ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.60 by dl, Thu Aug 16 12:24:58 2012 UTC vs.
Revision 1.120 by dl, Sun Dec 1 20:55:50 2013 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166e;
8 < import jsr166e.LongAdder;
8 >
9   import jsr166e.ForkJoinPool;
10 import jsr166e.ForkJoinTask;
10  
11 < import java.util.Comparator;
11 > import java.io.ObjectStreamField;
12 > import java.io.Serializable;
13 > import java.lang.reflect.ParameterizedType;
14 > import java.lang.reflect.Type;
15 > import java.util.AbstractMap;
16   import java.util.Arrays;
14 import java.util.Map;
15 import java.util.Set;
17   import java.util.Collection;
18 < import java.util.AbstractMap;
19 < import java.util.AbstractSet;
20 < import java.util.AbstractCollection;
20 < import java.util.Hashtable;
18 > import java.util.Comparator;
19 > import java.util.ConcurrentModificationException;
20 > import java.util.Enumeration;
21   import java.util.HashMap;
22 + import java.util.Hashtable;
23   import java.util.Iterator;
24 < import java.util.Enumeration;
24 < import java.util.ConcurrentModificationException;
24 > import java.util.Map;
25   import java.util.NoSuchElementException;
26 + import java.util.Set;
27   import java.util.concurrent.ConcurrentMap;
27 import java.util.concurrent.ThreadLocalRandom;
28 import java.util.concurrent.locks.LockSupport;
29 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
28   import java.util.concurrent.atomic.AtomicReference;
29 <
30 < import java.io.Serializable;
29 > import java.util.concurrent.atomic.AtomicInteger;
30 > import java.util.concurrent.locks.LockSupport;
31 > import java.util.concurrent.locks.ReentrantLock;
32  
33   /**
34   * A hash table supporting full concurrency of retrievals and
# Line 43 | Line 42 | import java.io.Serializable;
42   * interoperable with {@code Hashtable} in programs that rely on its
43   * thread safety but not on its synchronization details.
44   *
45 < * <p> Retrieval operations (including {@code get}) generally do not
45 > * <p>Retrieval operations (including {@code get}) generally do not
46   * block, so may overlap with update operations (including {@code put}
47   * and {@code remove}). Retrievals reflect the results of the most
48   * recently <em>completed</em> update operations holding upon their
# Line 64 | Line 63 | import java.io.Serializable;
63   * that may be adequate for monitoring or estimation purposes, but not
64   * for program control.
65   *
66 < * <p> The table is dynamically expanded when there are too many
66 > * <p>The table is dynamically expanded when there are too many
67   * collisions (i.e., keys that have distinct hash codes but fall into
68   * the same slot modulo the table size), with the expected average
69   * effect of maintaining roughly two bins per mapping (corresponding
# Line 83 | Line 82 | import java.io.Serializable;
82   * expected {@code concurrencyLevel} as an additional hint for
83   * internal sizing.  Note that using many keys with exactly the same
84   * {@code hashCode()} is a sure way to slow down performance of any
85 < * hash table.
85 > * hash table. To ameliorate impact, when keys are {@link Comparable},
86 > * this class may use comparison order among keys to help break ties.
87 > *
88 > * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
89 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
90 > * (using {@link #keySet(Object)} when only keys are of interest, and the
91 > * mapped values are (perhaps transiently) not used or all take the
92 > * same mapping value.
93   *
94   * <p>This class and its views and iterators implement all of the
95   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
96   * interfaces.
97   *
98 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
98 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
99   * does <em>not</em> allow {@code null} to be used as a key or value.
100   *
101 + * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
102 + * operations that are designed
103 + * to be safely, and often sensibly, applied even with maps that are
104 + * being concurrently updated by other threads; for example, when
105 + * computing a snapshot summary of the values in a shared registry.
106 + * There are three kinds of operation, each with four forms, accepting
107 + * functions with Keys, Values, Entries, and (Key, Value) arguments
108 + * and/or return values. Because the elements of a ConcurrentHashMapV8
109 + * are not ordered in any particular way, and may be processed in
110 + * different orders in different parallel executions, the correctness
111 + * of supplied functions should not depend on any ordering, or on any
112 + * other objects or values that may transiently change while
113 + * computation is in progress; and except for forEach actions, should
114 + * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
115 + * objects do not support method {@code setValue}.
116 + *
117 + * <ul>
118 + * <li> forEach: Perform a given action on each element.
119 + * A variant form applies a given transformation on each element
120 + * before performing the action.</li>
121 + *
122 + * <li> search: Return the first available non-null result of
123 + * applying a given function on each element; skipping further
124 + * search when a result is found.</li>
125 + *
126 + * <li> reduce: Accumulate each element.  The supplied reduction
127 + * function cannot rely on ordering (more formally, it should be
128 + * both associative and commutative).  There are five variants:
129 + *
130 + * <ul>
131 + *
132 + * <li> Plain reductions. (There is not a form of this method for
133 + * (key, value) function arguments since there is no corresponding
134 + * return type.)</li>
135 + *
136 + * <li> Mapped reductions that accumulate the results of a given
137 + * function applied to each element.</li>
138 + *
139 + * <li> Reductions to scalar doubles, longs, and ints, using a
140 + * given basis value.</li>
141 + *
142 + * </ul>
143 + * </li>
144 + * </ul>
145 + *
146 + * <p>These bulk operations accept a {@code parallelismThreshold}
147 + * argument. Methods proceed sequentially if the current map size is
148 + * estimated to be less than the given threshold. Using a value of
149 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
150 + * of {@code 1} results in maximal parallelism by partitioning into
151 + * enough subtasks to fully utilize the {@link
152 + * ForkJoinPool#commonPool()} that is used for all parallel
153 + * computations. Normally, you would initially choose one of these
154 + * extreme values, and then measure performance of using in-between
155 + * values that trade off overhead versus throughput.
156 + *
157 + * <p>The concurrency properties of bulk operations follow
158 + * from those of ConcurrentHashMapV8: Any non-null result returned
159 + * from {@code get(key)} and related access methods bears a
160 + * happens-before relation with the associated insertion or
161 + * update.  The result of any bulk operation reflects the
162 + * composition of these per-element relations (but is not
163 + * necessarily atomic with respect to the map as a whole unless it
164 + * is somehow known to be quiescent).  Conversely, because keys
165 + * and values in the map are never null, null serves as a reliable
166 + * atomic indicator of the current lack of any result.  To
167 + * maintain this property, null serves as an implicit basis for
168 + * all non-scalar reduction operations. For the double, long, and
169 + * int versions, the basis should be one that, when combined with
170 + * any other value, returns that other value (more formally, it
171 + * should be the identity element for the reduction). Most common
172 + * reductions have these properties; for example, computing a sum
173 + * with basis 0 or a minimum with basis MAX_VALUE.
174 + *
175 + * <p>Search and transformation functions provided as arguments
176 + * should similarly return null to indicate the lack of any result
177 + * (in which case it is not used). In the case of mapped
178 + * reductions, this also enables transformations to serve as
179 + * filters, returning null (or, in the case of primitive
180 + * specializations, the identity basis) if the element should not
181 + * be combined. You can create compound transformations and
182 + * filterings by composing them yourself under this "null means
183 + * there is nothing there now" rule before using them in search or
184 + * reduce operations.
185 + *
186 + * <p>Methods accepting and/or returning Entry arguments maintain
187 + * key-value associations. They may be useful for example when
188 + * finding the key for the greatest value. Note that "plain" Entry
189 + * arguments can be supplied using {@code new
190 + * AbstractMap.SimpleEntry(k,v)}.
191 + *
192 + * <p>Bulk operations may complete abruptly, throwing an
193 + * exception encountered in the application of a supplied
194 + * function. Bear in mind when handling such exceptions that other
195 + * concurrently executing functions could also have thrown
196 + * exceptions, or would have done so if the first exception had
197 + * not occurred.
198 + *
199 + * <p>Speedups for parallel compared to sequential forms are common
200 + * but not guaranteed.  Parallel operations involving brief functions
201 + * on small maps may execute more slowly than sequential forms if the
202 + * underlying work to parallelize the computation is more expensive
203 + * than the computation itself.  Similarly, parallelization may not
204 + * lead to much actual parallelism if all processors are busy
205 + * performing unrelated tasks.
206 + *
207 + * <p>All arguments to all task methods must be non-null.
208 + *
209 + * <p><em>jsr166e note: During transition, this class
210 + * uses nested functional interfaces with different names but the
211 + * same forms as those expected for JDK8.</em>
212 + *
213   * <p>This class is a member of the
214   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
215   * Java Collections Framework</a>.
216   *
99 * <p><em>jsr166e note: This class is a candidate replacement for
100 * java.util.concurrent.ConcurrentHashMap.  During transition, this
101 * class declares and uses nested functional interfaces with different
102 * names but the same forms as those expected for JDK8.<em>
103 *
217   * @since 1.5
218   * @author Doug Lea
219   * @param <K> the type of keys maintained by this map
220   * @param <V> the type of mapped values
221   */
222 < public class ConcurrentHashMapV8<K, V>
223 <    implements ConcurrentMap<K, V>, Serializable {
222 > public class ConcurrentHashMapV8<K,V> extends AbstractMap<K,V>
223 >    implements ConcurrentMap<K,V>, Serializable {
224      private static final long serialVersionUID = 7249069246763182397L;
225  
226      /**
227 <     * A partitionable iterator. A Spliterator can be traversed
228 <     * directly, but can also be partitioned (before traversal) by
229 <     * creating another Spliterator that covers a non-overlapping
117 <     * portion of the elements, and so may be amenable to parallel
118 <     * execution.
119 <     *
120 <     * <p> This interface exports a subset of expected JDK8
121 <     * functionality.
122 <     *
123 <     * <p>Sample usage: Here is one (of the several) ways to compute
124 <     * the sum of the values held in a map using the ForkJoin
125 <     * framework. As illustrated here, Spliterators are well suited to
126 <     * designs in which a task repeatedly splits off half its work
127 <     * into forked subtasks until small enough to process directly,
128 <     * and then joins these subtasks. Variants of this style can also
129 <     * be used in completion-based designs.
130 <     *
131 <     * <pre>
132 <     * {@code ConcurrentHashMapV8<String, Long> m = ...
133 <     * // split as if have 8 * parallelism, for load balance
134 <     * int n = m.size();
135 <     * int p = aForkJoinPool.getParallelism() * 8;
136 <     * int split = (n < p)? n : p;
137 <     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
138 <     * // ...
139 <     * static class SumValues extends RecursiveTask<Long> {
140 <     *   final Spliterator<Long> s;
141 <     *   final int split;             // split while > 1
142 <     *   final SumValues nextJoin;    // records forked subtasks to join
143 <     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
144 <     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
145 <     *   }
146 <     *   public Long compute() {
147 <     *     long sum = 0;
148 <     *     SumValues subtasks = null; // fork subtasks
149 <     *     for (int s = split >>> 1; s > 0; s >>>= 1)
150 <     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
151 <     *     while (s.hasNext())        // directly process remaining elements
152 <     *       sum += s.next();
153 <     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
154 <     *       sum += t.join();         // collect subtask results
155 <     *     return sum;
156 <     *   }
157 <     * }
158 <     * }</pre>
227 >     * An object for traversing and partitioning elements of a source.
228 >     * This interface provides a subset of the functionality of JDK8
229 >     * java.util.Spliterator.
230       */
231 <    public static interface Spliterator<T> extends Iterator<T> {
231 >    public static interface ConcurrentHashMapSpliterator<T> {
232          /**
233 <         * Returns a Spliterator covering approximately half of the
234 <         * elements, guaranteed not to overlap with those subsequently
235 <         * returned by this Spliterator.  After invoking this method,
236 <         * the current Spliterator will <em>not</em> produce any of
237 <         * the elements of the returned Spliterator, but the two
238 <         * Spliterators together will produce all of the elements that
239 <         * would have been produced by this Spliterator had this
240 <         * method not been called. The exact number of elements
241 <         * produced by the returned Spliterator is not guaranteed, and
171 <         * may be zero (i.e., with {@code hasNext()} reporting {@code
172 <         * false}) if this Spliterator cannot be further split.
173 <         *
174 <         * @return a Spliterator covering approximately half of the
175 <         * elements
176 <         * @throws IllegalStateException if this Spliterator has
177 <         * already commenced traversing elements
233 >         * If possible, returns a new spliterator covering
234 >         * approximately one half of the elements, which will not be
235 >         * covered by this spliterator. Returns null if cannot be
236 >         * split.
237 >         */
238 >        ConcurrentHashMapSpliterator<T> trySplit();
239 >        /**
240 >         * Returns an estimate of the number of elements covered by
241 >         * this Spliterator.
242           */
243 <        Spliterator<T> split();
243 >        long estimateSize();
244 >
245 >        /** Applies the action to each untraversed element */
246 >        void forEachRemaining(Action<? super T> action);
247 >        /** If an element remains, applies the action and returns true. */
248 >        boolean tryAdvance(Action<? super T> action);
249      }
250  
251 +    // Sams
252 +    /** Interface describing a void action of one argument */
253 +    public interface Action<A> { void apply(A a); }
254 +    /** Interface describing a void action of two arguments */
255 +    public interface BiAction<A,B> { void apply(A a, B b); }
256 +    /** Interface describing a function of one argument */
257 +    public interface Fun<A,T> { T apply(A a); }
258 +    /** Interface describing a function of two arguments */
259 +    public interface BiFun<A,B,T> { T apply(A a, B b); }
260 +    /** Interface describing a function mapping its argument to a double */
261 +    public interface ObjectToDouble<A> { double apply(A a); }
262 +    /** Interface describing a function mapping its argument to a long */
263 +    public interface ObjectToLong<A> { long apply(A a); }
264 +    /** Interface describing a function mapping its argument to an int */
265 +    public interface ObjectToInt<A> {int apply(A a); }
266 +    /** Interface describing a function mapping two arguments to a double */
267 +    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
268 +    /** Interface describing a function mapping two arguments to a long */
269 +    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
270 +    /** Interface describing a function mapping two arguments to an int */
271 +    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
272 +    /** Interface describing a function mapping two doubles to a double */
273 +    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
274 +    /** Interface describing a function mapping two longs to a long */
275 +    public interface LongByLongToLong { long apply(long a, long b); }
276 +    /** Interface describing a function mapping two ints to an int */
277 +    public interface IntByIntToInt { int apply(int a, int b); }
278 +
279 +
280      /*
281       * Overview:
282       *
# Line 189 | Line 287 | public class ConcurrentHashMapV8<K, V>
287       * the same or better than java.util.HashMap, and to support high
288       * initial insertion rates on an empty table by many threads.
289       *
290 <     * Each key-value mapping is held in a Node.  Because Node fields
291 <     * can contain special values, they are defined using plain Object
292 <     * types. Similarly in turn, all internal methods that use them
293 <     * work off Object types. And similarly, so do the internal
294 <     * methods of auxiliary iterator and view classes.  All public
295 <     * generic typed methods relay in/out of these internal methods,
296 <     * supplying null-checks and casts as needed. This also allows
297 <     * many of the public methods to be factored into a smaller number
298 <     * of internal methods (although sadly not so for the five
299 <     * variants of put-related operations). The validation-based
300 <     * approach explained below leads to a lot of code sprawl because
301 <     * retry-control precludes factoring into smaller methods.
290 >     * This map usually acts as a binned (bucketed) hash table.  Each
291 >     * key-value mapping is held in a Node.  Most nodes are instances
292 >     * of the basic Node class with hash, key, value, and next
293 >     * fields. However, various subclasses exist: TreeNodes are
294 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
295 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
296 >     * of bins during resizing. ReservationNodes are used as
297 >     * placeholders while establishing values in computeIfAbsent and
298 >     * related methods.  The types TreeBin, ForwardingNode, and
299 >     * ReservationNode do not hold normal user keys, values, or
300 >     * hashes, and are readily distinguishable during search etc
301 >     * because they have negative hash fields and null key and value
302 >     * fields. (These special nodes are either uncommon or transient,
303 >     * so the impact of carrying around some unused fields is
304 >     * insignificant.)
305       *
306       * The table is lazily initialized to a power-of-two size upon the
307       * first insertion.  Each bin in the table normally contains a
# Line 208 | Line 309 | public class ConcurrentHashMapV8<K, V>
309       * Table accesses require volatile/atomic reads, writes, and
310       * CASes.  Because there is no other way to arrange this without
311       * adding further indirections, we use intrinsics
312 <     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
313 <     * are always accurately traversable under volatile reads, so long
314 <     * as lookups check hash code and non-nullness of value before
315 <     * checking key equality.
316 <     *
317 <     * We use the top two bits of Node hash fields for control
217 <     * purposes -- they are available anyway because of addressing
218 <     * constraints.  As explained further below, these top bits are
219 <     * used as follows:
220 <     *  00 - Normal
221 <     *  01 - Locked
222 <     *  11 - Locked and may have a thread waiting for lock
223 <     *  10 - Node is a forwarding node
224 <     *
225 <     * The lower 30 bits of each Node's hash field contain a
226 <     * transformation of the key's hash code, except for forwarding
227 <     * nodes, for which the lower bits are zero (and so always have
228 <     * hash field == MOVED).
312 >     * (sun.misc.Unsafe) operations.
313 >     *
314 >     * We use the top (sign) bit of Node hash fields for control
315 >     * purposes -- it is available anyway because of addressing
316 >     * constraints.  Nodes with negative hash fields are specially
317 >     * handled or ignored in map methods.
318       *
319       * Insertion (via put or its variants) of the first node in an
320       * empty bin is performed by just CASing it to the bin.  This is
# Line 234 | Line 323 | public class ConcurrentHashMapV8<K, V>
323       * delete, and replace) require locks.  We do not want to waste
324       * the space required to associate a distinct lock object with
325       * each bin, so instead use the first node of a bin list itself as
326 <     * a lock. Blocking support for these locks relies on the builtin
327 <     * "synchronized" monitors.  However, we also need a tryLock
239 <     * construction, so we overlay these by using bits of the Node
240 <     * hash field for lock control (see above), and so normally use
241 <     * builtin monitors only for blocking and signalling using
242 <     * wait/notifyAll constructions. See Node.tryAwaitLock.
326 >     * a lock. Locking support for these locks relies on builtin
327 >     * "synchronized" monitors.
328       *
329       * Using the first node of a list as a lock does not by itself
330       * suffice though: When a node is locked, any update must first
331       * validate that it is still the first node after locking it, and
332       * retry if not. Because new nodes are always appended to lists,
333       * once a node is first in a bin, it remains first until deleted
334 <     * or the bin becomes invalidated (upon resizing).  However,
250 <     * operations that only conditionally update may inspect nodes
251 <     * until the point of update. This is a converse of sorts to the
252 <     * lazy locking technique described by Herlihy & Shavit.
334 >     * or the bin becomes invalidated (upon resizing).
335       *
336       * The main disadvantage of per-bin locks is that other update
337       * operations on other nodes in a bin list protected by the same
# Line 282 | Line 364 | public class ConcurrentHashMapV8<K, V>
364       * sometimes deviate significantly from uniform randomness.  This
365       * includes the case when N > (1<<30), so some keys MUST collide.
366       * Similarly for dumb or hostile usages in which multiple keys are
367 <     * designed to have identical hash codes. Also, although we guard
368 <     * against the worst effects of this (see method spread), sets of
369 <     * hashes may differ only in bits that do not impact their bin
370 <     * index for a given power-of-two mask.  So we use a secondary
371 <     * strategy that applies when the number of nodes in a bin exceeds
372 <     * a threshold, and at least one of the keys implements
291 <     * Comparable.  These TreeBins use a balanced tree to hold nodes
292 <     * (a specialized form of red-black trees), bounding search time
293 <     * to O(log N).  Each search step in a TreeBin is around twice as
367 >     * designed to have identical hash codes or ones that differs only
368 >     * in masked-out high bits. So we use a secondary strategy that
369 >     * applies when the number of nodes in a bin exceeds a
370 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
371 >     * specialized form of red-black trees), bounding search time to
372 >     * O(log N).  Each search step in a TreeBin is at least twice as
373       * slow as in a regular list, but given that N cannot exceed
374       * (1<<64) (before running out of addresses) this bounds search
375       * steps, lock hold times, etc, to reasonable constants (roughly
# Line 301 | Line 380 | public class ConcurrentHashMapV8<K, V>
380       * iterators in the same way.
381       *
382       * The table is resized when occupancy exceeds a percentage
383 <     * threshold (nominally, 0.75, but see below).  Only a single
384 <     * thread performs the resize (using field "sizeCtl", to arrange
385 <     * exclusion), but the table otherwise remains usable for reads
386 <     * and updates. Resizing proceeds by transferring bins, one by
387 <     * one, from the table to the next table.  Because we are using
388 <     * power-of-two expansion, the elements from each bin must either
389 <     * stay at same index, or move with a power of two offset. We
390 <     * eliminate unnecessary node creation by catching cases where old
391 <     * nodes can be reused because their next fields won't change.  On
392 <     * average, only about one-sixth of them need cloning when a table
393 <     * doubles. The nodes they replace will be garbage collectable as
394 <     * soon as they are no longer referenced by any reader thread that
395 <     * may be in the midst of concurrently traversing table.  Upon
396 <     * transfer, the old table bin contains only a special forwarding
397 <     * node (with hash field "MOVED") that contains the next table as
398 <     * its key. On encountering a forwarding node, access and update
399 <     * operations restart, using the new table.
400 <     *
401 <     * Each bin transfer requires its bin lock. However, unlike other
402 <     * cases, a transfer can skip a bin if it fails to acquire its
403 <     * lock, and revisit it later (unless it is a TreeBin). Method
404 <     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
405 <     * have been skipped because of failure to acquire a lock, and
406 <     * blocks only if none are available (i.e., only very rarely).
407 <     * The transfer operation must also ensure that all accessible
408 <     * bins in both the old and new table are usable by any traversal.
409 <     * When there are no lock acquisition failures, this is arranged
410 <     * simply by proceeding from the last bin (table.length - 1) up
411 <     * towards the first.  Upon seeing a forwarding node, traversals
412 <     * (see class Iter) arrange to move to the new table
413 <     * without revisiting nodes.  However, when any node is skipped
414 <     * during a transfer, all earlier table bins may have become
415 <     * visible, so are initialized with a reverse-forwarding node back
416 <     * to the old table until the new ones are established. (This
417 <     * sometimes requires transiently locking a forwarding node, which
418 <     * is possible under the above encoding.) These more expensive
419 <     * mechanics trigger only when necessary.
383 >     * threshold (nominally, 0.75, but see below).  Any thread
384 >     * noticing an overfull bin may assist in resizing after the
385 >     * initiating thread allocates and sets up the replacement array.
386 >     * However, rather than stalling, these other threads may proceed
387 >     * with insertions etc.  The use of TreeBins shields us from the
388 >     * worst case effects of overfilling while resizes are in
389 >     * progress.  Resizing proceeds by transferring bins, one by one,
390 >     * from the table to the next table. However, threads claim small
391 >     * blocks of indices to transfer (via field transferIndex) before
392 >     * doing so, reducing contention.  A generation stamp in field
393 >     * sizeCtl ensures that resizings do not overlap. Because we are
394 >     * using power-of-two expansion, the elements from each bin must
395 >     * either stay at same index, or move with a power of two
396 >     * offset. We eliminate unnecessary node creation by catching
397 >     * cases where old nodes can be reused because their next fields
398 >     * won't change.  On average, only about one-sixth of them need
399 >     * cloning when a table doubles. The nodes they replace will be
400 >     * garbage collectable as soon as they are no longer referenced by
401 >     * any reader thread that may be in the midst of concurrently
402 >     * traversing table.  Upon transfer, the old table bin contains
403 >     * only a special forwarding node (with hash field "MOVED") that
404 >     * contains the next table as its key. On encountering a
405 >     * forwarding node, access and update operations restart, using
406 >     * the new table.
407 >     *
408 >     * Each bin transfer requires its bin lock, which can stall
409 >     * waiting for locks while resizing. However, because other
410 >     * threads can join in and help resize rather than contend for
411 >     * locks, average aggregate waits become shorter as resizing
412 >     * progresses.  The transfer operation must also ensure that all
413 >     * accessible bins in both the old and new table are usable by any
414 >     * traversal.  This is arranged in part by proceeding from the
415 >     * last bin (table.length - 1) up towards the first.  Upon seeing
416 >     * a forwarding node, traversals (see class Traverser) arrange to
417 >     * move to the new table without revisiting nodes.  To ensure that
418 >     * no intervening nodes are skipped even when moved out of order,
419 >     * a stack (see class TableStack) is created on first encounter of
420 >     * a forwarding node during a traversal, to maintain its place if
421 >     * later processing the current table. The need for these
422 >     * save/restore mechanics is relatively rare, but when one
423 >     * forwarding node is encountered, typically many more will be.
424 >     * So Traversers use a simple caching scheme to avoid creating so
425 >     * many new TableStack nodes. (Thanks to Peter Levart for
426 >     * suggesting use of a stack here.)
427       *
428       * The traversal scheme also applies to partial traversals of
429       * ranges of bins (via an alternate Traverser constructor)
# Line 352 | Line 438 | public class ConcurrentHashMapV8<K, V>
438       * These cases attempt to override the initial capacity settings,
439       * but harmlessly fail to take effect in cases of races.
440       *
441 <     * The element count is maintained using a LongAdder, which avoids
442 <     * contention on updates but can encounter cache thrashing if read
443 <     * too frequently during concurrent access. To avoid reading so
444 <     * often, resizing is attempted either when a bin lock is
445 <     * contended, or upon adding to a bin already holding two or more
446 <     * nodes (checked before adding in the xIfAbsent methods, after
447 <     * adding in others). Under uniform hash distributions, the
448 <     * probability of this occurring at threshold is around 13%,
449 <     * meaning that only about 1 in 8 puts check threshold (and after
450 <     * resizing, many fewer do so). But this approximation has high
451 <     * variance for small table sizes, so we check on any collision
452 <     * for sizes <= 64. The bulk putAll operation further reduces
453 <     * contention by only committing count updates upon these size
454 <     * checks.
441 >     * The element count is maintained using a specialization of
442 >     * LongAdder. We need to incorporate a specialization rather than
443 >     * just use a LongAdder in order to access implicit
444 >     * contention-sensing that leads to creation of multiple
445 >     * CounterCells.  The counter mechanics avoid contention on
446 >     * updates but can encounter cache thrashing if read too
447 >     * frequently during concurrent access. To avoid reading so often,
448 >     * resizing under contention is attempted only upon adding to a
449 >     * bin already holding two or more nodes. Under uniform hash
450 >     * distributions, the probability of this occurring at threshold
451 >     * is around 13%, meaning that only about 1 in 8 puts check
452 >     * threshold (and after resizing, many fewer do so).
453 >     *
454 >     * TreeBins use a special form of comparison for search and
455 >     * related operations (which is the main reason we cannot use
456 >     * existing collections such as TreeMaps). TreeBins contain
457 >     * Comparable elements, but may contain others, as well as
458 >     * elements that are Comparable but not necessarily Comparable for
459 >     * the same T, so we cannot invoke compareTo among them. To handle
460 >     * this, the tree is ordered primarily by hash value, then by
461 >     * Comparable.compareTo order if applicable.  On lookup at a node,
462 >     * if elements are not comparable or compare as 0 then both left
463 >     * and right children may need to be searched in the case of tied
464 >     * hash values. (This corresponds to the full list search that
465 >     * would be necessary if all elements were non-Comparable and had
466 >     * tied hashes.) On insertion, to keep a total ordering (or as
467 >     * close as is required here) across rebalancings, we compare
468 >     * classes and identityHashCodes as tie-breakers. The red-black
469 >     * balancing code is updated from pre-jdk-collections
470 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
471 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
472 >     * Algorithms" (CLR).
473 >     *
474 >     * TreeBins also require an additional locking mechanism.  While
475 >     * list traversal is always possible by readers even during
476 >     * updates, tree traversal is not, mainly because of tree-rotations
477 >     * that may change the root node and/or its linkages.  TreeBins
478 >     * include a simple read-write lock mechanism parasitic on the
479 >     * main bin-synchronization strategy: Structural adjustments
480 >     * associated with an insertion or removal are already bin-locked
481 >     * (and so cannot conflict with other writers) but must wait for
482 >     * ongoing readers to finish. Since there can be only one such
483 >     * waiter, we use a simple scheme using a single "waiter" field to
484 >     * block writers.  However, readers need never block.  If the root
485 >     * lock is held, they proceed along the slow traversal path (via
486 >     * next-pointers) until the lock becomes available or the list is
487 >     * exhausted, whichever comes first. These cases are not fast, but
488 >     * maximize aggregate expected throughput.
489       *
490       * Maintaining API and serialization compatibility with previous
491       * versions of this class introduces several oddities. Mainly: We
# Line 375 | Line 495 | public class ConcurrentHashMapV8<K, V>
495       * time that we can guarantee to honor it.) We also declare an
496       * unused "Segment" class that is instantiated in minimal form
497       * only when serializing.
498 +     *
499 +     * Also, solely for compatibility with previous versions of this
500 +     * class, it extends AbstractMap, even though all of its methods
501 +     * are overridden, so it is just useless baggage.
502 +     *
503 +     * This file is organized to make things a little easier to follow
504 +     * while reading than they might otherwise: First the main static
505 +     * declarations and utilities, then fields, then main public
506 +     * methods (with a few factorings of multiple public methods into
507 +     * internal ones), then sizing methods, trees, traversers, and
508 +     * bulk operations.
509       */
510  
511      /* ---------------- Constants -------------- */
# Line 416 | Line 547 | public class ConcurrentHashMapV8<K, V>
547      private static final float LOAD_FACTOR = 0.75f;
548  
549      /**
550 <     * The buffer size for skipped bins during transfers. The
551 <     * value is arbitrary but should be large enough to avoid
552 <     * most locking stalls during resizes.
550 >     * The bin count threshold for using a tree rather than list for a
551 >     * bin.  Bins are converted to trees when adding an element to a
552 >     * bin with at least this many nodes. The value must be greater
553 >     * than 2, and should be at least 8 to mesh with assumptions in
554 >     * tree removal about conversion back to plain bins upon
555 >     * shrinkage.
556       */
557 <    private static final int TRANSFER_BUFFER_SIZE = 32;
557 >    static final int TREEIFY_THRESHOLD = 8;
558  
559      /**
560 <     * The bin count threshold for using a tree rather than list for a
561 <     * bin.  The value reflects the approximate break-even point for
562 <     * using tree-based operations.
560 >     * The bin count threshold for untreeifying a (split) bin during a
561 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
562 >     * most 6 to mesh with shrinkage detection under removal.
563       */
564 <    private static final int TREE_THRESHOLD = 8;
564 >    static final int UNTREEIFY_THRESHOLD = 6;
565  
566 <    /*
567 <     * Encodings for special uses of Node hash fields. See above for
568 <     * explanation.
566 >    /**
567 >     * The smallest table capacity for which bins may be treeified.
568 >     * (Otherwise the table is resized if too many nodes in a bin.)
569 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
570 >     * conflicts between resizing and treeification thresholds.
571       */
572 <    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
437 <    static final int LOCKED    = 0x40000000; // set/tested only as a bit
438 <    static final int WAITING   = 0xc0000000; // both bits set/tested together
439 <    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
440 <
441 <    /* ---------------- Fields -------------- */
572 >    static final int MIN_TREEIFY_CAPACITY = 64;
573  
574      /**
575 <     * The array of bins. Lazily initialized upon first insertion.
576 <     * Size is always a power of two. Accessed directly by iterators.
575 >     * Minimum number of rebinnings per transfer step. Ranges are
576 >     * subdivided to allow multiple resizer threads.  This value
577 >     * serves as a lower bound to avoid resizers encountering
578 >     * excessive memory contention.  The value should be at least
579 >     * DEFAULT_CAPACITY.
580       */
581 <    transient volatile Node[] table;
581 >    private static final int MIN_TRANSFER_STRIDE = 16;
582  
583      /**
584 <     * The counter maintaining number of elements.
584 >     * The number of bits used for generation stamp in sizeCtl.
585 >     * Must be at least 6 for 32bit arrays.
586       */
587 <    private transient final LongAdder counter;
587 >    private static int RESIZE_STAMP_BITS = 16;
588  
589      /**
590 <     * Table initialization and resizing control.  When negative, the
591 <     * table is being initialized or resized. Otherwise, when table is
457 <     * null, holds the initial table size to use upon creation, or 0
458 <     * for default. After initialization, holds the next element count
459 <     * value upon which to resize the table.
590 >     * The maximum number of threads that can help resize.
591 >     * Must fit in 32 - RESIZE_STAMP_BITS bits.
592       */
593 <    private transient volatile int sizeCtl;
593 >    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
594  
595 <    // views
596 <    private transient KeySet<K,V> keySet;
597 <    private transient Values<K,V> values;
598 <    private transient EntrySet<K,V> entrySet;
467 <
468 <    /** For serialization compatibility. Null unless serialized; see below */
469 <    private Segment<K,V>[] segments;
470 <
471 <    /* ---------------- Table element access -------------- */
595 >    /**
596 >     * The bit shift for recording size stamp in sizeCtl.
597 >     */
598 >    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
599  
600      /*
601 <     * Volatile access methods are used for table elements as well as
475 <     * elements of in-progress next table while resizing.  Uses are
476 <     * null checked by callers, and implicitly bounds-checked, relying
477 <     * on the invariants that tab arrays have non-zero size, and all
478 <     * indices are masked with (tab.length - 1) which is never
479 <     * negative and always less than length. Note that, to be correct
480 <     * wrt arbitrary concurrency errors by users, bounds checks must
481 <     * operate on local variables, which accounts for some odd-looking
482 <     * inline assignments below.
601 >     * Encodings for Node hash fields. See above for explanation.
602       */
603 <
604 <    static final Node tabAt(Node[] tab, int i) { // used by Iter
605 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
606 <    }
607 <
608 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
609 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
610 <    }
611 <
612 <    private static final void setTabAt(Node[] tab, int i, Node v) {
613 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
614 <    }
603 >    static final int MOVED     = -1; // hash for forwarding nodes
604 >    static final int TREEBIN   = -2; // hash for roots of trees
605 >    static final int RESERVED  = -3; // hash for transient reservations
606 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
607 >
608 >    /** Number of CPUS, to place bounds on some sizings */
609 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
610 >
611 >    /** For serialization compatibility. */
612 >    private static final ObjectStreamField[] serialPersistentFields = {
613 >        new ObjectStreamField("segments", Segment[].class),
614 >        new ObjectStreamField("segmentMask", Integer.TYPE),
615 >        new ObjectStreamField("segmentShift", Integer.TYPE)
616 >    };
617  
618      /* ---------------- Nodes -------------- */
619  
620      /**
621 <     * Key-value entry. Note that this is never exported out as a
622 <     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
623 <     * field of MOVED are special, and do not contain user keys or
624 <     * values.  Otherwise, keys are never null, and null val fields
625 <     * indicate that a node is in the process of being deleted or
626 <     * created. For purposes of read-only access, a key may be read
627 <     * before a val, but can only be used after checking val to be
628 <     * non-null.
629 <     */
630 <    static class Node {
631 <        volatile int hash;
632 <        final Object key;
512 <        volatile Object val;
513 <        volatile Node next;
621 >     * Key-value entry.  This class is never exported out as a
622 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
623 >     * MapEntry below), but can be used for read-only traversals used
624 >     * in bulk tasks.  Subclasses of Node with a negative hash field
625 >     * are special, and contain null keys and values (but are never
626 >     * exported).  Otherwise, keys and vals are never null.
627 >     */
628 >    static class Node<K,V> implements Map.Entry<K,V> {
629 >        final int hash;
630 >        final K key;
631 >        volatile V val;
632 >        volatile Node<K,V> next;
633  
634 <        Node(int hash, Object key, Object val, Node next) {
634 >        Node(int hash, K key, V val, Node<K,V> next) {
635              this.hash = hash;
636              this.key = key;
637              this.val = val;
638              this.next = next;
639          }
640  
641 <        /** CompareAndSet the hash field */
642 <        final boolean casHash(int cmp, int val) {
643 <            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
644 <        }
645 <
646 <        /** The number of spins before blocking for a lock */
528 <        static final int MAX_SPINS =
529 <            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
530 <
531 <        /**
532 <         * Spins a while if LOCKED bit set and this node is the first
533 <         * of its bin, and then sets WAITING bits on hash field and
534 <         * blocks (once) if they are still set.  It is OK for this
535 <         * method to return even if lock is not available upon exit,
536 <         * which enables these simple single-wait mechanics.
537 <         *
538 <         * The corresponding signalling operation is performed within
539 <         * callers: Upon detecting that WAITING has been set when
540 <         * unlocking lock (via a failed CAS from non-waiting LOCKED
541 <         * state), unlockers acquire the sync lock and perform a
542 <         * notifyAll.
543 <         */
544 <        final void tryAwaitLock(Node[] tab, int i) {
545 <            if (tab != null && i >= 0 && i < tab.length) { // bounds check
546 <                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
547 <                int spins = MAX_SPINS, h;
548 <                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
549 <                    if (spins >= 0) {
550 <                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
551 <                        if (r >= 0 && --spins == 0)
552 <                            Thread.yield();  // yield before block
553 <                    }
554 <                    else if (casHash(h, h | WAITING)) {
555 <                        synchronized (this) {
556 <                            if (tabAt(tab, i) == this &&
557 <                                (hash & WAITING) == WAITING) {
558 <                                try {
559 <                                    wait();
560 <                                } catch (InterruptedException ie) {
561 <                                    Thread.currentThread().interrupt();
562 <                                }
563 <                            }
564 <                            else
565 <                                notifyAll(); // possibly won race vs signaller
566 <                        }
567 <                        break;
568 <                    }
569 <                }
570 <            }
571 <        }
572 <
573 <        // Unsafe mechanics for casHash
574 <        private static final sun.misc.Unsafe UNSAFE;
575 <        private static final long hashOffset;
576 <
577 <        static {
578 <            try {
579 <                UNSAFE = getUnsafe();
580 <                Class<?> k = Node.class;
581 <                hashOffset = UNSAFE.objectFieldOffset
582 <                    (k.getDeclaredField("hash"));
583 <            } catch (Exception e) {
584 <                throw new Error(e);
585 <            }
586 <        }
587 <    }
588 <
589 <    /* ---------------- TreeBins -------------- */
590 <
591 <    /**
592 <     * Nodes for use in TreeBins
593 <     */
594 <    static final class TreeNode extends Node {
595 <        TreeNode parent;  // red-black tree links
596 <        TreeNode left;
597 <        TreeNode right;
598 <        TreeNode prev;    // needed to unlink next upon deletion
599 <        boolean red;
600 <
601 <        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
602 <            super(hash, key, val, next);
603 <            this.parent = parent;
604 <        }
605 <    }
606 <
607 <    /**
608 <     * A specialized form of red-black tree for use in bins
609 <     * whose size exceeds a threshold.
610 <     *
611 <     * TreeBins use a special form of comparison for search and
612 <     * related operations (which is the main reason we cannot use
613 <     * existing collections such as TreeMaps). TreeBins contain
614 <     * Comparable elements, but may contain others, as well as
615 <     * elements that are Comparable but not necessarily Comparable<T>
616 <     * for the same T, so we cannot invoke compareTo among them. To
617 <     * handle this, the tree is ordered primarily by hash value, then
618 <     * by getClass().getName() order, and then by Comparator order
619 <     * among elements of the same class.  On lookup at a node, if
620 <     * elements are not comparable or compare as 0, both left and
621 <     * right children may need to be searched in the case of tied hash
622 <     * values. (This corresponds to the full list search that would be
623 <     * necessary if all elements were non-Comparable and had tied
624 <     * hashes.)  The red-black balancing code is updated from
625 <     * pre-jdk-collections
626 <     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
627 <     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
628 <     * Algorithms" (CLR).
629 <     *
630 <     * TreeBins also maintain a separate locking discipline than
631 <     * regular bins. Because they are forwarded via special MOVED
632 <     * nodes at bin heads (which can never change once established),
633 <     * we cannot use those nodes as locks. Instead, TreeBin
634 <     * extends AbstractQueuedSynchronizer to support a simple form of
635 <     * read-write lock. For update operations and table validation,
636 <     * the exclusive form of lock behaves in the same way as bin-head
637 <     * locks. However, lookups use shared read-lock mechanics to allow
638 <     * multiple readers in the absence of writers.  Additionally,
639 <     * these lookups do not ever block: While the lock is not
640 <     * available, they proceed along the slow traversal path (via
641 <     * next-pointers) until the lock becomes available or the list is
642 <     * exhausted, whichever comes first. (These cases are not fast,
643 <     * but maximize aggregate expected throughput.)  The AQS mechanics
644 <     * for doing this are straightforward.  The lock state is held as
645 <     * AQS getState().  Read counts are negative; the write count (1)
646 <     * is positive.  There are no signalling preferences among readers
647 <     * and writers. Since we don't need to export full Lock API, we
648 <     * just override the minimal AQS methods and use them directly.
649 <     */
650 <    static final class TreeBin extends AbstractQueuedSynchronizer {
651 <        private static final long serialVersionUID = 2249069246763182397L;
652 <        transient TreeNode root;  // root of tree
653 <        transient TreeNode first; // head of next-pointer list
654 <
655 <        /* AQS overrides */
656 <        public final boolean isHeldExclusively() { return getState() > 0; }
657 <        public final boolean tryAcquire(int ignore) {
658 <            if (compareAndSetState(0, 1)) {
659 <                setExclusiveOwnerThread(Thread.currentThread());
660 <                return true;
661 <            }
662 <            return false;
663 <        }
664 <        public final boolean tryRelease(int ignore) {
665 <            setExclusiveOwnerThread(null);
666 <            setState(0);
667 <            return true;
668 <        }
669 <        public final int tryAcquireShared(int ignore) {
670 <            for (int c;;) {
671 <                if ((c = getState()) > 0)
672 <                    return -1;
673 <                if (compareAndSetState(c, c -1))
674 <                    return 1;
675 <            }
676 <        }
677 <        public final boolean tryReleaseShared(int ignore) {
678 <            int c;
679 <            do {} while (!compareAndSetState(c = getState(), c + 1));
680 <            return c == -1;
681 <        }
682 <
683 <        /** From CLR */
684 <        private void rotateLeft(TreeNode p) {
685 <            if (p != null) {
686 <                TreeNode r = p.right, pp, rl;
687 <                if ((rl = p.right = r.left) != null)
688 <                    rl.parent = p;
689 <                if ((pp = r.parent = p.parent) == null)
690 <                    root = r;
691 <                else if (pp.left == p)
692 <                    pp.left = r;
693 <                else
694 <                    pp.right = r;
695 <                r.left = p;
696 <                p.parent = r;
697 <            }
698 <        }
699 <
700 <        /** From CLR */
701 <        private void rotateRight(TreeNode p) {
702 <            if (p != null) {
703 <                TreeNode l = p.left, pp, lr;
704 <                if ((lr = p.left = l.right) != null)
705 <                    lr.parent = p;
706 <                if ((pp = l.parent = p.parent) == null)
707 <                    root = l;
708 <                else if (pp.right == p)
709 <                    pp.right = l;
710 <                else
711 <                    pp.left = l;
712 <                l.right = p;
713 <                p.parent = l;
714 <            }
715 <        }
716 <
717 <        /**
718 <         * Returns the TreeNode (or null if not found) for the given key
719 <         * starting at given root.
720 <         */
721 <        @SuppressWarnings("unchecked") // suppress Comparable cast warning
722 <        final TreeNode getTreeNode(int h, Object k, TreeNode p) {
723 <            Class<?> c = k.getClass();
724 <            while (p != null) {
725 <                int dir, ph;  Object pk; Class<?> pc;
726 <                if ((ph = p.hash) == h) {
727 <                    if ((pk = p.key) == k || k.equals(pk))
728 <                        return p;
729 <                    if (c != (pc = pk.getClass()) ||
730 <                        !(k instanceof Comparable) ||
731 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
732 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
733 <                        TreeNode r = null, s = null, pl, pr;
734 <                        if (dir >= 0) {
735 <                            if ((pl = p.left) != null && h <= pl.hash)
736 <                                s = pl;
737 <                        }
738 <                        else if ((pr = p.right) != null && h >= pr.hash)
739 <                            s = pr;
740 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
741 <                            return r;
742 <                    }
743 <                }
744 <                else
745 <                    dir = (h < ph) ? -1 : 1;
746 <                p = (dir > 0) ? p.right : p.left;
747 <            }
748 <            return null;
641 >        public final K getKey()       { return key; }
642 >        public final V getValue()     { return val; }
643 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
644 >        public final String toString(){ return key + "=" + val; }
645 >        public final V setValue(V value) {
646 >            throw new UnsupportedOperationException();
647          }
648  
649 <        /**
650 <         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
651 <         * read-lock to call getTreeNode, but during failure to get
652 <         * lock, searches along next links.
653 <         */
654 <        final Object getValue(int h, Object k) {
655 <            Node r = null;
758 <            int c = getState(); // Must read lock state first
759 <            for (Node e = first; e != null; e = e.next) {
760 <                if (c <= 0 && compareAndSetState(c, c - 1)) {
761 <                    try {
762 <                        r = getTreeNode(h, k, root);
763 <                    } finally {
764 <                        releaseShared(0);
765 <                    }
766 <                    break;
767 <                }
768 <                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
769 <                    r = e;
770 <                    break;
771 <                }
772 <                else
773 <                    c = getState();
774 <            }
775 <            return r == null ? null : r.val;
649 >        public final boolean equals(Object o) {
650 >            Object k, v, u; Map.Entry<?,?> e;
651 >            return ((o instanceof Map.Entry) &&
652 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
653 >                    (v = e.getValue()) != null &&
654 >                    (k == key || k.equals(key)) &&
655 >                    (v == (u = val) || v.equals(u)));
656          }
657  
658          /**
659 <         * Finds or adds a node.
780 <         * @return null if added
659 >         * Virtualized support for map.get(); overridden in subclasses.
660           */
661 <        @SuppressWarnings("unchecked") // suppress Comparable cast warning
662 <        final TreeNode putTreeNode(int h, Object k, Object v) {
663 <            Class<?> c = k.getClass();
664 <            TreeNode pp = root, p = null;
665 <            int dir = 0;
666 <            while (pp != null) { // find existing node or leaf to insert at
667 <                int ph;  Object pk; Class<?> pc;
668 <                p = pp;
669 <                if ((ph = p.hash) == h) {
791 <                    if ((pk = p.key) == k || k.equals(pk))
792 <                        return p;
793 <                    if (c != (pc = pk.getClass()) ||
794 <                        !(k instanceof Comparable) ||
795 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
796 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
797 <                        TreeNode r = null, s = null, pl, pr;
798 <                        if (dir >= 0) {
799 <                            if ((pl = p.left) != null && h <= pl.hash)
800 <                                s = pl;
801 <                        }
802 <                        else if ((pr = p.right) != null && h >= pr.hash)
803 <                            s = pr;
804 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
805 <                            return r;
806 <                    }
807 <                }
808 <                else
809 <                    dir = (h < ph) ? -1 : 1;
810 <                pp = (dir > 0) ? p.right : p.left;
811 <            }
812 <
813 <            TreeNode f = first;
814 <            TreeNode x = first = new TreeNode(h, k, v, f, p);
815 <            if (p == null)
816 <                root = x;
817 <            else { // attach and rebalance; adapted from CLR
818 <                TreeNode xp, xpp;
819 <                if (f != null)
820 <                    f.prev = x;
821 <                if (dir <= 0)
822 <                    p.left = x;
823 <                else
824 <                    p.right = x;
825 <                x.red = true;
826 <                while (x != null && (xp = x.parent) != null && xp.red &&
827 <                       (xpp = xp.parent) != null) {
828 <                    TreeNode xppl = xpp.left;
829 <                    if (xp == xppl) {
830 <                        TreeNode y = xpp.right;
831 <                        if (y != null && y.red) {
832 <                            y.red = false;
833 <                            xp.red = false;
834 <                            xpp.red = true;
835 <                            x = xpp;
836 <                        }
837 <                        else {
838 <                            if (x == xp.right) {
839 <                                rotateLeft(x = xp);
840 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
841 <                            }
842 <                            if (xp != null) {
843 <                                xp.red = false;
844 <                                if (xpp != null) {
845 <                                    xpp.red = true;
846 <                                    rotateRight(xpp);
847 <                                }
848 <                            }
849 <                        }
850 <                    }
851 <                    else {
852 <                        TreeNode y = xppl;
853 <                        if (y != null && y.red) {
854 <                            y.red = false;
855 <                            xp.red = false;
856 <                            xpp.red = true;
857 <                            x = xpp;
858 <                        }
859 <                        else {
860 <                            if (x == xp.left) {
861 <                                rotateRight(x = xp);
862 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
863 <                            }
864 <                            if (xp != null) {
865 <                                xp.red = false;
866 <                                if (xpp != null) {
867 <                                    xpp.red = true;
868 <                                    rotateLeft(xpp);
869 <                                }
870 <                            }
871 <                        }
872 <                    }
873 <                }
874 <                TreeNode r = root;
875 <                if (r != null && r.red)
876 <                    r.red = false;
661 >        Node<K,V> find(int h, Object k) {
662 >            Node<K,V> e = this;
663 >            if (k != null) {
664 >                do {
665 >                    K ek;
666 >                    if (e.hash == h &&
667 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
668 >                        return e;
669 >                } while ((e = e.next) != null);
670              }
671              return null;
672          }
880
881        /**
882         * Removes the given node, that must be present before this
883         * call.  This is messier than typical red-black deletion code
884         * because we cannot swap the contents of an interior node
885         * with a leaf successor that is pinned by "next" pointers
886         * that are accessible independently of lock. So instead we
887         * swap the tree linkages.
888         */
889        final void deleteTreeNode(TreeNode p) {
890            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
891            TreeNode pred = p.prev;
892            if (pred == null)
893                first = next;
894            else
895                pred.next = next;
896            if (next != null)
897                next.prev = pred;
898            TreeNode replacement;
899            TreeNode pl = p.left;
900            TreeNode pr = p.right;
901            if (pl != null && pr != null) {
902                TreeNode s = pr, sl;
903                while ((sl = s.left) != null) // find successor
904                    s = sl;
905                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
906                TreeNode sr = s.right;
907                TreeNode pp = p.parent;
908                if (s == pr) { // p was s's direct parent
909                    p.parent = s;
910                    s.right = p;
911                }
912                else {
913                    TreeNode sp = s.parent;
914                    if ((p.parent = sp) != null) {
915                        if (s == sp.left)
916                            sp.left = p;
917                        else
918                            sp.right = p;
919                    }
920                    if ((s.right = pr) != null)
921                        pr.parent = s;
922                }
923                p.left = null;
924                if ((p.right = sr) != null)
925                    sr.parent = p;
926                if ((s.left = pl) != null)
927                    pl.parent = s;
928                if ((s.parent = pp) == null)
929                    root = s;
930                else if (p == pp.left)
931                    pp.left = s;
932                else
933                    pp.right = s;
934                replacement = sr;
935            }
936            else
937                replacement = (pl != null) ? pl : pr;
938            TreeNode pp = p.parent;
939            if (replacement == null) {
940                if (pp == null) {
941                    root = null;
942                    return;
943                }
944                replacement = p;
945            }
946            else {
947                replacement.parent = pp;
948                if (pp == null)
949                    root = replacement;
950                else if (p == pp.left)
951                    pp.left = replacement;
952                else
953                    pp.right = replacement;
954                p.left = p.right = p.parent = null;
955            }
956            if (!p.red) { // rebalance, from CLR
957                TreeNode x = replacement;
958                while (x != null) {
959                    TreeNode xp, xpl;
960                    if (x.red || (xp = x.parent) == null) {
961                        x.red = false;
962                        break;
963                    }
964                    if (x == (xpl = xp.left)) {
965                        TreeNode sib = xp.right;
966                        if (sib != null && sib.red) {
967                            sib.red = false;
968                            xp.red = true;
969                            rotateLeft(xp);
970                            sib = (xp = x.parent) == null ? null : xp.right;
971                        }
972                        if (sib == null)
973                            x = xp;
974                        else {
975                            TreeNode sl = sib.left, sr = sib.right;
976                            if ((sr == null || !sr.red) &&
977                                (sl == null || !sl.red)) {
978                                sib.red = true;
979                                x = xp;
980                            }
981                            else {
982                                if (sr == null || !sr.red) {
983                                    if (sl != null)
984                                        sl.red = false;
985                                    sib.red = true;
986                                    rotateRight(sib);
987                                    sib = (xp = x.parent) == null ? null : xp.right;
988                                }
989                                if (sib != null) {
990                                    sib.red = (xp == null) ? false : xp.red;
991                                    if ((sr = sib.right) != null)
992                                        sr.red = false;
993                                }
994                                if (xp != null) {
995                                    xp.red = false;
996                                    rotateLeft(xp);
997                                }
998                                x = root;
999                            }
1000                        }
1001                    }
1002                    else { // symmetric
1003                        TreeNode sib = xpl;
1004                        if (sib != null && sib.red) {
1005                            sib.red = false;
1006                            xp.red = true;
1007                            rotateRight(xp);
1008                            sib = (xp = x.parent) == null ? null : xp.left;
1009                        }
1010                        if (sib == null)
1011                            x = xp;
1012                        else {
1013                            TreeNode sl = sib.left, sr = sib.right;
1014                            if ((sl == null || !sl.red) &&
1015                                (sr == null || !sr.red)) {
1016                                sib.red = true;
1017                                x = xp;
1018                            }
1019                            else {
1020                                if (sl == null || !sl.red) {
1021                                    if (sr != null)
1022                                        sr.red = false;
1023                                    sib.red = true;
1024                                    rotateLeft(sib);
1025                                    sib = (xp = x.parent) == null ? null : xp.left;
1026                                }
1027                                if (sib != null) {
1028                                    sib.red = (xp == null) ? false : xp.red;
1029                                    if ((sl = sib.left) != null)
1030                                        sl.red = false;
1031                                }
1032                                if (xp != null) {
1033                                    xp.red = false;
1034                                    rotateRight(xp);
1035                                }
1036                                x = root;
1037                            }
1038                        }
1039                    }
1040                }
1041            }
1042            if (p == replacement && (pp = p.parent) != null) {
1043                if (p == pp.left) // detach pointers
1044                    pp.left = null;
1045                else if (p == pp.right)
1046                    pp.right = null;
1047                p.parent = null;
1048            }
1049        }
673      }
674  
675 <    /* ---------------- Collision reduction methods -------------- */
675 >    /* ---------------- Static utilities -------------- */
676  
677      /**
678 <     * Spreads higher bits to lower, and also forces top 2 bits to 0.
679 <     * Because the table uses power-of-two masking, sets of hashes
680 <     * that vary only in bits above the current mask will always
681 <     * collide. (Among known examples are sets of Float keys holding
682 <     * consecutive whole numbers in small tables.)  To counter this,
683 <     * we apply a transform that spreads the impact of higher bits
678 >     * Spreads (XORs) higher bits of hash to lower and also forces top
679 >     * bit to 0. Because the table uses power-of-two masking, sets of
680 >     * hashes that vary only in bits above the current mask will
681 >     * always collide. (Among known examples are sets of Float keys
682 >     * holding consecutive whole numbers in small tables.)  So we
683 >     * apply a transform that spreads the impact of higher bits
684       * downward. There is a tradeoff between speed, utility, and
685       * quality of bit-spreading. Because many common sets of hashes
686 <     * are already reasonably distributed across bits (so don't benefit
687 <     * from spreading), and because we use trees to handle large sets
688 <     * of collisions in bins, we don't need excessively high quality.
686 >     * are already reasonably distributed (so don't benefit from
687 >     * spreading), and because we use trees to handle large sets of
688 >     * collisions in bins, we just XOR some shifted bits in the
689 >     * cheapest possible way to reduce systematic lossage, as well as
690 >     * to incorporate impact of the highest bits that would otherwise
691 >     * never be used in index calculations because of table bounds.
692       */
693 <    private static final int spread(int h) {
694 <        h ^= (h >>> 18) ^ (h >>> 12);
1069 <        return (h ^ (h >>> 10)) & HASH_BITS;
693 >    static final int spread(int h) {
694 >        return (h ^ (h >>> 16)) & HASH_BITS;
695      }
696  
697      /**
698 <     * Replaces a list bin with a tree bin. Call only when locked.
699 <     * Fails to replace if the given key is non-comparable or table
1075 <     * is, or needs, resizing.
698 >     * Returns a power of two table size for the given desired capacity.
699 >     * See Hackers Delight, sec 3.2
700       */
701 <    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
702 <        if ((key instanceof Comparable) &&
703 <            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
704 <            TreeBin t = new TreeBin();
705 <            for (Node e = tabAt(tab, index); e != null; e = e.next)
706 <                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
707 <            setTabAt(tab, index, new Node(MOVED, t, null, null));
708 <        }
701 >    private static final int tableSizeFor(int c) {
702 >        int n = c - 1;
703 >        n |= n >>> 1;
704 >        n |= n >>> 2;
705 >        n |= n >>> 4;
706 >        n |= n >>> 8;
707 >        n |= n >>> 16;
708 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
709      }
710  
711 <    /* ---------------- Internal access and update methods -------------- */
712 <
713 <    /** Implementation for get and containsKey */
714 <    private final Object internalGet(Object k) {
715 <        int h = spread(k.hashCode());
716 <        retry: for (Node[] tab = table; tab != null;) {
717 <            Node e, p; Object ek, ev; int eh;      // locals to read fields once
718 <            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
719 <                if ((eh = e.hash) == MOVED) {
720 <                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
721 <                        return ((TreeBin)ek).getValue(h, k);
722 <                    else {                        // restart with new table
723 <                        tab = (Node[])ek;
724 <                        continue retry;
725 <                    }
711 >    /**
712 >     * Returns x's Class if it is of the form "class C implements
713 >     * Comparable<C>", else null.
714 >     */
715 >    static Class<?> comparableClassFor(Object x) {
716 >        if (x instanceof Comparable) {
717 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
718 >            if ((c = x.getClass()) == String.class) // bypass checks
719 >                return c;
720 >            if ((ts = c.getGenericInterfaces()) != null) {
721 >                for (int i = 0; i < ts.length; ++i) {
722 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
723 >                        ((p = (ParameterizedType)t).getRawType() ==
724 >                         Comparable.class) &&
725 >                        (as = p.getActualTypeArguments()) != null &&
726 >                        as.length == 1 && as[0] == c) // type arg is c
727 >                        return c;
728                  }
1103                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1104                         ((ek = e.key) == k || k.equals(ek)))
1105                    return ev;
729              }
1107            break;
730          }
731          return null;
732      }
733  
734      /**
735 <     * Implementation for the four public remove/replace methods:
736 <     * Replaces node value with v, conditional upon match of cv if
1115 <     * non-null.  If resulting value is null, delete.
735 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
736 >     * class), else 0.
737       */
738 <    private final Object internalReplace(Object k, Object v, Object cv) {
739 <        int h = spread(k.hashCode());
740 <        Object oldVal = null;
741 <        for (Node[] tab = table;;) {
1121 <            Node f; int i, fh; Object fk;
1122 <            if (tab == null ||
1123 <                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1124 <                break;
1125 <            else if ((fh = f.hash) == MOVED) {
1126 <                if ((fk = f.key) instanceof TreeBin) {
1127 <                    TreeBin t = (TreeBin)fk;
1128 <                    boolean validated = false;
1129 <                    boolean deleted = false;
1130 <                    t.acquire(0);
1131 <                    try {
1132 <                        if (tabAt(tab, i) == f) {
1133 <                            validated = true;
1134 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1135 <                            if (p != null) {
1136 <                                Object pv = p.val;
1137 <                                if (cv == null || cv == pv || cv.equals(pv)) {
1138 <                                    oldVal = pv;
1139 <                                    if ((p.val = v) == null) {
1140 <                                        deleted = true;
1141 <                                        t.deleteTreeNode(p);
1142 <                                    }
1143 <                                }
1144 <                            }
1145 <                        }
1146 <                    } finally {
1147 <                        t.release(0);
1148 <                    }
1149 <                    if (validated) {
1150 <                        if (deleted)
1151 <                            counter.add(-1L);
1152 <                        break;
1153 <                    }
1154 <                }
1155 <                else
1156 <                    tab = (Node[])fk;
1157 <            }
1158 <            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1159 <                break;                          // rules out possible existence
1160 <            else if ((fh & LOCKED) != 0) {
1161 <                checkForResize();               // try resizing if can't get lock
1162 <                f.tryAwaitLock(tab, i);
1163 <            }
1164 <            else if (f.casHash(fh, fh | LOCKED)) {
1165 <                boolean validated = false;
1166 <                boolean deleted = false;
1167 <                try {
1168 <                    if (tabAt(tab, i) == f) {
1169 <                        validated = true;
1170 <                        for (Node e = f, pred = null;;) {
1171 <                            Object ek, ev;
1172 <                            if ((e.hash & HASH_BITS) == h &&
1173 <                                ((ev = e.val) != null) &&
1174 <                                ((ek = e.key) == k || k.equals(ek))) {
1175 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1176 <                                    oldVal = ev;
1177 <                                    if ((e.val = v) == null) {
1178 <                                        deleted = true;
1179 <                                        Node en = e.next;
1180 <                                        if (pred != null)
1181 <                                            pred.next = en;
1182 <                                        else
1183 <                                            setTabAt(tab, i, en);
1184 <                                    }
1185 <                                }
1186 <                                break;
1187 <                            }
1188 <                            pred = e;
1189 <                            if ((e = e.next) == null)
1190 <                                break;
1191 <                        }
1192 <                    }
1193 <                } finally {
1194 <                    if (!f.casHash(fh | LOCKED, fh)) {
1195 <                        f.hash = fh;
1196 <                        synchronized (f) { f.notifyAll(); };
1197 <                    }
1198 <                }
1199 <                if (validated) {
1200 <                    if (deleted)
1201 <                        counter.add(-1L);
1202 <                    break;
1203 <                }
1204 <            }
1205 <        }
1206 <        return oldVal;
738 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
739 >    static int compareComparables(Class<?> kc, Object k, Object x) {
740 >        return (x == null || x.getClass() != kc ? 0 :
741 >                ((Comparable)k).compareTo(x));
742      }
743  
744 <    /*
1210 <     * Internal versions of the six insertion methods, each a
1211 <     * little more complicated than the last. All have
1212 <     * the same basic structure as the first (internalPut):
1213 <     *  1. If table uninitialized, create
1214 <     *  2. If bin empty, try to CAS new node
1215 <     *  3. If bin stale, use new table
1216 <     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1217 <     *  5. Lock and validate; if valid, scan and add or update
1218 <     *
1219 <     * The others interweave other checks and/or alternative actions:
1220 <     *  * Plain put checks for and performs resize after insertion.
1221 <     *  * putIfAbsent prescans for mapping without lock (and fails to add
1222 <     *    if present), which also makes pre-emptive resize checks worthwhile.
1223 <     *  * computeIfAbsent extends form used in putIfAbsent with additional
1224 <     *    mechanics to deal with, calls, potential exceptions and null
1225 <     *    returns from function call.
1226 <     *  * compute uses the same function-call mechanics, but without
1227 <     *    the prescans
1228 <     *  * merge acts as putIfAbsent in the absent case, but invokes the
1229 <     *    update function if present
1230 <     *  * putAll attempts to pre-allocate enough table space
1231 <     *    and more lazily performs count updates and checks.
1232 <     *
1233 <     * Someday when details settle down a bit more, it might be worth
1234 <     * some factoring to reduce sprawl.
1235 <     */
1236 <
1237 <    /** Implementation for put */
1238 <    private final Object internalPut(Object k, Object v) {
1239 <        int h = spread(k.hashCode());
1240 <        int count = 0;
1241 <        for (Node[] tab = table;;) {
1242 <            int i; Node f; int fh; Object fk;
1243 <            if (tab == null)
1244 <                tab = initTable();
1245 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1246 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1247 <                    break;                   // no lock when adding to empty bin
1248 <            }
1249 <            else if ((fh = f.hash) == MOVED) {
1250 <                if ((fk = f.key) instanceof TreeBin) {
1251 <                    TreeBin t = (TreeBin)fk;
1252 <                    Object oldVal = null;
1253 <                    t.acquire(0);
1254 <                    try {
1255 <                        if (tabAt(tab, i) == f) {
1256 <                            count = 2;
1257 <                            TreeNode p = t.putTreeNode(h, k, v);
1258 <                            if (p != null) {
1259 <                                oldVal = p.val;
1260 <                                p.val = v;
1261 <                            }
1262 <                        }
1263 <                    } finally {
1264 <                        t.release(0);
1265 <                    }
1266 <                    if (count != 0) {
1267 <                        if (oldVal != null)
1268 <                            return oldVal;
1269 <                        break;
1270 <                    }
1271 <                }
1272 <                else
1273 <                    tab = (Node[])fk;
1274 <            }
1275 <            else if ((fh & LOCKED) != 0) {
1276 <                checkForResize();
1277 <                f.tryAwaitLock(tab, i);
1278 <            }
1279 <            else if (f.casHash(fh, fh | LOCKED)) {
1280 <                Object oldVal = null;
1281 <                try {                        // needed in case equals() throws
1282 <                    if (tabAt(tab, i) == f) {
1283 <                        count = 1;
1284 <                        for (Node e = f;; ++count) {
1285 <                            Object ek, ev;
1286 <                            if ((e.hash & HASH_BITS) == h &&
1287 <                                (ev = e.val) != null &&
1288 <                                ((ek = e.key) == k || k.equals(ek))) {
1289 <                                oldVal = ev;
1290 <                                e.val = v;
1291 <                                break;
1292 <                            }
1293 <                            Node last = e;
1294 <                            if ((e = e.next) == null) {
1295 <                                last.next = new Node(h, k, v, null);
1296 <                                if (count >= TREE_THRESHOLD)
1297 <                                    replaceWithTreeBin(tab, i, k);
1298 <                                break;
1299 <                            }
1300 <                        }
1301 <                    }
1302 <                } finally {                  // unlock and signal if needed
1303 <                    if (!f.casHash(fh | LOCKED, fh)) {
1304 <                        f.hash = fh;
1305 <                        synchronized (f) { f.notifyAll(); };
1306 <                    }
1307 <                }
1308 <                if (count != 0) {
1309 <                    if (oldVal != null)
1310 <                        return oldVal;
1311 <                    if (tab.length <= 64)
1312 <                        count = 2;
1313 <                    break;
1314 <                }
1315 <            }
1316 <        }
1317 <        counter.add(1L);
1318 <        if (count > 1)
1319 <            checkForResize();
1320 <        return null;
1321 <    }
1322 <
1323 <    /** Implementation for putIfAbsent */
1324 <    private final Object internalPutIfAbsent(Object k, Object v) {
1325 <        int h = spread(k.hashCode());
1326 <        int count = 0;
1327 <        for (Node[] tab = table;;) {
1328 <            int i; Node f; int fh; Object fk, fv;
1329 <            if (tab == null)
1330 <                tab = initTable();
1331 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1332 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1333 <                    break;
1334 <            }
1335 <            else if ((fh = f.hash) == MOVED) {
1336 <                if ((fk = f.key) instanceof TreeBin) {
1337 <                    TreeBin t = (TreeBin)fk;
1338 <                    Object oldVal = null;
1339 <                    t.acquire(0);
1340 <                    try {
1341 <                        if (tabAt(tab, i) == f) {
1342 <                            count = 2;
1343 <                            TreeNode p = t.putTreeNode(h, k, v);
1344 <                            if (p != null)
1345 <                                oldVal = p.val;
1346 <                        }
1347 <                    } finally {
1348 <                        t.release(0);
1349 <                    }
1350 <                    if (count != 0) {
1351 <                        if (oldVal != null)
1352 <                            return oldVal;
1353 <                        break;
1354 <                    }
1355 <                }
1356 <                else
1357 <                    tab = (Node[])fk;
1358 <            }
1359 <            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1360 <                     ((fk = f.key) == k || k.equals(fk)))
1361 <                return fv;
1362 <            else {
1363 <                Node g = f.next;
1364 <                if (g != null) { // at least 2 nodes -- search and maybe resize
1365 <                    for (Node e = g;;) {
1366 <                        Object ek, ev;
1367 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1368 <                            ((ek = e.key) == k || k.equals(ek)))
1369 <                            return ev;
1370 <                        if ((e = e.next) == null) {
1371 <                            checkForResize();
1372 <                            break;
1373 <                        }
1374 <                    }
1375 <                }
1376 <                if (((fh = f.hash) & LOCKED) != 0) {
1377 <                    checkForResize();
1378 <                    f.tryAwaitLock(tab, i);
1379 <                }
1380 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1381 <                    Object oldVal = null;
1382 <                    try {
1383 <                        if (tabAt(tab, i) == f) {
1384 <                            count = 1;
1385 <                            for (Node e = f;; ++count) {
1386 <                                Object ek, ev;
1387 <                                if ((e.hash & HASH_BITS) == h &&
1388 <                                    (ev = e.val) != null &&
1389 <                                    ((ek = e.key) == k || k.equals(ek))) {
1390 <                                    oldVal = ev;
1391 <                                    break;
1392 <                                }
1393 <                                Node last = e;
1394 <                                if ((e = e.next) == null) {
1395 <                                    last.next = new Node(h, k, v, null);
1396 <                                    if (count >= TREE_THRESHOLD)
1397 <                                        replaceWithTreeBin(tab, i, k);
1398 <                                    break;
1399 <                                }
1400 <                            }
1401 <                        }
1402 <                    } finally {
1403 <                        if (!f.casHash(fh | LOCKED, fh)) {
1404 <                            f.hash = fh;
1405 <                            synchronized (f) { f.notifyAll(); };
1406 <                        }
1407 <                    }
1408 <                    if (count != 0) {
1409 <                        if (oldVal != null)
1410 <                            return oldVal;
1411 <                        if (tab.length <= 64)
1412 <                            count = 2;
1413 <                        break;
1414 <                    }
1415 <                }
1416 <            }
1417 <        }
1418 <        counter.add(1L);
1419 <        if (count > 1)
1420 <            checkForResize();
1421 <        return null;
1422 <    }
744 >    /* ---------------- Table element access -------------- */
745  
746 <    /** Implementation for computeIfAbsent */
747 <    private final Object internalComputeIfAbsent(K k,
748 <                                                 Fun<? super K, ?> mf) {
749 <        int h = spread(k.hashCode());
750 <        Object val = null;
751 <        int count = 0;
752 <        for (Node[] tab = table;;) {
753 <            Node f; int i, fh; Object fk, fv;
754 <            if (tab == null)
755 <                tab = initTable();
756 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
757 <                Node node = new Node(fh = h | LOCKED, k, null, null);
758 <                if (casTabAt(tab, i, null, node)) {
759 <                    count = 1;
760 <                    try {
1439 <                        if ((val = mf.apply(k)) != null)
1440 <                            node.val = val;
1441 <                    } finally {
1442 <                        if (val == null)
1443 <                            setTabAt(tab, i, null);
1444 <                        if (!node.casHash(fh, h)) {
1445 <                            node.hash = h;
1446 <                            synchronized (node) { node.notifyAll(); };
1447 <                        }
1448 <                    }
1449 <                }
1450 <                if (count != 0)
1451 <                    break;
1452 <            }
1453 <            else if ((fh = f.hash) == MOVED) {
1454 <                if ((fk = f.key) instanceof TreeBin) {
1455 <                    TreeBin t = (TreeBin)fk;
1456 <                    boolean added = false;
1457 <                    t.acquire(0);
1458 <                    try {
1459 <                        if (tabAt(tab, i) == f) {
1460 <                            count = 1;
1461 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1462 <                            if (p != null)
1463 <                                val = p.val;
1464 <                            else if ((val = mf.apply(k)) != null) {
1465 <                                added = true;
1466 <                                count = 2;
1467 <                                t.putTreeNode(h, k, val);
1468 <                            }
1469 <                        }
1470 <                    } finally {
1471 <                        t.release(0);
1472 <                    }
1473 <                    if (count != 0) {
1474 <                        if (!added)
1475 <                            return val;
1476 <                        break;
1477 <                    }
1478 <                }
1479 <                else
1480 <                    tab = (Node[])fk;
1481 <            }
1482 <            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1483 <                     ((fk = f.key) == k || k.equals(fk)))
1484 <                return fv;
1485 <            else {
1486 <                Node g = f.next;
1487 <                if (g != null) {
1488 <                    for (Node e = g;;) {
1489 <                        Object ek, ev;
1490 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1491 <                            ((ek = e.key) == k || k.equals(ek)))
1492 <                            return ev;
1493 <                        if ((e = e.next) == null) {
1494 <                            checkForResize();
1495 <                            break;
1496 <                        }
1497 <                    }
1498 <                }
1499 <                if (((fh = f.hash) & LOCKED) != 0) {
1500 <                    checkForResize();
1501 <                    f.tryAwaitLock(tab, i);
1502 <                }
1503 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1504 <                    boolean added = false;
1505 <                    try {
1506 <                        if (tabAt(tab, i) == f) {
1507 <                            count = 1;
1508 <                            for (Node e = f;; ++count) {
1509 <                                Object ek, ev;
1510 <                                if ((e.hash & HASH_BITS) == h &&
1511 <                                    (ev = e.val) != null &&
1512 <                                    ((ek = e.key) == k || k.equals(ek))) {
1513 <                                    val = ev;
1514 <                                    break;
1515 <                                }
1516 <                                Node last = e;
1517 <                                if ((e = e.next) == null) {
1518 <                                    if ((val = mf.apply(k)) != null) {
1519 <                                        added = true;
1520 <                                        last.next = new Node(h, k, val, null);
1521 <                                        if (count >= TREE_THRESHOLD)
1522 <                                            replaceWithTreeBin(tab, i, k);
1523 <                                    }
1524 <                                    break;
1525 <                                }
1526 <                            }
1527 <                        }
1528 <                    } finally {
1529 <                        if (!f.casHash(fh | LOCKED, fh)) {
1530 <                            f.hash = fh;
1531 <                            synchronized (f) { f.notifyAll(); };
1532 <                        }
1533 <                    }
1534 <                    if (count != 0) {
1535 <                        if (!added)
1536 <                            return val;
1537 <                        if (tab.length <= 64)
1538 <                            count = 2;
1539 <                        break;
1540 <                    }
1541 <                }
1542 <            }
1543 <        }
1544 <        if (val != null) {
1545 <            counter.add(1L);
1546 <            if (count > 1)
1547 <                checkForResize();
1548 <        }
1549 <        return val;
1550 <    }
746 >    /*
747 >     * Volatile access methods are used for table elements as well as
748 >     * elements of in-progress next table while resizing.  All uses of
749 >     * the tab arguments must be null checked by callers.  All callers
750 >     * also paranoically precheck that tab's length is not zero (or an
751 >     * equivalent check), thus ensuring that any index argument taking
752 >     * the form of a hash value anded with (length - 1) is a valid
753 >     * index.  Note that, to be correct wrt arbitrary concurrency
754 >     * errors by users, these checks must operate on local variables,
755 >     * which accounts for some odd-looking inline assignments below.
756 >     * Note that calls to setTabAt always occur within locked regions,
757 >     * and so in principle require only release ordering, not
758 >     * full volatile semantics, but are currently coded as volatile
759 >     * writes to be conservative.
760 >     */
761  
1552    /** Implementation for compute */
762      @SuppressWarnings("unchecked")
763 <    private final Object internalCompute(K k, boolean onlyIfPresent,
764 <                                             BiFun<? super K, ? super V, ? extends V> mf) {
1556 <        int h = spread(k.hashCode());
1557 <        Object val = null;
1558 <        int delta = 0;
1559 <        int count = 0;
1560 <        for (Node[] tab = table;;) {
1561 <            Node f; int i, fh; Object fk;
1562 <            if (tab == null)
1563 <                tab = initTable();
1564 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1565 <                if (onlyIfPresent)
1566 <                    break;
1567 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1568 <                if (casTabAt(tab, i, null, node)) {
1569 <                    try {
1570 <                        count = 1;
1571 <                        if ((val = mf.apply(k, null)) != null) {
1572 <                            node.val = val;
1573 <                            delta = 1;
1574 <                        }
1575 <                    } finally {
1576 <                        if (delta == 0)
1577 <                            setTabAt(tab, i, null);
1578 <                        if (!node.casHash(fh, h)) {
1579 <                            node.hash = h;
1580 <                            synchronized (node) { node.notifyAll(); };
1581 <                        }
1582 <                    }
1583 <                }
1584 <                if (count != 0)
1585 <                    break;
1586 <            }
1587 <            else if ((fh = f.hash) == MOVED) {
1588 <                if ((fk = f.key) instanceof TreeBin) {
1589 <                    TreeBin t = (TreeBin)fk;
1590 <                    t.acquire(0);
1591 <                    try {
1592 <                        if (tabAt(tab, i) == f) {
1593 <                            count = 1;
1594 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1595 <                            Object pv = (p == null) ? null : p.val;
1596 <                            if ((val = mf.apply(k, (V)pv)) != null) {
1597 <                                if (p != null)
1598 <                                    p.val = val;
1599 <                                else {
1600 <                                    count = 2;
1601 <                                    delta = 1;
1602 <                                    t.putTreeNode(h, k, val);
1603 <                                }
1604 <                            }
1605 <                            else if (p != null) {
1606 <                                delta = -1;
1607 <                                t.deleteTreeNode(p);
1608 <                            }
1609 <                        }
1610 <                    } finally {
1611 <                        t.release(0);
1612 <                    }
1613 <                    if (count != 0)
1614 <                        break;
1615 <                }
1616 <                else
1617 <                    tab = (Node[])fk;
1618 <            }
1619 <            else if ((fh & LOCKED) != 0) {
1620 <                checkForResize();
1621 <                f.tryAwaitLock(tab, i);
1622 <            }
1623 <            else if (f.casHash(fh, fh | LOCKED)) {
1624 <                try {
1625 <                    if (tabAt(tab, i) == f) {
1626 <                        count = 1;
1627 <                        for (Node e = f, pred = null;; ++count) {
1628 <                            Object ek, ev;
1629 <                            if ((e.hash & HASH_BITS) == h &&
1630 <                                (ev = e.val) != null &&
1631 <                                ((ek = e.key) == k || k.equals(ek))) {
1632 <                                val = mf.apply(k, (V)ev);
1633 <                                if (val != null)
1634 <                                    e.val = val;
1635 <                                else {
1636 <                                    delta = -1;
1637 <                                    Node en = e.next;
1638 <                                    if (pred != null)
1639 <                                        pred.next = en;
1640 <                                    else
1641 <                                        setTabAt(tab, i, en);
1642 <                                }
1643 <                                break;
1644 <                            }
1645 <                            pred = e;
1646 <                            if ((e = e.next) == null) {
1647 <                                if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1648 <                                    pred.next = new Node(h, k, val, null);
1649 <                                    delta = 1;
1650 <                                    if (count >= TREE_THRESHOLD)
1651 <                                        replaceWithTreeBin(tab, i, k);
1652 <                                }
1653 <                                break;
1654 <                            }
1655 <                        }
1656 <                    }
1657 <                } finally {
1658 <                    if (!f.casHash(fh | LOCKED, fh)) {
1659 <                        f.hash = fh;
1660 <                        synchronized (f) { f.notifyAll(); };
1661 <                    }
1662 <                }
1663 <                if (count != 0) {
1664 <                    if (tab.length <= 64)
1665 <                        count = 2;
1666 <                    break;
1667 <                }
1668 <            }
1669 <        }
1670 <        if (delta != 0) {
1671 <            counter.add((long)delta);
1672 <            if (count > 1)
1673 <                checkForResize();
1674 <        }
1675 <        return val;
763 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
764 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
765      }
766  
767 <    /** Implementation for merge */
768 <    @SuppressWarnings("unchecked")
769 <    private final Object internalMerge(K k, V v,
1681 <                                       BiFun<? super V, ? super V, ? extends V> mf) {
1682 <        int h = spread(k.hashCode());
1683 <        Object val = null;
1684 <        int delta = 0;
1685 <        int count = 0;
1686 <        for (Node[] tab = table;;) {
1687 <            int i; Node f; int fh; Object fk, fv;
1688 <            if (tab == null)
1689 <                tab = initTable();
1690 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1691 <                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1692 <                    delta = 1;
1693 <                    val = v;
1694 <                    break;
1695 <                }
1696 <            }
1697 <            else if ((fh = f.hash) == MOVED) {
1698 <                if ((fk = f.key) instanceof TreeBin) {
1699 <                    TreeBin t = (TreeBin)fk;
1700 <                    t.acquire(0);
1701 <                    try {
1702 <                        if (tabAt(tab, i) == f) {
1703 <                            count = 1;
1704 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1705 <                            val = (p == null) ? v : mf.apply((V)p.val, v);
1706 <                            if (val != null) {
1707 <                                if (p != null)
1708 <                                    p.val = val;
1709 <                                else {
1710 <                                    count = 2;
1711 <                                    delta = 1;
1712 <                                    t.putTreeNode(h, k, val);
1713 <                                }
1714 <                            }
1715 <                            else if (p != null) {
1716 <                                delta = -1;
1717 <                                t.deleteTreeNode(p);
1718 <                            }
1719 <                        }
1720 <                    } finally {
1721 <                        t.release(0);
1722 <                    }
1723 <                    if (count != 0)
1724 <                        break;
1725 <                }
1726 <                else
1727 <                    tab = (Node[])fk;
1728 <            }
1729 <            else if ((fh & LOCKED) != 0) {
1730 <                checkForResize();
1731 <                f.tryAwaitLock(tab, i);
1732 <            }
1733 <            else if (f.casHash(fh, fh | LOCKED)) {
1734 <                try {
1735 <                    if (tabAt(tab, i) == f) {
1736 <                        count = 1;
1737 <                        for (Node e = f, pred = null;; ++count) {
1738 <                            Object ek, ev;
1739 <                            if ((e.hash & HASH_BITS) == h &&
1740 <                                (ev = e.val) != null &&
1741 <                                ((ek = e.key) == k || k.equals(ek))) {
1742 <                                val = mf.apply(v, (V)ev);
1743 <                                if (val != null)
1744 <                                    e.val = val;
1745 <                                else {
1746 <                                    delta = -1;
1747 <                                    Node en = e.next;
1748 <                                    if (pred != null)
1749 <                                        pred.next = en;
1750 <                                    else
1751 <                                        setTabAt(tab, i, en);
1752 <                                }
1753 <                                break;
1754 <                            }
1755 <                            pred = e;
1756 <                            if ((e = e.next) == null) {
1757 <                                val = v;
1758 <                                pred.next = new Node(h, k, val, null);
1759 <                                delta = 1;
1760 <                                if (count >= TREE_THRESHOLD)
1761 <                                    replaceWithTreeBin(tab, i, k);
1762 <                                break;
1763 <                            }
1764 <                        }
1765 <                    }
1766 <                } finally {
1767 <                    if (!f.casHash(fh | LOCKED, fh)) {
1768 <                        f.hash = fh;
1769 <                        synchronized (f) { f.notifyAll(); };
1770 <                    }
1771 <                }
1772 <                if (count != 0) {
1773 <                    if (tab.length <= 64)
1774 <                        count = 2;
1775 <                    break;
1776 <                }
1777 <            }
1778 <        }
1779 <        if (delta != 0) {
1780 <            counter.add((long)delta);
1781 <            if (count > 1)
1782 <                checkForResize();
1783 <        }
1784 <        return val;
767 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
768 >                                        Node<K,V> c, Node<K,V> v) {
769 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
770      }
771  
772 <    /** Implementation for putAll */
773 <    private final void internalPutAll(Map<?, ?> m) {
1789 <        tryPresize(m.size());
1790 <        long delta = 0L;     // number of uncommitted additions
1791 <        boolean npe = false; // to throw exception on exit for nulls
1792 <        try {                // to clean up counts on other exceptions
1793 <            for (Map.Entry<?, ?> entry : m.entrySet()) {
1794 <                Object k, v;
1795 <                if (entry == null || (k = entry.getKey()) == null ||
1796 <                    (v = entry.getValue()) == null) {
1797 <                    npe = true;
1798 <                    break;
1799 <                }
1800 <                int h = spread(k.hashCode());
1801 <                for (Node[] tab = table;;) {
1802 <                    int i; Node f; int fh; Object fk;
1803 <                    if (tab == null)
1804 <                        tab = initTable();
1805 <                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1806 <                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1807 <                            ++delta;
1808 <                            break;
1809 <                        }
1810 <                    }
1811 <                    else if ((fh = f.hash) == MOVED) {
1812 <                        if ((fk = f.key) instanceof TreeBin) {
1813 <                            TreeBin t = (TreeBin)fk;
1814 <                            boolean validated = false;
1815 <                            t.acquire(0);
1816 <                            try {
1817 <                                if (tabAt(tab, i) == f) {
1818 <                                    validated = true;
1819 <                                    TreeNode p = t.getTreeNode(h, k, t.root);
1820 <                                    if (p != null)
1821 <                                        p.val = v;
1822 <                                    else {
1823 <                                        t.putTreeNode(h, k, v);
1824 <                                        ++delta;
1825 <                                    }
1826 <                                }
1827 <                            } finally {
1828 <                                t.release(0);
1829 <                            }
1830 <                            if (validated)
1831 <                                break;
1832 <                        }
1833 <                        else
1834 <                            tab = (Node[])fk;
1835 <                    }
1836 <                    else if ((fh & LOCKED) != 0) {
1837 <                        counter.add(delta);
1838 <                        delta = 0L;
1839 <                        checkForResize();
1840 <                        f.tryAwaitLock(tab, i);
1841 <                    }
1842 <                    else if (f.casHash(fh, fh | LOCKED)) {
1843 <                        int count = 0;
1844 <                        try {
1845 <                            if (tabAt(tab, i) == f) {
1846 <                                count = 1;
1847 <                                for (Node e = f;; ++count) {
1848 <                                    Object ek, ev;
1849 <                                    if ((e.hash & HASH_BITS) == h &&
1850 <                                        (ev = e.val) != null &&
1851 <                                        ((ek = e.key) == k || k.equals(ek))) {
1852 <                                        e.val = v;
1853 <                                        break;
1854 <                                    }
1855 <                                    Node last = e;
1856 <                                    if ((e = e.next) == null) {
1857 <                                        ++delta;
1858 <                                        last.next = new Node(h, k, v, null);
1859 <                                        if (count >= TREE_THRESHOLD)
1860 <                                            replaceWithTreeBin(tab, i, k);
1861 <                                        break;
1862 <                                    }
1863 <                                }
1864 <                            }
1865 <                        } finally {
1866 <                            if (!f.casHash(fh | LOCKED, fh)) {
1867 <                                f.hash = fh;
1868 <                                synchronized (f) { f.notifyAll(); };
1869 <                            }
1870 <                        }
1871 <                        if (count != 0) {
1872 <                            if (count > 1) {
1873 <                                counter.add(delta);
1874 <                                delta = 0L;
1875 <                                checkForResize();
1876 <                            }
1877 <                            break;
1878 <                        }
1879 <                    }
1880 <                }
1881 <            }
1882 <        } finally {
1883 <            if (delta != 0)
1884 <                counter.add(delta);
1885 <        }
1886 <        if (npe)
1887 <            throw new NullPointerException();
772 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
773 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
774      }
775  
776 <    /* ---------------- Table Initialization and Resizing -------------- */
776 >    /* ---------------- Fields -------------- */
777  
778      /**
779 <     * Returns a power of two table size for the given desired capacity.
780 <     * See Hackers Delight, sec 3.2
779 >     * The array of bins. Lazily initialized upon first insertion.
780 >     * Size is always a power of two. Accessed directly by iterators.
781       */
782 <    private static final int tableSizeFor(int c) {
1897 <        int n = c - 1;
1898 <        n |= n >>> 1;
1899 <        n |= n >>> 2;
1900 <        n |= n >>> 4;
1901 <        n |= n >>> 8;
1902 <        n |= n >>> 16;
1903 <        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1904 <    }
782 >    transient volatile Node<K,V>[] table;
783  
784      /**
785 <     * Initializes table, using the size recorded in sizeCtl.
785 >     * The next table to use; non-null only while resizing.
786       */
787 <    private final Node[] initTable() {
1910 <        Node[] tab; int sc;
1911 <        while ((tab = table) == null) {
1912 <            if ((sc = sizeCtl) < 0)
1913 <                Thread.yield(); // lost initialization race; just spin
1914 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1915 <                try {
1916 <                    if ((tab = table) == null) {
1917 <                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1918 <                        tab = table = new Node[n];
1919 <                        sc = n - (n >>> 2);
1920 <                    }
1921 <                } finally {
1922 <                    sizeCtl = sc;
1923 <                }
1924 <                break;
1925 <            }
1926 <        }
1927 <        return tab;
1928 <    }
787 >    private transient volatile Node<K,V>[] nextTable;
788  
789      /**
790 <     * If table is too small and not already resizing, creates next
791 <     * table and transfers bins.  Rechecks occupancy after a transfer
792 <     * to see if another resize is already needed because resizings
1934 <     * are lagging additions.
1935 <     */
1936 <    private final void checkForResize() {
1937 <        Node[] tab; int n, sc;
1938 <        while ((tab = table) != null &&
1939 <               (n = tab.length) < MAXIMUM_CAPACITY &&
1940 <               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1941 <               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1942 <            try {
1943 <                if (tab == table) {
1944 <                    table = rebuild(tab);
1945 <                    sc = (n << 1) - (n >>> 1);
1946 <                }
1947 <            } finally {
1948 <                sizeCtl = sc;
1949 <            }
1950 <        }
1951 <    }
1952 <
1953 <    /**
1954 <     * Tries to presize table to accommodate the given number of elements.
1955 <     *
1956 <     * @param size number of elements (doesn't need to be perfectly accurate)
790 >     * Base counter value, used mainly when there is no contention,
791 >     * but also as a fallback during table initialization
792 >     * races. Updated via CAS.
793       */
794 <    private final void tryPresize(int size) {
1959 <        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1960 <            tableSizeFor(size + (size >>> 1) + 1);
1961 <        int sc;
1962 <        while ((sc = sizeCtl) >= 0) {
1963 <            Node[] tab = table; int n;
1964 <            if (tab == null || (n = tab.length) == 0) {
1965 <                n = (sc > c) ? sc : c;
1966 <                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1967 <                    try {
1968 <                        if (table == tab) {
1969 <                            table = new Node[n];
1970 <                            sc = n - (n >>> 2);
1971 <                        }
1972 <                    } finally {
1973 <                        sizeCtl = sc;
1974 <                    }
1975 <                }
1976 <            }
1977 <            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1978 <                break;
1979 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1980 <                try {
1981 <                    if (table == tab) {
1982 <                        table = rebuild(tab);
1983 <                        sc = (n << 1) - (n >>> 1);
1984 <                    }
1985 <                } finally {
1986 <                    sizeCtl = sc;
1987 <                }
1988 <            }
1989 <        }
1990 <    }
1991 <
1992 <    /*
1993 <     * Moves and/or copies the nodes in each bin to new table. See
1994 <     * above for explanation.
1995 <     *
1996 <     * @return the new table
1997 <     */
1998 <    private static final Node[] rebuild(Node[] tab) {
1999 <        int n = tab.length;
2000 <        Node[] nextTab = new Node[n << 1];
2001 <        Node fwd = new Node(MOVED, nextTab, null, null);
2002 <        int[] buffer = null;       // holds bins to revisit; null until needed
2003 <        Node rev = null;           // reverse forwarder; null until needed
2004 <        int nbuffered = 0;         // the number of bins in buffer list
2005 <        int bufferIndex = 0;       // buffer index of current buffered bin
2006 <        int bin = n - 1;           // current non-buffered bin or -1 if none
2007 <
2008 <        for (int i = bin;;) {      // start upwards sweep
2009 <            int fh; Node f;
2010 <            if ((f = tabAt(tab, i)) == null) {
2011 <                if (bin >= 0) {    // no lock needed (or available)
2012 <                    if (!casTabAt(tab, i, f, fwd))
2013 <                        continue;
2014 <                }
2015 <                else {             // transiently use a locked forwarding node
2016 <                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2017 <                    if (!casTabAt(tab, i, f, g))
2018 <                        continue;
2019 <                    setTabAt(nextTab, i, null);
2020 <                    setTabAt(nextTab, i + n, null);
2021 <                    setTabAt(tab, i, fwd);
2022 <                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
2023 <                        g.hash = MOVED;
2024 <                        synchronized (g) { g.notifyAll(); }
2025 <                    }
2026 <                }
2027 <            }
2028 <            else if ((fh = f.hash) == MOVED) {
2029 <                Object fk = f.key;
2030 <                if (fk instanceof TreeBin) {
2031 <                    TreeBin t = (TreeBin)fk;
2032 <                    boolean validated = false;
2033 <                    t.acquire(0);
2034 <                    try {
2035 <                        if (tabAt(tab, i) == f) {
2036 <                            validated = true;
2037 <                            splitTreeBin(nextTab, i, t);
2038 <                            setTabAt(tab, i, fwd);
2039 <                        }
2040 <                    } finally {
2041 <                        t.release(0);
2042 <                    }
2043 <                    if (!validated)
2044 <                        continue;
2045 <                }
2046 <            }
2047 <            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2048 <                boolean validated = false;
2049 <                try {              // split to lo and hi lists; copying as needed
2050 <                    if (tabAt(tab, i) == f) {
2051 <                        validated = true;
2052 <                        splitBin(nextTab, i, f);
2053 <                        setTabAt(tab, i, fwd);
2054 <                    }
2055 <                } finally {
2056 <                    if (!f.casHash(fh | LOCKED, fh)) {
2057 <                        f.hash = fh;
2058 <                        synchronized (f) { f.notifyAll(); };
2059 <                    }
2060 <                }
2061 <                if (!validated)
2062 <                    continue;
2063 <            }
2064 <            else {
2065 <                if (buffer == null) // initialize buffer for revisits
2066 <                    buffer = new int[TRANSFER_BUFFER_SIZE];
2067 <                if (bin < 0 && bufferIndex > 0) {
2068 <                    int j = buffer[--bufferIndex];
2069 <                    buffer[bufferIndex] = i;
2070 <                    i = j;         // swap with another bin
2071 <                    continue;
2072 <                }
2073 <                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2074 <                    f.tryAwaitLock(tab, i);
2075 <                    continue;      // no other options -- block
2076 <                }
2077 <                if (rev == null)   // initialize reverse-forwarder
2078 <                    rev = new Node(MOVED, tab, null, null);
2079 <                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2080 <                    continue;      // recheck before adding to list
2081 <                buffer[nbuffered++] = i;
2082 <                setTabAt(nextTab, i, rev);     // install place-holders
2083 <                setTabAt(nextTab, i + n, rev);
2084 <            }
2085 <
2086 <            if (bin > 0)
2087 <                i = --bin;
2088 <            else if (buffer != null && nbuffered > 0) {
2089 <                bin = -1;
2090 <                i = buffer[bufferIndex = --nbuffered];
2091 <            }
2092 <            else
2093 <                return nextTab;
2094 <        }
2095 <    }
794 >    private transient volatile long baseCount;
795  
796      /**
797 <     * Splits a normal bin with list headed by e into lo and hi parts;
798 <     * installs in given table.
797 >     * Table initialization and resizing control.  When negative, the
798 >     * table is being initialized or resized: -1 for initialization,
799 >     * else -(1 + the number of active resizing threads).  Otherwise,
800 >     * when table is null, holds the initial table size to use upon
801 >     * creation, or 0 for default. After initialization, holds the
802 >     * next element count value upon which to resize the table.
803       */
804 <    private static void splitBin(Node[] nextTab, int i, Node e) {
2102 <        int bit = nextTab.length >>> 1; // bit to split on
2103 <        int runBit = e.hash & bit;
2104 <        Node lastRun = e, lo = null, hi = null;
2105 <        for (Node p = e.next; p != null; p = p.next) {
2106 <            int b = p.hash & bit;
2107 <            if (b != runBit) {
2108 <                runBit = b;
2109 <                lastRun = p;
2110 <            }
2111 <        }
2112 <        if (runBit == 0)
2113 <            lo = lastRun;
2114 <        else
2115 <            hi = lastRun;
2116 <        for (Node p = e; p != lastRun; p = p.next) {
2117 <            int ph = p.hash & HASH_BITS;
2118 <            Object pk = p.key, pv = p.val;
2119 <            if ((ph & bit) == 0)
2120 <                lo = new Node(ph, pk, pv, lo);
2121 <            else
2122 <                hi = new Node(ph, pk, pv, hi);
2123 <        }
2124 <        setTabAt(nextTab, i, lo);
2125 <        setTabAt(nextTab, i + bit, hi);
2126 <    }
804 >    private transient volatile int sizeCtl;
805  
806      /**
807 <     * Splits a tree bin into lo and hi parts; installs in given table.
807 >     * The next table index (plus one) to split while resizing.
808       */
809 <    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2132 <        int bit = nextTab.length >>> 1;
2133 <        TreeBin lt = new TreeBin();
2134 <        TreeBin ht = new TreeBin();
2135 <        int lc = 0, hc = 0;
2136 <        for (Node e = t.first; e != null; e = e.next) {
2137 <            int h = e.hash & HASH_BITS;
2138 <            Object k = e.key, v = e.val;
2139 <            if ((h & bit) == 0) {
2140 <                ++lc;
2141 <                lt.putTreeNode(h, k, v);
2142 <            }
2143 <            else {
2144 <                ++hc;
2145 <                ht.putTreeNode(h, k, v);
2146 <            }
2147 <        }
2148 <        Node ln, hn; // throw away trees if too small
2149 <        if (lc <= (TREE_THRESHOLD >>> 1)) {
2150 <            ln = null;
2151 <            for (Node p = lt.first; p != null; p = p.next)
2152 <                ln = new Node(p.hash, p.key, p.val, ln);
2153 <        }
2154 <        else
2155 <            ln = new Node(MOVED, lt, null, null);
2156 <        setTabAt(nextTab, i, ln);
2157 <        if (hc <= (TREE_THRESHOLD >>> 1)) {
2158 <            hn = null;
2159 <            for (Node p = ht.first; p != null; p = p.next)
2160 <                hn = new Node(p.hash, p.key, p.val, hn);
2161 <        }
2162 <        else
2163 <            hn = new Node(MOVED, ht, null, null);
2164 <        setTabAt(nextTab, i + bit, hn);
2165 <    }
809 >    private transient volatile int transferIndex;
810  
811      /**
812 <     * Implementation for clear. Steps through each bin, removing all
2169 <     * nodes.
812 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
813       */
814 <    private final void internalClear() {
2172 <        long delta = 0L; // negative number of deletions
2173 <        int i = 0;
2174 <        Node[] tab = table;
2175 <        while (tab != null && i < tab.length) {
2176 <            int fh; Object fk;
2177 <            Node f = tabAt(tab, i);
2178 <            if (f == null)
2179 <                ++i;
2180 <            else if ((fh = f.hash) == MOVED) {
2181 <                if ((fk = f.key) instanceof TreeBin) {
2182 <                    TreeBin t = (TreeBin)fk;
2183 <                    t.acquire(0);
2184 <                    try {
2185 <                        if (tabAt(tab, i) == f) {
2186 <                            for (Node p = t.first; p != null; p = p.next) {
2187 <                                p.val = null;
2188 <                                --delta;
2189 <                            }
2190 <                            t.first = null;
2191 <                            t.root = null;
2192 <                            ++i;
2193 <                        }
2194 <                    } finally {
2195 <                        t.release(0);
2196 <                    }
2197 <                }
2198 <                else
2199 <                    tab = (Node[])fk;
2200 <            }
2201 <            else if ((fh & LOCKED) != 0) {
2202 <                counter.add(delta); // opportunistically update count
2203 <                delta = 0L;
2204 <                f.tryAwaitLock(tab, i);
2205 <            }
2206 <            else if (f.casHash(fh, fh | LOCKED)) {
2207 <                try {
2208 <                    if (tabAt(tab, i) == f) {
2209 <                        for (Node e = f; e != null; e = e.next) {
2210 <                            e.val = null;
2211 <                            --delta;
2212 <                        }
2213 <                        setTabAt(tab, i, null);
2214 <                        ++i;
2215 <                    }
2216 <                } finally {
2217 <                    if (!f.casHash(fh | LOCKED, fh)) {
2218 <                        f.hash = fh;
2219 <                        synchronized (f) { f.notifyAll(); };
2220 <                    }
2221 <                }
2222 <            }
2223 <        }
2224 <        if (delta != 0)
2225 <            counter.add(delta);
2226 <    }
2227 <
2228 <    /* ----------------Table Traversal -------------- */
814 >    private transient volatile int cellsBusy;
815  
816      /**
817 <     * Encapsulates traversal for methods such as containsValue; also
2232 <     * serves as a base class for other iterators and bulk tasks.
2233 <     *
2234 <     * At each step, the iterator snapshots the key ("nextKey") and
2235 <     * value ("nextVal") of a valid node (i.e., one that, at point of
2236 <     * snapshot, has a non-null user value). Because val fields can
2237 <     * change (including to null, indicating deletion), field nextVal
2238 <     * might not be accurate at point of use, but still maintains the
2239 <     * weak consistency property of holding a value that was once
2240 <     * valid.
2241 <     *
2242 <     * Internal traversals directly access these fields, as in:
2243 <     * {@code while (it.advance() != null) { process(it.nextKey); }}
2244 <     *
2245 <     * Exported iterators must track whether the iterator has advanced
2246 <     * (in hasNext vs next) (by setting/checking/nulling field
2247 <     * nextVal), and then extract key, value, or key-value pairs as
2248 <     * return values of next().
2249 <     *
2250 <     * The iterator visits once each still-valid node that was
2251 <     * reachable upon iterator construction. It might miss some that
2252 <     * were added to a bin after the bin was visited, which is OK wrt
2253 <     * consistency guarantees. Maintaining this property in the face
2254 <     * of possible ongoing resizes requires a fair amount of
2255 <     * bookkeeping state that is difficult to optimize away amidst
2256 <     * volatile accesses.  Even so, traversal maintains reasonable
2257 <     * throughput.
2258 <     *
2259 <     * Normally, iteration proceeds bin-by-bin traversing lists.
2260 <     * However, if the table has been resized, then all future steps
2261 <     * must traverse both the bin at the current index as well as at
2262 <     * (index + baseSize); and so on for further resizings. To
2263 <     * paranoically cope with potential sharing by users of iterators
2264 <     * across threads, iteration terminates if a bounds checks fails
2265 <     * for a table read.
2266 <     *
2267 <     * This class extends ForkJoinTask to streamline parallel
2268 <     * iteration in bulk operations (see BulkTask). This adds only an
2269 <     * int of space overhead, which is close enough to negligible in
2270 <     * cases where it is not needed to not worry about it.  Because
2271 <     * ForkJoinTask is Serializable, but iterators need not be, we
2272 <     * need to add warning suppressions.
817 >     * Table of counter cells. When non-null, size is a power of 2.
818       */
819 <    @SuppressWarnings("serial")
2275 <    static class Traverser<K,V,R> extends ForkJoinTask<R> {
2276 <        final ConcurrentHashMapV8<K, V> map;
2277 <        Node next;           // the next entry to use
2278 <        Node last;           // the last entry used
2279 <        Object nextKey;      // cached key field of next
2280 <        Object nextVal;      // cached val field of next
2281 <        Node[] tab;          // current table; updated if resized
2282 <        int index;           // index of bin to use next
2283 <        int baseIndex;       // current index of initial table
2284 <        int baseLimit;       // index bound for initial table
2285 <        final int baseSize;  // initial table size
2286 <
2287 <        /** Creates iterator for all entries in the table. */
2288 <        Traverser(ConcurrentHashMapV8<K, V> map) {
2289 <            this.tab = (this.map = map).table;
2290 <            baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2291 <        }
2292 <
2293 <        /** Creates iterator for split() methods */
2294 <        Traverser(Traverser<K,V,?> it, boolean split) {
2295 <            this.map = it.map;
2296 <            this.tab = it.tab;
2297 <            this.baseSize = it.baseSize;
2298 <            int lo = it.baseIndex;
2299 <            int hi = this.baseLimit = it.baseLimit;
2300 <            int i;
2301 <            if (split) // adjust parent
2302 <                i = it.baseLimit = (lo + hi + 1) >>> 1;
2303 <            else       // clone parent
2304 <                i = lo;
2305 <            this.index = this.baseIndex = i;
2306 <        }
2307 <
2308 <        /**
2309 <         * Advances next; returns nextVal or null if terminated.
2310 <         * See above for explanation.
2311 <         */
2312 <        final Object advance() {
2313 <            Node e = last = next;
2314 <            Object ev = null;
2315 <            outer: do {
2316 <                if (e != null)                  // advance past used/skipped node
2317 <                    e = e.next;
2318 <                while (e == null) {             // get to next non-null bin
2319 <                    Node[] t; int b, i, n; Object ek; // checks must use locals
2320 <                    if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2321 <                        (t = tab) == null || i >= (n = t.length))
2322 <                        break outer;
2323 <                    else if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2324 <                        if ((ek = e.key) instanceof TreeBin)
2325 <                            e = ((TreeBin)ek).first;
2326 <                        else {
2327 <                            tab = (Node[])ek;
2328 <                            continue;           // restarts due to null val
2329 <                        }
2330 <                    }                           // visit upper slots if present
2331 <                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2332 <                }
2333 <                nextKey = e.key;
2334 <            } while ((ev = e.val) == null);    // skip deleted or special nodes
2335 <            next = e;
2336 <            return nextVal = ev;
2337 <        }
819 >    private transient volatile CounterCell[] counterCells;
820  
821 <        public final void remove() {
822 <            if (nextVal == null && last == null)
823 <                advance();
824 <            Node e = last;
2343 <            if (e == null)
2344 <                throw new IllegalStateException();
2345 <            last = null;
2346 <            map.remove(e.key);
2347 <        }
2348 <
2349 <        public final boolean hasNext() {
2350 <            return nextVal != null || advance() != null;
2351 <        }
821 >    // views
822 >    private transient KeySetView<K,V> keySet;
823 >    private transient ValuesView<K,V> values;
824 >    private transient EntrySetView<K,V> entrySet;
825  
2353        public final boolean hasMoreElements() { return hasNext(); }
2354        public final void setRawResult(Object x) { }
2355        public R getRawResult() { return null; }
2356        public boolean exec() { return true; }
2357    }
826  
827      /* ---------------- Public operations -------------- */
828  
# Line 2362 | Line 830 | public class ConcurrentHashMapV8<K, V>
830       * Creates a new, empty map with the default initial table size (16).
831       */
832      public ConcurrentHashMapV8() {
2365        this.counter = new LongAdder();
833      }
834  
835      /**
# Line 2381 | Line 848 | public class ConcurrentHashMapV8<K, V>
848          int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
849                     MAXIMUM_CAPACITY :
850                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2384        this.counter = new LongAdder();
851          this.sizeCtl = cap;
852      }
853  
# Line 2391 | Line 857 | public class ConcurrentHashMapV8<K, V>
857       * @param m the map
858       */
859      public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2394        this.counter = new LongAdder();
860          this.sizeCtl = DEFAULT_CAPACITY;
861 <        internalPutAll(m);
861 >        putAll(m);
862      }
863  
864      /**
# Line 2434 | Line 899 | public class ConcurrentHashMapV8<K, V>
899       * nonpositive
900       */
901      public ConcurrentHashMapV8(int initialCapacity,
902 <                               float loadFactor, int concurrencyLevel) {
902 >                             float loadFactor, int concurrencyLevel) {
903          if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
904              throw new IllegalArgumentException();
905          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
# Line 2442 | Line 907 | public class ConcurrentHashMapV8<K, V>
907          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
908          int cap = (size >= (long)MAXIMUM_CAPACITY) ?
909              MAXIMUM_CAPACITY : tableSizeFor((int)size);
2445        this.counter = new LongAdder();
910          this.sizeCtl = cap;
911      }
912  
913 <    /**
2450 <     * {@inheritDoc}
2451 <     */
2452 <    public boolean isEmpty() {
2453 <        return counter.sum() <= 0L; // ignore transient negative values
2454 <    }
913 >    // Original (since JDK1.2) Map methods
914  
915      /**
916       * {@inheritDoc}
917       */
918      public int size() {
919 <        long n = counter.sum();
919 >        long n = sumCount();
920          return ((n < 0L) ? 0 :
921                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
922                  (int)n);
923      }
924  
925      /**
926 <     * Returns the number of mappings. This method should be used
2468 <     * instead of {@link #size} because a ConcurrentHashMap may
2469 <     * contain more mappings than can be represented as an int. The
2470 <     * value returned is a snapshot; the actual count may differ if
2471 <     * there are ongoing concurrent insertions or removals.
2472 <     *
2473 <     * @return the number of mappings
926 >     * {@inheritDoc}
927       */
928 <    public long mappingCount() {
929 <        long n = counter.sum();
2477 <        return (n < 0L) ? 0L : n; // ignore transient negative values
928 >    public boolean isEmpty() {
929 >        return sumCount() <= 0L; // ignore transient negative values
930      }
931  
932      /**
# Line 2488 | Line 940 | public class ConcurrentHashMapV8<K, V>
940       *
941       * @throws NullPointerException if the specified key is null
942       */
2491    @SuppressWarnings("unchecked")
943      public V get(Object key) {
944 <        if (key == null)
945 <            throw new NullPointerException();
946 <        return (V)internalGet(key);
944 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
945 >        int h = spread(key.hashCode());
946 >        if ((tab = table) != null && (n = tab.length) > 0 &&
947 >            (e = tabAt(tab, (n - 1) & h)) != null) {
948 >            if ((eh = e.hash) == h) {
949 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
950 >                    return e.val;
951 >            }
952 >            else if (eh < 0)
953 >                return (p = e.find(h, key)) != null ? p.val : null;
954 >            while ((e = e.next) != null) {
955 >                if (e.hash == h &&
956 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
957 >                    return e.val;
958 >            }
959 >        }
960 >        return null;
961      }
962  
963      /**
964       * Tests if the specified object is a key in this table.
965       *
966 <     * @param  key   possible key
966 >     * @param  key possible key
967       * @return {@code true} if and only if the specified object
968       *         is a key in this table, as determined by the
969       *         {@code equals} method; {@code false} otherwise
970       * @throws NullPointerException if the specified key is null
971       */
972      public boolean containsKey(Object key) {
973 <        if (key == null)
2509 <            throw new NullPointerException();
2510 <        return internalGet(key) != null;
973 >        return get(key) != null;
974      }
975  
976      /**
# Line 2523 | Line 986 | public class ConcurrentHashMapV8<K, V>
986      public boolean containsValue(Object value) {
987          if (value == null)
988              throw new NullPointerException();
989 <        Object v;
990 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
991 <        while ((v = it.advance()) != null) {
992 <            if (v == value || value.equals(v))
993 <                return true;
989 >        Node<K,V>[] t;
990 >        if ((t = table) != null) {
991 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
992 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
993 >                V v;
994 >                if ((v = p.val) == value || (v != null && value.equals(v)))
995 >                    return true;
996 >            }
997          }
998          return false;
999      }
1000  
1001      /**
2536     * Legacy method testing if some key maps into the specified value
2537     * in this table.  This method is identical in functionality to
2538     * {@link #containsValue}, and exists solely to ensure
2539     * full compatibility with class {@link java.util.Hashtable},
2540     * which supported this method prior to introduction of the
2541     * Java Collections framework.
2542     *
2543     * @param  value a value to search for
2544     * @return {@code true} if and only if some key maps to the
2545     *         {@code value} argument in this table as
2546     *         determined by the {@code equals} method;
2547     *         {@code false} otherwise
2548     * @throws NullPointerException if the specified value is null
2549     */
2550    public boolean contains(Object value) {
2551        return containsValue(value);
2552    }
2553
2554    /**
1002       * Maps the specified key to the specified value in this table.
1003       * Neither the key nor the value can be null.
1004       *
1005 <     * <p> The value can be retrieved by calling the {@code get} method
1005 >     * <p>The value can be retrieved by calling the {@code get} method
1006       * with a key that is equal to the original key.
1007       *
1008       * @param key key with which the specified value is to be associated
# Line 2564 | Line 1011 | public class ConcurrentHashMapV8<K, V>
1011       *         {@code null} if there was no mapping for {@code key}
1012       * @throws NullPointerException if the specified key or value is null
1013       */
2567    @SuppressWarnings("unchecked")
1014      public V put(K key, V value) {
1015 <        if (key == null || value == null)
2570 <            throw new NullPointerException();
2571 <        return (V)internalPut(key, value);
1015 >        return putVal(key, value, false);
1016      }
1017  
1018 <    /**
1019 <     * {@inheritDoc}
1020 <     *
1021 <     * @return the previous value associated with the specified key,
1022 <     *         or {@code null} if there was no mapping for the key
1023 <     * @throws NullPointerException if the specified key or value is null
1024 <     */
1025 <    @SuppressWarnings("unchecked")
1026 <    public V putIfAbsent(K key, V value) {
1027 <        if (key == null || value == null)
1028 <            throw new NullPointerException();
1029 <        return (V)internalPutIfAbsent(key, value);
1018 >    /** Implementation for put and putIfAbsent */
1019 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
1020 >        if (key == null || value == null) throw new NullPointerException();
1021 >        int hash = spread(key.hashCode());
1022 >        int binCount = 0;
1023 >        for (Node<K,V>[] tab = table;;) {
1024 >            Node<K,V> f; int n, i, fh;
1025 >            if (tab == null || (n = tab.length) == 0)
1026 >                tab = initTable();
1027 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1028 >                if (casTabAt(tab, i, null,
1029 >                             new Node<K,V>(hash, key, value, null)))
1030 >                    break;                   // no lock when adding to empty bin
1031 >            }
1032 >            else if ((fh = f.hash) == MOVED)
1033 >                tab = helpTransfer(tab, f);
1034 >            else {
1035 >                V oldVal = null;
1036 >                synchronized (f) {
1037 >                    if (tabAt(tab, i) == f) {
1038 >                        if (fh >= 0) {
1039 >                            binCount = 1;
1040 >                            for (Node<K,V> e = f;; ++binCount) {
1041 >                                K ek;
1042 >                                if (e.hash == hash &&
1043 >                                    ((ek = e.key) == key ||
1044 >                                     (ek != null && key.equals(ek)))) {
1045 >                                    oldVal = e.val;
1046 >                                    if (!onlyIfAbsent)
1047 >                                        e.val = value;
1048 >                                    break;
1049 >                                }
1050 >                                Node<K,V> pred = e;
1051 >                                if ((e = e.next) == null) {
1052 >                                    pred.next = new Node<K,V>(hash, key,
1053 >                                                              value, null);
1054 >                                    break;
1055 >                                }
1056 >                            }
1057 >                        }
1058 >                        else if (f instanceof TreeBin) {
1059 >                            Node<K,V> p;
1060 >                            binCount = 2;
1061 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1062 >                                                           value)) != null) {
1063 >                                oldVal = p.val;
1064 >                                if (!onlyIfAbsent)
1065 >                                    p.val = value;
1066 >                            }
1067 >                        }
1068 >                    }
1069 >                }
1070 >                if (binCount != 0) {
1071 >                    if (binCount >= TREEIFY_THRESHOLD)
1072 >                        treeifyBin(tab, i);
1073 >                    if (oldVal != null)
1074 >                        return oldVal;
1075 >                    break;
1076 >                }
1077 >            }
1078 >        }
1079 >        addCount(1L, binCount);
1080 >        return null;
1081      }
1082  
1083      /**
# Line 2593 | Line 1088 | public class ConcurrentHashMapV8<K, V>
1088       * @param m mappings to be stored in this map
1089       */
1090      public void putAll(Map<? extends K, ? extends V> m) {
1091 <        internalPutAll(m);
1092 <    }
1093 <
2599 <    /**
2600 <     * If the specified key is not already associated with a value,
2601 <     * computes its value using the given mappingFunction and enters
2602 <     * it into the map unless null.  This is equivalent to
2603 <     * <pre> {@code
2604 <     * if (map.containsKey(key))
2605 <     *   return map.get(key);
2606 <     * value = mappingFunction.apply(key);
2607 <     * if (value != null)
2608 <     *   map.put(key, value);
2609 <     * return value;}</pre>
2610 <     *
2611 <     * except that the action is performed atomically.  If the
2612 <     * function returns {@code null} no mapping is recorded. If the
2613 <     * function itself throws an (unchecked) exception, the exception
2614 <     * is rethrown to its caller, and no mapping is recorded.  Some
2615 <     * attempted update operations on this map by other threads may be
2616 <     * blocked while computation is in progress, so the computation
2617 <     * should be short and simple, and must not attempt to update any
2618 <     * other mappings of this Map. The most appropriate usage is to
2619 <     * construct a new object serving as an initial mapped value, or
2620 <     * memoized result, as in:
2621 <     *
2622 <     *  <pre> {@code
2623 <     * map.computeIfAbsent(key, new Fun<K, V>() {
2624 <     *   public V map(K k) { return new Value(f(k)); }});}</pre>
2625 <     *
2626 <     * @param key key with which the specified value is to be associated
2627 <     * @param mappingFunction the function to compute a value
2628 <     * @return the current (existing or computed) value associated with
2629 <     *         the specified key, or null if the computed value is null.
2630 <     * @throws NullPointerException if the specified key or mappingFunction
2631 <     *         is null
2632 <     * @throws IllegalStateException if the computation detectably
2633 <     *         attempts a recursive update to this map that would
2634 <     *         otherwise never complete
2635 <     * @throws RuntimeException or Error if the mappingFunction does so,
2636 <     *         in which case the mapping is left unestablished
2637 <     */
2638 <    @SuppressWarnings("unchecked")
2639 <    public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
2640 <        if (key == null || mappingFunction == null)
2641 <            throw new NullPointerException();
2642 <        return (V)internalComputeIfAbsent(key, mappingFunction);
2643 <    }
2644 <
2645 <    /**
2646 <     * If the given key is present, computes a new mapping value given a key and
2647 <     * its current mapped value. This is equivalent to
2648 <     *  <pre> {@code
2649 <     *   if (map.containsKey(key)) {
2650 <     *     value = remappingFunction.apply(key, map.get(key));
2651 <     *     if (value != null)
2652 <     *       map.put(key, value);
2653 <     *     else
2654 <     *       map.remove(key);
2655 <     *   }
2656 <     * }</pre>
2657 <     *
2658 <     * except that the action is performed atomically.  If the
2659 <     * function returns {@code null}, the mapping is removed.  If the
2660 <     * function itself throws an (unchecked) exception, the exception
2661 <     * is rethrown to its caller, and the current mapping is left
2662 <     * unchanged.  Some attempted update operations on this map by
2663 <     * other threads may be blocked while computation is in progress,
2664 <     * so the computation should be short and simple, and must not
2665 <     * attempt to update any other mappings of this Map. For example,
2666 <     * to either create or append new messages to a value mapping:
2667 <     *
2668 <     * @param key key with which the specified value is to be associated
2669 <     * @param remappingFunction the function to compute a value
2670 <     * @return the new value associated with the specified key, or null if none
2671 <     * @throws NullPointerException if the specified key or remappingFunction
2672 <     *         is null
2673 <     * @throws IllegalStateException if the computation detectably
2674 <     *         attempts a recursive update to this map that would
2675 <     *         otherwise never complete
2676 <     * @throws RuntimeException or Error if the remappingFunction does so,
2677 <     *         in which case the mapping is unchanged
2678 <     */
2679 <    @SuppressWarnings("unchecked")
2680 <    public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2681 <        if (key == null || remappingFunction == null)
2682 <            throw new NullPointerException();
2683 <        return (V)internalCompute(key, true, remappingFunction);
2684 <    }
2685 <
2686 <    /**
2687 <     * Computes a new mapping value given a key and
2688 <     * its current mapped value (or {@code null} if there is no current
2689 <     * mapping). This is equivalent to
2690 <     *  <pre> {@code
2691 <     *   value = remappingFunction.apply(key, map.get(key));
2692 <     *   if (value != null)
2693 <     *     map.put(key, value);
2694 <     *   else
2695 <     *     map.remove(key);
2696 <     * }</pre>
2697 <     *
2698 <     * except that the action is performed atomically.  If the
2699 <     * function returns {@code null}, the mapping is removed.  If the
2700 <     * function itself throws an (unchecked) exception, the exception
2701 <     * is rethrown to its caller, and the current mapping is left
2702 <     * unchanged.  Some attempted update operations on this map by
2703 <     * other threads may be blocked while computation is in progress,
2704 <     * so the computation should be short and simple, and must not
2705 <     * attempt to update any other mappings of this Map. For example,
2706 <     * to either create or append new messages to a value mapping:
2707 <     *
2708 <     * <pre> {@code
2709 <     * Map<Key, String> map = ...;
2710 <     * final String msg = ...;
2711 <     * map.compute(key, new BiFun<Key, String, String>() {
2712 <     *   public String apply(Key k, String v) {
2713 <     *    return (v == null) ? msg : v + msg;});}}</pre>
2714 <     *
2715 <     * @param key key with which the specified value is to be associated
2716 <     * @param remappingFunction the function to compute a value
2717 <     * @return the new value associated with the specified key, or null if none
2718 <     * @throws NullPointerException if the specified key or remappingFunction
2719 <     *         is null
2720 <     * @throws IllegalStateException if the computation detectably
2721 <     *         attempts a recursive update to this map that would
2722 <     *         otherwise never complete
2723 <     * @throws RuntimeException or Error if the remappingFunction does so,
2724 <     *         in which case the mapping is unchanged
2725 <     */
2726 <    @SuppressWarnings("unchecked")
2727 <    public V compute(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2728 <        if (key == null || remappingFunction == null)
2729 <            throw new NullPointerException();
2730 <        return (V)internalCompute(key, false, remappingFunction);
2731 <    }
2732 <
2733 <    /**
2734 <     * If the specified key is not already associated
2735 <     * with a value, associate it with the given value.
2736 <     * Otherwise, replace the value with the results of
2737 <     * the given remapping function. This is equivalent to:
2738 <     *  <pre> {@code
2739 <     *   if (!map.containsKey(key))
2740 <     *     map.put(value);
2741 <     *   else {
2742 <     *     newValue = remappingFunction.apply(map.get(key), value);
2743 <     *     if (value != null)
2744 <     *       map.put(key, value);
2745 <     *     else
2746 <     *       map.remove(key);
2747 <     *   }
2748 <     * }</pre>
2749 <     * except that the action is performed atomically.  If the
2750 <     * function returns {@code null}, the mapping is removed.  If the
2751 <     * function itself throws an (unchecked) exception, the exception
2752 <     * is rethrown to its caller, and the current mapping is left
2753 <     * unchanged.  Some attempted update operations on this map by
2754 <     * other threads may be blocked while computation is in progress,
2755 <     * so the computation should be short and simple, and must not
2756 <     * attempt to update any other mappings of this Map.
2757 <     */
2758 <    @SuppressWarnings("unchecked")
2759 <    public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2760 <        if (key == null || value == null || remappingFunction == null)
2761 <            throw new NullPointerException();
2762 <        return (V)internalMerge(key, value, remappingFunction);
1091 >        tryPresize(m.size());
1092 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1093 >            putVal(e.getKey(), e.getValue(), false);
1094      }
1095  
1096      /**
# Line 2771 | Line 1102 | public class ConcurrentHashMapV8<K, V>
1102       *         {@code null} if there was no mapping for {@code key}
1103       * @throws NullPointerException if the specified key is null
1104       */
1105 <    @SuppressWarnings("unchecked")
1106 <        public V remove(Object key) {
2776 <        if (key == null)
2777 <            throw new NullPointerException();
2778 <        return (V)internalReplace(key, null, null);
1105 >    public V remove(Object key) {
1106 >        return replaceNode(key, null, null);
1107      }
1108  
1109      /**
1110 <     * {@inheritDoc}
1111 <     *
1112 <     * @throws NullPointerException if the specified key is null
2785 <     */
2786 <    public boolean remove(Object key, Object value) {
2787 <        if (key == null)
2788 <            throw new NullPointerException();
2789 <        if (value == null)
2790 <            return false;
2791 <        return internalReplace(key, null, value) != null;
2792 <    }
2793 <
2794 <    /**
2795 <     * {@inheritDoc}
2796 <     *
2797 <     * @throws NullPointerException if any of the arguments are null
2798 <     */
2799 <    public boolean replace(K key, V oldValue, V newValue) {
2800 <        if (key == null || oldValue == null || newValue == null)
2801 <            throw new NullPointerException();
2802 <        return internalReplace(key, newValue, oldValue) != null;
2803 <    }
2804 <
2805 <    /**
2806 <     * {@inheritDoc}
2807 <     *
2808 <     * @return the previous value associated with the specified key,
2809 <     *         or {@code null} if there was no mapping for the key
2810 <     * @throws NullPointerException if the specified key or value is null
1110 >     * Implementation for the four public remove/replace methods:
1111 >     * Replaces node value with v, conditional upon match of cv if
1112 >     * non-null.  If resulting value is null, delete.
1113       */
1114 <    @SuppressWarnings("unchecked")
1115 <        public V replace(K key, V value) {
1116 <        if (key == null || value == null)
1117 <            throw new NullPointerException();
1118 <        return (V)internalReplace(key, value, null);
1114 >    final V replaceNode(Object key, V value, Object cv) {
1115 >        int hash = spread(key.hashCode());
1116 >        for (Node<K,V>[] tab = table;;) {
1117 >            Node<K,V> f; int n, i, fh;
1118 >            if (tab == null || (n = tab.length) == 0 ||
1119 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1120 >                break;
1121 >            else if ((fh = f.hash) == MOVED)
1122 >                tab = helpTransfer(tab, f);
1123 >            else {
1124 >                V oldVal = null;
1125 >                boolean validated = false;
1126 >                synchronized (f) {
1127 >                    if (tabAt(tab, i) == f) {
1128 >                        if (fh >= 0) {
1129 >                            validated = true;
1130 >                            for (Node<K,V> e = f, pred = null;;) {
1131 >                                K ek;
1132 >                                if (e.hash == hash &&
1133 >                                    ((ek = e.key) == key ||
1134 >                                     (ek != null && key.equals(ek)))) {
1135 >                                    V ev = e.val;
1136 >                                    if (cv == null || cv == ev ||
1137 >                                        (ev != null && cv.equals(ev))) {
1138 >                                        oldVal = ev;
1139 >                                        if (value != null)
1140 >                                            e.val = value;
1141 >                                        else if (pred != null)
1142 >                                            pred.next = e.next;
1143 >                                        else
1144 >                                            setTabAt(tab, i, e.next);
1145 >                                    }
1146 >                                    break;
1147 >                                }
1148 >                                pred = e;
1149 >                                if ((e = e.next) == null)
1150 >                                    break;
1151 >                            }
1152 >                        }
1153 >                        else if (f instanceof TreeBin) {
1154 >                            validated = true;
1155 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1156 >                            TreeNode<K,V> r, p;
1157 >                            if ((r = t.root) != null &&
1158 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1159 >                                V pv = p.val;
1160 >                                if (cv == null || cv == pv ||
1161 >                                    (pv != null && cv.equals(pv))) {
1162 >                                    oldVal = pv;
1163 >                                    if (value != null)
1164 >                                        p.val = value;
1165 >                                    else if (t.removeTreeNode(p))
1166 >                                        setTabAt(tab, i, untreeify(t.first));
1167 >                                }
1168 >                            }
1169 >                        }
1170 >                    }
1171 >                }
1172 >                if (validated) {
1173 >                    if (oldVal != null) {
1174 >                        if (value == null)
1175 >                            addCount(-1L, -1);
1176 >                        return oldVal;
1177 >                    }
1178 >                    break;
1179 >                }
1180 >            }
1181 >        }
1182 >        return null;
1183      }
1184  
1185      /**
1186       * Removes all of the mappings from this map.
1187       */
1188      public void clear() {
1189 <        internalClear();
1189 >        long delta = 0L; // negative number of deletions
1190 >        int i = 0;
1191 >        Node<K,V>[] tab = table;
1192 >        while (tab != null && i < tab.length) {
1193 >            int fh;
1194 >            Node<K,V> f = tabAt(tab, i);
1195 >            if (f == null)
1196 >                ++i;
1197 >            else if ((fh = f.hash) == MOVED) {
1198 >                tab = helpTransfer(tab, f);
1199 >                i = 0; // restart
1200 >            }
1201 >            else {
1202 >                synchronized (f) {
1203 >                    if (tabAt(tab, i) == f) {
1204 >                        Node<K,V> p = (fh >= 0 ? f :
1205 >                                       (f instanceof TreeBin) ?
1206 >                                       ((TreeBin<K,V>)f).first : null);
1207 >                        while (p != null) {
1208 >                            --delta;
1209 >                            p = p.next;
1210 >                        }
1211 >                        setTabAt(tab, i++, null);
1212 >                    }
1213 >                }
1214 >            }
1215 >        }
1216 >        if (delta != 0L)
1217 >            addCount(delta, -1);
1218      }
1219  
1220      /**
1221       * Returns a {@link Set} view of the keys contained in this map.
1222       * The set is backed by the map, so changes to the map are
1223 <     * reflected in the set, and vice-versa.  The set supports element
1223 >     * reflected in the set, and vice-versa. The set supports element
1224       * removal, which removes the corresponding mapping from this map,
1225       * via the {@code Iterator.remove}, {@code Set.remove},
1226       * {@code removeAll}, {@code retainAll}, and {@code clear}
# Line 2838 | Line 1232 | public class ConcurrentHashMapV8<K, V>
1232       * and guarantees to traverse elements as they existed upon
1233       * construction of the iterator, and may (but is not guaranteed to)
1234       * reflect any modifications subsequent to construction.
1235 +     *
1236 +     * @return the set view
1237       */
1238 <    public Set<K> keySet() {
1239 <        KeySet<K,V> ks = keySet;
1240 <        return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
1238 >    public KeySetView<K,V> keySet() {
1239 >        KeySetView<K,V> ks;
1240 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1241      }
1242  
1243      /**
# Line 2859 | Line 1255 | public class ConcurrentHashMapV8<K, V>
1255       * and guarantees to traverse elements as they existed upon
1256       * construction of the iterator, and may (but is not guaranteed to)
1257       * reflect any modifications subsequent to construction.
1258 +     *
1259 +     * @return the collection view
1260       */
1261      public Collection<V> values() {
1262 <        Values<K,V> vs = values;
1263 <        return (vs != null) ? vs : (values = new Values<K,V>(this));
1262 >        ValuesView<K,V> vs;
1263 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1264      }
1265  
1266      /**
# Line 2872 | Line 1270 | public class ConcurrentHashMapV8<K, V>
1270       * removal, which removes the corresponding mapping from the map,
1271       * via the {@code Iterator.remove}, {@code Set.remove},
1272       * {@code removeAll}, {@code retainAll}, and {@code clear}
1273 <     * operations.  It does not support the {@code add} or
2876 <     * {@code addAll} operations.
1273 >     * operations.
1274       *
1275       * <p>The view's {@code iterator} is a "weakly consistent" iterator
1276       * that will never throw {@link ConcurrentModificationException},
1277       * and guarantees to traverse elements as they existed upon
1278       * construction of the iterator, and may (but is not guaranteed to)
1279       * reflect any modifications subsequent to construction.
2883     */
2884    public Set<Map.Entry<K,V>> entrySet() {
2885        EntrySet<K,V> es = entrySet;
2886        return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2887    }
2888
2889    /**
2890     * Returns an enumeration of the keys in this table.
1280       *
1281 <     * @return an enumeration of the keys in this table
2893 <     * @see #keySet()
2894 <     */
2895 <    public Enumeration<K> keys() {
2896 <        return new KeyIterator<K,V>(this);
2897 <    }
2898 <
2899 <    /**
2900 <     * Returns an enumeration of the values in this table.
2901 <     *
2902 <     * @return an enumeration of the values in this table
2903 <     * @see #values()
1281 >     * @return the set view
1282       */
1283 <    public Enumeration<V> elements() {
1284 <        return new ValueIterator<K,V>(this);
1285 <    }
2908 <
2909 <    /**
2910 <     * Returns a partitionable iterator of the keys in this map.
2911 <     *
2912 <     * @return a partitionable iterator of the keys in this map
2913 <     */
2914 <    public Spliterator<K> keySpliterator() {
2915 <        return new KeyIterator<K,V>(this);
2916 <    }
2917 <
2918 <    /**
2919 <     * Returns a partitionable iterator of the values in this map.
2920 <     *
2921 <     * @return a partitionable iterator of the values in this map
2922 <     */
2923 <    public Spliterator<V> valueSpliterator() {
2924 <        return new ValueIterator<K,V>(this);
2925 <    }
2926 <
2927 <    /**
2928 <     * Returns a partitionable iterator of the entries in this map.
2929 <     *
2930 <     * @return a partitionable iterator of the entries in this map
2931 <     */
2932 <    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2933 <        return new EntryIterator<K,V>(this);
1283 >    public Set<Map.Entry<K,V>> entrySet() {
1284 >        EntrySetView<K,V> es;
1285 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1286      }
1287  
1288      /**
# Line 2942 | Line 1294 | public class ConcurrentHashMapV8<K, V>
1294       */
1295      public int hashCode() {
1296          int h = 0;
1297 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1298 <        Object v;
1299 <        while ((v = it.advance()) != null) {
1300 <            h += it.nextKey.hashCode() ^ v.hashCode();
1297 >        Node<K,V>[] t;
1298 >        if ((t = table) != null) {
1299 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1300 >            for (Node<K,V> p; (p = it.advance()) != null; )
1301 >                h += p.key.hashCode() ^ p.val.hashCode();
1302          }
1303          return h;
1304      }
# Line 2962 | Line 1315 | public class ConcurrentHashMapV8<K, V>
1315       * @return a string representation of this map
1316       */
1317      public String toString() {
1318 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1318 >        Node<K,V>[] t;
1319 >        int f = (t = table) == null ? 0 : t.length;
1320 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1321          StringBuilder sb = new StringBuilder();
1322          sb.append('{');
1323 <        Object v;
1324 <        if ((v = it.advance()) != null) {
1323 >        Node<K,V> p;
1324 >        if ((p = it.advance()) != null) {
1325              for (;;) {
1326 <                Object k = it.nextKey;
1326 >                K k = p.key;
1327 >                V v = p.val;
1328                  sb.append(k == this ? "(this Map)" : k);
1329                  sb.append('=');
1330                  sb.append(v == this ? "(this Map)" : v);
1331 <                if ((v = it.advance()) == null)
1331 >                if ((p = it.advance()) == null)
1332                      break;
1333                  sb.append(',').append(' ');
1334              }
# Line 2995 | Line 1351 | public class ConcurrentHashMapV8<K, V>
1351              if (!(o instanceof Map))
1352                  return false;
1353              Map<?,?> m = (Map<?,?>) o;
1354 <            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
1355 <            Object val;
1356 <            while ((val = it.advance()) != null) {
1357 <                Object v = m.get(it.nextKey);
1354 >            Node<K,V>[] t;
1355 >            int f = (t = table) == null ? 0 : t.length;
1356 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1357 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1358 >                V val = p.val;
1359 >                Object v = m.get(p.key);
1360                  if (v == null || (v != val && !v.equals(val)))
1361                      return false;
1362              }
# Line 3006 | Line 1364 | public class ConcurrentHashMapV8<K, V>
1364                  Object mk, mv, v;
1365                  if ((mk = e.getKey()) == null ||
1366                      (mv = e.getValue()) == null ||
1367 <                    (v = internalGet(mk)) == null ||
1367 >                    (v = get(mk)) == null ||
1368                      (mv != v && !mv.equals(v)))
1369                      return false;
1370              }
# Line 3014 | Line 1372 | public class ConcurrentHashMapV8<K, V>
1372          return true;
1373      }
1374  
1375 <    /* ----------------Iterators -------------- */
1375 >    /**
1376 >     * Stripped-down version of helper class used in previous version,
1377 >     * declared for the sake of serialization compatibility
1378 >     */
1379 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1380 >        private static final long serialVersionUID = 2249069246763182397L;
1381 >        final float loadFactor;
1382 >        Segment(float lf) { this.loadFactor = lf; }
1383 >    }
1384  
1385 <    @SuppressWarnings("serial")
1386 <    static final class KeyIterator<K,V> extends Traverser<K,V,Object>
1387 <        implements Spliterator<K>, Enumeration<K> {
1388 <        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
1389 <        KeyIterator(Traverser<K,V,Object> it, boolean split) {
1390 <            super(it, split);
1391 <        }
1392 <        public KeyIterator<K,V> split() {
1393 <            if (last != null || (next != null && nextVal == null))
1394 <                throw new IllegalStateException();
1395 <            return new KeyIterator<K,V>(this, true);
1396 <        }
1397 <        @SuppressWarnings("unchecked")
1398 <            public final K next() {
1399 <            if (nextVal == null && advance() == null)
1400 <                throw new NoSuchElementException();
1401 <            Object k = nextKey;
1402 <            nextVal = null;
1403 <            return (K) k;
1385 >    /**
1386 >     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1387 >     * stream (i.e., serializes it).
1388 >     * @param s the stream
1389 >     * @throws java.io.IOException if an I/O error occurs
1390 >     * @serialData
1391 >     * the key (Object) and value (Object)
1392 >     * for each key-value mapping, followed by a null pair.
1393 >     * The key-value mappings are emitted in no particular order.
1394 >     */
1395 >    private void writeObject(java.io.ObjectOutputStream s)
1396 >        throws java.io.IOException {
1397 >        // For serialization compatibility
1398 >        // Emulate segment calculation from previous version of this class
1399 >        int sshift = 0;
1400 >        int ssize = 1;
1401 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1402 >            ++sshift;
1403 >            ssize <<= 1;
1404 >        }
1405 >        int segmentShift = 32 - sshift;
1406 >        int segmentMask = ssize - 1;
1407 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1408 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1409 >        for (int i = 0; i < segments.length; ++i)
1410 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1411 >        s.putFields().put("segments", segments);
1412 >        s.putFields().put("segmentShift", segmentShift);
1413 >        s.putFields().put("segmentMask", segmentMask);
1414 >        s.writeFields();
1415 >
1416 >        Node<K,V>[] t;
1417 >        if ((t = table) != null) {
1418 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1419 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1420 >                s.writeObject(p.key);
1421 >                s.writeObject(p.val);
1422 >            }
1423          }
1424 <
1425 <        public final K nextElement() { return next(); }
1424 >        s.writeObject(null);
1425 >        s.writeObject(null);
1426 >        segments = null; // throw away
1427      }
1428  
1429 <    @SuppressWarnings("serial")
1430 <    static final class ValueIterator<K,V> extends Traverser<K,V,Object>
1431 <        implements Spliterator<V>, Enumeration<V> {
1432 <        ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
1433 <        ValueIterator(Traverser<K,V,Object> it, boolean split) {
1434 <            super(it, split);
1435 <        }
1436 <        public ValueIterator<K,V> split() {
1437 <            if (last != null || (next != null && nextVal == null))
1438 <                throw new IllegalStateException();
1439 <            return new ValueIterator<K,V>(this, true);
1429 >    /**
1430 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1431 >     * @param s the stream
1432 >     * @throws ClassNotFoundException if the class of a serialized object
1433 >     *         could not be found
1434 >     * @throws java.io.IOException if an I/O error occurs
1435 >     */
1436 >    private void readObject(java.io.ObjectInputStream s)
1437 >        throws java.io.IOException, ClassNotFoundException {
1438 >        /*
1439 >         * To improve performance in typical cases, we create nodes
1440 >         * while reading, then place in table once size is known.
1441 >         * However, we must also validate uniqueness and deal with
1442 >         * overpopulated bins while doing so, which requires
1443 >         * specialized versions of putVal mechanics.
1444 >         */
1445 >        sizeCtl = -1; // force exclusion for table construction
1446 >        s.defaultReadObject();
1447 >        long size = 0L;
1448 >        Node<K,V> p = null;
1449 >        for (;;) {
1450 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1451 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1452 >            if (k != null && v != null) {
1453 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1454 >                ++size;
1455 >            }
1456 >            else
1457 >                break;
1458          }
1459 <
1460 <        @SuppressWarnings("unchecked")
1461 <            public final V next() {
1462 <            Object v;
1463 <            if ((v = nextVal) == null && (v = advance()) == null)
1464 <                throw new NoSuchElementException();
1465 <            nextVal = null;
1466 <            return (V) v;
1459 >        if (size == 0L)
1460 >            sizeCtl = 0;
1461 >        else {
1462 >            int n;
1463 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1464 >                n = MAXIMUM_CAPACITY;
1465 >            else {
1466 >                int sz = (int)size;
1467 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1468 >            }
1469 >            @SuppressWarnings("unchecked")
1470 >                Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1471 >            int mask = n - 1;
1472 >            long added = 0L;
1473 >            while (p != null) {
1474 >                boolean insertAtFront;
1475 >                Node<K,V> next = p.next, first;
1476 >                int h = p.hash, j = h & mask;
1477 >                if ((first = tabAt(tab, j)) == null)
1478 >                    insertAtFront = true;
1479 >                else {
1480 >                    K k = p.key;
1481 >                    if (first.hash < 0) {
1482 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1483 >                        if (t.putTreeVal(h, k, p.val) == null)
1484 >                            ++added;
1485 >                        insertAtFront = false;
1486 >                    }
1487 >                    else {
1488 >                        int binCount = 0;
1489 >                        insertAtFront = true;
1490 >                        Node<K,V> q; K qk;
1491 >                        for (q = first; q != null; q = q.next) {
1492 >                            if (q.hash == h &&
1493 >                                ((qk = q.key) == k ||
1494 >                                 (qk != null && k.equals(qk)))) {
1495 >                                insertAtFront = false;
1496 >                                break;
1497 >                            }
1498 >                            ++binCount;
1499 >                        }
1500 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1501 >                            insertAtFront = false;
1502 >                            ++added;
1503 >                            p.next = first;
1504 >                            TreeNode<K,V> hd = null, tl = null;
1505 >                            for (q = p; q != null; q = q.next) {
1506 >                                TreeNode<K,V> t = new TreeNode<K,V>
1507 >                                    (q.hash, q.key, q.val, null, null);
1508 >                                if ((t.prev = tl) == null)
1509 >                                    hd = t;
1510 >                                else
1511 >                                    tl.next = t;
1512 >                                tl = t;
1513 >                            }
1514 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1515 >                        }
1516 >                    }
1517 >                }
1518 >                if (insertAtFront) {
1519 >                    ++added;
1520 >                    p.next = first;
1521 >                    setTabAt(tab, j, p);
1522 >                }
1523 >                p = next;
1524 >            }
1525 >            table = tab;
1526 >            sizeCtl = n - (n >>> 2);
1527 >            baseCount = added;
1528          }
3064
3065        public final V nextElement() { return next(); }
1529      }
1530  
1531 <    @SuppressWarnings("serial")
3069 <    static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3070 <        implements Spliterator<Map.Entry<K,V>> {
3071 <        EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3072 <        EntryIterator(Traverser<K,V,Object> it, boolean split) {
3073 <            super(it, split);
3074 <        }
3075 <        public EntryIterator<K,V> split() {
3076 <            if (last != null || (next != null && nextVal == null))
3077 <                throw new IllegalStateException();
3078 <            return new EntryIterator<K,V>(this, true);
3079 <        }
1531 >    // ConcurrentMap methods
1532  
1533 <        @SuppressWarnings("unchecked")
1534 <            public final Map.Entry<K,V> next() {
1535 <            Object v;
1536 <            if ((v = nextVal) == null && (v = advance()) == null)
1537 <                throw new NoSuchElementException();
1538 <            Object k = nextKey;
1539 <            nextVal = null;
1540 <            return new MapEntry<K,V>((K)k, (V)v, map);
1541 <        }
1533 >    /**
1534 >     * {@inheritDoc}
1535 >     *
1536 >     * @return the previous value associated with the specified key,
1537 >     *         or {@code null} if there was no mapping for the key
1538 >     * @throws NullPointerException if the specified key or value is null
1539 >     */
1540 >    public V putIfAbsent(K key, V value) {
1541 >        return putVal(key, value, true);
1542      }
1543  
1544      /**
1545 <     * Exported Entry for iterators
1545 >     * {@inheritDoc}
1546 >     *
1547 >     * @throws NullPointerException if the specified key is null
1548       */
1549 <    static final class MapEntry<K,V> implements Map.Entry<K, V> {
1550 <        final K key; // non-null
1551 <        V val;       // non-null
1552 <        final ConcurrentHashMapV8<K, V> map;
3099 <        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3100 <            this.key = key;
3101 <            this.val = val;
3102 <            this.map = map;
3103 <        }
3104 <        public final K getKey()       { return key; }
3105 <        public final V getValue()     { return val; }
3106 <        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3107 <        public final String toString(){ return key + "=" + val; }
3108 <
3109 <        public final boolean equals(Object o) {
3110 <            Object k, v; Map.Entry<?,?> e;
3111 <            return ((o instanceof Map.Entry) &&
3112 <                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3113 <                    (v = e.getValue()) != null &&
3114 <                    (k == key || k.equals(key)) &&
3115 <                    (v == val || v.equals(val)));
3116 <        }
3117 <
3118 <        /**
3119 <         * Sets our entry's value and writes through to the map. The
3120 <         * value to return is somewhat arbitrary here. Since we do not
3121 <         * necessarily track asynchronous changes, the most recent
3122 <         * "previous" value could be different from what we return (or
3123 <         * could even have been removed in which case the put will
3124 <         * re-establish). We do not and cannot guarantee more.
3125 <         */
3126 <        public final V setValue(V value) {
3127 <            if (value == null) throw new NullPointerException();
3128 <            V v = val;
3129 <            val = value;
3130 <            map.put(key, value);
3131 <            return v;
3132 <        }
1549 >    public boolean remove(Object key, Object value) {
1550 >        if (key == null)
1551 >            throw new NullPointerException();
1552 >        return value != null && replaceNode(key, null, value) != null;
1553      }
1554  
1555 <    /* ----------------Views -------------- */
1555 >    /**
1556 >     * {@inheritDoc}
1557 >     *
1558 >     * @throws NullPointerException if any of the arguments are null
1559 >     */
1560 >    public boolean replace(K key, V oldValue, V newValue) {
1561 >        if (key == null || oldValue == null || newValue == null)
1562 >            throw new NullPointerException();
1563 >        return replaceNode(key, newValue, oldValue) != null;
1564 >    }
1565  
1566      /**
1567 <     * Base class for views.
1567 >     * {@inheritDoc}
1568 >     *
1569 >     * @return the previous value associated with the specified key,
1570 >     *         or {@code null} if there was no mapping for the key
1571 >     * @throws NullPointerException if the specified key or value is null
1572       */
1573 <    static abstract class CHMView<K, V> {
1574 <        final ConcurrentHashMapV8<K, V> map;
1575 <        CHMView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
1576 <        public final int size()                 { return map.size(); }
1577 <        public final boolean isEmpty()          { return map.isEmpty(); }
3145 <        public final void clear()               { map.clear(); }
1573 >    public V replace(K key, V value) {
1574 >        if (key == null || value == null)
1575 >            throw new NullPointerException();
1576 >        return replaceNode(key, value, null);
1577 >    }
1578  
1579 <        // implementations below rely on concrete classes supplying these
3148 <        abstract public Iterator<?> iterator();
3149 <        abstract public boolean contains(Object o);
3150 <        abstract public boolean remove(Object o);
1579 >    // Overrides of JDK8+ Map extension method defaults
1580  
1581 <        private static final String oomeMsg = "Required array size too large";
1581 >    /**
1582 >     * Returns the value to which the specified key is mapped, or the
1583 >     * given default value if this map contains no mapping for the
1584 >     * key.
1585 >     *
1586 >     * @param key the key whose associated value is to be returned
1587 >     * @param defaultValue the value to return if this map contains
1588 >     * no mapping for the given key
1589 >     * @return the mapping for the key, if present; else the default value
1590 >     * @throws NullPointerException if the specified key is null
1591 >     */
1592 >    public V getOrDefault(Object key, V defaultValue) {
1593 >        V v;
1594 >        return (v = get(key)) == null ? defaultValue : v;
1595 >    }
1596 >
1597 >    public void forEach(BiAction<? super K, ? super V> action) {
1598 >        if (action == null) throw new NullPointerException();
1599 >        Node<K,V>[] t;
1600 >        if ((t = table) != null) {
1601 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1602 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1603 >                action.apply(p.key, p.val);
1604 >            }
1605 >        }
1606 >    }
1607  
1608 <        public final Object[] toArray() {
1609 <            long sz = map.mappingCount();
1610 <            if (sz > (long)(MAX_ARRAY_SIZE))
1611 <                throw new OutOfMemoryError(oomeMsg);
1612 <            int n = (int)sz;
1613 <            Object[] r = new Object[n];
1614 <            int i = 0;
1615 <            Iterator<?> it = iterator();
1616 <            while (it.hasNext()) {
1617 <                if (i == n) {
1618 <                    if (n >= MAX_ARRAY_SIZE)
1619 <                        throw new OutOfMemoryError(oomeMsg);
1620 <                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
1621 <                        n = MAX_ARRAY_SIZE;
3168 <                    else
3169 <                        n += (n >>> 1) + 1;
3170 <                    r = Arrays.copyOf(r, n);
1608 >    public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1609 >        if (function == null) throw new NullPointerException();
1610 >        Node<K,V>[] t;
1611 >        if ((t = table) != null) {
1612 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1613 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1614 >                V oldValue = p.val;
1615 >                for (K key = p.key;;) {
1616 >                    V newValue = function.apply(key, oldValue);
1617 >                    if (newValue == null)
1618 >                        throw new NullPointerException();
1619 >                    if (replaceNode(key, newValue, oldValue) != null ||
1620 >                        (oldValue = get(key)) == null)
1621 >                        break;
1622                  }
3172                r[i++] = it.next();
1623              }
3174            return (i == n) ? r : Arrays.copyOf(r, i);
1624          }
1625 +    }
1626  
1627 <        @SuppressWarnings("unchecked")
1628 <            public final <T> T[] toArray(T[] a) {
1629 <            long sz = map.mappingCount();
1630 <            if (sz > (long)(MAX_ARRAY_SIZE))
1631 <                throw new OutOfMemoryError(oomeMsg);
1632 <            int m = (int)sz;
1633 <            T[] r = (a.length >= m) ? a :
1634 <                (T[])java.lang.reflect.Array
1635 <                .newInstance(a.getClass().getComponentType(), m);
1636 <            int n = r.length;
1637 <            int i = 0;
1638 <            Iterator<?> it = iterator();
1639 <            while (it.hasNext()) {
1640 <                if (i == n) {
1641 <                    if (n >= MAX_ARRAY_SIZE)
1642 <                        throw new OutOfMemoryError(oomeMsg);
1643 <                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
1644 <                        n = MAX_ARRAY_SIZE;
1645 <                    else
1646 <                        n += (n >>> 1) + 1;
1647 <                    r = Arrays.copyOf(r, n);
1627 >    /**
1628 >     * If the specified key is not already associated with a value,
1629 >     * attempts to compute its value using the given mapping function
1630 >     * and enters it into this map unless {@code null}.  The entire
1631 >     * method invocation is performed atomically, so the function is
1632 >     * applied at most once per key.  Some attempted update operations
1633 >     * on this map by other threads may be blocked while computation
1634 >     * is in progress, so the computation should be short and simple,
1635 >     * and must not attempt to update any other mappings of this map.
1636 >     *
1637 >     * @param key key with which the specified value is to be associated
1638 >     * @param mappingFunction the function to compute a value
1639 >     * @return the current (existing or computed) value associated with
1640 >     *         the specified key, or null if the computed value is null
1641 >     * @throws NullPointerException if the specified key or mappingFunction
1642 >     *         is null
1643 >     * @throws IllegalStateException if the computation detectably
1644 >     *         attempts a recursive update to this map that would
1645 >     *         otherwise never complete
1646 >     * @throws RuntimeException or Error if the mappingFunction does so,
1647 >     *         in which case the mapping is left unestablished
1648 >     */
1649 >    public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1650 >        if (key == null || mappingFunction == null)
1651 >            throw new NullPointerException();
1652 >        int h = spread(key.hashCode());
1653 >        V val = null;
1654 >        int binCount = 0;
1655 >        for (Node<K,V>[] tab = table;;) {
1656 >            Node<K,V> f; int n, i, fh;
1657 >            if (tab == null || (n = tab.length) == 0)
1658 >                tab = initTable();
1659 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1660 >                Node<K,V> r = new ReservationNode<K,V>();
1661 >                synchronized (r) {
1662 >                    if (casTabAt(tab, i, null, r)) {
1663 >                        binCount = 1;
1664 >                        Node<K,V> node = null;
1665 >                        try {
1666 >                            if ((val = mappingFunction.apply(key)) != null)
1667 >                                node = new Node<K,V>(h, key, val, null);
1668 >                        } finally {
1669 >                            setTabAt(tab, i, node);
1670 >                        }
1671 >                    }
1672                  }
1673 <                r[i++] = (T)it.next();
1673 >                if (binCount != 0)
1674 >                    break;
1675              }
1676 <            if (a == r && i < n) {
1677 <                r[i] = null; // null-terminate
1678 <                return r;
1676 >            else if ((fh = f.hash) == MOVED)
1677 >                tab = helpTransfer(tab, f);
1678 >            else {
1679 >                boolean added = false;
1680 >                synchronized (f) {
1681 >                    if (tabAt(tab, i) == f) {
1682 >                        if (fh >= 0) {
1683 >                            binCount = 1;
1684 >                            for (Node<K,V> e = f;; ++binCount) {
1685 >                                K ek; V ev;
1686 >                                if (e.hash == h &&
1687 >                                    ((ek = e.key) == key ||
1688 >                                     (ek != null && key.equals(ek)))) {
1689 >                                    val = e.val;
1690 >                                    break;
1691 >                                }
1692 >                                Node<K,V> pred = e;
1693 >                                if ((e = e.next) == null) {
1694 >                                    if ((val = mappingFunction.apply(key)) != null) {
1695 >                                        added = true;
1696 >                                        pred.next = new Node<K,V>(h, key, val, null);
1697 >                                    }
1698 >                                    break;
1699 >                                }
1700 >                            }
1701 >                        }
1702 >                        else if (f instanceof TreeBin) {
1703 >                            binCount = 2;
1704 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1705 >                            TreeNode<K,V> r, p;
1706 >                            if ((r = t.root) != null &&
1707 >                                (p = r.findTreeNode(h, key, null)) != null)
1708 >                                val = p.val;
1709 >                            else if ((val = mappingFunction.apply(key)) != null) {
1710 >                                added = true;
1711 >                                t.putTreeVal(h, key, val);
1712 >                            }
1713 >                        }
1714 >                    }
1715 >                }
1716 >                if (binCount != 0) {
1717 >                    if (binCount >= TREEIFY_THRESHOLD)
1718 >                        treeifyBin(tab, i);
1719 >                    if (!added)
1720 >                        return val;
1721 >                    break;
1722 >                }
1723              }
3205            return (i == n) ? r : Arrays.copyOf(r, i);
3206        }
3207
3208        public final int hashCode() {
3209            int h = 0;
3210            for (Iterator<?> it = iterator(); it.hasNext();)
3211                h += it.next().hashCode();
3212            return h;
1724          }
1725 +        if (val != null)
1726 +            addCount(1L, binCount);
1727 +        return val;
1728 +    }
1729  
1730 <        public final String toString() {
1731 <            StringBuilder sb = new StringBuilder();
1732 <            sb.append('[');
1733 <            Iterator<?> it = iterator();
1734 <            if (it.hasNext()) {
1735 <                for (;;) {
1736 <                    Object e = it.next();
1737 <                    sb.append(e == this ? "(this Collection)" : e);
1738 <                    if (!it.hasNext())
1739 <                        break;
1740 <                    sb.append(',').append(' ');
1730 >    /**
1731 >     * If the value for the specified key is present, attempts to
1732 >     * compute a new mapping given the key and its current mapped
1733 >     * value.  The entire method invocation is performed atomically.
1734 >     * Some attempted update operations on this map by other threads
1735 >     * may be blocked while computation is in progress, so the
1736 >     * computation should be short and simple, and must not attempt to
1737 >     * update any other mappings of this map.
1738 >     *
1739 >     * @param key key with which a value may be associated
1740 >     * @param remappingFunction the function to compute a value
1741 >     * @return the new value associated with the specified key, or null if none
1742 >     * @throws NullPointerException if the specified key or remappingFunction
1743 >     *         is null
1744 >     * @throws IllegalStateException if the computation detectably
1745 >     *         attempts a recursive update to this map that would
1746 >     *         otherwise never complete
1747 >     * @throws RuntimeException or Error if the remappingFunction does so,
1748 >     *         in which case the mapping is unchanged
1749 >     */
1750 >    public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1751 >        if (key == null || remappingFunction == null)
1752 >            throw new NullPointerException();
1753 >        int h = spread(key.hashCode());
1754 >        V val = null;
1755 >        int delta = 0;
1756 >        int binCount = 0;
1757 >        for (Node<K,V>[] tab = table;;) {
1758 >            Node<K,V> f; int n, i, fh;
1759 >            if (tab == null || (n = tab.length) == 0)
1760 >                tab = initTable();
1761 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1762 >                break;
1763 >            else if ((fh = f.hash) == MOVED)
1764 >                tab = helpTransfer(tab, f);
1765 >            else {
1766 >                synchronized (f) {
1767 >                    if (tabAt(tab, i) == f) {
1768 >                        if (fh >= 0) {
1769 >                            binCount = 1;
1770 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1771 >                                K ek;
1772 >                                if (e.hash == h &&
1773 >                                    ((ek = e.key) == key ||
1774 >                                     (ek != null && key.equals(ek)))) {
1775 >                                    val = remappingFunction.apply(key, e.val);
1776 >                                    if (val != null)
1777 >                                        e.val = val;
1778 >                                    else {
1779 >                                        delta = -1;
1780 >                                        Node<K,V> en = e.next;
1781 >                                        if (pred != null)
1782 >                                            pred.next = en;
1783 >                                        else
1784 >                                            setTabAt(tab, i, en);
1785 >                                    }
1786 >                                    break;
1787 >                                }
1788 >                                pred = e;
1789 >                                if ((e = e.next) == null)
1790 >                                    break;
1791 >                            }
1792 >                        }
1793 >                        else if (f instanceof TreeBin) {
1794 >                            binCount = 2;
1795 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1796 >                            TreeNode<K,V> r, p;
1797 >                            if ((r = t.root) != null &&
1798 >                                (p = r.findTreeNode(h, key, null)) != null) {
1799 >                                val = remappingFunction.apply(key, p.val);
1800 >                                if (val != null)
1801 >                                    p.val = val;
1802 >                                else {
1803 >                                    delta = -1;
1804 >                                    if (t.removeTreeNode(p))
1805 >                                        setTabAt(tab, i, untreeify(t.first));
1806 >                                }
1807 >                            }
1808 >                        }
1809 >                    }
1810                  }
1811 +                if (binCount != 0)
1812 +                    break;
1813              }
3228            return sb.append(']').toString();
1814          }
1815 +        if (delta != 0)
1816 +            addCount((long)delta, binCount);
1817 +        return val;
1818 +    }
1819  
1820 <        public final boolean containsAll(Collection<?> c) {
1821 <            if (c != this) {
1822 <                for (Iterator<?> it = c.iterator(); it.hasNext();) {
1823 <                    Object e = it.next();
1824 <                    if (e == null || !contains(e))
1825 <                        return false;
1820 >    /**
1821 >     * Attempts to compute a mapping for the specified key and its
1822 >     * current mapped value (or {@code null} if there is no current
1823 >     * mapping). The entire method invocation is performed atomically.
1824 >     * Some attempted update operations on this map by other threads
1825 >     * may be blocked while computation is in progress, so the
1826 >     * computation should be short and simple, and must not attempt to
1827 >     * update any other mappings of this Map.
1828 >     *
1829 >     * @param key key with which the specified value is to be associated
1830 >     * @param remappingFunction the function to compute a value
1831 >     * @return the new value associated with the specified key, or null if none
1832 >     * @throws NullPointerException if the specified key or remappingFunction
1833 >     *         is null
1834 >     * @throws IllegalStateException if the computation detectably
1835 >     *         attempts a recursive update to this map that would
1836 >     *         otherwise never complete
1837 >     * @throws RuntimeException or Error if the remappingFunction does so,
1838 >     *         in which case the mapping is unchanged
1839 >     */
1840 >    public V compute(K key,
1841 >                     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1842 >        if (key == null || remappingFunction == null)
1843 >            throw new NullPointerException();
1844 >        int h = spread(key.hashCode());
1845 >        V val = null;
1846 >        int delta = 0;
1847 >        int binCount = 0;
1848 >        for (Node<K,V>[] tab = table;;) {
1849 >            Node<K,V> f; int n, i, fh;
1850 >            if (tab == null || (n = tab.length) == 0)
1851 >                tab = initTable();
1852 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1853 >                Node<K,V> r = new ReservationNode<K,V>();
1854 >                synchronized (r) {
1855 >                    if (casTabAt(tab, i, null, r)) {
1856 >                        binCount = 1;
1857 >                        Node<K,V> node = null;
1858 >                        try {
1859 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1860 >                                delta = 1;
1861 >                                node = new Node<K,V>(h, key, val, null);
1862 >                            }
1863 >                        } finally {
1864 >                            setTabAt(tab, i, node);
1865 >                        }
1866 >                    }
1867                  }
1868 +                if (binCount != 0)
1869 +                    break;
1870              }
1871 <            return true;
1872 <        }
1873 <
1874 <        public final boolean removeAll(Collection<?> c) {
1875 <            boolean modified = false;
1876 <            for (Iterator<?> it = iterator(); it.hasNext();) {
1877 <                if (c.contains(it.next())) {
1878 <                    it.remove();
1879 <                    modified = true;
1871 >            else if ((fh = f.hash) == MOVED)
1872 >                tab = helpTransfer(tab, f);
1873 >            else {
1874 >                synchronized (f) {
1875 >                    if (tabAt(tab, i) == f) {
1876 >                        if (fh >= 0) {
1877 >                            binCount = 1;
1878 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1879 >                                K ek;
1880 >                                if (e.hash == h &&
1881 >                                    ((ek = e.key) == key ||
1882 >                                     (ek != null && key.equals(ek)))) {
1883 >                                    val = remappingFunction.apply(key, e.val);
1884 >                                    if (val != null)
1885 >                                        e.val = val;
1886 >                                    else {
1887 >                                        delta = -1;
1888 >                                        Node<K,V> en = e.next;
1889 >                                        if (pred != null)
1890 >                                            pred.next = en;
1891 >                                        else
1892 >                                            setTabAt(tab, i, en);
1893 >                                    }
1894 >                                    break;
1895 >                                }
1896 >                                pred = e;
1897 >                                if ((e = e.next) == null) {
1898 >                                    val = remappingFunction.apply(key, null);
1899 >                                    if (val != null) {
1900 >                                        delta = 1;
1901 >                                        pred.next =
1902 >                                            new Node<K,V>(h, key, val, null);
1903 >                                    }
1904 >                                    break;
1905 >                                }
1906 >                            }
1907 >                        }
1908 >                        else if (f instanceof TreeBin) {
1909 >                            binCount = 1;
1910 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1911 >                            TreeNode<K,V> r, p;
1912 >                            if ((r = t.root) != null)
1913 >                                p = r.findTreeNode(h, key, null);
1914 >                            else
1915 >                                p = null;
1916 >                            V pv = (p == null) ? null : p.val;
1917 >                            val = remappingFunction.apply(key, pv);
1918 >                            if (val != null) {
1919 >                                if (p != null)
1920 >                                    p.val = val;
1921 >                                else {
1922 >                                    delta = 1;
1923 >                                    t.putTreeVal(h, key, val);
1924 >                                }
1925 >                            }
1926 >                            else if (p != null) {
1927 >                                delta = -1;
1928 >                                if (t.removeTreeNode(p))
1929 >                                    setTabAt(tab, i, untreeify(t.first));
1930 >                            }
1931 >                        }
1932 >                    }
1933 >                }
1934 >                if (binCount != 0) {
1935 >                    if (binCount >= TREEIFY_THRESHOLD)
1936 >                        treeifyBin(tab, i);
1937 >                    break;
1938                  }
1939              }
3250            return modified;
1940          }
1941 +        if (delta != 0)
1942 +            addCount((long)delta, binCount);
1943 +        return val;
1944 +    }
1945  
1946 <        public final boolean retainAll(Collection<?> c) {
1947 <            boolean modified = false;
1948 <            for (Iterator<?> it = iterator(); it.hasNext();) {
1949 <                if (!c.contains(it.next())) {
1950 <                    it.remove();
1951 <                    modified = true;
1946 >    /**
1947 >     * If the specified key is not already associated with a
1948 >     * (non-null) value, associates it with the given value.
1949 >     * Otherwise, replaces the value with the results of the given
1950 >     * remapping function, or removes if {@code null}. The entire
1951 >     * method invocation is performed atomically.  Some attempted
1952 >     * update operations on this map by other threads may be blocked
1953 >     * while computation is in progress, so the computation should be
1954 >     * short and simple, and must not attempt to update any other
1955 >     * mappings of this Map.
1956 >     *
1957 >     * @param key key with which the specified value is to be associated
1958 >     * @param value the value to use if absent
1959 >     * @param remappingFunction the function to recompute a value if present
1960 >     * @return the new value associated with the specified key, or null if none
1961 >     * @throws NullPointerException if the specified key or the
1962 >     *         remappingFunction is null
1963 >     * @throws RuntimeException or Error if the remappingFunction does so,
1964 >     *         in which case the mapping is unchanged
1965 >     */
1966 >    public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1967 >        if (key == null || value == null || remappingFunction == null)
1968 >            throw new NullPointerException();
1969 >        int h = spread(key.hashCode());
1970 >        V val = null;
1971 >        int delta = 0;
1972 >        int binCount = 0;
1973 >        for (Node<K,V>[] tab = table;;) {
1974 >            Node<K,V> f; int n, i, fh;
1975 >            if (tab == null || (n = tab.length) == 0)
1976 >                tab = initTable();
1977 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1978 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1979 >                    delta = 1;
1980 >                    val = value;
1981 >                    break;
1982 >                }
1983 >            }
1984 >            else if ((fh = f.hash) == MOVED)
1985 >                tab = helpTransfer(tab, f);
1986 >            else {
1987 >                synchronized (f) {
1988 >                    if (tabAt(tab, i) == f) {
1989 >                        if (fh >= 0) {
1990 >                            binCount = 1;
1991 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1992 >                                K ek;
1993 >                                if (e.hash == h &&
1994 >                                    ((ek = e.key) == key ||
1995 >                                     (ek != null && key.equals(ek)))) {
1996 >                                    val = remappingFunction.apply(e.val, value);
1997 >                                    if (val != null)
1998 >                                        e.val = val;
1999 >                                    else {
2000 >                                        delta = -1;
2001 >                                        Node<K,V> en = e.next;
2002 >                                        if (pred != null)
2003 >                                            pred.next = en;
2004 >                                        else
2005 >                                            setTabAt(tab, i, en);
2006 >                                    }
2007 >                                    break;
2008 >                                }
2009 >                                pred = e;
2010 >                                if ((e = e.next) == null) {
2011 >                                    delta = 1;
2012 >                                    val = value;
2013 >                                    pred.next =
2014 >                                        new Node<K,V>(h, key, val, null);
2015 >                                    break;
2016 >                                }
2017 >                            }
2018 >                        }
2019 >                        else if (f instanceof TreeBin) {
2020 >                            binCount = 2;
2021 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2022 >                            TreeNode<K,V> r = t.root;
2023 >                            TreeNode<K,V> p = (r == null) ? null :
2024 >                                r.findTreeNode(h, key, null);
2025 >                            val = (p == null) ? value :
2026 >                                remappingFunction.apply(p.val, value);
2027 >                            if (val != null) {
2028 >                                if (p != null)
2029 >                                    p.val = val;
2030 >                                else {
2031 >                                    delta = 1;
2032 >                                    t.putTreeVal(h, key, val);
2033 >                                }
2034 >                            }
2035 >                            else if (p != null) {
2036 >                                delta = -1;
2037 >                                if (t.removeTreeNode(p))
2038 >                                    setTabAt(tab, i, untreeify(t.first));
2039 >                            }
2040 >                        }
2041 >                    }
2042 >                }
2043 >                if (binCount != 0) {
2044 >                    if (binCount >= TREEIFY_THRESHOLD)
2045 >                        treeifyBin(tab, i);
2046 >                    break;
2047                  }
2048              }
3261            return modified;
2049          }
2050 +        if (delta != 0)
2051 +            addCount((long)delta, binCount);
2052 +        return val;
2053 +    }
2054 +
2055 +    // Hashtable legacy methods
2056 +
2057 +    /**
2058 +     * Legacy method testing if some key maps into the specified value
2059 +     * in this table.  This method is identical in functionality to
2060 +     * {@link #containsValue(Object)}, and exists solely to ensure
2061 +     * full compatibility with class {@link java.util.Hashtable},
2062 +     * which supported this method prior to introduction of the
2063 +     * Java Collections framework.
2064 +     *
2065 +     * @param  value a value to search for
2066 +     * @return {@code true} if and only if some key maps to the
2067 +     *         {@code value} argument in this table as
2068 +     *         determined by the {@code equals} method;
2069 +     *         {@code false} otherwise
2070 +     * @throws NullPointerException if the specified value is null
2071 +     */
2072 +    @Deprecated public boolean contains(Object value) {
2073 +        return containsValue(value);
2074 +    }
2075  
2076 +    /**
2077 +     * Returns an enumeration of the keys in this table.
2078 +     *
2079 +     * @return an enumeration of the keys in this table
2080 +     * @see #keySet()
2081 +     */
2082 +    public Enumeration<K> keys() {
2083 +        Node<K,V>[] t;
2084 +        int f = (t = table) == null ? 0 : t.length;
2085 +        return new KeyIterator<K,V>(t, f, 0, f, this);
2086      }
2087  
2088 <    static final class KeySet<K,V> extends CHMView<K,V> implements Set<K> {
2089 <        KeySet(ConcurrentHashMapV8<K, V> map)  {
2090 <            super(map);
2091 <        }
2092 <        public final boolean contains(Object o) { return map.containsKey(o); }
2093 <        public final boolean remove(Object o)   { return map.remove(o) != null; }
2094 <        public final Iterator<K> iterator() {
2095 <            return new KeyIterator<K,V>(map);
2096 <        }
2097 <        public final boolean add(K e) {
3276 <            throw new UnsupportedOperationException();
3277 <        }
3278 <        public final boolean addAll(Collection<? extends K> c) {
3279 <            throw new UnsupportedOperationException();
3280 <        }
3281 <        public boolean equals(Object o) {
3282 <            Set<?> c;
3283 <            return ((o instanceof Set) &&
3284 <                    ((c = (Set<?>)o) == this ||
3285 <                     (containsAll(c) && c.containsAll(this))));
3286 <        }
2088 >    /**
2089 >     * Returns an enumeration of the values in this table.
2090 >     *
2091 >     * @return an enumeration of the values in this table
2092 >     * @see #values()
2093 >     */
2094 >    public Enumeration<V> elements() {
2095 >        Node<K,V>[] t;
2096 >        int f = (t = table) == null ? 0 : t.length;
2097 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2098      }
2099  
2100 +    // ConcurrentHashMapV8-only methods
2101  
2102 <    static final class Values<K,V> extends CHMView<K,V>
2103 <        implements Collection<V> {
2104 <        Values(ConcurrentHashMapV8<K, V> map)   { super(map); }
2105 <        public final boolean contains(Object o) { return map.containsValue(o); }
2106 <        public final boolean remove(Object o) {
2107 <            if (o != null) {
2108 <                Iterator<V> it = new ValueIterator<K,V>(map);
2109 <                while (it.hasNext()) {
2110 <                    if (o.equals(it.next())) {
2111 <                        it.remove();
2112 <                        return true;
2102 >    /**
2103 >     * Returns the number of mappings. This method should be used
2104 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2105 >     * contain more mappings than can be represented as an int. The
2106 >     * value returned is an estimate; the actual count may differ if
2107 >     * there are concurrent insertions or removals.
2108 >     *
2109 >     * @return the number of mappings
2110 >     * @since 1.8
2111 >     */
2112 >    public long mappingCount() {
2113 >        long n = sumCount();
2114 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2115 >    }
2116 >
2117 >    /**
2118 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2119 >     * from the given type to {@code Boolean.TRUE}.
2120 >     *
2121 >     * @return the new set
2122 >     * @since 1.8
2123 >     */
2124 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2125 >        return new KeySetView<K,Boolean>
2126 >            (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2127 >    }
2128 >
2129 >    /**
2130 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2131 >     * from the given type to {@code Boolean.TRUE}.
2132 >     *
2133 >     * @param initialCapacity The implementation performs internal
2134 >     * sizing to accommodate this many elements.
2135 >     * @return the new set
2136 >     * @throws IllegalArgumentException if the initial capacity of
2137 >     * elements is negative
2138 >     * @since 1.8
2139 >     */
2140 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2141 >        return new KeySetView<K,Boolean>
2142 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2143 >    }
2144 >
2145 >    /**
2146 >     * Returns a {@link Set} view of the keys in this map, using the
2147 >     * given common mapped value for any additions (i.e., {@link
2148 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2149 >     * This is of course only appropriate if it is acceptable to use
2150 >     * the same value for all additions from this view.
2151 >     *
2152 >     * @param mappedValue the mapped value to use for any additions
2153 >     * @return the set view
2154 >     * @throws NullPointerException if the mappedValue is null
2155 >     */
2156 >    public KeySetView<K,V> keySet(V mappedValue) {
2157 >        if (mappedValue == null)
2158 >            throw new NullPointerException();
2159 >        return new KeySetView<K,V>(this, mappedValue);
2160 >    }
2161 >
2162 >    /* ---------------- Special Nodes -------------- */
2163 >
2164 >    /**
2165 >     * A node inserted at head of bins during transfer operations.
2166 >     */
2167 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2168 >        final Node<K,V>[] nextTable;
2169 >        ForwardingNode(Node<K,V>[] tab) {
2170 >            super(MOVED, null, null, null);
2171 >            this.nextTable = tab;
2172 >        }
2173 >
2174 >        Node<K,V> find(int h, Object k) {
2175 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2176 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2177 >                Node<K,V> e; int n;
2178 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2179 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2180 >                    return null;
2181 >                for (;;) {
2182 >                    int eh; K ek;
2183 >                    if ((eh = e.hash) == h &&
2184 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2185 >                        return e;
2186 >                    if (eh < 0) {
2187 >                        if (e instanceof ForwardingNode) {
2188 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2189 >                            continue outer;
2190 >                        }
2191 >                        else
2192 >                            return e.find(h, k);
2193                      }
2194 +                    if ((e = e.next) == null)
2195 +                        return null;
2196                  }
2197              }
3304            return false;
2198          }
3306        public final Iterator<V> iterator() {
3307            return new ValueIterator<K,V>(map);
3308        }
3309        public final boolean add(V e) {
3310            throw new UnsupportedOperationException();
3311        }
3312        public final boolean addAll(Collection<? extends V> c) {
3313            throw new UnsupportedOperationException();
3314        }
3315
2199      }
2200  
2201 <    static final class EntrySet<K,V> extends CHMView<K,V>
2202 <        implements Set<Map.Entry<K,V>> {
2203 <        EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
2204 <        public final boolean contains(Object o) {
2205 <            Object k, v, r; Map.Entry<?,?> e;
2206 <            return ((o instanceof Map.Entry) &&
3324 <                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3325 <                    (r = map.get(k)) != null &&
3326 <                    (v = e.getValue()) != null &&
3327 <                    (v == r || v.equals(r)));
3328 <        }
3329 <        public final boolean remove(Object o) {
3330 <            Object k, v; Map.Entry<?,?> e;
3331 <            return ((o instanceof Map.Entry) &&
3332 <                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3333 <                    (v = e.getValue()) != null &&
3334 <                    map.remove(k, v));
3335 <        }
3336 <        public final Iterator<Map.Entry<K,V>> iterator() {
3337 <            return new EntryIterator<K,V>(map);
3338 <        }
3339 <        public final boolean add(Entry<K,V> e) {
3340 <            throw new UnsupportedOperationException();
3341 <        }
3342 <        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
3343 <            throw new UnsupportedOperationException();
2201 >    /**
2202 >     * A place-holder node used in computeIfAbsent and compute
2203 >     */
2204 >    static final class ReservationNode<K,V> extends Node<K,V> {
2205 >        ReservationNode() {
2206 >            super(RESERVED, null, null, null);
2207          }
2208 <        public boolean equals(Object o) {
2209 <            Set<?> c;
2210 <            return ((o instanceof Set) &&
3348 <                    ((c = (Set<?>)o) == this ||
3349 <                     (containsAll(c) && c.containsAll(this))));
2208 >
2209 >        Node<K,V> find(int h, Object k) {
2210 >            return null;
2211          }
2212      }
2213  
2214 <    /* ---------------- Serialization Support -------------- */
2214 >    /* ---------------- Table Initialization and Resizing -------------- */
2215  
2216      /**
2217 <     * Stripped-down version of helper class used in previous version,
2218 <     * declared for the sake of serialization compatibility
2217 >     * Returns the stamp bits for resizing a table of size n.
2218 >     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2219       */
2220 <    static class Segment<K,V> implements Serializable {
2221 <        private static final long serialVersionUID = 2249069246763182397L;
3361 <        final float loadFactor;
3362 <        Segment(float lf) { this.loadFactor = lf; }
2220 >    static final int resizeStamp(int n) {
2221 >        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2222      }
2223  
2224      /**
2225 <     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3367 <     * stream (i.e., serializes it).
3368 <     * @param s the stream
3369 <     * @serialData
3370 <     * the key (Object) and value (Object)
3371 <     * for each key-value mapping, followed by a null pair.
3372 <     * The key-value mappings are emitted in no particular order.
2225 >     * Initializes table, using the size recorded in sizeCtl.
2226       */
2227 <    @SuppressWarnings("unchecked")
2228 <        private void writeObject(java.io.ObjectOutputStream s)
2229 <        throws java.io.IOException {
2230 <        if (segments == null) { // for serialization compatibility
2231 <            segments = (Segment<K,V>[])
2232 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
2233 <            for (int i = 0; i < segments.length; ++i)
2234 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
2235 <        }
2236 <        s.defaultWriteObject();
2237 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2238 <        Object v;
2239 <        while ((v = it.advance()) != null) {
2240 <            s.writeObject(it.nextKey);
2241 <            s.writeObject(v);
2227 >    private final Node<K,V>[] initTable() {
2228 >        Node<K,V>[] tab; int sc;
2229 >        while ((tab = table) == null || tab.length == 0) {
2230 >            if ((sc = sizeCtl) < 0)
2231 >                Thread.yield(); // lost initialization race; just spin
2232 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2233 >                try {
2234 >                    if ((tab = table) == null || tab.length == 0) {
2235 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2236 >                        @SuppressWarnings("unchecked")
2237 >                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2238 >                        table = tab = nt;
2239 >                        sc = n - (n >>> 2);
2240 >                    }
2241 >                } finally {
2242 >                    sizeCtl = sc;
2243 >                }
2244 >                break;
2245 >            }
2246          }
2247 <        s.writeObject(null);
3391 <        s.writeObject(null);
3392 <        segments = null; // throw away
2247 >        return tab;
2248      }
2249  
2250      /**
2251 <     * Reconstitutes the instance from a stream (that is, deserializes it).
2252 <     * @param s the stream
2251 >     * Adds to count, and if table is too small and not already
2252 >     * resizing, initiates transfer. If already resizing, helps
2253 >     * perform transfer if work is available.  Rechecks occupancy
2254 >     * after a transfer to see if another resize is already needed
2255 >     * because resizings are lagging additions.
2256 >     *
2257 >     * @param x the count to add
2258 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2259 >     */
2260 >    private final void addCount(long x, int check) {
2261 >        CounterCell[] as; long b, s;
2262 >        if ((as = counterCells) != null ||
2263 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2264 >            CounterHashCode hc; CounterCell a; long v; int m;
2265 >            boolean uncontended = true;
2266 >            if ((hc = threadCounterHashCode.get()) == null ||
2267 >                as == null || (m = as.length - 1) < 0 ||
2268 >                (a = as[m & hc.code]) == null ||
2269 >                !(uncontended =
2270 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2271 >                fullAddCount(x, hc, uncontended);
2272 >                return;
2273 >            }
2274 >            if (check <= 1)
2275 >                return;
2276 >            s = sumCount();
2277 >        }
2278 >        if (check >= 0) {
2279 >            Node<K,V>[] tab, nt; int n, sc;
2280 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2281 >                   (n = tab.length) < MAXIMUM_CAPACITY) {
2282 >                int rs = resizeStamp(n);
2283 >                if (sc < 0) {
2284 >                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2285 >                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2286 >                        transferIndex <= 0)
2287 >                        break;
2288 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2289 >                        transfer(tab, nt);
2290 >                }
2291 >                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2292 >                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2293 >                    transfer(tab, null);
2294 >                s = sumCount();
2295 >            }
2296 >        }
2297 >    }
2298 >
2299 >    /**
2300 >     * Helps transfer if a resize is in progress.
2301       */
2302 <    @SuppressWarnings("unchecked")
2303 <        private void readObject(java.io.ObjectInputStream s)
2304 <        throws java.io.IOException, ClassNotFoundException {
2305 <        s.defaultReadObject();
2306 <        this.segments = null; // unneeded
2307 <        // initialize transient final field
2308 <        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
2302 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2303 >        Node<K,V>[] nextTab; int sc;
2304 >        if (tab != null && (f instanceof ForwardingNode) &&
2305 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2306 >            int rs = resizeStamp(tab.length);
2307 >            while (nextTab == nextTable && table == tab &&
2308 >                   (sc = sizeCtl) < 0) {
2309 >                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2310 >                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
2311 >                    break;
2312 >                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2313 >                    transfer(tab, nextTab);
2314 >                    break;
2315 >                }
2316 >            }
2317 >            return nextTab;
2318 >        }
2319 >        return table;
2320 >    }
2321  
2322 <        // Create all nodes, then place in table once size is known
2323 <        long size = 0L;
2324 <        Node p = null;
2325 <        for (;;) {
2326 <            K k = (K) s.readObject();
2327 <            V v = (V) s.readObject();
2328 <            if (k != null && v != null) {
2329 <                int h = spread(k.hashCode());
2330 <                p = new Node(h, k, v, p);
2331 <                ++size;
2322 >    /**
2323 >     * Tries to presize table to accommodate the given number of elements.
2324 >     *
2325 >     * @param size number of elements (doesn't need to be perfectly accurate)
2326 >     */
2327 >    private final void tryPresize(int size) {
2328 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2329 >            tableSizeFor(size + (size >>> 1) + 1);
2330 >        int sc;
2331 >        while ((sc = sizeCtl) >= 0) {
2332 >            Node<K,V>[] tab = table; int n;
2333 >            if (tab == null || (n = tab.length) == 0) {
2334 >                n = (sc > c) ? sc : c;
2335 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2336 >                    try {
2337 >                        if (table == tab) {
2338 >                            @SuppressWarnings("unchecked")
2339 >                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2340 >                            table = nt;
2341 >                            sc = n - (n >>> 2);
2342 >                        }
2343 >                    } finally {
2344 >                        sizeCtl = sc;
2345 >                    }
2346 >                }
2347              }
2348 <            else
2348 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2349                  break;
2350 +            else if (tab == table) {
2351 +                int rs = resizeStamp(n);
2352 +                if (sc < 0) {
2353 +                    Node<K,V>[] nt;
2354 +                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2355 +                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2356 +                        transferIndex <= 0)
2357 +                        break;
2358 +                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2359 +                        transfer(tab, nt);
2360 +                }
2361 +                else if (U.compareAndSwapInt(this, SIZECTL, sc,
2362 +                                             (rs << RESIZE_STAMP_SHIFT) + 2))
2363 +                    transfer(tab, null);
2364 +            }
2365          }
2366 <        if (p != null) {
2367 <            boolean init = false;
2368 <            int n;
2369 <            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
2370 <                n = MAXIMUM_CAPACITY;
2371 <            else {
2372 <                int sz = (int)size;
2373 <                n = tableSizeFor(sz + (sz >>> 1) + 1);
2366 >    }
2367 >
2368 >    /**
2369 >     * Moves and/or copies the nodes in each bin to new table. See
2370 >     * above for explanation.
2371 >     */
2372 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2373 >        int n = tab.length, stride;
2374 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2375 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2376 >        if (nextTab == null) {            // initiating
2377 >            try {
2378 >                @SuppressWarnings("unchecked")
2379 >                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2380 >                nextTab = nt;
2381 >            } catch (Throwable ex) {      // try to cope with OOME
2382 >                sizeCtl = Integer.MAX_VALUE;
2383 >                return;
2384 >            }
2385 >            nextTable = nextTab;
2386 >            transferIndex = n;
2387 >        }
2388 >        int nextn = nextTab.length;
2389 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2390 >        boolean advance = true;
2391 >        boolean finishing = false; // to ensure sweep before committing nextTab
2392 >        for (int i = 0, bound = 0;;) {
2393 >            Node<K,V> f; int fh;
2394 >            while (advance) {
2395 >                int nextIndex, nextBound;
2396 >                if (--i >= bound || finishing)
2397 >                    advance = false;
2398 >                else if ((nextIndex = transferIndex) <= 0) {
2399 >                    i = -1;
2400 >                    advance = false;
2401 >                }
2402 >                else if (U.compareAndSwapInt
2403 >                         (this, TRANSFERINDEX, nextIndex,
2404 >                          nextBound = (nextIndex > stride ?
2405 >                                       nextIndex - stride : 0))) {
2406 >                    bound = nextBound;
2407 >                    i = nextIndex - 1;
2408 >                    advance = false;
2409 >                }
2410 >            }
2411 >            if (i < 0 || i >= n || i + n >= nextn) {
2412 >                int sc;
2413 >                if (finishing) {
2414 >                    nextTable = null;
2415 >                    table = nextTab;
2416 >                    sizeCtl = (n << 1) - (n >>> 1);
2417 >                    return;
2418 >                }
2419 >                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2420 >                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2421 >                        return;
2422 >                    finishing = advance = true;
2423 >                    i = n; // recheck before commit
2424 >                }
2425              }
2426 <            int sc = sizeCtl;
2427 <            boolean collide = false;
2428 <            if (n > sc &&
2429 <                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2430 <                try {
2431 <                    if (table == null) {
2432 <                        init = true;
2433 <                        Node[] tab = new Node[n];
2434 <                        int mask = n - 1;
2435 <                        while (p != null) {
2436 <                            int j = p.hash & mask;
2437 <                            Node next = p.next;
2438 <                            Node q = p.next = tabAt(tab, j);
2439 <                            setTabAt(tab, j, p);
2440 <                            if (!collide && q != null && q.hash == p.hash)
2441 <                                collide = true;
2442 <                            p = next;
2426 >            else if ((f = tabAt(tab, i)) == null)
2427 >                advance = casTabAt(tab, i, null, fwd);
2428 >            else if ((fh = f.hash) == MOVED)
2429 >                advance = true; // already processed
2430 >            else {
2431 >                synchronized (f) {
2432 >                    if (tabAt(tab, i) == f) {
2433 >                        Node<K,V> ln, hn;
2434 >                        if (fh >= 0) {
2435 >                            int runBit = fh & n;
2436 >                            Node<K,V> lastRun = f;
2437 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2438 >                                int b = p.hash & n;
2439 >                                if (b != runBit) {
2440 >                                    runBit = b;
2441 >                                    lastRun = p;
2442 >                                }
2443 >                            }
2444 >                            if (runBit == 0) {
2445 >                                ln = lastRun;
2446 >                                hn = null;
2447 >                            }
2448 >                            else {
2449 >                                hn = lastRun;
2450 >                                ln = null;
2451 >                            }
2452 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2453 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2454 >                                if ((ph & n) == 0)
2455 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2456 >                                else
2457 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2458 >                            }
2459 >                            setTabAt(nextTab, i, ln);
2460 >                            setTabAt(nextTab, i + n, hn);
2461 >                            setTabAt(tab, i, fwd);
2462 >                            advance = true;
2463                          }
2464 <                        table = tab;
2465 <                        counter.add(size);
2466 <                        sc = n - (n >>> 2);
2467 <                    }
2468 <                } finally {
2469 <                    sizeCtl = sc;
2470 <                }
2471 <                if (collide) { // rescan and convert to TreeBins
2472 <                    Node[] tab = table;
2473 <                    for (int i = 0; i < tab.length; ++i) {
2474 <                        int c = 0;
2475 <                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
2476 <                            if (++c > TREE_THRESHOLD &&
2477 <                                (e.key instanceof Comparable)) {
2478 <                                replaceWithTreeBin(tab, i, e.key);
2479 <                                break;
2464 >                        else if (f instanceof TreeBin) {
2465 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2466 >                            TreeNode<K,V> lo = null, loTail = null;
2467 >                            TreeNode<K,V> hi = null, hiTail = null;
2468 >                            int lc = 0, hc = 0;
2469 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2470 >                                int h = e.hash;
2471 >                                TreeNode<K,V> p = new TreeNode<K,V>
2472 >                                    (h, e.key, e.val, null, null);
2473 >                                if ((h & n) == 0) {
2474 >                                    if ((p.prev = loTail) == null)
2475 >                                        lo = p;
2476 >                                    else
2477 >                                        loTail.next = p;
2478 >                                    loTail = p;
2479 >                                    ++lc;
2480 >                                }
2481 >                                else {
2482 >                                    if ((p.prev = hiTail) == null)
2483 >                                        hi = p;
2484 >                                    else
2485 >                                        hiTail.next = p;
2486 >                                    hiTail = p;
2487 >                                    ++hc;
2488 >                                }
2489                              }
2490 +                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2491 +                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2492 +                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2493 +                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2494 +                            setTabAt(nextTab, i, ln);
2495 +                            setTabAt(nextTab, i + n, hn);
2496 +                            setTabAt(tab, i, fwd);
2497 +                            advance = true;
2498                          }
2499                      }
2500                  }
2501              }
3469            if (!init) { // Can only happen if unsafely published.
3470                while (p != null) {
3471                    internalPut(p.key, p.val);
3472                    p = p.next;
3473                }
3474            }
2502          }
2503      }
2504  
2505 +    /* ---------------- Conversion from/to TreeBins -------------- */
2506  
2507 <    // -------------------------------------------------------
2508 <
2509 <    // Sams
2510 <    /** Interface describing a void action of one argument */
2511 <    public interface Action<A> { void apply(A a); }
2512 <    /** Interface describing a void action of two arguments */
2513 <    public interface BiAction<A,B> { void apply(A a, B b); }
2514 <    /** Interface describing a function of one argument */
2515 <    public interface Fun<A,T> { T apply(A a); }
2516 <    /** Interface describing a function of two arguments */
2517 <    public interface BiFun<A,B,T> { T apply(A a, B b); }
2518 <    /** Interface describing a function of no arguments */
2519 <    public interface Generator<T> { T apply(); }
2520 <    /** Interface describing a function mapping its argument to a double */
2521 <    public interface ObjectToDouble<A> { double apply(A a); }
2522 <    /** Interface describing a function mapping its argument to a long */
2523 <    public interface ObjectToLong<A> { long apply(A a); }
2524 <    /** Interface describing a function mapping its argument to an int */
2525 <    public interface ObjectToInt<A> {int apply(A a); }
2526 <    /** Interface describing a function mapping two arguments to a double */
2527 <    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
2528 <    /** Interface describing a function mapping two arguments to a long */
2529 <    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
2530 <    /** Interface describing a function mapping two arguments to an int */
2531 <    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
2532 <    /** Interface describing a function mapping a double to a double */
2533 <    public interface DoubleToDouble { double apply(double a); }
2534 <    /** Interface describing a function mapping a long to a long */
2535 <    public interface LongToLong { long apply(long a); }
3508 <    /** Interface describing a function mapping an int to an int */
3509 <    public interface IntToInt { int apply(int a); }
3510 <    /** Interface describing a function mapping two doubles to a double */
3511 <    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3512 <    /** Interface describing a function mapping two longs to a long */
3513 <    public interface LongByLongToLong { long apply(long a, long b); }
3514 <    /** Interface describing a function mapping two ints to an int */
3515 <    public interface IntByIntToInt { int apply(int a, int b); }
3516 <
3517 <
3518 <    // -------------------------------------------------------
2507 >    /**
2508 >     * Replaces all linked nodes in bin at given index unless table is
2509 >     * too small, in which case resizes instead.
2510 >     */
2511 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2512 >        Node<K,V> b; int n, sc;
2513 >        if (tab != null) {
2514 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2515 >                tryPresize(n << 1);
2516 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2517 >                synchronized (b) {
2518 >                    if (tabAt(tab, index) == b) {
2519 >                        TreeNode<K,V> hd = null, tl = null;
2520 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2521 >                            TreeNode<K,V> p =
2522 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2523 >                                                  null, null);
2524 >                            if ((p.prev = tl) == null)
2525 >                                hd = p;
2526 >                            else
2527 >                                tl.next = p;
2528 >                            tl = p;
2529 >                        }
2530 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2531 >                    }
2532 >                }
2533 >            }
2534 >        }
2535 >    }
2536  
2537      /**
2538 <     * Returns an extended {@link Parallel} view of this map using the
3522 <     * given executor for bulk parallel operations.
3523 <     *
3524 <     * @param executor the executor
3525 <     * @return a parallel view
2538 >     * Returns a list on non-TreeNodes replacing those in given list.
2539       */
2540 <    public Parallel parallel(ForkJoinPool executor)  {
2541 <        return new Parallel(executor);
2540 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2541 >        Node<K,V> hd = null, tl = null;
2542 >        for (Node<K,V> q = b; q != null; q = q.next) {
2543 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2544 >            if (tl == null)
2545 >                hd = p;
2546 >            else
2547 >                tl.next = p;
2548 >            tl = p;
2549 >        }
2550 >        return hd;
2551      }
2552  
2553 +    /* ---------------- TreeNodes -------------- */
2554 +
2555      /**
2556 <     * An extended view of a ConcurrentHashMap supporting bulk
3533 <     * parallel operations. These operations are designed to be
3534 <     * safely, and often sensibly, applied even with maps that are
3535 <     * being concurrently updated by other threads; for example, when
3536 <     * computing a snapshot summary of the values in a shared
3537 <     * registry.  There are three kinds of operation, each with four
3538 <     * forms, accepting functions with Keys, Values, Entries, and
3539 <     * (Key, Value) arguments and/or return values. Because the
3540 <     * elements of a ConcurrentHashMap are not ordered in any
3541 <     * particular way, and may be processed in different orders in
3542 <     * different parallel executions, the correctness of supplied
3543 <     * functions should not depend on any ordering, or on any other
3544 <     * objects or values that may transiently change while computation
3545 <     * is in progress; and except for forEach actions, should ideally
3546 <     * be side-effect-free.
3547 <     *
3548 <     * <ul>
3549 <     * <li> forEach: Perform a given action on each element.
3550 <     * A variant form applies a given transformation on each element
3551 <     * before performing the action.</li>
3552 <     *
3553 <     * <li> search: Return the first available non-null result of
3554 <     * applying a given function on each element; skipping further
3555 <     * search when a result is found.</li>
3556 <     *
3557 <     * <li> reduce: Accumulate each element.  The supplied reduction
3558 <     * function cannot rely on ordering (more formally, it should be
3559 <     * both associative and commutative).  There are five variants:
3560 <     *
3561 <     * <ul>
3562 <     *
3563 <     * <li> Plain reductions. (There is not a form of this method for
3564 <     * (key, value) function arguments since there is no corresponding
3565 <     * return type.)</li>
3566 <     *
3567 <     * <li> Mapped reductions that accumulate the results of a given
3568 <     * function applied to each element.</li>
3569 <     *
3570 <     * <li> Reductions to scalar doubles, longs, and ints, using a
3571 <     * given basis value.</li>
3572 <     *
3573 <     * </li>
3574 <     * </ul>
3575 <     * </ul>
3576 <     *
3577 <     * <p>The concurrency properties of the bulk operations follow
3578 <     * from those of ConcurrentHashMap: Any non-null result returned
3579 <     * from {@code get(key)} and related access methods bears a
3580 <     * happens-before relation with the associated insertion or
3581 <     * update.  The result of any bulk operation reflects the
3582 <     * composition of these per-element relations (but is not
3583 <     * necessarily atomic with respect to the map as a whole unless it
3584 <     * is somehow known to be quiescent).  Conversely, because keys
3585 <     * and values in the map are never null, null serves as a reliable
3586 <     * atomic indicator of the current lack of any result.  To
3587 <     * maintain this property, null serves as an implicit basis for
3588 <     * all non-scalar reduction operations. For the double, long, and
3589 <     * int versions, the basis should be one that, when combined with
3590 <     * any other value, returns that other value (more formally, it
3591 <     * should be the identity element for the reduction). Most common
3592 <     * reductions have these properties; for example, computing a sum
3593 <     * with basis 0 or a minimum with basis MAX_VALUE.
3594 <     *
3595 <     * <p>Search and transformation functions provided as arguments
3596 <     * should similarly return null to indicate the lack of any result
3597 <     * (in which case it is not used). In the case of mapped
3598 <     * reductions, this also enables transformations to serve as
3599 <     * filters, returning null (or, in the case of primitive
3600 <     * specializations, the identity basis) if the element should not
3601 <     * be combined. You can create compound transformations and
3602 <     * filterings by composing them yourself under this "null means
3603 <     * there is nothing there now" rule before using them in search or
3604 <     * reduce operations.
3605 <     *
3606 <     * <p>Methods accepting and/or returning Entry arguments maintain
3607 <     * key-value associations. They may be useful for example when
3608 <     * finding the key for the greatest value. Note that "plain" Entry
3609 <     * arguments can be supplied using {@code new
3610 <     * AbstractMap.SimpleEntry(k,v)}.
3611 <     *
3612 <     * <p> Bulk operations may complete abruptly, throwing an
3613 <     * exception encountered in the application of a supplied
3614 <     * function. Bear in mind when handling such exceptions that other
3615 <     * concurrently executing functions could also have thrown
3616 <     * exceptions, or would have done so if the first exception had
3617 <     * not occurred.
3618 <     *
3619 <     * <p>Parallel speedups compared to sequential processing are
3620 <     * common but not guaranteed.  Operations involving brief
3621 <     * functions on small maps may execute more slowly than sequential
3622 <     * loops if the underlying work to parallelize the computation is
3623 <     * more expensive than the computation itself. Similarly,
3624 <     * parallelization may not lead to much actual parallelism if all
3625 <     * processors are busy performing unrelated tasks.
3626 <     *
3627 <     * <p> All arguments to all task methods must be non-null.
3628 <     *
3629 <     * <p><em>jsr166e note: During transition, this class
3630 <     * uses nested functional interfaces with different names but the
3631 <     * same forms as those expected for JDK8.<em>
2556 >     * Nodes for use in TreeBins
2557       */
2558 <    public class Parallel {
2559 <        final ForkJoinPool fjp;
2558 >    static final class TreeNode<K,V> extends Node<K,V> {
2559 >        TreeNode<K,V> parent;  // red-black tree links
2560 >        TreeNode<K,V> left;
2561 >        TreeNode<K,V> right;
2562 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2563 >        boolean red;
2564  
2565 <        /**
2566 <         * Returns an extended view of this map using the given
2567 <         * executor for bulk parallel operations.
2568 <         *
3640 <         * @param executor the executor
3641 <         */
3642 <        public Parallel(ForkJoinPool executor)  {
3643 <            this.fjp = executor;
2565 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2566 >                 TreeNode<K,V> parent) {
2567 >            super(hash, key, val, next);
2568 >            this.parent = parent;
2569          }
2570  
2571 <        /**
2572 <         * Performs the given action for each (key, value).
3648 <         *
3649 <         * @param action the action
3650 <         */
3651 <        public void forEach(BiAction<K,V> action) {
3652 <            fjp.invoke(ForkJoinTasks.forEach
3653 <                       (ConcurrentHashMapV8.this, action));
2571 >        Node<K,V> find(int h, Object k) {
2572 >            return findTreeNode(h, k, null);
2573          }
2574  
2575          /**
2576 <         * Performs the given action for each non-null transformation
2577 <         * of each (key, value).
3659 <         *
3660 <         * @param transformer a function returning the transformation
3661 <         * for an element, or null of there is no transformation (in
3662 <         * which case the action is not applied).
3663 <         * @param action the action
2576 >         * Returns the TreeNode (or null if not found) for the given key
2577 >         * starting at given root.
2578           */
2579 <        public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
2580 <                                Action<U> action) {
2581 <            fjp.invoke(ForkJoinTasks.forEach
2582 <                       (ConcurrentHashMapV8.this, transformer, action));
2579 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2580 >            if (k != null) {
2581 >                TreeNode<K,V> p = this;
2582 >                do  {
2583 >                    int ph, dir; K pk; TreeNode<K,V> q;
2584 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2585 >                    if ((ph = p.hash) > h)
2586 >                        p = pl;
2587 >                    else if (ph < h)
2588 >                        p = pr;
2589 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2590 >                        return p;
2591 >                    else if (pl == null)
2592 >                        p = pr;
2593 >                    else if (pr == null)
2594 >                        p = pl;
2595 >                    else if ((kc != null ||
2596 >                              (kc = comparableClassFor(k)) != null) &&
2597 >                             (dir = compareComparables(kc, k, pk)) != 0)
2598 >                        p = (dir < 0) ? pl : pr;
2599 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2600 >                        return q;
2601 >                    else
2602 >                        p = pl;
2603 >                } while (p != null);
2604 >            }
2605 >            return null;
2606          }
2607 +    }
2608  
2609 <        /**
2610 <         * Returns a non-null result from applying the given search
2611 <         * function on each (key, value), or null if none.  Upon
2612 <         * success, further element processing is suppressed and the
2613 <         * results of any other parallel invocations of the search
2614 <         * function are ignored.
2615 <         *
2616 <         * @param searchFunction a function returning a non-null
2617 <         * result on success, else null
2618 <         * @return a non-null result from applying the given search
2619 <         * function on each (key, value), or null if none
2620 <         */
2621 <        public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
2622 <            return fjp.invoke(ForkJoinTasks.search
2623 <                              (ConcurrentHashMapV8.this, searchFunction));
2609 >    /* ---------------- TreeBins -------------- */
2610 >
2611 >    /**
2612 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2613 >     * keys or values, but instead point to list of TreeNodes and
2614 >     * their root. They also maintain a parasitic read-write lock
2615 >     * forcing writers (who hold bin lock) to wait for readers (who do
2616 >     * not) to complete before tree restructuring operations.
2617 >     */
2618 >    static final class TreeBin<K,V> extends Node<K,V> {
2619 >        TreeNode<K,V> root;
2620 >        volatile TreeNode<K,V> first;
2621 >        volatile Thread waiter;
2622 >        volatile int lockState;
2623 >        // values for lockState
2624 >        static final int WRITER = 1; // set while holding write lock
2625 >        static final int WAITER = 2; // set when waiting for write lock
2626 >        static final int READER = 4; // increment value for setting read lock
2627 >
2628 >        /**
2629 >         * Tie-breaking utility for ordering insertions when equal
2630 >         * hashCodes and non-comparable. We don't require a total
2631 >         * order, just a consistent insertion rule to maintain
2632 >         * equivalence across rebalancings. Tie-breaking further than
2633 >         * necessary simplifies testing a bit.
2634 >         */
2635 >        static int tieBreakOrder(Object a, Object b) {
2636 >            int d;
2637 >            if (a == null || b == null ||
2638 >                (d = a.getClass().getName().
2639 >                 compareTo(b.getClass().getName())) == 0)
2640 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2641 >                     -1 : 1);
2642 >            return d;
2643          }
2644  
2645          /**
2646 <         * Returns the result of accumulating the given transformation
2647 <         * of all (key, value) pairs using the given reducer to
2648 <         * combine values, or null if none.
2649 <         *
2650 <         * @param transformer a function returning the transformation
2651 <         * for an element, or null of there is no transformation (in
2652 <         * which case it is not combined).
2653 <         * @param reducer a commutative associative combining function
2654 <         * @return the result of accumulating the given transformation
2655 <         * of all (key, value) pairs
2656 <         */
2657 <        public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
2658 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
2659 <            return fjp.invoke(ForkJoinTasks.reduce
2660 <                              (ConcurrentHashMapV8.this, transformer, reducer));
2646 >         * Creates bin with initial set of nodes headed by b.
2647 >         */
2648 >        TreeBin(TreeNode<K,V> b) {
2649 >            super(TREEBIN, null, null, null);
2650 >            this.first = b;
2651 >            TreeNode<K,V> r = null;
2652 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2653 >                next = (TreeNode<K,V>)x.next;
2654 >                x.left = x.right = null;
2655 >                if (r == null) {
2656 >                    x.parent = null;
2657 >                    x.red = false;
2658 >                    r = x;
2659 >                }
2660 >                else {
2661 >                    K k = x.key;
2662 >                    int h = x.hash;
2663 >                    Class<?> kc = null;
2664 >                    for (TreeNode<K,V> p = r;;) {
2665 >                        int dir, ph;
2666 >                        K pk = p.key;
2667 >                        if ((ph = p.hash) > h)
2668 >                            dir = -1;
2669 >                        else if (ph < h)
2670 >                            dir = 1;
2671 >                        else if ((kc == null &&
2672 >                                  (kc = comparableClassFor(k)) == null) ||
2673 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2674 >                            dir = tieBreakOrder(k, pk);
2675 >                            TreeNode<K,V> xp = p;
2676 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2677 >                            x.parent = xp;
2678 >                            if (dir <= 0)
2679 >                                xp.left = x;
2680 >                            else
2681 >                                xp.right = x;
2682 >                            r = balanceInsertion(r, x);
2683 >                            break;
2684 >                        }
2685 >                    }
2686 >                }
2687 >            }
2688 >            this.root = r;
2689 >            assert checkInvariants(root);
2690          }
2691  
2692          /**
2693 <         * Returns the result of accumulating the given transformation
3708 <         * of all (key, value) pairs using the given reducer to
3709 <         * combine values, and the given basis as an identity value.
3710 <         *
3711 <         * @param transformer a function returning the transformation
3712 <         * for an element
3713 <         * @param basis the identity (initial default value) for the reduction
3714 <         * @param reducer a commutative associative combining function
3715 <         * @return the result of accumulating the given transformation
3716 <         * of all (key, value) pairs
2693 >         * Acquires write lock for tree restructuring.
2694           */
2695 <        public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
2696 <                                     double basis,
2697 <                                     DoubleByDoubleToDouble reducer) {
3721 <            return fjp.invoke(ForkJoinTasks.reduceToDouble
3722 <                              (ConcurrentHashMapV8.this, transformer, basis, reducer));
2695 >        private final void lockRoot() {
2696 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2697 >                contendedLock(); // offload to separate method
2698          }
2699  
2700          /**
2701 <         * Returns the result of accumulating the given transformation
3727 <         * of all (key, value) pairs using the given reducer to
3728 <         * combine values, and the given basis as an identity value.
3729 <         *
3730 <         * @param transformer a function returning the transformation
3731 <         * for an element
3732 <         * @param basis the identity (initial default value) for the reduction
3733 <         * @param reducer a commutative associative combining function
3734 <         * @return the result of accumulating the given transformation
3735 <         * of all (key, value) pairs
2701 >         * Releases write lock for tree restructuring.
2702           */
2703 <        public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
2704 <                                 long basis,
3739 <                                 LongByLongToLong reducer) {
3740 <            return fjp.invoke(ForkJoinTasks.reduceToLong
3741 <                              (ConcurrentHashMapV8.this, transformer, basis, reducer));
2703 >        private final void unlockRoot() {
2704 >            lockState = 0;
2705          }
2706  
2707          /**
2708 <         * Returns the result of accumulating the given transformation
3746 <         * of all (key, value) pairs using the given reducer to
3747 <         * combine values, and the given basis as an identity value.
3748 <         *
3749 <         * @param transformer a function returning the transformation
3750 <         * for an element
3751 <         * @param basis the identity (initial default value) for the reduction
3752 <         * @param reducer a commutative associative combining function
3753 <         * @return the result of accumulating the given transformation
3754 <         * of all (key, value) pairs
2708 >         * Possibly blocks awaiting root lock.
2709           */
2710 <        public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
2711 <                               int basis,
2712 <                               IntByIntToInt reducer) {
2713 <            return fjp.invoke(ForkJoinTasks.reduceToInt
2714 <                              (ConcurrentHashMapV8.this, transformer, basis, reducer));
2710 >        private final void contendedLock() {
2711 >            boolean waiting = false;
2712 >            for (int s;;) {
2713 >                if (((s = lockState) & ~WAITER) == 0) {
2714 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2715 >                        if (waiting)
2716 >                            waiter = null;
2717 >                        return;
2718 >                    }
2719 >                }
2720 >                else if ((s & WAITER) == 0) {
2721 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2722 >                        waiting = true;
2723 >                        waiter = Thread.currentThread();
2724 >                    }
2725 >                }
2726 >                else if (waiting)
2727 >                    LockSupport.park(this);
2728 >            }
2729          }
2730  
2731          /**
2732 <         * Performs the given action for each key.
2733 <         *
2734 <         * @param action the action
2732 >         * Returns matching node or null if none. Tries to search
2733 >         * using tree comparisons from root, but continues linear
2734 >         * search when lock not available.
2735           */
2736 <        public void forEachKey(Action<K> action) {
2737 <            fjp.invoke(ForkJoinTasks.forEachKey
2738 <                       (ConcurrentHashMapV8.this, action));
2736 >        final Node<K,V> find(int h, Object k) {
2737 >            if (k != null) {
2738 >                for (Node<K,V> e = first; e != null; ) {
2739 >                    int s; K ek;
2740 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2741 >                        if (e.hash == h &&
2742 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2743 >                            return e;
2744 >                        e = e.next;
2745 >                    }
2746 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2747 >                                                 s + READER)) {
2748 >                        TreeNode<K,V> r, p;
2749 >                        try {
2750 >                            p = ((r = root) == null ? null :
2751 >                                 r.findTreeNode(h, k, null));
2752 >                        } finally {
2753 >                            Thread w;
2754 >                            int ls;
2755 >                            do {} while (!U.compareAndSwapInt
2756 >                                         (this, LOCKSTATE,
2757 >                                          ls = lockState, ls - READER));
2758 >                            if (ls == (READER|WAITER) && (w = waiter) != null)
2759 >                                LockSupport.unpark(w);
2760 >                        }
2761 >                        return p;
2762 >                    }
2763 >                }
2764 >            }
2765 >            return null;
2766          }
2767  
2768          /**
2769 <         * Performs the given action for each non-null transformation
2770 <         * of each key.
3776 <         *
3777 <         * @param transformer a function returning the transformation
3778 <         * for an element, or null of there is no transformation (in
3779 <         * which case the action is not applied).
3780 <         * @param action the action
2769 >         * Finds or adds a node.
2770 >         * @return null if added
2771           */
2772 <        public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
2773 <                                   Action<U> action) {
2774 <            fjp.invoke(ForkJoinTasks.forEachKey
2775 <                       (ConcurrentHashMapV8.this, transformer, action));
2772 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2773 >            Class<?> kc = null;
2774 >            boolean searched = false;
2775 >            for (TreeNode<K,V> p = root;;) {
2776 >                int dir, ph; K pk;
2777 >                if (p == null) {
2778 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2779 >                    break;
2780 >                }
2781 >                else if ((ph = p.hash) > h)
2782 >                    dir = -1;
2783 >                else if (ph < h)
2784 >                    dir = 1;
2785 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2786 >                    return p;
2787 >                else if ((kc == null &&
2788 >                          (kc = comparableClassFor(k)) == null) ||
2789 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2790 >                    if (!searched) {
2791 >                        TreeNode<K,V> q, ch;
2792 >                        searched = true;
2793 >                        if (((ch = p.left) != null &&
2794 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2795 >                            ((ch = p.right) != null &&
2796 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2797 >                            return q;
2798 >                    }
2799 >                    dir = tieBreakOrder(k, pk);
2800 >                }
2801 >
2802 >                TreeNode<K,V> xp = p;
2803 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2804 >                    TreeNode<K,V> x, f = first;
2805 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2806 >                    if (f != null)
2807 >                        f.prev = x;
2808 >                    if (dir <= 0)
2809 >                        xp.left = x;
2810 >                    else
2811 >                        xp.right = x;
2812 >                    if (!xp.red)
2813 >                        x.red = true;
2814 >                    else {
2815 >                        lockRoot();
2816 >                        try {
2817 >                            root = balanceInsertion(root, x);
2818 >                        } finally {
2819 >                            unlockRoot();
2820 >                        }
2821 >                    }
2822 >                    break;
2823 >                }
2824 >            }
2825 >            assert checkInvariants(root);
2826 >            return null;
2827          }
2828  
2829          /**
2830 <         * Returns a non-null result from applying the given search
2831 <         * function on each key, or null if none. Upon success,
2832 <         * further element processing is suppressed and the results of
2833 <         * any other parallel invocations of the search function are
2834 <         * ignored.
2830 >         * Removes the given node, that must be present before this
2831 >         * call.  This is messier than typical red-black deletion code
2832 >         * because we cannot swap the contents of an interior node
2833 >         * with a leaf successor that is pinned by "next" pointers
2834 >         * that are accessible independently of lock. So instead we
2835 >         * swap the tree linkages.
2836           *
2837 <         * @param searchFunction a function returning a non-null
3796 <         * result on success, else null
3797 <         * @return a non-null result from applying the given search
3798 <         * function on each key, or null if none
2837 >         * @return true if now too small, so should be untreeified
2838           */
2839 <        public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
2840 <            return fjp.invoke(ForkJoinTasks.searchKeys
2841 <                              (ConcurrentHashMapV8.this, searchFunction));
2839 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2840 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2841 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2842 >            TreeNode<K,V> r, rl;
2843 >            if (pred == null)
2844 >                first = next;
2845 >            else
2846 >                pred.next = next;
2847 >            if (next != null)
2848 >                next.prev = pred;
2849 >            if (first == null) {
2850 >                root = null;
2851 >                return true;
2852 >            }
2853 >            if ((r = root) == null || r.right == null || // too small
2854 >                (rl = r.left) == null || rl.left == null)
2855 >                return true;
2856 >            lockRoot();
2857 >            try {
2858 >                TreeNode<K,V> replacement;
2859 >                TreeNode<K,V> pl = p.left;
2860 >                TreeNode<K,V> pr = p.right;
2861 >                if (pl != null && pr != null) {
2862 >                    TreeNode<K,V> s = pr, sl;
2863 >                    while ((sl = s.left) != null) // find successor
2864 >                        s = sl;
2865 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2866 >                    TreeNode<K,V> sr = s.right;
2867 >                    TreeNode<K,V> pp = p.parent;
2868 >                    if (s == pr) { // p was s's direct parent
2869 >                        p.parent = s;
2870 >                        s.right = p;
2871 >                    }
2872 >                    else {
2873 >                        TreeNode<K,V> sp = s.parent;
2874 >                        if ((p.parent = sp) != null) {
2875 >                            if (s == sp.left)
2876 >                                sp.left = p;
2877 >                            else
2878 >                                sp.right = p;
2879 >                        }
2880 >                        if ((s.right = pr) != null)
2881 >                            pr.parent = s;
2882 >                    }
2883 >                    p.left = null;
2884 >                    if ((p.right = sr) != null)
2885 >                        sr.parent = p;
2886 >                    if ((s.left = pl) != null)
2887 >                        pl.parent = s;
2888 >                    if ((s.parent = pp) == null)
2889 >                        r = s;
2890 >                    else if (p == pp.left)
2891 >                        pp.left = s;
2892 >                    else
2893 >                        pp.right = s;
2894 >                    if (sr != null)
2895 >                        replacement = sr;
2896 >                    else
2897 >                        replacement = p;
2898 >                }
2899 >                else if (pl != null)
2900 >                    replacement = pl;
2901 >                else if (pr != null)
2902 >                    replacement = pr;
2903 >                else
2904 >                    replacement = p;
2905 >                if (replacement != p) {
2906 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2907 >                    if (pp == null)
2908 >                        r = replacement;
2909 >                    else if (p == pp.left)
2910 >                        pp.left = replacement;
2911 >                    else
2912 >                        pp.right = replacement;
2913 >                    p.left = p.right = p.parent = null;
2914 >                }
2915 >
2916 >                root = (p.red) ? r : balanceDeletion(r, replacement);
2917 >
2918 >                if (p == replacement) {  // detach pointers
2919 >                    TreeNode<K,V> pp;
2920 >                    if ((pp = p.parent) != null) {
2921 >                        if (p == pp.left)
2922 >                            pp.left = null;
2923 >                        else if (p == pp.right)
2924 >                            pp.right = null;
2925 >                        p.parent = null;
2926 >                    }
2927 >                }
2928 >            } finally {
2929 >                unlockRoot();
2930 >            }
2931 >            assert checkInvariants(root);
2932 >            return false;
2933          }
2934  
2935 <        /**
2936 <         * Returns the result of accumulating all keys using the given
2937 <         * reducer to combine values, or null if none.
2938 <         *
2939 <         * @param reducer a commutative associative combining function
2940 <         * @return the result of accumulating all keys using the given
2941 <         * reducer to combine values, or null if none
2942 <         */
2943 <        public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
2944 <            return fjp.invoke(ForkJoinTasks.reduceKeys
2945 <                              (ConcurrentHashMapV8.this, reducer));
2935 >        /* ------------------------------------------------------------ */
2936 >        // Red-black tree methods, all adapted from CLR
2937 >
2938 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2939 >                                              TreeNode<K,V> p) {
2940 >            TreeNode<K,V> r, pp, rl;
2941 >            if (p != null && (r = p.right) != null) {
2942 >                if ((rl = p.right = r.left) != null)
2943 >                    rl.parent = p;
2944 >                if ((pp = r.parent = p.parent) == null)
2945 >                    (root = r).red = false;
2946 >                else if (pp.left == p)
2947 >                    pp.left = r;
2948 >                else
2949 >                    pp.right = r;
2950 >                r.left = p;
2951 >                p.parent = r;
2952 >            }
2953 >            return root;
2954          }
2955  
2956 <        /**
2957 <         * Returns the result of accumulating the given transformation
2958 <         * of all keys using the given reducer to combine values, or
2959 <         * null if none.
2960 <         *
2961 <         * @param transformer a function returning the transformation
2962 <         * for an element, or null of there is no transformation (in
2963 <         * which case it is not combined).
2964 <         * @param reducer a commutative associative combining function
2965 <         * @return the result of accumulating the given transformation
2966 <         * of all keys
2967 <         */
2968 <        public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
2969 <                                BiFun<? super U, ? super U, ? extends U> reducer) {
2970 <            return fjp.invoke(ForkJoinTasks.reduceKeys
2971 <                              (ConcurrentHashMapV8.this, transformer, reducer));
2956 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2957 >                                               TreeNode<K,V> p) {
2958 >            TreeNode<K,V> l, pp, lr;
2959 >            if (p != null && (l = p.left) != null) {
2960 >                if ((lr = p.left = l.right) != null)
2961 >                    lr.parent = p;
2962 >                if ((pp = l.parent = p.parent) == null)
2963 >                    (root = l).red = false;
2964 >                else if (pp.right == p)
2965 >                    pp.right = l;
2966 >                else
2967 >                    pp.left = l;
2968 >                l.right = p;
2969 >                p.parent = l;
2970 >            }
2971 >            return root;
2972          }
2973  
2974 <        /**
2975 <         * Returns the result of accumulating the given transformation
2976 <         * of all keys using the given reducer to combine values, and
2977 <         * the given basis as an identity value.
2978 <         *
2979 <         * @param transformer a function returning the transformation
2980 <         * for an element
2981 <         * @param basis the identity (initial default value) for the reduction
2982 <         * @param reducer a commutative associative combining function
2983 <         * @return  the result of accumulating the given transformation
2984 <         * of all keys
2985 <         */
2986 <        public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
2987 <                                         double basis,
2988 <                                         DoubleByDoubleToDouble reducer) {
2989 <            return fjp.invoke(ForkJoinTasks.reduceKeysToDouble
2990 <                              (ConcurrentHashMapV8.this, transformer, basis, reducer));
2974 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2975 >                                                    TreeNode<K,V> x) {
2976 >            x.red = true;
2977 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2978 >                if ((xp = x.parent) == null) {
2979 >                    x.red = false;
2980 >                    return x;
2981 >                }
2982 >                else if (!xp.red || (xpp = xp.parent) == null)
2983 >                    return root;
2984 >                if (xp == (xppl = xpp.left)) {
2985 >                    if ((xppr = xpp.right) != null && xppr.red) {
2986 >                        xppr.red = false;
2987 >                        xp.red = false;
2988 >                        xpp.red = true;
2989 >                        x = xpp;
2990 >                    }
2991 >                    else {
2992 >                        if (x == xp.right) {
2993 >                            root = rotateLeft(root, x = xp);
2994 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2995 >                        }
2996 >                        if (xp != null) {
2997 >                            xp.red = false;
2998 >                            if (xpp != null) {
2999 >                                xpp.red = true;
3000 >                                root = rotateRight(root, xpp);
3001 >                            }
3002 >                        }
3003 >                    }
3004 >                }
3005 >                else {
3006 >                    if (xppl != null && xppl.red) {
3007 >                        xppl.red = false;
3008 >                        xp.red = false;
3009 >                        xpp.red = true;
3010 >                        x = xpp;
3011 >                    }
3012 >                    else {
3013 >                        if (x == xp.left) {
3014 >                            root = rotateRight(root, x = xp);
3015 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
3016 >                        }
3017 >                        if (xp != null) {
3018 >                            xp.red = false;
3019 >                            if (xpp != null) {
3020 >                                xpp.red = true;
3021 >                                root = rotateLeft(root, xpp);
3022 >                            }
3023 >                        }
3024 >                    }
3025 >                }
3026 >            }
3027          }
3028  
3029 <        /**
3030 <         * Returns the result of accumulating the given transformation
3031 <         * of all keys using the given reducer to combine values, and
3032 <         * the given basis as an identity value.
3033 <         *
3034 <         * @param transformer a function returning the transformation
3035 <         * for an element
3036 <         * @param basis the identity (initial default value) for the reduction
3037 <         * @param reducer a commutative associative combining function
3038 <         * @return the result of accumulating the given transformation
3039 <         * of all keys
3040 <         */
3041 <        public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3042 <                                     long basis,
3043 <                                     LongByLongToLong reducer) {
3044 <            return fjp.invoke(ForkJoinTasks.reduceKeysToLong
3045 <                              (ConcurrentHashMapV8.this, transformer, basis, reducer));
3029 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3030 >                                                   TreeNode<K,V> x) {
3031 >            for (TreeNode<K,V> xp, xpl, xpr;;)  {
3032 >                if (x == null || x == root)
3033 >                    return root;
3034 >                else if ((xp = x.parent) == null) {
3035 >                    x.red = false;
3036 >                    return x;
3037 >                }
3038 >                else if (x.red) {
3039 >                    x.red = false;
3040 >                    return root;
3041 >                }
3042 >                else if ((xpl = xp.left) == x) {
3043 >                    if ((xpr = xp.right) != null && xpr.red) {
3044 >                        xpr.red = false;
3045 >                        xp.red = true;
3046 >                        root = rotateLeft(root, xp);
3047 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3048 >                    }
3049 >                    if (xpr == null)
3050 >                        x = xp;
3051 >                    else {
3052 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3053 >                        if ((sr == null || !sr.red) &&
3054 >                            (sl == null || !sl.red)) {
3055 >                            xpr.red = true;
3056 >                            x = xp;
3057 >                        }
3058 >                        else {
3059 >                            if (sr == null || !sr.red) {
3060 >                                if (sl != null)
3061 >                                    sl.red = false;
3062 >                                xpr.red = true;
3063 >                                root = rotateRight(root, xpr);
3064 >                                xpr = (xp = x.parent) == null ?
3065 >                                    null : xp.right;
3066 >                            }
3067 >                            if (xpr != null) {
3068 >                                xpr.red = (xp == null) ? false : xp.red;
3069 >                                if ((sr = xpr.right) != null)
3070 >                                    sr.red = false;
3071 >                            }
3072 >                            if (xp != null) {
3073 >                                xp.red = false;
3074 >                                root = rotateLeft(root, xp);
3075 >                            }
3076 >                            x = root;
3077 >                        }
3078 >                    }
3079 >                }
3080 >                else { // symmetric
3081 >                    if (xpl != null && xpl.red) {
3082 >                        xpl.red = false;
3083 >                        xp.red = true;
3084 >                        root = rotateRight(root, xp);
3085 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3086 >                    }
3087 >                    if (xpl == null)
3088 >                        x = xp;
3089 >                    else {
3090 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3091 >                        if ((sl == null || !sl.red) &&
3092 >                            (sr == null || !sr.red)) {
3093 >                            xpl.red = true;
3094 >                            x = xp;
3095 >                        }
3096 >                        else {
3097 >                            if (sl == null || !sl.red) {
3098 >                                if (sr != null)
3099 >                                    sr.red = false;
3100 >                                xpl.red = true;
3101 >                                root = rotateLeft(root, xpl);
3102 >                                xpl = (xp = x.parent) == null ?
3103 >                                    null : xp.left;
3104 >                            }
3105 >                            if (xpl != null) {
3106 >                                xpl.red = (xp == null) ? false : xp.red;
3107 >                                if ((sl = xpl.left) != null)
3108 >                                    sl.red = false;
3109 >                            }
3110 >                            if (xp != null) {
3111 >                                xp.red = false;
3112 >                                root = rotateRight(root, xp);
3113 >                            }
3114 >                            x = root;
3115 >                        }
3116 >                    }
3117 >                }
3118 >            }
3119          }
3120  
3121          /**
3122 <         * Returns the result of accumulating the given transformation
3876 <         * of all keys using the given reducer to combine values, and
3877 <         * the given basis as an identity value.
3878 <         *
3879 <         * @param transformer a function returning the transformation
3880 <         * for an element
3881 <         * @param basis the identity (initial default value) for the reduction
3882 <         * @param reducer a commutative associative combining function
3883 <         * @return the result of accumulating the given transformation
3884 <         * of all keys
3122 >         * Recursive invariant check
3123           */
3124 <        public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3125 <                                   int basis,
3126 <                                   IntByIntToInt reducer) {
3127 <            return fjp.invoke(ForkJoinTasks.reduceKeysToInt
3128 <                              (ConcurrentHashMapV8.this, transformer, basis, reducer));
3124 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3125 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3126 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3127 >            if (tb != null && tb.next != t)
3128 >                return false;
3129 >            if (tn != null && tn.prev != t)
3130 >                return false;
3131 >            if (tp != null && t != tp.left && t != tp.right)
3132 >                return false;
3133 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3134 >                return false;
3135 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3136 >                return false;
3137 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3138 >                return false;
3139 >            if (tl != null && !checkInvariants(tl))
3140 >                return false;
3141 >            if (tr != null && !checkInvariants(tr))
3142 >                return false;
3143 >            return true;
3144          }
3145  
3146 <        /**
3147 <         * Performs the given action for each value.
3148 <         *
3149 <         * @param action the action
3150 <         */
3151 <        public void forEachValue(Action<V> action) {
3152 <            fjp.invoke(ForkJoinTasks.forEachValue
3153 <                       (ConcurrentHashMapV8.this, action));
3146 >        private static final sun.misc.Unsafe U;
3147 >        private static final long LOCKSTATE;
3148 >        static {
3149 >            try {
3150 >                U = getUnsafe();
3151 >                Class<?> k = TreeBin.class;
3152 >                LOCKSTATE = U.objectFieldOffset
3153 >                    (k.getDeclaredField("lockState"));
3154 >            } catch (Exception e) {
3155 >                throw new Error(e);
3156 >            }
3157          }
3158 +    }
3159  
3160 <        /**
3161 <         * Performs the given action for each non-null transformation
3162 <         * of each value.
3163 <         *
3164 <         * @param transformer a function returning the transformation
3165 <         * for an element, or null of there is no transformation (in
3166 <         * which case the action is not applied).
3167 <         */
3168 <        public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3169 <                                     Action<U> action) {
3170 <            fjp.invoke(ForkJoinTasks.forEachValue
3171 <                       (ConcurrentHashMapV8.this, transformer, action));
3160 >    /* ----------------Table Traversal -------------- */
3161 >
3162 >    /**
3163 >     * Records the table, its length, and current traversal index for a
3164 >     * traverser that must process a region of a forwarded table before
3165 >     * proceeding with current table.
3166 >     */
3167 >    static final class TableStack<K,V> {
3168 >        int length;
3169 >        int index;
3170 >        Node<K,V>[] tab;
3171 >        TableStack<K,V> next;
3172 >    }
3173 >
3174 >    /**
3175 >     * Encapsulates traversal for methods such as containsValue; also
3176 >     * serves as a base class for other iterators and spliterators.
3177 >     *
3178 >     * Method advance visits once each still-valid node that was
3179 >     * reachable upon iterator construction. It might miss some that
3180 >     * were added to a bin after the bin was visited, which is OK wrt
3181 >     * consistency guarantees. Maintaining this property in the face
3182 >     * of possible ongoing resizes requires a fair amount of
3183 >     * bookkeeping state that is difficult to optimize away amidst
3184 >     * volatile accesses.  Even so, traversal maintains reasonable
3185 >     * throughput.
3186 >     *
3187 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3188 >     * However, if the table has been resized, then all future steps
3189 >     * must traverse both the bin at the current index as well as at
3190 >     * (index + baseSize); and so on for further resizings. To
3191 >     * paranoically cope with potential sharing by users of iterators
3192 >     * across threads, iteration terminates if a bounds checks fails
3193 >     * for a table read.
3194 >     */
3195 >    static class Traverser<K,V> {
3196 >        Node<K,V>[] tab;        // current table; updated if resized
3197 >        Node<K,V> next;         // the next entry to use
3198 >        TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3199 >        int index;              // index of bin to use next
3200 >        int baseIndex;          // current index of initial table
3201 >        int baseLimit;          // index bound for initial table
3202 >        final int baseSize;     // initial table size
3203 >
3204 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3205 >            this.tab = tab;
3206 >            this.baseSize = size;
3207 >            this.baseIndex = this.index = index;
3208 >            this.baseLimit = limit;
3209 >            this.next = null;
3210          }
3211  
3212          /**
3213 <         * Returns a non-null result from applying the given search
3214 <         * function on each value, or null if none.  Upon success,
3215 <         * further element processing is suppressed and the results of
3216 <         * any other parallel invocations of the search function are
3217 <         * ignored.
3218 <         *
3219 <         * @param searchFunction a function returning a non-null
3220 <         * result on success, else null
3221 <         * @return a non-null result from applying the given search
3222 <         * function on each value, or null if none
3223 <         *
3224 <         */
3225 <        public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3226 <            return fjp.invoke(ForkJoinTasks.searchValues
3227 <                              (ConcurrentHashMapV8.this, searchFunction));
3213 >         * Advances if possible, returning next valid node, or null if none.
3214 >         */
3215 >        final Node<K,V> advance() {
3216 >            Node<K,V> e;
3217 >            if ((e = next) != null)
3218 >                e = e.next;
3219 >            for (;;) {
3220 >                Node<K,V>[] t; int i, n;  // must use locals in checks
3221 >                if (e != null)
3222 >                    return next = e;
3223 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3224 >                    (n = t.length) <= (i = index) || i < 0)
3225 >                    return next = null;
3226 >                if ((e = tabAt(t, i)) != null && e.hash < 0) {
3227 >                    if (e instanceof ForwardingNode) {
3228 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3229 >                        e = null;
3230 >                        pushState(t, i, n);
3231 >                        continue;
3232 >                    }
3233 >                    else if (e instanceof TreeBin)
3234 >                        e = ((TreeBin<K,V>)e).first;
3235 >                    else
3236 >                        e = null;
3237 >                }
3238 >                if (stack != null)
3239 >                    recoverState(n);
3240 >                else if ((index = i + baseSize) >= n)
3241 >                    index = ++baseIndex; // visit upper slots if present
3242 >            }
3243          }
3244  
3245          /**
3246 <         * Returns the result of accumulating all values using the
3937 <         * given reducer to combine values, or null if none.
3938 <         *
3939 <         * @param reducer a commutative associative combining function
3940 <         * @return  the result of accumulating all values
3246 >         * Saves traversal state upon encountering a forwarding node.
3247           */
3248 <        public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3249 <            return fjp.invoke(ForkJoinTasks.reduceValues
3250 <                              (ConcurrentHashMapV8.this, reducer));
3248 >        private void pushState(Node<K,V>[] t, int i, int n) {
3249 >            TableStack<K,V> s = spare;  // reuse if possible
3250 >            if (s != null)
3251 >                spare = s.next;
3252 >            else
3253 >                s = new TableStack<K,V>();
3254 >            s.tab = t;
3255 >            s.length = n;
3256 >            s.index = i;
3257 >            s.next = stack;
3258 >            stack = s;
3259          }
3260  
3261          /**
3262 <         * Returns the result of accumulating the given transformation
3949 <         * of all values using the given reducer to combine values, or
3950 <         * null if none.
3262 >         * Possibly pops traversal state.
3263           *
3264 <         * @param transformer a function returning the transformation
3953 <         * for an element, or null of there is no transformation (in
3954 <         * which case it is not combined).
3955 <         * @param reducer a commutative associative combining function
3956 <         * @return the result of accumulating the given transformation
3957 <         * of all values
3264 >         * @param n length of current table
3265           */
3266 <        public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3267 <                                  BiFun<? super U, ? super U, ? extends U> reducer) {
3268 <            return fjp.invoke(ForkJoinTasks.reduceValues
3269 <                              (ConcurrentHashMapV8.this, transformer, reducer));
3266 >        private void recoverState(int n) {
3267 >            TableStack<K,V> s; int len;
3268 >            while ((s = stack) != null && (index += (len = s.length)) >= n) {
3269 >                n = len;
3270 >                index = s.index;
3271 >                tab = s.tab;
3272 >                s.tab = null;
3273 >                TableStack<K,V> next = s.next;
3274 >                s.next = spare; // save for reuse
3275 >                stack = next;
3276 >                spare = s;
3277 >            }
3278 >            if (s == null && (index += baseSize) >= n)
3279 >                index = ++baseIndex;
3280          }
3281 +    }
3282  
3283 <        /**
3284 <         * Returns the result of accumulating the given transformation
3285 <         * of all values using the given reducer to combine values,
3286 <         * and the given basis as an identity value.
3287 <         *
3288 <         * @param transformer a function returning the transformation
3289 <         * for an element
3290 <         * @param basis the identity (initial default value) for the reduction
3291 <         * @param reducer a commutative associative combining function
3292 <         * @return the result of accumulating the given transformation
3293 <         * of all values
3294 <         */
3977 <        public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3978 <                                           double basis,
3979 <                                           DoubleByDoubleToDouble reducer) {
3980 <            return fjp.invoke(ForkJoinTasks.reduceValuesToDouble
3981 <                              (ConcurrentHashMapV8.this, transformer, basis, reducer));
3283 >    /**
3284 >     * Base of key, value, and entry Iterators. Adds fields to
3285 >     * Traverser to support iterator.remove.
3286 >     */
3287 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3288 >        final ConcurrentHashMapV8<K,V> map;
3289 >        Node<K,V> lastReturned;
3290 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3291 >                    ConcurrentHashMapV8<K,V> map) {
3292 >            super(tab, size, index, limit);
3293 >            this.map = map;
3294 >            advance();
3295          }
3296  
3297 <        /**
3298 <         * Returns the result of accumulating the given transformation
3299 <         * of all values using the given reducer to combine values,
3300 <         * and the given basis as an identity value.
3301 <         *
3302 <         * @param transformer a function returning the transformation
3303 <         * for an element
3304 <         * @param basis the identity (initial default value) for the reduction
3305 <         * @param reducer a commutative associative combining function
3993 <         * @return the result of accumulating the given transformation
3994 <         * of all values
3995 <         */
3996 <        public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3997 <                                       long basis,
3998 <                                       LongByLongToLong reducer) {
3999 <            return fjp.invoke(ForkJoinTasks.reduceValuesToLong
4000 <                              (ConcurrentHashMapV8.this, transformer, basis, reducer));
3297 >        public final boolean hasNext() { return next != null; }
3298 >        public final boolean hasMoreElements() { return next != null; }
3299 >
3300 >        public final void remove() {
3301 >            Node<K,V> p;
3302 >            if ((p = lastReturned) == null)
3303 >                throw new IllegalStateException();
3304 >            lastReturned = null;
3305 >            map.replaceNode(p.key, null, null);
3306          }
3307 +    }
3308  
3309 <        /**
3310 <         * Returns the result of accumulating the given transformation
3311 <         * of all values using the given reducer to combine values,
3312 <         * and the given basis as an identity value.
3313 <         *
4008 <         * @param transformer a function returning the transformation
4009 <         * for an element
4010 <         * @param basis the identity (initial default value) for the reduction
4011 <         * @param reducer a commutative associative combining function
4012 <         * @return the result of accumulating the given transformation
4013 <         * of all values
4014 <         */
4015 <        public int reduceValuesToInt(ObjectToInt<? super V> transformer,
4016 <                                     int basis,
4017 <                                     IntByIntToInt reducer) {
4018 <            return fjp.invoke(ForkJoinTasks.reduceValuesToInt
4019 <                              (ConcurrentHashMapV8.this, transformer, basis, reducer));
3309 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3310 >        implements Iterator<K>, Enumeration<K> {
3311 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3312 >                    ConcurrentHashMapV8<K,V> map) {
3313 >            super(tab, index, size, limit, map);
3314          }
3315  
3316 <        /**
3317 <         * Performs the given action for each entry.
3318 <         *
3319 <         * @param action the action
3320 <         */
3321 <        public void forEachEntry(Action<Map.Entry<K,V>> action) {
3322 <            fjp.invoke(ForkJoinTasks.forEachEntry
3323 <                       (ConcurrentHashMapV8.this, action));
3316 >        public final K next() {
3317 >            Node<K,V> p;
3318 >            if ((p = next) == null)
3319 >                throw new NoSuchElementException();
3320 >            K k = p.key;
3321 >            lastReturned = p;
3322 >            advance();
3323 >            return k;
3324          }
3325  
3326 <        /**
3327 <         * Performs the given action for each non-null transformation
3328 <         * of each entry.
3329 <         *
3330 <         * @param transformer a function returning the transformation
3331 <         * for an element, or null of there is no transformation (in
3332 <         * which case the action is not applied).
3333 <         * @param action the action
4040 <         */
4041 <        public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4042 <                                     Action<U> action) {
4043 <            fjp.invoke(ForkJoinTasks.forEachEntry
4044 <                       (ConcurrentHashMapV8.this, transformer, action));
3326 >        public final K nextElement() { return next(); }
3327 >    }
3328 >
3329 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3330 >        implements Iterator<V>, Enumeration<V> {
3331 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3332 >                      ConcurrentHashMapV8<K,V> map) {
3333 >            super(tab, index, size, limit, map);
3334          }
3335  
3336 <        /**
3337 <         * Returns a non-null result from applying the given search
3338 <         * function on each entry, or null if none.  Upon success,
3339 <         * further element processing is suppressed and the results of
3340 <         * any other parallel invocations of the search function are
3341 <         * ignored.
3342 <         *
3343 <         * @param searchFunction a function returning a non-null
4055 <         * result on success, else null
4056 <         * @return a non-null result from applying the given search
4057 <         * function on each entry, or null if none
4058 <         */
4059 <        public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4060 <            return fjp.invoke(ForkJoinTasks.searchEntries
4061 <                              (ConcurrentHashMapV8.this, searchFunction));
3336 >        public final V next() {
3337 >            Node<K,V> p;
3338 >            if ((p = next) == null)
3339 >                throw new NoSuchElementException();
3340 >            V v = p.val;
3341 >            lastReturned = p;
3342 >            advance();
3343 >            return v;
3344          }
3345  
3346 <        /**
3347 <         * Returns the result of accumulating all entries using the
3348 <         * given reducer to combine values, or null if none.
3349 <         *
3350 <         * @param reducer a commutative associative combining function
3351 <         * @return the result of accumulating all entries
3352 <         */
3353 <        public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4072 <            return fjp.invoke(ForkJoinTasks.reduceEntries
4073 <                              (ConcurrentHashMapV8.this, reducer));
3346 >        public final V nextElement() { return next(); }
3347 >    }
3348 >
3349 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3350 >        implements Iterator<Map.Entry<K,V>> {
3351 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3352 >                      ConcurrentHashMapV8<K,V> map) {
3353 >            super(tab, index, size, limit, map);
3354          }
3355  
3356 <        /**
3357 <         * Returns the result of accumulating the given transformation
3358 <         * of all entries using the given reducer to combine values,
3359 <         * or null if none.
3360 <         *
3361 <         * @param transformer a function returning the transformation
3362 <         * for an element, or null of there is no transformation (in
3363 <         * which case it is not combined).
3364 <         * @param reducer a commutative associative combining function
4085 <         * @return the result of accumulating the given transformation
4086 <         * of all entries
4087 <         */
4088 <        public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4089 <                                   BiFun<? super U, ? super U, ? extends U> reducer) {
4090 <            return fjp.invoke(ForkJoinTasks.reduceEntries
4091 <                              (ConcurrentHashMapV8.this, transformer, reducer));
3356 >        public final Map.Entry<K,V> next() {
3357 >            Node<K,V> p;
3358 >            if ((p = next) == null)
3359 >                throw new NoSuchElementException();
3360 >            K k = p.key;
3361 >            V v = p.val;
3362 >            lastReturned = p;
3363 >            advance();
3364 >            return new MapEntry<K,V>(k, v, map);
3365          }
3366 +    }
3367  
3368 <        /**
3369 <         * Returns the result of accumulating the given transformation
3370 <         * of all entries using the given reducer to combine values,
3371 <         * and the given basis as an identity value.
3372 <         *
3373 <         * @param transformer a function returning the transformation
3374 <         * for an element
3375 <         * @param basis the identity (initial default value) for the reduction
3376 <         * @param reducer a commutative associative combining function
3377 <         * @return the result of accumulating the given transformation
3378 <         * of all entries
4105 <         */
4106 <        public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4107 <                                            double basis,
4108 <                                            DoubleByDoubleToDouble reducer) {
4109 <            return fjp.invoke(ForkJoinTasks.reduceEntriesToDouble
4110 <                              (ConcurrentHashMapV8.this, transformer, basis, reducer));
3368 >    /**
3369 >     * Exported Entry for EntryIterator
3370 >     */
3371 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3372 >        final K key; // non-null
3373 >        V val;       // non-null
3374 >        final ConcurrentHashMapV8<K,V> map;
3375 >        MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3376 >            this.key = key;
3377 >            this.val = val;
3378 >            this.map = map;
3379          }
3380 +        public K getKey()        { return key; }
3381 +        public V getValue()      { return val; }
3382 +        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3383 +        public String toString() { return key + "=" + val; }
3384  
3385 <        /**
3386 <         * Returns the result of accumulating the given transformation
3387 <         * of all entries using the given reducer to combine values,
3388 <         * and the given basis as an identity value.
3389 <         *
3390 <         * @param transformer a function returning the transformation
3391 <         * for an element
4120 <         * @param basis the identity (initial default value) for the reduction
4121 <         * @param reducer a commutative associative combining function
4122 <         * @return  the result of accumulating the given transformation
4123 <         * of all entries
4124 <         */
4125 <        public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4126 <                                        long basis,
4127 <                                        LongByLongToLong reducer) {
4128 <            return fjp.invoke(ForkJoinTasks.reduceEntriesToLong
4129 <                              (ConcurrentHashMapV8.this, transformer, basis, reducer));
3385 >        public boolean equals(Object o) {
3386 >            Object k, v; Map.Entry<?,?> e;
3387 >            return ((o instanceof Map.Entry) &&
3388 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3389 >                    (v = e.getValue()) != null &&
3390 >                    (k == key || k.equals(key)) &&
3391 >                    (v == val || v.equals(val)));
3392          }
3393  
3394          /**
3395 <         * Returns the result of accumulating the given transformation
3396 <         * of all entries using the given reducer to combine values,
3397 <         * and the given basis as an identity value.
3398 <         *
3399 <         * @param transformer a function returning the transformation
3400 <         * for an element
4139 <         * @param basis the identity (initial default value) for the reduction
4140 <         * @param reducer a commutative associative combining function
4141 <         * @return the result of accumulating the given transformation
4142 <         * of all entries
3395 >         * Sets our entry's value and writes through to the map. The
3396 >         * value to return is somewhat arbitrary here. Since we do not
3397 >         * necessarily track asynchronous changes, the most recent
3398 >         * "previous" value could be different from what we return (or
3399 >         * could even have been removed, in which case the put will
3400 >         * re-establish). We do not and cannot guarantee more.
3401           */
3402 <        public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
3403 <                                      int basis,
3404 <                                      IntByIntToInt reducer) {
3405 <            return fjp.invoke(ForkJoinTasks.reduceEntriesToInt
3406 <                              (ConcurrentHashMapV8.this, transformer, basis, reducer));
3402 >        public V setValue(V value) {
3403 >            if (value == null) throw new NullPointerException();
3404 >            V v = val;
3405 >            val = value;
3406 >            map.put(key, value);
3407 >            return v;
3408          }
3409      }
3410  
3411 <    // ---------------------------------------------------------------------
3411 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3412 >        implements ConcurrentHashMapSpliterator<K> {
3413 >        long est;               // size estimate
3414 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3415 >                       long est) {
3416 >            super(tab, size, index, limit);
3417 >            this.est = est;
3418 >        }
3419 >
3420 >        public ConcurrentHashMapSpliterator<K> trySplit() {
3421 >            int i, f, h;
3422 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3423 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3424 >                                        f, est >>>= 1);
3425 >        }
3426  
3427 <    /**
3428 <     * Predefined tasks for performing bulk parallel operations on
3429 <     * ConcurrentHashMaps. These tasks follow the forms and rules used
3430 <     * in class {@link Parallel}. Each method has the same name, but
3431 <     * returns a task rather than invoking it. These methods may be
4159 <     * useful in custom applications such as submitting a task without
4160 <     * waiting for completion, or combining with other tasks.
4161 <     */
4162 <    public static class ForkJoinTasks {
4163 <        private ForkJoinTasks() {}
3427 >        public void forEachRemaining(Action<? super K> action) {
3428 >            if (action == null) throw new NullPointerException();
3429 >            for (Node<K,V> p; (p = advance()) != null;)
3430 >                action.apply(p.key);
3431 >        }
3432  
3433 <        /**
4166 <         * Returns a task that when invoked, performs the given
4167 <         * action for each (key, value)
4168 <         *
4169 <         * @param map the map
4170 <         * @param action the action
4171 <         * @return the task
4172 <         */
4173 <        public static <K,V> ForkJoinTask<Void> forEach
4174 <            (ConcurrentHashMapV8<K,V> map,
4175 <             BiAction<K,V> action) {
3433 >        public boolean tryAdvance(Action<? super K> action) {
3434              if (action == null) throw new NullPointerException();
3435 <            return new ForEachMappingTask<K,V>(map, action);
3435 >            Node<K,V> p;
3436 >            if ((p = advance()) == null)
3437 >                return false;
3438 >            action.apply(p.key);
3439 >            return true;
3440          }
3441  
3442 <        /**
3443 <         * Returns a task that when invoked, performs the given
3444 <         * action for each non-null transformation of each (key, value)
3445 <         *
3446 <         * @param map the map
3447 <         * @param transformer a function returning the transformation
3448 <         * for an element, or null of there is no transformation (in
3449 <         * which case the action is not applied).
3450 <         * @param action the action
3451 <         * @return the task
3452 <         */
4191 <        public static <K,V,U> ForkJoinTask<Void> forEach
4192 <            (ConcurrentHashMapV8<K,V> map,
4193 <             BiFun<? super K, ? super V, ? extends U> transformer,
4194 <             Action<U> action) {
4195 <            if (transformer == null || action == null)
4196 <                throw new NullPointerException();
4197 <            return new ForEachTransformedMappingTask<K,V,U>
4198 <                (map, transformer, action);
3442 >        public long estimateSize() { return est; }
3443 >
3444 >    }
3445 >
3446 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3447 >        implements ConcurrentHashMapSpliterator<V> {
3448 >        long est;               // size estimate
3449 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3450 >                         long est) {
3451 >            super(tab, size, index, limit);
3452 >            this.est = est;
3453          }
3454  
3455 <        /**
3456 <         * Returns a task that when invoked, returns a non-null result
3457 <         * from applying the given search function on each (key,
3458 <         * value), or null if none. Upon success, further element
3459 <         * processing is suppressed and the results of any other
4206 <         * parallel invocations of the search function are ignored.
4207 <         *
4208 <         * @param map the map
4209 <         * @param searchFunction a function returning a non-null
4210 <         * result on success, else null
4211 <         * @return the task
4212 <         */
4213 <        public static <K,V,U> ForkJoinTask<U> search
4214 <            (ConcurrentHashMapV8<K,V> map,
4215 <             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4216 <            if (searchFunction == null) throw new NullPointerException();
4217 <            return new SearchMappingsTask<K,V,U>
4218 <                (map, searchFunction,
4219 <                 new AtomicReference<U>());
3455 >        public ConcurrentHashMapSpliterator<V> trySplit() {
3456 >            int i, f, h;
3457 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3458 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3459 >                                          f, est >>>= 1);
3460          }
3461  
3462 <        /**
3463 <         * Returns a task that when invoked, returns the result of
3464 <         * accumulating the given transformation of all (key, value) pairs
3465 <         * using the given reducer to combine values, or null if none.
4226 <         *
4227 <         * @param map the map
4228 <         * @param transformer a function returning the transformation
4229 <         * for an element, or null of there is no transformation (in
4230 <         * which case it is not combined).
4231 <         * @param reducer a commutative associative combining function
4232 <         * @return the task
4233 <         */
4234 <        public static <K,V,U> ForkJoinTask<U> reduce
4235 <            (ConcurrentHashMapV8<K,V> map,
4236 <             BiFun<? super K, ? super V, ? extends U> transformer,
4237 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4238 <            if (transformer == null || reducer == null)
4239 <                throw new NullPointerException();
4240 <            return new MapReduceMappingsTask<K,V,U>
4241 <                (map, transformer, reducer);
3462 >        public void forEachRemaining(Action<? super V> action) {
3463 >            if (action == null) throw new NullPointerException();
3464 >            for (Node<K,V> p; (p = advance()) != null;)
3465 >                action.apply(p.val);
3466          }
3467  
3468 <        /**
3469 <         * Returns a task that when invoked, returns the result of
3470 <         * accumulating the given transformation of all (key, value) pairs
3471 <         * using the given reducer to combine values, and the given
3472 <         * basis as an identity value.
3473 <         *
3474 <         * @param map the map
4251 <         * @param transformer a function returning the transformation
4252 <         * for an element
4253 <         * @param basis the identity (initial default value) for the reduction
4254 <         * @param reducer a commutative associative combining function
4255 <         * @return the task
4256 <         */
4257 <        public static <K,V> ForkJoinTask<Double> reduceToDouble
4258 <            (ConcurrentHashMapV8<K,V> map,
4259 <             ObjectByObjectToDouble<? super K, ? super V> transformer,
4260 <             double basis,
4261 <             DoubleByDoubleToDouble reducer) {
4262 <            if (transformer == null || reducer == null)
4263 <                throw new NullPointerException();
4264 <            return new MapReduceMappingsToDoubleTask<K,V>
4265 <                (map, transformer, basis, reducer);
3468 >        public boolean tryAdvance(Action<? super V> action) {
3469 >            if (action == null) throw new NullPointerException();
3470 >            Node<K,V> p;
3471 >            if ((p = advance()) == null)
3472 >                return false;
3473 >            action.apply(p.val);
3474 >            return true;
3475          }
3476  
3477 <        /**
3478 <         * Returns a task that when invoked, returns the result of
3479 <         * accumulating the given transformation of all (key, value) pairs
3480 <         * using the given reducer to combine values, and the given
3481 <         * basis as an identity value.
3482 <         *
3483 <         * @param map the map
3484 <         * @param transformer a function returning the transformation
3485 <         * for an element
3486 <         * @param basis the identity (initial default value) for the reduction
3487 <         * @param reducer a commutative associative combining function
3488 <         * @return the task
3489 <         */
4281 <        public static <K,V> ForkJoinTask<Long> reduceToLong
4282 <            (ConcurrentHashMapV8<K,V> map,
4283 <             ObjectByObjectToLong<? super K, ? super V> transformer,
4284 <             long basis,
4285 <             LongByLongToLong reducer) {
4286 <            if (transformer == null || reducer == null)
4287 <                throw new NullPointerException();
4288 <            return new MapReduceMappingsToLongTask<K,V>
4289 <                (map, transformer, basis, reducer);
3477 >        public long estimateSize() { return est; }
3478 >
3479 >    }
3480 >
3481 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3482 >        implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3483 >        final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3484 >        long est;               // size estimate
3485 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3486 >                         long est, ConcurrentHashMapV8<K,V> map) {
3487 >            super(tab, size, index, limit);
3488 >            this.map = map;
3489 >            this.est = est;
3490          }
3491  
3492 <        /**
3493 <         * Returns a task that when invoked, returns the result of
3494 <         * accumulating the given transformation of all (key, value) pairs
3495 <         * using the given reducer to combine values, and the given
3496 <         * basis as an identity value.
4297 <         *
4298 <         * @param transformer a function returning the transformation
4299 <         * for an element
4300 <         * @param basis the identity (initial default value) for the reduction
4301 <         * @param reducer a commutative associative combining function
4302 <         * @return the task
4303 <         */
4304 <        public static <K,V> ForkJoinTask<Integer> reduceToInt
4305 <            (ConcurrentHashMapV8<K,V> map,
4306 <             ObjectByObjectToInt<? super K, ? super V> transformer,
4307 <             int basis,
4308 <             IntByIntToInt reducer) {
4309 <            if (transformer == null || reducer == null)
4310 <                throw new NullPointerException();
4311 <            return new MapReduceMappingsToIntTask<K,V>
4312 <                (map, transformer, basis, reducer);
3492 >        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3493 >            int i, f, h;
3494 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3495 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3496 >                                          f, est >>>= 1, map);
3497          }
3498  
3499 <        /**
4316 <         * Returns a task that when invoked, performs the given action
4317 <         * for each key.
4318 <         *
4319 <         * @param map the map
4320 <         * @param action the action
4321 <         * @return the task
4322 <         */
4323 <        public static <K,V> ForkJoinTask<Void> forEachKey
4324 <            (ConcurrentHashMapV8<K,V> map,
4325 <             Action<K> action) {
3499 >        public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3500              if (action == null) throw new NullPointerException();
3501 <            return new ForEachKeyTask<K,V>(map, action);
3501 >            for (Node<K,V> p; (p = advance()) != null; )
3502 >                action.apply(new MapEntry<K,V>(p.key, p.val, map));
3503          }
3504  
3505 <        /**
3506 <         * Returns a task that when invoked, performs the given action
3507 <         * for each non-null transformation of each key.
3508 <         *
3509 <         * @param map the map
3510 <         * @param transformer a function returning the transformation
3511 <         * for an element, or null of there is no transformation (in
4337 <         * which case the action is not applied).
4338 <         * @param action the action
4339 <         * @return the task
4340 <         */
4341 <        public static <K,V,U> ForkJoinTask<Void> forEachKey
4342 <            (ConcurrentHashMapV8<K,V> map,
4343 <             Fun<? super K, ? extends U> transformer,
4344 <             Action<U> action) {
4345 <            if (transformer == null || action == null)
4346 <                throw new NullPointerException();
4347 <            return new ForEachTransformedKeyTask<K,V,U>
4348 <                (map, transformer, action);
3505 >        public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3506 >            if (action == null) throw new NullPointerException();
3507 >            Node<K,V> p;
3508 >            if ((p = advance()) == null)
3509 >                return false;
3510 >            action.apply(new MapEntry<K,V>(p.key, p.val, map));
3511 >            return true;
3512          }
3513  
3514 +        public long estimateSize() { return est; }
3515 +
3516 +    }
3517 +
3518 +    // Parallel bulk operations
3519 +
3520 +    /**
3521 +     * Computes initial batch value for bulk tasks. The returned value
3522 +     * is approximately exp2 of the number of times (minus one) to
3523 +     * split task by two before executing leaf action. This value is
3524 +     * faster to compute and more convenient to use as a guide to
3525 +     * splitting than is the depth, since it is used while dividing by
3526 +     * two anyway.
3527 +     */
3528 +    final int batchFor(long b) {
3529 +        long n;
3530 +        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3531 +            return 0;
3532 +        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3533 +        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3534 +    }
3535 +
3536 +    /**
3537 +     * Performs the given action for each (key, value).
3538 +     *
3539 +     * @param parallelismThreshold the (estimated) number of elements
3540 +     * needed for this operation to be executed in parallel
3541 +     * @param action the action
3542 +     * @since 1.8
3543 +     */
3544 +    public void forEach(long parallelismThreshold,
3545 +                        BiAction<? super K,? super V> action) {
3546 +        if (action == null) throw new NullPointerException();
3547 +        new ForEachMappingTask<K,V>
3548 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3549 +             action).invoke();
3550 +    }
3551 +
3552 +    /**
3553 +     * Performs the given action for each non-null transformation
3554 +     * of each (key, value).
3555 +     *
3556 +     * @param parallelismThreshold the (estimated) number of elements
3557 +     * needed for this operation to be executed in parallel
3558 +     * @param transformer a function returning the transformation
3559 +     * for an element, or null if there is no transformation (in
3560 +     * which case the action is not applied)
3561 +     * @param action the action
3562 +     * @since 1.8
3563 +     */
3564 +    public <U> void forEach(long parallelismThreshold,
3565 +                            BiFun<? super K, ? super V, ? extends U> transformer,
3566 +                            Action<? super U> action) {
3567 +        if (transformer == null || action == null)
3568 +            throw new NullPointerException();
3569 +        new ForEachTransformedMappingTask<K,V,U>
3570 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3571 +             transformer, action).invoke();
3572 +    }
3573 +
3574 +    /**
3575 +     * Returns a non-null result from applying the given search
3576 +     * function on each (key, value), or null if none.  Upon
3577 +     * success, further element processing is suppressed and the
3578 +     * results of any other parallel invocations of the search
3579 +     * function are ignored.
3580 +     *
3581 +     * @param parallelismThreshold the (estimated) number of elements
3582 +     * needed for this operation to be executed in parallel
3583 +     * @param searchFunction a function returning a non-null
3584 +     * result on success, else null
3585 +     * @return a non-null result from applying the given search
3586 +     * function on each (key, value), or null if none
3587 +     * @since 1.8
3588 +     */
3589 +    public <U> U search(long parallelismThreshold,
3590 +                        BiFun<? super K, ? super V, ? extends U> searchFunction) {
3591 +        if (searchFunction == null) throw new NullPointerException();
3592 +        return new SearchMappingsTask<K,V,U>
3593 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3594 +             searchFunction, new AtomicReference<U>()).invoke();
3595 +    }
3596 +
3597 +    /**
3598 +     * Returns the result of accumulating the given transformation
3599 +     * of all (key, value) pairs using the given reducer to
3600 +     * combine values, or null if none.
3601 +     *
3602 +     * @param parallelismThreshold the (estimated) number of elements
3603 +     * needed for this operation to be executed in parallel
3604 +     * @param transformer a function returning the transformation
3605 +     * for an element, or null if there is no transformation (in
3606 +     * which case it is not combined)
3607 +     * @param reducer a commutative associative combining function
3608 +     * @return the result of accumulating the given transformation
3609 +     * of all (key, value) pairs
3610 +     * @since 1.8
3611 +     */
3612 +    public <U> U reduce(long parallelismThreshold,
3613 +                        BiFun<? super K, ? super V, ? extends U> transformer,
3614 +                        BiFun<? super U, ? super U, ? extends U> reducer) {
3615 +        if (transformer == null || reducer == null)
3616 +            throw new NullPointerException();
3617 +        return new MapReduceMappingsTask<K,V,U>
3618 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3619 +             null, transformer, reducer).invoke();
3620 +    }
3621 +
3622 +    /**
3623 +     * Returns the result of accumulating the given transformation
3624 +     * of all (key, value) pairs using the given reducer to
3625 +     * combine values, and the given basis as an identity value.
3626 +     *
3627 +     * @param parallelismThreshold the (estimated) number of elements
3628 +     * needed for this operation to be executed in parallel
3629 +     * @param transformer a function returning the transformation
3630 +     * for an element
3631 +     * @param basis the identity (initial default value) for the reduction
3632 +     * @param reducer a commutative associative combining function
3633 +     * @return the result of accumulating the given transformation
3634 +     * of all (key, value) pairs
3635 +     * @since 1.8
3636 +     */
3637 +    public double reduceToDouble(long parallelismThreshold,
3638 +                                 ObjectByObjectToDouble<? super K, ? super V> transformer,
3639 +                                 double basis,
3640 +                                 DoubleByDoubleToDouble reducer) {
3641 +        if (transformer == null || reducer == null)
3642 +            throw new NullPointerException();
3643 +        return new MapReduceMappingsToDoubleTask<K,V>
3644 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3645 +             null, transformer, basis, reducer).invoke();
3646 +    }
3647 +
3648 +    /**
3649 +     * Returns the result of accumulating the given transformation
3650 +     * of all (key, value) pairs using the given reducer to
3651 +     * combine values, and the given basis as an identity value.
3652 +     *
3653 +     * @param parallelismThreshold the (estimated) number of elements
3654 +     * needed for this operation to be executed in parallel
3655 +     * @param transformer a function returning the transformation
3656 +     * for an element
3657 +     * @param basis the identity (initial default value) for the reduction
3658 +     * @param reducer a commutative associative combining function
3659 +     * @return the result of accumulating the given transformation
3660 +     * of all (key, value) pairs
3661 +     * @since 1.8
3662 +     */
3663 +    public long reduceToLong(long parallelismThreshold,
3664 +                             ObjectByObjectToLong<? super K, ? super V> transformer,
3665 +                             long basis,
3666 +                             LongByLongToLong reducer) {
3667 +        if (transformer == null || reducer == null)
3668 +            throw new NullPointerException();
3669 +        return new MapReduceMappingsToLongTask<K,V>
3670 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3671 +             null, transformer, basis, reducer).invoke();
3672 +    }
3673 +
3674 +    /**
3675 +     * Returns the result of accumulating the given transformation
3676 +     * of all (key, value) pairs using the given reducer to
3677 +     * combine values, and the given basis as an identity value.
3678 +     *
3679 +     * @param parallelismThreshold the (estimated) number of elements
3680 +     * needed for this operation to be executed in parallel
3681 +     * @param transformer a function returning the transformation
3682 +     * for an element
3683 +     * @param basis the identity (initial default value) for the reduction
3684 +     * @param reducer a commutative associative combining function
3685 +     * @return the result of accumulating the given transformation
3686 +     * of all (key, value) pairs
3687 +     * @since 1.8
3688 +     */
3689 +    public int reduceToInt(long parallelismThreshold,
3690 +                           ObjectByObjectToInt<? super K, ? super V> transformer,
3691 +                           int basis,
3692 +                           IntByIntToInt reducer) {
3693 +        if (transformer == null || reducer == null)
3694 +            throw new NullPointerException();
3695 +        return new MapReduceMappingsToIntTask<K,V>
3696 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3697 +             null, transformer, basis, reducer).invoke();
3698 +    }
3699 +
3700 +    /**
3701 +     * Performs the given action for each key.
3702 +     *
3703 +     * @param parallelismThreshold the (estimated) number of elements
3704 +     * needed for this operation to be executed in parallel
3705 +     * @param action the action
3706 +     * @since 1.8
3707 +     */
3708 +    public void forEachKey(long parallelismThreshold,
3709 +                           Action<? super K> action) {
3710 +        if (action == null) throw new NullPointerException();
3711 +        new ForEachKeyTask<K,V>
3712 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3713 +             action).invoke();
3714 +    }
3715 +
3716 +    /**
3717 +     * Performs the given action for each non-null transformation
3718 +     * of each key.
3719 +     *
3720 +     * @param parallelismThreshold the (estimated) number of elements
3721 +     * needed for this operation to be executed in parallel
3722 +     * @param transformer a function returning the transformation
3723 +     * for an element, or null if there is no transformation (in
3724 +     * which case the action is not applied)
3725 +     * @param action the action
3726 +     * @since 1.8
3727 +     */
3728 +    public <U> void forEachKey(long parallelismThreshold,
3729 +                               Fun<? super K, ? extends U> transformer,
3730 +                               Action<? super U> action) {
3731 +        if (transformer == null || action == null)
3732 +            throw new NullPointerException();
3733 +        new ForEachTransformedKeyTask<K,V,U>
3734 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3735 +             transformer, action).invoke();
3736 +    }
3737 +
3738 +    /**
3739 +     * Returns a non-null result from applying the given search
3740 +     * function on each key, or null if none. Upon success,
3741 +     * further element processing is suppressed and the results of
3742 +     * any other parallel invocations of the search function are
3743 +     * ignored.
3744 +     *
3745 +     * @param parallelismThreshold the (estimated) number of elements
3746 +     * needed for this operation to be executed in parallel
3747 +     * @param searchFunction a function returning a non-null
3748 +     * result on success, else null
3749 +     * @return a non-null result from applying the given search
3750 +     * function on each key, or null if none
3751 +     * @since 1.8
3752 +     */
3753 +    public <U> U searchKeys(long parallelismThreshold,
3754 +                            Fun<? super K, ? extends U> searchFunction) {
3755 +        if (searchFunction == null) throw new NullPointerException();
3756 +        return new SearchKeysTask<K,V,U>
3757 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3758 +             searchFunction, new AtomicReference<U>()).invoke();
3759 +    }
3760 +
3761 +    /**
3762 +     * Returns the result of accumulating all keys using the given
3763 +     * reducer to combine values, or null if none.
3764 +     *
3765 +     * @param parallelismThreshold the (estimated) number of elements
3766 +     * needed for this operation to be executed in parallel
3767 +     * @param reducer a commutative associative combining function
3768 +     * @return the result of accumulating all keys using the given
3769 +     * reducer to combine values, or null if none
3770 +     * @since 1.8
3771 +     */
3772 +    public K reduceKeys(long parallelismThreshold,
3773 +                        BiFun<? super K, ? super K, ? extends K> reducer) {
3774 +        if (reducer == null) throw new NullPointerException();
3775 +        return new ReduceKeysTask<K,V>
3776 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3777 +             null, reducer).invoke();
3778 +    }
3779 +
3780 +    /**
3781 +     * Returns the result of accumulating the given transformation
3782 +     * of all keys using the given reducer to combine values, or
3783 +     * null if none.
3784 +     *
3785 +     * @param parallelismThreshold the (estimated) number of elements
3786 +     * needed for this operation to be executed in parallel
3787 +     * @param transformer a function returning the transformation
3788 +     * for an element, or null if there is no transformation (in
3789 +     * which case it is not combined)
3790 +     * @param reducer a commutative associative combining function
3791 +     * @return the result of accumulating the given transformation
3792 +     * of all keys
3793 +     * @since 1.8
3794 +     */
3795 +    public <U> U reduceKeys(long parallelismThreshold,
3796 +                            Fun<? super K, ? extends U> transformer,
3797 +         BiFun<? super U, ? super U, ? extends U> reducer) {
3798 +        if (transformer == null || reducer == null)
3799 +            throw new NullPointerException();
3800 +        return new MapReduceKeysTask<K,V,U>
3801 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3802 +             null, transformer, reducer).invoke();
3803 +    }
3804 +
3805 +    /**
3806 +     * Returns the result of accumulating the given transformation
3807 +     * of all keys using the given reducer to combine values, and
3808 +     * the given basis as an identity value.
3809 +     *
3810 +     * @param parallelismThreshold the (estimated) number of elements
3811 +     * needed for this operation to be executed in parallel
3812 +     * @param transformer a function returning the transformation
3813 +     * for an element
3814 +     * @param basis the identity (initial default value) for the reduction
3815 +     * @param reducer a commutative associative combining function
3816 +     * @return the result of accumulating the given transformation
3817 +     * of all keys
3818 +     * @since 1.8
3819 +     */
3820 +    public double reduceKeysToDouble(long parallelismThreshold,
3821 +                                     ObjectToDouble<? super K> transformer,
3822 +                                     double basis,
3823 +                                     DoubleByDoubleToDouble reducer) {
3824 +        if (transformer == null || reducer == null)
3825 +            throw new NullPointerException();
3826 +        return new MapReduceKeysToDoubleTask<K,V>
3827 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3828 +             null, transformer, basis, reducer).invoke();
3829 +    }
3830 +
3831 +    /**
3832 +     * Returns the result of accumulating the given transformation
3833 +     * of all keys using the given reducer to combine values, and
3834 +     * the given basis as an identity value.
3835 +     *
3836 +     * @param parallelismThreshold the (estimated) number of elements
3837 +     * needed for this operation to be executed in parallel
3838 +     * @param transformer a function returning the transformation
3839 +     * for an element
3840 +     * @param basis the identity (initial default value) for the reduction
3841 +     * @param reducer a commutative associative combining function
3842 +     * @return the result of accumulating the given transformation
3843 +     * of all keys
3844 +     * @since 1.8
3845 +     */
3846 +    public long reduceKeysToLong(long parallelismThreshold,
3847 +                                 ObjectToLong<? super K> transformer,
3848 +                                 long basis,
3849 +                                 LongByLongToLong reducer) {
3850 +        if (transformer == null || reducer == null)
3851 +            throw new NullPointerException();
3852 +        return new MapReduceKeysToLongTask<K,V>
3853 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3854 +             null, transformer, basis, reducer).invoke();
3855 +    }
3856 +
3857 +    /**
3858 +     * Returns the result of accumulating the given transformation
3859 +     * of all keys using the given reducer to combine values, and
3860 +     * the given basis as an identity value.
3861 +     *
3862 +     * @param parallelismThreshold the (estimated) number of elements
3863 +     * needed for this operation to be executed in parallel
3864 +     * @param transformer a function returning the transformation
3865 +     * for an element
3866 +     * @param basis the identity (initial default value) for the reduction
3867 +     * @param reducer a commutative associative combining function
3868 +     * @return the result of accumulating the given transformation
3869 +     * of all keys
3870 +     * @since 1.8
3871 +     */
3872 +    public int reduceKeysToInt(long parallelismThreshold,
3873 +                               ObjectToInt<? super K> transformer,
3874 +                               int basis,
3875 +                               IntByIntToInt reducer) {
3876 +        if (transformer == null || reducer == null)
3877 +            throw new NullPointerException();
3878 +        return new MapReduceKeysToIntTask<K,V>
3879 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3880 +             null, transformer, basis, reducer).invoke();
3881 +    }
3882 +
3883 +    /**
3884 +     * Performs the given action for each value.
3885 +     *
3886 +     * @param parallelismThreshold the (estimated) number of elements
3887 +     * needed for this operation to be executed in parallel
3888 +     * @param action the action
3889 +     * @since 1.8
3890 +     */
3891 +    public void forEachValue(long parallelismThreshold,
3892 +                             Action<? super V> action) {
3893 +        if (action == null)
3894 +            throw new NullPointerException();
3895 +        new ForEachValueTask<K,V>
3896 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3897 +             action).invoke();
3898 +    }
3899 +
3900 +    /**
3901 +     * Performs the given action for each non-null transformation
3902 +     * of each value.
3903 +     *
3904 +     * @param parallelismThreshold the (estimated) number of elements
3905 +     * needed for this operation to be executed in parallel
3906 +     * @param transformer a function returning the transformation
3907 +     * for an element, or null if there is no transformation (in
3908 +     * which case the action is not applied)
3909 +     * @param action the action
3910 +     * @since 1.8
3911 +     */
3912 +    public <U> void forEachValue(long parallelismThreshold,
3913 +                                 Fun<? super V, ? extends U> transformer,
3914 +                                 Action<? super U> action) {
3915 +        if (transformer == null || action == null)
3916 +            throw new NullPointerException();
3917 +        new ForEachTransformedValueTask<K,V,U>
3918 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3919 +             transformer, action).invoke();
3920 +    }
3921 +
3922 +    /**
3923 +     * Returns a non-null result from applying the given search
3924 +     * function on each value, or null if none.  Upon success,
3925 +     * further element processing is suppressed and the results of
3926 +     * any other parallel invocations of the search function are
3927 +     * ignored.
3928 +     *
3929 +     * @param parallelismThreshold the (estimated) number of elements
3930 +     * needed for this operation to be executed in parallel
3931 +     * @param searchFunction a function returning a non-null
3932 +     * result on success, else null
3933 +     * @return a non-null result from applying the given search
3934 +     * function on each value, or null if none
3935 +     * @since 1.8
3936 +     */
3937 +    public <U> U searchValues(long parallelismThreshold,
3938 +                              Fun<? super V, ? extends U> searchFunction) {
3939 +        if (searchFunction == null) throw new NullPointerException();
3940 +        return new SearchValuesTask<K,V,U>
3941 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3942 +             searchFunction, new AtomicReference<U>()).invoke();
3943 +    }
3944 +
3945 +    /**
3946 +     * Returns the result of accumulating all values using the
3947 +     * given reducer to combine values, or null if none.
3948 +     *
3949 +     * @param parallelismThreshold the (estimated) number of elements
3950 +     * needed for this operation to be executed in parallel
3951 +     * @param reducer a commutative associative combining function
3952 +     * @return the result of accumulating all values
3953 +     * @since 1.8
3954 +     */
3955 +    public V reduceValues(long parallelismThreshold,
3956 +                          BiFun<? super V, ? super V, ? extends V> reducer) {
3957 +        if (reducer == null) throw new NullPointerException();
3958 +        return new ReduceValuesTask<K,V>
3959 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3960 +             null, reducer).invoke();
3961 +    }
3962 +
3963 +    /**
3964 +     * Returns the result of accumulating the given transformation
3965 +     * of all values using the given reducer to combine values, or
3966 +     * null if none.
3967 +     *
3968 +     * @param parallelismThreshold the (estimated) number of elements
3969 +     * needed for this operation to be executed in parallel
3970 +     * @param transformer a function returning the transformation
3971 +     * for an element, or null if there is no transformation (in
3972 +     * which case it is not combined)
3973 +     * @param reducer a commutative associative combining function
3974 +     * @return the result of accumulating the given transformation
3975 +     * of all values
3976 +     * @since 1.8
3977 +     */
3978 +    public <U> U reduceValues(long parallelismThreshold,
3979 +                              Fun<? super V, ? extends U> transformer,
3980 +                              BiFun<? super U, ? super U, ? extends U> reducer) {
3981 +        if (transformer == null || reducer == null)
3982 +            throw new NullPointerException();
3983 +        return new MapReduceValuesTask<K,V,U>
3984 +            (null, batchFor(parallelismThreshold), 0, 0, table,
3985 +             null, transformer, reducer).invoke();
3986 +    }
3987 +
3988 +    /**
3989 +     * Returns the result of accumulating the given transformation
3990 +     * of all values using the given reducer to combine values,
3991 +     * and the given basis as an identity value.
3992 +     *
3993 +     * @param parallelismThreshold the (estimated) number of elements
3994 +     * needed for this operation to be executed in parallel
3995 +     * @param transformer a function returning the transformation
3996 +     * for an element
3997 +     * @param basis the identity (initial default value) for the reduction
3998 +     * @param reducer a commutative associative combining function
3999 +     * @return the result of accumulating the given transformation
4000 +     * of all values
4001 +     * @since 1.8
4002 +     */
4003 +    public double reduceValuesToDouble(long parallelismThreshold,
4004 +                                       ObjectToDouble<? super V> transformer,
4005 +                                       double basis,
4006 +                                       DoubleByDoubleToDouble reducer) {
4007 +        if (transformer == null || reducer == null)
4008 +            throw new NullPointerException();
4009 +        return new MapReduceValuesToDoubleTask<K,V>
4010 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4011 +             null, transformer, basis, reducer).invoke();
4012 +    }
4013 +
4014 +    /**
4015 +     * Returns the result of accumulating the given transformation
4016 +     * of all values using the given reducer to combine values,
4017 +     * and the given basis as an identity value.
4018 +     *
4019 +     * @param parallelismThreshold the (estimated) number of elements
4020 +     * needed for this operation to be executed in parallel
4021 +     * @param transformer a function returning the transformation
4022 +     * for an element
4023 +     * @param basis the identity (initial default value) for the reduction
4024 +     * @param reducer a commutative associative combining function
4025 +     * @return the result of accumulating the given transformation
4026 +     * of all values
4027 +     * @since 1.8
4028 +     */
4029 +    public long reduceValuesToLong(long parallelismThreshold,
4030 +                                   ObjectToLong<? super V> transformer,
4031 +                                   long basis,
4032 +                                   LongByLongToLong reducer) {
4033 +        if (transformer == null || reducer == null)
4034 +            throw new NullPointerException();
4035 +        return new MapReduceValuesToLongTask<K,V>
4036 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4037 +             null, transformer, basis, reducer).invoke();
4038 +    }
4039 +
4040 +    /**
4041 +     * Returns the result of accumulating the given transformation
4042 +     * of all values using the given reducer to combine values,
4043 +     * and the given basis as an identity value.
4044 +     *
4045 +     * @param parallelismThreshold the (estimated) number of elements
4046 +     * needed for this operation to be executed in parallel
4047 +     * @param transformer a function returning the transformation
4048 +     * for an element
4049 +     * @param basis the identity (initial default value) for the reduction
4050 +     * @param reducer a commutative associative combining function
4051 +     * @return the result of accumulating the given transformation
4052 +     * of all values
4053 +     * @since 1.8
4054 +     */
4055 +    public int reduceValuesToInt(long parallelismThreshold,
4056 +                                 ObjectToInt<? super V> transformer,
4057 +                                 int basis,
4058 +                                 IntByIntToInt reducer) {
4059 +        if (transformer == null || reducer == null)
4060 +            throw new NullPointerException();
4061 +        return new MapReduceValuesToIntTask<K,V>
4062 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4063 +             null, transformer, basis, reducer).invoke();
4064 +    }
4065 +
4066 +    /**
4067 +     * Performs the given action for each entry.
4068 +     *
4069 +     * @param parallelismThreshold the (estimated) number of elements
4070 +     * needed for this operation to be executed in parallel
4071 +     * @param action the action
4072 +     * @since 1.8
4073 +     */
4074 +    public void forEachEntry(long parallelismThreshold,
4075 +                             Action<? super Map.Entry<K,V>> action) {
4076 +        if (action == null) throw new NullPointerException();
4077 +        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4078 +                                  action).invoke();
4079 +    }
4080 +
4081 +    /**
4082 +     * Performs the given action for each non-null transformation
4083 +     * of each entry.
4084 +     *
4085 +     * @param parallelismThreshold the (estimated) number of elements
4086 +     * needed for this operation to be executed in parallel
4087 +     * @param transformer a function returning the transformation
4088 +     * for an element, or null if there is no transformation (in
4089 +     * which case the action is not applied)
4090 +     * @param action the action
4091 +     * @since 1.8
4092 +     */
4093 +    public <U> void forEachEntry(long parallelismThreshold,
4094 +                                 Fun<Map.Entry<K,V>, ? extends U> transformer,
4095 +                                 Action<? super U> action) {
4096 +        if (transformer == null || action == null)
4097 +            throw new NullPointerException();
4098 +        new ForEachTransformedEntryTask<K,V,U>
4099 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4100 +             transformer, action).invoke();
4101 +    }
4102 +
4103 +    /**
4104 +     * Returns a non-null result from applying the given search
4105 +     * function on each entry, or null if none.  Upon success,
4106 +     * further element processing is suppressed and the results of
4107 +     * any other parallel invocations of the search function are
4108 +     * ignored.
4109 +     *
4110 +     * @param parallelismThreshold the (estimated) number of elements
4111 +     * needed for this operation to be executed in parallel
4112 +     * @param searchFunction a function returning a non-null
4113 +     * result on success, else null
4114 +     * @return a non-null result from applying the given search
4115 +     * function on each entry, or null if none
4116 +     * @since 1.8
4117 +     */
4118 +    public <U> U searchEntries(long parallelismThreshold,
4119 +                               Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4120 +        if (searchFunction == null) throw new NullPointerException();
4121 +        return new SearchEntriesTask<K,V,U>
4122 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4123 +             searchFunction, new AtomicReference<U>()).invoke();
4124 +    }
4125 +
4126 +    /**
4127 +     * Returns the result of accumulating all entries using the
4128 +     * given reducer to combine values, or null if none.
4129 +     *
4130 +     * @param parallelismThreshold the (estimated) number of elements
4131 +     * needed for this operation to be executed in parallel
4132 +     * @param reducer a commutative associative combining function
4133 +     * @return the result of accumulating all entries
4134 +     * @since 1.8
4135 +     */
4136 +    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4137 +                                        BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4138 +        if (reducer == null) throw new NullPointerException();
4139 +        return new ReduceEntriesTask<K,V>
4140 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4141 +             null, reducer).invoke();
4142 +    }
4143 +
4144 +    /**
4145 +     * Returns the result of accumulating the given transformation
4146 +     * of all entries using the given reducer to combine values,
4147 +     * or null if none.
4148 +     *
4149 +     * @param parallelismThreshold the (estimated) number of elements
4150 +     * needed for this operation to be executed in parallel
4151 +     * @param transformer a function returning the transformation
4152 +     * for an element, or null if there is no transformation (in
4153 +     * which case it is not combined)
4154 +     * @param reducer a commutative associative combining function
4155 +     * @return the result of accumulating the given transformation
4156 +     * of all entries
4157 +     * @since 1.8
4158 +     */
4159 +    public <U> U reduceEntries(long parallelismThreshold,
4160 +                               Fun<Map.Entry<K,V>, ? extends U> transformer,
4161 +                               BiFun<? super U, ? super U, ? extends U> reducer) {
4162 +        if (transformer == null || reducer == null)
4163 +            throw new NullPointerException();
4164 +        return new MapReduceEntriesTask<K,V,U>
4165 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4166 +             null, transformer, reducer).invoke();
4167 +    }
4168 +
4169 +    /**
4170 +     * Returns the result of accumulating the given transformation
4171 +     * of all entries using the given reducer to combine values,
4172 +     * and the given basis as an identity value.
4173 +     *
4174 +     * @param parallelismThreshold the (estimated) number of elements
4175 +     * needed for this operation to be executed in parallel
4176 +     * @param transformer a function returning the transformation
4177 +     * for an element
4178 +     * @param basis the identity (initial default value) for the reduction
4179 +     * @param reducer a commutative associative combining function
4180 +     * @return the result of accumulating the given transformation
4181 +     * of all entries
4182 +     * @since 1.8
4183 +     */
4184 +    public double reduceEntriesToDouble(long parallelismThreshold,
4185 +                                        ObjectToDouble<Map.Entry<K,V>> transformer,
4186 +                                        double basis,
4187 +                                        DoubleByDoubleToDouble reducer) {
4188 +        if (transformer == null || reducer == null)
4189 +            throw new NullPointerException();
4190 +        return new MapReduceEntriesToDoubleTask<K,V>
4191 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4192 +             null, transformer, basis, reducer).invoke();
4193 +    }
4194 +
4195 +    /**
4196 +     * Returns the result of accumulating the given transformation
4197 +     * of all entries using the given reducer to combine values,
4198 +     * and the given basis as an identity value.
4199 +     *
4200 +     * @param parallelismThreshold the (estimated) number of elements
4201 +     * needed for this operation to be executed in parallel
4202 +     * @param transformer a function returning the transformation
4203 +     * for an element
4204 +     * @param basis the identity (initial default value) for the reduction
4205 +     * @param reducer a commutative associative combining function
4206 +     * @return the result of accumulating the given transformation
4207 +     * of all entries
4208 +     * @since 1.8
4209 +     */
4210 +    public long reduceEntriesToLong(long parallelismThreshold,
4211 +                                    ObjectToLong<Map.Entry<K,V>> transformer,
4212 +                                    long basis,
4213 +                                    LongByLongToLong reducer) {
4214 +        if (transformer == null || reducer == null)
4215 +            throw new NullPointerException();
4216 +        return new MapReduceEntriesToLongTask<K,V>
4217 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4218 +             null, transformer, basis, reducer).invoke();
4219 +    }
4220 +
4221 +    /**
4222 +     * Returns the result of accumulating the given transformation
4223 +     * of all entries using the given reducer to combine values,
4224 +     * and the given basis as an identity value.
4225 +     *
4226 +     * @param parallelismThreshold the (estimated) number of elements
4227 +     * needed for this operation to be executed in parallel
4228 +     * @param transformer a function returning the transformation
4229 +     * for an element
4230 +     * @param basis the identity (initial default value) for the reduction
4231 +     * @param reducer a commutative associative combining function
4232 +     * @return the result of accumulating the given transformation
4233 +     * of all entries
4234 +     * @since 1.8
4235 +     */
4236 +    public int reduceEntriesToInt(long parallelismThreshold,
4237 +                                  ObjectToInt<Map.Entry<K,V>> transformer,
4238 +                                  int basis,
4239 +                                  IntByIntToInt reducer) {
4240 +        if (transformer == null || reducer == null)
4241 +            throw new NullPointerException();
4242 +        return new MapReduceEntriesToIntTask<K,V>
4243 +            (null, batchFor(parallelismThreshold), 0, 0, table,
4244 +             null, transformer, basis, reducer).invoke();
4245 +    }
4246 +
4247 +
4248 +    /* ----------------Views -------------- */
4249 +
4250 +    /**
4251 +     * Base class for views.
4252 +     */
4253 +    abstract static class CollectionView<K,V,E>
4254 +        implements Collection<E>, java.io.Serializable {
4255 +        private static final long serialVersionUID = 7249069246763182397L;
4256 +        final ConcurrentHashMapV8<K,V> map;
4257 +        CollectionView(ConcurrentHashMapV8<K,V> map)  { this.map = map; }
4258 +
4259          /**
4260 <         * Returns a task that when invoked, returns a non-null result
4353 <         * from applying the given search function on each key, or
4354 <         * null if none.  Upon success, further element processing is
4355 <         * suppressed and the results of any other parallel
4356 <         * invocations of the search function are ignored.
4260 >         * Returns the map backing this view.
4261           *
4262 <         * @param map the map
4359 <         * @param searchFunction a function returning a non-null
4360 <         * result on success, else null
4361 <         * @return the task
4262 >         * @return the map backing this view
4263           */
4264 <        public static <K,V,U> ForkJoinTask<U> searchKeys
4364 <            (ConcurrentHashMapV8<K,V> map,
4365 <             Fun<? super K, ? extends U> searchFunction) {
4366 <            if (searchFunction == null) throw new NullPointerException();
4367 <            return new SearchKeysTask<K,V,U>
4368 <                (map, searchFunction,
4369 <                 new AtomicReference<U>());
4370 <        }
4264 >        public ConcurrentHashMapV8<K,V> getMap() { return map; }
4265  
4266          /**
4267 <         * Returns a task that when invoked, returns the result of
4268 <         * accumulating all keys using the given reducer to combine
4375 <         * values, or null if none.
4376 <         *
4377 <         * @param map the map
4378 <         * @param reducer a commutative associative combining function
4379 <         * @return the task
4267 >         * Removes all of the elements from this view, by removing all
4268 >         * the mappings from the map backing this view.
4269           */
4270 <        public static <K,V> ForkJoinTask<K> reduceKeys
4271 <            (ConcurrentHashMapV8<K,V> map,
4272 <             BiFun<? super K, ? super K, ? extends K> reducer) {
4384 <            if (reducer == null) throw new NullPointerException();
4385 <            return new ReduceKeysTask<K,V>
4386 <                (map, reducer);
4387 <        }
4270 >        public final void clear()      { map.clear(); }
4271 >        public final int size()        { return map.size(); }
4272 >        public final boolean isEmpty() { return map.isEmpty(); }
4273  
4274 +        // implementations below rely on concrete classes supplying these
4275 +        // abstract methods
4276          /**
4277 <         * Returns a task that when invoked, returns the result of
4278 <         * accumulating the given transformation of all keys using the given
4279 <         * reducer to combine values, or null if none.
4280 <         *
4281 <         * @param map the map
4282 <         * @param transformer a function returning the transformation
4283 <         * for an element, or null of there is no transformation (in
4284 <         * which case it is not combined).
4285 <         * @param reducer a commutative associative combining function
4286 <         * @return the task
4287 <         */
4288 <        public static <K,V,U> ForkJoinTask<U> reduceKeys
4289 <            (ConcurrentHashMapV8<K,V> map,
4290 <             Fun<? super K, ? extends U> transformer,
4291 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4292 <            if (transformer == null || reducer == null)
4293 <                throw new NullPointerException();
4294 <            return new MapReduceKeysTask<K,V,U>
4295 <                (map, transformer, reducer);
4277 >         * Returns a "weakly consistent" iterator that will never
4278 >         * throw {@link ConcurrentModificationException}, and
4279 >         * guarantees to traverse elements as they existed upon
4280 >         * construction of the iterator, and may (but is not
4281 >         * guaranteed to) reflect any modifications subsequent to
4282 >         * construction.
4283 >         */
4284 >        public abstract Iterator<E> iterator();
4285 >        public abstract boolean contains(Object o);
4286 >        public abstract boolean remove(Object o);
4287 >
4288 >        private static final String oomeMsg = "Required array size too large";
4289 >
4290 >        public final Object[] toArray() {
4291 >            long sz = map.mappingCount();
4292 >            if (sz > MAX_ARRAY_SIZE)
4293 >                throw new OutOfMemoryError(oomeMsg);
4294 >            int n = (int)sz;
4295 >            Object[] r = new Object[n];
4296 >            int i = 0;
4297 >            for (E e : this) {
4298 >                if (i == n) {
4299 >                    if (n >= MAX_ARRAY_SIZE)
4300 >                        throw new OutOfMemoryError(oomeMsg);
4301 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4302 >                        n = MAX_ARRAY_SIZE;
4303 >                    else
4304 >                        n += (n >>> 1) + 1;
4305 >                    r = Arrays.copyOf(r, n);
4306 >                }
4307 >                r[i++] = e;
4308 >            }
4309 >            return (i == n) ? r : Arrays.copyOf(r, i);
4310          }
4311  
4312 <        /**
4313 <         * Returns a task that when invoked, returns the result of
4314 <         * accumulating the given transformation of all keys using the given
4315 <         * reducer to combine values, and the given basis as an
4316 <         * identity value.
4317 <         *
4318 <         * @param map the map
4319 <         * @param transformer a function returning the transformation
4320 <         * for an element
4321 <         * @param basis the identity (initial default value) for the reduction
4322 <         * @param reducer a commutative associative combining function
4323 <         * @return the task
4324 <         */
4325 <        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4326 <            (ConcurrentHashMapV8<K,V> map,
4327 <             ObjectToDouble<? super K> transformer,
4328 <             double basis,
4329 <             DoubleByDoubleToDouble reducer) {
4330 <            if (transformer == null || reducer == null)
4331 <                throw new NullPointerException();
4332 <            return new MapReduceKeysToDoubleTask<K,V>
4333 <                (map, transformer, basis, reducer);
4312 >        @SuppressWarnings("unchecked")
4313 >        public final <T> T[] toArray(T[] a) {
4314 >            long sz = map.mappingCount();
4315 >            if (sz > MAX_ARRAY_SIZE)
4316 >                throw new OutOfMemoryError(oomeMsg);
4317 >            int m = (int)sz;
4318 >            T[] r = (a.length >= m) ? a :
4319 >                (T[])java.lang.reflect.Array
4320 >                .newInstance(a.getClass().getComponentType(), m);
4321 >            int n = r.length;
4322 >            int i = 0;
4323 >            for (E e : this) {
4324 >                if (i == n) {
4325 >                    if (n >= MAX_ARRAY_SIZE)
4326 >                        throw new OutOfMemoryError(oomeMsg);
4327 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4328 >                        n = MAX_ARRAY_SIZE;
4329 >                    else
4330 >                        n += (n >>> 1) + 1;
4331 >                    r = Arrays.copyOf(r, n);
4332 >                }
4333 >                r[i++] = (T)e;
4334 >            }
4335 >            if (a == r && i < n) {
4336 >                r[i] = null; // null-terminate
4337 >                return r;
4338 >            }
4339 >            return (i == n) ? r : Arrays.copyOf(r, i);
4340          }
4341  
4342          /**
4343 <         * Returns a task that when invoked, returns the result of
4344 <         * accumulating the given transformation of all keys using the given
4345 <         * reducer to combine values, and the given basis as an
4346 <         * identity value.
4343 >         * Returns a string representation of this collection.
4344 >         * The string representation consists of the string representations
4345 >         * of the collection's elements in the order they are returned by
4346 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4347 >         * Adjacent elements are separated by the characters {@code ", "}
4348 >         * (comma and space).  Elements are converted to strings as by
4349 >         * {@link String#valueOf(Object)}.
4350           *
4351 <         * @param map the map
4442 <         * @param transformer a function returning the transformation
4443 <         * for an element
4444 <         * @param basis the identity (initial default value) for the reduction
4445 <         * @param reducer a commutative associative combining function
4446 <         * @return the task
4351 >         * @return a string representation of this collection
4352           */
4353 <        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4354 <            (ConcurrentHashMapV8<K,V> map,
4355 <             ObjectToLong<? super K> transformer,
4356 <             long basis,
4357 <             LongByLongToLong reducer) {
4358 <            if (transformer == null || reducer == null)
4359 <                throw new NullPointerException();
4360 <            return new MapReduceKeysToLongTask<K,V>
4361 <                (map, transformer, basis, reducer);
4353 >        public final String toString() {
4354 >            StringBuilder sb = new StringBuilder();
4355 >            sb.append('[');
4356 >            Iterator<E> it = iterator();
4357 >            if (it.hasNext()) {
4358 >                for (;;) {
4359 >                    Object e = it.next();
4360 >                    sb.append(e == this ? "(this Collection)" : e);
4361 >                    if (!it.hasNext())
4362 >                        break;
4363 >                    sb.append(',').append(' ');
4364 >                }
4365 >            }
4366 >            return sb.append(']').toString();
4367          }
4368  
4369 <        /**
4370 <         * Returns a task that when invoked, returns the result of
4371 <         * accumulating the given transformation of all keys using the given
4372 <         * reducer to combine values, and the given basis as an
4373 <         * identity value.
4374 <         *
4375 <         * @param map the map
4376 <         * @param transformer a function returning the transformation
4467 <         * for an element
4468 <         * @param basis the identity (initial default value) for the reduction
4469 <         * @param reducer a commutative associative combining function
4470 <         * @return the task
4471 <         */
4472 <        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4473 <            (ConcurrentHashMapV8<K,V> map,
4474 <             ObjectToInt<? super K> transformer,
4475 <             int basis,
4476 <             IntByIntToInt reducer) {
4477 <            if (transformer == null || reducer == null)
4478 <                throw new NullPointerException();
4479 <            return new MapReduceKeysToIntTask<K,V>
4480 <                (map, transformer, basis, reducer);
4369 >        public final boolean containsAll(Collection<?> c) {
4370 >            if (c != this) {
4371 >                for (Object e : c) {
4372 >                    if (e == null || !contains(e))
4373 >                        return false;
4374 >                }
4375 >            }
4376 >            return true;
4377          }
4378  
4379 <        /**
4380 <         * Returns a task that when invoked, performs the given action
4381 <         * for each value.
4382 <         *
4383 <         * @param map the map
4384 <         * @param action the action
4385 <         */
4386 <        public static <K,V> ForkJoinTask<Void> forEachValue
4387 <            (ConcurrentHashMapV8<K,V> map,
4492 <             Action<V> action) {
4493 <            if (action == null) throw new NullPointerException();
4494 <            return new ForEachValueTask<K,V>(map, action);
4379 >        public final boolean removeAll(Collection<?> c) {
4380 >            boolean modified = false;
4381 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4382 >                if (c.contains(it.next())) {
4383 >                    it.remove();
4384 >                    modified = true;
4385 >                }
4386 >            }
4387 >            return modified;
4388          }
4389  
4390 <        /**
4391 <         * Returns a task that when invoked, performs the given action
4392 <         * for each non-null transformation of each value.
4393 <         *
4394 <         * @param map the map
4395 <         * @param transformer a function returning the transformation
4396 <         * for an element, or null of there is no transformation (in
4397 <         * which case the action is not applied).
4398 <         * @param action the action
4506 <         */
4507 <        public static <K,V,U> ForkJoinTask<Void> forEachValue
4508 <            (ConcurrentHashMapV8<K,V> map,
4509 <             Fun<? super V, ? extends U> transformer,
4510 <             Action<U> action) {
4511 <            if (transformer == null || action == null)
4512 <                throw new NullPointerException();
4513 <            return new ForEachTransformedValueTask<K,V,U>
4514 <                (map, transformer, action);
4390 >        public final boolean retainAll(Collection<?> c) {
4391 >            boolean modified = false;
4392 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4393 >                if (!c.contains(it.next())) {
4394 >                    it.remove();
4395 >                    modified = true;
4396 >                }
4397 >            }
4398 >            return modified;
4399          }
4400  
4401 <        /**
4402 <         * Returns a task that when invoked, returns a non-null result
4403 <         * from applying the given search function on each value, or
4404 <         * null if none.  Upon success, further element processing is
4405 <         * suppressed and the results of any other parallel
4406 <         * invocations of the search function are ignored.
4407 <         *
4408 <         * @param map the map
4409 <         * @param searchFunction a function returning a non-null
4410 <         * result on success, else null
4411 <         * @return the task
4412 <         *
4413 <         */
4414 <        public static <K,V,U> ForkJoinTask<U> searchValues
4415 <            (ConcurrentHashMapV8<K,V> map,
4416 <             Fun<? super V, ? extends U> searchFunction) {
4417 <            if (searchFunction == null) throw new NullPointerException();
4418 <            return new SearchValuesTask<K,V,U>
4419 <                (map, searchFunction,
4420 <                 new AtomicReference<U>());
4401 >    }
4402 >
4403 >    /**
4404 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4405 >     * which additions may optionally be enabled by mapping to a
4406 >     * common value.  This class cannot be directly instantiated.
4407 >     * See {@link #keySet() keySet()},
4408 >     * {@link #keySet(Object) keySet(V)},
4409 >     * {@link #newKeySet() newKeySet()},
4410 >     * {@link #newKeySet(int) newKeySet(int)}.
4411 >     *
4412 >     * @since 1.8
4413 >     */
4414 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4415 >        implements Set<K>, java.io.Serializable {
4416 >        private static final long serialVersionUID = 7249069246763182397L;
4417 >        private final V value;
4418 >        KeySetView(ConcurrentHashMapV8<K,V> map, V value) {  // non-public
4419 >            super(map);
4420 >            this.value = value;
4421          }
4422  
4423          /**
4424 <         * Returns a task that when invoked, returns the result of
4425 <         * accumulating all values using the given reducer to combine
4542 <         * values, or null if none.
4424 >         * Returns the default mapped value for additions,
4425 >         * or {@code null} if additions are not supported.
4426           *
4427 <         * @param map the map
4428 <         * @param reducer a commutative associative combining function
4546 <         * @return the task
4427 >         * @return the default mapped value for additions, or {@code null}
4428 >         * if not supported
4429           */
4430 <        public static <K,V> ForkJoinTask<V> reduceValues
4549 <            (ConcurrentHashMapV8<K,V> map,
4550 <             BiFun<? super V, ? super V, ? extends V> reducer) {
4551 <            if (reducer == null) throw new NullPointerException();
4552 <            return new ReduceValuesTask<K,V>
4553 <                (map, reducer);
4554 <        }
4430 >        public V getMappedValue() { return value; }
4431  
4432          /**
4433 <         * Returns a task that when invoked, returns the result of
4434 <         * accumulating the given transformation of all values using the
4559 <         * given reducer to combine values, or null if none.
4560 <         *
4561 <         * @param map the map
4562 <         * @param transformer a function returning the transformation
4563 <         * for an element, or null of there is no transformation (in
4564 <         * which case it is not combined).
4565 <         * @param reducer a commutative associative combining function
4566 <         * @return the task
4433 >         * {@inheritDoc}
4434 >         * @throws NullPointerException if the specified key is null
4435           */
4436 <        public static <K,V,U> ForkJoinTask<U> reduceValues
4569 <            (ConcurrentHashMapV8<K,V> map,
4570 <             Fun<? super V, ? extends U> transformer,
4571 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4572 <            if (transformer == null || reducer == null)
4573 <                throw new NullPointerException();
4574 <            return new MapReduceValuesTask<K,V,U>
4575 <                (map, transformer, reducer);
4576 <        }
4436 >        public boolean contains(Object o) { return map.containsKey(o); }
4437  
4438          /**
4439 <         * Returns a task that when invoked, returns the result of
4440 <         * accumulating the given transformation of all values using the
4441 <         * given reducer to combine values, and the given basis as an
4582 <         * identity value.
4439 >         * Removes the key from this map view, by removing the key (and its
4440 >         * corresponding value) from the backing map.  This method does
4441 >         * nothing if the key is not in the map.
4442           *
4443 <         * @param map the map
4444 <         * @param transformer a function returning the transformation
4445 <         * for an element
4587 <         * @param basis the identity (initial default value) for the reduction
4588 <         * @param reducer a commutative associative combining function
4589 <         * @return the task
4443 >         * @param  o the key to be removed from the backing map
4444 >         * @return {@code true} if the backing map contained the specified key
4445 >         * @throws NullPointerException if the specified key is null
4446           */
4447 <        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4592 <            (ConcurrentHashMapV8<K,V> map,
4593 <             ObjectToDouble<? super V> transformer,
4594 <             double basis,
4595 <             DoubleByDoubleToDouble reducer) {
4596 <            if (transformer == null || reducer == null)
4597 <                throw new NullPointerException();
4598 <            return new MapReduceValuesToDoubleTask<K,V>
4599 <                (map, transformer, basis, reducer);
4600 <        }
4447 >        public boolean remove(Object o) { return map.remove(o) != null; }
4448  
4449          /**
4450 <         * Returns a task that when invoked, returns the result of
4604 <         * accumulating the given transformation of all values using the
4605 <         * given reducer to combine values, and the given basis as an
4606 <         * identity value.
4607 <         *
4608 <         * @param map the map
4609 <         * @param transformer a function returning the transformation
4610 <         * for an element
4611 <         * @param basis the identity (initial default value) for the reduction
4612 <         * @param reducer a commutative associative combining function
4613 <         * @return the task
4450 >         * @return an iterator over the keys of the backing map
4451           */
4452 <        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
4453 <            (ConcurrentHashMapV8<K,V> map,
4454 <             ObjectToLong<? super V> transformer,
4455 <             long basis,
4456 <             LongByLongToLong reducer) {
4620 <            if (transformer == null || reducer == null)
4621 <                throw new NullPointerException();
4622 <            return new MapReduceValuesToLongTask<K,V>
4623 <                (map, transformer, basis, reducer);
4452 >        public Iterator<K> iterator() {
4453 >            Node<K,V>[] t;
4454 >            ConcurrentHashMapV8<K,V> m = map;
4455 >            int f = (t = m.table) == null ? 0 : t.length;
4456 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4457          }
4458  
4459          /**
4460 <         * Returns a task that when invoked, returns the result of
4461 <         * accumulating the given transformation of all values using the
4629 <         * given reducer to combine values, and the given basis as an
4630 <         * identity value.
4460 >         * Adds the specified key to this set view by mapping the key to
4461 >         * the default mapped value in the backing map, if defined.
4462           *
4463 <         * @param map the map
4464 <         * @param transformer a function returning the transformation
4465 <         * for an element
4466 <         * @param basis the identity (initial default value) for the reduction
4467 <         * @param reducer a commutative associative combining function
4637 <         * @return the task
4463 >         * @param e key to be added
4464 >         * @return {@code true} if this set changed as a result of the call
4465 >         * @throws NullPointerException if the specified key is null
4466 >         * @throws UnsupportedOperationException if no default mapped value
4467 >         * for additions was provided
4468           */
4469 <        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
4470 <            (ConcurrentHashMapV8<K,V> map,
4471 <             ObjectToInt<? super V> transformer,
4472 <             int basis,
4473 <             IntByIntToInt reducer) {
4644 <            if (transformer == null || reducer == null)
4645 <                throw new NullPointerException();
4646 <            return new MapReduceValuesToIntTask<K,V>
4647 <                (map, transformer, basis, reducer);
4469 >        public boolean add(K e) {
4470 >            V v;
4471 >            if ((v = value) == null)
4472 >                throw new UnsupportedOperationException();
4473 >            return map.putVal(e, v, true) == null;
4474          }
4475  
4476          /**
4477 <         * Returns a task that when invoked, perform the given action
4478 <         * for each entry.
4477 >         * Adds all of the elements in the specified collection to this set,
4478 >         * as if by calling {@link #add} on each one.
4479           *
4480 <         * @param map the map
4481 <         * @param action the action
4480 >         * @param c the elements to be inserted into this set
4481 >         * @return {@code true} if this set changed as a result of the call
4482 >         * @throws NullPointerException if the collection or any of its
4483 >         * elements are {@code null}
4484 >         * @throws UnsupportedOperationException if no default mapped value
4485 >         * for additions was provided
4486           */
4487 <        public static <K,V> ForkJoinTask<Void> forEachEntry
4488 <            (ConcurrentHashMapV8<K,V> map,
4489 <             Action<Map.Entry<K,V>> action) {
4490 <            if (action == null) throw new NullPointerException();
4491 <            return new ForEachEntryTask<K,V>(map, action);
4487 >        public boolean addAll(Collection<? extends K> c) {
4488 >            boolean added = false;
4489 >            V v;
4490 >            if ((v = value) == null)
4491 >                throw new UnsupportedOperationException();
4492 >            for (K e : c) {
4493 >                if (map.putVal(e, v, true) == null)
4494 >                    added = true;
4495 >            }
4496 >            return added;
4497          }
4498  
4499 <        /**
4500 <         * Returns a task that when invoked, perform the given action
4501 <         * for each non-null transformation of each entry.
4502 <         *
4503 <         * @param map the map
4669 <         * @param transformer a function returning the transformation
4670 <         * for an element, or null of there is no transformation (in
4671 <         * which case the action is not applied).
4672 <         * @param action the action
4673 <         */
4674 <        public static <K,V,U> ForkJoinTask<Void> forEachEntry
4675 <            (ConcurrentHashMapV8<K,V> map,
4676 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
4677 <             Action<U> action) {
4678 <            if (transformer == null || action == null)
4679 <                throw new NullPointerException();
4680 <            return new ForEachTransformedEntryTask<K,V,U>
4681 <                (map, transformer, action);
4499 >        public int hashCode() {
4500 >            int h = 0;
4501 >            for (K e : this)
4502 >                h += e.hashCode();
4503 >            return h;
4504          }
4505  
4506 <        /**
4507 <         * Returns a task that when invoked, returns a non-null result
4508 <         * from applying the given search function on each entry, or
4509 <         * null if none.  Upon success, further element processing is
4510 <         * suppressed and the results of any other parallel
4689 <         * invocations of the search function are ignored.
4690 <         *
4691 <         * @param map the map
4692 <         * @param searchFunction a function returning a non-null
4693 <         * result on success, else null
4694 <         * @return the task
4695 <         *
4696 <         */
4697 <        public static <K,V,U> ForkJoinTask<U> searchEntries
4698 <            (ConcurrentHashMapV8<K,V> map,
4699 <             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4700 <            if (searchFunction == null) throw new NullPointerException();
4701 <            return new SearchEntriesTask<K,V,U>
4702 <                (map, searchFunction,
4703 <                 new AtomicReference<U>());
4506 >        public boolean equals(Object o) {
4507 >            Set<?> c;
4508 >            return ((o instanceof Set) &&
4509 >                    ((c = (Set<?>)o) == this ||
4510 >                     (containsAll(c) && c.containsAll(this))));
4511          }
4512  
4513 <        /**
4514 <         * Returns a task that when invoked, returns the result of
4515 <         * accumulating all entries using the given reducer to combine
4516 <         * values, or null if none.
4517 <         *
4518 <         * @param map the map
4712 <         * @param reducer a commutative associative combining function
4713 <         * @return the task
4714 <         */
4715 <        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
4716 <            (ConcurrentHashMapV8<K,V> map,
4717 <             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4718 <            if (reducer == null) throw new NullPointerException();
4719 <            return new ReduceEntriesTask<K,V>
4720 <                (map, reducer);
4513 >        public ConcurrentHashMapSpliterator<K> spliterator() {
4514 >            Node<K,V>[] t;
4515 >            ConcurrentHashMapV8<K,V> m = map;
4516 >            long n = m.sumCount();
4517 >            int f = (t = m.table) == null ? 0 : t.length;
4518 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4519          }
4520  
4521 <        /**
4522 <         * Returns a task that when invoked, returns the result of
4523 <         * accumulating the given transformation of all entries using the
4524 <         * given reducer to combine values, or null if none.
4525 <         *
4526 <         * @param map the map
4527 <         * @param transformer a function returning the transformation
4528 <         * for an element, or null of there is no transformation (in
4731 <         * which case it is not combined).
4732 <         * @param reducer a commutative associative combining function
4733 <         * @return the task
4734 <         */
4735 <        public static <K,V,U> ForkJoinTask<U> reduceEntries
4736 <            (ConcurrentHashMapV8<K,V> map,
4737 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
4738 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4739 <            if (transformer == null || reducer == null)
4740 <                throw new NullPointerException();
4741 <            return new MapReduceEntriesTask<K,V,U>
4742 <                (map, transformer, reducer);
4521 >        public void forEach(Action<? super K> action) {
4522 >            if (action == null) throw new NullPointerException();
4523 >            Node<K,V>[] t;
4524 >            if ((t = map.table) != null) {
4525 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4526 >                for (Node<K,V> p; (p = it.advance()) != null; )
4527 >                    action.apply(p.key);
4528 >            }
4529          }
4530 +    }
4531  
4532 <        /**
4533 <         * Returns a task that when invoked, returns the result of
4534 <         * accumulating the given transformation of all entries using the
4535 <         * given reducer to combine values, and the given basis as an
4536 <         * identity value.
4537 <         *
4538 <         * @param map the map
4539 <         * @param transformer a function returning the transformation
4540 <         * for an element
4541 <         * @param basis the identity (initial default value) for the reduction
4542 <         * @param reducer a commutative associative combining function
4756 <         * @return the task
4757 <         */
4758 <        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
4759 <            (ConcurrentHashMapV8<K,V> map,
4760 <             ObjectToDouble<Map.Entry<K,V>> transformer,
4761 <             double basis,
4762 <             DoubleByDoubleToDouble reducer) {
4763 <            if (transformer == null || reducer == null)
4764 <                throw new NullPointerException();
4765 <            return new MapReduceEntriesToDoubleTask<K,V>
4766 <                (map, transformer, basis, reducer);
4532 >    /**
4533 >     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4534 >     * values, in which additions are disabled. This class cannot be
4535 >     * directly instantiated. See {@link #values()}.
4536 >     */
4537 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4538 >        implements Collection<V>, java.io.Serializable {
4539 >        private static final long serialVersionUID = 2249069246763182397L;
4540 >        ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4541 >        public final boolean contains(Object o) {
4542 >            return map.containsValue(o);
4543          }
4544  
4545 <        /**
4546 <         * Returns a task that when invoked, returns the result of
4547 <         * accumulating the given transformation of all entries using the
4548 <         * given reducer to combine values, and the given basis as an
4549 <         * identity value.
4550 <         *
4551 <         * @param map the map
4552 <         * @param transformer a function returning the transformation
4553 <         * for an element
4554 <         * @param basis the identity (initial default value) for the reduction
4779 <         * @param reducer a commutative associative combining function
4780 <         * @return the task
4781 <         */
4782 <        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
4783 <            (ConcurrentHashMapV8<K,V> map,
4784 <             ObjectToLong<Map.Entry<K,V>> transformer,
4785 <             long basis,
4786 <             LongByLongToLong reducer) {
4787 <            if (transformer == null || reducer == null)
4788 <                throw new NullPointerException();
4789 <            return new MapReduceEntriesToLongTask<K,V>
4790 <                (map, transformer, basis, reducer);
4545 >        public final boolean remove(Object o) {
4546 >            if (o != null) {
4547 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4548 >                    if (o.equals(it.next())) {
4549 >                        it.remove();
4550 >                        return true;
4551 >                    }
4552 >                }
4553 >            }
4554 >            return false;
4555          }
4556  
4557 <        /**
4558 <         * Returns a task that when invoked, returns the result of
4559 <         * accumulating the given transformation of all entries using the
4560 <         * given reducer to combine values, and the given basis as an
4561 <         * identity value.
4798 <         *
4799 <         * @param map the map
4800 <         * @param transformer a function returning the transformation
4801 <         * for an element
4802 <         * @param basis the identity (initial default value) for the reduction
4803 <         * @param reducer a commutative associative combining function
4804 <         * @return the task
4805 <         */
4806 <        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4807 <            (ConcurrentHashMapV8<K,V> map,
4808 <             ObjectToInt<Map.Entry<K,V>> transformer,
4809 <             int basis,
4810 <             IntByIntToInt reducer) {
4811 <            if (transformer == null || reducer == null)
4812 <                throw new NullPointerException();
4813 <            return new MapReduceEntriesToIntTask<K,V>
4814 <                (map, transformer, basis, reducer);
4557 >        public final Iterator<V> iterator() {
4558 >            ConcurrentHashMapV8<K,V> m = map;
4559 >            Node<K,V>[] t;
4560 >            int f = (t = m.table) == null ? 0 : t.length;
4561 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4562          }
4816    }
4563  
4564 <    // -------------------------------------------------------
4564 >        public final boolean add(V e) {
4565 >            throw new UnsupportedOperationException();
4566 >        }
4567 >        public final boolean addAll(Collection<? extends V> c) {
4568 >            throw new UnsupportedOperationException();
4569 >        }
4570 >
4571 >        public ConcurrentHashMapSpliterator<V> spliterator() {
4572 >            Node<K,V>[] t;
4573 >            ConcurrentHashMapV8<K,V> m = map;
4574 >            long n = m.sumCount();
4575 >            int f = (t = m.table) == null ? 0 : t.length;
4576 >            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4577 >        }
4578 >
4579 >        public void forEach(Action<? super V> action) {
4580 >            if (action == null) throw new NullPointerException();
4581 >            Node<K,V>[] t;
4582 >            if ((t = map.table) != null) {
4583 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4584 >                for (Node<K,V> p; (p = it.advance()) != null; )
4585 >                    action.apply(p.val);
4586 >            }
4587 >        }
4588 >    }
4589  
4590      /**
4591 <     * Base for FJ tasks for bulk operations. This adds a variant of
4592 <     * CountedCompleters and some split and merge bookkeeping to
4593 <     * iterator functionality. The forEach and reduce methods are
4824 <     * similar to those illustrated in CountedCompleter documentation,
4825 <     * except that bottom-up reduction completions perform them within
4826 <     * their compute methods. The search methods are like forEach
4827 <     * except they continually poll for success and exit early.  Also,
4828 <     * exceptions are handled in a simpler manner, by just trying to
4829 <     * complete root task exceptionally.
4591 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4592 >     * entries.  This class cannot be directly instantiated. See
4593 >     * {@link #entrySet()}.
4594       */
4595 <    @SuppressWarnings("serial")
4596 <    static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
4597 <        final BulkTask<K,V,?> parent;  // completion target
4598 <        int batch;                     // split control
4835 <        int pending;                   // completion control
4595 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4596 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4597 >        private static final long serialVersionUID = 2249069246763182397L;
4598 >        EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4599  
4600 <        /** Constructor for root tasks */
4601 <        BulkTask(ConcurrentHashMapV8<K,V> map) {
4602 <            super(map);
4603 <            this.parent = null;
4604 <            this.batch = -1; // force call to batch() on execution
4600 >        public boolean contains(Object o) {
4601 >            Object k, v, r; Map.Entry<?,?> e;
4602 >            return ((o instanceof Map.Entry) &&
4603 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4604 >                    (r = map.get(k)) != null &&
4605 >                    (v = e.getValue()) != null &&
4606 >                    (v == r || v.equals(r)));
4607          }
4608  
4609 <        /** Constructor for subtasks */
4610 <        BulkTask(BulkTask<K,V,?> parent, int batch, boolean split) {
4611 <            super(parent, split);
4612 <            this.parent = parent;
4613 <            this.batch = batch;
4609 >        public boolean remove(Object o) {
4610 >            Object k, v; Map.Entry<?,?> e;
4611 >            return ((o instanceof Map.Entry) &&
4612 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4613 >                    (v = e.getValue()) != null &&
4614 >                    map.remove(k, v));
4615          }
4616  
4851        // FJ methods
4852
4617          /**
4618 <         * Propagates completion. Note that all reduce actions
4855 <         * bypass this method to combine while completing.
4618 >         * @return an iterator over the entries of the backing map
4619           */
4620 <        final void tryComplete() {
4621 <            BulkTask<K,V,?> a = this, s = a;
4622 <            for (int c;;) {
4623 <                if ((c = a.pending) == 0) {
4624 <                    if ((a = (s = a).parent) == null) {
4862 <                        s.quietlyComplete();
4863 <                        break;
4864 <                    }
4865 <                }
4866 <                else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
4867 <                    break;
4868 <            }
4620 >        public Iterator<Map.Entry<K,V>> iterator() {
4621 >            ConcurrentHashMapV8<K,V> m = map;
4622 >            Node<K,V>[] t;
4623 >            int f = (t = m.table) == null ? 0 : t.length;
4624 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4625          }
4626  
4627 <        /**
4628 <         * Forces root task to throw exception unless already complete.
4873 <         */
4874 <        final void tryAbortComputation(Throwable ex) {
4875 <            for (BulkTask<K,V,?> a = this;;) {
4876 <                BulkTask<K,V,?> p = a.parent;
4877 <                if (p == null) {
4878 <                    a.completeExceptionally(ex);
4879 <                    break;
4880 <                }
4881 <                a = p;
4882 <            }
4627 >        public boolean add(Entry<K,V> e) {
4628 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4629          }
4630  
4631 <        public final boolean exec() {
4632 <            try {
4633 <                compute();
4631 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4632 >            boolean added = false;
4633 >            for (Entry<K,V> e : c) {
4634 >                if (add(e))
4635 >                    added = true;
4636              }
4637 <            catch (Throwable ex) {
4890 <                tryAbortComputation(ex);
4891 <            }
4892 <            return false;
4637 >            return added;
4638          }
4639  
4640 <        public abstract void compute();
4640 >        public final int hashCode() {
4641 >            int h = 0;
4642 >            Node<K,V>[] t;
4643 >            if ((t = map.table) != null) {
4644 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4645 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4646 >                    h += p.hashCode();
4647 >                }
4648 >            }
4649 >            return h;
4650 >        }
4651  
4652 <        // utilities
4652 >        public final boolean equals(Object o) {
4653 >            Set<?> c;
4654 >            return ((o instanceof Set) &&
4655 >                    ((c = (Set<?>)o) == this ||
4656 >                     (containsAll(c) && c.containsAll(this))));
4657 >        }
4658  
4659 <        /** CompareAndSet pending count */
4660 <        final boolean casPending(int cmp, int val) {
4661 <            return U.compareAndSwapInt(this, PENDING, cmp, val);
4659 >        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4660 >            Node<K,V>[] t;
4661 >            ConcurrentHashMapV8<K,V> m = map;
4662 >            long n = m.sumCount();
4663 >            int f = (t = m.table) == null ? 0 : t.length;
4664 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4665          }
4666  
4667 <        /**
4668 <         * Returns approx exp2 of the number of times (minus one) to
4669 <         * split task by two before executing leaf action. This value
4670 <         * is faster to compute and more convenient to use as a guide
4671 <         * to splitting than is the depth, since it is used while
4672 <         * dividing by two anyway.
4673 <         */
4911 <        final int batch() {
4912 <            int b = batch;
4913 <            if (b < 0) {
4914 <                long n = map.counter.sum();
4915 <                int sp = getPool().getParallelism() << 3; // slack of 8
4916 <                b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
4667 >        public void forEach(Action<? super Map.Entry<K,V>> action) {
4668 >            if (action == null) throw new NullPointerException();
4669 >            Node<K,V>[] t;
4670 >            if ((t = map.table) != null) {
4671 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4672 >                for (Node<K,V> p; (p = it.advance()) != null; )
4673 >                    action.apply(new MapEntry<K,V>(p.key, p.val, map));
4674              }
4918            return b;
4675          }
4676  
4677 <        /**
4922 <         * Error message for hoisted null checks of functions
4923 <         */
4924 <        static final String NullFunctionMessage =
4925 <            "Unexpected null function";
4677 >    }
4678  
4679 <        /**
4680 <         * Returns exportable snapshot entry.
4681 <         */
4682 <        static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
4683 <            return new AbstractMap.SimpleEntry<K,V>(k, v);
4679 >    // -------------------------------------------------------
4680 >
4681 >    /**
4682 >     * Base class for bulk tasks. Repeats some fields and code from
4683 >     * class Traverser, because we need to subclass CountedCompleter.
4684 >     */
4685 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4686 >        Node<K,V>[] tab;        // same as Traverser
4687 >        Node<K,V> next;
4688 >        int index;
4689 >        int baseIndex;
4690 >        int baseLimit;
4691 >        final int baseSize;
4692 >        int batch;              // split control
4693 >
4694 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4695 >            super(par);
4696 >            this.batch = b;
4697 >            this.index = this.baseIndex = i;
4698 >            if ((this.tab = t) == null)
4699 >                this.baseSize = this.baseLimit = 0;
4700 >            else if (par == null)
4701 >                this.baseSize = this.baseLimit = t.length;
4702 >            else {
4703 >                this.baseLimit = f;
4704 >                this.baseSize = par.baseSize;
4705 >            }
4706          }
4707  
4708 <        // Unsafe mechanics
4709 <        private static final sun.misc.Unsafe U;
4710 <        private static final long PENDING;
4711 <        static {
4712 <            try {
4713 <                U = getUnsafe();
4714 <                PENDING = U.objectFieldOffset
4715 <                    (BulkTask.class.getDeclaredField("pending"));
4716 <            } catch (Exception e) {
4717 <                throw new Error(e);
4708 >        /**
4709 >         * Same as Traverser version
4710 >         */
4711 >        final Node<K,V> advance() {
4712 >            Node<K,V> e;
4713 >            if ((e = next) != null)
4714 >                e = e.next;
4715 >            for (;;) {
4716 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4717 >                if (e != null)
4718 >                    return next = e;
4719 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4720 >                    (n = t.length) <= (i = index) || i < 0)
4721 >                    return next = null;
4722 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4723 >                    if (e instanceof ForwardingNode) {
4724 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4725 >                        e = null;
4726 >                        continue;
4727 >                    }
4728 >                    else if (e instanceof TreeBin)
4729 >                        e = ((TreeBin<K,V>)e).first;
4730 >                    else
4731 >                        e = null;
4732 >                }
4733 >                if ((index += baseSize) >= n)
4734 >                    index = ++baseIndex;    // visit upper slots if present
4735              }
4736          }
4737      }
# Line 4948 | Line 4739 | public class ConcurrentHashMapV8<K, V>
4739      /*
4740       * Task classes. Coded in a regular but ugly format/style to
4741       * simplify checks that each variant differs in the right way from
4742 <     * others.
4742 >     * others. The null screenings exist because compilers cannot tell
4743 >     * that we've already null-checked task arguments, so we force
4744 >     * simplest hoisted bypass to help avoid convoluted traps.
4745       */
4953
4746      @SuppressWarnings("serial")
4747      static final class ForEachKeyTask<K,V>
4748          extends BulkTask<K,V,Void> {
4749 <        final Action<K> action;
4749 >        final Action<? super K> action;
4750          ForEachKeyTask
4751 <            (ConcurrentHashMapV8<K,V> m,
4752 <             Action<K> action) {
4753 <            super(m);
4751 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4752 >             Action<? super K> action) {
4753 >            super(p, b, i, f, t);
4754              this.action = action;
4755          }
4756 <        ForEachKeyTask
4757 <            (BulkTask<K,V,?> p, int b, boolean split,
4758 <             Action<K> action) {
4759 <            super(p, b, split);
4760 <            this.action = action;
4761 <        }
4762 <        @SuppressWarnings("unchecked") public final void compute() {
4763 <            final Action<K> action = this.action;
4764 <            if (action == null)
4765 <                throw new Error(NullFunctionMessage);
4766 <            int b = batch(), c;
4767 <            while (b > 1 && baseIndex != baseLimit) {
4768 <                do {} while (!casPending(c = pending, c+1));
4769 <                new ForEachKeyTask<K,V>(this, b >>>= 1, true, action).fork();
4978 <            }
4979 <            while (advance() != null)
4980 <                action.apply((K)nextKey);
4981 <            tryComplete();
4756 >        public final void compute() {
4757 >            final Action<? super K> action;
4758 >            if ((action = this.action) != null) {
4759 >                for (int i = baseIndex, f, h; batch > 0 &&
4760 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4761 >                    addToPendingCount(1);
4762 >                    new ForEachKeyTask<K,V>
4763 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4764 >                         action).fork();
4765 >                }
4766 >                for (Node<K,V> p; (p = advance()) != null;)
4767 >                    action.apply(p.key);
4768 >                propagateCompletion();
4769 >            }
4770          }
4771      }
4772  
4773      @SuppressWarnings("serial")
4774      static final class ForEachValueTask<K,V>
4775          extends BulkTask<K,V,Void> {
4776 <        final Action<V> action;
4989 <        ForEachValueTask
4990 <            (ConcurrentHashMapV8<K,V> m,
4991 <             Action<V> action) {
4992 <            super(m);
4993 <            this.action = action;
4994 <        }
4776 >        final Action<? super V> action;
4777          ForEachValueTask
4778 <            (BulkTask<K,V,?> p, int b, boolean split,
4779 <             Action<V> action) {
4780 <            super(p, b, split);
4778 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4779 >             Action<? super V> action) {
4780 >            super(p, b, i, f, t);
4781              this.action = action;
4782          }
4783 <        @SuppressWarnings("unchecked") public final void compute() {
4784 <            final Action<V> action = this.action;
4785 <            if (action == null)
4786 <                throw new Error(NullFunctionMessage);
4787 <            int b = batch(), c;
4788 <            while (b > 1 && baseIndex != baseLimit) {
4789 <                do {} while (!casPending(c = pending, c+1));
4790 <                new ForEachValueTask<K,V>(this, b >>>= 1, true, action).fork();
4791 <            }
4792 <            Object v;
4793 <            while ((v = advance()) != null)
4794 <                action.apply((V)v);
4795 <            tryComplete();
4783 >        public final void compute() {
4784 >            final Action<? super V> action;
4785 >            if ((action = this.action) != null) {
4786 >                for (int i = baseIndex, f, h; batch > 0 &&
4787 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4788 >                    addToPendingCount(1);
4789 >                    new ForEachValueTask<K,V>
4790 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4791 >                         action).fork();
4792 >                }
4793 >                for (Node<K,V> p; (p = advance()) != null;)
4794 >                    action.apply(p.val);
4795 >                propagateCompletion();
4796 >            }
4797          }
4798      }
4799  
4800      @SuppressWarnings("serial")
4801      static final class ForEachEntryTask<K,V>
4802          extends BulkTask<K,V,Void> {
4803 <        final Action<Entry<K,V>> action;
5021 <        ForEachEntryTask
5022 <            (ConcurrentHashMapV8<K,V> m,
5023 <             Action<Entry<K,V>> action) {
5024 <            super(m);
5025 <            this.action = action;
5026 <        }
4803 >        final Action<? super Entry<K,V>> action;
4804          ForEachEntryTask
4805 <            (BulkTask<K,V,?> p, int b, boolean split,
4806 <             Action<Entry<K,V>> action) {
4807 <            super(p, b, split);
4805 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4806 >             Action<? super Entry<K,V>> action) {
4807 >            super(p, b, i, f, t);
4808              this.action = action;
4809          }
4810 <        @SuppressWarnings("unchecked") public final void compute() {
4811 <            final Action<Entry<K,V>> action = this.action;
4812 <            if (action == null)
4813 <                throw new Error(NullFunctionMessage);
4814 <            int b = batch(), c;
4815 <            while (b > 1 && baseIndex != baseLimit) {
4816 <                do {} while (!casPending(c = pending, c+1));
4817 <                new ForEachEntryTask<K,V>(this, b >>>= 1, true, action).fork();
4818 <            }
4819 <            Object v;
4820 <            while ((v = advance()) != null)
4821 <                action.apply(entryFor((K)nextKey, (V)v));
4822 <            tryComplete();
4810 >        public final void compute() {
4811 >            final Action<? super Entry<K,V>> action;
4812 >            if ((action = this.action) != null) {
4813 >                for (int i = baseIndex, f, h; batch > 0 &&
4814 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4815 >                    addToPendingCount(1);
4816 >                    new ForEachEntryTask<K,V>
4817 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4818 >                         action).fork();
4819 >                }
4820 >                for (Node<K,V> p; (p = advance()) != null; )
4821 >                    action.apply(p);
4822 >                propagateCompletion();
4823 >            }
4824          }
4825      }
4826  
4827      @SuppressWarnings("serial")
4828      static final class ForEachMappingTask<K,V>
4829          extends BulkTask<K,V,Void> {
4830 <        final BiAction<K,V> action;
4830 >        final BiAction<? super K, ? super V> action;
4831          ForEachMappingTask
4832 <            (ConcurrentHashMapV8<K,V> m,
4833 <             BiAction<K,V> action) {
4834 <            super(m);
4832 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4833 >             BiAction<? super K,? super V> action) {
4834 >            super(p, b, i, f, t);
4835              this.action = action;
4836          }
4837 <        ForEachMappingTask
4838 <            (BulkTask<K,V,?> p, int b, boolean split,
4839 <             BiAction<K,V> action) {
4840 <            super(p, b, split);
4841 <            this.action = action;
4842 <        }
4843 <
4844 <        @SuppressWarnings("unchecked") public final void compute() {
4845 <            final BiAction<K,V> action = this.action;
4846 <            if (action == null)
4847 <                throw new Error(NullFunctionMessage);
4848 <            int b = batch(), c;
4849 <            while (b > 1 && baseIndex != baseLimit) {
4850 <                do {} while (!casPending(c = pending, c+1));
5073 <                new ForEachMappingTask<K,V>(this, b >>>= 1, true,
5074 <                                            action).fork();
5075 <            }
5076 <            Object v;
5077 <            while ((v = advance()) != null)
5078 <                action.apply((K)nextKey, (V)v);
5079 <            tryComplete();
4837 >        public final void compute() {
4838 >            final BiAction<? super K, ? super V> action;
4839 >            if ((action = this.action) != null) {
4840 >                for (int i = baseIndex, f, h; batch > 0 &&
4841 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4842 >                    addToPendingCount(1);
4843 >                    new ForEachMappingTask<K,V>
4844 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4845 >                         action).fork();
4846 >                }
4847 >                for (Node<K,V> p; (p = advance()) != null; )
4848 >                    action.apply(p.key, p.val);
4849 >                propagateCompletion();
4850 >            }
4851          }
4852      }
4853  
# Line 5084 | Line 4855 | public class ConcurrentHashMapV8<K, V>
4855      static final class ForEachTransformedKeyTask<K,V,U>
4856          extends BulkTask<K,V,Void> {
4857          final Fun<? super K, ? extends U> transformer;
4858 <        final Action<U> action;
5088 <        ForEachTransformedKeyTask
5089 <            (ConcurrentHashMapV8<K,V> m,
5090 <             Fun<? super K, ? extends U> transformer,
5091 <             Action<U> action) {
5092 <            super(m);
5093 <            this.transformer = transformer;
5094 <            this.action = action;
5095 <
5096 <        }
4858 >        final Action<? super U> action;
4859          ForEachTransformedKeyTask
4860 <            (BulkTask<K,V,?> p, int b, boolean split,
4861 <             Fun<? super K, ? extends U> transformer,
4862 <             Action<U> action) {
4863 <            super(p, b, split);
4864 <            this.transformer = transformer;
4865 <            this.action = action;
4866 <        }
4867 <        @SuppressWarnings("unchecked") public final void compute() {
4868 <            final Fun<? super K, ? extends U> transformer =
4869 <                this.transformer;
4870 <            final Action<U> action = this.action;
4871 <            if (transformer == null || action == null)
4872 <                throw new Error(NullFunctionMessage);
4873 <            int b = batch(), c;
4874 <            while (b > 1 && baseIndex != baseLimit) {
4875 <                do {} while (!casPending(c = pending, c+1));
4876 <                new ForEachTransformedKeyTask<K,V,U>
4877 <                    (this, b >>>= 1, true, transformer, action).fork();
4878 <            }
4879 <            U u;
4880 <            while (advance() != null) {
4881 <                if ((u = transformer.apply((K)nextKey)) != null)
4882 <                    action.apply(u);
4860 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4861 >             Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4862 >            super(p, b, i, f, t);
4863 >            this.transformer = transformer; this.action = action;
4864 >        }
4865 >        public final void compute() {
4866 >            final Fun<? super K, ? extends U> transformer;
4867 >            final Action<? super U> action;
4868 >            if ((transformer = this.transformer) != null &&
4869 >                (action = this.action) != null) {
4870 >                for (int i = baseIndex, f, h; batch > 0 &&
4871 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4872 >                    addToPendingCount(1);
4873 >                    new ForEachTransformedKeyTask<K,V,U>
4874 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4875 >                         transformer, action).fork();
4876 >                }
4877 >                for (Node<K,V> p; (p = advance()) != null; ) {
4878 >                    U u;
4879 >                    if ((u = transformer.apply(p.key)) != null)
4880 >                        action.apply(u);
4881 >                }
4882 >                propagateCompletion();
4883              }
5122            tryComplete();
4884          }
4885      }
4886  
# Line 5127 | Line 4888 | public class ConcurrentHashMapV8<K, V>
4888      static final class ForEachTransformedValueTask<K,V,U>
4889          extends BulkTask<K,V,Void> {
4890          final Fun<? super V, ? extends U> transformer;
4891 <        final Action<U> action;
4891 >        final Action<? super U> action;
4892          ForEachTransformedValueTask
4893 <            (ConcurrentHashMapV8<K,V> m,
4894 <             Fun<? super V, ? extends U> transformer,
4895 <             Action<U> action) {
4896 <            super(m);
4897 <            this.transformer = transformer;
4898 <            this.action = action;
4899 <
4900 <        }
4901 <        ForEachTransformedValueTask
4902 <            (BulkTask<K,V,?> p, int b, boolean split,
4903 <             Fun<? super V, ? extends U> transformer,
4904 <             Action<U> action) {
4905 <            super(p, b, split);
4906 <            this.transformer = transformer;
4907 <            this.action = action;
4908 <        }
4909 <        @SuppressWarnings("unchecked") public final void compute() {
4910 <            final Fun<? super V, ? extends U> transformer =
4911 <                this.transformer;
4912 <            final Action<U> action = this.action;
4913 <            if (transformer == null || action == null)
4914 <                throw new Error(NullFunctionMessage);
4915 <            int b = batch(), c;
5155 <            while (b > 1 && baseIndex != baseLimit) {
5156 <                do {} while (!casPending(c = pending, c+1));
5157 <                new ForEachTransformedValueTask<K,V,U>
5158 <                    (this, b >>>= 1, true, transformer, action).fork();
5159 <            }
5160 <            Object v; U u;
5161 <            while ((v = advance()) != null) {
5162 <                if ((u = transformer.apply((V)v)) != null)
5163 <                    action.apply(u);
4893 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4894 >             Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4895 >            super(p, b, i, f, t);
4896 >            this.transformer = transformer; this.action = action;
4897 >        }
4898 >        public final void compute() {
4899 >            final Fun<? super V, ? extends U> transformer;
4900 >            final Action<? super U> action;
4901 >            if ((transformer = this.transformer) != null &&
4902 >                (action = this.action) != null) {
4903 >                for (int i = baseIndex, f, h; batch > 0 &&
4904 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4905 >                    addToPendingCount(1);
4906 >                    new ForEachTransformedValueTask<K,V,U>
4907 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4908 >                         transformer, action).fork();
4909 >                }
4910 >                for (Node<K,V> p; (p = advance()) != null; ) {
4911 >                    U u;
4912 >                    if ((u = transformer.apply(p.val)) != null)
4913 >                        action.apply(u);
4914 >                }
4915 >                propagateCompletion();
4916              }
5165            tryComplete();
4917          }
4918      }
4919  
# Line 5170 | Line 4921 | public class ConcurrentHashMapV8<K, V>
4921      static final class ForEachTransformedEntryTask<K,V,U>
4922          extends BulkTask<K,V,Void> {
4923          final Fun<Map.Entry<K,V>, ? extends U> transformer;
4924 <        final Action<U> action;
4924 >        final Action<? super U> action;
4925          ForEachTransformedEntryTask
4926 <            (ConcurrentHashMapV8<K,V> m,
4927 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
4928 <             Action<U> action) {
4929 <            super(m);
4930 <            this.transformer = transformer;
4931 <            this.action = action;
4932 <
4933 <        }
4934 <        ForEachTransformedEntryTask
4935 <            (BulkTask<K,V,?> p, int b, boolean split,
4936 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
4937 <             Action<U> action) {
4938 <            super(p, b, split);
4939 <            this.transformer = transformer;
4940 <            this.action = action;
4941 <        }
4942 <        @SuppressWarnings("unchecked") public final void compute() {
4943 <            final Fun<Map.Entry<K,V>, ? extends U> transformer =
4944 <                this.transformer;
4945 <            final Action<U> action = this.action;
4946 <            if (transformer == null || action == null)
4947 <                throw new Error(NullFunctionMessage);
4948 <            int b = batch(), c;
5198 <            while (b > 1 && baseIndex != baseLimit) {
5199 <                do {} while (!casPending(c = pending, c+1));
5200 <                new ForEachTransformedEntryTask<K,V,U>
5201 <                    (this, b >>>= 1, true, transformer, action).fork();
5202 <            }
5203 <            Object v; U u;
5204 <            while ((v = advance()) != null) {
5205 <                if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5206 <                    action.apply(u);
4926 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4927 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4928 >            super(p, b, i, f, t);
4929 >            this.transformer = transformer; this.action = action;
4930 >        }
4931 >        public final void compute() {
4932 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
4933 >            final Action<? super U> action;
4934 >            if ((transformer = this.transformer) != null &&
4935 >                (action = this.action) != null) {
4936 >                for (int i = baseIndex, f, h; batch > 0 &&
4937 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4938 >                    addToPendingCount(1);
4939 >                    new ForEachTransformedEntryTask<K,V,U>
4940 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4941 >                         transformer, action).fork();
4942 >                }
4943 >                for (Node<K,V> p; (p = advance()) != null; ) {
4944 >                    U u;
4945 >                    if ((u = transformer.apply(p)) != null)
4946 >                        action.apply(u);
4947 >                }
4948 >                propagateCompletion();
4949              }
5208            tryComplete();
4950          }
4951      }
4952  
# Line 5213 | Line 4954 | public class ConcurrentHashMapV8<K, V>
4954      static final class ForEachTransformedMappingTask<K,V,U>
4955          extends BulkTask<K,V,Void> {
4956          final BiFun<? super K, ? super V, ? extends U> transformer;
4957 <        final Action<U> action;
4957 >        final Action<? super U> action;
4958          ForEachTransformedMappingTask
4959 <            (ConcurrentHashMapV8<K,V> m,
4959 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4960               BiFun<? super K, ? super V, ? extends U> transformer,
4961 <             Action<U> action) {
4962 <            super(m);
4963 <            this.transformer = transformer;
4964 <            this.action = action;
4965 <
4966 <        }
4967 <        ForEachTransformedMappingTask
4968 <            (BulkTask<K,V,?> p, int b, boolean split,
4969 <             BiFun<? super K, ? super V, ? extends U> transformer,
4970 <             Action<U> action) {
4971 <            super(p, b, split);
4972 <            this.transformer = transformer;
4973 <            this.action = action;
4974 <        }
4975 <        @SuppressWarnings("unchecked") public final void compute() {
4976 <            final BiFun<? super K, ? super V, ? extends U> transformer =
4977 <                this.transformer;
4978 <            final Action<U> action = this.action;
4979 <            if (transformer == null || action == null)
4980 <                throw new Error(NullFunctionMessage);
4981 <            int b = batch(), c;
4982 <            while (b > 1 && baseIndex != baseLimit) {
5242 <                do {} while (!casPending(c = pending, c+1));
5243 <                new ForEachTransformedMappingTask<K,V,U>
5244 <                    (this, b >>>= 1, true, transformer, action).fork();
5245 <            }
5246 <            Object v; U u;
5247 <            while ((v = advance()) != null) {
5248 <                if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5249 <                    action.apply(u);
4961 >             Action<? super U> action) {
4962 >            super(p, b, i, f, t);
4963 >            this.transformer = transformer; this.action = action;
4964 >        }
4965 >        public final void compute() {
4966 >            final BiFun<? super K, ? super V, ? extends U> transformer;
4967 >            final Action<? super U> action;
4968 >            if ((transformer = this.transformer) != null &&
4969 >                (action = this.action) != null) {
4970 >                for (int i = baseIndex, f, h; batch > 0 &&
4971 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4972 >                    addToPendingCount(1);
4973 >                    new ForEachTransformedMappingTask<K,V,U>
4974 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4975 >                         transformer, action).fork();
4976 >                }
4977 >                for (Node<K,V> p; (p = advance()) != null; ) {
4978 >                    U u;
4979 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4980 >                        action.apply(u);
4981 >                }
4982 >                propagateCompletion();
4983              }
5251            tryComplete();
4984          }
4985      }
4986  
# Line 5258 | Line 4990 | public class ConcurrentHashMapV8<K, V>
4990          final Fun<? super K, ? extends U> searchFunction;
4991          final AtomicReference<U> result;
4992          SearchKeysTask
4993 <            (ConcurrentHashMapV8<K,V> m,
5262 <             Fun<? super K, ? extends U> searchFunction,
5263 <             AtomicReference<U> result) {
5264 <            super(m);
5265 <            this.searchFunction = searchFunction; this.result = result;
5266 <        }
5267 <        SearchKeysTask
5268 <            (BulkTask<K,V,?> p, int b, boolean split,
4993 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4994               Fun<? super K, ? extends U> searchFunction,
4995               AtomicReference<U> result) {
4996 <            super(p, b, split);
4996 >            super(p, b, i, f, t);
4997              this.searchFunction = searchFunction; this.result = result;
4998          }
4999 <        @SuppressWarnings("unchecked") public final void compute() {
5000 <            AtomicReference<U> result = this.result;
5001 <            final Fun<? super K, ? extends U> searchFunction =
5002 <                this.searchFunction;
5003 <            if (searchFunction == null || result == null)
5004 <                throw new Error(NullFunctionMessage);
5005 <            int b = batch(), c;
5006 <            while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5007 <                do {} while (!casPending(c = pending, c+1));
5008 <                new SearchKeysTask<K,V,U>(this, b >>>= 1, true,
5009 <                                          searchFunction, result).fork();
5010 <            }
5011 <            U u;
5012 <            while (result.get() == null && advance() != null) {
5013 <                if ((u = searchFunction.apply((K)nextKey)) != null) {
5014 <                    if (result.compareAndSet(null, u)) {
5015 <                        for (BulkTask<K,V,?> a = this, p;;) {
5016 <                            if ((p = a.parent) == null) {
5017 <                                a.quietlyComplete();
5018 <                                break;
5019 <                            }
5020 <                            a = p;
5021 <                        }
4999 >        public final U getRawResult() { return result.get(); }
5000 >        public final void compute() {
5001 >            final Fun<? super K, ? extends U> searchFunction;
5002 >            final AtomicReference<U> result;
5003 >            if ((searchFunction = this.searchFunction) != null &&
5004 >                (result = this.result) != null) {
5005 >                for (int i = baseIndex, f, h; batch > 0 &&
5006 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5007 >                    if (result.get() != null)
5008 >                        return;
5009 >                    addToPendingCount(1);
5010 >                    new SearchKeysTask<K,V,U>
5011 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5012 >                         searchFunction, result).fork();
5013 >                }
5014 >                while (result.get() == null) {
5015 >                    U u;
5016 >                    Node<K,V> p;
5017 >                    if ((p = advance()) == null) {
5018 >                        propagateCompletion();
5019 >                        break;
5020 >                    }
5021 >                    if ((u = searchFunction.apply(p.key)) != null) {
5022 >                        if (result.compareAndSet(null, u))
5023 >                            quietlyCompleteRoot();
5024 >                        break;
5025                      }
5298                    break;
5026                  }
5027              }
5301            tryComplete();
5028          }
5303        public final U getRawResult() { return result.get(); }
5029      }
5030  
5031      @SuppressWarnings("serial")
# Line 5309 | Line 5034 | public class ConcurrentHashMapV8<K, V>
5034          final Fun<? super V, ? extends U> searchFunction;
5035          final AtomicReference<U> result;
5036          SearchValuesTask
5037 <            (ConcurrentHashMapV8<K,V> m,
5037 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5038               Fun<? super V, ? extends U> searchFunction,
5039               AtomicReference<U> result) {
5040 <            super(m);
5040 >            super(p, b, i, f, t);
5041              this.searchFunction = searchFunction; this.result = result;
5042          }
5043 <        SearchValuesTask
5044 <            (BulkTask<K,V,?> p, int b, boolean split,
5045 <             Fun<? super V, ? extends U> searchFunction,
5046 <             AtomicReference<U> result) {
5047 <            super(p, b, split);
5048 <            this.searchFunction = searchFunction; this.result = result;
5049 <        }
5050 <        @SuppressWarnings("unchecked") public final void compute() {
5051 <            AtomicReference<U> result = this.result;
5052 <            final Fun<? super V, ? extends U> searchFunction =
5053 <                this.searchFunction;
5054 <            if (searchFunction == null || result == null)
5055 <                throw new Error(NullFunctionMessage);
5056 <            int b = batch(), c;
5057 <            while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5058 <                do {} while (!casPending(c = pending, c+1));
5059 <                new SearchValuesTask<K,V,U>(this, b >>>= 1, true,
5060 <                                            searchFunction, result).fork();
5061 <            }
5062 <            Object v; U u;
5063 <            while (result.get() == null && (v = advance()) != null) {
5064 <                if ((u = searchFunction.apply((V)v)) != null) {
5065 <                    if (result.compareAndSet(null, u)) {
5066 <                        for (BulkTask<K,V,?> a = this, p;;) {
5067 <                            if ((p = a.parent) == null) {
5068 <                                a.quietlyComplete();
5344 <                                break;
5345 <                            }
5346 <                            a = p;
5347 <                        }
5043 >        public final U getRawResult() { return result.get(); }
5044 >        public final void compute() {
5045 >            final Fun<? super V, ? extends U> searchFunction;
5046 >            final AtomicReference<U> result;
5047 >            if ((searchFunction = this.searchFunction) != null &&
5048 >                (result = this.result) != null) {
5049 >                for (int i = baseIndex, f, h; batch > 0 &&
5050 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5051 >                    if (result.get() != null)
5052 >                        return;
5053 >                    addToPendingCount(1);
5054 >                    new SearchValuesTask<K,V,U>
5055 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5056 >                         searchFunction, result).fork();
5057 >                }
5058 >                while (result.get() == null) {
5059 >                    U u;
5060 >                    Node<K,V> p;
5061 >                    if ((p = advance()) == null) {
5062 >                        propagateCompletion();
5063 >                        break;
5064 >                    }
5065 >                    if ((u = searchFunction.apply(p.val)) != null) {
5066 >                        if (result.compareAndSet(null, u))
5067 >                            quietlyCompleteRoot();
5068 >                        break;
5069                      }
5349                    break;
5070                  }
5071              }
5352            tryComplete();
5072          }
5354        public final U getRawResult() { return result.get(); }
5073      }
5074  
5075      @SuppressWarnings("serial")
# Line 5360 | Line 5078 | public class ConcurrentHashMapV8<K, V>
5078          final Fun<Entry<K,V>, ? extends U> searchFunction;
5079          final AtomicReference<U> result;
5080          SearchEntriesTask
5081 <            (ConcurrentHashMapV8<K,V> m,
5081 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5082               Fun<Entry<K,V>, ? extends U> searchFunction,
5083               AtomicReference<U> result) {
5084 <            super(m);
5084 >            super(p, b, i, f, t);
5085              this.searchFunction = searchFunction; this.result = result;
5086          }
5087 <        SearchEntriesTask
5088 <            (BulkTask<K,V,?> p, int b, boolean split,
5089 <             Fun<Entry<K,V>, ? extends U> searchFunction,
5090 <             AtomicReference<U> result) {
5091 <            super(p, b, split);
5092 <            this.searchFunction = searchFunction; this.result = result;
5093 <        }
5094 <        @SuppressWarnings("unchecked") public final void compute() {
5095 <            AtomicReference<U> result = this.result;
5096 <            final Fun<Entry<K,V>, ? extends U> searchFunction =
5097 <                this.searchFunction;
5098 <            if (searchFunction == null || result == null)
5099 <                throw new Error(NullFunctionMessage);
5100 <            int b = batch(), c;
5101 <            while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5102 <                do {} while (!casPending(c = pending, c+1));
5103 <                new SearchEntriesTask<K,V,U>(this, b >>>= 1, true,
5104 <                                             searchFunction, result).fork();
5105 <            }
5106 <            Object v; U u;
5107 <            while (result.get() == null && (v = advance()) != null) {
5108 <                if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5109 <                    if (result.compareAndSet(null, u)) {
5110 <                        for (BulkTask<K,V,?> a = this, p;;) {
5111 <                            if ((p = a.parent) == null) {
5112 <                                a.quietlyComplete();
5395 <                                break;
5396 <                            }
5397 <                            a = p;
5398 <                        }
5087 >        public final U getRawResult() { return result.get(); }
5088 >        public final void compute() {
5089 >            final Fun<Entry<K,V>, ? extends U> searchFunction;
5090 >            final AtomicReference<U> result;
5091 >            if ((searchFunction = this.searchFunction) != null &&
5092 >                (result = this.result) != null) {
5093 >                for (int i = baseIndex, f, h; batch > 0 &&
5094 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5095 >                    if (result.get() != null)
5096 >                        return;
5097 >                    addToPendingCount(1);
5098 >                    new SearchEntriesTask<K,V,U>
5099 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5100 >                         searchFunction, result).fork();
5101 >                }
5102 >                while (result.get() == null) {
5103 >                    U u;
5104 >                    Node<K,V> p;
5105 >                    if ((p = advance()) == null) {
5106 >                        propagateCompletion();
5107 >                        break;
5108 >                    }
5109 >                    if ((u = searchFunction.apply(p)) != null) {
5110 >                        if (result.compareAndSet(null, u))
5111 >                            quietlyCompleteRoot();
5112 >                        return;
5113                      }
5400                    break;
5114                  }
5115              }
5403            tryComplete();
5116          }
5405        public final U getRawResult() { return result.get(); }
5117      }
5118  
5119      @SuppressWarnings("serial")
# Line 5411 | Line 5122 | public class ConcurrentHashMapV8<K, V>
5122          final BiFun<? super K, ? super V, ? extends U> searchFunction;
5123          final AtomicReference<U> result;
5124          SearchMappingsTask
5125 <            (ConcurrentHashMapV8<K,V> m,
5415 <             BiFun<? super K, ? super V, ? extends U> searchFunction,
5416 <             AtomicReference<U> result) {
5417 <            super(m);
5418 <            this.searchFunction = searchFunction; this.result = result;
5419 <        }
5420 <        SearchMappingsTask
5421 <            (BulkTask<K,V,?> p, int b, boolean split,
5125 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5126               BiFun<? super K, ? super V, ? extends U> searchFunction,
5127               AtomicReference<U> result) {
5128 <            super(p, b, split);
5128 >            super(p, b, i, f, t);
5129              this.searchFunction = searchFunction; this.result = result;
5130          }
5131 <        @SuppressWarnings("unchecked") public final void compute() {
5132 <            AtomicReference<U> result = this.result;
5133 <            final BiFun<? super K, ? super V, ? extends U> searchFunction =
5134 <                this.searchFunction;
5135 <            if (searchFunction == null || result == null)
5136 <                throw new Error(NullFunctionMessage);
5137 <            int b = batch(), c;
5138 <            while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5139 <                do {} while (!casPending(c = pending, c+1));
5140 <                new SearchMappingsTask<K,V,U>(this, b >>>= 1, true,
5141 <                                              searchFunction, result).fork();
5142 <            }
5143 <            Object v; U u;
5144 <            while (result.get() == null && (v = advance()) != null) {
5145 <                if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5146 <                    if (result.compareAndSet(null, u)) {
5147 <                        for (BulkTask<K,V,?> a = this, p;;) {
5148 <                            if ((p = a.parent) == null) {
5149 <                                a.quietlyComplete();
5150 <                                break;
5151 <                            }
5152 <                            a = p;
5153 <                        }
5131 >        public final U getRawResult() { return result.get(); }
5132 >        public final void compute() {
5133 >            final BiFun<? super K, ? super V, ? extends U> searchFunction;
5134 >            final AtomicReference<U> result;
5135 >            if ((searchFunction = this.searchFunction) != null &&
5136 >                (result = this.result) != null) {
5137 >                for (int i = baseIndex, f, h; batch > 0 &&
5138 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5139 >                    if (result.get() != null)
5140 >                        return;
5141 >                    addToPendingCount(1);
5142 >                    new SearchMappingsTask<K,V,U>
5143 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5144 >                         searchFunction, result).fork();
5145 >                }
5146 >                while (result.get() == null) {
5147 >                    U u;
5148 >                    Node<K,V> p;
5149 >                    if ((p = advance()) == null) {
5150 >                        propagateCompletion();
5151 >                        break;
5152 >                    }
5153 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5154 >                        if (result.compareAndSet(null, u))
5155 >                            quietlyCompleteRoot();
5156 >                        break;
5157                      }
5451                    break;
5158                  }
5159              }
5454            tryComplete();
5160          }
5456        public final U getRawResult() { return result.get(); }
5161      }
5162  
5163      @SuppressWarnings("serial")
# Line 5461 | Line 5165 | public class ConcurrentHashMapV8<K, V>
5165          extends BulkTask<K,V,K> {
5166          final BiFun<? super K, ? super K, ? extends K> reducer;
5167          K result;
5168 <        ReduceKeysTask<K,V> sibling;
5465 <        ReduceKeysTask
5466 <            (ConcurrentHashMapV8<K,V> m,
5467 <             BiFun<? super K, ? super K, ? extends K> reducer) {
5468 <            super(m);
5469 <            this.reducer = reducer;
5470 <        }
5168 >        ReduceKeysTask<K,V> rights, nextRight;
5169          ReduceKeysTask
5170 <            (BulkTask<K,V,?> p, int b, boolean split,
5170 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5171 >             ReduceKeysTask<K,V> nextRight,
5172               BiFun<? super K, ? super K, ? extends K> reducer) {
5173 <            super(p, b, split);
5173 >            super(p, b, i, f, t); this.nextRight = nextRight;
5174              this.reducer = reducer;
5175          }
5176 <
5177 <        @SuppressWarnings("unchecked") public final void compute() {
5178 <            ReduceKeysTask<K,V> t = this;
5179 <            final BiFun<? super K, ? super K, ? extends K> reducer =
5180 <                this.reducer;
5181 <            if (reducer == null)
5182 <                throw new Error(NullFunctionMessage);
5183 <            int b = batch();
5184 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5185 <                b >>>= 1;
5186 <                t.pending = 1;
5187 <                ReduceKeysTask<K,V> rt =
5188 <                    new ReduceKeysTask<K,V>
5189 <                    (t, b, true, reducer);
5190 <                t = new ReduceKeysTask<K,V>
5191 <                    (t, b, false, reducer);
5192 <                t.sibling = rt;
5193 <                rt.sibling = t;
5194 <                rt.fork();
5195 <            }
5196 <            K r = null;
5197 <            while (t.advance() != null) {
5198 <                K u = (K)t.nextKey;
5199 <                r = (r == null) ? u : reducer.apply(r, u);
5200 <            }
5201 <            t.result = r;
5202 <            for (;;) {
5203 <                int c; BulkTask<K,V,?> par; ReduceKeysTask<K,V> s, p; K u;
5204 <                if ((par = t.parent) == null ||
5506 <                    !(par instanceof ReduceKeysTask)) {
5507 <                    t.quietlyComplete();
5508 <                    break;
5509 <                }
5510 <                else if ((c = (p = (ReduceKeysTask<K,V>)par).pending) == 0) {
5511 <                    if ((s = t.sibling) != null && (u = s.result) != null)
5512 <                        r = (r == null) ? u : reducer.apply(r, u);
5513 <                    (t = p).result = r;
5176 >        public final K getRawResult() { return result; }
5177 >        public final void compute() {
5178 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5179 >            if ((reducer = this.reducer) != null) {
5180 >                for (int i = baseIndex, f, h; batch > 0 &&
5181 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5182 >                    addToPendingCount(1);
5183 >                    (rights = new ReduceKeysTask<K,V>
5184 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5185 >                      rights, reducer)).fork();
5186 >                }
5187 >                K r = null;
5188 >                for (Node<K,V> p; (p = advance()) != null; ) {
5189 >                    K u = p.key;
5190 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5191 >                }
5192 >                result = r;
5193 >                CountedCompleter<?> c;
5194 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5195 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5196 >                        t = (ReduceKeysTask<K,V>)c,
5197 >                        s = t.rights;
5198 >                    while (s != null) {
5199 >                        K tr, sr;
5200 >                        if ((sr = s.result) != null)
5201 >                            t.result = (((tr = t.result) == null) ? sr :
5202 >                                        reducer.apply(tr, sr));
5203 >                        s = t.rights = s.nextRight;
5204 >                    }
5205                  }
5515                else if (p.casPending(c, 0))
5516                    break;
5206              }
5207          }
5519        public final K getRawResult() { return result; }
5208      }
5209  
5210      @SuppressWarnings("serial")
# Line 5524 | Line 5212 | public class ConcurrentHashMapV8<K, V>
5212          extends BulkTask<K,V,V> {
5213          final BiFun<? super V, ? super V, ? extends V> reducer;
5214          V result;
5215 <        ReduceValuesTask<K,V> sibling;
5528 <        ReduceValuesTask
5529 <            (ConcurrentHashMapV8<K,V> m,
5530 <             BiFun<? super V, ? super V, ? extends V> reducer) {
5531 <            super(m);
5532 <            this.reducer = reducer;
5533 <        }
5215 >        ReduceValuesTask<K,V> rights, nextRight;
5216          ReduceValuesTask
5217 <            (BulkTask<K,V,?> p, int b, boolean split,
5217 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5218 >             ReduceValuesTask<K,V> nextRight,
5219               BiFun<? super V, ? super V, ? extends V> reducer) {
5220 <            super(p, b, split);
5220 >            super(p, b, i, f, t); this.nextRight = nextRight;
5221              this.reducer = reducer;
5222          }
5223 <
5224 <        @SuppressWarnings("unchecked") public final void compute() {
5225 <            ReduceValuesTask<K,V> t = this;
5226 <            final BiFun<? super V, ? super V, ? extends V> reducer =
5227 <                this.reducer;
5228 <            if (reducer == null)
5229 <                throw new Error(NullFunctionMessage);
5230 <            int b = batch();
5231 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5232 <                b >>>= 1;
5233 <                t.pending = 1;
5234 <                ReduceValuesTask<K,V> rt =
5235 <                    new ReduceValuesTask<K,V>
5236 <                    (t, b, true, reducer);
5237 <                t = new ReduceValuesTask<K,V>
5238 <                    (t, b, false, reducer);
5239 <                t.sibling = rt;
5240 <                rt.sibling = t;
5241 <                rt.fork();
5242 <            }
5243 <            V r = null;
5244 <            Object v;
5245 <            while ((v = t.advance()) != null) {
5246 <                V u = (V)v;
5247 <                r = (r == null) ? u : reducer.apply(r, u);
5248 <            }
5249 <            t.result = r;
5250 <            for (;;) {
5251 <                int c; BulkTask<K,V,?> par; ReduceValuesTask<K,V> s, p; V u;
5569 <                if ((par = t.parent) == null ||
5570 <                    !(par instanceof ReduceValuesTask)) {
5571 <                    t.quietlyComplete();
5572 <                    break;
5573 <                }
5574 <                else if ((c = (p = (ReduceValuesTask<K,V>)par).pending) == 0) {
5575 <                    if ((s = t.sibling) != null && (u = s.result) != null)
5576 <                        r = (r == null) ? u : reducer.apply(r, u);
5577 <                    (t = p).result = r;
5223 >        public final V getRawResult() { return result; }
5224 >        public final void compute() {
5225 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5226 >            if ((reducer = this.reducer) != null) {
5227 >                for (int i = baseIndex, f, h; batch > 0 &&
5228 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5229 >                    addToPendingCount(1);
5230 >                    (rights = new ReduceValuesTask<K,V>
5231 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5232 >                      rights, reducer)).fork();
5233 >                }
5234 >                V r = null;
5235 >                for (Node<K,V> p; (p = advance()) != null; ) {
5236 >                    V v = p.val;
5237 >                    r = (r == null) ? v : reducer.apply(r, v);
5238 >                }
5239 >                result = r;
5240 >                CountedCompleter<?> c;
5241 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5242 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5243 >                        t = (ReduceValuesTask<K,V>)c,
5244 >                        s = t.rights;
5245 >                    while (s != null) {
5246 >                        V tr, sr;
5247 >                        if ((sr = s.result) != null)
5248 >                            t.result = (((tr = t.result) == null) ? sr :
5249 >                                        reducer.apply(tr, sr));
5250 >                        s = t.rights = s.nextRight;
5251 >                    }
5252                  }
5579                else if (p.casPending(c, 0))
5580                    break;
5253              }
5254          }
5583        public final V getRawResult() { return result; }
5255      }
5256  
5257      @SuppressWarnings("serial")
# Line 5588 | Line 5259 | public class ConcurrentHashMapV8<K, V>
5259          extends BulkTask<K,V,Map.Entry<K,V>> {
5260          final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5261          Map.Entry<K,V> result;
5262 <        ReduceEntriesTask<K,V> sibling;
5262 >        ReduceEntriesTask<K,V> rights, nextRight;
5263          ReduceEntriesTask
5264 <            (ConcurrentHashMapV8<K,V> m,
5264 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5265 >             ReduceEntriesTask<K,V> nextRight,
5266               BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5267 <            super(m);
5267 >            super(p, b, i, f, t); this.nextRight = nextRight;
5268              this.reducer = reducer;
5269          }
5270 <        ReduceEntriesTask
5271 <            (BulkTask<K,V,?> p, int b, boolean split,
5272 <             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5273 <            super(p, b, split);
5274 <            this.reducer = reducer;
5275 <        }
5276 <
5277 <        @SuppressWarnings("unchecked") public final void compute() {
5278 <            ReduceEntriesTask<K,V> t = this;
5279 <            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5280 <                this.reducer;
5281 <            if (reducer == null)
5282 <                throw new Error(NullFunctionMessage);
5283 <            int b = batch();
5284 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5285 <                b >>>= 1;
5286 <                t.pending = 1;
5287 <                ReduceEntriesTask<K,V> rt =
5288 <                    new ReduceEntriesTask<K,V>
5289 <                    (t, b, true, reducer);
5290 <                t = new ReduceEntriesTask<K,V>
5291 <                    (t, b, false, reducer);
5292 <                t.sibling = rt;
5293 <                rt.sibling = t;
5294 <                rt.fork();
5295 <            }
5296 <            Map.Entry<K,V> r = null;
5625 <            Object v;
5626 <            while ((v = t.advance()) != null) {
5627 <                Map.Entry<K,V> u = entryFor((K)t.nextKey, (V)v);
5628 <                r = (r == null) ? u : reducer.apply(r, u);
5629 <            }
5630 <            t.result = r;
5631 <            for (;;) {
5632 <                int c; BulkTask<K,V,?> par; ReduceEntriesTask<K,V> s, p;
5633 <                Map.Entry<K,V> u;
5634 <                if ((par = t.parent) == null ||
5635 <                    !(par instanceof ReduceEntriesTask)) {
5636 <                    t.quietlyComplete();
5637 <                    break;
5638 <                }
5639 <                else if ((c = (p = (ReduceEntriesTask<K,V>)par).pending) == 0) {
5640 <                    if ((s = t.sibling) != null && (u = s.result) != null)
5641 <                        r = (r == null) ? u : reducer.apply(r, u);
5642 <                    (t = p).result = r;
5270 >        public final Map.Entry<K,V> getRawResult() { return result; }
5271 >        public final void compute() {
5272 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5273 >            if ((reducer = this.reducer) != null) {
5274 >                for (int i = baseIndex, f, h; batch > 0 &&
5275 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5276 >                    addToPendingCount(1);
5277 >                    (rights = new ReduceEntriesTask<K,V>
5278 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5279 >                      rights, reducer)).fork();
5280 >                }
5281 >                Map.Entry<K,V> r = null;
5282 >                for (Node<K,V> p; (p = advance()) != null; )
5283 >                    r = (r == null) ? p : reducer.apply(r, p);
5284 >                result = r;
5285 >                CountedCompleter<?> c;
5286 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5287 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5288 >                        t = (ReduceEntriesTask<K,V>)c,
5289 >                        s = t.rights;
5290 >                    while (s != null) {
5291 >                        Map.Entry<K,V> tr, sr;
5292 >                        if ((sr = s.result) != null)
5293 >                            t.result = (((tr = t.result) == null) ? sr :
5294 >                                        reducer.apply(tr, sr));
5295 >                        s = t.rights = s.nextRight;
5296 >                    }
5297                  }
5644                else if (p.casPending(c, 0))
5645                    break;
5298              }
5299          }
5648        public final Map.Entry<K,V> getRawResult() { return result; }
5300      }
5301  
5302      @SuppressWarnings("serial")
# Line 5654 | Line 5305 | public class ConcurrentHashMapV8<K, V>
5305          final Fun<? super K, ? extends U> transformer;
5306          final BiFun<? super U, ? super U, ? extends U> reducer;
5307          U result;
5308 <        MapReduceKeysTask<K,V,U> sibling;
5658 <        MapReduceKeysTask
5659 <            (ConcurrentHashMapV8<K,V> m,
5660 <             Fun<? super K, ? extends U> transformer,
5661 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5662 <            super(m);
5663 <            this.transformer = transformer;
5664 <            this.reducer = reducer;
5665 <        }
5308 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5309          MapReduceKeysTask
5310 <            (BulkTask<K,V,?> p, int b, boolean split,
5310 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5311 >             MapReduceKeysTask<K,V,U> nextRight,
5312               Fun<? super K, ? extends U> transformer,
5313               BiFun<? super U, ? super U, ? extends U> reducer) {
5314 <            super(p, b, split);
5314 >            super(p, b, i, f, t); this.nextRight = nextRight;
5315              this.transformer = transformer;
5316              this.reducer = reducer;
5317          }
5318 <        @SuppressWarnings("unchecked") public final void compute() {
5319 <            MapReduceKeysTask<K,V,U> t = this;
5320 <            final Fun<? super K, ? extends U> transformer =
5321 <                this.transformer;
5322 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5323 <                this.reducer;
5324 <            if (transformer == null || reducer == null)
5325 <                throw new Error(NullFunctionMessage);
5326 <            int b = batch();
5327 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5328 <                b >>>= 1;
5329 <                t.pending = 1;
5330 <                MapReduceKeysTask<K,V,U> rt =
5331 <                    new MapReduceKeysTask<K,V,U>
5332 <                    (t, b, true, transformer, reducer);
5333 <                t = new MapReduceKeysTask<K,V,U>
5334 <                    (t, b, false, transformer, reducer);
5691 <                t.sibling = rt;
5692 <                rt.sibling = t;
5693 <                rt.fork();
5694 <            }
5695 <            U r = null, u;
5696 <            while (t.advance() != null) {
5697 <                if ((u = transformer.apply((K)t.nextKey)) != null)
5698 <                    r = (r == null) ? u : reducer.apply(r, u);
5699 <            }
5700 <            t.result = r;
5701 <            for (;;) {
5702 <                int c; BulkTask<K,V,?> par; MapReduceKeysTask<K,V,U> s, p;
5703 <                if ((par = t.parent) == null ||
5704 <                    !(par instanceof MapReduceKeysTask)) {
5705 <                    t.quietlyComplete();
5706 <                    break;
5707 <                }
5708 <                else if ((c = (p = (MapReduceKeysTask<K,V,U>)par).pending) == 0) {
5709 <                    if ((s = t.sibling) != null && (u = s.result) != null)
5318 >        public final U getRawResult() { return result; }
5319 >        public final void compute() {
5320 >            final Fun<? super K, ? extends U> transformer;
5321 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5322 >            if ((transformer = this.transformer) != null &&
5323 >                (reducer = this.reducer) != null) {
5324 >                for (int i = baseIndex, f, h; batch > 0 &&
5325 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5326 >                    addToPendingCount(1);
5327 >                    (rights = new MapReduceKeysTask<K,V,U>
5328 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5329 >                      rights, transformer, reducer)).fork();
5330 >                }
5331 >                U r = null;
5332 >                for (Node<K,V> p; (p = advance()) != null; ) {
5333 >                    U u;
5334 >                    if ((u = transformer.apply(p.key)) != null)
5335                          r = (r == null) ? u : reducer.apply(r, u);
5711                    (t = p).result = r;
5336                  }
5337 <                else if (p.casPending(c, 0))
5338 <                    break;
5337 >                result = r;
5338 >                CountedCompleter<?> c;
5339 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5340 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5341 >                        t = (MapReduceKeysTask<K,V,U>)c,
5342 >                        s = t.rights;
5343 >                    while (s != null) {
5344 >                        U tr, sr;
5345 >                        if ((sr = s.result) != null)
5346 >                            t.result = (((tr = t.result) == null) ? sr :
5347 >                                        reducer.apply(tr, sr));
5348 >                        s = t.rights = s.nextRight;
5349 >                    }
5350 >                }
5351              }
5352          }
5717        public final U getRawResult() { return result; }
5353      }
5354  
5355      @SuppressWarnings("serial")
# Line 5723 | Line 5358 | public class ConcurrentHashMapV8<K, V>
5358          final Fun<? super V, ? extends U> transformer;
5359          final BiFun<? super U, ? super U, ? extends U> reducer;
5360          U result;
5361 <        MapReduceValuesTask<K,V,U> sibling;
5361 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5362          MapReduceValuesTask
5363 <            (ConcurrentHashMapV8<K,V> m,
5363 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5364 >             MapReduceValuesTask<K,V,U> nextRight,
5365               Fun<? super V, ? extends U> transformer,
5366               BiFun<? super U, ? super U, ? extends U> reducer) {
5367 <            super(m);
5367 >            super(p, b, i, f, t); this.nextRight = nextRight;
5368              this.transformer = transformer;
5369              this.reducer = reducer;
5370          }
5371 <        MapReduceValuesTask
5372 <            (BulkTask<K,V,?> p, int b, boolean split,
5373 <             Fun<? super V, ? extends U> transformer,
5374 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5375 <            super(p, b, split);
5376 <            this.transformer = transformer;
5377 <            this.reducer = reducer;
5378 <        }
5379 <        @SuppressWarnings("unchecked") public final void compute() {
5380 <            MapReduceValuesTask<K,V,U> t = this;
5381 <            final Fun<? super V, ? extends U> transformer =
5382 <                this.transformer;
5383 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5384 <                this.reducer;
5385 <            if (transformer == null || reducer == null)
5386 <                throw new Error(NullFunctionMessage);
5387 <            int b = batch();
5752 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5753 <                b >>>= 1;
5754 <                t.pending = 1;
5755 <                MapReduceValuesTask<K,V,U> rt =
5756 <                    new MapReduceValuesTask<K,V,U>
5757 <                    (t, b, true, transformer, reducer);
5758 <                t = new MapReduceValuesTask<K,V,U>
5759 <                    (t, b, false, transformer, reducer);
5760 <                t.sibling = rt;
5761 <                rt.sibling = t;
5762 <                rt.fork();
5763 <            }
5764 <            U r = null, u;
5765 <            Object v;
5766 <            while ((v = t.advance()) != null) {
5767 <                if ((u = transformer.apply((V)v)) != null)
5768 <                    r = (r == null) ? u : reducer.apply(r, u);
5769 <            }
5770 <            t.result = r;
5771 <            for (;;) {
5772 <                int c; BulkTask<K,V,?> par; MapReduceValuesTask<K,V,U> s, p;
5773 <                if ((par = t.parent) == null ||
5774 <                    !(par instanceof MapReduceValuesTask)) {
5775 <                    t.quietlyComplete();
5776 <                    break;
5777 <                }
5778 <                else if ((c = (p = (MapReduceValuesTask<K,V,U>)par).pending) == 0) {
5779 <                    if ((s = t.sibling) != null && (u = s.result) != null)
5371 >        public final U getRawResult() { return result; }
5372 >        public final void compute() {
5373 >            final Fun<? super V, ? extends U> transformer;
5374 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5375 >            if ((transformer = this.transformer) != null &&
5376 >                (reducer = this.reducer) != null) {
5377 >                for (int i = baseIndex, f, h; batch > 0 &&
5378 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5379 >                    addToPendingCount(1);
5380 >                    (rights = new MapReduceValuesTask<K,V,U>
5381 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5382 >                      rights, transformer, reducer)).fork();
5383 >                }
5384 >                U r = null;
5385 >                for (Node<K,V> p; (p = advance()) != null; ) {
5386 >                    U u;
5387 >                    if ((u = transformer.apply(p.val)) != null)
5388                          r = (r == null) ? u : reducer.apply(r, u);
5781                    (t = p).result = r;
5389                  }
5390 <                else if (p.casPending(c, 0))
5391 <                    break;
5390 >                result = r;
5391 >                CountedCompleter<?> c;
5392 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5393 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5394 >                        t = (MapReduceValuesTask<K,V,U>)c,
5395 >                        s = t.rights;
5396 >                    while (s != null) {
5397 >                        U tr, sr;
5398 >                        if ((sr = s.result) != null)
5399 >                            t.result = (((tr = t.result) == null) ? sr :
5400 >                                        reducer.apply(tr, sr));
5401 >                        s = t.rights = s.nextRight;
5402 >                    }
5403 >                }
5404              }
5405          }
5787        public final U getRawResult() { return result; }
5406      }
5407  
5408      @SuppressWarnings("serial")
# Line 5793 | Line 5411 | public class ConcurrentHashMapV8<K, V>
5411          final Fun<Map.Entry<K,V>, ? extends U> transformer;
5412          final BiFun<? super U, ? super U, ? extends U> reducer;
5413          U result;
5414 <        MapReduceEntriesTask<K,V,U> sibling;
5414 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5415          MapReduceEntriesTask
5416 <            (ConcurrentHashMapV8<K,V> m,
5416 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5417 >             MapReduceEntriesTask<K,V,U> nextRight,
5418               Fun<Map.Entry<K,V>, ? extends U> transformer,
5419               BiFun<? super U, ? super U, ? extends U> reducer) {
5420 <            super(m);
5420 >            super(p, b, i, f, t); this.nextRight = nextRight;
5421              this.transformer = transformer;
5422              this.reducer = reducer;
5423          }
5424 <        MapReduceEntriesTask
5425 <            (BulkTask<K,V,?> p, int b, boolean split,
5426 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5427 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5428 <            super(p, b, split);
5429 <            this.transformer = transformer;
5430 <            this.reducer = reducer;
5431 <        }
5432 <        @SuppressWarnings("unchecked") public final void compute() {
5433 <            MapReduceEntriesTask<K,V,U> t = this;
5434 <            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5435 <                this.transformer;
5436 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5437 <                this.reducer;
5438 <            if (transformer == null || reducer == null)
5439 <                throw new Error(NullFunctionMessage);
5440 <            int b = batch();
5822 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5823 <                b >>>= 1;
5824 <                t.pending = 1;
5825 <                MapReduceEntriesTask<K,V,U> rt =
5826 <                    new MapReduceEntriesTask<K,V,U>
5827 <                    (t, b, true, transformer, reducer);
5828 <                t = new MapReduceEntriesTask<K,V,U>
5829 <                    (t, b, false, transformer, reducer);
5830 <                t.sibling = rt;
5831 <                rt.sibling = t;
5832 <                rt.fork();
5833 <            }
5834 <            U r = null, u;
5835 <            Object v;
5836 <            while ((v = t.advance()) != null) {
5837 <                if ((u = transformer.apply(entryFor((K)t.nextKey, (V)v))) != null)
5838 <                    r = (r == null) ? u : reducer.apply(r, u);
5839 <            }
5840 <            t.result = r;
5841 <            for (;;) {
5842 <                int c; BulkTask<K,V,?> par; MapReduceEntriesTask<K,V,U> s, p;
5843 <                if ((par = t.parent) == null ||
5844 <                    !(par instanceof MapReduceEntriesTask)) {
5845 <                    t.quietlyComplete();
5846 <                    break;
5847 <                }
5848 <                else if ((c = (p = (MapReduceEntriesTask<K,V,U>)par).pending) == 0) {
5849 <                    if ((s = t.sibling) != null && (u = s.result) != null)
5424 >        public final U getRawResult() { return result; }
5425 >        public final void compute() {
5426 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5427 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5428 >            if ((transformer = this.transformer) != null &&
5429 >                (reducer = this.reducer) != null) {
5430 >                for (int i = baseIndex, f, h; batch > 0 &&
5431 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5432 >                    addToPendingCount(1);
5433 >                    (rights = new MapReduceEntriesTask<K,V,U>
5434 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5435 >                      rights, transformer, reducer)).fork();
5436 >                }
5437 >                U r = null;
5438 >                for (Node<K,V> p; (p = advance()) != null; ) {
5439 >                    U u;
5440 >                    if ((u = transformer.apply(p)) != null)
5441                          r = (r == null) ? u : reducer.apply(r, u);
5851                    (t = p).result = r;
5442                  }
5443 <                else if (p.casPending(c, 0))
5444 <                    break;
5443 >                result = r;
5444 >                CountedCompleter<?> c;
5445 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5446 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5447 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5448 >                        s = t.rights;
5449 >                    while (s != null) {
5450 >                        U tr, sr;
5451 >                        if ((sr = s.result) != null)
5452 >                            t.result = (((tr = t.result) == null) ? sr :
5453 >                                        reducer.apply(tr, sr));
5454 >                        s = t.rights = s.nextRight;
5455 >                    }
5456 >                }
5457              }
5458          }
5857        public final U getRawResult() { return result; }
5459      }
5460  
5461      @SuppressWarnings("serial")
# Line 5863 | Line 5464 | public class ConcurrentHashMapV8<K, V>
5464          final BiFun<? super K, ? super V, ? extends U> transformer;
5465          final BiFun<? super U, ? super U, ? extends U> reducer;
5466          U result;
5467 <        MapReduceMappingsTask<K,V,U> sibling;
5867 <        MapReduceMappingsTask
5868 <            (ConcurrentHashMapV8<K,V> m,
5869 <             BiFun<? super K, ? super V, ? extends U> transformer,
5870 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5871 <            super(m);
5872 <            this.transformer = transformer;
5873 <            this.reducer = reducer;
5874 <        }
5467 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5468          MapReduceMappingsTask
5469 <            (BulkTask<K,V,?> p, int b, boolean split,
5469 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5470 >             MapReduceMappingsTask<K,V,U> nextRight,
5471               BiFun<? super K, ? super V, ? extends U> transformer,
5472               BiFun<? super U, ? super U, ? extends U> reducer) {
5473 <            super(p, b, split);
5473 >            super(p, b, i, f, t); this.nextRight = nextRight;
5474              this.transformer = transformer;
5475              this.reducer = reducer;
5476          }
5477 <        @SuppressWarnings("unchecked") public final void compute() {
5478 <            MapReduceMappingsTask<K,V,U> t = this;
5479 <            final BiFun<? super K, ? super V, ? extends U> transformer =
5480 <                this.transformer;
5481 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5482 <                this.reducer;
5483 <            if (transformer == null || reducer == null)
5484 <                throw new Error(NullFunctionMessage);
5485 <            int b = batch();
5486 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5487 <                b >>>= 1;
5488 <                t.pending = 1;
5489 <                MapReduceMappingsTask<K,V,U> rt =
5490 <                    new MapReduceMappingsTask<K,V,U>
5491 <                    (t, b, true, transformer, reducer);
5492 <                t = new MapReduceMappingsTask<K,V,U>
5493 <                    (t, b, false, transformer, reducer);
5900 <                t.sibling = rt;
5901 <                rt.sibling = t;
5902 <                rt.fork();
5903 <            }
5904 <            U r = null, u;
5905 <            Object v;
5906 <            while ((v = t.advance()) != null) {
5907 <                if ((u = transformer.apply((K)t.nextKey, (V)v)) != null)
5908 <                    r = (r == null) ? u : reducer.apply(r, u);
5909 <            }
5910 <            for (;;) {
5911 <                int c; BulkTask<K,V,?> par; MapReduceMappingsTask<K,V,U> s, p;
5912 <                if ((par = t.parent) == null ||
5913 <                    !(par instanceof MapReduceMappingsTask)) {
5914 <                    t.quietlyComplete();
5915 <                    break;
5916 <                }
5917 <                else if ((c = (p = (MapReduceMappingsTask<K,V,U>)par).pending) == 0) {
5918 <                    if ((s = t.sibling) != null && (u = s.result) != null)
5477 >        public final U getRawResult() { return result; }
5478 >        public final void compute() {
5479 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5480 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5481 >            if ((transformer = this.transformer) != null &&
5482 >                (reducer = this.reducer) != null) {
5483 >                for (int i = baseIndex, f, h; batch > 0 &&
5484 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5485 >                    addToPendingCount(1);
5486 >                    (rights = new MapReduceMappingsTask<K,V,U>
5487 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5488 >                      rights, transformer, reducer)).fork();
5489 >                }
5490 >                U r = null;
5491 >                for (Node<K,V> p; (p = advance()) != null; ) {
5492 >                    U u;
5493 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5494                          r = (r == null) ? u : reducer.apply(r, u);
5920                    (t = p).result = r;
5495                  }
5496 <                else if (p.casPending(c, 0))
5497 <                    break;
5496 >                result = r;
5497 >                CountedCompleter<?> c;
5498 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5499 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5500 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5501 >                        s = t.rights;
5502 >                    while (s != null) {
5503 >                        U tr, sr;
5504 >                        if ((sr = s.result) != null)
5505 >                            t.result = (((tr = t.result) == null) ? sr :
5506 >                                        reducer.apply(tr, sr));
5507 >                        s = t.rights = s.nextRight;
5508 >                    }
5509 >                }
5510              }
5511          }
5926        public final U getRawResult() { return result; }
5512      }
5513  
5514      @SuppressWarnings("serial")
# Line 5933 | Line 5518 | public class ConcurrentHashMapV8<K, V>
5518          final DoubleByDoubleToDouble reducer;
5519          final double basis;
5520          double result;
5521 <        MapReduceKeysToDoubleTask<K,V> sibling;
5521 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5522          MapReduceKeysToDoubleTask
5523 <            (ConcurrentHashMapV8<K,V> m,
5523 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5524 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5525               ObjectToDouble<? super K> transformer,
5526               double basis,
5527               DoubleByDoubleToDouble reducer) {
5528 <            super(m);
5528 >            super(p, b, i, f, t); this.nextRight = nextRight;
5529              this.transformer = transformer;
5530              this.basis = basis; this.reducer = reducer;
5531          }
5532 <        MapReduceKeysToDoubleTask
5533 <            (BulkTask<K,V,?> p, int b, boolean split,
5534 <             ObjectToDouble<? super K> transformer,
5535 <             double basis,
5536 <             DoubleByDoubleToDouble reducer) {
5537 <            super(p, b, split);
5538 <            this.transformer = transformer;
5539 <            this.basis = basis; this.reducer = reducer;
5540 <        }
5541 <        @SuppressWarnings("unchecked") public final void compute() {
5542 <            MapReduceKeysToDoubleTask<K,V> t = this;
5543 <            final ObjectToDouble<? super K> transformer =
5544 <                this.transformer;
5545 <            final DoubleByDoubleToDouble reducer = this.reducer;
5546 <            if (transformer == null || reducer == null)
5547 <                throw new Error(NullFunctionMessage);
5548 <            final double id = this.basis;
5549 <            int b = batch();
5550 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5551 <                b >>>= 1;
5552 <                t.pending = 1;
5553 <                MapReduceKeysToDoubleTask<K,V> rt =
5554 <                    new MapReduceKeysToDoubleTask<K,V>
5555 <                    (t, b, true, transformer, id, reducer);
5556 <                t = new MapReduceKeysToDoubleTask<K,V>
5557 <                    (t, b, false, transformer, id, reducer);
5972 <                t.sibling = rt;
5973 <                rt.sibling = t;
5974 <                rt.fork();
5975 <            }
5976 <            double r = id;
5977 <            while (t.advance() != null)
5978 <                r = reducer.apply(r, transformer.apply((K)t.nextKey));
5979 <            t.result = r;
5980 <            for (;;) {
5981 <                int c; BulkTask<K,V,?> par; MapReduceKeysToDoubleTask<K,V> s, p;
5982 <                if ((par = t.parent) == null ||
5983 <                    !(par instanceof MapReduceKeysToDoubleTask)) {
5984 <                    t.quietlyComplete();
5985 <                    break;
5986 <                }
5987 <                else if ((c = (p = (MapReduceKeysToDoubleTask<K,V>)par).pending) == 0) {
5988 <                    if ((s = t.sibling) != null)
5989 <                        r = reducer.apply(r, s.result);
5990 <                    (t = p).result = r;
5532 >        public final Double getRawResult() { return result; }
5533 >        public final void compute() {
5534 >            final ObjectToDouble<? super K> transformer;
5535 >            final DoubleByDoubleToDouble reducer;
5536 >            if ((transformer = this.transformer) != null &&
5537 >                (reducer = this.reducer) != null) {
5538 >                double r = this.basis;
5539 >                for (int i = baseIndex, f, h; batch > 0 &&
5540 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5541 >                    addToPendingCount(1);
5542 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5543 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5544 >                      rights, transformer, r, reducer)).fork();
5545 >                }
5546 >                for (Node<K,V> p; (p = advance()) != null; )
5547 >                    r = reducer.apply(r, transformer.apply(p.key));
5548 >                result = r;
5549 >                CountedCompleter<?> c;
5550 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5551 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5552 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5553 >                        s = t.rights;
5554 >                    while (s != null) {
5555 >                        t.result = reducer.apply(t.result, s.result);
5556 >                        s = t.rights = s.nextRight;
5557 >                    }
5558                  }
5992                else if (p.casPending(c, 0))
5993                    break;
5559              }
5560          }
5996        public final Double getRawResult() { return result; }
5561      }
5562  
5563      @SuppressWarnings("serial")
# Line 6003 | Line 5567 | public class ConcurrentHashMapV8<K, V>
5567          final DoubleByDoubleToDouble reducer;
5568          final double basis;
5569          double result;
5570 <        MapReduceValuesToDoubleTask<K,V> sibling;
5570 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5571          MapReduceValuesToDoubleTask
5572 <            (ConcurrentHashMapV8<K,V> m,
5572 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5573 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5574               ObjectToDouble<? super V> transformer,
5575               double basis,
5576               DoubleByDoubleToDouble reducer) {
5577 <            super(m);
5577 >            super(p, b, i, f, t); this.nextRight = nextRight;
5578              this.transformer = transformer;
5579              this.basis = basis; this.reducer = reducer;
5580          }
5581 <        MapReduceValuesToDoubleTask
5582 <            (BulkTask<K,V,?> p, int b, boolean split,
5583 <             ObjectToDouble<? super V> transformer,
5584 <             double basis,
5585 <             DoubleByDoubleToDouble reducer) {
5586 <            super(p, b, split);
5587 <            this.transformer = transformer;
5588 <            this.basis = basis; this.reducer = reducer;
5589 <        }
5590 <        @SuppressWarnings("unchecked") public final void compute() {
5591 <            MapReduceValuesToDoubleTask<K,V> t = this;
5592 <            final ObjectToDouble<? super V> transformer =
5593 <                this.transformer;
5594 <            final DoubleByDoubleToDouble reducer = this.reducer;
5595 <            if (transformer == null || reducer == null)
5596 <                throw new Error(NullFunctionMessage);
5597 <            final double id = this.basis;
5598 <            int b = batch();
5599 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5600 <                b >>>= 1;
5601 <                t.pending = 1;
5602 <                MapReduceValuesToDoubleTask<K,V> rt =
5603 <                    new MapReduceValuesToDoubleTask<K,V>
5604 <                    (t, b, true, transformer, id, reducer);
5605 <                t = new MapReduceValuesToDoubleTask<K,V>
5606 <                    (t, b, false, transformer, id, reducer);
6042 <                t.sibling = rt;
6043 <                rt.sibling = t;
6044 <                rt.fork();
6045 <            }
6046 <            double r = id;
6047 <            Object v;
6048 <            while ((v = t.advance()) != null)
6049 <                r = reducer.apply(r, transformer.apply((V)v));
6050 <            t.result = r;
6051 <            for (;;) {
6052 <                int c; BulkTask<K,V,?> par; MapReduceValuesToDoubleTask<K,V> s, p;
6053 <                if ((par = t.parent) == null ||
6054 <                    !(par instanceof MapReduceValuesToDoubleTask)) {
6055 <                    t.quietlyComplete();
6056 <                    break;
6057 <                }
6058 <                else if ((c = (p = (MapReduceValuesToDoubleTask<K,V>)par).pending) == 0) {
6059 <                    if ((s = t.sibling) != null)
6060 <                        r = reducer.apply(r, s.result);
6061 <                    (t = p).result = r;
5581 >        public final Double getRawResult() { return result; }
5582 >        public final void compute() {
5583 >            final ObjectToDouble<? super V> transformer;
5584 >            final DoubleByDoubleToDouble reducer;
5585 >            if ((transformer = this.transformer) != null &&
5586 >                (reducer = this.reducer) != null) {
5587 >                double r = this.basis;
5588 >                for (int i = baseIndex, f, h; batch > 0 &&
5589 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5590 >                    addToPendingCount(1);
5591 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5592 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5593 >                      rights, transformer, r, reducer)).fork();
5594 >                }
5595 >                for (Node<K,V> p; (p = advance()) != null; )
5596 >                    r = reducer.apply(r, transformer.apply(p.val));
5597 >                result = r;
5598 >                CountedCompleter<?> c;
5599 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5600 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5601 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5602 >                        s = t.rights;
5603 >                    while (s != null) {
5604 >                        t.result = reducer.apply(t.result, s.result);
5605 >                        s = t.rights = s.nextRight;
5606 >                    }
5607                  }
6063                else if (p.casPending(c, 0))
6064                    break;
5608              }
5609          }
6067        public final Double getRawResult() { return result; }
5610      }
5611  
5612      @SuppressWarnings("serial")
# Line 6074 | Line 5616 | public class ConcurrentHashMapV8<K, V>
5616          final DoubleByDoubleToDouble reducer;
5617          final double basis;
5618          double result;
5619 <        MapReduceEntriesToDoubleTask<K,V> sibling;
6078 <        MapReduceEntriesToDoubleTask
6079 <            (ConcurrentHashMapV8<K,V> m,
6080 <             ObjectToDouble<Map.Entry<K,V>> transformer,
6081 <             double basis,
6082 <             DoubleByDoubleToDouble reducer) {
6083 <            super(m);
6084 <            this.transformer = transformer;
6085 <            this.basis = basis; this.reducer = reducer;
6086 <        }
5619 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5620          MapReduceEntriesToDoubleTask
5621 <            (BulkTask<K,V,?> p, int b, boolean split,
5621 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5622 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5623               ObjectToDouble<Map.Entry<K,V>> transformer,
5624               double basis,
5625               DoubleByDoubleToDouble reducer) {
5626 <            super(p, b, split);
5626 >            super(p, b, i, f, t); this.nextRight = nextRight;
5627              this.transformer = transformer;
5628              this.basis = basis; this.reducer = reducer;
5629          }
5630 <        @SuppressWarnings("unchecked") public final void compute() {
5631 <            MapReduceEntriesToDoubleTask<K,V> t = this;
5632 <            final ObjectToDouble<Map.Entry<K,V>> transformer =
5633 <                this.transformer;
5634 <            final DoubleByDoubleToDouble reducer = this.reducer;
5635 <            if (transformer == null || reducer == null)
5636 <                throw new Error(NullFunctionMessage);
5637 <            final double id = this.basis;
5638 <            int b = batch();
5639 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5640 <                b >>>= 1;
5641 <                t.pending = 1;
5642 <                MapReduceEntriesToDoubleTask<K,V> rt =
5643 <                    new MapReduceEntriesToDoubleTask<K,V>
5644 <                    (t, b, true, transformer, id, reducer);
5645 <                t = new MapReduceEntriesToDoubleTask<K,V>
5646 <                    (t, b, false, transformer, id, reducer);
5647 <                t.sibling = rt;
5648 <                rt.sibling = t;
5649 <                rt.fork();
5650 <            }
5651 <            double r = id;
5652 <            Object v;
5653 <            while ((v = t.advance()) != null)
5654 <                r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
5655 <            t.result = r;
6122 <            for (;;) {
6123 <                int c; BulkTask<K,V,?> par; MapReduceEntriesToDoubleTask<K,V> s, p;
6124 <                if ((par = t.parent) == null ||
6125 <                    !(par instanceof MapReduceEntriesToDoubleTask)) {
6126 <                    t.quietlyComplete();
6127 <                    break;
6128 <                }
6129 <                else if ((c = (p = (MapReduceEntriesToDoubleTask<K,V>)par).pending) == 0) {
6130 <                    if ((s = t.sibling) != null)
6131 <                        r = reducer.apply(r, s.result);
6132 <                    (t = p).result = r;
5630 >        public final Double getRawResult() { return result; }
5631 >        public final void compute() {
5632 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
5633 >            final DoubleByDoubleToDouble reducer;
5634 >            if ((transformer = this.transformer) != null &&
5635 >                (reducer = this.reducer) != null) {
5636 >                double r = this.basis;
5637 >                for (int i = baseIndex, f, h; batch > 0 &&
5638 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5639 >                    addToPendingCount(1);
5640 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5641 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5642 >                      rights, transformer, r, reducer)).fork();
5643 >                }
5644 >                for (Node<K,V> p; (p = advance()) != null; )
5645 >                    r = reducer.apply(r, transformer.apply(p));
5646 >                result = r;
5647 >                CountedCompleter<?> c;
5648 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5649 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5650 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5651 >                        s = t.rights;
5652 >                    while (s != null) {
5653 >                        t.result = reducer.apply(t.result, s.result);
5654 >                        s = t.rights = s.nextRight;
5655 >                    }
5656                  }
6134                else if (p.casPending(c, 0))
6135                    break;
5657              }
5658          }
6138        public final Double getRawResult() { return result; }
5659      }
5660  
5661      @SuppressWarnings("serial")
# Line 6145 | Line 5665 | public class ConcurrentHashMapV8<K, V>
5665          final DoubleByDoubleToDouble reducer;
5666          final double basis;
5667          double result;
5668 <        MapReduceMappingsToDoubleTask<K,V> sibling;
6149 <        MapReduceMappingsToDoubleTask
6150 <            (ConcurrentHashMapV8<K,V> m,
6151 <             ObjectByObjectToDouble<? super K, ? super V> transformer,
6152 <             double basis,
6153 <             DoubleByDoubleToDouble reducer) {
6154 <            super(m);
6155 <            this.transformer = transformer;
6156 <            this.basis = basis; this.reducer = reducer;
6157 <        }
5668 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5669          MapReduceMappingsToDoubleTask
5670 <            (BulkTask<K,V,?> p, int b, boolean split,
5670 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5671 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5672               ObjectByObjectToDouble<? super K, ? super V> transformer,
5673               double basis,
5674               DoubleByDoubleToDouble reducer) {
5675 <            super(p, b, split);
5675 >            super(p, b, i, f, t); this.nextRight = nextRight;
5676              this.transformer = transformer;
5677              this.basis = basis; this.reducer = reducer;
5678          }
5679 <        @SuppressWarnings("unchecked") public final void compute() {
5680 <            MapReduceMappingsToDoubleTask<K,V> t = this;
5681 <            final ObjectByObjectToDouble<? super K, ? super V> transformer =
5682 <                this.transformer;
5683 <            final DoubleByDoubleToDouble reducer = this.reducer;
5684 <            if (transformer == null || reducer == null)
5685 <                throw new Error(NullFunctionMessage);
5686 <            final double id = this.basis;
5687 <            int b = batch();
5688 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5689 <                b >>>= 1;
5690 <                t.pending = 1;
5691 <                MapReduceMappingsToDoubleTask<K,V> rt =
5692 <                    new MapReduceMappingsToDoubleTask<K,V>
5693 <                    (t, b, true, transformer, id, reducer);
5694 <                t = new MapReduceMappingsToDoubleTask<K,V>
5695 <                    (t, b, false, transformer, id, reducer);
5696 <                t.sibling = rt;
5697 <                rt.sibling = t;
5698 <                rt.fork();
5699 <            }
5700 <            double r = id;
5701 <            Object v;
5702 <            while ((v = t.advance()) != null)
5703 <                r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
5704 <            t.result = r;
6193 <            for (;;) {
6194 <                int c; BulkTask<K,V,?> par; MapReduceMappingsToDoubleTask<K,V> s, p;
6195 <                if ((par = t.parent) == null ||
6196 <                    !(par instanceof MapReduceMappingsToDoubleTask)) {
6197 <                    t.quietlyComplete();
6198 <                    break;
6199 <                }
6200 <                else if ((c = (p = (MapReduceMappingsToDoubleTask<K,V>)par).pending) == 0) {
6201 <                    if ((s = t.sibling) != null)
6202 <                        r = reducer.apply(r, s.result);
6203 <                    (t = p).result = r;
5679 >        public final Double getRawResult() { return result; }
5680 >        public final void compute() {
5681 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
5682 >            final DoubleByDoubleToDouble reducer;
5683 >            if ((transformer = this.transformer) != null &&
5684 >                (reducer = this.reducer) != null) {
5685 >                double r = this.basis;
5686 >                for (int i = baseIndex, f, h; batch > 0 &&
5687 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5688 >                    addToPendingCount(1);
5689 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5690 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5691 >                      rights, transformer, r, reducer)).fork();
5692 >                }
5693 >                for (Node<K,V> p; (p = advance()) != null; )
5694 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5695 >                result = r;
5696 >                CountedCompleter<?> c;
5697 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5698 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5699 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5700 >                        s = t.rights;
5701 >                    while (s != null) {
5702 >                        t.result = reducer.apply(t.result, s.result);
5703 >                        s = t.rights = s.nextRight;
5704 >                    }
5705                  }
6205                else if (p.casPending(c, 0))
6206                    break;
5706              }
5707          }
6209        public final Double getRawResult() { return result; }
5708      }
5709  
5710      @SuppressWarnings("serial")
# Line 6216 | Line 5714 | public class ConcurrentHashMapV8<K, V>
5714          final LongByLongToLong reducer;
5715          final long basis;
5716          long result;
5717 <        MapReduceKeysToLongTask<K,V> sibling;
5717 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5718          MapReduceKeysToLongTask
5719 <            (ConcurrentHashMapV8<K,V> m,
5719 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5720 >             MapReduceKeysToLongTask<K,V> nextRight,
5721               ObjectToLong<? super K> transformer,
5722               long basis,
5723               LongByLongToLong reducer) {
5724 <            super(m);
5724 >            super(p, b, i, f, t); this.nextRight = nextRight;
5725              this.transformer = transformer;
5726              this.basis = basis; this.reducer = reducer;
5727          }
5728 <        MapReduceKeysToLongTask
5729 <            (BulkTask<K,V,?> p, int b, boolean split,
5730 <             ObjectToLong<? super K> transformer,
5731 <             long basis,
5732 <             LongByLongToLong reducer) {
5733 <            super(p, b, split);
5734 <            this.transformer = transformer;
5735 <            this.basis = basis; this.reducer = reducer;
5736 <        }
5737 <        @SuppressWarnings("unchecked") public final void compute() {
5738 <            MapReduceKeysToLongTask<K,V> t = this;
5739 <            final ObjectToLong<? super K> transformer =
5740 <                this.transformer;
5741 <            final LongByLongToLong reducer = this.reducer;
5742 <            if (transformer == null || reducer == null)
5743 <                throw new Error(NullFunctionMessage);
5744 <            final long id = this.basis;
5745 <            int b = batch();
5746 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5747 <                b >>>= 1;
5748 <                t.pending = 1;
5749 <                MapReduceKeysToLongTask<K,V> rt =
5750 <                    new MapReduceKeysToLongTask<K,V>
5751 <                    (t, b, true, transformer, id, reducer);
5752 <                t = new MapReduceKeysToLongTask<K,V>
5753 <                    (t, b, false, transformer, id, reducer);
6255 <                t.sibling = rt;
6256 <                rt.sibling = t;
6257 <                rt.fork();
6258 <            }
6259 <            long r = id;
6260 <            while (t.advance() != null)
6261 <                r = reducer.apply(r, transformer.apply((K)t.nextKey));
6262 <            t.result = r;
6263 <            for (;;) {
6264 <                int c; BulkTask<K,V,?> par; MapReduceKeysToLongTask<K,V> s, p;
6265 <                if ((par = t.parent) == null ||
6266 <                    !(par instanceof MapReduceKeysToLongTask)) {
6267 <                    t.quietlyComplete();
6268 <                    break;
6269 <                }
6270 <                else if ((c = (p = (MapReduceKeysToLongTask<K,V>)par).pending) == 0) {
6271 <                    if ((s = t.sibling) != null)
6272 <                        r = reducer.apply(r, s.result);
6273 <                    (t = p).result = r;
5728 >        public final Long getRawResult() { return result; }
5729 >        public final void compute() {
5730 >            final ObjectToLong<? super K> transformer;
5731 >            final LongByLongToLong reducer;
5732 >            if ((transformer = this.transformer) != null &&
5733 >                (reducer = this.reducer) != null) {
5734 >                long r = this.basis;
5735 >                for (int i = baseIndex, f, h; batch > 0 &&
5736 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5737 >                    addToPendingCount(1);
5738 >                    (rights = new MapReduceKeysToLongTask<K,V>
5739 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5740 >                      rights, transformer, r, reducer)).fork();
5741 >                }
5742 >                for (Node<K,V> p; (p = advance()) != null; )
5743 >                    r = reducer.apply(r, transformer.apply(p.key));
5744 >                result = r;
5745 >                CountedCompleter<?> c;
5746 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5747 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5748 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5749 >                        s = t.rights;
5750 >                    while (s != null) {
5751 >                        t.result = reducer.apply(t.result, s.result);
5752 >                        s = t.rights = s.nextRight;
5753 >                    }
5754                  }
6275                else if (p.casPending(c, 0))
6276                    break;
5755              }
5756          }
6279        public final Long getRawResult() { return result; }
5757      }
5758  
5759      @SuppressWarnings("serial")
# Line 6286 | Line 5763 | public class ConcurrentHashMapV8<K, V>
5763          final LongByLongToLong reducer;
5764          final long basis;
5765          long result;
5766 <        MapReduceValuesToLongTask<K,V> sibling;
6290 <        MapReduceValuesToLongTask
6291 <            (ConcurrentHashMapV8<K,V> m,
6292 <             ObjectToLong<? super V> transformer,
6293 <             long basis,
6294 <             LongByLongToLong reducer) {
6295 <            super(m);
6296 <            this.transformer = transformer;
6297 <            this.basis = basis; this.reducer = reducer;
6298 <        }
5766 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5767          MapReduceValuesToLongTask
5768 <            (BulkTask<K,V,?> p, int b, boolean split,
5768 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5769 >             MapReduceValuesToLongTask<K,V> nextRight,
5770               ObjectToLong<? super V> transformer,
5771               long basis,
5772               LongByLongToLong reducer) {
5773 <            super(p, b, split);
5773 >            super(p, b, i, f, t); this.nextRight = nextRight;
5774              this.transformer = transformer;
5775              this.basis = basis; this.reducer = reducer;
5776          }
5777 <        @SuppressWarnings("unchecked") public final void compute() {
5778 <            MapReduceValuesToLongTask<K,V> t = this;
5779 <            final ObjectToLong<? super V> transformer =
5780 <                this.transformer;
5781 <            final LongByLongToLong reducer = this.reducer;
5782 <            if (transformer == null || reducer == null)
5783 <                throw new Error(NullFunctionMessage);
5784 <            final long id = this.basis;
5785 <            int b = batch();
5786 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5787 <                b >>>= 1;
5788 <                t.pending = 1;
5789 <                MapReduceValuesToLongTask<K,V> rt =
5790 <                    new MapReduceValuesToLongTask<K,V>
5791 <                    (t, b, true, transformer, id, reducer);
5792 <                t = new MapReduceValuesToLongTask<K,V>
5793 <                    (t, b, false, transformer, id, reducer);
5794 <                t.sibling = rt;
5795 <                rt.sibling = t;
5796 <                rt.fork();
5797 <            }
5798 <            long r = id;
5799 <            Object v;
5800 <            while ((v = t.advance()) != null)
5801 <                r = reducer.apply(r, transformer.apply((V)v));
5802 <            t.result = r;
6334 <            for (;;) {
6335 <                int c; BulkTask<K,V,?> par; MapReduceValuesToLongTask<K,V> s, p;
6336 <                if ((par = t.parent) == null ||
6337 <                    !(par instanceof MapReduceValuesToLongTask)) {
6338 <                    t.quietlyComplete();
6339 <                    break;
6340 <                }
6341 <                else if ((c = (p = (MapReduceValuesToLongTask<K,V>)par).pending) == 0) {
6342 <                    if ((s = t.sibling) != null)
6343 <                        r = reducer.apply(r, s.result);
6344 <                    (t = p).result = r;
5777 >        public final Long getRawResult() { return result; }
5778 >        public final void compute() {
5779 >            final ObjectToLong<? super V> transformer;
5780 >            final LongByLongToLong reducer;
5781 >            if ((transformer = this.transformer) != null &&
5782 >                (reducer = this.reducer) != null) {
5783 >                long r = this.basis;
5784 >                for (int i = baseIndex, f, h; batch > 0 &&
5785 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5786 >                    addToPendingCount(1);
5787 >                    (rights = new MapReduceValuesToLongTask<K,V>
5788 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5789 >                      rights, transformer, r, reducer)).fork();
5790 >                }
5791 >                for (Node<K,V> p; (p = advance()) != null; )
5792 >                    r = reducer.apply(r, transformer.apply(p.val));
5793 >                result = r;
5794 >                CountedCompleter<?> c;
5795 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5796 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5797 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5798 >                        s = t.rights;
5799 >                    while (s != null) {
5800 >                        t.result = reducer.apply(t.result, s.result);
5801 >                        s = t.rights = s.nextRight;
5802 >                    }
5803                  }
6346                else if (p.casPending(c, 0))
6347                    break;
5804              }
5805          }
6350        public final Long getRawResult() { return result; }
5806      }
5807  
5808      @SuppressWarnings("serial")
# Line 6357 | Line 5812 | public class ConcurrentHashMapV8<K, V>
5812          final LongByLongToLong reducer;
5813          final long basis;
5814          long result;
5815 <        MapReduceEntriesToLongTask<K,V> sibling;
5815 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
5816          MapReduceEntriesToLongTask
5817 <            (ConcurrentHashMapV8<K,V> m,
5817 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5818 >             MapReduceEntriesToLongTask<K,V> nextRight,
5819               ObjectToLong<Map.Entry<K,V>> transformer,
5820               long basis,
5821               LongByLongToLong reducer) {
5822 <            super(m);
5822 >            super(p, b, i, f, t); this.nextRight = nextRight;
5823              this.transformer = transformer;
5824              this.basis = basis; this.reducer = reducer;
5825          }
5826 <        MapReduceEntriesToLongTask
5827 <            (BulkTask<K,V,?> p, int b, boolean split,
5828 <             ObjectToLong<Map.Entry<K,V>> transformer,
5829 <             long basis,
5830 <             LongByLongToLong reducer) {
5831 <            super(p, b, split);
5832 <            this.transformer = transformer;
5833 <            this.basis = basis; this.reducer = reducer;
5834 <        }
5835 <        @SuppressWarnings("unchecked") public final void compute() {
5836 <            MapReduceEntriesToLongTask<K,V> t = this;
5837 <            final ObjectToLong<Map.Entry<K,V>> transformer =
5838 <                this.transformer;
5839 <            final LongByLongToLong reducer = this.reducer;
5840 <            if (transformer == null || reducer == null)
5841 <                throw new Error(NullFunctionMessage);
5842 <            final long id = this.basis;
5843 <            int b = batch();
5844 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5845 <                b >>>= 1;
5846 <                t.pending = 1;
5847 <                MapReduceEntriesToLongTask<K,V> rt =
5848 <                    new MapReduceEntriesToLongTask<K,V>
5849 <                    (t, b, true, transformer, id, reducer);
5850 <                t = new MapReduceEntriesToLongTask<K,V>
5851 <                    (t, b, false, transformer, id, reducer);
6396 <                t.sibling = rt;
6397 <                rt.sibling = t;
6398 <                rt.fork();
6399 <            }
6400 <            long r = id;
6401 <            Object v;
6402 <            while ((v = t.advance()) != null)
6403 <                r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
6404 <            t.result = r;
6405 <            for (;;) {
6406 <                int c; BulkTask<K,V,?> par; MapReduceEntriesToLongTask<K,V> s, p;
6407 <                if ((par = t.parent) == null ||
6408 <                    !(par instanceof MapReduceEntriesToLongTask)) {
6409 <                    t.quietlyComplete();
6410 <                    break;
6411 <                }
6412 <                else if ((c = (p = (MapReduceEntriesToLongTask<K,V>)par).pending) == 0) {
6413 <                    if ((s = t.sibling) != null)
6414 <                        r = reducer.apply(r, s.result);
6415 <                    (t = p).result = r;
5826 >        public final Long getRawResult() { return result; }
5827 >        public final void compute() {
5828 >            final ObjectToLong<Map.Entry<K,V>> transformer;
5829 >            final LongByLongToLong reducer;
5830 >            if ((transformer = this.transformer) != null &&
5831 >                (reducer = this.reducer) != null) {
5832 >                long r = this.basis;
5833 >                for (int i = baseIndex, f, h; batch > 0 &&
5834 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5835 >                    addToPendingCount(1);
5836 >                    (rights = new MapReduceEntriesToLongTask<K,V>
5837 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5838 >                      rights, transformer, r, reducer)).fork();
5839 >                }
5840 >                for (Node<K,V> p; (p = advance()) != null; )
5841 >                    r = reducer.apply(r, transformer.apply(p));
5842 >                result = r;
5843 >                CountedCompleter<?> c;
5844 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5845 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5846 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5847 >                        s = t.rights;
5848 >                    while (s != null) {
5849 >                        t.result = reducer.apply(t.result, s.result);
5850 >                        s = t.rights = s.nextRight;
5851 >                    }
5852                  }
6417                else if (p.casPending(c, 0))
6418                    break;
5853              }
5854          }
6421        public final Long getRawResult() { return result; }
5855      }
5856  
5857      @SuppressWarnings("serial")
# Line 6428 | Line 5861 | public class ConcurrentHashMapV8<K, V>
5861          final LongByLongToLong reducer;
5862          final long basis;
5863          long result;
5864 <        MapReduceMappingsToLongTask<K,V> sibling;
6432 <        MapReduceMappingsToLongTask
6433 <            (ConcurrentHashMapV8<K,V> m,
6434 <             ObjectByObjectToLong<? super K, ? super V> transformer,
6435 <             long basis,
6436 <             LongByLongToLong reducer) {
6437 <            super(m);
6438 <            this.transformer = transformer;
6439 <            this.basis = basis; this.reducer = reducer;
6440 <        }
5864 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
5865          MapReduceMappingsToLongTask
5866 <            (BulkTask<K,V,?> p, int b, boolean split,
5866 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5867 >             MapReduceMappingsToLongTask<K,V> nextRight,
5868               ObjectByObjectToLong<? super K, ? super V> transformer,
5869               long basis,
5870               LongByLongToLong reducer) {
5871 <            super(p, b, split);
5871 >            super(p, b, i, f, t); this.nextRight = nextRight;
5872              this.transformer = transformer;
5873              this.basis = basis; this.reducer = reducer;
5874          }
5875 <        @SuppressWarnings("unchecked") public final void compute() {
5876 <            MapReduceMappingsToLongTask<K,V> t = this;
5877 <            final ObjectByObjectToLong<? super K, ? super V> transformer =
5878 <                this.transformer;
5879 <            final LongByLongToLong reducer = this.reducer;
5880 <            if (transformer == null || reducer == null)
5881 <                throw new Error(NullFunctionMessage);
5882 <            final long id = this.basis;
5883 <            int b = batch();
5884 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5885 <                b >>>= 1;
5886 <                t.pending = 1;
5887 <                MapReduceMappingsToLongTask<K,V> rt =
5888 <                    new MapReduceMappingsToLongTask<K,V>
5889 <                    (t, b, true, transformer, id, reducer);
5890 <                t = new MapReduceMappingsToLongTask<K,V>
5891 <                    (t, b, false, transformer, id, reducer);
5892 <                t.sibling = rt;
5893 <                rt.sibling = t;
5894 <                rt.fork();
5895 <            }
5896 <            long r = id;
5897 <            Object v;
5898 <            while ((v = t.advance()) != null)
5899 <                r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
5900 <            t.result = r;
6476 <            for (;;) {
6477 <                int c; BulkTask<K,V,?> par; MapReduceMappingsToLongTask<K,V> s, p;
6478 <                if ((par = t.parent) == null ||
6479 <                    !(par instanceof MapReduceMappingsToLongTask)) {
6480 <                    t.quietlyComplete();
6481 <                    break;
6482 <                }
6483 <                else if ((c = (p = (MapReduceMappingsToLongTask<K,V>)par).pending) == 0) {
6484 <                    if ((s = t.sibling) != null)
6485 <                        r = reducer.apply(r, s.result);
6486 <                    (t = p).result = r;
5875 >        public final Long getRawResult() { return result; }
5876 >        public final void compute() {
5877 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
5878 >            final LongByLongToLong reducer;
5879 >            if ((transformer = this.transformer) != null &&
5880 >                (reducer = this.reducer) != null) {
5881 >                long r = this.basis;
5882 >                for (int i = baseIndex, f, h; batch > 0 &&
5883 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5884 >                    addToPendingCount(1);
5885 >                    (rights = new MapReduceMappingsToLongTask<K,V>
5886 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5887 >                      rights, transformer, r, reducer)).fork();
5888 >                }
5889 >                for (Node<K,V> p; (p = advance()) != null; )
5890 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5891 >                result = r;
5892 >                CountedCompleter<?> c;
5893 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5894 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5895 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
5896 >                        s = t.rights;
5897 >                    while (s != null) {
5898 >                        t.result = reducer.apply(t.result, s.result);
5899 >                        s = t.rights = s.nextRight;
5900 >                    }
5901                  }
6488                else if (p.casPending(c, 0))
6489                    break;
5902              }
5903          }
6492        public final Long getRawResult() { return result; }
5904      }
5905  
5906      @SuppressWarnings("serial")
# Line 6499 | Line 5910 | public class ConcurrentHashMapV8<K, V>
5910          final IntByIntToInt reducer;
5911          final int basis;
5912          int result;
5913 <        MapReduceKeysToIntTask<K,V> sibling;
6503 <        MapReduceKeysToIntTask
6504 <            (ConcurrentHashMapV8<K,V> m,
6505 <             ObjectToInt<? super K> transformer,
6506 <             int basis,
6507 <             IntByIntToInt reducer) {
6508 <            super(m);
6509 <            this.transformer = transformer;
6510 <            this.basis = basis; this.reducer = reducer;
6511 <        }
5913 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
5914          MapReduceKeysToIntTask
5915 <            (BulkTask<K,V,?> p, int b, boolean split,
5915 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5916 >             MapReduceKeysToIntTask<K,V> nextRight,
5917               ObjectToInt<? super K> transformer,
5918               int basis,
5919               IntByIntToInt reducer) {
5920 <            super(p, b, split);
5920 >            super(p, b, i, f, t); this.nextRight = nextRight;
5921              this.transformer = transformer;
5922              this.basis = basis; this.reducer = reducer;
5923          }
5924 <        @SuppressWarnings("unchecked") public final void compute() {
5925 <            MapReduceKeysToIntTask<K,V> t = this;
5926 <            final ObjectToInt<? super K> transformer =
5927 <                this.transformer;
5928 <            final IntByIntToInt reducer = this.reducer;
5929 <            if (transformer == null || reducer == null)
5930 <                throw new Error(NullFunctionMessage);
5931 <            final int id = this.basis;
5932 <            int b = batch();
5933 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5934 <                b >>>= 1;
5935 <                t.pending = 1;
5936 <                MapReduceKeysToIntTask<K,V> rt =
5937 <                    new MapReduceKeysToIntTask<K,V>
5938 <                    (t, b, true, transformer, id, reducer);
5939 <                t = new MapReduceKeysToIntTask<K,V>
5940 <                    (t, b, false, transformer, id, reducer);
5941 <                t.sibling = rt;
5942 <                rt.sibling = t;
5943 <                rt.fork();
5944 <            }
5945 <            int r = id;
5946 <            while (t.advance() != null)
5947 <                r = reducer.apply(r, transformer.apply((K)t.nextKey));
5948 <            t.result = r;
5949 <            for (;;) {
6547 <                int c; BulkTask<K,V,?> par; MapReduceKeysToIntTask<K,V> s, p;
6548 <                if ((par = t.parent) == null ||
6549 <                    !(par instanceof MapReduceKeysToIntTask)) {
6550 <                    t.quietlyComplete();
6551 <                    break;
6552 <                }
6553 <                else if ((c = (p = (MapReduceKeysToIntTask<K,V>)par).pending) == 0) {
6554 <                    if ((s = t.sibling) != null)
6555 <                        r = reducer.apply(r, s.result);
6556 <                    (t = p).result = r;
5924 >        public final Integer getRawResult() { return result; }
5925 >        public final void compute() {
5926 >            final ObjectToInt<? super K> transformer;
5927 >            final IntByIntToInt reducer;
5928 >            if ((transformer = this.transformer) != null &&
5929 >                (reducer = this.reducer) != null) {
5930 >                int r = this.basis;
5931 >                for (int i = baseIndex, f, h; batch > 0 &&
5932 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5933 >                    addToPendingCount(1);
5934 >                    (rights = new MapReduceKeysToIntTask<K,V>
5935 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5936 >                      rights, transformer, r, reducer)).fork();
5937 >                }
5938 >                for (Node<K,V> p; (p = advance()) != null; )
5939 >                    r = reducer.apply(r, transformer.apply(p.key));
5940 >                result = r;
5941 >                CountedCompleter<?> c;
5942 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5943 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5944 >                        t = (MapReduceKeysToIntTask<K,V>)c,
5945 >                        s = t.rights;
5946 >                    while (s != null) {
5947 >                        t.result = reducer.apply(t.result, s.result);
5948 >                        s = t.rights = s.nextRight;
5949 >                    }
5950                  }
6558                else if (p.casPending(c, 0))
6559                    break;
5951              }
5952          }
6562        public final Integer getRawResult() { return result; }
5953      }
5954  
5955      @SuppressWarnings("serial")
# Line 6569 | Line 5959 | public class ConcurrentHashMapV8<K, V>
5959          final IntByIntToInt reducer;
5960          final int basis;
5961          int result;
5962 <        MapReduceValuesToIntTask<K,V> sibling;
6573 <        MapReduceValuesToIntTask
6574 <            (ConcurrentHashMapV8<K,V> m,
6575 <             ObjectToInt<? super V> transformer,
6576 <             int basis,
6577 <             IntByIntToInt reducer) {
6578 <            super(m);
6579 <            this.transformer = transformer;
6580 <            this.basis = basis; this.reducer = reducer;
6581 <        }
5962 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
5963          MapReduceValuesToIntTask
5964 <            (BulkTask<K,V,?> p, int b, boolean split,
5964 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5965 >             MapReduceValuesToIntTask<K,V> nextRight,
5966               ObjectToInt<? super V> transformer,
5967               int basis,
5968               IntByIntToInt reducer) {
5969 <            super(p, b, split);
5969 >            super(p, b, i, f, t); this.nextRight = nextRight;
5970              this.transformer = transformer;
5971              this.basis = basis; this.reducer = reducer;
5972          }
5973 <        @SuppressWarnings("unchecked") public final void compute() {
5974 <            MapReduceValuesToIntTask<K,V> t = this;
5975 <            final ObjectToInt<? super V> transformer =
5976 <                this.transformer;
5977 <            final IntByIntToInt reducer = this.reducer;
5978 <            if (transformer == null || reducer == null)
5979 <                throw new Error(NullFunctionMessage);
5980 <            final int id = this.basis;
5981 <            int b = batch();
5982 <            while (b > 1 && t.baseIndex != t.baseLimit) {
5983 <                b >>>= 1;
5984 <                t.pending = 1;
5985 <                MapReduceValuesToIntTask<K,V> rt =
5986 <                    new MapReduceValuesToIntTask<K,V>
5987 <                    (t, b, true, transformer, id, reducer);
5988 <                t = new MapReduceValuesToIntTask<K,V>
5989 <                    (t, b, false, transformer, id, reducer);
5990 <                t.sibling = rt;
5991 <                rt.sibling = t;
5992 <                rt.fork();
5993 <            }
5994 <            int r = id;
5995 <            Object v;
5996 <            while ((v = t.advance()) != null)
5997 <                r = reducer.apply(r, transformer.apply((V)v));
5998 <            t.result = r;
6617 <            for (;;) {
6618 <                int c; BulkTask<K,V,?> par; MapReduceValuesToIntTask<K,V> s, p;
6619 <                if ((par = t.parent) == null ||
6620 <                    !(par instanceof MapReduceValuesToIntTask)) {
6621 <                    t.quietlyComplete();
6622 <                    break;
6623 <                }
6624 <                else if ((c = (p = (MapReduceValuesToIntTask<K,V>)par).pending) == 0) {
6625 <                    if ((s = t.sibling) != null)
6626 <                        r = reducer.apply(r, s.result);
6627 <                    (t = p).result = r;
5973 >        public final Integer getRawResult() { return result; }
5974 >        public final void compute() {
5975 >            final ObjectToInt<? super V> transformer;
5976 >            final IntByIntToInt reducer;
5977 >            if ((transformer = this.transformer) != null &&
5978 >                (reducer = this.reducer) != null) {
5979 >                int r = this.basis;
5980 >                for (int i = baseIndex, f, h; batch > 0 &&
5981 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5982 >                    addToPendingCount(1);
5983 >                    (rights = new MapReduceValuesToIntTask<K,V>
5984 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5985 >                      rights, transformer, r, reducer)).fork();
5986 >                }
5987 >                for (Node<K,V> p; (p = advance()) != null; )
5988 >                    r = reducer.apply(r, transformer.apply(p.val));
5989 >                result = r;
5990 >                CountedCompleter<?> c;
5991 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5992 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5993 >                        t = (MapReduceValuesToIntTask<K,V>)c,
5994 >                        s = t.rights;
5995 >                    while (s != null) {
5996 >                        t.result = reducer.apply(t.result, s.result);
5997 >                        s = t.rights = s.nextRight;
5998 >                    }
5999                  }
6629                else if (p.casPending(c, 0))
6630                    break;
6000              }
6001          }
6633        public final Integer getRawResult() { return result; }
6002      }
6003  
6004      @SuppressWarnings("serial")
# Line 6640 | Line 6008 | public class ConcurrentHashMapV8<K, V>
6008          final IntByIntToInt reducer;
6009          final int basis;
6010          int result;
6011 <        MapReduceEntriesToIntTask<K,V> sibling;
6011 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6012          MapReduceEntriesToIntTask
6013 <            (ConcurrentHashMapV8<K,V> m,
6013 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6014 >             MapReduceEntriesToIntTask<K,V> nextRight,
6015               ObjectToInt<Map.Entry<K,V>> transformer,
6016               int basis,
6017               IntByIntToInt reducer) {
6018 <            super(m);
6018 >            super(p, b, i, f, t); this.nextRight = nextRight;
6019              this.transformer = transformer;
6020              this.basis = basis; this.reducer = reducer;
6021          }
6022 <        MapReduceEntriesToIntTask
6023 <            (BulkTask<K,V,?> p, int b, boolean split,
6024 <             ObjectToInt<Map.Entry<K,V>> transformer,
6025 <             int basis,
6026 <             IntByIntToInt reducer) {
6027 <            super(p, b, split);
6028 <            this.transformer = transformer;
6029 <            this.basis = basis; this.reducer = reducer;
6030 <        }
6031 <        @SuppressWarnings("unchecked") public final void compute() {
6032 <            MapReduceEntriesToIntTask<K,V> t = this;
6033 <            final ObjectToInt<Map.Entry<K,V>> transformer =
6034 <                this.transformer;
6035 <            final IntByIntToInt reducer = this.reducer;
6036 <            if (transformer == null || reducer == null)
6037 <                throw new Error(NullFunctionMessage);
6038 <            final int id = this.basis;
6039 <            int b = batch();
6040 <            while (b > 1 && t.baseIndex != t.baseLimit) {
6041 <                b >>>= 1;
6042 <                t.pending = 1;
6043 <                MapReduceEntriesToIntTask<K,V> rt =
6044 <                    new MapReduceEntriesToIntTask<K,V>
6045 <                    (t, b, true, transformer, id, reducer);
6046 <                t = new MapReduceEntriesToIntTask<K,V>
6047 <                    (t, b, false, transformer, id, reducer);
6679 <                t.sibling = rt;
6680 <                rt.sibling = t;
6681 <                rt.fork();
6682 <            }
6683 <            int r = id;
6684 <            Object v;
6685 <            while ((v = t.advance()) != null)
6686 <                r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
6687 <            t.result = r;
6688 <            for (;;) {
6689 <                int c; BulkTask<K,V,?> par; MapReduceEntriesToIntTask<K,V> s, p;
6690 <                if ((par = t.parent) == null ||
6691 <                    !(par instanceof MapReduceEntriesToIntTask)) {
6692 <                    t.quietlyComplete();
6693 <                    break;
6694 <                }
6695 <                else if ((c = (p = (MapReduceEntriesToIntTask<K,V>)par).pending) == 0) {
6696 <                    if ((s = t.sibling) != null)
6697 <                        r = reducer.apply(r, s.result);
6698 <                    (t = p).result = r;
6022 >        public final Integer getRawResult() { return result; }
6023 >        public final void compute() {
6024 >            final ObjectToInt<Map.Entry<K,V>> transformer;
6025 >            final IntByIntToInt reducer;
6026 >            if ((transformer = this.transformer) != null &&
6027 >                (reducer = this.reducer) != null) {
6028 >                int r = this.basis;
6029 >                for (int i = baseIndex, f, h; batch > 0 &&
6030 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6031 >                    addToPendingCount(1);
6032 >                    (rights = new MapReduceEntriesToIntTask<K,V>
6033 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6034 >                      rights, transformer, r, reducer)).fork();
6035 >                }
6036 >                for (Node<K,V> p; (p = advance()) != null; )
6037 >                    r = reducer.apply(r, transformer.apply(p));
6038 >                result = r;
6039 >                CountedCompleter<?> c;
6040 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6041 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
6042 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
6043 >                        s = t.rights;
6044 >                    while (s != null) {
6045 >                        t.result = reducer.apply(t.result, s.result);
6046 >                        s = t.rights = s.nextRight;
6047 >                    }
6048                  }
6700                else if (p.casPending(c, 0))
6701                    break;
6049              }
6050          }
6704        public final Integer getRawResult() { return result; }
6051      }
6052  
6053      @SuppressWarnings("serial")
# Line 6711 | Line 6057 | public class ConcurrentHashMapV8<K, V>
6057          final IntByIntToInt reducer;
6058          final int basis;
6059          int result;
6060 <        MapReduceMappingsToIntTask<K,V> sibling;
6060 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6061          MapReduceMappingsToIntTask
6062 <            (ConcurrentHashMapV8<K,V> m,
6062 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6063 >             MapReduceMappingsToIntTask<K,V> nextRight,
6064               ObjectByObjectToInt<? super K, ? super V> transformer,
6065               int basis,
6066               IntByIntToInt reducer) {
6067 <            super(m);
6067 >            super(p, b, i, f, t); this.nextRight = nextRight;
6068              this.transformer = transformer;
6069              this.basis = basis; this.reducer = reducer;
6070          }
6071 <        MapReduceMappingsToIntTask
6072 <            (BulkTask<K,V,?> p, int b, boolean split,
6073 <             ObjectByObjectToInt<? super K, ? super V> transformer,
6074 <             int basis,
6075 <             IntByIntToInt reducer) {
6076 <            super(p, b, split);
6077 <            this.transformer = transformer;
6078 <            this.basis = basis; this.reducer = reducer;
6071 >        public final Integer getRawResult() { return result; }
6072 >        public final void compute() {
6073 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
6074 >            final IntByIntToInt reducer;
6075 >            if ((transformer = this.transformer) != null &&
6076 >                (reducer = this.reducer) != null) {
6077 >                int r = this.basis;
6078 >                for (int i = baseIndex, f, h; batch > 0 &&
6079 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
6080 >                    addToPendingCount(1);
6081 >                    (rights = new MapReduceMappingsToIntTask<K,V>
6082 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
6083 >                      rights, transformer, r, reducer)).fork();
6084 >                }
6085 >                for (Node<K,V> p; (p = advance()) != null; )
6086 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
6087 >                result = r;
6088 >                CountedCompleter<?> c;
6089 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6090 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6091 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6092 >                        s = t.rights;
6093 >                    while (s != null) {
6094 >                        t.result = reducer.apply(t.result, s.result);
6095 >                        s = t.rights = s.nextRight;
6096 >                    }
6097 >                }
6098 >            }
6099          }
6100 <        @SuppressWarnings("unchecked") public final void compute() {
6101 <            MapReduceMappingsToIntTask<K,V> t = this;
6102 <            final ObjectByObjectToInt<? super K, ? super V> transformer =
6103 <                this.transformer;
6104 <            final IntByIntToInt reducer = this.reducer;
6105 <            if (transformer == null || reducer == null)
6106 <                throw new Error(NullFunctionMessage);
6107 <            final int id = this.basis;
6108 <            int b = batch();
6109 <            while (b > 1 && t.baseIndex != t.baseLimit) {
6110 <                b >>>= 1;
6111 <                t.pending = 1;
6112 <                MapReduceMappingsToIntTask<K,V> rt =
6113 <                    new MapReduceMappingsToIntTask<K,V>
6114 <                    (t, b, true, transformer, id, reducer);
6115 <                t = new MapReduceMappingsToIntTask<K,V>
6116 <                    (t, b, false, transformer, id, reducer);
6117 <                t.sibling = rt;
6118 <                rt.sibling = t;
6119 <                rt.fork();
6120 <            }
6121 <            int r = id;
6122 <            Object v;
6123 <            while ((v = t.advance()) != null)
6124 <                r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
6125 <            t.result = r;
6126 <            for (;;) {
6127 <                int c; BulkTask<K,V,?> par; MapReduceMappingsToIntTask<K,V> s, p;
6128 <                if ((par = t.parent) == null ||
6129 <                    !(par instanceof MapReduceMappingsToIntTask)) {
6130 <                    t.quietlyComplete();
6100 >    }
6101 >
6102 >    /* ---------------- Counters -------------- */
6103 >
6104 >    // Adapted from LongAdder and Striped64.
6105 >    // See their internal docs for explanation.
6106 >
6107 >    // A padded cell for distributing counts
6108 >    static final class CounterCell {
6109 >        volatile long p0, p1, p2, p3, p4, p5, p6;
6110 >        volatile long value;
6111 >        volatile long q0, q1, q2, q3, q4, q5, q6;
6112 >        CounterCell(long x) { value = x; }
6113 >    }
6114 >
6115 >    /**
6116 >     * Holder for the thread-local hash code determining which
6117 >     * CounterCell to use. The code is initialized via the
6118 >     * counterHashCodeGenerator, but may be moved upon collisions.
6119 >     */
6120 >    static final class CounterHashCode {
6121 >        int code;
6122 >    }
6123 >
6124 >    /**
6125 >     * Generates initial value for per-thread CounterHashCodes.
6126 >     */
6127 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6128 >
6129 >    /**
6130 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
6131 >     * for explanation.
6132 >     */
6133 >    static final int SEED_INCREMENT = 0x61c88647;
6134 >
6135 >    /**
6136 >     * Per-thread counter hash codes. Shared across all instances.
6137 >     */
6138 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6139 >        new ThreadLocal<CounterHashCode>();
6140 >
6141 >
6142 >    final long sumCount() {
6143 >        CounterCell[] as = counterCells; CounterCell a;
6144 >        long sum = baseCount;
6145 >        if (as != null) {
6146 >            for (int i = 0; i < as.length; ++i) {
6147 >                if ((a = as[i]) != null)
6148 >                    sum += a.value;
6149 >            }
6150 >        }
6151 >        return sum;
6152 >    }
6153 >
6154 >    // See LongAdder version for explanation
6155 >    private final void fullAddCount(long x, CounterHashCode hc,
6156 >                                    boolean wasUncontended) {
6157 >        int h;
6158 >        if (hc == null) {
6159 >            hc = new CounterHashCode();
6160 >            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6161 >            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6162 >            threadCounterHashCode.set(hc);
6163 >        }
6164 >        else
6165 >            h = hc.code;
6166 >        boolean collide = false;                // True if last slot nonempty
6167 >        for (;;) {
6168 >            CounterCell[] as; CounterCell a; int n; long v;
6169 >            if ((as = counterCells) != null && (n = as.length) > 0) {
6170 >                if ((a = as[(n - 1) & h]) == null) {
6171 >                    if (cellsBusy == 0) {            // Try to attach new Cell
6172 >                        CounterCell r = new CounterCell(x); // Optimistic create
6173 >                        if (cellsBusy == 0 &&
6174 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6175 >                            boolean created = false;
6176 >                            try {               // Recheck under lock
6177 >                                CounterCell[] rs; int m, j;
6178 >                                if ((rs = counterCells) != null &&
6179 >                                    (m = rs.length) > 0 &&
6180 >                                    rs[j = (m - 1) & h] == null) {
6181 >                                    rs[j] = r;
6182 >                                    created = true;
6183 >                                }
6184 >                            } finally {
6185 >                                cellsBusy = 0;
6186 >                            }
6187 >                            if (created)
6188 >                                break;
6189 >                            continue;           // Slot is now non-empty
6190 >                        }
6191 >                    }
6192 >                    collide = false;
6193 >                }
6194 >                else if (!wasUncontended)       // CAS already known to fail
6195 >                    wasUncontended = true;      // Continue after rehash
6196 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6197                      break;
6198 +                else if (counterCells != as || n >= NCPU)
6199 +                    collide = false;            // At max size or stale
6200 +                else if (!collide)
6201 +                    collide = true;
6202 +                else if (cellsBusy == 0 &&
6203 +                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6204 +                    try {
6205 +                        if (counterCells == as) {// Expand table unless stale
6206 +                            CounterCell[] rs = new CounterCell[n << 1];
6207 +                            for (int i = 0; i < n; ++i)
6208 +                                rs[i] = as[i];
6209 +                            counterCells = rs;
6210 +                        }
6211 +                    } finally {
6212 +                        cellsBusy = 0;
6213 +                    }
6214 +                    collide = false;
6215 +                    continue;                   // Retry with expanded table
6216                  }
6217 <                else if ((c = (p = (MapReduceMappingsToIntTask<K,V>)par).pending) == 0) {
6218 <                    if ((s = t.sibling) != null)
6219 <                        r = reducer.apply(r, s.result);
6220 <                    (t = p).result = r;
6217 >                h ^= h << 13;                   // Rehash
6218 >                h ^= h >>> 17;
6219 >                h ^= h << 5;
6220 >            }
6221 >            else if (cellsBusy == 0 && counterCells == as &&
6222 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6223 >                boolean init = false;
6224 >                try {                           // Initialize table
6225 >                    if (counterCells == as) {
6226 >                        CounterCell[] rs = new CounterCell[2];
6227 >                        rs[h & 1] = new CounterCell(x);
6228 >                        counterCells = rs;
6229 >                        init = true;
6230 >                    }
6231 >                } finally {
6232 >                    cellsBusy = 0;
6233                  }
6234 <                else if (p.casPending(c, 0))
6234 >                if (init)
6235                      break;
6236              }
6237 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6238 +                break;                          // Fall back on using base
6239          }
6240 <        public final Integer getRawResult() { return result; }
6240 >        hc.code = h;                            // Record index for next time
6241      }
6242  
6778
6243      // Unsafe mechanics
6244 <    private static final sun.misc.Unsafe UNSAFE;
6245 <    private static final long counterOffset;
6246 <    private static final long sizeCtlOffset;
6244 >    private static final sun.misc.Unsafe U;
6245 >    private static final long SIZECTL;
6246 >    private static final long TRANSFERINDEX;
6247 >    private static final long BASECOUNT;
6248 >    private static final long CELLSBUSY;
6249 >    private static final long CELLVALUE;
6250      private static final long ABASE;
6251      private static final int ASHIFT;
6252  
6253      static {
6787        int ss;
6254          try {
6255 <            UNSAFE = getUnsafe();
6255 >            U = getUnsafe();
6256              Class<?> k = ConcurrentHashMapV8.class;
6257 <            counterOffset = UNSAFE.objectFieldOffset
6792 <                (k.getDeclaredField("counter"));
6793 <            sizeCtlOffset = UNSAFE.objectFieldOffset
6257 >            SIZECTL = U.objectFieldOffset
6258                  (k.getDeclaredField("sizeCtl"));
6259 <            Class<?> sc = Node[].class;
6260 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6261 <            ss = UNSAFE.arrayIndexScale(sc);
6259 >            TRANSFERINDEX = U.objectFieldOffset
6260 >                (k.getDeclaredField("transferIndex"));
6261 >            BASECOUNT = U.objectFieldOffset
6262 >                (k.getDeclaredField("baseCount"));
6263 >            CELLSBUSY = U.objectFieldOffset
6264 >                (k.getDeclaredField("cellsBusy"));
6265 >            Class<?> ck = CounterCell.class;
6266 >            CELLVALUE = U.objectFieldOffset
6267 >                (ck.getDeclaredField("value"));
6268 >            Class<?> ak = Node[].class;
6269 >            ABASE = U.arrayBaseOffset(ak);
6270 >            int scale = U.arrayIndexScale(ak);
6271 >            if ((scale & (scale - 1)) != 0)
6272 >                throw new Error("data type scale not a power of two");
6273 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6274          } catch (Exception e) {
6275              throw new Error(e);
6276          }
6801        if ((ss & (ss-1)) != 0)
6802            throw new Error("data type scale not a power of two");
6803        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6277      }
6278  
6279      /**
# Line 6813 | Line 6286 | public class ConcurrentHashMapV8<K, V>
6286      private static sun.misc.Unsafe getUnsafe() {
6287          try {
6288              return sun.misc.Unsafe.getUnsafe();
6289 <        } catch (SecurityException se) {
6290 <            try {
6291 <                return java.security.AccessController.doPrivileged
6292 <                    (new java.security
6293 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6294 <                        public sun.misc.Unsafe run() throws Exception {
6295 <                            java.lang.reflect.Field f = sun.misc
6296 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6297 <                            f.setAccessible(true);
6298 <                            return (sun.misc.Unsafe) f.get(null);
6299 <                        }});
6300 <            } catch (java.security.PrivilegedActionException e) {
6301 <                throw new RuntimeException("Could not initialize intrinsics",
6302 <                                           e.getCause());
6303 <            }
6289 >        } catch (SecurityException tryReflectionInstead) {}
6290 >        try {
6291 >            return java.security.AccessController.doPrivileged
6292 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6293 >                public sun.misc.Unsafe run() throws Exception {
6294 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6295 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6296 >                        f.setAccessible(true);
6297 >                        Object x = f.get(null);
6298 >                        if (k.isInstance(x))
6299 >                            return k.cast(x);
6300 >                    }
6301 >                    throw new NoSuchFieldError("the Unsafe");
6302 >                }});
6303 >        } catch (java.security.PrivilegedActionException e) {
6304 >            throw new RuntimeException("Could not initialize intrinsics",
6305 >                                       e.getCause());
6306          }
6307      }
6308   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines