ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.29 by dl, Mon Oct 3 11:20:47 2011 UTC vs.
Revision 1.44 by jsr166, Wed Jul 4 20:28:46 2012 UTC

# Line 20 | Line 20 | import java.util.Enumeration;
20   import java.util.ConcurrentModificationException;
21   import java.util.NoSuchElementException;
22   import java.util.concurrent.ConcurrentMap;
23 + import java.util.concurrent.ThreadLocalRandom;
24   import java.util.concurrent.locks.LockSupport;
25 + import java.util.concurrent.locks.AbstractQueuedSynchronizer;
26   import java.io.Serializable;
27  
28   /**
# Line 71 | Line 73 | import java.io.Serializable;
73   * versions of this class, constructors may optionally specify an
74   * expected {@code concurrencyLevel} as an additional hint for
75   * internal sizing.  Note that using many keys with exactly the same
76 < * {@code hashCode{}} is a sure way to slow down performance of any
76 > * {@code hashCode()} is a sure way to slow down performance of any
77   * hash table.
78   *
79   * <p>This class and its views and iterators implement all of the
# Line 103 | Line 105 | public class ConcurrentHashMapV8<K, V>
105       */
106      public static interface MappingFunction<K, V> {
107          /**
108 <         * Returns a non-null value for the given key.
108 >         * Returns a value for the given key, or null if there is no mapping.
109           *
110           * @param key the (non-null) key
111 <         * @return a non-null value
111 >         * @return a value for the key, or null if none
112           */
113          V map(K key);
114      }
# Line 123 | Line 125 | public class ConcurrentHashMapV8<K, V>
125           *
126           * @param key the (non-null) key
127           * @param value the current value, or null if there is no mapping
128 <         * @return a non-null value
128 >         * @return a value for the key, or null if none
129           */
130          V remap(K key, V value);
131      }
132  
133 +    /**
134 +     * A partitionable iterator. A Spliterator can be traversed
135 +     * directly, but can also be partitioned (before traversal) by
136 +     * creating another Spliterator that covers a non-overlapping
137 +     * portion of the elements, and so may be amenable to parallel
138 +     * execution.
139 +     *
140 +     * <p> This interface exports a subset of expected JDK8
141 +     * functionality.
142 +     *
143 +     * <p>Sample usage: Here is one (of the several) ways to compute
144 +     * the sum of the values held in a map using the ForkJoin
145 +     * framework. As illustrated here, Spliterators are well suited to
146 +     * designs in which a task repeatedly splits off half its work
147 +     * into forked subtasks until small enough to process directly,
148 +     * and then joins these subtasks. Variants of this style can also
149 +     * be used in completion-based designs.
150 +     *
151 +     * <pre>
152 +     * {@code ConcurrentHashMapV8<String, Long> m = ...
153 +     * // Uses parallel depth of log2 of size / (parallelism * slack of 8).
154 +     * int depth = 32 - Integer.numberOfLeadingZeros(m.size() / (aForkJoinPool.getParallelism() * 8));
155 +     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), depth, null));
156 +     * // ...
157 +     * static class SumValues extends RecursiveTask<Long> {
158 +     *   final Spliterator<Long> s;
159 +     *   final int depth;             // number of splits before processing
160 +     *   final SumValues nextJoin;    // records forked subtasks to join
161 +     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
162 +     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
163 +     *   }
164 +     *   public Long compute() {
165 +     *     long sum = 0;
166 +     *     SumValues subtasks = null; // fork subtasks
167 +     *     for (int d = depth - 1; d >= 0; --d)
168 +     *       (subtasks = new SumValues(s.split(), d, subtasks)).fork();
169 +     *     while (s.hasNext())        // directly process remaining elements
170 +     *       sum += s.next();
171 +     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
172 +     *       sum += t.join();         // collect subtask results
173 +     *     return sum;
174 +     *   }
175 +     * }
176 +     * }</pre>
177 +     */
178 +    public static interface Spliterator<T> extends Iterator<T> {
179 +        /**
180 +         * Returns a Spliterator covering approximately half of the
181 +         * elements, guaranteed not to overlap with those subsequently
182 +         * returned by this Spliterator.  After invoking this method,
183 +         * the current Spliterator will <em>not</em> produce any of
184 +         * the elements of the returned Spliterator, but the two
185 +         * Spliterators together will produce all of the elements that
186 +         * would have been produced by this Spliterator had this
187 +         * method not been called. The exact number of elements
188 +         * produced by the returned Spliterator is not guaranteed, and
189 +         * may be zero (i.e., with {@code hasNext()} reporting {@code
190 +         * false}) if this Spliterator cannot be further split.
191 +         *
192 +         * @return a Spliterator covering approximately half of the
193 +         * elements
194 +         * @throws IllegalStateException if this Spliterator has
195 +         * already commenced traversing elements.
196 +         */
197 +        Spliterator<T> split();
198 +
199 +        /**
200 +         * Returns a Spliterator producing the same elements as this
201 +         * Spliterator. This method may be used for example to create
202 +         * a second Spliterator before a traversal, in order to later
203 +         * perform a second traversal.
204 +         *
205 +         * @return a Spliterator covering the same range as this Spliterator.
206 +         * @throws IllegalStateException if this Spliterator has
207 +         * already commenced traversing elements.
208 +         */
209 +        Spliterator<T> clone();
210 +    }
211 +
212      /*
213       * Overview:
214       *
# Line 147 | Line 228 | public class ConcurrentHashMapV8<K, V>
228       * supplying null-checks and casts as needed. This also allows
229       * many of the public methods to be factored into a smaller number
230       * of internal methods (although sadly not so for the five
231 <     * sprawling variants of put-related operations).
231 >     * variants of put-related operations). The validation-based
232 >     * approach explained below leads to a lot of code sprawl because
233 >     * retry-control precludes factoring into smaller methods.
234       *
235       * The table is lazily initialized to a power-of-two size upon the
236 <     * first insertion.  Each bin in the table contains a list of
237 <     * Nodes (most often, the list has only zero or one Node).  Table
238 <     * accesses require volatile/atomic reads, writes, and CASes.
239 <     * Because there is no other way to arrange this without adding
240 <     * further indirections, we use intrinsics (sun.misc.Unsafe)
241 <     * operations.  The lists of nodes within bins are always
242 <     * accurately traversable under volatile reads, so long as lookups
243 <     * check hash code and non-nullness of value before checking key
244 <     * equality.
236 >     * first insertion.  Each bin in the table normally contains a
237 >     * list of Nodes (most often, the list has only zero or one Node).
238 >     * Table accesses require volatile/atomic reads, writes, and
239 >     * CASes.  Because there is no other way to arrange this without
240 >     * adding further indirections, we use intrinsics
241 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
242 >     * are always accurately traversable under volatile reads, so long
243 >     * as lookups check hash code and non-nullness of value before
244 >     * checking key equality.
245       *
246       * We use the top two bits of Node hash fields for control
247       * purposes -- they are available anyway because of addressing
# Line 170 | Line 253 | public class ConcurrentHashMapV8<K, V>
253       *  10 - Node is a forwarding node
254       *
255       * The lower 30 bits of each Node's hash field contain a
256 <     * transformation (for better randomization -- method "spread") of
257 <     * the key's hash code, except for forwarding nodes, for which the
258 <     * lower bits are zero (and so always have hash field == MOVED).
256 >     * transformation of the key's hash code, except for forwarding
257 >     * nodes, for which the lower bits are zero (and so always have
258 >     * hash field == MOVED).
259       *
260       * Insertion (via put or its variants) of the first node in an
261       * empty bin is performed by just CASing it to the bin.  This is
262 <     * by far the most common case for put operations.  Other update
263 <     * operations (insert, delete, and replace) require locks.  We do
264 <     * not want to waste the space required to associate a distinct
265 <     * lock object with each bin, so instead use the first node of a
266 <     * bin list itself as a lock. Blocking support for these locks
267 <     * relies on the builtin "synchronized" monitors.  However, we
268 <     * also need a tryLock construction, so we overlay these by using
269 <     * bits of the Node hash field for lock control (see above), and
270 <     * so normally use builtin monitors only for blocking and
271 <     * signalling using wait/notifyAll constructions. See
272 <     * Node.tryAwaitLock.
262 >     * by far the most common case for put operations under most
263 >     * key/hash distributions.  Other update operations (insert,
264 >     * delete, and replace) require locks.  We do not want to waste
265 >     * the space required to associate a distinct lock object with
266 >     * each bin, so instead use the first node of a bin list itself as
267 >     * a lock. Blocking support for these locks relies on the builtin
268 >     * "synchronized" monitors.  However, we also need a tryLock
269 >     * construction, so we overlay these by using bits of the Node
270 >     * hash field for lock control (see above), and so normally use
271 >     * builtin monitors only for blocking and signalling using
272 >     * wait/notifyAll constructions. See Node.tryAwaitLock.
273       *
274       * Using the first node of a list as a lock does not by itself
275       * suffice though: When a node is locked, any update must first
# Line 201 | Line 284 | public class ConcurrentHashMapV8<K, V>
284       * The main disadvantage of per-bin locks is that other update
285       * operations on other nodes in a bin list protected by the same
286       * lock can stall, for example when user equals() or mapping
287 <     * functions take a long time.  However, statistically, this is
288 <     * not a common enough problem to outweigh the time/space overhead
289 <     * of alternatives: Under random hash codes, the frequency of
207 <     * nodes in bins follows a Poisson distribution
287 >     * functions take a long time.  However, statistically, under
288 >     * random hash codes, this is not a common problem.  Ideally, the
289 >     * frequency of nodes in bins follows a Poisson distribution
290       * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
291       * parameter of about 0.5 on average, given the resizing threshold
292       * of 0.75, although with a large variance because of resizing
293       * granularity. Ignoring variance, the expected occurrences of
294       * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
295 <     * first few values are:
295 >     * first values are:
296       *
297 <     * 0:    0.607
298 <     * 1:    0.303
299 <     * 2:    0.076
300 <     * 3:    0.012
301 <     * more: 0.002
297 >     * 0:    0.60653066
298 >     * 1:    0.30326533
299 >     * 2:    0.07581633
300 >     * 3:    0.01263606
301 >     * 4:    0.00157952
302 >     * 5:    0.00015795
303 >     * 6:    0.00001316
304 >     * 7:    0.00000094
305 >     * 8:    0.00000006
306 >     * more: less than 1 in ten million
307       *
308       * Lock contention probability for two threads accessing distinct
309 <     * elements is roughly 1 / (8 * #elements).  Function "spread"
310 <     * performs hashCode randomization that improves the likelihood
311 <     * that these assumptions hold unless users define exactly the
312 <     * same value for too many hashCodes.
309 >     * elements is roughly 1 / (8 * #elements) under random hashes.
310 >     *
311 >     * Actual hash code distributions encountered in practice
312 >     * sometimes deviate significantly from uniform randomness.  This
313 >     * includes the case when N > (1<<30), so some keys MUST collide.
314 >     * Similarly for dumb or hostile usages in which multiple keys are
315 >     * designed to have identical hash codes. Also, although we guard
316 >     * against the worst effects of this (see method spread), sets of
317 >     * hashes may differ only in bits that do not impact their bin
318 >     * index for a given power-of-two mask.  So we use a secondary
319 >     * strategy that applies when the number of nodes in a bin exceeds
320 >     * a threshold, and at least one of the keys implements
321 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
322 >     * (a specialized form of red-black trees), bounding search time
323 >     * to O(log N).  Each search step in a TreeBin is around twice as
324 >     * slow as in a regular list, but given that N cannot exceed
325 >     * (1<<64) (before running out of addresses) this bounds search
326 >     * steps, lock hold times, etc, to reasonable constants (roughly
327 >     * 100 nodes inspected per operation worst case) so long as keys
328 >     * are Comparable (which is very common -- String, Long, etc).
329 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
330 >     * traversal pointers as regular nodes, so can be traversed in
331 >     * iterators in the same way.
332       *
333 <     * The table is resized when occupancy exceeds an occupancy
333 >     * The table is resized when occupancy exceeds a percentage
334       * threshold (nominally, 0.75, but see below).  Only a single
335       * thread performs the resize (using field "sizeCtl", to arrange
336       * exclusion), but the table otherwise remains usable for reads
# Line 245 | Line 351 | public class ConcurrentHashMapV8<K, V>
351       *
352       * Each bin transfer requires its bin lock. However, unlike other
353       * cases, a transfer can skip a bin if it fails to acquire its
354 <     * lock, and revisit it later. Method rebuild maintains a buffer
355 <     * of TRANSFER_BUFFER_SIZE bins that have been skipped because of
356 <     * failure to acquire a lock, and blocks only if none are
357 <     * available (i.e., only very rarely).  The transfer operation
358 <     * must also ensure that all accessible bins in both the old and
359 <     * new table are usable by any traversal.  When there are no lock
360 <     * acquisition failures, this is arranged simply by proceeding
361 <     * from the last bin (table.length - 1) up towards the first.
362 <     * Upon seeing a forwarding node, traversals (see class
363 <     * InternalIterator) arrange to move to the new table without
364 <     * revisiting nodes.  However, when any node is skipped during a
365 <     * transfer, all earlier table bins may have become visible, so
366 <     * are initialized with a reverse-forwarding node back to the old
367 <     * table until the new ones are established. (This sometimes
368 <     * requires transiently locking a forwarding node, which is
369 <     * possible under the above encoding.) These more expensive
354 >     * lock, and revisit it later (unless it is a TreeBin). Method
355 >     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
356 >     * have been skipped because of failure to acquire a lock, and
357 >     * blocks only if none are available (i.e., only very rarely).
358 >     * The transfer operation must also ensure that all accessible
359 >     * bins in both the old and new table are usable by any traversal.
360 >     * When there are no lock acquisition failures, this is arranged
361 >     * simply by proceeding from the last bin (table.length - 1) up
362 >     * towards the first.  Upon seeing a forwarding node, traversals
363 >     * (see class InternalIterator) arrange to move to the new table
364 >     * without revisiting nodes.  However, when any node is skipped
365 >     * during a transfer, all earlier table bins may have become
366 >     * visible, so are initialized with a reverse-forwarding node back
367 >     * to the old table until the new ones are established. (This
368 >     * sometimes requires transiently locking a forwarding node, which
369 >     * is possible under the above encoding.) These more expensive
370       * mechanics trigger only when necessary.
371       *
372       * The traversal scheme also applies to partial traversals of
373       * ranges of bins (via an alternate InternalIterator constructor)
374 <     * to support partitioned aggregate operations (that are not
375 <     * otherwise implemented yet).  Also, read-only operations give up
376 <     * if ever forwarded to a null table, which provides support for
377 <     * shutdown-style clearing, which is also not currently
272 <     * implemented.
374 >     * to support partitioned aggregate operations.  Also, read-only
375 >     * operations give up if ever forwarded to a null table, which
376 >     * provides support for shutdown-style clearing, which is also not
377 >     * currently implemented.
378       *
379       * Lazy table initialization minimizes footprint until first use,
380       * and also avoids resizings when the first operation is from a
# Line 347 | Line 452 | public class ConcurrentHashMapV8<K, V>
452       */
453      private static final int TRANSFER_BUFFER_SIZE = 32;
454  
455 +    /**
456 +     * The bin count threshold for using a tree rather than list for a
457 +     * bin.  The value reflects the approximate break-even point for
458 +     * using tree-based operations.
459 +     */
460 +    private static final int TREE_THRESHOLD = 8;
461 +
462      /*
463       * Encodings for special uses of Node hash fields. See above for
464       * explanation.
465       */
466 <    static final int MOVED     = 0x80000000; // hash field for fowarding nodes
466 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
467      static final int LOCKED    = 0x40000000; // set/tested only as a bit
468      static final int WAITING   = 0xc0000000; // both bits set/tested together
469      static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
# Line 386 | Line 498 | public class ConcurrentHashMapV8<K, V>
498      /** For serialization compatibility. Null unless serialized; see below */
499      private Segment<K,V>[] segments;
500  
501 +    /* ---------------- Table element access -------------- */
502 +
503 +    /*
504 +     * Volatile access methods are used for table elements as well as
505 +     * elements of in-progress next table while resizing.  Uses are
506 +     * null checked by callers, and implicitly bounds-checked, relying
507 +     * on the invariants that tab arrays have non-zero size, and all
508 +     * indices are masked with (tab.length - 1) which is never
509 +     * negative and always less than length. Note that, to be correct
510 +     * wrt arbitrary concurrency errors by users, bounds checks must
511 +     * operate on local variables, which accounts for some odd-looking
512 +     * inline assignments below.
513 +     */
514 +
515 +    static final Node tabAt(Node[] tab, int i) { // used by InternalIterator
516 +        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
517 +    }
518 +
519 +    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
520 +        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
521 +    }
522 +
523 +    private static final void setTabAt(Node[] tab, int i, Node v) {
524 +        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
525 +    }
526 +
527      /* ---------------- Nodes -------------- */
528  
529      /**
530       * Key-value entry. Note that this is never exported out as a
531 <     * user-visible Map.Entry (see WriteThroughEntry and SnapshotEntry
532 <     * below). Nodes with a hash field of MOVED are special, and do
533 <     * not contain user keys or values.  Otherwise, keys are never
534 <     * null, and null val fields indicate that a node is in the
535 <     * process of being deleted or created. For purposes of read-only
536 <     * access, a key may be read before a val, but can only be used
537 <     * after checking val to be non-null.
531 >     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
532 >     * field of MOVED are special, and do not contain user keys or
533 >     * values.  Otherwise, keys are never null, and null val fields
534 >     * indicate that a node is in the process of being deleted or
535 >     * created. For purposes of read-only access, a key may be read
536 >     * before a val, but can only be used after checking val to be
537 >     * non-null.
538       */
539 <    static final class Node {
539 >    static class Node {
540          volatile int hash;
541          final Object key;
542          volatile Object val;
# Line 435 | Line 573 | public class ConcurrentHashMapV8<K, V>
573           */
574          final void tryAwaitLock(Node[] tab, int i) {
575              if (tab != null && i >= 0 && i < tab.length) { // bounds check
576 +                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
577                  int spins = MAX_SPINS, h;
578                  while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
579                      if (spins >= 0) {
580 <                        if (--spins == MAX_SPINS >>> 1)
581 <                            Thread.yield();  // heuristically yield mid-way
580 >                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
581 >                        if (r >= 0 && --spins == 0)
582 >                            Thread.yield();  // yield before block
583                      }
584                      else if (casHash(h, h | WAITING)) {
585                          synchronized (this) {
# Line 476 | Line 616 | public class ConcurrentHashMapV8<K, V>
616          }
617      }
618  
619 <    /* ---------------- Table element access -------------- */
619 >    /* ---------------- TreeBins -------------- */
620  
621 <    /*
622 <     * Volatile access methods are used for table elements as well as
483 <     * elements of in-progress next table while resizing.  Uses are
484 <     * null checked by callers, and implicitly bounds-checked, relying
485 <     * on the invariants that tab arrays have non-zero size, and all
486 <     * indices are masked with (tab.length - 1) which is never
487 <     * negative and always less than length. Note that, to be correct
488 <     * wrt arbitrary concurrency errors by users, bounds checks must
489 <     * operate on local variables, which accounts for some odd-looking
490 <     * inline assignments below.
621 >    /**
622 >     * Nodes for use in TreeBins
623       */
624 <
625 <    static final Node tabAt(Node[] tab, int i) { // used by InternalIterator
626 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
624 >    static final class TreeNode extends Node {
625 >        TreeNode parent;  // red-black tree links
626 >        TreeNode left;
627 >        TreeNode right;
628 >        TreeNode prev;    // needed to unlink next upon deletion
629 >        boolean red;
630 >
631 >        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
632 >            super(hash, key, val, next);
633 >            this.parent = parent;
634 >        }
635      }
636  
637 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
638 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
639 <    }
637 >    /**
638 >     * A specialized form of red-black tree for use in bins
639 >     * whose size exceeds a threshold.
640 >     *
641 >     * TreeBins use a special form of comparison for search and
642 >     * related operations (which is the main reason we cannot use
643 >     * existing collections such as TreeMaps). TreeBins contain
644 >     * Comparable elements, but may contain others, as well as
645 >     * elements that are Comparable but not necessarily Comparable<T>
646 >     * for the same T, so we cannot invoke compareTo among them. To
647 >     * handle this, the tree is ordered primarily by hash value, then
648 >     * by getClass().getName() order, and then by Comparator order
649 >     * among elements of the same class.  On lookup at a node, if
650 >     * elements are not comparable or compare as 0, both left and
651 >     * right children may need to be searched in the case of tied hash
652 >     * values. (This corresponds to the full list search that would be
653 >     * necessary if all elements were non-Comparable and had tied
654 >     * hashes.)  The red-black balancing code is updated from
655 >     * pre-jdk-collections
656 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
657 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
658 >     * Algorithms" (CLR).
659 >     *
660 >     * TreeBins also maintain a separate locking discipline than
661 >     * regular bins. Because they are forwarded via special MOVED
662 >     * nodes at bin heads (which can never change once established),
663 >     * we cannot use use those nodes as locks. Instead, TreeBin
664 >     * extends AbstractQueuedSynchronizer to support a simple form of
665 >     * read-write lock. For update operations and table validation,
666 >     * the exclusive form of lock behaves in the same way as bin-head
667 >     * locks. However, lookups use shared read-lock mechanics to allow
668 >     * multiple readers in the absence of writers.  Additionally,
669 >     * these lookups do not ever block: While the lock is not
670 >     * available, they proceed along the slow traversal path (via
671 >     * next-pointers) until the lock becomes available or the list is
672 >     * exhausted, whichever comes first. (These cases are not fast,
673 >     * but maximize aggregate expected throughput.)  The AQS mechanics
674 >     * for doing this are straightforward.  The lock state is held as
675 >     * AQS getState().  Read counts are negative; the write count (1)
676 >     * is positive.  There are no signalling preferences among readers
677 >     * and writers. Since we don't need to export full Lock API, we
678 >     * just override the minimal AQS methods and use them directly.
679 >     */
680 >    static final class TreeBin extends AbstractQueuedSynchronizer {
681 >        private static final long serialVersionUID = 2249069246763182397L;
682 >        transient TreeNode root;  // root of tree
683 >        transient TreeNode first; // head of next-pointer list
684  
685 <    private static final void setTabAt(Node[] tab, int i, Node v) {
686 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
687 <    }
685 >        /* AQS overrides */
686 >        public final boolean isHeldExclusively() { return getState() > 0; }
687 >        public final boolean tryAcquire(int ignore) {
688 >            if (compareAndSetState(0, 1)) {
689 >                setExclusiveOwnerThread(Thread.currentThread());
690 >                return true;
691 >            }
692 >            return false;
693 >        }
694 >        public final boolean tryRelease(int ignore) {
695 >            setExclusiveOwnerThread(null);
696 >            setState(0);
697 >            return true;
698 >        }
699 >        public final int tryAcquireShared(int ignore) {
700 >            for (int c;;) {
701 >                if ((c = getState()) > 0)
702 >                    return -1;
703 >                if (compareAndSetState(c, c -1))
704 >                    return 1;
705 >            }
706 >        }
707 >        public final boolean tryReleaseShared(int ignore) {
708 >            int c;
709 >            do {} while (!compareAndSetState(c = getState(), c + 1));
710 >            return c == -1;
711 >        }
712 >
713 >        /** From CLR */
714 >        private void rotateLeft(TreeNode p) {
715 >            if (p != null) {
716 >                TreeNode r = p.right, pp, rl;
717 >                if ((rl = p.right = r.left) != null)
718 >                    rl.parent = p;
719 >                if ((pp = r.parent = p.parent) == null)
720 >                    root = r;
721 >                else if (pp.left == p)
722 >                    pp.left = r;
723 >                else
724 >                    pp.right = r;
725 >                r.left = p;
726 >                p.parent = r;
727 >            }
728 >        }
729  
730 <    /* ---------------- Internal access and update methods -------------- */
730 >        /** From CLR */
731 >        private void rotateRight(TreeNode p) {
732 >            if (p != null) {
733 >                TreeNode l = p.left, pp, lr;
734 >                if ((lr = p.left = l.right) != null)
735 >                    lr.parent = p;
736 >                if ((pp = l.parent = p.parent) == null)
737 >                    root = l;
738 >                else if (pp.right == p)
739 >                    pp.right = l;
740 >                else
741 >                    pp.left = l;
742 >                l.right = p;
743 >                p.parent = l;
744 >            }
745 >        }
746  
747 <    /**
748 <     * Applies a supplemental hash function to a given hashCode, which
749 <     * defends against poor quality hash functions.  The result must
750 <     * be have the top 2 bits clear. For reasonable performance, this
751 <     * function must have good avalanche properties; i.e., that each
752 <     * bit of the argument affects each bit of the result. (Although
753 <     * we don't care about the unused top 2 bits.)
747 >        /**
748 >         * Return the TreeNode (or null if not found) for the given key
749 >         * starting at given root.
750 >         */
751 >        @SuppressWarnings("unchecked") // suppress Comparable cast warning
752 >        final TreeNode getTreeNode(int h, Object k, TreeNode p) {
753 >            Class<?> c = k.getClass();
754 >            while (p != null) {
755 >                int dir, ph;  Object pk; Class<?> pc;
756 >                if ((ph = p.hash) == h) {
757 >                    if ((pk = p.key) == k || k.equals(pk))
758 >                        return p;
759 >                    if (c != (pc = pk.getClass()) ||
760 >                        !(k instanceof Comparable) ||
761 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
762 >                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
763 >                        TreeNode r = null, s = null, pl, pr;
764 >                        if (dir >= 0) {
765 >                            if ((pl = p.left) != null && h <= pl.hash)
766 >                                s = pl;
767 >                        }
768 >                        else if ((pr = p.right) != null && h >= pr.hash)
769 >                            s = pr;
770 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
771 >                            return r;
772 >                    }
773 >                }
774 >                else
775 >                    dir = (h < ph) ? -1 : 1;
776 >                p = (dir > 0) ? p.right : p.left;
777 >            }
778 >            return null;
779 >        }
780 >
781 >        /**
782 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
783 >         * read-lock to call getTreeNode, but during failure to get
784 >         * lock, searches along next links.
785 >         */
786 >        final Object getValue(int h, Object k) {
787 >            Node r = null;
788 >            int c = getState(); // Must read lock state first
789 >            for (Node e = first; e != null; e = e.next) {
790 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
791 >                    try {
792 >                        r = getTreeNode(h, k, root);
793 >                    } finally {
794 >                        releaseShared(0);
795 >                    }
796 >                    break;
797 >                }
798 >                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
799 >                    r = e;
800 >                    break;
801 >                }
802 >                else
803 >                    c = getState();
804 >            }
805 >            return r == null ? null : r.val;
806 >        }
807 >
808 >        /**
809 >         * Find or add a node
810 >         * @return null if added
811 >         */
812 >        @SuppressWarnings("unchecked") // suppress Comparable cast warning
813 >        final TreeNode putTreeNode(int h, Object k, Object v) {
814 >            Class<?> c = k.getClass();
815 >            TreeNode pp = root, p = null;
816 >            int dir = 0;
817 >            while (pp != null) { // find existing node or leaf to insert at
818 >                int ph;  Object pk; Class<?> pc;
819 >                p = pp;
820 >                if ((ph = p.hash) == h) {
821 >                    if ((pk = p.key) == k || k.equals(pk))
822 >                        return p;
823 >                    if (c != (pc = pk.getClass()) ||
824 >                        !(k instanceof Comparable) ||
825 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
826 >                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
827 >                        TreeNode r = null, s = null, pl, pr;
828 >                        if (dir >= 0) {
829 >                            if ((pl = p.left) != null && h <= pl.hash)
830 >                                s = pl;
831 >                        }
832 >                        else if ((pr = p.right) != null && h >= pr.hash)
833 >                            s = pr;
834 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
835 >                            return r;
836 >                    }
837 >                }
838 >                else
839 >                    dir = (h < ph) ? -1 : 1;
840 >                pp = (dir > 0) ? p.right : p.left;
841 >            }
842 >
843 >            TreeNode f = first;
844 >            TreeNode x = first = new TreeNode(h, k, v, f, p);
845 >            if (p == null)
846 >                root = x;
847 >            else { // attach and rebalance; adapted from CLR
848 >                TreeNode xp, xpp;
849 >                if (f != null)
850 >                    f.prev = x;
851 >                if (dir <= 0)
852 >                    p.left = x;
853 >                else
854 >                    p.right = x;
855 >                x.red = true;
856 >                while (x != null && (xp = x.parent) != null && xp.red &&
857 >                       (xpp = xp.parent) != null) {
858 >                    TreeNode xppl = xpp.left;
859 >                    if (xp == xppl) {
860 >                        TreeNode y = xpp.right;
861 >                        if (y != null && y.red) {
862 >                            y.red = false;
863 >                            xp.red = false;
864 >                            xpp.red = true;
865 >                            x = xpp;
866 >                        }
867 >                        else {
868 >                            if (x == xp.right) {
869 >                                rotateLeft(x = xp);
870 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
871 >                            }
872 >                            if (xp != null) {
873 >                                xp.red = false;
874 >                                if (xpp != null) {
875 >                                    xpp.red = true;
876 >                                    rotateRight(xpp);
877 >                                }
878 >                            }
879 >                        }
880 >                    }
881 >                    else {
882 >                        TreeNode y = xppl;
883 >                        if (y != null && y.red) {
884 >                            y.red = false;
885 >                            xp.red = false;
886 >                            xpp.red = true;
887 >                            x = xpp;
888 >                        }
889 >                        else {
890 >                            if (x == xp.left) {
891 >                                rotateRight(x = xp);
892 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
893 >                            }
894 >                            if (xp != null) {
895 >                                xp.red = false;
896 >                                if (xpp != null) {
897 >                                    xpp.red = true;
898 >                                    rotateLeft(xpp);
899 >                                }
900 >                            }
901 >                        }
902 >                    }
903 >                }
904 >                TreeNode r = root;
905 >                if (r != null && r.red)
906 >                    r.red = false;
907 >            }
908 >            return null;
909 >        }
910 >
911 >        /**
912 >         * Removes the given node, that must be present before this
913 >         * call.  This is messier than typical red-black deletion code
914 >         * because we cannot swap the contents of an interior node
915 >         * with a leaf successor that is pinned by "next" pointers
916 >         * that are accessible independently of lock. So instead we
917 >         * swap the tree linkages.
918 >         */
919 >        final void deleteTreeNode(TreeNode p) {
920 >            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
921 >            TreeNode pred = p.prev;
922 >            if (pred == null)
923 >                first = next;
924 >            else
925 >                pred.next = next;
926 >            if (next != null)
927 >                next.prev = pred;
928 >            TreeNode replacement;
929 >            TreeNode pl = p.left;
930 >            TreeNode pr = p.right;
931 >            if (pl != null && pr != null) {
932 >                TreeNode s = pr, sl;
933 >                while ((sl = s.left) != null) // find successor
934 >                    s = sl;
935 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
936 >                TreeNode sr = s.right;
937 >                TreeNode pp = p.parent;
938 >                if (s == pr) { // p was s's direct parent
939 >                    p.parent = s;
940 >                    s.right = p;
941 >                }
942 >                else {
943 >                    TreeNode sp = s.parent;
944 >                    if ((p.parent = sp) != null) {
945 >                        if (s == sp.left)
946 >                            sp.left = p;
947 >                        else
948 >                            sp.right = p;
949 >                    }
950 >                    if ((s.right = pr) != null)
951 >                        pr.parent = s;
952 >                }
953 >                p.left = null;
954 >                if ((p.right = sr) != null)
955 >                    sr.parent = p;
956 >                if ((s.left = pl) != null)
957 >                    pl.parent = s;
958 >                if ((s.parent = pp) == null)
959 >                    root = s;
960 >                else if (p == pp.left)
961 >                    pp.left = s;
962 >                else
963 >                    pp.right = s;
964 >                replacement = sr;
965 >            }
966 >            else
967 >                replacement = (pl != null) ? pl : pr;
968 >            TreeNode pp = p.parent;
969 >            if (replacement == null) {
970 >                if (pp == null) {
971 >                    root = null;
972 >                    return;
973 >                }
974 >                replacement = p;
975 >            }
976 >            else {
977 >                replacement.parent = pp;
978 >                if (pp == null)
979 >                    root = replacement;
980 >                else if (p == pp.left)
981 >                    pp.left = replacement;
982 >                else
983 >                    pp.right = replacement;
984 >                p.left = p.right = p.parent = null;
985 >            }
986 >            if (!p.red) { // rebalance, from CLR
987 >                TreeNode x = replacement;
988 >                while (x != null) {
989 >                    TreeNode xp, xpl;
990 >                    if (x.red || (xp = x.parent) == null) {
991 >                        x.red = false;
992 >                        break;
993 >                    }
994 >                    if (x == (xpl = xp.left)) {
995 >                        TreeNode sib = xp.right;
996 >                        if (sib != null && sib.red) {
997 >                            sib.red = false;
998 >                            xp.red = true;
999 >                            rotateLeft(xp);
1000 >                            sib = (xp = x.parent) == null ? null : xp.right;
1001 >                        }
1002 >                        if (sib == null)
1003 >                            x = xp;
1004 >                        else {
1005 >                            TreeNode sl = sib.left, sr = sib.right;
1006 >                            if ((sr == null || !sr.red) &&
1007 >                                (sl == null || !sl.red)) {
1008 >                                sib.red = true;
1009 >                                x = xp;
1010 >                            }
1011 >                            else {
1012 >                                if (sr == null || !sr.red) {
1013 >                                    if (sl != null)
1014 >                                        sl.red = false;
1015 >                                    sib.red = true;
1016 >                                    rotateRight(sib);
1017 >                                    sib = (xp = x.parent) == null ? null : xp.right;
1018 >                                }
1019 >                                if (sib != null) {
1020 >                                    sib.red = (xp == null) ? false : xp.red;
1021 >                                    if ((sr = sib.right) != null)
1022 >                                        sr.red = false;
1023 >                                }
1024 >                                if (xp != null) {
1025 >                                    xp.red = false;
1026 >                                    rotateLeft(xp);
1027 >                                }
1028 >                                x = root;
1029 >                            }
1030 >                        }
1031 >                    }
1032 >                    else { // symmetric
1033 >                        TreeNode sib = xpl;
1034 >                        if (sib != null && sib.red) {
1035 >                            sib.red = false;
1036 >                            xp.red = true;
1037 >                            rotateRight(xp);
1038 >                            sib = (xp = x.parent) == null ? null : xp.left;
1039 >                        }
1040 >                        if (sib == null)
1041 >                            x = xp;
1042 >                        else {
1043 >                            TreeNode sl = sib.left, sr = sib.right;
1044 >                            if ((sl == null || !sl.red) &&
1045 >                                (sr == null || !sr.red)) {
1046 >                                sib.red = true;
1047 >                                x = xp;
1048 >                            }
1049 >                            else {
1050 >                                if (sl == null || !sl.red) {
1051 >                                    if (sr != null)
1052 >                                        sr.red = false;
1053 >                                    sib.red = true;
1054 >                                    rotateLeft(sib);
1055 >                                    sib = (xp = x.parent) == null ? null : xp.left;
1056 >                                }
1057 >                                if (sib != null) {
1058 >                                    sib.red = (xp == null) ? false : xp.red;
1059 >                                    if ((sl = sib.left) != null)
1060 >                                        sl.red = false;
1061 >                                }
1062 >                                if (xp != null) {
1063 >                                    xp.red = false;
1064 >                                    rotateRight(xp);
1065 >                                }
1066 >                                x = root;
1067 >                            }
1068 >                        }
1069 >                    }
1070 >                }
1071 >            }
1072 >            if (p == replacement && (pp = p.parent) != null) {
1073 >                if (p == pp.left) // detach pointers
1074 >                    pp.left = null;
1075 >                else if (p == pp.right)
1076 >                    pp.right = null;
1077 >                p.parent = null;
1078 >            }
1079 >        }
1080 >    }
1081 >
1082 >    /* ---------------- Collision reduction methods -------------- */
1083 >
1084 >    /**
1085 >     * Spreads higher bits to lower, and also forces top 2 bits to 0.
1086 >     * Because the table uses power-of-two masking, sets of hashes
1087 >     * that vary only in bits above the current mask will always
1088 >     * collide. (Among known examples are sets of Float keys holding
1089 >     * consecutive whole numbers in small tables.)  To counter this,
1090 >     * we apply a transform that spreads the impact of higher bits
1091 >     * downward. There is a tradeoff between speed, utility, and
1092 >     * quality of bit-spreading. Because many common sets of hashes
1093 >     * are already reasonably distributed across bits (so don't benefit
1094 >     * from spreading), and because we use trees to handle large sets
1095 >     * of collisions in bins, we don't need excessively high quality.
1096       */
1097      private static final int spread(int h) {
1098 <        // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/
1099 <        // Despite two multiplies, this is often faster than others
1100 <        // with comparable bit-spread properties.
1101 <        h ^= h >>> 16;
1102 <        h *= 0x85ebca6b;
1103 <        h ^= h >>> 13;
1104 <        h *= 0xc2b2ae35;
1105 <        return ((h >>> 16) ^ h) & HASH_BITS; // mask out top bits
1098 >        h ^= (h >>> 18) ^ (h >>> 12);
1099 >        return (h ^ (h >>> 10)) & HASH_BITS;
1100 >    }
1101 >
1102 >    /**
1103 >     * Replaces a list bin with a tree bin. Call only when locked.
1104 >     * Fails to replace if the given key is non-comparable or table
1105 >     * is, or needs, resizing.
1106 >     */
1107 >    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1108 >        if ((key instanceof Comparable) &&
1109 >            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1110 >            TreeBin t = new TreeBin();
1111 >            for (Node e = tabAt(tab, index); e != null; e = e.next)
1112 >                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1113 >            setTabAt(tab, index, new Node(MOVED, t, null, null));
1114 >        }
1115      }
1116  
1117 +    /* ---------------- Internal access and update methods -------------- */
1118 +
1119      /** Implementation for get and containsKey */
1120      private final Object internalGet(Object k) {
1121          int h = spread(k.hashCode());
1122          retry: for (Node[] tab = table; tab != null;) {
1123 <            Node e; Object ek, ev; int eh;    // locals to read fields once
1123 >            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1124              for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1125                  if ((eh = e.hash) == MOVED) {
1126 <                    tab = (Node[])e.key;      // restart with new table
1127 <                    continue retry;
1126 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1127 >                        return ((TreeBin)ek).getValue(h, k);
1128 >                    else {                        // restart with new table
1129 >                        tab = (Node[])ek;
1130 >                        continue retry;
1131 >                    }
1132                  }
1133 <                if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1134 <                    ((ek = e.key) == k || k.equals(ek)))
1133 >                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1134 >                         ((ek = e.key) == k || k.equals(ek)))
1135                      return ev;
1136              }
1137              break;
# Line 551 | Line 1148 | public class ConcurrentHashMapV8<K, V>
1148          int h = spread(k.hashCode());
1149          Object oldVal = null;
1150          for (Node[] tab = table;;) {
1151 <            Node f; int i, fh;
1151 >            Node f; int i, fh; Object fk;
1152              if (tab == null ||
1153                  (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1154                  break;
1155 <            else if ((fh = f.hash) == MOVED)
1156 <                tab = (Node[])f.key;
1155 >            else if ((fh = f.hash) == MOVED) {
1156 >                if ((fk = f.key) instanceof TreeBin) {
1157 >                    TreeBin t = (TreeBin)fk;
1158 >                    boolean validated = false;
1159 >                    boolean deleted = false;
1160 >                    t.acquire(0);
1161 >                    try {
1162 >                        if (tabAt(tab, i) == f) {
1163 >                            validated = true;
1164 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1165 >                            if (p != null) {
1166 >                                Object pv = p.val;
1167 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1168 >                                    oldVal = pv;
1169 >                                    if ((p.val = v) == null) {
1170 >                                        deleted = true;
1171 >                                        t.deleteTreeNode(p);
1172 >                                    }
1173 >                                }
1174 >                            }
1175 >                        }
1176 >                    } finally {
1177 >                        t.release(0);
1178 >                    }
1179 >                    if (validated) {
1180 >                        if (deleted)
1181 >                            counter.add(-1L);
1182 >                        break;
1183 >                    }
1184 >                }
1185 >                else
1186 >                    tab = (Node[])fk;
1187 >            }
1188              else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1189                  break;                          // rules out possible existence
1190              else if ((fh & LOCKED) != 0) {
# Line 595 | Line 1223 | public class ConcurrentHashMapV8<K, V>
1223                  } finally {
1224                      if (!f.casHash(fh | LOCKED, fh)) {
1225                          f.hash = fh;
1226 <                        synchronized(f) { f.notifyAll(); };
1226 >                        synchronized (f) { f.notifyAll(); };
1227                      }
1228                  }
1229                  if (validated) {
# Line 615 | Line 1243 | public class ConcurrentHashMapV8<K, V>
1243       *  1. If table uninitialized, create
1244       *  2. If bin empty, try to CAS new node
1245       *  3. If bin stale, use new table
1246 <     *  4. Lock and validate; if valid, scan and add or update
1246 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1247 >     *  5. Lock and validate; if valid, scan and add or update
1248       *
1249       * The others interweave other checks and/or alternative actions:
1250       *  * Plain put checks for and performs resize after insertion.
# Line 636 | Line 1265 | public class ConcurrentHashMapV8<K, V>
1265      /** Implementation for put */
1266      private final Object internalPut(Object k, Object v) {
1267          int h = spread(k.hashCode());
1268 <        boolean checkSize = false;
1268 >        int count = 0;
1269          for (Node[] tab = table;;) {
1270 <            int i; Node f; int fh;
1270 >            int i; Node f; int fh; Object fk;
1271              if (tab == null)
1272                  tab = initTable();
1273              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1274                  if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1275                      break;                   // no lock when adding to empty bin
1276              }
1277 <            else if ((fh = f.hash) == MOVED)
1278 <                tab = (Node[])f.key;
1277 >            else if ((fh = f.hash) == MOVED) {
1278 >                if ((fk = f.key) instanceof TreeBin) {
1279 >                    TreeBin t = (TreeBin)fk;
1280 >                    Object oldVal = null;
1281 >                    t.acquire(0);
1282 >                    try {
1283 >                        if (tabAt(tab, i) == f) {
1284 >                            count = 2;
1285 >                            TreeNode p = t.putTreeNode(h, k, v);
1286 >                            if (p != null) {
1287 >                                oldVal = p.val;
1288 >                                p.val = v;
1289 >                            }
1290 >                        }
1291 >                    } finally {
1292 >                        t.release(0);
1293 >                    }
1294 >                    if (count != 0) {
1295 >                        if (oldVal != null)
1296 >                            return oldVal;
1297 >                        break;
1298 >                    }
1299 >                }
1300 >                else
1301 >                    tab = (Node[])fk;
1302 >            }
1303              else if ((fh & LOCKED) != 0) {
1304                  checkForResize();
1305                  f.tryAwaitLock(tab, i);
1306              }
1307              else if (f.casHash(fh, fh | LOCKED)) {
1308                  Object oldVal = null;
656                boolean validated = false;
1309                  try {                        // needed in case equals() throws
1310                      if (tabAt(tab, i) == f) {
1311 <                        validated = true;    // retry if 1st already deleted
1312 <                        for (Node e = f;;) {
1311 >                        count = 1;
1312 >                        for (Node e = f;; ++count) {
1313                              Object ek, ev;
1314                              if ((e.hash & HASH_BITS) == h &&
1315                                  (ev = e.val) != null &&
# Line 669 | Line 1321 | public class ConcurrentHashMapV8<K, V>
1321                              Node last = e;
1322                              if ((e = e.next) == null) {
1323                                  last.next = new Node(h, k, v, null);
1324 <                                if (last != f || tab.length <= 64)
1325 <                                    checkSize = true;
1324 >                                if (count >= TREE_THRESHOLD)
1325 >                                    replaceWithTreeBin(tab, i, k);
1326                                  break;
1327                              }
1328                          }
# Line 681 | Line 1333 | public class ConcurrentHashMapV8<K, V>
1333                          synchronized (f) { f.notifyAll(); };
1334                      }
1335                  }
1336 <                if (validated) {
1336 >                if (count != 0) {
1337                      if (oldVal != null)
1338                          return oldVal;
1339 +                    if (tab.length <= 64)
1340 +                        count = 2;
1341                      break;
1342                  }
1343              }
1344          }
1345          counter.add(1L);
1346 <        if (checkSize)
1346 >        if (count > 1)
1347              checkForResize();
1348          return null;
1349      }
# Line 697 | Line 1351 | public class ConcurrentHashMapV8<K, V>
1351      /** Implementation for putIfAbsent */
1352      private final Object internalPutIfAbsent(Object k, Object v) {
1353          int h = spread(k.hashCode());
1354 +        int count = 0;
1355          for (Node[] tab = table;;) {
1356              int i; Node f; int fh; Object fk, fv;
1357              if (tab == null)
# Line 705 | Line 1360 | public class ConcurrentHashMapV8<K, V>
1360                  if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1361                      break;
1362              }
1363 <            else if ((fh = f.hash) == MOVED)
1364 <                tab = (Node[])f.key;
1363 >            else if ((fh = f.hash) == MOVED) {
1364 >                if ((fk = f.key) instanceof TreeBin) {
1365 >                    TreeBin t = (TreeBin)fk;
1366 >                    Object oldVal = null;
1367 >                    t.acquire(0);
1368 >                    try {
1369 >                        if (tabAt(tab, i) == f) {
1370 >                            count = 2;
1371 >                            TreeNode p = t.putTreeNode(h, k, v);
1372 >                            if (p != null)
1373 >                                oldVal = p.val;
1374 >                        }
1375 >                    } finally {
1376 >                        t.release(0);
1377 >                    }
1378 >                    if (count != 0) {
1379 >                        if (oldVal != null)
1380 >                            return oldVal;
1381 >                        break;
1382 >                    }
1383 >                }
1384 >                else
1385 >                    tab = (Node[])fk;
1386 >            }
1387              else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1388                       ((fk = f.key) == k || k.equals(fk)))
1389                  return fv;
# Line 730 | Line 1407 | public class ConcurrentHashMapV8<K, V>
1407                  }
1408                  else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1409                      Object oldVal = null;
733                    boolean validated = false;
1410                      try {
1411                          if (tabAt(tab, i) == f) {
1412 <                            validated = true;
1413 <                            for (Node e = f;;) {
1412 >                            count = 1;
1413 >                            for (Node e = f;; ++count) {
1414                                  Object ek, ev;
1415                                  if ((e.hash & HASH_BITS) == h &&
1416                                      (ev = e.val) != null &&
# Line 745 | Line 1421 | public class ConcurrentHashMapV8<K, V>
1421                                  Node last = e;
1422                                  if ((e = e.next) == null) {
1423                                      last.next = new Node(h, k, v, null);
1424 +                                    if (count >= TREE_THRESHOLD)
1425 +                                        replaceWithTreeBin(tab, i, k);
1426                                      break;
1427                                  }
1428                              }
# Line 752 | Line 1430 | public class ConcurrentHashMapV8<K, V>
1430                      } finally {
1431                          if (!f.casHash(fh | LOCKED, fh)) {
1432                              f.hash = fh;
1433 <                            synchronized(f) { f.notifyAll(); };
1433 >                            synchronized (f) { f.notifyAll(); };
1434                          }
1435                      }
1436 <                    if (validated) {
1436 >                    if (count != 0) {
1437                          if (oldVal != null)
1438                              return oldVal;
1439 +                        if (tab.length <= 64)
1440 +                            count = 2;
1441                          break;
1442                      }
1443                  }
1444              }
1445          }
1446          counter.add(1L);
1447 +        if (count > 1)
1448 +            checkForResize();
1449          return null;
1450      }
1451  
# Line 772 | Line 1454 | public class ConcurrentHashMapV8<K, V>
1454                                                   MappingFunction<? super K, ?> mf) {
1455          int h = spread(k.hashCode());
1456          Object val = null;
1457 +        int count = 0;
1458          for (Node[] tab = table;;) {
1459              Node f; int i, fh; Object fk, fv;
1460              if (tab == null)
1461                  tab = initTable();
1462              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1463                  Node node = new Node(fh = h | LOCKED, k, null, null);
781                boolean validated = false;
1464                  if (casTabAt(tab, i, null, node)) {
1465 <                    validated = true;
1465 >                    count = 1;
1466                      try {
1467                          if ((val = mf.map(k)) != null)
1468                              node.val = val;
# Line 789 | Line 1471 | public class ConcurrentHashMapV8<K, V>
1471                              setTabAt(tab, i, null);
1472                          if (!node.casHash(fh, h)) {
1473                              node.hash = h;
1474 <                            synchronized(node) { node.notifyAll(); };
1474 >                            synchronized (node) { node.notifyAll(); };
1475                          }
1476                      }
1477                  }
1478 <                if (validated)
1478 >                if (count != 0)
1479                      break;
1480              }
1481 <            else if ((fh = f.hash) == MOVED)
1482 <                tab = (Node[])f.key;
1481 >            else if ((fh = f.hash) == MOVED) {
1482 >                if ((fk = f.key) instanceof TreeBin) {
1483 >                    TreeBin t = (TreeBin)fk;
1484 >                    boolean added = false;
1485 >                    t.acquire(0);
1486 >                    try {
1487 >                        if (tabAt(tab, i) == f) {
1488 >                            count = 1;
1489 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1490 >                            if (p != null)
1491 >                                val = p.val;
1492 >                            else if ((val = mf.map(k)) != null) {
1493 >                                added = true;
1494 >                                count = 2;
1495 >                                t.putTreeNode(h, k, val);
1496 >                            }
1497 >                        }
1498 >                    } finally {
1499 >                        t.release(0);
1500 >                    }
1501 >                    if (count != 0) {
1502 >                        if (!added)
1503 >                            return val;
1504 >                        break;
1505 >                    }
1506 >                }
1507 >                else
1508 >                    tab = (Node[])fk;
1509 >            }
1510              else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1511                       ((fk = f.key) == k || k.equals(fk)))
1512                  return fv;
# Line 820 | Line 1529 | public class ConcurrentHashMapV8<K, V>
1529                      f.tryAwaitLock(tab, i);
1530                  }
1531                  else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1532 <                    boolean validated = false;
1532 >                    boolean added = false;
1533                      try {
1534                          if (tabAt(tab, i) == f) {
1535 <                            validated = true;
1536 <                            for (Node e = f;;) {
1535 >                            count = 1;
1536 >                            for (Node e = f;; ++count) {
1537                                  Object ek, ev;
1538                                  if ((e.hash & HASH_BITS) == h &&
1539                                      (ev = e.val) != null &&
# Line 834 | Line 1543 | public class ConcurrentHashMapV8<K, V>
1543                                  }
1544                                  Node last = e;
1545                                  if ((e = e.next) == null) {
1546 <                                    if ((val = mf.map(k)) != null)
1546 >                                    if ((val = mf.map(k)) != null) {
1547 >                                        added = true;
1548                                          last.next = new Node(h, k, val, null);
1549 +                                        if (count >= TREE_THRESHOLD)
1550 +                                            replaceWithTreeBin(tab, i, k);
1551 +                                    }
1552                                      break;
1553                                  }
1554                              }
# Line 843 | Line 1556 | public class ConcurrentHashMapV8<K, V>
1556                      } finally {
1557                          if (!f.casHash(fh | LOCKED, fh)) {
1558                              f.hash = fh;
1559 <                            synchronized(f) { f.notifyAll(); };
1559 >                            synchronized (f) { f.notifyAll(); };
1560                          }
1561                      }
1562 <                    if (validated)
1562 >                    if (count != 0) {
1563 >                        if (!added)
1564 >                            return val;
1565 >                        if (tab.length <= 64)
1566 >                            count = 2;
1567                          break;
1568 +                    }
1569                  }
1570              }
1571          }
1572 <        if (val == null)
1573 <            throw new NullPointerException();
1574 <        counter.add(1L);
1572 >        if (val != null) {
1573 >            counter.add(1L);
1574 >            if (count > 1)
1575 >                checkForResize();
1576 >        }
1577          return val;
1578      }
1579  
# Line 863 | Line 1583 | public class ConcurrentHashMapV8<K, V>
1583                                           RemappingFunction<? super K, V> mf) {
1584          int h = spread(k.hashCode());
1585          Object val = null;
1586 <        boolean added = false;
1587 <        boolean checkSize = false;
1586 >        int delta = 0;
1587 >        int count = 0;
1588          for (Node[] tab = table;;) {
1589 <            Node f; int i, fh;
1589 >            Node f; int i, fh; Object fk;
1590              if (tab == null)
1591                  tab = initTable();
1592              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1593                  Node node = new Node(fh = h | LOCKED, k, null, null);
874                boolean validated = false;
1594                  if (casTabAt(tab, i, null, node)) {
876                    validated = true;
1595                      try {
1596 +                        count = 1;
1597                          if ((val = mf.remap(k, null)) != null) {
1598                              node.val = val;
1599 <                            added = true;
1599 >                            delta = 1;
1600                          }
1601                      } finally {
1602 <                        if (!added)
1602 >                        if (delta == 0)
1603                              setTabAt(tab, i, null);
1604                          if (!node.casHash(fh, h)) {
1605                              node.hash = h;
# Line 888 | Line 1607 | public class ConcurrentHashMapV8<K, V>
1607                          }
1608                      }
1609                  }
1610 <                if (validated)
1610 >                if (count != 0)
1611                      break;
1612              }
1613 <            else if ((fh = f.hash) == MOVED)
1614 <                tab = (Node[])f.key;
1613 >            else if ((fh = f.hash) == MOVED) {
1614 >                if ((fk = f.key) instanceof TreeBin) {
1615 >                    TreeBin t = (TreeBin)fk;
1616 >                    t.acquire(0);
1617 >                    try {
1618 >                        if (tabAt(tab, i) == f) {
1619 >                            count = 1;
1620 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1621 >                            Object pv = (p == null) ? null : p.val;
1622 >                            if ((val = mf.remap(k, (V)pv)) != null) {
1623 >                                if (p != null)
1624 >                                    p.val = val;
1625 >                                else {
1626 >                                    count = 2;
1627 >                                    delta = 1;
1628 >                                    t.putTreeNode(h, k, val);
1629 >                                }
1630 >                            }
1631 >                            else if (p != null) {
1632 >                                delta = -1;
1633 >                                t.deleteTreeNode(p);
1634 >                            }
1635 >                        }
1636 >                    } finally {
1637 >                        t.release(0);
1638 >                    }
1639 >                    if (count != 0)
1640 >                        break;
1641 >                }
1642 >                else
1643 >                    tab = (Node[])fk;
1644 >            }
1645              else if ((fh & LOCKED) != 0) {
1646                  checkForResize();
1647                  f.tryAwaitLock(tab, i);
1648              }
1649              else if (f.casHash(fh, fh | LOCKED)) {
901                boolean validated = false;
1650                  try {
1651                      if (tabAt(tab, i) == f) {
1652 <                        validated = true;
1653 <                        for (Node e = f;;) {
1652 >                        count = 1;
1653 >                        for (Node e = f, pred = null;; ++count) {
1654                              Object ek, ev;
1655                              if ((e.hash & HASH_BITS) == h &&
1656                                  (ev = e.val) != null &&
# Line 910 | Line 1658 | public class ConcurrentHashMapV8<K, V>
1658                                  val = mf.remap(k, (V)ev);
1659                                  if (val != null)
1660                                      e.val = val;
1661 +                                else {
1662 +                                    delta = -1;
1663 +                                    Node en = e.next;
1664 +                                    if (pred != null)
1665 +                                        pred.next = en;
1666 +                                    else
1667 +                                        setTabAt(tab, i, en);
1668 +                                }
1669                                  break;
1670                              }
1671 <                            Node last = e;
1671 >                            pred = e;
1672                              if ((e = e.next) == null) {
1673                                  if ((val = mf.remap(k, null)) != null) {
1674 <                                    last.next = new Node(h, k, val, null);
1675 <                                    added = true;
1676 <                                    if (last != f || tab.length <= 64)
1677 <                                        checkSize = true;
1674 >                                    pred.next = new Node(h, k, val, null);
1675 >                                    delta = 1;
1676 >                                    if (count >= TREE_THRESHOLD)
1677 >                                        replaceWithTreeBin(tab, i, k);
1678                                  }
1679                                  break;
1680                              }
# Line 930 | Line 1686 | public class ConcurrentHashMapV8<K, V>
1686                          synchronized (f) { f.notifyAll(); };
1687                      }
1688                  }
1689 <                if (validated)
1689 >                if (count != 0) {
1690 >                    if (tab.length <= 64)
1691 >                        count = 2;
1692                      break;
1693 +                }
1694              }
1695          }
1696 <        if (val == null)
1697 <            throw new NullPointerException();
1698 <        if (added) {
940 <            counter.add(1L);
941 <            if (checkSize)
1696 >        if (delta != 0) {
1697 >            counter.add((long)delta);
1698 >            if (count > 1)
1699                  checkForResize();
1700          }
1701          return val;
# Line 959 | Line 1716 | public class ConcurrentHashMapV8<K, V>
1716                  }
1717                  int h = spread(k.hashCode());
1718                  for (Node[] tab = table;;) {
1719 <                    int i; Node f; int fh;
1719 >                    int i; Node f; int fh; Object fk;
1720                      if (tab == null)
1721                          tab = initTable();
1722                      else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
# Line 968 | Line 1725 | public class ConcurrentHashMapV8<K, V>
1725                              break;
1726                          }
1727                      }
1728 <                    else if ((fh = f.hash) == MOVED)
1729 <                        tab = (Node[])f.key;
1728 >                    else if ((fh = f.hash) == MOVED) {
1729 >                        if ((fk = f.key) instanceof TreeBin) {
1730 >                            TreeBin t = (TreeBin)fk;
1731 >                            boolean validated = false;
1732 >                            t.acquire(0);
1733 >                            try {
1734 >                                if (tabAt(tab, i) == f) {
1735 >                                    validated = true;
1736 >                                    TreeNode p = t.getTreeNode(h, k, t.root);
1737 >                                    if (p != null)
1738 >                                        p.val = v;
1739 >                                    else {
1740 >                                        t.putTreeNode(h, k, v);
1741 >                                        ++delta;
1742 >                                    }
1743 >                                }
1744 >                            } finally {
1745 >                                t.release(0);
1746 >                            }
1747 >                            if (validated)
1748 >                                break;
1749 >                        }
1750 >                        else
1751 >                            tab = (Node[])fk;
1752 >                    }
1753                      else if ((fh & LOCKED) != 0) {
1754                          counter.add(delta);
1755                          delta = 0L;
# Line 977 | Line 1757 | public class ConcurrentHashMapV8<K, V>
1757                          f.tryAwaitLock(tab, i);
1758                      }
1759                      else if (f.casHash(fh, fh | LOCKED)) {
1760 <                        boolean validated = false;
981 <                        boolean tooLong = false;
1760 >                        int count = 0;
1761                          try {
1762                              if (tabAt(tab, i) == f) {
1763 <                                validated = true;
1764 <                                for (Node e = f;;) {
1763 >                                count = 1;
1764 >                                for (Node e = f;; ++count) {
1765                                      Object ek, ev;
1766                                      if ((e.hash & HASH_BITS) == h &&
1767                                          (ev = e.val) != null &&
# Line 994 | Line 1773 | public class ConcurrentHashMapV8<K, V>
1773                                      if ((e = e.next) == null) {
1774                                          ++delta;
1775                                          last.next = new Node(h, k, v, null);
1776 +                                        if (count >= TREE_THRESHOLD)
1777 +                                            replaceWithTreeBin(tab, i, k);
1778                                          break;
1779                                      }
999                                    tooLong = true;
1780                                  }
1781                              }
1782                          } finally {
1783                              if (!f.casHash(fh | LOCKED, fh)) {
1784                                  f.hash = fh;
1785 <                                synchronized(f) { f.notifyAll(); };
1785 >                                synchronized (f) { f.notifyAll(); };
1786                              }
1787                          }
1788 <                        if (validated) {
1789 <                            if (tooLong) {
1788 >                        if (count != 0) {
1789 >                            if (count > 1) {
1790                                  counter.add(delta);
1791                                  delta = 0L;
1792                                  checkForResize();
# Line 1099 | Line 1879 | public class ConcurrentHashMapV8<K, V>
1879          while ((sc = sizeCtl) >= 0) {
1880              Node[] tab = table; int n;
1881              if (tab == null || (n = tab.length) == 0) {
1882 <                n = (sc > c)? sc : c;
1882 >                n = (sc > c) ? sc : c;
1883                  if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1884                      try {
1885                          if (table == tab) {
# Line 1150 | Line 1930 | public class ConcurrentHashMapV8<K, V>
1930                          continue;
1931                  }
1932                  else {             // transiently use a locked forwarding node
1933 <                    Node g =  new Node(MOVED|LOCKED, nextTab, null, null);
1933 >                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
1934                      if (!casTabAt(tab, i, f, g))
1935                          continue;
1936                      setTabAt(nextTab, i, null);
# Line 1162 | Line 1942 | public class ConcurrentHashMapV8<K, V>
1942                      }
1943                  }
1944              }
1945 <            else if (((fh = f.hash) & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
1945 >            else if ((fh = f.hash) == MOVED) {
1946 >                Object fk = f.key;
1947 >                if (fk instanceof TreeBin) {
1948 >                    TreeBin t = (TreeBin)fk;
1949 >                    boolean validated = false;
1950 >                    t.acquire(0);
1951 >                    try {
1952 >                        if (tabAt(tab, i) == f) {
1953 >                            validated = true;
1954 >                            splitTreeBin(nextTab, i, t);
1955 >                            setTabAt(tab, i, fwd);
1956 >                        }
1957 >                    } finally {
1958 >                        t.release(0);
1959 >                    }
1960 >                    if (!validated)
1961 >                        continue;
1962 >                }
1963 >            }
1964 >            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
1965                  boolean validated = false;
1966                  try {              // split to lo and hi lists; copying as needed
1967                      if (tabAt(tab, i) == f) {
1968                          validated = true;
1969 <                        Node e = f, lastRun = f;
1171 <                        Node lo = null, hi = null;
1172 <                        int runBit = e.hash & n;
1173 <                        for (Node p = e.next; p != null; p = p.next) {
1174 <                            int b = p.hash & n;
1175 <                            if (b != runBit) {
1176 <                                runBit = b;
1177 <                                lastRun = p;
1178 <                            }
1179 <                        }
1180 <                        if (runBit == 0)
1181 <                            lo = lastRun;
1182 <                        else
1183 <                            hi = lastRun;
1184 <                        for (Node p = e; p != lastRun; p = p.next) {
1185 <                            int ph = p.hash & HASH_BITS;
1186 <                            Object pk = p.key, pv = p.val;
1187 <                            if ((ph & n) == 0)
1188 <                                lo = new Node(ph, pk, pv, lo);
1189 <                            else
1190 <                                hi = new Node(ph, pk, pv, hi);
1191 <                        }
1192 <                        setTabAt(nextTab, i, lo);
1193 <                        setTabAt(nextTab, i + n, hi);
1969 >                        splitBin(nextTab, i, f);
1970                          setTabAt(tab, i, fwd);
1971                      }
1972                  } finally {
# Line 1236 | Line 2012 | public class ConcurrentHashMapV8<K, V>
2012      }
2013  
2014      /**
2015 +     * Split a normal bin with list headed by e into lo and hi parts;
2016 +     * install in given table
2017 +     */
2018 +    private static void splitBin(Node[] nextTab, int i, Node e) {
2019 +        int bit = nextTab.length >>> 1; // bit to split on
2020 +        int runBit = e.hash & bit;
2021 +        Node lastRun = e, lo = null, hi = null;
2022 +        for (Node p = e.next; p != null; p = p.next) {
2023 +            int b = p.hash & bit;
2024 +            if (b != runBit) {
2025 +                runBit = b;
2026 +                lastRun = p;
2027 +            }
2028 +        }
2029 +        if (runBit == 0)
2030 +            lo = lastRun;
2031 +        else
2032 +            hi = lastRun;
2033 +        for (Node p = e; p != lastRun; p = p.next) {
2034 +            int ph = p.hash & HASH_BITS;
2035 +            Object pk = p.key, pv = p.val;
2036 +            if ((ph & bit) == 0)
2037 +                lo = new Node(ph, pk, pv, lo);
2038 +            else
2039 +                hi = new Node(ph, pk, pv, hi);
2040 +        }
2041 +        setTabAt(nextTab, i, lo);
2042 +        setTabAt(nextTab, i + bit, hi);
2043 +    }
2044 +
2045 +    /**
2046 +     * Split a tree bin into lo and hi parts; install in given table
2047 +     */
2048 +    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2049 +        int bit = nextTab.length >>> 1;
2050 +        TreeBin lt = new TreeBin();
2051 +        TreeBin ht = new TreeBin();
2052 +        int lc = 0, hc = 0;
2053 +        for (Node e = t.first; e != null; e = e.next) {
2054 +            int h = e.hash & HASH_BITS;
2055 +            Object k = e.key, v = e.val;
2056 +            if ((h & bit) == 0) {
2057 +                ++lc;
2058 +                lt.putTreeNode(h, k, v);
2059 +            }
2060 +            else {
2061 +                ++hc;
2062 +                ht.putTreeNode(h, k, v);
2063 +            }
2064 +        }
2065 +        Node ln, hn; // throw away trees if too small
2066 +        if (lc <= (TREE_THRESHOLD >>> 1)) {
2067 +            ln = null;
2068 +            for (Node p = lt.first; p != null; p = p.next)
2069 +                ln = new Node(p.hash, p.key, p.val, ln);
2070 +        }
2071 +        else
2072 +            ln = new Node(MOVED, lt, null, null);
2073 +        setTabAt(nextTab, i, ln);
2074 +        if (hc <= (TREE_THRESHOLD >>> 1)) {
2075 +            hn = null;
2076 +            for (Node p = ht.first; p != null; p = p.next)
2077 +                hn = new Node(p.hash, p.key, p.val, hn);
2078 +        }
2079 +        else
2080 +            hn = new Node(MOVED, ht, null, null);
2081 +        setTabAt(nextTab, i + bit, hn);
2082 +    }
2083 +
2084 +    /**
2085       * Implementation for clear. Steps through each bin, removing all
2086       * nodes.
2087       */
# Line 1244 | Line 2090 | public class ConcurrentHashMapV8<K, V>
2090          int i = 0;
2091          Node[] tab = table;
2092          while (tab != null && i < tab.length) {
2093 <            int fh;
2093 >            int fh; Object fk;
2094              Node f = tabAt(tab, i);
2095              if (f == null)
2096                  ++i;
2097 <            else if ((fh = f.hash) == MOVED)
2098 <                tab = (Node[])f.key;
2097 >            else if ((fh = f.hash) == MOVED) {
2098 >                if ((fk = f.key) instanceof TreeBin) {
2099 >                    TreeBin t = (TreeBin)fk;
2100 >                    t.acquire(0);
2101 >                    try {
2102 >                        if (tabAt(tab, i) == f) {
2103 >                            for (Node p = t.first; p != null; p = p.next) {
2104 >                                p.val = null;
2105 >                                --delta;
2106 >                            }
2107 >                            t.first = null;
2108 >                            t.root = null;
2109 >                            ++i;
2110 >                        }
2111 >                    } finally {
2112 >                        t.release(0);
2113 >                    }
2114 >                }
2115 >                else
2116 >                    tab = (Node[])fk;
2117 >            }
2118              else if ((fh & LOCKED) != 0) {
2119                  counter.add(delta); // opportunistically update count
2120                  delta = 0L;
2121                  f.tryAwaitLock(tab, i);
2122              }
2123              else if (f.casHash(fh, fh | LOCKED)) {
1259                boolean validated = false;
2124                  try {
2125                      if (tabAt(tab, i) == f) {
1262                        validated = true;
2126                          for (Node e = f; e != null; e = e.next) {
2127 <                            if (e.val != null) { // currently always true
2128 <                                e.val = null;
1266 <                                --delta;
1267 <                            }
2127 >                            e.val = null;
2128 >                            --delta;
2129                          }
2130                          setTabAt(tab, i, null);
2131 +                        ++i;
2132                      }
2133                  } finally {
2134                      if (!f.casHash(fh | LOCKED, fh)) {
2135                          f.hash = fh;
2136 <                        synchronized(f) { f.notifyAll(); };
2136 >                        synchronized (f) { f.notifyAll(); };
2137                      }
2138                  }
1277                if (validated)
1278                    ++i;
2139              }
2140          }
2141          if (delta != 0)
2142              counter.add(delta);
2143      }
2144  
1285
2145      /* ----------------Table Traversal -------------- */
2146  
2147      /**
# Line 1291 | Line 2150 | public class ConcurrentHashMapV8<K, V>
2150       *
2151       * At each step, the iterator snapshots the key ("nextKey") and
2152       * value ("nextVal") of a valid node (i.e., one that, at point of
2153 <     * snapshot, has a nonnull user value). Because val fields can
2153 >     * snapshot, has a non-null user value). Because val fields can
2154       * change (including to null, indicating deletion), field nextVal
2155       * might not be accurate at point of use, but still maintains the
2156       * weak consistency property of holding a value that was once
2157       * valid.
2158       *
2159       * Internal traversals directly access these fields, as in:
2160 <     * {@code while (it.next != null) { process(it.nextKey); it.advance(); }}
2160 >     * {@code while (it.advance() != null) { process(it.nextKey); }}
2161       *
2162 <     * Exported iterators (subclasses of ViewIterator) extract key,
2163 <     * value, or key-value pairs as return values of Iterator.next(),
2164 <     * and encapsulate the it.next check as hasNext();
2162 >     * Exported iterators must track whether the iterator has advanced
2163 >     * (in hasNext vs next) (by setting/checking/nulling field
2164 >     * nextVal), and then extract key, value, or key-value pairs as
2165 >     * return values of next().
2166       *
2167       * The iterator visits once each still-valid node that was
2168       * reachable upon iterator construction. It might miss some that
# Line 1320 | Line 2180 | public class ConcurrentHashMapV8<K, V>
2180       * paranoically cope with potential sharing by users of iterators
2181       * across threads, iteration terminates if a bounds checks fails
2182       * for a table read.
1323     *
1324     * The range-based constructor enables creation of parallel
1325     * range-splitting traversals. (Not yet implemented.)
2183       */
2184 <    static class InternalIterator {
2184 >    static class InternalIterator<K,V> {
2185 >        final ConcurrentHashMapV8<K, V> map;
2186          Node next;           // the next entry to use
2187          Node last;           // the last entry used
2188          Object nextKey;      // cached key field of next
# Line 1332 | Line 2190 | public class ConcurrentHashMapV8<K, V>
2190          Node[] tab;          // current table; updated if resized
2191          int index;           // index of bin to use next
2192          int baseIndex;       // current index of initial table
2193 <        final int baseLimit; // index bound for initial table
2193 >        int baseLimit;       // index bound for initial table
2194          final int baseSize;  // initial table size
2195  
2196          /** Creates iterator for all entries in the table. */
2197 <        InternalIterator(Node[] tab) {
2198 <            this.tab = tab;
2197 >        InternalIterator(ConcurrentHashMapV8<K, V> map) {
2198 >            this.tab = (this.map = map).table;
2199              baseLimit = baseSize = (tab == null) ? 0 : tab.length;
1342            index = baseIndex = 0;
1343            next = null;
1344            advance();
1345        }
1346
1347        /** Creates iterator for the given range of the table */
1348        InternalIterator(Node[] tab, int lo, int hi) {
1349            this.tab = tab;
1350            baseSize = (tab == null) ? 0 : tab.length;
1351            baseLimit = (hi <= baseSize) ? hi : baseSize;
1352            index = baseIndex = (lo >= 0) ? lo : 0;
1353            next = null;
1354            advance();
2200          }
2201  
2202 <        /** Advances next. See above for explanation. */
2203 <        final void advance() {
2202 >        /** Creates iterator for clone() and split() methods */
2203 >        InternalIterator(InternalIterator<K,V> it, boolean split) {
2204 >            this.map = it.map;
2205 >            this.tab = it.tab;
2206 >            this.baseSize = it.baseSize;
2207 >            int lo = it.baseIndex;
2208 >            int hi = this.baseLimit = it.baseLimit;
2209 >            this.index = this.baseIndex =
2210 >                (split) ? (it.baseLimit = (lo + hi + 1) >>> 1) : lo;
2211 >        }
2212 >
2213 >        /**
2214 >         * Advances next; returns nextVal or null if terminated
2215 >         * See above for explanation.
2216 >         */
2217 >        final Object advance() {
2218              Node e = last = next;
2219 +            Object ev = null;
2220              outer: do {
2221                  if (e != null)                  // advance past used/skipped node
2222                      e = e.next;
2223                  while (e == null) {             // get to next non-null bin
2224 <                    Node[] t; int b, i, n;      // checks must use locals
2224 >                    Node[] t; int b, i, n; Object ek; // checks must use locals
2225                      if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2226                          (t = tab) == null || i >= (n = t.length))
2227                          break outer;
2228 <                    else if ((e = tabAt(t, i)) != null && e.hash == MOVED)
2229 <                        tab = (Node[])e.key;    // restarts due to null val
2230 <                    else                        // visit upper slots if present
2231 <                        index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2228 >                    else if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2229 >                        if ((ek = e.key) instanceof TreeBin)
2230 >                            e = ((TreeBin)ek).first;
2231 >                        else {
2232 >                            tab = (Node[])ek;
2233 >                            continue;           // restarts due to null val
2234 >                        }
2235 >                    }                           // visit upper slots if present
2236 >                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2237                  }
2238                  nextKey = e.key;
2239 <            } while ((nextVal = e.val) == null);// skip deleted or special nodes
2239 >            } while ((ev = e.val) == null);    // skip deleted or special nodes
2240              next = e;
2241 +            return nextVal = ev;
2242          }
2243 +
2244 +        public final void remove() {
2245 +            if (nextVal == null)
2246 +                advance();
2247 +            Node e = last;
2248 +            if (e == null)
2249 +                throw new IllegalStateException();
2250 +            last = null;
2251 +            map.remove(e.key);
2252 +        }
2253 +
2254 +        public final boolean hasNext() {
2255 +            return nextVal != null || advance() != null;
2256 +        }
2257 +
2258 +        public final boolean hasMoreElements() { return hasNext(); }
2259      }
2260  
2261      /* ---------------- Public operations -------------- */
# Line 1460 | Line 2342 | public class ConcurrentHashMapV8<K, V>
2342          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2343              initialCapacity = concurrencyLevel;   // as estimated threads
2344          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2345 <        int cap =  ((size >= (long)MAXIMUM_CAPACITY) ?
2346 <                    MAXIMUM_CAPACITY: tableSizeFor((int)size));
2345 >        int cap = ((size >= (long)MAXIMUM_CAPACITY) ?
2346 >                   MAXIMUM_CAPACITY: tableSizeFor((int)size));
2347          this.counter = new LongAdder();
2348          this.sizeCtl = cap;
2349      }
# Line 1535 | Line 2417 | public class ConcurrentHashMapV8<K, V>
2417          if (value == null)
2418              throw new NullPointerException();
2419          Object v;
2420 <        InternalIterator it = new InternalIterator(table);
2421 <        while (it.next != null) {
2422 <            if ((v = it.nextVal) == value || value.equals(v))
2420 >        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
2421 >        while ((v = it.advance()) != null) {
2422 >            if (v == value || value.equals(v))
2423                  return true;
1542            it.advance();
2424          }
2425          return false;
2426      }
# Line 1610 | Line 2491 | public class ConcurrentHashMapV8<K, V>
2491  
2492      /**
2493       * If the specified key is not already associated with a value,
2494 <     * computes its value using the given mappingFunction and
2495 <     * enters it into the map.  This is equivalent to
2494 >     * computes its value using the given mappingFunction and enters
2495 >     * it into the map unless null.  This is equivalent to
2496       * <pre> {@code
2497       * if (map.containsKey(key))
2498       *   return map.get(key);
2499       * value = mappingFunction.map(key);
2500 <     * map.put(key, value);
2500 >     * if (value != null)
2501 >     *   map.put(key, value);
2502       * return value;}</pre>
2503       *
2504       * except that the action is performed atomically.  If the
2505 <     * function returns {@code null} (in which case a {@code
2506 <     * NullPointerException} is thrown), or the function itself throws
2507 <     * an (unchecked) exception, the exception is rethrown to its
2508 <     * caller, and no mapping is recorded.  Some attempted update
2509 <     * operations on this map by other threads may be blocked while
2510 <     * computation is in progress, so the computation should be short
2511 <     * and simple, and must not attempt to update any other mappings
2512 <     * of this Map. The most appropriate usage is to construct a new
2513 <     * object serving as an initial mapped value, or memoized result,
1632 <     * as in:
2505 >     * function returns {@code null} no mapping is recorded. If the
2506 >     * function itself throws an (unchecked) exception, the exception
2507 >     * is rethrown to its caller, and no mapping is recorded.  Some
2508 >     * attempted update operations on this map by other threads may be
2509 >     * blocked while computation is in progress, so the computation
2510 >     * should be short and simple, and must not attempt to update any
2511 >     * other mappings of this Map. The most appropriate usage is to
2512 >     * construct a new object serving as an initial mapped value, or
2513 >     * memoized result, as in:
2514       *
2515       *  <pre> {@code
2516       * map.computeIfAbsent(key, new MappingFunction<K, V>() {
# Line 1638 | Line 2519 | public class ConcurrentHashMapV8<K, V>
2519       * @param key key with which the specified value is to be associated
2520       * @param mappingFunction the function to compute a value
2521       * @return the current (existing or computed) value associated with
2522 <     *         the specified key.
2523 <     * @throws NullPointerException if the specified key, mappingFunction,
2524 <     *         or computed value is null
2522 >     *         the specified key, or null if the computed value is null.
2523 >     * @throws NullPointerException if the specified key or mappingFunction
2524 >     *         is null
2525       * @throws IllegalStateException if the computation detectably
2526       *         attempts a recursive update to this map that would
2527       *         otherwise never complete
# Line 1655 | Line 2536 | public class ConcurrentHashMapV8<K, V>
2536      }
2537  
2538      /**
2539 <     * Computes and enters a new mapping value given a key and
2539 >     * Computes a new mapping value given a key and
2540       * its current mapped value (or {@code null} if there is no current
2541       * mapping). This is equivalent to
2542       *  <pre> {@code
2543 <     *  map.put(key, remappingFunction.remap(key, map.get(key));
2543 >     *   value = remappingFunction.remap(key, map.get(key));
2544 >     *   if (value != null)
2545 >     *     map.put(key, value);
2546 >     *   else
2547 >     *     map.remove(key);
2548       * }</pre>
2549       *
2550       * except that the action is performed atomically.  If the
2551 <     * function returns {@code null} (in which case a {@code
2552 <     * NullPointerException} is thrown), or the function itself throws
2553 <     * an (unchecked) exception, the exception is rethrown to its
2554 <     * caller, and current mapping is left unchanged.  Some attempted
2555 <     * update operations on this map by other threads may be blocked
2556 <     * while computation is in progress, so the computation should be
2557 <     * short and simple, and must not attempt to update any other
2558 <     * mappings of this Map. For example, to either create or
1674 <     * append new messages to a value mapping:
2551 >     * function returns {@code null}, the mapping is removed.  If the
2552 >     * function itself throws an (unchecked) exception, the exception
2553 >     * is rethrown to its caller, and the current mapping is left
2554 >     * unchanged.  Some attempted update operations on this map by
2555 >     * other threads may be blocked while computation is in progress,
2556 >     * so the computation should be short and simple, and must not
2557 >     * attempt to update any other mappings of this Map. For example,
2558 >     * to either create or append new messages to a value mapping:
2559       *
2560       * <pre> {@code
2561       * Map<Key, String> map = ...;
# Line 1683 | Line 2567 | public class ConcurrentHashMapV8<K, V>
2567       * @param key key with which the specified value is to be associated
2568       * @param remappingFunction the function to compute a value
2569       * @return the new value associated with
2570 <     *         the specified key.
2570 >     *         the specified key, or null if none.
2571       * @throws NullPointerException if the specified key or remappingFunction
2572 <     *         or computed value is null
2572 >     *         is null
2573       * @throws IllegalStateException if the computation detectably
2574       *         attempts a recursive update to this map that would
2575       *         otherwise never complete
# Line 1844 | Line 2728 | public class ConcurrentHashMapV8<K, V>
2728      }
2729  
2730      /**
2731 +     * Returns a partionable iterator of the keys in this map.
2732 +     *
2733 +     * @return a partionable iterator of the keys in this map
2734 +     */
2735 +    public Spliterator<K> keySpliterator() {
2736 +        return new KeyIterator<K,V>(this);
2737 +    }
2738 +
2739 +    /**
2740 +     * Returns a partionable iterator of the values in this map.
2741 +     *
2742 +     * @return a partionable iterator of the values in this map
2743 +     */
2744 +    public Spliterator<V> valueSpliterator() {
2745 +        return new ValueIterator<K,V>(this);
2746 +    }
2747 +
2748 +    /**
2749 +     * Returns a partionable iterator of the entries in this map.
2750 +     *
2751 +     * @return a partionable iterator of the entries in this map
2752 +     */
2753 +    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2754 +        return new EntryIterator<K,V>(this);
2755 +    }
2756 +
2757 +    /**
2758       * Returns the hash code value for this {@link Map}, i.e.,
2759       * the sum of, for each key-value pair in the map,
2760       * {@code key.hashCode() ^ value.hashCode()}.
# Line 1852 | Line 2763 | public class ConcurrentHashMapV8<K, V>
2763       */
2764      public int hashCode() {
2765          int h = 0;
2766 <        InternalIterator it = new InternalIterator(table);
2767 <        while (it.next != null) {
2768 <            h += it.nextKey.hashCode() ^ it.nextVal.hashCode();
2769 <            it.advance();
2766 >        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
2767 >        Object v;
2768 >        while ((v = it.advance()) != null) {
2769 >            h += it.nextKey.hashCode() ^ v.hashCode();
2770          }
2771          return h;
2772      }
# Line 1872 | Line 2783 | public class ConcurrentHashMapV8<K, V>
2783       * @return a string representation of this map
2784       */
2785      public String toString() {
2786 <        InternalIterator it = new InternalIterator(table);
2786 >        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
2787          StringBuilder sb = new StringBuilder();
2788          sb.append('{');
2789 <        if (it.next != null) {
2789 >        Object v;
2790 >        if ((v = it.advance()) != null) {
2791              for (;;) {
2792 <                Object k = it.nextKey, v = it.nextVal;
2792 >                Object k = it.nextKey;
2793                  sb.append(k == this ? "(this Map)" : k);
2794                  sb.append('=');
2795                  sb.append(v == this ? "(this Map)" : v);
2796 <                it.advance();
1885 <                if (it.next == null)
2796 >                if ((v = it.advance()) == null)
2797                      break;
2798                  sb.append(',').append(' ');
2799              }
# Line 1905 | Line 2816 | public class ConcurrentHashMapV8<K, V>
2816              if (!(o instanceof Map))
2817                  return false;
2818              Map<?,?> m = (Map<?,?>) o;
2819 <            InternalIterator it = new InternalIterator(table);
2820 <            while (it.next != null) {
2821 <                Object val = it.nextVal;
2819 >            InternalIterator<K,V> it = new InternalIterator<K,V>(this);
2820 >            Object val;
2821 >            while ((val = it.advance()) != null) {
2822                  Object v = m.get(it.nextKey);
2823                  if (v == null || (v != val && !v.equals(val)))
2824                      return false;
1914                it.advance();
2825              }
2826              for (Map.Entry<?,?> e : m.entrySet()) {
2827                  Object mk, mv, v;
# Line 1927 | Line 2837 | public class ConcurrentHashMapV8<K, V>
2837  
2838      /* ----------------Iterators -------------- */
2839  
2840 <    /**
2841 <     * Base class for key, value, and entry iterators.  Adds a map
2842 <     * reference to InternalIterator to support Iterator.remove.
2843 <     */
2844 <    static abstract class ViewIterator<K,V> extends InternalIterator {
1935 <        final ConcurrentHashMapV8<K, V> map;
1936 <        ViewIterator(ConcurrentHashMapV8<K, V> map) {
1937 <            super(map.table);
1938 <            this.map = map;
2840 >    static final class KeyIterator<K,V> extends InternalIterator<K,V>
2841 >        implements Spliterator<K>, Enumeration<K> {
2842 >        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2843 >        KeyIterator(InternalIterator<K,V> it, boolean split) {
2844 >            super(it, split);
2845          }
2846 <
2847 <        public final void remove() {
1942 <            if (last == null)
2846 >        public KeyIterator<K,V> split() {
2847 >            if (last != null || (next != null && nextVal == null))
2848                  throw new IllegalStateException();
2849 <            map.remove(last.key);
2850 <            last = null;
2849 >            return new KeyIterator<K,V>(this, true);
2850 >        }
2851 >        public KeyIterator<K,V> clone() {
2852 >            if (last != null || (next != null && nextVal == null))
2853 >                throw new IllegalStateException();
2854 >            return new KeyIterator<K,V>(this, false);
2855          }
1947
1948        public final boolean hasNext()         { return next != null; }
1949        public final boolean hasMoreElements() { return next != null; }
1950    }
1951
1952    static final class KeyIterator<K,V> extends ViewIterator<K,V>
1953        implements Iterator<K>, Enumeration<K> {
1954        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2856  
2857          @SuppressWarnings("unchecked")
2858          public final K next() {
2859 <            if (next == null)
2859 >            if (nextVal == null && advance() == null)
2860                  throw new NoSuchElementException();
2861              Object k = nextKey;
2862 <            advance();
2863 <            return (K)k;
2862 >            nextVal = null;
2863 >            return (K) k;
2864          }
2865  
2866          public final K nextElement() { return next(); }
2867      }
2868  
2869 <    static final class ValueIterator<K,V> extends ViewIterator<K,V>
2870 <        implements Iterator<V>, Enumeration<V> {
2869 >    static final class ValueIterator<K,V> extends InternalIterator<K,V>
2870 >        implements Spliterator<V>, Enumeration<V> {
2871          ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2872 +        ValueIterator(InternalIterator<K,V> it, boolean split) {
2873 +            super(it, split);
2874 +        }
2875 +        public ValueIterator<K,V> split() {
2876 +            if (last != null || (next != null && nextVal == null))
2877 +                throw new IllegalStateException();
2878 +            return new ValueIterator<K,V>(this, true);
2879 +        }
2880 +
2881 +        public ValueIterator<K,V> clone() {
2882 +            if (last != null || (next != null && nextVal == null))
2883 +                throw new IllegalStateException();
2884 +            return new ValueIterator<K,V>(this, false);
2885 +        }
2886  
2887          @SuppressWarnings("unchecked")
2888          public final V next() {
2889 <            if (next == null)
2889 >            Object v;
2890 >            if ((v = nextVal) == null && (v = advance()) == null)
2891                  throw new NoSuchElementException();
2892 <            Object v = nextVal;
2893 <            advance();
1978 <            return (V)v;
2892 >            nextVal = null;
2893 >            return (V) v;
2894          }
2895  
2896          public final V nextElement() { return next(); }
2897      }
2898  
2899 <    static final class EntryIterator<K,V> extends ViewIterator<K,V>
2900 <        implements Iterator<Map.Entry<K,V>> {
2899 >    static final class EntryIterator<K,V> extends InternalIterator<K,V>
2900 >        implements Spliterator<Map.Entry<K,V>> {
2901          EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2902 <
2903 <        @SuppressWarnings("unchecked")
2904 <        public final Map.Entry<K,V> next() {
2905 <            if (next == null)
2906 <                throw new NoSuchElementException();
2907 <            Object k = nextKey;
2908 <            Object v = nextVal;
2909 <            advance();
2910 <            return new WriteThroughEntry<K,V>((K)k, (V)v, map);
2902 >        EntryIterator(InternalIterator<K,V> it, boolean split) {
2903 >            super(it, split);
2904 >        }
2905 >        public EntryIterator<K,V> split() {
2906 >            if (last != null || (next != null && nextVal == null))
2907 >                throw new IllegalStateException();
2908 >            return new EntryIterator<K,V>(this, true);
2909 >        }
2910 >        public EntryIterator<K,V> clone() {
2911 >            if (last != null || (next != null && nextVal == null))
2912 >                throw new IllegalStateException();
2913 >            return new EntryIterator<K,V>(this, false);
2914          }
1997    }
1998
1999    static final class SnapshotEntryIterator<K,V> extends ViewIterator<K,V>
2000        implements Iterator<Map.Entry<K,V>> {
2001        SnapshotEntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2915  
2916          @SuppressWarnings("unchecked")
2917          public final Map.Entry<K,V> next() {
2918 <            if (next == null)
2918 >            Object v;
2919 >            if ((v = nextVal) == null && (v = advance()) == null)
2920                  throw new NoSuchElementException();
2921              Object k = nextKey;
2922 <            Object v = nextVal;
2923 <            advance();
2010 <            return new SnapshotEntry<K,V>((K)k, (V)v);
2922 >            nextVal = null;
2923 >            return new MapEntry<K,V>((K)k, (V)v, map);
2924          }
2925      }
2926  
2927      /**
2928 <     * Base of writeThrough and Snapshot entry classes
2928 >     * Exported Entry for iterators
2929       */
2930 <    static abstract class MapEntry<K,V> implements Map.Entry<K, V> {
2930 >    static final class MapEntry<K,V> implements Map.Entry<K, V> {
2931          final K key; // non-null
2932          V val;       // non-null
2933 <        MapEntry(K key, V val)        { this.key = key; this.val = val; }
2933 >        final ConcurrentHashMapV8<K, V> map;
2934 >        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
2935 >            this.key = key;
2936 >            this.val = val;
2937 >            this.map = map;
2938 >        }
2939          public final K getKey()       { return key; }
2940          public final V getValue()     { return val; }
2941          public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
# Line 2032 | Line 2950 | public class ConcurrentHashMapV8<K, V>
2950                      (v == val || v.equals(val)));
2951          }
2952  
2035        public abstract V setValue(V value);
2036    }
2037
2038    /**
2039     * Entry used by EntryIterator.next(), that relays setValue
2040     * changes to the underlying map.
2041     */
2042    static final class WriteThroughEntry<K,V> extends MapEntry<K,V>
2043        implements Map.Entry<K, V> {
2044        final ConcurrentHashMapV8<K, V> map;
2045        WriteThroughEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
2046            super(key, val);
2047            this.map = map;
2048        }
2049
2953          /**
2954           * Sets our entry's value and writes through to the map. The
2955 <         * value to return is somewhat arbitrary here. Since a
2956 <         * WriteThroughEntry does not necessarily track asynchronous
2957 <         * changes, the most recent "previous" value could be
2958 <         * different from what we return (or could even have been
2959 <         * removed in which case the put will re-establish). We do not
2057 <         * and cannot guarantee more.
2955 >         * value to return is somewhat arbitrary here. Since a we do
2956 >         * not necessarily track asynchronous changes, the most recent
2957 >         * "previous" value could be different from what we return (or
2958 >         * could even have been removed in which case the put will
2959 >         * re-establish). We do not and cannot guarantee more.
2960           */
2961          public final V setValue(V value) {
2962              if (value == null) throw new NullPointerException();
# Line 2065 | Line 2967 | public class ConcurrentHashMapV8<K, V>
2967          }
2968      }
2969  
2068    /**
2069     * Internal version of entry, that doesn't write though changes
2070     */
2071    static final class SnapshotEntry<K,V> extends MapEntry<K,V>
2072        implements Map.Entry<K, V> {
2073        SnapshotEntry(K key, V val) { super(key, val); }
2074        public final V setValue(V value) { // only locally update
2075            if (value == null) throw new NullPointerException();
2076            V v = val;
2077            val = value;
2078            return v;
2079        }
2080    }
2081
2970      /* ----------------Views -------------- */
2971  
2972      /**
2973 <     * Base class for views. This is done mainly to allow adding
2086 <     * customized parallel traversals (not yet implemented.)
2973 >     * Base class for views.
2974       */
2975      static abstract class MapView<K, V> {
2976          final ConcurrentHashMapV8<K, V> map;
# Line 2093 | Line 2980 | public class ConcurrentHashMapV8<K, V>
2980          public final void clear()               { map.clear(); }
2981  
2982          // implementations below rely on concrete classes supplying these
2983 <        abstract Iterator<?> iter();
2983 >        abstract public Iterator<?> iterator();
2984          abstract public boolean contains(Object o);
2985          abstract public boolean remove(Object o);
2986  
# Line 2106 | Line 2993 | public class ConcurrentHashMapV8<K, V>
2993              int n = (int)sz;
2994              Object[] r = new Object[n];
2995              int i = 0;
2996 <            Iterator<?> it = iter();
2996 >            Iterator<?> it = iterator();
2997              while (it.hasNext()) {
2998                  if (i == n) {
2999                      if (n >= MAX_ARRAY_SIZE)
# Line 2133 | Line 3020 | public class ConcurrentHashMapV8<K, V>
3020                  .newInstance(a.getClass().getComponentType(), m);
3021              int n = r.length;
3022              int i = 0;
3023 <            Iterator<?> it = iter();
3023 >            Iterator<?> it = iterator();
3024              while (it.hasNext()) {
3025                  if (i == n) {
3026                      if (n >= MAX_ARRAY_SIZE)
# Line 2155 | Line 3042 | public class ConcurrentHashMapV8<K, V>
3042  
3043          public final int hashCode() {
3044              int h = 0;
3045 <            for (Iterator<?> it = iter(); it.hasNext();)
3045 >            for (Iterator<?> it = iterator(); it.hasNext();)
3046                  h += it.next().hashCode();
3047              return h;
3048          }
# Line 2163 | Line 3050 | public class ConcurrentHashMapV8<K, V>
3050          public final String toString() {
3051              StringBuilder sb = new StringBuilder();
3052              sb.append('[');
3053 <            Iterator<?> it = iter();
3053 >            Iterator<?> it = iterator();
3054              if (it.hasNext()) {
3055                  for (;;) {
3056                      Object e = it.next();
# Line 2187 | Line 3074 | public class ConcurrentHashMapV8<K, V>
3074              return true;
3075          }
3076  
3077 <        public final boolean removeAll(Collection c) {
3077 >        public final boolean removeAll(Collection<?> c) {
3078              boolean modified = false;
3079 <            for (Iterator<?> it = iter(); it.hasNext();) {
3079 >            for (Iterator<?> it = iterator(); it.hasNext();) {
3080                  if (c.contains(it.next())) {
3081                      it.remove();
3082                      modified = true;
# Line 2200 | Line 3087 | public class ConcurrentHashMapV8<K, V>
3087  
3088          public final boolean retainAll(Collection<?> c) {
3089              boolean modified = false;
3090 <            for (Iterator<?> it = iter(); it.hasNext();) {
3090 >            for (Iterator<?> it = iterator(); it.hasNext();) {
3091                  if (!c.contains(it.next())) {
3092                      it.remove();
3093                      modified = true;
# Line 2215 | Line 3102 | public class ConcurrentHashMapV8<K, V>
3102          KeySet(ConcurrentHashMapV8<K, V> map)   { super(map); }
3103          public final boolean contains(Object o) { return map.containsKey(o); }
3104          public final boolean remove(Object o)   { return map.remove(o) != null; }
2218
3105          public final Iterator<K> iterator() {
3106              return new KeyIterator<K,V>(map);
3107          }
2222        final Iterator<?> iter() {
2223            return new KeyIterator<K,V>(map);
2224        }
3108          public final boolean add(K e) {
3109              throw new UnsupportedOperationException();
3110          }
# Line 2237 | Line 3120 | public class ConcurrentHashMapV8<K, V>
3120      }
3121  
3122      static final class Values<K,V> extends MapView<K,V>
3123 <        implements Collection<V>  {
3123 >        implements Collection<V> {
3124          Values(ConcurrentHashMapV8<K, V> map)   { super(map); }
3125          public final boolean contains(Object o) { return map.containsValue(o); }
2243
3126          public final boolean remove(Object o) {
3127              if (o != null) {
3128                  Iterator<V> it = new ValueIterator<K,V>(map);
# Line 2256 | Line 3138 | public class ConcurrentHashMapV8<K, V>
3138          public final Iterator<V> iterator() {
3139              return new ValueIterator<K,V>(map);
3140          }
2259        final Iterator<?> iter() {
2260            return new ValueIterator<K,V>(map);
2261        }
3141          public final boolean add(V e) {
3142              throw new UnsupportedOperationException();
3143          }
# Line 2267 | Line 3146 | public class ConcurrentHashMapV8<K, V>
3146          }
3147      }
3148  
3149 <    static final class EntrySet<K,V>  extends MapView<K,V>
3149 >    static final class EntrySet<K,V> extends MapView<K,V>
3150          implements Set<Map.Entry<K,V>> {
3151          EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
2273
3152          public final boolean contains(Object o) {
3153              Object k, v, r; Map.Entry<?,?> e;
3154              return ((o instanceof Map.Entry) &&
# Line 2279 | Line 3157 | public class ConcurrentHashMapV8<K, V>
3157                      (v = e.getValue()) != null &&
3158                      (v == r || v.equals(r)));
3159          }
2282
3160          public final boolean remove(Object o) {
3161              Object k, v; Map.Entry<?,?> e;
3162              return ((o instanceof Map.Entry) &&
# Line 2287 | Line 3164 | public class ConcurrentHashMapV8<K, V>
3164                      (v = e.getValue()) != null &&
3165                      map.remove(k, v));
3166          }
2290
3167          public final Iterator<Map.Entry<K,V>> iterator() {
3168              return new EntryIterator<K,V>(map);
3169          }
2294        final Iterator<?> iter() {
2295            return new SnapshotEntryIterator<K,V>(map);
2296        }
3170          public final boolean add(Entry<K,V> e) {
3171              throw new UnsupportedOperationException();
3172          }
# Line 2339 | Line 3212 | public class ConcurrentHashMapV8<K, V>
3212                  segments[i] = new Segment<K,V>(LOAD_FACTOR);
3213          }
3214          s.defaultWriteObject();
3215 <        InternalIterator it = new InternalIterator(table);
3216 <        while (it.next != null) {
3215 >        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
3216 >        Object v;
3217 >        while ((v = it.advance()) != null) {
3218              s.writeObject(it.nextKey);
3219 <            s.writeObject(it.nextVal);
2346 <            it.advance();
3219 >            s.writeObject(v);
3220          }
3221          s.writeObject(null);
3222          s.writeObject(null);
# Line 2369 | Line 3242 | public class ConcurrentHashMapV8<K, V>
3242              K k = (K) s.readObject();
3243              V v = (V) s.readObject();
3244              if (k != null && v != null) {
3245 <                p = new Node(spread(k.hashCode()), k, v, p);
3245 >                int h = spread(k.hashCode());
3246 >                p = new Node(h, k, v, p);
3247                  ++size;
3248              }
3249              else
# Line 2385 | Line 3259 | public class ConcurrentHashMapV8<K, V>
3259                  n = tableSizeFor(sz + (sz >>> 1) + 1);
3260              }
3261              int sc = sizeCtl;
3262 +            boolean collide = false;
3263              if (n > sc &&
3264                  UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3265                  try {
# Line 2395 | Line 3270 | public class ConcurrentHashMapV8<K, V>
3270                          while (p != null) {
3271                              int j = p.hash & mask;
3272                              Node next = p.next;
3273 <                            p.next = tabAt(tab, j);
3273 >                            Node q = p.next = tabAt(tab, j);
3274                              setTabAt(tab, j, p);
3275 +                            if (!collide && q != null && q.hash == p.hash)
3276 +                                collide = true;
3277                              p = next;
3278                          }
3279                          table = tab;
# Line 2406 | Line 3283 | public class ConcurrentHashMapV8<K, V>
3283                  } finally {
3284                      sizeCtl = sc;
3285                  }
3286 +                if (collide) { // rescan and convert to TreeBins
3287 +                    Node[] tab = table;
3288 +                    for (int i = 0; i < tab.length; ++i) {
3289 +                        int c = 0;
3290 +                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3291 +                            if (++c > TREE_THRESHOLD &&
3292 +                                (e.key instanceof Comparable)) {
3293 +                                replaceWithTreeBin(tab, i, e.key);
3294 +                                break;
3295 +                            }
3296 +                        }
3297 +                    }
3298 +                }
3299              }
3300              if (!init) { // Can only happen if unsafely published.
3301                  while (p != null) {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines