ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.40 by jsr166, Sat Jun 9 17:02:07 2012 UTC vs.
Revision 1.41 by dl, Tue Jul 3 23:25:57 2012 UTC

# Line 4 | Line 4
4   * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7 // Snapshot Tue Jun  5 14:56:09 2012  Doug Lea  (dl at altair)
8
7   package jsr166e;
8   import jsr166e.LongAdder;
9   import java.util.Arrays;
# Line 107 | Line 105 | public class ConcurrentHashMapV8<K, V>
105       */
106      public static interface MappingFunction<K, V> {
107          /**
108 <         * Returns a non-null value for the given key.
108 >         * Returns a value for the given key, or null if there is no mapping
109           *
110           * @param key the (non-null) key
111 <         * @return a non-null value
111 >         * @return a value for the key, or null if none
112           */
113          V map(K key);
114      }
# Line 127 | Line 125 | public class ConcurrentHashMapV8<K, V>
125           *
126           * @param key the (non-null) key
127           * @param value the current value, or null if there is no mapping
128 <         * @return a non-null value
128 >         * @return a value for the key, or null if none
129           */
130          V remap(K key, V value);
131      }
132  
133 +    /**
134 +     * A partitionable iterator. A Spliterator can be traversed
135 +     * directly, but can also be partitioned (before traversal) by
136 +     * creating another Spliterator that covers a non-overlapping
137 +     * portion of the elements, and so may be amenable to parallel
138 +     * execution.
139 +     *
140 +     * <p> This interface exports a subset of expected JDK8
141 +     * functionality.
142 +     *
143 +     * <p>Sample usage: Here is one (of the several) ways to compute
144 +     * the sum of the values held in a map using the ForkJoin
145 +     * framework. As illustrated here, Spliterators are well suited to
146 +     * designs in which a task repeatedly splits off half its work
147 +     * into forked subtasks until small enough to process directly,
148 +     * and then joins these subtasks. Variants of this style can be
149 +     * also be used in completion-based designs.
150 +     *
151 +     * <pre>
152 +     * {@code ConcurrentHashMapV8<String, Long> m = ...
153 +     * // Uses parallel depth of log2 of size / (parallelism * slack of 8).
154 +     * int depth = 32 - Integer.numberOfLeadingZeros(m.size() / (aForkJoinPool.getParallelism() * 8));
155 +     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), depth, null));
156 +     * // ...
157 +     * static class SumValues extends RecursiveTask<Long> {
158 +     *   final Spliterator<Long> s;
159 +     *   final int depth;             // number of splits before processing
160 +     *   final SumValues nextJoin;    // records forked subtasks to join
161 +     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
162 +     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
163 +     *   }
164 +     *   public Long compute() {
165 +     *     long sum = 0;
166 +     *     SumValues subtasks = null; // fork subtasks
167 +     *     for (int d = depth - 1; d >= 0; --d)
168 +     *       (subtasks = new SumValues(s.split(), d, subtasks)).fork();
169 +     *     while (s.hasNext())        // directly process remaining elements
170 +     *       sum += s.next();
171 +     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
172 +     *       sum += t.join();         // collect subtask results
173 +     *     return sum;
174 +     *   }
175 +     * }
176 +     * }</pre>
177 +     */
178 +    public static interface Spliterator<T> extends Iterator<T> {
179 +        /**
180 +         * Returns a Spliterator covering approximately half of the
181 +         * elements, guaranteed not to overlap with those subsequently
182 +         * returned by this Spliterator.  After invoking this method,
183 +         * the current Spliterator will <em>not</em> produce any of
184 +         * the elements of the returned Spliterator, but the two
185 +         * Spliterators together will produce all of the elements that
186 +         * would have been produced by this Spliterator had this
187 +         * method not been called. The exact number of elements
188 +         * produced by the returned Spliterator is not guaranteed, and
189 +         * may be zero (i.e., with {@code hasNext()} reporting {@code
190 +         * false}) if this Spliterator cannot be further split.
191 +         *
192 +         * @return a Spliterator covering approximately half of the
193 +         * elements
194 +         * @throws IllegalStateException if this Spliterator has
195 +         * already commenced traversing elements.
196 +         */
197 +        Spliterator<T> split();
198 +
199 +        /**
200 +         * Returns a Spliterator producing the same elements as this
201 +         * Spliterator. This method may be used for example to create
202 +         * a second Spliterator before a traversal, in order to later
203 +         * perform a second traversal.
204 +         *
205 +         * @return a Spliterator covering the same range as this Spliterator.
206 +         * @throws IllegalStateException if this Spliterator has
207 +         * already commenced traversing elements.
208 +         */
209 +        Spliterator<T> clone();
210 +    }
211 +
212      /*
213       * Overview:
214       *
# Line 294 | Line 371 | public class ConcurrentHashMapV8<K, V>
371       *
372       * The traversal scheme also applies to partial traversals of
373       * ranges of bins (via an alternate InternalIterator constructor)
374 <     * to support partitioned aggregate operations (that are not
375 <     * otherwise implemented yet).  Also, read-only operations give up
376 <     * if ever forwarded to a null table, which provides support for
377 <     * shutdown-style clearing, which is also not currently
301 <     * implemented.
374 >     * to support partitioned aggregate operations.  Also, read-only
375 >     * operations give up if ever forwarded to a null table, which
376 >     * provides support for shutdown-style clearing, which is also not
377 >     * currently implemented.
378       *
379       * Lazy table initialization minimizes footprint until first use,
380       * and also avoids resizings when the first operation is from a
# Line 452 | Line 528 | public class ConcurrentHashMapV8<K, V>
528  
529      /**
530       * Key-value entry. Note that this is never exported out as a
531 <     * user-visible Map.Entry (see WriteThroughEntry and SnapshotEntry
532 <     * below). Nodes with a hash field of MOVED are special, and do
533 <     * not contain user keys or values.  Otherwise, keys are never
534 <     * null, and null val fields indicate that a node is in the
535 <     * process of being deleted or created. For purposes of read-only
536 <     * access, a key may be read before a val, but can only be used
537 <     * after checking val to be non-null.
531 >     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
532 >     * field of MOVED are special, and do not contain user keys or
533 >     * values.  Otherwise, keys are never null, and null val fields
534 >     * indicate that a node is in the process of being deleted or
535 >     * created. For purposes of read-only access, a key may be read
536 >     * before a val, but can only be used after checking val to be
537 >     * non-null.
538       */
539      static class Node {
540          volatile int hash;
# Line 571 | Line 647 | public class ConcurrentHashMapV8<K, V>
647       * handle this, the tree is ordered primarily by hash value, then
648       * by getClass().getName() order, and then by Comparator order
649       * among elements of the same class.  On lookup at a node, if
650 <     * non-Comparable, both left and right children may need to be
651 <     * searched in the case of tied hash values. (This corresponds to
652 <     * the full list search that would be necessary if all elements
653 <     * were non-Comparable and had tied hashes.)
650 >     * elements are not comparable or compare as 0, both left and
651 >     * right children may need to be searched in the case of tied hash
652 >     * values. (This corresponds to the full list search that would be
653 >     * necessary if all elements were non-Comparable and had tied
654 >     * hashes.)  The red-black balancing code is updated from
655 >     * pre-jdk-collections
656 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
657 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
658 >     * Algorithms" (CLR).
659       *
660       * TreeBins also maintain a separate locking discipline than
661       * regular bins. Because they are forwarded via special MOVED
# Line 598 | Line 679 | public class ConcurrentHashMapV8<K, V>
679       */
680      static final class TreeBin extends AbstractQueuedSynchronizer {
681          private static final long serialVersionUID = 2249069246763182397L;
682 <        TreeNode root;  // root of tree
683 <        TreeNode first; // head of next-pointer list
682 >        transient TreeNode root;  // root of tree
683 >        transient TreeNode first; // head of next-pointer list
684  
685          /* AQS overrides */
686          public final boolean isHeldExclusively() { return getState() > 0; }
# Line 629 | Line 710 | public class ConcurrentHashMapV8<K, V>
710              return c == -1;
711          }
712  
713 +        /** From CLR */
714 +        private void rotateLeft(TreeNode p) {
715 +            if (p != null) {
716 +                TreeNode r = p.right, pp, rl;
717 +                if ((rl = p.right = r.left) != null)
718 +                    rl.parent = p;
719 +                if ((pp = r.parent = p.parent) == null)
720 +                    root = r;
721 +                else if (pp.left == p)
722 +                    pp.left = r;
723 +                else
724 +                    pp.right = r;
725 +                r.left = p;
726 +                p.parent = r;
727 +            }
728 +        }
729 +
730 +        /** From CLR */
731 +        private void rotateRight(TreeNode p) {
732 +            if (p != null) {
733 +                TreeNode l = p.left, pp, lr;
734 +                if ((lr = p.left = l.right) != null)
735 +                    lr.parent = p;
736 +                if ((pp = l.parent = p.parent) == null)
737 +                    root = l;
738 +                else if (pp.right == p)
739 +                    pp.right = l;
740 +                else
741 +                    pp.left = l;
742 +                l.right = p;
743 +                p.parent = l;
744 +            }
745 +        }
746 +
747          /**
748           * Return the TreeNode (or null if not found) for the given key
749           * starting at given root.
# Line 637 | Line 752 | public class ConcurrentHashMapV8<K, V>
752          final TreeNode getTreeNode(int h, Object k, TreeNode p) {
753              Class<?> c = k.getClass();
754              while (p != null) {
755 <                int dir, ph;  Object pk; Class<?> pc; TreeNode r;
756 <                if (h < (ph = p.hash))
757 <                    dir = -1;
758 <                else if (h > ph)
759 <                    dir = 1;
760 <                else if ((pk = p.key) == k || k.equals(pk))
761 <                    return p;
762 <                else if (c != (pc = pk.getClass()))
763 <                    dir = c.getName().compareTo(pc.getName());
764 <                else if (k instanceof Comparable)
765 <                    dir = ((Comparable)k).compareTo((Comparable)pk);
766 <                else
767 <                    dir = 0;
768 <                TreeNode pr = p.right;
769 <                if (dir > 0)
770 <                    p = pr;
771 <                else if (dir == 0 && pr != null && h >= pr.hash &&
772 <                         (r = getTreeNode(h, k, pr)) != null)
773 <                    return r;
755 >                int dir, ph;  Object pk; Class<?> pc;
756 >                if ((ph = p.hash) == h) {
757 >                    if ((pk = p.key) == k || k.equals(pk))
758 >                        return p;
759 >                    if (c != (pc = pk.getClass()) ||
760 >                        !(k instanceof Comparable) ||
761 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
762 >                        dir = (c == pc)? 0 : c.getName().compareTo(pc.getName());
763 >                        TreeNode r = null, s = null, pl, pr;
764 >                        if (dir >= 0) {
765 >                            if ((pl = p.left) != null && h <= pl.hash)
766 >                                s = pl;
767 >                        }
768 >                        else if ((pr = p.right) != null && h >= pr.hash)
769 >                            s = pr;
770 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
771 >                            return r;
772 >                    }
773 >                }
774                  else
775 <                    p = p.left;
775 >                    dir = (h < ph) ? -1 : 1;
776 >                p = (dir > 0) ? p.right : p.left;
777              }
778              return null;
779          }
# Line 696 | Line 812 | public class ConcurrentHashMapV8<K, V>
812          @SuppressWarnings("unchecked") // suppress Comparable cast warning
813          final TreeNode putTreeNode(int h, Object k, Object v) {
814              Class<?> c = k.getClass();
815 <            TreeNode p = root;
815 >            TreeNode pp = root, p = null;
816              int dir = 0;
817 <            if (p != null) {
818 <                for (;;) {
819 <                    int ph;  Object pk; Class<?> pc; TreeNode r;
820 <                    if (h < (ph = p.hash))
821 <                        dir = -1;
706 <                    else if (h > ph)
707 <                        dir = 1;
708 <                    else if ((pk = p.key) == k || k.equals(pk))
817 >            while (pp != null) { // find existing node or leaf to insert at
818 >                int ph;  Object pk; Class<?> pc;
819 >                p = pp;
820 >                if ((ph = p.hash) == h) {
821 >                    if ((pk = p.key) == k || k.equals(pk))
822                          return p;
823 <                    else if (c != (pc = (pk = p.key).getClass()))
824 <                        dir = c.getName().compareTo(pc.getName());
825 <                    else if (k instanceof Comparable)
826 <                        dir = ((Comparable)k).compareTo((Comparable)pk);
827 <                    else
828 <                        dir = 0;
829 <                    TreeNode pr = p.right, pl;
830 <                    if (dir > 0) {
831 <                        if (pr == null)
832 <                            break;
833 <                        p = pr;
823 >                    if (c != (pc = pk.getClass()) ||
824 >                        !(k instanceof Comparable) ||
825 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
826 >                        dir = (c == pc)? 0 : c.getName().compareTo(pc.getName());
827 >                        TreeNode r = null, s = null, pl, pr;
828 >                        if (dir >= 0) {
829 >                            if ((pl = p.left) != null && h <= pl.hash)
830 >                                s = pl;
831 >                        }
832 >                        else if ((pr = p.right) != null && h >= pr.hash)
833 >                            s = pr;
834 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
835 >                            return r;
836                      }
722                    else if (dir == 0 && pr != null && h >= pr.hash &&
723                             (r = getTreeNode(h, k, pr)) != null)
724                        return r;
725                    else if ((pl = p.left) == null)
726                        break;
727                    else
728                        p = pl;
837                  }
838 +                else
839 +                    dir = (h < ph) ? -1 : 1;
840 +                pp = (dir > 0) ? p.right : p.left;
841              }
842 +
843              TreeNode f = first;
844 <            TreeNode r = first = new TreeNode(h, k, v, f, p);
844 >            TreeNode x = first = new TreeNode(h, k, v, f, p);
845              if (p == null)
846 <                root = r;
847 <            else {
846 >                root = x;
847 >            else { // attach and rebalance; adapted from CLR
848 >                TreeNode xp, xpp;
849 >                if (f != null)
850 >                    f.prev = x;
851                  if (dir <= 0)
852 <                    p.left = r;
852 >                    p.left = x;
853                  else
854 <                    p.right = r;
855 <                if (f != null)
856 <                    f.prev = r;
857 <                fixAfterInsertion(r);
854 >                    p.right = x;
855 >                x.red = true;
856 >                while (x != null && (xp = x.parent) != null && xp.red &&
857 >                       (xpp = xp.parent) != null) {
858 >                    TreeNode xppl = xpp.left;
859 >                    if (xp == xppl) {
860 >                        TreeNode y = xpp.right;
861 >                        if (y != null && y.red) {
862 >                            y.red = false;
863 >                            xp.red = false;
864 >                            xpp.red = true;
865 >                            x = xpp;
866 >                        }
867 >                        else {
868 >                            if (x == xp.right) {
869 >                                rotateLeft(x = xp);
870 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
871 >                            }
872 >                            if (xp != null) {
873 >                                xp.red = false;
874 >                                if (xpp != null) {
875 >                                    xpp.red = true;
876 >                                    rotateRight(xpp);
877 >                                }
878 >                            }
879 >                        }
880 >                    }
881 >                    else {
882 >                        TreeNode y = xppl;
883 >                        if (y != null && y.red) {
884 >                            y.red = false;
885 >                            xp.red = false;
886 >                            xpp.red = true;
887 >                            x = xpp;
888 >                        }
889 >                        else {
890 >                            if (x == xp.left) {
891 >                                rotateRight(x = xp);
892 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
893 >                            }
894 >                            if (xp != null) {
895 >                                xp.red = false;
896 >                                if (xpp != null) {
897 >                                    xpp.red = true;
898 >                                    rotateLeft(xpp);
899 >                                }
900 >                            }
901 >                        }
902 >                    }
903 >                }
904 >                TreeNode r = root;
905 >                if (r != null && r.red)
906 >                    r.red = false;
907              }
908              return null;
909          }
# Line 765 | Line 929 | public class ConcurrentHashMapV8<K, V>
929              TreeNode pl = p.left;
930              TreeNode pr = p.right;
931              if (pl != null && pr != null) {
932 <                TreeNode s = pr;
933 <                while (s.left != null) // find successor
934 <                    s = s.left;
932 >                TreeNode s = pr, sl;
933 >                while ((sl = s.left) != null) // find successor
934 >                    s = sl;
935                  boolean c = s.red; s.red = p.red; p.red = c; // swap colors
936                  TreeNode sr = s.right;
937                  TreeNode pp = p.parent;
# Line 819 | Line 983 | public class ConcurrentHashMapV8<K, V>
983                      pp.right = replacement;
984                  p.left = p.right = p.parent = null;
985              }
986 <            if (!p.red)
987 <                fixAfterDeletion(replacement);
988 <            if (p == replacement && (pp = p.parent) != null) {
989 <                if (p == pp.left) // detach pointers
990 <                    pp.left = null;
991 <                else if (p == pp.right)
992 <                    pp.right = null;
829 <                p.parent = null;
830 <            }
831 <        }
832 <
833 <        // CLR code updated from pre-jdk-collections version at
834 <        // http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java
835 <
836 <        /** From CLR */
837 <        private void rotateLeft(TreeNode p) {
838 <            if (p != null) {
839 <                TreeNode r = p.right, pp, rl;
840 <                if ((rl = p.right = r.left) != null)
841 <                    rl.parent = p;
842 <                if ((pp = r.parent = p.parent) == null)
843 <                    root = r;
844 <                else if (pp.left == p)
845 <                    pp.left = r;
846 <                else
847 <                    pp.right = r;
848 <                r.left = p;
849 <                p.parent = r;
850 <            }
851 <        }
852 <
853 <        /** From CLR */
854 <        private void rotateRight(TreeNode p) {
855 <            if (p != null) {
856 <                TreeNode l = p.left, pp, lr;
857 <                if ((lr = p.left = l.right) != null)
858 <                    lr.parent = p;
859 <                if ((pp = l.parent = p.parent) == null)
860 <                    root = l;
861 <                else if (pp.right == p)
862 <                    pp.right = l;
863 <                else
864 <                    pp.left = l;
865 <                l.right = p;
866 <                p.parent = l;
867 <            }
868 <        }
869 <
870 <        /** From CLR */
871 <        private void fixAfterInsertion(TreeNode x) {
872 <            x.red = true;
873 <            TreeNode xp, xpp;
874 <            while (x != null && (xp = x.parent) != null && xp.red &&
875 <                   (xpp = xp.parent) != null) {
876 <                TreeNode xppl = xpp.left;
877 <                if (xp == xppl) {
878 <                    TreeNode y = xpp.right;
879 <                    if (y != null && y.red) {
880 <                        y.red = false;
881 <                        xp.red = false;
882 <                        xpp.red = true;
883 <                        x = xpp;
986 >            if (!p.red) { // rebalance, from CLR
987 >                TreeNode x = replacement;
988 >                while (x != null) {
989 >                    TreeNode xp, xpl;
990 >                    if (x.red || (xp = x.parent) == null) {
991 >                        x.red = false;
992 >                        break;
993                      }
994 <                    else {
995 <                        if (x == xp.right) {
996 <                            x = xp;
997 <                            rotateLeft(x);
998 <                            xpp = (xp = x.parent) == null ? null : xp.parent;
999 <                        }
1000 <                        if (xp != null) {
892 <                            xp.red = false;
893 <                            if (xpp != null) {
894 <                                xpp.red = true;
895 <                                rotateRight(xpp);
896 <                            }
994 >                    if (x == (xpl = xp.left)) {
995 >                        TreeNode sib = xp.right;
996 >                        if (sib != null && sib.red) {
997 >                            sib.red = false;
998 >                            xp.red = true;
999 >                            rotateLeft(xp);
1000 >                            sib = (xp = x.parent) == null ? null : xp.right;
1001                          }
1002 <                    }
899 <                }
900 <                else {
901 <                    TreeNode y = xppl;
902 <                    if (y != null && y.red) {
903 <                        y.red = false;
904 <                        xp.red = false;
905 <                        xpp.red = true;
906 <                        x = xpp;
907 <                    }
908 <                    else {
909 <                        if (x == xp.left) {
1002 >                        if (sib == null)
1003                              x = xp;
911                            rotateRight(x);
912                            xpp = (xp = x.parent) == null ? null : xp.parent;
913                        }
914                        if (xp != null) {
915                            xp.red = false;
916                            if (xpp != null) {
917                                xpp.red = true;
918                                rotateLeft(xpp);
919                            }
920                        }
921                    }
922                }
923            }
924            TreeNode r = root;
925            if (r != null && r.red)
926                r.red = false;
927        }
928
929        /** From CLR */
930        private void fixAfterDeletion(TreeNode x) {
931            while (x != null) {
932                TreeNode xp, xpl;
933                if (x.red || (xp = x.parent) == null) {
934                    x.red = false;
935                    break;
936                }
937                if (x == (xpl = xp.left)) {
938                    TreeNode sib = xp.right;
939                    if (sib != null && sib.red) {
940                        sib.red = false;
941                        xp.red = true;
942                        rotateLeft(xp);
943                        sib = (xp = x.parent) == null ? null : xp.right;
944                    }
945                    if (sib == null)
946                        x = xp;
947                    else {
948                        TreeNode sl = sib.left, sr = sib.right;
949                        if ((sr == null || !sr.red) &&
950                            (sl == null || !sl.red)) {
951                            sib.red = true;
952                            x = xp;
953                        }
1004                          else {
1005 <                            if (sr == null || !sr.red) {
1006 <                                if (sl != null)
1007 <                                    sl.red = false;
1005 >                            TreeNode sl = sib.left, sr = sib.right;
1006 >                            if ((sr == null || !sr.red) &&
1007 >                                (sl == null || !sl.red)) {
1008                                  sib.red = true;
1009 <                                rotateRight(sib);
960 <                                sib = (xp = x.parent) == null ? null : xp.right;
1009 >                                x = xp;
1010                              }
1011 <                            if (sib != null) {
1012 <                                sib.red = (xp == null) ? false : xp.red;
1013 <                                if ((sr = sib.right) != null)
1014 <                                    sr.red = false;
1015 <                            }
1016 <                            if (xp != null) {
1017 <                                xp.red = false;
1018 <                                rotateLeft(xp);
1011 >                            else {
1012 >                                if (sr == null || !sr.red) {
1013 >                                    if (sl != null)
1014 >                                        sl.red = false;
1015 >                                    sib.red = true;
1016 >                                    rotateRight(sib);
1017 >                                    sib = (xp = x.parent) == null ? null : xp.right;
1018 >                                }
1019 >                                if (sib != null) {
1020 >                                    sib.red = (xp == null)? false : xp.red;
1021 >                                    if ((sr = sib.right) != null)
1022 >                                        sr.red = false;
1023 >                                }
1024 >                                if (xp != null) {
1025 >                                    xp.red = false;
1026 >                                    rotateLeft(xp);
1027 >                                }
1028 >                                x = root;
1029                              }
971                            x = root;
1030                          }
1031                      }
1032 <                }
1033 <                else { // symmetric
1034 <                    TreeNode sib = xpl;
1035 <                    if (sib != null && sib.red) {
1036 <                        sib.red = false;
1037 <                        xp.red = true;
1038 <                        rotateRight(xp);
981 <                        sib = (xp = x.parent) == null ? null : xp.left;
982 <                    }
983 <                    if (sib == null)
984 <                        x = xp;
985 <                    else {
986 <                        TreeNode sl = sib.left, sr = sib.right;
987 <                        if ((sl == null || !sl.red) &&
988 <                            (sr == null || !sr.red)) {
989 <                            sib.red = true;
990 <                            x = xp;
1032 >                    else { // symmetric
1033 >                        TreeNode sib = xpl;
1034 >                        if (sib != null && sib.red) {
1035 >                            sib.red = false;
1036 >                            xp.red = true;
1037 >                            rotateRight(xp);
1038 >                            sib = (xp = x.parent) == null ? null : xp.left;
1039                          }
1040 +                        if (sib == null)
1041 +                            x = xp;
1042                          else {
1043 <                            if (sl == null || !sl.red) {
1044 <                                if (sr != null)
1045 <                                    sr.red = false;
1043 >                            TreeNode sl = sib.left, sr = sib.right;
1044 >                            if ((sl == null || !sl.red) &&
1045 >                                (sr == null || !sr.red)) {
1046                                  sib.red = true;
1047 <                                rotateLeft(sib);
998 <                                sib = (xp = x.parent) == null ? null : xp.left;
1047 >                                x = xp;
1048                              }
1049 <                            if (sib != null) {
1050 <                                sib.red = (xp == null) ? false : xp.red;
1051 <                                if ((sl = sib.left) != null)
1052 <                                    sl.red = false;
1053 <                            }
1054 <                            if (xp != null) {
1055 <                                xp.red = false;
1056 <                                rotateRight(xp);
1049 >                            else {
1050 >                                if (sl == null || !sl.red) {
1051 >                                    if (sr != null)
1052 >                                        sr.red = false;
1053 >                                    sib.red = true;
1054 >                                    rotateLeft(sib);
1055 >                                    sib = (xp = x.parent) == null ? null : xp.left;
1056 >                                }
1057 >                                if (sib != null) {
1058 >                                    sib.red = (xp == null)? false : xp.red;
1059 >                                    if ((sl = sib.left) != null)
1060 >                                        sl.red = false;
1061 >                                }
1062 >                                if (xp != null) {
1063 >                                    xp.red = false;
1064 >                                    rotateRight(xp);
1065 >                                }
1066 >                                x = root;
1067                              }
1009                            x = root;
1068                          }
1069                      }
1070                  }
1071              }
1072 +            if (p == replacement && (pp = p.parent) != null) {
1073 +                if (p == pp.left) // detach pointers
1074 +                    pp.left = null;
1075 +                else if (p == pp.right)
1076 +                    pp.right = null;
1077 +                p.parent = null;
1078 +            }
1079          }
1080      }
1081  
# Line 1504 | Line 1569 | public class ConcurrentHashMapV8<K, V>
1569                  }
1570              }
1571          }
1572 <        if (val == null)
1573 <            throw new NullPointerException();
1574 <        counter.add(1L);
1575 <        if (count > 1)
1576 <            checkForResize();
1572 >        if (val != null) {
1573 >            counter.add(1L);
1574 >            if (count > 1)
1575 >                checkForResize();
1576 >        }
1577          return val;
1578      }
1579  
# Line 1518 | Line 1583 | public class ConcurrentHashMapV8<K, V>
1583                                           RemappingFunction<? super K, V> mf) {
1584          int h = spread(k.hashCode());
1585          Object val = null;
1586 <        boolean added = false;
1586 >        int delta = 0;
1587          int count = 0;
1588          for (Node[] tab = table;;) {
1589              Node f; int i, fh; Object fk;
# Line 1531 | Line 1596 | public class ConcurrentHashMapV8<K, V>
1596                          count = 1;
1597                          if ((val = mf.remap(k, null)) != null) {
1598                              node.val = val;
1599 <                            added = true;
1599 >                            delta = 1;
1600                          }
1601                      } finally {
1602 <                        if (!added)
1602 >                        if (delta == 0)
1603                              setTabAt(tab, i, null);
1604                          if (!node.casHash(fh, h)) {
1605                              node.hash = h;
# Line 1559 | Line 1624 | public class ConcurrentHashMapV8<K, V>
1624                                      p.val = val;
1625                                  else {
1626                                      count = 2;
1627 <                                    added = true;
1627 >                                    delta = 1;
1628                                      t.putTreeNode(h, k, val);
1629                                  }
1630                              }
1631 +                            else if (p != null) {
1632 +                                delta = -1;
1633 +                                t.deleteTreeNode(p);
1634 +                            }
1635                          }
1636                      } finally {
1637                          t.release(0);
# Line 1581 | Line 1650 | public class ConcurrentHashMapV8<K, V>
1650                  try {
1651                      if (tabAt(tab, i) == f) {
1652                          count = 1;
1653 <                        for (Node e = f;; ++count) {
1653 >                        for (Node e = f, pred = null;; ++count) {
1654                              Object ek, ev;
1655                              if ((e.hash & HASH_BITS) == h &&
1656                                  (ev = e.val) != null &&
# Line 1589 | Line 1658 | public class ConcurrentHashMapV8<K, V>
1658                                  val = mf.remap(k, (V)ev);
1659                                  if (val != null)
1660                                      e.val = val;
1661 +                                else {
1662 +                                    delta = -1;
1663 +                                    Node en = e.next;
1664 +                                    if (pred != null)
1665 +                                        pred.next = en;
1666 +                                    else
1667 +                                        setTabAt(tab, i, en);
1668 +                                }
1669                                  break;
1670                              }
1671 <                            Node last = e;
1671 >                            pred = e;
1672                              if ((e = e.next) == null) {
1673                                  if ((val = mf.remap(k, null)) != null) {
1674 <                                    last.next = new Node(h, k, val, null);
1675 <                                    added = true;
1674 >                                    pred.next = new Node(h, k, val, null);
1675 >                                    delta = 1;
1676                                      if (count >= TREE_THRESHOLD)
1677                                          replaceWithTreeBin(tab, i, k);
1678                                  }
# Line 1616 | Line 1693 | public class ConcurrentHashMapV8<K, V>
1693                  }
1694              }
1695          }
1696 <        if (val == null)
1697 <            throw new NullPointerException();
1621 <        if (added) {
1622 <            counter.add(1L);
1696 >        if (delta != 0) {
1697 >            counter.add((long)delta);
1698              if (count > 1)
1699                  checkForResize();
1700          }
# Line 2082 | Line 2157 | public class ConcurrentHashMapV8<K, V>
2157       * valid.
2158       *
2159       * Internal traversals directly access these fields, as in:
2160 <     * {@code while (it.next != null) { process(it.nextKey); it.advance(); }}
2160 >     * {@code while (it.advance() != null) { process(it.nextKey); }}
2161       *
2162 <     * Exported iterators (subclasses of ViewIterator) extract key,
2163 <     * value, or key-value pairs as return values of Iterator.next(),
2164 <     * and encapsulate the it.next check as hasNext();
2162 >     * Exported iterators must track whether the iterator has advanced
2163 >     * (in hasNext vs next) (by setting/checking/nulling field
2164 >     * nextVal), and then extract key, value, or key-value pairs as
2165 >     * return values of next().
2166       *
2167       * The iterator visits once each still-valid node that was
2168       * reachable upon iterator construction. It might miss some that
# Line 2104 | Line 2180 | public class ConcurrentHashMapV8<K, V>
2180       * paranoically cope with potential sharing by users of iterators
2181       * across threads, iteration terminates if a bounds checks fails
2182       * for a table read.
2107     *
2108     * The range-based constructor enables creation of parallel
2109     * range-splitting traversals. (Not yet implemented.)
2183       */
2184 <    static class InternalIterator {
2184 >    static class InternalIterator<K,V> {
2185 >        final ConcurrentHashMapV8<K, V> map;
2186          Node next;           // the next entry to use
2187          Node last;           // the last entry used
2188          Object nextKey;      // cached key field of next
# Line 2116 | Line 2190 | public class ConcurrentHashMapV8<K, V>
2190          Node[] tab;          // current table; updated if resized
2191          int index;           // index of bin to use next
2192          int baseIndex;       // current index of initial table
2193 <        final int baseLimit; // index bound for initial table
2193 >        int baseLimit;       // index bound for initial table
2194          final int baseSize;  // initial table size
2195  
2196          /** Creates iterator for all entries in the table. */
2197 <        InternalIterator(Node[] tab) {
2198 <            this.tab = tab;
2197 >        InternalIterator(ConcurrentHashMapV8<K, V> map) {
2198 >            this.tab = (this.map = map).table;
2199              baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2126            index = baseIndex = 0;
2127            next = null;
2128            advance();
2129        }
2130
2131        /** Creates iterator for the given range of the table */
2132        InternalIterator(Node[] tab, int lo, int hi) {
2133            this.tab = tab;
2134            baseSize = (tab == null) ? 0 : tab.length;
2135            baseLimit = (hi <= baseSize) ? hi : baseSize;
2136            index = baseIndex = (lo >= 0) ? lo : 0;
2137            next = null;
2138            advance();
2200          }
2201  
2202 <        /** Advances next. See above for explanation. */
2203 <        final void advance() {
2202 >        /** Creates iterator for clone() and split() methods */
2203 >        InternalIterator(InternalIterator<K,V> it, boolean split) {
2204 >            this.map = it.map;
2205 >            this.tab = it.tab;
2206 >            this.baseSize = it.baseSize;
2207 >            int lo = it.baseIndex;
2208 >            int hi = this.baseLimit = it.baseLimit;
2209 >            this.index = this.baseIndex =
2210 >                (split) ? (it.baseLimit = (lo + hi + 1) >>> 1) : lo;
2211 >        }
2212 >
2213 >        /**
2214 >         * Advances next; returns nextVal or null if terminated
2215 >         * See above for explanation.
2216 >         */
2217 >        final Object advance() {
2218              Node e = last = next;
2219 +            Object ev = null;
2220              outer: do {
2221                  if (e != null)                  // advance past used/skipped node
2222                      e = e.next;
# Line 2160 | Line 2236 | public class ConcurrentHashMapV8<K, V>
2236                      index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2237                  }
2238                  nextKey = e.key;
2239 <            } while ((nextVal = e.val) == null);// skip deleted or special nodes
2239 >            } while ((ev = e.val) == null);    // skip deleted or special nodes
2240              next = e;
2241 +            return nextVal = ev;
2242          }
2243 +
2244 +        public final void remove() {
2245 +            if (nextVal == null)
2246 +                advance();
2247 +            Node e = last;
2248 +            if (e == null)
2249 +                throw new IllegalStateException();
2250 +            last = null;
2251 +            map.remove(e.key);
2252 +        }
2253 +
2254 +        public final boolean hasNext() {
2255 +            return nextVal != null || advance() != null;
2256 +        }
2257 +
2258 +        public final boolean hasMoreElements() { return hasNext(); }
2259      }
2260  
2261      /* ---------------- Public operations -------------- */
# Line 2324 | Line 2417 | public class ConcurrentHashMapV8<K, V>
2417          if (value == null)
2418              throw new NullPointerException();
2419          Object v;
2420 <        InternalIterator it = new InternalIterator(table);
2421 <        while (it.next != null) {
2422 <            if ((v = it.nextVal) == value || value.equals(v))
2420 >        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
2421 >        while ((v = it.advance()) != null) {
2422 >            if (v == value || value.equals(v))
2423                  return true;
2331            it.advance();
2424          }
2425          return false;
2426      }
# Line 2399 | Line 2491 | public class ConcurrentHashMapV8<K, V>
2491  
2492      /**
2493       * If the specified key is not already associated with a value,
2494 <     * computes its value using the given mappingFunction and
2495 <     * enters it into the map.  This is equivalent to
2494 >     * computes its value using the given mappingFunction and enters
2495 >     * it into the map unless null.  This is equivalent to
2496       * <pre> {@code
2497       * if (map.containsKey(key))
2498       *   return map.get(key);
2499       * value = mappingFunction.map(key);
2500 <     * map.put(key, value);
2500 >     * if (value != null)
2501 >     *   map.put(key, value);
2502       * return value;}</pre>
2503       *
2504       * except that the action is performed atomically.  If the
2505 <     * function returns {@code null} (in which case a {@code
2506 <     * NullPointerException} is thrown), or the function itself throws
2507 <     * an (unchecked) exception, the exception is rethrown to its
2508 <     * caller, and no mapping is recorded.  Some attempted update
2509 <     * operations on this map by other threads may be blocked while
2510 <     * computation is in progress, so the computation should be short
2511 <     * and simple, and must not attempt to update any other mappings
2512 <     * of this Map. The most appropriate usage is to construct a new
2513 <     * object serving as an initial mapped value, or memoized result,
2421 <     * as in:
2505 >     * function returns {@code null} no mapping is recorded. If the
2506 >     * function itself throws an (unchecked) exception, the exception
2507 >     * is rethrown to its caller, and no mapping is recorded.  Some
2508 >     * attempted update operations on this map by other threads may be
2509 >     * blocked while computation is in progress, so the computation
2510 >     * should be short and simple, and must not attempt to update any
2511 >     * other mappings of this Map. The most appropriate usage is to
2512 >     * construct a new object serving as an initial mapped value, or
2513 >     * memoized result, as in:
2514       *
2515       *  <pre> {@code
2516       * map.computeIfAbsent(key, new MappingFunction<K, V>() {
# Line 2427 | Line 2519 | public class ConcurrentHashMapV8<K, V>
2519       * @param key key with which the specified value is to be associated
2520       * @param mappingFunction the function to compute a value
2521       * @return the current (existing or computed) value associated with
2522 <     *         the specified key.
2523 <     * @throws NullPointerException if the specified key, mappingFunction,
2524 <     *         or computed value is null
2522 >     *         the specified key, or null if the computed value is null.
2523 >     * @throws NullPointerException if the specified key or mappingFunction
2524 >     *         is null
2525       * @throws IllegalStateException if the computation detectably
2526       *         attempts a recursive update to this map that would
2527       *         otherwise never complete
# Line 2444 | Line 2536 | public class ConcurrentHashMapV8<K, V>
2536      }
2537  
2538      /**
2539 <     * Computes and enters a new mapping value given a key and
2539 >     * Computes a new mapping value given a key and
2540       * its current mapped value (or {@code null} if there is no current
2541       * mapping). This is equivalent to
2542       *  <pre> {@code
2543 <     *  map.put(key, remappingFunction.remap(key, map.get(key));
2543 >     *   value = remappingFunction.remap(key, map.get(key));
2544 >     *   if (value != null)
2545 >     *     map.put(key, value);
2546 >     *   else
2547 >     *     map.remove(key);
2548       * }</pre>
2549       *
2550       * except that the action is performed atomically.  If the
2551 <     * function returns {@code null} (in which case a {@code
2552 <     * NullPointerException} is thrown), or the function itself throws
2553 <     * an (unchecked) exception, the exception is rethrown to its
2554 <     * caller, and current mapping is left unchanged.  Some attempted
2555 <     * update operations on this map by other threads may be blocked
2556 <     * while computation is in progress, so the computation should be
2557 <     * short and simple, and must not attempt to update any other
2558 <     * mappings of this Map. For example, to either create or
2463 <     * append new messages to a value mapping:
2551 >     * function returns {@code null}, the mapping is removed.  If the
2552 >     * function itself throws an (unchecked) exception, the exception
2553 >     * is rethrown to its caller, and the current mapping is left
2554 >     * unchanged.  Some attempted update operations on this map by
2555 >     * other threads may be blocked while computation is in progress,
2556 >     * so the computation should be short and simple, and must not
2557 >     * attempt to update any other mappings of this Map. For example,
2558 >     * to either create or append new messages to a value mapping:
2559       *
2560       * <pre> {@code
2561       * Map<Key, String> map = ...;
# Line 2472 | Line 2567 | public class ConcurrentHashMapV8<K, V>
2567       * @param key key with which the specified value is to be associated
2568       * @param remappingFunction the function to compute a value
2569       * @return the new value associated with
2570 <     *         the specified key.
2570 >     *         the specified key, or null if none.
2571       * @throws NullPointerException if the specified key or remappingFunction
2572 <     *         or computed value is null
2572 >     *         is null
2573       * @throws IllegalStateException if the computation detectably
2574       *         attempts a recursive update to this map that would
2575       *         otherwise never complete
# Line 2633 | Line 2728 | public class ConcurrentHashMapV8<K, V>
2728      }
2729  
2730      /**
2731 +     * Returns a partionable iterator of the keys in this map.
2732 +     *
2733 +     * @return a partionable iterator of the keys in this map
2734 +     */
2735 +    public Spliterator<K> keySpliterator() {
2736 +        return new KeyIterator<K,V>(this);
2737 +    }
2738 +
2739 +    /**
2740 +     * Returns a partionable iterator of the values in this map.
2741 +     *
2742 +     * @return a partionable iterator of the values in this map
2743 +     */
2744 +    public Spliterator<V> valueSpliterator() {
2745 +        return new ValueIterator<K,V>(this);
2746 +    }
2747 +
2748 +    /**
2749 +     * Returns a partionable iterator of the entries in this map.
2750 +     *
2751 +     * @return a partionable iterator of the entries in this map
2752 +     */
2753 +    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2754 +        return new EntryIterator<K,V>(this);
2755 +    }
2756 +
2757 +    /**
2758       * Returns the hash code value for this {@link Map}, i.e.,
2759       * the sum of, for each key-value pair in the map,
2760       * {@code key.hashCode() ^ value.hashCode()}.
# Line 2641 | Line 2763 | public class ConcurrentHashMapV8<K, V>
2763       */
2764      public int hashCode() {
2765          int h = 0;
2766 <        InternalIterator it = new InternalIterator(table);
2767 <        while (it.next != null) {
2768 <            h += it.nextKey.hashCode() ^ it.nextVal.hashCode();
2769 <            it.advance();
2766 >        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
2767 >        Object v;
2768 >        while ((v = it.advance()) != null) {
2769 >            h += it.nextKey.hashCode() ^ v.hashCode();
2770          }
2771          return h;
2772      }
# Line 2661 | Line 2783 | public class ConcurrentHashMapV8<K, V>
2783       * @return a string representation of this map
2784       */
2785      public String toString() {
2786 <        InternalIterator it = new InternalIterator(table);
2786 >        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
2787          StringBuilder sb = new StringBuilder();
2788          sb.append('{');
2789 <        if (it.next != null) {
2789 >        Object v;
2790 >        if ((v = it.advance()) != null) {
2791              for (;;) {
2792 <                Object k = it.nextKey, v = it.nextVal;
2792 >                Object k = it.nextKey;
2793                  sb.append(k == this ? "(this Map)" : k);
2794                  sb.append('=');
2795                  sb.append(v == this ? "(this Map)" : v);
2796 <                it.advance();
2674 <                if (it.next == null)
2796 >                if ((v = it.advance()) == null)
2797                      break;
2798                  sb.append(',').append(' ');
2799              }
# Line 2694 | Line 2816 | public class ConcurrentHashMapV8<K, V>
2816              if (!(o instanceof Map))
2817                  return false;
2818              Map<?,?> m = (Map<?,?>) o;
2819 <            InternalIterator it = new InternalIterator(table);
2820 <            while (it.next != null) {
2821 <                Object val = it.nextVal;
2819 >            InternalIterator<K,V> it = new InternalIterator<K,V>(this);
2820 >            Object val;
2821 >            while ((val = it.advance()) != null) {
2822                  Object v = m.get(it.nextKey);
2823                  if (v == null || (v != val && !v.equals(val)))
2824                      return false;
2703                it.advance();
2825              }
2826              for (Map.Entry<?,?> e : m.entrySet()) {
2827                  Object mk, mv, v;
# Line 2716 | Line 2837 | public class ConcurrentHashMapV8<K, V>
2837  
2838      /* ----------------Iterators -------------- */
2839  
2840 <    /**
2841 <     * Base class for key, value, and entry iterators.  Adds a map
2842 <     * reference to InternalIterator to support Iterator.remove.
2843 <     */
2844 <    static abstract class ViewIterator<K,V> extends InternalIterator {
2724 <        final ConcurrentHashMapV8<K, V> map;
2725 <        ViewIterator(ConcurrentHashMapV8<K, V> map) {
2726 <            super(map.table);
2727 <            this.map = map;
2840 >    static final class KeyIterator<K,V> extends InternalIterator<K,V>
2841 >        implements Spliterator<K>, Enumeration<K> {
2842 >        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2843 >        KeyIterator(InternalIterator<K,V> it, boolean split) {
2844 >            super(it, split);
2845          }
2846 <
2847 <        public final void remove() {
2731 <            if (last == null)
2846 >        public KeyIterator<K,V> split() {
2847 >            if (last != null || (next != null && nextVal == null))
2848                  throw new IllegalStateException();
2849 <            map.remove(last.key);
2850 <            last = null;
2849 >            return new KeyIterator<K,V>(this, true);
2850 >        }
2851 >        public KeyIterator<K,V> clone() {
2852 >            if (last != null || (next != null && nextVal == null))
2853 >                throw new IllegalStateException();
2854 >            return new KeyIterator<K,V>(this, false);
2855          }
2736
2737        public final boolean hasNext()         { return next != null; }
2738        public final boolean hasMoreElements() { return next != null; }
2739    }
2740
2741    static final class KeyIterator<K,V> extends ViewIterator<K,V>
2742        implements Iterator<K>, Enumeration<K> {
2743        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2856  
2857          @SuppressWarnings("unchecked")
2858          public final K next() {
2859 <            if (next == null)
2859 >            if (nextVal == null && advance() == null)
2860                  throw new NoSuchElementException();
2861              Object k = nextKey;
2862 <            advance();
2863 <            return (K)k;
2862 >            nextVal = null;
2863 >            return (K) k;
2864          }
2865  
2866          public final K nextElement() { return next(); }
2867      }
2868  
2869 <    static final class ValueIterator<K,V> extends ViewIterator<K,V>
2870 <        implements Iterator<V>, Enumeration<V> {
2869 >    static final class ValueIterator<K,V> extends InternalIterator<K,V>
2870 >        implements Spliterator<V>, Enumeration<V> {
2871          ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2872 +        ValueIterator(InternalIterator<K,V> it, boolean split) {
2873 +            super(it, split);
2874 +        }
2875 +        public ValueIterator<K,V> split() {
2876 +            if (last != null || (next != null && nextVal == null))
2877 +                throw new IllegalStateException();
2878 +            return new ValueIterator<K,V>(this, true);
2879 +        }
2880 +
2881 +        public ValueIterator<K,V> clone() {
2882 +            if (last != null || (next != null && nextVal == null))
2883 +                throw new IllegalStateException();
2884 +            return new ValueIterator<K,V>(this, false);
2885 +        }
2886  
2887          @SuppressWarnings("unchecked")
2888          public final V next() {
2889 <            if (next == null)
2889 >            Object v;
2890 >            if ((v = nextVal) == null && (v = advance()) == null)
2891                  throw new NoSuchElementException();
2892 <            Object v = nextVal;
2893 <            advance();
2767 <            return (V)v;
2892 >            nextVal = null;
2893 >            return (V) v;
2894          }
2895  
2896          public final V nextElement() { return next(); }
2897      }
2898  
2899 <    static final class EntryIterator<K,V> extends ViewIterator<K,V>
2900 <        implements Iterator<Map.Entry<K,V>> {
2899 >    static final class EntryIterator<K,V> extends InternalIterator<K,V>
2900 >        implements Spliterator<Map.Entry<K,V>> {
2901          EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2902 <
2903 <        @SuppressWarnings("unchecked")
2904 <        public final Map.Entry<K,V> next() {
2905 <            if (next == null)
2906 <                throw new NoSuchElementException();
2907 <            Object k = nextKey;
2908 <            Object v = nextVal;
2909 <            advance();
2910 <            return new WriteThroughEntry<K,V>((K)k, (V)v, map);
2902 >        EntryIterator(InternalIterator<K,V> it, boolean split) {
2903 >            super(it, split);
2904 >        }
2905 >        public EntryIterator<K,V> split() {
2906 >            if (last != null || (next != null && nextVal == null))
2907 >                throw new IllegalStateException();
2908 >            return new EntryIterator<K,V>(this, true);
2909 >        }
2910 >        public EntryIterator<K,V> clone() {
2911 >            if (last != null || (next != null && nextVal == null))
2912 >                throw new IllegalStateException();
2913 >            return new EntryIterator<K,V>(this, false);
2914          }
2786    }
2787
2788    static final class SnapshotEntryIterator<K,V> extends ViewIterator<K,V>
2789        implements Iterator<Map.Entry<K,V>> {
2790        SnapshotEntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2915  
2916          @SuppressWarnings("unchecked")
2917          public final Map.Entry<K,V> next() {
2918 <            if (next == null)
2918 >            Object v;
2919 >            if ((v = nextVal) == null && (v = advance()) == null)
2920                  throw new NoSuchElementException();
2921              Object k = nextKey;
2922 <            Object v = nextVal;
2923 <            advance();
2799 <            return new SnapshotEntry<K,V>((K)k, (V)v);
2922 >            nextVal = null;
2923 >            return new MapEntry<K,V>((K)k, (V)v, map);
2924          }
2925      }
2926  
2927      /**
2928 <     * Base of writeThrough and Snapshot entry classes
2928 >     * Exported Entry for iterators
2929       */
2930 <    static abstract class MapEntry<K,V> implements Map.Entry<K, V> {
2930 >    static final class MapEntry<K,V> implements Map.Entry<K, V> {
2931          final K key; // non-null
2932          V val;       // non-null
2933 <        MapEntry(K key, V val)        { this.key = key; this.val = val; }
2933 >        final ConcurrentHashMapV8<K, V> map;
2934 >        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
2935 >            this.key = key;
2936 >            this.val = val;
2937 >            this.map = map;
2938 >        }
2939          public final K getKey()       { return key; }
2940          public final V getValue()     { return val; }
2941          public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
# Line 2821 | Line 2950 | public class ConcurrentHashMapV8<K, V>
2950                      (v == val || v.equals(val)));
2951          }
2952  
2824        public abstract V setValue(V value);
2825    }
2826
2827    /**
2828     * Entry used by EntryIterator.next(), that relays setValue
2829     * changes to the underlying map.
2830     */
2831    static final class WriteThroughEntry<K,V> extends MapEntry<K,V>
2832        implements Map.Entry<K, V> {
2833        final ConcurrentHashMapV8<K, V> map;
2834        WriteThroughEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
2835            super(key, val);
2836            this.map = map;
2837        }
2838
2953          /**
2954           * Sets our entry's value and writes through to the map. The
2955 <         * value to return is somewhat arbitrary here. Since a
2956 <         * WriteThroughEntry does not necessarily track asynchronous
2957 <         * changes, the most recent "previous" value could be
2958 <         * different from what we return (or could even have been
2959 <         * removed in which case the put will re-establish). We do not
2846 <         * and cannot guarantee more.
2955 >         * value to return is somewhat arbitrary here. Since a we do
2956 >         * not necessarily track asynchronous changes, the most recent
2957 >         * "previous" value could be different from what we return (or
2958 >         * could even have been removed in which case the put will
2959 >         * re-establish). We do not and cannot guarantee more.
2960           */
2961          public final V setValue(V value) {
2962              if (value == null) throw new NullPointerException();
# Line 2854 | Line 2967 | public class ConcurrentHashMapV8<K, V>
2967          }
2968      }
2969  
2857    /**
2858     * Internal version of entry, that doesn't write though changes
2859     */
2860    static final class SnapshotEntry<K,V> extends MapEntry<K,V>
2861        implements Map.Entry<K, V> {
2862        SnapshotEntry(K key, V val) { super(key, val); }
2863        public final V setValue(V value) { // only locally update
2864            if (value == null) throw new NullPointerException();
2865            V v = val;
2866            val = value;
2867            return v;
2868        }
2869    }
2870
2970      /* ----------------Views -------------- */
2971  
2972      /**
2973 <     * Base class for views. This is done mainly to allow adding
2875 <     * customized parallel traversals (not yet implemented.)
2973 >     * Base class for views.
2974       */
2975      static abstract class MapView<K, V> {
2976          final ConcurrentHashMapV8<K, V> map;
# Line 2882 | Line 2980 | public class ConcurrentHashMapV8<K, V>
2980          public final void clear()               { map.clear(); }
2981  
2982          // implementations below rely on concrete classes supplying these
2983 <        abstract Iterator<?> iter();
2983 >        abstract public Iterator<?> iterator();
2984          abstract public boolean contains(Object o);
2985          abstract public boolean remove(Object o);
2986  
# Line 2895 | Line 2993 | public class ConcurrentHashMapV8<K, V>
2993              int n = (int)sz;
2994              Object[] r = new Object[n];
2995              int i = 0;
2996 <            Iterator<?> it = iter();
2996 >            Iterator<?> it = iterator();
2997              while (it.hasNext()) {
2998                  if (i == n) {
2999                      if (n >= MAX_ARRAY_SIZE)
# Line 2922 | Line 3020 | public class ConcurrentHashMapV8<K, V>
3020                  .newInstance(a.getClass().getComponentType(), m);
3021              int n = r.length;
3022              int i = 0;
3023 <            Iterator<?> it = iter();
3023 >            Iterator<?> it = iterator();
3024              while (it.hasNext()) {
3025                  if (i == n) {
3026                      if (n >= MAX_ARRAY_SIZE)
# Line 2944 | Line 3042 | public class ConcurrentHashMapV8<K, V>
3042  
3043          public final int hashCode() {
3044              int h = 0;
3045 <            for (Iterator<?> it = iter(); it.hasNext();)
3045 >            for (Iterator<?> it = iterator(); it.hasNext();)
3046                  h += it.next().hashCode();
3047              return h;
3048          }
# Line 2952 | Line 3050 | public class ConcurrentHashMapV8<K, V>
3050          public final String toString() {
3051              StringBuilder sb = new StringBuilder();
3052              sb.append('[');
3053 <            Iterator<?> it = iter();
3053 >            Iterator<?> it = iterator();
3054              if (it.hasNext()) {
3055                  for (;;) {
3056                      Object e = it.next();
# Line 2978 | Line 3076 | public class ConcurrentHashMapV8<K, V>
3076  
3077          public final boolean removeAll(Collection<?> c) {
3078              boolean modified = false;
3079 <            for (Iterator<?> it = iter(); it.hasNext();) {
3079 >            for (Iterator<?> it = iterator(); it.hasNext();) {
3080                  if (c.contains(it.next())) {
3081                      it.remove();
3082                      modified = true;
# Line 2989 | Line 3087 | public class ConcurrentHashMapV8<K, V>
3087  
3088          public final boolean retainAll(Collection<?> c) {
3089              boolean modified = false;
3090 <            for (Iterator<?> it = iter(); it.hasNext();) {
3090 >            for (Iterator<?> it = iterator(); it.hasNext();) {
3091                  if (!c.contains(it.next())) {
3092                      it.remove();
3093                      modified = true;
# Line 3004 | Line 3102 | public class ConcurrentHashMapV8<K, V>
3102          KeySet(ConcurrentHashMapV8<K, V> map)   { super(map); }
3103          public final boolean contains(Object o) { return map.containsKey(o); }
3104          public final boolean remove(Object o)   { return map.remove(o) != null; }
3007
3105          public final Iterator<K> iterator() {
3106              return new KeyIterator<K,V>(map);
3107          }
3011        final Iterator<?> iter() {
3012            return new KeyIterator<K,V>(map);
3013        }
3108          public final boolean add(K e) {
3109              throw new UnsupportedOperationException();
3110          }
# Line 3029 | Line 3123 | public class ConcurrentHashMapV8<K, V>
3123          implements Collection<V> {
3124          Values(ConcurrentHashMapV8<K, V> map)   { super(map); }
3125          public final boolean contains(Object o) { return map.containsValue(o); }
3032
3126          public final boolean remove(Object o) {
3127              if (o != null) {
3128                  Iterator<V> it = new ValueIterator<K,V>(map);
# Line 3045 | Line 3138 | public class ConcurrentHashMapV8<K, V>
3138          public final Iterator<V> iterator() {
3139              return new ValueIterator<K,V>(map);
3140          }
3048        final Iterator<?> iter() {
3049            return new ValueIterator<K,V>(map);
3050        }
3141          public final boolean add(V e) {
3142              throw new UnsupportedOperationException();
3143          }
# Line 3059 | Line 3149 | public class ConcurrentHashMapV8<K, V>
3149      static final class EntrySet<K,V> extends MapView<K,V>
3150          implements Set<Map.Entry<K,V>> {
3151          EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
3062
3152          public final boolean contains(Object o) {
3153              Object k, v, r; Map.Entry<?,?> e;
3154              return ((o instanceof Map.Entry) &&
# Line 3068 | Line 3157 | public class ConcurrentHashMapV8<K, V>
3157                      (v = e.getValue()) != null &&
3158                      (v == r || v.equals(r)));
3159          }
3071
3160          public final boolean remove(Object o) {
3161              Object k, v; Map.Entry<?,?> e;
3162              return ((o instanceof Map.Entry) &&
# Line 3076 | Line 3164 | public class ConcurrentHashMapV8<K, V>
3164                      (v = e.getValue()) != null &&
3165                      map.remove(k, v));
3166          }
3079
3167          public final Iterator<Map.Entry<K,V>> iterator() {
3168              return new EntryIterator<K,V>(map);
3169          }
3083        final Iterator<?> iter() {
3084            return new SnapshotEntryIterator<K,V>(map);
3085        }
3170          public final boolean add(Entry<K,V> e) {
3171              throw new UnsupportedOperationException();
3172          }
# Line 3128 | Line 3212 | public class ConcurrentHashMapV8<K, V>
3212                  segments[i] = new Segment<K,V>(LOAD_FACTOR);
3213          }
3214          s.defaultWriteObject();
3215 <        InternalIterator it = new InternalIterator(table);
3216 <        while (it.next != null) {
3215 >        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
3216 >        Object v;
3217 >        while ((v = it.advance()) != null) {
3218              s.writeObject(it.nextKey);
3219 <            s.writeObject(it.nextVal);
3135 <            it.advance();
3219 >            s.writeObject(v);
3220          }
3221          s.writeObject(null);
3222          s.writeObject(null);
# Line 3219 | Line 3303 | public class ConcurrentHashMapV8<K, V>
3303                      p = p.next;
3304                  }
3305              }
3222
3306          }
3307      }
3308  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines