ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.1 by dl, Sun Aug 28 19:08:07 2011 UTC vs.
Revision 1.38 by dl, Wed Jun 6 15:41:23 2012 UTC

# Line 4 | Line 4
4   * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7 + // Snapshot Tue Jun  5 14:56:09 2012  Doug Lea  (dl at altair)
8 +
9   package jsr166e;
10   import jsr166e.LongAdder;
11 + import java.util.Arrays;
12   import java.util.Map;
13   import java.util.Set;
14   import java.util.Collection;
# Line 19 | Line 22 | import java.util.Enumeration;
22   import java.util.ConcurrentModificationException;
23   import java.util.NoSuchElementException;
24   import java.util.concurrent.ConcurrentMap;
25 + import java.util.concurrent.ThreadLocalRandom;
26 + import java.util.concurrent.locks.LockSupport;
27 + import java.util.concurrent.locks.AbstractQueuedSynchronizer;
28   import java.io.Serializable;
29  
30   /**
# Line 49 | Line 55 | import java.io.Serializable;
55   * are typically useful only when a map is not undergoing concurrent
56   * updates in other threads.  Otherwise the results of these methods
57   * reflect transient states that may be adequate for monitoring
58 < * purposes, but not for program control.
58 > * or estimation purposes, but not for program control.
59   *
60 < * <p> Resizing this or any other kind of hash table is a relatively
61 < * slow operation, so, when possible, it is a good idea to provide
62 < * estimates of expected table sizes in constructors. Also, for
63 < * compatability with previous versions of this class, constructors
64 < * may optionally specify an expected {@code concurrencyLevel} as an
65 < * additional hint for internal sizing.
60 > * <p> The table is dynamically expanded when there are too many
61 > * collisions (i.e., keys that have distinct hash codes but fall into
62 > * the same slot modulo the table size), with the expected average
63 > * effect of maintaining roughly two bins per mapping (corresponding
64 > * to a 0.75 load factor threshold for resizing). There may be much
65 > * variance around this average as mappings are added and removed, but
66 > * overall, this maintains a commonly accepted time/space tradeoff for
67 > * hash tables.  However, resizing this or any other kind of hash
68 > * table may be a relatively slow operation. When possible, it is a
69 > * good idea to provide a size estimate as an optional {@code
70 > * initialCapacity} constructor argument. An additional optional
71 > * {@code loadFactor} constructor argument provides a further means of
72 > * customizing initial table capacity by specifying the table density
73 > * to be used in calculating the amount of space to allocate for the
74 > * given number of elements.  Also, for compatibility with previous
75 > * versions of this class, constructors may optionally specify an
76 > * expected {@code concurrencyLevel} as an additional hint for
77 > * internal sizing.  Note that using many keys with exactly the same
78 > * {@code hashCode()} is a sure way to slow down performance of any
79 > * hash table.
80   *
81   * <p>This class and its views and iterators implement all of the
82   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
# Line 82 | Line 102 | public class ConcurrentHashMapV8<K, V>
102      private static final long serialVersionUID = 7249069246763182397L;
103  
104      /**
105 <     * A function computing a mapping from the given key to a value,
106 <     *  or <code>null</code> if there is no mapping. This is a
87 <     * place-holder for an upcoming JDK8 interface.
105 >     * A function computing a mapping from the given key to a value.
106 >     * This is a place-holder for an upcoming JDK8 interface.
107       */
108      public static interface MappingFunction<K, V> {
109          /**
110 <         * Returns a value for the given key, or null if there is no
92 <         * mapping. If this function throws an (unchecked) exception,
93 <         * the exception is rethrown to its caller, and no mapping is
94 <         * recorded.  Because this function is invoked within
95 <         * atomicity control, the computation should be short and
96 <         * simple. The most common usage is to construct a new object
97 <         * serving as an initial mapped value.
110 >         * Returns a non-null value for the given key.
111           *
112           * @param key the (non-null) key
113 <         * @return a value, or null if none
113 >         * @return a non-null value
114           */
115          V map(K key);
116      }
117  
118 +    /**
119 +     * A function computing a new mapping given a key and its current
120 +     * mapped value (or {@code null} if there is no current
121 +     * mapping). This is a place-holder for an upcoming JDK8
122 +     * interface.
123 +     */
124 +    public static interface RemappingFunction<K, V> {
125 +        /**
126 +         * Returns a new value given a key and its current value.
127 +         *
128 +         * @param key the (non-null) key
129 +         * @param value the current value, or null if there is no mapping
130 +         * @return a non-null value
131 +         */
132 +        V remap(K key, V value);
133 +    }
134 +
135      /*
136       * Overview:
137       *
138       * The primary design goal of this hash table is to maintain
139       * concurrent readability (typically method get(), but also
140       * iterators and related methods) while minimizing update
141 <     * contention.
141 >     * contention. Secondary goals are to keep space consumption about
142 >     * the same or better than java.util.HashMap, and to support high
143 >     * initial insertion rates on an empty table by many threads.
144       *
145       * Each key-value mapping is held in a Node.  Because Node fields
146       * can contain special values, they are defined using plain Object
147       * types. Similarly in turn, all internal methods that use them
148 <     * work off Object types. All public generic-typed methods relay
149 <     * in/out of these internal methods, supplying casts as needed.
148 >     * work off Object types. And similarly, so do the internal
149 >     * methods of auxiliary iterator and view classes.  All public
150 >     * generic typed methods relay in/out of these internal methods,
151 >     * supplying null-checks and casts as needed. This also allows
152 >     * many of the public methods to be factored into a smaller number
153 >     * of internal methods (although sadly not so for the five
154 >     * variants of put-related operations). The validation-based
155 >     * approach explained below leads to a lot of code sprawl because
156 >     * retry-control precludes factoring into smaller methods.
157       *
158       * The table is lazily initialized to a power-of-two size upon the
159 <     * first insertion.  Each bin in the table contains a (typically
160 <     * short) list of Nodes.  Table accesses require volatile/atomic
161 <     * reads, writes, and CASes.  Because there is no other way to
162 <     * arrange this without adding further indirections, we use
163 <     * intrinsics (sun.misc.Unsafe) operations.  The lists of nodes
164 <     * within bins are always accurately traversable under volatile
165 <     * reads, so long as lookups check hash code and non-nullness of
166 <     * key and value before checking key equality. (All valid hash
167 <     * codes are nonnegative. Negative values are served for special
168 <     * nodes.)
169 <     *
170 <     * A bin may be locked during update (insert, delete, and replace)
171 <     * operations.  We do not want to waste the space required to
172 <     * associate a distinct lock object with each bin, so instead use
173 <     * the first node of a bin list itself as a lock, using builtin
174 <     * "synchronized" locks. These save space and we can live with
175 <     * only plain block-structured lock/unlock operations. Using the
176 <     * first node of a list as a lock does not by itself suffice
177 <     * though: When a node is locked, any update must first validate
178 <     * that it is still the first node, and retry if not. (Because new
179 <     * nodes are always appended to lists, once a node is first in a
180 <     * bin, it remains first until deleted or the bin becomes
181 <     * invalidated.)  However, update operations can and usually do
182 <     * still traverse the bin until the point of update, which helps
183 <     * reduce cache misses on retries.  This is a converse of sorts to
184 <     * the lazy locking technique described by Herlihy & Shavit. If
185 <     * there is no existing node during a put operation, then one can
186 <     * be CAS'ed in (without need for lock except in computeIfAbsent);
187 <     * the CAS serves as validation. This is on average the most
188 <     * common case for put operations. The expected number of locks
189 <     * covering different elements (i.e., bins with 2 or more nodes)
190 <     * is approximately 10% at steady state under default settings.
191 <     * Lock contention probability for two threads accessing arbitrary
192 <     * distinct elements is thus less than 1% even for small tables.
193 <     *
194 <     * The table is resized when occupancy exceeds a threshold.  Only
195 <     * a single thread performs the resize (using field "resizing", to
196 <     * arrange exclusion), but the table otherwise remains usable for
197 <     * both reads and updates. Resizing proceeds by transferring bins,
198 <     * one by one, from the table to the next table.  Upon transfer,
199 <     * the old table bin contains only a special forwarding node (with
200 <     * negative hash code ("MOVED")) that contains the next table as
159 >     * first insertion.  Each bin in the table normally contains a
160 >     * list of Nodes (most often, the list has only zero or one Node).
161 >     * Table accesses require volatile/atomic reads, writes, and
162 >     * CASes.  Because there is no other way to arrange this without
163 >     * adding further indirections, we use intrinsics
164 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
165 >     * are always accurately traversable under volatile reads, so long
166 >     * as lookups check hash code and non-nullness of value before
167 >     * checking key equality.
168 >     *
169 >     * We use the top two bits of Node hash fields for control
170 >     * purposes -- they are available anyway because of addressing
171 >     * constraints.  As explained further below, these top bits are
172 >     * used as follows:
173 >     *  00 - Normal
174 >     *  01 - Locked
175 >     *  11 - Locked and may have a thread waiting for lock
176 >     *  10 - Node is a forwarding node
177 >     *
178 >     * The lower 30 bits of each Node's hash field contain a
179 >     * transformation of the key's hash code, except for forwarding
180 >     * nodes, for which the lower bits are zero (and so always have
181 >     * hash field == MOVED).
182 >     *
183 >     * Insertion (via put or its variants) of the first node in an
184 >     * empty bin is performed by just CASing it to the bin.  This is
185 >     * by far the most common case for put operations under most
186 >     * key/hash distributions.  Other update operations (insert,
187 >     * delete, and replace) require locks.  We do not want to waste
188 >     * the space required to associate a distinct lock object with
189 >     * each bin, so instead use the first node of a bin list itself as
190 >     * a lock. Blocking support for these locks relies on the builtin
191 >     * "synchronized" monitors.  However, we also need a tryLock
192 >     * construction, so we overlay these by using bits of the Node
193 >     * hash field for lock control (see above), and so normally use
194 >     * builtin monitors only for blocking and signalling using
195 >     * wait/notifyAll constructions. See Node.tryAwaitLock.
196 >     *
197 >     * Using the first node of a list as a lock does not by itself
198 >     * suffice though: When a node is locked, any update must first
199 >     * validate that it is still the first node after locking it, and
200 >     * retry if not. Because new nodes are always appended to lists,
201 >     * once a node is first in a bin, it remains first until deleted
202 >     * or the bin becomes invalidated (upon resizing).  However,
203 >     * operations that only conditionally update may inspect nodes
204 >     * until the point of update. This is a converse of sorts to the
205 >     * lazy locking technique described by Herlihy & Shavit.
206 >     *
207 >     * The main disadvantage of per-bin locks is that other update
208 >     * operations on other nodes in a bin list protected by the same
209 >     * lock can stall, for example when user equals() or mapping
210 >     * functions take a long time.  However, statistically, under
211 >     * random hash codes, this is not a common problem.  Ideally, the
212 >     * frequency of nodes in bins follows a Poisson distribution
213 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
214 >     * parameter of about 0.5 on average, given the resizing threshold
215 >     * of 0.75, although with a large variance because of resizing
216 >     * granularity. Ignoring variance, the expected occurrences of
217 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
218 >     * first values are:
219 >     *
220 >     * 0:    0.60653066
221 >     * 1:    0.30326533
222 >     * 2:    0.07581633
223 >     * 3:    0.01263606
224 >     * 4:    0.00157952
225 >     * 5:    0.00015795
226 >     * 6:    0.00001316
227 >     * 7:    0.00000094
228 >     * 8:    0.00000006
229 >     * more: less than 1 in ten million
230 >     *
231 >     * Lock contention probability for two threads accessing distinct
232 >     * elements is roughly 1 / (8 * #elements) under random hashes.
233 >     *
234 >     * Actual hash code distributions encountered in practice
235 >     * sometimes deviate significantly from uniform randomness.  This
236 >     * includes the case when N > (1<<30), so some keys MUST collide.
237 >     * Similarly for dumb or hostile usages in which multiple keys are
238 >     * designed to have identical hash codes. Also, although we guard
239 >     * against the worst effects of this (see method spread), sets of
240 >     * hashes may differ only in bits that do not impact their bin
241 >     * index for a given power-of-two mask.  So we use a secondary
242 >     * strategy that applies when the number of nodes in a bin exceeds
243 >     * a threshold, and at least one of the keys implements
244 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
245 >     * (a specialized form of red-black trees), bounding search time
246 >     * to O(log N).  Each search step in a TreeBin is around twice as
247 >     * slow as in a regular list, but given that N cannot exceed
248 >     * (1<<64) (before running out of addresses) this bounds search
249 >     * steps, lock hold times, etc, to reasonable constants (roughly
250 >     * 100 nodes inspected per operation worst case) so long as keys
251 >     * are Comparable (which is very common -- String, Long, etc).
252 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
253 >     * traversal pointers as regular nodes, so can be traversed in
254 >     * iterators in the same way.
255 >     *
256 >     * The table is resized when occupancy exceeds a percentage
257 >     * threshold (nominally, 0.75, but see below).  Only a single
258 >     * thread performs the resize (using field "sizeCtl", to arrange
259 >     * exclusion), but the table otherwise remains usable for reads
260 >     * and updates. Resizing proceeds by transferring bins, one by
261 >     * one, from the table to the next table.  Because we are using
262 >     * power-of-two expansion, the elements from each bin must either
263 >     * stay at same index, or move with a power of two offset. We
264 >     * eliminate unnecessary node creation by catching cases where old
265 >     * nodes can be reused because their next fields won't change.  On
266 >     * average, only about one-sixth of them need cloning when a table
267 >     * doubles. The nodes they replace will be garbage collectable as
268 >     * soon as they are no longer referenced by any reader thread that
269 >     * may be in the midst of concurrently traversing table.  Upon
270 >     * transfer, the old table bin contains only a special forwarding
271 >     * node (with hash field "MOVED") that contains the next table as
272       * its key. On encountering a forwarding node, access and update
273 <     * operations restart, using the new table. To ensure concurrent
274 <     * readability of traversals, transfers must proceed from the last
275 <     * bin (table.length - 1) up towards the first.  Any traversal
276 <     * starting from the first bin can then arrange to move to the new
277 <     * table for the rest of the traversal without revisiting nodes.
278 <     * This constrains bin transfers to a particular order, and so can
279 <     * block indefinitely waiting for the next lock, and other threads
280 <     * cannot help with the transfer. However, expected stalls are
281 <     * infrequent enough to not warrant the additional overhead and
282 <     * complexity of access and iteration schemes that could admit
283 <     * out-of-order or concurrent bin transfers.
284 <     *
285 <     * (While not yet implemented, a similar traversal scheme can
286 <     * apply to partial traversals during partitioned aggregate
287 <     * operations. Also, read-only operations give up if ever
288 <     * forwarded to a null table, which provides support for
273 >     * operations restart, using the new table.
274 >     *
275 >     * Each bin transfer requires its bin lock. However, unlike other
276 >     * cases, a transfer can skip a bin if it fails to acquire its
277 >     * lock, and revisit it later (unless it is a TreeBin). Method
278 >     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
279 >     * have been skipped because of failure to acquire a lock, and
280 >     * blocks only if none are available (i.e., only very rarely).
281 >     * The transfer operation must also ensure that all accessible
282 >     * bins in both the old and new table are usable by any traversal.
283 >     * When there are no lock acquisition failures, this is arranged
284 >     * simply by proceeding from the last bin (table.length - 1) up
285 >     * towards the first.  Upon seeing a forwarding node, traversals
286 >     * (see class InternalIterator) arrange to move to the new table
287 >     * without revisiting nodes.  However, when any node is skipped
288 >     * during a transfer, all earlier table bins may have become
289 >     * visible, so are initialized with a reverse-forwarding node back
290 >     * to the old table until the new ones are established. (This
291 >     * sometimes requires transiently locking a forwarding node, which
292 >     * is possible under the above encoding.) These more expensive
293 >     * mechanics trigger only when necessary.
294 >     *
295 >     * The traversal scheme also applies to partial traversals of
296 >     * ranges of bins (via an alternate InternalIterator constructor)
297 >     * to support partitioned aggregate operations (that are not
298 >     * otherwise implemented yet).  Also, read-only operations give up
299 >     * if ever forwarded to a null table, which provides support for
300       * shutdown-style clearing, which is also not currently
301 <     * implemented.)
301 >     * implemented.
302 >     *
303 >     * Lazy table initialization minimizes footprint until first use,
304 >     * and also avoids resizings when the first operation is from a
305 >     * putAll, constructor with map argument, or deserialization.
306 >     * These cases attempt to override the initial capacity settings,
307 >     * but harmlessly fail to take effect in cases of races.
308       *
309       * The element count is maintained using a LongAdder, which avoids
310       * contention on updates but can encounter cache thrashing if read
311 <     * too frequently during concurrent updates. To avoid reading so
312 <     * often, resizing is attempted only upon adding to a bin already
313 <     * holding two or more nodes. Under the default threshold (0.75),
314 <     * and uniform hash distributions, the probability of this
315 <     * occurring at threshold is around 13%, meaning that only about 1
316 <     * in 8 puts check threshold (and after resizing, many fewer do
317 <     * so). To increase the probablity that a resize occurs soon
318 <     * enough, we offset the threshold (see THRESHOLD_OFFSET) by the
319 <     * expected number of puts between checks. This is currently set
320 <     * to 8, in accord with the default load factor. In practice, this
321 <     * is rarely overridden, and in any case is close enough to other
322 <     * plausible values not to waste dynamic probablity computation
323 <     * for more precision.
311 >     * too frequently during concurrent access. To avoid reading so
312 >     * often, resizing is attempted either when a bin lock is
313 >     * contended, or upon adding to a bin already holding two or more
314 >     * nodes (checked before adding in the xIfAbsent methods, after
315 >     * adding in others). Under uniform hash distributions, the
316 >     * probability of this occurring at threshold is around 13%,
317 >     * meaning that only about 1 in 8 puts check threshold (and after
318 >     * resizing, many fewer do so). But this approximation has high
319 >     * variance for small table sizes, so we check on any collision
320 >     * for sizes <= 64. The bulk putAll operation further reduces
321 >     * contention by only committing count updates upon these size
322 >     * checks.
323 >     *
324 >     * Maintaining API and serialization compatibility with previous
325 >     * versions of this class introduces several oddities. Mainly: We
326 >     * leave untouched but unused constructor arguments refering to
327 >     * concurrencyLevel. We accept a loadFactor constructor argument,
328 >     * but apply it only to initial table capacity (which is the only
329 >     * time that we can guarantee to honor it.) We also declare an
330 >     * unused "Segment" class that is instantiated in minimal form
331 >     * only when serializing.
332       */
333  
334      /* ---------------- Constants -------------- */
335  
336      /**
337 <     * The smallest allowed table capacity.  Must be a power of 2, at
338 <     * least 2.
337 >     * The largest possible table capacity.  This value must be
338 >     * exactly 1<<30 to stay within Java array allocation and indexing
339 >     * bounds for power of two table sizes, and is further required
340 >     * because the top two bits of 32bit hash fields are used for
341 >     * control purposes.
342       */
343 <    static final int MINIMUM_CAPACITY = 2;
343 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
344  
345      /**
346 <     * The largest allowed table capacity.  Must be a power of 2, at
347 <     * most 1<<30.
346 >     * The default initial table capacity.  Must be a power of 2
347 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
348       */
349 <    static final int MAXIMUM_CAPACITY = 1 << 30;
349 >    private static final int DEFAULT_CAPACITY = 16;
350  
351      /**
352 <     * The default initial table capacity.  Must be a power of 2, at
353 <     * least MINIMUM_CAPACITY and at most MAXIMUM_CAPACITY
352 >     * The largest possible (non-power of two) array size.
353 >     * Needed by toArray and related methods.
354       */
355 <    static final int DEFAULT_CAPACITY = 16;
355 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
356  
357      /**
358 <     * The default load factor for this table, used when not otherwise
359 <     * specified in a constructor.
358 >     * The default concurrency level for this table. Unused but
359 >     * defined for compatibility with previous versions of this class.
360       */
361 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
361 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
362  
363      /**
364 <     * The default concurrency level for this table. Unused, but
365 <     * defined for compatibility with previous versions of this class.
364 >     * The load factor for this table. Overrides of this value in
365 >     * constructors affect only the initial table capacity.  The
366 >     * actual floating point value isn't normally used -- it is
367 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
368 >     * the associated resizing threshold.
369       */
370 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
370 >    private static final float LOAD_FACTOR = 0.75f;
371  
372      /**
373 <     * The count value to offset thesholds to compensate for checking
374 <     * for resizing only when inserting into bins with two or more
375 <     * elements. See above for explanation.
373 >     * The buffer size for skipped bins during transfers. The
374 >     * value is arbitrary but should be large enough to avoid
375 >     * most locking stalls during resizes.
376       */
377 <    static final int THRESHOLD_OFFSET = 8;
377 >    private static final int TRANSFER_BUFFER_SIZE = 32;
378  
379      /**
380 <     * Special node hash value indicating to use table in node.key
381 <     * Must be negative.
380 >     * The bin count threshold for using a tree rather than list for a
381 >     * bin.  The value reflects the approximate break-even point for
382 >     * using tree-based operations.
383 >     */
384 >    private static final int TREE_THRESHOLD = 8;
385 >
386 >    /*
387 >     * Encodings for special uses of Node hash fields. See above for
388 >     * explanation.
389       */
390 <    static final int MOVED = -1;
390 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
391 >    static final int LOCKED    = 0x40000000; // set/tested only as a bit
392 >    static final int WAITING   = 0xc0000000; // both bits set/tested together
393 >    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
394  
395      /* ---------------- Fields -------------- */
396  
397      /**
398       * The array of bins. Lazily initialized upon first insertion.
399 <     * Size is always a power of two. Accessed directly by inner
249 <     * classes.
399 >     * Size is always a power of two. Accessed directly by iterators.
400       */
401      transient volatile Node[] table;
402  
403 <    /** The counter maintaining number of elements. */
403 >    /**
404 >     * The counter maintaining number of elements.
405 >     */
406      private transient final LongAdder counter;
407 <    /** Nonzero when table is being initialized or resized. Updated via CAS. */
408 <    private transient volatile int resizing;
409 <    /** The target load factor for the table. */
410 <    private transient float loadFactor;
411 <    /** The next element count value upon which to resize the table. */
412 <    private transient int threshold;
413 <    /** The initial capacity of the table. */
414 <    private transient int initCap;
407 >
408 >    /**
409 >     * Table initialization and resizing control.  When negative, the
410 >     * table is being initialized or resized. Otherwise, when table is
411 >     * null, holds the initial table size to use upon creation, or 0
412 >     * for default. After initialization, holds the next element count
413 >     * value upon which to resize the table.
414 >     */
415 >    private transient volatile int sizeCtl;
416  
417      // views
418 <    transient Set<K> keySet;
419 <    transient Set<Map.Entry<K,V>> entrySet;
420 <    transient Collection<V> values;
268 <
269 <    /** For serialization compatability. Null unless serialized; see below */
270 <    Segment<K,V>[] segments;
418 >    private transient KeySet<K,V> keySet;
419 >    private transient Values<K,V> values;
420 >    private transient EntrySet<K,V> entrySet;
421  
422 <    /**
423 <     * Applies a supplemental hash function to a given hashCode, which
424 <     * defends against poor quality hash functions.  The result must
425 <     * be non-negative, and for reasonable performance must have good
426 <     * avalanche properties; i.e., that each bit of the argument
427 <     * affects each bit (except sign bit) of the result.
422 >    /** For serialization compatibility. Null unless serialized; see below */
423 >    private Segment<K,V>[] segments;
424 >
425 >    /* ---------------- Table element access -------------- */
426 >
427 >    /*
428 >     * Volatile access methods are used for table elements as well as
429 >     * elements of in-progress next table while resizing.  Uses are
430 >     * null checked by callers, and implicitly bounds-checked, relying
431 >     * on the invariants that tab arrays have non-zero size, and all
432 >     * indices are masked with (tab.length - 1) which is never
433 >     * negative and always less than length. Note that, to be correct
434 >     * wrt arbitrary concurrency errors by users, bounds checks must
435 >     * operate on local variables, which accounts for some odd-looking
436 >     * inline assignments below.
437       */
438 <    private static final int spread(int h) {
439 <        // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/
440 <        h ^= h >>> 16;
441 <        h *= 0x85ebca6b;
442 <        h ^= h >>> 13;
443 <        h *= 0xc2b2ae35;
444 <        return (h >>> 16) ^ (h & 0x7fffffff); // mask out sign bit
438 >
439 >    static final Node tabAt(Node[] tab, int i) { // used by InternalIterator
440 >        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
441 >    }
442 >
443 >    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
444 >        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
445      }
446  
447 +    private static final void setTabAt(Node[] tab, int i, Node v) {
448 +        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
449 +    }
450 +
451 +    /* ---------------- Nodes -------------- */
452 +
453      /**
454       * Key-value entry. Note that this is never exported out as a
455 <     * user-visible Map.Entry.
455 >     * user-visible Map.Entry (see WriteThroughEntry and SnapshotEntry
456 >     * below). Nodes with a hash field of MOVED are special, and do
457 >     * not contain user keys or values.  Otherwise, keys are never
458 >     * null, and null val fields indicate that a node is in the
459 >     * process of being deleted or created. For purposes of read-only
460 >     * access, a key may be read before a val, but can only be used
461 >     * after checking val to be non-null.
462       */
463 <    static final class Node {
464 <        final int hash;
463 >    static class Node {
464 >        volatile int hash;
465          final Object key;
466          volatile Object val;
467          volatile Node next;
# Line 301 | Line 472 | public class ConcurrentHashMapV8<K, V>
472              this.val = val;
473              this.next = next;
474          }
304    }
475  
476 <    /*
477 <     * Volatile access nethods are used for table elements as well as
478 <     * elements of in-progress next table while resizing.  Uses in
479 <     * access and update methods are null checked by callers, and
310 <     * implicitly bounds-checked, relying on the invariants that tab
311 <     * arrays have non-zero size, and all indices are masked with
312 <     * (tab.length - 1) which is never negative and always less than
313 <     * length. The only other usage is in HashIterator.advance, which
314 <     * performs explicit checks.
315 <     */
476 >        /** CompareAndSet the hash field */
477 >        final boolean casHash(int cmp, int val) {
478 >            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
479 >        }
480  
481 <    static final Node tabAt(Node[] tab, int i) { // used in HashIterator
482 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
483 <    }
481 >        /** The number of spins before blocking for a lock */
482 >        static final int MAX_SPINS =
483 >            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
484  
485 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
486 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
485 >        /**
486 >         * Spins a while if LOCKED bit set and this node is the first
487 >         * of its bin, and then sets WAITING bits on hash field and
488 >         * blocks (once) if they are still set.  It is OK for this
489 >         * method to return even if lock is not available upon exit,
490 >         * which enables these simple single-wait mechanics.
491 >         *
492 >         * The corresponding signalling operation is performed within
493 >         * callers: Upon detecting that WAITING has been set when
494 >         * unlocking lock (via a failed CAS from non-waiting LOCKED
495 >         * state), unlockers acquire the sync lock and perform a
496 >         * notifyAll.
497 >         */
498 >        final void tryAwaitLock(Node[] tab, int i) {
499 >            if (tab != null && i >= 0 && i < tab.length) { // bounds check
500 >                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
501 >                int spins = MAX_SPINS, h;
502 >                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
503 >                    if (spins >= 0) {
504 >                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
505 >                        if (r >= 0 && --spins == 0)
506 >                            Thread.yield();  // yield before block
507 >                    }
508 >                    else if (casHash(h, h | WAITING)) {
509 >                        synchronized (this) {
510 >                            if (tabAt(tab, i) == this &&
511 >                                (hash & WAITING) == WAITING) {
512 >                                try {
513 >                                    wait();
514 >                                } catch (InterruptedException ie) {
515 >                                    Thread.currentThread().interrupt();
516 >                                }
517 >                            }
518 >                            else
519 >                                notifyAll(); // possibly won race vs signaller
520 >                        }
521 >                        break;
522 >                    }
523 >                }
524 >            }
525 >        }
526 >
527 >        // Unsafe mechanics for casHash
528 >        private static final sun.misc.Unsafe UNSAFE;
529 >        private static final long hashOffset;
530 >
531 >        static {
532 >            try {
533 >                UNSAFE = getUnsafe();
534 >                Class<?> k = Node.class;
535 >                hashOffset = UNSAFE.objectFieldOffset
536 >                    (k.getDeclaredField("hash"));
537 >            } catch (Exception e) {
538 >                throw new Error(e);
539 >            }
540 >        }
541      }
542  
543 <    private static final void setTabAt(Node[] tab, int i, Node v) {
544 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
543 >    /* ---------------- TreeBins -------------- */
544 >
545 >    /**
546 >     * Nodes for use in TreeBins
547 >     */
548 >    static final class TreeNode extends Node {
549 >        TreeNode parent;  // red-black tree links
550 >        TreeNode left;
551 >        TreeNode right;
552 >        TreeNode prev;    // needed to unlink next upon deletion
553 >        boolean red;
554 >
555 >        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
556 >            super(hash, key, val, next);
557 >            this.parent = parent;
558 >        }
559      }
560  
561 <    /* ---------------- Access and update operations -------------- */
561 >    /**
562 >     * A specialized form of red-black tree for use in bins
563 >     * whose size exceeds a threshold.
564 >     *
565 >     * TreeBins use a special form of comparison for search and
566 >     * related operations (which is the main reason we cannot use
567 >     * existing collections such as TreeMaps). TreeBins contain
568 >     * Comparable elements, but may contain others, as well as
569 >     * elements that are Comparable but not necessarily Comparable<T>
570 >     * for the same T, so we cannot invoke compareTo among them. To
571 >     * handle this, the tree is ordered primarily by hash value, then
572 >     * by getClass().getName() order, and then by Comparator order
573 >     * among elements of the same class.  On lookup at a node, if
574 >     * non-Comparable, both left and right children may need to be
575 >     * searched in the case of tied hash values. (This corresponds to
576 >     * the full list search that would be necessary if all elements
577 >     * were non-Comparable and had tied hashes.)
578 >     *
579 >     * TreeBins also maintain a separate locking discipline than
580 >     * regular bins. Because they are forwarded via special MOVED
581 >     * nodes at bin heads (which can never change once established),
582 >     * we cannot use use those nodes as locks. Instead, TreeBin
583 >     * extends AbstractQueuedSynchronizer to support a simple form of
584 >     * read-write lock. For update operations and table validation,
585 >     * the exclusive form of lock behaves in the same way as bin-head
586 >     * locks. However, lookups use shared read-lock mechanics to allow
587 >     * multiple readers in the absence of writers.  Additionally,
588 >     * these lookups do not ever block: While the lock is not
589 >     * available, they proceed along the slow traversal path (via
590 >     * next-pointers) until the lock becomes available or the list is
591 >     * exhausted, whichever comes first. (These cases are not fast,
592 >     * but maximize aggregate expected throughput.)  The AQS mechanics
593 >     * for doing this are straightforward.  The lock state is held as
594 >     * AQS getState().  Read counts are negative; the write count (1)
595 >     * is positive.  There are no signalling preferences among readers
596 >     * and writers. Since we don't need to export full Lock API, we
597 >     * just override the minimal AQS methods and use them directly.
598 >     */
599 >    static final class TreeBin extends AbstractQueuedSynchronizer {
600 >        private static final long serialVersionUID = 2249069246763182397L;
601 >        TreeNode root;  // root of tree
602 >        TreeNode first; // head of next-pointer list
603  
604 <    /** Implements get and containsKey **/
605 <    private final Object internalGet(Object k) {
606 <        int h = spread(k.hashCode());
607 <        Node[] tab = table;
608 <        retry: while (tab != null) {
609 <            Node e = tabAt(tab, (tab.length - 1) & h);
337 <            while (e != null) {
338 <                int eh = e.hash;
339 <                if (eh == h) {
340 <                    Object ek = e.key, ev = e.val;
341 <                    if (ev != null && ek != null && (k == ek || k.equals(ek)))
342 <                        return ev;
343 <                }
344 <                if (eh < 0) { // bin was moved during resize
345 <                    tab = (Node[])e.key;
346 <                    continue retry;
347 <                }
348 <                e = e.next;
604 >        /* AQS overrides */
605 >        public final boolean isHeldExclusively() { return getState() > 0; }
606 >        public final boolean tryAcquire(int ignore) {
607 >            if (compareAndSetState(0, 1)) {
608 >                setExclusiveOwnerThread(Thread.currentThread());
609 >                return true;
610              }
611 <            break;
611 >            return false;
612 >        }
613 >        public final boolean tryRelease(int ignore) {
614 >            setExclusiveOwnerThread(null);
615 >            setState(0);
616 >            return true;
617 >        }
618 >        public final int tryAcquireShared(int ignore) {
619 >            for (int c;;) {
620 >                if ((c = getState()) > 0)
621 >                    return -1;
622 >                if (compareAndSetState(c, c -1))
623 >                    return 1;
624 >            }
625 >        }
626 >        public final boolean tryReleaseShared(int ignore) {
627 >            int c;
628 >            do {} while (!compareAndSetState(c = getState(), c + 1));
629 >            return c == -1;
630          }
352        return null;
353    }
631  
632 <    /** Implements put and putIfAbsent **/
633 <    private final Object internalPut(Object k, Object v, boolean replace) {
634 <        int h = spread(k.hashCode());
635 <        Object oldVal = null;  // the previous value or null if none
636 <        Node node = null;      // the node created if absent
637 <        Node[] tab = table;
638 <        for (;;) {
639 <            Node e; int i;
640 <            if (tab == null)
641 <                tab = grow(0);
642 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
643 <                if (node == null)
644 <                    node = new Node(h, k, v, null);
645 <                if (casTabAt(tab, i, null, node))
632 >        /**
633 >         * Return the TreeNode (or null if not found) for the given key
634 >         * starting at given root.
635 >         */
636 >        @SuppressWarnings("unchecked") // suppress Comparable cast warning
637 >        final TreeNode getTreeNode(int h, Object k, TreeNode p) {
638 >            Class<?> c = k.getClass();
639 >            while (p != null) {
640 >                int dir, ph;  Object pk; Class<?> pc; TreeNode r;
641 >                if (h < (ph = p.hash))
642 >                    dir = -1;
643 >                else if (h > ph)
644 >                    dir = 1;
645 >                else if ((pk = p.key) == k || k.equals(pk))
646 >                    return p;
647 >                else if (c != (pc = pk.getClass()))
648 >                    dir = c.getName().compareTo(pc.getName());
649 >                else if (k instanceof Comparable)
650 >                    dir = ((Comparable)k).compareTo((Comparable)pk);
651 >                else
652 >                    dir = 0;
653 >                TreeNode pr = p.right;
654 >                if (dir > 0)
655 >                    p = pr;
656 >                else if (dir == 0 && pr != null && h >= pr.hash &&
657 >                         (r = getTreeNode(h, k, pr)) != null)
658 >                    return r;
659 >                else
660 >                    p = p.left;
661 >            }
662 >            return null;
663 >        }
664 >
665 >        /**
666 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
667 >         * read-lock to call getTreeNode, but during failure to get
668 >         * lock, searches along next links.
669 >         */
670 >        final Object getValue(int h, Object k) {
671 >            Node r = null;
672 >            int c = getState(); // Must read lock state first
673 >            for (Node e = first; e != null; e = e.next) {
674 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
675 >                    try {
676 >                        r = getTreeNode(h, k, root);
677 >                    } finally {
678 >                        releaseShared(0);
679 >                    }
680                      break;
681 +                }
682 +                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
683 +                    r = e;
684 +                    break;
685 +                }
686 +                else
687 +                    c = getState();
688              }
689 <            else if (e.hash < 0)
690 <                tab = (Node[])e.key;
691 <            else {
692 <                boolean validated = false;
693 <                boolean checkSize = false;
694 <                synchronized(e) {
695 <                    Node first = e;
696 <                    for (;;) {
697 <                        Object ek, ev;
698 <                        if ((ev = e.val) == null)
689 >            return r == null ? null : r.val;
690 >        }
691 >
692 >        /**
693 >         * Find or add a node
694 >         * @return null if added
695 >         */
696 >        @SuppressWarnings("unchecked") // suppress Comparable cast warning
697 >        final TreeNode putTreeNode(int h, Object k, Object v) {
698 >            Class<?> c = k.getClass();
699 >            TreeNode p = root;
700 >            int dir = 0;
701 >            if (p != null) {
702 >                for (;;) {
703 >                    int ph;  Object pk; Class<?> pc; TreeNode r;
704 >                    if (h < (ph = p.hash))
705 >                        dir = -1;
706 >                    else if (h > ph)
707 >                        dir = 1;
708 >                    else if ((pk = p.key) == k || k.equals(pk))
709 >                        return p;
710 >                    else if (c != (pc = (pk = p.key).getClass()))
711 >                        dir = c.getName().compareTo(pc.getName());
712 >                    else if (k instanceof Comparable)
713 >                        dir = ((Comparable)k).compareTo((Comparable)pk);
714 >                    else
715 >                        dir = 0;
716 >                    TreeNode pr = p.right, pl;
717 >                    if (dir > 0) {
718 >                        if (pr == null)
719                              break;
720 <                        if (e.hash == h && (ek = e.key) != null &&
721 <                            (k == ek || k.equals(ek))) {
722 <                            if (tabAt(tab, i) == first) {
723 <                                validated = true;
724 <                                oldVal = ev;
725 <                                if (replace)
726 <                                    e.val = v;
720 >                        p = pr;
721 >                    }
722 >                    else if (dir == 0 && pr != null && h >= pr.hash &&
723 >                             (r = getTreeNode(h, k, pr)) != null)
724 >                        return r;
725 >                    else if ((pl = p.left) == null)
726 >                        break;
727 >                    else
728 >                        p = pl;
729 >                }
730 >            }
731 >            TreeNode f = first;
732 >            TreeNode r = first = new TreeNode(h, k, v, f, p);
733 >            if (p == null)
734 >                root = r;
735 >            else {
736 >                if (dir <= 0)
737 >                    p.left = r;
738 >                else
739 >                    p.right = r;
740 >                if (f != null)
741 >                    f.prev = r;
742 >                fixAfterInsertion(r);
743 >            }
744 >            return null;
745 >        }
746 >
747 >        /**
748 >         * Removes the given node, that must be present before this
749 >         * call.  This is messier than typical red-black deletion code
750 >         * because we cannot swap the contents of an interior node
751 >         * with a leaf successor that is pinned by "next" pointers
752 >         * that are accessible independently of lock. So instead we
753 >         * swap the tree linkages.
754 >         */
755 >        final void deleteTreeNode(TreeNode p) {
756 >            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
757 >            TreeNode pred = p.prev;
758 >            if (pred == null)
759 >                first = next;
760 >            else
761 >                pred.next = next;
762 >            if (next != null)
763 >                next.prev = pred;
764 >            TreeNode replacement;
765 >            TreeNode pl = p.left;
766 >            TreeNode pr = p.right;
767 >            if (pl != null && pr != null) {
768 >                TreeNode s = pr;
769 >                while (s.left != null) // find successor
770 >                    s = s.left;
771 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
772 >                TreeNode sr = s.right;
773 >                TreeNode pp = p.parent;
774 >                if (s == pr) { // p was s's direct parent
775 >                    p.parent = s;
776 >                    s.right = p;
777 >                }
778 >                else {
779 >                    TreeNode sp = s.parent;
780 >                    if ((p.parent = sp) != null) {
781 >                        if (s == sp.left)
782 >                            sp.left = p;
783 >                        else
784 >                            sp.right = p;
785 >                    }
786 >                    if ((s.right = pr) != null)
787 >                        pr.parent = s;
788 >                }
789 >                p.left = null;
790 >                if ((p.right = sr) != null)
791 >                    sr.parent = p;
792 >                if ((s.left = pl) != null)
793 >                    pl.parent = s;
794 >                if ((s.parent = pp) == null)
795 >                    root = s;
796 >                else if (p == pp.left)
797 >                    pp.left = s;
798 >                else
799 >                    pp.right = s;
800 >                replacement = sr;
801 >            }
802 >            else
803 >                replacement = (pl != null) ? pl : pr;
804 >            TreeNode pp = p.parent;
805 >            if (replacement == null) {
806 >                if (pp == null) {
807 >                    root = null;
808 >                    return;
809 >                }
810 >                replacement = p;
811 >            }
812 >            else {
813 >                replacement.parent = pp;
814 >                if (pp == null)
815 >                    root = replacement;
816 >                else if (p == pp.left)
817 >                    pp.left = replacement;
818 >                else
819 >                    pp.right = replacement;
820 >                p.left = p.right = p.parent = null;
821 >            }
822 >            if (!p.red)
823 >                fixAfterDeletion(replacement);
824 >            if (p == replacement && (pp = p.parent) != null) {
825 >                if (p == pp.left) // detach pointers
826 >                    pp.left = null;
827 >                else if (p == pp.right)
828 >                    pp.right = null;
829 >                p.parent = null;
830 >            }
831 >        }
832 >
833 >        // CLR code updated from pre-jdk-collections version at
834 >        // http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java
835 >
836 >        /** From CLR */
837 >        private void rotateLeft(TreeNode p) {
838 >            if (p != null) {
839 >                TreeNode r = p.right, pp, rl;
840 >                if ((rl = p.right = r.left) != null)
841 >                    rl.parent = p;
842 >                if ((pp = r.parent = p.parent) == null)
843 >                    root = r;
844 >                else if (pp.left == p)
845 >                    pp.left = r;
846 >                else
847 >                    pp.right = r;
848 >                r.left = p;
849 >                p.parent = r;
850 >            }
851 >        }
852 >
853 >        /** From CLR */
854 >        private void rotateRight(TreeNode p) {
855 >            if (p != null) {
856 >                TreeNode l = p.left, pp, lr;
857 >                if ((lr = p.left = l.right) != null)
858 >                    lr.parent = p;
859 >                if ((pp = l.parent = p.parent) == null)
860 >                    root = l;
861 >                else if (pp.right == p)
862 >                    pp.right = l;
863 >                else
864 >                    pp.left = l;
865 >                l.right = p;
866 >                p.parent = l;
867 >            }
868 >        }
869 >
870 >        /** From CLR */
871 >        private void fixAfterInsertion(TreeNode x) {
872 >            x.red = true;
873 >            TreeNode xp, xpp;
874 >            while (x != null && (xp = x.parent) != null && xp.red &&
875 >                   (xpp = xp.parent) != null) {
876 >                TreeNode xppl = xpp.left;
877 >                if (xp == xppl) {
878 >                    TreeNode y = xpp.right;
879 >                    if (y != null && y.red) {
880 >                        y.red = false;
881 >                        xp.red = false;
882 >                        xpp.red = true;
883 >                        x = xpp;
884 >                    }
885 >                    else {
886 >                        if (x == xp.right) {
887 >                            x = xp;
888 >                            rotateLeft(x);
889 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
890 >                        }
891 >                        if (xp != null) {
892 >                            xp.red = false;
893 >                            if (xpp != null) {
894 >                                xpp.red = true;
895 >                                rotateRight(xpp);
896                              }
390                            break;
897                          }
898 <                        Node last = e;
899 <                        if ((e = e.next) == null) {
900 <                            if (tabAt(tab, i) == first) {
901 <                                validated = true;
902 <                                if (node == null)
903 <                                    node = new Node(h, k, v, null);
904 <                                last.next = node;
905 <                                if (last != first)
906 <                                    checkSize = true;
898 >                    }
899 >                }
900 >                else {
901 >                    TreeNode y = xppl;
902 >                    if (y != null && y.red) {
903 >                        y.red = false;
904 >                        xp.red = false;
905 >                        xpp.red = true;
906 >                        x = xpp;
907 >                    }
908 >                    else {
909 >                        if (x == xp.left) {
910 >                            x = xp;
911 >                            rotateRight(x);
912 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
913 >                        }
914 >                        if (xp != null) {
915 >                            xp.red = false;
916 >                            if (xpp != null) {
917 >                                xpp.red = true;
918 >                                rotateLeft(xpp);
919                              }
402                            break;
920                          }
921                      }
922                  }
923 <                if (validated) {
924 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
925 <                        resizing == 0 && counter.sum() >= threshold)
926 <                        grow(0);
923 >            }
924 >            TreeNode r = root;
925 >            if (r != null && r.red)
926 >                r.red = false;
927 >        }
928 >
929 >        /** From CLR */
930 >        private void fixAfterDeletion(TreeNode x) {
931 >            while (x != null) {
932 >                TreeNode xp, xpl;
933 >                if (x.red || (xp = x.parent) == null) {
934 >                    x.red = false;
935                      break;
936                  }
937 +                if (x == (xpl = xp.left)) {
938 +                    TreeNode sib = xp.right;
939 +                    if (sib != null && sib.red) {
940 +                        sib.red = false;
941 +                        xp.red = true;
942 +                        rotateLeft(xp);
943 +                        sib = (xp = x.parent) == null ? null : xp.right;
944 +                    }
945 +                    if (sib == null)
946 +                        x = xp;
947 +                    else {
948 +                        TreeNode sl = sib.left, sr = sib.right;
949 +                        if ((sr == null || !sr.red) &&
950 +                            (sl == null || !sl.red)) {
951 +                            sib.red = true;
952 +                            x = xp;
953 +                        }
954 +                        else {
955 +                            if (sr == null || !sr.red) {
956 +                                if (sl != null)
957 +                                    sl.red = false;
958 +                                sib.red = true;
959 +                                rotateRight(sib);
960 +                                sib = (xp = x.parent) == null ? null : xp.right;
961 +                            }
962 +                            if (sib != null) {
963 +                                sib.red = (xp == null)? false : xp.red;
964 +                                if ((sr = sib.right) != null)
965 +                                    sr.red = false;
966 +                            }
967 +                            if (xp != null) {
968 +                                xp.red = false;
969 +                                rotateLeft(xp);
970 +                            }
971 +                            x = root;
972 +                        }
973 +                    }
974 +                }
975 +                else { // symmetric
976 +                    TreeNode sib = xpl;
977 +                    if (sib != null && sib.red) {
978 +                        sib.red = false;
979 +                        xp.red = true;
980 +                        rotateRight(xp);
981 +                        sib = (xp = x.parent) == null ? null : xp.left;
982 +                    }
983 +                    if (sib == null)
984 +                        x = xp;
985 +                    else {
986 +                        TreeNode sl = sib.left, sr = sib.right;
987 +                        if ((sl == null || !sl.red) &&
988 +                            (sr == null || !sr.red)) {
989 +                            sib.red = true;
990 +                            x = xp;
991 +                        }
992 +                        else {
993 +                            if (sl == null || !sl.red) {
994 +                                if (sr != null)
995 +                                    sr.red = false;
996 +                                sib.red = true;
997 +                                rotateLeft(sib);
998 +                                sib = (xp = x.parent) == null ? null : xp.left;
999 +                            }
1000 +                            if (sib != null) {
1001 +                                sib.red = (xp == null)? false : xp.red;
1002 +                                if ((sl = sib.left) != null)
1003 +                                    sl.red = false;
1004 +                            }
1005 +                            if (xp != null) {
1006 +                                xp.red = false;
1007 +                                rotateRight(xp);
1008 +                            }
1009 +                            x = root;
1010 +                        }
1011 +                    }
1012 +                }
1013              }
1014          }
1015 <        if (oldVal == null)
1016 <            counter.increment();
1017 <        return oldVal;
1015 >    }
1016 >
1017 >    /* ---------------- Collision reduction methods -------------- */
1018 >
1019 >    /**
1020 >     * Spreads higher bits to lower, and also forces top 2 bits to 0.
1021 >     * Because the table uses power-of-two masking, sets of hashes
1022 >     * that vary only in bits above the current mask will always
1023 >     * collide. (Among known examples are sets of Float keys holding
1024 >     * consecutive whole numbers in small tables.)  To counter this,
1025 >     * we apply a transform that spreads the impact of higher bits
1026 >     * downward. There is a tradeoff between speed, utility, and
1027 >     * quality of bit-spreading. Because many common sets of hashes
1028 >     * are already reaonably distributed across bits (so don't benefit
1029 >     * from spreading), and because we use trees to handle large sets
1030 >     * of collisions in bins, we don't need excessively high quality.
1031 >     */
1032 >    private static final int spread(int h) {
1033 >        h ^= (h >>> 18) ^ (h >>> 12);
1034 >        return (h ^ (h >>> 10)) & HASH_BITS;
1035      }
1036  
1037      /**
1038 <     * Covers the four public remove/replace methods: Replaces node
1039 <     * value with v, conditional upon match of cv if non-null.  If
1040 <     * resulting value is null, delete.
1038 >     * Replaces a list bin with a tree bin. Call only when locked.
1039 >     * Fails to replace if the given key is non-comparable or table
1040 >     * is, or needs, resizing.
1041 >     */
1042 >    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1043 >        if ((key instanceof Comparable) &&
1044 >            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1045 >            TreeBin t = new TreeBin();
1046 >            for (Node e = tabAt(tab, index); e != null; e = e.next)
1047 >                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1048 >            setTabAt(tab, index, new Node(MOVED, t, null, null));
1049 >        }
1050 >    }
1051 >
1052 >    /* ---------------- Internal access and update methods -------------- */
1053 >
1054 >    /** Implementation for get and containsKey */
1055 >    private final Object internalGet(Object k) {
1056 >        int h = spread(k.hashCode());
1057 >        retry: for (Node[] tab = table; tab != null;) {
1058 >            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1059 >            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1060 >                if ((eh = e.hash) == MOVED) {
1061 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1062 >                        return ((TreeBin)ek).getValue(h, k);
1063 >                    else {                        // restart with new table
1064 >                        tab = (Node[])ek;
1065 >                        continue retry;
1066 >                    }
1067 >                }
1068 >                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1069 >                         ((ek = e.key) == k || k.equals(ek)))
1070 >                    return ev;
1071 >            }
1072 >            break;
1073 >        }
1074 >        return null;
1075 >    }
1076 >
1077 >    /**
1078 >     * Implementation for the four public remove/replace methods:
1079 >     * Replaces node value with v, conditional upon match of cv if
1080 >     * non-null.  If resulting value is null, delete.
1081       */
1082      private final Object internalReplace(Object k, Object v, Object cv) {
1083          int h = spread(k.hashCode());
1084          Object oldVal = null;
1085 <        Node e; int i;
1086 <        Node[] tab = table;
1087 <        while (tab != null &&
1088 <               (e = tabAt(tab, i = (tab.length - 1) & h)) != null) {
1089 <            if (e.hash < 0)
1090 <                tab = (Node[])e.key;
1091 <            else {
1085 >        for (Node[] tab = table;;) {
1086 >            Node f; int i, fh; Object fk;
1087 >            if (tab == null ||
1088 >                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1089 >                break;
1090 >            else if ((fh = f.hash) == MOVED) {
1091 >                if ((fk = f.key) instanceof TreeBin) {
1092 >                    TreeBin t = (TreeBin)fk;
1093 >                    boolean validated = false;
1094 >                    boolean deleted = false;
1095 >                    t.acquire(0);
1096 >                    try {
1097 >                        if (tabAt(tab, i) == f) {
1098 >                            validated = true;
1099 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1100 >                            if (p != null) {
1101 >                                Object pv = p.val;
1102 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1103 >                                    oldVal = pv;
1104 >                                    if ((p.val = v) == null) {
1105 >                                        deleted = true;
1106 >                                        t.deleteTreeNode(p);
1107 >                                    }
1108 >                                }
1109 >                            }
1110 >                        }
1111 >                    } finally {
1112 >                        t.release(0);
1113 >                    }
1114 >                    if (validated) {
1115 >                        if (deleted)
1116 >                            counter.add(-1L);
1117 >                        break;
1118 >                    }
1119 >                }
1120 >                else
1121 >                    tab = (Node[])fk;
1122 >            }
1123 >            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1124 >                break;                          // rules out possible existence
1125 >            else if ((fh & LOCKED) != 0) {
1126 >                checkForResize();               // try resizing if can't get lock
1127 >                f.tryAwaitLock(tab, i);
1128 >            }
1129 >            else if (f.casHash(fh, fh | LOCKED)) {
1130                  boolean validated = false;
1131                  boolean deleted = false;
1132 <                synchronized(e) {
1133 <                    Node pred = null;
1134 <                    Node first = e;
1135 <                    for (;;) {
1136 <                        Object ek, ev;
1137 <                        if ((ev = e.val) == null)
1138 <                            break;
1139 <                        if (e.hash == h && (ek = e.key) != null &&
444 <                            (k == ek || k.equals(ek))) {
445 <                            if (tabAt(tab, i) == first) {
446 <                                validated = true;
1132 >                try {
1133 >                    if (tabAt(tab, i) == f) {
1134 >                        validated = true;
1135 >                        for (Node e = f, pred = null;;) {
1136 >                            Object ek, ev;
1137 >                            if ((e.hash & HASH_BITS) == h &&
1138 >                                ((ev = e.val) != null) &&
1139 >                                ((ek = e.key) == k || k.equals(ek))) {
1140                                  if (cv == null || cv == ev || cv.equals(ev)) {
1141                                      oldVal = ev;
1142                                      if ((e.val = v) == null) {
# Line 455 | Line 1148 | public class ConcurrentHashMapV8<K, V>
1148                                              setTabAt(tab, i, en);
1149                                      }
1150                                  }
1151 +                                break;
1152                              }
1153 <                            break;
1154 <                        }
1155 <                        pred = e;
462 <                        if ((e = e.next) == null) {
463 <                            if (tabAt(tab, i) == first)
464 <                                validated = true;
465 <                            break;
1153 >                            pred = e;
1154 >                            if ((e = e.next) == null)
1155 >                                break;
1156                          }
1157                      }
1158 +                } finally {
1159 +                    if (!f.casHash(fh | LOCKED, fh)) {
1160 +                        f.hash = fh;
1161 +                        synchronized (f) { f.notifyAll(); };
1162 +                    }
1163                  }
1164                  if (validated) {
1165                      if (deleted)
1166 <                        counter.decrement();
1166 >                        counter.add(-1L);
1167                      break;
1168                  }
1169              }
# Line 476 | Line 1171 | public class ConcurrentHashMapV8<K, V>
1171          return oldVal;
1172      }
1173  
1174 <    /** Implements computeIfAbsent */
1175 <    @SuppressWarnings("unchecked")
1176 <    private final V computeVal(K k, MappingFunction<? super K, ? extends V> f) {
1174 >    /*
1175 >     * Internal versions of the five insertion methods, each a
1176 >     * little more complicated than the last. All have
1177 >     * the same basic structure as the first (internalPut):
1178 >     *  1. If table uninitialized, create
1179 >     *  2. If bin empty, try to CAS new node
1180 >     *  3. If bin stale, use new table
1181 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1182 >     *  5. Lock and validate; if valid, scan and add or update
1183 >     *
1184 >     * The others interweave other checks and/or alternative actions:
1185 >     *  * Plain put checks for and performs resize after insertion.
1186 >     *  * putIfAbsent prescans for mapping without lock (and fails to add
1187 >     *    if present), which also makes pre-emptive resize checks worthwhile.
1188 >     *  * computeIfAbsent extends form used in putIfAbsent with additional
1189 >     *    mechanics to deal with, calls, potential exceptions and null
1190 >     *    returns from function call.
1191 >     *  * compute uses the same function-call mechanics, but without
1192 >     *    the prescans
1193 >     *  * putAll attempts to pre-allocate enough table space
1194 >     *    and more lazily performs count updates and checks.
1195 >     *
1196 >     * Someday when details settle down a bit more, it might be worth
1197 >     * some factoring to reduce sprawl.
1198 >     */
1199 >
1200 >    /** Implementation for put */
1201 >    private final Object internalPut(Object k, Object v) {
1202          int h = spread(k.hashCode());
1203 <        V val = null;
1204 <        Node node = null;
1205 <        boolean added = false;
486 <        boolean validated = false;
487 <        Node[] tab = table;
488 <        do {
489 <            Node e; int i;
1203 >        int count = 0;
1204 >        for (Node[] tab = table;;) {
1205 >            int i; Node f; int fh; Object fk;
1206              if (tab == null)
1207 <                tab = grow(0);
1208 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1209 <                if (node == null)
1210 <                    node = new Node(h, k, null, null);
1211 <                synchronized(node) {
1212 <                    if (casTabAt(tab, i, null, node)) {
1213 <                        validated = true;
1214 <                        try {
1215 <                            val = f.map(k);
1216 <                            if (val != null) {
1217 <                                node.val = val;
1218 <                                added = true;
1207 >                tab = initTable();
1208 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1209 >                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1210 >                    break;                   // no lock when adding to empty bin
1211 >            }
1212 >            else if ((fh = f.hash) == MOVED) {
1213 >                if ((fk = f.key) instanceof TreeBin) {
1214 >                    TreeBin t = (TreeBin)fk;
1215 >                    Object oldVal = null;
1216 >                    t.acquire(0);
1217 >                    try {
1218 >                        if (tabAt(tab, i) == f) {
1219 >                            count = 2;
1220 >                            TreeNode p = t.putTreeNode(h, k, v);
1221 >                            if (p != null) {
1222 >                                oldVal = p.val;
1223 >                                p.val = v;
1224                              }
504                        } finally {
505                            if (!added)
506                                setTabAt(tab, i, null);
1225                          }
1226 +                    } finally {
1227 +                        t.release(0);
1228 +                    }
1229 +                    if (count != 0) {
1230 +                        if (oldVal != null)
1231 +                            return oldVal;
1232 +                        break;
1233 +                    }
1234 +                }
1235 +                else
1236 +                    tab = (Node[])fk;
1237 +            }
1238 +            else if ((fh & LOCKED) != 0) {
1239 +                checkForResize();
1240 +                f.tryAwaitLock(tab, i);
1241 +            }
1242 +            else if (f.casHash(fh, fh | LOCKED)) {
1243 +                Object oldVal = null;
1244 +                try {                        // needed in case equals() throws
1245 +                    if (tabAt(tab, i) == f) {
1246 +                        count = 1;
1247 +                        for (Node e = f;; ++count) {
1248 +                            Object ek, ev;
1249 +                            if ((e.hash & HASH_BITS) == h &&
1250 +                                (ev = e.val) != null &&
1251 +                                ((ek = e.key) == k || k.equals(ek))) {
1252 +                                oldVal = ev;
1253 +                                e.val = v;
1254 +                                break;
1255 +                            }
1256 +                            Node last = e;
1257 +                            if ((e = e.next) == null) {
1258 +                                last.next = new Node(h, k, v, null);
1259 +                                if (count >= TREE_THRESHOLD)
1260 +                                    replaceWithTreeBin(tab, i, k);
1261 +                                break;
1262 +                            }
1263 +                        }
1264 +                    }
1265 +                } finally {                  // unlock and signal if needed
1266 +                    if (!f.casHash(fh | LOCKED, fh)) {
1267 +                        f.hash = fh;
1268 +                        synchronized (f) { f.notifyAll(); };
1269 +                    }
1270 +                }
1271 +                if (count != 0) {
1272 +                    if (oldVal != null)
1273 +                        return oldVal;
1274 +                    if (tab.length <= 64)
1275 +                        count = 2;
1276 +                    break;
1277 +                }
1278 +            }
1279 +        }
1280 +        counter.add(1L);
1281 +        if (count > 1)
1282 +            checkForResize();
1283 +        return null;
1284 +    }
1285 +
1286 +    /** Implementation for putIfAbsent */
1287 +    private final Object internalPutIfAbsent(Object k, Object v) {
1288 +        int h = spread(k.hashCode());
1289 +        int count = 0;
1290 +        for (Node[] tab = table;;) {
1291 +            int i; Node f; int fh; Object fk, fv;
1292 +            if (tab == null)
1293 +                tab = initTable();
1294 +            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1295 +                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1296 +                    break;
1297 +            }
1298 +            else if ((fh = f.hash) == MOVED) {
1299 +                if ((fk = f.key) instanceof TreeBin) {
1300 +                    TreeBin t = (TreeBin)fk;
1301 +                    Object oldVal = null;
1302 +                    t.acquire(0);
1303 +                    try {
1304 +                        if (tabAt(tab, i) == f) {
1305 +                            count = 2;
1306 +                            TreeNode p = t.putTreeNode(h, k, v);
1307 +                            if (p != null)
1308 +                                oldVal = p.val;
1309 +                        }
1310 +                    } finally {
1311 +                        t.release(0);
1312 +                    }
1313 +                    if (count != 0) {
1314 +                        if (oldVal != null)
1315 +                            return oldVal;
1316 +                        break;
1317                      }
1318                  }
1319 +                else
1320 +                    tab = (Node[])fk;
1321              }
1322 <            else if (e.hash < 0)
1323 <                tab = (Node[])e.key;
1322 >            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1323 >                     ((fk = f.key) == k || k.equals(fk)))
1324 >                return fv;
1325              else {
1326 <                boolean checkSize = false;
1327 <                synchronized(e) {
1328 <                    Node first = e;
517 <                    for (;;) {
1326 >                Node g = f.next;
1327 >                if (g != null) { // at least 2 nodes -- search and maybe resize
1328 >                    for (Node e = g;;) {
1329                          Object ek, ev;
1330 <                        if ((ev = e.val) == null)
1330 >                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1331 >                            ((ek = e.key) == k || k.equals(ek)))
1332 >                            return ev;
1333 >                        if ((e = e.next) == null) {
1334 >                            checkForResize();
1335                              break;
1336 <                        if (e.hash == h && (ek = e.key) != null &&
1337 <                            (k == ek || k.equals(ek))) {
1338 <                            if (tabAt(tab, i) == first) {
1339 <                                validated = true;
1340 <                                val = (V)ev;
1336 >                        }
1337 >                    }
1338 >                }
1339 >                if (((fh = f.hash) & LOCKED) != 0) {
1340 >                    checkForResize();
1341 >                    f.tryAwaitLock(tab, i);
1342 >                }
1343 >                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1344 >                    Object oldVal = null;
1345 >                    try {
1346 >                        if (tabAt(tab, i) == f) {
1347 >                            count = 1;
1348 >                            for (Node e = f;; ++count) {
1349 >                                Object ek, ev;
1350 >                                if ((e.hash & HASH_BITS) == h &&
1351 >                                    (ev = e.val) != null &&
1352 >                                    ((ek = e.key) == k || k.equals(ek))) {
1353 >                                    oldVal = ev;
1354 >                                    break;
1355 >                                }
1356 >                                Node last = e;
1357 >                                if ((e = e.next) == null) {
1358 >                                    last.next = new Node(h, k, v, null);
1359 >                                    if (count >= TREE_THRESHOLD)
1360 >                                        replaceWithTreeBin(tab, i, k);
1361 >                                    break;
1362 >                                }
1363                              }
527                            break;
1364                          }
1365 <                        Node last = e;
1365 >                    } finally {
1366 >                        if (!f.casHash(fh | LOCKED, fh)) {
1367 >                            f.hash = fh;
1368 >                            synchronized (f) { f.notifyAll(); };
1369 >                        }
1370 >                    }
1371 >                    if (count != 0) {
1372 >                        if (oldVal != null)
1373 >                            return oldVal;
1374 >                        if (tab.length <= 64)
1375 >                            count = 2;
1376 >                        break;
1377 >                    }
1378 >                }
1379 >            }
1380 >        }
1381 >        counter.add(1L);
1382 >        if (count > 1)
1383 >            checkForResize();
1384 >        return null;
1385 >    }
1386 >
1387 >    /** Implementation for computeIfAbsent */
1388 >    private final Object internalComputeIfAbsent(K k,
1389 >                                                 MappingFunction<? super K, ?> mf) {
1390 >        int h = spread(k.hashCode());
1391 >        Object val = null;
1392 >        int count = 0;
1393 >        for (Node[] tab = table;;) {
1394 >            Node f; int i, fh; Object fk, fv;
1395 >            if (tab == null)
1396 >                tab = initTable();
1397 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1398 >                Node node = new Node(fh = h | LOCKED, k, null, null);
1399 >                if (casTabAt(tab, i, null, node)) {
1400 >                    count = 1;
1401 >                    try {
1402 >                        if ((val = mf.map(k)) != null)
1403 >                            node.val = val;
1404 >                    } finally {
1405 >                        if (val == null)
1406 >                            setTabAt(tab, i, null);
1407 >                        if (!node.casHash(fh, h)) {
1408 >                            node.hash = h;
1409 >                            synchronized (node) { node.notifyAll(); };
1410 >                        }
1411 >                    }
1412 >                }
1413 >                if (count != 0)
1414 >                    break;
1415 >            }
1416 >            else if ((fh = f.hash) == MOVED) {
1417 >                if ((fk = f.key) instanceof TreeBin) {
1418 >                    TreeBin t = (TreeBin)fk;
1419 >                    boolean added = false;
1420 >                    t.acquire(0);
1421 >                    try {
1422 >                        if (tabAt(tab, i) == f) {
1423 >                            count = 1;
1424 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1425 >                            if (p != null)
1426 >                                val = p.val;
1427 >                            else if ((val = mf.map(k)) != null) {
1428 >                                added = true;
1429 >                                count = 2;
1430 >                                t.putTreeNode(h, k, val);
1431 >                            }
1432 >                        }
1433 >                    } finally {
1434 >                        t.release(0);
1435 >                    }
1436 >                    if (count != 0) {
1437 >                        if (!added)
1438 >                            return val;
1439 >                        break;
1440 >                    }
1441 >                }
1442 >                else
1443 >                    tab = (Node[])fk;
1444 >            }
1445 >            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1446 >                     ((fk = f.key) == k || k.equals(fk)))
1447 >                return fv;
1448 >            else {
1449 >                Node g = f.next;
1450 >                if (g != null) {
1451 >                    for (Node e = g;;) {
1452 >                        Object ek, ev;
1453 >                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1454 >                            ((ek = e.key) == k || k.equals(ek)))
1455 >                            return ev;
1456                          if ((e = e.next) == null) {
1457 <                            if (tabAt(tab, i) == first) {
1458 <                                validated = true;
1459 <                                if ((val = f.map(k)) != null) {
1460 <                                    if (node == null)
1461 <                                        node = new Node(h, k, val, null);
1462 <                                    else
1463 <                                        node.val = val;
1464 <                                    last.next = node;
1465 <                                    if (last != first)
1466 <                                        checkSize = true;
1467 <                                    added = true;
1457 >                            checkForResize();
1458 >                            break;
1459 >                        }
1460 >                    }
1461 >                }
1462 >                if (((fh = f.hash) & LOCKED) != 0) {
1463 >                    checkForResize();
1464 >                    f.tryAwaitLock(tab, i);
1465 >                }
1466 >                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1467 >                    boolean added = false;
1468 >                    try {
1469 >                        if (tabAt(tab, i) == f) {
1470 >                            count = 1;
1471 >                            for (Node e = f;; ++count) {
1472 >                                Object ek, ev;
1473 >                                if ((e.hash & HASH_BITS) == h &&
1474 >                                    (ev = e.val) != null &&
1475 >                                    ((ek = e.key) == k || k.equals(ek))) {
1476 >                                    val = ev;
1477 >                                    break;
1478 >                                }
1479 >                                Node last = e;
1480 >                                if ((e = e.next) == null) {
1481 >                                    if ((val = mf.map(k)) != null) {
1482 >                                        added = true;
1483 >                                        last.next = new Node(h, k, val, null);
1484 >                                        if (count >= TREE_THRESHOLD)
1485 >                                            replaceWithTreeBin(tab, i, k);
1486 >                                    }
1487 >                                    break;
1488                                  }
1489                              }
544                            break;
1490                          }
1491 +                    } finally {
1492 +                        if (!f.casHash(fh | LOCKED, fh)) {
1493 +                            f.hash = fh;
1494 +                            synchronized (f) { f.notifyAll(); };
1495 +                        }
1496 +                    }
1497 +                    if (count != 0) {
1498 +                        if (!added)
1499 +                            return val;
1500 +                        if (tab.length <= 64)
1501 +                            count = 2;
1502 +                        break;
1503                      }
1504                  }
1505 <                if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1506 <                    resizing == 0 && counter.sum() >= threshold)
1507 <                    grow(0);
1508 <            }
1509 <        } while (!validated);
1510 <        if (added)
1511 <            counter.increment();
1505 >            }
1506 >        }
1507 >        if (val == null)
1508 >            throw new NullPointerException();
1509 >        counter.add(1L);
1510 >        if (count > 1)
1511 >            checkForResize();
1512          return val;
1513      }
1514  
1515 <    /*
1516 <     * Reclassifies nodes in each bin to new table.  Because we are
1517 <     * using power-of-two expansion, the elements from each bin must
1518 <     * either stay at same index, or move with a power of two
1519 <     * offset. We eliminate unnecessary node creation by catching
1520 <     * cases where old nodes can be reused because their next fields
1521 <     * won't change.  Statistically, at the default threshold, only
1522 <     * about one-sixth of them need cloning when a table doubles. The
1523 <     * nodes they replace will be garbage collectable as soon as they
1524 <     * are no longer referenced by any reader thread that may be in
1525 <     * the midst of concurrently traversing table.
1526 <     *
1527 <     * Transfers are done from the bottom up to preserve iterator
1528 <     * traversability. On each step, the old bin is locked,
1529 <     * moved/copied, and then replaced with a forwarding node.
1530 <     */
1531 <    private static final void transfer(Node[] tab, Node[] nextTab) {
1532 <        int n = tab.length;
1533 <        int mask = nextTab.length - 1;
1534 <        Node fwd = new Node(MOVED, nextTab, null, null);
1535 <        for (int i = n - 1; i >= 0; --i) {
1536 <            for (Node e;;) {
1537 <                if ((e = tabAt(tab, i)) == null) {
1538 <                    if (casTabAt(tab, i, e, fwd))
1539 <                        break;
1515 >    /** Implementation for compute */
1516 >    @SuppressWarnings("unchecked")
1517 >    private final Object internalCompute(K k,
1518 >                                         RemappingFunction<? super K, V> mf) {
1519 >        int h = spread(k.hashCode());
1520 >        Object val = null;
1521 >        boolean added = false;
1522 >        int count = 0;
1523 >        for (Node[] tab = table;;) {
1524 >            Node f; int i, fh; Object fk;
1525 >            if (tab == null)
1526 >                tab = initTable();
1527 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1528 >                Node node = new Node(fh = h | LOCKED, k, null, null);
1529 >                if (casTabAt(tab, i, null, node)) {
1530 >                    try {
1531 >                        count = 1;
1532 >                        if ((val = mf.remap(k, null)) != null) {
1533 >                            node.val = val;
1534 >                            added = true;
1535 >                        }
1536 >                    } finally {
1537 >                        if (!added)
1538 >                            setTabAt(tab, i, null);
1539 >                        if (!node.casHash(fh, h)) {
1540 >                            node.hash = h;
1541 >                            synchronized (node) { node.notifyAll(); };
1542 >                        }
1543 >                    }
1544                  }
1545 <                else {
1546 <                    boolean validated = false;
1547 <                    synchronized(e) {
1548 <                        int idx = e.hash & mask;
1549 <                        Node lastRun = e;
1550 <                        for (Node p = e.next; p != null; p = p.next) {
1551 <                            int j = p.hash & mask;
1552 <                            if (j != idx) {
1553 <                                idx = j;
1554 <                                lastRun = p;
1545 >                if (count != 0)
1546 >                    break;
1547 >            }
1548 >            else if ((fh = f.hash) == MOVED) {
1549 >                if ((fk = f.key) instanceof TreeBin) {
1550 >                    TreeBin t = (TreeBin)fk;
1551 >                    t.acquire(0);
1552 >                    try {
1553 >                        if (tabAt(tab, i) == f) {
1554 >                            count = 1;
1555 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1556 >                            Object pv = (p == null)? null : p.val;
1557 >                            if ((val = mf.remap(k, (V)pv)) != null) {
1558 >                                if (p != null)
1559 >                                    p.val = val;
1560 >                                else {
1561 >                                    count = 2;
1562 >                                    added = true;
1563 >                                    t.putTreeNode(h, k, val);
1564 >                                }
1565                              }
1566                          }
1567 <                        if (tabAt(tab, i) == e) {
1568 <                            validated = true;
1569 <                            setTabAt(nextTab, idx, lastRun);
1570 <                            for (Node p = e; p != lastRun; p = p.next) {
1571 <                                int h = p.hash;
1572 <                                int j = h & mask;
1573 <                                Object pk = p.key, pv = p.val;
1574 <                                Node r = tabAt(nextTab, j);
1575 <                                setTabAt(nextTab, j, new Node(h, pk, pv, r));
1567 >                    } finally {
1568 >                        t.release(0);
1569 >                    }
1570 >                    if (count != 0)
1571 >                        break;
1572 >                }
1573 >                else
1574 >                    tab = (Node[])fk;
1575 >            }
1576 >            else if ((fh & LOCKED) != 0) {
1577 >                checkForResize();
1578 >                f.tryAwaitLock(tab, i);
1579 >            }
1580 >            else if (f.casHash(fh, fh | LOCKED)) {
1581 >                try {
1582 >                    if (tabAt(tab, i) == f) {
1583 >                        count = 1;
1584 >                        for (Node e = f;; ++count) {
1585 >                            Object ek, ev;
1586 >                            if ((e.hash & HASH_BITS) == h &&
1587 >                                (ev = e.val) != null &&
1588 >                                ((ek = e.key) == k || k.equals(ek))) {
1589 >                                val = mf.remap(k, (V)ev);
1590 >                                if (val != null)
1591 >                                    e.val = val;
1592 >                                break;
1593 >                            }
1594 >                            Node last = e;
1595 >                            if ((e = e.next) == null) {
1596 >                                if ((val = mf.remap(k, null)) != null) {
1597 >                                    last.next = new Node(h, k, val, null);
1598 >                                    added = true;
1599 >                                    if (count >= TREE_THRESHOLD)
1600 >                                        replaceWithTreeBin(tab, i, k);
1601 >                                }
1602 >                                break;
1603                              }
606                            setTabAt(tab, i, fwd);
1604                          }
1605                      }
1606 <                    if (validated)
1607 <                        break;
1606 >                } finally {
1607 >                    if (!f.casHash(fh | LOCKED, fh)) {
1608 >                        f.hash = fh;
1609 >                        synchronized (f) { f.notifyAll(); };
1610 >                    }
1611 >                }
1612 >                if (count != 0) {
1613 >                    if (tab.length <= 64)
1614 >                        count = 2;
1615 >                    break;
1616                  }
1617              }
1618          }
1619 +        if (val == null)
1620 +            throw new NullPointerException();
1621 +        if (added) {
1622 +            counter.add(1L);
1623 +            if (count > 1)
1624 +                checkForResize();
1625 +        }
1626 +        return val;
1627      }
1628  
1629 <    /**
1630 <     * If not already resizing, initializes or creates next table and
1631 <     * transfers bins. Rechecks occupancy after a transfer to see if
1632 <     * another resize is already needed because resizings are lagging
1633 <     * additions.
1634 <     *
1635 <     * @param sizeHint overridden capacity target (nonzero only from putAll)
1636 <     * @return current table
1637 <     */
1638 <    private final Node[] grow(int sizeHint) {
1639 <        Node[] tab;
1640 <        if (resizing == 0 &&
1641 <            UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) {
1642 <            try {
1643 <                for (;;) {
1644 <                    int cap, n;
1645 <                    if ((tab = table) == null) {
1646 <                        int c = initCap;
1647 <                        if (c < sizeHint)
1648 <                            c = sizeHint;
1649 <                        if (c == DEFAULT_CAPACITY)
1650 <                            cap = c;
638 <                        else if (c >= MAXIMUM_CAPACITY)
639 <                            cap = MAXIMUM_CAPACITY;
640 <                        else {
641 <                            cap = MINIMUM_CAPACITY;
642 <                            while (cap < c)
643 <                                cap <<= 1;
1629 >    /** Implementation for putAll */
1630 >    private final void internalPutAll(Map<?, ?> m) {
1631 >        tryPresize(m.size());
1632 >        long delta = 0L;     // number of uncommitted additions
1633 >        boolean npe = false; // to throw exception on exit for nulls
1634 >        try {                // to clean up counts on other exceptions
1635 >            for (Map.Entry<?, ?> entry : m.entrySet()) {
1636 >                Object k, v;
1637 >                if (entry == null || (k = entry.getKey()) == null ||
1638 >                    (v = entry.getValue()) == null) {
1639 >                    npe = true;
1640 >                    break;
1641 >                }
1642 >                int h = spread(k.hashCode());
1643 >                for (Node[] tab = table;;) {
1644 >                    int i; Node f; int fh; Object fk;
1645 >                    if (tab == null)
1646 >                        tab = initTable();
1647 >                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1648 >                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1649 >                            ++delta;
1650 >                            break;
1651                          }
1652                      }
1653 <                    else if ((n = tab.length) < MAXIMUM_CAPACITY &&
1654 <                             (sizeHint <= 0 || n < sizeHint))
1655 <                        cap = n << 1;
1656 <                    else
1657 <                        break;
1658 <                    threshold = (int)(cap * loadFactor) - THRESHOLD_OFFSET;
1659 <                    Node[] nextTab = new Node[cap];
1660 <                    if (tab != null)
1661 <                        transfer(tab, nextTab);
1662 <                    table = nextTab;
1663 <                    if (tab == null || counter.sum() < threshold) {
1664 <                        tab = nextTab;
1665 <                        break;
1653 >                    else if ((fh = f.hash) == MOVED) {
1654 >                        if ((fk = f.key) instanceof TreeBin) {
1655 >                            TreeBin t = (TreeBin)fk;
1656 >                            boolean validated = false;
1657 >                            t.acquire(0);
1658 >                            try {
1659 >                                if (tabAt(tab, i) == f) {
1660 >                                    validated = true;
1661 >                                    TreeNode p = t.getTreeNode(h, k, t.root);
1662 >                                    if (p != null)
1663 >                                        p.val = v;
1664 >                                    else {
1665 >                                        t.putTreeNode(h, k, v);
1666 >                                        ++delta;
1667 >                                    }
1668 >                                }
1669 >                            } finally {
1670 >                                t.release(0);
1671 >                            }
1672 >                            if (validated)
1673 >                                break;
1674 >                        }
1675 >                        else
1676 >                            tab = (Node[])fk;
1677 >                    }
1678 >                    else if ((fh & LOCKED) != 0) {
1679 >                        counter.add(delta);
1680 >                        delta = 0L;
1681 >                        checkForResize();
1682 >                        f.tryAwaitLock(tab, i);
1683 >                    }
1684 >                    else if (f.casHash(fh, fh | LOCKED)) {
1685 >                        int count = 0;
1686 >                        try {
1687 >                            if (tabAt(tab, i) == f) {
1688 >                                count = 1;
1689 >                                for (Node e = f;; ++count) {
1690 >                                    Object ek, ev;
1691 >                                    if ((e.hash & HASH_BITS) == h &&
1692 >                                        (ev = e.val) != null &&
1693 >                                        ((ek = e.key) == k || k.equals(ek))) {
1694 >                                        e.val = v;
1695 >                                        break;
1696 >                                    }
1697 >                                    Node last = e;
1698 >                                    if ((e = e.next) == null) {
1699 >                                        ++delta;
1700 >                                        last.next = new Node(h, k, v, null);
1701 >                                        if (count >= TREE_THRESHOLD)
1702 >                                            replaceWithTreeBin(tab, i, k);
1703 >                                        break;
1704 >                                    }
1705 >                                }
1706 >                            }
1707 >                        } finally {
1708 >                            if (!f.casHash(fh | LOCKED, fh)) {
1709 >                                f.hash = fh;
1710 >                                synchronized (f) { f.notifyAll(); };
1711 >                            }
1712 >                        }
1713 >                        if (count != 0) {
1714 >                            if (count > 1) {
1715 >                                counter.add(delta);
1716 >                                delta = 0L;
1717 >                                checkForResize();
1718 >                            }
1719 >                            break;
1720 >                        }
1721                      }
1722                  }
661            } finally {
662                resizing = 0;
1723              }
1724 +        } finally {
1725 +            if (delta != 0)
1726 +                counter.add(delta);
1727          }
1728 <        else if ((tab = table) == null)
1729 <            Thread.yield(); // lost initialization race; just spin
667 <        return tab;
1728 >        if (npe)
1729 >            throw new NullPointerException();
1730      }
1731  
1732 +    /* ---------------- Table Initialization and Resizing -------------- */
1733 +
1734      /**
1735 <     * Implements putAll and constructor with Map argument. Tries to
1736 <     * first override initial capacity or grow (once) based on map
673 <     * size to pre-allocate table space.
1735 >     * Returns a power of two table size for the given desired capacity.
1736 >     * See Hackers Delight, sec 3.2
1737       */
1738 <    private final void internalPutAll(Map<? extends K, ? extends V> m) {
1739 <        int s = m.size();
1740 <        grow((s >= (MAXIMUM_CAPACITY >>> 1))? s : s + (s >>> 1));
1741 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
1742 <            Object k = e.getKey();
1743 <            Object v = e.getValue();
1744 <            if (k == null || v == null)
1745 <                throw new NullPointerException();
683 <            internalPut(k, v, true);
684 <        }
1738 >    private static final int tableSizeFor(int c) {
1739 >        int n = c - 1;
1740 >        n |= n >>> 1;
1741 >        n |= n >>> 2;
1742 >        n |= n >>> 4;
1743 >        n |= n >>> 8;
1744 >        n |= n >>> 16;
1745 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1746      }
1747  
1748      /**
1749 <     * Implements clear. Steps through each bin, removing all nodes.
1749 >     * Initializes table, using the size recorded in sizeCtl.
1750       */
1751 <    private final void internalClear() {
1752 <        long delta = 0L; // negative of number of deletions
1753 <        int i = 0;
1754 <        Node[] tab = table;
1755 <        while (tab != null && i < tab.length) {
1756 <            Node e = tabAt(tab, i);
1757 <            if (e == null)
1758 <                ++i;
1759 <            else if (e.hash < 0)
1760 <                tab = (Node[])e.key;
1761 <            else {
701 <                boolean validated = false;
702 <                synchronized(e) {
703 <                    if (tabAt(tab, i) == e) {
704 <                        validated = true;
705 <                        do {
706 <                            if (e.val != null) {
707 <                                e.val = null;
708 <                                --delta;
709 <                            }
710 <                        } while ((e = e.next) != null);
711 <                        setTabAt(tab, i, null);
1751 >    private final Node[] initTable() {
1752 >        Node[] tab; int sc;
1753 >        while ((tab = table) == null) {
1754 >            if ((sc = sizeCtl) < 0)
1755 >                Thread.yield(); // lost initialization race; just spin
1756 >            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1757 >                try {
1758 >                    if ((tab = table) == null) {
1759 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1760 >                        tab = table = new Node[n];
1761 >                        sc = n - (n >>> 2);
1762                      }
1763 +                } finally {
1764 +                    sizeCtl = sc;
1765                  }
1766 <                if (validated)
715 <                    ++i;
1766 >                break;
1767              }
1768          }
1769 <        counter.add(delta);
1769 >        return tab;
1770      }
1771  
1772      /**
1773 <     * Base class for key, value, and entry iterators, plus internal
1774 <     * implementations of public traversal-based methods, to avoid
1775 <     * duplicating traversal code.
1776 <     */
1777 <    class HashIterator {
1778 <        private Node next;          // the next entry to return
1779 <        private Node[] tab;         // current table; updated if resized
1780 <        private Node lastReturned;  // the last entry returned, for remove
1781 <        private Object nextVal;     // cached value of next
1782 <        private int index;          // index of bin to use next
1783 <        private int baseIndex;      // current index of initial table
1784 <        private final int baseSize; // initial table size
1785 <
1786 <        HashIterator() {
1787 <            Node[] t = tab = table;
1788 <            if (t == null)
1789 <                baseSize = 0;
1790 <            else {
740 <                baseSize = t.length;
741 <                advance(null);
1773 >     * If table is too small and not already resizing, creates next
1774 >     * table and transfers bins.  Rechecks occupancy after a transfer
1775 >     * to see if another resize is already needed because resizings
1776 >     * are lagging additions.
1777 >     */
1778 >    private final void checkForResize() {
1779 >        Node[] tab; int n, sc;
1780 >        while ((tab = table) != null &&
1781 >               (n = tab.length) < MAXIMUM_CAPACITY &&
1782 >               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1783 >               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1784 >            try {
1785 >                if (tab == table) {
1786 >                    table = rebuild(tab);
1787 >                    sc = (n << 1) - (n >>> 1);
1788 >                }
1789 >            } finally {
1790 >                sizeCtl = sc;
1791              }
1792          }
1793 +    }
1794  
1795 <        public final boolean hasNext()         { return next != null; }
1796 <        public final boolean hasMoreElements() { return next != null; }
1795 >    /**
1796 >     * Tries to presize table to accommodate the given number of elements.
1797 >     *
1798 >     * @param size number of elements (doesn't need to be perfectly accurate)
1799 >     */
1800 >    private final void tryPresize(int size) {
1801 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1802 >            tableSizeFor(size + (size >>> 1) + 1);
1803 >        int sc;
1804 >        while ((sc = sizeCtl) >= 0) {
1805 >            Node[] tab = table; int n;
1806 >            if (tab == null || (n = tab.length) == 0) {
1807 >                n = (sc > c) ? sc : c;
1808 >                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1809 >                    try {
1810 >                        if (table == tab) {
1811 >                            table = new Node[n];
1812 >                            sc = n - (n >>> 2);
1813 >                        }
1814 >                    } finally {
1815 >                        sizeCtl = sc;
1816 >                    }
1817 >                }
1818 >            }
1819 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1820 >                break;
1821 >            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1822 >                try {
1823 >                    if (table == tab) {
1824 >                        table = rebuild(tab);
1825 >                        sc = (n << 1) - (n >>> 1);
1826 >                    }
1827 >                } finally {
1828 >                    sizeCtl = sc;
1829 >                }
1830 >            }
1831 >        }
1832 >    }
1833  
1834 <        /**
1835 <         * Advances next.  Normally, iteration proceeds bin-by-bin
1836 <         * traversing lists.  However, if the table has been resized,
1837 <         * then all future steps must traverse both the bin at the
1838 <         * current index as well as at (index + baseSize); and so on
1839 <         * for further resizings. To paranoically cope with potential
1840 <         * (improper) sharing of iterators across threads, table reads
1841 <         * are bounds-checked.
1842 <         */
1843 <        final void advance(Node e) {
1844 <            for (;;) {
1845 <                Node[] t; int i; // for bounds checks
1846 <                if (e != null) {
1847 <                    Object ek = e.key, ev = e.val;
1848 <                    if (ev != null && ek != null) {
1849 <                        nextVal = ev;
1850 <                        next = e;
1851 <                        break;
1834 >    /*
1835 >     * Moves and/or copies the nodes in each bin to new table. See
1836 >     * above for explanation.
1837 >     *
1838 >     * @return the new table
1839 >     */
1840 >    private static final Node[] rebuild(Node[] tab) {
1841 >        int n = tab.length;
1842 >        Node[] nextTab = new Node[n << 1];
1843 >        Node fwd = new Node(MOVED, nextTab, null, null);
1844 >        int[] buffer = null;       // holds bins to revisit; null until needed
1845 >        Node rev = null;           // reverse forwarder; null until needed
1846 >        int nbuffered = 0;         // the number of bins in buffer list
1847 >        int bufferIndex = 0;       // buffer index of current buffered bin
1848 >        int bin = n - 1;           // current non-buffered bin or -1 if none
1849 >
1850 >        for (int i = bin;;) {      // start upwards sweep
1851 >            int fh; Node f;
1852 >            if ((f = tabAt(tab, i)) == null) {
1853 >                if (bin >= 0) {    // no lock needed (or available)
1854 >                    if (!casTabAt(tab, i, f, fwd))
1855 >                        continue;
1856 >                }
1857 >                else {             // transiently use a locked forwarding node
1858 >                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
1859 >                    if (!casTabAt(tab, i, f, g))
1860 >                        continue;
1861 >                    setTabAt(nextTab, i, null);
1862 >                    setTabAt(nextTab, i + n, null);
1863 >                    setTabAt(tab, i, fwd);
1864 >                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
1865 >                        g.hash = MOVED;
1866 >                        synchronized (g) { g.notifyAll(); }
1867                      }
767                    e = e.next;
1868                  }
1869 <                else if (baseIndex < baseSize && (t = tab) != null &&
1870 <                         t.length > (i = index) && i >= 0) {
1871 <                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
1872 <                        tab = (Node[])e.key;
1873 <                        e = null;
1869 >            }
1870 >            else if ((fh = f.hash) == MOVED) {
1871 >                Object fk = f.key;
1872 >                if (fk instanceof TreeBin) {
1873 >                    TreeBin t = (TreeBin)fk;
1874 >                    boolean validated = false;
1875 >                    t.acquire(0);
1876 >                    try {
1877 >                        if (tabAt(tab, i) == f) {
1878 >                            validated = true;
1879 >                            splitTreeBin(nextTab, i, t);
1880 >                            setTabAt(tab, i, fwd);
1881 >                        }
1882 >                    } finally {
1883 >                        t.release(0);
1884                      }
1885 <                    else if (i + baseSize < t.length)
1886 <                        index += baseSize;    // visit forwarded upper slots
777 <                    else
778 <                        index = ++baseIndex;
1885 >                    if (!validated)
1886 >                        continue;
1887                  }
1888 <                else {
1889 <                    next = null;
1890 <                    break;
1888 >            }
1889 >            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
1890 >                boolean validated = false;
1891 >                try {              // split to lo and hi lists; copying as needed
1892 >                    if (tabAt(tab, i) == f) {
1893 >                        validated = true;
1894 >                        splitBin(nextTab, i, f);
1895 >                        setTabAt(tab, i, fwd);
1896 >                    }
1897 >                } finally {
1898 >                    if (!f.casHash(fh | LOCKED, fh)) {
1899 >                        f.hash = fh;
1900 >                        synchronized (f) { f.notifyAll(); };
1901 >                    }
1902                  }
1903 +                if (!validated)
1904 +                    continue;
1905 +            }
1906 +            else {
1907 +                if (buffer == null) // initialize buffer for revisits
1908 +                    buffer = new int[TRANSFER_BUFFER_SIZE];
1909 +                if (bin < 0 && bufferIndex > 0) {
1910 +                    int j = buffer[--bufferIndex];
1911 +                    buffer[bufferIndex] = i;
1912 +                    i = j;         // swap with another bin
1913 +                    continue;
1914 +                }
1915 +                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
1916 +                    f.tryAwaitLock(tab, i);
1917 +                    continue;      // no other options -- block
1918 +                }
1919 +                if (rev == null)   // initialize reverse-forwarder
1920 +                    rev = new Node(MOVED, tab, null, null);
1921 +                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
1922 +                    continue;      // recheck before adding to list
1923 +                buffer[nbuffered++] = i;
1924 +                setTabAt(nextTab, i, rev);     // install place-holders
1925 +                setTabAt(nextTab, i + n, rev);
1926              }
785        }
1927  
1928 <        final Object nextKey() {
1929 <            Node e = next;
1930 <            if (e == null)
1931 <                throw new NoSuchElementException();
1932 <            Object k = e.key;
1933 <            advance((lastReturned = e).next);
1934 <            return k;
1928 >            if (bin > 0)
1929 >                i = --bin;
1930 >            else if (buffer != null && nbuffered > 0) {
1931 >                bin = -1;
1932 >                i = buffer[bufferIndex = --nbuffered];
1933 >            }
1934 >            else
1935 >                return nextTab;
1936          }
1937 +    }
1938  
1939 <        final Object nextValue() {
1940 <            Node e = next;
1941 <            if (e == null)
1942 <                throw new NoSuchElementException();
1943 <            Object v = nextVal;
1944 <            advance((lastReturned = e).next);
1945 <            return v;
1939 >    /**
1940 >     * Split a normal bin with list headed by e into lo and hi parts;
1941 >     * install in given table
1942 >     */
1943 >    private static void splitBin(Node[] nextTab, int i, Node e) {
1944 >        int bit = nextTab.length >>> 1; // bit to split on
1945 >        int runBit = e.hash & bit;
1946 >        Node lastRun = e, lo = null, hi = null;
1947 >        for (Node p = e.next; p != null; p = p.next) {
1948 >            int b = p.hash & bit;
1949 >            if (b != runBit) {
1950 >                runBit = b;
1951 >                lastRun = p;
1952 >            }
1953          }
1954 +        if (runBit == 0)
1955 +            lo = lastRun;
1956 +        else
1957 +            hi = lastRun;
1958 +        for (Node p = e; p != lastRun; p = p.next) {
1959 +            int ph = p.hash & HASH_BITS;
1960 +            Object pk = p.key, pv = p.val;
1961 +            if ((ph & bit) == 0)
1962 +                lo = new Node(ph, pk, pv, lo);
1963 +            else
1964 +                hi = new Node(ph, pk, pv, hi);
1965 +        }
1966 +        setTabAt(nextTab, i, lo);
1967 +        setTabAt(nextTab, i + bit, hi);
1968 +    }
1969  
1970 <        final WriteThroughEntry nextEntry() {
1971 <            Node e = next;
1972 <            if (e == null)
1973 <                throw new NoSuchElementException();
1974 <            WriteThroughEntry entry =
1975 <                new WriteThroughEntry(e.key, nextVal);
1976 <            advance((lastReturned = e).next);
1977 <            return entry;
1970 >    /**
1971 >     * Split a tree bin into lo and hi parts; install in given table
1972 >     */
1973 >    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
1974 >        int bit = nextTab.length >>> 1;
1975 >        TreeBin lt = new TreeBin();
1976 >        TreeBin ht = new TreeBin();
1977 >        int lc = 0, hc = 0;
1978 >        for (Node e = t.first; e != null; e = e.next) {
1979 >            int h = e.hash & HASH_BITS;
1980 >            Object k = e.key, v = e.val;
1981 >            if ((h & bit) == 0) {
1982 >                ++lc;
1983 >                lt.putTreeNode(h, k, v);
1984 >            }
1985 >            else {
1986 >                ++hc;
1987 >                ht.putTreeNode(h, k, v);
1988 >            }
1989          }
1990 <
1991 <        public final void remove() {
1992 <            if (lastReturned == null)
1993 <                throw new IllegalStateException();
1994 <            ConcurrentHashMapV8.this.remove(lastReturned.key);
819 <            lastReturned = null;
1990 >        Node ln, hn; // throw away trees if too small
1991 >        if (lc <= (TREE_THRESHOLD >>> 1)) {
1992 >            ln = null;
1993 >            for (Node p = lt.first; p != null; p = p.next)
1994 >                ln = new Node(p.hash, p.key, p.val, ln);
1995          }
1996 <
1997 <        /** Helper for serialization */
1998 <        final void writeEntries(java.io.ObjectOutputStream s)
1999 <            throws java.io.IOException {
2000 <            Node e;
2001 <            while ((e = next) != null) {
2002 <                s.writeObject(e.key);
828 <                s.writeObject(nextVal);
829 <                advance(e.next);
830 <            }
1996 >        else
1997 >            ln = new Node(MOVED, lt, null, null);
1998 >        setTabAt(nextTab, i, ln);
1999 >        if (hc <= (TREE_THRESHOLD >>> 1)) {
2000 >            hn = null;
2001 >            for (Node p = ht.first; p != null; p = p.next)
2002 >                hn = new Node(p.hash, p.key, p.val, hn);
2003          }
2004 +        else
2005 +            hn = new Node(MOVED, ht, null, null);
2006 +        setTabAt(nextTab, i + bit, hn);
2007 +    }
2008  
2009 <        /** Helper for containsValue */
2010 <        final boolean containsVal(Object value) {
2011 <            if (value != null) {
2012 <                Node e;
2013 <                while ((e = next) != null) {
2014 <                    Object v = nextVal;
2015 <                    if (value == v || value.equals(v))
2016 <                        return true;
2017 <                    advance(e.next);
2009 >    /**
2010 >     * Implementation for clear. Steps through each bin, removing all
2011 >     * nodes.
2012 >     */
2013 >    private final void internalClear() {
2014 >        long delta = 0L; // negative number of deletions
2015 >        int i = 0;
2016 >        Node[] tab = table;
2017 >        while (tab != null && i < tab.length) {
2018 >            int fh; Object fk;
2019 >            Node f = tabAt(tab, i);
2020 >            if (f == null)
2021 >                ++i;
2022 >            else if ((fh = f.hash) == MOVED) {
2023 >                if ((fk = f.key) instanceof TreeBin) {
2024 >                    TreeBin t = (TreeBin)fk;
2025 >                    t.acquire(0);
2026 >                    try {
2027 >                        if (tabAt(tab, i) == f) {
2028 >                            for (Node p = t.first; p != null; p = p.next) {
2029 >                                p.val = null;
2030 >                                --delta;
2031 >                            }
2032 >                            t.first = null;
2033 >                            t.root = null;
2034 >                            ++i;
2035 >                        }
2036 >                    } finally {
2037 >                        t.release(0);
2038 >                    }
2039                  }
2040 +                else
2041 +                    tab = (Node[])fk;
2042              }
2043 <            return false;
2044 <        }
2045 <
2046 <        /** Helper for Map.hashCode */
2047 <        final int mapHashCode() {
2048 <            int h = 0;
2049 <            Node e;
2050 <            while ((e = next) != null) {
2051 <                h += e.key.hashCode() ^ nextVal.hashCode();
2052 <                advance(e.next);
2043 >            else if ((fh & LOCKED) != 0) {
2044 >                counter.add(delta); // opportunistically update count
2045 >                delta = 0L;
2046 >                f.tryAwaitLock(tab, i);
2047 >            }
2048 >            else if (f.casHash(fh, fh | LOCKED)) {
2049 >                try {
2050 >                    if (tabAt(tab, i) == f) {
2051 >                        for (Node e = f; e != null; e = e.next) {
2052 >                            e.val = null;
2053 >                            --delta;
2054 >                        }
2055 >                        setTabAt(tab, i, null);
2056 >                        ++i;
2057 >                    }
2058 >                } finally {
2059 >                    if (!f.casHash(fh | LOCKED, fh)) {
2060 >                        f.hash = fh;
2061 >                        synchronized (f) { f.notifyAll(); };
2062 >                    }
2063 >                }
2064              }
855            return h;
2065          }
2066 +        if (delta != 0)
2067 +            counter.add(delta);
2068 +    }
2069  
2070 <        /** Helper for Map.toString */
2071 <        final String mapToString() {
2072 <            Node e = next;
2073 <            if (e == null)
2074 <                return "{}";
2075 <            StringBuilder sb = new StringBuilder();
2076 <            sb.append('{');
2077 <            for (;;) {
2078 <                sb.append(e.key   == this ? "(this Map)" : e.key);
2079 <                sb.append('=');
2080 <                sb.append(nextVal == this ? "(this Map)" : nextVal);
2081 <                advance(e.next);
2082 <                if ((e = next) != null)
2083 <                    sb.append(',').append(' ');
2084 <                else
2085 <                    return sb.append('}').toString();
2086 <            }
2070 >    /* ----------------Table Traversal -------------- */
2071 >
2072 >    /**
2073 >     * Encapsulates traversal for methods such as containsValue; also
2074 >     * serves as a base class for other iterators.
2075 >     *
2076 >     * At each step, the iterator snapshots the key ("nextKey") and
2077 >     * value ("nextVal") of a valid node (i.e., one that, at point of
2078 >     * snapshot, has a non-null user value). Because val fields can
2079 >     * change (including to null, indicating deletion), field nextVal
2080 >     * might not be accurate at point of use, but still maintains the
2081 >     * weak consistency property of holding a value that was once
2082 >     * valid.
2083 >     *
2084 >     * Internal traversals directly access these fields, as in:
2085 >     * {@code while (it.next != null) { process(it.nextKey); it.advance(); }}
2086 >     *
2087 >     * Exported iterators (subclasses of ViewIterator) extract key,
2088 >     * value, or key-value pairs as return values of Iterator.next(),
2089 >     * and encapsulate the it.next check as hasNext();
2090 >     *
2091 >     * The iterator visits once each still-valid node that was
2092 >     * reachable upon iterator construction. It might miss some that
2093 >     * were added to a bin after the bin was visited, which is OK wrt
2094 >     * consistency guarantees. Maintaining this property in the face
2095 >     * of possible ongoing resizes requires a fair amount of
2096 >     * bookkeeping state that is difficult to optimize away amidst
2097 >     * volatile accesses.  Even so, traversal maintains reasonable
2098 >     * throughput.
2099 >     *
2100 >     * Normally, iteration proceeds bin-by-bin traversing lists.
2101 >     * However, if the table has been resized, then all future steps
2102 >     * must traverse both the bin at the current index as well as at
2103 >     * (index + baseSize); and so on for further resizings. To
2104 >     * paranoically cope with potential sharing by users of iterators
2105 >     * across threads, iteration terminates if a bounds checks fails
2106 >     * for a table read.
2107 >     *
2108 >     * The range-based constructor enables creation of parallel
2109 >     * range-splitting traversals. (Not yet implemented.)
2110 >     */
2111 >    static class InternalIterator {
2112 >        Node next;           // the next entry to use
2113 >        Node last;           // the last entry used
2114 >        Object nextKey;      // cached key field of next
2115 >        Object nextVal;      // cached val field of next
2116 >        Node[] tab;          // current table; updated if resized
2117 >        int index;           // index of bin to use next
2118 >        int baseIndex;       // current index of initial table
2119 >        final int baseLimit; // index bound for initial table
2120 >        final int baseSize;  // initial table size
2121 >
2122 >        /** Creates iterator for all entries in the table. */
2123 >        InternalIterator(Node[] tab) {
2124 >            this.tab = tab;
2125 >            baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2126 >            index = baseIndex = 0;
2127 >            next = null;
2128 >            advance();
2129 >        }
2130 >
2131 >        /** Creates iterator for the given range of the table */
2132 >        InternalIterator(Node[] tab, int lo, int hi) {
2133 >            this.tab = tab;
2134 >            baseSize = (tab == null) ? 0 : tab.length;
2135 >            baseLimit = (hi <= baseSize) ? hi : baseSize;
2136 >            index = baseIndex = (lo >= 0) ? lo : 0;
2137 >            next = null;
2138 >            advance();
2139 >        }
2140 >
2141 >        /** Advances next. See above for explanation. */
2142 >        final void advance() {
2143 >            Node e = last = next;
2144 >            outer: do {
2145 >                if (e != null)                  // advance past used/skipped node
2146 >                    e = e.next;
2147 >                while (e == null) {             // get to next non-null bin
2148 >                    Node[] t; int b, i, n; Object ek; // checks must use locals
2149 >                    if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2150 >                        (t = tab) == null || i >= (n = t.length))
2151 >                        break outer;
2152 >                    else if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2153 >                        if ((ek = e.key) instanceof TreeBin)
2154 >                            e = ((TreeBin)ek).first;
2155 >                        else {
2156 >                            tab = (Node[])ek;
2157 >                            continue;           // restarts due to null val
2158 >                        }
2159 >                    }                           // visit upper slots if present
2160 >                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2161 >                }
2162 >                nextKey = e.key;
2163 >            } while ((nextVal = e.val) == null);// skip deleted or special nodes
2164 >            next = e;
2165          }
2166      }
2167  
2168      /* ---------------- Public operations -------------- */
2169  
2170      /**
2171 <     * Creates a new, empty map with the specified initial
882 <     * capacity, load factor and concurrency level.
883 <     *
884 <     * @param initialCapacity the initial capacity. The implementation
885 <     * performs internal sizing to accommodate this many elements.
886 <     * @param loadFactor  the load factor threshold, used to control resizing.
887 <     * Resizing may be performed when the average number of elements per
888 <     * bin exceeds this threshold.
889 <     * @param concurrencyLevel the estimated number of concurrently
890 <     * updating threads. The implementation may use this value as
891 <     * a sizing hint.
892 <     * @throws IllegalArgumentException if the initial capacity is
893 <     * negative or the load factor or concurrencyLevel are
894 <     * nonpositive.
2171 >     * Creates a new, empty map with the default initial table size (16),
2172       */
2173 <    public ConcurrentHashMapV8(int initialCapacity,
897 <                             float loadFactor, int concurrencyLevel) {
898 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
899 <            throw new IllegalArgumentException();
900 <        this.initCap = initialCapacity;
901 <        this.loadFactor = loadFactor;
2173 >    public ConcurrentHashMapV8() {
2174          this.counter = new LongAdder();
2175      }
2176  
2177      /**
2178 <     * Creates a new, empty map with the specified initial capacity
2179 <     * and load factor and with the default concurrencyLevel (16).
2178 >     * Creates a new, empty map with an initial table size
2179 >     * accommodating the specified number of elements without the need
2180 >     * to dynamically resize.
2181       *
2182       * @param initialCapacity The implementation performs internal
2183       * sizing to accommodate this many elements.
911     * @param loadFactor  the load factor threshold, used to control resizing.
912     * Resizing may be performed when the average number of elements per
913     * bin exceeds this threshold.
2184       * @throws IllegalArgumentException if the initial capacity of
2185 <     * elements is negative or the load factor is nonpositive
916 <     *
917 <     * @since 1.6
2185 >     * elements is negative
2186       */
2187 <    public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2188 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
2187 >    public ConcurrentHashMapV8(int initialCapacity) {
2188 >        if (initialCapacity < 0)
2189 >            throw new IllegalArgumentException();
2190 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2191 >                   MAXIMUM_CAPACITY :
2192 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2193 >        this.counter = new LongAdder();
2194 >        this.sizeCtl = cap;
2195      }
2196  
2197      /**
2198 <     * Creates a new, empty map with the specified initial capacity,
925 <     * and with default load factor (0.75) and concurrencyLevel (16).
2198 >     * Creates a new map with the same mappings as the given map.
2199       *
2200 <     * @param initialCapacity the initial capacity. The implementation
928 <     * performs internal sizing to accommodate this many elements.
929 <     * @throws IllegalArgumentException if the initial capacity of
930 <     * elements is negative.
2200 >     * @param m the map
2201       */
2202 <    public ConcurrentHashMapV8(int initialCapacity) {
2203 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2202 >    public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2203 >        this.counter = new LongAdder();
2204 >        this.sizeCtl = DEFAULT_CAPACITY;
2205 >        internalPutAll(m);
2206      }
2207  
2208      /**
2209 <     * Creates a new, empty map with a default initial capacity (16),
2210 <     * load factor (0.75) and concurrencyLevel (16).
2209 >     * Creates a new, empty map with an initial table size based on
2210 >     * the given number of elements ({@code initialCapacity}) and
2211 >     * initial table density ({@code loadFactor}).
2212 >     *
2213 >     * @param initialCapacity the initial capacity. The implementation
2214 >     * performs internal sizing to accommodate this many elements,
2215 >     * given the specified load factor.
2216 >     * @param loadFactor the load factor (table density) for
2217 >     * establishing the initial table size
2218 >     * @throws IllegalArgumentException if the initial capacity of
2219 >     * elements is negative or the load factor is nonpositive
2220 >     *
2221 >     * @since 1.6
2222       */
2223 <    public ConcurrentHashMapV8() {
2224 <        this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2223 >    public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2224 >        this(initialCapacity, loadFactor, 1);
2225      }
2226  
2227      /**
2228 <     * Creates a new map with the same mappings as the given map.
2229 <     * The map is created with a capacity of 1.5 times the number
2230 <     * of mappings in the given map or 16 (whichever is greater),
2231 <     * and a default load factor (0.75) and concurrencyLevel (16).
2228 >     * Creates a new, empty map with an initial table size based on
2229 >     * the given number of elements ({@code initialCapacity}), table
2230 >     * density ({@code loadFactor}), and number of concurrently
2231 >     * updating threads ({@code concurrencyLevel}).
2232       *
2233 <     * @param m the map
2233 >     * @param initialCapacity the initial capacity. The implementation
2234 >     * performs internal sizing to accommodate this many elements,
2235 >     * given the specified load factor.
2236 >     * @param loadFactor the load factor (table density) for
2237 >     * establishing the initial table size
2238 >     * @param concurrencyLevel the estimated number of concurrently
2239 >     * updating threads. The implementation may use this value as
2240 >     * a sizing hint.
2241 >     * @throws IllegalArgumentException if the initial capacity is
2242 >     * negative or the load factor or concurrencyLevel are
2243 >     * nonpositive
2244       */
2245 <    public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2246 <        this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2247 <        if (m == null)
2248 <            throw new NullPointerException();
2249 <        internalPutAll(m);
2245 >    public ConcurrentHashMapV8(int initialCapacity,
2246 >                               float loadFactor, int concurrencyLevel) {
2247 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2248 >            throw new IllegalArgumentException();
2249 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2250 >            initialCapacity = concurrencyLevel;   // as estimated threads
2251 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2252 >        int cap = ((size >= (long)MAXIMUM_CAPACITY) ?
2253 >                   MAXIMUM_CAPACITY: tableSizeFor((int)size));
2254 >        this.counter = new LongAdder();
2255 >        this.sizeCtl = cap;
2256      }
2257  
2258      /**
2259 <     * Returns {@code true} if this map contains no key-value mappings.
961 <     *
962 <     * @return {@code true} if this map contains no key-value mappings
2259 >     * {@inheritDoc}
2260       */
2261      public boolean isEmpty() {
2262 <        return counter.sum() == 0L;
2262 >        return counter.sum() <= 0L; // ignore transient negative values
2263      }
2264  
2265      /**
2266 <     * Returns the number of key-value mappings in this map.  If the
970 <     * map contains more than {@code Integer.MAX_VALUE} elements, returns
971 <     * {@code Integer.MAX_VALUE}.
972 <     *
973 <     * @return the number of key-value mappings in this map
2266 >     * {@inheritDoc}
2267       */
2268      public int size() {
2269          long n = counter.sum();
2270 <        return n >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)n;
2270 >        return ((n < 0L) ? 0 :
2271 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2272 >                (int)n);
2273 >    }
2274 >
2275 >    final long longSize() { // accurate version of size needed for views
2276 >        long n = counter.sum();
2277 >        return (n < 0L) ? 0L : n;
2278      }
2279  
2280      /**
# Line 1001 | Line 2301 | public class ConcurrentHashMapV8<K, V>
2301       * @param  key   possible key
2302       * @return {@code true} if and only if the specified object
2303       *         is a key in this table, as determined by the
2304 <     *         {@code equals} method; {@code false} otherwise.
2304 >     *         {@code equals} method; {@code false} otherwise
2305       * @throws NullPointerException if the specified key is null
2306       */
2307      public boolean containsKey(Object key) {
# Line 1012 | Line 2312 | public class ConcurrentHashMapV8<K, V>
2312  
2313      /**
2314       * Returns {@code true} if this map maps one or more keys to the
2315 <     * specified value. Note: This method requires a full internal
2316 <     * traversal of the hash table, and so is much slower than
1017 <     * method {@code containsKey}.
2315 >     * specified value. Note: This method may require a full traversal
2316 >     * of the map, and is much slower than method {@code containsKey}.
2317       *
2318       * @param value value whose presence in this map is to be tested
2319       * @return {@code true} if this map maps one or more keys to the
# Line 1024 | Line 2323 | public class ConcurrentHashMapV8<K, V>
2323      public boolean containsValue(Object value) {
2324          if (value == null)
2325              throw new NullPointerException();
2326 <        return new HashIterator().containsVal(value);
2326 >        Object v;
2327 >        InternalIterator it = new InternalIterator(table);
2328 >        while (it.next != null) {
2329 >            if ((v = it.nextVal) == value || value.equals(v))
2330 >                return true;
2331 >            it.advance();
2332 >        }
2333 >        return false;
2334      }
2335  
2336      /**
# Line 1063 | Line 2369 | public class ConcurrentHashMapV8<K, V>
2369      public V put(K key, V value) {
2370          if (key == null || value == null)
2371              throw new NullPointerException();
2372 <        return (V)internalPut(key, value, true);
2372 >        return (V)internalPut(key, value);
2373      }
2374  
2375      /**
# Line 1077 | Line 2383 | public class ConcurrentHashMapV8<K, V>
2383      public V putIfAbsent(K key, V value) {
2384          if (key == null || value == null)
2385              throw new NullPointerException();
2386 <        return (V)internalPut(key, value, false);
2386 >        return (V)internalPutIfAbsent(key, value);
2387      }
2388  
2389      /**
# Line 1088 | Line 2394 | public class ConcurrentHashMapV8<K, V>
2394       * @param m mappings to be stored in this map
2395       */
2396      public void putAll(Map<? extends K, ? extends V> m) {
1091        if (m == null)
1092            throw new NullPointerException();
2397          internalPutAll(m);
2398      }
2399  
2400      /**
2401       * If the specified key is not already associated with a value,
2402 <     * computes its value using the given mappingFunction, and if
2403 <     * non-null, enters it into the map.  This is equivalent to
2404 <     *
2405 <     * <pre>
2406 <     *   if (map.containsKey(key))
2407 <     *       return map.get(key);
2408 <     *   value = mappingFunction.map(key);
2409 <     *   if (value != null)
2410 <     *      return map.put(key, value);
2411 <     *   else
2412 <     *      return null;
2413 <     * </pre>
2414 <     *
2415 <     * except that the action is performed atomically.  Some attempted
2402 >     * computes its value using the given mappingFunction and
2403 >     * enters it into the map.  This is equivalent to
2404 >     * <pre> {@code
2405 >     * if (map.containsKey(key))
2406 >     *   return map.get(key);
2407 >     * value = mappingFunction.map(key);
2408 >     * map.put(key, value);
2409 >     * return value;}</pre>
2410 >     *
2411 >     * except that the action is performed atomically.  If the
2412 >     * function returns {@code null} (in which case a {@code
2413 >     * NullPointerException} is thrown), or the function itself throws
2414 >     * an (unchecked) exception, the exception is rethrown to its
2415 >     * caller, and no mapping is recorded.  Some attempted update
2416       * operations on this map by other threads may be blocked while
2417 <     * computation is in progress. Because this function is invoked
2418 <     * within atomicity control, the computation should be short and
2419 <     * simple, and must not attempt to update any other mappings of
2420 <     * this Map. The most common usage is to construct a new object
2421 <     * serving as an initial mapped value, or memoized result.
2417 >     * computation is in progress, so the computation should be short
2418 >     * and simple, and must not attempt to update any other mappings
2419 >     * of this Map. The most appropriate usage is to construct a new
2420 >     * object serving as an initial mapped value, or memoized result,
2421 >     * as in:
2422 >     *
2423 >     *  <pre> {@code
2424 >     * map.computeIfAbsent(key, new MappingFunction<K, V>() {
2425 >     *   public V map(K k) { return new Value(f(k)); }});}</pre>
2426       *
2427       * @param key key with which the specified value is to be associated
2428       * @param mappingFunction the function to compute a value
2429       * @return the current (existing or computed) value associated with
2430 <     *         the specified key, or {@code null} if the computation
2431 <     *         returned {@code null}.
2432 <     * @throws NullPointerException if the specified key or mappingFunction
2433 <     *         is null,
2430 >     *         the specified key.
2431 >     * @throws NullPointerException if the specified key, mappingFunction,
2432 >     *         or computed value is null
2433 >     * @throws IllegalStateException if the computation detectably
2434 >     *         attempts a recursive update to this map that would
2435 >     *         otherwise never complete
2436       * @throws RuntimeException or Error if the mappingFunction does so,
2437 <     *         in which case the mapping is left unestablished.
2437 >     *         in which case the mapping is left unestablished
2438       */
2439 +    @SuppressWarnings("unchecked")
2440      public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2441          if (key == null || mappingFunction == null)
2442              throw new NullPointerException();
2443 <        return computeVal(key, mappingFunction);
2443 >        return (V)internalComputeIfAbsent(key, mappingFunction);
2444 >    }
2445 >
2446 >    /**
2447 >     * Computes and enters a new mapping value given a key and
2448 >     * its current mapped value (or {@code null} if there is no current
2449 >     * mapping). This is equivalent to
2450 >     *  <pre> {@code
2451 >     *  map.put(key, remappingFunction.remap(key, map.get(key));
2452 >     * }</pre>
2453 >     *
2454 >     * except that the action is performed atomically.  If the
2455 >     * function returns {@code null} (in which case a {@code
2456 >     * NullPointerException} is thrown), or the function itself throws
2457 >     * an (unchecked) exception, the exception is rethrown to its
2458 >     * caller, and current mapping is left unchanged.  Some attempted
2459 >     * update operations on this map by other threads may be blocked
2460 >     * while computation is in progress, so the computation should be
2461 >     * short and simple, and must not attempt to update any other
2462 >     * mappings of this Map. For example, to either create or
2463 >     * append new messages to a value mapping:
2464 >     *
2465 >     * <pre> {@code
2466 >     * Map<Key, String> map = ...;
2467 >     * final String msg = ...;
2468 >     * map.compute(key, new RemappingFunction<Key, String>() {
2469 >     *   public String remap(Key k, String v) {
2470 >     *    return (v == null) ? msg : v + msg;});}}</pre>
2471 >     *
2472 >     * @param key key with which the specified value is to be associated
2473 >     * @param remappingFunction the function to compute a value
2474 >     * @return the new value associated with
2475 >     *         the specified key.
2476 >     * @throws NullPointerException if the specified key or remappingFunction
2477 >     *         or computed value is null
2478 >     * @throws IllegalStateException if the computation detectably
2479 >     *         attempts a recursive update to this map that would
2480 >     *         otherwise never complete
2481 >     * @throws RuntimeException or Error if the remappingFunction does so,
2482 >     *         in which case the mapping is unchanged
2483 >     */
2484 >    @SuppressWarnings("unchecked")
2485 >    public V compute(K key, RemappingFunction<? super K, V> remappingFunction) {
2486 >        if (key == null || remappingFunction == null)
2487 >            throw new NullPointerException();
2488 >        return (V)internalCompute(key, remappingFunction);
2489      }
2490  
2491      /**
# Line 1145 | Line 2501 | public class ConcurrentHashMapV8<K, V>
2501      public V remove(Object key) {
2502          if (key == null)
2503              throw new NullPointerException();
2504 <        return (V)internalReplace(key, null, null);
2504 >        return (V)internalReplace(key, null, null);
2505      }
2506  
2507      /**
# Line 1169 | Line 2525 | public class ConcurrentHashMapV8<K, V>
2525      public boolean replace(K key, V oldValue, V newValue) {
2526          if (key == null || oldValue == null || newValue == null)
2527              throw new NullPointerException();
2528 <        return internalReplace(key, newValue, oldValue) != null;
2528 >        return internalReplace(key, newValue, oldValue) != null;
2529      }
2530  
2531      /**
# Line 1183 | Line 2539 | public class ConcurrentHashMapV8<K, V>
2539      public V replace(K key, V value) {
2540          if (key == null || value == null)
2541              throw new NullPointerException();
2542 <        return (V)internalReplace(key, value, null);
2542 >        return (V)internalReplace(key, value, null);
2543      }
2544  
2545      /**
# Line 1210 | Line 2566 | public class ConcurrentHashMapV8<K, V>
2566       * reflect any modifications subsequent to construction.
2567       */
2568      public Set<K> keySet() {
2569 <        Set<K> ks = keySet;
2570 <        return (ks != null) ? ks : (keySet = new KeySet());
2569 >        KeySet<K,V> ks = keySet;
2570 >        return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
2571      }
2572  
2573      /**
# Line 1231 | Line 2587 | public class ConcurrentHashMapV8<K, V>
2587       * reflect any modifications subsequent to construction.
2588       */
2589      public Collection<V> values() {
2590 <        Collection<V> vs = values;
2591 <        return (vs != null) ? vs : (values = new Values());
2590 >        Values<K,V> vs = values;
2591 >        return (vs != null) ? vs : (values = new Values<K,V>(this));
2592      }
2593  
2594      /**
# Line 1252 | Line 2608 | public class ConcurrentHashMapV8<K, V>
2608       * reflect any modifications subsequent to construction.
2609       */
2610      public Set<Map.Entry<K,V>> entrySet() {
2611 <        Set<Map.Entry<K,V>> es = entrySet;
2612 <        return (es != null) ? es : (entrySet = new EntrySet());
2611 >        EntrySet<K,V> es = entrySet;
2612 >        return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2613      }
2614  
2615      /**
# Line 1263 | Line 2619 | public class ConcurrentHashMapV8<K, V>
2619       * @see #keySet()
2620       */
2621      public Enumeration<K> keys() {
2622 <        return new KeyIterator();
2622 >        return new KeyIterator<K,V>(this);
2623      }
2624  
2625      /**
# Line 1273 | Line 2629 | public class ConcurrentHashMapV8<K, V>
2629       * @see #values()
2630       */
2631      public Enumeration<V> elements() {
2632 <        return new ValueIterator();
2632 >        return new ValueIterator<K,V>(this);
2633      }
2634  
2635      /**
2636 <     * {@inheritDoc}
2636 >     * Returns the hash code value for this {@link Map}, i.e.,
2637 >     * the sum of, for each key-value pair in the map,
2638 >     * {@code key.hashCode() ^ value.hashCode()}.
2639 >     *
2640 >     * @return the hash code value for this map
2641       */
2642      public int hashCode() {
2643 <        return new HashIterator().mapHashCode();
2643 >        int h = 0;
2644 >        InternalIterator it = new InternalIterator(table);
2645 >        while (it.next != null) {
2646 >            h += it.nextKey.hashCode() ^ it.nextVal.hashCode();
2647 >            it.advance();
2648 >        }
2649 >        return h;
2650      }
2651  
2652      /**
2653 <     * {@inheritDoc}
2653 >     * Returns a string representation of this map.  The string
2654 >     * representation consists of a list of key-value mappings (in no
2655 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
2656 >     * mappings are separated by the characters {@code ", "} (comma
2657 >     * and space).  Each key-value mapping is rendered as the key
2658 >     * followed by an equals sign ("{@code =}") followed by the
2659 >     * associated value.
2660 >     *
2661 >     * @return a string representation of this map
2662       */
2663      public String toString() {
2664 <        return new HashIterator().mapToString();
2664 >        InternalIterator it = new InternalIterator(table);
2665 >        StringBuilder sb = new StringBuilder();
2666 >        sb.append('{');
2667 >        if (it.next != null) {
2668 >            for (;;) {
2669 >                Object k = it.nextKey, v = it.nextVal;
2670 >                sb.append(k == this ? "(this Map)" : k);
2671 >                sb.append('=');
2672 >                sb.append(v == this ? "(this Map)" : v);
2673 >                it.advance();
2674 >                if (it.next == null)
2675 >                    break;
2676 >                sb.append(',').append(' ');
2677 >            }
2678 >        }
2679 >        return sb.append('}').toString();
2680      }
2681  
2682      /**
2683 <     * {@inheritDoc}
2683 >     * Compares the specified object with this map for equality.
2684 >     * Returns {@code true} if the given object is a map with the same
2685 >     * mappings as this map.  This operation may return misleading
2686 >     * results if either map is concurrently modified during execution
2687 >     * of this method.
2688 >     *
2689 >     * @param o object to be compared for equality with this map
2690 >     * @return {@code true} if the specified object is equal to this map
2691       */
2692      public boolean equals(Object o) {
2693 <        if (o == this)
2694 <            return true;
2695 <        if (!(o instanceof Map))
2696 <            return false;
2697 <        Map<?,?> m = (Map<?,?>) o;
2698 <        try {
2699 <            for (Map.Entry<K,V> e : this.entrySet())
2700 <                if (! e.getValue().equals(m.get(e.getKey())))
2693 >        if (o != this) {
2694 >            if (!(o instanceof Map))
2695 >                return false;
2696 >            Map<?,?> m = (Map<?,?>) o;
2697 >            InternalIterator it = new InternalIterator(table);
2698 >            while (it.next != null) {
2699 >                Object val = it.nextVal;
2700 >                Object v = m.get(it.nextKey);
2701 >                if (v == null || (v != val && !v.equals(val)))
2702                      return false;
2703 +                it.advance();
2704 +            }
2705              for (Map.Entry<?,?> e : m.entrySet()) {
2706 <                Object k = e.getKey();
2707 <                Object v = e.getValue();
2708 <                if (k == null || v == null || !v.equals(get(k)))
2706 >                Object mk, mv, v;
2707 >                if ((mk = e.getKey()) == null ||
2708 >                    (mv = e.getValue()) == null ||
2709 >                    (v = internalGet(mk)) == null ||
2710 >                    (mv != v && !mv.equals(v)))
2711                      return false;
2712              }
1312            return true;
1313        } catch (ClassCastException unused) {
1314            return false;
1315        } catch (NullPointerException unused) {
1316            return false;
2713          }
2714 +        return true;
2715      }
2716  
2717 +    /* ----------------Iterators -------------- */
2718 +
2719      /**
2720 <     * Custom Entry class used by EntryIterator.next(), that relays
2721 <     * setValue changes to the underlying map.
2720 >     * Base class for key, value, and entry iterators.  Adds a map
2721 >     * reference to InternalIterator to support Iterator.remove.
2722       */
2723 <    final class WriteThroughEntry extends AbstractMap.SimpleEntry<K,V> {
2723 >    static abstract class ViewIterator<K,V> extends InternalIterator {
2724 >        final ConcurrentHashMapV8<K, V> map;
2725 >        ViewIterator(ConcurrentHashMapV8<K, V> map) {
2726 >            super(map.table);
2727 >            this.map = map;
2728 >        }
2729 >
2730 >        public final void remove() {
2731 >            if (last == null)
2732 >                throw new IllegalStateException();
2733 >            map.remove(last.key);
2734 >            last = null;
2735 >        }
2736 >
2737 >        public final boolean hasNext()         { return next != null; }
2738 >        public final boolean hasMoreElements() { return next != null; }
2739 >    }
2740 >
2741 >    static final class KeyIterator<K,V> extends ViewIterator<K,V>
2742 >        implements Iterator<K>, Enumeration<K> {
2743 >        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2744 >
2745 >        @SuppressWarnings("unchecked")
2746 >        public final K next() {
2747 >            if (next == null)
2748 >                throw new NoSuchElementException();
2749 >            Object k = nextKey;
2750 >            advance();
2751 >            return (K)k;
2752 >        }
2753 >
2754 >        public final K nextElement() { return next(); }
2755 >    }
2756 >
2757 >    static final class ValueIterator<K,V> extends ViewIterator<K,V>
2758 >        implements Iterator<V>, Enumeration<V> {
2759 >        ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2760 >
2761          @SuppressWarnings("unchecked")
2762 <        WriteThroughEntry(Object k, Object v) {
2763 <            super((K)k, (V)v);
2762 >        public final V next() {
2763 >            if (next == null)
2764 >                throw new NoSuchElementException();
2765 >            Object v = nextVal;
2766 >            advance();
2767 >            return (V)v;
2768 >        }
2769 >
2770 >        public final V nextElement() { return next(); }
2771 >    }
2772 >
2773 >    static final class EntryIterator<K,V> extends ViewIterator<K,V>
2774 >        implements Iterator<Map.Entry<K,V>> {
2775 >        EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2776 >
2777 >        @SuppressWarnings("unchecked")
2778 >        public final Map.Entry<K,V> next() {
2779 >            if (next == null)
2780 >                throw new NoSuchElementException();
2781 >            Object k = nextKey;
2782 >            Object v = nextVal;
2783 >            advance();
2784 >            return new WriteThroughEntry<K,V>((K)k, (V)v, map);
2785 >        }
2786 >    }
2787 >
2788 >    static final class SnapshotEntryIterator<K,V> extends ViewIterator<K,V>
2789 >        implements Iterator<Map.Entry<K,V>> {
2790 >        SnapshotEntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2791 >
2792 >        @SuppressWarnings("unchecked")
2793 >        public final Map.Entry<K,V> next() {
2794 >            if (next == null)
2795 >                throw new NoSuchElementException();
2796 >            Object k = nextKey;
2797 >            Object v = nextVal;
2798 >            advance();
2799 >            return new SnapshotEntry<K,V>((K)k, (V)v);
2800 >        }
2801 >    }
2802 >
2803 >    /**
2804 >     * Base of writeThrough and Snapshot entry classes
2805 >     */
2806 >    static abstract class MapEntry<K,V> implements Map.Entry<K, V> {
2807 >        final K key; // non-null
2808 >        V val;       // non-null
2809 >        MapEntry(K key, V val)        { this.key = key; this.val = val; }
2810 >        public final K getKey()       { return key; }
2811 >        public final V getValue()     { return val; }
2812 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
2813 >        public final String toString(){ return key + "=" + val; }
2814 >
2815 >        public final boolean equals(Object o) {
2816 >            Object k, v; Map.Entry<?,?> e;
2817 >            return ((o instanceof Map.Entry) &&
2818 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
2819 >                    (v = e.getValue()) != null &&
2820 >                    (k == key || k.equals(key)) &&
2821 >                    (v == val || v.equals(val)));
2822 >        }
2823 >
2824 >        public abstract V setValue(V value);
2825 >    }
2826 >
2827 >    /**
2828 >     * Entry used by EntryIterator.next(), that relays setValue
2829 >     * changes to the underlying map.
2830 >     */
2831 >    static final class WriteThroughEntry<K,V> extends MapEntry<K,V>
2832 >        implements Map.Entry<K, V> {
2833 >        final ConcurrentHashMapV8<K, V> map;
2834 >        WriteThroughEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
2835 >            super(key, val);
2836 >            this.map = map;
2837          }
2838  
2839          /**
# Line 1336 | Line 2845 | public class ConcurrentHashMapV8<K, V>
2845           * removed in which case the put will re-establish). We do not
2846           * and cannot guarantee more.
2847           */
2848 <        public V setValue(V value) {
2848 >        public final V setValue(V value) {
2849              if (value == null) throw new NullPointerException();
2850 <            V v = super.setValue(value);
2851 <            ConcurrentHashMapV8.this.put(getKey(), value);
2850 >            V v = val;
2851 >            val = value;
2852 >            map.put(key, value);
2853              return v;
2854          }
2855      }
2856  
2857 <    final class KeyIterator extends HashIterator
2858 <        implements Iterator<K>, Enumeration<K> {
2859 <        @SuppressWarnings("unchecked")
2860 <        public final K next()        { return (K)super.nextKey(); }
2861 <        @SuppressWarnings("unchecked")
2862 <        public final K nextElement() { return (K)super.nextKey(); }
2857 >    /**
2858 >     * Internal version of entry, that doesn't write though changes
2859 >     */
2860 >    static final class SnapshotEntry<K,V> extends MapEntry<K,V>
2861 >        implements Map.Entry<K, V> {
2862 >        SnapshotEntry(K key, V val) { super(key, val); }
2863 >        public final V setValue(V value) { // only locally update
2864 >            if (value == null) throw new NullPointerException();
2865 >            V v = val;
2866 >            val = value;
2867 >            return v;
2868 >        }
2869      }
2870  
2871 <    final class ValueIterator extends HashIterator
2872 <        implements Iterator<V>, Enumeration<V> {
2873 <        @SuppressWarnings("unchecked")
2874 <        public final V next()        { return (V)super.nextValue(); }
2871 >    /* ----------------Views -------------- */
2872 >
2873 >    /**
2874 >     * Base class for views. This is done mainly to allow adding
2875 >     * customized parallel traversals (not yet implemented.)
2876 >     */
2877 >    static abstract class MapView<K, V> {
2878 >        final ConcurrentHashMapV8<K, V> map;
2879 >        MapView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
2880 >        public final int size()                 { return map.size(); }
2881 >        public final boolean isEmpty()          { return map.isEmpty(); }
2882 >        public final void clear()               { map.clear(); }
2883 >
2884 >        // implementations below rely on concrete classes supplying these
2885 >        abstract Iterator<?> iter();
2886 >        abstract public boolean contains(Object o);
2887 >        abstract public boolean remove(Object o);
2888 >
2889 >        private static final String oomeMsg = "Required array size too large";
2890 >
2891 >        public final Object[] toArray() {
2892 >            long sz = map.longSize();
2893 >            if (sz > (long)(MAX_ARRAY_SIZE))
2894 >                throw new OutOfMemoryError(oomeMsg);
2895 >            int n = (int)sz;
2896 >            Object[] r = new Object[n];
2897 >            int i = 0;
2898 >            Iterator<?> it = iter();
2899 >            while (it.hasNext()) {
2900 >                if (i == n) {
2901 >                    if (n >= MAX_ARRAY_SIZE)
2902 >                        throw new OutOfMemoryError(oomeMsg);
2903 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
2904 >                        n = MAX_ARRAY_SIZE;
2905 >                    else
2906 >                        n += (n >>> 1) + 1;
2907 >                    r = Arrays.copyOf(r, n);
2908 >                }
2909 >                r[i++] = it.next();
2910 >            }
2911 >            return (i == n) ? r : Arrays.copyOf(r, i);
2912 >        }
2913 >
2914          @SuppressWarnings("unchecked")
2915 <        public final V nextElement() { return (V)super.nextValue(); }
2916 <    }
2915 >        public final <T> T[] toArray(T[] a) {
2916 >            long sz = map.longSize();
2917 >            if (sz > (long)(MAX_ARRAY_SIZE))
2918 >                throw new OutOfMemoryError(oomeMsg);
2919 >            int m = (int)sz;
2920 >            T[] r = (a.length >= m) ? a :
2921 >                (T[])java.lang.reflect.Array
2922 >                .newInstance(a.getClass().getComponentType(), m);
2923 >            int n = r.length;
2924 >            int i = 0;
2925 >            Iterator<?> it = iter();
2926 >            while (it.hasNext()) {
2927 >                if (i == n) {
2928 >                    if (n >= MAX_ARRAY_SIZE)
2929 >                        throw new OutOfMemoryError(oomeMsg);
2930 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
2931 >                        n = MAX_ARRAY_SIZE;
2932 >                    else
2933 >                        n += (n >>> 1) + 1;
2934 >                    r = Arrays.copyOf(r, n);
2935 >                }
2936 >                r[i++] = (T)it.next();
2937 >            }
2938 >            if (a == r && i < n) {
2939 >                r[i] = null; // null-terminate
2940 >                return r;
2941 >            }
2942 >            return (i == n) ? r : Arrays.copyOf(r, i);
2943 >        }
2944  
2945 <    final class EntryIterator extends HashIterator
2946 <        implements Iterator<Entry<K,V>> {
2947 <        public final Map.Entry<K,V> next() { return super.nextEntry(); }
2948 <    }
2945 >        public final int hashCode() {
2946 >            int h = 0;
2947 >            for (Iterator<?> it = iter(); it.hasNext();)
2948 >                h += it.next().hashCode();
2949 >            return h;
2950 >        }
2951  
2952 <    final class KeySet extends AbstractSet<K> {
2953 <        public int size() {
2954 <            return ConcurrentHashMapV8.this.size();
2952 >        public final String toString() {
2953 >            StringBuilder sb = new StringBuilder();
2954 >            sb.append('[');
2955 >            Iterator<?> it = iter();
2956 >            if (it.hasNext()) {
2957 >                for (;;) {
2958 >                    Object e = it.next();
2959 >                    sb.append(e == this ? "(this Collection)" : e);
2960 >                    if (!it.hasNext())
2961 >                        break;
2962 >                    sb.append(',').append(' ');
2963 >                }
2964 >            }
2965 >            return sb.append(']').toString();
2966          }
2967 <        public boolean isEmpty() {
2968 <            return ConcurrentHashMapV8.this.isEmpty();
2967 >
2968 >        public final boolean containsAll(Collection<?> c) {
2969 >            if (c != this) {
2970 >                for (Iterator<?> it = c.iterator(); it.hasNext();) {
2971 >                    Object e = it.next();
2972 >                    if (e == null || !contains(e))
2973 >                        return false;
2974 >                }
2975 >            }
2976 >            return true;
2977          }
2978 <        public void clear() {
2979 <            ConcurrentHashMapV8.this.clear();
2978 >
2979 >        public final boolean removeAll(Collection<?> c) {
2980 >            boolean modified = false;
2981 >            for (Iterator<?> it = iter(); it.hasNext();) {
2982 >                if (c.contains(it.next())) {
2983 >                    it.remove();
2984 >                    modified = true;
2985 >                }
2986 >            }
2987 >            return modified;
2988          }
2989 <        public Iterator<K> iterator() {
2990 <            return new KeyIterator();
2989 >
2990 >        public final boolean retainAll(Collection<?> c) {
2991 >            boolean modified = false;
2992 >            for (Iterator<?> it = iter(); it.hasNext();) {
2993 >                if (!c.contains(it.next())) {
2994 >                    it.remove();
2995 >                    modified = true;
2996 >                }
2997 >            }
2998 >            return modified;
2999          }
3000 <        public boolean contains(Object o) {
3001 <            return ConcurrentHashMapV8.this.containsKey(o);
3000 >
3001 >    }
3002 >
3003 >    static final class KeySet<K,V> extends MapView<K,V> implements Set<K> {
3004 >        KeySet(ConcurrentHashMapV8<K, V> map)   { super(map); }
3005 >        public final boolean contains(Object o) { return map.containsKey(o); }
3006 >        public final boolean remove(Object o)   { return map.remove(o) != null; }
3007 >
3008 >        public final Iterator<K> iterator() {
3009 >            return new KeyIterator<K,V>(map);
3010          }
3011 <        public boolean remove(Object o) {
3012 <            return ConcurrentHashMapV8.this.remove(o) != null;
3011 >        final Iterator<?> iter() {
3012 >            return new KeyIterator<K,V>(map);
3013 >        }
3014 >        public final boolean add(K e) {
3015 >            throw new UnsupportedOperationException();
3016 >        }
3017 >        public final boolean addAll(Collection<? extends K> c) {
3018 >            throw new UnsupportedOperationException();
3019 >        }
3020 >        public boolean equals(Object o) {
3021 >            Set<?> c;
3022 >            return ((o instanceof Set) &&
3023 >                    ((c = (Set<?>)o) == this ||
3024 >                     (containsAll(c) && c.containsAll(this))));
3025          }
3026      }
3027  
3028 <    final class Values extends AbstractCollection<V> {
3029 <        public int size() {
3030 <            return ConcurrentHashMapV8.this.size();
3028 >    static final class Values<K,V> extends MapView<K,V>
3029 >        implements Collection<V> {
3030 >        Values(ConcurrentHashMapV8<K, V> map)   { super(map); }
3031 >        public final boolean contains(Object o) { return map.containsValue(o); }
3032 >
3033 >        public final boolean remove(Object o) {
3034 >            if (o != null) {
3035 >                Iterator<V> it = new ValueIterator<K,V>(map);
3036 >                while (it.hasNext()) {
3037 >                    if (o.equals(it.next())) {
3038 >                        it.remove();
3039 >                        return true;
3040 >                    }
3041 >                }
3042 >            }
3043 >            return false;
3044          }
3045 <        public boolean isEmpty() {
3046 <            return ConcurrentHashMapV8.this.isEmpty();
3045 >        public final Iterator<V> iterator() {
3046 >            return new ValueIterator<K,V>(map);
3047          }
3048 <        public void clear() {
3049 <            ConcurrentHashMapV8.this.clear();
3048 >        final Iterator<?> iter() {
3049 >            return new ValueIterator<K,V>(map);
3050          }
3051 <        public Iterator<V> iterator() {
3052 <            return new ValueIterator();
3051 >        public final boolean add(V e) {
3052 >            throw new UnsupportedOperationException();
3053          }
3054 <        public boolean contains(Object o) {
3055 <            return ConcurrentHashMapV8.this.containsValue(o);
3054 >        public final boolean addAll(Collection<? extends V> c) {
3055 >            throw new UnsupportedOperationException();
3056          }
3057      }
3058  
3059 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
3060 <        public int size() {
3061 <            return ConcurrentHashMapV8.this.size();
3059 >    static final class EntrySet<K,V> extends MapView<K,V>
3060 >        implements Set<Map.Entry<K,V>> {
3061 >        EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
3062 >
3063 >        public final boolean contains(Object o) {
3064 >            Object k, v, r; Map.Entry<?,?> e;
3065 >            return ((o instanceof Map.Entry) &&
3066 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3067 >                    (r = map.get(k)) != null &&
3068 >                    (v = e.getValue()) != null &&
3069 >                    (v == r || v.equals(r)));
3070          }
3071 <        public boolean isEmpty() {
3072 <            return ConcurrentHashMapV8.this.isEmpty();
3071 >
3072 >        public final boolean remove(Object o) {
3073 >            Object k, v; Map.Entry<?,?> e;
3074 >            return ((o instanceof Map.Entry) &&
3075 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3076 >                    (v = e.getValue()) != null &&
3077 >                    map.remove(k, v));
3078          }
3079 <        public void clear() {
3080 <            ConcurrentHashMapV8.this.clear();
3079 >
3080 >        public final Iterator<Map.Entry<K,V>> iterator() {
3081 >            return new EntryIterator<K,V>(map);
3082          }
3083 <        public Iterator<Map.Entry<K,V>> iterator() {
3084 <            return new EntryIterator();
3083 >        final Iterator<?> iter() {
3084 >            return new SnapshotEntryIterator<K,V>(map);
3085          }
3086 <        public boolean contains(Object o) {
3087 <            if (!(o instanceof Map.Entry))
1422 <                return false;
1423 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1424 <            V v = ConcurrentHashMapV8.this.get(e.getKey());
1425 <            return v != null && v.equals(e.getValue());
3086 >        public final boolean add(Entry<K,V> e) {
3087 >            throw new UnsupportedOperationException();
3088          }
3089 <        public boolean remove(Object o) {
3090 <            if (!(o instanceof Map.Entry))
3091 <                return false;
3092 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
3093 <            return ConcurrentHashMapV8.this.remove(e.getKey(), e.getValue());
3089 >        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
3090 >            throw new UnsupportedOperationException();
3091 >        }
3092 >        public boolean equals(Object o) {
3093 >            Set<?> c;
3094 >            return ((o instanceof Set) &&
3095 >                    ((c = (Set<?>)o) == this ||
3096 >                     (containsAll(c) && c.containsAll(this))));
3097          }
3098      }
3099  
3100      /* ---------------- Serialization Support -------------- */
3101  
3102      /**
3103 <     * Helper class used in previous version, declared for the sake of
3104 <     * serialization compatibility
3103 >     * Stripped-down version of helper class used in previous version,
3104 >     * declared for the sake of serialization compatibility
3105       */
3106 <    static class Segment<K,V> extends java.util.concurrent.locks.ReentrantLock
1442 <        implements Serializable {
3106 >    static class Segment<K,V> implements Serializable {
3107          private static final long serialVersionUID = 2249069246763182397L;
3108          final float loadFactor;
3109          Segment(float lf) { this.loadFactor = lf; }
# Line 1461 | Line 3125 | public class ConcurrentHashMapV8<K, V>
3125              segments = (Segment<K,V>[])
3126                  new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3127              for (int i = 0; i < segments.length; ++i)
3128 <                segments[i] = new Segment<K,V>(loadFactor);
3128 >                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3129          }
3130          s.defaultWriteObject();
3131 <        new HashIterator().writeEntries(s);
3131 >        InternalIterator it = new InternalIterator(table);
3132 >        while (it.next != null) {
3133 >            s.writeObject(it.nextKey);
3134 >            s.writeObject(it.nextVal);
3135 >            it.advance();
3136 >        }
3137          s.writeObject(null);
3138          s.writeObject(null);
3139          segments = null; // throw away
3140      }
3141  
3142      /**
3143 <     * Reconstitutes the  instance from a
1475 <     * stream (i.e., deserializes it).
3143 >     * Reconstitutes the instance from a stream (that is, deserializes it).
3144       * @param s the stream
3145       */
3146      @SuppressWarnings("unchecked")
3147      private void readObject(java.io.ObjectInputStream s)
3148              throws java.io.IOException, ClassNotFoundException {
3149          s.defaultReadObject();
1482        // find load factor in a segment, if one exists
1483        if (segments != null && segments.length != 0)
1484            this.loadFactor = segments[0].loadFactor;
1485        else
1486            this.loadFactor = DEFAULT_LOAD_FACTOR;
1487        this.initCap = DEFAULT_CAPACITY;
1488        LongAdder ct = new LongAdder(); // force final field write
1489        UNSAFE.putObjectVolatile(this, counterOffset, ct);
3150          this.segments = null; // unneeded
3151 +        // initialize transient final field
3152 +        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3153  
3154 <        // Read the keys and values, and put the mappings in the table
3154 >        // Create all nodes, then place in table once size is known
3155 >        long size = 0L;
3156 >        Node p = null;
3157          for (;;) {
3158 <            K key = (K) s.readObject();
3159 <            V value = (V) s.readObject();
3160 <            if (key == null)
3158 >            K k = (K) s.readObject();
3159 >            V v = (V) s.readObject();
3160 >            if (k != null && v != null) {
3161 >                int h = spread(k.hashCode());
3162 >                p = new Node(h, k, v, p);
3163 >                ++size;
3164 >            }
3165 >            else
3166                  break;
3167 <            put(key, value);
3167 >        }
3168 >        if (p != null) {
3169 >            boolean init = false;
3170 >            int n;
3171 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3172 >                n = MAXIMUM_CAPACITY;
3173 >            else {
3174 >                int sz = (int)size;
3175 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
3176 >            }
3177 >            int sc = sizeCtl;
3178 >            boolean collide = false;
3179 >            if (n > sc &&
3180 >                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3181 >                try {
3182 >                    if (table == null) {
3183 >                        init = true;
3184 >                        Node[] tab = new Node[n];
3185 >                        int mask = n - 1;
3186 >                        while (p != null) {
3187 >                            int j = p.hash & mask;
3188 >                            Node next = p.next;
3189 >                            Node q = p.next = tabAt(tab, j);
3190 >                            setTabAt(tab, j, p);
3191 >                            if (!collide && q != null && q.hash == p.hash)
3192 >                                collide = true;
3193 >                            p = next;
3194 >                        }
3195 >                        table = tab;
3196 >                        counter.add(size);
3197 >                        sc = n - (n >>> 2);
3198 >                    }
3199 >                } finally {
3200 >                    sizeCtl = sc;
3201 >                }
3202 >                if (collide) { // rescan and convert to TreeBins
3203 >                    Node[] tab = table;
3204 >                    for (int i = 0; i < tab.length; ++i) {
3205 >                        int c = 0;
3206 >                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3207 >                            if (++c > TREE_THRESHOLD &&
3208 >                                (e.key instanceof Comparable)) {
3209 >                                replaceWithTreeBin(tab, i, e.key);
3210 >                                break;
3211 >                            }
3212 >                        }
3213 >                    }
3214 >                }
3215 >            }
3216 >            if (!init) { // Can only happen if unsafely published.
3217 >                while (p != null) {
3218 >                    internalPut(p.key, p.val);
3219 >                    p = p.next;
3220 >                }
3221 >            }
3222 >
3223          }
3224      }
3225  
3226      // Unsafe mechanics
3227      private static final sun.misc.Unsafe UNSAFE;
3228      private static final long counterOffset;
3229 <    private static final long resizingOffset;
3229 >    private static final long sizeCtlOffset;
3230      private static final long ABASE;
3231      private static final int ASHIFT;
3232  
# Line 1513 | Line 3237 | public class ConcurrentHashMapV8<K, V>
3237              Class<?> k = ConcurrentHashMapV8.class;
3238              counterOffset = UNSAFE.objectFieldOffset
3239                  (k.getDeclaredField("counter"));
3240 <            resizingOffset = UNSAFE.objectFieldOffset
3241 <                (k.getDeclaredField("resizing"));
3240 >            sizeCtlOffset = UNSAFE.objectFieldOffset
3241 >                (k.getDeclaredField("sizeCtl"));
3242              Class<?> sc = Node[].class;
3243              ABASE = UNSAFE.arrayBaseOffset(sc);
3244              ss = UNSAFE.arrayIndexScale(sc);

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines