ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.73 by jsr166, Tue Oct 30 16:46:09 2012 UTC vs.
Revision 1.110 by dl, Thu Jul 4 18:34:49 2013 UTC

# Line 6 | Line 6
6  
7   package jsr166e;
8  
9 < import java.util.Comparator;
9 > import jsr166e.ForkJoinPool;
10 >
11 > import java.io.ObjectStreamField;
12 > import java.io.Serializable;
13 > import java.lang.reflect.ParameterizedType;
14 > import java.lang.reflect.Type;
15   import java.util.Arrays;
11 import java.util.Map;
12 import java.util.Set;
16   import java.util.Collection;
17 < import java.util.AbstractMap;
18 < import java.util.AbstractSet;
19 < import java.util.AbstractCollection;
17 < import java.util.Hashtable;
17 > import java.util.Comparator;
18 > import java.util.ConcurrentModificationException;
19 > import java.util.Enumeration;
20   import java.util.HashMap;
21 + import java.util.Hashtable;
22   import java.util.Iterator;
23 < import java.util.Enumeration;
21 < import java.util.ConcurrentModificationException;
23 > import java.util.Map;
24   import java.util.NoSuchElementException;
25 + import java.util.Set;
26   import java.util.concurrent.ConcurrentMap;
24 import java.util.concurrent.ThreadLocalRandom;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
27   import java.util.concurrent.atomic.AtomicReference;
28 <
29 < import java.io.Serializable;
28 > import java.util.concurrent.atomic.AtomicInteger;
29 > import java.util.concurrent.locks.LockSupport;
30 > import java.util.concurrent.locks.ReentrantLock;
31  
32   /**
33   * A hash table supporting full concurrency of retrievals and
# Line 40 | Line 41 | import java.io.Serializable;
41   * interoperable with {@code Hashtable} in programs that rely on its
42   * thread safety but not on its synchronization details.
43   *
44 < * <p> Retrieval operations (including {@code get}) generally do not
44 > * <p>Retrieval operations (including {@code get}) generally do not
45   * block, so may overlap with update operations (including {@code put}
46   * and {@code remove}). Retrievals reflect the results of the most
47   * recently <em>completed</em> update operations holding upon their
# Line 61 | Line 62 | import java.io.Serializable;
62   * that may be adequate for monitoring or estimation purposes, but not
63   * for program control.
64   *
65 < * <p> The table is dynamically expanded when there are too many
65 > * <p>The table is dynamically expanded when there are too many
66   * collisions (i.e., keys that have distinct hash codes but fall into
67   * the same slot modulo the table size), with the expected average
68   * effect of maintaining roughly two bins per mapping (corresponding
# Line 80 | Line 81 | import java.io.Serializable;
81   * expected {@code concurrencyLevel} as an additional hint for
82   * internal sizing.  Note that using many keys with exactly the same
83   * {@code hashCode()} is a sure way to slow down performance of any
84 < * hash table.
84 > * hash table. To ameliorate impact, when keys are {@link Comparable},
85 > * this class may use comparison order among keys to help break ties.
86   *
87 < * <p> A {@link Set} projection of a ConcurrentHashMapV8 may be created
87 > * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
88   * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
89   * (using {@link #keySet(Object)} when only keys are of interest, and the
90   * mapped values are (perhaps transiently) not used or all take the
91   * same mapping value.
92   *
91 * <p> A ConcurrentHashMapV8 can be used as scalable frequency map (a
92 * form of histogram or multiset) by using {@link LongAdder} values
93 * and initializing via {@link #computeIfAbsent}. For example, to add
94 * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
95 * can use {@code freqs.computeIfAbsent(k -> new
96 * LongAdder()).increment();}
97 *
93   * <p>This class and its views and iterators implement all of the
94   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
95   * interfaces.
96   *
97 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
97 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
98   * does <em>not</em> allow {@code null} to be used as a key or value.
99   *
100 < * <p>ConcurrentHashMapV8s support parallel operations using the {@link
101 < * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
102 < * are available in class {@link ForkJoinTasks}). These operations are
103 < * designed to be safely, and often sensibly, applied even with maps
104 < * that are being concurrently updated by other threads; for example,
105 < * when computing a snapshot summary of the values in a shared
106 < * registry.  There are three kinds of operation, each with four
107 < * forms, accepting functions with Keys, Values, Entries, and (Key,
108 < * Value) arguments and/or return values. Because the elements of a
109 < * ConcurrentHashMapV8 are not ordered in any particular way, and may be
110 < * processed in different orders in different parallel executions, the
111 < * correctness of supplied functions should not depend on any
112 < * ordering, or on any other objects or values that may transiently
113 < * change while computation is in progress; and except for forEach
114 < * actions, should ideally be side-effect-free.
100 > * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
101 > * operations that are designed
102 > * to be safely, and often sensibly, applied even with maps that are
103 > * being concurrently updated by other threads; for example, when
104 > * computing a snapshot summary of the values in a shared registry.
105 > * There are three kinds of operation, each with four forms, accepting
106 > * functions with Keys, Values, Entries, and (Key, Value) arguments
107 > * and/or return values. Because the elements of a ConcurrentHashMapV8
108 > * are not ordered in any particular way, and may be processed in
109 > * different orders in different parallel executions, the correctness
110 > * of supplied functions should not depend on any ordering, or on any
111 > * other objects or values that may transiently change while
112 > * computation is in progress; and except for forEach actions, should
113 > * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
114 > * objects do not support method {@code setValue}.
115   *
116   * <ul>
117   * <li> forEach: Perform a given action on each element.
# Line 143 | Line 138 | import java.io.Serializable;
138   * <li> Reductions to scalar doubles, longs, and ints, using a
139   * given basis value.</li>
140   *
146 * </li>
141   * </ul>
142 + * </li>
143   * </ul>
144   *
145 + * <p>These bulk operations accept a {@code parallelismThreshold}
146 + * argument. Methods proceed sequentially if the current map size is
147 + * estimated to be less than the given threshold. Using a value of
148 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
149 + * of {@code 1} results in maximal parallelism by partitioning into
150 + * enough subtasks to fully utilize the {@link
151 + * ForkJoinPool#commonPool()} that is used for all parallel
152 + * computations. Normally, you would initially choose one of these
153 + * extreme values, and then measure performance of using in-between
154 + * values that trade off overhead versus throughput.
155 + *
156   * <p>The concurrency properties of bulk operations follow
157   * from those of ConcurrentHashMapV8: Any non-null result returned
158   * from {@code get(key)} and related access methods bears a
# Line 182 | Line 188 | import java.io.Serializable;
188   * arguments can be supplied using {@code new
189   * AbstractMap.SimpleEntry(k,v)}.
190   *
191 < * <p> Bulk operations may complete abruptly, throwing an
191 > * <p>Bulk operations may complete abruptly, throwing an
192   * exception encountered in the application of a supplied
193   * function. Bear in mind when handling such exceptions that other
194   * concurrently executing functions could also have thrown
195   * exceptions, or would have done so if the first exception had
196   * not occurred.
197   *
198 < * <p>Parallel speedups for bulk operations compared to sequential
199 < * processing are common but not guaranteed.  Operations involving
200 < * brief functions on small maps may execute more slowly than
201 < * sequential loops if the underlying work to parallelize the
202 < * computation is more expensive than the computation
203 < * itself. Similarly, parallelization may not lead to much actual
204 < * parallelism if all processors are busy performing unrelated tasks.
198 > * <p>Speedups for parallel compared to sequential forms are common
199 > * but not guaranteed.  Parallel operations involving brief functions
200 > * on small maps may execute more slowly than sequential forms if the
201 > * underlying work to parallelize the computation is more expensive
202 > * than the computation itself.  Similarly, parallelization may not
203 > * lead to much actual parallelism if all processors are busy
204 > * performing unrelated tasks.
205   *
206 < * <p> All arguments to all task methods must be non-null.
206 > * <p>All arguments to all task methods must be non-null.
207   *
208   * <p><em>jsr166e note: During transition, this class
209   * uses nested functional interfaces with different names but the
210 < * same forms as those expected for JDK8.<em>
210 > * same forms as those expected for JDK8.</em>
211   *
212   * <p>This class is a member of the
213   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
# Line 212 | Line 218 | import java.io.Serializable;
218   * @param <K> the type of keys maintained by this map
219   * @param <V> the type of mapped values
220   */
221 < public class ConcurrentHashMapV8<K, V>
222 <    implements ConcurrentMap<K, V>, Serializable {
221 > public class ConcurrentHashMapV8<K,V>
222 >    implements ConcurrentMap<K,V>, Serializable {
223      private static final long serialVersionUID = 7249069246763182397L;
224  
225      /**
226 <     * A partitionable iterator. A Spliterator can be traversed
227 <     * directly, but can also be partitioned (before traversal) by
228 <     * creating another Spliterator that covers a non-overlapping
223 <     * portion of the elements, and so may be amenable to parallel
224 <     * execution.
225 <     *
226 <     * <p> This interface exports a subset of expected JDK8
227 <     * functionality.
228 <     *
229 <     * <p>Sample usage: Here is one (of the several) ways to compute
230 <     * the sum of the values held in a map using the ForkJoin
231 <     * framework. As illustrated here, Spliterators are well suited to
232 <     * designs in which a task repeatedly splits off half its work
233 <     * into forked subtasks until small enough to process directly,
234 <     * and then joins these subtasks. Variants of this style can also
235 <     * be used in completion-based designs.
236 <     *
237 <     * <pre>
238 <     * {@code ConcurrentHashMapV8<String, Long> m = ...
239 <     * // split as if have 8 * parallelism, for load balance
240 <     * int n = m.size();
241 <     * int p = aForkJoinPool.getParallelism() * 8;
242 <     * int split = (n < p)? n : p;
243 <     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
244 <     * // ...
245 <     * static class SumValues extends RecursiveTask<Long> {
246 <     *   final Spliterator<Long> s;
247 <     *   final int split;             // split while > 1
248 <     *   final SumValues nextJoin;    // records forked subtasks to join
249 <     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
250 <     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
251 <     *   }
252 <     *   public Long compute() {
253 <     *     long sum = 0;
254 <     *     SumValues subtasks = null; // fork subtasks
255 <     *     for (int s = split >>> 1; s > 0; s >>>= 1)
256 <     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
257 <     *     while (s.hasNext())        // directly process remaining elements
258 <     *       sum += s.next();
259 <     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
260 <     *       sum += t.join();         // collect subtask results
261 <     *     return sum;
262 <     *   }
263 <     * }
264 <     * }</pre>
226 >     * An object for traversing and partitioning elements of a source.
227 >     * This interface provides a subset of the functionality of JDK8
228 >     * java.util.Spliterator.
229       */
230 <    public static interface Spliterator<T> extends Iterator<T> {
230 >    public static interface ConcurrentHashMapSpliterator<T> {
231          /**
232 <         * Returns a Spliterator covering approximately half of the
233 <         * elements, guaranteed not to overlap with those subsequently
234 <         * returned by this Spliterator.  After invoking this method,
235 <         * the current Spliterator will <em>not</em> produce any of
272 <         * the elements of the returned Spliterator, but the two
273 <         * Spliterators together will produce all of the elements that
274 <         * would have been produced by this Spliterator had this
275 <         * method not been called. The exact number of elements
276 <         * produced by the returned Spliterator is not guaranteed, and
277 <         * may be zero (i.e., with {@code hasNext()} reporting {@code
278 <         * false}) if this Spliterator cannot be further split.
279 <         *
280 <         * @return a Spliterator covering approximately half of the
281 <         * elements
282 <         * @throws IllegalStateException if this Spliterator has
283 <         * already commenced traversing elements
284 <         */
285 <        Spliterator<T> split();
286 <    }
287 <
288 <    /**
289 <     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
290 <     * which additions may optionally be enabled by mapping to a
291 <     * common value.  This class cannot be directly instantiated. See
292 <     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
293 <     * {@link #newKeySet(int)}.
294 <     *
295 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
296 <     * that will never throw {@link ConcurrentModificationException},
297 <     * and guarantees to traverse elements as they existed upon
298 <     * construction of the iterator, and may (but is not guaranteed to)
299 <     * reflect any modifications subsequent to construction.
300 <     */
301 <    public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
302 <        private static final long serialVersionUID = 7249069246763182397L;
303 <        private final V value;
304 <        KeySetView(ConcurrentHashMapV8<K, V> map, V value) {  // non-public
305 <            super(map);
306 <            this.value = value;
307 <        }
308 <
309 <        /**
310 <         * Returns the map backing this view.
311 <         *
312 <         * @return the map backing this view
232 >         * If possible, returns a new spliterator covering
233 >         * approximately one half of the elements, which will not be
234 >         * covered by this spliterator. Returns null if cannot be
235 >         * split.
236           */
237 <        public ConcurrentHashMapV8<K,V> getMap() { return map; }
315 <
237 >        ConcurrentHashMapSpliterator<T> trySplit();
238          /**
239 <         * Returns the default mapped value for additions,
240 <         * or {@code null} if additions are not supported.
319 <         *
320 <         * @return the default mapped value for additions, or {@code null}
321 <         * if not supported.
239 >         * Returns an estimate of the number of elements covered by
240 >         * this Spliterator.
241           */
242 <        public V getMappedValue() { return value; }
324 <
325 <        // implement Set API
242 >        long estimateSize();
243  
244 <        public boolean contains(Object o) { return map.containsKey(o); }
245 <        public boolean remove(Object o)   { return map.remove(o) != null; }
246 <        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
247 <        public boolean add(K e) {
331 <            V v;
332 <            if ((v = value) == null)
333 <                throw new UnsupportedOperationException();
334 <            if (e == null)
335 <                throw new NullPointerException();
336 <            return map.internalPutIfAbsent(e, v) == null;
337 <        }
338 <        public boolean addAll(Collection<? extends K> c) {
339 <            boolean added = false;
340 <            V v;
341 <            if ((v = value) == null)
342 <                throw new UnsupportedOperationException();
343 <            for (K e : c) {
344 <                if (e == null)
345 <                    throw new NullPointerException();
346 <                if (map.internalPutIfAbsent(e, v) == null)
347 <                    added = true;
348 <            }
349 <            return added;
350 <        }
351 <        public boolean equals(Object o) {
352 <            Set<?> c;
353 <            return ((o instanceof Set) &&
354 <                    ((c = (Set<?>)o) == this ||
355 <                     (containsAll(c) && c.containsAll(this))));
356 <        }
244 >        /** Applies the action to each untraversed element */
245 >        void forEachRemaining(Action<? super T> action);
246 >        /** If an element remains, applies the action and returns true. */
247 >        boolean tryAdvance(Action<? super T> action);
248      }
249  
250 +    // Sams
251 +    /** Interface describing a void action of one argument */
252 +    public interface Action<A> { void apply(A a); }
253 +    /** Interface describing a void action of two arguments */
254 +    public interface BiAction<A,B> { void apply(A a, B b); }
255 +    /** Interface describing a function of one argument */
256 +    public interface Fun<A,T> { T apply(A a); }
257 +    /** Interface describing a function of two arguments */
258 +    public interface BiFun<A,B,T> { T apply(A a, B b); }
259 +    /** Interface describing a function mapping its argument to a double */
260 +    public interface ObjectToDouble<A> { double apply(A a); }
261 +    /** Interface describing a function mapping its argument to a long */
262 +    public interface ObjectToLong<A> { long apply(A a); }
263 +    /** Interface describing a function mapping its argument to an int */
264 +    public interface ObjectToInt<A> {int apply(A a); }
265 +    /** Interface describing a function mapping two arguments to a double */
266 +    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
267 +    /** Interface describing a function mapping two arguments to a long */
268 +    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
269 +    /** Interface describing a function mapping two arguments to an int */
270 +    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
271 +    /** Interface describing a function mapping two doubles to a double */
272 +    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
273 +    /** Interface describing a function mapping two longs to a long */
274 +    public interface LongByLongToLong { long apply(long a, long b); }
275 +    /** Interface describing a function mapping two ints to an int */
276 +    public interface IntByIntToInt { int apply(int a, int b); }
277 +
278      /*
279       * Overview:
280       *
# Line 366 | Line 285 | public class ConcurrentHashMapV8<K, V>
285       * the same or better than java.util.HashMap, and to support high
286       * initial insertion rates on an empty table by many threads.
287       *
288 <     * Each key-value mapping is held in a Node.  Because Node fields
289 <     * can contain special values, they are defined using plain Object
290 <     * types. Similarly in turn, all internal methods that use them
291 <     * work off Object types. And similarly, so do the internal
292 <     * methods of auxiliary iterator and view classes.  All public
293 <     * generic typed methods relay in/out of these internal methods,
294 <     * supplying null-checks and casts as needed. This also allows
295 <     * many of the public methods to be factored into a smaller number
296 <     * of internal methods (although sadly not so for the five
297 <     * variants of put-related operations). The validation-based
298 <     * approach explained below leads to a lot of code sprawl because
299 <     * retry-control precludes factoring into smaller methods.
288 >     * This map usually acts as a binned (bucketed) hash table.  Each
289 >     * key-value mapping is held in a Node.  Most nodes are instances
290 >     * of the basic Node class with hash, key, value, and next
291 >     * fields. However, various subclasses exist: TreeNodes are
292 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
293 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
294 >     * of bins during resizing. ReservationNodes are used as
295 >     * placeholders while establishing values in computeIfAbsent and
296 >     * related methods.  The types TreeBin, ForwardingNode, and
297 >     * ReservationNode do not hold normal user keys, values, or
298 >     * hashes, and are readily distinguishable during search etc
299 >     * because they have negative hash fields and null key and value
300 >     * fields. (These special nodes are either uncommon or transient,
301 >     * so the impact of carrying around some unused fields is
302 >     * insignificant.)
303       *
304       * The table is lazily initialized to a power-of-two size upon the
305       * first insertion.  Each bin in the table normally contains a
# Line 385 | Line 307 | public class ConcurrentHashMapV8<K, V>
307       * Table accesses require volatile/atomic reads, writes, and
308       * CASes.  Because there is no other way to arrange this without
309       * adding further indirections, we use intrinsics
310 <     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
311 <     * are always accurately traversable under volatile reads, so long
312 <     * as lookups check hash code and non-nullness of value before
313 <     * checking key equality.
314 <     *
315 <     * We use the top two bits of Node hash fields for control
394 <     * purposes -- they are available anyway because of addressing
395 <     * constraints.  As explained further below, these top bits are
396 <     * used as follows:
397 <     *  00 - Normal
398 <     *  01 - Locked
399 <     *  11 - Locked and may have a thread waiting for lock
400 <     *  10 - Node is a forwarding node
401 <     *
402 <     * The lower 30 bits of each Node's hash field contain a
403 <     * transformation of the key's hash code, except for forwarding
404 <     * nodes, for which the lower bits are zero (and so always have
405 <     * hash field == MOVED).
310 >     * (sun.misc.Unsafe) operations.
311 >     *
312 >     * We use the top (sign) bit of Node hash fields for control
313 >     * purposes -- it is available anyway because of addressing
314 >     * constraints.  Nodes with negative hash fields are specially
315 >     * handled or ignored in map methods.
316       *
317       * Insertion (via put or its variants) of the first node in an
318       * empty bin is performed by just CASing it to the bin.  This is
# Line 411 | Line 321 | public class ConcurrentHashMapV8<K, V>
321       * delete, and replace) require locks.  We do not want to waste
322       * the space required to associate a distinct lock object with
323       * each bin, so instead use the first node of a bin list itself as
324 <     * a lock. Blocking support for these locks relies on the builtin
325 <     * "synchronized" monitors.  However, we also need a tryLock
416 <     * construction, so we overlay these by using bits of the Node
417 <     * hash field for lock control (see above), and so normally use
418 <     * builtin monitors only for blocking and signalling using
419 <     * wait/notifyAll constructions. See Node.tryAwaitLock.
324 >     * a lock. Locking support for these locks relies on builtin
325 >     * "synchronized" monitors.
326       *
327       * Using the first node of a list as a lock does not by itself
328       * suffice though: When a node is locked, any update must first
329       * validate that it is still the first node after locking it, and
330       * retry if not. Because new nodes are always appended to lists,
331       * once a node is first in a bin, it remains first until deleted
332 <     * or the bin becomes invalidated (upon resizing).  However,
427 <     * operations that only conditionally update may inspect nodes
428 <     * until the point of update. This is a converse of sorts to the
429 <     * lazy locking technique described by Herlihy & Shavit.
332 >     * or the bin becomes invalidated (upon resizing).
333       *
334       * The main disadvantage of per-bin locks is that other update
335       * operations on other nodes in a bin list protected by the same
# Line 459 | Line 362 | public class ConcurrentHashMapV8<K, V>
362       * sometimes deviate significantly from uniform randomness.  This
363       * includes the case when N > (1<<30), so some keys MUST collide.
364       * Similarly for dumb or hostile usages in which multiple keys are
365 <     * designed to have identical hash codes. Also, although we guard
366 <     * against the worst effects of this (see method spread), sets of
367 <     * hashes may differ only in bits that do not impact their bin
368 <     * index for a given power-of-two mask.  So we use a secondary
369 <     * strategy that applies when the number of nodes in a bin exceeds
370 <     * a threshold, and at least one of the keys implements
468 <     * Comparable.  These TreeBins use a balanced tree to hold nodes
469 <     * (a specialized form of red-black trees), bounding search time
470 <     * to O(log N).  Each search step in a TreeBin is around twice as
365 >     * designed to have identical hash codes or ones that differs only
366 >     * in masked-out high bits. So we use a secondary strategy that
367 >     * applies when the number of nodes in a bin exceeds a
368 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
369 >     * specialized form of red-black trees), bounding search time to
370 >     * O(log N).  Each search step in a TreeBin is at least twice as
371       * slow as in a regular list, but given that N cannot exceed
372       * (1<<64) (before running out of addresses) this bounds search
373       * steps, lock hold times, etc, to reasonable constants (roughly
# Line 478 | Line 378 | public class ConcurrentHashMapV8<K, V>
378       * iterators in the same way.
379       *
380       * The table is resized when occupancy exceeds a percentage
381 <     * threshold (nominally, 0.75, but see below).  Only a single
382 <     * thread performs the resize (using field "sizeCtl", to arrange
383 <     * exclusion), but the table otherwise remains usable for reads
384 <     * and updates. Resizing proceeds by transferring bins, one by
385 <     * one, from the table to the next table.  Because we are using
386 <     * power-of-two expansion, the elements from each bin must either
387 <     * stay at same index, or move with a power of two offset. We
388 <     * eliminate unnecessary node creation by catching cases where old
389 <     * nodes can be reused because their next fields won't change.  On
390 <     * average, only about one-sixth of them need cloning when a table
391 <     * doubles. The nodes they replace will be garbage collectable as
392 <     * soon as they are no longer referenced by any reader thread that
393 <     * may be in the midst of concurrently traversing table.  Upon
394 <     * transfer, the old table bin contains only a special forwarding
395 <     * node (with hash field "MOVED") that contains the next table as
396 <     * its key. On encountering a forwarding node, access and update
397 <     * operations restart, using the new table.
398 <     *
399 <     * Each bin transfer requires its bin lock. However, unlike other
400 <     * cases, a transfer can skip a bin if it fails to acquire its
401 <     * lock, and revisit it later (unless it is a TreeBin). Method
402 <     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
403 <     * have been skipped because of failure to acquire a lock, and
404 <     * blocks only if none are available (i.e., only very rarely).
405 <     * The transfer operation must also ensure that all accessible
406 <     * bins in both the old and new table are usable by any traversal.
407 <     * When there are no lock acquisition failures, this is arranged
408 <     * simply by proceeding from the last bin (table.length - 1) up
409 <     * towards the first.  Upon seeing a forwarding node, traversals
410 <     * (see class Iter) arrange to move to the new table
411 <     * without revisiting nodes.  However, when any node is skipped
412 <     * during a transfer, all earlier table bins may have become
413 <     * visible, so are initialized with a reverse-forwarding node back
414 <     * to the old table until the new ones are established. (This
415 <     * sometimes requires transiently locking a forwarding node, which
416 <     * is possible under the above encoding.) These more expensive
417 <     * mechanics trigger only when necessary.
381 >     * threshold (nominally, 0.75, but see below).  Any thread
382 >     * noticing an overfull bin may assist in resizing after the
383 >     * initiating thread allocates and sets up the replacement
384 >     * array. However, rather than stalling, these other threads may
385 >     * proceed with insertions etc.  The use of TreeBins shields us
386 >     * from the worst case effects of overfilling while resizes are in
387 >     * progress.  Resizing proceeds by transferring bins, one by one,
388 >     * from the table to the next table. To enable concurrency, the
389 >     * next table must be (incrementally) prefilled with place-holders
390 >     * serving as reverse forwarders to the old table.  Because we are
391 >     * using power-of-two expansion, the elements from each bin must
392 >     * either stay at same index, or move with a power of two
393 >     * offset. We eliminate unnecessary node creation by catching
394 >     * cases where old nodes can be reused because their next fields
395 >     * won't change.  On average, only about one-sixth of them need
396 >     * cloning when a table doubles. The nodes they replace will be
397 >     * garbage collectable as soon as they are no longer referenced by
398 >     * any reader thread that may be in the midst of concurrently
399 >     * traversing table.  Upon transfer, the old table bin contains
400 >     * only a special forwarding node (with hash field "MOVED") that
401 >     * contains the next table as its key. On encountering a
402 >     * forwarding node, access and update operations restart, using
403 >     * the new table.
404 >     *
405 >     * Each bin transfer requires its bin lock, which can stall
406 >     * waiting for locks while resizing. However, because other
407 >     * threads can join in and help resize rather than contend for
408 >     * locks, average aggregate waits become shorter as resizing
409 >     * progresses.  The transfer operation must also ensure that all
410 >     * accessible bins in both the old and new table are usable by any
411 >     * traversal.  This is arranged by proceeding from the last bin
412 >     * (table.length - 1) up towards the first.  Upon seeing a
413 >     * forwarding node, traversals (see class Traverser) arrange to
414 >     * move to the new table without revisiting nodes.  However, to
415 >     * ensure that no intervening nodes are skipped, bin splitting can
416 >     * only begin after the associated reverse-forwarders are in
417 >     * place.
418       *
419       * The traversal scheme also applies to partial traversals of
420       * ranges of bins (via an alternate Traverser constructor)
# Line 529 | Line 429 | public class ConcurrentHashMapV8<K, V>
429       * These cases attempt to override the initial capacity settings,
430       * but harmlessly fail to take effect in cases of races.
431       *
432 <     * The element count is maintained using a LongAdder, which avoids
433 <     * contention on updates but can encounter cache thrashing if read
434 <     * too frequently during concurrent access. To avoid reading so
435 <     * often, resizing is attempted either when a bin lock is
436 <     * contended, or upon adding to a bin already holding two or more
437 <     * nodes (checked before adding in the xIfAbsent methods, after
438 <     * adding in others). Under uniform hash distributions, the
439 <     * probability of this occurring at threshold is around 13%,
440 <     * meaning that only about 1 in 8 puts check threshold (and after
441 <     * resizing, many fewer do so). But this approximation has high
442 <     * variance for small table sizes, so we check on any collision
443 <     * for sizes <= 64. The bulk putAll operation further reduces
444 <     * contention by only committing count updates upon these size
445 <     * checks.
432 >     * The element count is maintained using a specialization of
433 >     * LongAdder. We need to incorporate a specialization rather than
434 >     * just use a LongAdder in order to access implicit
435 >     * contention-sensing that leads to creation of multiple
436 >     * CounterCells.  The counter mechanics avoid contention on
437 >     * updates but can encounter cache thrashing if read too
438 >     * frequently during concurrent access. To avoid reading so often,
439 >     * resizing under contention is attempted only upon adding to a
440 >     * bin already holding two or more nodes. Under uniform hash
441 >     * distributions, the probability of this occurring at threshold
442 >     * is around 13%, meaning that only about 1 in 8 puts check
443 >     * threshold (and after resizing, many fewer do so).
444 >     *
445 >     * TreeBins use a special form of comparison for search and
446 >     * related operations (which is the main reason we cannot use
447 >     * existing collections such as TreeMaps). TreeBins contain
448 >     * Comparable elements, but may contain others, as well as
449 >     * elements that are Comparable but not necessarily Comparable
450 >     * for the same T, so we cannot invoke compareTo among them. To
451 >     * handle this, the tree is ordered primarily by hash value, then
452 >     * by Comparable.compareTo order if applicable.  On lookup at a
453 >     * node, if elements are not comparable or compare as 0 then both
454 >     * left and right children may need to be searched in the case of
455 >     * tied hash values. (This corresponds to the full list search
456 >     * that would be necessary if all elements were non-Comparable and
457 >     * had tied hashes.)  The red-black balancing code is updated from
458 >     * pre-jdk-collections
459 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
460 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
461 >     * Algorithms" (CLR).
462 >     *
463 >     * TreeBins also require an additional locking mechanism.  While
464 >     * list traversal is always possible by readers even during
465 >     * updates, tree traversal is not, mainly because of tree-rotations
466 >     * that may change the root node and/or its linkages.  TreeBins
467 >     * include a simple read-write lock mechanism parasitic on the
468 >     * main bin-synchronization strategy: Structural adjustments
469 >     * associated with an insertion or removal are already bin-locked
470 >     * (and so cannot conflict with other writers) but must wait for
471 >     * ongoing readers to finish. Since there can be only one such
472 >     * waiter, we use a simple scheme using a single "waiter" field to
473 >     * block writers.  However, readers need never block.  If the root
474 >     * lock is held, they proceed along the slow traversal path (via
475 >     * next-pointers) until the lock becomes available or the list is
476 >     * exhausted, whichever comes first. These cases are not fast, but
477 >     * maximize aggregate expected throughput.
478       *
479       * Maintaining API and serialization compatibility with previous
480       * versions of this class introduces several oddities. Mainly: We
# Line 552 | Line 484 | public class ConcurrentHashMapV8<K, V>
484       * time that we can guarantee to honor it.) We also declare an
485       * unused "Segment" class that is instantiated in minimal form
486       * only when serializing.
487 +     *
488 +     * This file is organized to make things a little easier to follow
489 +     * while reading than they might otherwise: First the main static
490 +     * declarations and utilities, then fields, then main public
491 +     * methods (with a few factorings of multiple public methods into
492 +     * internal ones), then sizing methods, trees, traversers, and
493 +     * bulk operations.
494       */
495  
496      /* ---------------- Constants -------------- */
# Line 593 | Line 532 | public class ConcurrentHashMapV8<K, V>
532      private static final float LOAD_FACTOR = 0.75f;
533  
534      /**
596     * The buffer size for skipped bins during transfers. The
597     * value is arbitrary but should be large enough to avoid
598     * most locking stalls during resizes.
599     */
600    private static final int TRANSFER_BUFFER_SIZE = 32;
601
602    /**
535       * The bin count threshold for using a tree rather than list for a
536 <     * bin.  The value reflects the approximate break-even point for
537 <     * using tree-based operations.
538 <     */
539 <    private static final int TREE_THRESHOLD = 8;
540 <
609 <    /*
610 <     * Encodings for special uses of Node hash fields. See above for
611 <     * explanation.
536 >     * bin.  Bins are converted to trees when adding an element to a
537 >     * bin with at least this many nodes. The value must be greater
538 >     * than 2, and should be at least 8 to mesh with assumptions in
539 >     * tree removal about conversion back to plain bins upon
540 >     * shrinkage.
541       */
542 <    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
614 <    static final int LOCKED    = 0x40000000; // set/tested only as a bit
615 <    static final int WAITING   = 0xc0000000; // both bits set/tested together
616 <    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
617 <
618 <    /* ---------------- Fields -------------- */
542 >    static final int TREEIFY_THRESHOLD = 8;
543  
544      /**
545 <     * The array of bins. Lazily initialized upon first insertion.
546 <     * Size is always a power of two. Accessed directly by iterators.
545 >     * The bin count threshold for untreeifying a (split) bin during a
546 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
547 >     * most 6 to mesh with shrinkage detection under removal.
548       */
549 <    transient volatile Node[] table;
549 >    static final int UNTREEIFY_THRESHOLD = 6;
550  
551      /**
552 <     * The counter maintaining number of elements.
552 >     * The smallest table capacity for which bins may be treeified.
553 >     * (Otherwise the table is resized if too many nodes in a bin.)
554 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
555 >     * conflicts between resizing and treeification thresholds.
556       */
557 <    private transient final LongAdder counter;
557 >    static final int MIN_TREEIFY_CAPACITY = 64;
558  
559      /**
560 <     * Table initialization and resizing control.  When negative, the
561 <     * table is being initialized or resized. Otherwise, when table is
562 <     * null, holds the initial table size to use upon creation, or 0
563 <     * for default. After initialization, holds the next element count
564 <     * value upon which to resize the table.
560 >     * Minimum number of rebinnings per transfer step. Ranges are
561 >     * subdivided to allow multiple resizer threads.  This value
562 >     * serves as a lower bound to avoid resizers encountering
563 >     * excessive memory contention.  The value should be at least
564 >     * DEFAULT_CAPACITY.
565       */
566 <    private transient volatile int sizeCtl;
639 <
640 <    // views
641 <    private transient KeySetView<K,V> keySet;
642 <    private transient Values<K,V> values;
643 <    private transient EntrySet<K,V> entrySet;
644 <
645 <    /** For serialization compatibility. Null unless serialized; see below */
646 <    private Segment<K,V>[] segments;
647 <
648 <    /* ---------------- Table element access -------------- */
566 >    private static final int MIN_TRANSFER_STRIDE = 16;
567  
568      /*
569 <     * Volatile access methods are used for table elements as well as
652 <     * elements of in-progress next table while resizing.  Uses are
653 <     * null checked by callers, and implicitly bounds-checked, relying
654 <     * on the invariants that tab arrays have non-zero size, and all
655 <     * indices are masked with (tab.length - 1) which is never
656 <     * negative and always less than length. Note that, to be correct
657 <     * wrt arbitrary concurrency errors by users, bounds checks must
658 <     * operate on local variables, which accounts for some odd-looking
659 <     * inline assignments below.
569 >     * Encodings for Node hash fields. See above for explanation.
570       */
571 <
572 <    static final Node tabAt(Node[] tab, int i) { // used by Iter
573 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
574 <    }
575 <
576 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
577 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
578 <    }
579 <
580 <    private static final void setTabAt(Node[] tab, int i, Node v) {
581 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
582 <    }
571 >    static final int MOVED     = -1; // hash for forwarding nodes
572 >    static final int TREEBIN   = -2; // hash for roots of trees
573 >    static final int RESERVED  = -3; // hash for transient reservations
574 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
575 >
576 >    /** Number of CPUS, to place bounds on some sizings */
577 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
578 >
579 >    /** For serialization compatibility. */
580 >    private static final ObjectStreamField[] serialPersistentFields = {
581 >        new ObjectStreamField("segments", Segment[].class),
582 >        new ObjectStreamField("segmentMask", Integer.TYPE),
583 >        new ObjectStreamField("segmentShift", Integer.TYPE)
584 >    };
585  
586      /* ---------------- Nodes -------------- */
587  
588      /**
589 <     * Key-value entry. Note that this is never exported out as a
590 <     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
591 <     * field of MOVED are special, and do not contain user keys or
592 <     * values.  Otherwise, keys are never null, and null val fields
593 <     * indicate that a node is in the process of being deleted or
594 <     * created. For purposes of read-only access, a key may be read
595 <     * before a val, but can only be used after checking val to be
596 <     * non-null.
597 <     */
598 <    static class Node {
599 <        volatile int hash;
600 <        final Object key;
689 <        volatile Object val;
690 <        volatile Node next;
589 >     * Key-value entry.  This class is never exported out as a
590 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
591 >     * MapEntry below), but can be used for read-only traversals used
592 >     * in bulk tasks.  Subclasses of Node with a negative hash field
593 >     * are special, and contain null keys and values (but are never
594 >     * exported).  Otherwise, keys and vals are never null.
595 >     */
596 >    static class Node<K,V> implements Map.Entry<K,V> {
597 >        final int hash;
598 >        final K key;
599 >        volatile V val;
600 >        volatile Node<K,V> next;
601  
602 <        Node(int hash, Object key, Object val, Node next) {
602 >        Node(int hash, K key, V val, Node<K,V> next) {
603              this.hash = hash;
604              this.key = key;
605              this.val = val;
606              this.next = next;
607          }
608  
609 <        /** CompareAndSet the hash field */
610 <        final boolean casHash(int cmp, int val) {
611 <            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
612 <        }
613 <
614 <        /** The number of spins before blocking for a lock */
705 <        static final int MAX_SPINS =
706 <            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
707 <
708 <        /**
709 <         * Spins a while if LOCKED bit set and this node is the first
710 <         * of its bin, and then sets WAITING bits on hash field and
711 <         * blocks (once) if they are still set.  It is OK for this
712 <         * method to return even if lock is not available upon exit,
713 <         * which enables these simple single-wait mechanics.
714 <         *
715 <         * The corresponding signalling operation is performed within
716 <         * callers: Upon detecting that WAITING has been set when
717 <         * unlocking lock (via a failed CAS from non-waiting LOCKED
718 <         * state), unlockers acquire the sync lock and perform a
719 <         * notifyAll.
720 <         *
721 <         * The initial sanity check on tab and bounds is not currently
722 <         * necessary in the only usages of this method, but enables
723 <         * use in other future contexts.
724 <         */
725 <        final void tryAwaitLock(Node[] tab, int i) {
726 <            if (tab != null && i >= 0 && i < tab.length) { // sanity check
727 <                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
728 <                int spins = MAX_SPINS, h;
729 <                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
730 <                    if (spins >= 0) {
731 <                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
732 <                        if (r >= 0 && --spins == 0)
733 <                            Thread.yield();  // yield before block
734 <                    }
735 <                    else if (casHash(h, h | WAITING)) {
736 <                        synchronized (this) {
737 <                            if (tabAt(tab, i) == this &&
738 <                                (hash & WAITING) == WAITING) {
739 <                                try {
740 <                                    wait();
741 <                                } catch (InterruptedException ie) {
742 <                                    Thread.currentThread().interrupt();
743 <                                }
744 <                            }
745 <                            else
746 <                                notifyAll(); // possibly won race vs signaller
747 <                        }
748 <                        break;
749 <                    }
750 <                }
751 <            }
752 <        }
753 <
754 <        // Unsafe mechanics for casHash
755 <        private static final sun.misc.Unsafe UNSAFE;
756 <        private static final long hashOffset;
757 <
758 <        static {
759 <            try {
760 <                UNSAFE = getUnsafe();
761 <                Class<?> k = Node.class;
762 <                hashOffset = UNSAFE.objectFieldOffset
763 <                    (k.getDeclaredField("hash"));
764 <            } catch (Exception e) {
765 <                throw new Error(e);
766 <            }
767 <        }
768 <    }
769 <
770 <    /* ---------------- TreeBins -------------- */
771 <
772 <    /**
773 <     * Nodes for use in TreeBins
774 <     */
775 <    static final class TreeNode extends Node {
776 <        TreeNode parent;  // red-black tree links
777 <        TreeNode left;
778 <        TreeNode right;
779 <        TreeNode prev;    // needed to unlink next upon deletion
780 <        boolean red;
781 <
782 <        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
783 <            super(hash, key, val, next);
784 <            this.parent = parent;
785 <        }
786 <    }
787 <
788 <    /**
789 <     * A specialized form of red-black tree for use in bins
790 <     * whose size exceeds a threshold.
791 <     *
792 <     * TreeBins use a special form of comparison for search and
793 <     * related operations (which is the main reason we cannot use
794 <     * existing collections such as TreeMaps). TreeBins contain
795 <     * Comparable elements, but may contain others, as well as
796 <     * elements that are Comparable but not necessarily Comparable<T>
797 <     * for the same T, so we cannot invoke compareTo among them. To
798 <     * handle this, the tree is ordered primarily by hash value, then
799 <     * by getClass().getName() order, and then by Comparator order
800 <     * among elements of the same class.  On lookup at a node, if
801 <     * elements are not comparable or compare as 0, both left and
802 <     * right children may need to be searched in the case of tied hash
803 <     * values. (This corresponds to the full list search that would be
804 <     * necessary if all elements were non-Comparable and had tied
805 <     * hashes.)  The red-black balancing code is updated from
806 <     * pre-jdk-collections
807 <     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
808 <     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
809 <     * Algorithms" (CLR).
810 <     *
811 <     * TreeBins also maintain a separate locking discipline than
812 <     * regular bins. Because they are forwarded via special MOVED
813 <     * nodes at bin heads (which can never change once established),
814 <     * we cannot use those nodes as locks. Instead, TreeBin
815 <     * extends AbstractQueuedSynchronizer to support a simple form of
816 <     * read-write lock. For update operations and table validation,
817 <     * the exclusive form of lock behaves in the same way as bin-head
818 <     * locks. However, lookups use shared read-lock mechanics to allow
819 <     * multiple readers in the absence of writers.  Additionally,
820 <     * these lookups do not ever block: While the lock is not
821 <     * available, they proceed along the slow traversal path (via
822 <     * next-pointers) until the lock becomes available or the list is
823 <     * exhausted, whichever comes first. (These cases are not fast,
824 <     * but maximize aggregate expected throughput.)  The AQS mechanics
825 <     * for doing this are straightforward.  The lock state is held as
826 <     * AQS getState().  Read counts are negative; the write count (1)
827 <     * is positive.  There are no signalling preferences among readers
828 <     * and writers. Since we don't need to export full Lock API, we
829 <     * just override the minimal AQS methods and use them directly.
830 <     */
831 <    static final class TreeBin extends AbstractQueuedSynchronizer {
832 <        private static final long serialVersionUID = 2249069246763182397L;
833 <        transient TreeNode root;  // root of tree
834 <        transient TreeNode first; // head of next-pointer list
835 <
836 <        /* AQS overrides */
837 <        public final boolean isHeldExclusively() { return getState() > 0; }
838 <        public final boolean tryAcquire(int ignore) {
839 <            if (compareAndSetState(0, 1)) {
840 <                setExclusiveOwnerThread(Thread.currentThread());
841 <                return true;
842 <            }
843 <            return false;
844 <        }
845 <        public final boolean tryRelease(int ignore) {
846 <            setExclusiveOwnerThread(null);
847 <            setState(0);
848 <            return true;
849 <        }
850 <        public final int tryAcquireShared(int ignore) {
851 <            for (int c;;) {
852 <                if ((c = getState()) > 0)
853 <                    return -1;
854 <                if (compareAndSetState(c, c -1))
855 <                    return 1;
856 <            }
857 <        }
858 <        public final boolean tryReleaseShared(int ignore) {
859 <            int c;
860 <            do {} while (!compareAndSetState(c = getState(), c + 1));
861 <            return c == -1;
862 <        }
863 <
864 <        /** From CLR */
865 <        private void rotateLeft(TreeNode p) {
866 <            if (p != null) {
867 <                TreeNode r = p.right, pp, rl;
868 <                if ((rl = p.right = r.left) != null)
869 <                    rl.parent = p;
870 <                if ((pp = r.parent = p.parent) == null)
871 <                    root = r;
872 <                else if (pp.left == p)
873 <                    pp.left = r;
874 <                else
875 <                    pp.right = r;
876 <                r.left = p;
877 <                p.parent = r;
878 <            }
879 <        }
880 <
881 <        /** From CLR */
882 <        private void rotateRight(TreeNode p) {
883 <            if (p != null) {
884 <                TreeNode l = p.left, pp, lr;
885 <                if ((lr = p.left = l.right) != null)
886 <                    lr.parent = p;
887 <                if ((pp = l.parent = p.parent) == null)
888 <                    root = l;
889 <                else if (pp.right == p)
890 <                    pp.right = l;
891 <                else
892 <                    pp.left = l;
893 <                l.right = p;
894 <                p.parent = l;
895 <            }
896 <        }
897 <
898 <        /**
899 <         * Returns the TreeNode (or null if not found) for the given key
900 <         * starting at given root.
901 <         */
902 <        @SuppressWarnings("unchecked") final TreeNode getTreeNode
903 <            (int h, Object k, TreeNode p) {
904 <            Class<?> c = k.getClass();
905 <            while (p != null) {
906 <                int dir, ph;  Object pk; Class<?> pc;
907 <                if ((ph = p.hash) == h) {
908 <                    if ((pk = p.key) == k || k.equals(pk))
909 <                        return p;
910 <                    if (c != (pc = pk.getClass()) ||
911 <                        !(k instanceof Comparable) ||
912 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
913 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
914 <                        TreeNode r = null, s = null, pl, pr;
915 <                        if (dir >= 0) {
916 <                            if ((pl = p.left) != null && h <= pl.hash)
917 <                                s = pl;
918 <                        }
919 <                        else if ((pr = p.right) != null && h >= pr.hash)
920 <                            s = pr;
921 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
922 <                            return r;
923 <                    }
924 <                }
925 <                else
926 <                    dir = (h < ph) ? -1 : 1;
927 <                p = (dir > 0) ? p.right : p.left;
928 <            }
929 <            return null;
609 >        public final K getKey()       { return key; }
610 >        public final V getValue()     { return val; }
611 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
612 >        public final String toString(){ return key + "=" + val; }
613 >        public final V setValue(V value) {
614 >            throw new UnsupportedOperationException();
615          }
616  
617 <        /**
618 <         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
619 <         * read-lock to call getTreeNode, but during failure to get
620 <         * lock, searches along next links.
621 <         */
622 <        final Object getValue(int h, Object k) {
623 <            Node r = null;
939 <            int c = getState(); // Must read lock state first
940 <            for (Node e = first; e != null; e = e.next) {
941 <                if (c <= 0 && compareAndSetState(c, c - 1)) {
942 <                    try {
943 <                        r = getTreeNode(h, k, root);
944 <                    } finally {
945 <                        releaseShared(0);
946 <                    }
947 <                    break;
948 <                }
949 <                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
950 <                    r = e;
951 <                    break;
952 <                }
953 <                else
954 <                    c = getState();
955 <            }
956 <            return r == null ? null : r.val;
617 >        public final boolean equals(Object o) {
618 >            Object k, v, u; Map.Entry<?,?> e;
619 >            return ((o instanceof Map.Entry) &&
620 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
621 >                    (v = e.getValue()) != null &&
622 >                    (k == key || k.equals(key)) &&
623 >                    (v == (u = val) || v.equals(u)));
624          }
625  
626          /**
627 <         * Finds or adds a node.
961 <         * @return null if added
627 >         * Virtualized support for map.get(); overridden in subclasses.
628           */
629 <        @SuppressWarnings("unchecked") final TreeNode putTreeNode
630 <            (int h, Object k, Object v) {
631 <            Class<?> c = k.getClass();
632 <            TreeNode pp = root, p = null;
633 <            int dir = 0;
634 <            while (pp != null) { // find existing node or leaf to insert at
635 <                int ph;  Object pk; Class<?> pc;
636 <                p = pp;
637 <                if ((ph = p.hash) == h) {
972 <                    if ((pk = p.key) == k || k.equals(pk))
973 <                        return p;
974 <                    if (c != (pc = pk.getClass()) ||
975 <                        !(k instanceof Comparable) ||
976 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
977 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
978 <                        TreeNode r = null, s = null, pl, pr;
979 <                        if (dir >= 0) {
980 <                            if ((pl = p.left) != null && h <= pl.hash)
981 <                                s = pl;
982 <                        }
983 <                        else if ((pr = p.right) != null && h >= pr.hash)
984 <                            s = pr;
985 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
986 <                            return r;
987 <                    }
988 <                }
989 <                else
990 <                    dir = (h < ph) ? -1 : 1;
991 <                pp = (dir > 0) ? p.right : p.left;
992 <            }
993 <
994 <            TreeNode f = first;
995 <            TreeNode x = first = new TreeNode(h, k, v, f, p);
996 <            if (p == null)
997 <                root = x;
998 <            else { // attach and rebalance; adapted from CLR
999 <                TreeNode xp, xpp;
1000 <                if (f != null)
1001 <                    f.prev = x;
1002 <                if (dir <= 0)
1003 <                    p.left = x;
1004 <                else
1005 <                    p.right = x;
1006 <                x.red = true;
1007 <                while (x != null && (xp = x.parent) != null && xp.red &&
1008 <                       (xpp = xp.parent) != null) {
1009 <                    TreeNode xppl = xpp.left;
1010 <                    if (xp == xppl) {
1011 <                        TreeNode y = xpp.right;
1012 <                        if (y != null && y.red) {
1013 <                            y.red = false;
1014 <                            xp.red = false;
1015 <                            xpp.red = true;
1016 <                            x = xpp;
1017 <                        }
1018 <                        else {
1019 <                            if (x == xp.right) {
1020 <                                rotateLeft(x = xp);
1021 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
1022 <                            }
1023 <                            if (xp != null) {
1024 <                                xp.red = false;
1025 <                                if (xpp != null) {
1026 <                                    xpp.red = true;
1027 <                                    rotateRight(xpp);
1028 <                                }
1029 <                            }
1030 <                        }
1031 <                    }
1032 <                    else {
1033 <                        TreeNode y = xppl;
1034 <                        if (y != null && y.red) {
1035 <                            y.red = false;
1036 <                            xp.red = false;
1037 <                            xpp.red = true;
1038 <                            x = xpp;
1039 <                        }
1040 <                        else {
1041 <                            if (x == xp.left) {
1042 <                                rotateRight(x = xp);
1043 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
1044 <                            }
1045 <                            if (xp != null) {
1046 <                                xp.red = false;
1047 <                                if (xpp != null) {
1048 <                                    xpp.red = true;
1049 <                                    rotateLeft(xpp);
1050 <                                }
1051 <                            }
1052 <                        }
1053 <                    }
1054 <                }
1055 <                TreeNode r = root;
1056 <                if (r != null && r.red)
1057 <                    r.red = false;
629 >        Node<K,V> find(int h, Object k) {
630 >            Node<K,V> e = this;
631 >            if (k != null) {
632 >                do {
633 >                    K ek;
634 >                    if (e.hash == h &&
635 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
636 >                        return e;
637 >                } while ((e = e.next) != null);
638              }
639              return null;
640          }
1061
1062        /**
1063         * Removes the given node, that must be present before this
1064         * call.  This is messier than typical red-black deletion code
1065         * because we cannot swap the contents of an interior node
1066         * with a leaf successor that is pinned by "next" pointers
1067         * that are accessible independently of lock. So instead we
1068         * swap the tree linkages.
1069         */
1070        final void deleteTreeNode(TreeNode p) {
1071            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
1072            TreeNode pred = p.prev;
1073            if (pred == null)
1074                first = next;
1075            else
1076                pred.next = next;
1077            if (next != null)
1078                next.prev = pred;
1079            TreeNode replacement;
1080            TreeNode pl = p.left;
1081            TreeNode pr = p.right;
1082            if (pl != null && pr != null) {
1083                TreeNode s = pr, sl;
1084                while ((sl = s.left) != null) // find successor
1085                    s = sl;
1086                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1087                TreeNode sr = s.right;
1088                TreeNode pp = p.parent;
1089                if (s == pr) { // p was s's direct parent
1090                    p.parent = s;
1091                    s.right = p;
1092                }
1093                else {
1094                    TreeNode sp = s.parent;
1095                    if ((p.parent = sp) != null) {
1096                        if (s == sp.left)
1097                            sp.left = p;
1098                        else
1099                            sp.right = p;
1100                    }
1101                    if ((s.right = pr) != null)
1102                        pr.parent = s;
1103                }
1104                p.left = null;
1105                if ((p.right = sr) != null)
1106                    sr.parent = p;
1107                if ((s.left = pl) != null)
1108                    pl.parent = s;
1109                if ((s.parent = pp) == null)
1110                    root = s;
1111                else if (p == pp.left)
1112                    pp.left = s;
1113                else
1114                    pp.right = s;
1115                replacement = sr;
1116            }
1117            else
1118                replacement = (pl != null) ? pl : pr;
1119            TreeNode pp = p.parent;
1120            if (replacement == null) {
1121                if (pp == null) {
1122                    root = null;
1123                    return;
1124                }
1125                replacement = p;
1126            }
1127            else {
1128                replacement.parent = pp;
1129                if (pp == null)
1130                    root = replacement;
1131                else if (p == pp.left)
1132                    pp.left = replacement;
1133                else
1134                    pp.right = replacement;
1135                p.left = p.right = p.parent = null;
1136            }
1137            if (!p.red) { // rebalance, from CLR
1138                TreeNode x = replacement;
1139                while (x != null) {
1140                    TreeNode xp, xpl;
1141                    if (x.red || (xp = x.parent) == null) {
1142                        x.red = false;
1143                        break;
1144                    }
1145                    if (x == (xpl = xp.left)) {
1146                        TreeNode sib = xp.right;
1147                        if (sib != null && sib.red) {
1148                            sib.red = false;
1149                            xp.red = true;
1150                            rotateLeft(xp);
1151                            sib = (xp = x.parent) == null ? null : xp.right;
1152                        }
1153                        if (sib == null)
1154                            x = xp;
1155                        else {
1156                            TreeNode sl = sib.left, sr = sib.right;
1157                            if ((sr == null || !sr.red) &&
1158                                (sl == null || !sl.red)) {
1159                                sib.red = true;
1160                                x = xp;
1161                            }
1162                            else {
1163                                if (sr == null || !sr.red) {
1164                                    if (sl != null)
1165                                        sl.red = false;
1166                                    sib.red = true;
1167                                    rotateRight(sib);
1168                                    sib = (xp = x.parent) == null ? null : xp.right;
1169                                }
1170                                if (sib != null) {
1171                                    sib.red = (xp == null) ? false : xp.red;
1172                                    if ((sr = sib.right) != null)
1173                                        sr.red = false;
1174                                }
1175                                if (xp != null) {
1176                                    xp.red = false;
1177                                    rotateLeft(xp);
1178                                }
1179                                x = root;
1180                            }
1181                        }
1182                    }
1183                    else { // symmetric
1184                        TreeNode sib = xpl;
1185                        if (sib != null && sib.red) {
1186                            sib.red = false;
1187                            xp.red = true;
1188                            rotateRight(xp);
1189                            sib = (xp = x.parent) == null ? null : xp.left;
1190                        }
1191                        if (sib == null)
1192                            x = xp;
1193                        else {
1194                            TreeNode sl = sib.left, sr = sib.right;
1195                            if ((sl == null || !sl.red) &&
1196                                (sr == null || !sr.red)) {
1197                                sib.red = true;
1198                                x = xp;
1199                            }
1200                            else {
1201                                if (sl == null || !sl.red) {
1202                                    if (sr != null)
1203                                        sr.red = false;
1204                                    sib.red = true;
1205                                    rotateLeft(sib);
1206                                    sib = (xp = x.parent) == null ? null : xp.left;
1207                                }
1208                                if (sib != null) {
1209                                    sib.red = (xp == null) ? false : xp.red;
1210                                    if ((sl = sib.left) != null)
1211                                        sl.red = false;
1212                                }
1213                                if (xp != null) {
1214                                    xp.red = false;
1215                                    rotateRight(xp);
1216                                }
1217                                x = root;
1218                            }
1219                        }
1220                    }
1221                }
1222            }
1223            if (p == replacement && (pp = p.parent) != null) {
1224                if (p == pp.left) // detach pointers
1225                    pp.left = null;
1226                else if (p == pp.right)
1227                    pp.right = null;
1228                p.parent = null;
1229            }
1230        }
641      }
642  
643 <    /* ---------------- Collision reduction methods -------------- */
643 >    /* ---------------- Static utilities -------------- */
644  
645      /**
646 <     * Spreads higher bits to lower, and also forces top 2 bits to 0.
647 <     * Because the table uses power-of-two masking, sets of hashes
648 <     * that vary only in bits above the current mask will always
649 <     * collide. (Among known examples are sets of Float keys holding
650 <     * consecutive whole numbers in small tables.)  To counter this,
651 <     * we apply a transform that spreads the impact of higher bits
646 >     * Spreads (XORs) higher bits of hash to lower and also forces top
647 >     * bit to 0. Because the table uses power-of-two masking, sets of
648 >     * hashes that vary only in bits above the current mask will
649 >     * always collide. (Among known examples are sets of Float keys
650 >     * holding consecutive whole numbers in small tables.)  So we
651 >     * apply a transform that spreads the impact of higher bits
652       * downward. There is a tradeoff between speed, utility, and
653       * quality of bit-spreading. Because many common sets of hashes
654 <     * are already reasonably distributed across bits (so don't benefit
655 <     * from spreading), and because we use trees to handle large sets
656 <     * of collisions in bins, we don't need excessively high quality.
654 >     * are already reasonably distributed (so don't benefit from
655 >     * spreading), and because we use trees to handle large sets of
656 >     * collisions in bins, we just XOR some shifted bits in the
657 >     * cheapest possible way to reduce systematic lossage, as well as
658 >     * to incorporate impact of the highest bits that would otherwise
659 >     * never be used in index calculations because of table bounds.
660       */
661 <    private static final int spread(int h) {
662 <        h ^= (h >>> 18) ^ (h >>> 12);
1250 <        return (h ^ (h >>> 10)) & HASH_BITS;
661 >    static final int spread(int h) {
662 >        return (h ^ (h >>> 16)) & HASH_BITS;
663      }
664  
665      /**
1254     * Replaces a list bin with a tree bin. Call only when locked.
1255     * Fails to replace if the given key is non-comparable or table
1256     * is, or needs, resizing.
1257     */
1258    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1259        if ((key instanceof Comparable) &&
1260            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1261            TreeBin t = new TreeBin();
1262            for (Node e = tabAt(tab, index); e != null; e = e.next)
1263                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1264            setTabAt(tab, index, new Node(MOVED, t, null, null));
1265        }
1266    }
1267
1268    /* ---------------- Internal access and update methods -------------- */
1269
1270    /** Implementation for get and containsKey */
1271    private final Object internalGet(Object k) {
1272        int h = spread(k.hashCode());
1273        retry: for (Node[] tab = table; tab != null;) {
1274            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1275            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1276                if ((eh = e.hash) == MOVED) {
1277                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1278                        return ((TreeBin)ek).getValue(h, k);
1279                    else {                        // restart with new table
1280                        tab = (Node[])ek;
1281                        continue retry;
1282                    }
1283                }
1284                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1285                         ((ek = e.key) == k || k.equals(ek)))
1286                    return ev;
1287            }
1288            break;
1289        }
1290        return null;
1291    }
1292
1293    /**
1294     * Implementation for the four public remove/replace methods:
1295     * Replaces node value with v, conditional upon match of cv if
1296     * non-null.  If resulting value is null, delete.
1297     */
1298    private final Object internalReplace(Object k, Object v, Object cv) {
1299        int h = spread(k.hashCode());
1300        Object oldVal = null;
1301        for (Node[] tab = table;;) {
1302            Node f; int i, fh; Object fk;
1303            if (tab == null ||
1304                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1305                break;
1306            else if ((fh = f.hash) == MOVED) {
1307                if ((fk = f.key) instanceof TreeBin) {
1308                    TreeBin t = (TreeBin)fk;
1309                    boolean validated = false;
1310                    boolean deleted = false;
1311                    t.acquire(0);
1312                    try {
1313                        if (tabAt(tab, i) == f) {
1314                            validated = true;
1315                            TreeNode p = t.getTreeNode(h, k, t.root);
1316                            if (p != null) {
1317                                Object pv = p.val;
1318                                if (cv == null || cv == pv || cv.equals(pv)) {
1319                                    oldVal = pv;
1320                                    if ((p.val = v) == null) {
1321                                        deleted = true;
1322                                        t.deleteTreeNode(p);
1323                                    }
1324                                }
1325                            }
1326                        }
1327                    } finally {
1328                        t.release(0);
1329                    }
1330                    if (validated) {
1331                        if (deleted)
1332                            counter.add(-1L);
1333                        break;
1334                    }
1335                }
1336                else
1337                    tab = (Node[])fk;
1338            }
1339            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1340                break;                          // rules out possible existence
1341            else if ((fh & LOCKED) != 0) {
1342                checkForResize();               // try resizing if can't get lock
1343                f.tryAwaitLock(tab, i);
1344            }
1345            else if (f.casHash(fh, fh | LOCKED)) {
1346                boolean validated = false;
1347                boolean deleted = false;
1348                try {
1349                    if (tabAt(tab, i) == f) {
1350                        validated = true;
1351                        for (Node e = f, pred = null;;) {
1352                            Object ek, ev;
1353                            if ((e.hash & HASH_BITS) == h &&
1354                                ((ev = e.val) != null) &&
1355                                ((ek = e.key) == k || k.equals(ek))) {
1356                                if (cv == null || cv == ev || cv.equals(ev)) {
1357                                    oldVal = ev;
1358                                    if ((e.val = v) == null) {
1359                                        deleted = true;
1360                                        Node en = e.next;
1361                                        if (pred != null)
1362                                            pred.next = en;
1363                                        else
1364                                            setTabAt(tab, i, en);
1365                                    }
1366                                }
1367                                break;
1368                            }
1369                            pred = e;
1370                            if ((e = e.next) == null)
1371                                break;
1372                        }
1373                    }
1374                } finally {
1375                    if (!f.casHash(fh | LOCKED, fh)) {
1376                        f.hash = fh;
1377                        synchronized (f) { f.notifyAll(); };
1378                    }
1379                }
1380                if (validated) {
1381                    if (deleted)
1382                        counter.add(-1L);
1383                    break;
1384                }
1385            }
1386        }
1387        return oldVal;
1388    }
1389
1390    /*
1391     * Internal versions of the six insertion methods, each a
1392     * little more complicated than the last. All have
1393     * the same basic structure as the first (internalPut):
1394     *  1. If table uninitialized, create
1395     *  2. If bin empty, try to CAS new node
1396     *  3. If bin stale, use new table
1397     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1398     *  5. Lock and validate; if valid, scan and add or update
1399     *
1400     * The others interweave other checks and/or alternative actions:
1401     *  * Plain put checks for and performs resize after insertion.
1402     *  * putIfAbsent prescans for mapping without lock (and fails to add
1403     *    if present), which also makes pre-emptive resize checks worthwhile.
1404     *  * computeIfAbsent extends form used in putIfAbsent with additional
1405     *    mechanics to deal with, calls, potential exceptions and null
1406     *    returns from function call.
1407     *  * compute uses the same function-call mechanics, but without
1408     *    the prescans
1409     *  * merge acts as putIfAbsent in the absent case, but invokes the
1410     *    update function if present
1411     *  * putAll attempts to pre-allocate enough table space
1412     *    and more lazily performs count updates and checks.
1413     *
1414     * Someday when details settle down a bit more, it might be worth
1415     * some factoring to reduce sprawl.
1416     */
1417
1418    /** Implementation for put */
1419    private final Object internalPut(Object k, Object v) {
1420        int h = spread(k.hashCode());
1421        int count = 0;
1422        for (Node[] tab = table;;) {
1423            int i; Node f; int fh; Object fk;
1424            if (tab == null)
1425                tab = initTable();
1426            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1427                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1428                    break;                   // no lock when adding to empty bin
1429            }
1430            else if ((fh = f.hash) == MOVED) {
1431                if ((fk = f.key) instanceof TreeBin) {
1432                    TreeBin t = (TreeBin)fk;
1433                    Object oldVal = null;
1434                    t.acquire(0);
1435                    try {
1436                        if (tabAt(tab, i) == f) {
1437                            count = 2;
1438                            TreeNode p = t.putTreeNode(h, k, v);
1439                            if (p != null) {
1440                                oldVal = p.val;
1441                                p.val = v;
1442                            }
1443                        }
1444                    } finally {
1445                        t.release(0);
1446                    }
1447                    if (count != 0) {
1448                        if (oldVal != null)
1449                            return oldVal;
1450                        break;
1451                    }
1452                }
1453                else
1454                    tab = (Node[])fk;
1455            }
1456            else if ((fh & LOCKED) != 0) {
1457                checkForResize();
1458                f.tryAwaitLock(tab, i);
1459            }
1460            else if (f.casHash(fh, fh | LOCKED)) {
1461                Object oldVal = null;
1462                try {                        // needed in case equals() throws
1463                    if (tabAt(tab, i) == f) {
1464                        count = 1;
1465                        for (Node e = f;; ++count) {
1466                            Object ek, ev;
1467                            if ((e.hash & HASH_BITS) == h &&
1468                                (ev = e.val) != null &&
1469                                ((ek = e.key) == k || k.equals(ek))) {
1470                                oldVal = ev;
1471                                e.val = v;
1472                                break;
1473                            }
1474                            Node last = e;
1475                            if ((e = e.next) == null) {
1476                                last.next = new Node(h, k, v, null);
1477                                if (count >= TREE_THRESHOLD)
1478                                    replaceWithTreeBin(tab, i, k);
1479                                break;
1480                            }
1481                        }
1482                    }
1483                } finally {                  // unlock and signal if needed
1484                    if (!f.casHash(fh | LOCKED, fh)) {
1485                        f.hash = fh;
1486                        synchronized (f) { f.notifyAll(); };
1487                    }
1488                }
1489                if (count != 0) {
1490                    if (oldVal != null)
1491                        return oldVal;
1492                    if (tab.length <= 64)
1493                        count = 2;
1494                    break;
1495                }
1496            }
1497        }
1498        counter.add(1L);
1499        if (count > 1)
1500            checkForResize();
1501        return null;
1502    }
1503
1504    /** Implementation for putIfAbsent */
1505    private final Object internalPutIfAbsent(Object k, Object v) {
1506        int h = spread(k.hashCode());
1507        int count = 0;
1508        for (Node[] tab = table;;) {
1509            int i; Node f; int fh; Object fk, fv;
1510            if (tab == null)
1511                tab = initTable();
1512            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1513                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1514                    break;
1515            }
1516            else if ((fh = f.hash) == MOVED) {
1517                if ((fk = f.key) instanceof TreeBin) {
1518                    TreeBin t = (TreeBin)fk;
1519                    Object oldVal = null;
1520                    t.acquire(0);
1521                    try {
1522                        if (tabAt(tab, i) == f) {
1523                            count = 2;
1524                            TreeNode p = t.putTreeNode(h, k, v);
1525                            if (p != null)
1526                                oldVal = p.val;
1527                        }
1528                    } finally {
1529                        t.release(0);
1530                    }
1531                    if (count != 0) {
1532                        if (oldVal != null)
1533                            return oldVal;
1534                        break;
1535                    }
1536                }
1537                else
1538                    tab = (Node[])fk;
1539            }
1540            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1541                     ((fk = f.key) == k || k.equals(fk)))
1542                return fv;
1543            else {
1544                Node g = f.next;
1545                if (g != null) { // at least 2 nodes -- search and maybe resize
1546                    for (Node e = g;;) {
1547                        Object ek, ev;
1548                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1549                            ((ek = e.key) == k || k.equals(ek)))
1550                            return ev;
1551                        if ((e = e.next) == null) {
1552                            checkForResize();
1553                            break;
1554                        }
1555                    }
1556                }
1557                if (((fh = f.hash) & LOCKED) != 0) {
1558                    checkForResize();
1559                    f.tryAwaitLock(tab, i);
1560                }
1561                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1562                    Object oldVal = null;
1563                    try {
1564                        if (tabAt(tab, i) == f) {
1565                            count = 1;
1566                            for (Node e = f;; ++count) {
1567                                Object ek, ev;
1568                                if ((e.hash & HASH_BITS) == h &&
1569                                    (ev = e.val) != null &&
1570                                    ((ek = e.key) == k || k.equals(ek))) {
1571                                    oldVal = ev;
1572                                    break;
1573                                }
1574                                Node last = e;
1575                                if ((e = e.next) == null) {
1576                                    last.next = new Node(h, k, v, null);
1577                                    if (count >= TREE_THRESHOLD)
1578                                        replaceWithTreeBin(tab, i, k);
1579                                    break;
1580                                }
1581                            }
1582                        }
1583                    } finally {
1584                        if (!f.casHash(fh | LOCKED, fh)) {
1585                            f.hash = fh;
1586                            synchronized (f) { f.notifyAll(); };
1587                        }
1588                    }
1589                    if (count != 0) {
1590                        if (oldVal != null)
1591                            return oldVal;
1592                        if (tab.length <= 64)
1593                            count = 2;
1594                        break;
1595                    }
1596                }
1597            }
1598        }
1599        counter.add(1L);
1600        if (count > 1)
1601            checkForResize();
1602        return null;
1603    }
1604
1605    /** Implementation for computeIfAbsent */
1606    private final Object internalComputeIfAbsent(K k,
1607                                                 Fun<? super K, ?> mf) {
1608        int h = spread(k.hashCode());
1609        Object val = null;
1610        int count = 0;
1611        for (Node[] tab = table;;) {
1612            Node f; int i, fh; Object fk, fv;
1613            if (tab == null)
1614                tab = initTable();
1615            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1616                Node node = new Node(fh = h | LOCKED, k, null, null);
1617                if (casTabAt(tab, i, null, node)) {
1618                    count = 1;
1619                    try {
1620                        if ((val = mf.apply(k)) != null)
1621                            node.val = val;
1622                    } finally {
1623                        if (val == null)
1624                            setTabAt(tab, i, null);
1625                        if (!node.casHash(fh, h)) {
1626                            node.hash = h;
1627                            synchronized (node) { node.notifyAll(); };
1628                        }
1629                    }
1630                }
1631                if (count != 0)
1632                    break;
1633            }
1634            else if ((fh = f.hash) == MOVED) {
1635                if ((fk = f.key) instanceof TreeBin) {
1636                    TreeBin t = (TreeBin)fk;
1637                    boolean added = false;
1638                    t.acquire(0);
1639                    try {
1640                        if (tabAt(tab, i) == f) {
1641                            count = 1;
1642                            TreeNode p = t.getTreeNode(h, k, t.root);
1643                            if (p != null)
1644                                val = p.val;
1645                            else if ((val = mf.apply(k)) != null) {
1646                                added = true;
1647                                count = 2;
1648                                t.putTreeNode(h, k, val);
1649                            }
1650                        }
1651                    } finally {
1652                        t.release(0);
1653                    }
1654                    if (count != 0) {
1655                        if (!added)
1656                            return val;
1657                        break;
1658                    }
1659                }
1660                else
1661                    tab = (Node[])fk;
1662            }
1663            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1664                     ((fk = f.key) == k || k.equals(fk)))
1665                return fv;
1666            else {
1667                Node g = f.next;
1668                if (g != null) {
1669                    for (Node e = g;;) {
1670                        Object ek, ev;
1671                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1672                            ((ek = e.key) == k || k.equals(ek)))
1673                            return ev;
1674                        if ((e = e.next) == null) {
1675                            checkForResize();
1676                            break;
1677                        }
1678                    }
1679                }
1680                if (((fh = f.hash) & LOCKED) != 0) {
1681                    checkForResize();
1682                    f.tryAwaitLock(tab, i);
1683                }
1684                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1685                    boolean added = false;
1686                    try {
1687                        if (tabAt(tab, i) == f) {
1688                            count = 1;
1689                            for (Node e = f;; ++count) {
1690                                Object ek, ev;
1691                                if ((e.hash & HASH_BITS) == h &&
1692                                    (ev = e.val) != null &&
1693                                    ((ek = e.key) == k || k.equals(ek))) {
1694                                    val = ev;
1695                                    break;
1696                                }
1697                                Node last = e;
1698                                if ((e = e.next) == null) {
1699                                    if ((val = mf.apply(k)) != null) {
1700                                        added = true;
1701                                        last.next = new Node(h, k, val, null);
1702                                        if (count >= TREE_THRESHOLD)
1703                                            replaceWithTreeBin(tab, i, k);
1704                                    }
1705                                    break;
1706                                }
1707                            }
1708                        }
1709                    } finally {
1710                        if (!f.casHash(fh | LOCKED, fh)) {
1711                            f.hash = fh;
1712                            synchronized (f) { f.notifyAll(); };
1713                        }
1714                    }
1715                    if (count != 0) {
1716                        if (!added)
1717                            return val;
1718                        if (tab.length <= 64)
1719                            count = 2;
1720                        break;
1721                    }
1722                }
1723            }
1724        }
1725        if (val != null) {
1726            counter.add(1L);
1727            if (count > 1)
1728                checkForResize();
1729        }
1730        return val;
1731    }
1732
1733    /** Implementation for compute */
1734    @SuppressWarnings("unchecked") private final Object internalCompute
1735        (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1736        int h = spread(k.hashCode());
1737        Object val = null;
1738        int delta = 0;
1739        int count = 0;
1740        for (Node[] tab = table;;) {
1741            Node f; int i, fh; Object fk;
1742            if (tab == null)
1743                tab = initTable();
1744            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1745                if (onlyIfPresent)
1746                    break;
1747                Node node = new Node(fh = h | LOCKED, k, null, null);
1748                if (casTabAt(tab, i, null, node)) {
1749                    try {
1750                        count = 1;
1751                        if ((val = mf.apply(k, null)) != null) {
1752                            node.val = val;
1753                            delta = 1;
1754                        }
1755                    } finally {
1756                        if (delta == 0)
1757                            setTabAt(tab, i, null);
1758                        if (!node.casHash(fh, h)) {
1759                            node.hash = h;
1760                            synchronized (node) { node.notifyAll(); };
1761                        }
1762                    }
1763                }
1764                if (count != 0)
1765                    break;
1766            }
1767            else if ((fh = f.hash) == MOVED) {
1768                if ((fk = f.key) instanceof TreeBin) {
1769                    TreeBin t = (TreeBin)fk;
1770                    t.acquire(0);
1771                    try {
1772                        if (tabAt(tab, i) == f) {
1773                            count = 1;
1774                            TreeNode p = t.getTreeNode(h, k, t.root);
1775                            Object pv = (p == null) ? null : p.val;
1776                            if ((val = mf.apply(k, (V)pv)) != null) {
1777                                if (p != null)
1778                                    p.val = val;
1779                                else {
1780                                    count = 2;
1781                                    delta = 1;
1782                                    t.putTreeNode(h, k, val);
1783                                }
1784                            }
1785                            else if (p != null) {
1786                                delta = -1;
1787                                t.deleteTreeNode(p);
1788                            }
1789                        }
1790                    } finally {
1791                        t.release(0);
1792                    }
1793                    if (count != 0)
1794                        break;
1795                }
1796                else
1797                    tab = (Node[])fk;
1798            }
1799            else if ((fh & LOCKED) != 0) {
1800                checkForResize();
1801                f.tryAwaitLock(tab, i);
1802            }
1803            else if (f.casHash(fh, fh | LOCKED)) {
1804                try {
1805                    if (tabAt(tab, i) == f) {
1806                        count = 1;
1807                        for (Node e = f, pred = null;; ++count) {
1808                            Object ek, ev;
1809                            if ((e.hash & HASH_BITS) == h &&
1810                                (ev = e.val) != null &&
1811                                ((ek = e.key) == k || k.equals(ek))) {
1812                                val = mf.apply(k, (V)ev);
1813                                if (val != null)
1814                                    e.val = val;
1815                                else {
1816                                    delta = -1;
1817                                    Node en = e.next;
1818                                    if (pred != null)
1819                                        pred.next = en;
1820                                    else
1821                                        setTabAt(tab, i, en);
1822                                }
1823                                break;
1824                            }
1825                            pred = e;
1826                            if ((e = e.next) == null) {
1827                                if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1828                                    pred.next = new Node(h, k, val, null);
1829                                    delta = 1;
1830                                    if (count >= TREE_THRESHOLD)
1831                                        replaceWithTreeBin(tab, i, k);
1832                                }
1833                                break;
1834                            }
1835                        }
1836                    }
1837                } finally {
1838                    if (!f.casHash(fh | LOCKED, fh)) {
1839                        f.hash = fh;
1840                        synchronized (f) { f.notifyAll(); };
1841                    }
1842                }
1843                if (count != 0) {
1844                    if (tab.length <= 64)
1845                        count = 2;
1846                    break;
1847                }
1848            }
1849        }
1850        if (delta != 0) {
1851            counter.add((long)delta);
1852            if (count > 1)
1853                checkForResize();
1854        }
1855        return val;
1856    }
1857
1858    /** Implementation for merge */
1859    @SuppressWarnings("unchecked") private final Object internalMerge
1860        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1861        int h = spread(k.hashCode());
1862        Object val = null;
1863        int delta = 0;
1864        int count = 0;
1865        for (Node[] tab = table;;) {
1866            int i; Node f; int fh; Object fk, fv;
1867            if (tab == null)
1868                tab = initTable();
1869            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1870                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1871                    delta = 1;
1872                    val = v;
1873                    break;
1874                }
1875            }
1876            else if ((fh = f.hash) == MOVED) {
1877                if ((fk = f.key) instanceof TreeBin) {
1878                    TreeBin t = (TreeBin)fk;
1879                    t.acquire(0);
1880                    try {
1881                        if (tabAt(tab, i) == f) {
1882                            count = 1;
1883                            TreeNode p = t.getTreeNode(h, k, t.root);
1884                            val = (p == null) ? v : mf.apply((V)p.val, v);
1885                            if (val != null) {
1886                                if (p != null)
1887                                    p.val = val;
1888                                else {
1889                                    count = 2;
1890                                    delta = 1;
1891                                    t.putTreeNode(h, k, val);
1892                                }
1893                            }
1894                            else if (p != null) {
1895                                delta = -1;
1896                                t.deleteTreeNode(p);
1897                            }
1898                        }
1899                    } finally {
1900                        t.release(0);
1901                    }
1902                    if (count != 0)
1903                        break;
1904                }
1905                else
1906                    tab = (Node[])fk;
1907            }
1908            else if ((fh & LOCKED) != 0) {
1909                checkForResize();
1910                f.tryAwaitLock(tab, i);
1911            }
1912            else if (f.casHash(fh, fh | LOCKED)) {
1913                try {
1914                    if (tabAt(tab, i) == f) {
1915                        count = 1;
1916                        for (Node e = f, pred = null;; ++count) {
1917                            Object ek, ev;
1918                            if ((e.hash & HASH_BITS) == h &&
1919                                (ev = e.val) != null &&
1920                                ((ek = e.key) == k || k.equals(ek))) {
1921                                val = mf.apply(v, (V)ev);
1922                                if (val != null)
1923                                    e.val = val;
1924                                else {
1925                                    delta = -1;
1926                                    Node en = e.next;
1927                                    if (pred != null)
1928                                        pred.next = en;
1929                                    else
1930                                        setTabAt(tab, i, en);
1931                                }
1932                                break;
1933                            }
1934                            pred = e;
1935                            if ((e = e.next) == null) {
1936                                val = v;
1937                                pred.next = new Node(h, k, val, null);
1938                                delta = 1;
1939                                if (count >= TREE_THRESHOLD)
1940                                    replaceWithTreeBin(tab, i, k);
1941                                break;
1942                            }
1943                        }
1944                    }
1945                } finally {
1946                    if (!f.casHash(fh | LOCKED, fh)) {
1947                        f.hash = fh;
1948                        synchronized (f) { f.notifyAll(); };
1949                    }
1950                }
1951                if (count != 0) {
1952                    if (tab.length <= 64)
1953                        count = 2;
1954                    break;
1955                }
1956            }
1957        }
1958        if (delta != 0) {
1959            counter.add((long)delta);
1960            if (count > 1)
1961                checkForResize();
1962        }
1963        return val;
1964    }
1965
1966    /** Implementation for putAll */
1967    private final void internalPutAll(Map<?, ?> m) {
1968        tryPresize(m.size());
1969        long delta = 0L;     // number of uncommitted additions
1970        boolean npe = false; // to throw exception on exit for nulls
1971        try {                // to clean up counts on other exceptions
1972            for (Map.Entry<?, ?> entry : m.entrySet()) {
1973                Object k, v;
1974                if (entry == null || (k = entry.getKey()) == null ||
1975                    (v = entry.getValue()) == null) {
1976                    npe = true;
1977                    break;
1978                }
1979                int h = spread(k.hashCode());
1980                for (Node[] tab = table;;) {
1981                    int i; Node f; int fh; Object fk;
1982                    if (tab == null)
1983                        tab = initTable();
1984                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1985                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1986                            ++delta;
1987                            break;
1988                        }
1989                    }
1990                    else if ((fh = f.hash) == MOVED) {
1991                        if ((fk = f.key) instanceof TreeBin) {
1992                            TreeBin t = (TreeBin)fk;
1993                            boolean validated = false;
1994                            t.acquire(0);
1995                            try {
1996                                if (tabAt(tab, i) == f) {
1997                                    validated = true;
1998                                    TreeNode p = t.getTreeNode(h, k, t.root);
1999                                    if (p != null)
2000                                        p.val = v;
2001                                    else {
2002                                        t.putTreeNode(h, k, v);
2003                                        ++delta;
2004                                    }
2005                                }
2006                            } finally {
2007                                t.release(0);
2008                            }
2009                            if (validated)
2010                                break;
2011                        }
2012                        else
2013                            tab = (Node[])fk;
2014                    }
2015                    else if ((fh & LOCKED) != 0) {
2016                        counter.add(delta);
2017                        delta = 0L;
2018                        checkForResize();
2019                        f.tryAwaitLock(tab, i);
2020                    }
2021                    else if (f.casHash(fh, fh | LOCKED)) {
2022                        int count = 0;
2023                        try {
2024                            if (tabAt(tab, i) == f) {
2025                                count = 1;
2026                                for (Node e = f;; ++count) {
2027                                    Object ek, ev;
2028                                    if ((e.hash & HASH_BITS) == h &&
2029                                        (ev = e.val) != null &&
2030                                        ((ek = e.key) == k || k.equals(ek))) {
2031                                        e.val = v;
2032                                        break;
2033                                    }
2034                                    Node last = e;
2035                                    if ((e = e.next) == null) {
2036                                        ++delta;
2037                                        last.next = new Node(h, k, v, null);
2038                                        if (count >= TREE_THRESHOLD)
2039                                            replaceWithTreeBin(tab, i, k);
2040                                        break;
2041                                    }
2042                                }
2043                            }
2044                        } finally {
2045                            if (!f.casHash(fh | LOCKED, fh)) {
2046                                f.hash = fh;
2047                                synchronized (f) { f.notifyAll(); };
2048                            }
2049                        }
2050                        if (count != 0) {
2051                            if (count > 1) {
2052                                counter.add(delta);
2053                                delta = 0L;
2054                                checkForResize();
2055                            }
2056                            break;
2057                        }
2058                    }
2059                }
2060            }
2061        } finally {
2062            if (delta != 0)
2063                counter.add(delta);
2064        }
2065        if (npe)
2066            throw new NullPointerException();
2067    }
2068
2069    /* ---------------- Table Initialization and Resizing -------------- */
2070
2071    /**
666       * Returns a power of two table size for the given desired capacity.
667       * See Hackers Delight, sec 3.2
668       */
# Line 2083 | Line 677 | public class ConcurrentHashMapV8<K, V>
677      }
678  
679      /**
680 <     * Initializes table, using the size recorded in sizeCtl.
680 >     * Returns x's Class if it is of the form "class C implements
681 >     * Comparable<C>", else null.
682       */
683 <    private final Node[] initTable() {
684 <        Node[] tab; int sc;
685 <        while ((tab = table) == null) {
686 <            if ((sc = sizeCtl) < 0)
687 <                Thread.yield(); // lost initialization race; just spin
688 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
689 <                try {
690 <                    if ((tab = table) == null) {
691 <                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
692 <                        tab = table = new Node[n];
693 <                        sc = n - (n >>> 2);
694 <                    }
695 <                } finally {
2101 <                    sizeCtl = sc;
2102 <                }
2103 <                break;
2104 <            }
2105 <        }
2106 <        return tab;
2107 <    }
2108 <
2109 <    /**
2110 <     * If table is too small and not already resizing, creates next
2111 <     * table and transfers bins.  Rechecks occupancy after a transfer
2112 <     * to see if another resize is already needed because resizings
2113 <     * are lagging additions.
2114 <     */
2115 <    private final void checkForResize() {
2116 <        Node[] tab; int n, sc;
2117 <        while ((tab = table) != null &&
2118 <               (n = tab.length) < MAXIMUM_CAPACITY &&
2119 <               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
2120 <               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2121 <            try {
2122 <                if (tab == table) {
2123 <                    table = rebuild(tab);
2124 <                    sc = (n << 1) - (n >>> 1);
683 >    static Class<?> comparableClassFor(Object x) {
684 >        if (x instanceof Comparable) {
685 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
686 >            if ((c = x.getClass()) == String.class) // bypass checks
687 >                return c;
688 >            if ((ts = c.getGenericInterfaces()) != null) {
689 >                for (int i = 0; i < ts.length; ++i) {
690 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
691 >                        ((p = (ParameterizedType)t).getRawType() ==
692 >                         Comparable.class) &&
693 >                        (as = p.getActualTypeArguments()) != null &&
694 >                        as.length == 1 && as[0] == c) // type arg is c
695 >                        return c;
696                  }
2126            } finally {
2127                sizeCtl = sc;
697              }
698          }
699 +        return null;
700      }
701  
702      /**
703 <     * Tries to presize table to accommodate the given number of elements.
704 <     *
2135 <     * @param size number of elements (doesn't need to be perfectly accurate)
703 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
704 >     * class), else 0.
705       */
706 <    private final void tryPresize(int size) {
707 <        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
708 <            tableSizeFor(size + (size >>> 1) + 1);
709 <        int sc;
2141 <        while ((sc = sizeCtl) >= 0) {
2142 <            Node[] tab = table; int n;
2143 <            if (tab == null || (n = tab.length) == 0) {
2144 <                n = (sc > c) ? sc : c;
2145 <                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2146 <                    try {
2147 <                        if (table == tab) {
2148 <                            table = new Node[n];
2149 <                            sc = n - (n >>> 2);
2150 <                        }
2151 <                    } finally {
2152 <                        sizeCtl = sc;
2153 <                    }
2154 <                }
2155 <            }
2156 <            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2157 <                break;
2158 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2159 <                try {
2160 <                    if (table == tab) {
2161 <                        table = rebuild(tab);
2162 <                        sc = (n << 1) - (n >>> 1);
2163 <                    }
2164 <                } finally {
2165 <                    sizeCtl = sc;
2166 <                }
2167 <            }
2168 <        }
706 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
707 >    static int compareComparables(Class<?> kc, Object k, Object x) {
708 >        return (x == null || x.getClass() != kc ? 0 :
709 >                ((Comparable)k).compareTo(x));
710      }
711  
712 +    /* ---------------- Table element access -------------- */
713 +
714      /*
715 <     * Moves and/or copies the nodes in each bin to new table. See
716 <     * above for explanation.
717 <     *
718 <     * @return the new table
719 <     */
720 <    private static final Node[] rebuild(Node[] tab) {
721 <        int n = tab.length;
722 <        Node[] nextTab = new Node[n << 1];
723 <        Node fwd = new Node(MOVED, nextTab, null, null);
724 <        int[] buffer = null;       // holds bins to revisit; null until needed
725 <        Node rev = null;           // reverse forwarder; null until needed
726 <        int nbuffered = 0;         // the number of bins in buffer list
727 <        int bufferIndex = 0;       // buffer index of current buffered bin
728 <        int bin = n - 1;           // current non-buffered bin or -1 if none
729 <
730 <        for (int i = bin;;) {      // start upwards sweep
731 <            int fh; Node f;
732 <            if ((f = tabAt(tab, i)) == null) {
733 <                if (bin >= 0) {    // Unbuffered; no lock needed (or available)
734 <                    if (!casTabAt(tab, i, f, fwd))
735 <                        continue;
736 <                }
737 <                else {             // transiently use a locked forwarding node
2195 <                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2196 <                    if (!casTabAt(tab, i, f, g))
2197 <                        continue;
2198 <                    setTabAt(nextTab, i, null);
2199 <                    setTabAt(nextTab, i + n, null);
2200 <                    setTabAt(tab, i, fwd);
2201 <                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
2202 <                        g.hash = MOVED;
2203 <                        synchronized (g) { g.notifyAll(); }
2204 <                    }
2205 <                }
2206 <            }
2207 <            else if ((fh = f.hash) == MOVED) {
2208 <                Object fk = f.key;
2209 <                if (fk instanceof TreeBin) {
2210 <                    TreeBin t = (TreeBin)fk;
2211 <                    boolean validated = false;
2212 <                    t.acquire(0);
2213 <                    try {
2214 <                        if (tabAt(tab, i) == f) {
2215 <                            validated = true;
2216 <                            splitTreeBin(nextTab, i, t);
2217 <                            setTabAt(tab, i, fwd);
2218 <                        }
2219 <                    } finally {
2220 <                        t.release(0);
2221 <                    }
2222 <                    if (!validated)
2223 <                        continue;
2224 <                }
2225 <            }
2226 <            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2227 <                boolean validated = false;
2228 <                try {              // split to lo and hi lists; copying as needed
2229 <                    if (tabAt(tab, i) == f) {
2230 <                        validated = true;
2231 <                        splitBin(nextTab, i, f);
2232 <                        setTabAt(tab, i, fwd);
2233 <                    }
2234 <                } finally {
2235 <                    if (!f.casHash(fh | LOCKED, fh)) {
2236 <                        f.hash = fh;
2237 <                        synchronized (f) { f.notifyAll(); };
2238 <                    }
2239 <                }
2240 <                if (!validated)
2241 <                    continue;
2242 <            }
2243 <            else {
2244 <                if (buffer == null) // initialize buffer for revisits
2245 <                    buffer = new int[TRANSFER_BUFFER_SIZE];
2246 <                if (bin < 0 && bufferIndex > 0) {
2247 <                    int j = buffer[--bufferIndex];
2248 <                    buffer[bufferIndex] = i;
2249 <                    i = j;         // swap with another bin
2250 <                    continue;
2251 <                }
2252 <                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2253 <                    f.tryAwaitLock(tab, i);
2254 <                    continue;      // no other options -- block
2255 <                }
2256 <                if (rev == null)   // initialize reverse-forwarder
2257 <                    rev = new Node(MOVED, tab, null, null);
2258 <                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2259 <                    continue;      // recheck before adding to list
2260 <                buffer[nbuffered++] = i;
2261 <                setTabAt(nextTab, i, rev);     // install place-holders
2262 <                setTabAt(nextTab, i + n, rev);
2263 <            }
2264 <
2265 <            if (bin > 0)
2266 <                i = --bin;
2267 <            else if (buffer != null && nbuffered > 0) {
2268 <                bin = -1;
2269 <                i = buffer[bufferIndex = --nbuffered];
2270 <            }
2271 <            else
2272 <                return nextTab;
2273 <        }
715 >     * Volatile access methods are used for table elements as well as
716 >     * elements of in-progress next table while resizing.  All uses of
717 >     * the tab arguments must be null checked by callers.  All callers
718 >     * also paranoically precheck that tab's length is not zero (or an
719 >     * equivalent check), thus ensuring that any index argument taking
720 >     * the form of a hash value anded with (length - 1) is a valid
721 >     * index.  Note that, to be correct wrt arbitrary concurrency
722 >     * errors by users, these checks must operate on local variables,
723 >     * which accounts for some odd-looking inline assignments below.
724 >     * Note that calls to setTabAt always occur within locked regions,
725 >     * and so in principle require only release ordering, not need
726 >     * full volatile semantics, but are currently coded as volatile
727 >     * writes to be conservative.
728 >     */
729 >
730 >    @SuppressWarnings("unchecked")
731 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
732 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
733 >    }
734 >
735 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
736 >                                        Node<K,V> c, Node<K,V> v) {
737 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
738      }
739  
740 <    /**
741 <     * Splits a normal bin with list headed by e into lo and hi parts;
2278 <     * installs in given table.
2279 <     */
2280 <    private static void splitBin(Node[] nextTab, int i, Node e) {
2281 <        int bit = nextTab.length >>> 1; // bit to split on
2282 <        int runBit = e.hash & bit;
2283 <        Node lastRun = e, lo = null, hi = null;
2284 <        for (Node p = e.next; p != null; p = p.next) {
2285 <            int b = p.hash & bit;
2286 <            if (b != runBit) {
2287 <                runBit = b;
2288 <                lastRun = p;
2289 <            }
2290 <        }
2291 <        if (runBit == 0)
2292 <            lo = lastRun;
2293 <        else
2294 <            hi = lastRun;
2295 <        for (Node p = e; p != lastRun; p = p.next) {
2296 <            int ph = p.hash & HASH_BITS;
2297 <            Object pk = p.key, pv = p.val;
2298 <            if ((ph & bit) == 0)
2299 <                lo = new Node(ph, pk, pv, lo);
2300 <            else
2301 <                hi = new Node(ph, pk, pv, hi);
2302 <        }
2303 <        setTabAt(nextTab, i, lo);
2304 <        setTabAt(nextTab, i + bit, hi);
740 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
741 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
742      }
743  
744 +    /* ---------------- Fields -------------- */
745 +
746      /**
747 <     * Splits a tree bin into lo and hi parts; installs in given table.
747 >     * The array of bins. Lazily initialized upon first insertion.
748 >     * Size is always a power of two. Accessed directly by iterators.
749       */
750 <    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2311 <        int bit = nextTab.length >>> 1;
2312 <        TreeBin lt = new TreeBin();
2313 <        TreeBin ht = new TreeBin();
2314 <        int lc = 0, hc = 0;
2315 <        for (Node e = t.first; e != null; e = e.next) {
2316 <            int h = e.hash & HASH_BITS;
2317 <            Object k = e.key, v = e.val;
2318 <            if ((h & bit) == 0) {
2319 <                ++lc;
2320 <                lt.putTreeNode(h, k, v);
2321 <            }
2322 <            else {
2323 <                ++hc;
2324 <                ht.putTreeNode(h, k, v);
2325 <            }
2326 <        }
2327 <        Node ln, hn; // throw away trees if too small
2328 <        if (lc <= (TREE_THRESHOLD >>> 1)) {
2329 <            ln = null;
2330 <            for (Node p = lt.first; p != null; p = p.next)
2331 <                ln = new Node(p.hash, p.key, p.val, ln);
2332 <        }
2333 <        else
2334 <            ln = new Node(MOVED, lt, null, null);
2335 <        setTabAt(nextTab, i, ln);
2336 <        if (hc <= (TREE_THRESHOLD >>> 1)) {
2337 <            hn = null;
2338 <            for (Node p = ht.first; p != null; p = p.next)
2339 <                hn = new Node(p.hash, p.key, p.val, hn);
2340 <        }
2341 <        else
2342 <            hn = new Node(MOVED, ht, null, null);
2343 <        setTabAt(nextTab, i + bit, hn);
2344 <    }
750 >    transient volatile Node<K,V>[] table;
751  
752      /**
753 <     * Implementation for clear. Steps through each bin, removing all
2348 <     * nodes.
753 >     * The next table to use; non-null only while resizing.
754       */
755 <    private final void internalClear() {
2351 <        long delta = 0L; // negative number of deletions
2352 <        int i = 0;
2353 <        Node[] tab = table;
2354 <        while (tab != null && i < tab.length) {
2355 <            int fh; Object fk;
2356 <            Node f = tabAt(tab, i);
2357 <            if (f == null)
2358 <                ++i;
2359 <            else if ((fh = f.hash) == MOVED) {
2360 <                if ((fk = f.key) instanceof TreeBin) {
2361 <                    TreeBin t = (TreeBin)fk;
2362 <                    t.acquire(0);
2363 <                    try {
2364 <                        if (tabAt(tab, i) == f) {
2365 <                            for (Node p = t.first; p != null; p = p.next) {
2366 <                                if (p.val != null) { // (currently always true)
2367 <                                    p.val = null;
2368 <                                    --delta;
2369 <                                }
2370 <                            }
2371 <                            t.first = null;
2372 <                            t.root = null;
2373 <                            ++i;
2374 <                        }
2375 <                    } finally {
2376 <                        t.release(0);
2377 <                    }
2378 <                }
2379 <                else
2380 <                    tab = (Node[])fk;
2381 <            }
2382 <            else if ((fh & LOCKED) != 0) {
2383 <                counter.add(delta); // opportunistically update count
2384 <                delta = 0L;
2385 <                f.tryAwaitLock(tab, i);
2386 <            }
2387 <            else if (f.casHash(fh, fh | LOCKED)) {
2388 <                try {
2389 <                    if (tabAt(tab, i) == f) {
2390 <                        for (Node e = f; e != null; e = e.next) {
2391 <                            if (e.val != null) {  // (currently always true)
2392 <                                e.val = null;
2393 <                                --delta;
2394 <                            }
2395 <                        }
2396 <                        setTabAt(tab, i, null);
2397 <                        ++i;
2398 <                    }
2399 <                } finally {
2400 <                    if (!f.casHash(fh | LOCKED, fh)) {
2401 <                        f.hash = fh;
2402 <                        synchronized (f) { f.notifyAll(); };
2403 <                    }
2404 <                }
2405 <            }
2406 <        }
2407 <        if (delta != 0)
2408 <            counter.add(delta);
2409 <    }
755 >    private transient volatile Node<K,V>[] nextTable;
756  
757 <    /* ----------------Table Traversal -------------- */
757 >    /**
758 >     * Base counter value, used mainly when there is no contention,
759 >     * but also as a fallback during table initialization
760 >     * races. Updated via CAS.
761 >     */
762 >    private transient volatile long baseCount;
763  
764      /**
765 <     * Encapsulates traversal for methods such as containsValue; also
766 <     * serves as a base class for other iterators and bulk tasks.
767 <     *
768 <     * At each step, the iterator snapshots the key ("nextKey") and
769 <     * value ("nextVal") of a valid node (i.e., one that, at point of
770 <     * snapshot, has a non-null user value). Because val fields can
771 <     * change (including to null, indicating deletion), field nextVal
772 <     * might not be accurate at point of use, but still maintains the
2422 <     * weak consistency property of holding a value that was once
2423 <     * valid. To support iterator.remove, the nextKey field is not
2424 <     * updated (nulled out) when the iterator cannot advance.
2425 <     *
2426 <     * Internal traversals directly access these fields, as in:
2427 <     * {@code while (it.advance() != null) { process(it.nextKey); }}
2428 <     *
2429 <     * Exported iterators must track whether the iterator has advanced
2430 <     * (in hasNext vs next) (by setting/checking/nulling field
2431 <     * nextVal), and then extract key, value, or key-value pairs as
2432 <     * return values of next().
2433 <     *
2434 <     * The iterator visits once each still-valid node that was
2435 <     * reachable upon iterator construction. It might miss some that
2436 <     * were added to a bin after the bin was visited, which is OK wrt
2437 <     * consistency guarantees. Maintaining this property in the face
2438 <     * of possible ongoing resizes requires a fair amount of
2439 <     * bookkeeping state that is difficult to optimize away amidst
2440 <     * volatile accesses.  Even so, traversal maintains reasonable
2441 <     * throughput.
2442 <     *
2443 <     * Normally, iteration proceeds bin-by-bin traversing lists.
2444 <     * However, if the table has been resized, then all future steps
2445 <     * must traverse both the bin at the current index as well as at
2446 <     * (index + baseSize); and so on for further resizings. To
2447 <     * paranoically cope with potential sharing by users of iterators
2448 <     * across threads, iteration terminates if a bounds checks fails
2449 <     * for a table read.
2450 <     *
2451 <     * This class extends ForkJoinTask to streamline parallel
2452 <     * iteration in bulk operations (see BulkTask). This adds only an
2453 <     * int of space overhead, which is close enough to negligible in
2454 <     * cases where it is not needed to not worry about it.  Because
2455 <     * ForkJoinTask is Serializable, but iterators need not be, we
2456 <     * need to add warning suppressions.
2457 <     */
2458 <    @SuppressWarnings("serial") static class Traverser<K,V,R> extends ForkJoinTask<R> {
2459 <        final ConcurrentHashMapV8<K, V> map;
2460 <        Node next;           // the next entry to use
2461 <        Object nextKey;      // cached key field of next
2462 <        Object nextVal;      // cached val field of next
2463 <        Node[] tab;          // current table; updated if resized
2464 <        int index;           // index of bin to use next
2465 <        int baseIndex;       // current index of initial table
2466 <        int baseLimit;       // index bound for initial table
2467 <        int baseSize;        // initial table size
765 >     * Table initialization and resizing control.  When negative, the
766 >     * table is being initialized or resized: -1 for initialization,
767 >     * else -(1 + the number of active resizing threads).  Otherwise,
768 >     * when table is null, holds the initial table size to use upon
769 >     * creation, or 0 for default. After initialization, holds the
770 >     * next element count value upon which to resize the table.
771 >     */
772 >    private transient volatile int sizeCtl;
773  
774 <        /** Creates iterator for all entries in the table. */
775 <        Traverser(ConcurrentHashMapV8<K, V> map) {
776 <            this.map = map;
777 <        }
774 >    /**
775 >     * The next table index (plus one) to split while resizing.
776 >     */
777 >    private transient volatile int transferIndex;
778  
779 <        /** Creates iterator for split() methods */
780 <        Traverser(Traverser<K,V,?> it) {
781 <            ConcurrentHashMapV8<K, V> m; Node[] t;
782 <            if ((m = this.map = it.map) == null)
2478 <                t = null;
2479 <            else if ((t = it.tab) == null && // force parent tab initialization
2480 <                     (t = it.tab = m.table) != null)
2481 <                it.baseLimit = it.baseSize = t.length;
2482 <            this.tab = t;
2483 <            this.baseSize = it.baseSize;
2484 <            it.baseLimit = this.index = this.baseIndex =
2485 <                ((this.baseLimit = it.baseLimit) + it.baseIndex + 1) >>> 1;
2486 <        }
779 >    /**
780 >     * The least available table index to split while resizing.
781 >     */
782 >    private transient volatile int transferOrigin;
783  
784 <        /**
785 <         * Advances next; returns nextVal or null if terminated.
786 <         * See above for explanation.
787 <         */
2492 <        final Object advance() {
2493 <            Node e = next;
2494 <            Object ev = null;
2495 <            outer: do {
2496 <                if (e != null)                  // advance past used/skipped node
2497 <                    e = e.next;
2498 <                while (e == null) {             // get to next non-null bin
2499 <                    ConcurrentHashMapV8<K, V> m;
2500 <                    Node[] t; int b, i, n; Object ek; // checks must use locals
2501 <                    if ((t = tab) != null)
2502 <                        n = t.length;
2503 <                    else if ((m = map) != null && (t = tab = m.table) != null)
2504 <                        n = baseLimit = baseSize = t.length;
2505 <                    else
2506 <                        break outer;
2507 <                    if ((b = baseIndex) >= baseLimit ||
2508 <                        (i = index) < 0 || i >= n)
2509 <                        break outer;
2510 <                    if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2511 <                        if ((ek = e.key) instanceof TreeBin)
2512 <                            e = ((TreeBin)ek).first;
2513 <                        else {
2514 <                            tab = (Node[])ek;
2515 <                            continue;           // restarts due to null val
2516 <                        }
2517 <                    }                           // visit upper slots if present
2518 <                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2519 <                }
2520 <                nextKey = e.key;
2521 <            } while ((ev = e.val) == null);    // skip deleted or special nodes
2522 <            next = e;
2523 <            return nextVal = ev;
2524 <        }
784 >    /**
785 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
786 >     */
787 >    private transient volatile int cellsBusy;
788  
789 <        public final void remove() {
790 <            Object k = nextKey;
791 <            if (k == null && (advance() == null || (k = nextKey) == null))
792 <                throw new IllegalStateException();
2530 <            map.internalReplace(k, null, null);
2531 <        }
789 >    /**
790 >     * Table of counter cells. When non-null, size is a power of 2.
791 >     */
792 >    private transient volatile CounterCell[] counterCells;
793  
794 <        public final boolean hasNext() {
795 <            return nextVal != null || advance() != null;
796 <        }
794 >    // views
795 >    private transient KeySetView<K,V> keySet;
796 >    private transient ValuesView<K,V> values;
797 >    private transient EntrySetView<K,V> entrySet;
798  
2537        public final boolean hasMoreElements() { return hasNext(); }
2538        public final void setRawResult(Object x) { }
2539        public R getRawResult() { return null; }
2540        public boolean exec() { return true; }
2541    }
799  
800      /* ---------------- Public operations -------------- */
801  
# Line 2546 | Line 803 | public class ConcurrentHashMapV8<K, V>
803       * Creates a new, empty map with the default initial table size (16).
804       */
805      public ConcurrentHashMapV8() {
2549        this.counter = new LongAdder();
806      }
807  
808      /**
# Line 2565 | Line 821 | public class ConcurrentHashMapV8<K, V>
821          int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
822                     MAXIMUM_CAPACITY :
823                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2568        this.counter = new LongAdder();
824          this.sizeCtl = cap;
825      }
826  
# Line 2575 | Line 830 | public class ConcurrentHashMapV8<K, V>
830       * @param m the map
831       */
832      public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2578        this.counter = new LongAdder();
833          this.sizeCtl = DEFAULT_CAPACITY;
834 <        internalPutAll(m);
834 >        putAll(m);
835      }
836  
837      /**
# Line 2618 | Line 872 | public class ConcurrentHashMapV8<K, V>
872       * nonpositive
873       */
874      public ConcurrentHashMapV8(int initialCapacity,
875 <                               float loadFactor, int concurrencyLevel) {
875 >                             float loadFactor, int concurrencyLevel) {
876          if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
877              throw new IllegalArgumentException();
878          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
# Line 2626 | Line 880 | public class ConcurrentHashMapV8<K, V>
880          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
881          int cap = (size >= (long)MAXIMUM_CAPACITY) ?
882              MAXIMUM_CAPACITY : tableSizeFor((int)size);
2629        this.counter = new LongAdder();
883          this.sizeCtl = cap;
884      }
885  
886 <    /**
2634 <     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2635 <     * from the given type to {@code Boolean.TRUE}.
2636 <     *
2637 <     * @return the new set
2638 <     */
2639 <    public static <K> KeySetView<K,Boolean> newKeySet() {
2640 <        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2641 <                                      Boolean.TRUE);
2642 <    }
2643 <
2644 <    /**
2645 <     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2646 <     * from the given type to {@code Boolean.TRUE}.
2647 <     *
2648 <     * @param initialCapacity The implementation performs internal
2649 <     * sizing to accommodate this many elements.
2650 <     * @throws IllegalArgumentException if the initial capacity of
2651 <     * elements is negative
2652 <     * @return the new set
2653 <     */
2654 <    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2655 <        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(initialCapacity),
2656 <                                      Boolean.TRUE);
2657 <    }
2658 <
2659 <    /**
2660 <     * {@inheritDoc}
2661 <     */
2662 <    public boolean isEmpty() {
2663 <        return counter.sum() <= 0L; // ignore transient negative values
2664 <    }
886 >    // Original (since JDK1.2) Map methods
887  
888      /**
889       * {@inheritDoc}
890       */
891      public int size() {
892 <        long n = counter.sum();
892 >        long n = sumCount();
893          return ((n < 0L) ? 0 :
894                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
895                  (int)n);
896      }
897  
898      /**
899 <     * Returns the number of mappings. This method should be used
2678 <     * instead of {@link #size} because a ConcurrentHashMapV8 may
2679 <     * contain more mappings than can be represented as an int. The
2680 <     * value returned is a snapshot; the actual count may differ if
2681 <     * there are ongoing concurrent insertions or removals.
2682 <     *
2683 <     * @return the number of mappings
899 >     * {@inheritDoc}
900       */
901 <    public long mappingCount() {
902 <        long n = counter.sum();
2687 <        return (n < 0L) ? 0L : n; // ignore transient negative values
901 >    public boolean isEmpty() {
902 >        return sumCount() <= 0L; // ignore transient negative values
903      }
904  
905      /**
# Line 2698 | Line 913 | public class ConcurrentHashMapV8<K, V>
913       *
914       * @throws NullPointerException if the specified key is null
915       */
916 <    @SuppressWarnings("unchecked") public V get(Object key) {
917 <        if (key == null)
918 <            throw new NullPointerException();
919 <        return (V)internalGet(key);
920 <    }
921 <
922 <    /**
923 <     * Returns the value to which the specified key is mapped,
924 <     * or the given defaultValue if this map contains no mapping for the key.
925 <     *
926 <     * @param key the key
927 <     * @param defaultValue the value to return if this map contains
928 <     * no mapping for the given key
929 <     * @return the mapping for the key, if present; else the defaultValue
930 <     * @throws NullPointerException if the specified key is null
931 <     */
932 <    @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
933 <        if (key == null)
2719 <            throw new NullPointerException();
2720 <        V v = (V) internalGet(key);
2721 <        return v == null ? defaultValue : v;
916 >    public V get(Object key) {
917 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
918 >        int h = spread(key.hashCode());
919 >        if ((tab = table) != null && (n = tab.length) > 0 &&
920 >            (e = tabAt(tab, (n - 1) & h)) != null) {
921 >            if ((eh = e.hash) == h) {
922 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
923 >                    return e.val;
924 >            }
925 >            else if (eh < 0)
926 >                return (p = e.find(h, key)) != null ? p.val : null;
927 >            while ((e = e.next) != null) {
928 >                if (e.hash == h &&
929 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
930 >                    return e.val;
931 >            }
932 >        }
933 >        return null;
934      }
935  
936      /**
937       * Tests if the specified object is a key in this table.
938       *
939 <     * @param  key   possible key
939 >     * @param  key possible key
940       * @return {@code true} if and only if the specified object
941       *         is a key in this table, as determined by the
942       *         {@code equals} method; {@code false} otherwise
943       * @throws NullPointerException if the specified key is null
944       */
945      public boolean containsKey(Object key) {
946 <        if (key == null)
2735 <            throw new NullPointerException();
2736 <        return internalGet(key) != null;
946 >        return get(key) != null;
947      }
948  
949      /**
# Line 2749 | Line 959 | public class ConcurrentHashMapV8<K, V>
959      public boolean containsValue(Object value) {
960          if (value == null)
961              throw new NullPointerException();
962 <        Object v;
963 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
964 <        while ((v = it.advance()) != null) {
965 <            if (v == value || value.equals(v))
966 <                return true;
962 >        Node<K,V>[] t;
963 >        if ((t = table) != null) {
964 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
965 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
966 >                V v;
967 >                if ((v = p.val) == value || (v != null && value.equals(v)))
968 >                    return true;
969 >            }
970          }
971          return false;
972      }
973  
974      /**
2762     * Legacy method testing if some key maps into the specified value
2763     * in this table.  This method is identical in functionality to
2764     * {@link #containsValue}, and exists solely to ensure
2765     * full compatibility with class {@link java.util.Hashtable},
2766     * which supported this method prior to introduction of the
2767     * Java Collections framework.
2768     *
2769     * @param  value a value to search for
2770     * @return {@code true} if and only if some key maps to the
2771     *         {@code value} argument in this table as
2772     *         determined by the {@code equals} method;
2773     *         {@code false} otherwise
2774     * @throws NullPointerException if the specified value is null
2775     */
2776    public boolean contains(Object value) {
2777        return containsValue(value);
2778    }
2779
2780    /**
975       * Maps the specified key to the specified value in this table.
976       * Neither the key nor the value can be null.
977       *
978 <     * <p> The value can be retrieved by calling the {@code get} method
978 >     * <p>The value can be retrieved by calling the {@code get} method
979       * with a key that is equal to the original key.
980       *
981       * @param key key with which the specified value is to be associated
# Line 2790 | Line 984 | public class ConcurrentHashMapV8<K, V>
984       *         {@code null} if there was no mapping for {@code key}
985       * @throws NullPointerException if the specified key or value is null
986       */
987 <    @SuppressWarnings("unchecked") public V put(K key, V value) {
988 <        if (key == null || value == null)
987 >    public V put(K key, V value) {
988 >        return putVal(key, value, false);
989 >    }
990 >
991 >    /** Implementation for put and putIfAbsent */
992 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
993 >        if (key == null || value == null) throw new NullPointerException();
994 >        int hash = spread(key.hashCode());
995 >        int binCount = 0;
996 >        for (Node<K,V>[] tab = table;;) {
997 >            Node<K,V> f; int n, i, fh;
998 >            if (tab == null || (n = tab.length) == 0)
999 >                tab = initTable();
1000 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1001 >                if (casTabAt(tab, i, null,
1002 >                             new Node<K,V>(hash, key, value, null)))
1003 >                    break;                   // no lock when adding to empty bin
1004 >            }
1005 >            else if ((fh = f.hash) == MOVED)
1006 >                tab = helpTransfer(tab, f);
1007 >            else {
1008 >                V oldVal = null;
1009 >                synchronized (f) {
1010 >                    if (tabAt(tab, i) == f) {
1011 >                        if (fh >= 0) {
1012 >                            binCount = 1;
1013 >                            for (Node<K,V> e = f;; ++binCount) {
1014 >                                K ek;
1015 >                                if (e.hash == hash &&
1016 >                                    ((ek = e.key) == key ||
1017 >                                     (ek != null && key.equals(ek)))) {
1018 >                                    oldVal = e.val;
1019 >                                    if (!onlyIfAbsent)
1020 >                                        e.val = value;
1021 >                                    break;
1022 >                                }
1023 >                                Node<K,V> pred = e;
1024 >                                if ((e = e.next) == null) {
1025 >                                    pred.next = new Node<K,V>(hash, key,
1026 >                                                              value, null);
1027 >                                    break;
1028 >                                }
1029 >                            }
1030 >                        }
1031 >                        else if (f instanceof TreeBin) {
1032 >                            Node<K,V> p;
1033 >                            binCount = 2;
1034 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1035 >                                                           value)) != null) {
1036 >                                oldVal = p.val;
1037 >                                if (!onlyIfAbsent)
1038 >                                    p.val = value;
1039 >                            }
1040 >                        }
1041 >                    }
1042 >                }
1043 >                if (binCount != 0) {
1044 >                    if (binCount >= TREEIFY_THRESHOLD)
1045 >                        treeifyBin(tab, i);
1046 >                    if (oldVal != null)
1047 >                        return oldVal;
1048 >                    break;
1049 >                }
1050 >            }
1051 >        }
1052 >        addCount(1L, binCount);
1053 >        return null;
1054 >    }
1055 >
1056 >    /**
1057 >     * Copies all of the mappings from the specified map to this one.
1058 >     * These mappings replace any mappings that this map had for any of the
1059 >     * keys currently in the specified map.
1060 >     *
1061 >     * @param m mappings to be stored in this map
1062 >     */
1063 >    public void putAll(Map<? extends K, ? extends V> m) {
1064 >        tryPresize(m.size());
1065 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1066 >            putVal(e.getKey(), e.getValue(), false);
1067 >    }
1068 >
1069 >    /**
1070 >     * Removes the key (and its corresponding value) from this map.
1071 >     * This method does nothing if the key is not in the map.
1072 >     *
1073 >     * @param  key the key that needs to be removed
1074 >     * @return the previous value associated with {@code key}, or
1075 >     *         {@code null} if there was no mapping for {@code key}
1076 >     * @throws NullPointerException if the specified key is null
1077 >     */
1078 >    public V remove(Object key) {
1079 >        return replaceNode(key, null, null);
1080 >    }
1081 >
1082 >    /**
1083 >     * Implementation for the four public remove/replace methods:
1084 >     * Replaces node value with v, conditional upon match of cv if
1085 >     * non-null.  If resulting value is null, delete.
1086 >     */
1087 >    final V replaceNode(Object key, V value, Object cv) {
1088 >        int hash = spread(key.hashCode());
1089 >        for (Node<K,V>[] tab = table;;) {
1090 >            Node<K,V> f; int n, i, fh;
1091 >            if (tab == null || (n = tab.length) == 0 ||
1092 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1093 >                break;
1094 >            else if ((fh = f.hash) == MOVED)
1095 >                tab = helpTransfer(tab, f);
1096 >            else {
1097 >                V oldVal = null;
1098 >                boolean validated = false;
1099 >                synchronized (f) {
1100 >                    if (tabAt(tab, i) == f) {
1101 >                        if (fh >= 0) {
1102 >                            validated = true;
1103 >                            for (Node<K,V> e = f, pred = null;;) {
1104 >                                K ek;
1105 >                                if (e.hash == hash &&
1106 >                                    ((ek = e.key) == key ||
1107 >                                     (ek != null && key.equals(ek)))) {
1108 >                                    V ev = e.val;
1109 >                                    if (cv == null || cv == ev ||
1110 >                                        (ev != null && cv.equals(ev))) {
1111 >                                        oldVal = ev;
1112 >                                        if (value != null)
1113 >                                            e.val = value;
1114 >                                        else if (pred != null)
1115 >                                            pred.next = e.next;
1116 >                                        else
1117 >                                            setTabAt(tab, i, e.next);
1118 >                                    }
1119 >                                    break;
1120 >                                }
1121 >                                pred = e;
1122 >                                if ((e = e.next) == null)
1123 >                                    break;
1124 >                            }
1125 >                        }
1126 >                        else if (f instanceof TreeBin) {
1127 >                            validated = true;
1128 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1129 >                            TreeNode<K,V> r, p;
1130 >                            if ((r = t.root) != null &&
1131 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1132 >                                V pv = p.val;
1133 >                                if (cv == null || cv == pv ||
1134 >                                    (pv != null && cv.equals(pv))) {
1135 >                                    oldVal = pv;
1136 >                                    if (value != null)
1137 >                                        p.val = value;
1138 >                                    else if (t.removeTreeNode(p))
1139 >                                        setTabAt(tab, i, untreeify(t.first));
1140 >                                }
1141 >                            }
1142 >                        }
1143 >                    }
1144 >                }
1145 >                if (validated) {
1146 >                    if (oldVal != null) {
1147 >                        if (value == null)
1148 >                            addCount(-1L, -1);
1149 >                        return oldVal;
1150 >                    }
1151 >                    break;
1152 >                }
1153 >            }
1154 >        }
1155 >        return null;
1156 >    }
1157 >
1158 >    /**
1159 >     * Removes all of the mappings from this map.
1160 >     */
1161 >    public void clear() {
1162 >        long delta = 0L; // negative number of deletions
1163 >        int i = 0;
1164 >        Node<K,V>[] tab = table;
1165 >        while (tab != null && i < tab.length) {
1166 >            int fh;
1167 >            Node<K,V> f = tabAt(tab, i);
1168 >            if (f == null)
1169 >                ++i;
1170 >            else if ((fh = f.hash) == MOVED) {
1171 >                tab = helpTransfer(tab, f);
1172 >                i = 0; // restart
1173 >            }
1174 >            else {
1175 >                synchronized (f) {
1176 >                    if (tabAt(tab, i) == f) {
1177 >                        Node<K,V> p = (fh >= 0 ? f :
1178 >                                       (f instanceof TreeBin) ?
1179 >                                       ((TreeBin<K,V>)f).first : null);
1180 >                        while (p != null) {
1181 >                            --delta;
1182 >                            p = p.next;
1183 >                        }
1184 >                        setTabAt(tab, i++, null);
1185 >                    }
1186 >                }
1187 >            }
1188 >        }
1189 >        if (delta != 0L)
1190 >            addCount(delta, -1);
1191 >    }
1192 >
1193 >    /**
1194 >     * Returns a {@link Set} view of the keys contained in this map.
1195 >     * The set is backed by the map, so changes to the map are
1196 >     * reflected in the set, and vice-versa. The set supports element
1197 >     * removal, which removes the corresponding mapping from this map,
1198 >     * via the {@code Iterator.remove}, {@code Set.remove},
1199 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1200 >     * operations.  It does not support the {@code add} or
1201 >     * {@code addAll} operations.
1202 >     *
1203 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1204 >     * that will never throw {@link ConcurrentModificationException},
1205 >     * and guarantees to traverse elements as they existed upon
1206 >     * construction of the iterator, and may (but is not guaranteed to)
1207 >     * reflect any modifications subsequent to construction.
1208 >     *
1209 >     * @return the set view
1210 >     */
1211 >    public KeySetView<K,V> keySet() {
1212 >        KeySetView<K,V> ks;
1213 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1214 >    }
1215 >
1216 >    /**
1217 >     * Returns a {@link Collection} view of the values contained in this map.
1218 >     * The collection is backed by the map, so changes to the map are
1219 >     * reflected in the collection, and vice-versa.  The collection
1220 >     * supports element removal, which removes the corresponding
1221 >     * mapping from this map, via the {@code Iterator.remove},
1222 >     * {@code Collection.remove}, {@code removeAll},
1223 >     * {@code retainAll}, and {@code clear} operations.  It does not
1224 >     * support the {@code add} or {@code addAll} operations.
1225 >     *
1226 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1227 >     * that will never throw {@link ConcurrentModificationException},
1228 >     * and guarantees to traverse elements as they existed upon
1229 >     * construction of the iterator, and may (but is not guaranteed to)
1230 >     * reflect any modifications subsequent to construction.
1231 >     *
1232 >     * @return the collection view
1233 >     */
1234 >    public Collection<V> values() {
1235 >        ValuesView<K,V> vs;
1236 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1237 >    }
1238 >
1239 >    /**
1240 >     * Returns a {@link Set} view of the mappings contained in this map.
1241 >     * The set is backed by the map, so changes to the map are
1242 >     * reflected in the set, and vice-versa.  The set supports element
1243 >     * removal, which removes the corresponding mapping from the map,
1244 >     * via the {@code Iterator.remove}, {@code Set.remove},
1245 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1246 >     * operations.
1247 >     *
1248 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1249 >     * that will never throw {@link ConcurrentModificationException},
1250 >     * and guarantees to traverse elements as they existed upon
1251 >     * construction of the iterator, and may (but is not guaranteed to)
1252 >     * reflect any modifications subsequent to construction.
1253 >     *
1254 >     * @return the set view
1255 >     */
1256 >    public Set<Map.Entry<K,V>> entrySet() {
1257 >        EntrySetView<K,V> es;
1258 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1259 >    }
1260 >
1261 >    /**
1262 >     * Returns the hash code value for this {@link Map}, i.e.,
1263 >     * the sum of, for each key-value pair in the map,
1264 >     * {@code key.hashCode() ^ value.hashCode()}.
1265 >     *
1266 >     * @return the hash code value for this map
1267 >     */
1268 >    public int hashCode() {
1269 >        int h = 0;
1270 >        Node<K,V>[] t;
1271 >        if ((t = table) != null) {
1272 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1273 >            for (Node<K,V> p; (p = it.advance()) != null; )
1274 >                h += p.key.hashCode() ^ p.val.hashCode();
1275 >        }
1276 >        return h;
1277 >    }
1278 >
1279 >    /**
1280 >     * Returns a string representation of this map.  The string
1281 >     * representation consists of a list of key-value mappings (in no
1282 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1283 >     * mappings are separated by the characters {@code ", "} (comma
1284 >     * and space).  Each key-value mapping is rendered as the key
1285 >     * followed by an equals sign ("{@code =}") followed by the
1286 >     * associated value.
1287 >     *
1288 >     * @return a string representation of this map
1289 >     */
1290 >    public String toString() {
1291 >        Node<K,V>[] t;
1292 >        int f = (t = table) == null ? 0 : t.length;
1293 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1294 >        StringBuilder sb = new StringBuilder();
1295 >        sb.append('{');
1296 >        Node<K,V> p;
1297 >        if ((p = it.advance()) != null) {
1298 >            for (;;) {
1299 >                K k = p.key;
1300 >                V v = p.val;
1301 >                sb.append(k == this ? "(this Map)" : k);
1302 >                sb.append('=');
1303 >                sb.append(v == this ? "(this Map)" : v);
1304 >                if ((p = it.advance()) == null)
1305 >                    break;
1306 >                sb.append(',').append(' ');
1307 >            }
1308 >        }
1309 >        return sb.append('}').toString();
1310 >    }
1311 >
1312 >    /**
1313 >     * Compares the specified object with this map for equality.
1314 >     * Returns {@code true} if the given object is a map with the same
1315 >     * mappings as this map.  This operation may return misleading
1316 >     * results if either map is concurrently modified during execution
1317 >     * of this method.
1318 >     *
1319 >     * @param o object to be compared for equality with this map
1320 >     * @return {@code true} if the specified object is equal to this map
1321 >     */
1322 >    public boolean equals(Object o) {
1323 >        if (o != this) {
1324 >            if (!(o instanceof Map))
1325 >                return false;
1326 >            Map<?,?> m = (Map<?,?>) o;
1327 >            Node<K,V>[] t;
1328 >            int f = (t = table) == null ? 0 : t.length;
1329 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1330 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1331 >                V val = p.val;
1332 >                Object v = m.get(p.key);
1333 >                if (v == null || (v != val && !v.equals(val)))
1334 >                    return false;
1335 >            }
1336 >            for (Map.Entry<?,?> e : m.entrySet()) {
1337 >                Object mk, mv, v;
1338 >                if ((mk = e.getKey()) == null ||
1339 >                    (mv = e.getValue()) == null ||
1340 >                    (v = get(mk)) == null ||
1341 >                    (mv != v && !mv.equals(v)))
1342 >                    return false;
1343 >            }
1344 >        }
1345 >        return true;
1346 >    }
1347 >
1348 >    /**
1349 >     * Stripped-down version of helper class used in previous version,
1350 >     * declared for the sake of serialization compatibility
1351 >     */
1352 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1353 >        private static final long serialVersionUID = 2249069246763182397L;
1354 >        final float loadFactor;
1355 >        Segment(float lf) { this.loadFactor = lf; }
1356 >    }
1357 >
1358 >    /**
1359 >     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1360 >     * stream (i.e., serializes it).
1361 >     * @param s the stream
1362 >     * @serialData
1363 >     * the key (Object) and value (Object)
1364 >     * for each key-value mapping, followed by a null pair.
1365 >     * The key-value mappings are emitted in no particular order.
1366 >     */
1367 >    private void writeObject(java.io.ObjectOutputStream s)
1368 >        throws java.io.IOException {
1369 >        // For serialization compatibility
1370 >        // Emulate segment calculation from previous version of this class
1371 >        int sshift = 0;
1372 >        int ssize = 1;
1373 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1374 >            ++sshift;
1375 >            ssize <<= 1;
1376 >        }
1377 >        int segmentShift = 32 - sshift;
1378 >        int segmentMask = ssize - 1;
1379 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1380 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1381 >        for (int i = 0; i < segments.length; ++i)
1382 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1383 >        s.putFields().put("segments", segments);
1384 >        s.putFields().put("segmentShift", segmentShift);
1385 >        s.putFields().put("segmentMask", segmentMask);
1386 >        s.writeFields();
1387 >
1388 >        Node<K,V>[] t;
1389 >        if ((t = table) != null) {
1390 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1391 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1392 >                s.writeObject(p.key);
1393 >                s.writeObject(p.val);
1394 >            }
1395 >        }
1396 >        s.writeObject(null);
1397 >        s.writeObject(null);
1398 >        segments = null; // throw away
1399 >    }
1400 >
1401 >    /**
1402 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1403 >     * @param s the stream
1404 >     */
1405 >    private void readObject(java.io.ObjectInputStream s)
1406 >        throws java.io.IOException, ClassNotFoundException {
1407 >        /*
1408 >         * To improve performance in typical cases, we create nodes
1409 >         * while reading, then place in table once size is known.
1410 >         * However, we must also validate uniqueness and deal with
1411 >         * overpopulated bins while doing so, which requires
1412 >         * specialized versions of putVal mechanics.
1413 >         */
1414 >        sizeCtl = -1; // force exclusion for table construction
1415 >        s.defaultReadObject();
1416 >        long size = 0L;
1417 >        Node<K,V> p = null;
1418 >        for (;;) {
1419 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1420 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1421 >            if (k != null && v != null) {
1422 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1423 >                ++size;
1424 >            }
1425 >            else
1426 >                break;
1427 >        }
1428 >        if (size == 0L)
1429 >            sizeCtl = 0;
1430 >        else {
1431 >            int n;
1432 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1433 >                n = MAXIMUM_CAPACITY;
1434 >            else {
1435 >                int sz = (int)size;
1436 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1437 >            }
1438 >            @SuppressWarnings({"rawtypes","unchecked"})
1439 >                Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1440 >            int mask = n - 1;
1441 >            long added = 0L;
1442 >            while (p != null) {
1443 >                boolean insertAtFront;
1444 >                Node<K,V> next = p.next, first;
1445 >                int h = p.hash, j = h & mask;
1446 >                if ((first = tabAt(tab, j)) == null)
1447 >                    insertAtFront = true;
1448 >                else {
1449 >                    K k = p.key;
1450 >                    if (first.hash < 0) {
1451 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1452 >                        if (t.putTreeVal(h, k, p.val) == null)
1453 >                            ++added;
1454 >                        insertAtFront = false;
1455 >                    }
1456 >                    else {
1457 >                        int binCount = 0;
1458 >                        insertAtFront = true;
1459 >                        Node<K,V> q; K qk;
1460 >                        for (q = first; q != null; q = q.next) {
1461 >                            if (q.hash == h &&
1462 >                                ((qk = q.key) == k ||
1463 >                                 (qk != null && k.equals(qk)))) {
1464 >                                insertAtFront = false;
1465 >                                break;
1466 >                            }
1467 >                            ++binCount;
1468 >                        }
1469 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1470 >                            insertAtFront = false;
1471 >                            ++added;
1472 >                            p.next = first;
1473 >                            TreeNode<K,V> hd = null, tl = null;
1474 >                            for (q = p; q != null; q = q.next) {
1475 >                                TreeNode<K,V> t = new TreeNode<K,V>
1476 >                                    (q.hash, q.key, q.val, null, null);
1477 >                                if ((t.prev = tl) == null)
1478 >                                    hd = t;
1479 >                                else
1480 >                                    tl.next = t;
1481 >                                tl = t;
1482 >                            }
1483 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1484 >                        }
1485 >                    }
1486 >                }
1487 >                if (insertAtFront) {
1488 >                    ++added;
1489 >                    p.next = first;
1490 >                    setTabAt(tab, j, p);
1491 >                }
1492 >                p = next;
1493 >            }
1494 >            table = tab;
1495 >            sizeCtl = n - (n >>> 2);
1496 >            baseCount = added;
1497 >        }
1498 >    }
1499 >
1500 >    // ConcurrentMap methods
1501 >
1502 >    /**
1503 >     * {@inheritDoc}
1504 >     *
1505 >     * @return the previous value associated with the specified key,
1506 >     *         or {@code null} if there was no mapping for the key
1507 >     * @throws NullPointerException if the specified key or value is null
1508 >     */
1509 >    public V putIfAbsent(K key, V value) {
1510 >        return putVal(key, value, true);
1511 >    }
1512 >
1513 >    /**
1514 >     * {@inheritDoc}
1515 >     *
1516 >     * @throws NullPointerException if the specified key is null
1517 >     */
1518 >    public boolean remove(Object key, Object value) {
1519 >        if (key == null)
1520 >            throw new NullPointerException();
1521 >        return value != null && replaceNode(key, null, value) != null;
1522 >    }
1523 >
1524 >    /**
1525 >     * {@inheritDoc}
1526 >     *
1527 >     * @throws NullPointerException if any of the arguments are null
1528 >     */
1529 >    public boolean replace(K key, V oldValue, V newValue) {
1530 >        if (key == null || oldValue == null || newValue == null)
1531              throw new NullPointerException();
1532 <        return (V)internalPut(key, value);
1532 >        return replaceNode(key, newValue, oldValue) != null;
1533      }
1534  
1535      /**
# Line 2803 | Line 1539 | public class ConcurrentHashMapV8<K, V>
1539       *         or {@code null} if there was no mapping for the key
1540       * @throws NullPointerException if the specified key or value is null
1541       */
1542 <    @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
1542 >    public V replace(K key, V value) {
1543          if (key == null || value == null)
1544              throw new NullPointerException();
1545 <        return (V)internalPutIfAbsent(key, value);
1545 >        return replaceNode(key, value, null);
1546      }
1547  
1548 +    // Overrides of JDK8+ Map extension method defaults
1549 +
1550      /**
1551 <     * Copies all of the mappings from the specified map to this one.
1552 <     * These mappings replace any mappings that this map had for any of the
1553 <     * keys currently in the specified map.
1551 >     * Returns the value to which the specified key is mapped, or the
1552 >     * given default value if this map contains no mapping for the
1553 >     * key.
1554       *
1555 <     * @param m mappings to be stored in this map
1555 >     * @param key the key whose associated value is to be returned
1556 >     * @param defaultValue the value to return if this map contains
1557 >     * no mapping for the given key
1558 >     * @return the mapping for the key, if present; else the default value
1559 >     * @throws NullPointerException if the specified key is null
1560       */
1561 <    public void putAll(Map<? extends K, ? extends V> m) {
1562 <        internalPutAll(m);
1561 >    public V getOrDefault(Object key, V defaultValue) {
1562 >        V v;
1563 >        return (v = get(key)) == null ? defaultValue : v;
1564 >    }
1565 >
1566 >    public void forEach(BiAction<? super K, ? super V> action) {
1567 >        if (action == null) throw new NullPointerException();
1568 >        Node<K,V>[] t;
1569 >        if ((t = table) != null) {
1570 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1571 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1572 >                action.apply(p.key, p.val);
1573 >            }
1574 >        }
1575 >    }
1576 >
1577 >    public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1578 >        if (function == null) throw new NullPointerException();
1579 >        Node<K,V>[] t;
1580 >        if ((t = table) != null) {
1581 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1582 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1583 >                V oldValue = p.val;
1584 >                for (K key = p.key;;) {
1585 >                    V newValue = function.apply(key, oldValue);
1586 >                    if (newValue == null)
1587 >                        throw new NullPointerException();
1588 >                    if (replaceNode(key, newValue, oldValue) != null ||
1589 >                        (oldValue = get(key)) == null)
1590 >                        break;
1591 >                }
1592 >            }
1593 >        }
1594      }
1595  
1596      /**
1597       * If the specified key is not already associated with a value,
1598 <     * computes its value using the given mappingFunction and enters
1599 <     * it into the map unless null.  This is equivalent to
1600 <     * <pre> {@code
1601 <     * if (map.containsKey(key))
1602 <     *   return map.get(key);
1603 <     * value = mappingFunction.apply(key);
1604 <     * if (value != null)
2832 <     *   map.put(key, value);
2833 <     * return value;}</pre>
2834 <     *
2835 <     * except that the action is performed atomically.  If the
2836 <     * function returns {@code null} no mapping is recorded. If the
2837 <     * function itself throws an (unchecked) exception, the exception
2838 <     * is rethrown to its caller, and no mapping is recorded.  Some
2839 <     * attempted update operations on this map by other threads may be
2840 <     * blocked while computation is in progress, so the computation
2841 <     * should be short and simple, and must not attempt to update any
2842 <     * other mappings of this Map. The most appropriate usage is to
2843 <     * construct a new object serving as an initial mapped value, or
2844 <     * memoized result, as in:
2845 <     *
2846 <     *  <pre> {@code
2847 <     * map.computeIfAbsent(key, new Fun<K, V>() {
2848 <     *   public V map(K k) { return new Value(f(k)); }});}</pre>
1598 >     * attempts to compute its value using the given mapping function
1599 >     * and enters it into this map unless {@code null}.  The entire
1600 >     * method invocation is performed atomically, so the function is
1601 >     * applied at most once per key.  Some attempted update operations
1602 >     * on this map by other threads may be blocked while computation
1603 >     * is in progress, so the computation should be short and simple,
1604 >     * and must not attempt to update any other mappings of this map.
1605       *
1606       * @param key key with which the specified value is to be associated
1607       * @param mappingFunction the function to compute a value
# Line 2859 | Line 1615 | public class ConcurrentHashMapV8<K, V>
1615       * @throws RuntimeException or Error if the mappingFunction does so,
1616       *         in which case the mapping is left unestablished
1617       */
1618 <    @SuppressWarnings("unchecked") public V computeIfAbsent
2863 <        (K key, Fun<? super K, ? extends V> mappingFunction) {
1618 >    public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1619          if (key == null || mappingFunction == null)
1620              throw new NullPointerException();
1621 <        return (V)internalComputeIfAbsent(key, mappingFunction);
1621 >        int h = spread(key.hashCode());
1622 >        V val = null;
1623 >        int binCount = 0;
1624 >        for (Node<K,V>[] tab = table;;) {
1625 >            Node<K,V> f; int n, i, fh;
1626 >            if (tab == null || (n = tab.length) == 0)
1627 >                tab = initTable();
1628 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1629 >                Node<K,V> r = new ReservationNode<K,V>();
1630 >                synchronized (r) {
1631 >                    if (casTabAt(tab, i, null, r)) {
1632 >                        binCount = 1;
1633 >                        Node<K,V> node = null;
1634 >                        try {
1635 >                            if ((val = mappingFunction.apply(key)) != null)
1636 >                                node = new Node<K,V>(h, key, val, null);
1637 >                        } finally {
1638 >                            setTabAt(tab, i, node);
1639 >                        }
1640 >                    }
1641 >                }
1642 >                if (binCount != 0)
1643 >                    break;
1644 >            }
1645 >            else if ((fh = f.hash) == MOVED)
1646 >                tab = helpTransfer(tab, f);
1647 >            else {
1648 >                boolean added = false;
1649 >                synchronized (f) {
1650 >                    if (tabAt(tab, i) == f) {
1651 >                        if (fh >= 0) {
1652 >                            binCount = 1;
1653 >                            for (Node<K,V> e = f;; ++binCount) {
1654 >                                K ek; V ev;
1655 >                                if (e.hash == h &&
1656 >                                    ((ek = e.key) == key ||
1657 >                                     (ek != null && key.equals(ek)))) {
1658 >                                    val = e.val;
1659 >                                    break;
1660 >                                }
1661 >                                Node<K,V> pred = e;
1662 >                                if ((e = e.next) == null) {
1663 >                                    if ((val = mappingFunction.apply(key)) != null) {
1664 >                                        added = true;
1665 >                                        pred.next = new Node<K,V>(h, key, val, null);
1666 >                                    }
1667 >                                    break;
1668 >                                }
1669 >                            }
1670 >                        }
1671 >                        else if (f instanceof TreeBin) {
1672 >                            binCount = 2;
1673 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1674 >                            TreeNode<K,V> r, p;
1675 >                            if ((r = t.root) != null &&
1676 >                                (p = r.findTreeNode(h, key, null)) != null)
1677 >                                val = p.val;
1678 >                            else if ((val = mappingFunction.apply(key)) != null) {
1679 >                                added = true;
1680 >                                t.putTreeVal(h, key, val);
1681 >                            }
1682 >                        }
1683 >                    }
1684 >                }
1685 >                if (binCount != 0) {
1686 >                    if (binCount >= TREEIFY_THRESHOLD)
1687 >                        treeifyBin(tab, i);
1688 >                    if (!added)
1689 >                        return val;
1690 >                    break;
1691 >                }
1692 >            }
1693 >        }
1694 >        if (val != null)
1695 >            addCount(1L, binCount);
1696 >        return val;
1697      }
1698  
1699      /**
1700 <     * If the given key is present, computes a new mapping value given a key and
1701 <     * its current mapped value. This is equivalent to
1702 <     *  <pre> {@code
1703 <     *   if (map.containsKey(key)) {
1704 <     *     value = remappingFunction.apply(key, map.get(key));
1705 <     *     if (value != null)
1706 <     *       map.put(key, value);
2877 <     *     else
2878 <     *       map.remove(key);
2879 <     *   }
2880 <     * }</pre>
2881 <     *
2882 <     * except that the action is performed atomically.  If the
2883 <     * function returns {@code null}, the mapping is removed.  If the
2884 <     * function itself throws an (unchecked) exception, the exception
2885 <     * is rethrown to its caller, and the current mapping is left
2886 <     * unchanged.  Some attempted update operations on this map by
2887 <     * other threads may be blocked while computation is in progress,
2888 <     * so the computation should be short and simple, and must not
2889 <     * attempt to update any other mappings of this Map. For example,
2890 <     * to either create or append new messages to a value mapping:
1700 >     * If the value for the specified key is present, attempts to
1701 >     * compute a new mapping given the key and its current mapped
1702 >     * value.  The entire method invocation is performed atomically.
1703 >     * Some attempted update operations on this map by other threads
1704 >     * may be blocked while computation is in progress, so the
1705 >     * computation should be short and simple, and must not attempt to
1706 >     * update any other mappings of this map.
1707       *
1708 <     * @param key key with which the specified value is to be associated
1708 >     * @param key key with which a value may be associated
1709       * @param remappingFunction the function to compute a value
1710       * @return the new value associated with the specified key, or null if none
1711       * @throws NullPointerException if the specified key or remappingFunction
# Line 2900 | Line 1716 | public class ConcurrentHashMapV8<K, V>
1716       * @throws RuntimeException or Error if the remappingFunction does so,
1717       *         in which case the mapping is unchanged
1718       */
1719 <    @SuppressWarnings("unchecked") public V computeIfPresent
2904 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1719 >    public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1720          if (key == null || remappingFunction == null)
1721              throw new NullPointerException();
1722 <        return (V)internalCompute(key, true, remappingFunction);
1722 >        int h = spread(key.hashCode());
1723 >        V val = null;
1724 >        int delta = 0;
1725 >        int binCount = 0;
1726 >        for (Node<K,V>[] tab = table;;) {
1727 >            Node<K,V> f; int n, i, fh;
1728 >            if (tab == null || (n = tab.length) == 0)
1729 >                tab = initTable();
1730 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1731 >                break;
1732 >            else if ((fh = f.hash) == MOVED)
1733 >                tab = helpTransfer(tab, f);
1734 >            else {
1735 >                synchronized (f) {
1736 >                    if (tabAt(tab, i) == f) {
1737 >                        if (fh >= 0) {
1738 >                            binCount = 1;
1739 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1740 >                                K ek;
1741 >                                if (e.hash == h &&
1742 >                                    ((ek = e.key) == key ||
1743 >                                     (ek != null && key.equals(ek)))) {
1744 >                                    val = remappingFunction.apply(key, e.val);
1745 >                                    if (val != null)
1746 >                                        e.val = val;
1747 >                                    else {
1748 >                                        delta = -1;
1749 >                                        Node<K,V> en = e.next;
1750 >                                        if (pred != null)
1751 >                                            pred.next = en;
1752 >                                        else
1753 >                                            setTabAt(tab, i, en);
1754 >                                    }
1755 >                                    break;
1756 >                                }
1757 >                                pred = e;
1758 >                                if ((e = e.next) == null)
1759 >                                    break;
1760 >                            }
1761 >                        }
1762 >                        else if (f instanceof TreeBin) {
1763 >                            binCount = 2;
1764 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1765 >                            TreeNode<K,V> r, p;
1766 >                            if ((r = t.root) != null &&
1767 >                                (p = r.findTreeNode(h, key, null)) != null) {
1768 >                                val = remappingFunction.apply(key, p.val);
1769 >                                if (val != null)
1770 >                                    p.val = val;
1771 >                                else {
1772 >                                    delta = -1;
1773 >                                    if (t.removeTreeNode(p))
1774 >                                        setTabAt(tab, i, untreeify(t.first));
1775 >                                }
1776 >                            }
1777 >                        }
1778 >                    }
1779 >                }
1780 >                if (binCount != 0)
1781 >                    break;
1782 >            }
1783 >        }
1784 >        if (delta != 0)
1785 >            addCount((long)delta, binCount);
1786 >        return val;
1787      }
1788  
1789      /**
1790 <     * Computes a new mapping value given a key and
1791 <     * its current mapped value (or {@code null} if there is no current
1792 <     * mapping). This is equivalent to
1793 <     *  <pre> {@code
1794 <     *   value = remappingFunction.apply(key, map.get(key));
1795 <     *   if (value != null)
1796 <     *     map.put(key, value);
2918 <     *   else
2919 <     *     map.remove(key);
2920 <     * }</pre>
2921 <     *
2922 <     * except that the action is performed atomically.  If the
2923 <     * function returns {@code null}, the mapping is removed.  If the
2924 <     * function itself throws an (unchecked) exception, the exception
2925 <     * is rethrown to its caller, and the current mapping is left
2926 <     * unchanged.  Some attempted update operations on this map by
2927 <     * other threads may be blocked while computation is in progress,
2928 <     * so the computation should be short and simple, and must not
2929 <     * attempt to update any other mappings of this Map. For example,
2930 <     * to either create or append new messages to a value mapping:
2931 <     *
2932 <     * <pre> {@code
2933 <     * Map<Key, String> map = ...;
2934 <     * final String msg = ...;
2935 <     * map.compute(key, new BiFun<Key, String, String>() {
2936 <     *   public String apply(Key k, String v) {
2937 <     *    return (v == null) ? msg : v + msg;});}}</pre>
1790 >     * Attempts to compute a mapping for the specified key and its
1791 >     * current mapped value (or {@code null} if there is no current
1792 >     * mapping). The entire method invocation is performed atomically.
1793 >     * Some attempted update operations on this map by other threads
1794 >     * may be blocked while computation is in progress, so the
1795 >     * computation should be short and simple, and must not attempt to
1796 >     * update any other mappings of this Map.
1797       *
1798       * @param key key with which the specified value is to be associated
1799       * @param remappingFunction the function to compute a value
# Line 2947 | Line 1806 | public class ConcurrentHashMapV8<K, V>
1806       * @throws RuntimeException or Error if the remappingFunction does so,
1807       *         in which case the mapping is unchanged
1808       */
1809 <    @SuppressWarnings("unchecked") public V compute
1810 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1809 >    public V compute(K key,
1810 >                     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1811          if (key == null || remappingFunction == null)
1812              throw new NullPointerException();
1813 <        return (V)internalCompute(key, false, remappingFunction);
1813 >        int h = spread(key.hashCode());
1814 >        V val = null;
1815 >        int delta = 0;
1816 >        int binCount = 0;
1817 >        for (Node<K,V>[] tab = table;;) {
1818 >            Node<K,V> f; int n, i, fh;
1819 >            if (tab == null || (n = tab.length) == 0)
1820 >                tab = initTable();
1821 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1822 >                Node<K,V> r = new ReservationNode<K,V>();
1823 >                synchronized (r) {
1824 >                    if (casTabAt(tab, i, null, r)) {
1825 >                        binCount = 1;
1826 >                        Node<K,V> node = null;
1827 >                        try {
1828 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1829 >                                delta = 1;
1830 >                                node = new Node<K,V>(h, key, val, null);
1831 >                            }
1832 >                        } finally {
1833 >                            setTabAt(tab, i, node);
1834 >                        }
1835 >                    }
1836 >                }
1837 >                if (binCount != 0)
1838 >                    break;
1839 >            }
1840 >            else if ((fh = f.hash) == MOVED)
1841 >                tab = helpTransfer(tab, f);
1842 >            else {
1843 >                synchronized (f) {
1844 >                    if (tabAt(tab, i) == f) {
1845 >                        if (fh >= 0) {
1846 >                            binCount = 1;
1847 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1848 >                                K ek;
1849 >                                if (e.hash == h &&
1850 >                                    ((ek = e.key) == key ||
1851 >                                     (ek != null && key.equals(ek)))) {
1852 >                                    val = remappingFunction.apply(key, e.val);
1853 >                                    if (val != null)
1854 >                                        e.val = val;
1855 >                                    else {
1856 >                                        delta = -1;
1857 >                                        Node<K,V> en = e.next;
1858 >                                        if (pred != null)
1859 >                                            pred.next = en;
1860 >                                        else
1861 >                                            setTabAt(tab, i, en);
1862 >                                    }
1863 >                                    break;
1864 >                                }
1865 >                                pred = e;
1866 >                                if ((e = e.next) == null) {
1867 >                                    val = remappingFunction.apply(key, null);
1868 >                                    if (val != null) {
1869 >                                        delta = 1;
1870 >                                        pred.next =
1871 >                                            new Node<K,V>(h, key, val, null);
1872 >                                    }
1873 >                                    break;
1874 >                                }
1875 >                            }
1876 >                        }
1877 >                        else if (f instanceof TreeBin) {
1878 >                            binCount = 1;
1879 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1880 >                            TreeNode<K,V> r, p;
1881 >                            if ((r = t.root) != null)
1882 >                                p = r.findTreeNode(h, key, null);
1883 >                            else
1884 >                                p = null;
1885 >                            V pv = (p == null) ? null : p.val;
1886 >                            val = remappingFunction.apply(key, pv);
1887 >                            if (val != null) {
1888 >                                if (p != null)
1889 >                                    p.val = val;
1890 >                                else {
1891 >                                    delta = 1;
1892 >                                    t.putTreeVal(h, key, val);
1893 >                                }
1894 >                            }
1895 >                            else if (p != null) {
1896 >                                delta = -1;
1897 >                                if (t.removeTreeNode(p))
1898 >                                    setTabAt(tab, i, untreeify(t.first));
1899 >                            }
1900 >                        }
1901 >                    }
1902 >                }
1903 >                if (binCount != 0) {
1904 >                    if (binCount >= TREEIFY_THRESHOLD)
1905 >                        treeifyBin(tab, i);
1906 >                    break;
1907 >                }
1908 >            }
1909 >        }
1910 >        if (delta != 0)
1911 >            addCount((long)delta, binCount);
1912 >        return val;
1913      }
1914  
1915      /**
1916 <     * If the specified key is not already associated
1917 <     * with a value, associate it with the given value.
1918 <     * Otherwise, replace the value with the results of
1919 <     * the given remapping function. This is equivalent to:
1920 <     *  <pre> {@code
1921 <     *   if (!map.containsKey(key))
1922 <     *     map.put(value);
1923 <     *   else {
1924 <     *     newValue = remappingFunction.apply(map.get(key), value);
1925 <     *     if (value != null)
1926 <     *       map.put(key, value);
1927 <     *     else
1928 <     *       map.remove(key);
1929 <     *   }
1930 <     * }</pre>
1931 <     * except that the action is performed atomically.  If the
1932 <     * function returns {@code null}, the mapping is removed.  If the
1933 <     * function itself throws an (unchecked) exception, the exception
2976 <     * is rethrown to its caller, and the current mapping is left
2977 <     * unchanged.  Some attempted update operations on this map by
2978 <     * other threads may be blocked while computation is in progress,
2979 <     * so the computation should be short and simple, and must not
2980 <     * attempt to update any other mappings of this Map.
1916 >     * If the specified key is not already associated with a
1917 >     * (non-null) value, associates it with the given value.
1918 >     * Otherwise, replaces the value with the results of the given
1919 >     * remapping function, or removes if {@code null}. The entire
1920 >     * method invocation is performed atomically.  Some attempted
1921 >     * update operations on this map by other threads may be blocked
1922 >     * while computation is in progress, so the computation should be
1923 >     * short and simple, and must not attempt to update any other
1924 >     * mappings of this Map.
1925 >     *
1926 >     * @param key key with which the specified value is to be associated
1927 >     * @param value the value to use if absent
1928 >     * @param remappingFunction the function to recompute a value if present
1929 >     * @return the new value associated with the specified key, or null if none
1930 >     * @throws NullPointerException if the specified key or the
1931 >     *         remappingFunction is null
1932 >     * @throws RuntimeException or Error if the remappingFunction does so,
1933 >     *         in which case the mapping is unchanged
1934       */
1935 <    @SuppressWarnings("unchecked") public V merge
2983 <        (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1935 >    public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1936          if (key == null || value == null || remappingFunction == null)
1937              throw new NullPointerException();
1938 <        return (V)internalMerge(key, value, remappingFunction);
1938 >        int h = spread(key.hashCode());
1939 >        V val = null;
1940 >        int delta = 0;
1941 >        int binCount = 0;
1942 >        for (Node<K,V>[] tab = table;;) {
1943 >            Node<K,V> f; int n, i, fh;
1944 >            if (tab == null || (n = tab.length) == 0)
1945 >                tab = initTable();
1946 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1947 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1948 >                    delta = 1;
1949 >                    val = value;
1950 >                    break;
1951 >                }
1952 >            }
1953 >            else if ((fh = f.hash) == MOVED)
1954 >                tab = helpTransfer(tab, f);
1955 >            else {
1956 >                synchronized (f) {
1957 >                    if (tabAt(tab, i) == f) {
1958 >                        if (fh >= 0) {
1959 >                            binCount = 1;
1960 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1961 >                                K ek;
1962 >                                if (e.hash == h &&
1963 >                                    ((ek = e.key) == key ||
1964 >                                     (ek != null && key.equals(ek)))) {
1965 >                                    val = remappingFunction.apply(e.val, value);
1966 >                                    if (val != null)
1967 >                                        e.val = val;
1968 >                                    else {
1969 >                                        delta = -1;
1970 >                                        Node<K,V> en = e.next;
1971 >                                        if (pred != null)
1972 >                                            pred.next = en;
1973 >                                        else
1974 >                                            setTabAt(tab, i, en);
1975 >                                    }
1976 >                                    break;
1977 >                                }
1978 >                                pred = e;
1979 >                                if ((e = e.next) == null) {
1980 >                                    delta = 1;
1981 >                                    val = value;
1982 >                                    pred.next =
1983 >                                        new Node<K,V>(h, key, val, null);
1984 >                                    break;
1985 >                                }
1986 >                            }
1987 >                        }
1988 >                        else if (f instanceof TreeBin) {
1989 >                            binCount = 2;
1990 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1991 >                            TreeNode<K,V> r = t.root;
1992 >                            TreeNode<K,V> p = (r == null) ? null :
1993 >                                r.findTreeNode(h, key, null);
1994 >                            val = (p == null) ? value :
1995 >                                remappingFunction.apply(p.val, value);
1996 >                            if (val != null) {
1997 >                                if (p != null)
1998 >                                    p.val = val;
1999 >                                else {
2000 >                                    delta = 1;
2001 >                                    t.putTreeVal(h, key, val);
2002 >                                }
2003 >                            }
2004 >                            else if (p != null) {
2005 >                                delta = -1;
2006 >                                if (t.removeTreeNode(p))
2007 >                                    setTabAt(tab, i, untreeify(t.first));
2008 >                            }
2009 >                        }
2010 >                    }
2011 >                }
2012 >                if (binCount != 0) {
2013 >                    if (binCount >= TREEIFY_THRESHOLD)
2014 >                        treeifyBin(tab, i);
2015 >                    break;
2016 >                }
2017 >            }
2018 >        }
2019 >        if (delta != 0)
2020 >            addCount((long)delta, binCount);
2021 >        return val;
2022      }
2023  
2024 +    // Hashtable legacy methods
2025 +
2026      /**
2027 <     * Removes the key (and its corresponding value) from this map.
2028 <     * This method does nothing if the key is not in the map.
2027 >     * Legacy method testing if some key maps into the specified value
2028 >     * in this table.  This method is identical in functionality to
2029 >     * {@link #containsValue(Object)}, and exists solely to ensure
2030 >     * full compatibility with class {@link java.util.Hashtable},
2031 >     * which supported this method prior to introduction of the
2032 >     * Java Collections framework.
2033       *
2034 <     * @param  key the key that needs to be removed
2035 <     * @return the previous value associated with {@code key}, or
2036 <     *         {@code null} if there was no mapping for {@code key}
2037 <     * @throws NullPointerException if the specified key is null
2034 >     * @param  value a value to search for
2035 >     * @return {@code true} if and only if some key maps to the
2036 >     *         {@code value} argument in this table as
2037 >     *         determined by the {@code equals} method;
2038 >     *         {@code false} otherwise
2039 >     * @throws NullPointerException if the specified value is null
2040       */
2041 <    @SuppressWarnings("unchecked") public V remove(Object key) {
2042 <        if (key == null)
3000 <            throw new NullPointerException();
3001 <        return (V)internalReplace(key, null, null);
2041 >    @Deprecated public boolean contains(Object value) {
2042 >        return containsValue(value);
2043      }
2044  
2045      /**
2046 <     * {@inheritDoc}
2046 >     * Returns an enumeration of the keys in this table.
2047       *
2048 <     * @throws NullPointerException if the specified key is null
2048 >     * @return an enumeration of the keys in this table
2049 >     * @see #keySet()
2050       */
2051 <    public boolean remove(Object key, Object value) {
2052 <        if (key == null)
2053 <            throw new NullPointerException();
2054 <        if (value == null)
3013 <            return false;
3014 <        return internalReplace(key, null, value) != null;
2051 >    public Enumeration<K> keys() {
2052 >        Node<K,V>[] t;
2053 >        int f = (t = table) == null ? 0 : t.length;
2054 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2055      }
2056  
2057      /**
2058 <     * {@inheritDoc}
2058 >     * Returns an enumeration of the values in this table.
2059       *
2060 <     * @throws NullPointerException if any of the arguments are null
2060 >     * @return an enumeration of the values in this table
2061 >     * @see #values()
2062       */
2063 <    public boolean replace(K key, V oldValue, V newValue) {
2064 <        if (key == null || oldValue == null || newValue == null)
2065 <            throw new NullPointerException();
2066 <        return internalReplace(key, newValue, oldValue) != null;
2063 >    public Enumeration<V> elements() {
2064 >        Node<K,V>[] t;
2065 >        int f = (t = table) == null ? 0 : t.length;
2066 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2067      }
2068  
2069 +    // ConcurrentHashMapV8-only methods
2070 +
2071      /**
2072 <     * {@inheritDoc}
2072 >     * Returns the number of mappings. This method should be used
2073 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2074 >     * contain more mappings than can be represented as an int. The
2075 >     * value returned is an estimate; the actual count may differ if
2076 >     * there are concurrent insertions or removals.
2077       *
2078 <     * @return the previous value associated with the specified key,
2079 <     *         or {@code null} if there was no mapping for the key
3033 <     * @throws NullPointerException if the specified key or value is null
2078 >     * @return the number of mappings
2079 >     * @since 1.8
2080       */
2081 <    @SuppressWarnings("unchecked") public V replace(K key, V value) {
2082 <        if (key == null || value == null)
2083 <            throw new NullPointerException();
3038 <        return (V)internalReplace(key, value, null);
2081 >    public long mappingCount() {
2082 >        long n = sumCount();
2083 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2084      }
2085  
2086      /**
2087 <     * Removes all of the mappings from this map.
2087 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2088 >     * from the given type to {@code Boolean.TRUE}.
2089 >     *
2090 >     * @return the new set
2091 >     * @since 1.8
2092       */
2093 <    public void clear() {
2094 <        internalClear();
2093 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2094 >        return new KeySetView<K,Boolean>
2095 >            (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2096      }
2097  
2098      /**
2099 <     * Returns a {@link Set} view of the keys contained in this map.
2100 <     * The set is backed by the map, so changes to the map are
3051 <     * reflected in the set, and vice-versa.
2099 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2100 >     * from the given type to {@code Boolean.TRUE}.
2101       *
2102 <     * @return the set view
2102 >     * @param initialCapacity The implementation performs internal
2103 >     * sizing to accommodate this many elements.
2104 >     * @throws IllegalArgumentException if the initial capacity of
2105 >     * elements is negative
2106 >     * @return the new set
2107 >     * @since 1.8
2108       */
2109 <    public KeySetView<K,V> keySet() {
2110 <        KeySetView<K,V> ks = keySet;
2111 <        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2109 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2110 >        return new KeySetView<K,Boolean>
2111 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2112      }
2113  
2114      /**
2115       * Returns a {@link Set} view of the keys in this map, using the
2116       * given common mapped value for any additions (i.e., {@link
2117 <     * Collection#add} and {@link Collection#addAll}). This is of
2118 <     * course only appropriate if it is acceptable to use the same
2119 <     * value for all additions from this view.
2117 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2118 >     * This is of course only appropriate if it is acceptable to use
2119 >     * the same value for all additions from this view.
2120       *
2121 <     * @param mappedValue the mapped value to use for any
3068 <     * additions.
2121 >     * @param mappedValue the mapped value to use for any additions
2122       * @return the set view
2123       * @throws NullPointerException if the mappedValue is null
2124       */
# Line 3075 | Line 2128 | public class ConcurrentHashMapV8<K, V>
2128          return new KeySetView<K,V>(this, mappedValue);
2129      }
2130  
2131 +    /* ---------------- Special Nodes -------------- */
2132 +
2133      /**
2134 <     * Returns a {@link Collection} view of the values contained in this map.
3080 <     * The collection is backed by the map, so changes to the map are
3081 <     * reflected in the collection, and vice-versa.  The collection
3082 <     * supports element removal, which removes the corresponding
3083 <     * mapping from this map, via the {@code Iterator.remove},
3084 <     * {@code Collection.remove}, {@code removeAll},
3085 <     * {@code retainAll}, and {@code clear} operations.  It does not
3086 <     * support the {@code add} or {@code addAll} operations.
3087 <     *
3088 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
3089 <     * that will never throw {@link ConcurrentModificationException},
3090 <     * and guarantees to traverse elements as they existed upon
3091 <     * construction of the iterator, and may (but is not guaranteed to)
3092 <     * reflect any modifications subsequent to construction.
2134 >     * A node inserted at head of bins during transfer operations.
2135       */
2136 <    public Collection<V> values() {
2137 <        Values<K,V> vs = values;
2138 <        return (vs != null) ? vs : (values = new Values<K,V>(this));
2136 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2137 >        final Node<K,V>[] nextTable;
2138 >        ForwardingNode(Node<K,V>[] tab) {
2139 >            super(MOVED, null, null, null);
2140 >            this.nextTable = tab;
2141 >        }
2142 >
2143 >        Node<K,V> find(int h, Object k) {
2144 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2145 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2146 >                Node<K,V> e; int n;
2147 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2148 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2149 >                    return null;
2150 >                for (;;) {
2151 >                    int eh; K ek;
2152 >                    if ((eh = e.hash) == h &&
2153 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2154 >                        return e;
2155 >                    if (eh < 0) {
2156 >                        if (e instanceof ForwardingNode) {
2157 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2158 >                            continue outer;
2159 >                        }
2160 >                        else
2161 >                            return e.find(h, k);
2162 >                    }
2163 >                    if ((e = e.next) == null)
2164 >                        return null;
2165 >                }
2166 >            }
2167 >        }
2168      }
2169  
2170      /**
2171 <     * Returns a {@link Set} view of the mappings contained in this map.
3101 <     * The set is backed by the map, so changes to the map are
3102 <     * reflected in the set, and vice-versa.  The set supports element
3103 <     * removal, which removes the corresponding mapping from the map,
3104 <     * via the {@code Iterator.remove}, {@code Set.remove},
3105 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
3106 <     * operations.  It does not support the {@code add} or
3107 <     * {@code addAll} operations.
3108 <     *
3109 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
3110 <     * that will never throw {@link ConcurrentModificationException},
3111 <     * and guarantees to traverse elements as they existed upon
3112 <     * construction of the iterator, and may (but is not guaranteed to)
3113 <     * reflect any modifications subsequent to construction.
2171 >     * A place-holder node used in computeIfAbsent and compute
2172       */
2173 <    public Set<Map.Entry<K,V>> entrySet() {
2174 <        EntrySet<K,V> es = entrySet;
2175 <        return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2173 >    static final class ReservationNode<K,V> extends Node<K,V> {
2174 >        ReservationNode() {
2175 >            super(RESERVED, null, null, null);
2176 >        }
2177 >
2178 >        Node<K,V> find(int h, Object k) {
2179 >            return null;
2180 >        }
2181      }
2182  
2183 +    /* ---------------- Table Initialization and Resizing -------------- */
2184 +
2185      /**
2186 <     * Returns an enumeration of the keys in this table.
3122 <     *
3123 <     * @return an enumeration of the keys in this table
3124 <     * @see #keySet()
2186 >     * Initializes table, using the size recorded in sizeCtl.
2187       */
2188 <    public Enumeration<K> keys() {
2189 <        return new KeyIterator<K,V>(this);
2188 >    private final Node<K,V>[] initTable() {
2189 >        Node<K,V>[] tab; int sc;
2190 >        while ((tab = table) == null || tab.length == 0) {
2191 >            if ((sc = sizeCtl) < 0)
2192 >                Thread.yield(); // lost initialization race; just spin
2193 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2194 >                try {
2195 >                    if ((tab = table) == null || tab.length == 0) {
2196 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2197 >                        @SuppressWarnings({"rawtypes","unchecked"})
2198 >                            Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2199 >                        table = tab = nt;
2200 >                        sc = n - (n >>> 2);
2201 >                    }
2202 >                } finally {
2203 >                    sizeCtl = sc;
2204 >                }
2205 >                break;
2206 >            }
2207 >        }
2208 >        return tab;
2209      }
2210  
2211      /**
2212 <     * Returns an enumeration of the values in this table.
2213 <     *
2214 <     * @return an enumeration of the values in this table
2215 <     * @see #values()
2212 >     * Adds to count, and if table is too small and not already
2213 >     * resizing, initiates transfer. If already resizing, helps
2214 >     * perform transfer if work is available.  Rechecks occupancy
2215 >     * after a transfer to see if another resize is already needed
2216 >     * because resizings are lagging additions.
2217 >     *
2218 >     * @param x the count to add
2219 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2220 >     */
2221 >    private final void addCount(long x, int check) {
2222 >        CounterCell[] as; long b, s;
2223 >        if ((as = counterCells) != null ||
2224 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2225 >            CounterHashCode hc; CounterCell a; long v; int m;
2226 >            boolean uncontended = true;
2227 >            if ((hc = threadCounterHashCode.get()) == null ||
2228 >                as == null || (m = as.length - 1) < 0 ||
2229 >                (a = as[m & hc.code]) == null ||
2230 >                !(uncontended =
2231 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2232 >                fullAddCount(x, hc, uncontended);
2233 >                return;
2234 >            }
2235 >            if (check <= 1)
2236 >                return;
2237 >            s = sumCount();
2238 >        }
2239 >        if (check >= 0) {
2240 >            Node<K,V>[] tab, nt; int sc;
2241 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2242 >                   tab.length < MAXIMUM_CAPACITY) {
2243 >                if (sc < 0) {
2244 >                    if (sc == -1 || transferIndex <= transferOrigin ||
2245 >                        (nt = nextTable) == null)
2246 >                        break;
2247 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2248 >                        transfer(tab, nt);
2249 >                }
2250 >                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2251 >                    transfer(tab, null);
2252 >                s = sumCount();
2253 >            }
2254 >        }
2255 >    }
2256 >
2257 >    /**
2258 >     * Helps transfer if a resize is in progress.
2259       */
2260 <    public Enumeration<V> elements() {
2261 <        return new ValueIterator<K,V>(this);
2260 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2261 >        Node<K,V>[] nextTab; int sc;
2262 >        if ((f instanceof ForwardingNode) &&
2263 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2264 >            if (nextTab == nextTable && tab == table &&
2265 >                transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2266 >                U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2267 >                transfer(tab, nextTab);
2268 >            return nextTab;
2269 >        }
2270 >        return table;
2271      }
2272  
2273      /**
2274 <     * Returns a partitionable iterator of the keys in this map.
2274 >     * Tries to presize table to accommodate the given number of elements.
2275       *
2276 <     * @return a partitionable iterator of the keys in this map
2276 >     * @param size number of elements (doesn't need to be perfectly accurate)
2277       */
2278 <    public Spliterator<K> keySpliterator() {
2279 <        return new KeyIterator<K,V>(this);
2278 >    private final void tryPresize(int size) {
2279 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2280 >            tableSizeFor(size + (size >>> 1) + 1);
2281 >        int sc;
2282 >        while ((sc = sizeCtl) >= 0) {
2283 >            Node<K,V>[] tab = table; int n;
2284 >            if (tab == null || (n = tab.length) == 0) {
2285 >                n = (sc > c) ? sc : c;
2286 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2287 >                    try {
2288 >                        if (table == tab) {
2289 >                            @SuppressWarnings({"rawtypes","unchecked"})
2290 >                                Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2291 >                            table = nt;
2292 >                            sc = n - (n >>> 2);
2293 >                        }
2294 >                    } finally {
2295 >                        sizeCtl = sc;
2296 >                    }
2297 >                }
2298 >            }
2299 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2300 >                break;
2301 >            else if (tab == table &&
2302 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2303 >                transfer(tab, null);
2304 >        }
2305      }
2306  
2307      /**
2308 <     * Returns a partitionable iterator of the values in this map.
2309 <     *
3152 <     * @return a partitionable iterator of the values in this map
2308 >     * Moves and/or copies the nodes in each bin to new table. See
2309 >     * above for explanation.
2310       */
2311 <    public Spliterator<V> valueSpliterator() {
2312 <        return new ValueIterator<K,V>(this);
2311 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2312 >        int n = tab.length, stride;
2313 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2314 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2315 >        if (nextTab == null) {            // initiating
2316 >            try {
2317 >                @SuppressWarnings({"rawtypes","unchecked"})
2318 >                    Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2319 >                nextTab = nt;
2320 >            } catch (Throwable ex) {      // try to cope with OOME
2321 >                sizeCtl = Integer.MAX_VALUE;
2322 >                return;
2323 >            }
2324 >            nextTable = nextTab;
2325 >            transferOrigin = n;
2326 >            transferIndex = n;
2327 >            ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2328 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
2329 >                int nextk = (k > stride) ? k - stride : 0;
2330 >                for (int m = nextk; m < k; ++m)
2331 >                    nextTab[m] = rev;
2332 >                for (int m = n + nextk; m < n + k; ++m)
2333 >                    nextTab[m] = rev;
2334 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2335 >            }
2336 >        }
2337 >        int nextn = nextTab.length;
2338 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2339 >        boolean advance = true;
2340 >        boolean finishing = false; // to ensure sweep before committing nextTab
2341 >        for (int i = 0, bound = 0;;) {
2342 >            int nextIndex, nextBound, fh; Node<K,V> f;
2343 >            while (advance) {
2344 >                if (--i >= bound || finishing)
2345 >                    advance = false;
2346 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
2347 >                    i = -1;
2348 >                    advance = false;
2349 >                }
2350 >                else if (U.compareAndSwapInt
2351 >                         (this, TRANSFERINDEX, nextIndex,
2352 >                          nextBound = (nextIndex > stride ?
2353 >                                       nextIndex - stride : 0))) {
2354 >                    bound = nextBound;
2355 >                    i = nextIndex - 1;
2356 >                    advance = false;
2357 >                }
2358 >            }
2359 >            if (i < 0 || i >= n || i + n >= nextn) {
2360 >                if (finishing) {
2361 >                    nextTable = null;
2362 >                    table = nextTab;
2363 >                    sizeCtl = (n << 1) - (n >>> 1);
2364 >                    return;
2365 >                }
2366 >                for (int sc;;) {
2367 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2368 >                        if (sc != -1)
2369 >                            return;
2370 >                        finishing = advance = true;
2371 >                        i = n; // recheck before commit
2372 >                        break;
2373 >                    }
2374 >                }
2375 >            }
2376 >            else if ((f = tabAt(tab, i)) == null) {
2377 >                if (casTabAt(tab, i, null, fwd)) {
2378 >                    setTabAt(nextTab, i, null);
2379 >                    setTabAt(nextTab, i + n, null);
2380 >                    advance = true;
2381 >                }
2382 >            }
2383 >            else if ((fh = f.hash) == MOVED)
2384 >                advance = true; // already processed
2385 >            else {
2386 >                synchronized (f) {
2387 >                    if (tabAt(tab, i) == f) {
2388 >                        Node<K,V> ln, hn;
2389 >                        if (fh >= 0) {
2390 >                            int runBit = fh & n;
2391 >                            Node<K,V> lastRun = f;
2392 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2393 >                                int b = p.hash & n;
2394 >                                if (b != runBit) {
2395 >                                    runBit = b;
2396 >                                    lastRun = p;
2397 >                                }
2398 >                            }
2399 >                            if (runBit == 0) {
2400 >                                ln = lastRun;
2401 >                                hn = null;
2402 >                            }
2403 >                            else {
2404 >                                hn = lastRun;
2405 >                                ln = null;
2406 >                            }
2407 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2408 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2409 >                                if ((ph & n) == 0)
2410 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2411 >                                else
2412 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2413 >                            }
2414 >                            setTabAt(nextTab, i, ln);
2415 >                            setTabAt(nextTab, i + n, hn);
2416 >                            setTabAt(tab, i, fwd);
2417 >                            advance = true;
2418 >                        }
2419 >                        else if (f instanceof TreeBin) {
2420 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2421 >                            TreeNode<K,V> lo = null, loTail = null;
2422 >                            TreeNode<K,V> hi = null, hiTail = null;
2423 >                            int lc = 0, hc = 0;
2424 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2425 >                                int h = e.hash;
2426 >                                TreeNode<K,V> p = new TreeNode<K,V>
2427 >                                    (h, e.key, e.val, null, null);
2428 >                                if ((h & n) == 0) {
2429 >                                    if ((p.prev = loTail) == null)
2430 >                                        lo = p;
2431 >                                    else
2432 >                                        loTail.next = p;
2433 >                                    loTail = p;
2434 >                                    ++lc;
2435 >                                }
2436 >                                else {
2437 >                                    if ((p.prev = hiTail) == null)
2438 >                                        hi = p;
2439 >                                    else
2440 >                                        hiTail.next = p;
2441 >                                    hiTail = p;
2442 >                                    ++hc;
2443 >                                }
2444 >                            }
2445 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2446 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2447 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2448 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2449 >                            setTabAt(nextTab, i, ln);
2450 >                            setTabAt(nextTab, i + n, hn);
2451 >                            setTabAt(tab, i, fwd);
2452 >                            advance = true;
2453 >                        }
2454 >                    }
2455 >                }
2456 >            }
2457 >        }
2458      }
2459  
2460 +    /* ---------------- Conversion from/to TreeBins -------------- */
2461 +
2462      /**
2463 <     * Returns a partitionable iterator of the entries in this map.
2464 <     *
3161 <     * @return a partitionable iterator of the entries in this map
2463 >     * Replaces all linked nodes in bin at given index unless table is
2464 >     * too small, in which case resizes instead.
2465       */
2466 <    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2467 <        return new EntryIterator<K,V>(this);
2466 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2467 >        Node<K,V> b; int n, sc;
2468 >        if (tab != null) {
2469 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2470 >                if (tab == table && (sc = sizeCtl) >= 0 &&
2471 >                    U.compareAndSwapInt(this, SIZECTL, sc, -2))
2472 >                    transfer(tab, null);
2473 >            }
2474 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2475 >                synchronized (b) {
2476 >                    if (tabAt(tab, index) == b) {
2477 >                        TreeNode<K,V> hd = null, tl = null;
2478 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2479 >                            TreeNode<K,V> p =
2480 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2481 >                                                  null, null);
2482 >                            if ((p.prev = tl) == null)
2483 >                                hd = p;
2484 >                            else
2485 >                                tl.next = p;
2486 >                            tl = p;
2487 >                        }
2488 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2489 >                    }
2490 >                }
2491 >            }
2492 >        }
2493      }
2494  
2495      /**
2496 <     * Returns the hash code value for this {@link Map}, i.e.,
3169 <     * the sum of, for each key-value pair in the map,
3170 <     * {@code key.hashCode() ^ value.hashCode()}.
3171 <     *
3172 <     * @return the hash code value for this map
2496 >     * Returns a list on non-TreeNodes replacing those in given list.
2497       */
2498 <    public int hashCode() {
2499 <        int h = 0;
2500 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2501 <        Object v;
2502 <        while ((v = it.advance()) != null) {
2503 <            h += it.nextKey.hashCode() ^ v.hashCode();
2498 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2499 >        Node<K,V> hd = null, tl = null;
2500 >        for (Node<K,V> q = b; q != null; q = q.next) {
2501 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2502 >            if (tl == null)
2503 >                hd = p;
2504 >            else
2505 >                tl.next = p;
2506 >            tl = p;
2507          }
2508 <        return h;
2508 >        return hd;
2509      }
2510  
2511 +    /* ---------------- TreeNodes -------------- */
2512 +
2513      /**
2514 <     * Returns a string representation of this map.  The string
3186 <     * representation consists of a list of key-value mappings (in no
3187 <     * particular order) enclosed in braces ("{@code {}}").  Adjacent
3188 <     * mappings are separated by the characters {@code ", "} (comma
3189 <     * and space).  Each key-value mapping is rendered as the key
3190 <     * followed by an equals sign ("{@code =}") followed by the
3191 <     * associated value.
3192 <     *
3193 <     * @return a string representation of this map
2514 >     * Nodes for use in TreeBins
2515       */
2516 <    public String toString() {
2517 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2518 <        StringBuilder sb = new StringBuilder();
2519 <        sb.append('{');
2520 <        Object v;
2521 <        if ((v = it.advance()) != null) {
2522 <            for (;;) {
2523 <                Object k = it.nextKey;
2524 <                sb.append(k == this ? "(this Map)" : k);
2525 <                sb.append('=');
2526 <                sb.append(v == this ? "(this Map)" : v);
2527 <                if ((v = it.advance()) == null)
2516 >    static final class TreeNode<K,V> extends Node<K,V> {
2517 >        TreeNode<K,V> parent;  // red-black tree links
2518 >        TreeNode<K,V> left;
2519 >        TreeNode<K,V> right;
2520 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2521 >        boolean red;
2522 >
2523 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2524 >                 TreeNode<K,V> parent) {
2525 >            super(hash, key, val, next);
2526 >            this.parent = parent;
2527 >        }
2528 >
2529 >        Node<K,V> find(int h, Object k) {
2530 >            return findTreeNode(h, k, null);
2531 >        }
2532 >
2533 >        /**
2534 >         * Returns the TreeNode (or null if not found) for the given key
2535 >         * starting at given root.
2536 >         */
2537 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2538 >            if (k != null) {
2539 >                TreeNode<K,V> p = this;
2540 >                do  {
2541 >                    int ph, dir; K pk; TreeNode<K,V> q;
2542 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2543 >                    if ((ph = p.hash) > h)
2544 >                        p = pl;
2545 >                    else if (ph < h)
2546 >                        p = pr;
2547 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2548 >                        return p;
2549 >                    else if (pl == null && pr == null)
2550 >                        break;
2551 >                    else if ((kc != null ||
2552 >                              (kc = comparableClassFor(k)) != null) &&
2553 >                             (dir = compareComparables(kc, k, pk)) != 0)
2554 >                        p = (dir < 0) ? pl : pr;
2555 >                    else if (pl == null)
2556 >                        p = pr;
2557 >                    else if (pr == null ||
2558 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2559 >                        p = pl;
2560 >                    else
2561 >                        return q;
2562 >                } while (p != null);
2563 >            }
2564 >            return null;
2565 >        }
2566 >    }
2567 >
2568 >    /* ---------------- TreeBins -------------- */
2569 >
2570 >    /**
2571 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2572 >     * keys or values, but instead point to list of TreeNodes and
2573 >     * their root. They also maintain a parasitic read-write lock
2574 >     * forcing writers (who hold bin lock) to wait for readers (who do
2575 >     * not) to complete before tree restructuring operations.
2576 >     */
2577 >    static final class TreeBin<K,V> extends Node<K,V> {
2578 >        TreeNode<K,V> root;
2579 >        volatile TreeNode<K,V> first;
2580 >        volatile Thread waiter;
2581 >        volatile int lockState;
2582 >        // values for lockState
2583 >        static final int WRITER = 1; // set while holding write lock
2584 >        static final int WAITER = 2; // set when waiting for write lock
2585 >        static final int READER = 4; // increment value for setting read lock
2586 >
2587 >        /**
2588 >         * Creates bin with initial set of nodes headed by b.
2589 >         */
2590 >        TreeBin(TreeNode<K,V> b) {
2591 >            super(TREEBIN, null, null, null);
2592 >            this.first = b;
2593 >            TreeNode<K,V> r = null;
2594 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2595 >                next = (TreeNode<K,V>)x.next;
2596 >                x.left = x.right = null;
2597 >                if (r == null) {
2598 >                    x.parent = null;
2599 >                    x.red = false;
2600 >                    r = x;
2601 >                }
2602 >                else {
2603 >                    Object key = x.key;
2604 >                    int hash = x.hash;
2605 >                    Class<?> kc = null;
2606 >                    for (TreeNode<K,V> p = r;;) {
2607 >                        int dir, ph;
2608 >                        if ((ph = p.hash) > hash)
2609 >                            dir = -1;
2610 >                        else if (ph < hash)
2611 >                            dir = 1;
2612 >                        else if ((kc != null ||
2613 >                                  (kc = comparableClassFor(key)) != null))
2614 >                            dir = compareComparables(kc, key, p.key);
2615 >                        else
2616 >                            dir = 0;
2617 >                        TreeNode<K,V> xp = p;
2618 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2619 >                            x.parent = xp;
2620 >                            if (dir <= 0)
2621 >                                xp.left = x;
2622 >                            else
2623 >                                xp.right = x;
2624 >                            r = balanceInsertion(r, x);
2625 >                            break;
2626 >                        }
2627 >                    }
2628 >                }
2629 >            }
2630 >            this.root = r;
2631 >        }
2632 >
2633 >        /**
2634 >         * Acquires write lock for tree restructuring.
2635 >         */
2636 >        private final void lockRoot() {
2637 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2638 >                contendedLock(); // offload to separate method
2639 >        }
2640 >
2641 >        /**
2642 >         * Releases write lock for tree restructuring.
2643 >         */
2644 >        private final void unlockRoot() {
2645 >            lockState = 0;
2646 >        }
2647 >
2648 >        /**
2649 >         * Possibly blocks awaiting root lock.
2650 >         */
2651 >        private final void contendedLock() {
2652 >            boolean waiting = false;
2653 >            for (int s;;) {
2654 >                if (((s = lockState) & WRITER) == 0) {
2655 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2656 >                        if (waiting)
2657 >                            waiter = null;
2658 >                        return;
2659 >                    }
2660 >                }
2661 >                else if ((s | WAITER) == 0) {
2662 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2663 >                        waiting = true;
2664 >                        waiter = Thread.currentThread();
2665 >                    }
2666 >                }
2667 >                else if (waiting)
2668 >                    LockSupport.park(this);
2669 >            }
2670 >        }
2671 >
2672 >        /**
2673 >         * Returns matching node or null if none. Tries to search
2674 >         * using tree comparisons from root, but continues linear
2675 >         * search when lock not available.
2676 >         */
2677 >        final Node<K,V> find(int h, Object k) {
2678 >            if (k != null) {
2679 >                for (Node<K,V> e = first; e != null; e = e.next) {
2680 >                    int s; K ek;
2681 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2682 >                        if (e.hash == h &&
2683 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2684 >                            return e;
2685 >                    }
2686 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2687 >                                                 s + READER)) {
2688 >                        TreeNode<K,V> r, p;
2689 >                        try {
2690 >                            p = ((r = root) == null ? null :
2691 >                                 r.findTreeNode(h, k, null));
2692 >                        } finally {
2693 >                            Thread w;
2694 >                            int ls;
2695 >                            do {} while (!U.compareAndSwapInt
2696 >                                         (this, LOCKSTATE,
2697 >                                          ls = lockState, ls - READER));
2698 >                            if (ls == (READER|WAITER) && (w = waiter) != null)
2699 >                                LockSupport.unpark(w);
2700 >                        }
2701 >                        return p;
2702 >                    }
2703 >                }
2704 >            }
2705 >            return null;
2706 >        }
2707 >
2708 >        /**
2709 >         * Finds or adds a node.
2710 >         * @return null if added
2711 >         */
2712 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2713 >            Class<?> kc = null;
2714 >            for (TreeNode<K,V> p = root;;) {
2715 >                int dir, ph; K pk; TreeNode<K,V> q, pr;
2716 >                if (p == null) {
2717 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2718                      break;
2719 <                sb.append(',').append(' ');
2719 >                }
2720 >                else if ((ph = p.hash) > h)
2721 >                    dir = -1;
2722 >                else if (ph < h)
2723 >                    dir = 1;
2724 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2725 >                    return p;
2726 >                else if ((kc == null &&
2727 >                          (kc = comparableClassFor(k)) == null) ||
2728 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2729 >                    if (p.left == null)
2730 >                        dir = 1;
2731 >                    else if ((pr = p.right) == null ||
2732 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2733 >                        dir = -1;
2734 >                    else
2735 >                        return q;
2736 >                }
2737 >                TreeNode<K,V> xp = p;
2738 >                if ((p = (dir < 0) ? p.left : p.right) == null) {
2739 >                    TreeNode<K,V> x, f = first;
2740 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2741 >                    if (f != null)
2742 >                        f.prev = x;
2743 >                    if (dir < 0)
2744 >                        xp.left = x;
2745 >                    else
2746 >                        xp.right = x;
2747 >                    if (!xp.red)
2748 >                        x.red = true;
2749 >                    else {
2750 >                        lockRoot();
2751 >                        try {
2752 >                            root = balanceInsertion(root, x);
2753 >                        } finally {
2754 >                            unlockRoot();
2755 >                        }
2756 >                    }
2757 >                    break;
2758 >                }
2759 >            }
2760 >            assert checkInvariants(root);
2761 >            return null;
2762 >        }
2763 >
2764 >        /**
2765 >         * Removes the given node, that must be present before this
2766 >         * call.  This is messier than typical red-black deletion code
2767 >         * because we cannot swap the contents of an interior node
2768 >         * with a leaf successor that is pinned by "next" pointers
2769 >         * that are accessible independently of lock. So instead we
2770 >         * swap the tree linkages.
2771 >         *
2772 >         * @return true if now too small, so should be untreeified
2773 >         */
2774 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2775 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2776 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2777 >            TreeNode<K,V> r, rl;
2778 >            if (pred == null)
2779 >                first = next;
2780 >            else
2781 >                pred.next = next;
2782 >            if (next != null)
2783 >                next.prev = pred;
2784 >            if (first == null) {
2785 >                root = null;
2786 >                return true;
2787 >            }
2788 >            if ((r = root) == null || r.right == null || // too small
2789 >                (rl = r.left) == null || rl.left == null)
2790 >                return true;
2791 >            lockRoot();
2792 >            try {
2793 >                TreeNode<K,V> replacement;
2794 >                TreeNode<K,V> pl = p.left;
2795 >                TreeNode<K,V> pr = p.right;
2796 >                if (pl != null && pr != null) {
2797 >                    TreeNode<K,V> s = pr, sl;
2798 >                    while ((sl = s.left) != null) // find successor
2799 >                        s = sl;
2800 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2801 >                    TreeNode<K,V> sr = s.right;
2802 >                    TreeNode<K,V> pp = p.parent;
2803 >                    if (s == pr) { // p was s's direct parent
2804 >                        p.parent = s;
2805 >                        s.right = p;
2806 >                    }
2807 >                    else {
2808 >                        TreeNode<K,V> sp = s.parent;
2809 >                        if ((p.parent = sp) != null) {
2810 >                            if (s == sp.left)
2811 >                                sp.left = p;
2812 >                            else
2813 >                                sp.right = p;
2814 >                        }
2815 >                        if ((s.right = pr) != null)
2816 >                            pr.parent = s;
2817 >                    }
2818 >                    p.left = null;
2819 >                    if ((p.right = sr) != null)
2820 >                        sr.parent = p;
2821 >                    if ((s.left = pl) != null)
2822 >                        pl.parent = s;
2823 >                    if ((s.parent = pp) == null)
2824 >                        r = s;
2825 >                    else if (p == pp.left)
2826 >                        pp.left = s;
2827 >                    else
2828 >                        pp.right = s;
2829 >                    if (sr != null)
2830 >                        replacement = sr;
2831 >                    else
2832 >                        replacement = p;
2833 >                }
2834 >                else if (pl != null)
2835 >                    replacement = pl;
2836 >                else if (pr != null)
2837 >                    replacement = pr;
2838 >                else
2839 >                    replacement = p;
2840 >                if (replacement != p) {
2841 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2842 >                    if (pp == null)
2843 >                        r = replacement;
2844 >                    else if (p == pp.left)
2845 >                        pp.left = replacement;
2846 >                    else
2847 >                        pp.right = replacement;
2848 >                    p.left = p.right = p.parent = null;
2849 >                }
2850 >
2851 >                root = (p.red) ? r : balanceDeletion(r, replacement);
2852 >
2853 >                if (p == replacement) {  // detach pointers
2854 >                    TreeNode<K,V> pp;
2855 >                    if ((pp = p.parent) != null) {
2856 >                        if (p == pp.left)
2857 >                            pp.left = null;
2858 >                        else if (p == pp.right)
2859 >                            pp.right = null;
2860 >                        p.parent = null;
2861 >                    }
2862 >                }
2863 >            } finally {
2864 >                unlockRoot();
2865 >            }
2866 >            assert checkInvariants(root);
2867 >            return false;
2868 >        }
2869 >
2870 >        /* ------------------------------------------------------------ */
2871 >        // Red-black tree methods, all adapted from CLR
2872 >
2873 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2874 >                                              TreeNode<K,V> p) {
2875 >            TreeNode<K,V> r, pp, rl;
2876 >            if (p != null && (r = p.right) != null) {
2877 >                if ((rl = p.right = r.left) != null)
2878 >                    rl.parent = p;
2879 >                if ((pp = r.parent = p.parent) == null)
2880 >                    (root = r).red = false;
2881 >                else if (pp.left == p)
2882 >                    pp.left = r;
2883 >                else
2884 >                    pp.right = r;
2885 >                r.left = p;
2886 >                p.parent = r;
2887 >            }
2888 >            return root;
2889 >        }
2890 >
2891 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2892 >                                               TreeNode<K,V> p) {
2893 >            TreeNode<K,V> l, pp, lr;
2894 >            if (p != null && (l = p.left) != null) {
2895 >                if ((lr = p.left = l.right) != null)
2896 >                    lr.parent = p;
2897 >                if ((pp = l.parent = p.parent) == null)
2898 >                    (root = l).red = false;
2899 >                else if (pp.right == p)
2900 >                    pp.right = l;
2901 >                else
2902 >                    pp.left = l;
2903 >                l.right = p;
2904 >                p.parent = l;
2905 >            }
2906 >            return root;
2907 >        }
2908 >
2909 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2910 >                                                    TreeNode<K,V> x) {
2911 >            x.red = true;
2912 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2913 >                if ((xp = x.parent) == null) {
2914 >                    x.red = false;
2915 >                    return x;
2916 >                }
2917 >                else if (!xp.red || (xpp = xp.parent) == null)
2918 >                    return root;
2919 >                if (xp == (xppl = xpp.left)) {
2920 >                    if ((xppr = xpp.right) != null && xppr.red) {
2921 >                        xppr.red = false;
2922 >                        xp.red = false;
2923 >                        xpp.red = true;
2924 >                        x = xpp;
2925 >                    }
2926 >                    else {
2927 >                        if (x == xp.right) {
2928 >                            root = rotateLeft(root, x = xp);
2929 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2930 >                        }
2931 >                        if (xp != null) {
2932 >                            xp.red = false;
2933 >                            if (xpp != null) {
2934 >                                xpp.red = true;
2935 >                                root = rotateRight(root, xpp);
2936 >                            }
2937 >                        }
2938 >                    }
2939 >                }
2940 >                else {
2941 >                    if (xppl != null && xppl.red) {
2942 >                        xppl.red = false;
2943 >                        xp.red = false;
2944 >                        xpp.red = true;
2945 >                        x = xpp;
2946 >                    }
2947 >                    else {
2948 >                        if (x == xp.left) {
2949 >                            root = rotateRight(root, x = xp);
2950 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2951 >                        }
2952 >                        if (xp != null) {
2953 >                            xp.red = false;
2954 >                            if (xpp != null) {
2955 >                                xpp.red = true;
2956 >                                root = rotateLeft(root, xpp);
2957 >                            }
2958 >                        }
2959 >                    }
2960 >                }
2961 >            }
2962 >        }
2963 >
2964 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2965 >                                                   TreeNode<K,V> x) {
2966 >            for (TreeNode<K,V> xp, xpl, xpr;;)  {
2967 >                if (x == null || x == root)
2968 >                    return root;
2969 >                else if ((xp = x.parent) == null) {
2970 >                    x.red = false;
2971 >                    return x;
2972 >                }
2973 >                else if (x.red) {
2974 >                    x.red = false;
2975 >                    return root;
2976 >                }
2977 >                else if ((xpl = xp.left) == x) {
2978 >                    if ((xpr = xp.right) != null && xpr.red) {
2979 >                        xpr.red = false;
2980 >                        xp.red = true;
2981 >                        root = rotateLeft(root, xp);
2982 >                        xpr = (xp = x.parent) == null ? null : xp.right;
2983 >                    }
2984 >                    if (xpr == null)
2985 >                        x = xp;
2986 >                    else {
2987 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
2988 >                        if ((sr == null || !sr.red) &&
2989 >                            (sl == null || !sl.red)) {
2990 >                            xpr.red = true;
2991 >                            x = xp;
2992 >                        }
2993 >                        else {
2994 >                            if (sr == null || !sr.red) {
2995 >                                if (sl != null)
2996 >                                    sl.red = false;
2997 >                                xpr.red = true;
2998 >                                root = rotateRight(root, xpr);
2999 >                                xpr = (xp = x.parent) == null ?
3000 >                                    null : xp.right;
3001 >                            }
3002 >                            if (xpr != null) {
3003 >                                xpr.red = (xp == null) ? false : xp.red;
3004 >                                if ((sr = xpr.right) != null)
3005 >                                    sr.red = false;
3006 >                            }
3007 >                            if (xp != null) {
3008 >                                xp.red = false;
3009 >                                root = rotateLeft(root, xp);
3010 >                            }
3011 >                            x = root;
3012 >                        }
3013 >                    }
3014 >                }
3015 >                else { // symmetric
3016 >                    if (xpl != null && xpl.red) {
3017 >                        xpl.red = false;
3018 >                        xp.red = true;
3019 >                        root = rotateRight(root, xp);
3020 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3021 >                    }
3022 >                    if (xpl == null)
3023 >                        x = xp;
3024 >                    else {
3025 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3026 >                        if ((sl == null || !sl.red) &&
3027 >                            (sr == null || !sr.red)) {
3028 >                            xpl.red = true;
3029 >                            x = xp;
3030 >                        }
3031 >                        else {
3032 >                            if (sl == null || !sl.red) {
3033 >                                if (sr != null)
3034 >                                    sr.red = false;
3035 >                                xpl.red = true;
3036 >                                root = rotateLeft(root, xpl);
3037 >                                xpl = (xp = x.parent) == null ?
3038 >                                    null : xp.left;
3039 >                            }
3040 >                            if (xpl != null) {
3041 >                                xpl.red = (xp == null) ? false : xp.red;
3042 >                                if ((sl = xpl.left) != null)
3043 >                                    sl.red = false;
3044 >                            }
3045 >                            if (xp != null) {
3046 >                                xp.red = false;
3047 >                                root = rotateRight(root, xp);
3048 >                            }
3049 >                            x = root;
3050 >                        }
3051 >                    }
3052 >                }
3053 >            }
3054 >        }
3055 >
3056 >        /**
3057 >         * Recursive invariant check
3058 >         */
3059 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3060 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3061 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3062 >            if (tb != null && tb.next != t)
3063 >                return false;
3064 >            if (tn != null && tn.prev != t)
3065 >                return false;
3066 >            if (tp != null && t != tp.left && t != tp.right)
3067 >                return false;
3068 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3069 >                return false;
3070 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3071 >                return false;
3072 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3073 >                return false;
3074 >            if (tl != null && !checkInvariants(tl))
3075 >                return false;
3076 >            if (tr != null && !checkInvariants(tr))
3077 >                return false;
3078 >            return true;
3079 >        }
3080 >
3081 >        private static final sun.misc.Unsafe U;
3082 >        private static final long LOCKSTATE;
3083 >        static {
3084 >            try {
3085 >                U = getUnsafe();
3086 >                Class<?> k = TreeBin.class;
3087 >                LOCKSTATE = U.objectFieldOffset
3088 >                    (k.getDeclaredField("lockState"));
3089 >            } catch (Exception e) {
3090 >                throw new Error(e);
3091              }
3092          }
3211        return sb.append('}').toString();
3093      }
3094  
3095 +    /* ----------------Table Traversal -------------- */
3096 +
3097      /**
3098 <     * Compares the specified object with this map for equality.
3099 <     * Returns {@code true} if the given object is a map with the same
3217 <     * mappings as this map.  This operation may return misleading
3218 <     * results if either map is concurrently modified during execution
3219 <     * of this method.
3098 >     * Encapsulates traversal for methods such as containsValue; also
3099 >     * serves as a base class for other iterators and spliterators.
3100       *
3101 <     * @param o object to be compared for equality with this map
3102 <     * @return {@code true} if the specified object is equal to this map
3101 >     * Method advance visits once each still-valid node that was
3102 >     * reachable upon iterator construction. It might miss some that
3103 >     * were added to a bin after the bin was visited, which is OK wrt
3104 >     * consistency guarantees. Maintaining this property in the face
3105 >     * of possible ongoing resizes requires a fair amount of
3106 >     * bookkeeping state that is difficult to optimize away amidst
3107 >     * volatile accesses.  Even so, traversal maintains reasonable
3108 >     * throughput.
3109 >     *
3110 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3111 >     * However, if the table has been resized, then all future steps
3112 >     * must traverse both the bin at the current index as well as at
3113 >     * (index + baseSize); and so on for further resizings. To
3114 >     * paranoically cope with potential sharing by users of iterators
3115 >     * across threads, iteration terminates if a bounds checks fails
3116 >     * for a table read.
3117       */
3118 <    public boolean equals(Object o) {
3119 <        if (o != this) {
3120 <            if (!(o instanceof Map))
3121 <                return false;
3122 <            Map<?,?> m = (Map<?,?>) o;
3123 <            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3124 <            Object val;
3125 <            while ((val = it.advance()) != null) {
3126 <                Object v = m.get(it.nextKey);
3127 <                if (v == null || (v != val && !v.equals(val)))
3128 <                    return false;
3129 <            }
3130 <            for (Map.Entry<?,?> e : m.entrySet()) {
3131 <                Object mk, mv, v;
3132 <                if ((mk = e.getKey()) == null ||
3133 <                    (mv = e.getValue()) == null ||
3134 <                    (v = internalGet(mk)) == null ||
3135 <                    (mv != v && !mv.equals(v)))
3136 <                    return false;
3118 >    static class Traverser<K,V> {
3119 >        Node<K,V>[] tab;        // current table; updated if resized
3120 >        Node<K,V> next;         // the next entry to use
3121 >        int index;              // index of bin to use next
3122 >        int baseIndex;          // current index of initial table
3123 >        int baseLimit;          // index bound for initial table
3124 >        final int baseSize;     // initial table size
3125 >
3126 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3127 >            this.tab = tab;
3128 >            this.baseSize = size;
3129 >            this.baseIndex = this.index = index;
3130 >            this.baseLimit = limit;
3131 >            this.next = null;
3132 >        }
3133 >
3134 >        /**
3135 >         * Advances if possible, returning next valid node, or null if none.
3136 >         */
3137 >        final Node<K,V> advance() {
3138 >            Node<K,V> e;
3139 >            if ((e = next) != null)
3140 >                e = e.next;
3141 >            for (;;) {
3142 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
3143 >                if (e != null)
3144 >                    return next = e;
3145 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3146 >                    (n = t.length) <= (i = index) || i < 0)
3147 >                    return next = null;
3148 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
3149 >                    if (e instanceof ForwardingNode) {
3150 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3151 >                        e = null;
3152 >                        continue;
3153 >                    }
3154 >                    else if (e instanceof TreeBin)
3155 >                        e = ((TreeBin<K,V>)e).first;
3156 >                    else
3157 >                        e = null;
3158 >                }
3159 >                if ((index += baseSize) >= n)
3160 >                    index = ++baseIndex;    // visit upper slots if present
3161              }
3162          }
3245        return true;
3163      }
3164  
3165 <    /* ----------------Iterators -------------- */
3166 <
3167 <    @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3168 <        implements Spliterator<K>, Enumeration<K> {
3169 <        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3170 <        KeyIterator(Traverser<K,V,Object> it) {
3171 <            super(it);
3165 >    /**
3166 >     * Base of key, value, and entry Iterators. Adds fields to
3167 >     * Traverser to support iterator.remove.
3168 >     */
3169 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3170 >        final ConcurrentHashMapV8<K,V> map;
3171 >        Node<K,V> lastReturned;
3172 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3173 >                    ConcurrentHashMapV8<K,V> map) {
3174 >            super(tab, size, index, limit);
3175 >            this.map = map;
3176 >            advance();
3177          }
3178 <        public KeyIterator<K,V> split() {
3179 <            if (nextKey != null)
3178 >
3179 >        public final boolean hasNext() { return next != null; }
3180 >        public final boolean hasMoreElements() { return next != null; }
3181 >
3182 >        public final void remove() {
3183 >            Node<K,V> p;
3184 >            if ((p = lastReturned) == null)
3185                  throw new IllegalStateException();
3186 <            return new KeyIterator<K,V>(this);
3186 >            lastReturned = null;
3187 >            map.replaceNode(p.key, null, null);
3188          }
3189 <        @SuppressWarnings("unchecked") public final K next() {
3190 <            if (nextVal == null && advance() == null)
3189 >    }
3190 >
3191 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3192 >        implements Iterator<K>, Enumeration<K> {
3193 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3194 >                    ConcurrentHashMapV8<K,V> map) {
3195 >            super(tab, index, size, limit, map);
3196 >        }
3197 >
3198 >        public final K next() {
3199 >            Node<K,V> p;
3200 >            if ((p = next) == null)
3201                  throw new NoSuchElementException();
3202 <            Object k = nextKey;
3203 <            nextVal = null;
3204 <            return (K) k;
3202 >            K k = p.key;
3203 >            lastReturned = p;
3204 >            advance();
3205 >            return k;
3206          }
3207  
3208          public final K nextElement() { return next(); }
3209      }
3210  
3211 <    @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3212 <        implements Spliterator<V>, Enumeration<V> {
3213 <        ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3214 <        ValueIterator(Traverser<K,V,Object> it) {
3215 <            super(it);
3277 <        }
3278 <        public ValueIterator<K,V> split() {
3279 <            if (nextKey != null)
3280 <                throw new IllegalStateException();
3281 <            return new ValueIterator<K,V>(this);
3211 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3212 >        implements Iterator<V>, Enumeration<V> {
3213 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3214 >                      ConcurrentHashMapV8<K,V> map) {
3215 >            super(tab, index, size, limit, map);
3216          }
3217  
3218 <        @SuppressWarnings("unchecked") public final V next() {
3219 <            Object v;
3220 <            if ((v = nextVal) == null && (v = advance()) == null)
3218 >        public final V next() {
3219 >            Node<K,V> p;
3220 >            if ((p = next) == null)
3221                  throw new NoSuchElementException();
3222 <            nextVal = null;
3223 <            return (V) v;
3222 >            V v = p.val;
3223 >            lastReturned = p;
3224 >            advance();
3225 >            return v;
3226          }
3227  
3228          public final V nextElement() { return next(); }
3229      }
3230  
3231 <    @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3232 <        implements Spliterator<Map.Entry<K,V>> {
3233 <        EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3234 <        EntryIterator(Traverser<K,V,Object> it) {
3235 <            super(it);
3300 <        }
3301 <        public EntryIterator<K,V> split() {
3302 <            if (nextKey != null)
3303 <                throw new IllegalStateException();
3304 <            return new EntryIterator<K,V>(this);
3231 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3232 >        implements Iterator<Map.Entry<K,V>> {
3233 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3234 >                      ConcurrentHashMapV8<K,V> map) {
3235 >            super(tab, index, size, limit, map);
3236          }
3237  
3238 <        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3239 <            Object v;
3240 <            if ((v = nextVal) == null && (v = advance()) == null)
3238 >        public final Map.Entry<K,V> next() {
3239 >            Node<K,V> p;
3240 >            if ((p = next) == null)
3241                  throw new NoSuchElementException();
3242 <            Object k = nextKey;
3243 <            nextVal = null;
3244 <            return new MapEntry<K,V>((K)k, (V)v, map);
3242 >            K k = p.key;
3243 >            V v = p.val;
3244 >            lastReturned = p;
3245 >            advance();
3246 >            return new MapEntry<K,V>(k, v, map);
3247          }
3248      }
3249  
3250      /**
3251 <     * Exported Entry for iterators
3251 >     * Exported Entry for EntryIterator
3252       */
3253 <    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3253 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3254          final K key; // non-null
3255          V val;       // non-null
3256 <        final ConcurrentHashMapV8<K, V> map;
3257 <        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3256 >        final ConcurrentHashMapV8<K,V> map;
3257 >        MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3258              this.key = key;
3259              this.val = val;
3260              this.map = map;
3261          }
3262 <        public final K getKey()       { return key; }
3263 <        public final V getValue()     { return val; }
3264 <        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3265 <        public final String toString(){ return key + "=" + val; }
3262 >        public K getKey()        { return key; }
3263 >        public V getValue()      { return val; }
3264 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3265 >        public String toString() { return key + "=" + val; }
3266  
3267 <        public final boolean equals(Object o) {
3267 >        public boolean equals(Object o) {
3268              Object k, v; Map.Entry<?,?> e;
3269              return ((o instanceof Map.Entry) &&
3270                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 3345 | Line 3278 | public class ConcurrentHashMapV8<K, V>
3278           * value to return is somewhat arbitrary here. Since we do not
3279           * necessarily track asynchronous changes, the most recent
3280           * "previous" value could be different from what we return (or
3281 <         * could even have been removed in which case the put will
3281 >         * could even have been removed, in which case the put will
3282           * re-establish). We do not and cannot guarantee more.
3283           */
3284 <        public final V setValue(V value) {
3284 >        public V setValue(V value) {
3285              if (value == null) throw new NullPointerException();
3286              V v = val;
3287              val = value;
# Line 3357 | Line 3290 | public class ConcurrentHashMapV8<K, V>
3290          }
3291      }
3292  
3293 <    /* ----------------Views -------------- */
3293 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3294 >        implements ConcurrentHashMapSpliterator<K> {
3295 >        long est;               // size estimate
3296 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3297 >                       long est) {
3298 >            super(tab, size, index, limit);
3299 >            this.est = est;
3300 >        }
3301 >
3302 >        public ConcurrentHashMapSpliterator<K> trySplit() {
3303 >            int i, f, h;
3304 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3305 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3306 >                                        f, est >>>= 1);
3307 >        }
3308  
3309 <    /**
3310 <     * Base class for views.
3311 <     */
3312 <    static abstract class CHMView<K, V> {
3313 <        final ConcurrentHashMapV8<K, V> map;
3367 <        CHMView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
3368 <        public final int size()                 { return map.size(); }
3369 <        public final boolean isEmpty()          { return map.isEmpty(); }
3370 <        public final void clear()               { map.clear(); }
3309 >        public void forEachRemaining(Action<? super K> action) {
3310 >            if (action == null) throw new NullPointerException();
3311 >            for (Node<K,V> p; (p = advance()) != null;)
3312 >                action.apply(p.key);
3313 >        }
3314  
3315 <        // implementations below rely on concrete classes supplying these
3316 <        abstract public Iterator<?> iterator();
3317 <        abstract public boolean contains(Object o);
3318 <        abstract public boolean remove(Object o);
3315 >        public boolean tryAdvance(Action<? super K> action) {
3316 >            if (action == null) throw new NullPointerException();
3317 >            Node<K,V> p;
3318 >            if ((p = advance()) == null)
3319 >                return false;
3320 >            action.apply(p.key);
3321 >            return true;
3322 >        }
3323  
3324 <        private static final String oomeMsg = "Required array size too large";
3324 >        public long estimateSize() { return est; }
3325  
3326 <        public final Object[] toArray() {
3380 <            long sz = map.mappingCount();
3381 <            if (sz > (long)(MAX_ARRAY_SIZE))
3382 <                throw new OutOfMemoryError(oomeMsg);
3383 <            int n = (int)sz;
3384 <            Object[] r = new Object[n];
3385 <            int i = 0;
3386 <            Iterator<?> it = iterator();
3387 <            while (it.hasNext()) {
3388 <                if (i == n) {
3389 <                    if (n >= MAX_ARRAY_SIZE)
3390 <                        throw new OutOfMemoryError(oomeMsg);
3391 <                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3392 <                        n = MAX_ARRAY_SIZE;
3393 <                    else
3394 <                        n += (n >>> 1) + 1;
3395 <                    r = Arrays.copyOf(r, n);
3396 <                }
3397 <                r[i++] = it.next();
3398 <            }
3399 <            return (i == n) ? r : Arrays.copyOf(r, i);
3400 <        }
3326 >    }
3327  
3328 <        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
3329 <            long sz = map.mappingCount();
3330 <            if (sz > (long)(MAX_ARRAY_SIZE))
3331 <                throw new OutOfMemoryError(oomeMsg);
3332 <            int m = (int)sz;
3333 <            T[] r = (a.length >= m) ? a :
3334 <                (T[])java.lang.reflect.Array
3409 <                .newInstance(a.getClass().getComponentType(), m);
3410 <            int n = r.length;
3411 <            int i = 0;
3412 <            Iterator<?> it = iterator();
3413 <            while (it.hasNext()) {
3414 <                if (i == n) {
3415 <                    if (n >= MAX_ARRAY_SIZE)
3416 <                        throw new OutOfMemoryError(oomeMsg);
3417 <                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3418 <                        n = MAX_ARRAY_SIZE;
3419 <                    else
3420 <                        n += (n >>> 1) + 1;
3421 <                    r = Arrays.copyOf(r, n);
3422 <                }
3423 <                r[i++] = (T)it.next();
3424 <            }
3425 <            if (a == r && i < n) {
3426 <                r[i] = null; // null-terminate
3427 <                return r;
3428 <            }
3429 <            return (i == n) ? r : Arrays.copyOf(r, i);
3328 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3329 >        implements ConcurrentHashMapSpliterator<V> {
3330 >        long est;               // size estimate
3331 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3332 >                         long est) {
3333 >            super(tab, size, index, limit);
3334 >            this.est = est;
3335          }
3336  
3337 <        public final int hashCode() {
3338 <            int h = 0;
3339 <            for (Iterator<?> it = iterator(); it.hasNext();)
3340 <                h += it.next().hashCode();
3341 <            return h;
3337 >        public ConcurrentHashMapSpliterator<V> trySplit() {
3338 >            int i, f, h;
3339 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3340 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3341 >                                          f, est >>>= 1);
3342          }
3343  
3344 <        public final String toString() {
3345 <            StringBuilder sb = new StringBuilder();
3346 <            sb.append('[');
3347 <            Iterator<?> it = iterator();
3443 <            if (it.hasNext()) {
3444 <                for (;;) {
3445 <                    Object e = it.next();
3446 <                    sb.append(e == this ? "(this Collection)" : e);
3447 <                    if (!it.hasNext())
3448 <                        break;
3449 <                    sb.append(',').append(' ');
3450 <                }
3451 <            }
3452 <            return sb.append(']').toString();
3344 >        public void forEachRemaining(Action<? super V> action) {
3345 >            if (action == null) throw new NullPointerException();
3346 >            for (Node<K,V> p; (p = advance()) != null;)
3347 >                action.apply(p.val);
3348          }
3349  
3350 <        public final boolean containsAll(Collection<?> c) {
3351 <            if (c != this) {
3352 <                for (Iterator<?> it = c.iterator(); it.hasNext();) {
3353 <                    Object e = it.next();
3354 <                    if (e == null || !contains(e))
3355 <                        return false;
3461 <                }
3462 <            }
3350 >        public boolean tryAdvance(Action<? super V> action) {
3351 >            if (action == null) throw new NullPointerException();
3352 >            Node<K,V> p;
3353 >            if ((p = advance()) == null)
3354 >                return false;
3355 >            action.apply(p.val);
3356              return true;
3357          }
3358  
3359 <        public final boolean removeAll(Collection<?> c) {
3467 <            boolean modified = false;
3468 <            for (Iterator<?> it = iterator(); it.hasNext();) {
3469 <                if (c.contains(it.next())) {
3470 <                    it.remove();
3471 <                    modified = true;
3472 <                }
3473 <            }
3474 <            return modified;
3475 <        }
3476 <
3477 <        public final boolean retainAll(Collection<?> c) {
3478 <            boolean modified = false;
3479 <            for (Iterator<?> it = iterator(); it.hasNext();) {
3480 <                if (!c.contains(it.next())) {
3481 <                    it.remove();
3482 <                    modified = true;
3483 <                }
3484 <            }
3485 <            return modified;
3486 <        }
3359 >        public long estimateSize() { return est; }
3360  
3361      }
3362  
3363 <    static final class Values<K,V> extends CHMView<K,V>
3364 <        implements Collection<V> {
3365 <        Values(ConcurrentHashMapV8<K, V> map)   { super(map); }
3366 <        public final boolean contains(Object o) { return map.containsValue(o); }
3367 <        public final boolean remove(Object o) {
3368 <            if (o != null) {
3369 <                Iterator<V> it = new ValueIterator<K,V>(map);
3370 <                while (it.hasNext()) {
3371 <                    if (o.equals(it.next())) {
3499 <                        it.remove();
3500 <                        return true;
3501 <                    }
3502 <                }
3503 <            }
3504 <            return false;
3505 <        }
3506 <        public final Iterator<V> iterator() {
3507 <            return new ValueIterator<K,V>(map);
3508 <        }
3509 <        public final boolean add(V e) {
3510 <            throw new UnsupportedOperationException();
3511 <        }
3512 <        public final boolean addAll(Collection<? extends V> c) {
3513 <            throw new UnsupportedOperationException();
3363 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3364 >        implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3365 >        final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3366 >        long est;               // size estimate
3367 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3368 >                         long est, ConcurrentHashMapV8<K,V> map) {
3369 >            super(tab, size, index, limit);
3370 >            this.map = map;
3371 >            this.est = est;
3372          }
3373  
3374 <    }
3375 <
3376 <    static final class EntrySet<K,V> extends CHMView<K,V>
3377 <        implements Set<Map.Entry<K,V>> {
3378 <        EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
3521 <        public final boolean contains(Object o) {
3522 <            Object k, v, r; Map.Entry<?,?> e;
3523 <            return ((o instanceof Map.Entry) &&
3524 <                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3525 <                    (r = map.get(k)) != null &&
3526 <                    (v = e.getValue()) != null &&
3527 <                    (v == r || v.equals(r)));
3374 >        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3375 >            int i, f, h;
3376 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3377 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3378 >                                          f, est >>>= 1, map);
3379          }
3380 <        public final boolean remove(Object o) {
3381 <            Object k, v; Map.Entry<?,?> e;
3382 <            return ((o instanceof Map.Entry) &&
3383 <                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3384 <                    (v = e.getValue()) != null &&
3534 <                    map.remove(k, v));
3535 <        }
3536 <        public final Iterator<Map.Entry<K,V>> iterator() {
3537 <            return new EntryIterator<K,V>(map);
3538 <        }
3539 <        public final boolean add(Entry<K,V> e) {
3540 <            throw new UnsupportedOperationException();
3541 <        }
3542 <        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
3543 <            throw new UnsupportedOperationException();
3380 >
3381 >        public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3382 >            if (action == null) throw new NullPointerException();
3383 >            for (Node<K,V> p; (p = advance()) != null; )
3384 >                action.apply(new MapEntry<K,V>(p.key, p.val, map));
3385          }
3386 <        public boolean equals(Object o) {
3387 <            Set<?> c;
3388 <            return ((o instanceof Set) &&
3389 <                    ((c = (Set<?>)o) == this ||
3390 <                     (containsAll(c) && c.containsAll(this))));
3386 >
3387 >        public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3388 >            if (action == null) throw new NullPointerException();
3389 >            Node<K,V> p;
3390 >            if ((p = advance()) == null)
3391 >                return false;
3392 >            action.apply(new MapEntry<K,V>(p.key, p.val, map));
3393 >            return true;
3394          }
3551    }
3395  
3396 <    /* ---------------- Serialization Support -------------- */
3396 >        public long estimateSize() { return est; }
3397  
3555    /**
3556     * Stripped-down version of helper class used in previous version,
3557     * declared for the sake of serialization compatibility
3558     */
3559    static class Segment<K,V> implements Serializable {
3560        private static final long serialVersionUID = 2249069246763182397L;
3561        final float loadFactor;
3562        Segment(float lf) { this.loadFactor = lf; }
3398      }
3399  
3400 <    /**
3566 <     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3567 <     * stream (i.e., serializes it).
3568 <     * @param s the stream
3569 <     * @serialData
3570 <     * the key (Object) and value (Object)
3571 <     * for each key-value mapping, followed by a null pair.
3572 <     * The key-value mappings are emitted in no particular order.
3573 <     */
3574 <    @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3575 <        throws java.io.IOException {
3576 <        if (segments == null) { // for serialization compatibility
3577 <            segments = (Segment<K,V>[])
3578 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3579 <            for (int i = 0; i < segments.length; ++i)
3580 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3581 <        }
3582 <        s.defaultWriteObject();
3583 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3584 <        Object v;
3585 <        while ((v = it.advance()) != null) {
3586 <            s.writeObject(it.nextKey);
3587 <            s.writeObject(v);
3588 <        }
3589 <        s.writeObject(null);
3590 <        s.writeObject(null);
3591 <        segments = null; // throw away
3592 <    }
3400 >    // Parallel bulk operations
3401  
3402      /**
3403 <     * Reconstitutes the instance from a stream (that is, deserializes it).
3404 <     * @param s the stream
3403 >     * Computes initial batch value for bulk tasks. The returned value
3404 >     * is approximately exp2 of the number of times (minus one) to
3405 >     * split task by two before executing leaf action. This value is
3406 >     * faster to compute and more convenient to use as a guide to
3407 >     * splitting than is the depth, since it is used while dividing by
3408 >     * two anyway.
3409       */
3410 <    @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3411 <        throws java.io.IOException, ClassNotFoundException {
3412 <        s.defaultReadObject();
3413 <        this.segments = null; // unneeded
3414 <        // initialize transient final field
3415 <        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3604 <
3605 <        // Create all nodes, then place in table once size is known
3606 <        long size = 0L;
3607 <        Node p = null;
3608 <        for (;;) {
3609 <            K k = (K) s.readObject();
3610 <            V v = (V) s.readObject();
3611 <            if (k != null && v != null) {
3612 <                int h = spread(k.hashCode());
3613 <                p = new Node(h, k, v, p);
3614 <                ++size;
3615 <            }
3616 <            else
3617 <                break;
3618 <        }
3619 <        if (p != null) {
3620 <            boolean init = false;
3621 <            int n;
3622 <            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3623 <                n = MAXIMUM_CAPACITY;
3624 <            else {
3625 <                int sz = (int)size;
3626 <                n = tableSizeFor(sz + (sz >>> 1) + 1);
3627 <            }
3628 <            int sc = sizeCtl;
3629 <            boolean collide = false;
3630 <            if (n > sc &&
3631 <                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3632 <                try {
3633 <                    if (table == null) {
3634 <                        init = true;
3635 <                        Node[] tab = new Node[n];
3636 <                        int mask = n - 1;
3637 <                        while (p != null) {
3638 <                            int j = p.hash & mask;
3639 <                            Node next = p.next;
3640 <                            Node q = p.next = tabAt(tab, j);
3641 <                            setTabAt(tab, j, p);
3642 <                            if (!collide && q != null && q.hash == p.hash)
3643 <                                collide = true;
3644 <                            p = next;
3645 <                        }
3646 <                        table = tab;
3647 <                        counter.add(size);
3648 <                        sc = n - (n >>> 2);
3649 <                    }
3650 <                } finally {
3651 <                    sizeCtl = sc;
3652 <                }
3653 <                if (collide) { // rescan and convert to TreeBins
3654 <                    Node[] tab = table;
3655 <                    for (int i = 0; i < tab.length; ++i) {
3656 <                        int c = 0;
3657 <                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3658 <                            if (++c > TREE_THRESHOLD &&
3659 <                                (e.key instanceof Comparable)) {
3660 <                                replaceWithTreeBin(tab, i, e.key);
3661 <                                break;
3662 <                            }
3663 <                        }
3664 <                    }
3665 <                }
3666 <            }
3667 <            if (!init) { // Can only happen if unsafely published.
3668 <                while (p != null) {
3669 <                    internalPut(p.key, p.val);
3670 <                    p = p.next;
3671 <                }
3672 <            }
3673 <        }
3410 >    final int batchFor(long b) {
3411 >        long n;
3412 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3413 >            return 0;
3414 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3415 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3416      }
3417  
3676
3677    // -------------------------------------------------------
3678
3679    // Sams
3680    /** Interface describing a void action of one argument */
3681    public interface Action<A> { void apply(A a); }
3682    /** Interface describing a void action of two arguments */
3683    public interface BiAction<A,B> { void apply(A a, B b); }
3684    /** Interface describing a function of one argument */
3685    public interface Fun<A,T> { T apply(A a); }
3686    /** Interface describing a function of two arguments */
3687    public interface BiFun<A,B,T> { T apply(A a, B b); }
3688    /** Interface describing a function of no arguments */
3689    public interface Generator<T> { T apply(); }
3690    /** Interface describing a function mapping its argument to a double */
3691    public interface ObjectToDouble<A> { double apply(A a); }
3692    /** Interface describing a function mapping its argument to a long */
3693    public interface ObjectToLong<A> { long apply(A a); }
3694    /** Interface describing a function mapping its argument to an int */
3695    public interface ObjectToInt<A> {int apply(A a); }
3696    /** Interface describing a function mapping two arguments to a double */
3697    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3698    /** Interface describing a function mapping two arguments to a long */
3699    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3700    /** Interface describing a function mapping two arguments to an int */
3701    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3702    /** Interface describing a function mapping a double to a double */
3703    public interface DoubleToDouble { double apply(double a); }
3704    /** Interface describing a function mapping a long to a long */
3705    public interface LongToLong { long apply(long a); }
3706    /** Interface describing a function mapping an int to an int */
3707    public interface IntToInt { int apply(int a); }
3708    /** Interface describing a function mapping two doubles to a double */
3709    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3710    /** Interface describing a function mapping two longs to a long */
3711    public interface LongByLongToLong { long apply(long a, long b); }
3712    /** Interface describing a function mapping two ints to an int */
3713    public interface IntByIntToInt { int apply(int a, int b); }
3714
3715
3716    // -------------------------------------------------------
3717
3418      /**
3419       * Performs the given action for each (key, value).
3420       *
3421 +     * @param parallelismThreshold the (estimated) number of elements
3422 +     * needed for this operation to be executed in parallel
3423       * @param action the action
3424 +     * @since 1.8
3425       */
3426 <    public void forEach(BiAction<K,V> action) {
3427 <        ForkJoinTasks.forEach
3428 <            (this, action).invoke();
3426 >    public void forEach(long parallelismThreshold,
3427 >                        BiAction<? super K,? super V> action) {
3428 >        if (action == null) throw new NullPointerException();
3429 >        new ForEachMappingTask<K,V>
3430 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3431 >             action).invoke();
3432      }
3433  
3434      /**
3435       * Performs the given action for each non-null transformation
3436       * of each (key, value).
3437       *
3438 +     * @param parallelismThreshold the (estimated) number of elements
3439 +     * needed for this operation to be executed in parallel
3440       * @param transformer a function returning the transformation
3441 <     * for an element, or null of there is no transformation (in
3442 <     * which case the action is not applied).
3441 >     * for an element, or null if there is no transformation (in
3442 >     * which case the action is not applied)
3443       * @param action the action
3444 +     * @since 1.8
3445       */
3446 <    public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3447 <                            Action<U> action) {
3448 <        ForkJoinTasks.forEach
3449 <            (this, transformer, action).invoke();
3446 >    public <U> void forEach(long parallelismThreshold,
3447 >                            BiFun<? super K, ? super V, ? extends U> transformer,
3448 >                            Action<? super U> action) {
3449 >        if (transformer == null || action == null)
3450 >            throw new NullPointerException();
3451 >        new ForEachTransformedMappingTask<K,V,U>
3452 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3453 >             transformer, action).invoke();
3454      }
3455  
3456      /**
# Line 3747 | Line 3460 | public class ConcurrentHashMapV8<K, V>
3460       * results of any other parallel invocations of the search
3461       * function are ignored.
3462       *
3463 +     * @param parallelismThreshold the (estimated) number of elements
3464 +     * needed for this operation to be executed in parallel
3465       * @param searchFunction a function returning a non-null
3466       * result on success, else null
3467       * @return a non-null result from applying the given search
3468       * function on each (key, value), or null if none
3469 +     * @since 1.8
3470       */
3471 <    public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3472 <        return ForkJoinTasks.search
3473 <            (this, searchFunction).invoke();
3471 >    public <U> U search(long parallelismThreshold,
3472 >                        BiFun<? super K, ? super V, ? extends U> searchFunction) {
3473 >        if (searchFunction == null) throw new NullPointerException();
3474 >        return new SearchMappingsTask<K,V,U>
3475 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3476 >             searchFunction, new AtomicReference<U>()).invoke();
3477      }
3478  
3479      /**
# Line 3762 | Line 3481 | public class ConcurrentHashMapV8<K, V>
3481       * of all (key, value) pairs using the given reducer to
3482       * combine values, or null if none.
3483       *
3484 +     * @param parallelismThreshold the (estimated) number of elements
3485 +     * needed for this operation to be executed in parallel
3486       * @param transformer a function returning the transformation
3487 <     * for an element, or null of there is no transformation (in
3488 <     * which case it is not combined).
3487 >     * for an element, or null if there is no transformation (in
3488 >     * which case it is not combined)
3489       * @param reducer a commutative associative combining function
3490       * @return the result of accumulating the given transformation
3491       * of all (key, value) pairs
3492 +     * @since 1.8
3493       */
3494 <    public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3494 >    public <U> U reduce(long parallelismThreshold,
3495 >                        BiFun<? super K, ? super V, ? extends U> transformer,
3496                          BiFun<? super U, ? super U, ? extends U> reducer) {
3497 <        return ForkJoinTasks.reduce
3498 <            (this, transformer, reducer).invoke();
3497 >        if (transformer == null || reducer == null)
3498 >            throw new NullPointerException();
3499 >        return new MapReduceMappingsTask<K,V,U>
3500 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3501 >             null, transformer, reducer).invoke();
3502      }
3503  
3504      /**
# Line 3780 | Line 3506 | public class ConcurrentHashMapV8<K, V>
3506       * of all (key, value) pairs using the given reducer to
3507       * combine values, and the given basis as an identity value.
3508       *
3509 +     * @param parallelismThreshold the (estimated) number of elements
3510 +     * needed for this operation to be executed in parallel
3511       * @param transformer a function returning the transformation
3512       * for an element
3513       * @param basis the identity (initial default value) for the reduction
3514       * @param reducer a commutative associative combining function
3515       * @return the result of accumulating the given transformation
3516       * of all (key, value) pairs
3517 +     * @since 1.8
3518       */
3519 <    public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3519 >    public double reduceToDouble(long parallelismThreshold,
3520 >                                 ObjectByObjectToDouble<? super K, ? super V> transformer,
3521                                   double basis,
3522                                   DoubleByDoubleToDouble reducer) {
3523 <        return ForkJoinTasks.reduceToDouble
3524 <            (this, transformer, basis, reducer).invoke();
3523 >        if (transformer == null || reducer == null)
3524 >            throw new NullPointerException();
3525 >        return new MapReduceMappingsToDoubleTask<K,V>
3526 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3527 >             null, transformer, basis, reducer).invoke();
3528      }
3529  
3530      /**
# Line 3799 | Line 3532 | public class ConcurrentHashMapV8<K, V>
3532       * of all (key, value) pairs using the given reducer to
3533       * combine values, and the given basis as an identity value.
3534       *
3535 +     * @param parallelismThreshold the (estimated) number of elements
3536 +     * needed for this operation to be executed in parallel
3537       * @param transformer a function returning the transformation
3538       * for an element
3539       * @param basis the identity (initial default value) for the reduction
3540       * @param reducer a commutative associative combining function
3541       * @return the result of accumulating the given transformation
3542       * of all (key, value) pairs
3543 +     * @since 1.8
3544       */
3545 <    public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3545 >    public long reduceToLong(long parallelismThreshold,
3546 >                             ObjectByObjectToLong<? super K, ? super V> transformer,
3547                               long basis,
3548                               LongByLongToLong reducer) {
3549 <        return ForkJoinTasks.reduceToLong
3550 <            (this, transformer, basis, reducer).invoke();
3549 >        if (transformer == null || reducer == null)
3550 >            throw new NullPointerException();
3551 >        return new MapReduceMappingsToLongTask<K,V>
3552 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3553 >             null, transformer, basis, reducer).invoke();
3554      }
3555  
3556      /**
# Line 3818 | Line 3558 | public class ConcurrentHashMapV8<K, V>
3558       * of all (key, value) pairs using the given reducer to
3559       * combine values, and the given basis as an identity value.
3560       *
3561 +     * @param parallelismThreshold the (estimated) number of elements
3562 +     * needed for this operation to be executed in parallel
3563       * @param transformer a function returning the transformation
3564       * for an element
3565       * @param basis the identity (initial default value) for the reduction
3566       * @param reducer a commutative associative combining function
3567       * @return the result of accumulating the given transformation
3568       * of all (key, value) pairs
3569 +     * @since 1.8
3570       */
3571 <    public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3571 >    public int reduceToInt(long parallelismThreshold,
3572 >                           ObjectByObjectToInt<? super K, ? super V> transformer,
3573                             int basis,
3574                             IntByIntToInt reducer) {
3575 <        return ForkJoinTasks.reduceToInt
3576 <            (this, transformer, basis, reducer).invoke();
3575 >        if (transformer == null || reducer == null)
3576 >            throw new NullPointerException();
3577 >        return new MapReduceMappingsToIntTask<K,V>
3578 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3579 >             null, transformer, basis, reducer).invoke();
3580      }
3581  
3582      /**
3583       * Performs the given action for each key.
3584       *
3585 +     * @param parallelismThreshold the (estimated) number of elements
3586 +     * needed for this operation to be executed in parallel
3587       * @param action the action
3588 +     * @since 1.8
3589       */
3590 <    public void forEachKey(Action<K> action) {
3591 <        ForkJoinTasks.forEachKey
3592 <            (this, action).invoke();
3590 >    public void forEachKey(long parallelismThreshold,
3591 >                           Action<? super K> action) {
3592 >        if (action == null) throw new NullPointerException();
3593 >        new ForEachKeyTask<K,V>
3594 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3595 >             action).invoke();
3596      }
3597  
3598      /**
3599       * Performs the given action for each non-null transformation
3600       * of each key.
3601       *
3602 +     * @param parallelismThreshold the (estimated) number of elements
3603 +     * needed for this operation to be executed in parallel
3604       * @param transformer a function returning the transformation
3605 <     * for an element, or null of there is no transformation (in
3606 <     * which case the action is not applied).
3605 >     * for an element, or null if there is no transformation (in
3606 >     * which case the action is not applied)
3607       * @param action the action
3608 +     * @since 1.8
3609       */
3610 <    public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3611 <                               Action<U> action) {
3612 <        ForkJoinTasks.forEachKey
3613 <            (this, transformer, action).invoke();
3610 >    public <U> void forEachKey(long parallelismThreshold,
3611 >                               Fun<? super K, ? extends U> transformer,
3612 >                               Action<? super U> action) {
3613 >        if (transformer == null || action == null)
3614 >            throw new NullPointerException();
3615 >        new ForEachTransformedKeyTask<K,V,U>
3616 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3617 >             transformer, action).invoke();
3618      }
3619  
3620      /**
# Line 3864 | Line 3624 | public class ConcurrentHashMapV8<K, V>
3624       * any other parallel invocations of the search function are
3625       * ignored.
3626       *
3627 +     * @param parallelismThreshold the (estimated) number of elements
3628 +     * needed for this operation to be executed in parallel
3629       * @param searchFunction a function returning a non-null
3630       * result on success, else null
3631       * @return a non-null result from applying the given search
3632       * function on each key, or null if none
3633 +     * @since 1.8
3634       */
3635 <    public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3636 <        return ForkJoinTasks.searchKeys
3637 <            (this, searchFunction).invoke();
3635 >    public <U> U searchKeys(long parallelismThreshold,
3636 >                            Fun<? super K, ? extends U> searchFunction) {
3637 >        if (searchFunction == null) throw new NullPointerException();
3638 >        return new SearchKeysTask<K,V,U>
3639 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3640 >             searchFunction, new AtomicReference<U>()).invoke();
3641      }
3642  
3643      /**
3644       * Returns the result of accumulating all keys using the given
3645       * reducer to combine values, or null if none.
3646       *
3647 +     * @param parallelismThreshold the (estimated) number of elements
3648 +     * needed for this operation to be executed in parallel
3649       * @param reducer a commutative associative combining function
3650       * @return the result of accumulating all keys using the given
3651       * reducer to combine values, or null if none
3652 +     * @since 1.8
3653       */
3654 <    public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3655 <        return ForkJoinTasks.reduceKeys
3656 <            (this, reducer).invoke();
3654 >    public K reduceKeys(long parallelismThreshold,
3655 >                        BiFun<? super K, ? super K, ? extends K> reducer) {
3656 >        if (reducer == null) throw new NullPointerException();
3657 >        return new ReduceKeysTask<K,V>
3658 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3659 >             null, reducer).invoke();
3660      }
3661  
3662      /**
# Line 3892 | Line 3664 | public class ConcurrentHashMapV8<K, V>
3664       * of all keys using the given reducer to combine values, or
3665       * null if none.
3666       *
3667 +     * @param parallelismThreshold the (estimated) number of elements
3668 +     * needed for this operation to be executed in parallel
3669       * @param transformer a function returning the transformation
3670 <     * for an element, or null of there is no transformation (in
3671 <     * which case it is not combined).
3670 >     * for an element, or null if there is no transformation (in
3671 >     * which case it is not combined)
3672       * @param reducer a commutative associative combining function
3673       * @return the result of accumulating the given transformation
3674       * of all keys
3675 +     * @since 1.8
3676       */
3677 <    public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3678 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
3679 <        return ForkJoinTasks.reduceKeys
3680 <            (this, transformer, reducer).invoke();
3677 >    public <U> U reduceKeys(long parallelismThreshold,
3678 >                            Fun<? super K, ? extends U> transformer,
3679 >         BiFun<? super U, ? super U, ? extends U> reducer) {
3680 >        if (transformer == null || reducer == null)
3681 >            throw new NullPointerException();
3682 >        return new MapReduceKeysTask<K,V,U>
3683 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3684 >             null, transformer, reducer).invoke();
3685      }
3686  
3687      /**
# Line 3910 | Line 3689 | public class ConcurrentHashMapV8<K, V>
3689       * of all keys using the given reducer to combine values, and
3690       * the given basis as an identity value.
3691       *
3692 +     * @param parallelismThreshold the (estimated) number of elements
3693 +     * needed for this operation to be executed in parallel
3694       * @param transformer a function returning the transformation
3695       * for an element
3696       * @param basis the identity (initial default value) for the reduction
3697       * @param reducer a commutative associative combining function
3698 <     * @return  the result of accumulating the given transformation
3698 >     * @return the result of accumulating the given transformation
3699       * of all keys
3700 +     * @since 1.8
3701       */
3702 <    public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3702 >    public double reduceKeysToDouble(long parallelismThreshold,
3703 >                                     ObjectToDouble<? super K> transformer,
3704                                       double basis,
3705                                       DoubleByDoubleToDouble reducer) {
3706 <        return ForkJoinTasks.reduceKeysToDouble
3707 <            (this, transformer, basis, reducer).invoke();
3706 >        if (transformer == null || reducer == null)
3707 >            throw new NullPointerException();
3708 >        return new MapReduceKeysToDoubleTask<K,V>
3709 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3710 >             null, transformer, basis, reducer).invoke();
3711      }
3712  
3713      /**
# Line 3929 | Line 3715 | public class ConcurrentHashMapV8<K, V>
3715       * of all keys using the given reducer to combine values, and
3716       * the given basis as an identity value.
3717       *
3718 +     * @param parallelismThreshold the (estimated) number of elements
3719 +     * needed for this operation to be executed in parallel
3720       * @param transformer a function returning the transformation
3721       * for an element
3722       * @param basis the identity (initial default value) for the reduction
3723       * @param reducer a commutative associative combining function
3724       * @return the result of accumulating the given transformation
3725       * of all keys
3726 +     * @since 1.8
3727       */
3728 <    public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3728 >    public long reduceKeysToLong(long parallelismThreshold,
3729 >                                 ObjectToLong<? super K> transformer,
3730                                   long basis,
3731                                   LongByLongToLong reducer) {
3732 <        return ForkJoinTasks.reduceKeysToLong
3733 <            (this, transformer, basis, reducer).invoke();
3732 >        if (transformer == null || reducer == null)
3733 >            throw new NullPointerException();
3734 >        return new MapReduceKeysToLongTask<K,V>
3735 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3736 >             null, transformer, basis, reducer).invoke();
3737      }
3738  
3739      /**
# Line 3948 | Line 3741 | public class ConcurrentHashMapV8<K, V>
3741       * of all keys using the given reducer to combine values, and
3742       * the given basis as an identity value.
3743       *
3744 +     * @param parallelismThreshold the (estimated) number of elements
3745 +     * needed for this operation to be executed in parallel
3746       * @param transformer a function returning the transformation
3747       * for an element
3748       * @param basis the identity (initial default value) for the reduction
3749       * @param reducer a commutative associative combining function
3750       * @return the result of accumulating the given transformation
3751       * of all keys
3752 +     * @since 1.8
3753       */
3754 <    public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3754 >    public int reduceKeysToInt(long parallelismThreshold,
3755 >                               ObjectToInt<? super K> transformer,
3756                                 int basis,
3757                                 IntByIntToInt reducer) {
3758 <        return ForkJoinTasks.reduceKeysToInt
3759 <            (this, transformer, basis, reducer).invoke();
3758 >        if (transformer == null || reducer == null)
3759 >            throw new NullPointerException();
3760 >        return new MapReduceKeysToIntTask<K,V>
3761 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3762 >             null, transformer, basis, reducer).invoke();
3763      }
3764  
3765      /**
3766       * Performs the given action for each value.
3767       *
3768 +     * @param parallelismThreshold the (estimated) number of elements
3769 +     * needed for this operation to be executed in parallel
3770       * @param action the action
3771 +     * @since 1.8
3772       */
3773 <    public void forEachValue(Action<V> action) {
3774 <        ForkJoinTasks.forEachValue
3775 <            (this, action).invoke();
3773 >    public void forEachValue(long parallelismThreshold,
3774 >                             Action<? super V> action) {
3775 >        if (action == null)
3776 >            throw new NullPointerException();
3777 >        new ForEachValueTask<K,V>
3778 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3779 >             action).invoke();
3780      }
3781  
3782      /**
3783       * Performs the given action for each non-null transformation
3784       * of each value.
3785       *
3786 +     * @param parallelismThreshold the (estimated) number of elements
3787 +     * needed for this operation to be executed in parallel
3788       * @param transformer a function returning the transformation
3789 <     * for an element, or null of there is no transformation (in
3790 <     * which case the action is not applied).
3789 >     * for an element, or null if there is no transformation (in
3790 >     * which case the action is not applied)
3791 >     * @param action the action
3792 >     * @since 1.8
3793       */
3794 <    public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3795 <                                 Action<U> action) {
3796 <        ForkJoinTasks.forEachValue
3797 <            (this, transformer, action).invoke();
3794 >    public <U> void forEachValue(long parallelismThreshold,
3795 >                                 Fun<? super V, ? extends U> transformer,
3796 >                                 Action<? super U> action) {
3797 >        if (transformer == null || action == null)
3798 >            throw new NullPointerException();
3799 >        new ForEachTransformedValueTask<K,V,U>
3800 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3801 >             transformer, action).invoke();
3802      }
3803  
3804      /**
# Line 3993 | Line 3808 | public class ConcurrentHashMapV8<K, V>
3808       * any other parallel invocations of the search function are
3809       * ignored.
3810       *
3811 +     * @param parallelismThreshold the (estimated) number of elements
3812 +     * needed for this operation to be executed in parallel
3813       * @param searchFunction a function returning a non-null
3814       * result on success, else null
3815       * @return a non-null result from applying the given search
3816       * function on each value, or null if none
3817 <     *
3817 >     * @since 1.8
3818       */
3819 <    public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3820 <        return ForkJoinTasks.searchValues
3821 <            (this, searchFunction).invoke();
3819 >    public <U> U searchValues(long parallelismThreshold,
3820 >                              Fun<? super V, ? extends U> searchFunction) {
3821 >        if (searchFunction == null) throw new NullPointerException();
3822 >        return new SearchValuesTask<K,V,U>
3823 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3824 >             searchFunction, new AtomicReference<U>()).invoke();
3825      }
3826  
3827      /**
3828       * Returns the result of accumulating all values using the
3829       * given reducer to combine values, or null if none.
3830       *
3831 +     * @param parallelismThreshold the (estimated) number of elements
3832 +     * needed for this operation to be executed in parallel
3833       * @param reducer a commutative associative combining function
3834 <     * @return  the result of accumulating all values
3834 >     * @return the result of accumulating all values
3835 >     * @since 1.8
3836       */
3837 <    public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3838 <        return ForkJoinTasks.reduceValues
3839 <            (this, reducer).invoke();
3837 >    public V reduceValues(long parallelismThreshold,
3838 >                          BiFun<? super V, ? super V, ? extends V> reducer) {
3839 >        if (reducer == null) throw new NullPointerException();
3840 >        return new ReduceValuesTask<K,V>
3841 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3842 >             null, reducer).invoke();
3843      }
3844  
3845      /**
# Line 4021 | Line 3847 | public class ConcurrentHashMapV8<K, V>
3847       * of all values using the given reducer to combine values, or
3848       * null if none.
3849       *
3850 +     * @param parallelismThreshold the (estimated) number of elements
3851 +     * needed for this operation to be executed in parallel
3852       * @param transformer a function returning the transformation
3853 <     * for an element, or null of there is no transformation (in
3854 <     * which case it is not combined).
3853 >     * for an element, or null if there is no transformation (in
3854 >     * which case it is not combined)
3855       * @param reducer a commutative associative combining function
3856       * @return the result of accumulating the given transformation
3857       * of all values
3858 +     * @since 1.8
3859       */
3860 <    public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3860 >    public <U> U reduceValues(long parallelismThreshold,
3861 >                              Fun<? super V, ? extends U> transformer,
3862                                BiFun<? super U, ? super U, ? extends U> reducer) {
3863 <        return ForkJoinTasks.reduceValues
3864 <            (this, transformer, reducer).invoke();
3863 >        if (transformer == null || reducer == null)
3864 >            throw new NullPointerException();
3865 >        return new MapReduceValuesTask<K,V,U>
3866 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3867 >             null, transformer, reducer).invoke();
3868      }
3869  
3870      /**
# Line 4039 | Line 3872 | public class ConcurrentHashMapV8<K, V>
3872       * of all values using the given reducer to combine values,
3873       * and the given basis as an identity value.
3874       *
3875 +     * @param parallelismThreshold the (estimated) number of elements
3876 +     * needed for this operation to be executed in parallel
3877       * @param transformer a function returning the transformation
3878       * for an element
3879       * @param basis the identity (initial default value) for the reduction
3880       * @param reducer a commutative associative combining function
3881       * @return the result of accumulating the given transformation
3882       * of all values
3883 +     * @since 1.8
3884       */
3885 <    public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3885 >    public double reduceValuesToDouble(long parallelismThreshold,
3886 >                                       ObjectToDouble<? super V> transformer,
3887                                         double basis,
3888                                         DoubleByDoubleToDouble reducer) {
3889 <        return ForkJoinTasks.reduceValuesToDouble
3890 <            (this, transformer, basis, reducer).invoke();
3889 >        if (transformer == null || reducer == null)
3890 >            throw new NullPointerException();
3891 >        return new MapReduceValuesToDoubleTask<K,V>
3892 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3893 >             null, transformer, basis, reducer).invoke();
3894      }
3895  
3896      /**
# Line 4058 | Line 3898 | public class ConcurrentHashMapV8<K, V>
3898       * of all values using the given reducer to combine values,
3899       * and the given basis as an identity value.
3900       *
3901 +     * @param parallelismThreshold the (estimated) number of elements
3902 +     * needed for this operation to be executed in parallel
3903       * @param transformer a function returning the transformation
3904       * for an element
3905       * @param basis the identity (initial default value) for the reduction
3906       * @param reducer a commutative associative combining function
3907       * @return the result of accumulating the given transformation
3908       * of all values
3909 +     * @since 1.8
3910       */
3911 <    public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3911 >    public long reduceValuesToLong(long parallelismThreshold,
3912 >                                   ObjectToLong<? super V> transformer,
3913                                     long basis,
3914                                     LongByLongToLong reducer) {
3915 <        return ForkJoinTasks.reduceValuesToLong
3916 <            (this, transformer, basis, reducer).invoke();
3915 >        if (transformer == null || reducer == null)
3916 >            throw new NullPointerException();
3917 >        return new MapReduceValuesToLongTask<K,V>
3918 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3919 >             null, transformer, basis, reducer).invoke();
3920      }
3921  
3922      /**
# Line 4077 | Line 3924 | public class ConcurrentHashMapV8<K, V>
3924       * of all values using the given reducer to combine values,
3925       * and the given basis as an identity value.
3926       *
3927 +     * @param parallelismThreshold the (estimated) number of elements
3928 +     * needed for this operation to be executed in parallel
3929       * @param transformer a function returning the transformation
3930       * for an element
3931       * @param basis the identity (initial default value) for the reduction
3932       * @param reducer a commutative associative combining function
3933       * @return the result of accumulating the given transformation
3934       * of all values
3935 +     * @since 1.8
3936       */
3937 <    public int reduceValuesToInt(ObjectToInt<? super V> transformer,
3937 >    public int reduceValuesToInt(long parallelismThreshold,
3938 >                                 ObjectToInt<? super V> transformer,
3939                                   int basis,
3940                                   IntByIntToInt reducer) {
3941 <        return ForkJoinTasks.reduceValuesToInt
3942 <            (this, transformer, basis, reducer).invoke();
3941 >        if (transformer == null || reducer == null)
3942 >            throw new NullPointerException();
3943 >        return new MapReduceValuesToIntTask<K,V>
3944 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3945 >             null, transformer, basis, reducer).invoke();
3946      }
3947  
3948      /**
3949       * Performs the given action for each entry.
3950       *
3951 +     * @param parallelismThreshold the (estimated) number of elements
3952 +     * needed for this operation to be executed in parallel
3953       * @param action the action
3954 +     * @since 1.8
3955       */
3956 <    public void forEachEntry(Action<Map.Entry<K,V>> action) {
3957 <        ForkJoinTasks.forEachEntry
3958 <            (this, action).invoke();
3956 >    public void forEachEntry(long parallelismThreshold,
3957 >                             Action<? super Map.Entry<K,V>> action) {
3958 >        if (action == null) throw new NullPointerException();
3959 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
3960 >                                  action).invoke();
3961      }
3962  
3963      /**
3964       * Performs the given action for each non-null transformation
3965       * of each entry.
3966       *
3967 +     * @param parallelismThreshold the (estimated) number of elements
3968 +     * needed for this operation to be executed in parallel
3969       * @param transformer a function returning the transformation
3970 <     * for an element, or null of there is no transformation (in
3971 <     * which case the action is not applied).
3970 >     * for an element, or null if there is no transformation (in
3971 >     * which case the action is not applied)
3972       * @param action the action
3973 +     * @since 1.8
3974       */
3975 <    public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
3976 <                                 Action<U> action) {
3977 <        ForkJoinTasks.forEachEntry
3978 <            (this, transformer, action).invoke();
3975 >    public <U> void forEachEntry(long parallelismThreshold,
3976 >                                 Fun<Map.Entry<K,V>, ? extends U> transformer,
3977 >                                 Action<? super U> action) {
3978 >        if (transformer == null || action == null)
3979 >            throw new NullPointerException();
3980 >        new ForEachTransformedEntryTask<K,V,U>
3981 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3982 >             transformer, action).invoke();
3983      }
3984  
3985      /**
# Line 4123 | Line 3989 | public class ConcurrentHashMapV8<K, V>
3989       * any other parallel invocations of the search function are
3990       * ignored.
3991       *
3992 +     * @param parallelismThreshold the (estimated) number of elements
3993 +     * needed for this operation to be executed in parallel
3994       * @param searchFunction a function returning a non-null
3995       * result on success, else null
3996       * @return a non-null result from applying the given search
3997       * function on each entry, or null if none
3998 +     * @since 1.8
3999       */
4000 <    public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4001 <        return ForkJoinTasks.searchEntries
4002 <            (this, searchFunction).invoke();
4000 >    public <U> U searchEntries(long parallelismThreshold,
4001 >                               Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4002 >        if (searchFunction == null) throw new NullPointerException();
4003 >        return new SearchEntriesTask<K,V,U>
4004 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4005 >             searchFunction, new AtomicReference<U>()).invoke();
4006      }
4007  
4008      /**
4009       * Returns the result of accumulating all entries using the
4010       * given reducer to combine values, or null if none.
4011       *
4012 +     * @param parallelismThreshold the (estimated) number of elements
4013 +     * needed for this operation to be executed in parallel
4014       * @param reducer a commutative associative combining function
4015       * @return the result of accumulating all entries
4016 +     * @since 1.8
4017       */
4018 <    public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4019 <        return ForkJoinTasks.reduceEntries
4020 <            (this, reducer).invoke();
4018 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4019 >                                        BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4020 >        if (reducer == null) throw new NullPointerException();
4021 >        return new ReduceEntriesTask<K,V>
4022 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4023 >             null, reducer).invoke();
4024      }
4025  
4026      /**
# Line 4150 | Line 4028 | public class ConcurrentHashMapV8<K, V>
4028       * of all entries using the given reducer to combine values,
4029       * or null if none.
4030       *
4031 +     * @param parallelismThreshold the (estimated) number of elements
4032 +     * needed for this operation to be executed in parallel
4033       * @param transformer a function returning the transformation
4034 <     * for an element, or null of there is no transformation (in
4035 <     * which case it is not combined).
4034 >     * for an element, or null if there is no transformation (in
4035 >     * which case it is not combined)
4036       * @param reducer a commutative associative combining function
4037       * @return the result of accumulating the given transformation
4038       * of all entries
4039 +     * @since 1.8
4040       */
4041 <    public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4041 >    public <U> U reduceEntries(long parallelismThreshold,
4042 >                               Fun<Map.Entry<K,V>, ? extends U> transformer,
4043                                 BiFun<? super U, ? super U, ? extends U> reducer) {
4044 <        return ForkJoinTasks.reduceEntries
4045 <            (this, transformer, reducer).invoke();
4044 >        if (transformer == null || reducer == null)
4045 >            throw new NullPointerException();
4046 >        return new MapReduceEntriesTask<K,V,U>
4047 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4048 >             null, transformer, reducer).invoke();
4049      }
4050  
4051      /**
# Line 4168 | Line 4053 | public class ConcurrentHashMapV8<K, V>
4053       * of all entries using the given reducer to combine values,
4054       * and the given basis as an identity value.
4055       *
4056 +     * @param parallelismThreshold the (estimated) number of elements
4057 +     * needed for this operation to be executed in parallel
4058       * @param transformer a function returning the transformation
4059       * for an element
4060       * @param basis the identity (initial default value) for the reduction
4061       * @param reducer a commutative associative combining function
4062       * @return the result of accumulating the given transformation
4063       * of all entries
4064 +     * @since 1.8
4065       */
4066 <    public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4066 >    public double reduceEntriesToDouble(long parallelismThreshold,
4067 >                                        ObjectToDouble<Map.Entry<K,V>> transformer,
4068                                          double basis,
4069                                          DoubleByDoubleToDouble reducer) {
4070 <        return ForkJoinTasks.reduceEntriesToDouble
4071 <            (this, transformer, basis, reducer).invoke();
4070 >        if (transformer == null || reducer == null)
4071 >            throw new NullPointerException();
4072 >        return new MapReduceEntriesToDoubleTask<K,V>
4073 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4074 >             null, transformer, basis, reducer).invoke();
4075      }
4076  
4077      /**
# Line 4187 | Line 4079 | public class ConcurrentHashMapV8<K, V>
4079       * of all entries using the given reducer to combine values,
4080       * and the given basis as an identity value.
4081       *
4082 +     * @param parallelismThreshold the (estimated) number of elements
4083 +     * needed for this operation to be executed in parallel
4084       * @param transformer a function returning the transformation
4085       * for an element
4086       * @param basis the identity (initial default value) for the reduction
4087       * @param reducer a commutative associative combining function
4088 <     * @return  the result of accumulating the given transformation
4088 >     * @return the result of accumulating the given transformation
4089       * of all entries
4090 +     * @since 1.8
4091       */
4092 <    public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4092 >    public long reduceEntriesToLong(long parallelismThreshold,
4093 >                                    ObjectToLong<Map.Entry<K,V>> transformer,
4094                                      long basis,
4095                                      LongByLongToLong reducer) {
4096 <        return ForkJoinTasks.reduceEntriesToLong
4097 <            (this, transformer, basis, reducer).invoke();
4096 >        if (transformer == null || reducer == null)
4097 >            throw new NullPointerException();
4098 >        return new MapReduceEntriesToLongTask<K,V>
4099 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4100 >             null, transformer, basis, reducer).invoke();
4101      }
4102  
4103      /**
# Line 4206 | Line 4105 | public class ConcurrentHashMapV8<K, V>
4105       * of all entries using the given reducer to combine values,
4106       * and the given basis as an identity value.
4107       *
4108 +     * @param parallelismThreshold the (estimated) number of elements
4109 +     * needed for this operation to be executed in parallel
4110       * @param transformer a function returning the transformation
4111       * for an element
4112       * @param basis the identity (initial default value) for the reduction
4113       * @param reducer a commutative associative combining function
4114       * @return the result of accumulating the given transformation
4115       * of all entries
4116 +     * @since 1.8
4117       */
4118 <    public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4118 >    public int reduceEntriesToInt(long parallelismThreshold,
4119 >                                  ObjectToInt<Map.Entry<K,V>> transformer,
4120                                    int basis,
4121                                    IntByIntToInt reducer) {
4122 <        return ForkJoinTasks.reduceEntriesToInt
4123 <            (this, transformer, basis, reducer).invoke();
4122 >        if (transformer == null || reducer == null)
4123 >            throw new NullPointerException();
4124 >        return new MapReduceEntriesToIntTask<K,V>
4125 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4126 >             null, transformer, basis, reducer).invoke();
4127      }
4128  
4129 <    // ---------------------------------------------------------------------
4129 >
4130 >    /* ----------------Views -------------- */
4131  
4132      /**
4133 <     * Predefined tasks for performing bulk parallel operations on
4227 <     * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4228 <     * for bulk operations. Each method has the same name, but returns
4229 <     * a task rather than invoking it. These methods may be useful in
4230 <     * custom applications such as submitting a task without waiting
4231 <     * for completion, using a custom pool, or combining with other
4232 <     * tasks.
4133 >     * Base class for views.
4134       */
4135 <    public static class ForkJoinTasks {
4136 <        private ForkJoinTasks() {}
4137 <
4138 <        /**
4139 <         * Returns a task that when invoked, performs the given
4239 <         * action for each (key, value)
4240 <         *
4241 <         * @param map the map
4242 <         * @param action the action
4243 <         * @return the task
4244 <         */
4245 <        public static <K,V> ForkJoinTask<Void> forEach
4246 <            (ConcurrentHashMapV8<K,V> map,
4247 <             BiAction<K,V> action) {
4248 <            if (action == null) throw new NullPointerException();
4249 <            return new ForEachMappingTask<K,V>(map, null, -1, null, action);
4250 <        }
4251 <
4252 <        /**
4253 <         * Returns a task that when invoked, performs the given
4254 <         * action for each non-null transformation of each (key, value)
4255 <         *
4256 <         * @param map the map
4257 <         * @param transformer a function returning the transformation
4258 <         * for an element, or null if there is no transformation (in
4259 <         * which case the action is not applied)
4260 <         * @param action the action
4261 <         * @return the task
4262 <         */
4263 <        public static <K,V,U> ForkJoinTask<Void> forEach
4264 <            (ConcurrentHashMapV8<K,V> map,
4265 <             BiFun<? super K, ? super V, ? extends U> transformer,
4266 <             Action<U> action) {
4267 <            if (transformer == null || action == null)
4268 <                throw new NullPointerException();
4269 <            return new ForEachTransformedMappingTask<K,V,U>
4270 <                (map, null, -1, null, transformer, action);
4271 <        }
4135 >    abstract static class CollectionView<K,V,E>
4136 >        implements Collection<E>, java.io.Serializable {
4137 >        private static final long serialVersionUID = 7249069246763182397L;
4138 >        final ConcurrentHashMapV8<K,V> map;
4139 >        CollectionView(ConcurrentHashMapV8<K,V> map)  { this.map = map; }
4140  
4141          /**
4142 <         * Returns a task that when invoked, returns a non-null result
4275 <         * from applying the given search function on each (key,
4276 <         * value), or null if none. Upon success, further element
4277 <         * processing is suppressed and the results of any other
4278 <         * parallel invocations of the search function are ignored.
4142 >         * Returns the map backing this view.
4143           *
4144 <         * @param map the map
4281 <         * @param searchFunction a function returning a non-null
4282 <         * result on success, else null
4283 <         * @return the task
4144 >         * @return the map backing this view
4145           */
4146 <        public static <K,V,U> ForkJoinTask<U> search
4286 <            (ConcurrentHashMapV8<K,V> map,
4287 <             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4288 <            if (searchFunction == null) throw new NullPointerException();
4289 <            return new SearchMappingsTask<K,V,U>
4290 <                (map, null, -1, null, searchFunction,
4291 <                 new AtomicReference<U>());
4292 <        }
4146 >        public ConcurrentHashMapV8<K,V> getMap() { return map; }
4147  
4148          /**
4149 <         * Returns a task that when invoked, returns the result of
4150 <         * accumulating the given transformation of all (key, value) pairs
4297 <         * using the given reducer to combine values, or null if none.
4298 <         *
4299 <         * @param map the map
4300 <         * @param transformer a function returning the transformation
4301 <         * for an element, or null if there is no transformation (in
4302 <         * which case it is not combined).
4303 <         * @param reducer a commutative associative combining function
4304 <         * @return the task
4149 >         * Removes all of the elements from this view, by removing all
4150 >         * the mappings from the map backing this view.
4151           */
4152 <        public static <K,V,U> ForkJoinTask<U> reduce
4153 <            (ConcurrentHashMapV8<K,V> map,
4154 <             BiFun<? super K, ? super V, ? extends U> transformer,
4309 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4310 <            if (transformer == null || reducer == null)
4311 <                throw new NullPointerException();
4312 <            return new MapReduceMappingsTask<K,V,U>
4313 <                (map, null, -1, null, transformer, reducer);
4314 <        }
4152 >        public final void clear()      { map.clear(); }
4153 >        public final int size()        { return map.size(); }
4154 >        public final boolean isEmpty() { return map.isEmpty(); }
4155  
4156 +        // implementations below rely on concrete classes supplying these
4157 +        // abstract methods
4158          /**
4159 <         * Returns a task that when invoked, returns the result of
4160 <         * accumulating the given transformation of all (key, value) pairs
4161 <         * using the given reducer to combine values, and the given
4162 <         * basis as an identity value.
4163 <         *
4164 <         * @param map the map
4165 <         * @param transformer a function returning the transformation
4166 <         * for an element
4167 <         * @param basis the identity (initial default value) for the reduction
4168 <         * @param reducer a commutative associative combining function
4327 <         * @return the task
4328 <         */
4329 <        public static <K,V> ForkJoinTask<Double> reduceToDouble
4330 <            (ConcurrentHashMapV8<K,V> map,
4331 <             ObjectByObjectToDouble<? super K, ? super V> transformer,
4332 <             double basis,
4333 <             DoubleByDoubleToDouble reducer) {
4334 <            if (transformer == null || reducer == null)
4335 <                throw new NullPointerException();
4336 <            return new MapReduceMappingsToDoubleTask<K,V>
4337 <                (map, null, -1, null, transformer, basis, reducer);
4338 <        }
4159 >         * Returns a "weakly consistent" iterator that will never
4160 >         * throw {@link ConcurrentModificationException}, and
4161 >         * guarantees to traverse elements as they existed upon
4162 >         * construction of the iterator, and may (but is not
4163 >         * guaranteed to) reflect any modifications subsequent to
4164 >         * construction.
4165 >         */
4166 >        public abstract Iterator<E> iterator();
4167 >        public abstract boolean contains(Object o);
4168 >        public abstract boolean remove(Object o);
4169  
4170 <        /**
4341 <         * Returns a task that when invoked, returns the result of
4342 <         * accumulating the given transformation of all (key, value) pairs
4343 <         * using the given reducer to combine values, and the given
4344 <         * basis as an identity value.
4345 <         *
4346 <         * @param map the map
4347 <         * @param transformer a function returning the transformation
4348 <         * for an element
4349 <         * @param basis the identity (initial default value) for the reduction
4350 <         * @param reducer a commutative associative combining function
4351 <         * @return the task
4352 <         */
4353 <        public static <K,V> ForkJoinTask<Long> reduceToLong
4354 <            (ConcurrentHashMapV8<K,V> map,
4355 <             ObjectByObjectToLong<? super K, ? super V> transformer,
4356 <             long basis,
4357 <             LongByLongToLong reducer) {
4358 <            if (transformer == null || reducer == null)
4359 <                throw new NullPointerException();
4360 <            return new MapReduceMappingsToLongTask<K,V>
4361 <                (map, null, -1, null, transformer, basis, reducer);
4362 <        }
4170 >        private static final String oomeMsg = "Required array size too large";
4171  
4172 <        /**
4173 <         * Returns a task that when invoked, returns the result of
4174 <         * accumulating the given transformation of all (key, value) pairs
4175 <         * using the given reducer to combine values, and the given
4176 <         * basis as an identity value.
4177 <         *
4178 <         * @param transformer a function returning the transformation
4179 <         * for an element
4180 <         * @param basis the identity (initial default value) for the reduction
4181 <         * @param reducer a commutative associative combining function
4182 <         * @return the task
4183 <         */
4184 <        public static <K,V> ForkJoinTask<Integer> reduceToInt
4185 <            (ConcurrentHashMapV8<K,V> map,
4186 <             ObjectByObjectToInt<? super K, ? super V> transformer,
4187 <             int basis,
4188 <             IntByIntToInt reducer) {
4189 <            if (transformer == null || reducer == null)
4190 <                throw new NullPointerException();
4191 <            return new MapReduceMappingsToIntTask<K,V>
4384 <                (map, null, -1, null, transformer, basis, reducer);
4172 >        public final Object[] toArray() {
4173 >            long sz = map.mappingCount();
4174 >            if (sz > MAX_ARRAY_SIZE)
4175 >                throw new OutOfMemoryError(oomeMsg);
4176 >            int n = (int)sz;
4177 >            Object[] r = new Object[n];
4178 >            int i = 0;
4179 >            for (E e : this) {
4180 >                if (i == n) {
4181 >                    if (n >= MAX_ARRAY_SIZE)
4182 >                        throw new OutOfMemoryError(oomeMsg);
4183 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4184 >                        n = MAX_ARRAY_SIZE;
4185 >                    else
4186 >                        n += (n >>> 1) + 1;
4187 >                    r = Arrays.copyOf(r, n);
4188 >                }
4189 >                r[i++] = e;
4190 >            }
4191 >            return (i == n) ? r : Arrays.copyOf(r, i);
4192          }
4193  
4194 <        /**
4195 <         * Returns a task that when invoked, performs the given action
4196 <         * for each key.
4197 <         *
4198 <         * @param map the map
4199 <         * @param action the action
4200 <         * @return the task
4201 <         */
4202 <        public static <K,V> ForkJoinTask<Void> forEachKey
4203 <            (ConcurrentHashMapV8<K,V> map,
4204 <             Action<K> action) {
4205 <            if (action == null) throw new NullPointerException();
4206 <            return new ForEachKeyTask<K,V>(map, null, -1, null, action);
4194 >        @SuppressWarnings("unchecked")
4195 >        public final <T> T[] toArray(T[] a) {
4196 >            long sz = map.mappingCount();
4197 >            if (sz > MAX_ARRAY_SIZE)
4198 >                throw new OutOfMemoryError(oomeMsg);
4199 >            int m = (int)sz;
4200 >            T[] r = (a.length >= m) ? a :
4201 >                (T[])java.lang.reflect.Array
4202 >                .newInstance(a.getClass().getComponentType(), m);
4203 >            int n = r.length;
4204 >            int i = 0;
4205 >            for (E e : this) {
4206 >                if (i == n) {
4207 >                    if (n >= MAX_ARRAY_SIZE)
4208 >                        throw new OutOfMemoryError(oomeMsg);
4209 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4210 >                        n = MAX_ARRAY_SIZE;
4211 >                    else
4212 >                        n += (n >>> 1) + 1;
4213 >                    r = Arrays.copyOf(r, n);
4214 >                }
4215 >                r[i++] = (T)e;
4216 >            }
4217 >            if (a == r && i < n) {
4218 >                r[i] = null; // null-terminate
4219 >                return r;
4220 >            }
4221 >            return (i == n) ? r : Arrays.copyOf(r, i);
4222          }
4223  
4224          /**
4225 <         * Returns a task that when invoked, performs the given action
4226 <         * for each non-null transformation of each key.
4225 >         * Returns a string representation of this collection.
4226 >         * The string representation consists of the string representations
4227 >         * of the collection's elements in the order they are returned by
4228 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4229 >         * Adjacent elements are separated by the characters {@code ", "}
4230 >         * (comma and space).  Elements are converted to strings as by
4231 >         * {@link String#valueOf(Object)}.
4232           *
4233 <         * @param map the map
4407 <         * @param transformer a function returning the transformation
4408 <         * for an element, or null if there is no transformation (in
4409 <         * which case the action is not applied)
4410 <         * @param action the action
4411 <         * @return the task
4233 >         * @return a string representation of this collection
4234           */
4235 <        public static <K,V,U> ForkJoinTask<Void> forEachKey
4236 <            (ConcurrentHashMapV8<K,V> map,
4237 <             Fun<? super K, ? extends U> transformer,
4238 <             Action<U> action) {
4239 <            if (transformer == null || action == null)
4240 <                throw new NullPointerException();
4241 <            return new ForEachTransformedKeyTask<K,V,U>
4242 <                (map, null, -1, null, transformer, action);
4235 >        public final String toString() {
4236 >            StringBuilder sb = new StringBuilder();
4237 >            sb.append('[');
4238 >            Iterator<E> it = iterator();
4239 >            if (it.hasNext()) {
4240 >                for (;;) {
4241 >                    Object e = it.next();
4242 >                    sb.append(e == this ? "(this Collection)" : e);
4243 >                    if (!it.hasNext())
4244 >                        break;
4245 >                    sb.append(',').append(' ');
4246 >                }
4247 >            }
4248 >            return sb.append(']').toString();
4249          }
4250  
4251 <        /**
4252 <         * Returns a task that when invoked, returns a non-null result
4253 <         * from applying the given search function on each key, or
4254 <         * null if none.  Upon success, further element processing is
4255 <         * suppressed and the results of any other parallel
4256 <         * invocations of the search function are ignored.
4257 <         *
4258 <         * @param map the map
4431 <         * @param searchFunction a function returning a non-null
4432 <         * result on success, else null
4433 <         * @return the task
4434 <         */
4435 <        public static <K,V,U> ForkJoinTask<U> searchKeys
4436 <            (ConcurrentHashMapV8<K,V> map,
4437 <             Fun<? super K, ? extends U> searchFunction) {
4438 <            if (searchFunction == null) throw new NullPointerException();
4439 <            return new SearchKeysTask<K,V,U>
4440 <                (map, null, -1, null, searchFunction,
4441 <                 new AtomicReference<U>());
4251 >        public final boolean containsAll(Collection<?> c) {
4252 >            if (c != this) {
4253 >                for (Object e : c) {
4254 >                    if (e == null || !contains(e))
4255 >                        return false;
4256 >                }
4257 >            }
4258 >            return true;
4259          }
4260  
4261 <        /**
4262 <         * Returns a task that when invoked, returns the result of
4263 <         * accumulating all keys using the given reducer to combine
4264 <         * values, or null if none.
4265 <         *
4266 <         * @param map the map
4267 <         * @param reducer a commutative associative combining function
4268 <         * @return the task
4269 <         */
4453 <        public static <K,V> ForkJoinTask<K> reduceKeys
4454 <            (ConcurrentHashMapV8<K,V> map,
4455 <             BiFun<? super K, ? super K, ? extends K> reducer) {
4456 <            if (reducer == null) throw new NullPointerException();
4457 <            return new ReduceKeysTask<K,V>
4458 <                (map, null, -1, null, reducer);
4261 >        public final boolean removeAll(Collection<?> c) {
4262 >            boolean modified = false;
4263 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4264 >                if (c.contains(it.next())) {
4265 >                    it.remove();
4266 >                    modified = true;
4267 >                }
4268 >            }
4269 >            return modified;
4270          }
4271  
4272 <        /**
4273 <         * Returns a task that when invoked, returns the result of
4274 <         * accumulating the given transformation of all keys using the given
4275 <         * reducer to combine values, or null if none.
4276 <         *
4277 <         * @param map the map
4278 <         * @param transformer a function returning the transformation
4279 <         * for an element, or null if there is no transformation (in
4280 <         * which case it is not combined).
4470 <         * @param reducer a commutative associative combining function
4471 <         * @return the task
4472 <         */
4473 <        public static <K,V,U> ForkJoinTask<U> reduceKeys
4474 <            (ConcurrentHashMapV8<K,V> map,
4475 <             Fun<? super K, ? extends U> transformer,
4476 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4477 <            if (transformer == null || reducer == null)
4478 <                throw new NullPointerException();
4479 <            return new MapReduceKeysTask<K,V,U>
4480 <                (map, null, -1, null, transformer, reducer);
4272 >        public final boolean retainAll(Collection<?> c) {
4273 >            boolean modified = false;
4274 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4275 >                if (!c.contains(it.next())) {
4276 >                    it.remove();
4277 >                    modified = true;
4278 >                }
4279 >            }
4280 >            return modified;
4281          }
4282  
4283 <        /**
4484 <         * Returns a task that when invoked, returns the result of
4485 <         * accumulating the given transformation of all keys using the given
4486 <         * reducer to combine values, and the given basis as an
4487 <         * identity value.
4488 <         *
4489 <         * @param map the map
4490 <         * @param transformer a function returning the transformation
4491 <         * for an element
4492 <         * @param basis the identity (initial default value) for the reduction
4493 <         * @param reducer a commutative associative combining function
4494 <         * @return the task
4495 <         */
4496 <        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4497 <            (ConcurrentHashMapV8<K,V> map,
4498 <             ObjectToDouble<? super K> transformer,
4499 <             double basis,
4500 <             DoubleByDoubleToDouble reducer) {
4501 <            if (transformer == null || reducer == null)
4502 <                throw new NullPointerException();
4503 <            return new MapReduceKeysToDoubleTask<K,V>
4504 <                (map, null, -1, null, transformer, basis, reducer);
4505 <        }
4283 >    }
4284  
4285 <        /**
4286 <         * Returns a task that when invoked, returns the result of
4287 <         * accumulating the given transformation of all keys using the given
4288 <         * reducer to combine values, and the given basis as an
4289 <         * identity value.
4290 <         *
4291 <         * @param map the map
4292 <         * @param transformer a function returning the transformation
4293 <         * for an element
4294 <         * @param basis the identity (initial default value) for the reduction
4295 <         * @param reducer a commutative associative combining function
4296 <         * @return the task
4297 <         */
4298 <        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4299 <            (ConcurrentHashMapV8<K,V> map,
4300 <             ObjectToLong<? super K> transformer,
4301 <             long basis,
4302 <             LongByLongToLong reducer) {
4525 <            if (transformer == null || reducer == null)
4526 <                throw new NullPointerException();
4527 <            return new MapReduceKeysToLongTask<K,V>
4528 <                (map, null, -1, null, transformer, basis, reducer);
4285 >    /**
4286 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4287 >     * which additions may optionally be enabled by mapping to a
4288 >     * common value.  This class cannot be directly instantiated.
4289 >     * See {@link #keySet() keySet()},
4290 >     * {@link #keySet(Object) keySet(V)},
4291 >     * {@link #newKeySet() newKeySet()},
4292 >     * {@link #newKeySet(int) newKeySet(int)}.
4293 >     *
4294 >     * @since 1.8
4295 >     */
4296 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4297 >        implements Set<K>, java.io.Serializable {
4298 >        private static final long serialVersionUID = 7249069246763182397L;
4299 >        private final V value;
4300 >        KeySetView(ConcurrentHashMapV8<K,V> map, V value) {  // non-public
4301 >            super(map);
4302 >            this.value = value;
4303          }
4304  
4305          /**
4306 <         * Returns a task that when invoked, returns the result of
4307 <         * accumulating the given transformation of all keys using the given
4534 <         * reducer to combine values, and the given basis as an
4535 <         * identity value.
4306 >         * Returns the default mapped value for additions,
4307 >         * or {@code null} if additions are not supported.
4308           *
4309 <         * @param map the map
4310 <         * @param transformer a function returning the transformation
4539 <         * for an element
4540 <         * @param basis the identity (initial default value) for the reduction
4541 <         * @param reducer a commutative associative combining function
4542 <         * @return the task
4309 >         * @return the default mapped value for additions, or {@code null}
4310 >         * if not supported
4311           */
4312 <        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4545 <            (ConcurrentHashMapV8<K,V> map,
4546 <             ObjectToInt<? super K> transformer,
4547 <             int basis,
4548 <             IntByIntToInt reducer) {
4549 <            if (transformer == null || reducer == null)
4550 <                throw new NullPointerException();
4551 <            return new MapReduceKeysToIntTask<K,V>
4552 <                (map, null, -1, null, transformer, basis, reducer);
4553 <        }
4312 >        public V getMappedValue() { return value; }
4313  
4314          /**
4315 <         * Returns a task that when invoked, performs the given action
4316 <         * for each value.
4558 <         *
4559 <         * @param map the map
4560 <         * @param action the action
4315 >         * {@inheritDoc}
4316 >         * @throws NullPointerException if the specified key is null
4317           */
4318 <        public static <K,V> ForkJoinTask<Void> forEachValue
4563 <            (ConcurrentHashMapV8<K,V> map,
4564 <             Action<V> action) {
4565 <            if (action == null) throw new NullPointerException();
4566 <            return new ForEachValueTask<K,V>(map, null, -1, null, action);
4567 <        }
4318 >        public boolean contains(Object o) { return map.containsKey(o); }
4319  
4320          /**
4321 <         * Returns a task that when invoked, performs the given action
4322 <         * for each non-null transformation of each value.
4321 >         * Removes the key from this map view, by removing the key (and its
4322 >         * corresponding value) from the backing map.  This method does
4323 >         * nothing if the key is not in the map.
4324           *
4325 <         * @param map the map
4326 <         * @param transformer a function returning the transformation
4327 <         * for an element, or null if there is no transformation (in
4576 <         * which case the action is not applied)
4577 <         * @param action the action
4325 >         * @param  o the key to be removed from the backing map
4326 >         * @return {@code true} if the backing map contained the specified key
4327 >         * @throws NullPointerException if the specified key is null
4328           */
4329 <        public static <K,V,U> ForkJoinTask<Void> forEachValue
4580 <            (ConcurrentHashMapV8<K,V> map,
4581 <             Fun<? super V, ? extends U> transformer,
4582 <             Action<U> action) {
4583 <            if (transformer == null || action == null)
4584 <                throw new NullPointerException();
4585 <            return new ForEachTransformedValueTask<K,V,U>
4586 <                (map, null, -1, null, transformer, action);
4587 <        }
4329 >        public boolean remove(Object o) { return map.remove(o) != null; }
4330  
4331          /**
4332 <         * Returns a task that when invoked, returns a non-null result
4591 <         * from applying the given search function on each value, or
4592 <         * null if none.  Upon success, further element processing is
4593 <         * suppressed and the results of any other parallel
4594 <         * invocations of the search function are ignored.
4595 <         *
4596 <         * @param map the map
4597 <         * @param searchFunction a function returning a non-null
4598 <         * result on success, else null
4599 <         * @return the task
4332 >         * @return an iterator over the keys of the backing map
4333           */
4334 <        public static <K,V,U> ForkJoinTask<U> searchValues
4335 <            (ConcurrentHashMapV8<K,V> map,
4336 <             Fun<? super V, ? extends U> searchFunction) {
4337 <            if (searchFunction == null) throw new NullPointerException();
4338 <            return new SearchValuesTask<K,V,U>
4606 <                (map, null, -1, null, searchFunction,
4607 <                 new AtomicReference<U>());
4334 >        public Iterator<K> iterator() {
4335 >            Node<K,V>[] t;
4336 >            ConcurrentHashMapV8<K,V> m = map;
4337 >            int f = (t = m.table) == null ? 0 : t.length;
4338 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4339          }
4340  
4341          /**
4342 <         * Returns a task that when invoked, returns the result of
4343 <         * accumulating all values using the given reducer to combine
4613 <         * values, or null if none.
4342 >         * Adds the specified key to this set view by mapping the key to
4343 >         * the default mapped value in the backing map, if defined.
4344           *
4345 <         * @param map the map
4346 <         * @param reducer a commutative associative combining function
4347 <         * @return the task
4345 >         * @param e key to be added
4346 >         * @return {@code true} if this set changed as a result of the call
4347 >         * @throws NullPointerException if the specified key is null
4348 >         * @throws UnsupportedOperationException if no default mapped value
4349 >         * for additions was provided
4350           */
4351 <        public static <K,V> ForkJoinTask<V> reduceValues
4352 <            (ConcurrentHashMapV8<K,V> map,
4353 <             BiFun<? super V, ? super V, ? extends V> reducer) {
4354 <            if (reducer == null) throw new NullPointerException();
4355 <            return new ReduceValuesTask<K,V>
4624 <                (map, null, -1, null, reducer);
4351 >        public boolean add(K e) {
4352 >            V v;
4353 >            if ((v = value) == null)
4354 >                throw new UnsupportedOperationException();
4355 >            return map.putVal(e, v, true) == null;
4356          }
4357  
4358          /**
4359 <         * Returns a task that when invoked, returns the result of
4360 <         * accumulating the given transformation of all values using the
4630 <         * given reducer to combine values, or null if none.
4359 >         * Adds all of the elements in the specified collection to this set,
4360 >         * as if by calling {@link #add} on each one.
4361           *
4362 <         * @param map the map
4363 <         * @param transformer a function returning the transformation
4364 <         * for an element, or null if there is no transformation (in
4365 <         * which case it is not combined).
4366 <         * @param reducer a commutative associative combining function
4367 <         * @return the task
4362 >         * @param c the elements to be inserted into this set
4363 >         * @return {@code true} if this set changed as a result of the call
4364 >         * @throws NullPointerException if the collection or any of its
4365 >         * elements are {@code null}
4366 >         * @throws UnsupportedOperationException if no default mapped value
4367 >         * for additions was provided
4368           */
4369 <        public static <K,V,U> ForkJoinTask<U> reduceValues
4370 <            (ConcurrentHashMapV8<K,V> map,
4371 <             Fun<? super V, ? extends U> transformer,
4372 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4373 <            if (transformer == null || reducer == null)
4374 <                throw new NullPointerException();
4375 <            return new MapReduceValuesTask<K,V,U>
4376 <                (map, null, -1, null, transformer, reducer);
4369 >        public boolean addAll(Collection<? extends K> c) {
4370 >            boolean added = false;
4371 >            V v;
4372 >            if ((v = value) == null)
4373 >                throw new UnsupportedOperationException();
4374 >            for (K e : c) {
4375 >                if (map.putVal(e, v, true) == null)
4376 >                    added = true;
4377 >            }
4378 >            return added;
4379          }
4380  
4381 <        /**
4382 <         * Returns a task that when invoked, returns the result of
4383 <         * accumulating the given transformation of all values using the
4384 <         * given reducer to combine values, and the given basis as an
4385 <         * identity value.
4654 <         *
4655 <         * @param map the map
4656 <         * @param transformer a function returning the transformation
4657 <         * for an element
4658 <         * @param basis the identity (initial default value) for the reduction
4659 <         * @param reducer a commutative associative combining function
4660 <         * @return the task
4661 <         */
4662 <        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4663 <            (ConcurrentHashMapV8<K,V> map,
4664 <             ObjectToDouble<? super V> transformer,
4665 <             double basis,
4666 <             DoubleByDoubleToDouble reducer) {
4667 <            if (transformer == null || reducer == null)
4668 <                throw new NullPointerException();
4669 <            return new MapReduceValuesToDoubleTask<K,V>
4670 <                (map, null, -1, null, transformer, basis, reducer);
4381 >        public int hashCode() {
4382 >            int h = 0;
4383 >            for (K e : this)
4384 >                h += e.hashCode();
4385 >            return h;
4386          }
4387  
4388 <        /**
4389 <         * Returns a task that when invoked, returns the result of
4390 <         * accumulating the given transformation of all values using the
4391 <         * given reducer to combine values, and the given basis as an
4392 <         * identity value.
4678 <         *
4679 <         * @param map the map
4680 <         * @param transformer a function returning the transformation
4681 <         * for an element
4682 <         * @param basis the identity (initial default value) for the reduction
4683 <         * @param reducer a commutative associative combining function
4684 <         * @return the task
4685 <         */
4686 <        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
4687 <            (ConcurrentHashMapV8<K,V> map,
4688 <             ObjectToLong<? super V> transformer,
4689 <             long basis,
4690 <             LongByLongToLong reducer) {
4691 <            if (transformer == null || reducer == null)
4692 <                throw new NullPointerException();
4693 <            return new MapReduceValuesToLongTask<K,V>
4694 <                (map, null, -1, null, transformer, basis, reducer);
4388 >        public boolean equals(Object o) {
4389 >            Set<?> c;
4390 >            return ((o instanceof Set) &&
4391 >                    ((c = (Set<?>)o) == this ||
4392 >                     (containsAll(c) && c.containsAll(this))));
4393          }
4394  
4395 <        /**
4396 <         * Returns a task that when invoked, returns the result of
4397 <         * accumulating the given transformation of all values using the
4398 <         * given reducer to combine values, and the given basis as an
4399 <         * identity value.
4400 <         *
4703 <         * @param map the map
4704 <         * @param transformer a function returning the transformation
4705 <         * for an element
4706 <         * @param basis the identity (initial default value) for the reduction
4707 <         * @param reducer a commutative associative combining function
4708 <         * @return the task
4709 <         */
4710 <        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
4711 <            (ConcurrentHashMapV8<K,V> map,
4712 <             ObjectToInt<? super V> transformer,
4713 <             int basis,
4714 <             IntByIntToInt reducer) {
4715 <            if (transformer == null || reducer == null)
4716 <                throw new NullPointerException();
4717 <            return new MapReduceValuesToIntTask<K,V>
4718 <                (map, null, -1, null, transformer, basis, reducer);
4395 >        public ConcurrentHashMapSpliterator<K> spliterator() {
4396 >            Node<K,V>[] t;
4397 >            ConcurrentHashMapV8<K,V> m = map;
4398 >            long n = m.sumCount();
4399 >            int f = (t = m.table) == null ? 0 : t.length;
4400 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4401          }
4402  
4403 <        /**
4722 <         * Returns a task that when invoked, perform the given action
4723 <         * for each entry.
4724 <         *
4725 <         * @param map the map
4726 <         * @param action the action
4727 <         */
4728 <        public static <K,V> ForkJoinTask<Void> forEachEntry
4729 <            (ConcurrentHashMapV8<K,V> map,
4730 <             Action<Map.Entry<K,V>> action) {
4403 >        public void forEach(Action<? super K> action) {
4404              if (action == null) throw new NullPointerException();
4405 <            return new ForEachEntryTask<K,V>(map, null, -1, null, action);
4405 >            Node<K,V>[] t;
4406 >            if ((t = map.table) != null) {
4407 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4408 >                for (Node<K,V> p; (p = it.advance()) != null; )
4409 >                    action.apply(p.key);
4410 >            }
4411          }
4412 +    }
4413  
4414 <        /**
4415 <         * Returns a task that when invoked, perform the given action
4416 <         * for each non-null transformation of each entry.
4417 <         *
4418 <         * @param map the map
4419 <         * @param transformer a function returning the transformation
4420 <         * for an element, or null if there is no transformation (in
4421 <         * which case the action is not applied)
4422 <         * @param action the action
4423 <         */
4424 <        public static <K,V,U> ForkJoinTask<Void> forEachEntry
4746 <            (ConcurrentHashMapV8<K,V> map,
4747 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
4748 <             Action<U> action) {
4749 <            if (transformer == null || action == null)
4750 <                throw new NullPointerException();
4751 <            return new ForEachTransformedEntryTask<K,V,U>
4752 <                (map, null, -1, null, transformer, action);
4414 >    /**
4415 >     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4416 >     * values, in which additions are disabled. This class cannot be
4417 >     * directly instantiated. See {@link #values()}.
4418 >     */
4419 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4420 >        implements Collection<V>, java.io.Serializable {
4421 >        private static final long serialVersionUID = 2249069246763182397L;
4422 >        ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4423 >        public final boolean contains(Object o) {
4424 >            return map.containsValue(o);
4425          }
4426  
4427 <        /**
4428 <         * Returns a task that when invoked, returns a non-null result
4429 <         * from applying the given search function on each entry, or
4430 <         * null if none.  Upon success, further element processing is
4431 <         * suppressed and the results of any other parallel
4432 <         * invocations of the search function are ignored.
4433 <         *
4434 <         * @param map the map
4435 <         * @param searchFunction a function returning a non-null
4436 <         * result on success, else null
4765 <         * @return the task
4766 <         */
4767 <        public static <K,V,U> ForkJoinTask<U> searchEntries
4768 <            (ConcurrentHashMapV8<K,V> map,
4769 <             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4770 <            if (searchFunction == null) throw new NullPointerException();
4771 <            return new SearchEntriesTask<K,V,U>
4772 <                (map, null, -1, null, searchFunction,
4773 <                 new AtomicReference<U>());
4427 >        public final boolean remove(Object o) {
4428 >            if (o != null) {
4429 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4430 >                    if (o.equals(it.next())) {
4431 >                        it.remove();
4432 >                        return true;
4433 >                    }
4434 >                }
4435 >            }
4436 >            return false;
4437          }
4438  
4439 <        /**
4440 <         * Returns a task that when invoked, returns the result of
4441 <         * accumulating all entries using the given reducer to combine
4442 <         * values, or null if none.
4443 <         *
4781 <         * @param map the map
4782 <         * @param reducer a commutative associative combining function
4783 <         * @return the task
4784 <         */
4785 <        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
4786 <            (ConcurrentHashMapV8<K,V> map,
4787 <             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4788 <            if (reducer == null) throw new NullPointerException();
4789 <            return new ReduceEntriesTask<K,V>
4790 <                (map, null, -1, null, reducer);
4439 >        public final Iterator<V> iterator() {
4440 >            ConcurrentHashMapV8<K,V> m = map;
4441 >            Node<K,V>[] t;
4442 >            int f = (t = m.table) == null ? 0 : t.length;
4443 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4444          }
4445  
4446 <        /**
4447 <         * Returns a task that when invoked, returns the result of
4795 <         * accumulating the given transformation of all entries using the
4796 <         * given reducer to combine values, or null if none.
4797 <         *
4798 <         * @param map the map
4799 <         * @param transformer a function returning the transformation
4800 <         * for an element, or null if there is no transformation (in
4801 <         * which case it is not combined).
4802 <         * @param reducer a commutative associative combining function
4803 <         * @return the task
4804 <         */
4805 <        public static <K,V,U> ForkJoinTask<U> reduceEntries
4806 <            (ConcurrentHashMapV8<K,V> map,
4807 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
4808 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4809 <            if (transformer == null || reducer == null)
4810 <                throw new NullPointerException();
4811 <            return new MapReduceEntriesTask<K,V,U>
4812 <                (map, null, -1, null, transformer, reducer);
4446 >        public final boolean add(V e) {
4447 >            throw new UnsupportedOperationException();
4448          }
4449 <
4450 <        /**
4816 <         * Returns a task that when invoked, returns the result of
4817 <         * accumulating the given transformation of all entries using the
4818 <         * given reducer to combine values, and the given basis as an
4819 <         * identity value.
4820 <         *
4821 <         * @param map the map
4822 <         * @param transformer a function returning the transformation
4823 <         * for an element
4824 <         * @param basis the identity (initial default value) for the reduction
4825 <         * @param reducer a commutative associative combining function
4826 <         * @return the task
4827 <         */
4828 <        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
4829 <            (ConcurrentHashMapV8<K,V> map,
4830 <             ObjectToDouble<Map.Entry<K,V>> transformer,
4831 <             double basis,
4832 <             DoubleByDoubleToDouble reducer) {
4833 <            if (transformer == null || reducer == null)
4834 <                throw new NullPointerException();
4835 <            return new MapReduceEntriesToDoubleTask<K,V>
4836 <                (map, null, -1, null, transformer, basis, reducer);
4449 >        public final boolean addAll(Collection<? extends V> c) {
4450 >            throw new UnsupportedOperationException();
4451          }
4452  
4453 <        /**
4454 <         * Returns a task that when invoked, returns the result of
4455 <         * accumulating the given transformation of all entries using the
4456 <         * given reducer to combine values, and the given basis as an
4457 <         * identity value.
4458 <         *
4845 <         * @param map the map
4846 <         * @param transformer a function returning the transformation
4847 <         * for an element
4848 <         * @param basis the identity (initial default value) for the reduction
4849 <         * @param reducer a commutative associative combining function
4850 <         * @return the task
4851 <         */
4852 <        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
4853 <            (ConcurrentHashMapV8<K,V> map,
4854 <             ObjectToLong<Map.Entry<K,V>> transformer,
4855 <             long basis,
4856 <             LongByLongToLong reducer) {
4857 <            if (transformer == null || reducer == null)
4858 <                throw new NullPointerException();
4859 <            return new MapReduceEntriesToLongTask<K,V>
4860 <                (map, null, -1, null, transformer, basis, reducer);
4453 >        public ConcurrentHashMapSpliterator<V> spliterator() {
4454 >            Node<K,V>[] t;
4455 >            ConcurrentHashMapV8<K,V> m = map;
4456 >            long n = m.sumCount();
4457 >            int f = (t = m.table) == null ? 0 : t.length;
4458 >            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4459          }
4460  
4461 <        /**
4462 <         * Returns a task that when invoked, returns the result of
4463 <         * accumulating the given transformation of all entries using the
4464 <         * given reducer to combine values, and the given basis as an
4465 <         * identity value.
4466 <         *
4467 <         * @param map the map
4468 <         * @param transformer a function returning the transformation
4871 <         * for an element
4872 <         * @param basis the identity (initial default value) for the reduction
4873 <         * @param reducer a commutative associative combining function
4874 <         * @return the task
4875 <         */
4876 <        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4877 <            (ConcurrentHashMapV8<K,V> map,
4878 <             ObjectToInt<Map.Entry<K,V>> transformer,
4879 <             int basis,
4880 <             IntByIntToInt reducer) {
4881 <            if (transformer == null || reducer == null)
4882 <                throw new NullPointerException();
4883 <            return new MapReduceEntriesToIntTask<K,V>
4884 <                (map, null, -1, null, transformer, basis, reducer);
4461 >        public void forEach(Action<? super V> action) {
4462 >            if (action == null) throw new NullPointerException();
4463 >            Node<K,V>[] t;
4464 >            if ((t = map.table) != null) {
4465 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4466 >                for (Node<K,V> p; (p = it.advance()) != null; )
4467 >                    action.apply(p.val);
4468 >            }
4469          }
4470      }
4471  
4888    // -------------------------------------------------------
4889
4472      /**
4473 <     * Base for FJ tasks for bulk operations. This adds a variant of
4474 <     * CountedCompleters and some split and merge bookkeeping to
4475 <     * iterator functionality. The forEach and reduce methods are
4476 <     * similar to those illustrated in CountedCompleter documentation,
4477 <     * except that bottom-up reduction completions perform them within
4478 <     * their compute methods. The search methods are like forEach
4479 <     * except they continually poll for success and exit early.  Also,
4480 <     * exceptions are handled in a simpler manner, by just trying to
4899 <     * complete root task exceptionally.
4900 <     */
4901 <    @SuppressWarnings("serial") static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
4902 <        final BulkTask<K,V,?> parent;  // completion target
4903 <        int batch;                     // split control; -1 for unknown
4904 <        int pending;                   // completion control
4473 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4474 >     * entries.  This class cannot be directly instantiated. See
4475 >     * {@link #entrySet()}.
4476 >     */
4477 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4478 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4479 >        private static final long serialVersionUID = 2249069246763182397L;
4480 >        EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4481  
4482 <        BulkTask(ConcurrentHashMapV8<K,V> map, BulkTask<K,V,?> parent,
4483 <                 int batch) {
4484 <            super(map);
4485 <            this.parent = parent;
4486 <            this.batch = batch;
4487 <            if (parent != null && map != null) { // split parent
4488 <                Node[] t;
4913 <                if ((t = parent.tab) == null &&
4914 <                    (t = parent.tab = map.table) != null)
4915 <                    parent.baseLimit = parent.baseSize = t.length;
4916 <                this.tab = t;
4917 <                this.baseSize = parent.baseSize;
4918 <                int hi = this.baseLimit = parent.baseLimit;
4919 <                parent.baseLimit = this.index = this.baseIndex =
4920 <                    (hi + parent.baseIndex + 1) >>> 1;
4921 <            }
4482 >        public boolean contains(Object o) {
4483 >            Object k, v, r; Map.Entry<?,?> e;
4484 >            return ((o instanceof Map.Entry) &&
4485 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4486 >                    (r = map.get(k)) != null &&
4487 >                    (v = e.getValue()) != null &&
4488 >                    (v == r || v.equals(r)));
4489          }
4490  
4491 <        /**
4492 <         * Forces root task to complete.
4493 <         * @param ex if null, complete normally, else exceptionally
4494 <         * @return false to simplify use
4495 <         */
4496 <        final boolean tryCompleteComputation(Throwable ex) {
4930 <            for (BulkTask<K,V,?> a = this;;) {
4931 <                BulkTask<K,V,?> p = a.parent;
4932 <                if (p == null) {
4933 <                    if (ex != null)
4934 <                        a.completeExceptionally(ex);
4935 <                    else
4936 <                        a.quietlyComplete();
4937 <                    return false;
4938 <                }
4939 <                a = p;
4940 <            }
4491 >        public boolean remove(Object o) {
4492 >            Object k, v; Map.Entry<?,?> e;
4493 >            return ((o instanceof Map.Entry) &&
4494 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4495 >                    (v = e.getValue()) != null &&
4496 >                    map.remove(k, v));
4497          }
4498  
4499          /**
4500 <         * Version of tryCompleteComputation for function screening checks
4500 >         * @return an iterator over the entries of the backing map
4501           */
4502 <        final boolean abortOnNullFunction() {
4503 <            return tryCompleteComputation(new Error("Unexpected null function"));
4502 >        public Iterator<Map.Entry<K,V>> iterator() {
4503 >            ConcurrentHashMapV8<K,V> m = map;
4504 >            Node<K,V>[] t;
4505 >            int f = (t = m.table) == null ? 0 : t.length;
4506 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4507          }
4508  
4509 <        // utilities
4509 >        public boolean add(Entry<K,V> e) {
4510 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4511 >        }
4512  
4513 <        /** CompareAndSet pending count */
4514 <        final boolean casPending(int cmp, int val) {
4515 <            return U.compareAndSwapInt(this, PENDING, cmp, val);
4513 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4514 >            boolean added = false;
4515 >            for (Entry<K,V> e : c) {
4516 >                if (add(e))
4517 >                    added = true;
4518 >            }
4519 >            return added;
4520          }
4521  
4522 <        /**
4523 <         * Returns approx exp2 of the number of times (minus one) to
4524 <         * split task by two before executing leaf action. This value
4525 <         * is faster to compute and more convenient to use as a guide
4526 <         * to splitting than is the depth, since it is used while
4527 <         * dividing by two anyway.
4528 <         */
4964 <        final int batch() {
4965 <            ConcurrentHashMapV8<K, V> m; int b; Node[] t;  ForkJoinPool pool;
4966 <            if ((b = batch) < 0 && (m = map) != null) { // force initialization
4967 <                if ((t = tab) == null && (t = tab = m.table) != null)
4968 <                    baseLimit = baseSize = t.length;
4969 <                if (t != null) {
4970 <                    long n = m.counter.sum();
4971 <                    int par = ((pool = getPool()) == null) ?
4972 <                        ForkJoinPool.getCommonPoolParallelism() :
4973 <                        pool.getParallelism();
4974 <                    int sp = par << 3; // slack of 8
4975 <                    b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
4522 >        public final int hashCode() {
4523 >            int h = 0;
4524 >            Node<K,V>[] t;
4525 >            if ((t = map.table) != null) {
4526 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4527 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4528 >                    h += p.hashCode();
4529                  }
4530              }
4531 <            return b;
4531 >            return h;
4532          }
4533  
4534 <        /**
4535 <         * Returns exportable snapshot entry.
4536 <         */
4537 <        static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
4538 <            return new AbstractMap.SimpleEntry<K,V>(k, v);
4534 >        public final boolean equals(Object o) {
4535 >            Set<?> c;
4536 >            return ((o instanceof Set) &&
4537 >                    ((c = (Set<?>)o) == this ||
4538 >                     (containsAll(c) && c.containsAll(this))));
4539          }
4540  
4541 <        // Unsafe mechanics
4542 <        private static final sun.misc.Unsafe U;
4543 <        private static final long PENDING;
4544 <        static {
4545 <            try {
4546 <                U = getUnsafe();
4547 <                PENDING = U.objectFieldOffset
4548 <                    (BulkTask.class.getDeclaredField("pending"));
4549 <            } catch (Exception e) {
4550 <                throw new Error(e);
4541 >        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4542 >            Node<K,V>[] t;
4543 >            ConcurrentHashMapV8<K,V> m = map;
4544 >            long n = m.sumCount();
4545 >            int f = (t = m.table) == null ? 0 : t.length;
4546 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4547 >        }
4548 >
4549 >        public void forEach(Action<? super Map.Entry<K,V>> action) {
4550 >            if (action == null) throw new NullPointerException();
4551 >            Node<K,V>[] t;
4552 >            if ((t = map.table) != null) {
4553 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4554 >                for (Node<K,V> p; (p = it.advance()) != null; )
4555 >                    action.apply(new MapEntry<K,V>(p.key, p.val, map));
4556              }
4557          }
4558 +
4559      }
4560  
4561 +    // -------------------------------------------------------
4562 +
4563      /**
4564 <     * Base class for non-reductive actions
4564 >     * Base class for bulk tasks. Repeats some fields and code from
4565 >     * class Traverser, because we need to subclass CountedCompleter.
4566       */
4567 <    @SuppressWarnings("serial") static abstract class BulkAction<K,V,R> extends BulkTask<K,V,R> {
4568 <        BulkAction<K,V,?> nextTask;
4569 <        BulkAction(ConcurrentHashMapV8<K,V> map, BulkTask<K,V,?> parent,
4570 <                   int batch, BulkAction<K,V,?> nextTask) {
4571 <            super(map, parent, batch);
4572 <            this.nextTask = nextTask;
4567 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4568 >        Node<K,V>[] tab;        // same as Traverser
4569 >        Node<K,V> next;
4570 >        int index;
4571 >        int baseIndex;
4572 >        int baseLimit;
4573 >        final int baseSize;
4574 >        int batch;              // split control
4575 >
4576 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4577 >            super(par);
4578 >            this.batch = b;
4579 >            this.index = this.baseIndex = i;
4580 >            if ((this.tab = t) == null)
4581 >                this.baseSize = this.baseLimit = 0;
4582 >            else if (par == null)
4583 >                this.baseSize = this.baseLimit = t.length;
4584 >            else {
4585 >                this.baseLimit = f;
4586 >                this.baseSize = par.baseSize;
4587 >            }
4588          }
4589  
4590          /**
4591 <         * Try to complete task and upward parents. Upon hitting
5015 <         * non-completed parent, if a non-FJ task, try to help out the
5016 <         * computation.
4591 >         * Same as Traverser version
4592           */
4593 <        final void tryComplete(BulkAction<K,V,?> subtasks) {
4594 <            BulkTask<K,V,?> a = this, s = a;
4595 <            for (int c;;) {
4596 <                if ((c = a.pending) == 0) {
4597 <                    if ((a = (s = a).parent) == null) {
4598 <                        s.quietlyComplete();
4599 <                        break;
4600 <                    }
4601 <                }
4602 <                else if (a.casPending(c, c - 1)) {
4603 <                    if (subtasks != null && !inForkJoinPool()) {
4604 <                        while ((s = a.parent) != null)
4605 <                            a = s;
4606 <                        while (!a.isDone()) {
4607 <                            BulkAction<K,V,?> next = subtasks.nextTask;
4608 <                            if (subtasks.tryUnfork())
5034 <                                subtasks.exec();
5035 <                            if ((subtasks = next) == null)
5036 <                                break;
5037 <                        }
4593 >        final Node<K,V> advance() {
4594 >            Node<K,V> e;
4595 >            if ((e = next) != null)
4596 >                e = e.next;
4597 >            for (;;) {
4598 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4599 >                if (e != null)
4600 >                    return next = e;
4601 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4602 >                    (n = t.length) <= (i = index) || i < 0)
4603 >                    return next = null;
4604 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4605 >                    if (e instanceof ForwardingNode) {
4606 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4607 >                        e = null;
4608 >                        continue;
4609                      }
4610 <                    break;
4610 >                    else if (e instanceof TreeBin)
4611 >                        e = ((TreeBin<K,V>)e).first;
4612 >                    else
4613 >                        e = null;
4614                  }
4615 +                if ((index += baseSize) >= n)
4616 +                    index = ++baseIndex;    // visit upper slots if present
4617              }
4618          }
5043
4619      }
4620  
4621      /*
4622       * Task classes. Coded in a regular but ugly format/style to
4623       * simplify checks that each variant differs in the right way from
4624 <     * others.
4625 <     */
4626 <
4627 <    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
4628 <        extends BulkAction<K,V,Void> {
4629 <        final Action<K> action;
4624 >     * others. The null screenings exist because compilers cannot tell
4625 >     * that we've already null-checked task arguments, so we force
4626 >     * simplest hoisted bypass to help avoid convoluted traps.
4627 >     */
4628 >    @SuppressWarnings("serial")
4629 >    static final class ForEachKeyTask<K,V>
4630 >        extends BulkTask<K,V,Void> {
4631 >        final Action<? super K> action;
4632          ForEachKeyTask
4633 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4634 <             ForEachKeyTask<K,V> nextTask,
4635 <             Action<K> action) {
5059 <            super(m, p, b, nextTask);
4633 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4634 >             Action<? super K> action) {
4635 >            super(p, b, i, f, t);
4636              this.action = action;
4637          }
4638 <        @SuppressWarnings("unchecked") public final boolean exec() {
4639 <            final Action<K> action = this.action;
4640 <            if (action == null)
4641 <                return abortOnNullFunction();
4642 <            ForEachKeyTask<K,V> subtasks = null;
4643 <            try {
4644 <                int b = batch(), c;
4645 <                while (b > 1 && baseIndex != baseLimit) {
4646 <                    do {} while (!casPending(c = pending, c+1));
4647 <                    (subtasks = new ForEachKeyTask<K,V>
4648 <                     (map, this, b >>>= 1, subtasks, action)).fork();
4649 <                }
4650 <                while (advance() != null)
5075 <                    action.apply((K)nextKey);
5076 <            } catch (Throwable ex) {
5077 <                return tryCompleteComputation(ex);
4638 >        public final void compute() {
4639 >            final Action<? super K> action;
4640 >            if ((action = this.action) != null) {
4641 >                for (int i = baseIndex, f, h; batch > 0 &&
4642 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4643 >                    addToPendingCount(1);
4644 >                    new ForEachKeyTask<K,V>
4645 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4646 >                         action).fork();
4647 >                }
4648 >                for (Node<K,V> p; (p = advance()) != null;)
4649 >                    action.apply(p.key);
4650 >                propagateCompletion();
4651              }
5079            tryComplete(subtasks);
5080            return false;
4652          }
4653      }
4654  
4655 <    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
4656 <        extends BulkAction<K,V,Void> {
4657 <        final Action<V> action;
4655 >    @SuppressWarnings("serial")
4656 >    static final class ForEachValueTask<K,V>
4657 >        extends BulkTask<K,V,Void> {
4658 >        final Action<? super V> action;
4659          ForEachValueTask
4660 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4661 <             ForEachValueTask<K,V> nextTask,
4662 <             Action<V> action) {
5091 <            super(m, p, b, nextTask);
4660 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4661 >             Action<? super V> action) {
4662 >            super(p, b, i, f, t);
4663              this.action = action;
4664          }
4665 <        @SuppressWarnings("unchecked") public final boolean exec() {
4666 <            final Action<V> action = this.action;
4667 <            if (action == null)
4668 <                return abortOnNullFunction();
4669 <            ForEachValueTask<K,V> subtasks = null;
4670 <            try {
4671 <                int b = batch(), c;
4672 <                while (b > 1 && baseIndex != baseLimit) {
4673 <                    do {} while (!casPending(c = pending, c+1));
4674 <                    (subtasks = new ForEachValueTask<K,V>
4675 <                     (map, this, b >>>= 1, subtasks, action)).fork();
4676 <                }
4677 <                Object v;
5107 <                while ((v = advance()) != null)
5108 <                    action.apply((V)v);
5109 <            } catch (Throwable ex) {
5110 <                return tryCompleteComputation(ex);
4665 >        public final void compute() {
4666 >            final Action<? super V> action;
4667 >            if ((action = this.action) != null) {
4668 >                for (int i = baseIndex, f, h; batch > 0 &&
4669 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4670 >                    addToPendingCount(1);
4671 >                    new ForEachValueTask<K,V>
4672 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4673 >                         action).fork();
4674 >                }
4675 >                for (Node<K,V> p; (p = advance()) != null;)
4676 >                    action.apply(p.val);
4677 >                propagateCompletion();
4678              }
5112            tryComplete(subtasks);
5113            return false;
4679          }
4680      }
4681  
4682 <    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
4683 <        extends BulkAction<K,V,Void> {
4684 <        final Action<Entry<K,V>> action;
4682 >    @SuppressWarnings("serial")
4683 >    static final class ForEachEntryTask<K,V>
4684 >        extends BulkTask<K,V,Void> {
4685 >        final Action<? super Entry<K,V>> action;
4686          ForEachEntryTask
4687 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4688 <             ForEachEntryTask<K,V> nextTask,
4689 <             Action<Entry<K,V>> action) {
5124 <            super(m, p, b, nextTask);
4687 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4688 >             Action<? super Entry<K,V>> action) {
4689 >            super(p, b, i, f, t);
4690              this.action = action;
4691          }
4692 <        @SuppressWarnings("unchecked") public final boolean exec() {
4693 <            final Action<Entry<K,V>> action = this.action;
4694 <            if (action == null)
4695 <                return abortOnNullFunction();
4696 <            ForEachEntryTask<K,V> subtasks = null;
4697 <            try {
4698 <                int b = batch(), c;
4699 <                while (b > 1 && baseIndex != baseLimit) {
4700 <                    do {} while (!casPending(c = pending, c+1));
4701 <                    (subtasks = new ForEachEntryTask<K,V>
4702 <                     (map, this, b >>>= 1, subtasks, action)).fork();
4703 <                }
4704 <                Object v;
5140 <                while ((v = advance()) != null)
5141 <                    action.apply(entryFor((K)nextKey, (V)v));
5142 <            } catch (Throwable ex) {
5143 <                return tryCompleteComputation(ex);
4692 >        public final void compute() {
4693 >            final Action<? super Entry<K,V>> action;
4694 >            if ((action = this.action) != null) {
4695 >                for (int i = baseIndex, f, h; batch > 0 &&
4696 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4697 >                    addToPendingCount(1);
4698 >                    new ForEachEntryTask<K,V>
4699 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4700 >                         action).fork();
4701 >                }
4702 >                for (Node<K,V> p; (p = advance()) != null; )
4703 >                    action.apply(p);
4704 >                propagateCompletion();
4705              }
5145            tryComplete(subtasks);
5146            return false;
4706          }
4707      }
4708  
4709 <    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
4710 <        extends BulkAction<K,V,Void> {
4711 <        final BiAction<K,V> action;
4709 >    @SuppressWarnings("serial")
4710 >    static final class ForEachMappingTask<K,V>
4711 >        extends BulkTask<K,V,Void> {
4712 >        final BiAction<? super K, ? super V> action;
4713          ForEachMappingTask
4714 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4715 <             ForEachMappingTask<K,V> nextTask,
4716 <             BiAction<K,V> action) {
5157 <            super(m, p, b, nextTask);
4714 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4715 >             BiAction<? super K,? super V> action) {
4716 >            super(p, b, i, f, t);
4717              this.action = action;
4718          }
4719 <        @SuppressWarnings("unchecked") public final boolean exec() {
4720 <            final BiAction<K,V> action = this.action;
4721 <            if (action == null)
4722 <                return abortOnNullFunction();
4723 <            ForEachMappingTask<K,V> subtasks = null;
4724 <            try {
4725 <                int b = batch(), c;
4726 <                while (b > 1 && baseIndex != baseLimit) {
4727 <                    do {} while (!casPending(c = pending, c+1));
4728 <                    (subtasks = new ForEachMappingTask<K,V>
4729 <                     (map, this, b >>>= 1, subtasks, action)).fork();
4730 <                }
4731 <                Object v;
5173 <                while ((v = advance()) != null)
5174 <                    action.apply((K)nextKey, (V)v);
5175 <            } catch (Throwable ex) {
5176 <                return tryCompleteComputation(ex);
4719 >        public final void compute() {
4720 >            final BiAction<? super K, ? super V> action;
4721 >            if ((action = this.action) != null) {
4722 >                for (int i = baseIndex, f, h; batch > 0 &&
4723 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4724 >                    addToPendingCount(1);
4725 >                    new ForEachMappingTask<K,V>
4726 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4727 >                         action).fork();
4728 >                }
4729 >                for (Node<K,V> p; (p = advance()) != null; )
4730 >                    action.apply(p.key, p.val);
4731 >                propagateCompletion();
4732              }
5178            tryComplete(subtasks);
5179            return false;
4733          }
4734      }
4735  
4736 <    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
4737 <        extends BulkAction<K,V,Void> {
4736 >    @SuppressWarnings("serial")
4737 >    static final class ForEachTransformedKeyTask<K,V,U>
4738 >        extends BulkTask<K,V,Void> {
4739          final Fun<? super K, ? extends U> transformer;
4740 <        final Action<U> action;
4740 >        final Action<? super U> action;
4741          ForEachTransformedKeyTask
4742 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4743 <             ForEachTransformedKeyTask<K,V,U> nextTask,
4744 <             Fun<? super K, ? extends U> transformer,
4745 <             Action<U> action) {
4746 <            super(m, p, b, nextTask);
4747 <            this.transformer = transformer;
4748 <            this.action = action;
4749 <
4750 <        }
4751 <        @SuppressWarnings("unchecked") public final boolean exec() {
4752 <            final Fun<? super K, ? extends U> transformer =
4753 <                this.transformer;
4754 <            final Action<U> action = this.action;
4755 <            if (transformer == null || action == null)
4756 <                return abortOnNullFunction();
4757 <            ForEachTransformedKeyTask<K,V,U> subtasks = null;
4758 <            try {
4759 <                int b = batch(), c;
4760 <                while (b > 1 && baseIndex != baseLimit) {
4761 <                    do {} while (!casPending(c = pending, c+1));
5208 <                    (subtasks = new ForEachTransformedKeyTask<K,V,U>
5209 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5210 <                }
5211 <                U u;
5212 <                while (advance() != null) {
5213 <                    if ((u = transformer.apply((K)nextKey)) != null)
4742 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4743 >             Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4744 >            super(p, b, i, f, t);
4745 >            this.transformer = transformer; this.action = action;
4746 >        }
4747 >        public final void compute() {
4748 >            final Fun<? super K, ? extends U> transformer;
4749 >            final Action<? super U> action;
4750 >            if ((transformer = this.transformer) != null &&
4751 >                (action = this.action) != null) {
4752 >                for (int i = baseIndex, f, h; batch > 0 &&
4753 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4754 >                    addToPendingCount(1);
4755 >                    new ForEachTransformedKeyTask<K,V,U>
4756 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4757 >                         transformer, action).fork();
4758 >                }
4759 >                for (Node<K,V> p; (p = advance()) != null; ) {
4760 >                    U u;
4761 >                    if ((u = transformer.apply(p.key)) != null)
4762                          action.apply(u);
4763                  }
4764 <            } catch (Throwable ex) {
5217 <                return tryCompleteComputation(ex);
4764 >                propagateCompletion();
4765              }
5219            tryComplete(subtasks);
5220            return false;
4766          }
4767      }
4768  
4769 <    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
4770 <        extends BulkAction<K,V,Void> {
4769 >    @SuppressWarnings("serial")
4770 >    static final class ForEachTransformedValueTask<K,V,U>
4771 >        extends BulkTask<K,V,Void> {
4772          final Fun<? super V, ? extends U> transformer;
4773 <        final Action<U> action;
4773 >        final Action<? super U> action;
4774          ForEachTransformedValueTask
4775 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4776 <             ForEachTransformedValueTask<K,V,U> nextTask,
4777 <             Fun<? super V, ? extends U> transformer,
4778 <             Action<U> action) {
4779 <            super(m, p, b, nextTask);
4780 <            this.transformer = transformer;
4781 <            this.action = action;
4782 <
4783 <        }
4784 <        @SuppressWarnings("unchecked") public final boolean exec() {
4785 <            final Fun<? super V, ? extends U> transformer =
4786 <                this.transformer;
4787 <            final Action<U> action = this.action;
4788 <            if (transformer == null || action == null)
4789 <                return abortOnNullFunction();
4790 <            ForEachTransformedValueTask<K,V,U> subtasks = null;
4791 <            try {
4792 <                int b = batch(), c;
4793 <                while (b > 1 && baseIndex != baseLimit) {
4794 <                    do {} while (!casPending(c = pending, c+1));
5249 <                    (subtasks = new ForEachTransformedValueTask<K,V,U>
5250 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5251 <                }
5252 <                Object v; U u;
5253 <                while ((v = advance()) != null) {
5254 <                    if ((u = transformer.apply((V)v)) != null)
4775 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4776 >             Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4777 >            super(p, b, i, f, t);
4778 >            this.transformer = transformer; this.action = action;
4779 >        }
4780 >        public final void compute() {
4781 >            final Fun<? super V, ? extends U> transformer;
4782 >            final Action<? super U> action;
4783 >            if ((transformer = this.transformer) != null &&
4784 >                (action = this.action) != null) {
4785 >                for (int i = baseIndex, f, h; batch > 0 &&
4786 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4787 >                    addToPendingCount(1);
4788 >                    new ForEachTransformedValueTask<K,V,U>
4789 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4790 >                         transformer, action).fork();
4791 >                }
4792 >                for (Node<K,V> p; (p = advance()) != null; ) {
4793 >                    U u;
4794 >                    if ((u = transformer.apply(p.val)) != null)
4795                          action.apply(u);
4796                  }
4797 <            } catch (Throwable ex) {
5258 <                return tryCompleteComputation(ex);
4797 >                propagateCompletion();
4798              }
5260            tryComplete(subtasks);
5261            return false;
4799          }
4800      }
4801  
4802 <    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
4803 <        extends BulkAction<K,V,Void> {
4802 >    @SuppressWarnings("serial")
4803 >    static final class ForEachTransformedEntryTask<K,V,U>
4804 >        extends BulkTask<K,V,Void> {
4805          final Fun<Map.Entry<K,V>, ? extends U> transformer;
4806 <        final Action<U> action;
4806 >        final Action<? super U> action;
4807          ForEachTransformedEntryTask
4808 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4809 <             ForEachTransformedEntryTask<K,V,U> nextTask,
4810 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
4811 <             Action<U> action) {
4812 <            super(m, p, b, nextTask);
4813 <            this.transformer = transformer;
4814 <            this.action = action;
4815 <
4816 <        }
4817 <        @SuppressWarnings("unchecked") public final boolean exec() {
4818 <            final Fun<Map.Entry<K,V>, ? extends U> transformer =
4819 <                this.transformer;
4820 <            final Action<U> action = this.action;
4821 <            if (transformer == null || action == null)
4822 <                return abortOnNullFunction();
4823 <            ForEachTransformedEntryTask<K,V,U> subtasks = null;
4824 <            try {
4825 <                int b = batch(), c;
4826 <                while (b > 1 && baseIndex != baseLimit) {
4827 <                    do {} while (!casPending(c = pending, c+1));
5290 <                    (subtasks = new ForEachTransformedEntryTask<K,V,U>
5291 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5292 <                }
5293 <                Object v; U u;
5294 <                while ((v = advance()) != null) {
5295 <                    if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
4808 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4809 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4810 >            super(p, b, i, f, t);
4811 >            this.transformer = transformer; this.action = action;
4812 >        }
4813 >        public final void compute() {
4814 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
4815 >            final Action<? super U> action;
4816 >            if ((transformer = this.transformer) != null &&
4817 >                (action = this.action) != null) {
4818 >                for (int i = baseIndex, f, h; batch > 0 &&
4819 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4820 >                    addToPendingCount(1);
4821 >                    new ForEachTransformedEntryTask<K,V,U>
4822 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4823 >                         transformer, action).fork();
4824 >                }
4825 >                for (Node<K,V> p; (p = advance()) != null; ) {
4826 >                    U u;
4827 >                    if ((u = transformer.apply(p)) != null)
4828                          action.apply(u);
4829                  }
4830 <            } catch (Throwable ex) {
5299 <                return tryCompleteComputation(ex);
4830 >                propagateCompletion();
4831              }
5301            tryComplete(subtasks);
5302            return false;
4832          }
4833      }
4834  
4835 <    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
4836 <        extends BulkAction<K,V,Void> {
4835 >    @SuppressWarnings("serial")
4836 >    static final class ForEachTransformedMappingTask<K,V,U>
4837 >        extends BulkTask<K,V,Void> {
4838          final BiFun<? super K, ? super V, ? extends U> transformer;
4839 <        final Action<U> action;
4839 >        final Action<? super U> action;
4840          ForEachTransformedMappingTask
4841 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5312 <             ForEachTransformedMappingTask<K,V,U> nextTask,
4841 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4842               BiFun<? super K, ? super V, ? extends U> transformer,
4843 <             Action<U> action) {
4844 <            super(m, p, b, nextTask);
4845 <            this.transformer = transformer;
4846 <            this.action = action;
4847 <
4848 <        }
4849 <        @SuppressWarnings("unchecked") public final boolean exec() {
4850 <            final BiFun<? super K, ? super V, ? extends U> transformer =
4851 <                this.transformer;
4852 <            final Action<U> action = this.action;
4853 <            if (transformer == null || action == null)
4854 <                return abortOnNullFunction();
4855 <            ForEachTransformedMappingTask<K,V,U> subtasks = null;
4856 <            try {
4857 <                int b = batch(), c;
4858 <                while (b > 1 && baseIndex != baseLimit) {
4859 <                    do {} while (!casPending(c = pending, c+1));
4860 <                    (subtasks = new ForEachTransformedMappingTask<K,V,U>
4861 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5333 <                }
5334 <                Object v; U u;
5335 <                while ((v = advance()) != null) {
5336 <                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
4843 >             Action<? super U> action) {
4844 >            super(p, b, i, f, t);
4845 >            this.transformer = transformer; this.action = action;
4846 >        }
4847 >        public final void compute() {
4848 >            final BiFun<? super K, ? super V, ? extends U> transformer;
4849 >            final Action<? super U> action;
4850 >            if ((transformer = this.transformer) != null &&
4851 >                (action = this.action) != null) {
4852 >                for (int i = baseIndex, f, h; batch > 0 &&
4853 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4854 >                    addToPendingCount(1);
4855 >                    new ForEachTransformedMappingTask<K,V,U>
4856 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4857 >                         transformer, action).fork();
4858 >                }
4859 >                for (Node<K,V> p; (p = advance()) != null; ) {
4860 >                    U u;
4861 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4862                          action.apply(u);
4863                  }
4864 <            } catch (Throwable ex) {
5340 <                return tryCompleteComputation(ex);
4864 >                propagateCompletion();
4865              }
5342            tryComplete(subtasks);
5343            return false;
4866          }
4867      }
4868  
4869 <    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
4870 <        extends BulkAction<K,V,U> {
4869 >    @SuppressWarnings("serial")
4870 >    static final class SearchKeysTask<K,V,U>
4871 >        extends BulkTask<K,V,U> {
4872          final Fun<? super K, ? extends U> searchFunction;
4873          final AtomicReference<U> result;
4874          SearchKeysTask
4875 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5353 <             SearchKeysTask<K,V,U> nextTask,
4875 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4876               Fun<? super K, ? extends U> searchFunction,
4877               AtomicReference<U> result) {
4878 <            super(m, p, b, nextTask);
4878 >            super(p, b, i, f, t);
4879              this.searchFunction = searchFunction; this.result = result;
4880          }
4881 <        @SuppressWarnings("unchecked") public final boolean exec() {
4882 <            AtomicReference<U> result = this.result;
4883 <            final Fun<? super K, ? extends U> searchFunction =
4884 <                this.searchFunction;
4885 <            if (searchFunction == null || result == null)
4886 <                return abortOnNullFunction();
4887 <            SearchKeysTask<K,V,U> subtasks = null;
4888 <            try {
4889 <                int b = batch(), c;
4890 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
4891 <                    do {} while (!casPending(c = pending, c+1));
4892 <                    (subtasks = new SearchKeysTask<K,V,U>
4893 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
4894 <                }
4895 <                U u;
4896 <                while (result.get() == null && advance() != null) {
4897 <                    if ((u = searchFunction.apply((K)nextKey)) != null) {
4881 >        public final U getRawResult() { return result.get(); }
4882 >        public final void compute() {
4883 >            final Fun<? super K, ? extends U> searchFunction;
4884 >            final AtomicReference<U> result;
4885 >            if ((searchFunction = this.searchFunction) != null &&
4886 >                (result = this.result) != null) {
4887 >                for (int i = baseIndex, f, h; batch > 0 &&
4888 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4889 >                    if (result.get() != null)
4890 >                        return;
4891 >                    addToPendingCount(1);
4892 >                    new SearchKeysTask<K,V,U>
4893 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4894 >                         searchFunction, result).fork();
4895 >                }
4896 >                while (result.get() == null) {
4897 >                    U u;
4898 >                    Node<K,V> p;
4899 >                    if ((p = advance()) == null) {
4900 >                        propagateCompletion();
4901 >                        break;
4902 >                    }
4903 >                    if ((u = searchFunction.apply(p.key)) != null) {
4904                          if (result.compareAndSet(null, u))
4905 <                            tryCompleteComputation(null);
4905 >                            quietlyCompleteRoot();
4906                          break;
4907                      }
4908                  }
5381            } catch (Throwable ex) {
5382                return tryCompleteComputation(ex);
4909              }
5384            tryComplete(subtasks);
5385            return false;
4910          }
5387        public final U getRawResult() { return result.get(); }
4911      }
4912  
4913 <    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
4914 <        extends BulkAction<K,V,U> {
4913 >    @SuppressWarnings("serial")
4914 >    static final class SearchValuesTask<K,V,U>
4915 >        extends BulkTask<K,V,U> {
4916          final Fun<? super V, ? extends U> searchFunction;
4917          final AtomicReference<U> result;
4918          SearchValuesTask
4919 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5396 <             SearchValuesTask<K,V,U> nextTask,
4919 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4920               Fun<? super V, ? extends U> searchFunction,
4921               AtomicReference<U> result) {
4922 <            super(m, p, b, nextTask);
4922 >            super(p, b, i, f, t);
4923              this.searchFunction = searchFunction; this.result = result;
4924          }
4925 <        @SuppressWarnings("unchecked") public final boolean exec() {
4926 <            AtomicReference<U> result = this.result;
4927 <            final Fun<? super V, ? extends U> searchFunction =
4928 <                this.searchFunction;
4929 <            if (searchFunction == null || result == null)
4930 <                return abortOnNullFunction();
4931 <            SearchValuesTask<K,V,U> subtasks = null;
4932 <            try {
4933 <                int b = batch(), c;
4934 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
4935 <                    do {} while (!casPending(c = pending, c+1));
4936 <                    (subtasks = new SearchValuesTask<K,V,U>
4937 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
4938 <                }
4939 <                Object v; U u;
4940 <                while (result.get() == null && (v = advance()) != null) {
4941 <                    if ((u = searchFunction.apply((V)v)) != null) {
4925 >        public final U getRawResult() { return result.get(); }
4926 >        public final void compute() {
4927 >            final Fun<? super V, ? extends U> searchFunction;
4928 >            final AtomicReference<U> result;
4929 >            if ((searchFunction = this.searchFunction) != null &&
4930 >                (result = this.result) != null) {
4931 >                for (int i = baseIndex, f, h; batch > 0 &&
4932 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4933 >                    if (result.get() != null)
4934 >                        return;
4935 >                    addToPendingCount(1);
4936 >                    new SearchValuesTask<K,V,U>
4937 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4938 >                         searchFunction, result).fork();
4939 >                }
4940 >                while (result.get() == null) {
4941 >                    U u;
4942 >                    Node<K,V> p;
4943 >                    if ((p = advance()) == null) {
4944 >                        propagateCompletion();
4945 >                        break;
4946 >                    }
4947 >                    if ((u = searchFunction.apply(p.val)) != null) {
4948                          if (result.compareAndSet(null, u))
4949 <                            tryCompleteComputation(null);
4949 >                            quietlyCompleteRoot();
4950                          break;
4951                      }
4952                  }
5424            } catch (Throwable ex) {
5425                return tryCompleteComputation(ex);
4953              }
5427            tryComplete(subtasks);
5428            return false;
4954          }
5430        public final U getRawResult() { return result.get(); }
4955      }
4956  
4957 <    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
4958 <        extends BulkAction<K,V,U> {
4957 >    @SuppressWarnings("serial")
4958 >    static final class SearchEntriesTask<K,V,U>
4959 >        extends BulkTask<K,V,U> {
4960          final Fun<Entry<K,V>, ? extends U> searchFunction;
4961          final AtomicReference<U> result;
4962          SearchEntriesTask
4963 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5439 <             SearchEntriesTask<K,V,U> nextTask,
4963 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4964               Fun<Entry<K,V>, ? extends U> searchFunction,
4965               AtomicReference<U> result) {
4966 <            super(m, p, b, nextTask);
4966 >            super(p, b, i, f, t);
4967              this.searchFunction = searchFunction; this.result = result;
4968          }
4969 <        @SuppressWarnings("unchecked") public final boolean exec() {
4970 <            AtomicReference<U> result = this.result;
4971 <            final Fun<Entry<K,V>, ? extends U> searchFunction =
4972 <                this.searchFunction;
4973 <            if (searchFunction == null || result == null)
4974 <                return abortOnNullFunction();
4975 <            SearchEntriesTask<K,V,U> subtasks = null;
4976 <            try {
4977 <                int b = batch(), c;
4978 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
4979 <                    do {} while (!casPending(c = pending, c+1));
4980 <                    (subtasks = new SearchEntriesTask<K,V,U>
4981 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
4982 <                }
4983 <                Object v; U u;
4984 <                while (result.get() == null && (v = advance()) != null) {
4985 <                    if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
4986 <                        if (result.compareAndSet(null, u))
4987 <                            tryCompleteComputation(null);
4969 >        public final U getRawResult() { return result.get(); }
4970 >        public final void compute() {
4971 >            final Fun<Entry<K,V>, ? extends U> searchFunction;
4972 >            final AtomicReference<U> result;
4973 >            if ((searchFunction = this.searchFunction) != null &&
4974 >                (result = this.result) != null) {
4975 >                for (int i = baseIndex, f, h; batch > 0 &&
4976 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4977 >                    if (result.get() != null)
4978 >                        return;
4979 >                    addToPendingCount(1);
4980 >                    new SearchEntriesTask<K,V,U>
4981 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4982 >                         searchFunction, result).fork();
4983 >                }
4984 >                while (result.get() == null) {
4985 >                    U u;
4986 >                    Node<K,V> p;
4987 >                    if ((p = advance()) == null) {
4988 >                        propagateCompletion();
4989                          break;
4990                      }
4991 +                    if ((u = searchFunction.apply(p)) != null) {
4992 +                        if (result.compareAndSet(null, u))
4993 +                            quietlyCompleteRoot();
4994 +                        return;
4995 +                    }
4996                  }
5467            } catch (Throwable ex) {
5468                return tryCompleteComputation(ex);
4997              }
5470            tryComplete(subtasks);
5471            return false;
4998          }
5473        public final U getRawResult() { return result.get(); }
4999      }
5000  
5001 <    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5002 <        extends BulkAction<K,V,U> {
5001 >    @SuppressWarnings("serial")
5002 >    static final class SearchMappingsTask<K,V,U>
5003 >        extends BulkTask<K,V,U> {
5004          final BiFun<? super K, ? super V, ? extends U> searchFunction;
5005          final AtomicReference<U> result;
5006          SearchMappingsTask
5007 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5482 <             SearchMappingsTask<K,V,U> nextTask,
5007 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5008               BiFun<? super K, ? super V, ? extends U> searchFunction,
5009               AtomicReference<U> result) {
5010 <            super(m, p, b, nextTask);
5010 >            super(p, b, i, f, t);
5011              this.searchFunction = searchFunction; this.result = result;
5012          }
5013 <        @SuppressWarnings("unchecked") public final boolean exec() {
5014 <            AtomicReference<U> result = this.result;
5015 <            final BiFun<? super K, ? super V, ? extends U> searchFunction =
5016 <                this.searchFunction;
5017 <            if (searchFunction == null || result == null)
5018 <                return abortOnNullFunction();
5019 <            SearchMappingsTask<K,V,U> subtasks = null;
5020 <            try {
5021 <                int b = batch(), c;
5022 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5023 <                    do {} while (!casPending(c = pending, c+1));
5024 <                    (subtasks = new SearchMappingsTask<K,V,U>
5025 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5026 <                }
5027 <                Object v; U u;
5028 <                while (result.get() == null && (v = advance()) != null) {
5029 <                    if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5013 >        public final U getRawResult() { return result.get(); }
5014 >        public final void compute() {
5015 >            final BiFun<? super K, ? super V, ? extends U> searchFunction;
5016 >            final AtomicReference<U> result;
5017 >            if ((searchFunction = this.searchFunction) != null &&
5018 >                (result = this.result) != null) {
5019 >                for (int i = baseIndex, f, h; batch > 0 &&
5020 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5021 >                    if (result.get() != null)
5022 >                        return;
5023 >                    addToPendingCount(1);
5024 >                    new SearchMappingsTask<K,V,U>
5025 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5026 >                         searchFunction, result).fork();
5027 >                }
5028 >                while (result.get() == null) {
5029 >                    U u;
5030 >                    Node<K,V> p;
5031 >                    if ((p = advance()) == null) {
5032 >                        propagateCompletion();
5033 >                        break;
5034 >                    }
5035 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5036                          if (result.compareAndSet(null, u))
5037 <                            tryCompleteComputation(null);
5037 >                            quietlyCompleteRoot();
5038                          break;
5039                      }
5040                  }
5510            } catch (Throwable ex) {
5511                return tryCompleteComputation(ex);
5041              }
5513            tryComplete(subtasks);
5514            return false;
5042          }
5516        public final U getRawResult() { return result.get(); }
5043      }
5044  
5045 <    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5045 >    @SuppressWarnings("serial")
5046 >    static final class ReduceKeysTask<K,V>
5047          extends BulkTask<K,V,K> {
5048          final BiFun<? super K, ? super K, ? extends K> reducer;
5049          K result;
5050          ReduceKeysTask<K,V> rights, nextRight;
5051          ReduceKeysTask
5052 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5052 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5053               ReduceKeysTask<K,V> nextRight,
5054               BiFun<? super K, ? super K, ? extends K> reducer) {
5055 <            super(m, p, b); this.nextRight = nextRight;
5055 >            super(p, b, i, f, t); this.nextRight = nextRight;
5056              this.reducer = reducer;
5057          }
5058 <        @SuppressWarnings("unchecked") public final boolean exec() {
5059 <            final BiFun<? super K, ? super K, ? extends K> reducer =
5060 <                this.reducer;
5061 <            if (reducer == null)
5062 <                return abortOnNullFunction();
5063 <            try {
5064 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5538 <                    do {} while (!casPending(c = pending, c+1));
5058 >        public final K getRawResult() { return result; }
5059 >        public final void compute() {
5060 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5061 >            if ((reducer = this.reducer) != null) {
5062 >                for (int i = baseIndex, f, h; batch > 0 &&
5063 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5064 >                    addToPendingCount(1);
5065                      (rights = new ReduceKeysTask<K,V>
5066 <                     (map, this, b >>>= 1, rights, reducer)).fork();
5066 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5067 >                      rights, reducer)).fork();
5068                  }
5069                  K r = null;
5070 <                while (advance() != null) {
5071 <                    K u = (K)nextKey;
5072 <                    r = (r == null) ? u : reducer.apply(r, u);
5070 >                for (Node<K,V> p; (p = advance()) != null; ) {
5071 >                    K u = p.key;
5072 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5073                  }
5074                  result = r;
5075 <                for (ReduceKeysTask<K,V> t = this, s;;) {
5076 <                    int c; BulkTask<K,V,?> par; K tr, sr;
5077 <                    if ((c = t.pending) == 0) {
5078 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5079 <                            if ((sr = s.result) != null)
5080 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5081 <                        }
5082 <                        if ((par = t.parent) == null ||
5083 <                            !(par instanceof ReduceKeysTask)) {
5084 <                            t.quietlyComplete();
5085 <                            break;
5559 <                        }
5560 <                        t = (ReduceKeysTask<K,V>)par;
5075 >                CountedCompleter<?> c;
5076 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5077 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5078 >                        t = (ReduceKeysTask<K,V>)c,
5079 >                        s = t.rights;
5080 >                    while (s != null) {
5081 >                        K tr, sr;
5082 >                        if ((sr = s.result) != null)
5083 >                            t.result = (((tr = t.result) == null) ? sr :
5084 >                                        reducer.apply(tr, sr));
5085 >                        s = t.rights = s.nextRight;
5086                      }
5562                    else if (t.casPending(c, c - 1))
5563                        break;
5087                  }
5565            } catch (Throwable ex) {
5566                return tryCompleteComputation(ex);
5088              }
5568            ReduceKeysTask<K,V> s = rights;
5569            if (s != null && !inForkJoinPool()) {
5570                do  {
5571                    if (s.tryUnfork())
5572                        s.exec();
5573                } while ((s = s.nextRight) != null);
5574            }
5575            return false;
5089          }
5577        public final K getRawResult() { return result; }
5090      }
5091  
5092 <    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5092 >    @SuppressWarnings("serial")
5093 >    static final class ReduceValuesTask<K,V>
5094          extends BulkTask<K,V,V> {
5095          final BiFun<? super V, ? super V, ? extends V> reducer;
5096          V result;
5097          ReduceValuesTask<K,V> rights, nextRight;
5098          ReduceValuesTask
5099 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5099 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5100               ReduceValuesTask<K,V> nextRight,
5101               BiFun<? super V, ? super V, ? extends V> reducer) {
5102 <            super(m, p, b); this.nextRight = nextRight;
5102 >            super(p, b, i, f, t); this.nextRight = nextRight;
5103              this.reducer = reducer;
5104          }
5105 <        @SuppressWarnings("unchecked") public final boolean exec() {
5106 <            final BiFun<? super V, ? super V, ? extends V> reducer =
5107 <                this.reducer;
5108 <            if (reducer == null)
5109 <                return abortOnNullFunction();
5110 <            try {
5111 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5599 <                    do {} while (!casPending(c = pending, c+1));
5105 >        public final V getRawResult() { return result; }
5106 >        public final void compute() {
5107 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5108 >            if ((reducer = this.reducer) != null) {
5109 >                for (int i = baseIndex, f, h; batch > 0 &&
5110 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5111 >                    addToPendingCount(1);
5112                      (rights = new ReduceValuesTask<K,V>
5113 <                     (map, this, b >>>= 1, rights, reducer)).fork();
5113 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5114 >                      rights, reducer)).fork();
5115                  }
5116                  V r = null;
5117 <                Object v;
5118 <                while ((v = advance()) != null) {
5119 <                    V u = (V)v;
5607 <                    r = (r == null) ? u : reducer.apply(r, u);
5117 >                for (Node<K,V> p; (p = advance()) != null; ) {
5118 >                    V v = p.val;
5119 >                    r = (r == null) ? v : reducer.apply(r, v);
5120                  }
5121                  result = r;
5122 <                for (ReduceValuesTask<K,V> t = this, s;;) {
5123 <                    int c; BulkTask<K,V,?> par; V tr, sr;
5124 <                    if ((c = t.pending) == 0) {
5125 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5126 <                            if ((sr = s.result) != null)
5127 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5128 <                        }
5129 <                        if ((par = t.parent) == null ||
5130 <                            !(par instanceof ReduceValuesTask)) {
5131 <                            t.quietlyComplete();
5132 <                            break;
5621 <                        }
5622 <                        t = (ReduceValuesTask<K,V>)par;
5122 >                CountedCompleter<?> c;
5123 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5124 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5125 >                        t = (ReduceValuesTask<K,V>)c,
5126 >                        s = t.rights;
5127 >                    while (s != null) {
5128 >                        V tr, sr;
5129 >                        if ((sr = s.result) != null)
5130 >                            t.result = (((tr = t.result) == null) ? sr :
5131 >                                        reducer.apply(tr, sr));
5132 >                        s = t.rights = s.nextRight;
5133                      }
5624                    else if (t.casPending(c, c - 1))
5625                        break;
5134                  }
5627            } catch (Throwable ex) {
5628                return tryCompleteComputation(ex);
5629            }
5630            ReduceValuesTask<K,V> s = rights;
5631            if (s != null && !inForkJoinPool()) {
5632                do  {
5633                    if (s.tryUnfork())
5634                        s.exec();
5635                } while ((s = s.nextRight) != null);
5135              }
5637            return false;
5136          }
5639        public final V getRawResult() { return result; }
5137      }
5138  
5139 <    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5139 >    @SuppressWarnings("serial")
5140 >    static final class ReduceEntriesTask<K,V>
5141          extends BulkTask<K,V,Map.Entry<K,V>> {
5142          final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5143          Map.Entry<K,V> result;
5144          ReduceEntriesTask<K,V> rights, nextRight;
5145          ReduceEntriesTask
5146 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5146 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5147               ReduceEntriesTask<K,V> nextRight,
5148               BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5149 <            super(m, p, b); this.nextRight = nextRight;
5149 >            super(p, b, i, f, t); this.nextRight = nextRight;
5150              this.reducer = reducer;
5151          }
5152 <        @SuppressWarnings("unchecked") public final boolean exec() {
5153 <            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5154 <                this.reducer;
5155 <            if (reducer == null)
5156 <                return abortOnNullFunction();
5157 <            try {
5158 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5661 <                    do {} while (!casPending(c = pending, c+1));
5152 >        public final Map.Entry<K,V> getRawResult() { return result; }
5153 >        public final void compute() {
5154 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5155 >            if ((reducer = this.reducer) != null) {
5156 >                for (int i = baseIndex, f, h; batch > 0 &&
5157 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5158 >                    addToPendingCount(1);
5159                      (rights = new ReduceEntriesTask<K,V>
5160 <                     (map, this, b >>>= 1, rights, reducer)).fork();
5160 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5161 >                      rights, reducer)).fork();
5162                  }
5163                  Map.Entry<K,V> r = null;
5164 <                Object v;
5165 <                while ((v = advance()) != null) {
5668 <                    Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5669 <                    r = (r == null) ? u : reducer.apply(r, u);
5670 <                }
5164 >                for (Node<K,V> p; (p = advance()) != null; )
5165 >                    r = (r == null) ? p : reducer.apply(r, p);
5166                  result = r;
5167 <                for (ReduceEntriesTask<K,V> t = this, s;;) {
5168 <                    int c; BulkTask<K,V,?> par; Map.Entry<K,V> tr, sr;
5169 <                    if ((c = t.pending) == 0) {
5170 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5171 <                            if ((sr = s.result) != null)
5172 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5173 <                        }
5174 <                        if ((par = t.parent) == null ||
5175 <                            !(par instanceof ReduceEntriesTask)) {
5176 <                            t.quietlyComplete();
5177 <                            break;
5683 <                        }
5684 <                        t = (ReduceEntriesTask<K,V>)par;
5167 >                CountedCompleter<?> c;
5168 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5169 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5170 >                        t = (ReduceEntriesTask<K,V>)c,
5171 >                        s = t.rights;
5172 >                    while (s != null) {
5173 >                        Map.Entry<K,V> tr, sr;
5174 >                        if ((sr = s.result) != null)
5175 >                            t.result = (((tr = t.result) == null) ? sr :
5176 >                                        reducer.apply(tr, sr));
5177 >                        s = t.rights = s.nextRight;
5178                      }
5686                    else if (t.casPending(c, c - 1))
5687                        break;
5179                  }
5689            } catch (Throwable ex) {
5690                return tryCompleteComputation(ex);
5691            }
5692            ReduceEntriesTask<K,V> s = rights;
5693            if (s != null && !inForkJoinPool()) {
5694                do  {
5695                    if (s.tryUnfork())
5696                        s.exec();
5697                } while ((s = s.nextRight) != null);
5180              }
5699            return false;
5181          }
5701        public final Map.Entry<K,V> getRawResult() { return result; }
5182      }
5183  
5184 <    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5184 >    @SuppressWarnings("serial")
5185 >    static final class MapReduceKeysTask<K,V,U>
5186          extends BulkTask<K,V,U> {
5187          final Fun<? super K, ? extends U> transformer;
5188          final BiFun<? super U, ? super U, ? extends U> reducer;
5189          U result;
5190          MapReduceKeysTask<K,V,U> rights, nextRight;
5191          MapReduceKeysTask
5192 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5192 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5193               MapReduceKeysTask<K,V,U> nextRight,
5194               Fun<? super K, ? extends U> transformer,
5195               BiFun<? super U, ? super U, ? extends U> reducer) {
5196 <            super(m, p, b); this.nextRight = nextRight;
5196 >            super(p, b, i, f, t); this.nextRight = nextRight;
5197              this.transformer = transformer;
5198              this.reducer = reducer;
5199          }
5200 <        @SuppressWarnings("unchecked") public final boolean exec() {
5201 <            final Fun<? super K, ? extends U> transformer =
5202 <                this.transformer;
5203 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5204 <                this.reducer;
5205 <            if (transformer == null || reducer == null)
5206 <                return abortOnNullFunction();
5207 <            try {
5208 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5728 <                    do {} while (!casPending(c = pending, c+1));
5200 >        public final U getRawResult() { return result; }
5201 >        public final void compute() {
5202 >            final Fun<? super K, ? extends U> transformer;
5203 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5204 >            if ((transformer = this.transformer) != null &&
5205 >                (reducer = this.reducer) != null) {
5206 >                for (int i = baseIndex, f, h; batch > 0 &&
5207 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5208 >                    addToPendingCount(1);
5209                      (rights = new MapReduceKeysTask<K,V,U>
5210 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5210 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5211 >                      rights, transformer, reducer)).fork();
5212                  }
5213 <                U r = null, u;
5214 <                while (advance() != null) {
5215 <                    if ((u = transformer.apply((K)nextKey)) != null)
5213 >                U r = null;
5214 >                for (Node<K,V> p; (p = advance()) != null; ) {
5215 >                    U u;
5216 >                    if ((u = transformer.apply(p.key)) != null)
5217                          r = (r == null) ? u : reducer.apply(r, u);
5218                  }
5219                  result = r;
5220 <                for (MapReduceKeysTask<K,V,U> t = this, s;;) {
5221 <                    int c; BulkTask<K,V,?> par; U tr, sr;
5222 <                    if ((c = t.pending) == 0) {
5223 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5224 <                            if ((sr = s.result) != null)
5225 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5226 <                        }
5227 <                        if ((par = t.parent) == null ||
5228 <                            !(par instanceof MapReduceKeysTask)) {
5229 <                            t.quietlyComplete();
5230 <                            break;
5749 <                        }
5750 <                        t = (MapReduceKeysTask<K,V,U>)par;
5220 >                CountedCompleter<?> c;
5221 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5222 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5223 >                        t = (MapReduceKeysTask<K,V,U>)c,
5224 >                        s = t.rights;
5225 >                    while (s != null) {
5226 >                        U tr, sr;
5227 >                        if ((sr = s.result) != null)
5228 >                            t.result = (((tr = t.result) == null) ? sr :
5229 >                                        reducer.apply(tr, sr));
5230 >                        s = t.rights = s.nextRight;
5231                      }
5752                    else if (t.casPending(c, c - 1))
5753                        break;
5232                  }
5755            } catch (Throwable ex) {
5756                return tryCompleteComputation(ex);
5233              }
5758            MapReduceKeysTask<K,V,U> s = rights;
5759            if (s != null && !inForkJoinPool()) {
5760                do  {
5761                    if (s.tryUnfork())
5762                        s.exec();
5763                } while ((s = s.nextRight) != null);
5764            }
5765            return false;
5234          }
5767        public final U getRawResult() { return result; }
5235      }
5236  
5237 <    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5237 >    @SuppressWarnings("serial")
5238 >    static final class MapReduceValuesTask<K,V,U>
5239          extends BulkTask<K,V,U> {
5240          final Fun<? super V, ? extends U> transformer;
5241          final BiFun<? super U, ? super U, ? extends U> reducer;
5242          U result;
5243          MapReduceValuesTask<K,V,U> rights, nextRight;
5244          MapReduceValuesTask
5245 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5245 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5246               MapReduceValuesTask<K,V,U> nextRight,
5247               Fun<? super V, ? extends U> transformer,
5248               BiFun<? super U, ? super U, ? extends U> reducer) {
5249 <            super(m, p, b); this.nextRight = nextRight;
5249 >            super(p, b, i, f, t); this.nextRight = nextRight;
5250              this.transformer = transformer;
5251              this.reducer = reducer;
5252          }
5253 <        @SuppressWarnings("unchecked") public final boolean exec() {
5254 <            final Fun<? super V, ? extends U> transformer =
5255 <                this.transformer;
5256 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5257 <                this.reducer;
5258 <            if (transformer == null || reducer == null)
5259 <                return abortOnNullFunction();
5260 <            try {
5261 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5794 <                    do {} while (!casPending(c = pending, c+1));
5253 >        public final U getRawResult() { return result; }
5254 >        public final void compute() {
5255 >            final Fun<? super V, ? extends U> transformer;
5256 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5257 >            if ((transformer = this.transformer) != null &&
5258 >                (reducer = this.reducer) != null) {
5259 >                for (int i = baseIndex, f, h; batch > 0 &&
5260 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5261 >                    addToPendingCount(1);
5262                      (rights = new MapReduceValuesTask<K,V,U>
5263 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5263 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5264 >                      rights, transformer, reducer)).fork();
5265                  }
5266 <                U r = null, u;
5267 <                Object v;
5268 <                while ((v = advance()) != null) {
5269 <                    if ((u = transformer.apply((V)v)) != null)
5266 >                U r = null;
5267 >                for (Node<K,V> p; (p = advance()) != null; ) {
5268 >                    U u;
5269 >                    if ((u = transformer.apply(p.val)) != null)
5270                          r = (r == null) ? u : reducer.apply(r, u);
5271                  }
5272                  result = r;
5273 <                for (MapReduceValuesTask<K,V,U> t = this, s;;) {
5274 <                    int c; BulkTask<K,V,?> par; U tr, sr;
5275 <                    if ((c = t.pending) == 0) {
5276 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5277 <                            if ((sr = s.result) != null)
5278 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5279 <                        }
5280 <                        if ((par = t.parent) == null ||
5281 <                            !(par instanceof MapReduceValuesTask)) {
5282 <                            t.quietlyComplete();
5283 <                            break;
5816 <                        }
5817 <                        t = (MapReduceValuesTask<K,V,U>)par;
5273 >                CountedCompleter<?> c;
5274 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5275 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5276 >                        t = (MapReduceValuesTask<K,V,U>)c,
5277 >                        s = t.rights;
5278 >                    while (s != null) {
5279 >                        U tr, sr;
5280 >                        if ((sr = s.result) != null)
5281 >                            t.result = (((tr = t.result) == null) ? sr :
5282 >                                        reducer.apply(tr, sr));
5283 >                        s = t.rights = s.nextRight;
5284                      }
5819                    else if (t.casPending(c, c - 1))
5820                        break;
5285                  }
5822            } catch (Throwable ex) {
5823                return tryCompleteComputation(ex);
5824            }
5825            MapReduceValuesTask<K,V,U> s = rights;
5826            if (s != null && !inForkJoinPool()) {
5827                do  {
5828                    if (s.tryUnfork())
5829                        s.exec();
5830                } while ((s = s.nextRight) != null);
5286              }
5832            return false;
5287          }
5834        public final U getRawResult() { return result; }
5288      }
5289  
5290 <    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5290 >    @SuppressWarnings("serial")
5291 >    static final class MapReduceEntriesTask<K,V,U>
5292          extends BulkTask<K,V,U> {
5293          final Fun<Map.Entry<K,V>, ? extends U> transformer;
5294          final BiFun<? super U, ? super U, ? extends U> reducer;
5295          U result;
5296          MapReduceEntriesTask<K,V,U> rights, nextRight;
5297          MapReduceEntriesTask
5298 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5298 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5299               MapReduceEntriesTask<K,V,U> nextRight,
5300               Fun<Map.Entry<K,V>, ? extends U> transformer,
5301               BiFun<? super U, ? super U, ? extends U> reducer) {
5302 <            super(m, p, b); this.nextRight = nextRight;
5302 >            super(p, b, i, f, t); this.nextRight = nextRight;
5303              this.transformer = transformer;
5304              this.reducer = reducer;
5305          }
5306 <        @SuppressWarnings("unchecked") public final boolean exec() {
5307 <            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5308 <                this.transformer;
5309 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5310 <                this.reducer;
5311 <            if (transformer == null || reducer == null)
5312 <                return abortOnNullFunction();
5313 <            try {
5314 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5861 <                    do {} while (!casPending(c = pending, c+1));
5306 >        public final U getRawResult() { return result; }
5307 >        public final void compute() {
5308 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5309 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5310 >            if ((transformer = this.transformer) != null &&
5311 >                (reducer = this.reducer) != null) {
5312 >                for (int i = baseIndex, f, h; batch > 0 &&
5313 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5314 >                    addToPendingCount(1);
5315                      (rights = new MapReduceEntriesTask<K,V,U>
5316 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5316 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5317 >                      rights, transformer, reducer)).fork();
5318                  }
5319 <                U r = null, u;
5320 <                Object v;
5321 <                while ((v = advance()) != null) {
5322 <                    if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5319 >                U r = null;
5320 >                for (Node<K,V> p; (p = advance()) != null; ) {
5321 >                    U u;
5322 >                    if ((u = transformer.apply(p)) != null)
5323                          r = (r == null) ? u : reducer.apply(r, u);
5324                  }
5325                  result = r;
5326 <                for (MapReduceEntriesTask<K,V,U> t = this, s;;) {
5327 <                    int c; BulkTask<K,V,?> par; U tr, sr;
5328 <                    if ((c = t.pending) == 0) {
5329 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5330 <                            if ((sr = s.result) != null)
5331 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5332 <                        }
5333 <                        if ((par = t.parent) == null ||
5334 <                            !(par instanceof MapReduceEntriesTask)) {
5335 <                            t.quietlyComplete();
5336 <                            break;
5883 <                        }
5884 <                        t = (MapReduceEntriesTask<K,V,U>)par;
5326 >                CountedCompleter<?> c;
5327 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5328 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5329 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5330 >                        s = t.rights;
5331 >                    while (s != null) {
5332 >                        U tr, sr;
5333 >                        if ((sr = s.result) != null)
5334 >                            t.result = (((tr = t.result) == null) ? sr :
5335 >                                        reducer.apply(tr, sr));
5336 >                        s = t.rights = s.nextRight;
5337                      }
5886                    else if (t.casPending(c, c - 1))
5887                        break;
5338                  }
5889            } catch (Throwable ex) {
5890                return tryCompleteComputation(ex);
5891            }
5892            MapReduceEntriesTask<K,V,U> s = rights;
5893            if (s != null && !inForkJoinPool()) {
5894                do  {
5895                    if (s.tryUnfork())
5896                        s.exec();
5897                } while ((s = s.nextRight) != null);
5339              }
5899            return false;
5340          }
5901        public final U getRawResult() { return result; }
5341      }
5342  
5343 <    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5343 >    @SuppressWarnings("serial")
5344 >    static final class MapReduceMappingsTask<K,V,U>
5345          extends BulkTask<K,V,U> {
5346          final BiFun<? super K, ? super V, ? extends U> transformer;
5347          final BiFun<? super U, ? super U, ? extends U> reducer;
5348          U result;
5349          MapReduceMappingsTask<K,V,U> rights, nextRight;
5350          MapReduceMappingsTask
5351 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5351 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5352               MapReduceMappingsTask<K,V,U> nextRight,
5353               BiFun<? super K, ? super V, ? extends U> transformer,
5354               BiFun<? super U, ? super U, ? extends U> reducer) {
5355 <            super(m, p, b); this.nextRight = nextRight;
5355 >            super(p, b, i, f, t); this.nextRight = nextRight;
5356              this.transformer = transformer;
5357              this.reducer = reducer;
5358          }
5359 <        @SuppressWarnings("unchecked") public final boolean exec() {
5360 <            final BiFun<? super K, ? super V, ? extends U> transformer =
5361 <                this.transformer;
5362 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5363 <                this.reducer;
5364 <            if (transformer == null || reducer == null)
5365 <                return abortOnNullFunction();
5366 <            try {
5367 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5928 <                    do {} while (!casPending(c = pending, c+1));
5359 >        public final U getRawResult() { return result; }
5360 >        public final void compute() {
5361 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5362 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5363 >            if ((transformer = this.transformer) != null &&
5364 >                (reducer = this.reducer) != null) {
5365 >                for (int i = baseIndex, f, h; batch > 0 &&
5366 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5367 >                    addToPendingCount(1);
5368                      (rights = new MapReduceMappingsTask<K,V,U>
5369 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5369 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5370 >                      rights, transformer, reducer)).fork();
5371                  }
5372 <                U r = null, u;
5373 <                Object v;
5374 <                while ((v = advance()) != null) {
5375 <                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5372 >                U r = null;
5373 >                for (Node<K,V> p; (p = advance()) != null; ) {
5374 >                    U u;
5375 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5376                          r = (r == null) ? u : reducer.apply(r, u);
5377                  }
5378                  result = r;
5379 <                for (MapReduceMappingsTask<K,V,U> t = this, s;;) {
5380 <                    int c; BulkTask<K,V,?> par; U tr, sr;
5381 <                    if ((c = t.pending) == 0) {
5382 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5383 <                            if ((sr = s.result) != null)
5384 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5385 <                        }
5386 <                        if ((par = t.parent) == null ||
5387 <                            !(par instanceof MapReduceMappingsTask)) {
5388 <                            t.quietlyComplete();
5389 <                            break;
5950 <                        }
5951 <                        t = (MapReduceMappingsTask<K,V,U>)par;
5379 >                CountedCompleter<?> c;
5380 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5381 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5382 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5383 >                        s = t.rights;
5384 >                    while (s != null) {
5385 >                        U tr, sr;
5386 >                        if ((sr = s.result) != null)
5387 >                            t.result = (((tr = t.result) == null) ? sr :
5388 >                                        reducer.apply(tr, sr));
5389 >                        s = t.rights = s.nextRight;
5390                      }
5953                    else if (t.casPending(c, c - 1))
5954                        break;
5391                  }
5956            } catch (Throwable ex) {
5957                return tryCompleteComputation(ex);
5958            }
5959            MapReduceMappingsTask<K,V,U> s = rights;
5960            if (s != null && !inForkJoinPool()) {
5961                do  {
5962                    if (s.tryUnfork())
5963                        s.exec();
5964                } while ((s = s.nextRight) != null);
5392              }
5966            return false;
5393          }
5968        public final U getRawResult() { return result; }
5394      }
5395  
5396 <    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5396 >    @SuppressWarnings("serial")
5397 >    static final class MapReduceKeysToDoubleTask<K,V>
5398          extends BulkTask<K,V,Double> {
5399          final ObjectToDouble<? super K> transformer;
5400          final DoubleByDoubleToDouble reducer;
# Line 5976 | Line 5402 | public class ConcurrentHashMapV8<K, V>
5402          double result;
5403          MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5404          MapReduceKeysToDoubleTask
5405 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5405 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5406               MapReduceKeysToDoubleTask<K,V> nextRight,
5407               ObjectToDouble<? super K> transformer,
5408               double basis,
5409               DoubleByDoubleToDouble reducer) {
5410 <            super(m, p, b); this.nextRight = nextRight;
5410 >            super(p, b, i, f, t); this.nextRight = nextRight;
5411              this.transformer = transformer;
5412              this.basis = basis; this.reducer = reducer;
5413          }
5414 <        @SuppressWarnings("unchecked") public final boolean exec() {
5415 <            final ObjectToDouble<? super K> transformer =
5416 <                this.transformer;
5417 <            final DoubleByDoubleToDouble reducer = this.reducer;
5418 <            if (transformer == null || reducer == null)
5419 <                return abortOnNullFunction();
5420 <            try {
5421 <                final double id = this.basis;
5422 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5423 <                    do {} while (!casPending(c = pending, c+1));
5414 >        public final Double getRawResult() { return result; }
5415 >        public final void compute() {
5416 >            final ObjectToDouble<? super K> transformer;
5417 >            final DoubleByDoubleToDouble reducer;
5418 >            if ((transformer = this.transformer) != null &&
5419 >                (reducer = this.reducer) != null) {
5420 >                double r = this.basis;
5421 >                for (int i = baseIndex, f, h; batch > 0 &&
5422 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5423 >                    addToPendingCount(1);
5424                      (rights = new MapReduceKeysToDoubleTask<K,V>
5425 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5425 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5426 >                      rights, transformer, r, reducer)).fork();
5427                  }
5428 <                double r = id;
5429 <                while (advance() != null)
6003 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
5428 >                for (Node<K,V> p; (p = advance()) != null; )
5429 >                    r = reducer.apply(r, transformer.apply(p.key));
5430                  result = r;
5431 <                for (MapReduceKeysToDoubleTask<K,V> t = this, s;;) {
5432 <                    int c; BulkTask<K,V,?> par;
5433 <                    if ((c = t.pending) == 0) {
5434 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5435 <                            t.result = reducer.apply(t.result, s.result);
5436 <                        }
5437 <                        if ((par = t.parent) == null ||
5438 <                            !(par instanceof MapReduceKeysToDoubleTask)) {
6013 <                            t.quietlyComplete();
6014 <                            break;
6015 <                        }
6016 <                        t = (MapReduceKeysToDoubleTask<K,V>)par;
5431 >                CountedCompleter<?> c;
5432 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5433 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5434 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5435 >                        s = t.rights;
5436 >                    while (s != null) {
5437 >                        t.result = reducer.apply(t.result, s.result);
5438 >                        s = t.rights = s.nextRight;
5439                      }
6018                    else if (t.casPending(c, c - 1))
6019                        break;
5440                  }
6021            } catch (Throwable ex) {
6022                return tryCompleteComputation(ex);
5441              }
6024            MapReduceKeysToDoubleTask<K,V> s = rights;
6025            if (s != null && !inForkJoinPool()) {
6026                do  {
6027                    if (s.tryUnfork())
6028                        s.exec();
6029                } while ((s = s.nextRight) != null);
6030            }
6031            return false;
5442          }
6033        public final Double getRawResult() { return result; }
5443      }
5444  
5445 <    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5445 >    @SuppressWarnings("serial")
5446 >    static final class MapReduceValuesToDoubleTask<K,V>
5447          extends BulkTask<K,V,Double> {
5448          final ObjectToDouble<? super V> transformer;
5449          final DoubleByDoubleToDouble reducer;
# Line 6041 | Line 5451 | public class ConcurrentHashMapV8<K, V>
5451          double result;
5452          MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5453          MapReduceValuesToDoubleTask
5454 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5454 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5455               MapReduceValuesToDoubleTask<K,V> nextRight,
5456               ObjectToDouble<? super V> transformer,
5457               double basis,
5458               DoubleByDoubleToDouble reducer) {
5459 <            super(m, p, b); this.nextRight = nextRight;
5459 >            super(p, b, i, f, t); this.nextRight = nextRight;
5460              this.transformer = transformer;
5461              this.basis = basis; this.reducer = reducer;
5462          }
5463 <        @SuppressWarnings("unchecked") public final boolean exec() {
5464 <            final ObjectToDouble<? super V> transformer =
5465 <                this.transformer;
5466 <            final DoubleByDoubleToDouble reducer = this.reducer;
5467 <            if (transformer == null || reducer == null)
5468 <                return abortOnNullFunction();
5469 <            try {
5470 <                final double id = this.basis;
5471 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5472 <                    do {} while (!casPending(c = pending, c+1));
5463 >        public final Double getRawResult() { return result; }
5464 >        public final void compute() {
5465 >            final ObjectToDouble<? super V> transformer;
5466 >            final DoubleByDoubleToDouble reducer;
5467 >            if ((transformer = this.transformer) != null &&
5468 >                (reducer = this.reducer) != null) {
5469 >                double r = this.basis;
5470 >                for (int i = baseIndex, f, h; batch > 0 &&
5471 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5472 >                    addToPendingCount(1);
5473                      (rights = new MapReduceValuesToDoubleTask<K,V>
5474 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5474 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5475 >                      rights, transformer, r, reducer)).fork();
5476                  }
5477 <                double r = id;
5478 <                Object v;
6068 <                while ((v = advance()) != null)
6069 <                    r = reducer.apply(r, transformer.apply((V)v));
5477 >                for (Node<K,V> p; (p = advance()) != null; )
5478 >                    r = reducer.apply(r, transformer.apply(p.val));
5479                  result = r;
5480 <                for (MapReduceValuesToDoubleTask<K,V> t = this, s;;) {
5481 <                    int c; BulkTask<K,V,?> par;
5482 <                    if ((c = t.pending) == 0) {
5483 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5484 <                            t.result = reducer.apply(t.result, s.result);
5485 <                        }
5486 <                        if ((par = t.parent) == null ||
5487 <                            !(par instanceof MapReduceValuesToDoubleTask)) {
6079 <                            t.quietlyComplete();
6080 <                            break;
6081 <                        }
6082 <                        t = (MapReduceValuesToDoubleTask<K,V>)par;
5480 >                CountedCompleter<?> c;
5481 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5482 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5483 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5484 >                        s = t.rights;
5485 >                    while (s != null) {
5486 >                        t.result = reducer.apply(t.result, s.result);
5487 >                        s = t.rights = s.nextRight;
5488                      }
6084                    else if (t.casPending(c, c - 1))
6085                        break;
5489                  }
6087            } catch (Throwable ex) {
6088                return tryCompleteComputation(ex);
5490              }
6090            MapReduceValuesToDoubleTask<K,V> s = rights;
6091            if (s != null && !inForkJoinPool()) {
6092                do  {
6093                    if (s.tryUnfork())
6094                        s.exec();
6095                } while ((s = s.nextRight) != null);
6096            }
6097            return false;
5491          }
6099        public final Double getRawResult() { return result; }
5492      }
5493  
5494 <    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
5494 >    @SuppressWarnings("serial")
5495 >    static final class MapReduceEntriesToDoubleTask<K,V>
5496          extends BulkTask<K,V,Double> {
5497          final ObjectToDouble<Map.Entry<K,V>> transformer;
5498          final DoubleByDoubleToDouble reducer;
# Line 6107 | Line 5500 | public class ConcurrentHashMapV8<K, V>
5500          double result;
5501          MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5502          MapReduceEntriesToDoubleTask
5503 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5503 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5504               MapReduceEntriesToDoubleTask<K,V> nextRight,
5505               ObjectToDouble<Map.Entry<K,V>> transformer,
5506               double basis,
5507               DoubleByDoubleToDouble reducer) {
5508 <            super(m, p, b); this.nextRight = nextRight;
5508 >            super(p, b, i, f, t); this.nextRight = nextRight;
5509              this.transformer = transformer;
5510              this.basis = basis; this.reducer = reducer;
5511          }
5512 <        @SuppressWarnings("unchecked") public final boolean exec() {
5513 <            final ObjectToDouble<Map.Entry<K,V>> transformer =
5514 <                this.transformer;
5515 <            final DoubleByDoubleToDouble reducer = this.reducer;
5516 <            if (transformer == null || reducer == null)
5517 <                return abortOnNullFunction();
5518 <            try {
5519 <                final double id = this.basis;
5520 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5521 <                    do {} while (!casPending(c = pending, c+1));
5512 >        public final Double getRawResult() { return result; }
5513 >        public final void compute() {
5514 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
5515 >            final DoubleByDoubleToDouble reducer;
5516 >            if ((transformer = this.transformer) != null &&
5517 >                (reducer = this.reducer) != null) {
5518 >                double r = this.basis;
5519 >                for (int i = baseIndex, f, h; batch > 0 &&
5520 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5521 >                    addToPendingCount(1);
5522                      (rights = new MapReduceEntriesToDoubleTask<K,V>
5523 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5523 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5524 >                      rights, transformer, r, reducer)).fork();
5525                  }
5526 <                double r = id;
5527 <                Object v;
6134 <                while ((v = advance()) != null)
6135 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5526 >                for (Node<K,V> p; (p = advance()) != null; )
5527 >                    r = reducer.apply(r, transformer.apply(p));
5528                  result = r;
5529 <                for (MapReduceEntriesToDoubleTask<K,V> t = this, s;;) {
5530 <                    int c; BulkTask<K,V,?> par;
5531 <                    if ((c = t.pending) == 0) {
5532 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5533 <                            t.result = reducer.apply(t.result, s.result);
5534 <                        }
5535 <                        if ((par = t.parent) == null ||
5536 <                            !(par instanceof MapReduceEntriesToDoubleTask)) {
6145 <                            t.quietlyComplete();
6146 <                            break;
6147 <                        }
6148 <                        t = (MapReduceEntriesToDoubleTask<K,V>)par;
5529 >                CountedCompleter<?> c;
5530 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5531 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5532 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5533 >                        s = t.rights;
5534 >                    while (s != null) {
5535 >                        t.result = reducer.apply(t.result, s.result);
5536 >                        s = t.rights = s.nextRight;
5537                      }
6150                    else if (t.casPending(c, c - 1))
6151                        break;
5538                  }
6153            } catch (Throwable ex) {
6154                return tryCompleteComputation(ex);
6155            }
6156            MapReduceEntriesToDoubleTask<K,V> s = rights;
6157            if (s != null && !inForkJoinPool()) {
6158                do  {
6159                    if (s.tryUnfork())
6160                        s.exec();
6161                } while ((s = s.nextRight) != null);
5539              }
6163            return false;
5540          }
6165        public final Double getRawResult() { return result; }
5541      }
5542  
5543 <    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
5543 >    @SuppressWarnings("serial")
5544 >    static final class MapReduceMappingsToDoubleTask<K,V>
5545          extends BulkTask<K,V,Double> {
5546          final ObjectByObjectToDouble<? super K, ? super V> transformer;
5547          final DoubleByDoubleToDouble reducer;
# Line 6173 | Line 5549 | public class ConcurrentHashMapV8<K, V>
5549          double result;
5550          MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5551          MapReduceMappingsToDoubleTask
5552 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5552 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5553               MapReduceMappingsToDoubleTask<K,V> nextRight,
5554               ObjectByObjectToDouble<? super K, ? super V> transformer,
5555               double basis,
5556               DoubleByDoubleToDouble reducer) {
5557 <            super(m, p, b); this.nextRight = nextRight;
5557 >            super(p, b, i, f, t); this.nextRight = nextRight;
5558              this.transformer = transformer;
5559              this.basis = basis; this.reducer = reducer;
5560          }
5561 <        @SuppressWarnings("unchecked") public final boolean exec() {
5562 <            final ObjectByObjectToDouble<? super K, ? super V> transformer =
5563 <                this.transformer;
5564 <            final DoubleByDoubleToDouble reducer = this.reducer;
5565 <            if (transformer == null || reducer == null)
5566 <                return abortOnNullFunction();
5567 <            try {
5568 <                final double id = this.basis;
5569 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5570 <                    do {} while (!casPending(c = pending, c+1));
5561 >        public final Double getRawResult() { return result; }
5562 >        public final void compute() {
5563 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
5564 >            final DoubleByDoubleToDouble reducer;
5565 >            if ((transformer = this.transformer) != null &&
5566 >                (reducer = this.reducer) != null) {
5567 >                double r = this.basis;
5568 >                for (int i = baseIndex, f, h; batch > 0 &&
5569 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5570 >                    addToPendingCount(1);
5571                      (rights = new MapReduceMappingsToDoubleTask<K,V>
5572 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5572 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5573 >                      rights, transformer, r, reducer)).fork();
5574                  }
5575 <                double r = id;
5576 <                Object v;
6200 <                while ((v = advance()) != null)
6201 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
5575 >                for (Node<K,V> p; (p = advance()) != null; )
5576 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5577                  result = r;
5578 <                for (MapReduceMappingsToDoubleTask<K,V> t = this, s;;) {
5579 <                    int c; BulkTask<K,V,?> par;
5580 <                    if ((c = t.pending) == 0) {
5581 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5582 <                            t.result = reducer.apply(t.result, s.result);
5583 <                        }
5584 <                        if ((par = t.parent) == null ||
5585 <                            !(par instanceof MapReduceMappingsToDoubleTask)) {
6211 <                            t.quietlyComplete();
6212 <                            break;
6213 <                        }
6214 <                        t = (MapReduceMappingsToDoubleTask<K,V>)par;
5578 >                CountedCompleter<?> c;
5579 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5580 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5581 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5582 >                        s = t.rights;
5583 >                    while (s != null) {
5584 >                        t.result = reducer.apply(t.result, s.result);
5585 >                        s = t.rights = s.nextRight;
5586                      }
6216                    else if (t.casPending(c, c - 1))
6217                        break;
5587                  }
6219            } catch (Throwable ex) {
6220                return tryCompleteComputation(ex);
5588              }
6222            MapReduceMappingsToDoubleTask<K,V> s = rights;
6223            if (s != null && !inForkJoinPool()) {
6224                do  {
6225                    if (s.tryUnfork())
6226                        s.exec();
6227                } while ((s = s.nextRight) != null);
6228            }
6229            return false;
5589          }
6231        public final Double getRawResult() { return result; }
5590      }
5591  
5592 <    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
5592 >    @SuppressWarnings("serial")
5593 >    static final class MapReduceKeysToLongTask<K,V>
5594          extends BulkTask<K,V,Long> {
5595          final ObjectToLong<? super K> transformer;
5596          final LongByLongToLong reducer;
# Line 6239 | Line 5598 | public class ConcurrentHashMapV8<K, V>
5598          long result;
5599          MapReduceKeysToLongTask<K,V> rights, nextRight;
5600          MapReduceKeysToLongTask
5601 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5601 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5602               MapReduceKeysToLongTask<K,V> nextRight,
5603               ObjectToLong<? super K> transformer,
5604               long basis,
5605               LongByLongToLong reducer) {
5606 <            super(m, p, b); this.nextRight = nextRight;
5606 >            super(p, b, i, f, t); this.nextRight = nextRight;
5607              this.transformer = transformer;
5608              this.basis = basis; this.reducer = reducer;
5609          }
5610 <        @SuppressWarnings("unchecked") public final boolean exec() {
5611 <            final ObjectToLong<? super K> transformer =
5612 <                this.transformer;
5613 <            final LongByLongToLong reducer = this.reducer;
5614 <            if (transformer == null || reducer == null)
5615 <                return abortOnNullFunction();
5616 <            try {
5617 <                final long id = this.basis;
5618 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5619 <                    do {} while (!casPending(c = pending, c+1));
5610 >        public final Long getRawResult() { return result; }
5611 >        public final void compute() {
5612 >            final ObjectToLong<? super K> transformer;
5613 >            final LongByLongToLong reducer;
5614 >            if ((transformer = this.transformer) != null &&
5615 >                (reducer = this.reducer) != null) {
5616 >                long r = this.basis;
5617 >                for (int i = baseIndex, f, h; batch > 0 &&
5618 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5619 >                    addToPendingCount(1);
5620                      (rights = new MapReduceKeysToLongTask<K,V>
5621 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5621 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5622 >                      rights, transformer, r, reducer)).fork();
5623                  }
5624 <                long r = id;
5625 <                while (advance() != null)
6266 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
5624 >                for (Node<K,V> p; (p = advance()) != null; )
5625 >                    r = reducer.apply(r, transformer.apply(p.key));
5626                  result = r;
5627 <                for (MapReduceKeysToLongTask<K,V> t = this, s;;) {
5628 <                    int c; BulkTask<K,V,?> par;
5629 <                    if ((c = t.pending) == 0) {
5630 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5631 <                            t.result = reducer.apply(t.result, s.result);
5632 <                        }
5633 <                        if ((par = t.parent) == null ||
5634 <                            !(par instanceof MapReduceKeysToLongTask)) {
6276 <                            t.quietlyComplete();
6277 <                            break;
6278 <                        }
6279 <                        t = (MapReduceKeysToLongTask<K,V>)par;
5627 >                CountedCompleter<?> c;
5628 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5629 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5630 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5631 >                        s = t.rights;
5632 >                    while (s != null) {
5633 >                        t.result = reducer.apply(t.result, s.result);
5634 >                        s = t.rights = s.nextRight;
5635                      }
6281                    else if (t.casPending(c, c - 1))
6282                        break;
5636                  }
6284            } catch (Throwable ex) {
6285                return tryCompleteComputation(ex);
6286            }
6287            MapReduceKeysToLongTask<K,V> s = rights;
6288            if (s != null && !inForkJoinPool()) {
6289                do  {
6290                    if (s.tryUnfork())
6291                        s.exec();
6292                } while ((s = s.nextRight) != null);
5637              }
6294            return false;
5638          }
6296        public final Long getRawResult() { return result; }
5639      }
5640  
5641 <    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
5641 >    @SuppressWarnings("serial")
5642 >    static final class MapReduceValuesToLongTask<K,V>
5643          extends BulkTask<K,V,Long> {
5644          final ObjectToLong<? super V> transformer;
5645          final LongByLongToLong reducer;
# Line 6304 | Line 5647 | public class ConcurrentHashMapV8<K, V>
5647          long result;
5648          MapReduceValuesToLongTask<K,V> rights, nextRight;
5649          MapReduceValuesToLongTask
5650 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5650 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5651               MapReduceValuesToLongTask<K,V> nextRight,
5652               ObjectToLong<? super V> transformer,
5653               long basis,
5654               LongByLongToLong reducer) {
5655 <            super(m, p, b); this.nextRight = nextRight;
5655 >            super(p, b, i, f, t); this.nextRight = nextRight;
5656              this.transformer = transformer;
5657              this.basis = basis; this.reducer = reducer;
5658          }
5659 <        @SuppressWarnings("unchecked") public final boolean exec() {
5660 <            final ObjectToLong<? super V> transformer =
5661 <                this.transformer;
5662 <            final LongByLongToLong reducer = this.reducer;
5663 <            if (transformer == null || reducer == null)
5664 <                return abortOnNullFunction();
5665 <            try {
5666 <                final long id = this.basis;
5667 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5668 <                    do {} while (!casPending(c = pending, c+1));
5659 >        public final Long getRawResult() { return result; }
5660 >        public final void compute() {
5661 >            final ObjectToLong<? super V> transformer;
5662 >            final LongByLongToLong reducer;
5663 >            if ((transformer = this.transformer) != null &&
5664 >                (reducer = this.reducer) != null) {
5665 >                long r = this.basis;
5666 >                for (int i = baseIndex, f, h; batch > 0 &&
5667 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5668 >                    addToPendingCount(1);
5669                      (rights = new MapReduceValuesToLongTask<K,V>
5670 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5670 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5671 >                      rights, transformer, r, reducer)).fork();
5672                  }
5673 <                long r = id;
5674 <                Object v;
6331 <                while ((v = advance()) != null)
6332 <                    r = reducer.apply(r, transformer.apply((V)v));
5673 >                for (Node<K,V> p; (p = advance()) != null; )
5674 >                    r = reducer.apply(r, transformer.apply(p.val));
5675                  result = r;
5676 <                for (MapReduceValuesToLongTask<K,V> t = this, s;;) {
5677 <                    int c; BulkTask<K,V,?> par;
5678 <                    if ((c = t.pending) == 0) {
5679 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5680 <                            t.result = reducer.apply(t.result, s.result);
5681 <                        }
5682 <                        if ((par = t.parent) == null ||
5683 <                            !(par instanceof MapReduceValuesToLongTask)) {
6342 <                            t.quietlyComplete();
6343 <                            break;
6344 <                        }
6345 <                        t = (MapReduceValuesToLongTask<K,V>)par;
5676 >                CountedCompleter<?> c;
5677 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5678 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5679 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5680 >                        s = t.rights;
5681 >                    while (s != null) {
5682 >                        t.result = reducer.apply(t.result, s.result);
5683 >                        s = t.rights = s.nextRight;
5684                      }
6347                    else if (t.casPending(c, c - 1))
6348                        break;
5685                  }
6350            } catch (Throwable ex) {
6351                return tryCompleteComputation(ex);
5686              }
6353            MapReduceValuesToLongTask<K,V> s = rights;
6354            if (s != null && !inForkJoinPool()) {
6355                do  {
6356                    if (s.tryUnfork())
6357                        s.exec();
6358                } while ((s = s.nextRight) != null);
6359            }
6360            return false;
5687          }
6362        public final Long getRawResult() { return result; }
5688      }
5689  
5690 <    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
5690 >    @SuppressWarnings("serial")
5691 >    static final class MapReduceEntriesToLongTask<K,V>
5692          extends BulkTask<K,V,Long> {
5693          final ObjectToLong<Map.Entry<K,V>> transformer;
5694          final LongByLongToLong reducer;
# Line 6370 | Line 5696 | public class ConcurrentHashMapV8<K, V>
5696          long result;
5697          MapReduceEntriesToLongTask<K,V> rights, nextRight;
5698          MapReduceEntriesToLongTask
5699 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5699 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5700               MapReduceEntriesToLongTask<K,V> nextRight,
5701               ObjectToLong<Map.Entry<K,V>> transformer,
5702               long basis,
5703               LongByLongToLong reducer) {
5704 <            super(m, p, b); this.nextRight = nextRight;
5704 >            super(p, b, i, f, t); this.nextRight = nextRight;
5705              this.transformer = transformer;
5706              this.basis = basis; this.reducer = reducer;
5707          }
5708 <        @SuppressWarnings("unchecked") public final boolean exec() {
5709 <            final ObjectToLong<Map.Entry<K,V>> transformer =
5710 <                this.transformer;
5711 <            final LongByLongToLong reducer = this.reducer;
5712 <            if (transformer == null || reducer == null)
5713 <                return abortOnNullFunction();
5714 <            try {
5715 <                final long id = this.basis;
5716 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5717 <                    do {} while (!casPending(c = pending, c+1));
5708 >        public final Long getRawResult() { return result; }
5709 >        public final void compute() {
5710 >            final ObjectToLong<Map.Entry<K,V>> transformer;
5711 >            final LongByLongToLong reducer;
5712 >            if ((transformer = this.transformer) != null &&
5713 >                (reducer = this.reducer) != null) {
5714 >                long r = this.basis;
5715 >                for (int i = baseIndex, f, h; batch > 0 &&
5716 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5717 >                    addToPendingCount(1);
5718                      (rights = new MapReduceEntriesToLongTask<K,V>
5719 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5719 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5720 >                      rights, transformer, r, reducer)).fork();
5721                  }
5722 <                long r = id;
5723 <                Object v;
6397 <                while ((v = advance()) != null)
6398 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5722 >                for (Node<K,V> p; (p = advance()) != null; )
5723 >                    r = reducer.apply(r, transformer.apply(p));
5724                  result = r;
5725 <                for (MapReduceEntriesToLongTask<K,V> t = this, s;;) {
5726 <                    int c; BulkTask<K,V,?> par;
5727 <                    if ((c = t.pending) == 0) {
5728 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5729 <                            t.result = reducer.apply(t.result, s.result);
5730 <                        }
5731 <                        if ((par = t.parent) == null ||
5732 <                            !(par instanceof MapReduceEntriesToLongTask)) {
6408 <                            t.quietlyComplete();
6409 <                            break;
6410 <                        }
6411 <                        t = (MapReduceEntriesToLongTask<K,V>)par;
5725 >                CountedCompleter<?> c;
5726 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5727 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5728 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5729 >                        s = t.rights;
5730 >                    while (s != null) {
5731 >                        t.result = reducer.apply(t.result, s.result);
5732 >                        s = t.rights = s.nextRight;
5733                      }
6413                    else if (t.casPending(c, c - 1))
6414                        break;
5734                  }
6416            } catch (Throwable ex) {
6417                return tryCompleteComputation(ex);
6418            }
6419            MapReduceEntriesToLongTask<K,V> s = rights;
6420            if (s != null && !inForkJoinPool()) {
6421                do  {
6422                    if (s.tryUnfork())
6423                        s.exec();
6424                } while ((s = s.nextRight) != null);
5735              }
6426            return false;
5736          }
6428        public final Long getRawResult() { return result; }
5737      }
5738  
5739 <    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
5739 >    @SuppressWarnings("serial")
5740 >    static final class MapReduceMappingsToLongTask<K,V>
5741          extends BulkTask<K,V,Long> {
5742          final ObjectByObjectToLong<? super K, ? super V> transformer;
5743          final LongByLongToLong reducer;
# Line 6436 | Line 5745 | public class ConcurrentHashMapV8<K, V>
5745          long result;
5746          MapReduceMappingsToLongTask<K,V> rights, nextRight;
5747          MapReduceMappingsToLongTask
5748 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5748 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5749               MapReduceMappingsToLongTask<K,V> nextRight,
5750               ObjectByObjectToLong<? super K, ? super V> transformer,
5751               long basis,
5752               LongByLongToLong reducer) {
5753 <            super(m, p, b); this.nextRight = nextRight;
5753 >            super(p, b, i, f, t); this.nextRight = nextRight;
5754              this.transformer = transformer;
5755              this.basis = basis; this.reducer = reducer;
5756          }
5757 <        @SuppressWarnings("unchecked") public final boolean exec() {
5758 <            final ObjectByObjectToLong<? super K, ? super V> transformer =
5759 <                this.transformer;
5760 <            final LongByLongToLong reducer = this.reducer;
5761 <            if (transformer == null || reducer == null)
5762 <                return abortOnNullFunction();
5763 <            try {
5764 <                final long id = this.basis;
5765 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5766 <                    do {} while (!casPending(c = pending, c+1));
5757 >        public final Long getRawResult() { return result; }
5758 >        public final void compute() {
5759 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
5760 >            final LongByLongToLong reducer;
5761 >            if ((transformer = this.transformer) != null &&
5762 >                (reducer = this.reducer) != null) {
5763 >                long r = this.basis;
5764 >                for (int i = baseIndex, f, h; batch > 0 &&
5765 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5766 >                    addToPendingCount(1);
5767                      (rights = new MapReduceMappingsToLongTask<K,V>
5768 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5768 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5769 >                      rights, transformer, r, reducer)).fork();
5770                  }
5771 <                long r = id;
5772 <                Object v;
6463 <                while ((v = advance()) != null)
6464 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
5771 >                for (Node<K,V> p; (p = advance()) != null; )
5772 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5773                  result = r;
5774 <                for (MapReduceMappingsToLongTask<K,V> t = this, s;;) {
5775 <                    int c; BulkTask<K,V,?> par;
5776 <                    if ((c = t.pending) == 0) {
5777 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5778 <                            t.result = reducer.apply(t.result, s.result);
5779 <                        }
5780 <                        if ((par = t.parent) == null ||
5781 <                            !(par instanceof MapReduceMappingsToLongTask)) {
6474 <                            t.quietlyComplete();
6475 <                            break;
6476 <                        }
6477 <                        t = (MapReduceMappingsToLongTask<K,V>)par;
5774 >                CountedCompleter<?> c;
5775 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5776 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5777 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
5778 >                        s = t.rights;
5779 >                    while (s != null) {
5780 >                        t.result = reducer.apply(t.result, s.result);
5781 >                        s = t.rights = s.nextRight;
5782                      }
6479                    else if (t.casPending(c, c - 1))
6480                        break;
5783                  }
6482            } catch (Throwable ex) {
6483                return tryCompleteComputation(ex);
6484            }
6485            MapReduceMappingsToLongTask<K,V> s = rights;
6486            if (s != null && !inForkJoinPool()) {
6487                do  {
6488                    if (s.tryUnfork())
6489                        s.exec();
6490                } while ((s = s.nextRight) != null);
5784              }
6492            return false;
5785          }
6494        public final Long getRawResult() { return result; }
5786      }
5787  
5788 <    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
5788 >    @SuppressWarnings("serial")
5789 >    static final class MapReduceKeysToIntTask<K,V>
5790          extends BulkTask<K,V,Integer> {
5791          final ObjectToInt<? super K> transformer;
5792          final IntByIntToInt reducer;
# Line 6502 | Line 5794 | public class ConcurrentHashMapV8<K, V>
5794          int result;
5795          MapReduceKeysToIntTask<K,V> rights, nextRight;
5796          MapReduceKeysToIntTask
5797 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5797 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5798               MapReduceKeysToIntTask<K,V> nextRight,
5799               ObjectToInt<? super K> transformer,
5800               int basis,
5801               IntByIntToInt reducer) {
5802 <            super(m, p, b); this.nextRight = nextRight;
5802 >            super(p, b, i, f, t); this.nextRight = nextRight;
5803              this.transformer = transformer;
5804              this.basis = basis; this.reducer = reducer;
5805          }
5806 <        @SuppressWarnings("unchecked") public final boolean exec() {
5807 <            final ObjectToInt<? super K> transformer =
5808 <                this.transformer;
5809 <            final IntByIntToInt reducer = this.reducer;
5810 <            if (transformer == null || reducer == null)
5811 <                return abortOnNullFunction();
5812 <            try {
5813 <                final int id = this.basis;
5814 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5815 <                    do {} while (!casPending(c = pending, c+1));
5806 >        public final Integer getRawResult() { return result; }
5807 >        public final void compute() {
5808 >            final ObjectToInt<? super K> transformer;
5809 >            final IntByIntToInt reducer;
5810 >            if ((transformer = this.transformer) != null &&
5811 >                (reducer = this.reducer) != null) {
5812 >                int r = this.basis;
5813 >                for (int i = baseIndex, f, h; batch > 0 &&
5814 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5815 >                    addToPendingCount(1);
5816                      (rights = new MapReduceKeysToIntTask<K,V>
5817 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5817 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5818 >                      rights, transformer, r, reducer)).fork();
5819                  }
5820 <                int r = id;
5821 <                while (advance() != null)
6529 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
5820 >                for (Node<K,V> p; (p = advance()) != null; )
5821 >                    r = reducer.apply(r, transformer.apply(p.key));
5822                  result = r;
5823 <                for (MapReduceKeysToIntTask<K,V> t = this, s;;) {
5824 <                    int c; BulkTask<K,V,?> par;
5825 <                    if ((c = t.pending) == 0) {
5826 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5827 <                            t.result = reducer.apply(t.result, s.result);
5828 <                        }
5829 <                        if ((par = t.parent) == null ||
5830 <                            !(par instanceof MapReduceKeysToIntTask)) {
6539 <                            t.quietlyComplete();
6540 <                            break;
6541 <                        }
6542 <                        t = (MapReduceKeysToIntTask<K,V>)par;
5823 >                CountedCompleter<?> c;
5824 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5825 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5826 >                        t = (MapReduceKeysToIntTask<K,V>)c,
5827 >                        s = t.rights;
5828 >                    while (s != null) {
5829 >                        t.result = reducer.apply(t.result, s.result);
5830 >                        s = t.rights = s.nextRight;
5831                      }
6544                    else if (t.casPending(c, c - 1))
6545                        break;
5832                  }
6547            } catch (Throwable ex) {
6548                return tryCompleteComputation(ex);
6549            }
6550            MapReduceKeysToIntTask<K,V> s = rights;
6551            if (s != null && !inForkJoinPool()) {
6552                do  {
6553                    if (s.tryUnfork())
6554                        s.exec();
6555                } while ((s = s.nextRight) != null);
5833              }
6557            return false;
5834          }
6559        public final Integer getRawResult() { return result; }
5835      }
5836  
5837 <    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
5837 >    @SuppressWarnings("serial")
5838 >    static final class MapReduceValuesToIntTask<K,V>
5839          extends BulkTask<K,V,Integer> {
5840          final ObjectToInt<? super V> transformer;
5841          final IntByIntToInt reducer;
# Line 6567 | Line 5843 | public class ConcurrentHashMapV8<K, V>
5843          int result;
5844          MapReduceValuesToIntTask<K,V> rights, nextRight;
5845          MapReduceValuesToIntTask
5846 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5846 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5847               MapReduceValuesToIntTask<K,V> nextRight,
5848               ObjectToInt<? super V> transformer,
5849               int basis,
5850               IntByIntToInt reducer) {
5851 <            super(m, p, b); this.nextRight = nextRight;
5851 >            super(p, b, i, f, t); this.nextRight = nextRight;
5852              this.transformer = transformer;
5853              this.basis = basis; this.reducer = reducer;
5854          }
5855 <        @SuppressWarnings("unchecked") public final boolean exec() {
5856 <            final ObjectToInt<? super V> transformer =
5857 <                this.transformer;
5858 <            final IntByIntToInt reducer = this.reducer;
5859 <            if (transformer == null || reducer == null)
5860 <                return abortOnNullFunction();
5861 <            try {
5862 <                final int id = this.basis;
5863 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5864 <                    do {} while (!casPending(c = pending, c+1));
5855 >        public final Integer getRawResult() { return result; }
5856 >        public final void compute() {
5857 >            final ObjectToInt<? super V> transformer;
5858 >            final IntByIntToInt reducer;
5859 >            if ((transformer = this.transformer) != null &&
5860 >                (reducer = this.reducer) != null) {
5861 >                int r = this.basis;
5862 >                for (int i = baseIndex, f, h; batch > 0 &&
5863 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5864 >                    addToPendingCount(1);
5865                      (rights = new MapReduceValuesToIntTask<K,V>
5866 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5866 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5867 >                      rights, transformer, r, reducer)).fork();
5868                  }
5869 <                int r = id;
5870 <                Object v;
6594 <                while ((v = advance()) != null)
6595 <                    r = reducer.apply(r, transformer.apply((V)v));
5869 >                for (Node<K,V> p; (p = advance()) != null; )
5870 >                    r = reducer.apply(r, transformer.apply(p.val));
5871                  result = r;
5872 <                for (MapReduceValuesToIntTask<K,V> t = this, s;;) {
5873 <                    int c; BulkTask<K,V,?> par;
5874 <                    if ((c = t.pending) == 0) {
5875 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5876 <                            t.result = reducer.apply(t.result, s.result);
5877 <                        }
5878 <                        if ((par = t.parent) == null ||
5879 <                            !(par instanceof MapReduceValuesToIntTask)) {
6605 <                            t.quietlyComplete();
6606 <                            break;
6607 <                        }
6608 <                        t = (MapReduceValuesToIntTask<K,V>)par;
5872 >                CountedCompleter<?> c;
5873 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5874 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5875 >                        t = (MapReduceValuesToIntTask<K,V>)c,
5876 >                        s = t.rights;
5877 >                    while (s != null) {
5878 >                        t.result = reducer.apply(t.result, s.result);
5879 >                        s = t.rights = s.nextRight;
5880                      }
6610                    else if (t.casPending(c, c - 1))
6611                        break;
5881                  }
6613            } catch (Throwable ex) {
6614                return tryCompleteComputation(ex);
5882              }
6616            MapReduceValuesToIntTask<K,V> s = rights;
6617            if (s != null && !inForkJoinPool()) {
6618                do  {
6619                    if (s.tryUnfork())
6620                        s.exec();
6621                } while ((s = s.nextRight) != null);
6622            }
6623            return false;
5883          }
6625        public final Integer getRawResult() { return result; }
5884      }
5885  
5886 <    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
5886 >    @SuppressWarnings("serial")
5887 >    static final class MapReduceEntriesToIntTask<K,V>
5888          extends BulkTask<K,V,Integer> {
5889          final ObjectToInt<Map.Entry<K,V>> transformer;
5890          final IntByIntToInt reducer;
# Line 6633 | Line 5892 | public class ConcurrentHashMapV8<K, V>
5892          int result;
5893          MapReduceEntriesToIntTask<K,V> rights, nextRight;
5894          MapReduceEntriesToIntTask
5895 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5895 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5896               MapReduceEntriesToIntTask<K,V> nextRight,
5897               ObjectToInt<Map.Entry<K,V>> transformer,
5898               int basis,
5899               IntByIntToInt reducer) {
5900 <            super(m, p, b); this.nextRight = nextRight;
5900 >            super(p, b, i, f, t); this.nextRight = nextRight;
5901              this.transformer = transformer;
5902              this.basis = basis; this.reducer = reducer;
5903          }
5904 <        @SuppressWarnings("unchecked") public final boolean exec() {
5905 <            final ObjectToInt<Map.Entry<K,V>> transformer =
5906 <                this.transformer;
5907 <            final IntByIntToInt reducer = this.reducer;
5908 <            if (transformer == null || reducer == null)
5909 <                return abortOnNullFunction();
5910 <            try {
5911 <                final int id = this.basis;
5912 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5913 <                    do {} while (!casPending(c = pending, c+1));
5904 >        public final Integer getRawResult() { return result; }
5905 >        public final void compute() {
5906 >            final ObjectToInt<Map.Entry<K,V>> transformer;
5907 >            final IntByIntToInt reducer;
5908 >            if ((transformer = this.transformer) != null &&
5909 >                (reducer = this.reducer) != null) {
5910 >                int r = this.basis;
5911 >                for (int i = baseIndex, f, h; batch > 0 &&
5912 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5913 >                    addToPendingCount(1);
5914                      (rights = new MapReduceEntriesToIntTask<K,V>
5915 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5915 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5916 >                      rights, transformer, r, reducer)).fork();
5917                  }
5918 <                int r = id;
5919 <                Object v;
6660 <                while ((v = advance()) != null)
6661 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5918 >                for (Node<K,V> p; (p = advance()) != null; )
5919 >                    r = reducer.apply(r, transformer.apply(p));
5920                  result = r;
5921 <                for (MapReduceEntriesToIntTask<K,V> t = this, s;;) {
5922 <                    int c; BulkTask<K,V,?> par;
5923 <                    if ((c = t.pending) == 0) {
5924 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5925 <                            t.result = reducer.apply(t.result, s.result);
5926 <                        }
5927 <                        if ((par = t.parent) == null ||
5928 <                            !(par instanceof MapReduceEntriesToIntTask)) {
6671 <                            t.quietlyComplete();
6672 <                            break;
6673 <                        }
6674 <                        t = (MapReduceEntriesToIntTask<K,V>)par;
5921 >                CountedCompleter<?> c;
5922 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5923 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5924 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
5925 >                        s = t.rights;
5926 >                    while (s != null) {
5927 >                        t.result = reducer.apply(t.result, s.result);
5928 >                        s = t.rights = s.nextRight;
5929                      }
6676                    else if (t.casPending(c, c - 1))
6677                        break;
5930                  }
6679            } catch (Throwable ex) {
6680                return tryCompleteComputation(ex);
5931              }
6682            MapReduceEntriesToIntTask<K,V> s = rights;
6683            if (s != null && !inForkJoinPool()) {
6684                do  {
6685                    if (s.tryUnfork())
6686                        s.exec();
6687                } while ((s = s.nextRight) != null);
6688            }
6689            return false;
5932          }
6691        public final Integer getRawResult() { return result; }
5933      }
5934  
5935 <    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
5935 >    @SuppressWarnings("serial")
5936 >    static final class MapReduceMappingsToIntTask<K,V>
5937          extends BulkTask<K,V,Integer> {
5938          final ObjectByObjectToInt<? super K, ? super V> transformer;
5939          final IntByIntToInt reducer;
# Line 6699 | Line 5941 | public class ConcurrentHashMapV8<K, V>
5941          int result;
5942          MapReduceMappingsToIntTask<K,V> rights, nextRight;
5943          MapReduceMappingsToIntTask
5944 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5945 <             MapReduceMappingsToIntTask<K,V> rights,
5944 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5945 >             MapReduceMappingsToIntTask<K,V> nextRight,
5946               ObjectByObjectToInt<? super K, ? super V> transformer,
5947               int basis,
5948               IntByIntToInt reducer) {
5949 <            super(m, p, b); this.nextRight = nextRight;
5949 >            super(p, b, i, f, t); this.nextRight = nextRight;
5950              this.transformer = transformer;
5951              this.basis = basis; this.reducer = reducer;
5952          }
5953 <        @SuppressWarnings("unchecked") public final boolean exec() {
5954 <            final ObjectByObjectToInt<? super K, ? super V> transformer =
5955 <                this.transformer;
5956 <            final IntByIntToInt reducer = this.reducer;
5957 <            if (transformer == null || reducer == null)
5958 <                return abortOnNullFunction();
5959 <            try {
5960 <                final int id = this.basis;
5961 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5962 <                    do {} while (!casPending(c = pending, c+1));
5953 >        public final Integer getRawResult() { return result; }
5954 >        public final void compute() {
5955 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
5956 >            final IntByIntToInt reducer;
5957 >            if ((transformer = this.transformer) != null &&
5958 >                (reducer = this.reducer) != null) {
5959 >                int r = this.basis;
5960 >                for (int i = baseIndex, f, h; batch > 0 &&
5961 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5962 >                    addToPendingCount(1);
5963                      (rights = new MapReduceMappingsToIntTask<K,V>
5964 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5964 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5965 >                      rights, transformer, r, reducer)).fork();
5966                  }
5967 <                int r = id;
5968 <                Object v;
6726 <                while ((v = advance()) != null)
6727 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
5967 >                for (Node<K,V> p; (p = advance()) != null; )
5968 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5969                  result = r;
5970 <                for (MapReduceMappingsToIntTask<K,V> t = this, s;;) {
5971 <                    int c; BulkTask<K,V,?> par;
5972 <                    if ((c = t.pending) == 0) {
5973 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5974 <                            t.result = reducer.apply(t.result, s.result);
5975 <                        }
5976 <                        if ((par = t.parent) == null ||
5977 <                            !(par instanceof MapReduceMappingsToIntTask)) {
6737 <                            t.quietlyComplete();
6738 <                            break;
6739 <                        }
6740 <                        t = (MapReduceMappingsToIntTask<K,V>)par;
5970 >                CountedCompleter<?> c;
5971 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5972 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
5973 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
5974 >                        s = t.rights;
5975 >                    while (s != null) {
5976 >                        t.result = reducer.apply(t.result, s.result);
5977 >                        s = t.rights = s.nextRight;
5978                      }
6742                    else if (t.casPending(c, c - 1))
6743                        break;
5979                  }
6745            } catch (Throwable ex) {
6746                return tryCompleteComputation(ex);
5980              }
5981 <            MapReduceMappingsToIntTask<K,V> s = rights;
5982 <            if (s != null && !inForkJoinPool()) {
5983 <                do  {
5984 <                    if (s.tryUnfork())
5985 <                        s.exec();
5986 <                } while ((s = s.nextRight) != null);
5981 >        }
5982 >    }
5983 >
5984 >    /* ---------------- Counters -------------- */
5985 >
5986 >    // Adapted from LongAdder and Striped64.
5987 >    // See their internal docs for explanation.
5988 >
5989 >    // A padded cell for distributing counts
5990 >    static final class CounterCell {
5991 >        volatile long p0, p1, p2, p3, p4, p5, p6;
5992 >        volatile long value;
5993 >        volatile long q0, q1, q2, q3, q4, q5, q6;
5994 >        CounterCell(long x) { value = x; }
5995 >    }
5996 >
5997 >    /**
5998 >     * Holder for the thread-local hash code determining which
5999 >     * CounterCell to use. The code is initialized via the
6000 >     * counterHashCodeGenerator, but may be moved upon collisions.
6001 >     */
6002 >    static final class CounterHashCode {
6003 >        int code;
6004 >    }
6005 >
6006 >    /**
6007 >     * Generates initial value for per-thread CounterHashCodes.
6008 >     */
6009 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6010 >
6011 >    /**
6012 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
6013 >     * for explanation.
6014 >     */
6015 >    static final int SEED_INCREMENT = 0x61c88647;
6016 >
6017 >    /**
6018 >     * Per-thread counter hash codes. Shared across all instances.
6019 >     */
6020 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6021 >        new ThreadLocal<CounterHashCode>();
6022 >
6023 >
6024 >    final long sumCount() {
6025 >        CounterCell[] as = counterCells; CounterCell a;
6026 >        long sum = baseCount;
6027 >        if (as != null) {
6028 >            for (int i = 0; i < as.length; ++i) {
6029 >                if ((a = as[i]) != null)
6030 >                    sum += a.value;
6031              }
6755            return false;
6032          }
6033 <        public final Integer getRawResult() { return result; }
6033 >        return sum;
6034      }
6035  
6036 +    // See LongAdder version for explanation
6037 +    private final void fullAddCount(long x, CounterHashCode hc,
6038 +                                    boolean wasUncontended) {
6039 +        int h;
6040 +        if (hc == null) {
6041 +            hc = new CounterHashCode();
6042 +            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6043 +            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6044 +            threadCounterHashCode.set(hc);
6045 +        }
6046 +        else
6047 +            h = hc.code;
6048 +        boolean collide = false;                // True if last slot nonempty
6049 +        for (;;) {
6050 +            CounterCell[] as; CounterCell a; int n; long v;
6051 +            if ((as = counterCells) != null && (n = as.length) > 0) {
6052 +                if ((a = as[(n - 1) & h]) == null) {
6053 +                    if (cellsBusy == 0) {            // Try to attach new Cell
6054 +                        CounterCell r = new CounterCell(x); // Optimistic create
6055 +                        if (cellsBusy == 0 &&
6056 +                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6057 +                            boolean created = false;
6058 +                            try {               // Recheck under lock
6059 +                                CounterCell[] rs; int m, j;
6060 +                                if ((rs = counterCells) != null &&
6061 +                                    (m = rs.length) > 0 &&
6062 +                                    rs[j = (m - 1) & h] == null) {
6063 +                                    rs[j] = r;
6064 +                                    created = true;
6065 +                                }
6066 +                            } finally {
6067 +                                cellsBusy = 0;
6068 +                            }
6069 +                            if (created)
6070 +                                break;
6071 +                            continue;           // Slot is now non-empty
6072 +                        }
6073 +                    }
6074 +                    collide = false;
6075 +                }
6076 +                else if (!wasUncontended)       // CAS already known to fail
6077 +                    wasUncontended = true;      // Continue after rehash
6078 +                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6079 +                    break;
6080 +                else if (counterCells != as || n >= NCPU)
6081 +                    collide = false;            // At max size or stale
6082 +                else if (!collide)
6083 +                    collide = true;
6084 +                else if (cellsBusy == 0 &&
6085 +                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6086 +                    try {
6087 +                        if (counterCells == as) {// Expand table unless stale
6088 +                            CounterCell[] rs = new CounterCell[n << 1];
6089 +                            for (int i = 0; i < n; ++i)
6090 +                                rs[i] = as[i];
6091 +                            counterCells = rs;
6092 +                        }
6093 +                    } finally {
6094 +                        cellsBusy = 0;
6095 +                    }
6096 +                    collide = false;
6097 +                    continue;                   // Retry with expanded table
6098 +                }
6099 +                h ^= h << 13;                   // Rehash
6100 +                h ^= h >>> 17;
6101 +                h ^= h << 5;
6102 +            }
6103 +            else if (cellsBusy == 0 && counterCells == as &&
6104 +                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6105 +                boolean init = false;
6106 +                try {                           // Initialize table
6107 +                    if (counterCells == as) {
6108 +                        CounterCell[] rs = new CounterCell[2];
6109 +                        rs[h & 1] = new CounterCell(x);
6110 +                        counterCells = rs;
6111 +                        init = true;
6112 +                    }
6113 +                } finally {
6114 +                    cellsBusy = 0;
6115 +                }
6116 +                if (init)
6117 +                    break;
6118 +            }
6119 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6120 +                break;                          // Fall back on using base
6121 +        }
6122 +        hc.code = h;                            // Record index for next time
6123 +    }
6124  
6125      // Unsafe mechanics
6126 <    private static final sun.misc.Unsafe UNSAFE;
6127 <    private static final long counterOffset;
6128 <    private static final long sizeCtlOffset;
6126 >    private static final sun.misc.Unsafe U;
6127 >    private static final long SIZECTL;
6128 >    private static final long TRANSFERINDEX;
6129 >    private static final long TRANSFERORIGIN;
6130 >    private static final long BASECOUNT;
6131 >    private static final long CELLSBUSY;
6132 >    private static final long CELLVALUE;
6133      private static final long ABASE;
6134      private static final int ASHIFT;
6135  
6136      static {
6769        int ss;
6137          try {
6138 <            UNSAFE = getUnsafe();
6138 >            U = getUnsafe();
6139              Class<?> k = ConcurrentHashMapV8.class;
6140 <            counterOffset = UNSAFE.objectFieldOffset
6774 <                (k.getDeclaredField("counter"));
6775 <            sizeCtlOffset = UNSAFE.objectFieldOffset
6140 >            SIZECTL = U.objectFieldOffset
6141                  (k.getDeclaredField("sizeCtl"));
6142 <            Class<?> sc = Node[].class;
6143 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6144 <            ss = UNSAFE.arrayIndexScale(sc);
6142 >            TRANSFERINDEX = U.objectFieldOffset
6143 >                (k.getDeclaredField("transferIndex"));
6144 >            TRANSFERORIGIN = U.objectFieldOffset
6145 >                (k.getDeclaredField("transferOrigin"));
6146 >            BASECOUNT = U.objectFieldOffset
6147 >                (k.getDeclaredField("baseCount"));
6148 >            CELLSBUSY = U.objectFieldOffset
6149 >                (k.getDeclaredField("cellsBusy"));
6150 >            Class<?> ck = CounterCell.class;
6151 >            CELLVALUE = U.objectFieldOffset
6152 >                (ck.getDeclaredField("value"));
6153 >            Class<?> ak = Node[].class;
6154 >            ABASE = U.arrayBaseOffset(ak);
6155 >            int scale = U.arrayIndexScale(ak);
6156 >            if ((scale & (scale - 1)) != 0)
6157 >                throw new Error("data type scale not a power of two");
6158 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6159          } catch (Exception e) {
6160              throw new Error(e);
6161          }
6783        if ((ss & (ss-1)) != 0)
6784            throw new Error("data type scale not a power of two");
6785        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6162      }
6163  
6164      /**
# Line 6795 | Line 6171 | public class ConcurrentHashMapV8<K, V>
6171      private static sun.misc.Unsafe getUnsafe() {
6172          try {
6173              return sun.misc.Unsafe.getUnsafe();
6174 <        } catch (SecurityException se) {
6175 <            try {
6176 <                return java.security.AccessController.doPrivileged
6177 <                    (new java.security
6178 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6179 <                        public sun.misc.Unsafe run() throws Exception {
6180 <                            java.lang.reflect.Field f = sun.misc
6181 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6182 <                            f.setAccessible(true);
6183 <                            return (sun.misc.Unsafe) f.get(null);
6184 <                        }});
6185 <            } catch (java.security.PrivilegedActionException e) {
6186 <                throw new RuntimeException("Could not initialize intrinsics",
6187 <                                           e.getCause());
6188 <            }
6174 >        } catch (SecurityException tryReflectionInstead) {}
6175 >        try {
6176 >            return java.security.AccessController.doPrivileged
6177 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6178 >                public sun.misc.Unsafe run() throws Exception {
6179 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6180 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6181 >                        f.setAccessible(true);
6182 >                        Object x = f.get(null);
6183 >                        if (k.isInstance(x))
6184 >                            return k.cast(x);
6185 >                    }
6186 >                    throw new NoSuchFieldError("the Unsafe");
6187 >                }});
6188 >        } catch (java.security.PrivilegedActionException e) {
6189 >            throw new RuntimeException("Could not initialize intrinsics",
6190 >                                       e.getCause());
6191          }
6192      }
6193   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines