 >             MapReduceKeysToIntTask<K,V> nextRight,
5781 >             ObjectToInt<? super K> transformer,
5782 >             int basis,
5783 >             IntByIntToInt reducer) {
5784 >            super(p, b, i, f, t); this.nextRight = nextRight;
5785 >            this.transformer = transformer;
5786 >            this.basis = basis; this.reducer = reducer;
5787 >        }
5788 >        public final Integer getRawResult() { return result; }
5789 >        public final void compute() {
5790 >            final ObjectToInt<? super K> transformer;
5791 >            final IntByIntToInt reducer;
5792 >            if ((transformer = this.transformer) != null &&
5793 >                (reducer = this.reducer) != null) {
5794 >                int r = this.basis;
5795 >                for (int i = baseIndex, f, h; batch > 0 &&
5796 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5797 >                    addToPendingCount(1);
5798 >                    (rights = new MapReduceKeysToIntTask<K,V>
5799 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5800 >                      rights, transformer, r, reducer)).fork();
5801 >                }
5802 >                for (Node<K,V> p; (p = advance()) != null; )
5803 >                    r = reducer.apply(r, transformer.apply(p.key));
5804 >                result = r;
5805 >                CountedCompleter<?> c;
5806 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5807 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5808 >                        t = (MapReduceKeysToIntTask<K,V>)c,
5809 >                        s = t.rights;
5810 >                    while (s != null) {
5811 >                        t.result = reducer.apply(t.result, s.result);
5812 >                        s = t.rights = s.nextRight;
5813 >                    }
5814 >                }
5815 >            }
5816 >        }
5817 >    }
5818 >
5819 >    @SuppressWarnings("serial")
5820 >    static final class MapReduceValuesToIntTask<K,V>
5821 >        extends BulkTask<K,V,Integer> {
5822 >        final ObjectToInt<? super V> transformer;
5823 >        final IntByIntToInt reducer;
5824 >        final int basis;
5825 >        int result;
5826 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
5827 >        MapReduceValuesToIntTask
5828 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5829 >             MapReduceValuesToIntTask<K,V> nextRight,
5830 >             ObjectToInt<? super V> transformer,
5831 >             int basis,
5832 >             IntByIntToInt reducer) {
5833 >            super(p, b, i, f, t); this.nextRight = nextRight;
5834 >            this.transformer = transformer;
5835 >            this.basis = basis; this.reducer = reducer;
5836 >        }
5837 >        public final Integer getRawResult() { return result; }
5838 >        public final void compute() {
5839 >            final ObjectToInt<? super V> transformer;
5840 >            final IntByIntToInt reducer;
5841 >            if ((transformer = this.transformer) != null &&
5842 >                (reducer = this.reducer) != null) {
5843 >                int r = this.basis;
5844 >                for (int i = baseIndex, f, h; batch > 0 &&
5845 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5846 >                    addToPendingCount(1);
5847 >                    (rights = new MapReduceValuesToIntTask<K,V>
5848 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5849 >                      rights, transformer, r, reducer)).fork();
5850 >                }
5851 >                for (Node<K,V> p; (p = advance()) != null; )
5852 >                    r = reducer.apply(r, transformer.apply(p.val));
5853 >                result = r;
5854 >                CountedCompleter<?> c;
5855 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5856 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5857 >                        t = (MapReduceValuesToIntTask<K,V>)c,
5858 >                        s = t.rights;
5859 >                    while (s != null) {
5860 >                        t.result = reducer.apply(t.result, s.result);
5861 >                        s = t.rights = s.nextRight;
5862 >                    }
5863 >                }
5864 >            }
5865 >        }
5866 >    }
5867 >
5868 >    @SuppressWarnings("serial")
5869 >    static final class MapReduceEntriesToIntTask<K,V>
5870 >        extends BulkTask<K,V,Integer> {
5871 >        final ObjectToInt<Map.Entry<K,V>> transformer;
5872 >        final IntByIntToInt reducer;
5873 >        final int basis;
5874 >        int result;
5875 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
5876 >        MapReduceEntriesToIntTask
5877 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5878 >             MapReduceEntriesToIntTask<K,V> nextRight,
5879 >             ObjectToInt<Map.Entry<K,V>> transformer,
5880 >             int basis,
5881 >             IntByIntToInt reducer) {
5882 >            super(p, b, i, f, t); this.nextRight = nextRight;
5883 >            this.transformer = transformer;
5884 >            this.basis = basis; this.reducer = reducer;
5885 >        }
5886 >        public final Integer getRawResult() { return result; }
5887 >        public final void compute() {
5888 >            final ObjectToInt<Map.Entry<K,V>> transformer;
5889 >            final IntByIntToInt reducer;
5890 >            if ((transformer = this.transformer) != null &&
5891 >                (reducer = this.reducer) != null) {
5892 >                int r = this.basis;
5893 >                for (int i = baseIndex, f, h; batch > 0 &&
5894 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5895 >                    addToPendingCount(1);
5896 >                    (rights = new MapReduceEntriesToIntTask<K,V>
5897 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5898 >                      rights, transformer, r, reducer)).fork();
5899 >                }
5900 >                for (Node<K,V> p; (p = advance()) != null; )
5901 >                    r = reducer.apply(r, transformer.apply(p));
5902 >                result = r;
5903 >                CountedCompleter<?> c;
5904 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5905 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5906 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
5907 >                        s = t.rights;
5908 >                    while (s != null) {
5909 >                        t.result = reducer.apply(t.result, s.result);
5910 >                        s = t.rights = s.nextRight;
5911 >                    }
5912 >                }
5913 >            }
5914 >        }
5915 >    }
5916 >
5917 >    @SuppressWarnings("serial")
5918 >    static final class MapReduceMappingsToIntTask<K,V>
5919 >        extends BulkTask<K,V,Integer> {
5920 >        final ObjectByObjectToInt<? super K, ? super V> transformer;
5921 >        final IntByIntToInt reducer;
5922 >        final int basis;
5923 >        int result;
5924 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
5925 >        MapReduceMappingsToIntTask
5926 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5927 >             MapReduceMappingsToIntTask<K,V> nextRight,
5928 >             ObjectByObjectToInt<? super K, ? super V> transformer,
5929 >             int basis,
5930 >             IntByIntToInt reducer) {
5931 >            super(p, b, i, f, t); this.nextRight = nextRight;
5932 >            this.transformer = transformer;
5933 >            this.basis = basis; this.reducer = reducer;
5934 >        }
5935 >        public final Integer getRawResult() { return result; }
5936 >        public final void compute() {
5937 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
5938 >            final IntByIntToInt reducer;
5939 >            if ((transformer = this.transformer) != null &&
5940 >                (reducer = this.reducer) != null) {
5941 >                int r = this.basis;
5942 >                for (int i = baseIndex, f, h; batch > 0 &&
5943 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5944 >                    addToPendingCount(1);
5945 >                    (rights = new MapReduceMappingsToIntTask<K,V>
5946 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5947 >                      rights, transformer, r, reducer)).fork();
5948 >                }
5949 >                for (Node<K,V> p; (p = advance()) != null; )
5950 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5951 >                result = r;
5952 >                CountedCompleter<?> c;
5953 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5954 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
5955 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
5956 >                        s = t.rights;
5957 >                    while (s != null) {
5958 >                        t.result = reducer.apply(t.result, s.result);
5959 >                        s = t.rights = s.nextRight;
5960 >                    }
5961 >                }
5962 >            }
5963 >        }
5964 >    }
5965 >
5966 >    /* ---------------- Counters -------------- */
5967 >
5968 >    // Adapted from LongAdder and Striped64.
5969 >    // See their internal docs for explanation.
5970 >
5971 >    // A padded cell for distributing counts
5972 >    static final class CounterCell {
5973 >        volatile long p0, p1, p2, p3, p4, p5, p6;
5974 >        volatile long value;
5975 >        volatile long q0, q1, q2, q3, q4, q5, q6;
5976 >        CounterCell(long x) { value = x; }
5977      }
5978  
5979      /**
5980 <     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
5981 <     * stream (i.e., serializes it).
5982 <     * @param s the stream
2327 <     * @serialData
2328 <     * the key (Object) and value (Object)
2329 <     * for each key-value mapping, followed by a null pair.
2330 <     * The key-value mappings are emitted in no particular order.
5980 >     * Holder for the thread-local hash code determining which
5981 >     * CounterCell to use. The code is initialized via the
5982 >     * counterHashCodeGenerator, but may be moved upon collisions.
5983       */
5984 <    @SuppressWarnings("unchecked")
5985 <    private void writeObject(java.io.ObjectOutputStream s)
2334 <            throws java.io.IOException {
2335 <        if (segments == null) { // for serialization compatibility
2336 <            segments = (Segment<K,V>[])
2337 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
2338 <            for (int i = 0; i < segments.length; ++i)
2339 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
2340 <        }
2341 <        s.defaultWriteObject();
2342 <        InternalIterator it = new InternalIterator(table);
2343 <        while (it.next != null) {
2344 <            s.writeObject(it.nextKey);
2345 <            s.writeObject(it.nextVal);
2346 <            it.advance();
2347 <        }
2348 <        s.writeObject(null);
2349 <        s.writeObject(null);
2350 <        segments = null; // throw away
5984 >    static final class CounterHashCode {
5985 >        int code;
5986      }
5987  
5988      /**
5989 <     * Reconstitutes the instance from a stream (that is, deserializes it).
2355 <     * @param s the stream
5989 >     * Generates initial value for per-thread CounterHashCodes.
5990       */
5991 <    @SuppressWarnings("unchecked")
2358 <    private void readObject(java.io.ObjectInputStream s)
2359 <            throws java.io.IOException, ClassNotFoundException {
2360 <        s.defaultReadObject();
2361 <        this.segments = null; // unneeded
2362 <        // initialize transient final field
2363 <        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
5991 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
5992  
5993 <        // Create all nodes, then place in table once size is known
5994 <        long size = 0L;
5995 <        Node p = null;
5996 <        for (;;) {
5997 <            K k = (K) s.readObject();
5998 <            V v = (V) s.readObject();
5999 <            if (k != null && v != null) {
6000 <                p = new Node(spread(k.hashCode()), k, v, p);
6001 <                ++size;
5993 >    /**
5994 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
5995 >     * for explanation.
5996 >     */
5997 >    static final int SEED_INCREMENT = 0x61c88647;
5998 >
5999 >    /**
6000 >     * Per-thread counter hash codes. Shared across all instances.
6001 >     */
6002 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6003 >        new ThreadLocal<CounterHashCode>();
6004 >
6005 >
6006 >    final long sumCount() {
6007 >        CounterCell[] as = counterCells; CounterCell a;
6008 >        long sum = baseCount;
6009 >        if (as != null) {
6010 >            for (int i = 0; i < as.length; ++i) {
6011 >                if ((a = as[i]) != null)
6012 >                    sum += a.value;
6013              }
2375            else
2376                break;
6014          }
6015 <        if (p != null) {
6016 <            boolean init = false;
6017 <            int n;
6018 <            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
6019 <                n = MAXIMUM_CAPACITY;
6020 <            else {
6021 <                int sz = (int)size;
6022 <                n = tableSizeFor(sz + (sz >>> 1) + 1);
6023 <            }
6024 <            int sc = sizeCtl;
6025 <            if (n > sc &&
6026 <                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
6027 <                try {
6028 <                    if (table == null) {
6029 <                        init = true;
6030 <                        Node[] tab = new Node[n];
6031 <                        int mask = n - 1;
6032 <                        while (p != null) {
6033 <                            int j = p.hash & mask;
6034 <                            Node next = p.next;
6035 <                            p.next = tabAt(tab, j);
6036 <                            setTabAt(tab, j, p);
6037 <                            p = next;
6015 >        return sum;
6016 >    }
6017 >
6018 >    // See LongAdder version for explanation
6019 >    private final void fullAddCount(long x, CounterHashCode hc,
6020 >                                    boolean wasUncontended) {
6021 >        int h;
6022 >        if (hc == null) {
6023 >            hc = new CounterHashCode();
6024 >            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6025 >            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6026 >            threadCounterHashCode.set(hc);
6027 >        }
6028 >        else
6029 >            h = hc.code;
6030 >        boolean collide = false;                // True if last slot nonempty
6031 >        for (;;) {
6032 >            CounterCell[] as; CounterCell a; int n; long v;
6033 >            if ((as = counterCells) != null && (n = as.length) > 0) {
6034 >                if ((a = as[(n - 1) & h]) == null) {
6035 >                    if (cellsBusy == 0) {            // Try to attach new Cell
6036 >                        CounterCell r = new CounterCell(x); // Optimistic create
6037 >                        if (cellsBusy == 0 &&
6038 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6039 >                            boolean created = false;
6040 >                            try {               // Recheck under lock
6041 >                                CounterCell[] rs; int m, j;
6042 >                                if ((rs = counterCells) != null &&
6043 >                                    (m = rs.length) > 0 &&
6044 >                                    rs[j = (m - 1) & h] == null) {
6045 >                                    rs[j] = r;
6046 >                                    created = true;
6047 >                                }
6048 >                            } finally {
6049 >                                cellsBusy = 0;
6050 >                            }
6051 >                            if (created)
6052 >                                break;
6053 >                            continue;           // Slot is now non-empty
6054                          }
2402                        table = tab;
2403                        counter.add(size);
2404                        sc = n - (n >>> 2);
6055                      }
6056 <                } finally {
2407 <                    sizeCtl = sc;
6056 >                    collide = false;
6057                  }
6058 <            }
6059 <            if (!init) { // Can only happen if unsafely published.
6060 <                while (p != null) {
6061 <                    internalPut(p.key, p.val);
6062 <                    p = p.next;
6058 >                else if (!wasUncontended)       // CAS already known to fail
6059 >                    wasUncontended = true;      // Continue after rehash
6060 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6061 >                    break;
6062 >                else if (counterCells != as || n >= NCPU)
6063 >                    collide = false;            // At max size or stale
6064 >                else if (!collide)
6065 >                    collide = true;
6066 >                else if (cellsBusy == 0 &&
6067 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6068 >                    try {
6069 >                        if (counterCells == as) {// Expand table unless stale
6070 >                            CounterCell[] rs = new CounterCell[n << 1];
6071 >                            for (int i = 0; i < n; ++i)
6072 >                                rs[i] = as[i];
6073 >                            counterCells = rs;
6074 >                        }
6075 >                    } finally {
6076 >                        cellsBusy = 0;
6077 >                    }
6078 >                    collide = false;
6079 >                    continue;                   // Retry with expanded table
6080 >                }
6081 >                h ^= h << 13;                   // Rehash
6082 >                h ^= h >>> 17;
6083 >                h ^= h << 5;
6084 >            }
6085 >            else if (cellsBusy == 0 && counterCells == as &&
6086 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6087 >                boolean init = false;
6088 >                try {                           // Initialize table
6089 >                    if (counterCells == as) {
6090 >                        CounterCell[] rs = new CounterCell[2];
6091 >                        rs[h & 1] = new CounterCell(x);
6092 >                        counterCells = rs;
6093 >                        init = true;
6094 >                    }
6095 >                } finally {
6096 >                    cellsBusy = 0;
6097                  }
6098 +                if (init)
6099 +                    break;
6100              }
6101 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6102 +                break;                          // Fall back on using base
6103          }
6104 +        hc.code = h;                            // Record index for next time
6105      }
6106  
6107      // Unsafe mechanics
6108 <    private static final sun.misc.Unsafe UNSAFE;
6109 <    private static final long counterOffset;
6110 <    private static final long sizeCtlOffset;
6108 >    private static final sun.misc.Unsafe U;
6109 >    private static final long SIZECTL;
6110 >    private static final long TRANSFERINDEX;
6111 >    private static final long TRANSFERORIGIN;
6112 >    private static final long BASECOUNT;
6113 >    private static final long CELLSBUSY;
6114 >    private static final long CELLVALUE;
6115      private static final long ABASE;
6116      private static final int ASHIFT;
6117  
6118      static {
2427        int ss;
6119          try {
6120 <            UNSAFE = getUnsafe();
6120 >            U = getUnsafe();
6121              Class<?> k = ConcurrentHashMapV8.class;
6122 <            counterOffset = UNSAFE.objectFieldOffset
2432 <                (k.getDeclaredField("counter"));
2433 <            sizeCtlOffset = UNSAFE.objectFieldOffset
6122 >            SIZECTL = U.objectFieldOffset
6123                  (k.getDeclaredField("sizeCtl"));
6124 <            Class<?> sc = Node[].class;
6125 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6126 <            ss = UNSAFE.arrayIndexScale(sc);
6124 >            TRANSFERINDEX = U.objectFieldOffset
6125 >                (k.getDeclaredField("transferIndex"));
6126 >            TRANSFERORIGIN = U.objectFieldOffset
6127 >                (k.getDeclaredField("transferOrigin"));
6128 >            BASECOUNT = U.objectFieldOffset
6129 >                (k.getDeclaredField("baseCount"));
6130 >            CELLSBUSY = U.objectFieldOffset
6131 >                (k.getDeclaredField("cellsBusy"));
6132 >            Class<?> ck = CounterCell.class;
6133 >            CELLVALUE = U.objectFieldOffset
6134 >                (ck.getDeclaredField("value"));
6135 >            Class<?> ak = Node[].class;
6136 >            ABASE = U.arrayBaseOffset(ak);
6137 >            int scale = U.arrayIndexScale(ak);
6138 >            if ((scale & (scale - 1)) != 0)
6139 >                throw new Error("data type scale not a power of two");
6140 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6141          } catch (Exception e) {
6142              throw new Error(e);
6143          }
2441        if ((ss & (ss-1)) != 0)
2442            throw new Error("data type scale not a power of two");
2443        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6144      }
6145  
6146      /**
# Line 2453 | Line 6153 | public class ConcurrentHashMapV8<K, V>
6153      private static sun.misc.Unsafe getUnsafe() {
6154          try {
6155              return sun.misc.Unsafe.getUnsafe();
6156 <        } catch (SecurityException se) {
6157 <            try {
6158 <                return java.security.AccessController.doPrivileged
6159 <                    (new java.security
6160 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6161 <                        public sun.misc.Unsafe run() throws Exception {
6162 <                            java.lang.reflect.Field f = sun.misc
6163 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6164 <                            f.setAccessible(true);
6165 <                            return (sun.misc.Unsafe) f.get(null);
6166 <                        }});
6167 <            } catch (java.security.PrivilegedActionException e) {
6168 <                throw new RuntimeException("Could not initialize intrinsics",
6169 <                                           e.getCause());
6170 <            }
6156 >        } catch (SecurityException tryReflectionInstead) {}
6157 >        try {
6158 >            return java.security.AccessController.doPrivileged
6159 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6160 >                public sun.misc.Unsafe run() throws Exception {
6161 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6162 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6163 >                        f.setAccessible(true);
6164 >                        Object x = f.get(null);
6165 >                        if (k.isInstance(x))
6166 >                            return k.cast(x);
6167 >                    }
6168 >                    throw new NoSuchFieldError("the Unsafe");
6169 >                }});
6170 >        } catch (java.security.PrivilegedActionException e) {
6171 >            throw new RuntimeException("Could not initialize intrinsics",
6172 >                                       e.getCause());
6173          }
6174      }
2473
6175   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines