ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.43 by jsr166, Wed Jul 4 20:21:02 2012 UTC vs.
Revision 1.122 by jsr166, Thu Feb 26 06:53:34 2015 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166e;
8 < import jsr166e.LongAdder;
8 >
9 > import jsr166e.ForkJoinPool;
10 >
11 > import java.io.ObjectStreamField;
12 > import java.io.Serializable;
13 > import java.lang.reflect.ParameterizedType;
14 > import java.lang.reflect.Type;
15 > import java.util.AbstractMap;
16   import java.util.Arrays;
10 import java.util.Map;
11 import java.util.Set;
17   import java.util.Collection;
18 < import java.util.AbstractMap;
19 < import java.util.AbstractSet;
15 < import java.util.AbstractCollection;
16 < import java.util.Hashtable;
18 > import java.util.ConcurrentModificationException;
19 > import java.util.Enumeration;
20   import java.util.HashMap;
21 + import java.util.Hashtable;
22   import java.util.Iterator;
23 < import java.util.Enumeration;
20 < import java.util.ConcurrentModificationException;
23 > import java.util.Map;
24   import java.util.NoSuchElementException;
25 + import java.util.Set;
26   import java.util.concurrent.ConcurrentMap;
27 < import java.util.concurrent.ThreadLocalRandom;
27 > import java.util.concurrent.atomic.AtomicReference;
28 > import java.util.concurrent.atomic.AtomicInteger;
29   import java.util.concurrent.locks.LockSupport;
30 < import java.util.concurrent.locks.AbstractQueuedSynchronizer;
26 < import java.io.Serializable;
30 > import java.util.concurrent.locks.ReentrantLock;
31  
32   /**
33   * A hash table supporting full concurrency of retrievals and
# Line 37 | Line 41 | import java.io.Serializable;
41   * interoperable with {@code Hashtable} in programs that rely on its
42   * thread safety but not on its synchronization details.
43   *
44 < * <p> Retrieval operations (including {@code get}) generally do not
44 > * <p>Retrieval operations (including {@code get}) generally do not
45   * block, so may overlap with update operations (including {@code put}
46   * and {@code remove}). Retrievals reflect the results of the most
47   * recently <em>completed</em> update operations holding upon their
48 < * onset.  For aggregate operations such as {@code putAll} and {@code
49 < * clear}, concurrent retrievals may reflect insertion or removal of
50 < * only some entries.  Similarly, Iterators and Enumerations return
51 < * elements reflecting the state of the hash table at some point at or
52 < * since the creation of the iterator/enumeration.  They do
53 < * <em>not</em> throw {@link ConcurrentModificationException}.
54 < * However, iterators are designed to be used by only one thread at a
55 < * time.  Bear in mind that the results of aggregate status methods
56 < * including {@code size}, {@code isEmpty}, and {@code containsValue}
57 < * are typically useful only when a map is not undergoing concurrent
58 < * updates in other threads.  Otherwise the results of these methods
59 < * reflect transient states that may be adequate for monitoring
60 < * or estimation purposes, but not for program control.
48 > * onset. (More formally, an update operation for a given key bears a
49 > * <em>happens-before</em> relation with any (non-null) retrieval for
50 > * that key reporting the updated value.)  For aggregate operations
51 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
52 > * reflect insertion or removal of only some entries.  Similarly,
53 > * Iterators and Enumerations return elements reflecting the state of
54 > * the hash table at some point at or since the creation of the
55 > * iterator/enumeration.  They do <em>not</em> throw {@link
56 > * ConcurrentModificationException}.  However, iterators are designed
57 > * to be used by only one thread at a time.  Bear in mind that the
58 > * results of aggregate status methods including {@code size}, {@code
59 > * isEmpty}, and {@code containsValue} are typically useful only when
60 > * a map is not undergoing concurrent updates in other threads.
61 > * Otherwise the results of these methods reflect transient states
62 > * that may be adequate for monitoring or estimation purposes, but not
63 > * for program control.
64   *
65 < * <p> The table is dynamically expanded when there are too many
65 > * <p>The table is dynamically expanded when there are too many
66   * collisions (i.e., keys that have distinct hash codes but fall into
67   * the same slot modulo the table size), with the expected average
68   * effect of maintaining roughly two bins per mapping (corresponding
# Line 74 | Line 81 | import java.io.Serializable;
81   * expected {@code concurrencyLevel} as an additional hint for
82   * internal sizing.  Note that using many keys with exactly the same
83   * {@code hashCode()} is a sure way to slow down performance of any
84 < * hash table.
84 > * hash table. To ameliorate impact, when keys are {@link Comparable},
85 > * this class may use comparison order among keys to help break ties.
86 > *
87 > * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
88 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
89 > * (using {@link #keySet(Object)} when only keys are of interest, and the
90 > * mapped values are (perhaps transiently) not used or all take the
91 > * same mapping value.
92   *
93   * <p>This class and its views and iterators implement all of the
94   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
95   * interfaces.
96   *
97 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
97 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
98   * does <em>not</em> allow {@code null} to be used as a key or value.
99   *
100 + * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
101 + * operations that are designed
102 + * to be safely, and often sensibly, applied even with maps that are
103 + * being concurrently updated by other threads; for example, when
104 + * computing a snapshot summary of the values in a shared registry.
105 + * There are three kinds of operation, each with four forms, accepting
106 + * functions with Keys, Values, Entries, and (Key, Value) arguments
107 + * and/or return values. Because the elements of a ConcurrentHashMapV8
108 + * are not ordered in any particular way, and may be processed in
109 + * different orders in different parallel executions, the correctness
110 + * of supplied functions should not depend on any ordering, or on any
111 + * other objects or values that may transiently change while
112 + * computation is in progress; and except for forEach actions, should
113 + * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
114 + * objects do not support method {@code setValue}.
115 + *
116 + * <ul>
117 + * <li> forEach: Perform a given action on each element.
118 + * A variant form applies a given transformation on each element
119 + * before performing the action.</li>
120 + *
121 + * <li> search: Return the first available non-null result of
122 + * applying a given function on each element; skipping further
123 + * search when a result is found.</li>
124 + *
125 + * <li> reduce: Accumulate each element.  The supplied reduction
126 + * function cannot rely on ordering (more formally, it should be
127 + * both associative and commutative).  There are five variants:
128 + *
129 + * <ul>
130 + *
131 + * <li> Plain reductions. (There is not a form of this method for
132 + * (key, value) function arguments since there is no corresponding
133 + * return type.)</li>
134 + *
135 + * <li> Mapped reductions that accumulate the results of a given
136 + * function applied to each element.</li>
137 + *
138 + * <li> Reductions to scalar doubles, longs, and ints, using a
139 + * given basis value.</li>
140 + *
141 + * </ul>
142 + * </li>
143 + * </ul>
144 + *
145 + * <p>These bulk operations accept a {@code parallelismThreshold}
146 + * argument. Methods proceed sequentially if the current map size is
147 + * estimated to be less than the given threshold. Using a value of
148 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
149 + * of {@code 1} results in maximal parallelism by partitioning into
150 + * enough subtasks to fully utilize the {@link
151 + * ForkJoinPool#commonPool()} that is used for all parallel
152 + * computations. Normally, you would initially choose one of these
153 + * extreme values, and then measure performance of using in-between
154 + * values that trade off overhead versus throughput.
155 + *
156 + * <p>The concurrency properties of bulk operations follow
157 + * from those of ConcurrentHashMapV8: Any non-null result returned
158 + * from {@code get(key)} and related access methods bears a
159 + * happens-before relation with the associated insertion or
160 + * update.  The result of any bulk operation reflects the
161 + * composition of these per-element relations (but is not
162 + * necessarily atomic with respect to the map as a whole unless it
163 + * is somehow known to be quiescent).  Conversely, because keys
164 + * and values in the map are never null, null serves as a reliable
165 + * atomic indicator of the current lack of any result.  To
166 + * maintain this property, null serves as an implicit basis for
167 + * all non-scalar reduction operations. For the double, long, and
168 + * int versions, the basis should be one that, when combined with
169 + * any other value, returns that other value (more formally, it
170 + * should be the identity element for the reduction). Most common
171 + * reductions have these properties; for example, computing a sum
172 + * with basis 0 or a minimum with basis MAX_VALUE.
173 + *
174 + * <p>Search and transformation functions provided as arguments
175 + * should similarly return null to indicate the lack of any result
176 + * (in which case it is not used). In the case of mapped
177 + * reductions, this also enables transformations to serve as
178 + * filters, returning null (or, in the case of primitive
179 + * specializations, the identity basis) if the element should not
180 + * be combined. You can create compound transformations and
181 + * filterings by composing them yourself under this "null means
182 + * there is nothing there now" rule before using them in search or
183 + * reduce operations.
184 + *
185 + * <p>Methods accepting and/or returning Entry arguments maintain
186 + * key-value associations. They may be useful for example when
187 + * finding the key for the greatest value. Note that "plain" Entry
188 + * arguments can be supplied using {@code new
189 + * AbstractMap.SimpleEntry(k,v)}.
190 + *
191 + * <p>Bulk operations may complete abruptly, throwing an
192 + * exception encountered in the application of a supplied
193 + * function. Bear in mind when handling such exceptions that other
194 + * concurrently executing functions could also have thrown
195 + * exceptions, or would have done so if the first exception had
196 + * not occurred.
197 + *
198 + * <p>Speedups for parallel compared to sequential forms are common
199 + * but not guaranteed.  Parallel operations involving brief functions
200 + * on small maps may execute more slowly than sequential forms if the
201 + * underlying work to parallelize the computation is more expensive
202 + * than the computation itself.  Similarly, parallelization may not
203 + * lead to much actual parallelism if all processors are busy
204 + * performing unrelated tasks.
205 + *
206 + * <p>All arguments to all task methods must be non-null.
207 + *
208 + * <p><em>jsr166e note: During transition, this class
209 + * uses nested functional interfaces with different names but the
210 + * same forms as those expected for JDK8.</em>
211 + *
212   * <p>This class is a member of the
213   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
214   * Java Collections Framework</a>.
215   *
90 * <p><em>jsr166e note: This class is a candidate replacement for
91 * java.util.concurrent.ConcurrentHashMap.<em>
92 *
216   * @since 1.5
217   * @author Doug Lea
218   * @param <K> the type of keys maintained by this map
219   * @param <V> the type of mapped values
220   */
221 < public class ConcurrentHashMapV8<K, V>
222 <        implements ConcurrentMap<K, V>, Serializable {
221 > public class ConcurrentHashMapV8<K,V> extends AbstractMap<K,V>
222 >    implements ConcurrentMap<K,V>, Serializable {
223      private static final long serialVersionUID = 7249069246763182397L;
224  
225      /**
226 <     * A function computing a mapping from the given key to a value.
227 <     * This is a place-holder for an upcoming JDK8 interface.
226 >     * An object for traversing and partitioning elements of a source.
227 >     * This interface provides a subset of the functionality of JDK8
228 >     * java.util.Spliterator.
229       */
230 <    public static interface MappingFunction<K, V> {
230 >    public static interface ConcurrentHashMapSpliterator<T> {
231          /**
232 <         * Returns a value for the given key, or null if there is no mapping.
233 <         *
234 <         * @param key the (non-null) key
235 <         * @return a value for the key, or null if none
232 >         * If possible, returns a new spliterator covering
233 >         * approximately one half of the elements, which will not be
234 >         * covered by this spliterator. Returns null if cannot be
235 >         * split.
236           */
237 <        V map(K key);
114 <    }
115 <
116 <    /**
117 <     * A function computing a new mapping given a key and its current
118 <     * mapped value (or {@code null} if there is no current
119 <     * mapping). This is a place-holder for an upcoming JDK8
120 <     * interface.
121 <     */
122 <    public static interface RemappingFunction<K, V> {
237 >        ConcurrentHashMapSpliterator<T> trySplit();
238          /**
239 <         * Returns a new value given a key and its current value.
240 <         *
126 <         * @param key the (non-null) key
127 <         * @param value the current value, or null if there is no mapping
128 <         * @return a value for the key, or null if none
129 <         */
130 <        V remap(K key, V value);
131 <    }
132 <
133 <    /**
134 <     * A partitionable iterator. A Spliterator can be traversed
135 <     * directly, but can also be partitioned (before traversal) by
136 <     * creating another Spliterator that covers a non-overlapping
137 <     * portion of the elements, and so may be amenable to parallel
138 <     * execution.
139 <     *
140 <     * <p> This interface exports a subset of expected JDK8
141 <     * functionality.
142 <     *
143 <     * <p>Sample usage: Here is one (of the several) ways to compute
144 <     * the sum of the values held in a map using the ForkJoin
145 <     * framework. As illustrated here, Spliterators are well suited to
146 <     * designs in which a task repeatedly splits off half its work
147 <     * into forked subtasks until small enough to process directly,
148 <     * and then joins these subtasks. Variants of this style can be
149 <     * also be used in completion-based designs.
150 <     *
151 <     * <pre>
152 <     * {@code ConcurrentHashMapV8<String, Long> m = ...
153 <     * // Uses parallel depth of log2 of size / (parallelism * slack of 8).
154 <     * int depth = 32 - Integer.numberOfLeadingZeros(m.size() / (aForkJoinPool.getParallelism() * 8));
155 <     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), depth, null));
156 <     * // ...
157 <     * static class SumValues extends RecursiveTask<Long> {
158 <     *   final Spliterator<Long> s;
159 <     *   final int depth;             // number of splits before processing
160 <     *   final SumValues nextJoin;    // records forked subtasks to join
161 <     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
162 <     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
163 <     *   }
164 <     *   public Long compute() {
165 <     *     long sum = 0;
166 <     *     SumValues subtasks = null; // fork subtasks
167 <     *     for (int d = depth - 1; d >= 0; --d)
168 <     *       (subtasks = new SumValues(s.split(), d, subtasks)).fork();
169 <     *     while (s.hasNext())        // directly process remaining elements
170 <     *       sum += s.next();
171 <     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
172 <     *       sum += t.join();         // collect subtask results
173 <     *     return sum;
174 <     *   }
175 <     * }
176 <     * }</pre>
177 <     */
178 <    public static interface Spliterator<T> extends Iterator<T> {
179 <        /**
180 <         * Returns a Spliterator covering approximately half of the
181 <         * elements, guaranteed not to overlap with those subsequently
182 <         * returned by this Spliterator.  After invoking this method,
183 <         * the current Spliterator will <em>not</em> produce any of
184 <         * the elements of the returned Spliterator, but the two
185 <         * Spliterators together will produce all of the elements that
186 <         * would have been produced by this Spliterator had this
187 <         * method not been called. The exact number of elements
188 <         * produced by the returned Spliterator is not guaranteed, and
189 <         * may be zero (i.e., with {@code hasNext()} reporting {@code
190 <         * false}) if this Spliterator cannot be further split.
191 <         *
192 <         * @return a Spliterator covering approximately half of the
193 <         * elements
194 <         * @throws IllegalStateException if this Spliterator has
195 <         * already commenced traversing elements.
196 <         */
197 <        Spliterator<T> split();
198 <
199 <        /**
200 <         * Returns a Spliterator producing the same elements as this
201 <         * Spliterator. This method may be used for example to create
202 <         * a second Spliterator before a traversal, in order to later
203 <         * perform a second traversal.
204 <         *
205 <         * @return a Spliterator covering the same range as this Spliterator.
206 <         * @throws IllegalStateException if this Spliterator has
207 <         * already commenced traversing elements.
239 >         * Returns an estimate of the number of elements covered by
240 >         * this Spliterator.
241           */
242 <        Spliterator<T> clone();
243 <    }
242 >        long estimateSize();
243 >
244 >        /** Applies the action to each untraversed element */
245 >        void forEachRemaining(Action<? super T> action);
246 >        /** If an element remains, applies the action and returns true. */
247 >        boolean tryAdvance(Action<? super T> action);
248 >    }
249 >
250 >    // Sams
251 >    /** Interface describing a void action of one argument */
252 >    public interface Action<A> { void apply(A a); }
253 >    /** Interface describing a void action of two arguments */
254 >    public interface BiAction<A,B> { void apply(A a, B b); }
255 >    /** Interface describing a function of one argument */
256 >    public interface Fun<A,T> { T apply(A a); }
257 >    /** Interface describing a function of two arguments */
258 >    public interface BiFun<A,B,T> { T apply(A a, B b); }
259 >    /** Interface describing a function mapping its argument to a double */
260 >    public interface ObjectToDouble<A> { double apply(A a); }
261 >    /** Interface describing a function mapping its argument to a long */
262 >    public interface ObjectToLong<A> { long apply(A a); }
263 >    /** Interface describing a function mapping its argument to an int */
264 >    public interface ObjectToInt<A> {int apply(A a); }
265 >    /** Interface describing a function mapping two arguments to a double */
266 >    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
267 >    /** Interface describing a function mapping two arguments to a long */
268 >    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
269 >    /** Interface describing a function mapping two arguments to an int */
270 >    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
271 >    /** Interface describing a function mapping two doubles to a double */
272 >    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
273 >    /** Interface describing a function mapping two longs to a long */
274 >    public interface LongByLongToLong { long apply(long a, long b); }
275 >    /** Interface describing a function mapping two ints to an int */
276 >    public interface IntByIntToInt { int apply(int a, int b); }
277 >
278  
279      /*
280       * Overview:
# Line 219 | Line 286 | public class ConcurrentHashMapV8<K, V>
286       * the same or better than java.util.HashMap, and to support high
287       * initial insertion rates on an empty table by many threads.
288       *
289 <     * Each key-value mapping is held in a Node.  Because Node fields
290 <     * can contain special values, they are defined using plain Object
291 <     * types. Similarly in turn, all internal methods that use them
292 <     * work off Object types. And similarly, so do the internal
293 <     * methods of auxiliary iterator and view classes.  All public
294 <     * generic typed methods relay in/out of these internal methods,
295 <     * supplying null-checks and casts as needed. This also allows
296 <     * many of the public methods to be factored into a smaller number
297 <     * of internal methods (although sadly not so for the five
298 <     * variants of put-related operations). The validation-based
299 <     * approach explained below leads to a lot of code sprawl because
300 <     * retry-control precludes factoring into smaller methods.
289 >     * This map usually acts as a binned (bucketed) hash table.  Each
290 >     * key-value mapping is held in a Node.  Most nodes are instances
291 >     * of the basic Node class with hash, key, value, and next
292 >     * fields. However, various subclasses exist: TreeNodes are
293 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
294 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
295 >     * of bins during resizing. ReservationNodes are used as
296 >     * placeholders while establishing values in computeIfAbsent and
297 >     * related methods.  The types TreeBin, ForwardingNode, and
298 >     * ReservationNode do not hold normal user keys, values, or
299 >     * hashes, and are readily distinguishable during search etc
300 >     * because they have negative hash fields and null key and value
301 >     * fields. (These special nodes are either uncommon or transient,
302 >     * so the impact of carrying around some unused fields is
303 >     * insignificant.)
304       *
305       * The table is lazily initialized to a power-of-two size upon the
306       * first insertion.  Each bin in the table normally contains a
# Line 238 | Line 308 | public class ConcurrentHashMapV8<K, V>
308       * Table accesses require volatile/atomic reads, writes, and
309       * CASes.  Because there is no other way to arrange this without
310       * adding further indirections, we use intrinsics
311 <     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
312 <     * are always accurately traversable under volatile reads, so long
313 <     * as lookups check hash code and non-nullness of value before
314 <     * checking key equality.
315 <     *
316 <     * We use the top two bits of Node hash fields for control
247 <     * purposes -- they are available anyway because of addressing
248 <     * constraints.  As explained further below, these top bits are
249 <     * used as follows:
250 <     *  00 - Normal
251 <     *  01 - Locked
252 <     *  11 - Locked and may have a thread waiting for lock
253 <     *  10 - Node is a forwarding node
254 <     *
255 <     * The lower 30 bits of each Node's hash field contain a
256 <     * transformation of the key's hash code, except for forwarding
257 <     * nodes, for which the lower bits are zero (and so always have
258 <     * hash field == MOVED).
311 >     * (sun.misc.Unsafe) operations.
312 >     *
313 >     * We use the top (sign) bit of Node hash fields for control
314 >     * purposes -- it is available anyway because of addressing
315 >     * constraints.  Nodes with negative hash fields are specially
316 >     * handled or ignored in map methods.
317       *
318       * Insertion (via put or its variants) of the first node in an
319       * empty bin is performed by just CASing it to the bin.  This is
# Line 264 | Line 322 | public class ConcurrentHashMapV8<K, V>
322       * delete, and replace) require locks.  We do not want to waste
323       * the space required to associate a distinct lock object with
324       * each bin, so instead use the first node of a bin list itself as
325 <     * a lock. Blocking support for these locks relies on the builtin
326 <     * "synchronized" monitors.  However, we also need a tryLock
269 <     * construction, so we overlay these by using bits of the Node
270 <     * hash field for lock control (see above), and so normally use
271 <     * builtin monitors only for blocking and signalling using
272 <     * wait/notifyAll constructions. See Node.tryAwaitLock.
325 >     * a lock. Locking support for these locks relies on builtin
326 >     * "synchronized" monitors.
327       *
328       * Using the first node of a list as a lock does not by itself
329       * suffice though: When a node is locked, any update must first
330       * validate that it is still the first node after locking it, and
331       * retry if not. Because new nodes are always appended to lists,
332       * once a node is first in a bin, it remains first until deleted
333 <     * or the bin becomes invalidated (upon resizing).  However,
280 <     * operations that only conditionally update may inspect nodes
281 <     * until the point of update. This is a converse of sorts to the
282 <     * lazy locking technique described by Herlihy & Shavit.
333 >     * or the bin becomes invalidated (upon resizing).
334       *
335       * The main disadvantage of per-bin locks is that other update
336       * operations on other nodes in a bin list protected by the same
# Line 312 | Line 363 | public class ConcurrentHashMapV8<K, V>
363       * sometimes deviate significantly from uniform randomness.  This
364       * includes the case when N > (1<<30), so some keys MUST collide.
365       * Similarly for dumb or hostile usages in which multiple keys are
366 <     * designed to have identical hash codes. Also, although we guard
367 <     * against the worst effects of this (see method spread), sets of
368 <     * hashes may differ only in bits that do not impact their bin
369 <     * index for a given power-of-two mask.  So we use a secondary
370 <     * strategy that applies when the number of nodes in a bin exceeds
371 <     * a threshold, and at least one of the keys implements
321 <     * Comparable.  These TreeBins use a balanced tree to hold nodes
322 <     * (a specialized form of red-black trees), bounding search time
323 <     * to O(log N).  Each search step in a TreeBin is around twice as
366 >     * designed to have identical hash codes or ones that differs only
367 >     * in masked-out high bits. So we use a secondary strategy that
368 >     * applies when the number of nodes in a bin exceeds a
369 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
370 >     * specialized form of red-black trees), bounding search time to
371 >     * O(log N).  Each search step in a TreeBin is at least twice as
372       * slow as in a regular list, but given that N cannot exceed
373       * (1<<64) (before running out of addresses) this bounds search
374       * steps, lock hold times, etc, to reasonable constants (roughly
# Line 331 | Line 379 | public class ConcurrentHashMapV8<K, V>
379       * iterators in the same way.
380       *
381       * The table is resized when occupancy exceeds a percentage
382 <     * threshold (nominally, 0.75, but see below).  Only a single
383 <     * thread performs the resize (using field "sizeCtl", to arrange
384 <     * exclusion), but the table otherwise remains usable for reads
385 <     * and updates. Resizing proceeds by transferring bins, one by
386 <     * one, from the table to the next table.  Because we are using
387 <     * power-of-two expansion, the elements from each bin must either
388 <     * stay at same index, or move with a power of two offset. We
389 <     * eliminate unnecessary node creation by catching cases where old
390 <     * nodes can be reused because their next fields won't change.  On
391 <     * average, only about one-sixth of them need cloning when a table
392 <     * doubles. The nodes they replace will be garbage collectable as
393 <     * soon as they are no longer referenced by any reader thread that
394 <     * may be in the midst of concurrently traversing table.  Upon
395 <     * transfer, the old table bin contains only a special forwarding
396 <     * node (with hash field "MOVED") that contains the next table as
397 <     * its key. On encountering a forwarding node, access and update
398 <     * operations restart, using the new table.
399 <     *
400 <     * Each bin transfer requires its bin lock. However, unlike other
401 <     * cases, a transfer can skip a bin if it fails to acquire its
402 <     * lock, and revisit it later (unless it is a TreeBin). Method
403 <     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
404 <     * have been skipped because of failure to acquire a lock, and
405 <     * blocks only if none are available (i.e., only very rarely).
406 <     * The transfer operation must also ensure that all accessible
407 <     * bins in both the old and new table are usable by any traversal.
408 <     * When there are no lock acquisition failures, this is arranged
409 <     * simply by proceeding from the last bin (table.length - 1) up
410 <     * towards the first.  Upon seeing a forwarding node, traversals
411 <     * (see class InternalIterator) arrange to move to the new table
412 <     * without revisiting nodes.  However, when any node is skipped
413 <     * during a transfer, all earlier table bins may have become
414 <     * visible, so are initialized with a reverse-forwarding node back
415 <     * to the old table until the new ones are established. (This
416 <     * sometimes requires transiently locking a forwarding node, which
417 <     * is possible under the above encoding.) These more expensive
418 <     * mechanics trigger only when necessary.
382 >     * threshold (nominally, 0.75, but see below).  Any thread
383 >     * noticing an overfull bin may assist in resizing after the
384 >     * initiating thread allocates and sets up the replacement array.
385 >     * However, rather than stalling, these other threads may proceed
386 >     * with insertions etc.  The use of TreeBins shields us from the
387 >     * worst case effects of overfilling while resizes are in
388 >     * progress.  Resizing proceeds by transferring bins, one by one,
389 >     * from the table to the next table. However, threads claim small
390 >     * blocks of indices to transfer (via field transferIndex) before
391 >     * doing so, reducing contention.  A generation stamp in field
392 >     * sizeCtl ensures that resizings do not overlap. Because we are
393 >     * using power-of-two expansion, the elements from each bin must
394 >     * either stay at same index, or move with a power of two
395 >     * offset. We eliminate unnecessary node creation by catching
396 >     * cases where old nodes can be reused because their next fields
397 >     * won't change.  On average, only about one-sixth of them need
398 >     * cloning when a table doubles. The nodes they replace will be
399 >     * garbage collectable as soon as they are no longer referenced by
400 >     * any reader thread that may be in the midst of concurrently
401 >     * traversing table.  Upon transfer, the old table bin contains
402 >     * only a special forwarding node (with hash field "MOVED") that
403 >     * contains the next table as its key. On encountering a
404 >     * forwarding node, access and update operations restart, using
405 >     * the new table.
406 >     *
407 >     * Each bin transfer requires its bin lock, which can stall
408 >     * waiting for locks while resizing. However, because other
409 >     * threads can join in and help resize rather than contend for
410 >     * locks, average aggregate waits become shorter as resizing
411 >     * progresses.  The transfer operation must also ensure that all
412 >     * accessible bins in both the old and new table are usable by any
413 >     * traversal.  This is arranged in part by proceeding from the
414 >     * last bin (table.length - 1) up towards the first.  Upon seeing
415 >     * a forwarding node, traversals (see class Traverser) arrange to
416 >     * move to the new table without revisiting nodes.  To ensure that
417 >     * no intervening nodes are skipped even when moved out of order,
418 >     * a stack (see class TableStack) is created on first encounter of
419 >     * a forwarding node during a traversal, to maintain its place if
420 >     * later processing the current table. The need for these
421 >     * save/restore mechanics is relatively rare, but when one
422 >     * forwarding node is encountered, typically many more will be.
423 >     * So Traversers use a simple caching scheme to avoid creating so
424 >     * many new TableStack nodes. (Thanks to Peter Levart for
425 >     * suggesting use of a stack here.)
426       *
427       * The traversal scheme also applies to partial traversals of
428 <     * ranges of bins (via an alternate InternalIterator constructor)
428 >     * ranges of bins (via an alternate Traverser constructor)
429       * to support partitioned aggregate operations.  Also, read-only
430       * operations give up if ever forwarded to a null table, which
431       * provides support for shutdown-style clearing, which is also not
# Line 382 | Line 437 | public class ConcurrentHashMapV8<K, V>
437       * These cases attempt to override the initial capacity settings,
438       * but harmlessly fail to take effect in cases of races.
439       *
440 <     * The element count is maintained using a LongAdder, which avoids
441 <     * contention on updates but can encounter cache thrashing if read
442 <     * too frequently during concurrent access. To avoid reading so
443 <     * often, resizing is attempted either when a bin lock is
444 <     * contended, or upon adding to a bin already holding two or more
445 <     * nodes (checked before adding in the xIfAbsent methods, after
446 <     * adding in others). Under uniform hash distributions, the
447 <     * probability of this occurring at threshold is around 13%,
448 <     * meaning that only about 1 in 8 puts check threshold (and after
449 <     * resizing, many fewer do so). But this approximation has high
450 <     * variance for small table sizes, so we check on any collision
451 <     * for sizes <= 64. The bulk putAll operation further reduces
452 <     * contention by only committing count updates upon these size
453 <     * checks.
440 >     * The element count is maintained using a specialization of
441 >     * LongAdder. We need to incorporate a specialization rather than
442 >     * just use a LongAdder in order to access implicit
443 >     * contention-sensing that leads to creation of multiple
444 >     * CounterCells.  The counter mechanics avoid contention on
445 >     * updates but can encounter cache thrashing if read too
446 >     * frequently during concurrent access. To avoid reading so often,
447 >     * resizing under contention is attempted only upon adding to a
448 >     * bin already holding two or more nodes. Under uniform hash
449 >     * distributions, the probability of this occurring at threshold
450 >     * is around 13%, meaning that only about 1 in 8 puts check
451 >     * threshold (and after resizing, many fewer do so).
452 >     *
453 >     * TreeBins use a special form of comparison for search and
454 >     * related operations (which is the main reason we cannot use
455 >     * existing collections such as TreeMaps). TreeBins contain
456 >     * Comparable elements, but may contain others, as well as
457 >     * elements that are Comparable but not necessarily Comparable for
458 >     * the same T, so we cannot invoke compareTo among them. To handle
459 >     * this, the tree is ordered primarily by hash value, then by
460 >     * Comparable.compareTo order if applicable.  On lookup at a node,
461 >     * if elements are not comparable or compare as 0 then both left
462 >     * and right children may need to be searched in the case of tied
463 >     * hash values. (This corresponds to the full list search that
464 >     * would be necessary if all elements were non-Comparable and had
465 >     * tied hashes.) On insertion, to keep a total ordering (or as
466 >     * close as is required here) across rebalancings, we compare
467 >     * classes and identityHashCodes as tie-breakers. The red-black
468 >     * balancing code is updated from pre-jdk-collections
469 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
470 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
471 >     * Algorithms" (CLR).
472 >     *
473 >     * TreeBins also require an additional locking mechanism.  While
474 >     * list traversal is always possible by readers even during
475 >     * updates, tree traversal is not, mainly because of tree-rotations
476 >     * that may change the root node and/or its linkages.  TreeBins
477 >     * include a simple read-write lock mechanism parasitic on the
478 >     * main bin-synchronization strategy: Structural adjustments
479 >     * associated with an insertion or removal are already bin-locked
480 >     * (and so cannot conflict with other writers) but must wait for
481 >     * ongoing readers to finish. Since there can be only one such
482 >     * waiter, we use a simple scheme using a single "waiter" field to
483 >     * block writers.  However, readers need never block.  If the root
484 >     * lock is held, they proceed along the slow traversal path (via
485 >     * next-pointers) until the lock becomes available or the list is
486 >     * exhausted, whichever comes first. These cases are not fast, but
487 >     * maximize aggregate expected throughput.
488       *
489       * Maintaining API and serialization compatibility with previous
490       * versions of this class introduces several oddities. Mainly: We
# Line 405 | Line 494 | public class ConcurrentHashMapV8<K, V>
494       * time that we can guarantee to honor it.) We also declare an
495       * unused "Segment" class that is instantiated in minimal form
496       * only when serializing.
497 +     *
498 +     * Also, solely for compatibility with previous versions of this
499 +     * class, it extends AbstractMap, even though all of its methods
500 +     * are overridden, so it is just useless baggage.
501 +     *
502 +     * This file is organized to make things a little easier to follow
503 +     * while reading than they might otherwise: First the main static
504 +     * declarations and utilities, then fields, then main public
505 +     * methods (with a few factorings of multiple public methods into
506 +     * internal ones), then sizing methods, trees, traversers, and
507 +     * bulk operations.
508       */
509  
510      /* ---------------- Constants -------------- */
# Line 446 | Line 546 | public class ConcurrentHashMapV8<K, V>
546      private static final float LOAD_FACTOR = 0.75f;
547  
548      /**
549 <     * The buffer size for skipped bins during transfers. The
550 <     * value is arbitrary but should be large enough to avoid
551 <     * most locking stalls during resizes.
549 >     * The bin count threshold for using a tree rather than list for a
550 >     * bin.  Bins are converted to trees when adding an element to a
551 >     * bin with at least this many nodes. The value must be greater
552 >     * than 2, and should be at least 8 to mesh with assumptions in
553 >     * tree removal about conversion back to plain bins upon
554 >     * shrinkage.
555       */
556 <    private static final int TRANSFER_BUFFER_SIZE = 32;
556 >    static final int TREEIFY_THRESHOLD = 8;
557  
558      /**
559 <     * The bin count threshold for using a tree rather than list for a
560 <     * bin.  The value reflects the approximate break-even point for
561 <     * using tree-based operations.
559 >     * The bin count threshold for untreeifying a (split) bin during a
560 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
561 >     * most 6 to mesh with shrinkage detection under removal.
562       */
563 <    private static final int TREE_THRESHOLD = 8;
563 >    static final int UNTREEIFY_THRESHOLD = 6;
564  
565 <    /*
566 <     * Encodings for special uses of Node hash fields. See above for
567 <     * explanation.
565 >    /**
566 >     * The smallest table capacity for which bins may be treeified.
567 >     * (Otherwise the table is resized if too many nodes in a bin.)
568 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
569 >     * conflicts between resizing and treeification thresholds.
570       */
571 <    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
467 <    static final int LOCKED    = 0x40000000; // set/tested only as a bit
468 <    static final int WAITING   = 0xc0000000; // both bits set/tested together
469 <    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
470 <
471 <    /* ---------------- Fields -------------- */
571 >    static final int MIN_TREEIFY_CAPACITY = 64;
572  
573      /**
574 <     * The array of bins. Lazily initialized upon first insertion.
575 <     * Size is always a power of two. Accessed directly by iterators.
574 >     * Minimum number of rebinnings per transfer step. Ranges are
575 >     * subdivided to allow multiple resizer threads.  This value
576 >     * serves as a lower bound to avoid resizers encountering
577 >     * excessive memory contention.  The value should be at least
578 >     * DEFAULT_CAPACITY.
579       */
580 <    transient volatile Node[] table;
580 >    private static final int MIN_TRANSFER_STRIDE = 16;
581  
582      /**
583 <     * The counter maintaining number of elements.
583 >     * The number of bits used for generation stamp in sizeCtl.
584 >     * Must be at least 6 for 32bit arrays.
585       */
586 <    private transient final LongAdder counter;
586 >    private static int RESIZE_STAMP_BITS = 16;
587  
588      /**
589 <     * Table initialization and resizing control.  When negative, the
590 <     * table is being initialized or resized. Otherwise, when table is
487 <     * null, holds the initial table size to use upon creation, or 0
488 <     * for default. After initialization, holds the next element count
489 <     * value upon which to resize the table.
589 >     * The maximum number of threads that can help resize.
590 >     * Must fit in 32 - RESIZE_STAMP_BITS bits.
591       */
592 <    private transient volatile int sizeCtl;
492 <
493 <    // views
494 <    private transient KeySet<K,V> keySet;
495 <    private transient Values<K,V> values;
496 <    private transient EntrySet<K,V> entrySet;
592 >    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
593  
594 <    /** For serialization compatibility. Null unless serialized; see below */
595 <    private Segment<K,V>[] segments;
596 <
597 <    /* ---------------- Table element access -------------- */
594 >    /**
595 >     * The bit shift for recording size stamp in sizeCtl.
596 >     */
597 >    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
598  
599      /*
600 <     * Volatile access methods are used for table elements as well as
505 <     * elements of in-progress next table while resizing.  Uses are
506 <     * null checked by callers, and implicitly bounds-checked, relying
507 <     * on the invariants that tab arrays have non-zero size, and all
508 <     * indices are masked with (tab.length - 1) which is never
509 <     * negative and always less than length. Note that, to be correct
510 <     * wrt arbitrary concurrency errors by users, bounds checks must
511 <     * operate on local variables, which accounts for some odd-looking
512 <     * inline assignments below.
600 >     * Encodings for Node hash fields. See above for explanation.
601       */
602 <
603 <    static final Node tabAt(Node[] tab, int i) { // used by InternalIterator
604 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
605 <    }
606 <
607 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
608 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
609 <    }
610 <
611 <    private static final void setTabAt(Node[] tab, int i, Node v) {
612 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
613 <    }
602 >    static final int MOVED     = -1; // hash for forwarding nodes
603 >    static final int TREEBIN   = -2; // hash for roots of trees
604 >    static final int RESERVED  = -3; // hash for transient reservations
605 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
606 >
607 >    /** Number of CPUS, to place bounds on some sizings */
608 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
609 >
610 >    /** For serialization compatibility. */
611 >    private static final ObjectStreamField[] serialPersistentFields = {
612 >        new ObjectStreamField("segments", Segment[].class),
613 >        new ObjectStreamField("segmentMask", Integer.TYPE),
614 >        new ObjectStreamField("segmentShift", Integer.TYPE)
615 >    };
616  
617      /* ---------------- Nodes -------------- */
618  
619      /**
620 <     * Key-value entry. Note that this is never exported out as a
621 <     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
622 <     * field of MOVED are special, and do not contain user keys or
623 <     * values.  Otherwise, keys are never null, and null val fields
624 <     * indicate that a node is in the process of being deleted or
625 <     * created. For purposes of read-only access, a key may be read
626 <     * before a val, but can only be used after checking val to be
627 <     * non-null.
628 <     */
629 <    static class Node {
630 <        volatile int hash;
631 <        final Object key;
542 <        volatile Object val;
543 <        volatile Node next;
620 >     * Key-value entry.  This class is never exported out as a
621 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
622 >     * MapEntry below), but can be used for read-only traversals used
623 >     * in bulk tasks.  Subclasses of Node with a negative hash field
624 >     * are special, and contain null keys and values (but are never
625 >     * exported).  Otherwise, keys and vals are never null.
626 >     */
627 >    static class Node<K,V> implements Map.Entry<K,V> {
628 >        final int hash;
629 >        final K key;
630 >        volatile V val;
631 >        volatile Node<K,V> next;
632  
633 <        Node(int hash, Object key, Object val, Node next) {
633 >        Node(int hash, K key, V val, Node<K,V> next) {
634              this.hash = hash;
635              this.key = key;
636              this.val = val;
637              this.next = next;
638          }
639  
640 <        /** CompareAndSet the hash field */
641 <        final boolean casHash(int cmp, int val) {
642 <            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
643 <        }
644 <
645 <        /** The number of spins before blocking for a lock */
558 <        static final int MAX_SPINS =
559 <            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
560 <
561 <        /**
562 <         * Spins a while if LOCKED bit set and this node is the first
563 <         * of its bin, and then sets WAITING bits on hash field and
564 <         * blocks (once) if they are still set.  It is OK for this
565 <         * method to return even if lock is not available upon exit,
566 <         * which enables these simple single-wait mechanics.
567 <         *
568 <         * The corresponding signalling operation is performed within
569 <         * callers: Upon detecting that WAITING has been set when
570 <         * unlocking lock (via a failed CAS from non-waiting LOCKED
571 <         * state), unlockers acquire the sync lock and perform a
572 <         * notifyAll.
573 <         */
574 <        final void tryAwaitLock(Node[] tab, int i) {
575 <            if (tab != null && i >= 0 && i < tab.length) { // bounds check
576 <                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
577 <                int spins = MAX_SPINS, h;
578 <                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
579 <                    if (spins >= 0) {
580 <                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
581 <                        if (r >= 0 && --spins == 0)
582 <                            Thread.yield();  // yield before block
583 <                    }
584 <                    else if (casHash(h, h | WAITING)) {
585 <                        synchronized (this) {
586 <                            if (tabAt(tab, i) == this &&
587 <                                (hash & WAITING) == WAITING) {
588 <                                try {
589 <                                    wait();
590 <                                } catch (InterruptedException ie) {
591 <                                    Thread.currentThread().interrupt();
592 <                                }
593 <                            }
594 <                            else
595 <                                notifyAll(); // possibly won race vs signaller
596 <                        }
597 <                        break;
598 <                    }
599 <                }
600 <            }
601 <        }
602 <
603 <        // Unsafe mechanics for casHash
604 <        private static final sun.misc.Unsafe UNSAFE;
605 <        private static final long hashOffset;
606 <
607 <        static {
608 <            try {
609 <                UNSAFE = getUnsafe();
610 <                Class<?> k = Node.class;
611 <                hashOffset = UNSAFE.objectFieldOffset
612 <                    (k.getDeclaredField("hash"));
613 <            } catch (Exception e) {
614 <                throw new Error(e);
615 <            }
616 <        }
617 <    }
618 <
619 <    /* ---------------- TreeBins -------------- */
620 <
621 <    /**
622 <     * Nodes for use in TreeBins
623 <     */
624 <    static final class TreeNode extends Node {
625 <        TreeNode parent;  // red-black tree links
626 <        TreeNode left;
627 <        TreeNode right;
628 <        TreeNode prev;    // needed to unlink next upon deletion
629 <        boolean red;
630 <
631 <        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
632 <            super(hash, key, val, next);
633 <            this.parent = parent;
634 <        }
635 <    }
636 <
637 <    /**
638 <     * A specialized form of red-black tree for use in bins
639 <     * whose size exceeds a threshold.
640 <     *
641 <     * TreeBins use a special form of comparison for search and
642 <     * related operations (which is the main reason we cannot use
643 <     * existing collections such as TreeMaps). TreeBins contain
644 <     * Comparable elements, but may contain others, as well as
645 <     * elements that are Comparable but not necessarily Comparable<T>
646 <     * for the same T, so we cannot invoke compareTo among them. To
647 <     * handle this, the tree is ordered primarily by hash value, then
648 <     * by getClass().getName() order, and then by Comparator order
649 <     * among elements of the same class.  On lookup at a node, if
650 <     * elements are not comparable or compare as 0, both left and
651 <     * right children may need to be searched in the case of tied hash
652 <     * values. (This corresponds to the full list search that would be
653 <     * necessary if all elements were non-Comparable and had tied
654 <     * hashes.)  The red-black balancing code is updated from
655 <     * pre-jdk-collections
656 <     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
657 <     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
658 <     * Algorithms" (CLR).
659 <     *
660 <     * TreeBins also maintain a separate locking discipline than
661 <     * regular bins. Because they are forwarded via special MOVED
662 <     * nodes at bin heads (which can never change once established),
663 <     * we cannot use use those nodes as locks. Instead, TreeBin
664 <     * extends AbstractQueuedSynchronizer to support a simple form of
665 <     * read-write lock. For update operations and table validation,
666 <     * the exclusive form of lock behaves in the same way as bin-head
667 <     * locks. However, lookups use shared read-lock mechanics to allow
668 <     * multiple readers in the absence of writers.  Additionally,
669 <     * these lookups do not ever block: While the lock is not
670 <     * available, they proceed along the slow traversal path (via
671 <     * next-pointers) until the lock becomes available or the list is
672 <     * exhausted, whichever comes first. (These cases are not fast,
673 <     * but maximize aggregate expected throughput.)  The AQS mechanics
674 <     * for doing this are straightforward.  The lock state is held as
675 <     * AQS getState().  Read counts are negative; the write count (1)
676 <     * is positive.  There are no signalling preferences among readers
677 <     * and writers. Since we don't need to export full Lock API, we
678 <     * just override the minimal AQS methods and use them directly.
679 <     */
680 <    static final class TreeBin extends AbstractQueuedSynchronizer {
681 <        private static final long serialVersionUID = 2249069246763182397L;
682 <        transient TreeNode root;  // root of tree
683 <        transient TreeNode first; // head of next-pointer list
684 <
685 <        /* AQS overrides */
686 <        public final boolean isHeldExclusively() { return getState() > 0; }
687 <        public final boolean tryAcquire(int ignore) {
688 <            if (compareAndSetState(0, 1)) {
689 <                setExclusiveOwnerThread(Thread.currentThread());
690 <                return true;
691 <            }
692 <            return false;
693 <        }
694 <        public final boolean tryRelease(int ignore) {
695 <            setExclusiveOwnerThread(null);
696 <            setState(0);
697 <            return true;
698 <        }
699 <        public final int tryAcquireShared(int ignore) {
700 <            for (int c;;) {
701 <                if ((c = getState()) > 0)
702 <                    return -1;
703 <                if (compareAndSetState(c, c -1))
704 <                    return 1;
705 <            }
706 <        }
707 <        public final boolean tryReleaseShared(int ignore) {
708 <            int c;
709 <            do {} while (!compareAndSetState(c = getState(), c + 1));
710 <            return c == -1;
711 <        }
712 <
713 <        /** From CLR */
714 <        private void rotateLeft(TreeNode p) {
715 <            if (p != null) {
716 <                TreeNode r = p.right, pp, rl;
717 <                if ((rl = p.right = r.left) != null)
718 <                    rl.parent = p;
719 <                if ((pp = r.parent = p.parent) == null)
720 <                    root = r;
721 <                else if (pp.left == p)
722 <                    pp.left = r;
723 <                else
724 <                    pp.right = r;
725 <                r.left = p;
726 <                p.parent = r;
727 <            }
728 <        }
729 <
730 <        /** From CLR */
731 <        private void rotateRight(TreeNode p) {
732 <            if (p != null) {
733 <                TreeNode l = p.left, pp, lr;
734 <                if ((lr = p.left = l.right) != null)
735 <                    lr.parent = p;
736 <                if ((pp = l.parent = p.parent) == null)
737 <                    root = l;
738 <                else if (pp.right == p)
739 <                    pp.right = l;
740 <                else
741 <                    pp.left = l;
742 <                l.right = p;
743 <                p.parent = l;
744 <            }
745 <        }
746 <
747 <        /**
748 <         * Return the TreeNode (or null if not found) for the given key
749 <         * starting at given root.
750 <         */
751 <        @SuppressWarnings("unchecked") // suppress Comparable cast warning
752 <        final TreeNode getTreeNode(int h, Object k, TreeNode p) {
753 <            Class<?> c = k.getClass();
754 <            while (p != null) {
755 <                int dir, ph;  Object pk; Class<?> pc;
756 <                if ((ph = p.hash) == h) {
757 <                    if ((pk = p.key) == k || k.equals(pk))
758 <                        return p;
759 <                    if (c != (pc = pk.getClass()) ||
760 <                        !(k instanceof Comparable) ||
761 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
762 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
763 <                        TreeNode r = null, s = null, pl, pr;
764 <                        if (dir >= 0) {
765 <                            if ((pl = p.left) != null && h <= pl.hash)
766 <                                s = pl;
767 <                        }
768 <                        else if ((pr = p.right) != null && h >= pr.hash)
769 <                            s = pr;
770 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
771 <                            return r;
772 <                    }
773 <                }
774 <                else
775 <                    dir = (h < ph) ? -1 : 1;
776 <                p = (dir > 0) ? p.right : p.left;
777 <            }
778 <            return null;
640 >        public final K getKey()       { return key; }
641 >        public final V getValue()     { return val; }
642 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
643 >        public final String toString(){ return key + "=" + val; }
644 >        public final V setValue(V value) {
645 >            throw new UnsupportedOperationException();
646          }
647  
648 <        /**
649 <         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
650 <         * read-lock to call getTreeNode, but during failure to get
651 <         * lock, searches along next links.
652 <         */
653 <        final Object getValue(int h, Object k) {
654 <            Node r = null;
788 <            int c = getState(); // Must read lock state first
789 <            for (Node e = first; e != null; e = e.next) {
790 <                if (c <= 0 && compareAndSetState(c, c - 1)) {
791 <                    try {
792 <                        r = getTreeNode(h, k, root);
793 <                    } finally {
794 <                        releaseShared(0);
795 <                    }
796 <                    break;
797 <                }
798 <                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
799 <                    r = e;
800 <                    break;
801 <                }
802 <                else
803 <                    c = getState();
804 <            }
805 <            return r == null ? null : r.val;
648 >        public final boolean equals(Object o) {
649 >            Object k, v, u; Map.Entry<?,?> e;
650 >            return ((o instanceof Map.Entry) &&
651 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
652 >                    (v = e.getValue()) != null &&
653 >                    (k == key || k.equals(key)) &&
654 >                    (v == (u = val) || v.equals(u)));
655          }
656  
657          /**
658 <         * Find or add a node
810 <         * @return null if added
658 >         * Virtualized support for map.get(); overridden in subclasses.
659           */
660 <        @SuppressWarnings("unchecked") // suppress Comparable cast warning
661 <        final TreeNode putTreeNode(int h, Object k, Object v) {
662 <            Class<?> c = k.getClass();
663 <            TreeNode pp = root, p = null;
664 <            int dir = 0;
665 <            while (pp != null) { // find existing node or leaf to insert at
666 <                int ph;  Object pk; Class<?> pc;
667 <                p = pp;
668 <                if ((ph = p.hash) == h) {
821 <                    if ((pk = p.key) == k || k.equals(pk))
822 <                        return p;
823 <                    if (c != (pc = pk.getClass()) ||
824 <                        !(k instanceof Comparable) ||
825 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
826 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
827 <                        TreeNode r = null, s = null, pl, pr;
828 <                        if (dir >= 0) {
829 <                            if ((pl = p.left) != null && h <= pl.hash)
830 <                                s = pl;
831 <                        }
832 <                        else if ((pr = p.right) != null && h >= pr.hash)
833 <                            s = pr;
834 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
835 <                            return r;
836 <                    }
837 <                }
838 <                else
839 <                    dir = (h < ph) ? -1 : 1;
840 <                pp = (dir > 0) ? p.right : p.left;
841 <            }
842 <
843 <            TreeNode f = first;
844 <            TreeNode x = first = new TreeNode(h, k, v, f, p);
845 <            if (p == null)
846 <                root = x;
847 <            else { // attach and rebalance; adapted from CLR
848 <                TreeNode xp, xpp;
849 <                if (f != null)
850 <                    f.prev = x;
851 <                if (dir <= 0)
852 <                    p.left = x;
853 <                else
854 <                    p.right = x;
855 <                x.red = true;
856 <                while (x != null && (xp = x.parent) != null && xp.red &&
857 <                       (xpp = xp.parent) != null) {
858 <                    TreeNode xppl = xpp.left;
859 <                    if (xp == xppl) {
860 <                        TreeNode y = xpp.right;
861 <                        if (y != null && y.red) {
862 <                            y.red = false;
863 <                            xp.red = false;
864 <                            xpp.red = true;
865 <                            x = xpp;
866 <                        }
867 <                        else {
868 <                            if (x == xp.right) {
869 <                                rotateLeft(x = xp);
870 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
871 <                            }
872 <                            if (xp != null) {
873 <                                xp.red = false;
874 <                                if (xpp != null) {
875 <                                    xpp.red = true;
876 <                                    rotateRight(xpp);
877 <                                }
878 <                            }
879 <                        }
880 <                    }
881 <                    else {
882 <                        TreeNode y = xppl;
883 <                        if (y != null && y.red) {
884 <                            y.red = false;
885 <                            xp.red = false;
886 <                            xpp.red = true;
887 <                            x = xpp;
888 <                        }
889 <                        else {
890 <                            if (x == xp.left) {
891 <                                rotateRight(x = xp);
892 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
893 <                            }
894 <                            if (xp != null) {
895 <                                xp.red = false;
896 <                                if (xpp != null) {
897 <                                    xpp.red = true;
898 <                                    rotateLeft(xpp);
899 <                                }
900 <                            }
901 <                        }
902 <                    }
903 <                }
904 <                TreeNode r = root;
905 <                if (r != null && r.red)
906 <                    r.red = false;
660 >        Node<K,V> find(int h, Object k) {
661 >            Node<K,V> e = this;
662 >            if (k != null) {
663 >                do {
664 >                    K ek;
665 >                    if (e.hash == h &&
666 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
667 >                        return e;
668 >                } while ((e = e.next) != null);
669              }
670              return null;
671          }
910
911        /**
912         * Removes the given node, that must be present before this
913         * call.  This is messier than typical red-black deletion code
914         * because we cannot swap the contents of an interior node
915         * with a leaf successor that is pinned by "next" pointers
916         * that are accessible independently of lock. So instead we
917         * swap the tree linkages.
918         */
919        final void deleteTreeNode(TreeNode p) {
920            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
921            TreeNode pred = p.prev;
922            if (pred == null)
923                first = next;
924            else
925                pred.next = next;
926            if (next != null)
927                next.prev = pred;
928            TreeNode replacement;
929            TreeNode pl = p.left;
930            TreeNode pr = p.right;
931            if (pl != null && pr != null) {
932                TreeNode s = pr, sl;
933                while ((sl = s.left) != null) // find successor
934                    s = sl;
935                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
936                TreeNode sr = s.right;
937                TreeNode pp = p.parent;
938                if (s == pr) { // p was s's direct parent
939                    p.parent = s;
940                    s.right = p;
941                }
942                else {
943                    TreeNode sp = s.parent;
944                    if ((p.parent = sp) != null) {
945                        if (s == sp.left)
946                            sp.left = p;
947                        else
948                            sp.right = p;
949                    }
950                    if ((s.right = pr) != null)
951                        pr.parent = s;
952                }
953                p.left = null;
954                if ((p.right = sr) != null)
955                    sr.parent = p;
956                if ((s.left = pl) != null)
957                    pl.parent = s;
958                if ((s.parent = pp) == null)
959                    root = s;
960                else if (p == pp.left)
961                    pp.left = s;
962                else
963                    pp.right = s;
964                replacement = sr;
965            }
966            else
967                replacement = (pl != null) ? pl : pr;
968            TreeNode pp = p.parent;
969            if (replacement == null) {
970                if (pp == null) {
971                    root = null;
972                    return;
973                }
974                replacement = p;
975            }
976            else {
977                replacement.parent = pp;
978                if (pp == null)
979                    root = replacement;
980                else if (p == pp.left)
981                    pp.left = replacement;
982                else
983                    pp.right = replacement;
984                p.left = p.right = p.parent = null;
985            }
986            if (!p.red) { // rebalance, from CLR
987                TreeNode x = replacement;
988                while (x != null) {
989                    TreeNode xp, xpl;
990                    if (x.red || (xp = x.parent) == null) {
991                        x.red = false;
992                        break;
993                    }
994                    if (x == (xpl = xp.left)) {
995                        TreeNode sib = xp.right;
996                        if (sib != null && sib.red) {
997                            sib.red = false;
998                            xp.red = true;
999                            rotateLeft(xp);
1000                            sib = (xp = x.parent) == null ? null : xp.right;
1001                        }
1002                        if (sib == null)
1003                            x = xp;
1004                        else {
1005                            TreeNode sl = sib.left, sr = sib.right;
1006                            if ((sr == null || !sr.red) &&
1007                                (sl == null || !sl.red)) {
1008                                sib.red = true;
1009                                x = xp;
1010                            }
1011                            else {
1012                                if (sr == null || !sr.red) {
1013                                    if (sl != null)
1014                                        sl.red = false;
1015                                    sib.red = true;
1016                                    rotateRight(sib);
1017                                    sib = (xp = x.parent) == null ? null : xp.right;
1018                                }
1019                                if (sib != null) {
1020                                    sib.red = (xp == null) ? false : xp.red;
1021                                    if ((sr = sib.right) != null)
1022                                        sr.red = false;
1023                                }
1024                                if (xp != null) {
1025                                    xp.red = false;
1026                                    rotateLeft(xp);
1027                                }
1028                                x = root;
1029                            }
1030                        }
1031                    }
1032                    else { // symmetric
1033                        TreeNode sib = xpl;
1034                        if (sib != null && sib.red) {
1035                            sib.red = false;
1036                            xp.red = true;
1037                            rotateRight(xp);
1038                            sib = (xp = x.parent) == null ? null : xp.left;
1039                        }
1040                        if (sib == null)
1041                            x = xp;
1042                        else {
1043                            TreeNode sl = sib.left, sr = sib.right;
1044                            if ((sl == null || !sl.red) &&
1045                                (sr == null || !sr.red)) {
1046                                sib.red = true;
1047                                x = xp;
1048                            }
1049                            else {
1050                                if (sl == null || !sl.red) {
1051                                    if (sr != null)
1052                                        sr.red = false;
1053                                    sib.red = true;
1054                                    rotateLeft(sib);
1055                                    sib = (xp = x.parent) == null ? null : xp.left;
1056                                }
1057                                if (sib != null) {
1058                                    sib.red = (xp == null) ? false : xp.red;
1059                                    if ((sl = sib.left) != null)
1060                                        sl.red = false;
1061                                }
1062                                if (xp != null) {
1063                                    xp.red = false;
1064                                    rotateRight(xp);
1065                                }
1066                                x = root;
1067                            }
1068                        }
1069                    }
1070                }
1071            }
1072            if (p == replacement && (pp = p.parent) != null) {
1073                if (p == pp.left) // detach pointers
1074                    pp.left = null;
1075                else if (p == pp.right)
1076                    pp.right = null;
1077                p.parent = null;
1078            }
1079        }
672      }
673  
674 <    /* ---------------- Collision reduction methods -------------- */
674 >    /* ---------------- Static utilities -------------- */
675  
676      /**
677 <     * Spreads higher bits to lower, and also forces top 2 bits to 0.
678 <     * Because the table uses power-of-two masking, sets of hashes
679 <     * that vary only in bits above the current mask will always
680 <     * collide. (Among known examples are sets of Float keys holding
681 <     * consecutive whole numbers in small tables.)  To counter this,
682 <     * we apply a transform that spreads the impact of higher bits
677 >     * Spreads (XORs) higher bits of hash to lower and also forces top
678 >     * bit to 0. Because the table uses power-of-two masking, sets of
679 >     * hashes that vary only in bits above the current mask will
680 >     * always collide. (Among known examples are sets of Float keys
681 >     * holding consecutive whole numbers in small tables.)  So we
682 >     * apply a transform that spreads the impact of higher bits
683       * downward. There is a tradeoff between speed, utility, and
684       * quality of bit-spreading. Because many common sets of hashes
685 <     * are already reasonably distributed across bits (so don't benefit
686 <     * from spreading), and because we use trees to handle large sets
687 <     * of collisions in bins, we don't need excessively high quality.
688 <     */
689 <    private static final int spread(int h) {
690 <        h ^= (h >>> 18) ^ (h >>> 12);
1099 <        return (h ^ (h >>> 10)) & HASH_BITS;
1100 <    }
1101 <
1102 <    /**
1103 <     * Replaces a list bin with a tree bin. Call only when locked.
1104 <     * Fails to replace if the given key is non-comparable or table
1105 <     * is, or needs, resizing.
685 >     * are already reasonably distributed (so don't benefit from
686 >     * spreading), and because we use trees to handle large sets of
687 >     * collisions in bins, we just XOR some shifted bits in the
688 >     * cheapest possible way to reduce systematic lossage, as well as
689 >     * to incorporate impact of the highest bits that would otherwise
690 >     * never be used in index calculations because of table bounds.
691       */
692 <    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
693 <        if ((key instanceof Comparable) &&
1109 <            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1110 <            TreeBin t = new TreeBin();
1111 <            for (Node e = tabAt(tab, index); e != null; e = e.next)
1112 <                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1113 <            setTabAt(tab, index, new Node(MOVED, t, null, null));
1114 <        }
1115 <    }
1116 <
1117 <    /* ---------------- Internal access and update methods -------------- */
1118 <
1119 <    /** Implementation for get and containsKey */
1120 <    private final Object internalGet(Object k) {
1121 <        int h = spread(k.hashCode());
1122 <        retry: for (Node[] tab = table; tab != null;) {
1123 <            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1124 <            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1125 <                if ((eh = e.hash) == MOVED) {
1126 <                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1127 <                        return ((TreeBin)ek).getValue(h, k);
1128 <                    else {                        // restart with new table
1129 <                        tab = (Node[])ek;
1130 <                        continue retry;
1131 <                    }
1132 <                }
1133 <                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1134 <                         ((ek = e.key) == k || k.equals(ek)))
1135 <                    return ev;
1136 <            }
1137 <            break;
1138 <        }
1139 <        return null;
1140 <    }
1141 <
1142 <    /**
1143 <     * Implementation for the four public remove/replace methods:
1144 <     * Replaces node value with v, conditional upon match of cv if
1145 <     * non-null.  If resulting value is null, delete.
1146 <     */
1147 <    private final Object internalReplace(Object k, Object v, Object cv) {
1148 <        int h = spread(k.hashCode());
1149 <        Object oldVal = null;
1150 <        for (Node[] tab = table;;) {
1151 <            Node f; int i, fh; Object fk;
1152 <            if (tab == null ||
1153 <                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1154 <                break;
1155 <            else if ((fh = f.hash) == MOVED) {
1156 <                if ((fk = f.key) instanceof TreeBin) {
1157 <                    TreeBin t = (TreeBin)fk;
1158 <                    boolean validated = false;
1159 <                    boolean deleted = false;
1160 <                    t.acquire(0);
1161 <                    try {
1162 <                        if (tabAt(tab, i) == f) {
1163 <                            validated = true;
1164 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1165 <                            if (p != null) {
1166 <                                Object pv = p.val;
1167 <                                if (cv == null || cv == pv || cv.equals(pv)) {
1168 <                                    oldVal = pv;
1169 <                                    if ((p.val = v) == null) {
1170 <                                        deleted = true;
1171 <                                        t.deleteTreeNode(p);
1172 <                                    }
1173 <                                }
1174 <                            }
1175 <                        }
1176 <                    } finally {
1177 <                        t.release(0);
1178 <                    }
1179 <                    if (validated) {
1180 <                        if (deleted)
1181 <                            counter.add(-1L);
1182 <                        break;
1183 <                    }
1184 <                }
1185 <                else
1186 <                    tab = (Node[])fk;
1187 <            }
1188 <            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1189 <                break;                          // rules out possible existence
1190 <            else if ((fh & LOCKED) != 0) {
1191 <                checkForResize();               // try resizing if can't get lock
1192 <                f.tryAwaitLock(tab, i);
1193 <            }
1194 <            else if (f.casHash(fh, fh | LOCKED)) {
1195 <                boolean validated = false;
1196 <                boolean deleted = false;
1197 <                try {
1198 <                    if (tabAt(tab, i) == f) {
1199 <                        validated = true;
1200 <                        for (Node e = f, pred = null;;) {
1201 <                            Object ek, ev;
1202 <                            if ((e.hash & HASH_BITS) == h &&
1203 <                                ((ev = e.val) != null) &&
1204 <                                ((ek = e.key) == k || k.equals(ek))) {
1205 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1206 <                                    oldVal = ev;
1207 <                                    if ((e.val = v) == null) {
1208 <                                        deleted = true;
1209 <                                        Node en = e.next;
1210 <                                        if (pred != null)
1211 <                                            pred.next = en;
1212 <                                        else
1213 <                                            setTabAt(tab, i, en);
1214 <                                    }
1215 <                                }
1216 <                                break;
1217 <                            }
1218 <                            pred = e;
1219 <                            if ((e = e.next) == null)
1220 <                                break;
1221 <                        }
1222 <                    }
1223 <                } finally {
1224 <                    if (!f.casHash(fh | LOCKED, fh)) {
1225 <                        f.hash = fh;
1226 <                        synchronized (f) { f.notifyAll(); };
1227 <                    }
1228 <                }
1229 <                if (validated) {
1230 <                    if (deleted)
1231 <                        counter.add(-1L);
1232 <                    break;
1233 <                }
1234 <            }
1235 <        }
1236 <        return oldVal;
1237 <    }
1238 <
1239 <    /*
1240 <     * Internal versions of the five insertion methods, each a
1241 <     * little more complicated than the last. All have
1242 <     * the same basic structure as the first (internalPut):
1243 <     *  1. If table uninitialized, create
1244 <     *  2. If bin empty, try to CAS new node
1245 <     *  3. If bin stale, use new table
1246 <     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1247 <     *  5. Lock and validate; if valid, scan and add or update
1248 <     *
1249 <     * The others interweave other checks and/or alternative actions:
1250 <     *  * Plain put checks for and performs resize after insertion.
1251 <     *  * putIfAbsent prescans for mapping without lock (and fails to add
1252 <     *    if present), which also makes pre-emptive resize checks worthwhile.
1253 <     *  * computeIfAbsent extends form used in putIfAbsent with additional
1254 <     *    mechanics to deal with, calls, potential exceptions and null
1255 <     *    returns from function call.
1256 <     *  * compute uses the same function-call mechanics, but without
1257 <     *    the prescans
1258 <     *  * putAll attempts to pre-allocate enough table space
1259 <     *    and more lazily performs count updates and checks.
1260 <     *
1261 <     * Someday when details settle down a bit more, it might be worth
1262 <     * some factoring to reduce sprawl.
1263 <     */
1264 <
1265 <    /** Implementation for put */
1266 <    private final Object internalPut(Object k, Object v) {
1267 <        int h = spread(k.hashCode());
1268 <        int count = 0;
1269 <        for (Node[] tab = table;;) {
1270 <            int i; Node f; int fh; Object fk;
1271 <            if (tab == null)
1272 <                tab = initTable();
1273 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1274 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1275 <                    break;                   // no lock when adding to empty bin
1276 <            }
1277 <            else if ((fh = f.hash) == MOVED) {
1278 <                if ((fk = f.key) instanceof TreeBin) {
1279 <                    TreeBin t = (TreeBin)fk;
1280 <                    Object oldVal = null;
1281 <                    t.acquire(0);
1282 <                    try {
1283 <                        if (tabAt(tab, i) == f) {
1284 <                            count = 2;
1285 <                            TreeNode p = t.putTreeNode(h, k, v);
1286 <                            if (p != null) {
1287 <                                oldVal = p.val;
1288 <                                p.val = v;
1289 <                            }
1290 <                        }
1291 <                    } finally {
1292 <                        t.release(0);
1293 <                    }
1294 <                    if (count != 0) {
1295 <                        if (oldVal != null)
1296 <                            return oldVal;
1297 <                        break;
1298 <                    }
1299 <                }
1300 <                else
1301 <                    tab = (Node[])fk;
1302 <            }
1303 <            else if ((fh & LOCKED) != 0) {
1304 <                checkForResize();
1305 <                f.tryAwaitLock(tab, i);
1306 <            }
1307 <            else if (f.casHash(fh, fh | LOCKED)) {
1308 <                Object oldVal = null;
1309 <                try {                        // needed in case equals() throws
1310 <                    if (tabAt(tab, i) == f) {
1311 <                        count = 1;
1312 <                        for (Node e = f;; ++count) {
1313 <                            Object ek, ev;
1314 <                            if ((e.hash & HASH_BITS) == h &&
1315 <                                (ev = e.val) != null &&
1316 <                                ((ek = e.key) == k || k.equals(ek))) {
1317 <                                oldVal = ev;
1318 <                                e.val = v;
1319 <                                break;
1320 <                            }
1321 <                            Node last = e;
1322 <                            if ((e = e.next) == null) {
1323 <                                last.next = new Node(h, k, v, null);
1324 <                                if (count >= TREE_THRESHOLD)
1325 <                                    replaceWithTreeBin(tab, i, k);
1326 <                                break;
1327 <                            }
1328 <                        }
1329 <                    }
1330 <                } finally {                  // unlock and signal if needed
1331 <                    if (!f.casHash(fh | LOCKED, fh)) {
1332 <                        f.hash = fh;
1333 <                        synchronized (f) { f.notifyAll(); };
1334 <                    }
1335 <                }
1336 <                if (count != 0) {
1337 <                    if (oldVal != null)
1338 <                        return oldVal;
1339 <                    if (tab.length <= 64)
1340 <                        count = 2;
1341 <                    break;
1342 <                }
1343 <            }
1344 <        }
1345 <        counter.add(1L);
1346 <        if (count > 1)
1347 <            checkForResize();
1348 <        return null;
1349 <    }
1350 <
1351 <    /** Implementation for putIfAbsent */
1352 <    private final Object internalPutIfAbsent(Object k, Object v) {
1353 <        int h = spread(k.hashCode());
1354 <        int count = 0;
1355 <        for (Node[] tab = table;;) {
1356 <            int i; Node f; int fh; Object fk, fv;
1357 <            if (tab == null)
1358 <                tab = initTable();
1359 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1360 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1361 <                    break;
1362 <            }
1363 <            else if ((fh = f.hash) == MOVED) {
1364 <                if ((fk = f.key) instanceof TreeBin) {
1365 <                    TreeBin t = (TreeBin)fk;
1366 <                    Object oldVal = null;
1367 <                    t.acquire(0);
1368 <                    try {
1369 <                        if (tabAt(tab, i) == f) {
1370 <                            count = 2;
1371 <                            TreeNode p = t.putTreeNode(h, k, v);
1372 <                            if (p != null)
1373 <                                oldVal = p.val;
1374 <                        }
1375 <                    } finally {
1376 <                        t.release(0);
1377 <                    }
1378 <                    if (count != 0) {
1379 <                        if (oldVal != null)
1380 <                            return oldVal;
1381 <                        break;
1382 <                    }
1383 <                }
1384 <                else
1385 <                    tab = (Node[])fk;
1386 <            }
1387 <            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1388 <                     ((fk = f.key) == k || k.equals(fk)))
1389 <                return fv;
1390 <            else {
1391 <                Node g = f.next;
1392 <                if (g != null) { // at least 2 nodes -- search and maybe resize
1393 <                    for (Node e = g;;) {
1394 <                        Object ek, ev;
1395 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1396 <                            ((ek = e.key) == k || k.equals(ek)))
1397 <                            return ev;
1398 <                        if ((e = e.next) == null) {
1399 <                            checkForResize();
1400 <                            break;
1401 <                        }
1402 <                    }
1403 <                }
1404 <                if (((fh = f.hash) & LOCKED) != 0) {
1405 <                    checkForResize();
1406 <                    f.tryAwaitLock(tab, i);
1407 <                }
1408 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1409 <                    Object oldVal = null;
1410 <                    try {
1411 <                        if (tabAt(tab, i) == f) {
1412 <                            count = 1;
1413 <                            for (Node e = f;; ++count) {
1414 <                                Object ek, ev;
1415 <                                if ((e.hash & HASH_BITS) == h &&
1416 <                                    (ev = e.val) != null &&
1417 <                                    ((ek = e.key) == k || k.equals(ek))) {
1418 <                                    oldVal = ev;
1419 <                                    break;
1420 <                                }
1421 <                                Node last = e;
1422 <                                if ((e = e.next) == null) {
1423 <                                    last.next = new Node(h, k, v, null);
1424 <                                    if (count >= TREE_THRESHOLD)
1425 <                                        replaceWithTreeBin(tab, i, k);
1426 <                                    break;
1427 <                                }
1428 <                            }
1429 <                        }
1430 <                    } finally {
1431 <                        if (!f.casHash(fh | LOCKED, fh)) {
1432 <                            f.hash = fh;
1433 <                            synchronized (f) { f.notifyAll(); };
1434 <                        }
1435 <                    }
1436 <                    if (count != 0) {
1437 <                        if (oldVal != null)
1438 <                            return oldVal;
1439 <                        if (tab.length <= 64)
1440 <                            count = 2;
1441 <                        break;
1442 <                    }
1443 <                }
1444 <            }
1445 <        }
1446 <        counter.add(1L);
1447 <        if (count > 1)
1448 <            checkForResize();
1449 <        return null;
1450 <    }
1451 <
1452 <    /** Implementation for computeIfAbsent */
1453 <    private final Object internalComputeIfAbsent(K k,
1454 <                                                 MappingFunction<? super K, ?> mf) {
1455 <        int h = spread(k.hashCode());
1456 <        Object val = null;
1457 <        int count = 0;
1458 <        for (Node[] tab = table;;) {
1459 <            Node f; int i, fh; Object fk, fv;
1460 <            if (tab == null)
1461 <                tab = initTable();
1462 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1463 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1464 <                if (casTabAt(tab, i, null, node)) {
1465 <                    count = 1;
1466 <                    try {
1467 <                        if ((val = mf.map(k)) != null)
1468 <                            node.val = val;
1469 <                    } finally {
1470 <                        if (val == null)
1471 <                            setTabAt(tab, i, null);
1472 <                        if (!node.casHash(fh, h)) {
1473 <                            node.hash = h;
1474 <                            synchronized (node) { node.notifyAll(); };
1475 <                        }
1476 <                    }
1477 <                }
1478 <                if (count != 0)
1479 <                    break;
1480 <            }
1481 <            else if ((fh = f.hash) == MOVED) {
1482 <                if ((fk = f.key) instanceof TreeBin) {
1483 <                    TreeBin t = (TreeBin)fk;
1484 <                    boolean added = false;
1485 <                    t.acquire(0);
1486 <                    try {
1487 <                        if (tabAt(tab, i) == f) {
1488 <                            count = 1;
1489 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1490 <                            if (p != null)
1491 <                                val = p.val;
1492 <                            else if ((val = mf.map(k)) != null) {
1493 <                                added = true;
1494 <                                count = 2;
1495 <                                t.putTreeNode(h, k, val);
1496 <                            }
1497 <                        }
1498 <                    } finally {
1499 <                        t.release(0);
1500 <                    }
1501 <                    if (count != 0) {
1502 <                        if (!added)
1503 <                            return val;
1504 <                        break;
1505 <                    }
1506 <                }
1507 <                else
1508 <                    tab = (Node[])fk;
1509 <            }
1510 <            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1511 <                     ((fk = f.key) == k || k.equals(fk)))
1512 <                return fv;
1513 <            else {
1514 <                Node g = f.next;
1515 <                if (g != null) {
1516 <                    for (Node e = g;;) {
1517 <                        Object ek, ev;
1518 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1519 <                            ((ek = e.key) == k || k.equals(ek)))
1520 <                            return ev;
1521 <                        if ((e = e.next) == null) {
1522 <                            checkForResize();
1523 <                            break;
1524 <                        }
1525 <                    }
1526 <                }
1527 <                if (((fh = f.hash) & LOCKED) != 0) {
1528 <                    checkForResize();
1529 <                    f.tryAwaitLock(tab, i);
1530 <                }
1531 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1532 <                    boolean added = false;
1533 <                    try {
1534 <                        if (tabAt(tab, i) == f) {
1535 <                            count = 1;
1536 <                            for (Node e = f;; ++count) {
1537 <                                Object ek, ev;
1538 <                                if ((e.hash & HASH_BITS) == h &&
1539 <                                    (ev = e.val) != null &&
1540 <                                    ((ek = e.key) == k || k.equals(ek))) {
1541 <                                    val = ev;
1542 <                                    break;
1543 <                                }
1544 <                                Node last = e;
1545 <                                if ((e = e.next) == null) {
1546 <                                    if ((val = mf.map(k)) != null) {
1547 <                                        added = true;
1548 <                                        last.next = new Node(h, k, val, null);
1549 <                                        if (count >= TREE_THRESHOLD)
1550 <                                            replaceWithTreeBin(tab, i, k);
1551 <                                    }
1552 <                                    break;
1553 <                                }
1554 <                            }
1555 <                        }
1556 <                    } finally {
1557 <                        if (!f.casHash(fh | LOCKED, fh)) {
1558 <                            f.hash = fh;
1559 <                            synchronized (f) { f.notifyAll(); };
1560 <                        }
1561 <                    }
1562 <                    if (count != 0) {
1563 <                        if (!added)
1564 <                            return val;
1565 <                        if (tab.length <= 64)
1566 <                            count = 2;
1567 <                        break;
1568 <                    }
1569 <                }
1570 <            }
1571 <        }
1572 <        if (val != null) {
1573 <            counter.add(1L);
1574 <            if (count > 1)
1575 <                checkForResize();
1576 <        }
1577 <        return val;
1578 <    }
1579 <
1580 <    /** Implementation for compute */
1581 <    @SuppressWarnings("unchecked")
1582 <    private final Object internalCompute(K k,
1583 <                                         RemappingFunction<? super K, V> mf) {
1584 <        int h = spread(k.hashCode());
1585 <        Object val = null;
1586 <        int delta = 0;
1587 <        int count = 0;
1588 <        for (Node[] tab = table;;) {
1589 <            Node f; int i, fh; Object fk;
1590 <            if (tab == null)
1591 <                tab = initTable();
1592 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1593 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1594 <                if (casTabAt(tab, i, null, node)) {
1595 <                    try {
1596 <                        count = 1;
1597 <                        if ((val = mf.remap(k, null)) != null) {
1598 <                            node.val = val;
1599 <                            delta = 1;
1600 <                        }
1601 <                    } finally {
1602 <                        if (delta == 0)
1603 <                            setTabAt(tab, i, null);
1604 <                        if (!node.casHash(fh, h)) {
1605 <                            node.hash = h;
1606 <                            synchronized (node) { node.notifyAll(); };
1607 <                        }
1608 <                    }
1609 <                }
1610 <                if (count != 0)
1611 <                    break;
1612 <            }
1613 <            else if ((fh = f.hash) == MOVED) {
1614 <                if ((fk = f.key) instanceof TreeBin) {
1615 <                    TreeBin t = (TreeBin)fk;
1616 <                    t.acquire(0);
1617 <                    try {
1618 <                        if (tabAt(tab, i) == f) {
1619 <                            count = 1;
1620 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1621 <                            Object pv = (p == null) ? null : p.val;
1622 <                            if ((val = mf.remap(k, (V)pv)) != null) {
1623 <                                if (p != null)
1624 <                                    p.val = val;
1625 <                                else {
1626 <                                    count = 2;
1627 <                                    delta = 1;
1628 <                                    t.putTreeNode(h, k, val);
1629 <                                }
1630 <                            }
1631 <                            else if (p != null) {
1632 <                                delta = -1;
1633 <                                t.deleteTreeNode(p);
1634 <                            }
1635 <                        }
1636 <                    } finally {
1637 <                        t.release(0);
1638 <                    }
1639 <                    if (count != 0)
1640 <                        break;
1641 <                }
1642 <                else
1643 <                    tab = (Node[])fk;
1644 <            }
1645 <            else if ((fh & LOCKED) != 0) {
1646 <                checkForResize();
1647 <                f.tryAwaitLock(tab, i);
1648 <            }
1649 <            else if (f.casHash(fh, fh | LOCKED)) {
1650 <                try {
1651 <                    if (tabAt(tab, i) == f) {
1652 <                        count = 1;
1653 <                        for (Node e = f, pred = null;; ++count) {
1654 <                            Object ek, ev;
1655 <                            if ((e.hash & HASH_BITS) == h &&
1656 <                                (ev = e.val) != null &&
1657 <                                ((ek = e.key) == k || k.equals(ek))) {
1658 <                                val = mf.remap(k, (V)ev);
1659 <                                if (val != null)
1660 <                                    e.val = val;
1661 <                                else {
1662 <                                    delta = -1;
1663 <                                    Node en = e.next;
1664 <                                    if (pred != null)
1665 <                                        pred.next = en;
1666 <                                    else
1667 <                                        setTabAt(tab, i, en);
1668 <                                }
1669 <                                break;
1670 <                            }
1671 <                            pred = e;
1672 <                            if ((e = e.next) == null) {
1673 <                                if ((val = mf.remap(k, null)) != null) {
1674 <                                    pred.next = new Node(h, k, val, null);
1675 <                                    delta = 1;
1676 <                                    if (count >= TREE_THRESHOLD)
1677 <                                        replaceWithTreeBin(tab, i, k);
1678 <                                }
1679 <                                break;
1680 <                            }
1681 <                        }
1682 <                    }
1683 <                } finally {
1684 <                    if (!f.casHash(fh | LOCKED, fh)) {
1685 <                        f.hash = fh;
1686 <                        synchronized (f) { f.notifyAll(); };
1687 <                    }
1688 <                }
1689 <                if (count != 0) {
1690 <                    if (tab.length <= 64)
1691 <                        count = 2;
1692 <                    break;
1693 <                }
1694 <            }
1695 <        }
1696 <        if (delta != 0) {
1697 <            counter.add((long)delta);
1698 <            if (count > 1)
1699 <                checkForResize();
1700 <        }
1701 <        return val;
1702 <    }
1703 <
1704 <    /** Implementation for putAll */
1705 <    private final void internalPutAll(Map<?, ?> m) {
1706 <        tryPresize(m.size());
1707 <        long delta = 0L;     // number of uncommitted additions
1708 <        boolean npe = false; // to throw exception on exit for nulls
1709 <        try {                // to clean up counts on other exceptions
1710 <            for (Map.Entry<?, ?> entry : m.entrySet()) {
1711 <                Object k, v;
1712 <                if (entry == null || (k = entry.getKey()) == null ||
1713 <                    (v = entry.getValue()) == null) {
1714 <                    npe = true;
1715 <                    break;
1716 <                }
1717 <                int h = spread(k.hashCode());
1718 <                for (Node[] tab = table;;) {
1719 <                    int i; Node f; int fh; Object fk;
1720 <                    if (tab == null)
1721 <                        tab = initTable();
1722 <                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1723 <                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1724 <                            ++delta;
1725 <                            break;
1726 <                        }
1727 <                    }
1728 <                    else if ((fh = f.hash) == MOVED) {
1729 <                        if ((fk = f.key) instanceof TreeBin) {
1730 <                            TreeBin t = (TreeBin)fk;
1731 <                            boolean validated = false;
1732 <                            t.acquire(0);
1733 <                            try {
1734 <                                if (tabAt(tab, i) == f) {
1735 <                                    validated = true;
1736 <                                    TreeNode p = t.getTreeNode(h, k, t.root);
1737 <                                    if (p != null)
1738 <                                        p.val = v;
1739 <                                    else {
1740 <                                        t.putTreeNode(h, k, v);
1741 <                                        ++delta;
1742 <                                    }
1743 <                                }
1744 <                            } finally {
1745 <                                t.release(0);
1746 <                            }
1747 <                            if (validated)
1748 <                                break;
1749 <                        }
1750 <                        else
1751 <                            tab = (Node[])fk;
1752 <                    }
1753 <                    else if ((fh & LOCKED) != 0) {
1754 <                        counter.add(delta);
1755 <                        delta = 0L;
1756 <                        checkForResize();
1757 <                        f.tryAwaitLock(tab, i);
1758 <                    }
1759 <                    else if (f.casHash(fh, fh | LOCKED)) {
1760 <                        int count = 0;
1761 <                        try {
1762 <                            if (tabAt(tab, i) == f) {
1763 <                                count = 1;
1764 <                                for (Node e = f;; ++count) {
1765 <                                    Object ek, ev;
1766 <                                    if ((e.hash & HASH_BITS) == h &&
1767 <                                        (ev = e.val) != null &&
1768 <                                        ((ek = e.key) == k || k.equals(ek))) {
1769 <                                        e.val = v;
1770 <                                        break;
1771 <                                    }
1772 <                                    Node last = e;
1773 <                                    if ((e = e.next) == null) {
1774 <                                        ++delta;
1775 <                                        last.next = new Node(h, k, v, null);
1776 <                                        if (count >= TREE_THRESHOLD)
1777 <                                            replaceWithTreeBin(tab, i, k);
1778 <                                        break;
1779 <                                    }
1780 <                                }
1781 <                            }
1782 <                        } finally {
1783 <                            if (!f.casHash(fh | LOCKED, fh)) {
1784 <                                f.hash = fh;
1785 <                                synchronized (f) { f.notifyAll(); };
1786 <                            }
1787 <                        }
1788 <                        if (count != 0) {
1789 <                            if (count > 1) {
1790 <                                counter.add(delta);
1791 <                                delta = 0L;
1792 <                                checkForResize();
1793 <                            }
1794 <                            break;
1795 <                        }
1796 <                    }
1797 <                }
1798 <            }
1799 <        } finally {
1800 <            if (delta != 0)
1801 <                counter.add(delta);
1802 <        }
1803 <        if (npe)
1804 <            throw new NullPointerException();
692 >    static final int spread(int h) {
693 >        return (h ^ (h >>> 16)) & HASH_BITS;
694      }
695  
1807    /* ---------------- Table Initialization and Resizing -------------- */
1808
696      /**
697       * Returns a power of two table size for the given desired capacity.
698       * See Hackers Delight, sec 3.2
# Line 1821 | Line 708 | public class ConcurrentHashMapV8<K, V>
708      }
709  
710      /**
711 <     * Initializes table, using the size recorded in sizeCtl.
711 >     * Returns x's Class if it is of the form "class C implements
712 >     * Comparable<C>", else null.
713       */
714 <    private final Node[] initTable() {
715 <        Node[] tab; int sc;
716 <        while ((tab = table) == null) {
717 <            if ((sc = sizeCtl) < 0)
718 <                Thread.yield(); // lost initialization race; just spin
719 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
720 <                try {
721 <                    if ((tab = table) == null) {
722 <                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
723 <                        tab = table = new Node[n];
724 <                        sc = n - (n >>> 2);
725 <                    }
726 <                } finally {
1839 <                    sizeCtl = sc;
714 >    static Class<?> comparableClassFor(Object x) {
715 >        if (x instanceof Comparable) {
716 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
717 >            if ((c = x.getClass()) == String.class) // bypass checks
718 >                return c;
719 >            if ((ts = c.getGenericInterfaces()) != null) {
720 >                for (int i = 0; i < ts.length; ++i) {
721 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
722 >                        ((p = (ParameterizedType)t).getRawType() ==
723 >                         Comparable.class) &&
724 >                        (as = p.getActualTypeArguments()) != null &&
725 >                        as.length == 1 && as[0] == c) // type arg is c
726 >                        return c;
727                  }
1841                break;
1842            }
1843        }
1844        return tab;
1845    }
1846
1847    /**
1848     * If table is too small and not already resizing, creates next
1849     * table and transfers bins.  Rechecks occupancy after a transfer
1850     * to see if another resize is already needed because resizings
1851     * are lagging additions.
1852     */
1853    private final void checkForResize() {
1854        Node[] tab; int n, sc;
1855        while ((tab = table) != null &&
1856               (n = tab.length) < MAXIMUM_CAPACITY &&
1857               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1858               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1859            try {
1860                if (tab == table) {
1861                    table = rebuild(tab);
1862                    sc = (n << 1) - (n >>> 1);
1863                }
1864            } finally {
1865                sizeCtl = sc;
728              }
729          }
730 +        return null;
731      }
732  
733      /**
734 <     * Tries to presize table to accommodate the given number of elements.
735 <     *
1873 <     * @param size number of elements (doesn't need to be perfectly accurate)
734 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
735 >     * class), else 0.
736       */
737 <    private final void tryPresize(int size) {
738 <        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
739 <            tableSizeFor(size + (size >>> 1) + 1);
740 <        int sc;
1879 <        while ((sc = sizeCtl) >= 0) {
1880 <            Node[] tab = table; int n;
1881 <            if (tab == null || (n = tab.length) == 0) {
1882 <                n = (sc > c) ? sc : c;
1883 <                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1884 <                    try {
1885 <                        if (table == tab) {
1886 <                            table = new Node[n];
1887 <                            sc = n - (n >>> 2);
1888 <                        }
1889 <                    } finally {
1890 <                        sizeCtl = sc;
1891 <                    }
1892 <                }
1893 <            }
1894 <            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1895 <                break;
1896 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1897 <                try {
1898 <                    if (table == tab) {
1899 <                        table = rebuild(tab);
1900 <                        sc = (n << 1) - (n >>> 1);
1901 <                    }
1902 <                } finally {
1903 <                    sizeCtl = sc;
1904 <                }
1905 <            }
1906 <        }
737 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
738 >    static int compareComparables(Class<?> kc, Object k, Object x) {
739 >        return (x == null || x.getClass() != kc ? 0 :
740 >                ((Comparable)k).compareTo(x));
741      }
742  
743 +    /* ---------------- Table element access -------------- */
744 +
745      /*
746 <     * Moves and/or copies the nodes in each bin to new table. See
747 <     * above for explanation.
748 <     *
749 <     * @return the new table
746 >     * Volatile access methods are used for table elements as well as
747 >     * elements of in-progress next table while resizing.  All uses of
748 >     * the tab arguments must be null checked by callers.  All callers
749 >     * also paranoically precheck that tab's length is not zero (or an
750 >     * equivalent check), thus ensuring that any index argument taking
751 >     * the form of a hash value anded with (length - 1) is a valid
752 >     * index.  Note that, to be correct wrt arbitrary concurrency
753 >     * errors by users, these checks must operate on local variables,
754 >     * which accounts for some odd-looking inline assignments below.
755 >     * Note that calls to setTabAt always occur within locked regions,
756 >     * and so in principle require only release ordering, not
757 >     * full volatile semantics, but are currently coded as volatile
758 >     * writes to be conservative.
759       */
760 <    private static final Node[] rebuild(Node[] tab) {
761 <        int n = tab.length;
762 <        Node[] nextTab = new Node[n << 1];
763 <        Node fwd = new Node(MOVED, nextTab, null, null);
764 <        int[] buffer = null;       // holds bins to revisit; null until needed
765 <        Node rev = null;           // reverse forwarder; null until needed
766 <        int nbuffered = 0;         // the number of bins in buffer list
767 <        int bufferIndex = 0;       // buffer index of current buffered bin
768 <        int bin = n - 1;           // current non-buffered bin or -1 if none
1924 <
1925 <        for (int i = bin;;) {      // start upwards sweep
1926 <            int fh; Node f;
1927 <            if ((f = tabAt(tab, i)) == null) {
1928 <                if (bin >= 0) {    // no lock needed (or available)
1929 <                    if (!casTabAt(tab, i, f, fwd))
1930 <                        continue;
1931 <                }
1932 <                else {             // transiently use a locked forwarding node
1933 <                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
1934 <                    if (!casTabAt(tab, i, f, g))
1935 <                        continue;
1936 <                    setTabAt(nextTab, i, null);
1937 <                    setTabAt(nextTab, i + n, null);
1938 <                    setTabAt(tab, i, fwd);
1939 <                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
1940 <                        g.hash = MOVED;
1941 <                        synchronized (g) { g.notifyAll(); }
1942 <                    }
1943 <                }
1944 <            }
1945 <            else if ((fh = f.hash) == MOVED) {
1946 <                Object fk = f.key;
1947 <                if (fk instanceof TreeBin) {
1948 <                    TreeBin t = (TreeBin)fk;
1949 <                    boolean validated = false;
1950 <                    t.acquire(0);
1951 <                    try {
1952 <                        if (tabAt(tab, i) == f) {
1953 <                            validated = true;
1954 <                            splitTreeBin(nextTab, i, t);
1955 <                            setTabAt(tab, i, fwd);
1956 <                        }
1957 <                    } finally {
1958 <                        t.release(0);
1959 <                    }
1960 <                    if (!validated)
1961 <                        continue;
1962 <                }
1963 <            }
1964 <            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
1965 <                boolean validated = false;
1966 <                try {              // split to lo and hi lists; copying as needed
1967 <                    if (tabAt(tab, i) == f) {
1968 <                        validated = true;
1969 <                        splitBin(nextTab, i, f);
1970 <                        setTabAt(tab, i, fwd);
1971 <                    }
1972 <                } finally {
1973 <                    if (!f.casHash(fh | LOCKED, fh)) {
1974 <                        f.hash = fh;
1975 <                        synchronized (f) { f.notifyAll(); };
1976 <                    }
1977 <                }
1978 <                if (!validated)
1979 <                    continue;
1980 <            }
1981 <            else {
1982 <                if (buffer == null) // initialize buffer for revisits
1983 <                    buffer = new int[TRANSFER_BUFFER_SIZE];
1984 <                if (bin < 0 && bufferIndex > 0) {
1985 <                    int j = buffer[--bufferIndex];
1986 <                    buffer[bufferIndex] = i;
1987 <                    i = j;         // swap with another bin
1988 <                    continue;
1989 <                }
1990 <                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
1991 <                    f.tryAwaitLock(tab, i);
1992 <                    continue;      // no other options -- block
1993 <                }
1994 <                if (rev == null)   // initialize reverse-forwarder
1995 <                    rev = new Node(MOVED, tab, null, null);
1996 <                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
1997 <                    continue;      // recheck before adding to list
1998 <                buffer[nbuffered++] = i;
1999 <                setTabAt(nextTab, i, rev);     // install place-holders
2000 <                setTabAt(nextTab, i + n, rev);
2001 <            }
2002 <
2003 <            if (bin > 0)
2004 <                i = --bin;
2005 <            else if (buffer != null && nbuffered > 0) {
2006 <                bin = -1;
2007 <                i = buffer[bufferIndex = --nbuffered];
2008 <            }
2009 <            else
2010 <                return nextTab;
2011 <        }
760 >
761 >    @SuppressWarnings("unchecked")
762 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
763 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
764 >    }
765 >
766 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
767 >                                        Node<K,V> c, Node<K,V> v) {
768 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
769      }
770  
771 +    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
772 +        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
773 +    }
774 +
775 +    /* ---------------- Fields -------------- */
776 +
777      /**
778 <     * Split a normal bin with list headed by e into lo and hi parts;
779 <     * install in given table
778 >     * The array of bins. Lazily initialized upon first insertion.
779 >     * Size is always a power of two. Accessed directly by iterators.
780       */
781 <    private static void splitBin(Node[] nextTab, int i, Node e) {
2019 <        int bit = nextTab.length >>> 1; // bit to split on
2020 <        int runBit = e.hash & bit;
2021 <        Node lastRun = e, lo = null, hi = null;
2022 <        for (Node p = e.next; p != null; p = p.next) {
2023 <            int b = p.hash & bit;
2024 <            if (b != runBit) {
2025 <                runBit = b;
2026 <                lastRun = p;
2027 <            }
2028 <        }
2029 <        if (runBit == 0)
2030 <            lo = lastRun;
2031 <        else
2032 <            hi = lastRun;
2033 <        for (Node p = e; p != lastRun; p = p.next) {
2034 <            int ph = p.hash & HASH_BITS;
2035 <            Object pk = p.key, pv = p.val;
2036 <            if ((ph & bit) == 0)
2037 <                lo = new Node(ph, pk, pv, lo);
2038 <            else
2039 <                hi = new Node(ph, pk, pv, hi);
2040 <        }
2041 <        setTabAt(nextTab, i, lo);
2042 <        setTabAt(nextTab, i + bit, hi);
2043 <    }
781 >    transient volatile Node<K,V>[] table;
782  
783      /**
784 <     * Split a tree bin into lo and hi parts; install in given table
784 >     * The next table to use; non-null only while resizing.
785       */
786 <    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2049 <        int bit = nextTab.length >>> 1;
2050 <        TreeBin lt = new TreeBin();
2051 <        TreeBin ht = new TreeBin();
2052 <        int lc = 0, hc = 0;
2053 <        for (Node e = t.first; e != null; e = e.next) {
2054 <            int h = e.hash & HASH_BITS;
2055 <            Object k = e.key, v = e.val;
2056 <            if ((h & bit) == 0) {
2057 <                ++lc;
2058 <                lt.putTreeNode(h, k, v);
2059 <            }
2060 <            else {
2061 <                ++hc;
2062 <                ht.putTreeNode(h, k, v);
2063 <            }
2064 <        }
2065 <        Node ln, hn; // throw away trees if too small
2066 <        if (lc <= (TREE_THRESHOLD >>> 1)) {
2067 <            ln = null;
2068 <            for (Node p = lt.first; p != null; p = p.next)
2069 <                ln = new Node(p.hash, p.key, p.val, ln);
2070 <        }
2071 <        else
2072 <            ln = new Node(MOVED, lt, null, null);
2073 <        setTabAt(nextTab, i, ln);
2074 <        if (hc <= (TREE_THRESHOLD >>> 1)) {
2075 <            hn = null;
2076 <            for (Node p = ht.first; p != null; p = p.next)
2077 <                hn = new Node(p.hash, p.key, p.val, hn);
2078 <        }
2079 <        else
2080 <            hn = new Node(MOVED, ht, null, null);
2081 <        setTabAt(nextTab, i + bit, hn);
2082 <    }
786 >    private transient volatile Node<K,V>[] nextTable;
787  
788      /**
789 <     * Implementation for clear. Steps through each bin, removing all
790 <     * nodes.
789 >     * Base counter value, used mainly when there is no contention,
790 >     * but also as a fallback during table initialization
791 >     * races. Updated via CAS.
792       */
793 <    private final void internalClear() {
2089 <        long delta = 0L; // negative number of deletions
2090 <        int i = 0;
2091 <        Node[] tab = table;
2092 <        while (tab != null && i < tab.length) {
2093 <            int fh; Object fk;
2094 <            Node f = tabAt(tab, i);
2095 <            if (f == null)
2096 <                ++i;
2097 <            else if ((fh = f.hash) == MOVED) {
2098 <                if ((fk = f.key) instanceof TreeBin) {
2099 <                    TreeBin t = (TreeBin)fk;
2100 <                    t.acquire(0);
2101 <                    try {
2102 <                        if (tabAt(tab, i) == f) {
2103 <                            for (Node p = t.first; p != null; p = p.next) {
2104 <                                p.val = null;
2105 <                                --delta;
2106 <                            }
2107 <                            t.first = null;
2108 <                            t.root = null;
2109 <                            ++i;
2110 <                        }
2111 <                    } finally {
2112 <                        t.release(0);
2113 <                    }
2114 <                }
2115 <                else
2116 <                    tab = (Node[])fk;
2117 <            }
2118 <            else if ((fh & LOCKED) != 0) {
2119 <                counter.add(delta); // opportunistically update count
2120 <                delta = 0L;
2121 <                f.tryAwaitLock(tab, i);
2122 <            }
2123 <            else if (f.casHash(fh, fh | LOCKED)) {
2124 <                try {
2125 <                    if (tabAt(tab, i) == f) {
2126 <                        for (Node e = f; e != null; e = e.next) {
2127 <                            e.val = null;
2128 <                            --delta;
2129 <                        }
2130 <                        setTabAt(tab, i, null);
2131 <                        ++i;
2132 <                    }
2133 <                } finally {
2134 <                    if (!f.casHash(fh | LOCKED, fh)) {
2135 <                        f.hash = fh;
2136 <                        synchronized (f) { f.notifyAll(); };
2137 <                    }
2138 <                }
2139 <            }
2140 <        }
2141 <        if (delta != 0)
2142 <            counter.add(delta);
2143 <    }
793 >    private transient volatile long baseCount;
794  
795 <    /* ----------------Table Traversal -------------- */
795 >    /**
796 >     * Table initialization and resizing control.  When negative, the
797 >     * table is being initialized or resized: -1 for initialization,
798 >     * else -(1 + the number of active resizing threads).  Otherwise,
799 >     * when table is null, holds the initial table size to use upon
800 >     * creation, or 0 for default. After initialization, holds the
801 >     * next element count value upon which to resize the table.
802 >     */
803 >    private transient volatile int sizeCtl;
804  
805      /**
806 <     * Encapsulates traversal for methods such as containsValue; also
2149 <     * serves as a base class for other iterators.
2150 <     *
2151 <     * At each step, the iterator snapshots the key ("nextKey") and
2152 <     * value ("nextVal") of a valid node (i.e., one that, at point of
2153 <     * snapshot, has a non-null user value). Because val fields can
2154 <     * change (including to null, indicating deletion), field nextVal
2155 <     * might not be accurate at point of use, but still maintains the
2156 <     * weak consistency property of holding a value that was once
2157 <     * valid.
2158 <     *
2159 <     * Internal traversals directly access these fields, as in:
2160 <     * {@code while (it.advance() != null) { process(it.nextKey); }}
2161 <     *
2162 <     * Exported iterators must track whether the iterator has advanced
2163 <     * (in hasNext vs next) (by setting/checking/nulling field
2164 <     * nextVal), and then extract key, value, or key-value pairs as
2165 <     * return values of next().
2166 <     *
2167 <     * The iterator visits once each still-valid node that was
2168 <     * reachable upon iterator construction. It might miss some that
2169 <     * were added to a bin after the bin was visited, which is OK wrt
2170 <     * consistency guarantees. Maintaining this property in the face
2171 <     * of possible ongoing resizes requires a fair amount of
2172 <     * bookkeeping state that is difficult to optimize away amidst
2173 <     * volatile accesses.  Even so, traversal maintains reasonable
2174 <     * throughput.
2175 <     *
2176 <     * Normally, iteration proceeds bin-by-bin traversing lists.
2177 <     * However, if the table has been resized, then all future steps
2178 <     * must traverse both the bin at the current index as well as at
2179 <     * (index + baseSize); and so on for further resizings. To
2180 <     * paranoically cope with potential sharing by users of iterators
2181 <     * across threads, iteration terminates if a bounds checks fails
2182 <     * for a table read.
806 >     * The next table index (plus one) to split while resizing.
807       */
808 <    static class InternalIterator<K,V> {
2185 <        final ConcurrentHashMapV8<K, V> map;
2186 <        Node next;           // the next entry to use
2187 <        Node last;           // the last entry used
2188 <        Object nextKey;      // cached key field of next
2189 <        Object nextVal;      // cached val field of next
2190 <        Node[] tab;          // current table; updated if resized
2191 <        int index;           // index of bin to use next
2192 <        int baseIndex;       // current index of initial table
2193 <        int baseLimit;       // index bound for initial table
2194 <        final int baseSize;  // initial table size
2195 <
2196 <        /** Creates iterator for all entries in the table. */
2197 <        InternalIterator(ConcurrentHashMapV8<K, V> map) {
2198 <            this.tab = (this.map = map).table;
2199 <            baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2200 <        }
2201 <
2202 <        /** Creates iterator for clone() and split() methods */
2203 <        InternalIterator(InternalIterator<K,V> it, boolean split) {
2204 <            this.map = it.map;
2205 <            this.tab = it.tab;
2206 <            this.baseSize = it.baseSize;
2207 <            int lo = it.baseIndex;
2208 <            int hi = this.baseLimit = it.baseLimit;
2209 <            this.index = this.baseIndex =
2210 <                (split) ? (it.baseLimit = (lo + hi + 1) >>> 1) : lo;
2211 <        }
808 >    private transient volatile int transferIndex;
809  
810 <        /**
811 <         * Advances next; returns nextVal or null if terminated
812 <         * See above for explanation.
813 <         */
2217 <        final Object advance() {
2218 <            Node e = last = next;
2219 <            Object ev = null;
2220 <            outer: do {
2221 <                if (e != null)                  // advance past used/skipped node
2222 <                    e = e.next;
2223 <                while (e == null) {             // get to next non-null bin
2224 <                    Node[] t; int b, i, n; Object ek; // checks must use locals
2225 <                    if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2226 <                        (t = tab) == null || i >= (n = t.length))
2227 <                        break outer;
2228 <                    else if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2229 <                        if ((ek = e.key) instanceof TreeBin)
2230 <                            e = ((TreeBin)ek).first;
2231 <                        else {
2232 <                            tab = (Node[])ek;
2233 <                            continue;           // restarts due to null val
2234 <                        }
2235 <                    }                           // visit upper slots if present
2236 <                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2237 <                }
2238 <                nextKey = e.key;
2239 <            } while ((ev = e.val) == null);    // skip deleted or special nodes
2240 <            next = e;
2241 <            return nextVal = ev;
2242 <        }
810 >    /**
811 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
812 >     */
813 >    private transient volatile int cellsBusy;
814  
815 <        public final void remove() {
816 <            if (nextVal == null)
817 <                advance();
818 <            Node e = last;
2248 <            if (e == null)
2249 <                throw new IllegalStateException();
2250 <            last = null;
2251 <            map.remove(e.key);
2252 <        }
815 >    /**
816 >     * Table of counter cells. When non-null, size is a power of 2.
817 >     */
818 >    private transient volatile CounterCell[] counterCells;
819  
820 <        public final boolean hasNext() {
821 <            return nextVal != null || advance() != null;
822 <        }
820 >    // views
821 >    private transient KeySetView<K,V> keySet;
822 >    private transient ValuesView<K,V> values;
823 >    private transient EntrySetView<K,V> entrySet;
824  
2258        public final boolean hasMoreElements() { return hasNext(); }
2259    }
825  
826      /* ---------------- Public operations -------------- */
827  
828      /**
829 <     * Creates a new, empty map with the default initial table size (16),
829 >     * Creates a new, empty map with the default initial table size (16).
830       */
831      public ConcurrentHashMapV8() {
2267        this.counter = new LongAdder();
832      }
833  
834      /**
# Line 2283 | Line 847 | public class ConcurrentHashMapV8<K, V>
847          int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
848                     MAXIMUM_CAPACITY :
849                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2286        this.counter = new LongAdder();
850          this.sizeCtl = cap;
851      }
852  
# Line 2293 | Line 856 | public class ConcurrentHashMapV8<K, V>
856       * @param m the map
857       */
858      public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2296        this.counter = new LongAdder();
859          this.sizeCtl = DEFAULT_CAPACITY;
860 <        internalPutAll(m);
860 >        putAll(m);
861      }
862  
863      /**
# Line 2336 | Line 898 | public class ConcurrentHashMapV8<K, V>
898       * nonpositive
899       */
900      public ConcurrentHashMapV8(int initialCapacity,
901 <                               float loadFactor, int concurrencyLevel) {
901 >                             float loadFactor, int concurrencyLevel) {
902          if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
903              throw new IllegalArgumentException();
904          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
905              initialCapacity = concurrencyLevel;   // as estimated threads
906          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
907 <        int cap = ((size >= (long)MAXIMUM_CAPACITY) ?
908 <                   MAXIMUM_CAPACITY: tableSizeFor((int)size));
2347 <        this.counter = new LongAdder();
907 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
908 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
909          this.sizeCtl = cap;
910      }
911  
912 <    /**
2352 <     * {@inheritDoc}
2353 <     */
2354 <    public boolean isEmpty() {
2355 <        return counter.sum() <= 0L; // ignore transient negative values
2356 <    }
912 >    // Original (since JDK1.2) Map methods
913  
914      /**
915       * {@inheritDoc}
916       */
917      public int size() {
918 <        long n = counter.sum();
918 >        long n = sumCount();
919          return ((n < 0L) ? 0 :
920                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
921                  (int)n);
922      }
923  
924 <    final long longSize() { // accurate version of size needed for views
925 <        long n = counter.sum();
926 <        return (n < 0L) ? 0L : n;
924 >    /**
925 >     * {@inheritDoc}
926 >     */
927 >    public boolean isEmpty() {
928 >        return sumCount() <= 0L; // ignore transient negative values
929      }
930  
931      /**
# Line 2381 | Line 939 | public class ConcurrentHashMapV8<K, V>
939       *
940       * @throws NullPointerException if the specified key is null
941       */
2384    @SuppressWarnings("unchecked")
942      public V get(Object key) {
943 <        if (key == null)
944 <            throw new NullPointerException();
945 <        return (V)internalGet(key);
943 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
944 >        int h = spread(key.hashCode());
945 >        if ((tab = table) != null && (n = tab.length) > 0 &&
946 >            (e = tabAt(tab, (n - 1) & h)) != null) {
947 >            if ((eh = e.hash) == h) {
948 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
949 >                    return e.val;
950 >            }
951 >            else if (eh < 0)
952 >                return (p = e.find(h, key)) != null ? p.val : null;
953 >            while ((e = e.next) != null) {
954 >                if (e.hash == h &&
955 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
956 >                    return e.val;
957 >            }
958 >        }
959 >        return null;
960      }
961  
962      /**
963       * Tests if the specified object is a key in this table.
964       *
965 <     * @param  key   possible key
965 >     * @param  key possible key
966       * @return {@code true} if and only if the specified object
967       *         is a key in this table, as determined by the
968       *         {@code equals} method; {@code false} otherwise
969       * @throws NullPointerException if the specified key is null
970       */
971      public boolean containsKey(Object key) {
972 <        if (key == null)
2402 <            throw new NullPointerException();
2403 <        return internalGet(key) != null;
972 >        return get(key) != null;
973      }
974  
975      /**
# Line 2416 | Line 985 | public class ConcurrentHashMapV8<K, V>
985      public boolean containsValue(Object value) {
986          if (value == null)
987              throw new NullPointerException();
988 <        Object v;
989 <        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
990 <        while ((v = it.advance()) != null) {
991 <            if (v == value || value.equals(v))
992 <                return true;
988 >        Node<K,V>[] t;
989 >        if ((t = table) != null) {
990 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
991 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
992 >                V v;
993 >                if ((v = p.val) == value || (v != null && value.equals(v)))
994 >                    return true;
995 >            }
996          }
997          return false;
998      }
999  
1000      /**
2429     * Legacy method testing if some key maps into the specified value
2430     * in this table.  This method is identical in functionality to
2431     * {@link #containsValue}, and exists solely to ensure
2432     * full compatibility with class {@link java.util.Hashtable},
2433     * which supported this method prior to introduction of the
2434     * Java Collections framework.
2435     *
2436     * @param  value a value to search for
2437     * @return {@code true} if and only if some key maps to the
2438     *         {@code value} argument in this table as
2439     *         determined by the {@code equals} method;
2440     *         {@code false} otherwise
2441     * @throws NullPointerException if the specified value is null
2442     */
2443    public boolean contains(Object value) {
2444        return containsValue(value);
2445    }
2446
2447    /**
1001       * Maps the specified key to the specified value in this table.
1002       * Neither the key nor the value can be null.
1003       *
1004 <     * <p> The value can be retrieved by calling the {@code get} method
1004 >     * <p>The value can be retrieved by calling the {@code get} method
1005       * with a key that is equal to the original key.
1006       *
1007       * @param key key with which the specified value is to be associated
# Line 2457 | Line 1010 | public class ConcurrentHashMapV8<K, V>
1010       *         {@code null} if there was no mapping for {@code key}
1011       * @throws NullPointerException if the specified key or value is null
1012       */
2460    @SuppressWarnings("unchecked")
1013      public V put(K key, V value) {
1014 <        if (key == null || value == null)
2463 <            throw new NullPointerException();
2464 <        return (V)internalPut(key, value);
1014 >        return putVal(key, value, false);
1015      }
1016  
1017 <    /**
1018 <     * {@inheritDoc}
1019 <     *
1020 <     * @return the previous value associated with the specified key,
1021 <     *         or {@code null} if there was no mapping for the key
1022 <     * @throws NullPointerException if the specified key or value is null
1023 <     */
1024 <    @SuppressWarnings("unchecked")
1025 <    public V putIfAbsent(K key, V value) {
1026 <        if (key == null || value == null)
1027 <            throw new NullPointerException();
1028 <        return (V)internalPutIfAbsent(key, value);
1017 >    /** Implementation for put and putIfAbsent */
1018 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
1019 >        if (key == null || value == null) throw new NullPointerException();
1020 >        int hash = spread(key.hashCode());
1021 >        int binCount = 0;
1022 >        for (Node<K,V>[] tab = table;;) {
1023 >            Node<K,V> f; int n, i, fh;
1024 >            if (tab == null || (n = tab.length) == 0)
1025 >                tab = initTable();
1026 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1027 >                if (casTabAt(tab, i, null,
1028 >                             new Node<K,V>(hash, key, value, null)))
1029 >                    break;                   // no lock when adding to empty bin
1030 >            }
1031 >            else if ((fh = f.hash) == MOVED)
1032 >                tab = helpTransfer(tab, f);
1033 >            else {
1034 >                V oldVal = null;
1035 >                synchronized (f) {
1036 >                    if (tabAt(tab, i) == f) {
1037 >                        if (fh >= 0) {
1038 >                            binCount = 1;
1039 >                            for (Node<K,V> e = f;; ++binCount) {
1040 >                                K ek;
1041 >                                if (e.hash == hash &&
1042 >                                    ((ek = e.key) == key ||
1043 >                                     (ek != null && key.equals(ek)))) {
1044 >                                    oldVal = e.val;
1045 >                                    if (!onlyIfAbsent)
1046 >                                        e.val = value;
1047 >                                    break;
1048 >                                }
1049 >                                Node<K,V> pred = e;
1050 >                                if ((e = e.next) == null) {
1051 >                                    pred.next = new Node<K,V>(hash, key,
1052 >                                                              value, null);
1053 >                                    break;
1054 >                                }
1055 >                            }
1056 >                        }
1057 >                        else if (f instanceof TreeBin) {
1058 >                            Node<K,V> p;
1059 >                            binCount = 2;
1060 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1061 >                                                           value)) != null) {
1062 >                                oldVal = p.val;
1063 >                                if (!onlyIfAbsent)
1064 >                                    p.val = value;
1065 >                            }
1066 >                        }
1067 >                    }
1068 >                }
1069 >                if (binCount != 0) {
1070 >                    if (binCount >= TREEIFY_THRESHOLD)
1071 >                        treeifyBin(tab, i);
1072 >                    if (oldVal != null)
1073 >                        return oldVal;
1074 >                    break;
1075 >                }
1076 >            }
1077 >        }
1078 >        addCount(1L, binCount);
1079 >        return null;
1080      }
1081  
1082      /**
# Line 2486 | Line 1087 | public class ConcurrentHashMapV8<K, V>
1087       * @param m mappings to be stored in this map
1088       */
1089      public void putAll(Map<? extends K, ? extends V> m) {
1090 <        internalPutAll(m);
1091 <    }
1092 <
2492 <    /**
2493 <     * If the specified key is not already associated with a value,
2494 <     * computes its value using the given mappingFunction and enters
2495 <     * it into the map unless null.  This is equivalent to
2496 <     * <pre> {@code
2497 <     * if (map.containsKey(key))
2498 <     *   return map.get(key);
2499 <     * value = mappingFunction.map(key);
2500 <     * if (value != null)
2501 <     *   map.put(key, value);
2502 <     * return value;}</pre>
2503 <     *
2504 <     * except that the action is performed atomically.  If the
2505 <     * function returns {@code null} no mapping is recorded. If the
2506 <     * function itself throws an (unchecked) exception, the exception
2507 <     * is rethrown to its caller, and no mapping is recorded.  Some
2508 <     * attempted update operations on this map by other threads may be
2509 <     * blocked while computation is in progress, so the computation
2510 <     * should be short and simple, and must not attempt to update any
2511 <     * other mappings of this Map. The most appropriate usage is to
2512 <     * construct a new object serving as an initial mapped value, or
2513 <     * memoized result, as in:
2514 <     *
2515 <     *  <pre> {@code
2516 <     * map.computeIfAbsent(key, new MappingFunction<K, V>() {
2517 <     *   public V map(K k) { return new Value(f(k)); }});}</pre>
2518 <     *
2519 <     * @param key key with which the specified value is to be associated
2520 <     * @param mappingFunction the function to compute a value
2521 <     * @return the current (existing or computed) value associated with
2522 <     *         the specified key, or null if the computed value is null.
2523 <     * @throws NullPointerException if the specified key or mappingFunction
2524 <     *         is null
2525 <     * @throws IllegalStateException if the computation detectably
2526 <     *         attempts a recursive update to this map that would
2527 <     *         otherwise never complete
2528 <     * @throws RuntimeException or Error if the mappingFunction does so,
2529 <     *         in which case the mapping is left unestablished
2530 <     */
2531 <    @SuppressWarnings("unchecked")
2532 <    public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2533 <        if (key == null || mappingFunction == null)
2534 <            throw new NullPointerException();
2535 <        return (V)internalComputeIfAbsent(key, mappingFunction);
2536 <    }
2537 <
2538 <    /**
2539 <     * Computes a new mapping value given a key and
2540 <     * its current mapped value (or {@code null} if there is no current
2541 <     * mapping). This is equivalent to
2542 <     *  <pre> {@code
2543 <     *   value = remappingFunction.remap(key, map.get(key));
2544 <     *   if (value != null)
2545 <     *     map.put(key, value);
2546 <     *   else
2547 <     *     map.remove(key);
2548 <     * }</pre>
2549 <     *
2550 <     * except that the action is performed atomically.  If the
2551 <     * function returns {@code null}, the mapping is removed.  If the
2552 <     * function itself throws an (unchecked) exception, the exception
2553 <     * is rethrown to its caller, and the current mapping is left
2554 <     * unchanged.  Some attempted update operations on this map by
2555 <     * other threads may be blocked while computation is in progress,
2556 <     * so the computation should be short and simple, and must not
2557 <     * attempt to update any other mappings of this Map. For example,
2558 <     * to either create or append new messages to a value mapping:
2559 <     *
2560 <     * <pre> {@code
2561 <     * Map<Key, String> map = ...;
2562 <     * final String msg = ...;
2563 <     * map.compute(key, new RemappingFunction<Key, String>() {
2564 <     *   public String remap(Key k, String v) {
2565 <     *    return (v == null) ? msg : v + msg;});}}</pre>
2566 <     *
2567 <     * @param key key with which the specified value is to be associated
2568 <     * @param remappingFunction the function to compute a value
2569 <     * @return the new value associated with
2570 <     *         the specified key, or null if none.
2571 <     * @throws NullPointerException if the specified key or remappingFunction
2572 <     *         is null
2573 <     * @throws IllegalStateException if the computation detectably
2574 <     *         attempts a recursive update to this map that would
2575 <     *         otherwise never complete
2576 <     * @throws RuntimeException or Error if the remappingFunction does so,
2577 <     *         in which case the mapping is unchanged
2578 <     */
2579 <    @SuppressWarnings("unchecked")
2580 <    public V compute(K key, RemappingFunction<? super K, V> remappingFunction) {
2581 <        if (key == null || remappingFunction == null)
2582 <            throw new NullPointerException();
2583 <        return (V)internalCompute(key, remappingFunction);
1090 >        tryPresize(m.size());
1091 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1092 >            putVal(e.getKey(), e.getValue(), false);
1093      }
1094  
1095      /**
# Line 2592 | Line 1101 | public class ConcurrentHashMapV8<K, V>
1101       *         {@code null} if there was no mapping for {@code key}
1102       * @throws NullPointerException if the specified key is null
1103       */
2595    @SuppressWarnings("unchecked")
1104      public V remove(Object key) {
1105 <        if (key == null)
2598 <            throw new NullPointerException();
2599 <        return (V)internalReplace(key, null, null);
1105 >        return replaceNode(key, null, null);
1106      }
1107  
1108      /**
1109 <     * {@inheritDoc}
1110 <     *
1111 <     * @throws NullPointerException if the specified key is null
2606 <     */
2607 <    public boolean remove(Object key, Object value) {
2608 <        if (key == null)
2609 <            throw new NullPointerException();
2610 <        if (value == null)
2611 <            return false;
2612 <        return internalReplace(key, null, value) != null;
2613 <    }
2614 <
2615 <    /**
2616 <     * {@inheritDoc}
2617 <     *
2618 <     * @throws NullPointerException if any of the arguments are null
2619 <     */
2620 <    public boolean replace(K key, V oldValue, V newValue) {
2621 <        if (key == null || oldValue == null || newValue == null)
2622 <            throw new NullPointerException();
2623 <        return internalReplace(key, newValue, oldValue) != null;
2624 <    }
2625 <
2626 <    /**
2627 <     * {@inheritDoc}
2628 <     *
2629 <     * @return the previous value associated with the specified key,
2630 <     *         or {@code null} if there was no mapping for the key
2631 <     * @throws NullPointerException if the specified key or value is null
1109 >     * Implementation for the four public remove/replace methods:
1110 >     * Replaces node value with v, conditional upon match of cv if
1111 >     * non-null.  If resulting value is null, delete.
1112       */
1113 <    @SuppressWarnings("unchecked")
1114 <    public V replace(K key, V value) {
1115 <        if (key == null || value == null)
1116 <            throw new NullPointerException();
1117 <        return (V)internalReplace(key, value, null);
1113 >    final V replaceNode(Object key, V value, Object cv) {
1114 >        int hash = spread(key.hashCode());
1115 >        for (Node<K,V>[] tab = table;;) {
1116 >            Node<K,V> f; int n, i, fh;
1117 >            if (tab == null || (n = tab.length) == 0 ||
1118 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1119 >                break;
1120 >            else if ((fh = f.hash) == MOVED)
1121 >                tab = helpTransfer(tab, f);
1122 >            else {
1123 >                V oldVal = null;
1124 >                boolean validated = false;
1125 >                synchronized (f) {
1126 >                    if (tabAt(tab, i) == f) {
1127 >                        if (fh >= 0) {
1128 >                            validated = true;
1129 >                            for (Node<K,V> e = f, pred = null;;) {
1130 >                                K ek;
1131 >                                if (e.hash == hash &&
1132 >                                    ((ek = e.key) == key ||
1133 >                                     (ek != null && key.equals(ek)))) {
1134 >                                    V ev = e.val;
1135 >                                    if (cv == null || cv == ev ||
1136 >                                        (ev != null && cv.equals(ev))) {
1137 >                                        oldVal = ev;
1138 >                                        if (value != null)
1139 >                                            e.val = value;
1140 >                                        else if (pred != null)
1141 >                                            pred.next = e.next;
1142 >                                        else
1143 >                                            setTabAt(tab, i, e.next);
1144 >                                    }
1145 >                                    break;
1146 >                                }
1147 >                                pred = e;
1148 >                                if ((e = e.next) == null)
1149 >                                    break;
1150 >                            }
1151 >                        }
1152 >                        else if (f instanceof TreeBin) {
1153 >                            validated = true;
1154 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1155 >                            TreeNode<K,V> r, p;
1156 >                            if ((r = t.root) != null &&
1157 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1158 >                                V pv = p.val;
1159 >                                if (cv == null || cv == pv ||
1160 >                                    (pv != null && cv.equals(pv))) {
1161 >                                    oldVal = pv;
1162 >                                    if (value != null)
1163 >                                        p.val = value;
1164 >                                    else if (t.removeTreeNode(p))
1165 >                                        setTabAt(tab, i, untreeify(t.first));
1166 >                                }
1167 >                            }
1168 >                        }
1169 >                    }
1170 >                }
1171 >                if (validated) {
1172 >                    if (oldVal != null) {
1173 >                        if (value == null)
1174 >                            addCount(-1L, -1);
1175 >                        return oldVal;
1176 >                    }
1177 >                    break;
1178 >                }
1179 >            }
1180 >        }
1181 >        return null;
1182      }
1183  
1184      /**
1185       * Removes all of the mappings from this map.
1186       */
1187      public void clear() {
1188 <        internalClear();
1188 >        long delta = 0L; // negative number of deletions
1189 >        int i = 0;
1190 >        Node<K,V>[] tab = table;
1191 >        while (tab != null && i < tab.length) {
1192 >            int fh;
1193 >            Node<K,V> f = tabAt(tab, i);
1194 >            if (f == null)
1195 >                ++i;
1196 >            else if ((fh = f.hash) == MOVED) {
1197 >                tab = helpTransfer(tab, f);
1198 >                i = 0; // restart
1199 >            }
1200 >            else {
1201 >                synchronized (f) {
1202 >                    if (tabAt(tab, i) == f) {
1203 >                        Node<K,V> p = (fh >= 0 ? f :
1204 >                                       (f instanceof TreeBin) ?
1205 >                                       ((TreeBin<K,V>)f).first : null);
1206 >                        while (p != null) {
1207 >                            --delta;
1208 >                            p = p.next;
1209 >                        }
1210 >                        setTabAt(tab, i++, null);
1211 >                    }
1212 >                }
1213 >            }
1214 >        }
1215 >        if (delta != 0L)
1216 >            addCount(delta, -1);
1217      }
1218  
1219      /**
1220       * Returns a {@link Set} view of the keys contained in this map.
1221       * The set is backed by the map, so changes to the map are
1222 <     * reflected in the set, and vice-versa.  The set supports element
1222 >     * reflected in the set, and vice-versa. The set supports element
1223       * removal, which removes the corresponding mapping from this map,
1224       * via the {@code Iterator.remove}, {@code Set.remove},
1225       * {@code removeAll}, {@code retainAll}, and {@code clear}
# Line 2659 | Line 1231 | public class ConcurrentHashMapV8<K, V>
1231       * and guarantees to traverse elements as they existed upon
1232       * construction of the iterator, and may (but is not guaranteed to)
1233       * reflect any modifications subsequent to construction.
1234 +     *
1235 +     * @return the set view
1236       */
1237 <    public Set<K> keySet() {
1238 <        KeySet<K,V> ks = keySet;
1239 <        return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
1237 >    public KeySetView<K,V> keySet() {
1238 >        KeySetView<K,V> ks;
1239 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1240      }
1241  
1242      /**
# Line 2680 | Line 1254 | public class ConcurrentHashMapV8<K, V>
1254       * and guarantees to traverse elements as they existed upon
1255       * construction of the iterator, and may (but is not guaranteed to)
1256       * reflect any modifications subsequent to construction.
1257 +     *
1258 +     * @return the collection view
1259       */
1260      public Collection<V> values() {
1261 <        Values<K,V> vs = values;
1262 <        return (vs != null) ? vs : (values = new Values<K,V>(this));
1261 >        ValuesView<K,V> vs;
1262 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1263      }
1264  
1265      /**
# Line 2693 | Line 1269 | public class ConcurrentHashMapV8<K, V>
1269       * removal, which removes the corresponding mapping from the map,
1270       * via the {@code Iterator.remove}, {@code Set.remove},
1271       * {@code removeAll}, {@code retainAll}, and {@code clear}
1272 <     * operations.  It does not support the {@code add} or
2697 <     * {@code addAll} operations.
1272 >     * operations.
1273       *
1274       * <p>The view's {@code iterator} is a "weakly consistent" iterator
1275       * that will never throw {@link ConcurrentModificationException},
1276       * and guarantees to traverse elements as they existed upon
1277       * construction of the iterator, and may (but is not guaranteed to)
1278       * reflect any modifications subsequent to construction.
2704     */
2705    public Set<Map.Entry<K,V>> entrySet() {
2706        EntrySet<K,V> es = entrySet;
2707        return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2708    }
2709
2710    /**
2711     * Returns an enumeration of the keys in this table.
1279       *
1280 <     * @return an enumeration of the keys in this table
2714 <     * @see #keySet()
1280 >     * @return the set view
1281       */
1282 <    public Enumeration<K> keys() {
1283 <        return new KeyIterator<K,V>(this);
1284 <    }
2719 <
2720 <    /**
2721 <     * Returns an enumeration of the values in this table.
2722 <     *
2723 <     * @return an enumeration of the values in this table
2724 <     * @see #values()
2725 <     */
2726 <    public Enumeration<V> elements() {
2727 <        return new ValueIterator<K,V>(this);
2728 <    }
2729 <
2730 <    /**
2731 <     * Returns a partionable iterator of the keys in this map.
2732 <     *
2733 <     * @return a partionable iterator of the keys in this map
2734 <     */
2735 <    public Spliterator<K> keySpliterator() {
2736 <        return new KeyIterator<K,V>(this);
2737 <    }
2738 <
2739 <    /**
2740 <     * Returns a partionable iterator of the values in this map.
2741 <     *
2742 <     * @return a partionable iterator of the values in this map
2743 <     */
2744 <    public Spliterator<V> valueSpliterator() {
2745 <        return new ValueIterator<K,V>(this);
2746 <    }
2747 <
2748 <    /**
2749 <     * Returns a partionable iterator of the entries in this map.
2750 <     *
2751 <     * @return a partionable iterator of the entries in this map
2752 <     */
2753 <    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2754 <        return new EntryIterator<K,V>(this);
1282 >    public Set<Map.Entry<K,V>> entrySet() {
1283 >        EntrySetView<K,V> es;
1284 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1285      }
1286  
1287      /**
# Line 2763 | Line 1293 | public class ConcurrentHashMapV8<K, V>
1293       */
1294      public int hashCode() {
1295          int h = 0;
1296 <        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
1297 <        Object v;
1298 <        while ((v = it.advance()) != null) {
1299 <            h += it.nextKey.hashCode() ^ v.hashCode();
1296 >        Node<K,V>[] t;
1297 >        if ((t = table) != null) {
1298 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1299 >            for (Node<K,V> p; (p = it.advance()) != null; )
1300 >                h += p.key.hashCode() ^ p.val.hashCode();
1301          }
1302          return h;
1303      }
# Line 2783 | Line 1314 | public class ConcurrentHashMapV8<K, V>
1314       * @return a string representation of this map
1315       */
1316      public String toString() {
1317 <        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
1317 >        Node<K,V>[] t;
1318 >        int f = (t = table) == null ? 0 : t.length;
1319 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1320          StringBuilder sb = new StringBuilder();
1321          sb.append('{');
1322 <        Object v;
1323 <        if ((v = it.advance()) != null) {
1322 >        Node<K,V> p;
1323 >        if ((p = it.advance()) != null) {
1324              for (;;) {
1325 <                Object k = it.nextKey;
1325 >                K k = p.key;
1326 >                V v = p.val;
1327                  sb.append(k == this ? "(this Map)" : k);
1328                  sb.append('=');
1329                  sb.append(v == this ? "(this Map)" : v);
1330 <                if ((v = it.advance()) == null)
1330 >                if ((p = it.advance()) == null)
1331                      break;
1332                  sb.append(',').append(' ');
1333              }
# Line 2816 | Line 1350 | public class ConcurrentHashMapV8<K, V>
1350              if (!(o instanceof Map))
1351                  return false;
1352              Map<?,?> m = (Map<?,?>) o;
1353 <            InternalIterator<K,V> it = new InternalIterator<K,V>(this);
1354 <            Object val;
1355 <            while ((val = it.advance()) != null) {
1356 <                Object v = m.get(it.nextKey);
1353 >            Node<K,V>[] t;
1354 >            int f = (t = table) == null ? 0 : t.length;
1355 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1356 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1357 >                V val = p.val;
1358 >                Object v = m.get(p.key);
1359                  if (v == null || (v != val && !v.equals(val)))
1360                      return false;
1361              }
# Line 2827 | Line 1363 | public class ConcurrentHashMapV8<K, V>
1363                  Object mk, mv, v;
1364                  if ((mk = e.getKey()) == null ||
1365                      (mv = e.getValue()) == null ||
1366 <                    (v = internalGet(mk)) == null ||
1366 >                    (v = get(mk)) == null ||
1367                      (mv != v && !mv.equals(v)))
1368                      return false;
1369              }
# Line 2835 | Line 1371 | public class ConcurrentHashMapV8<K, V>
1371          return true;
1372      }
1373  
1374 <    /* ----------------Iterators -------------- */
1374 >    /**
1375 >     * Stripped-down version of helper class used in previous version,
1376 >     * declared for the sake of serialization compatibility
1377 >     */
1378 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1379 >        private static final long serialVersionUID = 2249069246763182397L;
1380 >        final float loadFactor;
1381 >        Segment(float lf) { this.loadFactor = lf; }
1382 >    }
1383  
1384 <    static final class KeyIterator<K,V> extends InternalIterator<K,V>
1385 <        implements Spliterator<K>, Enumeration<K> {
1386 <        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
1387 <        KeyIterator(InternalIterator<K,V> it, boolean split) {
1388 <            super(it, split);
1384 >    /**
1385 >     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1386 >     * stream (i.e., serializes it).
1387 >     * @param s the stream
1388 >     * @throws java.io.IOException if an I/O error occurs
1389 >     * @serialData
1390 >     * the key (Object) and value (Object)
1391 >     * for each key-value mapping, followed by a null pair.
1392 >     * The key-value mappings are emitted in no particular order.
1393 >     */
1394 >    private void writeObject(java.io.ObjectOutputStream s)
1395 >        throws java.io.IOException {
1396 >        // For serialization compatibility
1397 >        // Emulate segment calculation from previous version of this class
1398 >        int sshift = 0;
1399 >        int ssize = 1;
1400 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1401 >            ++sshift;
1402 >            ssize <<= 1;
1403 >        }
1404 >        int segmentShift = 32 - sshift;
1405 >        int segmentMask = ssize - 1;
1406 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1407 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1408 >        for (int i = 0; i < segments.length; ++i)
1409 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1410 >        s.putFields().put("segments", segments);
1411 >        s.putFields().put("segmentShift", segmentShift);
1412 >        s.putFields().put("segmentMask", segmentMask);
1413 >        s.writeFields();
1414 >
1415 >        Node<K,V>[] t;
1416 >        if ((t = table) != null) {
1417 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1418 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1419 >                s.writeObject(p.key);
1420 >                s.writeObject(p.val);
1421 >            }
1422          }
1423 <        public KeyIterator<K,V> split() {
1424 <            if (last != null || (next != null && nextVal == null))
1425 <                throw new IllegalStateException();
1426 <            return new KeyIterator<K,V>(this, true);
1423 >        s.writeObject(null);
1424 >        s.writeObject(null);
1425 >        segments = null; // throw away
1426 >    }
1427 >
1428 >    /**
1429 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1430 >     * @param s the stream
1431 >     * @throws ClassNotFoundException if the class of a serialized object
1432 >     *         could not be found
1433 >     * @throws java.io.IOException if an I/O error occurs
1434 >     */
1435 >    private void readObject(java.io.ObjectInputStream s)
1436 >        throws java.io.IOException, ClassNotFoundException {
1437 >        /*
1438 >         * To improve performance in typical cases, we create nodes
1439 >         * while reading, then place in table once size is known.
1440 >         * However, we must also validate uniqueness and deal with
1441 >         * overpopulated bins while doing so, which requires
1442 >         * specialized versions of putVal mechanics.
1443 >         */
1444 >        sizeCtl = -1; // force exclusion for table construction
1445 >        s.defaultReadObject();
1446 >        long size = 0L;
1447 >        Node<K,V> p = null;
1448 >        for (;;) {
1449 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1450 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1451 >            if (k != null && v != null) {
1452 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1453 >                ++size;
1454 >            }
1455 >            else
1456 >                break;
1457          }
1458 <        public KeyIterator<K,V> clone() {
1459 <            if (last != null || (next != null && nextVal == null))
1460 <                throw new IllegalStateException();
1461 <            return new KeyIterator<K,V>(this, false);
1458 >        if (size == 0L)
1459 >            sizeCtl = 0;
1460 >        else {
1461 >            int n;
1462 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1463 >                n = MAXIMUM_CAPACITY;
1464 >            else {
1465 >                int sz = (int)size;
1466 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1467 >            }
1468 >            @SuppressWarnings("unchecked")
1469 >                Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1470 >            int mask = n - 1;
1471 >            long added = 0L;
1472 >            while (p != null) {
1473 >                boolean insertAtFront;
1474 >                Node<K,V> next = p.next, first;
1475 >                int h = p.hash, j = h & mask;
1476 >                if ((first = tabAt(tab, j)) == null)
1477 >                    insertAtFront = true;
1478 >                else {
1479 >                    K k = p.key;
1480 >                    if (first.hash < 0) {
1481 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1482 >                        if (t.putTreeVal(h, k, p.val) == null)
1483 >                            ++added;
1484 >                        insertAtFront = false;
1485 >                    }
1486 >                    else {
1487 >                        int binCount = 0;
1488 >                        insertAtFront = true;
1489 >                        Node<K,V> q; K qk;
1490 >                        for (q = first; q != null; q = q.next) {
1491 >                            if (q.hash == h &&
1492 >                                ((qk = q.key) == k ||
1493 >                                 (qk != null && k.equals(qk)))) {
1494 >                                insertAtFront = false;
1495 >                                break;
1496 >                            }
1497 >                            ++binCount;
1498 >                        }
1499 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1500 >                            insertAtFront = false;
1501 >                            ++added;
1502 >                            p.next = first;
1503 >                            TreeNode<K,V> hd = null, tl = null;
1504 >                            for (q = p; q != null; q = q.next) {
1505 >                                TreeNode<K,V> t = new TreeNode<K,V>
1506 >                                    (q.hash, q.key, q.val, null, null);
1507 >                                if ((t.prev = tl) == null)
1508 >                                    hd = t;
1509 >                                else
1510 >                                    tl.next = t;
1511 >                                tl = t;
1512 >                            }
1513 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1514 >                        }
1515 >                    }
1516 >                }
1517 >                if (insertAtFront) {
1518 >                    ++added;
1519 >                    p.next = first;
1520 >                    setTabAt(tab, j, p);
1521 >                }
1522 >                p = next;
1523 >            }
1524 >            table = tab;
1525 >            sizeCtl = n - (n >>> 2);
1526 >            baseCount = added;
1527          }
1528 +    }
1529  
1530 <        @SuppressWarnings("unchecked")
1531 <        public final K next() {
1532 <            if (nextVal == null && advance() == null)
1533 <                throw new NoSuchElementException();
1534 <            Object k = nextKey;
1535 <            nextVal = null;
1536 <            return (K) k;
1530 >    // ConcurrentMap methods
1531 >
1532 >    /**
1533 >     * {@inheritDoc}
1534 >     *
1535 >     * @return the previous value associated with the specified key,
1536 >     *         or {@code null} if there was no mapping for the key
1537 >     * @throws NullPointerException if the specified key or value is null
1538 >     */
1539 >    public V putIfAbsent(K key, V value) {
1540 >        return putVal(key, value, true);
1541 >    }
1542 >
1543 >    /**
1544 >     * {@inheritDoc}
1545 >     *
1546 >     * @throws NullPointerException if the specified key is null
1547 >     */
1548 >    public boolean remove(Object key, Object value) {
1549 >        if (key == null)
1550 >            throw new NullPointerException();
1551 >        return value != null && replaceNode(key, null, value) != null;
1552 >    }
1553 >
1554 >    /**
1555 >     * {@inheritDoc}
1556 >     *
1557 >     * @throws NullPointerException if any of the arguments are null
1558 >     */
1559 >    public boolean replace(K key, V oldValue, V newValue) {
1560 >        if (key == null || oldValue == null || newValue == null)
1561 >            throw new NullPointerException();
1562 >        return replaceNode(key, newValue, oldValue) != null;
1563 >    }
1564 >
1565 >    /**
1566 >     * {@inheritDoc}
1567 >     *
1568 >     * @return the previous value associated with the specified key,
1569 >     *         or {@code null} if there was no mapping for the key
1570 >     * @throws NullPointerException if the specified key or value is null
1571 >     */
1572 >    public V replace(K key, V value) {
1573 >        if (key == null || value == null)
1574 >            throw new NullPointerException();
1575 >        return replaceNode(key, value, null);
1576 >    }
1577 >
1578 >    // Overrides of JDK8+ Map extension method defaults
1579 >
1580 >    /**
1581 >     * Returns the value to which the specified key is mapped, or the
1582 >     * given default value if this map contains no mapping for the
1583 >     * key.
1584 >     *
1585 >     * @param key the key whose associated value is to be returned
1586 >     * @param defaultValue the value to return if this map contains
1587 >     * no mapping for the given key
1588 >     * @return the mapping for the key, if present; else the default value
1589 >     * @throws NullPointerException if the specified key is null
1590 >     */
1591 >    public V getOrDefault(Object key, V defaultValue) {
1592 >        V v;
1593 >        return (v = get(key)) == null ? defaultValue : v;
1594 >    }
1595 >
1596 >    public void forEach(BiAction<? super K, ? super V> action) {
1597 >        if (action == null) throw new NullPointerException();
1598 >        Node<K,V>[] t;
1599 >        if ((t = table) != null) {
1600 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1601 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1602 >                action.apply(p.key, p.val);
1603 >            }
1604          }
1605 +    }
1606  
1607 <        public final K nextElement() { return next(); }
1607 >    public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1608 >        if (function == null) throw new NullPointerException();
1609 >        Node<K,V>[] t;
1610 >        if ((t = table) != null) {
1611 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1612 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1613 >                V oldValue = p.val;
1614 >                for (K key = p.key;;) {
1615 >                    V newValue = function.apply(key, oldValue);
1616 >                    if (newValue == null)
1617 >                        throw new NullPointerException();
1618 >                    if (replaceNode(key, newValue, oldValue) != null ||
1619 >                        (oldValue = get(key)) == null)
1620 >                        break;
1621 >                }
1622 >            }
1623 >        }
1624      }
1625  
1626 <    static final class ValueIterator<K,V> extends InternalIterator<K,V>
1627 <        implements Spliterator<V>, Enumeration<V> {
1628 <        ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
1629 <        ValueIterator(InternalIterator<K,V> it, boolean split) {
1630 <            super(it, split);
1626 >    /**
1627 >     * If the specified key is not already associated with a value,
1628 >     * attempts to compute its value using the given mapping function
1629 >     * and enters it into this map unless {@code null}.  The entire
1630 >     * method invocation is performed atomically, so the function is
1631 >     * applied at most once per key.  Some attempted update operations
1632 >     * on this map by other threads may be blocked while computation
1633 >     * is in progress, so the computation should be short and simple,
1634 >     * and must not attempt to update any other mappings of this map.
1635 >     *
1636 >     * @param key key with which the specified value is to be associated
1637 >     * @param mappingFunction the function to compute a value
1638 >     * @return the current (existing or computed) value associated with
1639 >     *         the specified key, or null if the computed value is null
1640 >     * @throws NullPointerException if the specified key or mappingFunction
1641 >     *         is null
1642 >     * @throws IllegalStateException if the computation detectably
1643 >     *         attempts a recursive update to this map that would
1644 >     *         otherwise never complete
1645 >     * @throws RuntimeException or Error if the mappingFunction does so,
1646 >     *         in which case the mapping is left unestablished
1647 >     */
1648 >    public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1649 >        if (key == null || mappingFunction == null)
1650 >            throw new NullPointerException();
1651 >        int h = spread(key.hashCode());
1652 >        V val = null;
1653 >        int binCount = 0;
1654 >        for (Node<K,V>[] tab = table;;) {
1655 >            Node<K,V> f; int n, i, fh;
1656 >            if (tab == null || (n = tab.length) == 0)
1657 >                tab = initTable();
1658 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1659 >                Node<K,V> r = new ReservationNode<K,V>();
1660 >                synchronized (r) {
1661 >                    if (casTabAt(tab, i, null, r)) {
1662 >                        binCount = 1;
1663 >                        Node<K,V> node = null;
1664 >                        try {
1665 >                            if ((val = mappingFunction.apply(key)) != null)
1666 >                                node = new Node<K,V>(h, key, val, null);
1667 >                        } finally {
1668 >                            setTabAt(tab, i, node);
1669 >                        }
1670 >                    }
1671 >                }
1672 >                if (binCount != 0)
1673 >                    break;
1674 >            }
1675 >            else if ((fh = f.hash) == MOVED)
1676 >                tab = helpTransfer(tab, f);
1677 >            else {
1678 >                boolean added = false;
1679 >                synchronized (f) {
1680 >                    if (tabAt(tab, i) == f) {
1681 >                        if (fh >= 0) {
1682 >                            binCount = 1;
1683 >                            for (Node<K,V> e = f;; ++binCount) {
1684 >                                K ek; V ev;
1685 >                                if (e.hash == h &&
1686 >                                    ((ek = e.key) == key ||
1687 >                                     (ek != null && key.equals(ek)))) {
1688 >                                    val = e.val;
1689 >                                    break;
1690 >                                }
1691 >                                Node<K,V> pred = e;
1692 >                                if ((e = e.next) == null) {
1693 >                                    if ((val = mappingFunction.apply(key)) != null) {
1694 >                                        added = true;
1695 >                                        pred.next = new Node<K,V>(h, key, val, null);
1696 >                                    }
1697 >                                    break;
1698 >                                }
1699 >                            }
1700 >                        }
1701 >                        else if (f instanceof TreeBin) {
1702 >                            binCount = 2;
1703 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1704 >                            TreeNode<K,V> r, p;
1705 >                            if ((r = t.root) != null &&
1706 >                                (p = r.findTreeNode(h, key, null)) != null)
1707 >                                val = p.val;
1708 >                            else if ((val = mappingFunction.apply(key)) != null) {
1709 >                                added = true;
1710 >                                t.putTreeVal(h, key, val);
1711 >                            }
1712 >                        }
1713 >                    }
1714 >                }
1715 >                if (binCount != 0) {
1716 >                    if (binCount >= TREEIFY_THRESHOLD)
1717 >                        treeifyBin(tab, i);
1718 >                    if (!added)
1719 >                        return val;
1720 >                    break;
1721 >                }
1722 >            }
1723          }
1724 <        public ValueIterator<K,V> split() {
1725 <            if (last != null || (next != null && nextVal == null))
1726 <                throw new IllegalStateException();
1727 <            return new ValueIterator<K,V>(this, true);
1724 >        if (val != null)
1725 >            addCount(1L, binCount);
1726 >        return val;
1727 >    }
1728 >
1729 >    /**
1730 >     * If the value for the specified key is present, attempts to
1731 >     * compute a new mapping given the key and its current mapped
1732 >     * value.  The entire method invocation is performed atomically.
1733 >     * Some attempted update operations on this map by other threads
1734 >     * may be blocked while computation is in progress, so the
1735 >     * computation should be short and simple, and must not attempt to
1736 >     * update any other mappings of this map.
1737 >     *
1738 >     * @param key key with which a value may be associated
1739 >     * @param remappingFunction the function to compute a value
1740 >     * @return the new value associated with the specified key, or null if none
1741 >     * @throws NullPointerException if the specified key or remappingFunction
1742 >     *         is null
1743 >     * @throws IllegalStateException if the computation detectably
1744 >     *         attempts a recursive update to this map that would
1745 >     *         otherwise never complete
1746 >     * @throws RuntimeException or Error if the remappingFunction does so,
1747 >     *         in which case the mapping is unchanged
1748 >     */
1749 >    public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1750 >        if (key == null || remappingFunction == null)
1751 >            throw new NullPointerException();
1752 >        int h = spread(key.hashCode());
1753 >        V val = null;
1754 >        int delta = 0;
1755 >        int binCount = 0;
1756 >        for (Node<K,V>[] tab = table;;) {
1757 >            Node<K,V> f; int n, i, fh;
1758 >            if (tab == null || (n = tab.length) == 0)
1759 >                tab = initTable();
1760 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1761 >                break;
1762 >            else if ((fh = f.hash) == MOVED)
1763 >                tab = helpTransfer(tab, f);
1764 >            else {
1765 >                synchronized (f) {
1766 >                    if (tabAt(tab, i) == f) {
1767 >                        if (fh >= 0) {
1768 >                            binCount = 1;
1769 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1770 >                                K ek;
1771 >                                if (e.hash == h &&
1772 >                                    ((ek = e.key) == key ||
1773 >                                     (ek != null && key.equals(ek)))) {
1774 >                                    val = remappingFunction.apply(key, e.val);
1775 >                                    if (val != null)
1776 >                                        e.val = val;
1777 >                                    else {
1778 >                                        delta = -1;
1779 >                                        Node<K,V> en = e.next;
1780 >                                        if (pred != null)
1781 >                                            pred.next = en;
1782 >                                        else
1783 >                                            setTabAt(tab, i, en);
1784 >                                    }
1785 >                                    break;
1786 >                                }
1787 >                                pred = e;
1788 >                                if ((e = e.next) == null)
1789 >                                    break;
1790 >                            }
1791 >                        }
1792 >                        else if (f instanceof TreeBin) {
1793 >                            binCount = 2;
1794 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1795 >                            TreeNode<K,V> r, p;
1796 >                            if ((r = t.root) != null &&
1797 >                                (p = r.findTreeNode(h, key, null)) != null) {
1798 >                                val = remappingFunction.apply(key, p.val);
1799 >                                if (val != null)
1800 >                                    p.val = val;
1801 >                                else {
1802 >                                    delta = -1;
1803 >                                    if (t.removeTreeNode(p))
1804 >                                        setTabAt(tab, i, untreeify(t.first));
1805 >                                }
1806 >                            }
1807 >                        }
1808 >                    }
1809 >                }
1810 >                if (binCount != 0)
1811 >                    break;
1812 >            }
1813 >        }
1814 >        if (delta != 0)
1815 >            addCount((long)delta, binCount);
1816 >        return val;
1817 >    }
1818 >
1819 >    /**
1820 >     * Attempts to compute a mapping for the specified key and its
1821 >     * current mapped value (or {@code null} if there is no current
1822 >     * mapping). The entire method invocation is performed atomically.
1823 >     * Some attempted update operations on this map by other threads
1824 >     * may be blocked while computation is in progress, so the
1825 >     * computation should be short and simple, and must not attempt to
1826 >     * update any other mappings of this Map.
1827 >     *
1828 >     * @param key key with which the specified value is to be associated
1829 >     * @param remappingFunction the function to compute a value
1830 >     * @return the new value associated with the specified key, or null if none
1831 >     * @throws NullPointerException if the specified key or remappingFunction
1832 >     *         is null
1833 >     * @throws IllegalStateException if the computation detectably
1834 >     *         attempts a recursive update to this map that would
1835 >     *         otherwise never complete
1836 >     * @throws RuntimeException or Error if the remappingFunction does so,
1837 >     *         in which case the mapping is unchanged
1838 >     */
1839 >    public V compute(K key,
1840 >                     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1841 >        if (key == null || remappingFunction == null)
1842 >            throw new NullPointerException();
1843 >        int h = spread(key.hashCode());
1844 >        V val = null;
1845 >        int delta = 0;
1846 >        int binCount = 0;
1847 >        for (Node<K,V>[] tab = table;;) {
1848 >            Node<K,V> f; int n, i, fh;
1849 >            if (tab == null || (n = tab.length) == 0)
1850 >                tab = initTable();
1851 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1852 >                Node<K,V> r = new ReservationNode<K,V>();
1853 >                synchronized (r) {
1854 >                    if (casTabAt(tab, i, null, r)) {
1855 >                        binCount = 1;
1856 >                        Node<K,V> node = null;
1857 >                        try {
1858 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1859 >                                delta = 1;
1860 >                                node = new Node<K,V>(h, key, val, null);
1861 >                            }
1862 >                        } finally {
1863 >                            setTabAt(tab, i, node);
1864 >                        }
1865 >                    }
1866 >                }
1867 >                if (binCount != 0)
1868 >                    break;
1869 >            }
1870 >            else if ((fh = f.hash) == MOVED)
1871 >                tab = helpTransfer(tab, f);
1872 >            else {
1873 >                synchronized (f) {
1874 >                    if (tabAt(tab, i) == f) {
1875 >                        if (fh >= 0) {
1876 >                            binCount = 1;
1877 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1878 >                                K ek;
1879 >                                if (e.hash == h &&
1880 >                                    ((ek = e.key) == key ||
1881 >                                     (ek != null && key.equals(ek)))) {
1882 >                                    val = remappingFunction.apply(key, e.val);
1883 >                                    if (val != null)
1884 >                                        e.val = val;
1885 >                                    else {
1886 >                                        delta = -1;
1887 >                                        Node<K,V> en = e.next;
1888 >                                        if (pred != null)
1889 >                                            pred.next = en;
1890 >                                        else
1891 >                                            setTabAt(tab, i, en);
1892 >                                    }
1893 >                                    break;
1894 >                                }
1895 >                                pred = e;
1896 >                                if ((e = e.next) == null) {
1897 >                                    val = remappingFunction.apply(key, null);
1898 >                                    if (val != null) {
1899 >                                        delta = 1;
1900 >                                        pred.next =
1901 >                                            new Node<K,V>(h, key, val, null);
1902 >                                    }
1903 >                                    break;
1904 >                                }
1905 >                            }
1906 >                        }
1907 >                        else if (f instanceof TreeBin) {
1908 >                            binCount = 1;
1909 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1910 >                            TreeNode<K,V> r, p;
1911 >                            if ((r = t.root) != null)
1912 >                                p = r.findTreeNode(h, key, null);
1913 >                            else
1914 >                                p = null;
1915 >                            V pv = (p == null) ? null : p.val;
1916 >                            val = remappingFunction.apply(key, pv);
1917 >                            if (val != null) {
1918 >                                if (p != null)
1919 >                                    p.val = val;
1920 >                                else {
1921 >                                    delta = 1;
1922 >                                    t.putTreeVal(h, key, val);
1923 >                                }
1924 >                            }
1925 >                            else if (p != null) {
1926 >                                delta = -1;
1927 >                                if (t.removeTreeNode(p))
1928 >                                    setTabAt(tab, i, untreeify(t.first));
1929 >                            }
1930 >                        }
1931 >                    }
1932 >                }
1933 >                if (binCount != 0) {
1934 >                    if (binCount >= TREEIFY_THRESHOLD)
1935 >                        treeifyBin(tab, i);
1936 >                    break;
1937 >                }
1938 >            }
1939 >        }
1940 >        if (delta != 0)
1941 >            addCount((long)delta, binCount);
1942 >        return val;
1943 >    }
1944 >
1945 >    /**
1946 >     * If the specified key is not already associated with a
1947 >     * (non-null) value, associates it with the given value.
1948 >     * Otherwise, replaces the value with the results of the given
1949 >     * remapping function, or removes if {@code null}. The entire
1950 >     * method invocation is performed atomically.  Some attempted
1951 >     * update operations on this map by other threads may be blocked
1952 >     * while computation is in progress, so the computation should be
1953 >     * short and simple, and must not attempt to update any other
1954 >     * mappings of this Map.
1955 >     *
1956 >     * @param key key with which the specified value is to be associated
1957 >     * @param value the value to use if absent
1958 >     * @param remappingFunction the function to recompute a value if present
1959 >     * @return the new value associated with the specified key, or null if none
1960 >     * @throws NullPointerException if the specified key or the
1961 >     *         remappingFunction is null
1962 >     * @throws RuntimeException or Error if the remappingFunction does so,
1963 >     *         in which case the mapping is unchanged
1964 >     */
1965 >    public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1966 >        if (key == null || value == null || remappingFunction == null)
1967 >            throw new NullPointerException();
1968 >        int h = spread(key.hashCode());
1969 >        V val = null;
1970 >        int delta = 0;
1971 >        int binCount = 0;
1972 >        for (Node<K,V>[] tab = table;;) {
1973 >            Node<K,V> f; int n, i, fh;
1974 >            if (tab == null || (n = tab.length) == 0)
1975 >                tab = initTable();
1976 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1977 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1978 >                    delta = 1;
1979 >                    val = value;
1980 >                    break;
1981 >                }
1982 >            }
1983 >            else if ((fh = f.hash) == MOVED)
1984 >                tab = helpTransfer(tab, f);
1985 >            else {
1986 >                synchronized (f) {
1987 >                    if (tabAt(tab, i) == f) {
1988 >                        if (fh >= 0) {
1989 >                            binCount = 1;
1990 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1991 >                                K ek;
1992 >                                if (e.hash == h &&
1993 >                                    ((ek = e.key) == key ||
1994 >                                     (ek != null && key.equals(ek)))) {
1995 >                                    val = remappingFunction.apply(e.val, value);
1996 >                                    if (val != null)
1997 >                                        e.val = val;
1998 >                                    else {
1999 >                                        delta = -1;
2000 >                                        Node<K,V> en = e.next;
2001 >                                        if (pred != null)
2002 >                                            pred.next = en;
2003 >                                        else
2004 >                                            setTabAt(tab, i, en);
2005 >                                    }
2006 >                                    break;
2007 >                                }
2008 >                                pred = e;
2009 >                                if ((e = e.next) == null) {
2010 >                                    delta = 1;
2011 >                                    val = value;
2012 >                                    pred.next =
2013 >                                        new Node<K,V>(h, key, val, null);
2014 >                                    break;
2015 >                                }
2016 >                            }
2017 >                        }
2018 >                        else if (f instanceof TreeBin) {
2019 >                            binCount = 2;
2020 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2021 >                            TreeNode<K,V> r = t.root;
2022 >                            TreeNode<K,V> p = (r == null) ? null :
2023 >                                r.findTreeNode(h, key, null);
2024 >                            val = (p == null) ? value :
2025 >                                remappingFunction.apply(p.val, value);
2026 >                            if (val != null) {
2027 >                                if (p != null)
2028 >                                    p.val = val;
2029 >                                else {
2030 >                                    delta = 1;
2031 >                                    t.putTreeVal(h, key, val);
2032 >                                }
2033 >                            }
2034 >                            else if (p != null) {
2035 >                                delta = -1;
2036 >                                if (t.removeTreeNode(p))
2037 >                                    setTabAt(tab, i, untreeify(t.first));
2038 >                            }
2039 >                        }
2040 >                    }
2041 >                }
2042 >                if (binCount != 0) {
2043 >                    if (binCount >= TREEIFY_THRESHOLD)
2044 >                        treeifyBin(tab, i);
2045 >                    break;
2046 >                }
2047 >            }
2048 >        }
2049 >        if (delta != 0)
2050 >            addCount((long)delta, binCount);
2051 >        return val;
2052 >    }
2053 >
2054 >    // Hashtable legacy methods
2055 >
2056 >    /**
2057 >     * Legacy method testing if some key maps into the specified value
2058 >     * in this table.  This method is identical in functionality to
2059 >     * {@link #containsValue(Object)}, and exists solely to ensure
2060 >     * full compatibility with class {@link java.util.Hashtable},
2061 >     * which supported this method prior to introduction of the
2062 >     * Java Collections framework.
2063 >     *
2064 >     * @param  value a value to search for
2065 >     * @return {@code true} if and only if some key maps to the
2066 >     *         {@code value} argument in this table as
2067 >     *         determined by the {@code equals} method;
2068 >     *         {@code false} otherwise
2069 >     * @throws NullPointerException if the specified value is null
2070 >     */
2071 >    @Deprecated public boolean contains(Object value) {
2072 >        return containsValue(value);
2073 >    }
2074 >
2075 >    /**
2076 >     * Returns an enumeration of the keys in this table.
2077 >     *
2078 >     * @return an enumeration of the keys in this table
2079 >     * @see #keySet()
2080 >     */
2081 >    public Enumeration<K> keys() {
2082 >        Node<K,V>[] t;
2083 >        int f = (t = table) == null ? 0 : t.length;
2084 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2085 >    }
2086 >
2087 >    /**
2088 >     * Returns an enumeration of the values in this table.
2089 >     *
2090 >     * @return an enumeration of the values in this table
2091 >     * @see #values()
2092 >     */
2093 >    public Enumeration<V> elements() {
2094 >        Node<K,V>[] t;
2095 >        int f = (t = table) == null ? 0 : t.length;
2096 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2097 >    }
2098 >
2099 >    // ConcurrentHashMapV8-only methods
2100 >
2101 >    /**
2102 >     * Returns the number of mappings. This method should be used
2103 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2104 >     * contain more mappings than can be represented as an int. The
2105 >     * value returned is an estimate; the actual count may differ if
2106 >     * there are concurrent insertions or removals.
2107 >     *
2108 >     * @return the number of mappings
2109 >     * @since 1.8
2110 >     */
2111 >    public long mappingCount() {
2112 >        long n = sumCount();
2113 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2114 >    }
2115 >
2116 >    /**
2117 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2118 >     * from the given type to {@code Boolean.TRUE}.
2119 >     *
2120 >     * @return the new set
2121 >     * @since 1.8
2122 >     */
2123 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2124 >        return new KeySetView<K,Boolean>
2125 >            (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2126 >    }
2127 >
2128 >    /**
2129 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2130 >     * from the given type to {@code Boolean.TRUE}.
2131 >     *
2132 >     * @param initialCapacity The implementation performs internal
2133 >     * sizing to accommodate this many elements.
2134 >     * @return the new set
2135 >     * @throws IllegalArgumentException if the initial capacity of
2136 >     * elements is negative
2137 >     * @since 1.8
2138 >     */
2139 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2140 >        return new KeySetView<K,Boolean>
2141 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2142 >    }
2143 >
2144 >    /**
2145 >     * Returns a {@link Set} view of the keys in this map, using the
2146 >     * given common mapped value for any additions (i.e., {@link
2147 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2148 >     * This is of course only appropriate if it is acceptable to use
2149 >     * the same value for all additions from this view.
2150 >     *
2151 >     * @param mappedValue the mapped value to use for any additions
2152 >     * @return the set view
2153 >     * @throws NullPointerException if the mappedValue is null
2154 >     */
2155 >    public KeySetView<K,V> keySet(V mappedValue) {
2156 >        if (mappedValue == null)
2157 >            throw new NullPointerException();
2158 >        return new KeySetView<K,V>(this, mappedValue);
2159 >    }
2160 >
2161 >    /* ---------------- Special Nodes -------------- */
2162 >
2163 >    /**
2164 >     * A node inserted at head of bins during transfer operations.
2165 >     */
2166 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2167 >        final Node<K,V>[] nextTable;
2168 >        ForwardingNode(Node<K,V>[] tab) {
2169 >            super(MOVED, null, null, null);
2170 >            this.nextTable = tab;
2171 >        }
2172 >
2173 >        Node<K,V> find(int h, Object k) {
2174 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2175 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2176 >                Node<K,V> e; int n;
2177 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2178 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2179 >                    return null;
2180 >                for (;;) {
2181 >                    int eh; K ek;
2182 >                    if ((eh = e.hash) == h &&
2183 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2184 >                        return e;
2185 >                    if (eh < 0) {
2186 >                        if (e instanceof ForwardingNode) {
2187 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2188 >                            continue outer;
2189 >                        }
2190 >                        else
2191 >                            return e.find(h, k);
2192 >                    }
2193 >                    if ((e = e.next) == null)
2194 >                        return null;
2195 >                }
2196 >            }
2197 >        }
2198 >    }
2199 >
2200 >    /**
2201 >     * A place-holder node used in computeIfAbsent and compute
2202 >     */
2203 >    static final class ReservationNode<K,V> extends Node<K,V> {
2204 >        ReservationNode() {
2205 >            super(RESERVED, null, null, null);
2206 >        }
2207 >
2208 >        Node<K,V> find(int h, Object k) {
2209 >            return null;
2210 >        }
2211 >    }
2212 >
2213 >    /* ---------------- Table Initialization and Resizing -------------- */
2214 >
2215 >    /**
2216 >     * Returns the stamp bits for resizing a table of size n.
2217 >     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2218 >     */
2219 >    static final int resizeStamp(int n) {
2220 >        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2221 >    }
2222 >
2223 >    /**
2224 >     * Initializes table, using the size recorded in sizeCtl.
2225 >     */
2226 >    private final Node<K,V>[] initTable() {
2227 >        Node<K,V>[] tab; int sc;
2228 >        while ((tab = table) == null || tab.length == 0) {
2229 >            if ((sc = sizeCtl) < 0)
2230 >                Thread.yield(); // lost initialization race; just spin
2231 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2232 >                try {
2233 >                    if ((tab = table) == null || tab.length == 0) {
2234 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2235 >                        @SuppressWarnings("unchecked")
2236 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2237 >                        table = tab = nt;
2238 >                        sc = n - (n >>> 2);
2239 >                    }
2240 >                } finally {
2241 >                    sizeCtl = sc;
2242 >                }
2243 >                break;
2244 >            }
2245 >        }
2246 >        return tab;
2247 >    }
2248 >
2249 >    /**
2250 >     * Adds to count, and if table is too small and not already
2251 >     * resizing, initiates transfer. If already resizing, helps
2252 >     * perform transfer if work is available.  Rechecks occupancy
2253 >     * after a transfer to see if another resize is already needed
2254 >     * because resizings are lagging additions.
2255 >     *
2256 >     * @param x the count to add
2257 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2258 >     */
2259 >    private final void addCount(long x, int check) {
2260 >        CounterCell[] as; long b, s;
2261 >        if ((as = counterCells) != null ||
2262 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2263 >            CounterHashCode hc; CounterCell a; long v; int m;
2264 >            boolean uncontended = true;
2265 >            if ((hc = threadCounterHashCode.get()) == null ||
2266 >                as == null || (m = as.length - 1) < 0 ||
2267 >                (a = as[m & hc.code]) == null ||
2268 >                !(uncontended =
2269 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2270 >                fullAddCount(x, hc, uncontended);
2271 >                return;
2272 >            }
2273 >            if (check <= 1)
2274 >                return;
2275 >            s = sumCount();
2276 >        }
2277 >        if (check >= 0) {
2278 >            Node<K,V>[] tab, nt; int n, sc;
2279 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2280 >                   (n = tab.length) < MAXIMUM_CAPACITY) {
2281 >                int rs = resizeStamp(n);
2282 >                if (sc < 0) {
2283 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2284 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2285 >                        transferIndex <= 0)
2286 >                        break;
2287 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2288 >                        transfer(tab, nt);
2289 >                }
2290 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2291 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2292 >                    transfer(tab, null);
2293 >                s = sumCount();
2294 >            }
2295 >        }
2296 >    }
2297 >
2298 >    /**
2299 >     * Helps transfer if a resize is in progress.
2300 >     */
2301 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2302 >        Node<K,V>[] nextTab; int sc;
2303 >        if (tab != null && (f instanceof ForwardingNode) &&
2304 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2305 >            int rs = resizeStamp(tab.length);
2306 >            while (nextTab == nextTable && table == tab &&
2307 >                   (sc = sizeCtl) < 0) {
2308 >                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2309 >                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
2310 >                    break;
2311 >                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2312 >                    transfer(tab, nextTab);
2313 >                    break;
2314 >                }
2315 >            }
2316 >            return nextTab;
2317 >        }
2318 >        return table;
2319 >    }
2320 >
2321 >    /**
2322 >     * Tries to presize table to accommodate the given number of elements.
2323 >     *
2324 >     * @param size number of elements (doesn't need to be perfectly accurate)
2325 >     */
2326 >    private final void tryPresize(int size) {
2327 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2328 >            tableSizeFor(size + (size >>> 1) + 1);
2329 >        int sc;
2330 >        while ((sc = sizeCtl) >= 0) {
2331 >            Node<K,V>[] tab = table; int n;
2332 >            if (tab == null || (n = tab.length) == 0) {
2333 >                n = (sc > c) ? sc : c;
2334 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2335 >                    try {
2336 >                        if (table == tab) {
2337 >                            @SuppressWarnings("unchecked")
2338 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2339 >                            table = nt;
2340 >                            sc = n - (n >>> 2);
2341 >                        }
2342 >                    } finally {
2343 >                        sizeCtl = sc;
2344 >                    }
2345 >                }
2346 >            }
2347 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2348 >                break;
2349 >            else if (tab == table) {
2350 >                int rs = resizeStamp(n);
2351 >                if (sc < 0) {
2352 >                    Node<K,V>[] nt;
2353 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2354 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2355 >                        transferIndex <= 0)
2356 >                        break;
2357 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2358 >                        transfer(tab, nt);
2359 >                }
2360 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2361 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2362 >                    transfer(tab, null);
2363 >            }
2364 >        }
2365 >    }
2366 >
2367 >    /**
2368 >     * Moves and/or copies the nodes in each bin to new table. See
2369 >     * above for explanation.
2370 >     */
2371 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2372 >        int n = tab.length, stride;
2373 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2374 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2375 >        if (nextTab == null) {            // initiating
2376 >            try {
2377 >                @SuppressWarnings("unchecked")
2378 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2379 >                nextTab = nt;
2380 >            } catch (Throwable ex) {      // try to cope with OOME
2381 >                sizeCtl = Integer.MAX_VALUE;
2382 >                return;
2383 >            }
2384 >            nextTable = nextTab;
2385 >            transferIndex = n;
2386 >        }
2387 >        int nextn = nextTab.length;
2388 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2389 >        boolean advance = true;
2390 >        boolean finishing = false; // to ensure sweep before committing nextTab
2391 >        for (int i = 0, bound = 0;;) {
2392 >            Node<K,V> f; int fh;
2393 >            while (advance) {
2394 >                int nextIndex, nextBound;
2395 >                if (--i >= bound || finishing)
2396 >                    advance = false;
2397 >                else if ((nextIndex = transferIndex) <= 0) {
2398 >                    i = -1;
2399 >                    advance = false;
2400 >                }
2401 >                else if (U.compareAndSwapInt
2402 >                         (this, TRANSFERINDEX, nextIndex,
2403 >                          nextBound = (nextIndex > stride ?
2404 >                                       nextIndex - stride : 0))) {
2405 >                    bound = nextBound;
2406 >                    i = nextIndex - 1;
2407 >                    advance = false;
2408 >                }
2409 >            }
2410 >            if (i < 0 || i >= n || i + n >= nextn) {
2411 >                int sc;
2412 >                if (finishing) {
2413 >                    nextTable = null;
2414 >                    table = nextTab;
2415 >                    sizeCtl = (n << 1) - (n >>> 1);
2416 >                    return;
2417 >                }
2418 >                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2419 >                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2420 >                        return;
2421 >                    finishing = advance = true;
2422 >                    i = n; // recheck before commit
2423 >                }
2424 >            }
2425 >            else if ((f = tabAt(tab, i)) == null)
2426 >                advance = casTabAt(tab, i, null, fwd);
2427 >            else if ((fh = f.hash) == MOVED)
2428 >                advance = true; // already processed
2429 >            else {
2430 >                synchronized (f) {
2431 >                    if (tabAt(tab, i) == f) {
2432 >                        Node<K,V> ln, hn;
2433 >                        if (fh >= 0) {
2434 >                            int runBit = fh & n;
2435 >                            Node<K,V> lastRun = f;
2436 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2437 >                                int b = p.hash & n;
2438 >                                if (b != runBit) {
2439 >                                    runBit = b;
2440 >                                    lastRun = p;
2441 >                                }
2442 >                            }
2443 >                            if (runBit == 0) {
2444 >                                ln = lastRun;
2445 >                                hn = null;
2446 >                            }
2447 >                            else {
2448 >                                hn = lastRun;
2449 >                                ln = null;
2450 >                            }
2451 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2452 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2453 >                                if ((ph & n) == 0)
2454 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2455 >                                else
2456 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2457 >                            }
2458 >                            setTabAt(nextTab, i, ln);
2459 >                            setTabAt(nextTab, i + n, hn);
2460 >                            setTabAt(tab, i, fwd);
2461 >                            advance = true;
2462 >                        }
2463 >                        else if (f instanceof TreeBin) {
2464 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2465 >                            TreeNode<K,V> lo = null, loTail = null;
2466 >                            TreeNode<K,V> hi = null, hiTail = null;
2467 >                            int lc = 0, hc = 0;
2468 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2469 >                                int h = e.hash;
2470 >                                TreeNode<K,V> p = new TreeNode<K,V>
2471 >                                    (h, e.key, e.val, null, null);
2472 >                                if ((h & n) == 0) {
2473 >                                    if ((p.prev = loTail) == null)
2474 >                                        lo = p;
2475 >                                    else
2476 >                                        loTail.next = p;
2477 >                                    loTail = p;
2478 >                                    ++lc;
2479 >                                }
2480 >                                else {
2481 >                                    if ((p.prev = hiTail) == null)
2482 >                                        hi = p;
2483 >                                    else
2484 >                                        hiTail.next = p;
2485 >                                    hiTail = p;
2486 >                                    ++hc;
2487 >                                }
2488 >                            }
2489 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2490 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2491 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2492 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2493 >                            setTabAt(nextTab, i, ln);
2494 >                            setTabAt(nextTab, i + n, hn);
2495 >                            setTabAt(tab, i, fwd);
2496 >                            advance = true;
2497 >                        }
2498 >                    }
2499 >                }
2500 >            }
2501 >        }
2502 >    }
2503 >
2504 >    /* ---------------- Conversion from/to TreeBins -------------- */
2505 >
2506 >    /**
2507 >     * Replaces all linked nodes in bin at given index unless table is
2508 >     * too small, in which case resizes instead.
2509 >     */
2510 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2511 >        Node<K,V> b; int n, sc;
2512 >        if (tab != null) {
2513 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2514 >                tryPresize(n << 1);
2515 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2516 >                synchronized (b) {
2517 >                    if (tabAt(tab, index) == b) {
2518 >                        TreeNode<K,V> hd = null, tl = null;
2519 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2520 >                            TreeNode<K,V> p =
2521 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2522 >                                                  null, null);
2523 >                            if ((p.prev = tl) == null)
2524 >                                hd = p;
2525 >                            else
2526 >                                tl.next = p;
2527 >                            tl = p;
2528 >                        }
2529 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2530 >                    }
2531 >                }
2532 >            }
2533 >        }
2534 >    }
2535 >
2536 >    /**
2537 >     * Returns a list on non-TreeNodes replacing those in given list.
2538 >     */
2539 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2540 >        Node<K,V> hd = null, tl = null;
2541 >        for (Node<K,V> q = b; q != null; q = q.next) {
2542 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2543 >            if (tl == null)
2544 >                hd = p;
2545 >            else
2546 >                tl.next = p;
2547 >            tl = p;
2548 >        }
2549 >        return hd;
2550 >    }
2551 >
2552 >    /* ---------------- TreeNodes -------------- */
2553 >
2554 >    /**
2555 >     * Nodes for use in TreeBins
2556 >     */
2557 >    static final class TreeNode<K,V> extends Node<K,V> {
2558 >        TreeNode<K,V> parent;  // red-black tree links
2559 >        TreeNode<K,V> left;
2560 >        TreeNode<K,V> right;
2561 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2562 >        boolean red;
2563 >
2564 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2565 >                 TreeNode<K,V> parent) {
2566 >            super(hash, key, val, next);
2567 >            this.parent = parent;
2568 >        }
2569 >
2570 >        Node<K,V> find(int h, Object k) {
2571 >            return findTreeNode(h, k, null);
2572 >        }
2573 >
2574 >        /**
2575 >         * Returns the TreeNode (or null if not found) for the given key
2576 >         * starting at given root.
2577 >         */
2578 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2579 >            if (k != null) {
2580 >                TreeNode<K,V> p = this;
2581 >                do {
2582 >                    int ph, dir; K pk; TreeNode<K,V> q;
2583 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2584 >                    if ((ph = p.hash) > h)
2585 >                        p = pl;
2586 >                    else if (ph < h)
2587 >                        p = pr;
2588 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2589 >                        return p;
2590 >                    else if (pl == null)
2591 >                        p = pr;
2592 >                    else if (pr == null)
2593 >                        p = pl;
2594 >                    else if ((kc != null ||
2595 >                              (kc = comparableClassFor(k)) != null) &&
2596 >                             (dir = compareComparables(kc, k, pk)) != 0)
2597 >                        p = (dir < 0) ? pl : pr;
2598 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2599 >                        return q;
2600 >                    else
2601 >                        p = pl;
2602 >                } while (p != null);
2603 >            }
2604 >            return null;
2605 >        }
2606 >    }
2607 >
2608 >    /* ---------------- TreeBins -------------- */
2609 >
2610 >    /**
2611 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2612 >     * keys or values, but instead point to list of TreeNodes and
2613 >     * their root. They also maintain a parasitic read-write lock
2614 >     * forcing writers (who hold bin lock) to wait for readers (who do
2615 >     * not) to complete before tree restructuring operations.
2616 >     */
2617 >    static final class TreeBin<K,V> extends Node<K,V> {
2618 >        TreeNode<K,V> root;
2619 >        volatile TreeNode<K,V> first;
2620 >        volatile Thread waiter;
2621 >        volatile int lockState;
2622 >        // values for lockState
2623 >        static final int WRITER = 1; // set while holding write lock
2624 >        static final int WAITER = 2; // set when waiting for write lock
2625 >        static final int READER = 4; // increment value for setting read lock
2626 >
2627 >        /**
2628 >         * Tie-breaking utility for ordering insertions when equal
2629 >         * hashCodes and non-comparable. We don't require a total
2630 >         * order, just a consistent insertion rule to maintain
2631 >         * equivalence across rebalancings. Tie-breaking further than
2632 >         * necessary simplifies testing a bit.
2633 >         */
2634 >        static int tieBreakOrder(Object a, Object b) {
2635 >            int d;
2636 >            if (a == null || b == null ||
2637 >                (d = a.getClass().getName().
2638 >                 compareTo(b.getClass().getName())) == 0)
2639 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2640 >                     -1 : 1);
2641 >            return d;
2642 >        }
2643 >
2644 >        /**
2645 >         * Creates bin with initial set of nodes headed by b.
2646 >         */
2647 >        TreeBin(TreeNode<K,V> b) {
2648 >            super(TREEBIN, null, null, null);
2649 >            this.first = b;
2650 >            TreeNode<K,V> r = null;
2651 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2652 >                next = (TreeNode<K,V>)x.next;
2653 >                x.left = x.right = null;
2654 >                if (r == null) {
2655 >                    x.parent = null;
2656 >                    x.red = false;
2657 >                    r = x;
2658 >                }
2659 >                else {
2660 >                    K k = x.key;
2661 >                    int h = x.hash;
2662 >                    Class<?> kc = null;
2663 >                    for (TreeNode<K,V> p = r;;) {
2664 >                        int dir, ph;
2665 >                        K pk = p.key;
2666 >                        if ((ph = p.hash) > h)
2667 >                            dir = -1;
2668 >                        else if (ph < h)
2669 >                            dir = 1;
2670 >                        else if ((kc == null &&
2671 >                                  (kc = comparableClassFor(k)) == null) ||
2672 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2673 >                            dir = tieBreakOrder(k, pk);
2674 >                            TreeNode<K,V> xp = p;
2675 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2676 >                            x.parent = xp;
2677 >                            if (dir <= 0)
2678 >                                xp.left = x;
2679 >                            else
2680 >                                xp.right = x;
2681 >                            r = balanceInsertion(r, x);
2682 >                            break;
2683 >                        }
2684 >                    }
2685 >                }
2686 >            }
2687 >            this.root = r;
2688 >            assert checkInvariants(root);
2689 >        }
2690 >
2691 >        /**
2692 >         * Acquires write lock for tree restructuring.
2693 >         */
2694 >        private final void lockRoot() {
2695 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2696 >                contendedLock(); // offload to separate method
2697 >        }
2698 >
2699 >        /**
2700 >         * Releases write lock for tree restructuring.
2701 >         */
2702 >        private final void unlockRoot() {
2703 >            lockState = 0;
2704 >        }
2705 >
2706 >        /**
2707 >         * Possibly blocks awaiting root lock.
2708 >         */
2709 >        private final void contendedLock() {
2710 >            boolean waiting = false;
2711 >            for (int s;;) {
2712 >                if (((s = lockState) & ~WAITER) == 0) {
2713 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2714 >                        if (waiting)
2715 >                            waiter = null;
2716 >                        return;
2717 >                    }
2718 >                }
2719 >                else if ((s & WAITER) == 0) {
2720 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2721 >                        waiting = true;
2722 >                        waiter = Thread.currentThread();
2723 >                    }
2724 >                }
2725 >                else if (waiting)
2726 >                    LockSupport.park(this);
2727 >            }
2728 >        }
2729 >
2730 >        /**
2731 >         * Returns matching node or null if none. Tries to search
2732 >         * using tree comparisons from root, but continues linear
2733 >         * search when lock not available.
2734 >         */
2735 >        final Node<K,V> find(int h, Object k) {
2736 >            if (k != null) {
2737 >                for (Node<K,V> e = first; e != null; ) {
2738 >                    int s; K ek;
2739 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2740 >                        if (e.hash == h &&
2741 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2742 >                            return e;
2743 >                        e = e.next;
2744 >                    }
2745 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2746 >                                                 s + READER)) {
2747 >                        TreeNode<K,V> r, p;
2748 >                        try {
2749 >                            p = ((r = root) == null ? null :
2750 >                                 r.findTreeNode(h, k, null));
2751 >                        } finally {
2752 >                            Thread w;
2753 >                            int ls;
2754 >                            do {} while (!U.compareAndSwapInt
2755 >                                         (this, LOCKSTATE,
2756 >                                          ls = lockState, ls - READER));
2757 >                            if (ls == (READER|WAITER) && (w = waiter) != null)
2758 >                                LockSupport.unpark(w);
2759 >                        }
2760 >                        return p;
2761 >                    }
2762 >                }
2763 >            }
2764 >            return null;
2765 >        }
2766 >
2767 >        /**
2768 >         * Finds or adds a node.
2769 >         * @return null if added
2770 >         */
2771 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2772 >            Class<?> kc = null;
2773 >            boolean searched = false;
2774 >            for (TreeNode<K,V> p = root;;) {
2775 >                int dir, ph; K pk;
2776 >                if (p == null) {
2777 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2778 >                    break;
2779 >                }
2780 >                else if ((ph = p.hash) > h)
2781 >                    dir = -1;
2782 >                else if (ph < h)
2783 >                    dir = 1;
2784 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2785 >                    return p;
2786 >                else if ((kc == null &&
2787 >                          (kc = comparableClassFor(k)) == null) ||
2788 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2789 >                    if (!searched) {
2790 >                        TreeNode<K,V> q, ch;
2791 >                        searched = true;
2792 >                        if (((ch = p.left) != null &&
2793 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2794 >                            ((ch = p.right) != null &&
2795 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2796 >                            return q;
2797 >                    }
2798 >                    dir = tieBreakOrder(k, pk);
2799 >                }
2800 >
2801 >                TreeNode<K,V> xp = p;
2802 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2803 >                    TreeNode<K,V> x, f = first;
2804 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2805 >                    if (f != null)
2806 >                        f.prev = x;
2807 >                    if (dir <= 0)
2808 >                        xp.left = x;
2809 >                    else
2810 >                        xp.right = x;
2811 >                    if (!xp.red)
2812 >                        x.red = true;
2813 >                    else {
2814 >                        lockRoot();
2815 >                        try {
2816 >                            root = balanceInsertion(root, x);
2817 >                        } finally {
2818 >                            unlockRoot();
2819 >                        }
2820 >                    }
2821 >                    break;
2822 >                }
2823 >            }
2824 >            assert checkInvariants(root);
2825 >            return null;
2826 >        }
2827 >
2828 >        /**
2829 >         * Removes the given node, that must be present before this
2830 >         * call.  This is messier than typical red-black deletion code
2831 >         * because we cannot swap the contents of an interior node
2832 >         * with a leaf successor that is pinned by "next" pointers
2833 >         * that are accessible independently of lock. So instead we
2834 >         * swap the tree linkages.
2835 >         *
2836 >         * @return true if now too small, so should be untreeified
2837 >         */
2838 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2839 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2840 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2841 >            TreeNode<K,V> r, rl;
2842 >            if (pred == null)
2843 >                first = next;
2844 >            else
2845 >                pred.next = next;
2846 >            if (next != null)
2847 >                next.prev = pred;
2848 >            if (first == null) {
2849 >                root = null;
2850 >                return true;
2851 >            }
2852 >            if ((r = root) == null || r.right == null || // too small
2853 >                (rl = r.left) == null || rl.left == null)
2854 >                return true;
2855 >            lockRoot();
2856 >            try {
2857 >                TreeNode<K,V> replacement;
2858 >                TreeNode<K,V> pl = p.left;
2859 >                TreeNode<K,V> pr = p.right;
2860 >                if (pl != null && pr != null) {
2861 >                    TreeNode<K,V> s = pr, sl;
2862 >                    while ((sl = s.left) != null) // find successor
2863 >                        s = sl;
2864 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2865 >                    TreeNode<K,V> sr = s.right;
2866 >                    TreeNode<K,V> pp = p.parent;
2867 >                    if (s == pr) { // p was s's direct parent
2868 >                        p.parent = s;
2869 >                        s.right = p;
2870 >                    }
2871 >                    else {
2872 >                        TreeNode<K,V> sp = s.parent;
2873 >                        if ((p.parent = sp) != null) {
2874 >                            if (s == sp.left)
2875 >                                sp.left = p;
2876 >                            else
2877 >                                sp.right = p;
2878 >                        }
2879 >                        if ((s.right = pr) != null)
2880 >                            pr.parent = s;
2881 >                    }
2882 >                    p.left = null;
2883 >                    if ((p.right = sr) != null)
2884 >                        sr.parent = p;
2885 >                    if ((s.left = pl) != null)
2886 >                        pl.parent = s;
2887 >                    if ((s.parent = pp) == null)
2888 >                        r = s;
2889 >                    else if (p == pp.left)
2890 >                        pp.left = s;
2891 >                    else
2892 >                        pp.right = s;
2893 >                    if (sr != null)
2894 >                        replacement = sr;
2895 >                    else
2896 >                        replacement = p;
2897 >                }
2898 >                else if (pl != null)
2899 >                    replacement = pl;
2900 >                else if (pr != null)
2901 >                    replacement = pr;
2902 >                else
2903 >                    replacement = p;
2904 >                if (replacement != p) {
2905 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2906 >                    if (pp == null)
2907 >                        r = replacement;
2908 >                    else if (p == pp.left)
2909 >                        pp.left = replacement;
2910 >                    else
2911 >                        pp.right = replacement;
2912 >                    p.left = p.right = p.parent = null;
2913 >                }
2914 >
2915 >                root = (p.red) ? r : balanceDeletion(r, replacement);
2916 >
2917 >                if (p == replacement) {  // detach pointers
2918 >                    TreeNode<K,V> pp;
2919 >                    if ((pp = p.parent) != null) {
2920 >                        if (p == pp.left)
2921 >                            pp.left = null;
2922 >                        else if (p == pp.right)
2923 >                            pp.right = null;
2924 >                        p.parent = null;
2925 >                    }
2926 >                }
2927 >            } finally {
2928 >                unlockRoot();
2929 >            }
2930 >            assert checkInvariants(root);
2931 >            return false;
2932 >        }
2933 >
2934 >        /* ------------------------------------------------------------ */
2935 >        // Red-black tree methods, all adapted from CLR
2936 >
2937 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2938 >                                              TreeNode<K,V> p) {
2939 >            TreeNode<K,V> r, pp, rl;
2940 >            if (p != null && (r = p.right) != null) {
2941 >                if ((rl = p.right = r.left) != null)
2942 >                    rl.parent = p;
2943 >                if ((pp = r.parent = p.parent) == null)
2944 >                    (root = r).red = false;
2945 >                else if (pp.left == p)
2946 >                    pp.left = r;
2947 >                else
2948 >                    pp.right = r;
2949 >                r.left = p;
2950 >                p.parent = r;
2951 >            }
2952 >            return root;
2953 >        }
2954 >
2955 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2956 >                                               TreeNode<K,V> p) {
2957 >            TreeNode<K,V> l, pp, lr;
2958 >            if (p != null && (l = p.left) != null) {
2959 >                if ((lr = p.left = l.right) != null)
2960 >                    lr.parent = p;
2961 >                if ((pp = l.parent = p.parent) == null)
2962 >                    (root = l).red = false;
2963 >                else if (pp.right == p)
2964 >                    pp.right = l;
2965 >                else
2966 >                    pp.left = l;
2967 >                l.right = p;
2968 >                p.parent = l;
2969 >            }
2970 >            return root;
2971 >        }
2972 >
2973 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2974 >                                                    TreeNode<K,V> x) {
2975 >            x.red = true;
2976 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2977 >                if ((xp = x.parent) == null) {
2978 >                    x.red = false;
2979 >                    return x;
2980 >                }
2981 >                else if (!xp.red || (xpp = xp.parent) == null)
2982 >                    return root;
2983 >                if (xp == (xppl = xpp.left)) {
2984 >                    if ((xppr = xpp.right) != null && xppr.red) {
2985 >                        xppr.red = false;
2986 >                        xp.red = false;
2987 >                        xpp.red = true;
2988 >                        x = xpp;
2989 >                    }
2990 >                    else {
2991 >                        if (x == xp.right) {
2992 >                            root = rotateLeft(root, x = xp);
2993 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2994 >                        }
2995 >                        if (xp != null) {
2996 >                            xp.red = false;
2997 >                            if (xpp != null) {
2998 >                                xpp.red = true;
2999 >                                root = rotateRight(root, xpp);
3000 >                            }
3001 >                        }
3002 >                    }
3003 >                }
3004 >                else {
3005 >                    if (xppl != null && xppl.red) {
3006 >                        xppl.red = false;
3007 >                        xp.red = false;
3008 >                        xpp.red = true;
3009 >                        x = xpp;
3010 >                    }
3011 >                    else {
3012 >                        if (x == xp.left) {
3013 >                            root = rotateRight(root, x = xp);
3014 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3015 >                        }
3016 >                        if (xp != null) {
3017 >                            xp.red = false;
3018 >                            if (xpp != null) {
3019 >                                xpp.red = true;
3020 >                                root = rotateLeft(root, xpp);
3021 >                            }
3022 >                        }
3023 >                    }
3024 >                }
3025 >            }
3026 >        }
3027 >
3028 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3029 >                                                   TreeNode<K,V> x) {
3030 >            for (TreeNode<K,V> xp, xpl, xpr;;) {
3031 >                if (x == null || x == root)
3032 >                    return root;
3033 >                else if ((xp = x.parent) == null) {
3034 >                    x.red = false;
3035 >                    return x;
3036 >                }
3037 >                else if (x.red) {
3038 >                    x.red = false;
3039 >                    return root;
3040 >                }
3041 >                else if ((xpl = xp.left) == x) {
3042 >                    if ((xpr = xp.right) != null && xpr.red) {
3043 >                        xpr.red = false;
3044 >                        xp.red = true;
3045 >                        root = rotateLeft(root, xp);
3046 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3047 >                    }
3048 >                    if (xpr == null)
3049 >                        x = xp;
3050 >                    else {
3051 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3052 >                        if ((sr == null || !sr.red) &&
3053 >                            (sl == null || !sl.red)) {
3054 >                            xpr.red = true;
3055 >                            x = xp;
3056 >                        }
3057 >                        else {
3058 >                            if (sr == null || !sr.red) {
3059 >                                if (sl != null)
3060 >                                    sl.red = false;
3061 >                                xpr.red = true;
3062 >                                root = rotateRight(root, xpr);
3063 >                                xpr = (xp = x.parent) == null ?
3064 >                                    null : xp.right;
3065 >                            }
3066 >                            if (xpr != null) {
3067 >                                xpr.red = (xp == null) ? false : xp.red;
3068 >                                if ((sr = xpr.right) != null)
3069 >                                    sr.red = false;
3070 >                            }
3071 >                            if (xp != null) {
3072 >                                xp.red = false;
3073 >                                root = rotateLeft(root, xp);
3074 >                            }
3075 >                            x = root;
3076 >                        }
3077 >                    }
3078 >                }
3079 >                else { // symmetric
3080 >                    if (xpl != null && xpl.red) {
3081 >                        xpl.red = false;
3082 >                        xp.red = true;
3083 >                        root = rotateRight(root, xp);
3084 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3085 >                    }
3086 >                    if (xpl == null)
3087 >                        x = xp;
3088 >                    else {
3089 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3090 >                        if ((sl == null || !sl.red) &&
3091 >                            (sr == null || !sr.red)) {
3092 >                            xpl.red = true;
3093 >                            x = xp;
3094 >                        }
3095 >                        else {
3096 >                            if (sl == null || !sl.red) {
3097 >                                if (sr != null)
3098 >                                    sr.red = false;
3099 >                                xpl.red = true;
3100 >                                root = rotateLeft(root, xpl);
3101 >                                xpl = (xp = x.parent) == null ?
3102 >                                    null : xp.left;
3103 >                            }
3104 >                            if (xpl != null) {
3105 >                                xpl.red = (xp == null) ? false : xp.red;
3106 >                                if ((sl = xpl.left) != null)
3107 >                                    sl.red = false;
3108 >                            }
3109 >                            if (xp != null) {
3110 >                                xp.red = false;
3111 >                                root = rotateRight(root, xp);
3112 >                            }
3113 >                            x = root;
3114 >                        }
3115 >                    }
3116 >                }
3117 >            }
3118 >        }
3119 >
3120 >        /**
3121 >         * Recursive invariant check
3122 >         */
3123 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3124 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3125 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3126 >            if (tb != null && tb.next != t)
3127 >                return false;
3128 >            if (tn != null && tn.prev != t)
3129 >                return false;
3130 >            if (tp != null && t != tp.left && t != tp.right)
3131 >                return false;
3132 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3133 >                return false;
3134 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3135 >                return false;
3136 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3137 >                return false;
3138 >            if (tl != null && !checkInvariants(tl))
3139 >                return false;
3140 >            if (tr != null && !checkInvariants(tr))
3141 >                return false;
3142 >            return true;
3143 >        }
3144 >
3145 >        private static final sun.misc.Unsafe U;
3146 >        private static final long LOCKSTATE;
3147 >        static {
3148 >            try {
3149 >                U = getUnsafe();
3150 >                Class<?> k = TreeBin.class;
3151 >                LOCKSTATE = U.objectFieldOffset
3152 >                    (k.getDeclaredField("lockState"));
3153 >            } catch (Exception e) {
3154 >                throw new Error(e);
3155 >            }
3156 >        }
3157 >    }
3158 >
3159 >    /* ----------------Table Traversal -------------- */
3160 >
3161 >    /**
3162 >     * Records the table, its length, and current traversal index for a
3163 >     * traverser that must process a region of a forwarded table before
3164 >     * proceeding with current table.
3165 >     */
3166 >    static final class TableStack<K,V> {
3167 >        int length;
3168 >        int index;
3169 >        Node<K,V>[] tab;
3170 >        TableStack<K,V> next;
3171 >    }
3172 >
3173 >    /**
3174 >     * Encapsulates traversal for methods such as containsValue; also
3175 >     * serves as a base class for other iterators and spliterators.
3176 >     *
3177 >     * Method advance visits once each still-valid node that was
3178 >     * reachable upon iterator construction. It might miss some that
3179 >     * were added to a bin after the bin was visited, which is OK wrt
3180 >     * consistency guarantees. Maintaining this property in the face
3181 >     * of possible ongoing resizes requires a fair amount of
3182 >     * bookkeeping state that is difficult to optimize away amidst
3183 >     * volatile accesses.  Even so, traversal maintains reasonable
3184 >     * throughput.
3185 >     *
3186 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3187 >     * However, if the table has been resized, then all future steps
3188 >     * must traverse both the bin at the current index as well as at
3189 >     * (index + baseSize); and so on for further resizings. To
3190 >     * paranoically cope with potential sharing by users of iterators
3191 >     * across threads, iteration terminates if a bounds checks fails
3192 >     * for a table read.
3193 >     */
3194 >    static class Traverser<K,V> {
3195 >        Node<K,V>[] tab;        // current table; updated if resized
3196 >        Node<K,V> next;         // the next entry to use
3197 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3198 >        int index;              // index of bin to use next
3199 >        int baseIndex;          // current index of initial table
3200 >        int baseLimit;          // index bound for initial table
3201 >        final int baseSize;     // initial table size
3202 >
3203 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3204 >            this.tab = tab;
3205 >            this.baseSize = size;
3206 >            this.baseIndex = this.index = index;
3207 >            this.baseLimit = limit;
3208 >            this.next = null;
3209 >        }
3210 >
3211 >        /**
3212 >         * Advances if possible, returning next valid node, or null if none.
3213 >         */
3214 >        final Node<K,V> advance() {
3215 >            Node<K,V> e;
3216 >            if ((e = next) != null)
3217 >                e = e.next;
3218 >            for (;;) {
3219 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3220 >                if (e != null)
3221 >                    return next = e;
3222 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3223 >                    (n = t.length) <= (i = index) || i < 0)
3224 >                    return next = null;
3225 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3226 >                    if (e instanceof ForwardingNode) {
3227 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3228 >                        e = null;
3229 >                        pushState(t, i, n);
3230 >                        continue;
3231 >                    }
3232 >                    else if (e instanceof TreeBin)
3233 >                        e = ((TreeBin<K,V>)e).first;
3234 >                    else
3235 >                        e = null;
3236 >                }
3237 >                if (stack != null)
3238 >                    recoverState(n);
3239 >                else if ((index = i + baseSize) >= n)
3240 >                    index = ++baseIndex; // visit upper slots if present
3241 >            }
3242 >        }
3243 >
3244 >        /**
3245 >         * Saves traversal state upon encountering a forwarding node.
3246 >         */
3247 >        private void pushState(Node<K,V>[] t, int i, int n) {
3248 >            TableStack<K,V> s = spare;  // reuse if possible
3249 >            if (s != null)
3250 >                spare = s.next;
3251 >            else
3252 >                s = new TableStack<K,V>();
3253 >            s.tab = t;
3254 >            s.length = n;
3255 >            s.index = i;
3256 >            s.next = stack;
3257 >            stack = s;
3258 >        }
3259 >
3260 >        /**
3261 >         * Possibly pops traversal state.
3262 >         *
3263 >         * @param n length of current table
3264 >         */
3265 >        private void recoverState(int n) {
3266 >            TableStack<K,V> s; int len;
3267 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3268 >                n = len;
3269 >                index = s.index;
3270 >                tab = s.tab;
3271 >                s.tab = null;
3272 >                TableStack<K,V> next = s.next;
3273 >                s.next = spare; // save for reuse
3274 >                stack = next;
3275 >                spare = s;
3276 >            }
3277 >            if (s == null && (index += baseSize) >= n)
3278 >                index = ++baseIndex;
3279 >        }
3280 >    }
3281 >
3282 >    /**
3283 >     * Base of key, value, and entry Iterators. Adds fields to
3284 >     * Traverser to support iterator.remove.
3285 >     */
3286 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3287 >        final ConcurrentHashMapV8<K,V> map;
3288 >        Node<K,V> lastReturned;
3289 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3290 >                    ConcurrentHashMapV8<K,V> map) {
3291 >            super(tab, size, index, limit);
3292 >            this.map = map;
3293 >            advance();
3294          }
3295  
3296 <        public ValueIterator<K,V> clone() {
3297 <            if (last != null || (next != null && nextVal == null))
3296 >        public final boolean hasNext() { return next != null; }
3297 >        public final boolean hasMoreElements() { return next != null; }
3298 >
3299 >        public final void remove() {
3300 >            Node<K,V> p;
3301 >            if ((p = lastReturned) == null)
3302                  throw new IllegalStateException();
3303 <            return new ValueIterator<K,V>(this, false);
3303 >            lastReturned = null;
3304 >            map.replaceNode(p.key, null, null);
3305          }
3306 +    }
3307  
3308 <        @SuppressWarnings("unchecked")
3309 <        public final V next() {
3310 <            Object v;
3311 <            if ((v = nextVal) == null && (v = advance()) == null)
3308 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3309 >        implements Iterator<K>, Enumeration<K> {
3310 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3311 >                    ConcurrentHashMapV8<K,V> map) {
3312 >            super(tab, index, size, limit, map);
3313 >        }
3314 >
3315 >        public final K next() {
3316 >            Node<K,V> p;
3317 >            if ((p = next) == null)
3318                  throw new NoSuchElementException();
3319 <            nextVal = null;
3320 <            return (V) v;
3319 >            K k = p.key;
3320 >            lastReturned = p;
3321 >            advance();
3322 >            return k;
3323          }
3324  
3325 <        public final V nextElement() { return next(); }
3325 >        public final K nextElement() { return next(); }
3326      }
3327  
3328 <    static final class EntryIterator<K,V> extends InternalIterator<K,V>
3329 <        implements Spliterator<Map.Entry<K,V>> {
3330 <        EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3331 <        EntryIterator(InternalIterator<K,V> it, boolean split) {
3332 <            super(it, split);
3328 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3329 >        implements Iterator<V>, Enumeration<V> {
3330 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3331 >                      ConcurrentHashMapV8<K,V> map) {
3332 >            super(tab, index, size, limit, map);
3333          }
3334 <        public EntryIterator<K,V> split() {
3335 <            if (last != null || (next != null && nextVal == null))
3336 <                throw new IllegalStateException();
3337 <            return new EntryIterator<K,V>(this, true);
3334 >
3335 >        public final V next() {
3336 >            Node<K,V> p;
3337 >            if ((p = next) == null)
3338 >                throw new NoSuchElementException();
3339 >            V v = p.val;
3340 >            lastReturned = p;
3341 >            advance();
3342 >            return v;
3343          }
3344 <        public EntryIterator<K,V> clone() {
3345 <            if (last != null || (next != null && nextVal == null))
3346 <                throw new IllegalStateException();
3347 <            return new EntryIterator<K,V>(this, false);
3344 >
3345 >        public final V nextElement() { return next(); }
3346 >    }
3347 >
3348 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3349 >        implements Iterator<Map.Entry<K,V>> {
3350 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3351 >                      ConcurrentHashMapV8<K,V> map) {
3352 >            super(tab, index, size, limit, map);
3353          }
3354  
2916        @SuppressWarnings("unchecked")
3355          public final Map.Entry<K,V> next() {
3356 <            Object v;
3357 <            if ((v = nextVal) == null && (v = advance()) == null)
3356 >            Node<K,V> p;
3357 >            if ((p = next) == null)
3358                  throw new NoSuchElementException();
3359 <            Object k = nextKey;
3360 <            nextVal = null;
3361 <            return new MapEntry<K,V>((K)k, (V)v, map);
3359 >            K k = p.key;
3360 >            V v = p.val;
3361 >            lastReturned = p;
3362 >            advance();
3363 >            return new MapEntry<K,V>(k, v, map);
3364          }
3365      }
3366  
3367      /**
3368 <     * Exported Entry for iterators
3368 >     * Exported Entry for EntryIterator
3369       */
3370 <    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3370 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3371          final K key; // non-null
3372          V val;       // non-null
3373 <        final ConcurrentHashMapV8<K, V> map;
3374 <        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3373 >        final ConcurrentHashMapV8<K,V> map;
3374 >        MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3375              this.key = key;
3376              this.val = val;
3377              this.map = map;
3378          }
3379 <        public final K getKey()       { return key; }
3380 <        public final V getValue()     { return val; }
3381 <        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3382 <        public final String toString(){ return key + "=" + val; }
3379 >        public K getKey()        { return key; }
3380 >        public V getValue()      { return val; }
3381 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3382 >        public String toString() { return key + "=" + val; }
3383  
3384 <        public final boolean equals(Object o) {
3384 >        public boolean equals(Object o) {
3385              Object k, v; Map.Entry<?,?> e;
3386              return ((o instanceof Map.Entry) &&
3387                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 2952 | Line 3392 | public class ConcurrentHashMapV8<K, V>
3392  
3393          /**
3394           * Sets our entry's value and writes through to the map. The
3395 <         * value to return is somewhat arbitrary here. Since a we do
3396 <         * not necessarily track asynchronous changes, the most recent
3395 >         * value to return is somewhat arbitrary here. Since we do not
3396 >         * necessarily track asynchronous changes, the most recent
3397           * "previous" value could be different from what we return (or
3398 <         * could even have been removed in which case the put will
3398 >         * could even have been removed, in which case the put will
3399           * re-establish). We do not and cannot guarantee more.
3400           */
3401 <        public final V setValue(V value) {
3401 >        public V setValue(V value) {
3402              if (value == null) throw new NullPointerException();
3403              V v = val;
3404              val = value;
# Line 2967 | Line 3407 | public class ConcurrentHashMapV8<K, V>
3407          }
3408      }
3409  
3410 +    static final class KeySpliterator<K,V> extends Traverser<K,V>
3411 +        implements ConcurrentHashMapSpliterator<K> {
3412 +        long est;               // size estimate
3413 +        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3414 +                       long est) {
3415 +            super(tab, size, index, limit);
3416 +            this.est = est;
3417 +        }
3418 +
3419 +        public ConcurrentHashMapSpliterator<K> trySplit() {
3420 +            int i, f, h;
3421 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3422 +                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3423 +                                        f, est >>>= 1);
3424 +        }
3425 +
3426 +        public void forEachRemaining(Action<? super K> action) {
3427 +            if (action == null) throw new NullPointerException();
3428 +            for (Node<K,V> p; (p = advance()) != null;)
3429 +                action.apply(p.key);
3430 +        }
3431 +
3432 +        public boolean tryAdvance(Action<? super K> action) {
3433 +            if (action == null) throw new NullPointerException();
3434 +            Node<K,V> p;
3435 +            if ((p = advance()) == null)
3436 +                return false;
3437 +            action.apply(p.key);
3438 +            return true;
3439 +        }
3440 +
3441 +        public long estimateSize() { return est; }
3442 +
3443 +    }
3444 +
3445 +    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3446 +        implements ConcurrentHashMapSpliterator<V> {
3447 +        long est;               // size estimate
3448 +        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3449 +                         long est) {
3450 +            super(tab, size, index, limit);
3451 +            this.est = est;
3452 +        }
3453 +
3454 +        public ConcurrentHashMapSpliterator<V> trySplit() {
3455 +            int i, f, h;
3456 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3457 +                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3458 +                                          f, est >>>= 1);
3459 +        }
3460 +
3461 +        public void forEachRemaining(Action<? super V> action) {
3462 +            if (action == null) throw new NullPointerException();
3463 +            for (Node<K,V> p; (p = advance()) != null;)
3464 +                action.apply(p.val);
3465 +        }
3466 +
3467 +        public boolean tryAdvance(Action<? super V> action) {
3468 +            if (action == null) throw new NullPointerException();
3469 +            Node<K,V> p;
3470 +            if ((p = advance()) == null)
3471 +                return false;
3472 +            action.apply(p.val);
3473 +            return true;
3474 +        }
3475 +
3476 +        public long estimateSize() { return est; }
3477 +
3478 +    }
3479 +
3480 +    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3481 +        implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3482 +        final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3483 +        long est;               // size estimate
3484 +        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3485 +                         long est, ConcurrentHashMapV8<K,V> map) {
3486 +            super(tab, size, index, limit);
3487 +            this.map = map;
3488 +            this.est = est;
3489 +        }
3490 +
3491 +        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3492 +            int i, f, h;
3493 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3494 +                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3495 +                                          f, est >>>= 1, map);
3496 +        }
3497 +
3498 +        public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3499 +            if (action == null) throw new NullPointerException();
3500 +            for (Node<K,V> p; (p = advance()) != null; )
3501 +                action.apply(new MapEntry<K,V>(p.key, p.val, map));
3502 +        }
3503 +
3504 +        public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3505 +            if (action == null) throw new NullPointerException();
3506 +            Node<K,V> p;
3507 +            if ((p = advance()) == null)
3508 +                return false;
3509 +            action.apply(new MapEntry<K,V>(p.key, p.val, map));
3510 +            return true;
3511 +        }
3512 +
3513 +        public long estimateSize() { return est; }
3514 +
3515 +    }
3516 +
3517 +    // Parallel bulk operations
3518 +
3519 +    /**
3520 +     * Computes initial batch value for bulk tasks. The returned value
3521 +     * is approximately exp2 of the number of times (minus one) to
3522 +     * split task by two before executing leaf action. This value is
3523 +     * faster to compute and more convenient to use as a guide to
3524 +     * splitting than is the depth, since it is used while dividing by
3525 +     * two anyway.
3526 +     */
3527 +    final int batchFor(long b) {
3528 +        long n;
3529 +        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3530 +            return 0;
3531 +        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3532 +        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3533 +    }
3534 +
3535 +    /**
3536 +     * Performs the given action for each (key, value).
3537 +     *
3538 +     * @param parallelismThreshold the (estimated) number of elements
3539 +     * needed for this operation to be executed in parallel
3540 +     * @param action the action
3541 +     * @since 1.8
3542 +     */
3543 +    public void forEach(long parallelismThreshold,
3544 +                        BiAction<? super K,? super V> action) {
3545 +        if (action == null) throw new NullPointerException();
3546 +        new ForEachMappingTask<K,V>
3547 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3548 +             action).invoke();
3549 +    }
3550 +
3551 +    /**
3552 +     * Performs the given action for each non-null transformation
3553 +     * of each (key, value).
3554 +     *
3555 +     * @param parallelismThreshold the (estimated) number of elements
3556 +     * needed for this operation to be executed in parallel
3557 +     * @param transformer a function returning the transformation
3558 +     * for an element, or null if there is no transformation (in
3559 +     * which case the action is not applied)
3560 +     * @param action the action
3561 +     * @since 1.8
3562 +     */
3563 +    public <U> void forEach(long parallelismThreshold,
3564 +                            BiFun<? super K, ? super V, ? extends U> transformer,
3565 +                            Action<? super U> action) {
3566 +        if (transformer == null || action == null)
3567 +            throw new NullPointerException();
3568 +        new ForEachTransformedMappingTask<K,V,U>
3569 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3570 +             transformer, action).invoke();
3571 +    }
3572 +
3573 +    /**
3574 +     * Returns a non-null result from applying the given search
3575 +     * function on each (key, value), or null if none.  Upon
3576 +     * success, further element processing is suppressed and the
3577 +     * results of any other parallel invocations of the search
3578 +     * function are ignored.
3579 +     *
3580 +     * @param parallelismThreshold the (estimated) number of elements
3581 +     * needed for this operation to be executed in parallel
3582 +     * @param searchFunction a function returning a non-null
3583 +     * result on success, else null
3584 +     * @return a non-null result from applying the given search
3585 +     * function on each (key, value), or null if none
3586 +     * @since 1.8
3587 +     */
3588 +    public <U> U search(long parallelismThreshold,
3589 +                        BiFun<? super K, ? super V, ? extends U> searchFunction) {
3590 +        if (searchFunction == null) throw new NullPointerException();
3591 +        return new SearchMappingsTask<K,V,U>
3592 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3593 +             searchFunction, new AtomicReference<U>()).invoke();
3594 +    }
3595 +
3596 +    /**
3597 +     * Returns the result of accumulating the given transformation
3598 +     * of all (key, value) pairs using the given reducer to
3599 +     * combine values, or null if none.
3600 +     *
3601 +     * @param parallelismThreshold the (estimated) number of elements
3602 +     * needed for this operation to be executed in parallel
3603 +     * @param transformer a function returning the transformation
3604 +     * for an element, or null if there is no transformation (in
3605 +     * which case it is not combined)
3606 +     * @param reducer a commutative associative combining function
3607 +     * @return the result of accumulating the given transformation
3608 +     * of all (key, value) pairs
3609 +     * @since 1.8
3610 +     */
3611 +    public <U> U reduce(long parallelismThreshold,
3612 +                        BiFun<? super K, ? super V, ? extends U> transformer,
3613 +                        BiFun<? super U, ? super U, ? extends U> reducer) {
3614 +        if (transformer == null || reducer == null)
3615 +            throw new NullPointerException();
3616 +        return new MapReduceMappingsTask<K,V,U>
3617 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3618 +             null, transformer, reducer).invoke();
3619 +    }
3620 +
3621 +    /**
3622 +     * Returns the result of accumulating the given transformation
3623 +     * of all (key, value) pairs using the given reducer to
3624 +     * combine values, and the given basis as an identity value.
3625 +     *
3626 +     * @param parallelismThreshold the (estimated) number of elements
3627 +     * needed for this operation to be executed in parallel
3628 +     * @param transformer a function returning the transformation
3629 +     * for an element
3630 +     * @param basis the identity (initial default value) for the reduction
3631 +     * @param reducer a commutative associative combining function
3632 +     * @return the result of accumulating the given transformation
3633 +     * of all (key, value) pairs
3634 +     * @since 1.8
3635 +     */
3636 +    public double reduceToDouble(long parallelismThreshold,
3637 +                                 ObjectByObjectToDouble<? super K, ? super V> transformer,
3638 +                                 double basis,
3639 +                                 DoubleByDoubleToDouble reducer) {
3640 +        if (transformer == null || reducer == null)
3641 +            throw new NullPointerException();
3642 +        return new MapReduceMappingsToDoubleTask<K,V>
3643 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3644 +             null, transformer, basis, reducer).invoke();
3645 +    }
3646 +
3647 +    /**
3648 +     * Returns the result of accumulating the given transformation
3649 +     * of all (key, value) pairs using the given reducer to
3650 +     * combine values, and the given basis as an identity value.
3651 +     *
3652 +     * @param parallelismThreshold the (estimated) number of elements
3653 +     * needed for this operation to be executed in parallel
3654 +     * @param transformer a function returning the transformation
3655 +     * for an element
3656 +     * @param basis the identity (initial default value) for the reduction
3657 +     * @param reducer a commutative associative combining function
3658 +     * @return the result of accumulating the given transformation
3659 +     * of all (key, value) pairs
3660 +     * @since 1.8
3661 +     */
3662 +    public long reduceToLong(long parallelismThreshold,
3663 +                             ObjectByObjectToLong<? super K, ? super V> transformer,
3664 +                             long basis,
3665 +                             LongByLongToLong reducer) {
3666 +        if (transformer == null || reducer == null)
3667 +            throw new NullPointerException();
3668 +        return new MapReduceMappingsToLongTask<K,V>
3669 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3670 +             null, transformer, basis, reducer).invoke();
3671 +    }
3672 +
3673 +    /**
3674 +     * Returns the result of accumulating the given transformation
3675 +     * of all (key, value) pairs using the given reducer to
3676 +     * combine values, and the given basis as an identity value.
3677 +     *
3678 +     * @param parallelismThreshold the (estimated) number of elements
3679 +     * needed for this operation to be executed in parallel
3680 +     * @param transformer a function returning the transformation
3681 +     * for an element
3682 +     * @param basis the identity (initial default value) for the reduction
3683 +     * @param reducer a commutative associative combining function
3684 +     * @return the result of accumulating the given transformation
3685 +     * of all (key, value) pairs
3686 +     * @since 1.8
3687 +     */
3688 +    public int reduceToInt(long parallelismThreshold,
3689 +                           ObjectByObjectToInt<? super K, ? super V> transformer,
3690 +                           int basis,
3691 +                           IntByIntToInt reducer) {
3692 +        if (transformer == null || reducer == null)
3693 +            throw new NullPointerException();
3694 +        return new MapReduceMappingsToIntTask<K,V>
3695 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3696 +             null, transformer, basis, reducer).invoke();
3697 +    }
3698 +
3699 +    /**
3700 +     * Performs the given action for each key.
3701 +     *
3702 +     * @param parallelismThreshold the (estimated) number of elements
3703 +     * needed for this operation to be executed in parallel
3704 +     * @param action the action
3705 +     * @since 1.8
3706 +     */
3707 +    public void forEachKey(long parallelismThreshold,
3708 +                           Action<? super K> action) {
3709 +        if (action == null) throw new NullPointerException();
3710 +        new ForEachKeyTask<K,V>
3711 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3712 +             action).invoke();
3713 +    }
3714 +
3715 +    /**
3716 +     * Performs the given action for each non-null transformation
3717 +     * of each key.
3718 +     *
3719 +     * @param parallelismThreshold the (estimated) number of elements
3720 +     * needed for this operation to be executed in parallel
3721 +     * @param transformer a function returning the transformation
3722 +     * for an element, or null if there is no transformation (in
3723 +     * which case the action is not applied)
3724 +     * @param action the action
3725 +     * @since 1.8
3726 +     */
3727 +    public <U> void forEachKey(long parallelismThreshold,
3728 +                               Fun<? super K, ? extends U> transformer,
3729 +                               Action<? super U> action) {
3730 +        if (transformer == null || action == null)
3731 +            throw new NullPointerException();
3732 +        new ForEachTransformedKeyTask<K,V,U>
3733 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3734 +             transformer, action).invoke();
3735 +    }
3736 +
3737 +    /**
3738 +     * Returns a non-null result from applying the given search
3739 +     * function on each key, or null if none. Upon success,
3740 +     * further element processing is suppressed and the results of
3741 +     * any other parallel invocations of the search function are
3742 +     * ignored.
3743 +     *
3744 +     * @param parallelismThreshold the (estimated) number of elements
3745 +     * needed for this operation to be executed in parallel
3746 +     * @param searchFunction a function returning a non-null
3747 +     * result on success, else null
3748 +     * @return a non-null result from applying the given search
3749 +     * function on each key, or null if none
3750 +     * @since 1.8
3751 +     */
3752 +    public <U> U searchKeys(long parallelismThreshold,
3753 +                            Fun<? super K, ? extends U> searchFunction) {
3754 +        if (searchFunction == null) throw new NullPointerException();
3755 +        return new SearchKeysTask<K,V,U>
3756 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3757 +             searchFunction, new AtomicReference<U>()).invoke();
3758 +    }
3759 +
3760 +    /**
3761 +     * Returns the result of accumulating all keys using the given
3762 +     * reducer to combine values, or null if none.
3763 +     *
3764 +     * @param parallelismThreshold the (estimated) number of elements
3765 +     * needed for this operation to be executed in parallel
3766 +     * @param reducer a commutative associative combining function
3767 +     * @return the result of accumulating all keys using the given
3768 +     * reducer to combine values, or null if none
3769 +     * @since 1.8
3770 +     */
3771 +    public K reduceKeys(long parallelismThreshold,
3772 +                        BiFun<? super K, ? super K, ? extends K> reducer) {
3773 +        if (reducer == null) throw new NullPointerException();
3774 +        return new ReduceKeysTask<K,V>
3775 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3776 +             null, reducer).invoke();
3777 +    }
3778 +
3779 +    /**
3780 +     * Returns the result of accumulating the given transformation
3781 +     * of all keys using the given reducer to combine values, or
3782 +     * null if none.
3783 +     *
3784 +     * @param parallelismThreshold the (estimated) number of elements
3785 +     * needed for this operation to be executed in parallel
3786 +     * @param transformer a function returning the transformation
3787 +     * for an element, or null if there is no transformation (in
3788 +     * which case it is not combined)
3789 +     * @param reducer a commutative associative combining function
3790 +     * @return the result of accumulating the given transformation
3791 +     * of all keys
3792 +     * @since 1.8
3793 +     */
3794 +    public <U> U reduceKeys(long parallelismThreshold,
3795 +                            Fun<? super K, ? extends U> transformer,
3796 +         BiFun<? super U, ? super U, ? extends U> reducer) {
3797 +        if (transformer == null || reducer == null)
3798 +            throw new NullPointerException();
3799 +        return new MapReduceKeysTask<K,V,U>
3800 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3801 +             null, transformer, reducer).invoke();
3802 +    }
3803 +
3804 +    /**
3805 +     * Returns the result of accumulating the given transformation
3806 +     * of all keys using the given reducer to combine values, and
3807 +     * the given basis as an identity value.
3808 +     *
3809 +     * @param parallelismThreshold the (estimated) number of elements
3810 +     * needed for this operation to be executed in parallel
3811 +     * @param transformer a function returning the transformation
3812 +     * for an element
3813 +     * @param basis the identity (initial default value) for the reduction
3814 +     * @param reducer a commutative associative combining function
3815 +     * @return the result of accumulating the given transformation
3816 +     * of all keys
3817 +     * @since 1.8
3818 +     */
3819 +    public double reduceKeysToDouble(long parallelismThreshold,
3820 +                                     ObjectToDouble<? super K> transformer,
3821 +                                     double basis,
3822 +                                     DoubleByDoubleToDouble reducer) {
3823 +        if (transformer == null || reducer == null)
3824 +            throw new NullPointerException();
3825 +        return new MapReduceKeysToDoubleTask<K,V>
3826 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3827 +             null, transformer, basis, reducer).invoke();
3828 +    }
3829 +
3830 +    /**
3831 +     * Returns the result of accumulating the given transformation
3832 +     * of all keys using the given reducer to combine values, and
3833 +     * the given basis as an identity value.
3834 +     *
3835 +     * @param parallelismThreshold the (estimated) number of elements
3836 +     * needed for this operation to be executed in parallel
3837 +     * @param transformer a function returning the transformation
3838 +     * for an element
3839 +     * @param basis the identity (initial default value) for the reduction
3840 +     * @param reducer a commutative associative combining function
3841 +     * @return the result of accumulating the given transformation
3842 +     * of all keys
3843 +     * @since 1.8
3844 +     */
3845 +    public long reduceKeysToLong(long parallelismThreshold,
3846 +                                 ObjectToLong<? super K> transformer,
3847 +                                 long basis,
3848 +                                 LongByLongToLong reducer) {
3849 +        if (transformer == null || reducer == null)
3850 +            throw new NullPointerException();
3851 +        return new MapReduceKeysToLongTask<K,V>
3852 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3853 +             null, transformer, basis, reducer).invoke();
3854 +    }
3855 +
3856 +    /**
3857 +     * Returns the result of accumulating the given transformation
3858 +     * of all keys using the given reducer to combine values, and
3859 +     * the given basis as an identity value.
3860 +     *
3861 +     * @param parallelismThreshold the (estimated) number of elements
3862 +     * needed for this operation to be executed in parallel
3863 +     * @param transformer a function returning the transformation
3864 +     * for an element
3865 +     * @param basis the identity (initial default value) for the reduction
3866 +     * @param reducer a commutative associative combining function
3867 +     * @return the result of accumulating the given transformation
3868 +     * of all keys
3869 +     * @since 1.8
3870 +     */
3871 +    public int reduceKeysToInt(long parallelismThreshold,
3872 +                               ObjectToInt<? super K> transformer,
3873 +                               int basis,
3874 +                               IntByIntToInt reducer) {
3875 +        if (transformer == null || reducer == null)
3876 +            throw new NullPointerException();
3877 +        return new MapReduceKeysToIntTask<K,V>
3878 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3879 +             null, transformer, basis, reducer).invoke();
3880 +    }
3881 +
3882 +    /**
3883 +     * Performs the given action for each value.
3884 +     *
3885 +     * @param parallelismThreshold the (estimated) number of elements
3886 +     * needed for this operation to be executed in parallel
3887 +     * @param action the action
3888 +     * @since 1.8
3889 +     */
3890 +    public void forEachValue(long parallelismThreshold,
3891 +                             Action<? super V> action) {
3892 +        if (action == null)
3893 +            throw new NullPointerException();
3894 +        new ForEachValueTask<K,V>
3895 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3896 +             action).invoke();
3897 +    }
3898 +
3899 +    /**
3900 +     * Performs the given action for each non-null transformation
3901 +     * of each value.
3902 +     *
3903 +     * @param parallelismThreshold the (estimated) number of elements
3904 +     * needed for this operation to be executed in parallel
3905 +     * @param transformer a function returning the transformation
3906 +     * for an element, or null if there is no transformation (in
3907 +     * which case the action is not applied)
3908 +     * @param action the action
3909 +     * @since 1.8
3910 +     */
3911 +    public <U> void forEachValue(long parallelismThreshold,
3912 +                                 Fun<? super V, ? extends U> transformer,
3913 +                                 Action<? super U> action) {
3914 +        if (transformer == null || action == null)
3915 +            throw new NullPointerException();
3916 +        new ForEachTransformedValueTask<K,V,U>
3917 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3918 +             transformer, action).invoke();
3919 +    }
3920 +
3921 +    /**
3922 +     * Returns a non-null result from applying the given search
3923 +     * function on each value, or null if none.  Upon success,
3924 +     * further element processing is suppressed and the results of
3925 +     * any other parallel invocations of the search function are
3926 +     * ignored.
3927 +     *
3928 +     * @param parallelismThreshold the (estimated) number of elements
3929 +     * needed for this operation to be executed in parallel
3930 +     * @param searchFunction a function returning a non-null
3931 +     * result on success, else null
3932 +     * @return a non-null result from applying the given search
3933 +     * function on each value, or null if none
3934 +     * @since 1.8
3935 +     */
3936 +    public <U> U searchValues(long parallelismThreshold,
3937 +                              Fun<? super V, ? extends U> searchFunction) {
3938 +        if (searchFunction == null) throw new NullPointerException();
3939 +        return new SearchValuesTask<K,V,U>
3940 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3941 +             searchFunction, new AtomicReference<U>()).invoke();
3942 +    }
3943 +
3944 +    /**
3945 +     * Returns the result of accumulating all values using the
3946 +     * given reducer to combine values, or null if none.
3947 +     *
3948 +     * @param parallelismThreshold the (estimated) number of elements
3949 +     * needed for this operation to be executed in parallel
3950 +     * @param reducer a commutative associative combining function
3951 +     * @return the result of accumulating all values
3952 +     * @since 1.8
3953 +     */
3954 +    public V reduceValues(long parallelismThreshold,
3955 +                          BiFun<? super V, ? super V, ? extends V> reducer) {
3956 +        if (reducer == null) throw new NullPointerException();
3957 +        return new ReduceValuesTask<K,V>
3958 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3959 +             null, reducer).invoke();
3960 +    }
3961 +
3962 +    /**
3963 +     * Returns the result of accumulating the given transformation
3964 +     * of all values using the given reducer to combine values, or
3965 +     * null if none.
3966 +     *
3967 +     * @param parallelismThreshold the (estimated) number of elements
3968 +     * needed for this operation to be executed in parallel
3969 +     * @param transformer a function returning the transformation
3970 +     * for an element, or null if there is no transformation (in
3971 +     * which case it is not combined)
3972 +     * @param reducer a commutative associative combining function
3973 +     * @return the result of accumulating the given transformation
3974 +     * of all values
3975 +     * @since 1.8
3976 +     */
3977 +    public <U> U reduceValues(long parallelismThreshold,
3978 +                              Fun<? super V, ? extends U> transformer,
3979 +                              BiFun<? super U, ? super U, ? extends U> reducer) {
3980 +        if (transformer == null || reducer == null)
3981 +            throw new NullPointerException();
3982 +        return new MapReduceValuesTask<K,V,U>
3983 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3984 +             null, transformer, reducer).invoke();
3985 +    }
3986 +
3987 +    /**
3988 +     * Returns the result of accumulating the given transformation
3989 +     * of all values using the given reducer to combine values,
3990 +     * and the given basis as an identity value.
3991 +     *
3992 +     * @param parallelismThreshold the (estimated) number of elements
3993 +     * needed for this operation to be executed in parallel
3994 +     * @param transformer a function returning the transformation
3995 +     * for an element
3996 +     * @param basis the identity (initial default value) for the reduction
3997 +     * @param reducer a commutative associative combining function
3998 +     * @return the result of accumulating the given transformation
3999 +     * of all values
4000 +     * @since 1.8
4001 +     */
4002 +    public double reduceValuesToDouble(long parallelismThreshold,
4003 +                                       ObjectToDouble<? super V> transformer,
4004 +                                       double basis,
4005 +                                       DoubleByDoubleToDouble reducer) {
4006 +        if (transformer == null || reducer == null)
4007 +            throw new NullPointerException();
4008 +        return new MapReduceValuesToDoubleTask<K,V>
4009 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4010 +             null, transformer, basis, reducer).invoke();
4011 +    }
4012 +
4013 +    /**
4014 +     * Returns the result of accumulating the given transformation
4015 +     * of all values using the given reducer to combine values,
4016 +     * and the given basis as an identity value.
4017 +     *
4018 +     * @param parallelismThreshold the (estimated) number of elements
4019 +     * needed for this operation to be executed in parallel
4020 +     * @param transformer a function returning the transformation
4021 +     * for an element
4022 +     * @param basis the identity (initial default value) for the reduction
4023 +     * @param reducer a commutative associative combining function
4024 +     * @return the result of accumulating the given transformation
4025 +     * of all values
4026 +     * @since 1.8
4027 +     */
4028 +    public long reduceValuesToLong(long parallelismThreshold,
4029 +                                   ObjectToLong<? super V> transformer,
4030 +                                   long basis,
4031 +                                   LongByLongToLong reducer) {
4032 +        if (transformer == null || reducer == null)
4033 +            throw new NullPointerException();
4034 +        return new MapReduceValuesToLongTask<K,V>
4035 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4036 +             null, transformer, basis, reducer).invoke();
4037 +    }
4038 +
4039 +    /**
4040 +     * Returns the result of accumulating the given transformation
4041 +     * of all values using the given reducer to combine values,
4042 +     * and the given basis as an identity value.
4043 +     *
4044 +     * @param parallelismThreshold the (estimated) number of elements
4045 +     * needed for this operation to be executed in parallel
4046 +     * @param transformer a function returning the transformation
4047 +     * for an element
4048 +     * @param basis the identity (initial default value) for the reduction
4049 +     * @param reducer a commutative associative combining function
4050 +     * @return the result of accumulating the given transformation
4051 +     * of all values
4052 +     * @since 1.8
4053 +     */
4054 +    public int reduceValuesToInt(long parallelismThreshold,
4055 +                                 ObjectToInt<? super V> transformer,
4056 +                                 int basis,
4057 +                                 IntByIntToInt reducer) {
4058 +        if (transformer == null || reducer == null)
4059 +            throw new NullPointerException();
4060 +        return new MapReduceValuesToIntTask<K,V>
4061 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4062 +             null, transformer, basis, reducer).invoke();
4063 +    }
4064 +
4065 +    /**
4066 +     * Performs the given action for each entry.
4067 +     *
4068 +     * @param parallelismThreshold the (estimated) number of elements
4069 +     * needed for this operation to be executed in parallel
4070 +     * @param action the action
4071 +     * @since 1.8
4072 +     */
4073 +    public void forEachEntry(long parallelismThreshold,
4074 +                             Action<? super Map.Entry<K,V>> action) {
4075 +        if (action == null) throw new NullPointerException();
4076 +        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4077 +                                  action).invoke();
4078 +    }
4079 +
4080 +    /**
4081 +     * Performs the given action for each non-null transformation
4082 +     * of each entry.
4083 +     *
4084 +     * @param parallelismThreshold the (estimated) number of elements
4085 +     * needed for this operation to be executed in parallel
4086 +     * @param transformer a function returning the transformation
4087 +     * for an element, or null if there is no transformation (in
4088 +     * which case the action is not applied)
4089 +     * @param action the action
4090 +     * @since 1.8
4091 +     */
4092 +    public <U> void forEachEntry(long parallelismThreshold,
4093 +                                 Fun<Map.Entry<K,V>, ? extends U> transformer,
4094 +                                 Action<? super U> action) {
4095 +        if (transformer == null || action == null)
4096 +            throw new NullPointerException();
4097 +        new ForEachTransformedEntryTask<K,V,U>
4098 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4099 +             transformer, action).invoke();
4100 +    }
4101 +
4102 +    /**
4103 +     * Returns a non-null result from applying the given search
4104 +     * function on each entry, or null if none.  Upon success,
4105 +     * further element processing is suppressed and the results of
4106 +     * any other parallel invocations of the search function are
4107 +     * ignored.
4108 +     *
4109 +     * @param parallelismThreshold the (estimated) number of elements
4110 +     * needed for this operation to be executed in parallel
4111 +     * @param searchFunction a function returning a non-null
4112 +     * result on success, else null
4113 +     * @return a non-null result from applying the given search
4114 +     * function on each entry, or null if none
4115 +     * @since 1.8
4116 +     */
4117 +    public <U> U searchEntries(long parallelismThreshold,
4118 +                               Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4119 +        if (searchFunction == null) throw new NullPointerException();
4120 +        return new SearchEntriesTask<K,V,U>
4121 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4122 +             searchFunction, new AtomicReference<U>()).invoke();
4123 +    }
4124 +
4125 +    /**
4126 +     * Returns the result of accumulating all entries using the
4127 +     * given reducer to combine values, or null if none.
4128 +     *
4129 +     * @param parallelismThreshold the (estimated) number of elements
4130 +     * needed for this operation to be executed in parallel
4131 +     * @param reducer a commutative associative combining function
4132 +     * @return the result of accumulating all entries
4133 +     * @since 1.8
4134 +     */
4135 +    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4136 +                                        BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4137 +        if (reducer == null) throw new NullPointerException();
4138 +        return new ReduceEntriesTask<K,V>
4139 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4140 +             null, reducer).invoke();
4141 +    }
4142 +
4143 +    /**
4144 +     * Returns the result of accumulating the given transformation
4145 +     * of all entries using the given reducer to combine values,
4146 +     * or null if none.
4147 +     *
4148 +     * @param parallelismThreshold the (estimated) number of elements
4149 +     * needed for this operation to be executed in parallel
4150 +     * @param transformer a function returning the transformation
4151 +     * for an element, or null if there is no transformation (in
4152 +     * which case it is not combined)
4153 +     * @param reducer a commutative associative combining function
4154 +     * @return the result of accumulating the given transformation
4155 +     * of all entries
4156 +     * @since 1.8
4157 +     */
4158 +    public <U> U reduceEntries(long parallelismThreshold,
4159 +                               Fun<Map.Entry<K,V>, ? extends U> transformer,
4160 +                               BiFun<? super U, ? super U, ? extends U> reducer) {
4161 +        if (transformer == null || reducer == null)
4162 +            throw new NullPointerException();
4163 +        return new MapReduceEntriesTask<K,V,U>
4164 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4165 +             null, transformer, reducer).invoke();
4166 +    }
4167 +
4168 +    /**
4169 +     * Returns the result of accumulating the given transformation
4170 +     * of all entries using the given reducer to combine values,
4171 +     * and the given basis as an identity value.
4172 +     *
4173 +     * @param parallelismThreshold the (estimated) number of elements
4174 +     * needed for this operation to be executed in parallel
4175 +     * @param transformer a function returning the transformation
4176 +     * for an element
4177 +     * @param basis the identity (initial default value) for the reduction
4178 +     * @param reducer a commutative associative combining function
4179 +     * @return the result of accumulating the given transformation
4180 +     * of all entries
4181 +     * @since 1.8
4182 +     */
4183 +    public double reduceEntriesToDouble(long parallelismThreshold,
4184 +                                        ObjectToDouble<Map.Entry<K,V>> transformer,
4185 +                                        double basis,
4186 +                                        DoubleByDoubleToDouble reducer) {
4187 +        if (transformer == null || reducer == null)
4188 +            throw new NullPointerException();
4189 +        return new MapReduceEntriesToDoubleTask<K,V>
4190 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4191 +             null, transformer, basis, reducer).invoke();
4192 +    }
4193 +
4194 +    /**
4195 +     * Returns the result of accumulating the given transformation
4196 +     * of all entries using the given reducer to combine values,
4197 +     * and the given basis as an identity value.
4198 +     *
4199 +     * @param parallelismThreshold the (estimated) number of elements
4200 +     * needed for this operation to be executed in parallel
4201 +     * @param transformer a function returning the transformation
4202 +     * for an element
4203 +     * @param basis the identity (initial default value) for the reduction
4204 +     * @param reducer a commutative associative combining function
4205 +     * @return the result of accumulating the given transformation
4206 +     * of all entries
4207 +     * @since 1.8
4208 +     */
4209 +    public long reduceEntriesToLong(long parallelismThreshold,
4210 +                                    ObjectToLong<Map.Entry<K,V>> transformer,
4211 +                                    long basis,
4212 +                                    LongByLongToLong reducer) {
4213 +        if (transformer == null || reducer == null)
4214 +            throw new NullPointerException();
4215 +        return new MapReduceEntriesToLongTask<K,V>
4216 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4217 +             null, transformer, basis, reducer).invoke();
4218 +    }
4219 +
4220 +    /**
4221 +     * Returns the result of accumulating the given transformation
4222 +     * of all entries using the given reducer to combine values,
4223 +     * and the given basis as an identity value.
4224 +     *
4225 +     * @param parallelismThreshold the (estimated) number of elements
4226 +     * needed for this operation to be executed in parallel
4227 +     * @param transformer a function returning the transformation
4228 +     * for an element
4229 +     * @param basis the identity (initial default value) for the reduction
4230 +     * @param reducer a commutative associative combining function
4231 +     * @return the result of accumulating the given transformation
4232 +     * of all entries
4233 +     * @since 1.8
4234 +     */
4235 +    public int reduceEntriesToInt(long parallelismThreshold,
4236 +                                  ObjectToInt<Map.Entry<K,V>> transformer,
4237 +                                  int basis,
4238 +                                  IntByIntToInt reducer) {
4239 +        if (transformer == null || reducer == null)
4240 +            throw new NullPointerException();
4241 +        return new MapReduceEntriesToIntTask<K,V>
4242 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4243 +             null, transformer, basis, reducer).invoke();
4244 +    }
4245 +
4246 +
4247      /* ----------------Views -------------- */
4248  
4249      /**
4250       * Base class for views.
4251       */
4252 <    static abstract class MapView<K, V> {
4253 <        final ConcurrentHashMapV8<K, V> map;
4254 <        MapView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
4255 <        public final int size()                 { return map.size(); }
4256 <        public final boolean isEmpty()          { return map.isEmpty(); }
4257 <        public final void clear()               { map.clear(); }
4252 >    abstract static class CollectionView<K,V,E>
4253 >        implements Collection<E>, java.io.Serializable {
4254 >        private static final long serialVersionUID = 7249069246763182397L;
4255 >        final ConcurrentHashMapV8<K,V> map;
4256 >        CollectionView(ConcurrentHashMapV8<K,V> map)  { this.map = map; }
4257 >
4258 >        /**
4259 >         * Returns the map backing this view.
4260 >         *
4261 >         * @return the map backing this view
4262 >         */
4263 >        public ConcurrentHashMapV8<K,V> getMap() { return map; }
4264 >
4265 >        /**
4266 >         * Removes all of the elements from this view, by removing all
4267 >         * the mappings from the map backing this view.
4268 >         */
4269 >        public final void clear()      { map.clear(); }
4270 >        public final int size()        { return map.size(); }
4271 >        public final boolean isEmpty() { return map.isEmpty(); }
4272  
4273          // implementations below rely on concrete classes supplying these
4274 <        abstract public Iterator<?> iterator();
4275 <        abstract public boolean contains(Object o);
4276 <        abstract public boolean remove(Object o);
4274 >        // abstract methods
4275 >        /**
4276 >         * Returns a "weakly consistent" iterator that will never
4277 >         * throw {@link ConcurrentModificationException}, and
4278 >         * guarantees to traverse elements as they existed upon
4279 >         * construction of the iterator, and may (but is not
4280 >         * guaranteed to) reflect any modifications subsequent to
4281 >         * construction.
4282 >         */
4283 >        public abstract Iterator<E> iterator();
4284 >        public abstract boolean contains(Object o);
4285 >        public abstract boolean remove(Object o);
4286  
4287          private static final String oomeMsg = "Required array size too large";
4288  
4289          public final Object[] toArray() {
4290 <            long sz = map.longSize();
4291 <            if (sz > (long)(MAX_ARRAY_SIZE))
4290 >            long sz = map.mappingCount();
4291 >            if (sz > MAX_ARRAY_SIZE)
4292                  throw new OutOfMemoryError(oomeMsg);
4293              int n = (int)sz;
4294              Object[] r = new Object[n];
4295              int i = 0;
4296 <            Iterator<?> it = iterator();
2997 <            while (it.hasNext()) {
4296 >            for (E e : this) {
4297                  if (i == n) {
4298                      if (n >= MAX_ARRAY_SIZE)
4299                          throw new OutOfMemoryError(oomeMsg);
# Line 3004 | Line 4303 | public class ConcurrentHashMapV8<K, V>
4303                          n += (n >>> 1) + 1;
4304                      r = Arrays.copyOf(r, n);
4305                  }
4306 <                r[i++] = it.next();
4306 >                r[i++] = e;
4307              }
4308              return (i == n) ? r : Arrays.copyOf(r, i);
4309          }
4310  
4311          @SuppressWarnings("unchecked")
4312          public final <T> T[] toArray(T[] a) {
4313 <            long sz = map.longSize();
4314 <            if (sz > (long)(MAX_ARRAY_SIZE))
4313 >            long sz = map.mappingCount();
4314 >            if (sz > MAX_ARRAY_SIZE)
4315                  throw new OutOfMemoryError(oomeMsg);
4316              int m = (int)sz;
4317              T[] r = (a.length >= m) ? a :
# Line 3020 | Line 4319 | public class ConcurrentHashMapV8<K, V>
4319                  .newInstance(a.getClass().getComponentType(), m);
4320              int n = r.length;
4321              int i = 0;
4322 <            Iterator<?> it = iterator();
3024 <            while (it.hasNext()) {
4322 >            for (E e : this) {
4323                  if (i == n) {
4324                      if (n >= MAX_ARRAY_SIZE)
4325                          throw new OutOfMemoryError(oomeMsg);
# Line 3031 | Line 4329 | public class ConcurrentHashMapV8<K, V>
4329                          n += (n >>> 1) + 1;
4330                      r = Arrays.copyOf(r, n);
4331                  }
4332 <                r[i++] = (T)it.next();
4332 >                r[i++] = (T)e;
4333              }
4334              if (a == r && i < n) {
4335                  r[i] = null; // null-terminate
# Line 3040 | Line 4338 | public class ConcurrentHashMapV8<K, V>
4338              return (i == n) ? r : Arrays.copyOf(r, i);
4339          }
4340  
4341 <        public final int hashCode() {
4342 <            int h = 0;
4343 <            for (Iterator<?> it = iterator(); it.hasNext();)
4344 <                h += it.next().hashCode();
4345 <            return h;
4346 <        }
4347 <
4341 >        /**
4342 >         * Returns a string representation of this collection.
4343 >         * The string representation consists of the string representations
4344 >         * of the collection's elements in the order they are returned by
4345 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4346 >         * Adjacent elements are separated by the characters {@code ", "}
4347 >         * (comma and space).  Elements are converted to strings as by
4348 >         * {@link String#valueOf(Object)}.
4349 >         *
4350 >         * @return a string representation of this collection
4351 >         */
4352          public final String toString() {
4353              StringBuilder sb = new StringBuilder();
4354              sb.append('[');
4355 <            Iterator<?> it = iterator();
4355 >            Iterator<E> it = iterator();
4356              if (it.hasNext()) {
4357                  for (;;) {
4358                      Object e = it.next();
# Line 3065 | Line 4367 | public class ConcurrentHashMapV8<K, V>
4367  
4368          public final boolean containsAll(Collection<?> c) {
4369              if (c != this) {
4370 <                for (Iterator<?> it = c.iterator(); it.hasNext();) {
3069 <                    Object e = it.next();
4370 >                for (Object e : c) {
4371                      if (e == null || !contains(e))
4372                          return false;
4373                  }
# Line 3076 | Line 4377 | public class ConcurrentHashMapV8<K, V>
4377  
4378          public final boolean removeAll(Collection<?> c) {
4379              boolean modified = false;
4380 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4380 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4381                  if (c.contains(it.next())) {
4382                      it.remove();
4383                      modified = true;
# Line 3087 | Line 4388 | public class ConcurrentHashMapV8<K, V>
4388  
4389          public final boolean retainAll(Collection<?> c) {
4390              boolean modified = false;
4391 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4391 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4392                  if (!c.contains(it.next())) {
4393                      it.remove();
4394                      modified = true;
# Line 3098 | Line 4399 | public class ConcurrentHashMapV8<K, V>
4399  
4400      }
4401  
4402 <    static final class KeySet<K,V> extends MapView<K,V> implements Set<K> {
4403 <        KeySet(ConcurrentHashMapV8<K, V> map)   { super(map); }
4404 <        public final boolean contains(Object o) { return map.containsKey(o); }
4405 <        public final boolean remove(Object o)   { return map.remove(o) != null; }
4406 <        public final Iterator<K> iterator() {
4407 <            return new KeyIterator<K,V>(map);
4402 >    /**
4403 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4404 >     * which additions may optionally be enabled by mapping to a
4405 >     * common value.  This class cannot be directly instantiated.
4406 >     * See {@link #keySet() keySet()},
4407 >     * {@link #keySet(Object) keySet(V)},
4408 >     * {@link #newKeySet() newKeySet()},
4409 >     * {@link #newKeySet(int) newKeySet(int)}.
4410 >     *
4411 >     * @since 1.8
4412 >     */
4413 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4414 >        implements Set<K>, java.io.Serializable {
4415 >        private static final long serialVersionUID = 7249069246763182397L;
4416 >        private final V value;
4417 >        KeySetView(ConcurrentHashMapV8<K,V> map, V value) {  // non-public
4418 >            super(map);
4419 >            this.value = value;
4420          }
4421 <        public final boolean add(K e) {
4422 <            throw new UnsupportedOperationException();
4421 >
4422 >        /**
4423 >         * Returns the default mapped value for additions,
4424 >         * or {@code null} if additions are not supported.
4425 >         *
4426 >         * @return the default mapped value for additions, or {@code null}
4427 >         * if not supported
4428 >         */
4429 >        public V getMappedValue() { return value; }
4430 >
4431 >        /**
4432 >         * {@inheritDoc}
4433 >         * @throws NullPointerException if the specified key is null
4434 >         */
4435 >        public boolean contains(Object o) { return map.containsKey(o); }
4436 >
4437 >        /**
4438 >         * Removes the key from this map view, by removing the key (and its
4439 >         * corresponding value) from the backing map.  This method does
4440 >         * nothing if the key is not in the map.
4441 >         *
4442 >         * @param  o the key to be removed from the backing map
4443 >         * @return {@code true} if the backing map contained the specified key
4444 >         * @throws NullPointerException if the specified key is null
4445 >         */
4446 >        public boolean remove(Object o) { return map.remove(o) != null; }
4447 >
4448 >        /**
4449 >         * @return an iterator over the keys of the backing map
4450 >         */
4451 >        public Iterator<K> iterator() {
4452 >            Node<K,V>[] t;
4453 >            ConcurrentHashMapV8<K,V> m = map;
4454 >            int f = (t = m.table) == null ? 0 : t.length;
4455 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4456          }
4457 <        public final boolean addAll(Collection<? extends K> c) {
4458 <            throw new UnsupportedOperationException();
4457 >
4458 >        /**
4459 >         * Adds the specified key to this set view by mapping the key to
4460 >         * the default mapped value in the backing map, if defined.
4461 >         *
4462 >         * @param e key to be added
4463 >         * @return {@code true} if this set changed as a result of the call
4464 >         * @throws NullPointerException if the specified key is null
4465 >         * @throws UnsupportedOperationException if no default mapped value
4466 >         * for additions was provided
4467 >         */
4468 >        public boolean add(K e) {
4469 >            V v;
4470 >            if ((v = value) == null)
4471 >                throw new UnsupportedOperationException();
4472 >            return map.putVal(e, v, true) == null;
4473 >        }
4474 >
4475 >        /**
4476 >         * Adds all of the elements in the specified collection to this set,
4477 >         * as if by calling {@link #add} on each one.
4478 >         *
4479 >         * @param c the elements to be inserted into this set
4480 >         * @return {@code true} if this set changed as a result of the call
4481 >         * @throws NullPointerException if the collection or any of its
4482 >         * elements are {@code null}
4483 >         * @throws UnsupportedOperationException if no default mapped value
4484 >         * for additions was provided
4485 >         */
4486 >        public boolean addAll(Collection<? extends K> c) {
4487 >            boolean added = false;
4488 >            V v;
4489 >            if ((v = value) == null)
4490 >                throw new UnsupportedOperationException();
4491 >            for (K e : c) {
4492 >                if (map.putVal(e, v, true) == null)
4493 >                    added = true;
4494 >            }
4495 >            return added;
4496          }
4497 +
4498 +        public int hashCode() {
4499 +            int h = 0;
4500 +            for (K e : this)
4501 +                h += e.hashCode();
4502 +            return h;
4503 +        }
4504 +
4505          public boolean equals(Object o) {
4506              Set<?> c;
4507              return ((o instanceof Set) &&
4508                      ((c = (Set<?>)o) == this ||
4509                       (containsAll(c) && c.containsAll(this))));
4510          }
4511 +
4512 +        public ConcurrentHashMapSpliterator<K> spliterator() {
4513 +            Node<K,V>[] t;
4514 +            ConcurrentHashMapV8<K,V> m = map;
4515 +            long n = m.sumCount();
4516 +            int f = (t = m.table) == null ? 0 : t.length;
4517 +            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4518 +        }
4519 +
4520 +        public void forEach(Action<? super K> action) {
4521 +            if (action == null) throw new NullPointerException();
4522 +            Node<K,V>[] t;
4523 +            if ((t = map.table) != null) {
4524 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4525 +                for (Node<K,V> p; (p = it.advance()) != null; )
4526 +                    action.apply(p.key);
4527 +            }
4528 +        }
4529      }
4530  
4531 <    static final class Values<K,V> extends MapView<K,V>
4532 <        implements Collection<V> {
4533 <        Values(ConcurrentHashMapV8<K, V> map)   { super(map); }
4534 <        public final boolean contains(Object o) { return map.containsValue(o); }
4531 >    /**
4532 >     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4533 >     * values, in which additions are disabled. This class cannot be
4534 >     * directly instantiated. See {@link #values()}.
4535 >     */
4536 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4537 >        implements Collection<V>, java.io.Serializable {
4538 >        private static final long serialVersionUID = 2249069246763182397L;
4539 >        ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4540 >        public final boolean contains(Object o) {
4541 >            return map.containsValue(o);
4542 >        }
4543 >
4544          public final boolean remove(Object o) {
4545              if (o != null) {
4546 <                Iterator<V> it = new ValueIterator<K,V>(map);
3129 <                while (it.hasNext()) {
4546 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4547                      if (o.equals(it.next())) {
4548                          it.remove();
4549                          return true;
# Line 3135 | Line 4552 | public class ConcurrentHashMapV8<K, V>
4552              }
4553              return false;
4554          }
4555 +
4556          public final Iterator<V> iterator() {
4557 <            return new ValueIterator<K,V>(map);
4557 >            ConcurrentHashMapV8<K,V> m = map;
4558 >            Node<K,V>[] t;
4559 >            int f = (t = m.table) == null ? 0 : t.length;
4560 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4561          }
4562 +
4563          public final boolean add(V e) {
4564              throw new UnsupportedOperationException();
4565          }
4566          public final boolean addAll(Collection<? extends V> c) {
4567              throw new UnsupportedOperationException();
4568          }
4569 +
4570 +        public ConcurrentHashMapSpliterator<V> spliterator() {
4571 +            Node<K,V>[] t;
4572 +            ConcurrentHashMapV8<K,V> m = map;
4573 +            long n = m.sumCount();
4574 +            int f = (t = m.table) == null ? 0 : t.length;
4575 +            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4576 +        }
4577 +
4578 +        public void forEach(Action<? super V> action) {
4579 +            if (action == null) throw new NullPointerException();
4580 +            Node<K,V>[] t;
4581 +            if ((t = map.table) != null) {
4582 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4583 +                for (Node<K,V> p; (p = it.advance()) != null; )
4584 +                    action.apply(p.val);
4585 +            }
4586 +        }
4587      }
4588  
4589 <    static final class EntrySet<K,V> extends MapView<K,V>
4590 <        implements Set<Map.Entry<K,V>> {
4591 <        EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
4592 <        public final boolean contains(Object o) {
4589 >    /**
4590 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4591 >     * entries.  This class cannot be directly instantiated. See
4592 >     * {@link #entrySet()}.
4593 >     */
4594 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4595 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4596 >        private static final long serialVersionUID = 2249069246763182397L;
4597 >        EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4598 >
4599 >        public boolean contains(Object o) {
4600              Object k, v, r; Map.Entry<?,?> e;
4601              return ((o instanceof Map.Entry) &&
4602                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 3157 | Line 4604 | public class ConcurrentHashMapV8<K, V>
4604                      (v = e.getValue()) != null &&
4605                      (v == r || v.equals(r)));
4606          }
4607 <        public final boolean remove(Object o) {
4607 >
4608 >        public boolean remove(Object o) {
4609              Object k, v; Map.Entry<?,?> e;
4610              return ((o instanceof Map.Entry) &&
4611                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4612                      (v = e.getValue()) != null &&
4613                      map.remove(k, v));
4614          }
4615 <        public final Iterator<Map.Entry<K,V>> iterator() {
4616 <            return new EntryIterator<K,V>(map);
4615 >
4616 >        /**
4617 >         * @return an iterator over the entries of the backing map
4618 >         */
4619 >        public Iterator<Map.Entry<K,V>> iterator() {
4620 >            ConcurrentHashMapV8<K,V> m = map;
4621 >            Node<K,V>[] t;
4622 >            int f = (t = m.table) == null ? 0 : t.length;
4623 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4624          }
4625 <        public final boolean add(Entry<K,V> e) {
4626 <            throw new UnsupportedOperationException();
4625 >
4626 >        public boolean add(Entry<K,V> e) {
4627 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4628          }
4629 <        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4630 <            throw new UnsupportedOperationException();
4629 >
4630 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4631 >            boolean added = false;
4632 >            for (Entry<K,V> e : c) {
4633 >                if (add(e))
4634 >                    added = true;
4635 >            }
4636 >            return added;
4637          }
4638 <        public boolean equals(Object o) {
4638 >
4639 >        public final int hashCode() {
4640 >            int h = 0;
4641 >            Node<K,V>[] t;
4642 >            if ((t = map.table) != null) {
4643 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4644 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4645 >                    h += p.hashCode();
4646 >                }
4647 >            }
4648 >            return h;
4649 >        }
4650 >
4651 >        public final boolean equals(Object o) {
4652              Set<?> c;
4653              return ((o instanceof Set) &&
4654                      ((c = (Set<?>)o) == this ||
4655                       (containsAll(c) && c.containsAll(this))));
4656          }
4657 +
4658 +        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4659 +            Node<K,V>[] t;
4660 +            ConcurrentHashMapV8<K,V> m = map;
4661 +            long n = m.sumCount();
4662 +            int f = (t = m.table) == null ? 0 : t.length;
4663 +            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4664 +        }
4665 +
4666 +        public void forEach(Action<? super Map.Entry<K,V>> action) {
4667 +            if (action == null) throw new NullPointerException();
4668 +            Node<K,V>[] t;
4669 +            if ((t = map.table) != null) {
4670 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4671 +                for (Node<K,V> p; (p = it.advance()) != null; )
4672 +                    action.apply(new MapEntry<K,V>(p.key, p.val, map));
4673 +            }
4674 +        }
4675 +
4676      }
4677  
4678 <    /* ---------------- Serialization Support -------------- */
4678 >    // -------------------------------------------------------
4679  
4680      /**
4681 <     * Stripped-down version of helper class used in previous version,
4682 <     * declared for the sake of serialization compatibility
4681 >     * Base class for bulk tasks. Repeats some fields and code from
4682 >     * class Traverser, because we need to subclass CountedCompleter.
4683       */
4684 <    static class Segment<K,V> implements Serializable {
4685 <        private static final long serialVersionUID = 2249069246763182397L;
4686 <        final float loadFactor;
4687 <        Segment(float lf) { this.loadFactor = lf; }
4684 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4685 >        Node<K,V>[] tab;        // same as Traverser
4686 >        Node<K,V> next;
4687 >        int index;
4688 >        int baseIndex;
4689 >        int baseLimit;
4690 >        final int baseSize;
4691 >        int batch;              // split control
4692 >
4693 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4694 >            super(par);
4695 >            this.batch = b;
4696 >            this.index = this.baseIndex = i;
4697 >            if ((this.tab = t) == null)
4698 >                this.baseSize = this.baseLimit = 0;
4699 >            else if (par == null)
4700 >                this.baseSize = this.baseLimit = t.length;
4701 >            else {
4702 >                this.baseLimit = f;
4703 >                this.baseSize = par.baseSize;
4704 >            }
4705 >        }
4706 >
4707 >        /**
4708 >         * Same as Traverser version
4709 >         */
4710 >        final Node<K,V> advance() {
4711 >            Node<K,V> e;
4712 >            if ((e = next) != null)
4713 >                e = e.next;
4714 >            for (;;) {
4715 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4716 >                if (e != null)
4717 >                    return next = e;
4718 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4719 >                    (n = t.length) <= (i = index) || i < 0)
4720 >                    return next = null;
4721 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4722 >                    if (e instanceof ForwardingNode) {
4723 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4724 >                        e = null;
4725 >                        continue;
4726 >                    }
4727 >                    else if (e instanceof TreeBin)
4728 >                        e = ((TreeBin<K,V>)e).first;
4729 >                    else
4730 >                        e = null;
4731 >                }
4732 >                if ((index += baseSize) >= n)
4733 >                    index = ++baseIndex;    // visit upper slots if present
4734 >            }
4735 >        }
4736      }
4737  
4738 <    /**
4739 <     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
4740 <     * stream (i.e., serializes it).
4741 <     * @param s the stream
4742 <     * @serialData
4743 <     * the key (Object) and value (Object)
4744 <     * for each key-value mapping, followed by a null pair.
4745 <     * The key-value mappings are emitted in no particular order.
4746 <     */
4747 <    @SuppressWarnings("unchecked")
4748 <    private void writeObject(java.io.ObjectOutputStream s)
4749 <            throws java.io.IOException {
4750 <        if (segments == null) { // for serialization compatibility
4751 <            segments = (Segment<K,V>[])
4752 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
4753 <            for (int i = 0; i < segments.length; ++i)
4754 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
4755 <        }
4756 <        s.defaultWriteObject();
4757 <        InternalIterator<K,V> it = new InternalIterator<K,V>(this);
4758 <        Object v;
4759 <        while ((v = it.advance()) != null) {
4760 <            s.writeObject(it.nextKey);
4761 <            s.writeObject(v);
4738 >    /*
4739 >     * Task classes. Coded in a regular but ugly format/style to
4740 >     * simplify checks that each variant differs in the right way from
4741 >     * others. The null screenings exist because compilers cannot tell
4742 >     * that we've already null-checked task arguments, so we force
4743 >     * simplest hoisted bypass to help avoid convoluted traps.
4744 >     */
4745 >    @SuppressWarnings("serial")
4746 >    static final class ForEachKeyTask<K,V>
4747 >        extends BulkTask<K,V,Void> {
4748 >        final Action<? super K> action;
4749 >        ForEachKeyTask
4750 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4751 >             Action<? super K> action) {
4752 >            super(p, b, i, f, t);
4753 >            this.action = action;
4754 >        }
4755 >        public final void compute() {
4756 >            final Action<? super K> action;
4757 >            if ((action = this.action) != null) {
4758 >                for (int i = baseIndex, f, h; batch > 0 &&
4759 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4760 >                    addToPendingCount(1);
4761 >                    new ForEachKeyTask<K,V>
4762 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4763 >                         action).fork();
4764 >                }
4765 >                for (Node<K,V> p; (p = advance()) != null;)
4766 >                    action.apply(p.key);
4767 >                propagateCompletion();
4768 >            }
4769 >        }
4770 >    }
4771 >
4772 >    @SuppressWarnings("serial")
4773 >    static final class ForEachValueTask<K,V>
4774 >        extends BulkTask<K,V,Void> {
4775 >        final Action<? super V> action;
4776 >        ForEachValueTask
4777 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4778 >             Action<? super V> action) {
4779 >            super(p, b, i, f, t);
4780 >            this.action = action;
4781 >        }
4782 >        public final void compute() {
4783 >            final Action<? super V> action;
4784 >            if ((action = this.action) != null) {
4785 >                for (int i = baseIndex, f, h; batch > 0 &&
4786 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4787 >                    addToPendingCount(1);
4788 >                    new ForEachValueTask<K,V>
4789 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4790 >                         action).fork();
4791 >                }
4792 >                for (Node<K,V> p; (p = advance()) != null;)
4793 >                    action.apply(p.val);
4794 >                propagateCompletion();
4795 >            }
4796 >        }
4797 >    }
4798 >
4799 >    @SuppressWarnings("serial")
4800 >    static final class ForEachEntryTask<K,V>
4801 >        extends BulkTask<K,V,Void> {
4802 >        final Action<? super Entry<K,V>> action;
4803 >        ForEachEntryTask
4804 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4805 >             Action<? super Entry<K,V>> action) {
4806 >            super(p, b, i, f, t);
4807 >            this.action = action;
4808 >        }
4809 >        public final void compute() {
4810 >            final Action<? super Entry<K,V>> action;
4811 >            if ((action = this.action) != null) {
4812 >                for (int i = baseIndex, f, h; batch > 0 &&
4813 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4814 >                    addToPendingCount(1);
4815 >                    new ForEachEntryTask<K,V>
4816 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4817 >                         action).fork();
4818 >                }
4819 >                for (Node<K,V> p; (p = advance()) != null; )
4820 >                    action.apply(p);
4821 >                propagateCompletion();
4822 >            }
4823 >        }
4824 >    }
4825 >
4826 >    @SuppressWarnings("serial")
4827 >    static final class ForEachMappingTask<K,V>
4828 >        extends BulkTask<K,V,Void> {
4829 >        final BiAction<? super K, ? super V> action;
4830 >        ForEachMappingTask
4831 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4832 >             BiAction<? super K,? super V> action) {
4833 >            super(p, b, i, f, t);
4834 >            this.action = action;
4835 >        }
4836 >        public final void compute() {
4837 >            final BiAction<? super K, ? super V> action;
4838 >            if ((action = this.action) != null) {
4839 >                for (int i = baseIndex, f, h; batch > 0 &&
4840 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4841 >                    addToPendingCount(1);
4842 >                    new ForEachMappingTask<K,V>
4843 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4844 >                         action).fork();
4845 >                }
4846 >                for (Node<K,V> p; (p = advance()) != null; )
4847 >                    action.apply(p.key, p.val);
4848 >                propagateCompletion();
4849 >            }
4850 >        }
4851 >    }
4852 >
4853 >    @SuppressWarnings("serial")
4854 >    static final class ForEachTransformedKeyTask<K,V,U>
4855 >        extends BulkTask<K,V,Void> {
4856 >        final Fun<? super K, ? extends U> transformer;
4857 >        final Action<? super U> action;
4858 >        ForEachTransformedKeyTask
4859 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4860 >             Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4861 >            super(p, b, i, f, t);
4862 >            this.transformer = transformer; this.action = action;
4863 >        }
4864 >        public final void compute() {
4865 >            final Fun<? super K, ? extends U> transformer;
4866 >            final Action<? super U> action;
4867 >            if ((transformer = this.transformer) != null &&
4868 >                (action = this.action) != null) {
4869 >                for (int i = baseIndex, f, h; batch > 0 &&
4870 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4871 >                    addToPendingCount(1);
4872 >                    new ForEachTransformedKeyTask<K,V,U>
4873 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4874 >                         transformer, action).fork();
4875 >                }
4876 >                for (Node<K,V> p; (p = advance()) != null; ) {
4877 >                    U u;
4878 >                    if ((u = transformer.apply(p.key)) != null)
4879 >                        action.apply(u);
4880 >                }
4881 >                propagateCompletion();
4882 >            }
4883 >        }
4884 >    }
4885 >
4886 >    @SuppressWarnings("serial")
4887 >    static final class ForEachTransformedValueTask<K,V,U>
4888 >        extends BulkTask<K,V,Void> {
4889 >        final Fun<? super V, ? extends U> transformer;
4890 >        final Action<? super U> action;
4891 >        ForEachTransformedValueTask
4892 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4893 >             Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4894 >            super(p, b, i, f, t);
4895 >            this.transformer = transformer; this.action = action;
4896 >        }
4897 >        public final void compute() {
4898 >            final Fun<? super V, ? extends U> transformer;
4899 >            final Action<? super U> action;
4900 >            if ((transformer = this.transformer) != null &&
4901 >                (action = this.action) != null) {
4902 >                for (int i = baseIndex, f, h; batch > 0 &&
4903 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4904 >                    addToPendingCount(1);
4905 >                    new ForEachTransformedValueTask<K,V,U>
4906 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4907 >                         transformer, action).fork();
4908 >                }
4909 >                for (Node<K,V> p; (p = advance()) != null; ) {
4910 >                    U u;
4911 >                    if ((u = transformer.apply(p.val)) != null)
4912 >                        action.apply(u);
4913 >                }
4914 >                propagateCompletion();
4915 >            }
4916 >        }
4917 >    }
4918 >
4919 >    @SuppressWarnings("serial")
4920 >    static final class ForEachTransformedEntryTask<K,V,U>
4921 >        extends BulkTask<K,V,Void> {
4922 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
4923 >        final Action<? super U> action;
4924 >        ForEachTransformedEntryTask
4925 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4926 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4927 >            super(p, b, i, f, t);
4928 >            this.transformer = transformer; this.action = action;
4929 >        }
4930 >        public final void compute() {
4931 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
4932 >            final Action<? super U> action;
4933 >            if ((transformer = this.transformer) != null &&
4934 >                (action = this.action) != null) {
4935 >                for (int i = baseIndex, f, h; batch > 0 &&
4936 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4937 >                    addToPendingCount(1);
4938 >                    new ForEachTransformedEntryTask<K,V,U>
4939 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4940 >                         transformer, action).fork();
4941 >                }
4942 >                for (Node<K,V> p; (p = advance()) != null; ) {
4943 >                    U u;
4944 >                    if ((u = transformer.apply(p)) != null)
4945 >                        action.apply(u);
4946 >                }
4947 >                propagateCompletion();
4948 >            }
4949 >        }
4950 >    }
4951 >
4952 >    @SuppressWarnings("serial")
4953 >    static final class ForEachTransformedMappingTask<K,V,U>
4954 >        extends BulkTask<K,V,Void> {
4955 >        final BiFun<? super K, ? super V, ? extends U> transformer;
4956 >        final Action<? super U> action;
4957 >        ForEachTransformedMappingTask
4958 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4959 >             BiFun<? super K, ? super V, ? extends U> transformer,
4960 >             Action<? super U> action) {
4961 >            super(p, b, i, f, t);
4962 >            this.transformer = transformer; this.action = action;
4963 >        }
4964 >        public final void compute() {
4965 >            final BiFun<? super K, ? super V, ? extends U> transformer;
4966 >            final Action<? super U> action;
4967 >            if ((transformer = this.transformer) != null &&
4968 >                (action = this.action) != null) {
4969 >                for (int i = baseIndex, f, h; batch > 0 &&
4970 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4971 >                    addToPendingCount(1);
4972 >                    new ForEachTransformedMappingTask<K,V,U>
4973 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4974 >                         transformer, action).fork();
4975 >                }
4976 >                for (Node<K,V> p; (p = advance()) != null; ) {
4977 >                    U u;
4978 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4979 >                        action.apply(u);
4980 >                }
4981 >                propagateCompletion();
4982 >            }
4983 >        }
4984 >    }
4985 >
4986 >    @SuppressWarnings("serial")
4987 >    static final class SearchKeysTask<K,V,U>
4988 >        extends BulkTask<K,V,U> {
4989 >        final Fun<? super K, ? extends U> searchFunction;
4990 >        final AtomicReference<U> result;
4991 >        SearchKeysTask
4992 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4993 >             Fun<? super K, ? extends U> searchFunction,
4994 >             AtomicReference<U> result) {
4995 >            super(p, b, i, f, t);
4996 >            this.searchFunction = searchFunction; this.result = result;
4997 >        }
4998 >        public final U getRawResult() { return result.get(); }
4999 >        public final void compute() {
5000 >            final Fun<? super K, ? extends U> searchFunction;
5001 >            final AtomicReference<U> result;
5002 >            if ((searchFunction = this.searchFunction) != null &&
5003 >                (result = this.result) != null) {
5004 >                for (int i = baseIndex, f, h; batch > 0 &&
5005 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5006 >                    if (result.get() != null)
5007 >                        return;
5008 >                    addToPendingCount(1);
5009 >                    new SearchKeysTask<K,V,U>
5010 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5011 >                         searchFunction, result).fork();
5012 >                }
5013 >                while (result.get() == null) {
5014 >                    U u;
5015 >                    Node<K,V> p;
5016 >                    if ((p = advance()) == null) {
5017 >                        propagateCompletion();
5018 >                        break;
5019 >                    }
5020 >                    if ((u = searchFunction.apply(p.key)) != null) {
5021 >                        if (result.compareAndSet(null, u))
5022 >                            quietlyCompleteRoot();
5023 >                        break;
5024 >                    }
5025 >                }
5026 >            }
5027          }
3221        s.writeObject(null);
3222        s.writeObject(null);
3223        segments = null; // throw away
5028      }
5029  
5030 <    /**
5031 <     * Reconstitutes the instance from a stream (that is, deserializes it).
5032 <     * @param s the stream
5033 <     */
5034 <    @SuppressWarnings("unchecked")
5035 <    private void readObject(java.io.ObjectInputStream s)
5036 <            throws java.io.IOException, ClassNotFoundException {
5037 <        s.defaultReadObject();
5038 <        this.segments = null; // unneeded
5039 <        // initialize transient final field
5040 <        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
5030 >    @SuppressWarnings("serial")
5031 >    static final class SearchValuesTask<K,V,U>
5032 >        extends BulkTask<K,V,U> {
5033 >        final Fun<? super V, ? extends U> searchFunction;
5034 >        final AtomicReference<U> result;
5035 >        SearchValuesTask
5036 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5037 >             Fun<? super V, ? extends U> searchFunction,
5038 >             AtomicReference<U> result) {
5039 >            super(p, b, i, f, t);
5040 >            this.searchFunction = searchFunction; this.result = result;
5041 >        }
5042 >        public final U getRawResult() { return result.get(); }
5043 >        public final void compute() {
5044 >            final Fun<? super V, ? extends U> searchFunction;
5045 >            final AtomicReference<U> result;
5046 >            if ((searchFunction = this.searchFunction) != null &&
5047 >                (result = this.result) != null) {
5048 >                for (int i = baseIndex, f, h; batch > 0 &&
5049 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5050 >                    if (result.get() != null)
5051 >                        return;
5052 >                    addToPendingCount(1);
5053 >                    new SearchValuesTask<K,V,U>
5054 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5055 >                         searchFunction, result).fork();
5056 >                }
5057 >                while (result.get() == null) {
5058 >                    U u;
5059 >                    Node<K,V> p;
5060 >                    if ((p = advance()) == null) {
5061 >                        propagateCompletion();
5062 >                        break;
5063 >                    }
5064 >                    if ((u = searchFunction.apply(p.val)) != null) {
5065 >                        if (result.compareAndSet(null, u))
5066 >                            quietlyCompleteRoot();
5067 >                        break;
5068 >                    }
5069 >                }
5070 >            }
5071 >        }
5072 >    }
5073  
5074 <        // Create all nodes, then place in table once size is known
5075 <        long size = 0L;
5076 <        Node p = null;
5077 <        for (;;) {
5078 <            K k = (K) s.readObject();
5079 <            V v = (V) s.readObject();
5080 <            if (k != null && v != null) {
5081 <                int h = spread(k.hashCode());
5082 <                p = new Node(h, k, v, p);
5083 <                ++size;
5074 >    @SuppressWarnings("serial")
5075 >    static final class SearchEntriesTask<K,V,U>
5076 >        extends BulkTask<K,V,U> {
5077 >        final Fun<Entry<K,V>, ? extends U> searchFunction;
5078 >        final AtomicReference<U> result;
5079 >        SearchEntriesTask
5080 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5081 >             Fun<Entry<K,V>, ? extends U> searchFunction,
5082 >             AtomicReference<U> result) {
5083 >            super(p, b, i, f, t);
5084 >            this.searchFunction = searchFunction; this.result = result;
5085 >        }
5086 >        public final U getRawResult() { return result.get(); }
5087 >        public final void compute() {
5088 >            final Fun<Entry<K,V>, ? extends U> searchFunction;
5089 >            final AtomicReference<U> result;
5090 >            if ((searchFunction = this.searchFunction) != null &&
5091 >                (result = this.result) != null) {
5092 >                for (int i = baseIndex, f, h; batch > 0 &&
5093 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5094 >                    if (result.get() != null)
5095 >                        return;
5096 >                    addToPendingCount(1);
5097 >                    new SearchEntriesTask<K,V,U>
5098 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5099 >                         searchFunction, result).fork();
5100 >                }
5101 >                while (result.get() == null) {
5102 >                    U u;
5103 >                    Node<K,V> p;
5104 >                    if ((p = advance()) == null) {
5105 >                        propagateCompletion();
5106 >                        break;
5107 >                    }
5108 >                    if ((u = searchFunction.apply(p)) != null) {
5109 >                        if (result.compareAndSet(null, u))
5110 >                            quietlyCompleteRoot();
5111 >                        return;
5112 >                    }
5113 >                }
5114              }
3249            else
3250                break;
5115          }
5116 <        if (p != null) {
5117 <            boolean init = false;
5118 <            int n;
5119 <            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
5120 <                n = MAXIMUM_CAPACITY;
5121 <            else {
5122 <                int sz = (int)size;
5123 <                n = tableSizeFor(sz + (sz >>> 1) + 1);
5116 >    }
5117 >
5118 >    @SuppressWarnings("serial")
5119 >    static final class SearchMappingsTask<K,V,U>
5120 >        extends BulkTask<K,V,U> {
5121 >        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5122 >        final AtomicReference<U> result;
5123 >        SearchMappingsTask
5124 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5125 >             BiFun<? super K, ? super V, ? extends U> searchFunction,
5126 >             AtomicReference<U> result) {
5127 >            super(p, b, i, f, t);
5128 >            this.searchFunction = searchFunction; this.result = result;
5129 >        }
5130 >        public final U getRawResult() { return result.get(); }
5131 >        public final void compute() {
5132 >            final BiFun<? super K, ? super V, ? extends U> searchFunction;
5133 >            final AtomicReference<U> result;
5134 >            if ((searchFunction = this.searchFunction) != null &&
5135 >                (result = this.result) != null) {
5136 >                for (int i = baseIndex, f, h; batch > 0 &&
5137 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5138 >                    if (result.get() != null)
5139 >                        return;
5140 >                    addToPendingCount(1);
5141 >                    new SearchMappingsTask<K,V,U>
5142 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5143 >                         searchFunction, result).fork();
5144 >                }
5145 >                while (result.get() == null) {
5146 >                    U u;
5147 >                    Node<K,V> p;
5148 >                    if ((p = advance()) == null) {
5149 >                        propagateCompletion();
5150 >                        break;
5151 >                    }
5152 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5153 >                        if (result.compareAndSet(null, u))
5154 >                            quietlyCompleteRoot();
5155 >                        break;
5156 >                    }
5157 >                }
5158              }
5159 <            int sc = sizeCtl;
5160 <            boolean collide = false;
5161 <            if (n > sc &&
5162 <                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
5163 <                try {
5164 <                    if (table == null) {
5165 <                        init = true;
5166 <                        Node[] tab = new Node[n];
5167 <                        int mask = n - 1;
5168 <                        while (p != null) {
5169 <                            int j = p.hash & mask;
5170 <                            Node next = p.next;
5171 <                            Node q = p.next = tabAt(tab, j);
5172 <                            setTabAt(tab, j, p);
5173 <                            if (!collide && q != null && q.hash == p.hash)
5174 <                                collide = true;
5175 <                            p = next;
5159 >        }
5160 >    }
5161 >
5162 >    @SuppressWarnings("serial")
5163 >    static final class ReduceKeysTask<K,V>
5164 >        extends BulkTask<K,V,K> {
5165 >        final BiFun<? super K, ? super K, ? extends K> reducer;
5166 >        K result;
5167 >        ReduceKeysTask<K,V> rights, nextRight;
5168 >        ReduceKeysTask
5169 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5170 >             ReduceKeysTask<K,V> nextRight,
5171 >             BiFun<? super K, ? super K, ? extends K> reducer) {
5172 >            super(p, b, i, f, t); this.nextRight = nextRight;
5173 >            this.reducer = reducer;
5174 >        }
5175 >        public final K getRawResult() { return result; }
5176 >        public final void compute() {
5177 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5178 >            if ((reducer = this.reducer) != null) {
5179 >                for (int i = baseIndex, f, h; batch > 0 &&
5180 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5181 >                    addToPendingCount(1);
5182 >                    (rights = new ReduceKeysTask<K,V>
5183 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5184 >                      rights, reducer)).fork();
5185 >                }
5186 >                K r = null;
5187 >                for (Node<K,V> p; (p = advance()) != null; ) {
5188 >                    K u = p.key;
5189 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5190 >                }
5191 >                result = r;
5192 >                CountedCompleter<?> c;
5193 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5194 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5195 >                        t = (ReduceKeysTask<K,V>)c,
5196 >                        s = t.rights;
5197 >                    while (s != null) {
5198 >                        K tr, sr;
5199 >                        if ((sr = s.result) != null)
5200 >                            t.result = (((tr = t.result) == null) ? sr :
5201 >                                        reducer.apply(tr, sr));
5202 >                        s = t.rights = s.nextRight;
5203 >                    }
5204 >                }
5205 >            }
5206 >        }
5207 >    }
5208 >
5209 >    @SuppressWarnings("serial")
5210 >    static final class ReduceValuesTask<K,V>
5211 >        extends BulkTask<K,V,V> {
5212 >        final BiFun<? super V, ? super V, ? extends V> reducer;
5213 >        V result;
5214 >        ReduceValuesTask<K,V> rights, nextRight;
5215 >        ReduceValuesTask
5216 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5217 >             ReduceValuesTask<K,V> nextRight,
5218 >             BiFun<? super V, ? super V, ? extends V> reducer) {
5219 >            super(p, b, i, f, t); this.nextRight = nextRight;
5220 >            this.reducer = reducer;
5221 >        }
5222 >        public final V getRawResult() { return result; }
5223 >        public final void compute() {
5224 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5225 >            if ((reducer = this.reducer) != null) {
5226 >                for (int i = baseIndex, f, h; batch > 0 &&
5227 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5228 >                    addToPendingCount(1);
5229 >                    (rights = new ReduceValuesTask<K,V>
5230 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5231 >                      rights, reducer)).fork();
5232 >                }
5233 >                V r = null;
5234 >                for (Node<K,V> p; (p = advance()) != null; ) {
5235 >                    V v = p.val;
5236 >                    r = (r == null) ? v : reducer.apply(r, v);
5237 >                }
5238 >                result = r;
5239 >                CountedCompleter<?> c;
5240 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5241 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5242 >                        t = (ReduceValuesTask<K,V>)c,
5243 >                        s = t.rights;
5244 >                    while (s != null) {
5245 >                        V tr, sr;
5246 >                        if ((sr = s.result) != null)
5247 >                            t.result = (((tr = t.result) == null) ? sr :
5248 >                                        reducer.apply(tr, sr));
5249 >                        s = t.rights = s.nextRight;
5250 >                    }
5251 >                }
5252 >            }
5253 >        }
5254 >    }
5255 >
5256 >    @SuppressWarnings("serial")
5257 >    static final class ReduceEntriesTask<K,V>
5258 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5259 >        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5260 >        Map.Entry<K,V> result;
5261 >        ReduceEntriesTask<K,V> rights, nextRight;
5262 >        ReduceEntriesTask
5263 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5264 >             ReduceEntriesTask<K,V> nextRight,
5265 >             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5266 >            super(p, b, i, f, t); this.nextRight = nextRight;
5267 >            this.reducer = reducer;
5268 >        }
5269 >        public final Map.Entry<K,V> getRawResult() { return result; }
5270 >        public final void compute() {
5271 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5272 >            if ((reducer = this.reducer) != null) {
5273 >                for (int i = baseIndex, f, h; batch > 0 &&
5274 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5275 >                    addToPendingCount(1);
5276 >                    (rights = new ReduceEntriesTask<K,V>
5277 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5278 >                      rights, reducer)).fork();
5279 >                }
5280 >                Map.Entry<K,V> r = null;
5281 >                for (Node<K,V> p; (p = advance()) != null; )
5282 >                    r = (r == null) ? p : reducer.apply(r, p);
5283 >                result = r;
5284 >                CountedCompleter<?> c;
5285 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5286 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5287 >                        t = (ReduceEntriesTask<K,V>)c,
5288 >                        s = t.rights;
5289 >                    while (s != null) {
5290 >                        Map.Entry<K,V> tr, sr;
5291 >                        if ((sr = s.result) != null)
5292 >                            t.result = (((tr = t.result) == null) ? sr :
5293 >                                        reducer.apply(tr, sr));
5294 >                        s = t.rights = s.nextRight;
5295 >                    }
5296 >                }
5297 >            }
5298 >        }
5299 >    }
5300 >
5301 >    @SuppressWarnings("serial")
5302 >    static final class MapReduceKeysTask<K,V,U>
5303 >        extends BulkTask<K,V,U> {
5304 >        final Fun<? super K, ? extends U> transformer;
5305 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5306 >        U result;
5307 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5308 >        MapReduceKeysTask
5309 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5310 >             MapReduceKeysTask<K,V,U> nextRight,
5311 >             Fun<? super K, ? extends U> transformer,
5312 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5313 >            super(p, b, i, f, t); this.nextRight = nextRight;
5314 >            this.transformer = transformer;
5315 >            this.reducer = reducer;
5316 >        }
5317 >        public final U getRawResult() { return result; }
5318 >        public final void compute() {
5319 >            final Fun<? super K, ? extends U> transformer;
5320 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5321 >            if ((transformer = this.transformer) != null &&
5322 >                (reducer = this.reducer) != null) {
5323 >                for (int i = baseIndex, f, h; batch > 0 &&
5324 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5325 >                    addToPendingCount(1);
5326 >                    (rights = new MapReduceKeysTask<K,V,U>
5327 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5328 >                      rights, transformer, reducer)).fork();
5329 >                }
5330 >                U r = null;
5331 >                for (Node<K,V> p; (p = advance()) != null; ) {
5332 >                    U u;
5333 >                    if ((u = transformer.apply(p.key)) != null)
5334 >                        r = (r == null) ? u : reducer.apply(r, u);
5335 >                }
5336 >                result = r;
5337 >                CountedCompleter<?> c;
5338 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5339 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5340 >                        t = (MapReduceKeysTask<K,V,U>)c,
5341 >                        s = t.rights;
5342 >                    while (s != null) {
5343 >                        U tr, sr;
5344 >                        if ((sr = s.result) != null)
5345 >                            t.result = (((tr = t.result) == null) ? sr :
5346 >                                        reducer.apply(tr, sr));
5347 >                        s = t.rights = s.nextRight;
5348 >                    }
5349 >                }
5350 >            }
5351 >        }
5352 >    }
5353 >
5354 >    @SuppressWarnings("serial")
5355 >    static final class MapReduceValuesTask<K,V,U>
5356 >        extends BulkTask<K,V,U> {
5357 >        final Fun<? super V, ? extends U> transformer;
5358 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5359 >        U result;
5360 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5361 >        MapReduceValuesTask
5362 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5363 >             MapReduceValuesTask<K,V,U> nextRight,
5364 >             Fun<? super V, ? extends U> transformer,
5365 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5366 >            super(p, b, i, f, t); this.nextRight = nextRight;
5367 >            this.transformer = transformer;
5368 >            this.reducer = reducer;
5369 >        }
5370 >        public final U getRawResult() { return result; }
5371 >        public final void compute() {
5372 >            final Fun<? super V, ? extends U> transformer;
5373 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5374 >            if ((transformer = this.transformer) != null &&
5375 >                (reducer = this.reducer) != null) {
5376 >                for (int i = baseIndex, f, h; batch > 0 &&
5377 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5378 >                    addToPendingCount(1);
5379 >                    (rights = new MapReduceValuesTask<K,V,U>
5380 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5381 >                      rights, transformer, reducer)).fork();
5382 >                }
5383 >                U r = null;
5384 >                for (Node<K,V> p; (p = advance()) != null; ) {
5385 >                    U u;
5386 >                    if ((u = transformer.apply(p.val)) != null)
5387 >                        r = (r == null) ? u : reducer.apply(r, u);
5388 >                }
5389 >                result = r;
5390 >                CountedCompleter<?> c;
5391 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5392 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5393 >                        t = (MapReduceValuesTask<K,V,U>)c,
5394 >                        s = t.rights;
5395 >                    while (s != null) {
5396 >                        U tr, sr;
5397 >                        if ((sr = s.result) != null)
5398 >                            t.result = (((tr = t.result) == null) ? sr :
5399 >                                        reducer.apply(tr, sr));
5400 >                        s = t.rights = s.nextRight;
5401 >                    }
5402 >                }
5403 >            }
5404 >        }
5405 >    }
5406 >
5407 >    @SuppressWarnings("serial")
5408 >    static final class MapReduceEntriesTask<K,V,U>
5409 >        extends BulkTask<K,V,U> {
5410 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5411 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5412 >        U result;
5413 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5414 >        MapReduceEntriesTask
5415 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5416 >             MapReduceEntriesTask<K,V,U> nextRight,
5417 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5418 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5419 >            super(p, b, i, f, t); this.nextRight = nextRight;
5420 >            this.transformer = transformer;
5421 >            this.reducer = reducer;
5422 >        }
5423 >        public final U getRawResult() { return result; }
5424 >        public final void compute() {
5425 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5426 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5427 >            if ((transformer = this.transformer) != null &&
5428 >                (reducer = this.reducer) != null) {
5429 >                for (int i = baseIndex, f, h; batch > 0 &&
5430 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5431 >                    addToPendingCount(1);
5432 >                    (rights = new MapReduceEntriesTask<K,V,U>
5433 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5434 >                      rights, transformer, reducer)).fork();
5435 >                }
5436 >                U r = null;
5437 >                for (Node<K,V> p; (p = advance()) != null; ) {
5438 >                    U u;
5439 >                    if ((u = transformer.apply(p)) != null)
5440 >                        r = (r == null) ? u : reducer.apply(r, u);
5441 >                }
5442 >                result = r;
5443 >                CountedCompleter<?> c;
5444 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5445 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5446 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5447 >                        s = t.rights;
5448 >                    while (s != null) {
5449 >                        U tr, sr;
5450 >                        if ((sr = s.result) != null)
5451 >                            t.result = (((tr = t.result) == null) ? sr :
5452 >                                        reducer.apply(tr, sr));
5453 >                        s = t.rights = s.nextRight;
5454 >                    }
5455 >                }
5456 >            }
5457 >        }
5458 >    }
5459 >
5460 >    @SuppressWarnings("serial")
5461 >    static final class MapReduceMappingsTask<K,V,U>
5462 >        extends BulkTask<K,V,U> {
5463 >        final BiFun<? super K, ? super V, ? extends U> transformer;
5464 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5465 >        U result;
5466 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5467 >        MapReduceMappingsTask
5468 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5469 >             MapReduceMappingsTask<K,V,U> nextRight,
5470 >             BiFun<? super K, ? super V, ? extends U> transformer,
5471 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5472 >            super(p, b, i, f, t); this.nextRight = nextRight;
5473 >            this.transformer = transformer;
5474 >            this.reducer = reducer;
5475 >        }
5476 >        public final U getRawResult() { return result; }
5477 >        public final void compute() {
5478 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5479 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5480 >            if ((transformer = this.transformer) != null &&
5481 >                (reducer = this.reducer) != null) {
5482 >                for (int i = baseIndex, f, h; batch > 0 &&
5483 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5484 >                    addToPendingCount(1);
5485 >                    (rights = new MapReduceMappingsTask<K,V,U>
5486 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5487 >                      rights, transformer, reducer)).fork();
5488 >                }
5489 >                U r = null;
5490 >                for (Node<K,V> p; (p = advance()) != null; ) {
5491 >                    U u;
5492 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5493 >                        r = (r == null) ? u : reducer.apply(r, u);
5494 >                }
5495 >                result = r;
5496 >                CountedCompleter<?> c;
5497 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5498 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5499 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5500 >                        s = t.rights;
5501 >                    while (s != null) {
5502 >                        U tr, sr;
5503 >                        if ((sr = s.result) != null)
5504 >                            t.result = (((tr = t.result) == null) ? sr :
5505 >                                        reducer.apply(tr, sr));
5506 >                        s = t.rights = s.nextRight;
5507 >                    }
5508 >                }
5509 >            }
5510 >        }
5511 >    }
5512 >
5513 >    @SuppressWarnings("serial")
5514 >    static final class MapReduceKeysToDoubleTask<K,V>
5515 >        extends BulkTask<K,V,Double> {
5516 >        final ObjectToDouble<? super K> transformer;
5517 >        final DoubleByDoubleToDouble reducer;
5518 >        final double basis;
5519 >        double result;
5520 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5521 >        MapReduceKeysToDoubleTask
5522 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5523 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5524 >             ObjectToDouble<? super K> transformer,
5525 >             double basis,
5526 >             DoubleByDoubleToDouble reducer) {
5527 >            super(p, b, i, f, t); this.nextRight = nextRight;
5528 >            this.transformer = transformer;
5529 >            this.basis = basis; this.reducer = reducer;
5530 >        }
5531 >        public final Double getRawResult() { return result; }
5532 >        public final void compute() {
5533 >            final ObjectToDouble<? super K> transformer;
5534 >            final DoubleByDoubleToDouble reducer;
5535 >            if ((transformer = this.transformer) != null &&
5536 >                (reducer = this.reducer) != null) {
5537 >                double r = this.basis;
5538 >                for (int i = baseIndex, f, h; batch > 0 &&
5539 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5540 >                    addToPendingCount(1);
5541 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5542 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5543 >                      rights, transformer, r, reducer)).fork();
5544 >                }
5545 >                for (Node<K,V> p; (p = advance()) != null; )
5546 >                    r = reducer.apply(r, transformer.apply(p.key));
5547 >                result = r;
5548 >                CountedCompleter<?> c;
5549 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5550 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5551 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5552 >                        s = t.rights;
5553 >                    while (s != null) {
5554 >                        t.result = reducer.apply(t.result, s.result);
5555 >                        s = t.rights = s.nextRight;
5556 >                    }
5557 >                }
5558 >            }
5559 >        }
5560 >    }
5561 >
5562 >    @SuppressWarnings("serial")
5563 >    static final class MapReduceValuesToDoubleTask<K,V>
5564 >        extends BulkTask<K,V,Double> {
5565 >        final ObjectToDouble<? super V> transformer;
5566 >        final DoubleByDoubleToDouble reducer;
5567 >        final double basis;
5568 >        double result;
5569 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5570 >        MapReduceValuesToDoubleTask
5571 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5572 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5573 >             ObjectToDouble<? super V> transformer,
5574 >             double basis,
5575 >             DoubleByDoubleToDouble reducer) {
5576 >            super(p, b, i, f, t); this.nextRight = nextRight;
5577 >            this.transformer = transformer;
5578 >            this.basis = basis; this.reducer = reducer;
5579 >        }
5580 >        public final Double getRawResult() { return result; }
5581 >        public final void compute() {
5582 >            final ObjectToDouble<? super V> transformer;
5583 >            final DoubleByDoubleToDouble reducer;
5584 >            if ((transformer = this.transformer) != null &&
5585 >                (reducer = this.reducer) != null) {
5586 >                double r = this.basis;
5587 >                for (int i = baseIndex, f, h; batch > 0 &&
5588 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5589 >                    addToPendingCount(1);
5590 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5591 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5592 >                      rights, transformer, r, reducer)).fork();
5593 >                }
5594 >                for (Node<K,V> p; (p = advance()) != null; )
5595 >                    r = reducer.apply(r, transformer.apply(p.val));
5596 >                result = r;
5597 >                CountedCompleter<?> c;
5598 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5599 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5600 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5601 >                        s = t.rights;
5602 >                    while (s != null) {
5603 >                        t.result = reducer.apply(t.result, s.result);
5604 >                        s = t.rights = s.nextRight;
5605 >                    }
5606 >                }
5607 >            }
5608 >        }
5609 >    }
5610 >
5611 >    @SuppressWarnings("serial")
5612 >    static final class MapReduceEntriesToDoubleTask<K,V>
5613 >        extends BulkTask<K,V,Double> {
5614 >        final ObjectToDouble<Map.Entry<K,V>> transformer;
5615 >        final DoubleByDoubleToDouble reducer;
5616 >        final double basis;
5617 >        double result;
5618 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5619 >        MapReduceEntriesToDoubleTask
5620 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5621 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5622 >             ObjectToDouble<Map.Entry<K,V>> transformer,
5623 >             double basis,
5624 >             DoubleByDoubleToDouble reducer) {
5625 >            super(p, b, i, f, t); this.nextRight = nextRight;
5626 >            this.transformer = transformer;
5627 >            this.basis = basis; this.reducer = reducer;
5628 >        }
5629 >        public final Double getRawResult() { return result; }
5630 >        public final void compute() {
5631 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
5632 >            final DoubleByDoubleToDouble reducer;
5633 >            if ((transformer = this.transformer) != null &&
5634 >                (reducer = this.reducer) != null) {
5635 >                double r = this.basis;
5636 >                for (int i = baseIndex, f, h; batch > 0 &&
5637 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5638 >                    addToPendingCount(1);
5639 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5640 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5641 >                      rights, transformer, r, reducer)).fork();
5642 >                }
5643 >                for (Node<K,V> p; (p = advance()) != null; )
5644 >                    r = reducer.apply(r, transformer.apply(p));
5645 >                result = r;
5646 >                CountedCompleter<?> c;
5647 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5648 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5649 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5650 >                        s = t.rights;
5651 >                    while (s != null) {
5652 >                        t.result = reducer.apply(t.result, s.result);
5653 >                        s = t.rights = s.nextRight;
5654 >                    }
5655 >                }
5656 >            }
5657 >        }
5658 >    }
5659 >
5660 >    @SuppressWarnings("serial")
5661 >    static final class MapReduceMappingsToDoubleTask<K,V>
5662 >        extends BulkTask<K,V,Double> {
5663 >        final ObjectByObjectToDouble<? super K, ? super V> transformer;
5664 >        final DoubleByDoubleToDouble reducer;
5665 >        final double basis;
5666 >        double result;
5667 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5668 >        MapReduceMappingsToDoubleTask
5669 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5670 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5671 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
5672 >             double basis,
5673 >             DoubleByDoubleToDouble reducer) {
5674 >            super(p, b, i, f, t); this.nextRight = nextRight;
5675 >            this.transformer = transformer;
5676 >            this.basis = basis; this.reducer = reducer;
5677 >        }
5678 >        public final Double getRawResult() { return result; }
5679 >        public final void compute() {
5680 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
5681 >            final DoubleByDoubleToDouble reducer;
5682 >            if ((transformer = this.transformer) != null &&
5683 >                (reducer = this.reducer) != null) {
5684 >                double r = this.basis;
5685 >                for (int i = baseIndex, f, h; batch > 0 &&
5686 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5687 >                    addToPendingCount(1);
5688 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5689 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5690 >                      rights, transformer, r, reducer)).fork();
5691 >                }
5692 >                for (Node<K,V> p; (p = advance()) != null; )
5693 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5694 >                result = r;
5695 >                CountedCompleter<?> c;
5696 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5697 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5698 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5699 >                        s = t.rights;
5700 >                    while (s != null) {
5701 >                        t.result = reducer.apply(t.result, s.result);
5702 >                        s = t.rights = s.nextRight;
5703 >                    }
5704 >                }
5705 >            }
5706 >        }
5707 >    }
5708 >
5709 >    @SuppressWarnings("serial")
5710 >    static final class MapReduceKeysToLongTask<K,V>
5711 >        extends BulkTask<K,V,Long> {
5712 >        final ObjectToLong<? super K> transformer;
5713 >        final LongByLongToLong reducer;
5714 >        final long basis;
5715 >        long result;
5716 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5717 >        MapReduceKeysToLongTask
5718 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5719 >             MapReduceKeysToLongTask<K,V> nextRight,
5720 >             ObjectToLong<? super K> transformer,
5721 >             long basis,
5722 >             LongByLongToLong reducer) {
5723 >            super(p, b, i, f, t); this.nextRight = nextRight;
5724 >            this.transformer = transformer;
5725 >            this.basis = basis; this.reducer = reducer;
5726 >        }
5727 >        public final Long getRawResult() { return result; }
5728 >        public final void compute() {
5729 >            final ObjectToLong<? super K> transformer;
5730 >            final LongByLongToLong reducer;
5731 >            if ((transformer = this.transformer) != null &&
5732 >                (reducer = this.reducer) != null) {
5733 >                long r = this.basis;
5734 >                for (int i = baseIndex, f, h; batch > 0 &&
5735 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5736 >                    addToPendingCount(1);
5737 >                    (rights = new MapReduceKeysToLongTask<K,V>
5738 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5739 >                      rights, transformer, r, reducer)).fork();
5740 >                }
5741 >                for (Node<K,V> p; (p = advance()) != null; )
5742 >                    r = reducer.apply(r, transformer.apply(p.key));
5743 >                result = r;
5744 >                CountedCompleter<?> c;
5745 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5746 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5747 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5748 >                        s = t.rights;
5749 >                    while (s != null) {
5750 >                        t.result = reducer.apply(t.result, s.result);
5751 >                        s = t.rights = s.nextRight;
5752 >                    }
5753 >                }
5754 >            }
5755 >        }
5756 >    }
5757 >
5758 >    @SuppressWarnings("serial")
5759 >    static final class MapReduceValuesToLongTask<K,V>
5760 >        extends BulkTask<K,V,Long> {
5761 >        final ObjectToLong<? super V> transformer;
5762 >        final LongByLongToLong reducer;
5763 >        final long basis;
5764 >        long result;
5765 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5766 >        MapReduceValuesToLongTask
5767 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5768 >             MapReduceValuesToLongTask<K,V> nextRight,
5769 >             ObjectToLong<? super V> transformer,
5770 >             long basis,
5771 >             LongByLongToLong reducer) {
5772 >            super(p, b, i, f, t); this.nextRight = nextRight;
5773 >            this.transformer = transformer;
5774 >            this.basis = basis; this.reducer = reducer;
5775 >        }
5776 >        public final Long getRawResult() { return result; }
5777 >        public final void compute() {
5778 >            final ObjectToLong<? super V> transformer;
5779 >            final LongByLongToLong reducer;
5780 >            if ((transformer = this.transformer) != null &&
5781 >                (reducer = this.reducer) != null) {
5782 >                long r = this.basis;
5783 >                for (int i = baseIndex, f, h; batch > 0 &&
5784 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5785 >                    addToPendingCount(1);
5786 >                    (rights = new MapReduceValuesToLongTask<K,V>
5787 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5788 >                      rights, transformer, r, reducer)).fork();
5789 >                }
5790 >                for (Node<K,V> p; (p = advance()) != null; )
5791 >                    r = reducer.apply(r, transformer.apply(p.val));
5792 >                result = r;
5793 >                CountedCompleter<?> c;
5794 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5795 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5796 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5797 >                        s = t.rights;
5798 >                    while (s != null) {
5799 >                        t.result = reducer.apply(t.result, s.result);
5800 >                        s = t.rights = s.nextRight;
5801 >                    }
5802 >                }
5803 >            }
5804 >        }
5805 >    }
5806 >
5807 >    @SuppressWarnings("serial")
5808 >    static final class MapReduceEntriesToLongTask<K,V>
5809 >        extends BulkTask<K,V,Long> {
5810 >        final ObjectToLong<Map.Entry<K,V>> transformer;
5811 >        final LongByLongToLong reducer;
5812 >        final long basis;
5813 >        long result;
5814 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
5815 >        MapReduceEntriesToLongTask
5816 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5817 >             MapReduceEntriesToLongTask<K,V> nextRight,
5818 >             ObjectToLong<Map.Entry<K,V>> transformer,
5819 >             long basis,
5820 >             LongByLongToLong reducer) {
5821 >            super(p, b, i, f, t); this.nextRight = nextRight;
5822 >            this.transformer = transformer;
5823 >            this.basis = basis; this.reducer = reducer;
5824 >        }
5825 >        public final Long getRawResult() { return result; }
5826 >        public final void compute() {
5827 >            final ObjectToLong<Map.Entry<K,V>> transformer;
5828 >            final LongByLongToLong reducer;
5829 >            if ((transformer = this.transformer) != null &&
5830 >                (reducer = this.reducer) != null) {
5831 >                long r = this.basis;
5832 >                for (int i = baseIndex, f, h; batch > 0 &&
5833 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5834 >                    addToPendingCount(1);
5835 >                    (rights = new MapReduceEntriesToLongTask<K,V>
5836 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5837 >                      rights, transformer, r, reducer)).fork();
5838 >                }
5839 >                for (Node<K,V> p; (p = advance()) != null; )
5840 >                    r = reducer.apply(r, transformer.apply(p));
5841 >                result = r;
5842 >                CountedCompleter<?> c;
5843 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5844 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5845 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5846 >                        s = t.rights;
5847 >                    while (s != null) {
5848 >                        t.result = reducer.apply(t.result, s.result);
5849 >                        s = t.rights = s.nextRight;
5850 >                    }
5851 >                }
5852 >            }
5853 >        }
5854 >    }
5855 >
5856 >    @SuppressWarnings("serial")
5857 >    static final class MapReduceMappingsToLongTask<K,V>
5858 >        extends BulkTask<K,V,Long> {
5859 >        final ObjectByObjectToLong<? super K, ? super V> transformer;
5860 >        final LongByLongToLong reducer;
5861 >        final long basis;
5862 >        long result;
5863 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
5864 >        MapReduceMappingsToLongTask
5865 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5866 >             MapReduceMappingsToLongTask<K,V> nextRight,
5867 >             ObjectByObjectToLong<? super K, ? super V> transformer,
5868 >             long basis,
5869 >             LongByLongToLong reducer) {
5870 >            super(p, b, i, f, t); this.nextRight = nextRight;
5871 >            this.transformer = transformer;
5872 >            this.basis = basis; this.reducer = reducer;
5873 >        }
5874 >        public final Long getRawResult() { return result; }
5875 >        public final void compute() {
5876 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
5877 >            final LongByLongToLong reducer;
5878 >            if ((transformer = this.transformer) != null &&
5879 >                (reducer = this.reducer) != null) {
5880 >                long r = this.basis;
5881 >                for (int i = baseIndex, f, h; batch > 0 &&
5882 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5883 >                    addToPendingCount(1);
5884 >                    (rights = new MapReduceMappingsToLongTask<K,V>
5885 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5886 >                      rights, transformer, r, reducer)).fork();
5887 >                }
5888 >                for (Node<K,V> p; (p = advance()) != null; )
5889 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5890 >                result = r;
5891 >                CountedCompleter<?> c;
5892 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5893 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5894 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
5895 >                        s = t.rights;
5896 >                    while (s != null) {
5897 >                        t.result = reducer.apply(t.result, s.result);
5898 >                        s = t.rights = s.nextRight;
5899 >                    }
5900 >                }
5901 >            }
5902 >        }
5903 >    }
5904 >
5905 >    @SuppressWarnings("serial")
5906 >    static final class MapReduceKeysToIntTask<K,V>
5907 >        extends BulkTask<K,V,Integer> {
5908 >        final ObjectToInt<? super K> transformer;
5909 >        final IntByIntToInt reducer;
5910 >        final int basis;
5911 >        int result;
5912 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
5913 >        MapReduceKeysToIntTask
5914 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5915 >             MapReduceKeysToIntTask<K,V> nextRight,
5916 >             ObjectToInt<? super K> transformer,
5917 >             int basis,
5918 >             IntByIntToInt reducer) {
5919 >            super(p, b, i, f, t); this.nextRight = nextRight;
5920 >            this.transformer = transformer;
5921 >            this.basis = basis; this.reducer = reducer;
5922 >        }
5923 >        public final Integer getRawResult() { return result; }
5924 >        public final void compute() {
5925 >            final ObjectToInt<? super K> transformer;
5926 >            final IntByIntToInt reducer;
5927 >            if ((transformer = this.transformer) != null &&
5928 >                (reducer = this.reducer) != null) {
5929 >                int r = this.basis;
5930 >                for (int i = baseIndex, f, h; batch > 0 &&
5931 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5932 >                    addToPendingCount(1);
5933 >                    (rights = new MapReduceKeysToIntTask<K,V>
5934 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5935 >                      rights, transformer, r, reducer)).fork();
5936 >                }
5937 >                for (Node<K,V> p; (p = advance()) != null; )
5938 >                    r = reducer.apply(r, transformer.apply(p.key));
5939 >                result = r;
5940 >                CountedCompleter<?> c;
5941 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5942 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5943 >                        t = (MapReduceKeysToIntTask<K,V>)c,
5944 >                        s = t.rights;
5945 >                    while (s != null) {
5946 >                        t.result = reducer.apply(t.result, s.result);
5947 >                        s = t.rights = s.nextRight;
5948 >                    }
5949 >                }
5950 >            }
5951 >        }
5952 >    }
5953 >
5954 >    @SuppressWarnings("serial")
5955 >    static final class MapReduceValuesToIntTask<K,V>
5956 >        extends BulkTask<K,V,Integer> {
5957 >        final ObjectToInt<? super V> transformer;
5958 >        final IntByIntToInt reducer;
5959 >        final int basis;
5960 >        int result;
5961 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
5962 >        MapReduceValuesToIntTask
5963 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5964 >             MapReduceValuesToIntTask<K,V> nextRight,
5965 >             ObjectToInt<? super V> transformer,
5966 >             int basis,
5967 >             IntByIntToInt reducer) {
5968 >            super(p, b, i, f, t); this.nextRight = nextRight;
5969 >            this.transformer = transformer;
5970 >            this.basis = basis; this.reducer = reducer;
5971 >        }
5972 >        public final Integer getRawResult() { return result; }
5973 >        public final void compute() {
5974 >            final ObjectToInt<? super V> transformer;
5975 >            final IntByIntToInt reducer;
5976 >            if ((transformer = this.transformer) != null &&
5977 >                (reducer = this.reducer) != null) {
5978 >                int r = this.basis;
5979 >                for (int i = baseIndex, f, h; batch > 0 &&
5980 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5981 >                    addToPendingCount(1);
5982 >                    (rights = new MapReduceValuesToIntTask<K,V>
5983 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5984 >                      rights, transformer, r, reducer)).fork();
5985 >                }
5986 >                for (Node<K,V> p; (p = advance()) != null; )
5987 >                    r = reducer.apply(r, transformer.apply(p.val));
5988 >                result = r;
5989 >                CountedCompleter<?> c;
5990 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5991 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5992 >                        t = (MapReduceValuesToIntTask<K,V>)c,
5993 >                        s = t.rights;
5994 >                    while (s != null) {
5995 >                        t.result = reducer.apply(t.result, s.result);
5996 >                        s = t.rights = s.nextRight;
5997 >                    }
5998 >                }
5999 >            }
6000 >        }
6001 >    }
6002 >
6003 >    @SuppressWarnings("serial")
6004 >    static final class MapReduceEntriesToIntTask<K,V>
6005 >        extends BulkTask<K,V,Integer> {
6006 >        final ObjectToInt<Map.Entry<K,V>> transformer;
6007 >        final IntByIntToInt reducer;
6008 >        final int basis;
6009 >        int result;
6010 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6011 >        MapReduceEntriesToIntTask
6012 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6013 >             MapReduceEntriesToIntTask<K,V> nextRight,
6014 >             ObjectToInt<Map.Entry<K,V>> transformer,
6015 >             int basis,
6016 >             IntByIntToInt reducer) {
6017 >            super(p, b, i, f, t); this.nextRight = nextRight;
6018 >            this.transformer = transformer;
6019 >            this.basis = basis; this.reducer = reducer;
6020 >        }
6021 >        public final Integer getRawResult() { return result; }
6022 >        public final void compute() {
6023 >            final ObjectToInt<Map.Entry<K,V>> transformer;
6024 >            final IntByIntToInt reducer;
6025 >            if ((transformer = this.transformer) != null &&
6026 >                (reducer = this.reducer) != null) {
6027 >                int r = this.basis;
6028 >                for (int i = baseIndex, f, h; batch > 0 &&
6029 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6030 >                    addToPendingCount(1);
6031 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6032 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6033 >                      rights, transformer, r, reducer)).fork();
6034 >                }
6035 >                for (Node<K,V> p; (p = advance()) != null; )
6036 >                    r = reducer.apply(r, transformer.apply(p));
6037 >                result = r;
6038 >                CountedCompleter<?> c;
6039 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6040 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
6041 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6042 >                        s = t.rights;
6043 >                    while (s != null) {
6044 >                        t.result = reducer.apply(t.result, s.result);
6045 >                        s = t.rights = s.nextRight;
6046 >                    }
6047 >                }
6048 >            }
6049 >        }
6050 >    }
6051 >
6052 >    @SuppressWarnings("serial")
6053 >    static final class MapReduceMappingsToIntTask<K,V>
6054 >        extends BulkTask<K,V,Integer> {
6055 >        final ObjectByObjectToInt<? super K, ? super V> transformer;
6056 >        final IntByIntToInt reducer;
6057 >        final int basis;
6058 >        int result;
6059 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6060 >        MapReduceMappingsToIntTask
6061 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6062 >             MapReduceMappingsToIntTask<K,V> nextRight,
6063 >             ObjectByObjectToInt<? super K, ? super V> transformer,
6064 >             int basis,
6065 >             IntByIntToInt reducer) {
6066 >            super(p, b, i, f, t); this.nextRight = nextRight;
6067 >            this.transformer = transformer;
6068 >            this.basis = basis; this.reducer = reducer;
6069 >        }
6070 >        public final Integer getRawResult() { return result; }
6071 >        public final void compute() {
6072 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
6073 >            final IntByIntToInt reducer;
6074 >            if ((transformer = this.transformer) != null &&
6075 >                (reducer = this.reducer) != null) {
6076 >                int r = this.basis;
6077 >                for (int i = baseIndex, f, h; batch > 0 &&
6078 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6079 >                    addToPendingCount(1);
6080 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6081 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6082 >                      rights, transformer, r, reducer)).fork();
6083 >                }
6084 >                for (Node<K,V> p; (p = advance()) != null; )
6085 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
6086 >                result = r;
6087 >                CountedCompleter<?> c;
6088 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6089 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6090 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6091 >                        s = t.rights;
6092 >                    while (s != null) {
6093 >                        t.result = reducer.apply(t.result, s.result);
6094 >                        s = t.rights = s.nextRight;
6095 >                    }
6096 >                }
6097 >            }
6098 >        }
6099 >    }
6100 >
6101 >    /* ---------------- Counters -------------- */
6102 >
6103 >    // Adapted from LongAdder and Striped64.
6104 >    // See their internal docs for explanation.
6105 >
6106 >    // A padded cell for distributing counts
6107 >    static final class CounterCell {
6108 >        volatile long p0, p1, p2, p3, p4, p5, p6;
6109 >        volatile long value;
6110 >        volatile long q0, q1, q2, q3, q4, q5, q6;
6111 >        CounterCell(long x) { value = x; }
6112 >    }
6113 >
6114 >    /**
6115 >     * Holder for the thread-local hash code determining which
6116 >     * CounterCell to use. The code is initialized via the
6117 >     * counterHashCodeGenerator, but may be moved upon collisions.
6118 >     */
6119 >    static final class CounterHashCode {
6120 >        int code;
6121 >    }
6122 >
6123 >    /**
6124 >     * Generates initial value for per-thread CounterHashCodes.
6125 >     */
6126 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6127 >
6128 >    /**
6129 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
6130 >     * for explanation.
6131 >     */
6132 >    static final int SEED_INCREMENT = 0x61c88647;
6133 >
6134 >    /**
6135 >     * Per-thread counter hash codes. Shared across all instances.
6136 >     */
6137 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6138 >        new ThreadLocal<CounterHashCode>();
6139 >
6140 >
6141 >    final long sumCount() {
6142 >        CounterCell[] as = counterCells; CounterCell a;
6143 >        long sum = baseCount;
6144 >        if (as != null) {
6145 >            for (int i = 0; i < as.length; ++i) {
6146 >                if ((a = as[i]) != null)
6147 >                    sum += a.value;
6148 >            }
6149 >        }
6150 >        return sum;
6151 >    }
6152 >
6153 >    // See LongAdder version for explanation
6154 >    private final void fullAddCount(long x, CounterHashCode hc,
6155 >                                    boolean wasUncontended) {
6156 >        int h;
6157 >        if (hc == null) {
6158 >            hc = new CounterHashCode();
6159 >            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6160 >            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6161 >            threadCounterHashCode.set(hc);
6162 >        }
6163 >        else
6164 >            h = hc.code;
6165 >        boolean collide = false;                // True if last slot nonempty
6166 >        for (;;) {
6167 >            CounterCell[] as; CounterCell a; int n; long v;
6168 >            if ((as = counterCells) != null && (n = as.length) > 0) {
6169 >                if ((a = as[(n - 1) & h]) == null) {
6170 >                    if (cellsBusy == 0) {            // Try to attach new Cell
6171 >                        CounterCell r = new CounterCell(x); // Optimistic create
6172 >                        if (cellsBusy == 0 &&
6173 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6174 >                            boolean created = false;
6175 >                            try {               // Recheck under lock
6176 >                                CounterCell[] rs; int m, j;
6177 >                                if ((rs = counterCells) != null &&
6178 >                                    (m = rs.length) > 0 &&
6179 >                                    rs[j = (m - 1) & h] == null) {
6180 >                                    rs[j] = r;
6181 >                                    created = true;
6182 >                                }
6183 >                            } finally {
6184 >                                cellsBusy = 0;
6185 >                            }
6186 >                            if (created)
6187 >                                break;
6188 >                            continue;           // Slot is now non-empty
6189                          }
3279                        table = tab;
3280                        counter.add(size);
3281                        sc = n - (n >>> 2);
6190                      }
6191 <                } finally {
3284 <                    sizeCtl = sc;
6191 >                    collide = false;
6192                  }
6193 <                if (collide) { // rescan and convert to TreeBins
6194 <                    Node[] tab = table;
6195 <                    for (int i = 0; i < tab.length; ++i) {
6196 <                        int c = 0;
6197 <                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
6198 <                            if (++c > TREE_THRESHOLD &&
6199 <                                (e.key instanceof Comparable)) {
6200 <                                replaceWithTreeBin(tab, i, e.key);
6201 <                                break;
6202 <                            }
6193 >                else if (!wasUncontended)       // CAS already known to fail
6194 >                    wasUncontended = true;      // Continue after rehash
6195 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6196 >                    break;
6197 >                else if (counterCells != as || n >= NCPU)
6198 >                    collide = false;            // At max size or stale
6199 >                else if (!collide)
6200 >                    collide = true;
6201 >                else if (cellsBusy == 0 &&
6202 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6203 >                    try {
6204 >                        if (counterCells == as) {// Expand table unless stale
6205 >                            CounterCell[] rs = new CounterCell[n << 1];
6206 >                            for (int i = 0; i < n; ++i)
6207 >                                rs[i] = as[i];
6208 >                            counterCells = rs;
6209                          }
6210 +                    } finally {
6211 +                        cellsBusy = 0;
6212                      }
6213 +                    collide = false;
6214 +                    continue;                   // Retry with expanded table
6215                  }
6216 <            }
6217 <            if (!init) { // Can only happen if unsafely published.
6218 <                while (p != null) {
6219 <                    internalPut(p.key, p.val);
6220 <                    p = p.next;
6216 >                h ^= h << 13;                   // Rehash
6217 >                h ^= h >>> 17;
6218 >                h ^= h << 5;
6219 >            }
6220 >            else if (cellsBusy == 0 && counterCells == as &&
6221 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6222 >                boolean init = false;
6223 >                try {                           // Initialize table
6224 >                    if (counterCells == as) {
6225 >                        CounterCell[] rs = new CounterCell[2];
6226 >                        rs[h & 1] = new CounterCell(x);
6227 >                        counterCells = rs;
6228 >                        init = true;
6229 >                    }
6230 >                } finally {
6231 >                    cellsBusy = 0;
6232                  }
6233 +                if (init)
6234 +                    break;
6235              }
6236 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6237 +                break;                          // Fall back on using base
6238          }
6239 +        hc.code = h;                            // Record index for next time
6240      }
6241  
6242      // Unsafe mechanics
6243 <    private static final sun.misc.Unsafe UNSAFE;
6244 <    private static final long counterOffset;
6245 <    private static final long sizeCtlOffset;
6243 >    private static final sun.misc.Unsafe U;
6244 >    private static final long SIZECTL;
6245 >    private static final long TRANSFERINDEX;
6246 >    private static final long BASECOUNT;
6247 >    private static final long CELLSBUSY;
6248 >    private static final long CELLVALUE;
6249      private static final long ABASE;
6250      private static final int ASHIFT;
6251  
6252      static {
3317        int ss;
6253          try {
6254 <            UNSAFE = getUnsafe();
6254 >            U = getUnsafe();
6255              Class<?> k = ConcurrentHashMapV8.class;
6256 <            counterOffset = UNSAFE.objectFieldOffset
3322 <                (k.getDeclaredField("counter"));
3323 <            sizeCtlOffset = UNSAFE.objectFieldOffset
6256 >            SIZECTL = U.objectFieldOffset
6257                  (k.getDeclaredField("sizeCtl"));
6258 <            Class<?> sc = Node[].class;
6259 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6260 <            ss = UNSAFE.arrayIndexScale(sc);
6258 >            TRANSFERINDEX = U.objectFieldOffset
6259 >                (k.getDeclaredField("transferIndex"));
6260 >            BASECOUNT = U.objectFieldOffset
6261 >                (k.getDeclaredField("baseCount"));
6262 >            CELLSBUSY = U.objectFieldOffset
6263 >                (k.getDeclaredField("cellsBusy"));
6264 >            Class<?> ck = CounterCell.class;
6265 >            CELLVALUE = U.objectFieldOffset
6266 >                (ck.getDeclaredField("value"));
6267 >            Class<?> ak = Node[].class;
6268 >            ABASE = U.arrayBaseOffset(ak);
6269 >            int scale = U.arrayIndexScale(ak);
6270 >            if ((scale & (scale - 1)) != 0)
6271 >                throw new Error("data type scale not a power of two");
6272 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6273          } catch (Exception e) {
6274              throw new Error(e);
6275          }
3331        if ((ss & (ss-1)) != 0)
3332            throw new Error("data type scale not a power of two");
3333        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6276      }
6277  
6278      /**
# Line 3343 | Line 6285 | public class ConcurrentHashMapV8<K, V>
6285      private static sun.misc.Unsafe getUnsafe() {
6286          try {
6287              return sun.misc.Unsafe.getUnsafe();
6288 <        } catch (SecurityException se) {
6289 <            try {
6290 <                return java.security.AccessController.doPrivileged
6291 <                    (new java.security
6292 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6293 <                        public sun.misc.Unsafe run() throws Exception {
6294 <                            java.lang.reflect.Field f = sun.misc
6295 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6296 <                            f.setAccessible(true);
6297 <                            return (sun.misc.Unsafe) f.get(null);
6298 <                        }});
6299 <            } catch (java.security.PrivilegedActionException e) {
6300 <                throw new RuntimeException("Could not initialize intrinsics",
6301 <                                           e.getCause());
6302 <            }
6288 >        } catch (SecurityException tryReflectionInstead) {}
6289 >        try {
6290 >            return java.security.AccessController.doPrivileged
6291 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6292 >                public sun.misc.Unsafe run() throws Exception {
6293 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6294 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6295 >                        f.setAccessible(true);
6296 >                        Object x = f.get(null);
6297 >                        if (k.isInstance(x))
6298 >                            return k.cast(x);
6299 >                    }
6300 >                    throw new NoSuchFieldError("the Unsafe");
6301 >                }});
6302 >        } catch (java.security.PrivilegedActionException e) {
6303 >            throw new RuntimeException("Could not initialize intrinsics",
6304 >                                       e.getCause());
6305          }
6306      }
3363
6307   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines