ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.3 by jsr166, Tue Aug 30 07:18:46 2011 UTC vs.
Revision 1.42 by jsr166, Wed Jul 4 20:10:00 2012 UTC

# Line 6 | Line 6
6  
7   package jsr166e;
8   import jsr166e.LongAdder;
9 + import java.util.Arrays;
10   import java.util.Map;
11   import java.util.Set;
12   import java.util.Collection;
# Line 19 | Line 20 | import java.util.Enumeration;
20   import java.util.ConcurrentModificationException;
21   import java.util.NoSuchElementException;
22   import java.util.concurrent.ConcurrentMap;
23 + import java.util.concurrent.ThreadLocalRandom;
24 + import java.util.concurrent.locks.LockSupport;
25 + import java.util.concurrent.locks.AbstractQueuedSynchronizer;
26   import java.io.Serializable;
27  
28   /**
# Line 49 | Line 53 | import java.io.Serializable;
53   * are typically useful only when a map is not undergoing concurrent
54   * updates in other threads.  Otherwise the results of these methods
55   * reflect transient states that may be adequate for monitoring
56 < * purposes, but not for program control.
56 > * or estimation purposes, but not for program control.
57   *
58 < * <p> Resizing this or any other kind of hash table is a relatively
59 < * slow operation, so, when possible, it is a good idea to provide
60 < * estimates of expected table sizes in constructors. Also, for
61 < * compatability with previous versions of this class, constructors
62 < * may optionally specify an expected {@code concurrencyLevel} as an
63 < * additional hint for internal sizing.
58 > * <p> The table is dynamically expanded when there are too many
59 > * collisions (i.e., keys that have distinct hash codes but fall into
60 > * the same slot modulo the table size), with the expected average
61 > * effect of maintaining roughly two bins per mapping (corresponding
62 > * to a 0.75 load factor threshold for resizing). There may be much
63 > * variance around this average as mappings are added and removed, but
64 > * overall, this maintains a commonly accepted time/space tradeoff for
65 > * hash tables.  However, resizing this or any other kind of hash
66 > * table may be a relatively slow operation. When possible, it is a
67 > * good idea to provide a size estimate as an optional {@code
68 > * initialCapacity} constructor argument. An additional optional
69 > * {@code loadFactor} constructor argument provides a further means of
70 > * customizing initial table capacity by specifying the table density
71 > * to be used in calculating the amount of space to allocate for the
72 > * given number of elements.  Also, for compatibility with previous
73 > * versions of this class, constructors may optionally specify an
74 > * expected {@code concurrencyLevel} as an additional hint for
75 > * internal sizing.  Note that using many keys with exactly the same
76 > * {@code hashCode()} is a sure way to slow down performance of any
77 > * hash table.
78   *
79   * <p>This class and its views and iterators implement all of the
80   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
# Line 82 | Line 100 | public class ConcurrentHashMapV8<K, V>
100      private static final long serialVersionUID = 7249069246763182397L;
101  
102      /**
103 <     * A function computing a mapping from the given key to a value,
104 <     *  or <code>null</code> if there is no mapping. This is a
87 <     * place-holder for an upcoming JDK8 interface.
103 >     * A function computing a mapping from the given key to a value.
104 >     * This is a place-holder for an upcoming JDK8 interface.
105       */
106      public static interface MappingFunction<K, V> {
107          /**
108 <         * Returns a value for the given key, or null if there is no
92 <         * mapping. If this function throws an (unchecked) exception,
93 <         * the exception is rethrown to its caller, and no mapping is
94 <         * recorded.  Because this function is invoked within
95 <         * atomicity control, the computation should be short and
96 <         * simple. The most common usage is to construct a new object
97 <         * serving as an initial mapped value.
108 >         * Returns a value for the given key, or null if there is no mapping
109           *
110           * @param key the (non-null) key
111 <         * @return a value, or null if none
111 >         * @return a value for the key, or null if none
112           */
113          V map(K key);
114      }
115  
116 +    /**
117 +     * A function computing a new mapping given a key and its current
118 +     * mapped value (or {@code null} if there is no current
119 +     * mapping). This is a place-holder for an upcoming JDK8
120 +     * interface.
121 +     */
122 +    public static interface RemappingFunction<K, V> {
123 +        /**
124 +         * Returns a new value given a key and its current value.
125 +         *
126 +         * @param key the (non-null) key
127 +         * @param value the current value, or null if there is no mapping
128 +         * @return a value for the key, or null if none
129 +         */
130 +        V remap(K key, V value);
131 +    }
132 +
133 +    /**
134 +     * A partitionable iterator. A Spliterator can be traversed
135 +     * directly, but can also be partitioned (before traversal) by
136 +     * creating another Spliterator that covers a non-overlapping
137 +     * portion of the elements, and so may be amenable to parallel
138 +     * execution.
139 +     *
140 +     * <p> This interface exports a subset of expected JDK8
141 +     * functionality.
142 +     *
143 +     * <p>Sample usage: Here is one (of the several) ways to compute
144 +     * the sum of the values held in a map using the ForkJoin
145 +     * framework. As illustrated here, Spliterators are well suited to
146 +     * designs in which a task repeatedly splits off half its work
147 +     * into forked subtasks until small enough to process directly,
148 +     * and then joins these subtasks. Variants of this style can be
149 +     * also be used in completion-based designs.
150 +     *
151 +     * <pre>
152 +     * {@code ConcurrentHashMapV8<String, Long> m = ...
153 +     * // Uses parallel depth of log2 of size / (parallelism * slack of 8).
154 +     * int depth = 32 - Integer.numberOfLeadingZeros(m.size() / (aForkJoinPool.getParallelism() * 8));
155 +     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), depth, null));
156 +     * // ...
157 +     * static class SumValues extends RecursiveTask<Long> {
158 +     *   final Spliterator<Long> s;
159 +     *   final int depth;             // number of splits before processing
160 +     *   final SumValues nextJoin;    // records forked subtasks to join
161 +     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
162 +     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
163 +     *   }
164 +     *   public Long compute() {
165 +     *     long sum = 0;
166 +     *     SumValues subtasks = null; // fork subtasks
167 +     *     for (int d = depth - 1; d >= 0; --d)
168 +     *       (subtasks = new SumValues(s.split(), d, subtasks)).fork();
169 +     *     while (s.hasNext())        // directly process remaining elements
170 +     *       sum += s.next();
171 +     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
172 +     *       sum += t.join();         // collect subtask results
173 +     *     return sum;
174 +     *   }
175 +     * }
176 +     * }</pre>
177 +     */
178 +    public static interface Spliterator<T> extends Iterator<T> {
179 +        /**
180 +         * Returns a Spliterator covering approximately half of the
181 +         * elements, guaranteed not to overlap with those subsequently
182 +         * returned by this Spliterator.  After invoking this method,
183 +         * the current Spliterator will <em>not</em> produce any of
184 +         * the elements of the returned Spliterator, but the two
185 +         * Spliterators together will produce all of the elements that
186 +         * would have been produced by this Spliterator had this
187 +         * method not been called. The exact number of elements
188 +         * produced by the returned Spliterator is not guaranteed, and
189 +         * may be zero (i.e., with {@code hasNext()} reporting {@code
190 +         * false}) if this Spliterator cannot be further split.
191 +         *
192 +         * @return a Spliterator covering approximately half of the
193 +         * elements
194 +         * @throws IllegalStateException if this Spliterator has
195 +         * already commenced traversing elements.
196 +         */
197 +        Spliterator<T> split();
198 +
199 +        /**
200 +         * Returns a Spliterator producing the same elements as this
201 +         * Spliterator. This method may be used for example to create
202 +         * a second Spliterator before a traversal, in order to later
203 +         * perform a second traversal.
204 +         *
205 +         * @return a Spliterator covering the same range as this Spliterator.
206 +         * @throws IllegalStateException if this Spliterator has
207 +         * already commenced traversing elements.
208 +         */
209 +        Spliterator<T> clone();
210 +    }
211 +
212      /*
213       * Overview:
214       *
215       * The primary design goal of this hash table is to maintain
216       * concurrent readability (typically method get(), but also
217       * iterators and related methods) while minimizing update
218 <     * contention.
218 >     * contention. Secondary goals are to keep space consumption about
219 >     * the same or better than java.util.HashMap, and to support high
220 >     * initial insertion rates on an empty table by many threads.
221       *
222       * Each key-value mapping is held in a Node.  Because Node fields
223       * can contain special values, they are defined using plain Object
224       * types. Similarly in turn, all internal methods that use them
225 <     * work off Object types. All public generic-typed methods relay
226 <     * in/out of these internal methods, supplying casts as needed.
225 >     * work off Object types. And similarly, so do the internal
226 >     * methods of auxiliary iterator and view classes.  All public
227 >     * generic typed methods relay in/out of these internal methods,
228 >     * supplying null-checks and casts as needed. This also allows
229 >     * many of the public methods to be factored into a smaller number
230 >     * of internal methods (although sadly not so for the five
231 >     * variants of put-related operations). The validation-based
232 >     * approach explained below leads to a lot of code sprawl because
233 >     * retry-control precludes factoring into smaller methods.
234       *
235       * The table is lazily initialized to a power-of-two size upon the
236 <     * first insertion.  Each bin in the table contains a (typically
237 <     * short) list of Nodes.  Table accesses require volatile/atomic
238 <     * reads, writes, and CASes.  Because there is no other way to
239 <     * arrange this without adding further indirections, we use
240 <     * intrinsics (sun.misc.Unsafe) operations.  The lists of nodes
241 <     * within bins are always accurately traversable under volatile
242 <     * reads, so long as lookups check hash code and non-nullness of
243 <     * key and value before checking key equality. (All valid hash
244 <     * codes are nonnegative. Negative values are reserved for special
245 <     * forwarding nodes; see below.)
246 <     *
247 <     * A bin may be locked during update (insert, delete, and replace)
248 <     * operations.  We do not want to waste the space required to
249 <     * associate a distinct lock object with each bin, so instead use
250 <     * the first node of a bin list itself as a lock, using builtin
251 <     * "synchronized" locks. These save space and we can live with
252 <     * only plain block-structured lock/unlock operations. Using the
253 <     * first node of a list as a lock does not by itself suffice
254 <     * though: When a node is locked, any update must first validate
255 <     * that it is still the first node, and retry if not. (Because new
256 <     * nodes are always appended to lists, once a node is first in a
257 <     * bin, it remains first until deleted or the bin becomes
258 <     * invalidated.)  However, update operations can and usually do
259 <     * still traverse the bin until the point of update, which helps
260 <     * reduce cache misses on retries.  This is a converse of sorts to
261 <     * the lazy locking technique described by Herlihy & Shavit. If
262 <     * there is no existing node during a put operation, then one can
263 <     * be CAS'ed in (without need for lock except in computeIfAbsent);
264 <     * the CAS serves as validation. This is on average the most
265 <     * common case for put operations. The expected number of locks
266 <     * covering different elements (i.e., bins with 2 or more nodes)
267 <     * is approximately 10% at steady state under default settings.
268 <     * Lock contention probability for two threads accessing arbitrary
269 <     * distinct elements is thus less than 1% even for small tables.
270 <     *
271 <     * The table is resized when occupancy exceeds a threshold.  Only
272 <     * a single thread performs the resize (using field "resizing", to
273 <     * arrange exclusion), but the table otherwise remains usable for
274 <     * both reads and updates. Resizing proceeds by transferring bins,
275 <     * one by one, from the table to the next table.  Upon transfer,
276 <     * the old table bin contains only a special forwarding node (with
277 <     * negative hash code ("MOVED")) that contains the next table as
236 >     * first insertion.  Each bin in the table normally contains a
237 >     * list of Nodes (most often, the list has only zero or one Node).
238 >     * Table accesses require volatile/atomic reads, writes, and
239 >     * CASes.  Because there is no other way to arrange this without
240 >     * adding further indirections, we use intrinsics
241 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
242 >     * are always accurately traversable under volatile reads, so long
243 >     * as lookups check hash code and non-nullness of value before
244 >     * checking key equality.
245 >     *
246 >     * We use the top two bits of Node hash fields for control
247 >     * purposes -- they are available anyway because of addressing
248 >     * constraints.  As explained further below, these top bits are
249 >     * used as follows:
250 >     *  00 - Normal
251 >     *  01 - Locked
252 >     *  11 - Locked and may have a thread waiting for lock
253 >     *  10 - Node is a forwarding node
254 >     *
255 >     * The lower 30 bits of each Node's hash field contain a
256 >     * transformation of the key's hash code, except for forwarding
257 >     * nodes, for which the lower bits are zero (and so always have
258 >     * hash field == MOVED).
259 >     *
260 >     * Insertion (via put or its variants) of the first node in an
261 >     * empty bin is performed by just CASing it to the bin.  This is
262 >     * by far the most common case for put operations under most
263 >     * key/hash distributions.  Other update operations (insert,
264 >     * delete, and replace) require locks.  We do not want to waste
265 >     * the space required to associate a distinct lock object with
266 >     * each bin, so instead use the first node of a bin list itself as
267 >     * a lock. Blocking support for these locks relies on the builtin
268 >     * "synchronized" monitors.  However, we also need a tryLock
269 >     * construction, so we overlay these by using bits of the Node
270 >     * hash field for lock control (see above), and so normally use
271 >     * builtin monitors only for blocking and signalling using
272 >     * wait/notifyAll constructions. See Node.tryAwaitLock.
273 >     *
274 >     * Using the first node of a list as a lock does not by itself
275 >     * suffice though: When a node is locked, any update must first
276 >     * validate that it is still the first node after locking it, and
277 >     * retry if not. Because new nodes are always appended to lists,
278 >     * once a node is first in a bin, it remains first until deleted
279 >     * or the bin becomes invalidated (upon resizing).  However,
280 >     * operations that only conditionally update may inspect nodes
281 >     * until the point of update. This is a converse of sorts to the
282 >     * lazy locking technique described by Herlihy & Shavit.
283 >     *
284 >     * The main disadvantage of per-bin locks is that other update
285 >     * operations on other nodes in a bin list protected by the same
286 >     * lock can stall, for example when user equals() or mapping
287 >     * functions take a long time.  However, statistically, under
288 >     * random hash codes, this is not a common problem.  Ideally, the
289 >     * frequency of nodes in bins follows a Poisson distribution
290 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
291 >     * parameter of about 0.5 on average, given the resizing threshold
292 >     * of 0.75, although with a large variance because of resizing
293 >     * granularity. Ignoring variance, the expected occurrences of
294 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
295 >     * first values are:
296 >     *
297 >     * 0:    0.60653066
298 >     * 1:    0.30326533
299 >     * 2:    0.07581633
300 >     * 3:    0.01263606
301 >     * 4:    0.00157952
302 >     * 5:    0.00015795
303 >     * 6:    0.00001316
304 >     * 7:    0.00000094
305 >     * 8:    0.00000006
306 >     * more: less than 1 in ten million
307 >     *
308 >     * Lock contention probability for two threads accessing distinct
309 >     * elements is roughly 1 / (8 * #elements) under random hashes.
310 >     *
311 >     * Actual hash code distributions encountered in practice
312 >     * sometimes deviate significantly from uniform randomness.  This
313 >     * includes the case when N > (1<<30), so some keys MUST collide.
314 >     * Similarly for dumb or hostile usages in which multiple keys are
315 >     * designed to have identical hash codes. Also, although we guard
316 >     * against the worst effects of this (see method spread), sets of
317 >     * hashes may differ only in bits that do not impact their bin
318 >     * index for a given power-of-two mask.  So we use a secondary
319 >     * strategy that applies when the number of nodes in a bin exceeds
320 >     * a threshold, and at least one of the keys implements
321 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
322 >     * (a specialized form of red-black trees), bounding search time
323 >     * to O(log N).  Each search step in a TreeBin is around twice as
324 >     * slow as in a regular list, but given that N cannot exceed
325 >     * (1<<64) (before running out of addresses) this bounds search
326 >     * steps, lock hold times, etc, to reasonable constants (roughly
327 >     * 100 nodes inspected per operation worst case) so long as keys
328 >     * are Comparable (which is very common -- String, Long, etc).
329 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
330 >     * traversal pointers as regular nodes, so can be traversed in
331 >     * iterators in the same way.
332 >     *
333 >     * The table is resized when occupancy exceeds a percentage
334 >     * threshold (nominally, 0.75, but see below).  Only a single
335 >     * thread performs the resize (using field "sizeCtl", to arrange
336 >     * exclusion), but the table otherwise remains usable for reads
337 >     * and updates. Resizing proceeds by transferring bins, one by
338 >     * one, from the table to the next table.  Because we are using
339 >     * power-of-two expansion, the elements from each bin must either
340 >     * stay at same index, or move with a power of two offset. We
341 >     * eliminate unnecessary node creation by catching cases where old
342 >     * nodes can be reused because their next fields won't change.  On
343 >     * average, only about one-sixth of them need cloning when a table
344 >     * doubles. The nodes they replace will be garbage collectable as
345 >     * soon as they are no longer referenced by any reader thread that
346 >     * may be in the midst of concurrently traversing table.  Upon
347 >     * transfer, the old table bin contains only a special forwarding
348 >     * node (with hash field "MOVED") that contains the next table as
349       * its key. On encountering a forwarding node, access and update
350 <     * operations restart, using the new table. To ensure concurrent
351 <     * readability of traversals, transfers must proceed from the last
352 <     * bin (table.length - 1) up towards the first.  Any traversal
353 <     * starting from the first bin can then arrange to move to the new
354 <     * table for the rest of the traversal without revisiting nodes.
355 <     * This constrains bin transfers to a particular order, and so can
356 <     * block indefinitely waiting for the next lock, and other threads
357 <     * cannot help with the transfer. However, expected stalls are
358 <     * infrequent enough to not warrant the additional overhead and
359 <     * complexity of access and iteration schemes that could admit
360 <     * out-of-order or concurrent bin transfers.
361 <     *
362 <     * A similar traversal scheme (not yet implemented) can apply to
363 <     * partial traversals during partitioned aggregate operations.
364 <     * Also, read-only operations give up if ever forwarded to a null
365 <     * table, which provides support for shutdown-style clearing,
366 <     * which is also not currently implemented.
350 >     * operations restart, using the new table.
351 >     *
352 >     * Each bin transfer requires its bin lock. However, unlike other
353 >     * cases, a transfer can skip a bin if it fails to acquire its
354 >     * lock, and revisit it later (unless it is a TreeBin). Method
355 >     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
356 >     * have been skipped because of failure to acquire a lock, and
357 >     * blocks only if none are available (i.e., only very rarely).
358 >     * The transfer operation must also ensure that all accessible
359 >     * bins in both the old and new table are usable by any traversal.
360 >     * When there are no lock acquisition failures, this is arranged
361 >     * simply by proceeding from the last bin (table.length - 1) up
362 >     * towards the first.  Upon seeing a forwarding node, traversals
363 >     * (see class InternalIterator) arrange to move to the new table
364 >     * without revisiting nodes.  However, when any node is skipped
365 >     * during a transfer, all earlier table bins may have become
366 >     * visible, so are initialized with a reverse-forwarding node back
367 >     * to the old table until the new ones are established. (This
368 >     * sometimes requires transiently locking a forwarding node, which
369 >     * is possible under the above encoding.) These more expensive
370 >     * mechanics trigger only when necessary.
371 >     *
372 >     * The traversal scheme also applies to partial traversals of
373 >     * ranges of bins (via an alternate InternalIterator constructor)
374 >     * to support partitioned aggregate operations.  Also, read-only
375 >     * operations give up if ever forwarded to a null table, which
376 >     * provides support for shutdown-style clearing, which is also not
377 >     * currently implemented.
378 >     *
379 >     * Lazy table initialization minimizes footprint until first use,
380 >     * and also avoids resizings when the first operation is from a
381 >     * putAll, constructor with map argument, or deserialization.
382 >     * These cases attempt to override the initial capacity settings,
383 >     * but harmlessly fail to take effect in cases of races.
384       *
385       * The element count is maintained using a LongAdder, which avoids
386       * contention on updates but can encounter cache thrashing if read
387 <     * too frequently during concurrent updates. To avoid reading so
388 <     * often, resizing is normally attempted only upon adding to a bin
389 <     * already holding two or more nodes. Under the default threshold
390 <     * (0.75), and uniform hash distributions, the probability of this
391 <     * occurring at threshold is around 13%, meaning that only about 1
392 <     * in 8 puts check threshold (and after resizing, many fewer do
393 <     * so). But this approximation has high variance for small table
394 <     * sizes, so we check on any collision for sizes <= 64.  Further,
395 <     * to increase the probablity that a resize occurs soon enough, we
396 <     * offset the threshold (see THRESHOLD_OFFSET) by the expected
397 <     * number of puts between checks. This is currently set to 8, in
398 <     * accord with the default load factor. In practice, this is
399 <     * rarely overridden, and in any case is close enough to other
400 <     * plausible values not to waste dynamic probablity computation
401 <     * for more precision.
387 >     * too frequently during concurrent access. To avoid reading so
388 >     * often, resizing is attempted either when a bin lock is
389 >     * contended, or upon adding to a bin already holding two or more
390 >     * nodes (checked before adding in the xIfAbsent methods, after
391 >     * adding in others). Under uniform hash distributions, the
392 >     * probability of this occurring at threshold is around 13%,
393 >     * meaning that only about 1 in 8 puts check threshold (and after
394 >     * resizing, many fewer do so). But this approximation has high
395 >     * variance for small table sizes, so we check on any collision
396 >     * for sizes <= 64. The bulk putAll operation further reduces
397 >     * contention by only committing count updates upon these size
398 >     * checks.
399 >     *
400 >     * Maintaining API and serialization compatibility with previous
401 >     * versions of this class introduces several oddities. Mainly: We
402 >     * leave untouched but unused constructor arguments refering to
403 >     * concurrencyLevel. We accept a loadFactor constructor argument,
404 >     * but apply it only to initial table capacity (which is the only
405 >     * time that we can guarantee to honor it.) We also declare an
406 >     * unused "Segment" class that is instantiated in minimal form
407 >     * only when serializing.
408       */
409  
410      /* ---------------- Constants -------------- */
411  
412      /**
413 <     * The smallest allowed table capacity.  Must be a power of 2, at
414 <     * least 2.
413 >     * The largest possible table capacity.  This value must be
414 >     * exactly 1<<30 to stay within Java array allocation and indexing
415 >     * bounds for power of two table sizes, and is further required
416 >     * because the top two bits of 32bit hash fields are used for
417 >     * control purposes.
418       */
419 <    static final int MINIMUM_CAPACITY = 2;
419 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
420  
421      /**
422 <     * The largest allowed table capacity.  Must be a power of 2, at
423 <     * most 1<<30.
422 >     * The default initial table capacity.  Must be a power of 2
423 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
424       */
425 <    static final int MAXIMUM_CAPACITY = 1 << 30;
425 >    private static final int DEFAULT_CAPACITY = 16;
426  
427      /**
428 <     * The default initial table capacity.  Must be a power of 2, at
429 <     * least MINIMUM_CAPACITY and at most MAXIMUM_CAPACITY
428 >     * The largest possible (non-power of two) array size.
429 >     * Needed by toArray and related methods.
430       */
431 <    static final int DEFAULT_CAPACITY = 16;
431 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
432  
433      /**
434 <     * The default load factor for this table, used when not otherwise
435 <     * specified in a constructor.
434 >     * The default concurrency level for this table. Unused but
435 >     * defined for compatibility with previous versions of this class.
436       */
437 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
437 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
438  
439      /**
440 <     * The default concurrency level for this table. Unused, but
441 <     * defined for compatibility with previous versions of this class.
440 >     * The load factor for this table. Overrides of this value in
441 >     * constructors affect only the initial table capacity.  The
442 >     * actual floating point value isn't normally used -- it is
443 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
444 >     * the associated resizing threshold.
445       */
446 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
446 >    private static final float LOAD_FACTOR = 0.75f;
447  
448      /**
449 <     * The count value to offset thesholds to compensate for checking
450 <     * for resizing only when inserting into bins with two or more
451 <     * elements. See above for explanation.
449 >     * The buffer size for skipped bins during transfers. The
450 >     * value is arbitrary but should be large enough to avoid
451 >     * most locking stalls during resizes.
452       */
453 <    static final int THRESHOLD_OFFSET = 8;
453 >    private static final int TRANSFER_BUFFER_SIZE = 32;
454  
455      /**
456 <     * Special node hash value indicating to use table in node.key
457 <     * Must be negative.
456 >     * The bin count threshold for using a tree rather than list for a
457 >     * bin.  The value reflects the approximate break-even point for
458 >     * using tree-based operations.
459 >     */
460 >    private static final int TREE_THRESHOLD = 8;
461 >
462 >    /*
463 >     * Encodings for special uses of Node hash fields. See above for
464 >     * explanation.
465       */
466 <    static final int MOVED = -1;
466 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
467 >    static final int LOCKED    = 0x40000000; // set/tested only as a bit
468 >    static final int WAITING   = 0xc0000000; // both bits set/tested together
469 >    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
470  
471      /* ---------------- Fields -------------- */
472  
473      /**
474       * The array of bins. Lazily initialized upon first insertion.
475 <     * Size is always a power of two. Accessed directly by inner
250 <     * classes.
475 >     * Size is always a power of two. Accessed directly by iterators.
476       */
477      transient volatile Node[] table;
478  
479 <    /** The counter maintaining number of elements. */
479 >    /**
480 >     * The counter maintaining number of elements.
481 >     */
482      private transient final LongAdder counter;
483 <    /** Nonzero when table is being initialized or resized. Updated via CAS. */
484 <    private transient volatile int resizing;
485 <    /** The target load factor for the table. */
486 <    private transient float loadFactor;
487 <    /** The next element count value upon which to resize the table. */
488 <    private transient int threshold;
489 <    /** The initial capacity of the table. */
490 <    private transient int initCap;
483 >
484 >    /**
485 >     * Table initialization and resizing control.  When negative, the
486 >     * table is being initialized or resized. Otherwise, when table is
487 >     * null, holds the initial table size to use upon creation, or 0
488 >     * for default. After initialization, holds the next element count
489 >     * value upon which to resize the table.
490 >     */
491 >    private transient volatile int sizeCtl;
492  
493      // views
494 <    transient Set<K> keySet;
495 <    transient Set<Map.Entry<K,V>> entrySet;
496 <    transient Collection<V> values;
269 <
270 <    /** For serialization compatability. Null unless serialized; see below */
271 <    Segment<K,V>[] segments;
494 >    private transient KeySet<K,V> keySet;
495 >    private transient Values<K,V> values;
496 >    private transient EntrySet<K,V> entrySet;
497  
498 <    /**
499 <     * Applies a supplemental hash function to a given hashCode, which
500 <     * defends against poor quality hash functions.  The result must
501 <     * be non-negative, and for reasonable performance must have good
502 <     * avalanche properties; i.e., that each bit of the argument
503 <     * affects each bit (except sign bit) of the result.
498 >    /** For serialization compatibility. Null unless serialized; see below */
499 >    private Segment<K,V>[] segments;
500 >
501 >    /* ---------------- Table element access -------------- */
502 >
503 >    /*
504 >     * Volatile access methods are used for table elements as well as
505 >     * elements of in-progress next table while resizing.  Uses are
506 >     * null checked by callers, and implicitly bounds-checked, relying
507 >     * on the invariants that tab arrays have non-zero size, and all
508 >     * indices are masked with (tab.length - 1) which is never
509 >     * negative and always less than length. Note that, to be correct
510 >     * wrt arbitrary concurrency errors by users, bounds checks must
511 >     * operate on local variables, which accounts for some odd-looking
512 >     * inline assignments below.
513       */
514 <    private static final int spread(int h) {
515 <        // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/
516 <        h ^= h >>> 16;
517 <        h *= 0x85ebca6b;
518 <        h ^= h >>> 13;
519 <        h *= 0xc2b2ae35;
520 <        return (h >>> 16) ^ (h & 0x7fffffff); // mask out sign bit
514 >
515 >    static final Node tabAt(Node[] tab, int i) { // used by InternalIterator
516 >        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
517 >    }
518 >
519 >    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
520 >        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
521 >    }
522 >
523 >    private static final void setTabAt(Node[] tab, int i, Node v) {
524 >        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
525      }
526  
527 +    /* ---------------- Nodes -------------- */
528 +
529      /**
530       * Key-value entry. Note that this is never exported out as a
531 <     * user-visible Map.Entry.
531 >     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
532 >     * field of MOVED are special, and do not contain user keys or
533 >     * values.  Otherwise, keys are never null, and null val fields
534 >     * indicate that a node is in the process of being deleted or
535 >     * created. For purposes of read-only access, a key may be read
536 >     * before a val, but can only be used after checking val to be
537 >     * non-null.
538       */
539 <    static final class Node {
540 <        final int hash;
539 >    static class Node {
540 >        volatile int hash;
541          final Object key;
542          volatile Object val;
543          volatile Node next;
# Line 302 | Line 548 | public class ConcurrentHashMapV8<K, V>
548              this.val = val;
549              this.next = next;
550          }
305    }
551  
552 <    /*
553 <     * Volatile access nethods are used for table elements as well as
554 <     * elements of in-progress next table while resizing.  Uses in
555 <     * access and update methods are null checked by callers, and
311 <     * implicitly bounds-checked, relying on the invariants that tab
312 <     * arrays have non-zero size, and all indices are masked with
313 <     * (tab.length - 1) which is never negative and always less than
314 <     * length. The "relaxed" non-volatile forms are used only during
315 <     * table initialization. The only other usage is in
316 <     * HashIterator.advance, which performs explicit checks.
317 <     */
552 >        /** CompareAndSet the hash field */
553 >        final boolean casHash(int cmp, int val) {
554 >            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
555 >        }
556  
557 <    static final Node tabAt(Node[] tab, int i) { // used in HashIterator
558 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
559 <    }
557 >        /** The number of spins before blocking for a lock */
558 >        static final int MAX_SPINS =
559 >            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
560  
561 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
562 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
563 <    }
561 >        /**
562 >         * Spins a while if LOCKED bit set and this node is the first
563 >         * of its bin, and then sets WAITING bits on hash field and
564 >         * blocks (once) if they are still set.  It is OK for this
565 >         * method to return even if lock is not available upon exit,
566 >         * which enables these simple single-wait mechanics.
567 >         *
568 >         * The corresponding signalling operation is performed within
569 >         * callers: Upon detecting that WAITING has been set when
570 >         * unlocking lock (via a failed CAS from non-waiting LOCKED
571 >         * state), unlockers acquire the sync lock and perform a
572 >         * notifyAll.
573 >         */
574 >        final void tryAwaitLock(Node[] tab, int i) {
575 >            if (tab != null && i >= 0 && i < tab.length) { // bounds check
576 >                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
577 >                int spins = MAX_SPINS, h;
578 >                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
579 >                    if (spins >= 0) {
580 >                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
581 >                        if (r >= 0 && --spins == 0)
582 >                            Thread.yield();  // yield before block
583 >                    }
584 >                    else if (casHash(h, h | WAITING)) {
585 >                        synchronized (this) {
586 >                            if (tabAt(tab, i) == this &&
587 >                                (hash & WAITING) == WAITING) {
588 >                                try {
589 >                                    wait();
590 >                                } catch (InterruptedException ie) {
591 >                                    Thread.currentThread().interrupt();
592 >                                }
593 >                            }
594 >                            else
595 >                                notifyAll(); // possibly won race vs signaller
596 >                        }
597 >                        break;
598 >                    }
599 >                }
600 >            }
601 >        }
602  
603 <    private static final void setTabAt(Node[] tab, int i, Node v) {
604 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
605 <    }
603 >        // Unsafe mechanics for casHash
604 >        private static final sun.misc.Unsafe UNSAFE;
605 >        private static final long hashOffset;
606  
607 <    private static final Node relaxedTabAt(Node[] tab, int i) {
608 <        return (Node)UNSAFE.getObject(tab, ((long)i<<ASHIFT)+ABASE);
607 >        static {
608 >            try {
609 >                UNSAFE = getUnsafe();
610 >                Class<?> k = Node.class;
611 >                hashOffset = UNSAFE.objectFieldOffset
612 >                    (k.getDeclaredField("hash"));
613 >            } catch (Exception e) {
614 >                throw new Error(e);
615 >            }
616 >        }
617      }
618  
619 <    private static final void relaxedSetTabAt(Node[] tab, int i, Node v) {
620 <        UNSAFE.putObject(tab, ((long)i<<ASHIFT)+ABASE, v);
619 >    /* ---------------- TreeBins -------------- */
620 >
621 >    /**
622 >     * Nodes for use in TreeBins
623 >     */
624 >    static final class TreeNode extends Node {
625 >        TreeNode parent;  // red-black tree links
626 >        TreeNode left;
627 >        TreeNode right;
628 >        TreeNode prev;    // needed to unlink next upon deletion
629 >        boolean red;
630 >
631 >        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
632 >            super(hash, key, val, next);
633 >            this.parent = parent;
634 >        }
635      }
636  
637 <    /* ---------------- Access and update operations -------------- */
637 >    /**
638 >     * A specialized form of red-black tree for use in bins
639 >     * whose size exceeds a threshold.
640 >     *
641 >     * TreeBins use a special form of comparison for search and
642 >     * related operations (which is the main reason we cannot use
643 >     * existing collections such as TreeMaps). TreeBins contain
644 >     * Comparable elements, but may contain others, as well as
645 >     * elements that are Comparable but not necessarily Comparable<T>
646 >     * for the same T, so we cannot invoke compareTo among them. To
647 >     * handle this, the tree is ordered primarily by hash value, then
648 >     * by getClass().getName() order, and then by Comparator order
649 >     * among elements of the same class.  On lookup at a node, if
650 >     * elements are not comparable or compare as 0, both left and
651 >     * right children may need to be searched in the case of tied hash
652 >     * values. (This corresponds to the full list search that would be
653 >     * necessary if all elements were non-Comparable and had tied
654 >     * hashes.)  The red-black balancing code is updated from
655 >     * pre-jdk-collections
656 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
657 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
658 >     * Algorithms" (CLR).
659 >     *
660 >     * TreeBins also maintain a separate locking discipline than
661 >     * regular bins. Because they are forwarded via special MOVED
662 >     * nodes at bin heads (which can never change once established),
663 >     * we cannot use use those nodes as locks. Instead, TreeBin
664 >     * extends AbstractQueuedSynchronizer to support a simple form of
665 >     * read-write lock. For update operations and table validation,
666 >     * the exclusive form of lock behaves in the same way as bin-head
667 >     * locks. However, lookups use shared read-lock mechanics to allow
668 >     * multiple readers in the absence of writers.  Additionally,
669 >     * these lookups do not ever block: While the lock is not
670 >     * available, they proceed along the slow traversal path (via
671 >     * next-pointers) until the lock becomes available or the list is
672 >     * exhausted, whichever comes first. (These cases are not fast,
673 >     * but maximize aggregate expected throughput.)  The AQS mechanics
674 >     * for doing this are straightforward.  The lock state is held as
675 >     * AQS getState().  Read counts are negative; the write count (1)
676 >     * is positive.  There are no signalling preferences among readers
677 >     * and writers. Since we don't need to export full Lock API, we
678 >     * just override the minimal AQS methods and use them directly.
679 >     */
680 >    static final class TreeBin extends AbstractQueuedSynchronizer {
681 >        private static final long serialVersionUID = 2249069246763182397L;
682 >        transient TreeNode root;  // root of tree
683 >        transient TreeNode first; // head of next-pointer list
684  
685 <    /** Implementation for get and containsKey **/
686 <   private final Object internalGet(Object k) {
687 <        int h = spread(k.hashCode());
688 <        Node[] tab = table;
689 <        retry: while (tab != null) {
690 <            Node e = tabAt(tab, (tab.length - 1) & h);
691 <            while (e != null) {
692 <                int eh = e.hash;
693 <                if (eh == h) {
694 <                    Object ek = e.key, ev = e.val;
695 <                    if (ev != null && ek != null && (k == ek || k.equals(ek)))
696 <                        return ev;
697 <                }
698 <                else if (eh < 0) { // bin was moved during resize
699 <                    tab = (Node[])e.key;
700 <                    continue retry;
685 >        /* AQS overrides */
686 >        public final boolean isHeldExclusively() { return getState() > 0; }
687 >        public final boolean tryAcquire(int ignore) {
688 >            if (compareAndSetState(0, 1)) {
689 >                setExclusiveOwnerThread(Thread.currentThread());
690 >                return true;
691 >            }
692 >            return false;
693 >        }
694 >        public final boolean tryRelease(int ignore) {
695 >            setExclusiveOwnerThread(null);
696 >            setState(0);
697 >            return true;
698 >        }
699 >        public final int tryAcquireShared(int ignore) {
700 >            for (int c;;) {
701 >                if ((c = getState()) > 0)
702 >                    return -1;
703 >                if (compareAndSetState(c, c -1))
704 >                    return 1;
705 >            }
706 >        }
707 >        public final boolean tryReleaseShared(int ignore) {
708 >            int c;
709 >            do {} while (!compareAndSetState(c = getState(), c + 1));
710 >            return c == -1;
711 >        }
712 >
713 >        /** From CLR */
714 >        private void rotateLeft(TreeNode p) {
715 >            if (p != null) {
716 >                TreeNode r = p.right, pp, rl;
717 >                if ((rl = p.right = r.left) != null)
718 >                    rl.parent = p;
719 >                if ((pp = r.parent = p.parent) == null)
720 >                    root = r;
721 >                else if (pp.left == p)
722 >                    pp.left = r;
723 >                else
724 >                    pp.right = r;
725 >                r.left = p;
726 >                p.parent = r;
727 >            }
728 >        }
729 >
730 >        /** From CLR */
731 >        private void rotateRight(TreeNode p) {
732 >            if (p != null) {
733 >                TreeNode l = p.left, pp, lr;
734 >                if ((lr = p.left = l.right) != null)
735 >                    lr.parent = p;
736 >                if ((pp = l.parent = p.parent) == null)
737 >                    root = l;
738 >                else if (pp.right == p)
739 >                    pp.right = l;
740 >                else
741 >                    pp.left = l;
742 >                l.right = p;
743 >                p.parent = l;
744 >            }
745 >        }
746 >
747 >        /**
748 >         * Return the TreeNode (or null if not found) for the given key
749 >         * starting at given root.
750 >         */
751 >        @SuppressWarnings("unchecked") // suppress Comparable cast warning
752 >        final TreeNode getTreeNode(int h, Object k, TreeNode p) {
753 >            Class<?> c = k.getClass();
754 >            while (p != null) {
755 >                int dir, ph;  Object pk; Class<?> pc;
756 >                if ((ph = p.hash) == h) {
757 >                    if ((pk = p.key) == k || k.equals(pk))
758 >                        return p;
759 >                    if (c != (pc = pk.getClass()) ||
760 >                        !(k instanceof Comparable) ||
761 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
762 >                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
763 >                        TreeNode r = null, s = null, pl, pr;
764 >                        if (dir >= 0) {
765 >                            if ((pl = p.left) != null && h <= pl.hash)
766 >                                s = pl;
767 >                        }
768 >                        else if ((pr = p.right) != null && h >= pr.hash)
769 >                            s = pr;
770 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
771 >                            return r;
772 >                    }
773                  }
774 <                e = e.next;
774 >                else
775 >                    dir = (h < ph) ? -1 : 1;
776 >                p = (dir > 0) ? p.right : p.left;
777              }
778 <            break;
778 >            return null;
779          }
362        return null;
363    }
780  
781 <    /** Implementation for put and putIfAbsent **/
782 <    private final Object internalPut(Object k, Object v, boolean replace) {
783 <        int h = spread(k.hashCode());
784 <        Object oldVal = null;  // the previous value or null if none
785 <        Node[] tab = table;
786 <        for (;;) {
787 <            Node e; int i;
788 <            if (tab == null)
789 <                tab = grow(0);
790 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
791 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
781 >        /**
782 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
783 >         * read-lock to call getTreeNode, but during failure to get
784 >         * lock, searches along next links.
785 >         */
786 >        final Object getValue(int h, Object k) {
787 >            Node r = null;
788 >            int c = getState(); // Must read lock state first
789 >            for (Node e = first; e != null; e = e.next) {
790 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
791 >                    try {
792 >                        r = getTreeNode(h, k, root);
793 >                    } finally {
794 >                        releaseShared(0);
795 >                    }
796                      break;
797 +                }
798 +                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
799 +                    r = e;
800 +                    break;
801 +                }
802 +                else
803 +                    c = getState();
804 +            }
805 +            return r == null ? null : r.val;
806 +        }
807 +
808 +        /**
809 +         * Find or add a node
810 +         * @return null if added
811 +         */
812 +        @SuppressWarnings("unchecked") // suppress Comparable cast warning
813 +        final TreeNode putTreeNode(int h, Object k, Object v) {
814 +            Class<?> c = k.getClass();
815 +            TreeNode pp = root, p = null;
816 +            int dir = 0;
817 +            while (pp != null) { // find existing node or leaf to insert at
818 +                int ph;  Object pk; Class<?> pc;
819 +                p = pp;
820 +                if ((ph = p.hash) == h) {
821 +                    if ((pk = p.key) == k || k.equals(pk))
822 +                        return p;
823 +                    if (c != (pc = pk.getClass()) ||
824 +                        !(k instanceof Comparable) ||
825 +                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
826 +                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
827 +                        TreeNode r = null, s = null, pl, pr;
828 +                        if (dir >= 0) {
829 +                            if ((pl = p.left) != null && h <= pl.hash)
830 +                                s = pl;
831 +                        }
832 +                        else if ((pr = p.right) != null && h >= pr.hash)
833 +                            s = pr;
834 +                        if (s != null && (r = getTreeNode(h, k, s)) != null)
835 +                            return r;
836 +                    }
837 +                }
838 +                else
839 +                    dir = (h < ph) ? -1 : 1;
840 +                pp = (dir > 0) ? p.right : p.left;
841 +            }
842 +
843 +            TreeNode f = first;
844 +            TreeNode x = first = new TreeNode(h, k, v, f, p);
845 +            if (p == null)
846 +                root = x;
847 +            else { // attach and rebalance; adapted from CLR
848 +                TreeNode xp, xpp;
849 +                if (f != null)
850 +                    f.prev = x;
851 +                if (dir <= 0)
852 +                    p.left = x;
853 +                else
854 +                    p.right = x;
855 +                x.red = true;
856 +                while (x != null && (xp = x.parent) != null && xp.red &&
857 +                       (xpp = xp.parent) != null) {
858 +                    TreeNode xppl = xpp.left;
859 +                    if (xp == xppl) {
860 +                        TreeNode y = xpp.right;
861 +                        if (y != null && y.red) {
862 +                            y.red = false;
863 +                            xp.red = false;
864 +                            xpp.red = true;
865 +                            x = xpp;
866 +                        }
867 +                        else {
868 +                            if (x == xp.right) {
869 +                                rotateLeft(x = xp);
870 +                                xpp = (xp = x.parent) == null ? null : xp.parent;
871 +                            }
872 +                            if (xp != null) {
873 +                                xp.red = false;
874 +                                if (xpp != null) {
875 +                                    xpp.red = true;
876 +                                    rotateRight(xpp);
877 +                                }
878 +                            }
879 +                        }
880 +                    }
881 +                    else {
882 +                        TreeNode y = xppl;
883 +                        if (y != null && y.red) {
884 +                            y.red = false;
885 +                            xp.red = false;
886 +                            xpp.red = true;
887 +                            x = xpp;
888 +                        }
889 +                        else {
890 +                            if (x == xp.left) {
891 +                                rotateRight(x = xp);
892 +                                xpp = (xp = x.parent) == null ? null : xp.parent;
893 +                            }
894 +                            if (xp != null) {
895 +                                xp.red = false;
896 +                                if (xpp != null) {
897 +                                    xpp.red = true;
898 +                                    rotateLeft(xpp);
899 +                                }
900 +                            }
901 +                        }
902 +                    }
903 +                }
904 +                TreeNode r = root;
905 +                if (r != null && r.red)
906 +                    r.red = false;
907 +            }
908 +            return null;
909 +        }
910 +
911 +        /**
912 +         * Removes the given node, that must be present before this
913 +         * call.  This is messier than typical red-black deletion code
914 +         * because we cannot swap the contents of an interior node
915 +         * with a leaf successor that is pinned by "next" pointers
916 +         * that are accessible independently of lock. So instead we
917 +         * swap the tree linkages.
918 +         */
919 +        final void deleteTreeNode(TreeNode p) {
920 +            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
921 +            TreeNode pred = p.prev;
922 +            if (pred == null)
923 +                first = next;
924 +            else
925 +                pred.next = next;
926 +            if (next != null)
927 +                next.prev = pred;
928 +            TreeNode replacement;
929 +            TreeNode pl = p.left;
930 +            TreeNode pr = p.right;
931 +            if (pl != null && pr != null) {
932 +                TreeNode s = pr, sl;
933 +                while ((sl = s.left) != null) // find successor
934 +                    s = sl;
935 +                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
936 +                TreeNode sr = s.right;
937 +                TreeNode pp = p.parent;
938 +                if (s == pr) { // p was s's direct parent
939 +                    p.parent = s;
940 +                    s.right = p;
941 +                }
942 +                else {
943 +                    TreeNode sp = s.parent;
944 +                    if ((p.parent = sp) != null) {
945 +                        if (s == sp.left)
946 +                            sp.left = p;
947 +                        else
948 +                            sp.right = p;
949 +                    }
950 +                    if ((s.right = pr) != null)
951 +                        pr.parent = s;
952 +                }
953 +                p.left = null;
954 +                if ((p.right = sr) != null)
955 +                    sr.parent = p;
956 +                if ((s.left = pl) != null)
957 +                    pl.parent = s;
958 +                if ((s.parent = pp) == null)
959 +                    root = s;
960 +                else if (p == pp.left)
961 +                    pp.left = s;
962 +                else
963 +                    pp.right = s;
964 +                replacement = sr;
965 +            }
966 +            else
967 +                replacement = (pl != null) ? pl : pr;
968 +            TreeNode pp = p.parent;
969 +            if (replacement == null) {
970 +                if (pp == null) {
971 +                    root = null;
972 +                    return;
973 +                }
974 +                replacement = p;
975              }
378            else if (e.hash < 0)
379                tab = (Node[])e.key;
976              else {
977 <                boolean validated = false;
978 <                boolean checkSize = false;
979 <                synchronized(e) {
980 <                    Node first = e;
981 <                    for (;;) {
982 <                        Object ek, ev;
983 <                        if ((ev = e.val) == null)
984 <                            break;
985 <                        if (e.hash == h && (ek = e.key) != null &&
986 <                            (k == ek || k.equals(ek))) {
987 <                            if (tabAt(tab, i) == first) {
988 <                                validated = true;
989 <                                oldVal = ev;
990 <                                if (replace)
991 <                                    e.val = v;
977 >                replacement.parent = pp;
978 >                if (pp == null)
979 >                    root = replacement;
980 >                else if (p == pp.left)
981 >                    pp.left = replacement;
982 >                else
983 >                    pp.right = replacement;
984 >                p.left = p.right = p.parent = null;
985 >            }
986 >            if (!p.red) { // rebalance, from CLR
987 >                TreeNode x = replacement;
988 >                while (x != null) {
989 >                    TreeNode xp, xpl;
990 >                    if (x.red || (xp = x.parent) == null) {
991 >                        x.red = false;
992 >                        break;
993 >                    }
994 >                    if (x == (xpl = xp.left)) {
995 >                        TreeNode sib = xp.right;
996 >                        if (sib != null && sib.red) {
997 >                            sib.red = false;
998 >                            xp.red = true;
999 >                            rotateLeft(xp);
1000 >                            sib = (xp = x.parent) == null ? null : xp.right;
1001 >                        }
1002 >                        if (sib == null)
1003 >                            x = xp;
1004 >                        else {
1005 >                            TreeNode sl = sib.left, sr = sib.right;
1006 >                            if ((sr == null || !sr.red) &&
1007 >                                (sl == null || !sl.red)) {
1008 >                                sib.red = true;
1009 >                                x = xp;
1010 >                            }
1011 >                            else {
1012 >                                if (sr == null || !sr.red) {
1013 >                                    if (sl != null)
1014 >                                        sl.red = false;
1015 >                                    sib.red = true;
1016 >                                    rotateRight(sib);
1017 >                                    sib = (xp = x.parent) == null ? null : xp.right;
1018 >                                }
1019 >                                if (sib != null) {
1020 >                                    sib.red = (xp == null) ? false : xp.red;
1021 >                                    if ((sr = sib.right) != null)
1022 >                                        sr.red = false;
1023 >                                }
1024 >                                if (xp != null) {
1025 >                                    xp.red = false;
1026 >                                    rotateLeft(xp);
1027 >                                }
1028 >                                x = root;
1029                              }
397                            break;
1030                          }
1031 <                        Node last = e;
1032 <                        if ((e = e.next) == null) {
1033 <                            if (tabAt(tab, i) == first) {
1034 <                                validated = true;
1035 <                                last.next = new Node(h, k, v, null);
1036 <                                if (last != first || tab.length <= 64)
1037 <                                    checkSize = true;
1031 >                    }
1032 >                    else { // symmetric
1033 >                        TreeNode sib = xpl;
1034 >                        if (sib != null && sib.red) {
1035 >                            sib.red = false;
1036 >                            xp.red = true;
1037 >                            rotateRight(xp);
1038 >                            sib = (xp = x.parent) == null ? null : xp.left;
1039 >                        }
1040 >                        if (sib == null)
1041 >                            x = xp;
1042 >                        else {
1043 >                            TreeNode sl = sib.left, sr = sib.right;
1044 >                            if ((sl == null || !sl.red) &&
1045 >                                (sr == null || !sr.red)) {
1046 >                                sib.red = true;
1047 >                                x = xp;
1048 >                            }
1049 >                            else {
1050 >                                if (sl == null || !sl.red) {
1051 >                                    if (sr != null)
1052 >                                        sr.red = false;
1053 >                                    sib.red = true;
1054 >                                    rotateLeft(sib);
1055 >                                    sib = (xp = x.parent) == null ? null : xp.left;
1056 >                                }
1057 >                                if (sib != null) {
1058 >                                    sib.red = (xp == null) ? false : xp.red;
1059 >                                    if ((sl = sib.left) != null)
1060 >                                        sl.red = false;
1061 >                                }
1062 >                                if (xp != null) {
1063 >                                    xp.red = false;
1064 >                                    rotateRight(xp);
1065 >                                }
1066 >                                x = root;
1067                              }
407                            break;
1068                          }
1069                      }
1070                  }
1071 <                if (validated) {
1072 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1073 <                        resizing == 0 && counter.sum() >= threshold)
1074 <                        grow(0);
1075 <                    break;
1071 >            }
1072 >            if (p == replacement && (pp = p.parent) != null) {
1073 >                if (p == pp.left) // detach pointers
1074 >                    pp.left = null;
1075 >                else if (p == pp.right)
1076 >                    pp.right = null;
1077 >                p.parent = null;
1078 >            }
1079 >        }
1080 >    }
1081 >
1082 >    /* ---------------- Collision reduction methods -------------- */
1083 >
1084 >    /**
1085 >     * Spreads higher bits to lower, and also forces top 2 bits to 0.
1086 >     * Because the table uses power-of-two masking, sets of hashes
1087 >     * that vary only in bits above the current mask will always
1088 >     * collide. (Among known examples are sets of Float keys holding
1089 >     * consecutive whole numbers in small tables.)  To counter this,
1090 >     * we apply a transform that spreads the impact of higher bits
1091 >     * downward. There is a tradeoff between speed, utility, and
1092 >     * quality of bit-spreading. Because many common sets of hashes
1093 >     * are already reasonably distributed across bits (so don't benefit
1094 >     * from spreading), and because we use trees to handle large sets
1095 >     * of collisions in bins, we don't need excessively high quality.
1096 >     */
1097 >    private static final int spread(int h) {
1098 >        h ^= (h >>> 18) ^ (h >>> 12);
1099 >        return (h ^ (h >>> 10)) & HASH_BITS;
1100 >    }
1101 >
1102 >    /**
1103 >     * Replaces a list bin with a tree bin. Call only when locked.
1104 >     * Fails to replace if the given key is non-comparable or table
1105 >     * is, or needs, resizing.
1106 >     */
1107 >    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1108 >        if ((key instanceof Comparable) &&
1109 >            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1110 >            TreeBin t = new TreeBin();
1111 >            for (Node e = tabAt(tab, index); e != null; e = e.next)
1112 >                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1113 >            setTabAt(tab, index, new Node(MOVED, t, null, null));
1114 >        }
1115 >    }
1116 >
1117 >    /* ---------------- Internal access and update methods -------------- */
1118 >
1119 >    /** Implementation for get and containsKey */
1120 >    private final Object internalGet(Object k) {
1121 >        int h = spread(k.hashCode());
1122 >        retry: for (Node[] tab = table; tab != null;) {
1123 >            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1124 >            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1125 >                if ((eh = e.hash) == MOVED) {
1126 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1127 >                        return ((TreeBin)ek).getValue(h, k);
1128 >                    else {                        // restart with new table
1129 >                        tab = (Node[])ek;
1130 >                        continue retry;
1131 >                    }
1132                  }
1133 +                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1134 +                         ((ek = e.key) == k || k.equals(ek)))
1135 +                    return ev;
1136              }
1137 +            break;
1138          }
1139 <        if (oldVal == null)
420 <            counter.increment();
421 <        return oldVal;
1139 >        return null;
1140      }
1141  
1142      /**
1143 <     * Covers the four public remove/replace methods: Replaces node
1144 <     * value with v, conditional upon match of cv if non-null.  If
1145 <     * resulting value is null, delete.
1143 >     * Implementation for the four public remove/replace methods:
1144 >     * Replaces node value with v, conditional upon match of cv if
1145 >     * non-null.  If resulting value is null, delete.
1146       */
1147      private final Object internalReplace(Object k, Object v, Object cv) {
1148          int h = spread(k.hashCode());
1149          Object oldVal = null;
1150 <        Node e; int i;
1151 <        Node[] tab = table;
1152 <        while (tab != null &&
1153 <               (e = tabAt(tab, i = (tab.length - 1) & h)) != null) {
1154 <            if (e.hash < 0)
1155 <                tab = (Node[])e.key;
1156 <            else {
1150 >        for (Node[] tab = table;;) {
1151 >            Node f; int i, fh; Object fk;
1152 >            if (tab == null ||
1153 >                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1154 >                break;
1155 >            else if ((fh = f.hash) == MOVED) {
1156 >                if ((fk = f.key) instanceof TreeBin) {
1157 >                    TreeBin t = (TreeBin)fk;
1158 >                    boolean validated = false;
1159 >                    boolean deleted = false;
1160 >                    t.acquire(0);
1161 >                    try {
1162 >                        if (tabAt(tab, i) == f) {
1163 >                            validated = true;
1164 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1165 >                            if (p != null) {
1166 >                                Object pv = p.val;
1167 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1168 >                                    oldVal = pv;
1169 >                                    if ((p.val = v) == null) {
1170 >                                        deleted = true;
1171 >                                        t.deleteTreeNode(p);
1172 >                                    }
1173 >                                }
1174 >                            }
1175 >                        }
1176 >                    } finally {
1177 >                        t.release(0);
1178 >                    }
1179 >                    if (validated) {
1180 >                        if (deleted)
1181 >                            counter.add(-1L);
1182 >                        break;
1183 >                    }
1184 >                }
1185 >                else
1186 >                    tab = (Node[])fk;
1187 >            }
1188 >            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1189 >                break;                          // rules out possible existence
1190 >            else if ((fh & LOCKED) != 0) {
1191 >                checkForResize();               // try resizing if can't get lock
1192 >                f.tryAwaitLock(tab, i);
1193 >            }
1194 >            else if (f.casHash(fh, fh | LOCKED)) {
1195                  boolean validated = false;
1196                  boolean deleted = false;
1197 <                synchronized(e) {
1198 <                    Node pred = null;
1199 <                    Node first = e;
1200 <                    for (;;) {
1201 <                        Object ek, ev;
1202 <                        if ((ev = e.val) == null)
1203 <                            break;
1204 <                        if (e.hash == h && (ek = e.key) != null &&
449 <                            (k == ek || k.equals(ek))) {
450 <                            if (tabAt(tab, i) == first) {
451 <                                validated = true;
1197 >                try {
1198 >                    if (tabAt(tab, i) == f) {
1199 >                        validated = true;
1200 >                        for (Node e = f, pred = null;;) {
1201 >                            Object ek, ev;
1202 >                            if ((e.hash & HASH_BITS) == h &&
1203 >                                ((ev = e.val) != null) &&
1204 >                                ((ek = e.key) == k || k.equals(ek))) {
1205                                  if (cv == null || cv == ev || cv.equals(ev)) {
1206                                      oldVal = ev;
1207                                      if ((e.val = v) == null) {
# Line 460 | Line 1213 | public class ConcurrentHashMapV8<K, V>
1213                                              setTabAt(tab, i, en);
1214                                      }
1215                                  }
1216 +                                break;
1217                              }
1218 <                            break;
1219 <                        }
1220 <                        pred = e;
467 <                        if ((e = e.next) == null) {
468 <                            if (tabAt(tab, i) == first)
469 <                                validated = true;
470 <                            break;
1218 >                            pred = e;
1219 >                            if ((e = e.next) == null)
1220 >                                break;
1221                          }
1222                      }
1223 +                } finally {
1224 +                    if (!f.casHash(fh | LOCKED, fh)) {
1225 +                        f.hash = fh;
1226 +                        synchronized (f) { f.notifyAll(); };
1227 +                    }
1228                  }
1229                  if (validated) {
1230                      if (deleted)
1231 <                        counter.decrement();
1231 >                        counter.add(-1L);
1232                      break;
1233                  }
1234              }
# Line 481 | Line 1236 | public class ConcurrentHashMapV8<K, V>
1236          return oldVal;
1237      }
1238  
1239 <    /** Implementation for computeIfAbsent and compute */
1240 <    @SuppressWarnings("unchecked")
1241 <    private final V internalCompute(K k,
1242 <                                    MappingFunction<? super K, ? extends V> f,
1243 <                                    boolean replace) {
1239 >    /*
1240 >     * Internal versions of the five insertion methods, each a
1241 >     * little more complicated than the last. All have
1242 >     * the same basic structure as the first (internalPut):
1243 >     *  1. If table uninitialized, create
1244 >     *  2. If bin empty, try to CAS new node
1245 >     *  3. If bin stale, use new table
1246 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1247 >     *  5. Lock and validate; if valid, scan and add or update
1248 >     *
1249 >     * The others interweave other checks and/or alternative actions:
1250 >     *  * Plain put checks for and performs resize after insertion.
1251 >     *  * putIfAbsent prescans for mapping without lock (and fails to add
1252 >     *    if present), which also makes pre-emptive resize checks worthwhile.
1253 >     *  * computeIfAbsent extends form used in putIfAbsent with additional
1254 >     *    mechanics to deal with, calls, potential exceptions and null
1255 >     *    returns from function call.
1256 >     *  * compute uses the same function-call mechanics, but without
1257 >     *    the prescans
1258 >     *  * putAll attempts to pre-allocate enough table space
1259 >     *    and more lazily performs count updates and checks.
1260 >     *
1261 >     * Someday when details settle down a bit more, it might be worth
1262 >     * some factoring to reduce sprawl.
1263 >     */
1264 >
1265 >    /** Implementation for put */
1266 >    private final Object internalPut(Object k, Object v) {
1267          int h = spread(k.hashCode());
1268 <        V val = null;
1269 <        boolean added = false;
1270 <        boolean validated = false;
493 <        Node[] tab = table;
494 <        do {
495 <            Node e; int i;
1268 >        int count = 0;
1269 >        for (Node[] tab = table;;) {
1270 >            int i; Node f; int fh; Object fk;
1271              if (tab == null)
1272 <                tab = grow(0);
1273 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1274 <                Node node = new Node(h, k, null, null);
1275 <                synchronized(node) {
1276 <                    if (casTabAt(tab, i, null, node)) {
1277 <                        validated = true;
1278 <                        try {
1279 <                            val = f.map(k);
1280 <                            if (val != null) {
1281 <                                node.val = val;
1282 <                                added = true;
1272 >                tab = initTable();
1273 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1274 >                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1275 >                    break;                   // no lock when adding to empty bin
1276 >            }
1277 >            else if ((fh = f.hash) == MOVED) {
1278 >                if ((fk = f.key) instanceof TreeBin) {
1279 >                    TreeBin t = (TreeBin)fk;
1280 >                    Object oldVal = null;
1281 >                    t.acquire(0);
1282 >                    try {
1283 >                        if (tabAt(tab, i) == f) {
1284 >                            count = 2;
1285 >                            TreeNode p = t.putTreeNode(h, k, v);
1286 >                            if (p != null) {
1287 >                                oldVal = p.val;
1288 >                                p.val = v;
1289 >                            }
1290 >                        }
1291 >                    } finally {
1292 >                        t.release(0);
1293 >                    }
1294 >                    if (count != 0) {
1295 >                        if (oldVal != null)
1296 >                            return oldVal;
1297 >                        break;
1298 >                    }
1299 >                }
1300 >                else
1301 >                    tab = (Node[])fk;
1302 >            }
1303 >            else if ((fh & LOCKED) != 0) {
1304 >                checkForResize();
1305 >                f.tryAwaitLock(tab, i);
1306 >            }
1307 >            else if (f.casHash(fh, fh | LOCKED)) {
1308 >                Object oldVal = null;
1309 >                try {                        // needed in case equals() throws
1310 >                    if (tabAt(tab, i) == f) {
1311 >                        count = 1;
1312 >                        for (Node e = f;; ++count) {
1313 >                            Object ek, ev;
1314 >                            if ((e.hash & HASH_BITS) == h &&
1315 >                                (ev = e.val) != null &&
1316 >                                ((ek = e.key) == k || k.equals(ek))) {
1317 >                                oldVal = ev;
1318 >                                e.val = v;
1319 >                                break;
1320 >                            }
1321 >                            Node last = e;
1322 >                            if ((e = e.next) == null) {
1323 >                                last.next = new Node(h, k, v, null);
1324 >                                if (count >= TREE_THRESHOLD)
1325 >                                    replaceWithTreeBin(tab, i, k);
1326 >                                break;
1327                              }
509                        } finally {
510                            if (!added)
511                                setTabAt(tab, i, null);
1328                          }
1329                      }
1330 +                } finally {                  // unlock and signal if needed
1331 +                    if (!f.casHash(fh | LOCKED, fh)) {
1332 +                        f.hash = fh;
1333 +                        synchronized (f) { f.notifyAll(); };
1334 +                    }
1335 +                }
1336 +                if (count != 0) {
1337 +                    if (oldVal != null)
1338 +                        return oldVal;
1339 +                    if (tab.length <= 64)
1340 +                        count = 2;
1341 +                    break;
1342                  }
1343              }
1344 <            else if (e.hash < 0)
1345 <                tab = (Node[])e.key;
1344 >        }
1345 >        counter.add(1L);
1346 >        if (count > 1)
1347 >            checkForResize();
1348 >        return null;
1349 >    }
1350 >
1351 >    /** Implementation for putIfAbsent */
1352 >    private final Object internalPutIfAbsent(Object k, Object v) {
1353 >        int h = spread(k.hashCode());
1354 >        int count = 0;
1355 >        for (Node[] tab = table;;) {
1356 >            int i; Node f; int fh; Object fk, fv;
1357 >            if (tab == null)
1358 >                tab = initTable();
1359 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1360 >                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1361 >                    break;
1362 >            }
1363 >            else if ((fh = f.hash) == MOVED) {
1364 >                if ((fk = f.key) instanceof TreeBin) {
1365 >                    TreeBin t = (TreeBin)fk;
1366 >                    Object oldVal = null;
1367 >                    t.acquire(0);
1368 >                    try {
1369 >                        if (tabAt(tab, i) == f) {
1370 >                            count = 2;
1371 >                            TreeNode p = t.putTreeNode(h, k, v);
1372 >                            if (p != null)
1373 >                                oldVal = p.val;
1374 >                        }
1375 >                    } finally {
1376 >                        t.release(0);
1377 >                    }
1378 >                    if (count != 0) {
1379 >                        if (oldVal != null)
1380 >                            return oldVal;
1381 >                        break;
1382 >                    }
1383 >                }
1384 >                else
1385 >                    tab = (Node[])fk;
1386 >            }
1387 >            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1388 >                     ((fk = f.key) == k || k.equals(fk)))
1389 >                return fv;
1390              else {
1391 <                boolean checkSize = false;
1392 <                synchronized(e) {
1393 <                    Node first = e;
522 <                    for (;;) {
1391 >                Node g = f.next;
1392 >                if (g != null) { // at least 2 nodes -- search and maybe resize
1393 >                    for (Node e = g;;) {
1394                          Object ek, ev;
1395 <                        if ((ev = e.val) == null)
1395 >                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1396 >                            ((ek = e.key) == k || k.equals(ek)))
1397 >                            return ev;
1398 >                        if ((e = e.next) == null) {
1399 >                            checkForResize();
1400                              break;
1401 <                        if (e.hash == h && (ek = e.key) != null &&
1402 <                            (k == ek || k.equals(ek))) {
1403 <                            if (tabAt(tab, i) == first) {
1404 <                                validated = true;
1405 <                                if (replace && (ev = f.map(k)) != null)
1406 <                                    e.val = ev;
1407 <                                val = (V)ev;
1401 >                        }
1402 >                    }
1403 >                }
1404 >                if (((fh = f.hash) & LOCKED) != 0) {
1405 >                    checkForResize();
1406 >                    f.tryAwaitLock(tab, i);
1407 >                }
1408 >                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1409 >                    Object oldVal = null;
1410 >                    try {
1411 >                        if (tabAt(tab, i) == f) {
1412 >                            count = 1;
1413 >                            for (Node e = f;; ++count) {
1414 >                                Object ek, ev;
1415 >                                if ((e.hash & HASH_BITS) == h &&
1416 >                                    (ev = e.val) != null &&
1417 >                                    ((ek = e.key) == k || k.equals(ek))) {
1418 >                                    oldVal = ev;
1419 >                                    break;
1420 >                                }
1421 >                                Node last = e;
1422 >                                if ((e = e.next) == null) {
1423 >                                    last.next = new Node(h, k, v, null);
1424 >                                    if (count >= TREE_THRESHOLD)
1425 >                                        replaceWithTreeBin(tab, i, k);
1426 >                                    break;
1427 >                                }
1428 >                            }
1429 >                        }
1430 >                    } finally {
1431 >                        if (!f.casHash(fh | LOCKED, fh)) {
1432 >                            f.hash = fh;
1433 >                            synchronized (f) { f.notifyAll(); };
1434 >                        }
1435 >                    }
1436 >                    if (count != 0) {
1437 >                        if (oldVal != null)
1438 >                            return oldVal;
1439 >                        if (tab.length <= 64)
1440 >                            count = 2;
1441 >                        break;
1442 >                    }
1443 >                }
1444 >            }
1445 >        }
1446 >        counter.add(1L);
1447 >        if (count > 1)
1448 >            checkForResize();
1449 >        return null;
1450 >    }
1451 >
1452 >    /** Implementation for computeIfAbsent */
1453 >    private final Object internalComputeIfAbsent(K k,
1454 >                                                 MappingFunction<? super K, ?> mf) {
1455 >        int h = spread(k.hashCode());
1456 >        Object val = null;
1457 >        int count = 0;
1458 >        for (Node[] tab = table;;) {
1459 >            Node f; int i, fh; Object fk, fv;
1460 >            if (tab == null)
1461 >                tab = initTable();
1462 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1463 >                Node node = new Node(fh = h | LOCKED, k, null, null);
1464 >                if (casTabAt(tab, i, null, node)) {
1465 >                    count = 1;
1466 >                    try {
1467 >                        if ((val = mf.map(k)) != null)
1468 >                            node.val = val;
1469 >                    } finally {
1470 >                        if (val == null)
1471 >                            setTabAt(tab, i, null);
1472 >                        if (!node.casHash(fh, h)) {
1473 >                            node.hash = h;
1474 >                            synchronized (node) { node.notifyAll(); };
1475 >                        }
1476 >                    }
1477 >                }
1478 >                if (count != 0)
1479 >                    break;
1480 >            }
1481 >            else if ((fh = f.hash) == MOVED) {
1482 >                if ((fk = f.key) instanceof TreeBin) {
1483 >                    TreeBin t = (TreeBin)fk;
1484 >                    boolean added = false;
1485 >                    t.acquire(0);
1486 >                    try {
1487 >                        if (tabAt(tab, i) == f) {
1488 >                            count = 1;
1489 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1490 >                            if (p != null)
1491 >                                val = p.val;
1492 >                            else if ((val = mf.map(k)) != null) {
1493 >                                added = true;
1494 >                                count = 2;
1495 >                                t.putTreeNode(h, k, val);
1496                              }
534                            break;
1497                          }
1498 <                        Node last = e;
1498 >                    } finally {
1499 >                        t.release(0);
1500 >                    }
1501 >                    if (count != 0) {
1502 >                        if (!added)
1503 >                            return val;
1504 >                        break;
1505 >                    }
1506 >                }
1507 >                else
1508 >                    tab = (Node[])fk;
1509 >            }
1510 >            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1511 >                     ((fk = f.key) == k || k.equals(fk)))
1512 >                return fv;
1513 >            else {
1514 >                Node g = f.next;
1515 >                if (g != null) {
1516 >                    for (Node e = g;;) {
1517 >                        Object ek, ev;
1518 >                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1519 >                            ((ek = e.key) == k || k.equals(ek)))
1520 >                            return ev;
1521                          if ((e = e.next) == null) {
1522 <                            if (tabAt(tab, i) == first) {
1523 <                                validated = true;
1524 <                                if ((val = f.map(k)) != null) {
1525 <                                    last.next = new Node(h, k, val, null);
1526 <                                    added = true;
1527 <                                    if (last != first || tab.length <= 64)
1528 <                                        checkSize = true;
1522 >                            checkForResize();
1523 >                            break;
1524 >                        }
1525 >                    }
1526 >                }
1527 >                if (((fh = f.hash) & LOCKED) != 0) {
1528 >                    checkForResize();
1529 >                    f.tryAwaitLock(tab, i);
1530 >                }
1531 >                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1532 >                    boolean added = false;
1533 >                    try {
1534 >                        if (tabAt(tab, i) == f) {
1535 >                            count = 1;
1536 >                            for (Node e = f;; ++count) {
1537 >                                Object ek, ev;
1538 >                                if ((e.hash & HASH_BITS) == h &&
1539 >                                    (ev = e.val) != null &&
1540 >                                    ((ek = e.key) == k || k.equals(ek))) {
1541 >                                    val = ev;
1542 >                                    break;
1543 >                                }
1544 >                                Node last = e;
1545 >                                if ((e = e.next) == null) {
1546 >                                    if ((val = mf.map(k)) != null) {
1547 >                                        added = true;
1548 >                                        last.next = new Node(h, k, val, null);
1549 >                                        if (count >= TREE_THRESHOLD)
1550 >                                            replaceWithTreeBin(tab, i, k);
1551 >                                    }
1552 >                                    break;
1553                                  }
1554                              }
1555 <                            break;
1555 >                        }
1556 >                    } finally {
1557 >                        if (!f.casHash(fh | LOCKED, fh)) {
1558 >                            f.hash = fh;
1559 >                            synchronized (f) { f.notifyAll(); };
1560                          }
1561                      }
1562 +                    if (count != 0) {
1563 +                        if (!added)
1564 +                            return val;
1565 +                        if (tab.length <= 64)
1566 +                            count = 2;
1567 +                        break;
1568 +                    }
1569                  }
1570 <                if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1571 <                    resizing == 0 && counter.sum() >= threshold)
1572 <                    grow(0);
1573 <            }
1574 <        } while (!validated);
1575 <        if (added)
1576 <            counter.increment();
1570 >            }
1571 >        }
1572 >        if (val != null) {
1573 >            counter.add(1L);
1574 >            if (count > 1)
1575 >                checkForResize();
1576 >        }
1577          return val;
1578      }
1579  
1580 <    /*
1581 <     * Reclassifies nodes in each bin to new table.  Because we are
1582 <     * using power-of-two expansion, the elements from each bin must
1583 <     * either stay at same index, or move with a power of two
1584 <     * offset. We eliminate unnecessary node creation by catching
1585 <     * cases where old nodes can be reused because their next fields
1586 <     * won't change.  Statistically, at the default threshold, only
1587 <     * about one-sixth of them need cloning when a table doubles. The
1588 <     * nodes they replace will be garbage collectable as soon as they
1589 <     * are no longer referenced by any reader thread that may be in
1590 <     * the midst of concurrently traversing table.
1591 <     *
1592 <     * Transfers are done from the bottom up to preserve iterator
1593 <     * traversability. On each step, the old bin is locked,
1594 <     * moved/copied, and then replaced with a forwarding node.
1595 <     */
1596 <    private static final void transfer(Node[] tab, Node[] nextTab) {
1597 <        int n = tab.length;
1598 <        int mask = nextTab.length - 1;
1599 <        Node fwd = new Node(MOVED, nextTab, null, null);
1600 <        for (int i = n - 1; i >= 0; --i) {
1601 <            for (Node e;;) {
1602 <                if ((e = tabAt(tab, i)) == null) {
1603 <                    if (casTabAt(tab, i, e, fwd))
1580 >    /** Implementation for compute */
1581 >    @SuppressWarnings("unchecked")
1582 >    private final Object internalCompute(K k,
1583 >                                         RemappingFunction<? super K, V> mf) {
1584 >        int h = spread(k.hashCode());
1585 >        Object val = null;
1586 >        int delta = 0;
1587 >        int count = 0;
1588 >        for (Node[] tab = table;;) {
1589 >            Node f; int i, fh; Object fk;
1590 >            if (tab == null)
1591 >                tab = initTable();
1592 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1593 >                Node node = new Node(fh = h | LOCKED, k, null, null);
1594 >                if (casTabAt(tab, i, null, node)) {
1595 >                    try {
1596 >                        count = 1;
1597 >                        if ((val = mf.remap(k, null)) != null) {
1598 >                            node.val = val;
1599 >                            delta = 1;
1600 >                        }
1601 >                    } finally {
1602 >                        if (delta == 0)
1603 >                            setTabAt(tab, i, null);
1604 >                        if (!node.casHash(fh, h)) {
1605 >                            node.hash = h;
1606 >                            synchronized (node) { node.notifyAll(); };
1607 >                        }
1608 >                    }
1609 >                }
1610 >                if (count != 0)
1611 >                    break;
1612 >            }
1613 >            else if ((fh = f.hash) == MOVED) {
1614 >                if ((fk = f.key) instanceof TreeBin) {
1615 >                    TreeBin t = (TreeBin)fk;
1616 >                    t.acquire(0);
1617 >                    try {
1618 >                        if (tabAt(tab, i) == f) {
1619 >                            count = 1;
1620 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1621 >                            Object pv = (p == null) ? null : p.val;
1622 >                            if ((val = mf.remap(k, (V)pv)) != null) {
1623 >                                if (p != null)
1624 >                                    p.val = val;
1625 >                                else {
1626 >                                    count = 2;
1627 >                                    delta = 1;
1628 >                                    t.putTreeNode(h, k, val);
1629 >                                }
1630 >                            }
1631 >                            else if (p != null) {
1632 >                                delta = -1;
1633 >                                t.deleteTreeNode(p);
1634 >                            }
1635 >                        }
1636 >                    } finally {
1637 >                        t.release(0);
1638 >                    }
1639 >                    if (count != 0)
1640                          break;
1641                  }
1642 <                else {
1643 <                    boolean validated = false;
1644 <                    synchronized(e) {
1645 <                        int idx = e.hash & mask;
1646 <                        Node lastRun = e;
1647 <                        for (Node p = e.next; p != null; p = p.next) {
1648 <                            int j = p.hash & mask;
1649 <                            if (j != idx) {
1650 <                                idx = j;
1651 <                                lastRun = p;
1642 >                else
1643 >                    tab = (Node[])fk;
1644 >            }
1645 >            else if ((fh & LOCKED) != 0) {
1646 >                checkForResize();
1647 >                f.tryAwaitLock(tab, i);
1648 >            }
1649 >            else if (f.casHash(fh, fh | LOCKED)) {
1650 >                try {
1651 >                    if (tabAt(tab, i) == f) {
1652 >                        count = 1;
1653 >                        for (Node e = f, pred = null;; ++count) {
1654 >                            Object ek, ev;
1655 >                            if ((e.hash & HASH_BITS) == h &&
1656 >                                (ev = e.val) != null &&
1657 >                                ((ek = e.key) == k || k.equals(ek))) {
1658 >                                val = mf.remap(k, (V)ev);
1659 >                                if (val != null)
1660 >                                    e.val = val;
1661 >                                else {
1662 >                                    delta = -1;
1663 >                                    Node en = e.next;
1664 >                                    if (pred != null)
1665 >                                        pred.next = en;
1666 >                                    else
1667 >                                        setTabAt(tab, i, en);
1668 >                                }
1669 >                                break;
1670 >                            }
1671 >                            pred = e;
1672 >                            if ((e = e.next) == null) {
1673 >                                if ((val = mf.remap(k, null)) != null) {
1674 >                                    pred.next = new Node(h, k, val, null);
1675 >                                    delta = 1;
1676 >                                    if (count >= TREE_THRESHOLD)
1677 >                                        replaceWithTreeBin(tab, i, k);
1678 >                                }
1679 >                                break;
1680                              }
1681                          }
1682 <                        if (tabAt(tab, i) == e) {
1683 <                            validated = true;
1684 <                            relaxedSetTabAt(nextTab, idx, lastRun);
1685 <                            for (Node p = e; p != lastRun; p = p.next) {
1686 <                                int h = p.hash;
1687 <                                int j = h & mask;
1688 <                                Node r = relaxedTabAt(nextTab, j);
1689 <                                relaxedSetTabAt(nextTab, j,
1690 <                                                new Node(h, p.key, p.val, r));
1682 >                    }
1683 >                } finally {
1684 >                    if (!f.casHash(fh | LOCKED, fh)) {
1685 >                        f.hash = fh;
1686 >                        synchronized (f) { f.notifyAll(); };
1687 >                    }
1688 >                }
1689 >                if (count != 0) {
1690 >                    if (tab.length <= 64)
1691 >                        count = 2;
1692 >                    break;
1693 >                }
1694 >            }
1695 >        }
1696 >        if (delta != 0) {
1697 >            counter.add((long)delta);
1698 >            if (count > 1)
1699 >                checkForResize();
1700 >        }
1701 >        return val;
1702 >    }
1703 >
1704 >    /** Implementation for putAll */
1705 >    private final void internalPutAll(Map<?, ?> m) {
1706 >        tryPresize(m.size());
1707 >        long delta = 0L;     // number of uncommitted additions
1708 >        boolean npe = false; // to throw exception on exit for nulls
1709 >        try {                // to clean up counts on other exceptions
1710 >            for (Map.Entry<?, ?> entry : m.entrySet()) {
1711 >                Object k, v;
1712 >                if (entry == null || (k = entry.getKey()) == null ||
1713 >                    (v = entry.getValue()) == null) {
1714 >                    npe = true;
1715 >                    break;
1716 >                }
1717 >                int h = spread(k.hashCode());
1718 >                for (Node[] tab = table;;) {
1719 >                    int i; Node f; int fh; Object fk;
1720 >                    if (tab == null)
1721 >                        tab = initTable();
1722 >                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1723 >                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1724 >                            ++delta;
1725 >                            break;
1726 >                        }
1727 >                    }
1728 >                    else if ((fh = f.hash) == MOVED) {
1729 >                        if ((fk = f.key) instanceof TreeBin) {
1730 >                            TreeBin t = (TreeBin)fk;
1731 >                            boolean validated = false;
1732 >                            t.acquire(0);
1733 >                            try {
1734 >                                if (tabAt(tab, i) == f) {
1735 >                                    validated = true;
1736 >                                    TreeNode p = t.getTreeNode(h, k, t.root);
1737 >                                    if (p != null)
1738 >                                        p.val = v;
1739 >                                    else {
1740 >                                        t.putTreeNode(h, k, v);
1741 >                                        ++delta;
1742 >                                    }
1743 >                                }
1744 >                            } finally {
1745 >                                t.release(0);
1746                              }
1747 <                            setTabAt(tab, i, fwd);
1747 >                            if (validated)
1748 >                                break;
1749 >                        }
1750 >                        else
1751 >                            tab = (Node[])fk;
1752 >                    }
1753 >                    else if ((fh & LOCKED) != 0) {
1754 >                        counter.add(delta);
1755 >                        delta = 0L;
1756 >                        checkForResize();
1757 >                        f.tryAwaitLock(tab, i);
1758 >                    }
1759 >                    else if (f.casHash(fh, fh | LOCKED)) {
1760 >                        int count = 0;
1761 >                        try {
1762 >                            if (tabAt(tab, i) == f) {
1763 >                                count = 1;
1764 >                                for (Node e = f;; ++count) {
1765 >                                    Object ek, ev;
1766 >                                    if ((e.hash & HASH_BITS) == h &&
1767 >                                        (ev = e.val) != null &&
1768 >                                        ((ek = e.key) == k || k.equals(ek))) {
1769 >                                        e.val = v;
1770 >                                        break;
1771 >                                    }
1772 >                                    Node last = e;
1773 >                                    if ((e = e.next) == null) {
1774 >                                        ++delta;
1775 >                                        last.next = new Node(h, k, v, null);
1776 >                                        if (count >= TREE_THRESHOLD)
1777 >                                            replaceWithTreeBin(tab, i, k);
1778 >                                        break;
1779 >                                    }
1780 >                                }
1781 >                            }
1782 >                        } finally {
1783 >                            if (!f.casHash(fh | LOCKED, fh)) {
1784 >                                f.hash = fh;
1785 >                                synchronized (f) { f.notifyAll(); };
1786 >                            }
1787 >                        }
1788 >                        if (count != 0) {
1789 >                            if (count > 1) {
1790 >                                counter.add(delta);
1791 >                                delta = 0L;
1792 >                                checkForResize();
1793 >                            }
1794 >                            break;
1795                          }
1796                      }
612                    if (validated)
613                        break;
1797                  }
1798              }
1799 +        } finally {
1800 +            if (delta != 0)
1801 +                counter.add(delta);
1802          }
1803 +        if (npe)
1804 +            throw new NullPointerException();
1805 +    }
1806 +
1807 +    /* ---------------- Table Initialization and Resizing -------------- */
1808 +
1809 +    /**
1810 +     * Returns a power of two table size for the given desired capacity.
1811 +     * See Hackers Delight, sec 3.2
1812 +     */
1813 +    private static final int tableSizeFor(int c) {
1814 +        int n = c - 1;
1815 +        n |= n >>> 1;
1816 +        n |= n >>> 2;
1817 +        n |= n >>> 4;
1818 +        n |= n >>> 8;
1819 +        n |= n >>> 16;
1820 +        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1821      }
1822  
1823      /**
1824 <     * If not already resizing, initializes or creates next table and
1825 <     * transfers bins. Rechecks occupancy after a transfer to see if
1826 <     * another resize is already needed because resizings are lagging
1827 <     * additions.
1828 <     *
1829 <     * @param sizeHint overridden capacity target (nonzero only from putAll)
1830 <     * @return current table
1831 <     */
1832 <    private final Node[] grow(int sizeHint) {
1833 <        if (resizing == 0 &&
1834 <            UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) {
1835 <            try {
1836 <                for (;;) {
633 <                    int cap, n;
634 <                    Node[] tab = table;
635 <                    if (tab == null) {
636 <                        int c = initCap;
637 <                        if (c < sizeHint)
638 <                            c = sizeHint;
639 <                        if (c == DEFAULT_CAPACITY)
640 <                            cap = c;
641 <                        else if (c >= MAXIMUM_CAPACITY)
642 <                            cap = MAXIMUM_CAPACITY;
643 <                        else {
644 <                            cap = MINIMUM_CAPACITY;
645 <                            while (cap < c)
646 <                                cap <<= 1;
647 <                        }
1824 >     * Initializes table, using the size recorded in sizeCtl.
1825 >     */
1826 >    private final Node[] initTable() {
1827 >        Node[] tab; int sc;
1828 >        while ((tab = table) == null) {
1829 >            if ((sc = sizeCtl) < 0)
1830 >                Thread.yield(); // lost initialization race; just spin
1831 >            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1832 >                try {
1833 >                    if ((tab = table) == null) {
1834 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1835 >                        tab = table = new Node[n];
1836 >                        sc = n - (n >>> 2);
1837                      }
1838 <                    else if ((n = tab.length) < MAXIMUM_CAPACITY &&
1839 <                             (sizeHint <= 0 || n < sizeHint))
651 <                        cap = n << 1;
652 <                    else
653 <                        break;
654 <                    threshold = (int)(cap * loadFactor) - THRESHOLD_OFFSET;
655 <                    Node[] nextTab = new Node[cap];
656 <                    if (tab != null)
657 <                        transfer(tab, nextTab);
658 <                    table = nextTab;
659 <                    if (tab == null || cap >= MAXIMUM_CAPACITY ||
660 <                        (sizeHint > 0 && cap >= sizeHint) ||
661 <                        counter.sum() < threshold)
662 <                        break;
1838 >                } finally {
1839 >                    sizeCtl = sc;
1840                  }
1841 <            } finally {
665 <                resizing = 0;
1841 >                break;
1842              }
1843          }
1844 <        else if (table == null)
669 <            Thread.yield(); // lost initialization race; just spin
670 <        return table;
1844 >        return tab;
1845      }
1846  
1847      /**
1848 <     * Implementation for putAll and constructor with Map
1849 <     * argument. Tries to first override initial capacity or grow
1850 <     * based on map size to pre-allocate table space.
1848 >     * If table is too small and not already resizing, creates next
1849 >     * table and transfers bins.  Rechecks occupancy after a transfer
1850 >     * to see if another resize is already needed because resizings
1851 >     * are lagging additions.
1852       */
1853 <    private final void internalPutAll(Map<? extends K, ? extends V> m) {
1854 <        int s = m.size();
1855 <        grow((s >= (MAXIMUM_CAPACITY >>> 1))? s : s + (s >>> 1));
1856 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
1857 <            Object k = e.getKey();
1858 <            Object v = e.getValue();
1859 <            if (k == null || v == null)
1860 <                throw new NullPointerException();
1861 <            internalPut(k, v, true);
1853 >    private final void checkForResize() {
1854 >        Node[] tab; int n, sc;
1855 >        while ((tab = table) != null &&
1856 >               (n = tab.length) < MAXIMUM_CAPACITY &&
1857 >               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1858 >               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1859 >            try {
1860 >                if (tab == table) {
1861 >                    table = rebuild(tab);
1862 >                    sc = (n << 1) - (n >>> 1);
1863 >                }
1864 >            } finally {
1865 >                sizeCtl = sc;
1866 >            }
1867          }
1868      }
1869  
1870      /**
1871 <     * Implementation for clear. Steps through each bin, removing all nodes.
1871 >     * Tries to presize table to accommodate the given number of elements.
1872 >     *
1873 >     * @param size number of elements (doesn't need to be perfectly accurate)
1874       */
1875 <    private final void internalClear() {
1876 <        long deletions = 0L;
1877 <        int i = 0;
1878 <        Node[] tab = table;
1879 <        while (tab != null && i < tab.length) {
1880 <            Node e = tabAt(tab, i);
1881 <            if (e == null)
1882 <                ++i;
1883 <            else if (e.hash < 0)
1884 <                tab = (Node[])e.key;
1885 <            else {
1875 >    private final void tryPresize(int size) {
1876 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1877 >            tableSizeFor(size + (size >>> 1) + 1);
1878 >        int sc;
1879 >        while ((sc = sizeCtl) >= 0) {
1880 >            Node[] tab = table; int n;
1881 >            if (tab == null || (n = tab.length) == 0) {
1882 >                n = (sc > c) ? sc : c;
1883 >                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1884 >                    try {
1885 >                        if (table == tab) {
1886 >                            table = new Node[n];
1887 >                            sc = n - (n >>> 2);
1888 >                        }
1889 >                    } finally {
1890 >                        sizeCtl = sc;
1891 >                    }
1892 >                }
1893 >            }
1894 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1895 >                break;
1896 >            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1897 >                try {
1898 >                    if (table == tab) {
1899 >                        table = rebuild(tab);
1900 >                        sc = (n << 1) - (n >>> 1);
1901 >                    }
1902 >                } finally {
1903 >                    sizeCtl = sc;
1904 >                }
1905 >            }
1906 >        }
1907 >    }
1908 >
1909 >    /*
1910 >     * Moves and/or copies the nodes in each bin to new table. See
1911 >     * above for explanation.
1912 >     *
1913 >     * @return the new table
1914 >     */
1915 >    private static final Node[] rebuild(Node[] tab) {
1916 >        int n = tab.length;
1917 >        Node[] nextTab = new Node[n << 1];
1918 >        Node fwd = new Node(MOVED, nextTab, null, null);
1919 >        int[] buffer = null;       // holds bins to revisit; null until needed
1920 >        Node rev = null;           // reverse forwarder; null until needed
1921 >        int nbuffered = 0;         // the number of bins in buffer list
1922 >        int bufferIndex = 0;       // buffer index of current buffered bin
1923 >        int bin = n - 1;           // current non-buffered bin or -1 if none
1924 >
1925 >        for (int i = bin;;) {      // start upwards sweep
1926 >            int fh; Node f;
1927 >            if ((f = tabAt(tab, i)) == null) {
1928 >                if (bin >= 0) {    // no lock needed (or available)
1929 >                    if (!casTabAt(tab, i, f, fwd))
1930 >                        continue;
1931 >                }
1932 >                else {             // transiently use a locked forwarding node
1933 >                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
1934 >                    if (!casTabAt(tab, i, f, g))
1935 >                        continue;
1936 >                    setTabAt(nextTab, i, null);
1937 >                    setTabAt(nextTab, i + n, null);
1938 >                    setTabAt(tab, i, fwd);
1939 >                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
1940 >                        g.hash = MOVED;
1941 >                        synchronized (g) { g.notifyAll(); }
1942 >                    }
1943 >                }
1944 >            }
1945 >            else if ((fh = f.hash) == MOVED) {
1946 >                Object fk = f.key;
1947 >                if (fk instanceof TreeBin) {
1948 >                    TreeBin t = (TreeBin)fk;
1949 >                    boolean validated = false;
1950 >                    t.acquire(0);
1951 >                    try {
1952 >                        if (tabAt(tab, i) == f) {
1953 >                            validated = true;
1954 >                            splitTreeBin(nextTab, i, t);
1955 >                            setTabAt(tab, i, fwd);
1956 >                        }
1957 >                    } finally {
1958 >                        t.release(0);
1959 >                    }
1960 >                    if (!validated)
1961 >                        continue;
1962 >                }
1963 >            }
1964 >            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
1965                  boolean validated = false;
1966 <                synchronized(e) {
1967 <                    if (tabAt(tab, i) == e) {
1966 >                try {              // split to lo and hi lists; copying as needed
1967 >                    if (tabAt(tab, i) == f) {
1968                          validated = true;
1969 <                        do {
1970 <                            if (e.val != null) {
710 <                                e.val = null;
711 <                                ++deletions;
712 <                            }
713 <                        } while ((e = e.next) != null);
714 <                        setTabAt(tab, i, null);
1969 >                        splitBin(nextTab, i, f);
1970 >                        setTabAt(tab, i, fwd);
1971                      }
1972 <                }
1973 <                if (validated) {
1974 <                    ++i;
1975 <                    if (deletions > THRESHOLD_OFFSET) { // bound lag in counts
720 <                        counter.add(-deletions);
721 <                        deletions = 0L;
1972 >                } finally {
1973 >                    if (!f.casHash(fh | LOCKED, fh)) {
1974 >                        f.hash = fh;
1975 >                        synchronized (f) { f.notifyAll(); };
1976                      }
1977                  }
1978 +                if (!validated)
1979 +                    continue;
1980              }
1981 +            else {
1982 +                if (buffer == null) // initialize buffer for revisits
1983 +                    buffer = new int[TRANSFER_BUFFER_SIZE];
1984 +                if (bin < 0 && bufferIndex > 0) {
1985 +                    int j = buffer[--bufferIndex];
1986 +                    buffer[bufferIndex] = i;
1987 +                    i = j;         // swap with another bin
1988 +                    continue;
1989 +                }
1990 +                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
1991 +                    f.tryAwaitLock(tab, i);
1992 +                    continue;      // no other options -- block
1993 +                }
1994 +                if (rev == null)   // initialize reverse-forwarder
1995 +                    rev = new Node(MOVED, tab, null, null);
1996 +                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
1997 +                    continue;      // recheck before adding to list
1998 +                buffer[nbuffered++] = i;
1999 +                setTabAt(nextTab, i, rev);     // install place-holders
2000 +                setTabAt(nextTab, i + n, rev);
2001 +            }
2002 +
2003 +            if (bin > 0)
2004 +                i = --bin;
2005 +            else if (buffer != null && nbuffered > 0) {
2006 +                bin = -1;
2007 +                i = buffer[bufferIndex = --nbuffered];
2008 +            }
2009 +            else
2010 +                return nextTab;
2011          }
726        if (deletions != 0L)
727            counter.add(-deletions);
2012      }
2013  
2014      /**
2015 <     * Base class for key, value, and entry iterators, plus internal
2016 <     * implementations of public traversal-based methods, to avoid
733 <     * duplicating traversal code.
2015 >     * Split a normal bin with list headed by e into lo and hi parts;
2016 >     * install in given table
2017       */
2018 <    class HashIterator {
2019 <        private Node next;          // the next entry to return
2020 <        private Node[] tab;         // current table; updated if resized
2021 <        private Node lastReturned;  // the last entry returned, for remove
2022 <        private Object nextVal;     // cached value of next
2023 <        private int index;          // index of bin to use next
2024 <        private int baseIndex;      // current index of initial table
2025 <        private final int baseSize; // initial table size
2018 >    private static void splitBin(Node[] nextTab, int i, Node e) {
2019 >        int bit = nextTab.length >>> 1; // bit to split on
2020 >        int runBit = e.hash & bit;
2021 >        Node lastRun = e, lo = null, hi = null;
2022 >        for (Node p = e.next; p != null; p = p.next) {
2023 >            int b = p.hash & bit;
2024 >            if (b != runBit) {
2025 >                runBit = b;
2026 >                lastRun = p;
2027 >            }
2028 >        }
2029 >        if (runBit == 0)
2030 >            lo = lastRun;
2031 >        else
2032 >            hi = lastRun;
2033 >        for (Node p = e; p != lastRun; p = p.next) {
2034 >            int ph = p.hash & HASH_BITS;
2035 >            Object pk = p.key, pv = p.val;
2036 >            if ((ph & bit) == 0)
2037 >                lo = new Node(ph, pk, pv, lo);
2038 >            else
2039 >                hi = new Node(ph, pk, pv, hi);
2040 >        }
2041 >        setTabAt(nextTab, i, lo);
2042 >        setTabAt(nextTab, i + bit, hi);
2043 >    }
2044  
2045 <        HashIterator() {
2046 <            Node[] t = tab = table;
2047 <            if (t == null)
2048 <                baseSize = 0;
2045 >    /**
2046 >     * Split a tree bin into lo and hi parts; install in given table
2047 >     */
2048 >    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2049 >        int bit = nextTab.length >>> 1;
2050 >        TreeBin lt = new TreeBin();
2051 >        TreeBin ht = new TreeBin();
2052 >        int lc = 0, hc = 0;
2053 >        for (Node e = t.first; e != null; e = e.next) {
2054 >            int h = e.hash & HASH_BITS;
2055 >            Object k = e.key, v = e.val;
2056 >            if ((h & bit) == 0) {
2057 >                ++lc;
2058 >                lt.putTreeNode(h, k, v);
2059 >            }
2060              else {
2061 <                baseSize = t.length;
2062 <                advance(null);
2061 >                ++hc;
2062 >                ht.putTreeNode(h, k, v);
2063              }
2064          }
2065 +        Node ln, hn; // throw away trees if too small
2066 +        if (lc <= (TREE_THRESHOLD >>> 1)) {
2067 +            ln = null;
2068 +            for (Node p = lt.first; p != null; p = p.next)
2069 +                ln = new Node(p.hash, p.key, p.val, ln);
2070 +        }
2071 +        else
2072 +            ln = new Node(MOVED, lt, null, null);
2073 +        setTabAt(nextTab, i, ln);
2074 +        if (hc <= (TREE_THRESHOLD >>> 1)) {
2075 +            hn = null;
2076 +            for (Node p = ht.first; p != null; p = p.next)
2077 +                hn = new Node(p.hash, p.key, p.val, hn);
2078 +        }
2079 +        else
2080 +            hn = new Node(MOVED, ht, null, null);
2081 +        setTabAt(nextTab, i + bit, hn);
2082 +    }
2083  
2084 <        public final boolean hasNext()         { return next != null; }
2085 <        public final boolean hasMoreElements() { return next != null; }
2086 <
2087 <        /**
2088 <         * Advances next.  Normally, iteration proceeds bin-by-bin
2089 <         * traversing lists.  However, if the table has been resized,
2090 <         * then all future steps must traverse both the bin at the
2091 <         * current index as well as at (index + baseSize); and so on
2092 <         * for further resizings. To paranoically cope with potential
2093 <         * (improper) sharing of iterators across threads, table reads
2094 <         * are bounds-checked.
2095 <         */
2096 <        final void advance(Node e) {
2097 <            for (;;) {
2098 <                Node[] t; int i; // for bounds checks
2099 <                if (e != null) {
2100 <                    Object ek = e.key, ev = e.val;
2101 <                    if (ev != null && ek != null) {
2102 <                        nextVal = ev;
2103 <                        next = e;
2104 <                        break;
2084 >    /**
2085 >     * Implementation for clear. Steps through each bin, removing all
2086 >     * nodes.
2087 >     */
2088 >    private final void internalClear() {
2089 >        long delta = 0L; // negative number of deletions
2090 >        int i = 0;
2091 >        Node[] tab = table;
2092 >        while (tab != null && i < tab.length) {
2093 >            int fh; Object fk;
2094 >            Node f = tabAt(tab, i);
2095 >            if (f == null)
2096 >                ++i;
2097 >            else if ((fh = f.hash) == MOVED) {
2098 >                if ((fk = f.key) instanceof TreeBin) {
2099 >                    TreeBin t = (TreeBin)fk;
2100 >                    t.acquire(0);
2101 >                    try {
2102 >                        if (tabAt(tab, i) == f) {
2103 >                            for (Node p = t.first; p != null; p = p.next) {
2104 >                                p.val = null;
2105 >                                --delta;
2106 >                            }
2107 >                            t.first = null;
2108 >                            t.root = null;
2109 >                            ++i;
2110 >                        }
2111 >                    } finally {
2112 >                        t.release(0);
2113                      }
776                    e = e.next;
2114                  }
2115 <                else if (baseIndex < baseSize && (t = tab) != null &&
2116 <                         t.length > (i = index) && i >= 0) {
2117 <                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2118 <                        tab = (Node[])e.key;
2119 <                        e = null;
2115 >                else
2116 >                    tab = (Node[])fk;
2117 >            }
2118 >            else if ((fh & LOCKED) != 0) {
2119 >                counter.add(delta); // opportunistically update count
2120 >                delta = 0L;
2121 >                f.tryAwaitLock(tab, i);
2122 >            }
2123 >            else if (f.casHash(fh, fh | LOCKED)) {
2124 >                try {
2125 >                    if (tabAt(tab, i) == f) {
2126 >                        for (Node e = f; e != null; e = e.next) {
2127 >                            e.val = null;
2128 >                            --delta;
2129 >                        }
2130 >                        setTabAt(tab, i, null);
2131 >                        ++i;
2132 >                    }
2133 >                } finally {
2134 >                    if (!f.casHash(fh | LOCKED, fh)) {
2135 >                        f.hash = fh;
2136 >                        synchronized (f) { f.notifyAll(); };
2137                      }
784                    else if (i + baseSize < t.length)
785                        index += baseSize;    // visit forwarded upper slots
786                    else
787                        index = ++baseIndex;
788                }
789                else {
790                    next = null;
791                    break;
2138                  }
2139              }
2140          }
2141 +        if (delta != 0)
2142 +            counter.add(delta);
2143 +    }
2144  
2145 <        final Object nextKey() {
797 <            Node e = next;
798 <            if (e == null)
799 <                throw new NoSuchElementException();
800 <            Object k = e.key;
801 <            advance((lastReturned = e).next);
802 <            return k;
803 <        }
2145 >    /* ----------------Table Traversal -------------- */
2146  
2147 <        final Object nextValue() {
2148 <            Node e = next;
2149 <            if (e == null)
2150 <                throw new NoSuchElementException();
2151 <            Object v = nextVal;
2152 <            advance((lastReturned = e).next);
2153 <            return v;
2147 >    /**
2148 >     * Encapsulates traversal for methods such as containsValue; also
2149 >     * serves as a base class for other iterators.
2150 >     *
2151 >     * At each step, the iterator snapshots the key ("nextKey") and
2152 >     * value ("nextVal") of a valid node (i.e., one that, at point of
2153 >     * snapshot, has a non-null user value). Because val fields can
2154 >     * change (including to null, indicating deletion), field nextVal
2155 >     * might not be accurate at point of use, but still maintains the
2156 >     * weak consistency property of holding a value that was once
2157 >     * valid.
2158 >     *
2159 >     * Internal traversals directly access these fields, as in:
2160 >     * {@code while (it.advance() != null) { process(it.nextKey); }}
2161 >     *
2162 >     * Exported iterators must track whether the iterator has advanced
2163 >     * (in hasNext vs next) (by setting/checking/nulling field
2164 >     * nextVal), and then extract key, value, or key-value pairs as
2165 >     * return values of next().
2166 >     *
2167 >     * The iterator visits once each still-valid node that was
2168 >     * reachable upon iterator construction. It might miss some that
2169 >     * were added to a bin after the bin was visited, which is OK wrt
2170 >     * consistency guarantees. Maintaining this property in the face
2171 >     * of possible ongoing resizes requires a fair amount of
2172 >     * bookkeeping state that is difficult to optimize away amidst
2173 >     * volatile accesses.  Even so, traversal maintains reasonable
2174 >     * throughput.
2175 >     *
2176 >     * Normally, iteration proceeds bin-by-bin traversing lists.
2177 >     * However, if the table has been resized, then all future steps
2178 >     * must traverse both the bin at the current index as well as at
2179 >     * (index + baseSize); and so on for further resizings. To
2180 >     * paranoically cope with potential sharing by users of iterators
2181 >     * across threads, iteration terminates if a bounds checks fails
2182 >     * for a table read.
2183 >     */
2184 >    static class InternalIterator<K,V> {
2185 >        final ConcurrentHashMapV8<K, V> map;
2186 >        Node next;           // the next entry to use
2187 >        Node last;           // the last entry used
2188 >        Object nextKey;      // cached key field of next
2189 >        Object nextVal;      // cached val field of next
2190 >        Node[] tab;          // current table; updated if resized
2191 >        int index;           // index of bin to use next
2192 >        int baseIndex;       // current index of initial table
2193 >        int baseLimit;       // index bound for initial table
2194 >        final int baseSize;  // initial table size
2195 >
2196 >        /** Creates iterator for all entries in the table. */
2197 >        InternalIterator(ConcurrentHashMapV8<K, V> map) {
2198 >            this.tab = (this.map = map).table;
2199 >            baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2200 >        }
2201 >
2202 >        /** Creates iterator for clone() and split() methods */
2203 >        InternalIterator(InternalIterator<K,V> it, boolean split) {
2204 >            this.map = it.map;
2205 >            this.tab = it.tab;
2206 >            this.baseSize = it.baseSize;
2207 >            int lo = it.baseIndex;
2208 >            int hi = this.baseLimit = it.baseLimit;
2209 >            this.index = this.baseIndex =
2210 >                (split) ? (it.baseLimit = (lo + hi + 1) >>> 1) : lo;
2211          }
2212  
2213 <        final WriteThroughEntry nextEntry() {
2214 <            Node e = next;
2215 <            if (e == null)
2216 <                throw new NoSuchElementException();
2217 <            WriteThroughEntry entry =
2218 <                new WriteThroughEntry(e.key, nextVal);
2219 <            advance((lastReturned = e).next);
2220 <            return entry;
2213 >        /**
2214 >         * Advances next; returns nextVal or null if terminated
2215 >         * See above for explanation.
2216 >         */
2217 >        final Object advance() {
2218 >            Node e = last = next;
2219 >            Object ev = null;
2220 >            outer: do {
2221 >                if (e != null)                  // advance past used/skipped node
2222 >                    e = e.next;
2223 >                while (e == null) {             // get to next non-null bin
2224 >                    Node[] t; int b, i, n; Object ek; // checks must use locals
2225 >                    if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2226 >                        (t = tab) == null || i >= (n = t.length))
2227 >                        break outer;
2228 >                    else if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2229 >                        if ((ek = e.key) instanceof TreeBin)
2230 >                            e = ((TreeBin)ek).first;
2231 >                        else {
2232 >                            tab = (Node[])ek;
2233 >                            continue;           // restarts due to null val
2234 >                        }
2235 >                    }                           // visit upper slots if present
2236 >                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2237 >                }
2238 >                nextKey = e.key;
2239 >            } while ((ev = e.val) == null);    // skip deleted or special nodes
2240 >            next = e;
2241 >            return nextVal = ev;
2242          }
2243  
2244          public final void remove() {
2245 <            if (lastReturned == null)
2245 >            if (nextVal == null)
2246 >                advance();
2247 >            Node e = last;
2248 >            if (e == null)
2249                  throw new IllegalStateException();
2250 <            ConcurrentHashMapV8.this.remove(lastReturned.key);
2251 <            lastReturned = null;
829 <        }
830 <
831 <        /** Helper for serialization */
832 <        final void writeEntries(java.io.ObjectOutputStream s)
833 <            throws java.io.IOException {
834 <            Node e;
835 <            while ((e = next) != null) {
836 <                s.writeObject(e.key);
837 <                s.writeObject(nextVal);
838 <                advance(e.next);
839 <            }
2250 >            last = null;
2251 >            map.remove(e.key);
2252          }
2253  
2254 <        /** Helper for containsValue */
2255 <        final boolean containsVal(Object value) {
844 <            if (value != null) {
845 <                Node e;
846 <                while ((e = next) != null) {
847 <                    Object v = nextVal;
848 <                    if (value == v || value.equals(v))
849 <                        return true;
850 <                    advance(e.next);
851 <                }
852 <            }
853 <            return false;
2254 >        public final boolean hasNext() {
2255 >            return nextVal != null || advance() != null;
2256          }
2257  
2258 <        /** Helper for Map.hashCode */
857 <        final int mapHashCode() {
858 <            int h = 0;
859 <            Node e;
860 <            while ((e = next) != null) {
861 <                h += e.key.hashCode() ^ nextVal.hashCode();
862 <                advance(e.next);
863 <            }
864 <            return h;
865 <        }
866 <
867 <        /** Helper for Map.toString */
868 <        final String mapToString() {
869 <            Node e = next;
870 <            if (e == null)
871 <                return "{}";
872 <            StringBuilder sb = new StringBuilder();
873 <            sb.append('{');
874 <            for (;;) {
875 <                sb.append(e.key   == this ? "(this Map)" : e.key);
876 <                sb.append('=');
877 <                sb.append(nextVal == this ? "(this Map)" : nextVal);
878 <                advance(e.next);
879 <                if ((e = next) != null)
880 <                    sb.append(',').append(' ');
881 <                else
882 <                    return sb.append('}').toString();
883 <            }
884 <        }
2258 >        public final boolean hasMoreElements() { return hasNext(); }
2259      }
2260  
2261      /* ---------------- Public operations -------------- */
2262  
2263      /**
2264 <     * Creates a new, empty map with the specified initial
891 <     * capacity, load factor and concurrency level.
892 <     *
893 <     * @param initialCapacity the initial capacity. The implementation
894 <     * performs internal sizing to accommodate this many elements.
895 <     * @param loadFactor  the load factor threshold, used to control resizing.
896 <     * Resizing may be performed when the average number of elements per
897 <     * bin exceeds this threshold.
898 <     * @param concurrencyLevel the estimated number of concurrently
899 <     * updating threads. The implementation may use this value as
900 <     * a sizing hint.
901 <     * @throws IllegalArgumentException if the initial capacity is
902 <     * negative or the load factor or concurrencyLevel are
903 <     * nonpositive.
2264 >     * Creates a new, empty map with the default initial table size (16),
2265       */
2266 <    public ConcurrentHashMapV8(int initialCapacity,
906 <                             float loadFactor, int concurrencyLevel) {
907 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
908 <            throw new IllegalArgumentException();
909 <        this.initCap = initialCapacity;
910 <        this.loadFactor = loadFactor;
2266 >    public ConcurrentHashMapV8() {
2267          this.counter = new LongAdder();
2268      }
2269  
2270      /**
2271 <     * Creates a new, empty map with the specified initial capacity
2272 <     * and load factor and with the default concurrencyLevel (16).
2271 >     * Creates a new, empty map with an initial table size
2272 >     * accommodating the specified number of elements without the need
2273 >     * to dynamically resize.
2274       *
2275       * @param initialCapacity The implementation performs internal
2276       * sizing to accommodate this many elements.
920     * @param loadFactor  the load factor threshold, used to control resizing.
921     * Resizing may be performed when the average number of elements per
922     * bin exceeds this threshold.
2277       * @throws IllegalArgumentException if the initial capacity of
2278 <     * elements is negative or the load factor is nonpositive
925 <     *
926 <     * @since 1.6
2278 >     * elements is negative
2279       */
2280 <    public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2281 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
2280 >    public ConcurrentHashMapV8(int initialCapacity) {
2281 >        if (initialCapacity < 0)
2282 >            throw new IllegalArgumentException();
2283 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2284 >                   MAXIMUM_CAPACITY :
2285 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2286 >        this.counter = new LongAdder();
2287 >        this.sizeCtl = cap;
2288      }
2289  
2290      /**
2291 <     * Creates a new, empty map with the specified initial capacity,
934 <     * and with default load factor (0.75) and concurrencyLevel (16).
2291 >     * Creates a new map with the same mappings as the given map.
2292       *
2293 <     * @param initialCapacity the initial capacity. The implementation
937 <     * performs internal sizing to accommodate this many elements.
938 <     * @throws IllegalArgumentException if the initial capacity of
939 <     * elements is negative.
2293 >     * @param m the map
2294       */
2295 <    public ConcurrentHashMapV8(int initialCapacity) {
2296 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2295 >    public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2296 >        this.counter = new LongAdder();
2297 >        this.sizeCtl = DEFAULT_CAPACITY;
2298 >        internalPutAll(m);
2299      }
2300  
2301      /**
2302 <     * Creates a new, empty map with a default initial capacity (16),
2303 <     * load factor (0.75) and concurrencyLevel (16).
2302 >     * Creates a new, empty map with an initial table size based on
2303 >     * the given number of elements ({@code initialCapacity}) and
2304 >     * initial table density ({@code loadFactor}).
2305 >     *
2306 >     * @param initialCapacity the initial capacity. The implementation
2307 >     * performs internal sizing to accommodate this many elements,
2308 >     * given the specified load factor.
2309 >     * @param loadFactor the load factor (table density) for
2310 >     * establishing the initial table size
2311 >     * @throws IllegalArgumentException if the initial capacity of
2312 >     * elements is negative or the load factor is nonpositive
2313 >     *
2314 >     * @since 1.6
2315       */
2316 <    public ConcurrentHashMapV8() {
2317 <        this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2316 >    public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2317 >        this(initialCapacity, loadFactor, 1);
2318      }
2319  
2320      /**
2321 <     * Creates a new map with the same mappings as the given map.
2322 <     * The map is created with a capacity of 1.5 times the number
2323 <     * of mappings in the given map or 16 (whichever is greater),
2324 <     * and a default load factor (0.75) and concurrencyLevel (16).
2321 >     * Creates a new, empty map with an initial table size based on
2322 >     * the given number of elements ({@code initialCapacity}), table
2323 >     * density ({@code loadFactor}), and number of concurrently
2324 >     * updating threads ({@code concurrencyLevel}).
2325       *
2326 <     * @param m the map
2326 >     * @param initialCapacity the initial capacity. The implementation
2327 >     * performs internal sizing to accommodate this many elements,
2328 >     * given the specified load factor.
2329 >     * @param loadFactor the load factor (table density) for
2330 >     * establishing the initial table size
2331 >     * @param concurrencyLevel the estimated number of concurrently
2332 >     * updating threads. The implementation may use this value as
2333 >     * a sizing hint.
2334 >     * @throws IllegalArgumentException if the initial capacity is
2335 >     * negative or the load factor or concurrencyLevel are
2336 >     * nonpositive
2337       */
2338 <    public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2339 <        this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2340 <        if (m == null)
2341 <            throw new NullPointerException();
2342 <        internalPutAll(m);
2338 >    public ConcurrentHashMapV8(int initialCapacity,
2339 >                               float loadFactor, int concurrencyLevel) {
2340 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2341 >            throw new IllegalArgumentException();
2342 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2343 >            initialCapacity = concurrencyLevel;   // as estimated threads
2344 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2345 >        int cap = ((size >= (long)MAXIMUM_CAPACITY) ?
2346 >                   MAXIMUM_CAPACITY: tableSizeFor((int)size));
2347 >        this.counter = new LongAdder();
2348 >        this.sizeCtl = cap;
2349      }
2350  
2351      /**
2352 <     * Returns {@code true} if this map contains no key-value mappings.
970 <     *
971 <     * @return {@code true} if this map contains no key-value mappings
2352 >     * {@inheritDoc}
2353       */
2354      public boolean isEmpty() {
2355          return counter.sum() <= 0L; // ignore transient negative values
2356      }
2357  
2358      /**
2359 <     * Returns the number of key-value mappings in this map.  If the
979 <     * map contains more than {@code Integer.MAX_VALUE} elements, returns
980 <     * {@code Integer.MAX_VALUE}.
981 <     *
982 <     * @return the number of key-value mappings in this map
2359 >     * {@inheritDoc}
2360       */
2361      public int size() {
2362          long n = counter.sum();
2363 <        return n <= 0L? 0 : n >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)n;
2363 >        return ((n < 0L) ? 0 :
2364 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2365 >                (int)n);
2366 >    }
2367 >
2368 >    final long longSize() { // accurate version of size needed for views
2369 >        long n = counter.sum();
2370 >        return (n < 0L) ? 0L : n;
2371      }
2372  
2373      /**
# Line 1010 | Line 2394 | public class ConcurrentHashMapV8<K, V>
2394       * @param  key   possible key
2395       * @return {@code true} if and only if the specified object
2396       *         is a key in this table, as determined by the
2397 <     *         {@code equals} method; {@code false} otherwise.
2397 >     *         {@code equals} method; {@code false} otherwise
2398       * @throws NullPointerException if the specified key is null
2399       */
2400      public boolean containsKey(Object key) {
# Line 1021 | Line 2405 | public class ConcurrentHashMapV8<K, V>
2405  
2406      /**
2407       * Returns {@code true} if this map maps one or more keys to the
2408 <     * specified value. Note: This method requires a full internal
2409 <     * traversal of the hash table, and so is much slower than
1026 <     * method {@code containsKey}.
2408 >     * specified value. Note: This method may require a full traversal
2409 >     * of the map, and is much slower than method {@code containsKey}.
2410       *
2411       * @param value value whose presence in this map is to be tested
2412       * @return {@code true} if this map maps one or more keys to the
# Line 1033 | Line 2416 | public class ConcurrentHashMapV8<K, V>
2416      public boolean containsValue(Object value) {
2417          if (value == null)
2418              throw new NullPointerException();
2419 <        return new HashIterator().containsVal(value);
2419 >        Object v;
2420 >        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
2421 >        while ((v = it.advance()) != null) {
2422 >            if (v == value || value.equals(v))
2423 >                return true;
2424 >        }
2425 >        return false;
2426      }
2427  
2428      /**
# Line 1072 | Line 2461 | public class ConcurrentHashMapV8<K, V>
2461      public V put(K key, V value) {
2462          if (key == null || value == null)
2463              throw new NullPointerException();
2464 <        return (V)internalPut(key, value, true);
2464 >        return (V)internalPut(key, value);
2465      }
2466  
2467      /**
# Line 1086 | Line 2475 | public class ConcurrentHashMapV8<K, V>
2475      public V putIfAbsent(K key, V value) {
2476          if (key == null || value == null)
2477              throw new NullPointerException();
2478 <        return (V)internalPut(key, value, false);
2478 >        return (V)internalPutIfAbsent(key, value);
2479      }
2480  
2481      /**
# Line 1097 | Line 2486 | public class ConcurrentHashMapV8<K, V>
2486       * @param m mappings to be stored in this map
2487       */
2488      public void putAll(Map<? extends K, ? extends V> m) {
1100        if (m == null)
1101            throw new NullPointerException();
2489          internalPutAll(m);
2490      }
2491  
2492      /**
2493       * If the specified key is not already associated with a value,
2494 <     * computes its value using the given mappingFunction, and if
2495 <     * non-null, enters it into the map.  This is equivalent to
2496 <     *
2497 <     * <pre>
2498 <     *   if (map.containsKey(key))
2499 <     *       return map.get(key);
2500 <     *   value = mappingFunction.map(key);
2501 <     *   if (value != null)
2502 <     *      map.put(key, value);
2503 <     *   return value;
2504 <     * </pre>
2505 <     *
2506 <     * except that the action is performed atomically.  Some attempted
2507 <     * operations on this map by other threads may be blocked while
2508 <     * computation is in progress, so the computation should be short
2509 <     * and simple, and must not attempt to update any other mappings
2510 <     * of this Map. The most common usage is to construct a new object
2511 <     * serving as an initial mapped value, or memoized result.
2494 >     * computes its value using the given mappingFunction and enters
2495 >     * it into the map unless null.  This is equivalent to
2496 >     * <pre> {@code
2497 >     * if (map.containsKey(key))
2498 >     *   return map.get(key);
2499 >     * value = mappingFunction.map(key);
2500 >     * if (value != null)
2501 >     *   map.put(key, value);
2502 >     * return value;}</pre>
2503 >     *
2504 >     * except that the action is performed atomically.  If the
2505 >     * function returns {@code null} no mapping is recorded. If the
2506 >     * function itself throws an (unchecked) exception, the exception
2507 >     * is rethrown to its caller, and no mapping is recorded.  Some
2508 >     * attempted update operations on this map by other threads may be
2509 >     * blocked while computation is in progress, so the computation
2510 >     * should be short and simple, and must not attempt to update any
2511 >     * other mappings of this Map. The most appropriate usage is to
2512 >     * construct a new object serving as an initial mapped value, or
2513 >     * memoized result, as in:
2514 >     *
2515 >     *  <pre> {@code
2516 >     * map.computeIfAbsent(key, new MappingFunction<K, V>() {
2517 >     *   public V map(K k) { return new Value(f(k)); }});}</pre>
2518       *
2519       * @param key key with which the specified value is to be associated
2520       * @param mappingFunction the function to compute a value
2521       * @return the current (existing or computed) value associated with
2522 <     *         the specified key, or {@code null} if the computation
1130 <     *         returned {@code null}.
2522 >     *         the specified key, or null if the computed value is null.
2523       * @throws NullPointerException if the specified key or mappingFunction
2524 <     *         is null,
2524 >     *         is null
2525 >     * @throws IllegalStateException if the computation detectably
2526 >     *         attempts a recursive update to this map that would
2527 >     *         otherwise never complete
2528       * @throws RuntimeException or Error if the mappingFunction does so,
2529 <     *         in which case the mapping is left unestablished.
2529 >     *         in which case the mapping is left unestablished
2530       */
2531 +    @SuppressWarnings("unchecked")
2532      public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2533          if (key == null || mappingFunction == null)
2534              throw new NullPointerException();
2535 <        return internalCompute(key, mappingFunction, false);
2535 >        return (V)internalComputeIfAbsent(key, mappingFunction);
2536      }
2537  
2538      /**
2539 <     * Computes the value associated with he given key using the given
2540 <     * mappingFunction, and if non-null, enters it into the map.  This
2541 <     * is equivalent to
2542 <     *
2543 <     * <pre>
1148 <     *   value = mappingFunction.map(key);
2539 >     * Computes a new mapping value given a key and
2540 >     * its current mapped value (or {@code null} if there is no current
2541 >     * mapping). This is equivalent to
2542 >     *  <pre> {@code
2543 >     *   value = remappingFunction.remap(key, map.get(key));
2544       *   if (value != null)
2545 <     *      map.put(key, value);
2545 >     *     map.put(key, value);
2546       *   else
2547 <     *      return map.get(key);
2548 <     * </pre>
2547 >     *     map.remove(key);
2548 >     * }</pre>
2549       *
2550 <     * except that the action is performed atomically.  Some attempted
2551 <     * operations on this map by other threads may be blocked while
2552 <     * computation is in progress, so the computation should be short
2553 <     * and simple, and must not attempt to update any other mappings
2554 <     * of this Map.
2550 >     * except that the action is performed atomically.  If the
2551 >     * function returns {@code null}, the mapping is removed.  If the
2552 >     * function itself throws an (unchecked) exception, the exception
2553 >     * is rethrown to its caller, and the current mapping is left
2554 >     * unchanged.  Some attempted update operations on this map by
2555 >     * other threads may be blocked while computation is in progress,
2556 >     * so the computation should be short and simple, and must not
2557 >     * attempt to update any other mappings of this Map. For example,
2558 >     * to either create or append new messages to a value mapping:
2559 >     *
2560 >     * <pre> {@code
2561 >     * Map<Key, String> map = ...;
2562 >     * final String msg = ...;
2563 >     * map.compute(key, new RemappingFunction<Key, String>() {
2564 >     *   public String remap(Key k, String v) {
2565 >     *    return (v == null) ? msg : v + msg;});}}</pre>
2566       *
2567       * @param key key with which the specified value is to be associated
2568 <     * @param mappingFunction the function to compute a value
2569 <     * @return the current value associated with
2570 <     *         the specified key, or {@code null} if the computation
2571 <     *         returned {@code null} and the value was not otherwise present.
2572 <     * @throws NullPointerException if the specified key or mappingFunction
2573 <     *         is null,
2574 <     * @throws RuntimeException or Error if the mappingFunction does so,
2575 <     *         in which case the mapping is unchanged.
2568 >     * @param remappingFunction the function to compute a value
2569 >     * @return the new value associated with
2570 >     *         the specified key, or null if none.
2571 >     * @throws NullPointerException if the specified key or remappingFunction
2572 >     *         is null
2573 >     * @throws IllegalStateException if the computation detectably
2574 >     *         attempts a recursive update to this map that would
2575 >     *         otherwise never complete
2576 >     * @throws RuntimeException or Error if the remappingFunction does so,
2577 >     *         in which case the mapping is unchanged
2578       */
2579 <    public V compute(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2580 <        if (key == null || mappingFunction == null)
2579 >    @SuppressWarnings("unchecked")
2580 >    public V compute(K key, RemappingFunction<? super K, V> remappingFunction) {
2581 >        if (key == null || remappingFunction == null)
2582              throw new NullPointerException();
2583 <        return internalCompute(key, mappingFunction, true);
2583 >        return (V)internalCompute(key, remappingFunction);
2584      }
2585  
2586      /**
# Line 1252 | Line 2661 | public class ConcurrentHashMapV8<K, V>
2661       * reflect any modifications subsequent to construction.
2662       */
2663      public Set<K> keySet() {
2664 <        Set<K> ks = keySet;
2665 <        return (ks != null) ? ks : (keySet = new KeySet());
2664 >        KeySet<K,V> ks = keySet;
2665 >        return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
2666      }
2667  
2668      /**
# Line 1273 | Line 2682 | public class ConcurrentHashMapV8<K, V>
2682       * reflect any modifications subsequent to construction.
2683       */
2684      public Collection<V> values() {
2685 <        Collection<V> vs = values;
2686 <        return (vs != null) ? vs : (values = new Values());
2685 >        Values<K,V> vs = values;
2686 >        return (vs != null) ? vs : (values = new Values<K,V>(this));
2687      }
2688  
2689      /**
# Line 1294 | Line 2703 | public class ConcurrentHashMapV8<K, V>
2703       * reflect any modifications subsequent to construction.
2704       */
2705      public Set<Map.Entry<K,V>> entrySet() {
2706 <        Set<Map.Entry<K,V>> es = entrySet;
2707 <        return (es != null) ? es : (entrySet = new EntrySet());
2706 >        EntrySet<K,V> es = entrySet;
2707 >        return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2708      }
2709  
2710      /**
# Line 1305 | Line 2714 | public class ConcurrentHashMapV8<K, V>
2714       * @see #keySet()
2715       */
2716      public Enumeration<K> keys() {
2717 <        return new KeyIterator();
2717 >        return new KeyIterator<K,V>(this);
2718      }
2719  
2720      /**
# Line 1315 | Line 2724 | public class ConcurrentHashMapV8<K, V>
2724       * @see #values()
2725       */
2726      public Enumeration<V> elements() {
2727 <        return new ValueIterator();
2727 >        return new ValueIterator<K,V>(this);
2728 >    }
2729 >
2730 >    /**
2731 >     * Returns a partionable iterator of the keys in this map.
2732 >     *
2733 >     * @return a partionable iterator of the keys in this map
2734 >     */
2735 >    public Spliterator<K> keySpliterator() {
2736 >        return new KeyIterator<K,V>(this);
2737 >    }
2738 >
2739 >    /**
2740 >     * Returns a partionable iterator of the values in this map.
2741 >     *
2742 >     * @return a partionable iterator of the values in this map
2743 >     */
2744 >    public Spliterator<V> valueSpliterator() {
2745 >        return new ValueIterator<K,V>(this);
2746 >    }
2747 >
2748 >    /**
2749 >     * Returns a partionable iterator of the entries in this map.
2750 >     *
2751 >     * @return a partionable iterator of the entries in this map
2752 >     */
2753 >    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2754 >        return new EntryIterator<K,V>(this);
2755      }
2756  
2757      /**
# Line 1326 | Line 2762 | public class ConcurrentHashMapV8<K, V>
2762       * @return the hash code value for this map
2763       */
2764      public int hashCode() {
2765 <        return new HashIterator().mapHashCode();
2765 >        int h = 0;
2766 >        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
2767 >        Object v;
2768 >        while ((v = it.advance()) != null) {
2769 >            h += it.nextKey.hashCode() ^ v.hashCode();
2770 >        }
2771 >        return h;
2772      }
2773  
2774      /**
# Line 1341 | Line 2783 | public class ConcurrentHashMapV8<K, V>
2783       * @return a string representation of this map
2784       */
2785      public String toString() {
2786 <        return new HashIterator().mapToString();
2786 >        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
2787 >        StringBuilder sb = new StringBuilder();
2788 >        sb.append('{');
2789 >        Object v;
2790 >        if ((v = it.advance()) != null) {
2791 >            for (;;) {
2792 >                Object k = it.nextKey;
2793 >                sb.append(k == this ? "(this Map)" : k);
2794 >                sb.append('=');
2795 >                sb.append(v == this ? "(this Map)" : v);
2796 >                if ((v = it.advance()) == null)
2797 >                    break;
2798 >                sb.append(',').append(' ');
2799 >            }
2800 >        }
2801 >        return sb.append('}').toString();
2802      }
2803  
2804      /**
# Line 1355 | Line 2812 | public class ConcurrentHashMapV8<K, V>
2812       * @return {@code true} if the specified object is equal to this map
2813       */
2814      public boolean equals(Object o) {
2815 <        if (o == this)
2816 <            return true;
2817 <        if (!(o instanceof Map))
2818 <            return false;
2819 <        Map<?,?> m = (Map<?,?>) o;
2820 <        try {
2821 <            for (Map.Entry<K,V> e : this.entrySet())
2822 <                if (! e.getValue().equals(m.get(e.getKey())))
2815 >        if (o != this) {
2816 >            if (!(o instanceof Map))
2817 >                return false;
2818 >            Map<?,?> m = (Map<?,?>) o;
2819 >            InternalIterator<K,V> it = new InternalIterator<K,V>(this);
2820 >            Object val;
2821 >            while ((val = it.advance()) != null) {
2822 >                Object v = m.get(it.nextKey);
2823 >                if (v == null || (v != val && !v.equals(val)))
2824                      return false;
2825 +            }
2826              for (Map.Entry<?,?> e : m.entrySet()) {
2827 <                Object k = e.getKey();
2828 <                Object v = e.getValue();
2829 <                if (k == null || v == null || !v.equals(get(k)))
2827 >                Object mk, mv, v;
2828 >                if ((mk = e.getKey()) == null ||
2829 >                    (mv = e.getValue()) == null ||
2830 >                    (v = internalGet(mk)) == null ||
2831 >                    (mv != v && !mv.equals(v)))
2832                      return false;
2833              }
2834 <            return true;
2835 <        } catch (ClassCastException unused) {
2836 <            return false;
2837 <        } catch (NullPointerException unused) {
2838 <            return false;
2834 >        }
2835 >        return true;
2836 >    }
2837 >
2838 >    /* ----------------Iterators -------------- */
2839 >
2840 >    static final class KeyIterator<K,V> extends InternalIterator<K,V>
2841 >        implements Spliterator<K>, Enumeration<K> {
2842 >        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2843 >        KeyIterator(InternalIterator<K,V> it, boolean split) {
2844 >            super(it, split);
2845 >        }
2846 >        public KeyIterator<K,V> split() {
2847 >            if (last != null || (next != null && nextVal == null))
2848 >                throw new IllegalStateException();
2849 >            return new KeyIterator<K,V>(this, true);
2850 >        }
2851 >        public KeyIterator<K,V> clone() {
2852 >            if (last != null || (next != null && nextVal == null))
2853 >                throw new IllegalStateException();
2854 >            return new KeyIterator<K,V>(this, false);
2855 >        }
2856 >
2857 >        @SuppressWarnings("unchecked")
2858 >        public final K next() {
2859 >            if (nextVal == null && advance() == null)
2860 >                throw new NoSuchElementException();
2861 >            Object k = nextKey;
2862 >            nextVal = null;
2863 >            return (K) k;
2864 >        }
2865 >
2866 >        public final K nextElement() { return next(); }
2867 >    }
2868 >
2869 >    static final class ValueIterator<K,V> extends InternalIterator<K,V>
2870 >        implements Spliterator<V>, Enumeration<V> {
2871 >        ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2872 >        ValueIterator(InternalIterator<K,V> it, boolean split) {
2873 >            super(it, split);
2874 >        }
2875 >        public ValueIterator<K,V> split() {
2876 >            if (last != null || (next != null && nextVal == null))
2877 >                throw new IllegalStateException();
2878 >            return new ValueIterator<K,V>(this, true);
2879 >        }
2880 >
2881 >        public ValueIterator<K,V> clone() {
2882 >            if (last != null || (next != null && nextVal == null))
2883 >                throw new IllegalStateException();
2884 >            return new ValueIterator<K,V>(this, false);
2885 >        }
2886 >
2887 >        @SuppressWarnings("unchecked")
2888 >        public final V next() {
2889 >            Object v;
2890 >            if ((v = nextVal) == null && (v = advance()) == null)
2891 >                throw new NoSuchElementException();
2892 >            nextVal = null;
2893 >            return (V) v;
2894 >        }
2895 >
2896 >        public final V nextElement() { return next(); }
2897 >    }
2898 >
2899 >    static final class EntryIterator<K,V> extends InternalIterator<K,V>
2900 >        implements Spliterator<Map.Entry<K,V>> {
2901 >        EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2902 >        EntryIterator(InternalIterator<K,V> it, boolean split) {
2903 >            super(it, split);
2904 >        }
2905 >        public EntryIterator<K,V> split() {
2906 >            if (last != null || (next != null && nextVal == null))
2907 >                throw new IllegalStateException();
2908 >            return new EntryIterator<K,V>(this, true);
2909 >        }
2910 >        public EntryIterator<K,V> clone() {
2911 >            if (last != null || (next != null && nextVal == null))
2912 >                throw new IllegalStateException();
2913 >            return new EntryIterator<K,V>(this, false);
2914 >        }
2915 >
2916 >        @SuppressWarnings("unchecked")
2917 >        public final Map.Entry<K,V> next() {
2918 >            Object v;
2919 >            if ((v = nextVal) == null && (v = advance()) == null)
2920 >                throw new NoSuchElementException();
2921 >            Object k = nextKey;
2922 >            nextVal = null;
2923 >            return new MapEntry<K,V>((K)k, (V)v, map);
2924          }
2925      }
2926  
2927      /**
2928 <     * Custom Entry class used by EntryIterator.next(), that relays
1383 <     * setValue changes to the underlying map.
2928 >     * Exported Entry for iterators
2929       */
2930 <    final class WriteThroughEntry extends AbstractMap.SimpleEntry<K,V> {
2931 <        @SuppressWarnings("unchecked")
2932 <        WriteThroughEntry(Object k, Object v) {
2933 <            super((K)k, (V)v);
2930 >    static final class MapEntry<K,V> implements Map.Entry<K, V> {
2931 >        final K key; // non-null
2932 >        V val;       // non-null
2933 >        final ConcurrentHashMapV8<K, V> map;
2934 >        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
2935 >            this.key = key;
2936 >            this.val = val;
2937 >            this.map = map;
2938 >        }
2939 >        public final K getKey()       { return key; }
2940 >        public final V getValue()     { return val; }
2941 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
2942 >        public final String toString(){ return key + "=" + val; }
2943 >
2944 >        public final boolean equals(Object o) {
2945 >            Object k, v; Map.Entry<?,?> e;
2946 >            return ((o instanceof Map.Entry) &&
2947 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
2948 >                    (v = e.getValue()) != null &&
2949 >                    (k == key || k.equals(key)) &&
2950 >                    (v == val || v.equals(val)));
2951          }
2952  
2953          /**
2954           * Sets our entry's value and writes through to the map. The
2955 <         * value to return is somewhat arbitrary here. Since a
2956 <         * WriteThroughEntry does not necessarily track asynchronous
2957 <         * changes, the most recent "previous" value could be
2958 <         * different from what we return (or could even have been
2959 <         * removed in which case the put will re-establish). We do not
1398 <         * and cannot guarantee more.
2955 >         * value to return is somewhat arbitrary here. Since a we do
2956 >         * not necessarily track asynchronous changes, the most recent
2957 >         * "previous" value could be different from what we return (or
2958 >         * could even have been removed in which case the put will
2959 >         * re-establish). We do not and cannot guarantee more.
2960           */
2961 <        public V setValue(V value) {
2961 >        public final V setValue(V value) {
2962              if (value == null) throw new NullPointerException();
2963 <            V v = super.setValue(value);
2964 <            ConcurrentHashMapV8.this.put(getKey(), value);
2963 >            V v = val;
2964 >            val = value;
2965 >            map.put(key, value);
2966              return v;
2967          }
2968      }
2969  
2970 <    final class KeyIterator extends HashIterator
1409 <        implements Iterator<K>, Enumeration<K> {
1410 <        @SuppressWarnings("unchecked")
1411 <        public final K next()        { return (K)super.nextKey(); }
1412 <        @SuppressWarnings("unchecked")
1413 <        public final K nextElement() { return (K)super.nextKey(); }
1414 <    }
1415 <
1416 <    final class ValueIterator extends HashIterator
1417 <        implements Iterator<V>, Enumeration<V> {
1418 <        @SuppressWarnings("unchecked")
1419 <        public final V next()        { return (V)super.nextValue(); }
1420 <        @SuppressWarnings("unchecked")
1421 <        public final V nextElement() { return (V)super.nextValue(); }
1422 <    }
2970 >    /* ----------------Views -------------- */
2971  
2972 <    final class EntryIterator extends HashIterator
2973 <        implements Iterator<Entry<K,V>> {
2974 <        public final Map.Entry<K,V> next() { return super.nextEntry(); }
2975 <    }
2972 >    /**
2973 >     * Base class for views.
2974 >     */
2975 >    static abstract class MapView<K, V> {
2976 >        final ConcurrentHashMapV8<K, V> map;
2977 >        MapView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
2978 >        public final int size()                 { return map.size(); }
2979 >        public final boolean isEmpty()          { return map.isEmpty(); }
2980 >        public final void clear()               { map.clear(); }
2981 >
2982 >        // implementations below rely on concrete classes supplying these
2983 >        abstract public Iterator<?> iterator();
2984 >        abstract public boolean contains(Object o);
2985 >        abstract public boolean remove(Object o);
2986 >
2987 >        private static final String oomeMsg = "Required array size too large";
2988 >
2989 >        public final Object[] toArray() {
2990 >            long sz = map.longSize();
2991 >            if (sz > (long)(MAX_ARRAY_SIZE))
2992 >                throw new OutOfMemoryError(oomeMsg);
2993 >            int n = (int)sz;
2994 >            Object[] r = new Object[n];
2995 >            int i = 0;
2996 >            Iterator<?> it = iterator();
2997 >            while (it.hasNext()) {
2998 >                if (i == n) {
2999 >                    if (n >= MAX_ARRAY_SIZE)
3000 >                        throw new OutOfMemoryError(oomeMsg);
3001 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3002 >                        n = MAX_ARRAY_SIZE;
3003 >                    else
3004 >                        n += (n >>> 1) + 1;
3005 >                    r = Arrays.copyOf(r, n);
3006 >                }
3007 >                r[i++] = it.next();
3008 >            }
3009 >            return (i == n) ? r : Arrays.copyOf(r, i);
3010 >        }
3011  
3012 <    final class KeySet extends AbstractSet<K> {
3013 <        public int size() {
3014 <            return ConcurrentHashMapV8.this.size();
3012 >        @SuppressWarnings("unchecked")
3013 >        public final <T> T[] toArray(T[] a) {
3014 >            long sz = map.longSize();
3015 >            if (sz > (long)(MAX_ARRAY_SIZE))
3016 >                throw new OutOfMemoryError(oomeMsg);
3017 >            int m = (int)sz;
3018 >            T[] r = (a.length >= m) ? a :
3019 >                (T[])java.lang.reflect.Array
3020 >                .newInstance(a.getClass().getComponentType(), m);
3021 >            int n = r.length;
3022 >            int i = 0;
3023 >            Iterator<?> it = iterator();
3024 >            while (it.hasNext()) {
3025 >                if (i == n) {
3026 >                    if (n >= MAX_ARRAY_SIZE)
3027 >                        throw new OutOfMemoryError(oomeMsg);
3028 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3029 >                        n = MAX_ARRAY_SIZE;
3030 >                    else
3031 >                        n += (n >>> 1) + 1;
3032 >                    r = Arrays.copyOf(r, n);
3033 >                }
3034 >                r[i++] = (T)it.next();
3035 >            }
3036 >            if (a == r && i < n) {
3037 >                r[i] = null; // null-terminate
3038 >                return r;
3039 >            }
3040 >            return (i == n) ? r : Arrays.copyOf(r, i);
3041          }
3042 <        public boolean isEmpty() {
3043 <            return ConcurrentHashMapV8.this.isEmpty();
3042 >
3043 >        public final int hashCode() {
3044 >            int h = 0;
3045 >            for (Iterator<?> it = iterator(); it.hasNext();)
3046 >                h += it.next().hashCode();
3047 >            return h;
3048          }
3049 <        public void clear() {
3050 <            ConcurrentHashMapV8.this.clear();
3049 >
3050 >        public final String toString() {
3051 >            StringBuilder sb = new StringBuilder();
3052 >            sb.append('[');
3053 >            Iterator<?> it = iterator();
3054 >            if (it.hasNext()) {
3055 >                for (;;) {
3056 >                    Object e = it.next();
3057 >                    sb.append(e == this ? "(this Collection)" : e);
3058 >                    if (!it.hasNext())
3059 >                        break;
3060 >                    sb.append(',').append(' ');
3061 >                }
3062 >            }
3063 >            return sb.append(']').toString();
3064          }
3065 <        public Iterator<K> iterator() {
3066 <            return new KeyIterator();
3065 >
3066 >        public final boolean containsAll(Collection<?> c) {
3067 >            if (c != this) {
3068 >                for (Iterator<?> it = c.iterator(); it.hasNext();) {
3069 >                    Object e = it.next();
3070 >                    if (e == null || !contains(e))
3071 >                        return false;
3072 >                }
3073 >            }
3074 >            return true;
3075          }
3076 <        public boolean contains(Object o) {
3077 <            return ConcurrentHashMapV8.this.containsKey(o);
3076 >
3077 >        public final boolean removeAll(Collection<?> c) {
3078 >            boolean modified = false;
3079 >            for (Iterator<?> it = iterator(); it.hasNext();) {
3080 >                if (c.contains(it.next())) {
3081 >                    it.remove();
3082 >                    modified = true;
3083 >                }
3084 >            }
3085 >            return modified;
3086          }
3087 <        public boolean remove(Object o) {
3088 <            return ConcurrentHashMapV8.this.remove(o) != null;
3087 >
3088 >        public final boolean retainAll(Collection<?> c) {
3089 >            boolean modified = false;
3090 >            for (Iterator<?> it = iterator(); it.hasNext();) {
3091 >                if (!c.contains(it.next())) {
3092 >                    it.remove();
3093 >                    modified = true;
3094 >                }
3095 >            }
3096 >            return modified;
3097          }
3098 +
3099      }
3100  
3101 <    final class Values extends AbstractCollection<V> {
3102 <        public int size() {
3103 <            return ConcurrentHashMapV8.this.size();
3104 <        }
3105 <        public boolean isEmpty() {
3106 <            return ConcurrentHashMapV8.this.isEmpty();
3101 >    static final class KeySet<K,V> extends MapView<K,V> implements Set<K> {
3102 >        KeySet(ConcurrentHashMapV8<K, V> map)   { super(map); }
3103 >        public final boolean contains(Object o) { return map.containsKey(o); }
3104 >        public final boolean remove(Object o)   { return map.remove(o) != null; }
3105 >        public final Iterator<K> iterator() {
3106 >            return new KeyIterator<K,V>(map);
3107          }
3108 <        public void clear() {
3109 <            ConcurrentHashMapV8.this.clear();
3108 >        public final boolean add(K e) {
3109 >            throw new UnsupportedOperationException();
3110          }
3111 <        public Iterator<V> iterator() {
3112 <            return new ValueIterator();
3111 >        public final boolean addAll(Collection<? extends K> c) {
3112 >            throw new UnsupportedOperationException();
3113          }
3114 <        public boolean contains(Object o) {
3115 <            return ConcurrentHashMapV8.this.containsValue(o);
3114 >        public boolean equals(Object o) {
3115 >            Set<?> c;
3116 >            return ((o instanceof Set) &&
3117 >                    ((c = (Set<?>)o) == this ||
3118 >                     (containsAll(c) && c.containsAll(this))));
3119          }
3120      }
3121  
3122 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
3123 <        public int size() {
3124 <            return ConcurrentHashMapV8.this.size();
3122 >    static final class Values<K,V> extends MapView<K,V>
3123 >        implements Collection<V> {
3124 >        Values(ConcurrentHashMapV8<K, V> map)   { super(map); }
3125 >        public final boolean contains(Object o) { return map.containsValue(o); }
3126 >        public final boolean remove(Object o) {
3127 >            if (o != null) {
3128 >                Iterator<V> it = new ValueIterator<K,V>(map);
3129 >                while (it.hasNext()) {
3130 >                    if (o.equals(it.next())) {
3131 >                        it.remove();
3132 >                        return true;
3133 >                    }
3134 >                }
3135 >            }
3136 >            return false;
3137          }
3138 <        public boolean isEmpty() {
3139 <            return ConcurrentHashMapV8.this.isEmpty();
3138 >        public final Iterator<V> iterator() {
3139 >            return new ValueIterator<K,V>(map);
3140          }
3141 <        public void clear() {
3142 <            ConcurrentHashMapV8.this.clear();
3141 >        public final boolean add(V e) {
3142 >            throw new UnsupportedOperationException();
3143          }
3144 <        public Iterator<Map.Entry<K,V>> iterator() {
3145 <            return new EntryIterator();
3144 >        public final boolean addAll(Collection<? extends V> c) {
3145 >            throw new UnsupportedOperationException();
3146          }
3147 <        public boolean contains(Object o) {
3148 <            if (!(o instanceof Map.Entry))
3149 <                return false;
3150 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
3151 <            V v = ConcurrentHashMapV8.this.get(e.getKey());
3152 <            return v != null && v.equals(e.getValue());
3153 <        }
3154 <        public boolean remove(Object o) {
3155 <            if (!(o instanceof Map.Entry))
3156 <                return false;
3157 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
3158 <            return ConcurrentHashMapV8.this.remove(e.getKey(), e.getValue());
3147 >    }
3148 >
3149 >    static final class EntrySet<K,V> extends MapView<K,V>
3150 >        implements Set<Map.Entry<K,V>> {
3151 >        EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
3152 >        public final boolean contains(Object o) {
3153 >            Object k, v, r; Map.Entry<?,?> e;
3154 >            return ((o instanceof Map.Entry) &&
3155 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3156 >                    (r = map.get(k)) != null &&
3157 >                    (v = e.getValue()) != null &&
3158 >                    (v == r || v.equals(r)));
3159 >        }
3160 >        public final boolean remove(Object o) {
3161 >            Object k, v; Map.Entry<?,?> e;
3162 >            return ((o instanceof Map.Entry) &&
3163 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3164 >                    (v = e.getValue()) != null &&
3165 >                    map.remove(k, v));
3166 >        }
3167 >        public final Iterator<Map.Entry<K,V>> iterator() {
3168 >            return new EntryIterator<K,V>(map);
3169 >        }
3170 >        public final boolean add(Entry<K,V> e) {
3171 >            throw new UnsupportedOperationException();
3172 >        }
3173 >        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
3174 >            throw new UnsupportedOperationException();
3175 >        }
3176 >        public boolean equals(Object o) {
3177 >            Set<?> c;
3178 >            return ((o instanceof Set) &&
3179 >                    ((c = (Set<?>)o) == this ||
3180 >                     (containsAll(c) && c.containsAll(this))));
3181          }
3182      }
3183  
3184      /* ---------------- Serialization Support -------------- */
3185  
3186      /**
3187 <     * Helper class used in previous version, declared for the sake of
3188 <     * serialization compatibility
3187 >     * Stripped-down version of helper class used in previous version,
3188 >     * declared for the sake of serialization compatibility
3189       */
3190 <    static class Segment<K,V> extends java.util.concurrent.locks.ReentrantLock
1503 <        implements Serializable {
3190 >    static class Segment<K,V> implements Serializable {
3191          private static final long serialVersionUID = 2249069246763182397L;
3192          final float loadFactor;
3193          Segment(float lf) { this.loadFactor = lf; }
# Line 1522 | Line 3209 | public class ConcurrentHashMapV8<K, V>
3209              segments = (Segment<K,V>[])
3210                  new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3211              for (int i = 0; i < segments.length; ++i)
3212 <                segments[i] = new Segment<K,V>(loadFactor);
3212 >                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3213          }
3214          s.defaultWriteObject();
3215 <        new HashIterator().writeEntries(s);
3215 >        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
3216 >        Object v;
3217 >        while ((v = it.advance()) != null) {
3218 >            s.writeObject(it.nextKey);
3219 >            s.writeObject(v);
3220 >        }
3221          s.writeObject(null);
3222          s.writeObject(null);
3223          segments = null; // throw away
3224      }
3225  
3226      /**
3227 <     * Reconstitutes the  instance from a
1536 <     * stream (i.e., deserializes it).
3227 >     * Reconstitutes the instance from a stream (that is, deserializes it).
3228       * @param s the stream
3229       */
3230      @SuppressWarnings("unchecked")
3231      private void readObject(java.io.ObjectInputStream s)
3232              throws java.io.IOException, ClassNotFoundException {
3233          s.defaultReadObject();
1543        // find load factor in a segment, if one exists
1544        if (segments != null && segments.length != 0)
1545            this.loadFactor = segments[0].loadFactor;
1546        else
1547            this.loadFactor = DEFAULT_LOAD_FACTOR;
1548        this.initCap = DEFAULT_CAPACITY;
1549        LongAdder ct = new LongAdder(); // force final field write
1550        UNSAFE.putObjectVolatile(this, counterOffset, ct);
3234          this.segments = null; // unneeded
3235 +        // initialize transient final field
3236 +        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3237  
3238 <        // Read the keys and values, and put the mappings in the table
3238 >        // Create all nodes, then place in table once size is known
3239 >        long size = 0L;
3240 >        Node p = null;
3241          for (;;) {
3242 <            K key = (K) s.readObject();
3243 <            V value = (V) s.readObject();
3244 <            if (key == null)
3242 >            K k = (K) s.readObject();
3243 >            V v = (V) s.readObject();
3244 >            if (k != null && v != null) {
3245 >                int h = spread(k.hashCode());
3246 >                p = new Node(h, k, v, p);
3247 >                ++size;
3248 >            }
3249 >            else
3250                  break;
3251 <            put(key, value);
3251 >        }
3252 >        if (p != null) {
3253 >            boolean init = false;
3254 >            int n;
3255 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3256 >                n = MAXIMUM_CAPACITY;
3257 >            else {
3258 >                int sz = (int)size;
3259 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
3260 >            }
3261 >            int sc = sizeCtl;
3262 >            boolean collide = false;
3263 >            if (n > sc &&
3264 >                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3265 >                try {
3266 >                    if (table == null) {
3267 >                        init = true;
3268 >                        Node[] tab = new Node[n];
3269 >                        int mask = n - 1;
3270 >                        while (p != null) {
3271 >                            int j = p.hash & mask;
3272 >                            Node next = p.next;
3273 >                            Node q = p.next = tabAt(tab, j);
3274 >                            setTabAt(tab, j, p);
3275 >                            if (!collide && q != null && q.hash == p.hash)
3276 >                                collide = true;
3277 >                            p = next;
3278 >                        }
3279 >                        table = tab;
3280 >                        counter.add(size);
3281 >                        sc = n - (n >>> 2);
3282 >                    }
3283 >                } finally {
3284 >                    sizeCtl = sc;
3285 >                }
3286 >                if (collide) { // rescan and convert to TreeBins
3287 >                    Node[] tab = table;
3288 >                    for (int i = 0; i < tab.length; ++i) {
3289 >                        int c = 0;
3290 >                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3291 >                            if (++c > TREE_THRESHOLD &&
3292 >                                (e.key instanceof Comparable)) {
3293 >                                replaceWithTreeBin(tab, i, e.key);
3294 >                                break;
3295 >                            }
3296 >                        }
3297 >                    }
3298 >                }
3299 >            }
3300 >            if (!init) { // Can only happen if unsafely published.
3301 >                while (p != null) {
3302 >                    internalPut(p.key, p.val);
3303 >                    p = p.next;
3304 >                }
3305 >            }
3306          }
3307      }
3308  
3309      // Unsafe mechanics
3310      private static final sun.misc.Unsafe UNSAFE;
3311      private static final long counterOffset;
3312 <    private static final long resizingOffset;
3312 >    private static final long sizeCtlOffset;
3313      private static final long ABASE;
3314      private static final int ASHIFT;
3315  
# Line 1574 | Line 3320 | public class ConcurrentHashMapV8<K, V>
3320              Class<?> k = ConcurrentHashMapV8.class;
3321              counterOffset = UNSAFE.objectFieldOffset
3322                  (k.getDeclaredField("counter"));
3323 <            resizingOffset = UNSAFE.objectFieldOffset
3324 <                (k.getDeclaredField("resizing"));
3323 >            sizeCtlOffset = UNSAFE.objectFieldOffset
3324 >                (k.getDeclaredField("sizeCtl"));
3325              Class<?> sc = Node[].class;
3326              ABASE = UNSAFE.arrayBaseOffset(sc);
3327              ss = UNSAFE.arrayIndexScale(sc);

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines