ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.12 by jsr166, Tue Aug 30 18:31:54 2011 UTC vs.
Revision 1.76 by jsr166, Fri Nov 9 03:30:03 2012 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166e;
8 < import jsr166e.LongAdder;
8 >
9 > import java.util.Comparator;
10 > import java.util.Arrays;
11   import java.util.Map;
12   import java.util.Set;
13   import java.util.Collection;
# Line 19 | Line 21 | import java.util.Enumeration;
21   import java.util.ConcurrentModificationException;
22   import java.util.NoSuchElementException;
23   import java.util.concurrent.ConcurrentMap;
24 + import java.util.concurrent.ThreadLocalRandom;
25 + import java.util.concurrent.locks.LockSupport;
26 + import java.util.concurrent.locks.AbstractQueuedSynchronizer;
27 + import java.util.concurrent.atomic.AtomicReference;
28 +
29   import java.io.Serializable;
30  
31   /**
# Line 37 | Line 44 | import java.io.Serializable;
44   * block, so may overlap with update operations (including {@code put}
45   * and {@code remove}). Retrievals reflect the results of the most
46   * recently <em>completed</em> update operations holding upon their
47 < * onset.  For aggregate operations such as {@code putAll} and {@code
48 < * clear}, concurrent retrievals may reflect insertion or removal of
49 < * only some entries.  Similarly, Iterators and Enumerations return
50 < * elements reflecting the state of the hash table at some point at or
51 < * since the creation of the iterator/enumeration.  They do
52 < * <em>not</em> throw {@link ConcurrentModificationException}.
53 < * However, iterators are designed to be used by only one thread at a
54 < * time.  Bear in mind that the results of aggregate status methods
55 < * including {@code size}, {@code isEmpty}, and {@code containsValue}
56 < * are typically useful only when a map is not undergoing concurrent
57 < * updates in other threads.  Otherwise the results of these methods
58 < * reflect transient states that may be adequate for monitoring
59 < * purposes, but not for program control.
60 < *
61 < * <p> Resizing this or any other kind of hash table is a relatively
62 < * slow operation, so, when possible, it is a good idea to provide
63 < * estimates of expected table sizes in constructors. Also, for
64 < * compatibility with previous versions of this class, constructors
65 < * may optionally specify an expected {@code concurrencyLevel} as an
66 < * additional hint for internal sizing.
47 > * onset. (More formally, an update operation for a given key bears a
48 > * <em>happens-before</em> relation with any (non-null) retrieval for
49 > * that key reporting the updated value.)  For aggregate operations
50 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
51 > * reflect insertion or removal of only some entries.  Similarly,
52 > * Iterators and Enumerations return elements reflecting the state of
53 > * the hash table at some point at or since the creation of the
54 > * iterator/enumeration.  They do <em>not</em> throw {@link
55 > * ConcurrentModificationException}.  However, iterators are designed
56 > * to be used by only one thread at a time.  Bear in mind that the
57 > * results of aggregate status methods including {@code size}, {@code
58 > * isEmpty}, and {@code containsValue} are typically useful only when
59 > * a map is not undergoing concurrent updates in other threads.
60 > * Otherwise the results of these methods reflect transient states
61 > * that may be adequate for monitoring or estimation purposes, but not
62 > * for program control.
63 > *
64 > * <p> The table is dynamically expanded when there are too many
65 > * collisions (i.e., keys that have distinct hash codes but fall into
66 > * the same slot modulo the table size), with the expected average
67 > * effect of maintaining roughly two bins per mapping (corresponding
68 > * to a 0.75 load factor threshold for resizing). There may be much
69 > * variance around this average as mappings are added and removed, but
70 > * overall, this maintains a commonly accepted time/space tradeoff for
71 > * hash tables.  However, resizing this or any other kind of hash
72 > * table may be a relatively slow operation. When possible, it is a
73 > * good idea to provide a size estimate as an optional {@code
74 > * initialCapacity} constructor argument. An additional optional
75 > * {@code loadFactor} constructor argument provides a further means of
76 > * customizing initial table capacity by specifying the table density
77 > * to be used in calculating the amount of space to allocate for the
78 > * given number of elements.  Also, for compatibility with previous
79 > * versions of this class, constructors may optionally specify an
80 > * expected {@code concurrencyLevel} as an additional hint for
81 > * internal sizing.  Note that using many keys with exactly the same
82 > * {@code hashCode()} is a sure way to slow down performance of any
83 > * hash table.
84 > *
85 > * <p> A {@link Set} projection of a ConcurrentHashMapV8 may be created
86 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
87 > * (using {@link #keySet(Object)} when only keys are of interest, and the
88 > * mapped values are (perhaps transiently) not used or all take the
89 > * same mapping value.
90 > *
91 > * <p> A ConcurrentHashMapV8 can be used as scalable frequency map (a
92 > * form of histogram or multiset) by using {@link LongAdder} values
93 > * and initializing via {@link #computeIfAbsent}. For example, to add
94 > * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
95 > * can use {@code freqs.computeIfAbsent(k -> new
96 > * LongAdder()).increment();}
97   *
98   * <p>This class and its views and iterators implement all of the
99   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
# Line 65 | Line 102 | import java.io.Serializable;
102   * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
103   * does <em>not</em> allow {@code null} to be used as a key or value.
104   *
105 + * <p>ConcurrentHashMapV8s support parallel operations using the {@link
106 + * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
107 + * are available in class {@link ForkJoinTasks}). These operations are
108 + * designed to be safely, and often sensibly, applied even with maps
109 + * that are being concurrently updated by other threads; for example,
110 + * when computing a snapshot summary of the values in a shared
111 + * registry.  There are three kinds of operation, each with four
112 + * forms, accepting functions with Keys, Values, Entries, and (Key,
113 + * Value) arguments and/or return values. (The first three forms are
114 + * also available via the {@link #keySet()}, {@link #values()} and
115 + * {@link #entrySet()} views). Because the elements of a
116 + * ConcurrentHashMapV8 are not ordered in any particular way, and may be
117 + * processed in different orders in different parallel executions, the
118 + * correctness of supplied functions should not depend on any
119 + * ordering, or on any other objects or values that may transiently
120 + * change while computation is in progress; and except for forEach
121 + * actions, should ideally be side-effect-free.
122 + *
123 + * <ul>
124 + * <li> forEach: Perform a given action on each element.
125 + * A variant form applies a given transformation on each element
126 + * before performing the action.</li>
127 + *
128 + * <li> search: Return the first available non-null result of
129 + * applying a given function on each element; skipping further
130 + * search when a result is found.</li>
131 + *
132 + * <li> reduce: Accumulate each element.  The supplied reduction
133 + * function cannot rely on ordering (more formally, it should be
134 + * both associative and commutative).  There are five variants:
135 + *
136 + * <ul>
137 + *
138 + * <li> Plain reductions. (There is not a form of this method for
139 + * (key, value) function arguments since there is no corresponding
140 + * return type.)</li>
141 + *
142 + * <li> Mapped reductions that accumulate the results of a given
143 + * function applied to each element.</li>
144 + *
145 + * <li> Reductions to scalar doubles, longs, and ints, using a
146 + * given basis value.</li>
147 + *
148 + * </li>
149 + * </ul>
150 + * </ul>
151 + *
152 + * <p>The concurrency properties of bulk operations follow
153 + * from those of ConcurrentHashMapV8: Any non-null result returned
154 + * from {@code get(key)} and related access methods bears a
155 + * happens-before relation with the associated insertion or
156 + * update.  The result of any bulk operation reflects the
157 + * composition of these per-element relations (but is not
158 + * necessarily atomic with respect to the map as a whole unless it
159 + * is somehow known to be quiescent).  Conversely, because keys
160 + * and values in the map are never null, null serves as a reliable
161 + * atomic indicator of the current lack of any result.  To
162 + * maintain this property, null serves as an implicit basis for
163 + * all non-scalar reduction operations. For the double, long, and
164 + * int versions, the basis should be one that, when combined with
165 + * any other value, returns that other value (more formally, it
166 + * should be the identity element for the reduction). Most common
167 + * reductions have these properties; for example, computing a sum
168 + * with basis 0 or a minimum with basis MAX_VALUE.
169 + *
170 + * <p>Search and transformation functions provided as arguments
171 + * should similarly return null to indicate the lack of any result
172 + * (in which case it is not used). In the case of mapped
173 + * reductions, this also enables transformations to serve as
174 + * filters, returning null (or, in the case of primitive
175 + * specializations, the identity basis) if the element should not
176 + * be combined. You can create compound transformations and
177 + * filterings by composing them yourself under this "null means
178 + * there is nothing there now" rule before using them in search or
179 + * reduce operations.
180 + *
181 + * <p>Methods accepting and/or returning Entry arguments maintain
182 + * key-value associations. They may be useful for example when
183 + * finding the key for the greatest value. Note that "plain" Entry
184 + * arguments can be supplied using {@code new
185 + * AbstractMap.SimpleEntry(k,v)}.
186 + *
187 + * <p> Bulk operations may complete abruptly, throwing an
188 + * exception encountered in the application of a supplied
189 + * function. Bear in mind when handling such exceptions that other
190 + * concurrently executing functions could also have thrown
191 + * exceptions, or would have done so if the first exception had
192 + * not occurred.
193 + *
194 + * <p>Parallel speedups for bulk operations compared to sequential
195 + * processing are common but not guaranteed.  Operations involving
196 + * brief functions on small maps may execute more slowly than
197 + * sequential loops if the underlying work to parallelize the
198 + * computation is more expensive than the computation itself.
199 + * Similarly, parallelization may not lead to much actual parallelism
200 + * if all processors are busy performing unrelated tasks.
201 + *
202 + * <p> All arguments to all task methods must be non-null.
203 + *
204 + * <p><em>jsr166e note: During transition, this class
205 + * uses nested functional interfaces with different names but the
206 + * same forms as those expected for JDK8.<em>
207 + *
208   * <p>This class is a member of the
209   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
210   * Java Collections Framework</a>.
211   *
72 * <p><em>jsr166e note: This class is a candidate replacement for
73 * java.util.concurrent.ConcurrentHashMap.<em>
74 *
212   * @since 1.5
213   * @author Doug Lea
214   * @param <K> the type of keys maintained by this map
215   * @param <V> the type of mapped values
216   */
217   public class ConcurrentHashMapV8<K, V>
218 <        implements ConcurrentMap<K, V>, Serializable {
218 >    implements ConcurrentMap<K, V>, Serializable {
219      private static final long serialVersionUID = 7249069246763182397L;
220  
221      /**
222 <     * A function computing a mapping from the given key to a value,
223 <     * or {@code null} if there is no mapping. This is a place-holder
224 <     * for an upcoming JDK8 interface.
225 <     */
226 <    public static interface MappingFunction<K, V> {
227 <        /**
228 <         * Returns a value for the given key, or null if there is no
229 <         * mapping. If this function throws an (unchecked) exception,
230 <         * the exception is rethrown to its caller, and no mapping is
231 <         * recorded.  Because this function is invoked within
232 <         * atomicity control, the computation should be short and
233 <         * simple. The most common usage is to construct a new object
234 <         * serving as an initial mapped value.
222 >     * A partitionable iterator. A Spliterator can be traversed
223 >     * directly, but can also be partitioned (before traversal) by
224 >     * creating another Spliterator that covers a non-overlapping
225 >     * portion of the elements, and so may be amenable to parallel
226 >     * execution.
227 >     *
228 >     * <p> This interface exports a subset of expected JDK8
229 >     * functionality.
230 >     *
231 >     * <p>Sample usage: Here is one (of the several) ways to compute
232 >     * the sum of the values held in a map using the ForkJoin
233 >     * framework. As illustrated here, Spliterators are well suited to
234 >     * designs in which a task repeatedly splits off half its work
235 >     * into forked subtasks until small enough to process directly,
236 >     * and then joins these subtasks. Variants of this style can also
237 >     * be used in completion-based designs.
238 >     *
239 >     * <pre>
240 >     * {@code ConcurrentHashMapV8<String, Long> m = ...
241 >     * // split as if have 8 * parallelism, for load balance
242 >     * int n = m.size();
243 >     * int p = aForkJoinPool.getParallelism() * 8;
244 >     * int split = (n < p)? n : p;
245 >     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
246 >     * // ...
247 >     * static class SumValues extends RecursiveTask<Long> {
248 >     *   final Spliterator<Long> s;
249 >     *   final int split;             // split while > 1
250 >     *   final SumValues nextJoin;    // records forked subtasks to join
251 >     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
252 >     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
253 >     *   }
254 >     *   public Long compute() {
255 >     *     long sum = 0;
256 >     *     SumValues subtasks = null; // fork subtasks
257 >     *     for (int s = split >>> 1; s > 0; s >>>= 1)
258 >     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
259 >     *     while (s.hasNext())        // directly process remaining elements
260 >     *       sum += s.next();
261 >     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
262 >     *       sum += t.join();         // collect subtask results
263 >     *     return sum;
264 >     *   }
265 >     * }
266 >     * }</pre>
267 >     */
268 >    public static interface Spliterator<T> extends Iterator<T> {
269 >        /**
270 >         * Returns a Spliterator covering approximately half of the
271 >         * elements, guaranteed not to overlap with those subsequently
272 >         * returned by this Spliterator.  After invoking this method,
273 >         * the current Spliterator will <em>not</em> produce any of
274 >         * the elements of the returned Spliterator, but the two
275 >         * Spliterators together will produce all of the elements that
276 >         * would have been produced by this Spliterator had this
277 >         * method not been called. The exact number of elements
278 >         * produced by the returned Spliterator is not guaranteed, and
279 >         * may be zero (i.e., with {@code hasNext()} reporting {@code
280 >         * false}) if this Spliterator cannot be further split.
281           *
282 <         * @param key the (non-null) key
283 <         * @return a value, or null if none
282 >         * @return a Spliterator covering approximately half of the
283 >         * elements
284 >         * @throws IllegalStateException if this Spliterator has
285 >         * already commenced traversing elements
286           */
287 <        V map(K key);
287 >        Spliterator<T> split();
288      }
289  
290 +
291      /*
292       * Overview:
293       *
294       * The primary design goal of this hash table is to maintain
295       * concurrent readability (typically method get(), but also
296       * iterators and related methods) while minimizing update
297 <     * contention.
297 >     * contention. Secondary goals are to keep space consumption about
298 >     * the same or better than java.util.HashMap, and to support high
299 >     * initial insertion rates on an empty table by many threads.
300       *
301       * Each key-value mapping is held in a Node.  Because Node fields
302       * can contain special values, they are defined using plain Object
303       * types. Similarly in turn, all internal methods that use them
304 <     * work off Object types. All public generic-typed methods relay
305 <     * in/out of these internal methods, supplying casts as needed.
304 >     * work off Object types. And similarly, so do the internal
305 >     * methods of auxiliary iterator and view classes.  All public
306 >     * generic typed methods relay in/out of these internal methods,
307 >     * supplying null-checks and casts as needed. This also allows
308 >     * many of the public methods to be factored into a smaller number
309 >     * of internal methods (although sadly not so for the five
310 >     * variants of put-related operations). The validation-based
311 >     * approach explained below leads to a lot of code sprawl because
312 >     * retry-control precludes factoring into smaller methods.
313       *
314       * The table is lazily initialized to a power-of-two size upon the
315 <     * first insertion.  Each bin in the table contains a (typically
316 <     * short) list of Nodes.  Table accesses require volatile/atomic
317 <     * reads, writes, and CASes.  Because there is no other way to
318 <     * arrange this without adding further indirections, we use
319 <     * intrinsics (sun.misc.Unsafe) operations.  The lists of nodes
320 <     * within bins are always accurately traversable under volatile
321 <     * reads, so long as lookups check hash code and non-nullness of
322 <     * key and value before checking key equality. (All valid hash
323 <     * codes are nonnegative. Negative values are reserved for special
324 <     * forwarding nodes; see below.)
325 <     *
326 <     * A bin may be locked during update (insert, delete, and replace)
327 <     * operations.  We do not want to waste the space required to
328 <     * associate a distinct lock object with each bin, so instead use
329 <     * the first node of a bin list itself as a lock, using builtin
330 <     * "synchronized" locks. These save space and we can live with
331 <     * only plain block-structured lock/unlock operations. Using the
332 <     * first node of a list as a lock does not by itself suffice
333 <     * though: When a node is locked, any update must first validate
334 <     * that it is still the first node, and retry if not. (Because new
335 <     * nodes are always appended to lists, once a node is first in a
336 <     * bin, it remains first until deleted or the bin becomes
337 <     * invalidated.)  However, update operations can and sometimes do
338 <     * still traverse the bin until the point of update, which helps
339 <     * reduce cache misses on retries.  This is a converse of sorts to
340 <     * the lazy locking technique described by Herlihy & Shavit. If
341 <     * there is no existing node during a put operation, then one can
342 <     * be CAS'ed in (without need for lock except in computeIfAbsent);
343 <     * the CAS serves as validation. This is on average the most
344 <     * common case for put operations -- under random hash codes, the
345 <     * distribution of nodes in bins follows a Poisson distribution
346 <     * (see http://en.wikipedia.org/wiki/Poisson_distribution) with a
347 <     * parameter of 0.5 on average under the default loadFactor of
348 <     * 0.75.  The expected number of locks covering different elements
349 <     * (i.e., bins with 2 or more nodes) is approximately 10% at
350 <     * steady state under default settings.  Lock contention
351 <     * probability for two threads accessing arbitrary distinct
352 <     * elements is, roughly, 1 / (8 * #elements).
353 <     *
354 <     * The table is resized when occupancy exceeds a threshold.  Only
355 <     * a single thread performs the resize (using field "resizing", to
356 <     * arrange exclusion), but the table otherwise remains usable for
357 <     * both reads and updates. Resizing proceeds by transferring bins,
358 <     * one by one, from the table to the next table.  Upon transfer,
359 <     * the old table bin contains only a special forwarding node (with
360 <     * negative hash code ("MOVED")) that contains the next table as
315 >     * first insertion.  Each bin in the table normally contains a
316 >     * list of Nodes (most often, the list has only zero or one Node).
317 >     * Table accesses require volatile/atomic reads, writes, and
318 >     * CASes.  Because there is no other way to arrange this without
319 >     * adding further indirections, we use intrinsics
320 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
321 >     * are always accurately traversable under volatile reads, so long
322 >     * as lookups check hash code and non-nullness of value before
323 >     * checking key equality.
324 >     *
325 >     * We use the top two bits of Node hash fields for control
326 >     * purposes -- they are available anyway because of addressing
327 >     * constraints.  As explained further below, these top bits are
328 >     * used as follows:
329 >     *  00 - Normal
330 >     *  01 - Locked
331 >     *  11 - Locked and may have a thread waiting for lock
332 >     *  10 - Node is a forwarding node
333 >     *
334 >     * The lower 30 bits of each Node's hash field contain a
335 >     * transformation of the key's hash code, except for forwarding
336 >     * nodes, for which the lower bits are zero (and so always have
337 >     * hash field == MOVED).
338 >     *
339 >     * Insertion (via put or its variants) of the first node in an
340 >     * empty bin is performed by just CASing it to the bin.  This is
341 >     * by far the most common case for put operations under most
342 >     * key/hash distributions.  Other update operations (insert,
343 >     * delete, and replace) require locks.  We do not want to waste
344 >     * the space required to associate a distinct lock object with
345 >     * each bin, so instead use the first node of a bin list itself as
346 >     * a lock. Blocking support for these locks relies on the builtin
347 >     * "synchronized" monitors.  However, we also need a tryLock
348 >     * construction, so we overlay these by using bits of the Node
349 >     * hash field for lock control (see above), and so normally use
350 >     * builtin monitors only for blocking and signalling using
351 >     * wait/notifyAll constructions. See Node.tryAwaitLock.
352 >     *
353 >     * Using the first node of a list as a lock does not by itself
354 >     * suffice though: When a node is locked, any update must first
355 >     * validate that it is still the first node after locking it, and
356 >     * retry if not. Because new nodes are always appended to lists,
357 >     * once a node is first in a bin, it remains first until deleted
358 >     * or the bin becomes invalidated (upon resizing).  However,
359 >     * operations that only conditionally update may inspect nodes
360 >     * until the point of update. This is a converse of sorts to the
361 >     * lazy locking technique described by Herlihy & Shavit.
362 >     *
363 >     * The main disadvantage of per-bin locks is that other update
364 >     * operations on other nodes in a bin list protected by the same
365 >     * lock can stall, for example when user equals() or mapping
366 >     * functions take a long time.  However, statistically, under
367 >     * random hash codes, this is not a common problem.  Ideally, the
368 >     * frequency of nodes in bins follows a Poisson distribution
369 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
370 >     * parameter of about 0.5 on average, given the resizing threshold
371 >     * of 0.75, although with a large variance because of resizing
372 >     * granularity. Ignoring variance, the expected occurrences of
373 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
374 >     * first values are:
375 >     *
376 >     * 0:    0.60653066
377 >     * 1:    0.30326533
378 >     * 2:    0.07581633
379 >     * 3:    0.01263606
380 >     * 4:    0.00157952
381 >     * 5:    0.00015795
382 >     * 6:    0.00001316
383 >     * 7:    0.00000094
384 >     * 8:    0.00000006
385 >     * more: less than 1 in ten million
386 >     *
387 >     * Lock contention probability for two threads accessing distinct
388 >     * elements is roughly 1 / (8 * #elements) under random hashes.
389 >     *
390 >     * Actual hash code distributions encountered in practice
391 >     * sometimes deviate significantly from uniform randomness.  This
392 >     * includes the case when N > (1<<30), so some keys MUST collide.
393 >     * Similarly for dumb or hostile usages in which multiple keys are
394 >     * designed to have identical hash codes. Also, although we guard
395 >     * against the worst effects of this (see method spread), sets of
396 >     * hashes may differ only in bits that do not impact their bin
397 >     * index for a given power-of-two mask.  So we use a secondary
398 >     * strategy that applies when the number of nodes in a bin exceeds
399 >     * a threshold, and at least one of the keys implements
400 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
401 >     * (a specialized form of red-black trees), bounding search time
402 >     * to O(log N).  Each search step in a TreeBin is around twice as
403 >     * slow as in a regular list, but given that N cannot exceed
404 >     * (1<<64) (before running out of addresses) this bounds search
405 >     * steps, lock hold times, etc, to reasonable constants (roughly
406 >     * 100 nodes inspected per operation worst case) so long as keys
407 >     * are Comparable (which is very common -- String, Long, etc).
408 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
409 >     * traversal pointers as regular nodes, so can be traversed in
410 >     * iterators in the same way.
411 >     *
412 >     * The table is resized when occupancy exceeds a percentage
413 >     * threshold (nominally, 0.75, but see below).  Only a single
414 >     * thread performs the resize (using field "sizeCtl", to arrange
415 >     * exclusion), but the table otherwise remains usable for reads
416 >     * and updates. Resizing proceeds by transferring bins, one by
417 >     * one, from the table to the next table.  Because we are using
418 >     * power-of-two expansion, the elements from each bin must either
419 >     * stay at same index, or move with a power of two offset. We
420 >     * eliminate unnecessary node creation by catching cases where old
421 >     * nodes can be reused because their next fields won't change.  On
422 >     * average, only about one-sixth of them need cloning when a table
423 >     * doubles. The nodes they replace will be garbage collectable as
424 >     * soon as they are no longer referenced by any reader thread that
425 >     * may be in the midst of concurrently traversing table.  Upon
426 >     * transfer, the old table bin contains only a special forwarding
427 >     * node (with hash field "MOVED") that contains the next table as
428       * its key. On encountering a forwarding node, access and update
429 <     * operations restart, using the new table. To ensure concurrent
430 <     * readability of traversals, transfers must proceed from the last
431 <     * bin (table.length - 1) up towards the first.  Any traversal
432 <     * starting from the first bin can then arrange to move to the new
433 <     * table for the rest of the traversal without revisiting nodes.
434 <     * This constrains bin transfers to a particular order, and so can
435 <     * block indefinitely waiting for the next lock, and other threads
436 <     * cannot help with the transfer. However, expected stalls are
437 <     * infrequent enough to not warrant the additional overhead and
438 <     * complexity of access and iteration schemes that could admit
439 <     * out-of-order or concurrent bin transfers.
440 <     *
441 <     * A similar traversal scheme (not yet implemented) can apply to
442 <     * partial traversals during partitioned aggregate operations.
443 <     * Also, read-only operations give up if ever forwarded to a null
444 <     * table, which provides support for shutdown-style clearing,
445 <     * which is also not currently implemented.
429 >     * operations restart, using the new table.
430 >     *
431 >     * Each bin transfer requires its bin lock. However, unlike other
432 >     * cases, a transfer can skip a bin if it fails to acquire its
433 >     * lock, and revisit it later (unless it is a TreeBin). Method
434 >     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
435 >     * have been skipped because of failure to acquire a lock, and
436 >     * blocks only if none are available (i.e., only very rarely).
437 >     * The transfer operation must also ensure that all accessible
438 >     * bins in both the old and new table are usable by any traversal.
439 >     * When there are no lock acquisition failures, this is arranged
440 >     * simply by proceeding from the last bin (table.length - 1) up
441 >     * towards the first.  Upon seeing a forwarding node, traversals
442 >     * (see class Iter) arrange to move to the new table
443 >     * without revisiting nodes.  However, when any node is skipped
444 >     * during a transfer, all earlier table bins may have become
445 >     * visible, so are initialized with a reverse-forwarding node back
446 >     * to the old table until the new ones are established. (This
447 >     * sometimes requires transiently locking a forwarding node, which
448 >     * is possible under the above encoding.) These more expensive
449 >     * mechanics trigger only when necessary.
450 >     *
451 >     * The traversal scheme also applies to partial traversals of
452 >     * ranges of bins (via an alternate Traverser constructor)
453 >     * to support partitioned aggregate operations.  Also, read-only
454 >     * operations give up if ever forwarded to a null table, which
455 >     * provides support for shutdown-style clearing, which is also not
456 >     * currently implemented.
457 >     *
458 >     * Lazy table initialization minimizes footprint until first use,
459 >     * and also avoids resizings when the first operation is from a
460 >     * putAll, constructor with map argument, or deserialization.
461 >     * These cases attempt to override the initial capacity settings,
462 >     * but harmlessly fail to take effect in cases of races.
463       *
464       * The element count is maintained using a LongAdder, which avoids
465       * contention on updates but can encounter cache thrashing if read
466 <     * too frequently during concurrent updates. To avoid reading so
467 <     * often, resizing is normally attempted only upon adding to a bin
468 <     * already holding two or more nodes. Under the default threshold
469 <     * (0.75), and uniform hash distributions, the probability of this
470 <     * occurring at threshold is around 13%, meaning that only about 1
471 <     * in 8 puts check threshold (and after resizing, many fewer do
472 <     * so). But this approximation has high variance for small table
473 <     * sizes, so we check on any collision for sizes <= 64.  Further,
474 <     * to increase the probability that a resize occurs soon enough, we
475 <     * offset the threshold (see THRESHOLD_OFFSET) by the expected
476 <     * number of puts between checks. This is currently set to 8, in
477 <     * accord with the default load factor. In practice, this is
478 <     * rarely overridden, and in any case is close enough to other
479 <     * plausible values not to waste dynamic probability computation
480 <     * for more precision.
466 >     * too frequently during concurrent access. To avoid reading so
467 >     * often, resizing is attempted either when a bin lock is
468 >     * contended, or upon adding to a bin already holding two or more
469 >     * nodes (checked before adding in the xIfAbsent methods, after
470 >     * adding in others). Under uniform hash distributions, the
471 >     * probability of this occurring at threshold is around 13%,
472 >     * meaning that only about 1 in 8 puts check threshold (and after
473 >     * resizing, many fewer do so). But this approximation has high
474 >     * variance for small table sizes, so we check on any collision
475 >     * for sizes <= 64. The bulk putAll operation further reduces
476 >     * contention by only committing count updates upon these size
477 >     * checks.
478 >     *
479 >     * Maintaining API and serialization compatibility with previous
480 >     * versions of this class introduces several oddities. Mainly: We
481 >     * leave untouched but unused constructor arguments refering to
482 >     * concurrencyLevel. We accept a loadFactor constructor argument,
483 >     * but apply it only to initial table capacity (which is the only
484 >     * time that we can guarantee to honor it.) We also declare an
485 >     * unused "Segment" class that is instantiated in minimal form
486 >     * only when serializing.
487       */
488  
489      /* ---------------- Constants -------------- */
490  
491      /**
492 <     * The smallest allowed table capacity.  Must be a power of 2, at
493 <     * least 2.
492 >     * The largest possible table capacity.  This value must be
493 >     * exactly 1<<30 to stay within Java array allocation and indexing
494 >     * bounds for power of two table sizes, and is further required
495 >     * because the top two bits of 32bit hash fields are used for
496 >     * control purposes.
497       */
498 <    static final int MINIMUM_CAPACITY = 2;
498 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
499  
500      /**
501 <     * The largest allowed table capacity.  Must be a power of 2, at
502 <     * most 1<<30.
501 >     * The default initial table capacity.  Must be a power of 2
502 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
503       */
504 <    static final int MAXIMUM_CAPACITY = 1 << 30;
504 >    private static final int DEFAULT_CAPACITY = 16;
505  
506      /**
507 <     * The default initial table capacity.  Must be a power of 2, at
508 <     * least MINIMUM_CAPACITY and at most MAXIMUM_CAPACITY.
507 >     * The largest possible (non-power of two) array size.
508 >     * Needed by toArray and related methods.
509       */
510 <    static final int DEFAULT_CAPACITY = 16;
510 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
511  
512      /**
513 <     * The default load factor for this table, used when not otherwise
514 <     * specified in a constructor.
513 >     * The default concurrency level for this table. Unused but
514 >     * defined for compatibility with previous versions of this class.
515       */
516 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
516 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
517  
518      /**
519 <     * The default concurrency level for this table. Unused, but
520 <     * defined for compatibility with previous versions of this class.
519 >     * The load factor for this table. Overrides of this value in
520 >     * constructors affect only the initial table capacity.  The
521 >     * actual floating point value isn't normally used -- it is
522 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
523 >     * the associated resizing threshold.
524       */
525 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
525 >    private static final float LOAD_FACTOR = 0.75f;
526  
527      /**
528 <     * The count value to offset thresholds to compensate for checking
529 <     * for resizing only when inserting into bins with two or more
530 <     * elements. See above for explanation.
528 >     * The buffer size for skipped bins during transfers. The
529 >     * value is arbitrary but should be large enough to avoid
530 >     * most locking stalls during resizes.
531       */
532 <    static final int THRESHOLD_OFFSET = 8;
532 >    private static final int TRANSFER_BUFFER_SIZE = 32;
533  
534      /**
535 <     * Special node hash value indicating to use table in node.key
536 <     * Must be negative.
535 >     * The bin count threshold for using a tree rather than list for a
536 >     * bin.  The value reflects the approximate break-even point for
537 >     * using tree-based operations.
538       */
539 <    static final int MOVED = -1;
539 >    private static final int TREE_THRESHOLD = 8;
540 >
541 >    /*
542 >     * Encodings for special uses of Node hash fields. See above for
543 >     * explanation.
544 >     */
545 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
546 >    static final int LOCKED    = 0x40000000; // set/tested only as a bit
547 >    static final int WAITING   = 0xc0000000; // both bits set/tested together
548 >    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
549  
550      /* ---------------- Fields -------------- */
551  
552      /**
553       * The array of bins. Lazily initialized upon first insertion.
554 <     * Size is always a power of two. Accessed directly by inner
254 <     * classes.
554 >     * Size is always a power of two. Accessed directly by iterators.
555       */
556      transient volatile Node[] table;
557  
558 <    /** The counter maintaining number of elements. */
558 >    /**
559 >     * The counter maintaining number of elements.
560 >     */
561      private transient final LongAdder counter;
562 <    /** Nonzero when table is being initialized or resized. Updated via CAS. */
563 <    private transient volatile int resizing;
564 <    /** The target load factor for the table. */
565 <    private transient float loadFactor;
566 <    /** The next element count value upon which to resize the table. */
567 <    private transient int threshold;
568 <    /** The initial capacity of the table. */
569 <    private transient int initCap;
562 >
563 >    /**
564 >     * Table initialization and resizing control.  When negative, the
565 >     * table is being initialized or resized. Otherwise, when table is
566 >     * null, holds the initial table size to use upon creation, or 0
567 >     * for default. After initialization, holds the next element count
568 >     * value upon which to resize the table.
569 >     */
570 >    private transient volatile int sizeCtl;
571  
572      // views
573 <    transient Set<K> keySet;
574 <    transient Set<Map.Entry<K,V>> entrySet;
575 <    transient Collection<V> values;
573 >    private transient KeySetView<K,V> keySet;
574 >    private transient ValuesView<K,V> values;
575 >    private transient EntrySetView<K,V> entrySet;
576  
577      /** For serialization compatibility. Null unless serialized; see below */
578 <    Segment<K,V>[] segments;
578 >    private Segment<K,V>[] segments;
579  
580 <    /**
581 <     * Applies a supplemental hash function to a given hashCode, which
582 <     * defends against poor quality hash functions.  The result must
583 <     * be non-negative, and for reasonable performance must have good
584 <     * avalanche properties; i.e., that each bit of the argument
585 <     * affects each bit (except sign bit) of the result.
580 >    /* ---------------- Table element access -------------- */
581 >
582 >    /*
583 >     * Volatile access methods are used for table elements as well as
584 >     * elements of in-progress next table while resizing.  Uses are
585 >     * null checked by callers, and implicitly bounds-checked, relying
586 >     * on the invariants that tab arrays have non-zero size, and all
587 >     * indices are masked with (tab.length - 1) which is never
588 >     * negative and always less than length. Note that, to be correct
589 >     * wrt arbitrary concurrency errors by users, bounds checks must
590 >     * operate on local variables, which accounts for some odd-looking
591 >     * inline assignments below.
592       */
593 <    private static final int spread(int h) {
594 <        // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/
595 <        h ^= h >>> 16;
596 <        h *= 0x85ebca6b;
597 <        h ^= h >>> 13;
598 <        h *= 0xc2b2ae35;
599 <        return (h >>> 16) ^ (h & 0x7fffffff); // mask out sign bit
593 >
594 >    static final Node tabAt(Node[] tab, int i) { // used by Iter
595 >        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
596 >    }
597 >
598 >    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
599 >        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
600      }
601  
602 +    private static final void setTabAt(Node[] tab, int i, Node v) {
603 +        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
604 +    }
605 +
606 +    /* ---------------- Nodes -------------- */
607 +
608      /**
609       * Key-value entry. Note that this is never exported out as a
610 <     * user-visible Map.Entry.
610 >     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
611 >     * field of MOVED are special, and do not contain user keys or
612 >     * values.  Otherwise, keys are never null, and null val fields
613 >     * indicate that a node is in the process of being deleted or
614 >     * created. For purposes of read-only access, a key may be read
615 >     * before a val, but can only be used after checking val to be
616 >     * non-null.
617       */
618 <    static final class Node {
619 <        final int hash;
618 >    static class Node {
619 >        volatile int hash;
620          final Object key;
621          volatile Object val;
622          volatile Node next;
# Line 306 | Line 627 | public class ConcurrentHashMapV8<K, V>
627              this.val = val;
628              this.next = next;
629          }
309    }
630  
631 <    /*
632 <     * Volatile access methods are used for table elements as well as
633 <     * elements of in-progress next table while resizing.  Uses in
634 <     * access and update methods are null checked by callers, and
315 <     * implicitly bounds-checked, relying on the invariants that tab
316 <     * arrays have non-zero size, and all indices are masked with
317 <     * (tab.length - 1) which is never negative and always less than
318 <     * length. The "relaxed" non-volatile forms are used only during
319 <     * table initialization. The only other usage is in
320 <     * HashIterator.advance, which performs explicit checks.
321 <     */
631 >        /** CompareAndSet the hash field */
632 >        final boolean casHash(int cmp, int val) {
633 >            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
634 >        }
635  
636 <    static final Node tabAt(Node[] tab, int i) { // used in HashIterator
637 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
638 <    }
636 >        /** The number of spins before blocking for a lock */
637 >        static final int MAX_SPINS =
638 >            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
639  
640 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
641 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
642 <    }
640 >        /**
641 >         * Spins a while if LOCKED bit set and this node is the first
642 >         * of its bin, and then sets WAITING bits on hash field and
643 >         * blocks (once) if they are still set.  It is OK for this
644 >         * method to return even if lock is not available upon exit,
645 >         * which enables these simple single-wait mechanics.
646 >         *
647 >         * The corresponding signalling operation is performed within
648 >         * callers: Upon detecting that WAITING has been set when
649 >         * unlocking lock (via a failed CAS from non-waiting LOCKED
650 >         * state), unlockers acquire the sync lock and perform a
651 >         * notifyAll.
652 >         *
653 >         * The initial sanity check on tab and bounds is not currently
654 >         * necessary in the only usages of this method, but enables
655 >         * use in other future contexts.
656 >         */
657 >        final void tryAwaitLock(Node[] tab, int i) {
658 >            if (tab != null && i >= 0 && i < tab.length) { // sanity check
659 >                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
660 >                int spins = MAX_SPINS, h;
661 >                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
662 >                    if (spins >= 0) {
663 >                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
664 >                        if (r >= 0 && --spins == 0)
665 >                            Thread.yield();  // yield before block
666 >                    }
667 >                    else if (casHash(h, h | WAITING)) {
668 >                        synchronized (this) {
669 >                            if (tabAt(tab, i) == this &&
670 >                                (hash & WAITING) == WAITING) {
671 >                                try {
672 >                                    wait();
673 >                                } catch (InterruptedException ie) {
674 >                                    Thread.currentThread().interrupt();
675 >                                }
676 >                            }
677 >                            else
678 >                                notifyAll(); // possibly won race vs signaller
679 >                        }
680 >                        break;
681 >                    }
682 >                }
683 >            }
684 >        }
685  
686 <    private static final void setTabAt(Node[] tab, int i, Node v) {
687 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
688 <    }
686 >        // Unsafe mechanics for casHash
687 >        private static final sun.misc.Unsafe UNSAFE;
688 >        private static final long hashOffset;
689  
690 <    private static final Node relaxedTabAt(Node[] tab, int i) {
691 <        return (Node)UNSAFE.getObject(tab, ((long)i<<ASHIFT)+ABASE);
690 >        static {
691 >            try {
692 >                UNSAFE = getUnsafe();
693 >                Class<?> k = Node.class;
694 >                hashOffset = UNSAFE.objectFieldOffset
695 >                    (k.getDeclaredField("hash"));
696 >            } catch (Exception e) {
697 >                throw new Error(e);
698 >            }
699 >        }
700      }
701  
702 <    private static final void relaxedSetTabAt(Node[] tab, int i, Node v) {
703 <        UNSAFE.putObject(tab, ((long)i<<ASHIFT)+ABASE, v);
702 >    /* ---------------- TreeBins -------------- */
703 >
704 >    /**
705 >     * Nodes for use in TreeBins
706 >     */
707 >    static final class TreeNode extends Node {
708 >        TreeNode parent;  // red-black tree links
709 >        TreeNode left;
710 >        TreeNode right;
711 >        TreeNode prev;    // needed to unlink next upon deletion
712 >        boolean red;
713 >
714 >        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
715 >            super(hash, key, val, next);
716 >            this.parent = parent;
717 >        }
718      }
719  
720 <    /* ---------------- Access and update operations -------------- */
720 >    /**
721 >     * A specialized form of red-black tree for use in bins
722 >     * whose size exceeds a threshold.
723 >     *
724 >     * TreeBins use a special form of comparison for search and
725 >     * related operations (which is the main reason we cannot use
726 >     * existing collections such as TreeMaps). TreeBins contain
727 >     * Comparable elements, but may contain others, as well as
728 >     * elements that are Comparable but not necessarily Comparable<T>
729 >     * for the same T, so we cannot invoke compareTo among them. To
730 >     * handle this, the tree is ordered primarily by hash value, then
731 >     * by getClass().getName() order, and then by Comparator order
732 >     * among elements of the same class.  On lookup at a node, if
733 >     * elements are not comparable or compare as 0, both left and
734 >     * right children may need to be searched in the case of tied hash
735 >     * values. (This corresponds to the full list search that would be
736 >     * necessary if all elements were non-Comparable and had tied
737 >     * hashes.)  The red-black balancing code is updated from
738 >     * pre-jdk-collections
739 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
740 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
741 >     * Algorithms" (CLR).
742 >     *
743 >     * TreeBins also maintain a separate locking discipline than
744 >     * regular bins. Because they are forwarded via special MOVED
745 >     * nodes at bin heads (which can never change once established),
746 >     * we cannot use those nodes as locks. Instead, TreeBin
747 >     * extends AbstractQueuedSynchronizer to support a simple form of
748 >     * read-write lock. For update operations and table validation,
749 >     * the exclusive form of lock behaves in the same way as bin-head
750 >     * locks. However, lookups use shared read-lock mechanics to allow
751 >     * multiple readers in the absence of writers.  Additionally,
752 >     * these lookups do not ever block: While the lock is not
753 >     * available, they proceed along the slow traversal path (via
754 >     * next-pointers) until the lock becomes available or the list is
755 >     * exhausted, whichever comes first. (These cases are not fast,
756 >     * but maximize aggregate expected throughput.)  The AQS mechanics
757 >     * for doing this are straightforward.  The lock state is held as
758 >     * AQS getState().  Read counts are negative; the write count (1)
759 >     * is positive.  There are no signalling preferences among readers
760 >     * and writers. Since we don't need to export full Lock API, we
761 >     * just override the minimal AQS methods and use them directly.
762 >     */
763 >    static final class TreeBin extends AbstractQueuedSynchronizer {
764 >        private static final long serialVersionUID = 2249069246763182397L;
765 >        transient TreeNode root;  // root of tree
766 >        transient TreeNode first; // head of next-pointer list
767  
768 <   /** Implementation for get and containsKey */
769 <    private final Object internalGet(Object k) {
770 <        int h = spread(k.hashCode());
771 <        Node[] tab = table;
772 <        retry: while (tab != null) {
773 <            Node e = tabAt(tab, (tab.length - 1) & h);
774 <            while (e != null) {
775 <                int eh = e.hash;
776 <                if (eh == h) {
777 <                    Object ek = e.key, ev = e.val;
778 <                    if (ev != null && ek != null && (k == ek || k.equals(ek)))
779 <                        return ev;
780 <                }
781 <                else if (eh < 0) { // bin was moved during resize
782 <                    tab = (Node[])e.key;
783 <                    continue retry;
784 <                }
785 <                e = e.next;
768 >        /* AQS overrides */
769 >        public final boolean isHeldExclusively() { return getState() > 0; }
770 >        public final boolean tryAcquire(int ignore) {
771 >            if (compareAndSetState(0, 1)) {
772 >                setExclusiveOwnerThread(Thread.currentThread());
773 >                return true;
774 >            }
775 >            return false;
776 >        }
777 >        public final boolean tryRelease(int ignore) {
778 >            setExclusiveOwnerThread(null);
779 >            setState(0);
780 >            return true;
781 >        }
782 >        public final int tryAcquireShared(int ignore) {
783 >            for (int c;;) {
784 >                if ((c = getState()) > 0)
785 >                    return -1;
786 >                if (compareAndSetState(c, c -1))
787 >                    return 1;
788 >            }
789 >        }
790 >        public final boolean tryReleaseShared(int ignore) {
791 >            int c;
792 >            do {} while (!compareAndSetState(c = getState(), c + 1));
793 >            return c == -1;
794 >        }
795 >
796 >        /** From CLR */
797 >        private void rotateLeft(TreeNode p) {
798 >            if (p != null) {
799 >                TreeNode r = p.right, pp, rl;
800 >                if ((rl = p.right = r.left) != null)
801 >                    rl.parent = p;
802 >                if ((pp = r.parent = p.parent) == null)
803 >                    root = r;
804 >                else if (pp.left == p)
805 >                    pp.left = r;
806 >                else
807 >                    pp.right = r;
808 >                r.left = p;
809 >                p.parent = r;
810              }
364            break;
811          }
366        return null;
367    }
812  
813 +        /** From CLR */
814 +        private void rotateRight(TreeNode p) {
815 +            if (p != null) {
816 +                TreeNode l = p.left, pp, lr;
817 +                if ((lr = p.left = l.right) != null)
818 +                    lr.parent = p;
819 +                if ((pp = l.parent = p.parent) == null)
820 +                    root = l;
821 +                else if (pp.right == p)
822 +                    pp.right = l;
823 +                else
824 +                    pp.left = l;
825 +                l.right = p;
826 +                p.parent = l;
827 +            }
828 +        }
829  
830 <    /** Implementation for put and putIfAbsent */
831 <    private final Object internalPut(Object k, Object v, boolean replace) {
832 <        int h = spread(k.hashCode());
833 <        Object oldVal = null;  // the previous value or null if none
834 <        Node[] tab = table;
835 <        for (;;) {
836 <            Node e; int i;
837 <            if (tab == null)
838 <                tab = grow(0);
839 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
840 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
830 >        /**
831 >         * Returns the TreeNode (or null if not found) for the given key
832 >         * starting at given root.
833 >         */
834 >        @SuppressWarnings("unchecked") final TreeNode getTreeNode
835 >            (int h, Object k, TreeNode p) {
836 >            Class<?> c = k.getClass();
837 >            while (p != null) {
838 >                int dir, ph;  Object pk; Class<?> pc;
839 >                if ((ph = p.hash) == h) {
840 >                    if ((pk = p.key) == k || k.equals(pk))
841 >                        return p;
842 >                    if (c != (pc = pk.getClass()) ||
843 >                        !(k instanceof Comparable) ||
844 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
845 >                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
846 >                        TreeNode r = null, s = null, pl, pr;
847 >                        if (dir >= 0) {
848 >                            if ((pl = p.left) != null && h <= pl.hash)
849 >                                s = pl;
850 >                        }
851 >                        else if ((pr = p.right) != null && h >= pr.hash)
852 >                            s = pr;
853 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
854 >                            return r;
855 >                    }
856 >                }
857 >                else
858 >                    dir = (h < ph) ? -1 : 1;
859 >                p = (dir > 0) ? p.right : p.left;
860 >            }
861 >            return null;
862 >        }
863 >
864 >        /**
865 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
866 >         * read-lock to call getTreeNode, but during failure to get
867 >         * lock, searches along next links.
868 >         */
869 >        final Object getValue(int h, Object k) {
870 >            Node r = null;
871 >            int c = getState(); // Must read lock state first
872 >            for (Node e = first; e != null; e = e.next) {
873 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
874 >                    try {
875 >                        r = getTreeNode(h, k, root);
876 >                    } finally {
877 >                        releaseShared(0);
878 >                    }
879 >                    break;
880 >                }
881 >                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
882 >                    r = e;
883                      break;
884 +                }
885 +                else
886 +                    c = getState();
887 +            }
888 +            return r == null ? null : r.val;
889 +        }
890 +
891 +        /**
892 +         * Finds or adds a node.
893 +         * @return null if added
894 +         */
895 +        @SuppressWarnings("unchecked") final TreeNode putTreeNode
896 +            (int h, Object k, Object v) {
897 +            Class<?> c = k.getClass();
898 +            TreeNode pp = root, p = null;
899 +            int dir = 0;
900 +            while (pp != null) { // find existing node or leaf to insert at
901 +                int ph;  Object pk; Class<?> pc;
902 +                p = pp;
903 +                if ((ph = p.hash) == h) {
904 +                    if ((pk = p.key) == k || k.equals(pk))
905 +                        return p;
906 +                    if (c != (pc = pk.getClass()) ||
907 +                        !(k instanceof Comparable) ||
908 +                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
909 +                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
910 +                        TreeNode r = null, s = null, pl, pr;
911 +                        if (dir >= 0) {
912 +                            if ((pl = p.left) != null && h <= pl.hash)
913 +                                s = pl;
914 +                        }
915 +                        else if ((pr = p.right) != null && h >= pr.hash)
916 +                            s = pr;
917 +                        if (s != null && (r = getTreeNode(h, k, s)) != null)
918 +                            return r;
919 +                    }
920 +                }
921 +                else
922 +                    dir = (h < ph) ? -1 : 1;
923 +                pp = (dir > 0) ? p.right : p.left;
924 +            }
925 +
926 +            TreeNode f = first;
927 +            TreeNode x = first = new TreeNode(h, k, v, f, p);
928 +            if (p == null)
929 +                root = x;
930 +            else { // attach and rebalance; adapted from CLR
931 +                TreeNode xp, xpp;
932 +                if (f != null)
933 +                    f.prev = x;
934 +                if (dir <= 0)
935 +                    p.left = x;
936 +                else
937 +                    p.right = x;
938 +                x.red = true;
939 +                while (x != null && (xp = x.parent) != null && xp.red &&
940 +                       (xpp = xp.parent) != null) {
941 +                    TreeNode xppl = xpp.left;
942 +                    if (xp == xppl) {
943 +                        TreeNode y = xpp.right;
944 +                        if (y != null && y.red) {
945 +                            y.red = false;
946 +                            xp.red = false;
947 +                            xpp.red = true;
948 +                            x = xpp;
949 +                        }
950 +                        else {
951 +                            if (x == xp.right) {
952 +                                rotateLeft(x = xp);
953 +                                xpp = (xp = x.parent) == null ? null : xp.parent;
954 +                            }
955 +                            if (xp != null) {
956 +                                xp.red = false;
957 +                                if (xpp != null) {
958 +                                    xpp.red = true;
959 +                                    rotateRight(xpp);
960 +                                }
961 +                            }
962 +                        }
963 +                    }
964 +                    else {
965 +                        TreeNode y = xppl;
966 +                        if (y != null && y.red) {
967 +                            y.red = false;
968 +                            xp.red = false;
969 +                            xpp.red = true;
970 +                            x = xpp;
971 +                        }
972 +                        else {
973 +                            if (x == xp.left) {
974 +                                rotateRight(x = xp);
975 +                                xpp = (xp = x.parent) == null ? null : xp.parent;
976 +                            }
977 +                            if (xp != null) {
978 +                                xp.red = false;
979 +                                if (xpp != null) {
980 +                                    xpp.red = true;
981 +                                    rotateLeft(xpp);
982 +                                }
983 +                            }
984 +                        }
985 +                    }
986 +                }
987 +                TreeNode r = root;
988 +                if (r != null && r.red)
989 +                    r.red = false;
990 +            }
991 +            return null;
992 +        }
993 +
994 +        /**
995 +         * Removes the given node, that must be present before this
996 +         * call.  This is messier than typical red-black deletion code
997 +         * because we cannot swap the contents of an interior node
998 +         * with a leaf successor that is pinned by "next" pointers
999 +         * that are accessible independently of lock. So instead we
1000 +         * swap the tree linkages.
1001 +         */
1002 +        final void deleteTreeNode(TreeNode p) {
1003 +            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
1004 +            TreeNode pred = p.prev;
1005 +            if (pred == null)
1006 +                first = next;
1007 +            else
1008 +                pred.next = next;
1009 +            if (next != null)
1010 +                next.prev = pred;
1011 +            TreeNode replacement;
1012 +            TreeNode pl = p.left;
1013 +            TreeNode pr = p.right;
1014 +            if (pl != null && pr != null) {
1015 +                TreeNode s = pr, sl;
1016 +                while ((sl = s.left) != null) // find successor
1017 +                    s = sl;
1018 +                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1019 +                TreeNode sr = s.right;
1020 +                TreeNode pp = p.parent;
1021 +                if (s == pr) { // p was s's direct parent
1022 +                    p.parent = s;
1023 +                    s.right = p;
1024 +                }
1025 +                else {
1026 +                    TreeNode sp = s.parent;
1027 +                    if ((p.parent = sp) != null) {
1028 +                        if (s == sp.left)
1029 +                            sp.left = p;
1030 +                        else
1031 +                            sp.right = p;
1032 +                    }
1033 +                    if ((s.right = pr) != null)
1034 +                        pr.parent = s;
1035 +                }
1036 +                p.left = null;
1037 +                if ((p.right = sr) != null)
1038 +                    sr.parent = p;
1039 +                if ((s.left = pl) != null)
1040 +                    pl.parent = s;
1041 +                if ((s.parent = pp) == null)
1042 +                    root = s;
1043 +                else if (p == pp.left)
1044 +                    pp.left = s;
1045 +                else
1046 +                    pp.right = s;
1047 +                replacement = sr;
1048 +            }
1049 +            else
1050 +                replacement = (pl != null) ? pl : pr;
1051 +            TreeNode pp = p.parent;
1052 +            if (replacement == null) {
1053 +                if (pp == null) {
1054 +                    root = null;
1055 +                    return;
1056 +                }
1057 +                replacement = p;
1058              }
383            else if (e.hash < 0)
384                tab = (Node[])e.key;
1059              else {
1060 <                boolean validated = false;
1061 <                boolean checkSize = false;
1062 <                synchronized (e) {
1063 <                    if (tabAt(tab, i) == e) {
1064 <                        validated = true;
1065 <                        for (Node first = e;;) {
1066 <                            Object ek, ev;
1067 <                            if (e.hash == h &&
1068 <                                (ek = e.key) != null &&
1069 <                                (ev = e.val) != null &&
1070 <                                (k == ek || k.equals(ek))) {
1071 <                                oldVal = ev;
1072 <                                if (replace)
1073 <                                    e.val = v;
1074 <                                break;
1060 >                replacement.parent = pp;
1061 >                if (pp == null)
1062 >                    root = replacement;
1063 >                else if (p == pp.left)
1064 >                    pp.left = replacement;
1065 >                else
1066 >                    pp.right = replacement;
1067 >                p.left = p.right = p.parent = null;
1068 >            }
1069 >            if (!p.red) { // rebalance, from CLR
1070 >                TreeNode x = replacement;
1071 >                while (x != null) {
1072 >                    TreeNode xp, xpl;
1073 >                    if (x.red || (xp = x.parent) == null) {
1074 >                        x.red = false;
1075 >                        break;
1076 >                    }
1077 >                    if (x == (xpl = xp.left)) {
1078 >                        TreeNode sib = xp.right;
1079 >                        if (sib != null && sib.red) {
1080 >                            sib.red = false;
1081 >                            xp.red = true;
1082 >                            rotateLeft(xp);
1083 >                            sib = (xp = x.parent) == null ? null : xp.right;
1084 >                        }
1085 >                        if (sib == null)
1086 >                            x = xp;
1087 >                        else {
1088 >                            TreeNode sl = sib.left, sr = sib.right;
1089 >                            if ((sr == null || !sr.red) &&
1090 >                                (sl == null || !sl.red)) {
1091 >                                sib.red = true;
1092 >                                x = xp;
1093                              }
1094 <                            Node last = e;
1095 <                            if ((e = e.next) == null) {
1096 <                                last.next = new Node(h, k, v, null);
1097 <                                if (last != first || tab.length <= 64)
1098 <                                    checkSize = true;
1099 <                                break;
1094 >                            else {
1095 >                                if (sr == null || !sr.red) {
1096 >                                    if (sl != null)
1097 >                                        sl.red = false;
1098 >                                    sib.red = true;
1099 >                                    rotateRight(sib);
1100 >                                    sib = (xp = x.parent) == null ? null : xp.right;
1101 >                                }
1102 >                                if (sib != null) {
1103 >                                    sib.red = (xp == null) ? false : xp.red;
1104 >                                    if ((sr = sib.right) != null)
1105 >                                        sr.red = false;
1106 >                                }
1107 >                                if (xp != null) {
1108 >                                    xp.red = false;
1109 >                                    rotateLeft(xp);
1110 >                                }
1111 >                                x = root;
1112 >                            }
1113 >                        }
1114 >                    }
1115 >                    else { // symmetric
1116 >                        TreeNode sib = xpl;
1117 >                        if (sib != null && sib.red) {
1118 >                            sib.red = false;
1119 >                            xp.red = true;
1120 >                            rotateRight(xp);
1121 >                            sib = (xp = x.parent) == null ? null : xp.left;
1122 >                        }
1123 >                        if (sib == null)
1124 >                            x = xp;
1125 >                        else {
1126 >                            TreeNode sl = sib.left, sr = sib.right;
1127 >                            if ((sl == null || !sl.red) &&
1128 >                                (sr == null || !sr.red)) {
1129 >                                sib.red = true;
1130 >                                x = xp;
1131 >                            }
1132 >                            else {
1133 >                                if (sl == null || !sl.red) {
1134 >                                    if (sr != null)
1135 >                                        sr.red = false;
1136 >                                    sib.red = true;
1137 >                                    rotateLeft(sib);
1138 >                                    sib = (xp = x.parent) == null ? null : xp.left;
1139 >                                }
1140 >                                if (sib != null) {
1141 >                                    sib.red = (xp == null) ? false : xp.red;
1142 >                                    if ((sl = sib.left) != null)
1143 >                                        sl.red = false;
1144 >                                }
1145 >                                if (xp != null) {
1146 >                                    xp.red = false;
1147 >                                    rotateRight(xp);
1148 >                                }
1149 >                                x = root;
1150                              }
1151                          }
1152                      }
1153                  }
1154 <                if (validated) {
1155 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1156 <                        resizing == 0 && counter.sum() >= threshold)
1157 <                        grow(0);
1158 <                    break;
1154 >            }
1155 >            if (p == replacement && (pp = p.parent) != null) {
1156 >                if (p == pp.left) // detach pointers
1157 >                    pp.left = null;
1158 >                else if (p == pp.right)
1159 >                    pp.right = null;
1160 >                p.parent = null;
1161 >            }
1162 >        }
1163 >    }
1164 >
1165 >    /* ---------------- Collision reduction methods -------------- */
1166 >
1167 >    /**
1168 >     * Spreads higher bits to lower, and also forces top 2 bits to 0.
1169 >     * Because the table uses power-of-two masking, sets of hashes
1170 >     * that vary only in bits above the current mask will always
1171 >     * collide. (Among known examples are sets of Float keys holding
1172 >     * consecutive whole numbers in small tables.)  To counter this,
1173 >     * we apply a transform that spreads the impact of higher bits
1174 >     * downward. There is a tradeoff between speed, utility, and
1175 >     * quality of bit-spreading. Because many common sets of hashes
1176 >     * are already reasonably distributed across bits (so don't benefit
1177 >     * from spreading), and because we use trees to handle large sets
1178 >     * of collisions in bins, we don't need excessively high quality.
1179 >     */
1180 >    private static final int spread(int h) {
1181 >        h ^= (h >>> 18) ^ (h >>> 12);
1182 >        return (h ^ (h >>> 10)) & HASH_BITS;
1183 >    }
1184 >
1185 >    /**
1186 >     * Replaces a list bin with a tree bin. Call only when locked.
1187 >     * Fails to replace if the given key is non-comparable or table
1188 >     * is, or needs, resizing.
1189 >     */
1190 >    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1191 >        if ((key instanceof Comparable) &&
1192 >            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1193 >            TreeBin t = new TreeBin();
1194 >            for (Node e = tabAt(tab, index); e != null; e = e.next)
1195 >                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1196 >            setTabAt(tab, index, new Node(MOVED, t, null, null));
1197 >        }
1198 >    }
1199 >
1200 >    /* ---------------- Internal access and update methods -------------- */
1201 >
1202 >    /** Implementation for get and containsKey */
1203 >    private final Object internalGet(Object k) {
1204 >        int h = spread(k.hashCode());
1205 >        retry: for (Node[] tab = table; tab != null;) {
1206 >            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1207 >            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1208 >                if ((eh = e.hash) == MOVED) {
1209 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1210 >                        return ((TreeBin)ek).getValue(h, k);
1211 >                    else {                        // restart with new table
1212 >                        tab = (Node[])ek;
1213 >                        continue retry;
1214 >                    }
1215                  }
1216 +                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1217 +                         ((ek = e.key) == k || k.equals(ek)))
1218 +                    return ev;
1219              }
1220 +            break;
1221          }
1222 <        if (oldVal == null)
421 <            counter.increment();
422 <        return oldVal;
1222 >        return null;
1223      }
1224  
1225      /**
# Line 430 | Line 1230 | public class ConcurrentHashMapV8<K, V>
1230      private final Object internalReplace(Object k, Object v, Object cv) {
1231          int h = spread(k.hashCode());
1232          Object oldVal = null;
1233 <        Node e; int i;
1234 <        Node[] tab = table;
1235 <        while (tab != null &&
1236 <               (e = tabAt(tab, i = (tab.length - 1) & h)) != null) {
1237 <            if (e.hash < 0)
1238 <                tab = (Node[])e.key;
1239 <            else {
1233 >        for (Node[] tab = table;;) {
1234 >            Node f; int i, fh; Object fk;
1235 >            if (tab == null ||
1236 >                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1237 >                break;
1238 >            else if ((fh = f.hash) == MOVED) {
1239 >                if ((fk = f.key) instanceof TreeBin) {
1240 >                    TreeBin t = (TreeBin)fk;
1241 >                    boolean validated = false;
1242 >                    boolean deleted = false;
1243 >                    t.acquire(0);
1244 >                    try {
1245 >                        if (tabAt(tab, i) == f) {
1246 >                            validated = true;
1247 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1248 >                            if (p != null) {
1249 >                                Object pv = p.val;
1250 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1251 >                                    oldVal = pv;
1252 >                                    if ((p.val = v) == null) {
1253 >                                        deleted = true;
1254 >                                        t.deleteTreeNode(p);
1255 >                                    }
1256 >                                }
1257 >                            }
1258 >                        }
1259 >                    } finally {
1260 >                        t.release(0);
1261 >                    }
1262 >                    if (validated) {
1263 >                        if (deleted)
1264 >                            counter.add(-1L);
1265 >                        break;
1266 >                    }
1267 >                }
1268 >                else
1269 >                    tab = (Node[])fk;
1270 >            }
1271 >            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1272 >                break;                          // rules out possible existence
1273 >            else if ((fh & LOCKED) != 0) {
1274 >                checkForResize();               // try resizing if can't get lock
1275 >                f.tryAwaitLock(tab, i);
1276 >            }
1277 >            else if (f.casHash(fh, fh | LOCKED)) {
1278                  boolean validated = false;
1279                  boolean deleted = false;
1280 <                synchronized (e) {
1281 <                    if (tabAt(tab, i) == e) {
1280 >                try {
1281 >                    if (tabAt(tab, i) == f) {
1282                          validated = true;
1283 <                        Node pred = null;
446 <                        do {
1283 >                        for (Node e = f, pred = null;;) {
1284                              Object ek, ev;
1285 <                            if (e.hash == h &&
1286 <                                (ek = e.key) != null &&
1287 <                                (ev = e.val) != null &&
451 <                                (k == ek || k.equals(ek))) {
1285 >                            if ((e.hash & HASH_BITS) == h &&
1286 >                                ((ev = e.val) != null) &&
1287 >                                ((ek = e.key) == k || k.equals(ek))) {
1288                                  if (cv == null || cv == ev || cv.equals(ev)) {
1289                                      oldVal = ev;
1290                                      if ((e.val = v) == null) {
# Line 463 | Line 1299 | public class ConcurrentHashMapV8<K, V>
1299                                  break;
1300                              }
1301                              pred = e;
1302 <                        } while ((e = e.next) != null);
1302 >                            if ((e = e.next) == null)
1303 >                                break;
1304 >                        }
1305 >                    }
1306 >                } finally {
1307 >                    if (!f.casHash(fh | LOCKED, fh)) {
1308 >                        f.hash = fh;
1309 >                        synchronized (f) { f.notifyAll(); };
1310                      }
1311                  }
1312                  if (validated) {
1313                      if (deleted)
1314 <                        counter.decrement();
1314 >                        counter.add(-1L);
1315                      break;
1316                  }
1317              }
# Line 476 | Line 1319 | public class ConcurrentHashMapV8<K, V>
1319          return oldVal;
1320      }
1321  
1322 <    /** Implementation for computeIfAbsent and compute */
1323 <    @SuppressWarnings("unchecked")
1324 <    private final V internalCompute(K k,
1325 <                                    MappingFunction<? super K, ? extends V> f,
1326 <                                    boolean replace) {
1322 >    /*
1323 >     * Internal versions of the six insertion methods, each a
1324 >     * little more complicated than the last. All have
1325 >     * the same basic structure as the first (internalPut):
1326 >     *  1. If table uninitialized, create
1327 >     *  2. If bin empty, try to CAS new node
1328 >     *  3. If bin stale, use new table
1329 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1330 >     *  5. Lock and validate; if valid, scan and add or update
1331 >     *
1332 >     * The others interweave other checks and/or alternative actions:
1333 >     *  * Plain put checks for and performs resize after insertion.
1334 >     *  * putIfAbsent prescans for mapping without lock (and fails to add
1335 >     *    if present), which also makes pre-emptive resize checks worthwhile.
1336 >     *  * computeIfAbsent extends form used in putIfAbsent with additional
1337 >     *    mechanics to deal with, calls, potential exceptions and null
1338 >     *    returns from function call.
1339 >     *  * compute uses the same function-call mechanics, but without
1340 >     *    the prescans
1341 >     *  * merge acts as putIfAbsent in the absent case, but invokes the
1342 >     *    update function if present
1343 >     *  * putAll attempts to pre-allocate enough table space
1344 >     *    and more lazily performs count updates and checks.
1345 >     *
1346 >     * Someday when details settle down a bit more, it might be worth
1347 >     * some factoring to reduce sprawl.
1348 >     */
1349 >
1350 >    /** Implementation for put */
1351 >    private final Object internalPut(Object k, Object v) {
1352          int h = spread(k.hashCode());
1353 <        V val = null;
1354 <        boolean added = false;
1355 <        Node[] tab = table;
488 <        for (;;) {
489 <            Node e; int i;
1353 >        int count = 0;
1354 >        for (Node[] tab = table;;) {
1355 >            int i; Node f; int fh; Object fk;
1356              if (tab == null)
1357 <                tab = grow(0);
1358 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1359 <                Node node = new Node(h, k, null, null);
1360 <                boolean validated = false;
1361 <                synchronized (node) {
1362 <                    if (casTabAt(tab, i, null, node)) {
1363 <                        validated = true;
1364 <                        try {
1365 <                            val = f.map(k);
1366 <                            if (val != null) {
1367 <                                node.val = val;
1368 <                                added = true;
1357 >                tab = initTable();
1358 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1359 >                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1360 >                    break;                   // no lock when adding to empty bin
1361 >            }
1362 >            else if ((fh = f.hash) == MOVED) {
1363 >                if ((fk = f.key) instanceof TreeBin) {
1364 >                    TreeBin t = (TreeBin)fk;
1365 >                    Object oldVal = null;
1366 >                    t.acquire(0);
1367 >                    try {
1368 >                        if (tabAt(tab, i) == f) {
1369 >                            count = 2;
1370 >                            TreeNode p = t.putTreeNode(h, k, v);
1371 >                            if (p != null) {
1372 >                                oldVal = p.val;
1373 >                                p.val = v;
1374 >                            }
1375 >                        }
1376 >                    } finally {
1377 >                        t.release(0);
1378 >                    }
1379 >                    if (count != 0) {
1380 >                        if (oldVal != null)
1381 >                            return oldVal;
1382 >                        break;
1383 >                    }
1384 >                }
1385 >                else
1386 >                    tab = (Node[])fk;
1387 >            }
1388 >            else if ((fh & LOCKED) != 0) {
1389 >                checkForResize();
1390 >                f.tryAwaitLock(tab, i);
1391 >            }
1392 >            else if (f.casHash(fh, fh | LOCKED)) {
1393 >                Object oldVal = null;
1394 >                try {                        // needed in case equals() throws
1395 >                    if (tabAt(tab, i) == f) {
1396 >                        count = 1;
1397 >                        for (Node e = f;; ++count) {
1398 >                            Object ek, ev;
1399 >                            if ((e.hash & HASH_BITS) == h &&
1400 >                                (ev = e.val) != null &&
1401 >                                ((ek = e.key) == k || k.equals(ek))) {
1402 >                                oldVal = ev;
1403 >                                e.val = v;
1404 >                                break;
1405 >                            }
1406 >                            Node last = e;
1407 >                            if ((e = e.next) == null) {
1408 >                                last.next = new Node(h, k, v, null);
1409 >                                if (count >= TREE_THRESHOLD)
1410 >                                    replaceWithTreeBin(tab, i, k);
1411 >                                break;
1412                              }
504                        } finally {
505                            if (!added)
506                                setTabAt(tab, i, null);
1413                          }
1414                      }
1415 +                } finally {                  // unlock and signal if needed
1416 +                    if (!f.casHash(fh | LOCKED, fh)) {
1417 +                        f.hash = fh;
1418 +                        synchronized (f) { f.notifyAll(); };
1419 +                    }
1420                  }
1421 <                if (validated)
1421 >                if (count != 0) {
1422 >                    if (oldVal != null)
1423 >                        return oldVal;
1424 >                    if (tab.length <= 64)
1425 >                        count = 2;
1426                      break;
1427 +                }
1428              }
1429 <            else if (e.hash < 0)
1430 <                tab = (Node[])e.key;
1431 <            else if (Thread.holdsLock(e))
1432 <                throw new IllegalStateException("Recursive map computation");
1429 >        }
1430 >        counter.add(1L);
1431 >        if (count > 1)
1432 >            checkForResize();
1433 >        return null;
1434 >    }
1435 >
1436 >    /** Implementation for putIfAbsent */
1437 >    private final Object internalPutIfAbsent(Object k, Object v) {
1438 >        int h = spread(k.hashCode());
1439 >        int count = 0;
1440 >        for (Node[] tab = table;;) {
1441 >            int i; Node f; int fh; Object fk, fv;
1442 >            if (tab == null)
1443 >                tab = initTable();
1444 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1445 >                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1446 >                    break;
1447 >            }
1448 >            else if ((fh = f.hash) == MOVED) {
1449 >                if ((fk = f.key) instanceof TreeBin) {
1450 >                    TreeBin t = (TreeBin)fk;
1451 >                    Object oldVal = null;
1452 >                    t.acquire(0);
1453 >                    try {
1454 >                        if (tabAt(tab, i) == f) {
1455 >                            count = 2;
1456 >                            TreeNode p = t.putTreeNode(h, k, v);
1457 >                            if (p != null)
1458 >                                oldVal = p.val;
1459 >                        }
1460 >                    } finally {
1461 >                        t.release(0);
1462 >                    }
1463 >                    if (count != 0) {
1464 >                        if (oldVal != null)
1465 >                            return oldVal;
1466 >                        break;
1467 >                    }
1468 >                }
1469 >                else
1470 >                    tab = (Node[])fk;
1471 >            }
1472 >            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1473 >                     ((fk = f.key) == k || k.equals(fk)))
1474 >                return fv;
1475              else {
1476 <                boolean validated = false;
1477 <                boolean checkSize = false;
1478 <                synchronized (e) {
1479 <                    if (tabAt(tab, i) == e) {
1480 <                        validated = true;
1481 <                        for (Node first = e;;) {
1482 <                            Object ek, ev, fv;
1483 <                            if (e.hash == h &&
1484 <                                (ek = e.key) != null &&
1476 >                Node g = f.next;
1477 >                if (g != null) { // at least 2 nodes -- search and maybe resize
1478 >                    for (Node e = g;;) {
1479 >                        Object ek, ev;
1480 >                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1481 >                            ((ek = e.key) == k || k.equals(ek)))
1482 >                            return ev;
1483 >                        if ((e = e.next) == null) {
1484 >                            checkForResize();
1485 >                            break;
1486 >                        }
1487 >                    }
1488 >                }
1489 >                if (((fh = f.hash) & LOCKED) != 0) {
1490 >                    checkForResize();
1491 >                    f.tryAwaitLock(tab, i);
1492 >                }
1493 >                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1494 >                    Object oldVal = null;
1495 >                    try {
1496 >                        if (tabAt(tab, i) == f) {
1497 >                            count = 1;
1498 >                            for (Node e = f;; ++count) {
1499 >                                Object ek, ev;
1500 >                                if ((e.hash & HASH_BITS) == h &&
1501 >                                    (ev = e.val) != null &&
1502 >                                    ((ek = e.key) == k || k.equals(ek))) {
1503 >                                    oldVal = ev;
1504 >                                    break;
1505 >                                }
1506 >                                Node last = e;
1507 >                                if ((e = e.next) == null) {
1508 >                                    last.next = new Node(h, k, v, null);
1509 >                                    if (count >= TREE_THRESHOLD)
1510 >                                        replaceWithTreeBin(tab, i, k);
1511 >                                    break;
1512 >                                }
1513 >                            }
1514 >                        }
1515 >                    } finally {
1516 >                        if (!f.casHash(fh | LOCKED, fh)) {
1517 >                            f.hash = fh;
1518 >                            synchronized (f) { f.notifyAll(); };
1519 >                        }
1520 >                    }
1521 >                    if (count != 0) {
1522 >                        if (oldVal != null)
1523 >                            return oldVal;
1524 >                        if (tab.length <= 64)
1525 >                            count = 2;
1526 >                        break;
1527 >                    }
1528 >                }
1529 >            }
1530 >        }
1531 >        counter.add(1L);
1532 >        if (count > 1)
1533 >            checkForResize();
1534 >        return null;
1535 >    }
1536 >
1537 >    /** Implementation for computeIfAbsent */
1538 >    private final Object internalComputeIfAbsent(K k,
1539 >                                                 Fun<? super K, ?> mf) {
1540 >        int h = spread(k.hashCode());
1541 >        Object val = null;
1542 >        int count = 0;
1543 >        for (Node[] tab = table;;) {
1544 >            Node f; int i, fh; Object fk, fv;
1545 >            if (tab == null)
1546 >                tab = initTable();
1547 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1548 >                Node node = new Node(fh = h | LOCKED, k, null, null);
1549 >                if (casTabAt(tab, i, null, node)) {
1550 >                    count = 1;
1551 >                    try {
1552 >                        if ((val = mf.apply(k)) != null)
1553 >                            node.val = val;
1554 >                    } finally {
1555 >                        if (val == null)
1556 >                            setTabAt(tab, i, null);
1557 >                        if (!node.casHash(fh, h)) {
1558 >                            node.hash = h;
1559 >                            synchronized (node) { node.notifyAll(); };
1560 >                        }
1561 >                    }
1562 >                }
1563 >                if (count != 0)
1564 >                    break;
1565 >            }
1566 >            else if ((fh = f.hash) == MOVED) {
1567 >                if ((fk = f.key) instanceof TreeBin) {
1568 >                    TreeBin t = (TreeBin)fk;
1569 >                    boolean added = false;
1570 >                    t.acquire(0);
1571 >                    try {
1572 >                        if (tabAt(tab, i) == f) {
1573 >                            count = 1;
1574 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1575 >                            if (p != null)
1576 >                                val = p.val;
1577 >                            else if ((val = mf.apply(k)) != null) {
1578 >                                added = true;
1579 >                                count = 2;
1580 >                                t.putTreeNode(h, k, val);
1581 >                            }
1582 >                        }
1583 >                    } finally {
1584 >                        t.release(0);
1585 >                    }
1586 >                    if (count != 0) {
1587 >                        if (!added)
1588 >                            return val;
1589 >                        break;
1590 >                    }
1591 >                }
1592 >                else
1593 >                    tab = (Node[])fk;
1594 >            }
1595 >            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1596 >                     ((fk = f.key) == k || k.equals(fk)))
1597 >                return fv;
1598 >            else {
1599 >                Node g = f.next;
1600 >                if (g != null) {
1601 >                    for (Node e = g;;) {
1602 >                        Object ek, ev;
1603 >                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1604 >                            ((ek = e.key) == k || k.equals(ek)))
1605 >                            return ev;
1606 >                        if ((e = e.next) == null) {
1607 >                            checkForResize();
1608 >                            break;
1609 >                        }
1610 >                    }
1611 >                }
1612 >                if (((fh = f.hash) & LOCKED) != 0) {
1613 >                    checkForResize();
1614 >                    f.tryAwaitLock(tab, i);
1615 >                }
1616 >                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1617 >                    boolean added = false;
1618 >                    try {
1619 >                        if (tabAt(tab, i) == f) {
1620 >                            count = 1;
1621 >                            for (Node e = f;; ++count) {
1622 >                                Object ek, ev;
1623 >                                if ((e.hash & HASH_BITS) == h &&
1624 >                                    (ev = e.val) != null &&
1625 >                                    ((ek = e.key) == k || k.equals(ek))) {
1626 >                                    val = ev;
1627 >                                    break;
1628 >                                }
1629 >                                Node last = e;
1630 >                                if ((e = e.next) == null) {
1631 >                                    if ((val = mf.apply(k)) != null) {
1632 >                                        added = true;
1633 >                                        last.next = new Node(h, k, val, null);
1634 >                                        if (count >= TREE_THRESHOLD)
1635 >                                            replaceWithTreeBin(tab, i, k);
1636 >                                    }
1637 >                                    break;
1638 >                                }
1639 >                            }
1640 >                        }
1641 >                    } finally {
1642 >                        if (!f.casHash(fh | LOCKED, fh)) {
1643 >                            f.hash = fh;
1644 >                            synchronized (f) { f.notifyAll(); };
1645 >                        }
1646 >                    }
1647 >                    if (count != 0) {
1648 >                        if (!added)
1649 >                            return val;
1650 >                        if (tab.length <= 64)
1651 >                            count = 2;
1652 >                        break;
1653 >                    }
1654 >                }
1655 >            }
1656 >        }
1657 >        if (val != null) {
1658 >            counter.add(1L);
1659 >            if (count > 1)
1660 >                checkForResize();
1661 >        }
1662 >        return val;
1663 >    }
1664 >
1665 >    /** Implementation for compute */
1666 >    @SuppressWarnings("unchecked") private final Object internalCompute
1667 >        (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1668 >        int h = spread(k.hashCode());
1669 >        Object val = null;
1670 >        int delta = 0;
1671 >        int count = 0;
1672 >        for (Node[] tab = table;;) {
1673 >            Node f; int i, fh; Object fk;
1674 >            if (tab == null)
1675 >                tab = initTable();
1676 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1677 >                if (onlyIfPresent)
1678 >                    break;
1679 >                Node node = new Node(fh = h | LOCKED, k, null, null);
1680 >                if (casTabAt(tab, i, null, node)) {
1681 >                    try {
1682 >                        count = 1;
1683 >                        if ((val = mf.apply(k, null)) != null) {
1684 >                            node.val = val;
1685 >                            delta = 1;
1686 >                        }
1687 >                    } finally {
1688 >                        if (delta == 0)
1689 >                            setTabAt(tab, i, null);
1690 >                        if (!node.casHash(fh, h)) {
1691 >                            node.hash = h;
1692 >                            synchronized (node) { node.notifyAll(); };
1693 >                        }
1694 >                    }
1695 >                }
1696 >                if (count != 0)
1697 >                    break;
1698 >            }
1699 >            else if ((fh = f.hash) == MOVED) {
1700 >                if ((fk = f.key) instanceof TreeBin) {
1701 >                    TreeBin t = (TreeBin)fk;
1702 >                    t.acquire(0);
1703 >                    try {
1704 >                        if (tabAt(tab, i) == f) {
1705 >                            count = 1;
1706 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1707 >                            Object pv = (p == null) ? null : p.val;
1708 >                            if ((val = mf.apply(k, (V)pv)) != null) {
1709 >                                if (p != null)
1710 >                                    p.val = val;
1711 >                                else {
1712 >                                    count = 2;
1713 >                                    delta = 1;
1714 >                                    t.putTreeNode(h, k, val);
1715 >                                }
1716 >                            }
1717 >                            else if (p != null) {
1718 >                                delta = -1;
1719 >                                t.deleteTreeNode(p);
1720 >                            }
1721 >                        }
1722 >                    } finally {
1723 >                        t.release(0);
1724 >                    }
1725 >                    if (count != 0)
1726 >                        break;
1727 >                }
1728 >                else
1729 >                    tab = (Node[])fk;
1730 >            }
1731 >            else if ((fh & LOCKED) != 0) {
1732 >                checkForResize();
1733 >                f.tryAwaitLock(tab, i);
1734 >            }
1735 >            else if (f.casHash(fh, fh | LOCKED)) {
1736 >                try {
1737 >                    if (tabAt(tab, i) == f) {
1738 >                        count = 1;
1739 >                        for (Node e = f, pred = null;; ++count) {
1740 >                            Object ek, ev;
1741 >                            if ((e.hash & HASH_BITS) == h &&
1742                                  (ev = e.val) != null &&
1743 <                                (k == ek || k.equals(ek))) {
1744 <                                if (replace && (fv = f.map(k)) != null)
1745 <                                    ev = e.val = fv;
1746 <                                val = (V)ev;
1743 >                                ((ek = e.key) == k || k.equals(ek))) {
1744 >                                val = mf.apply(k, (V)ev);
1745 >                                if (val != null)
1746 >                                    e.val = val;
1747 >                                else {
1748 >                                    delta = -1;
1749 >                                    Node en = e.next;
1750 >                                    if (pred != null)
1751 >                                        pred.next = en;
1752 >                                    else
1753 >                                        setTabAt(tab, i, en);
1754 >                                }
1755                                  break;
1756                              }
1757 <                            Node last = e;
1757 >                            pred = e;
1758                              if ((e = e.next) == null) {
1759 <                                if ((val = f.map(k)) != null) {
1760 <                                    last.next = new Node(h, k, val, null);
1761 <                                    added = true;
1762 <                                    if (last != first || tab.length <= 64)
1763 <                                        checkSize = true;
1759 >                                if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1760 >                                    pred.next = new Node(h, k, val, null);
1761 >                                    delta = 1;
1762 >                                    if (count >= TREE_THRESHOLD)
1763 >                                        replaceWithTreeBin(tab, i, k);
1764                                  }
1765                                  break;
1766                              }
1767                          }
1768                      }
1769 +                } finally {
1770 +                    if (!f.casHash(fh | LOCKED, fh)) {
1771 +                        f.hash = fh;
1772 +                        synchronized (f) { f.notifyAll(); };
1773 +                    }
1774                  }
1775 <                if (validated) {
1776 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1777 <                        resizing == 0 && counter.sum() >= threshold)
550 <                        grow(0);
1775 >                if (count != 0) {
1776 >                    if (tab.length <= 64)
1777 >                        count = 2;
1778                      break;
1779                  }
1780              }
1781          }
1782 <        if (added)
1783 <            counter.increment();
1782 >        if (delta != 0) {
1783 >            counter.add((long)delta);
1784 >            if (count > 1)
1785 >                checkForResize();
1786 >        }
1787          return val;
1788      }
1789  
1790 <    /*
1791 <     * Reclassifies nodes in each bin to new table.  Because we are
1792 <     * using power-of-two expansion, the elements from each bin must
1793 <     * either stay at same index, or move with a power of two
1794 <     * offset. We eliminate unnecessary node creation by catching
1795 <     * cases where old nodes can be reused because their next fields
1796 <     * won't change.  Statistically, at the default threshold, only
1797 <     * about one-sixth of them need cloning when a table doubles. The
1798 <     * nodes they replace will be garbage collectable as soon as they
1799 <     * are no longer referenced by any reader thread that may be in
1800 <     * the midst of concurrently traversing table.
1801 <     *
1802 <     * Transfers are done from the bottom up to preserve iterator
1803 <     * traversability. On each step, the old bin is locked,
1804 <     * moved/copied, and then replaced with a forwarding node.
1805 <     */
576 <    private static final void transfer(Node[] tab, Node[] nextTab) {
577 <        int n = tab.length;
578 <        int mask = nextTab.length - 1;
579 <        Node fwd = new Node(MOVED, nextTab, null, null);
580 <        for (int i = n - 1; i >= 0; --i) {
581 <            for (Node e;;) {
582 <                if ((e = tabAt(tab, i)) == null) {
583 <                    if (casTabAt(tab, i, e, fwd))
584 <                        break;
1790 >    /** Implementation for merge */
1791 >    @SuppressWarnings("unchecked") private final Object internalMerge
1792 >        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1793 >        int h = spread(k.hashCode());
1794 >        Object val = null;
1795 >        int delta = 0;
1796 >        int count = 0;
1797 >        for (Node[] tab = table;;) {
1798 >            int i; Node f; int fh; Object fk, fv;
1799 >            if (tab == null)
1800 >                tab = initTable();
1801 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1802 >                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1803 >                    delta = 1;
1804 >                    val = v;
1805 >                    break;
1806                  }
1807 <                else {
1808 <                    int idx = e.hash & mask;
1809 <                    boolean validated = false;
1810 <                    synchronized (e) {
1811 <                        if (tabAt(tab, i) == e) {
1812 <                            validated = true;
1813 <                            Node lastRun = e;
1814 <                            for (Node p = e.next; p != null; p = p.next) {
1815 <                                int j = p.hash & mask;
1816 <                                if (j != idx) {
1817 <                                    idx = j;
1818 <                                    lastRun = p;
1807 >            }
1808 >            else if ((fh = f.hash) == MOVED) {
1809 >                if ((fk = f.key) instanceof TreeBin) {
1810 >                    TreeBin t = (TreeBin)fk;
1811 >                    t.acquire(0);
1812 >                    try {
1813 >                        if (tabAt(tab, i) == f) {
1814 >                            count = 1;
1815 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1816 >                            val = (p == null) ? v : mf.apply((V)p.val, v);
1817 >                            if (val != null) {
1818 >                                if (p != null)
1819 >                                    p.val = val;
1820 >                                else {
1821 >                                    count = 2;
1822 >                                    delta = 1;
1823 >                                    t.putTreeNode(h, k, val);
1824                                  }
1825                              }
1826 <                            relaxedSetTabAt(nextTab, idx, lastRun);
1827 <                            for (Node p = e; p != lastRun; p = p.next) {
1828 <                                int h = p.hash;
603 <                                int j = h & mask;
604 <                                Node r = relaxedTabAt(nextTab, j);
605 <                                relaxedSetTabAt(nextTab, j,
606 <                                                new Node(h, p.key, p.val, r));
1826 >                            else if (p != null) {
1827 >                                delta = -1;
1828 >                                t.deleteTreeNode(p);
1829                              }
608                            setTabAt(tab, i, fwd);
1830                          }
1831 +                    } finally {
1832 +                        t.release(0);
1833                      }
1834 <                    if (validated)
1834 >                    if (count != 0)
1835                          break;
1836                  }
1837 +                else
1838 +                    tab = (Node[])fk;
1839 +            }
1840 +            else if ((fh & LOCKED) != 0) {
1841 +                checkForResize();
1842 +                f.tryAwaitLock(tab, i);
1843 +            }
1844 +            else if (f.casHash(fh, fh | LOCKED)) {
1845 +                try {
1846 +                    if (tabAt(tab, i) == f) {
1847 +                        count = 1;
1848 +                        for (Node e = f, pred = null;; ++count) {
1849 +                            Object ek, ev;
1850 +                            if ((e.hash & HASH_BITS) == h &&
1851 +                                (ev = e.val) != null &&
1852 +                                ((ek = e.key) == k || k.equals(ek))) {
1853 +                                val = mf.apply(v, (V)ev);
1854 +                                if (val != null)
1855 +                                    e.val = val;
1856 +                                else {
1857 +                                    delta = -1;
1858 +                                    Node en = e.next;
1859 +                                    if (pred != null)
1860 +                                        pred.next = en;
1861 +                                    else
1862 +                                        setTabAt(tab, i, en);
1863 +                                }
1864 +                                break;
1865 +                            }
1866 +                            pred = e;
1867 +                            if ((e = e.next) == null) {
1868 +                                val = v;
1869 +                                pred.next = new Node(h, k, val, null);
1870 +                                delta = 1;
1871 +                                if (count >= TREE_THRESHOLD)
1872 +                                    replaceWithTreeBin(tab, i, k);
1873 +                                break;
1874 +                            }
1875 +                        }
1876 +                    }
1877 +                } finally {
1878 +                    if (!f.casHash(fh | LOCKED, fh)) {
1879 +                        f.hash = fh;
1880 +                        synchronized (f) { f.notifyAll(); };
1881 +                    }
1882 +                }
1883 +                if (count != 0) {
1884 +                    if (tab.length <= 64)
1885 +                        count = 2;
1886 +                    break;
1887 +                }
1888              }
1889          }
1890 +        if (delta != 0) {
1891 +            counter.add((long)delta);
1892 +            if (count > 1)
1893 +                checkForResize();
1894 +        }
1895 +        return val;
1896      }
1897  
1898 +    /** Implementation for putAll */
1899 +    private final void internalPutAll(Map<?, ?> m) {
1900 +        tryPresize(m.size());
1901 +        long delta = 0L;     // number of uncommitted additions
1902 +        boolean npe = false; // to throw exception on exit for nulls
1903 +        try {                // to clean up counts on other exceptions
1904 +            for (Map.Entry<?, ?> entry : m.entrySet()) {
1905 +                Object k, v;
1906 +                if (entry == null || (k = entry.getKey()) == null ||
1907 +                    (v = entry.getValue()) == null) {
1908 +                    npe = true;
1909 +                    break;
1910 +                }
1911 +                int h = spread(k.hashCode());
1912 +                for (Node[] tab = table;;) {
1913 +                    int i; Node f; int fh; Object fk;
1914 +                    if (tab == null)
1915 +                        tab = initTable();
1916 +                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1917 +                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1918 +                            ++delta;
1919 +                            break;
1920 +                        }
1921 +                    }
1922 +                    else if ((fh = f.hash) == MOVED) {
1923 +                        if ((fk = f.key) instanceof TreeBin) {
1924 +                            TreeBin t = (TreeBin)fk;
1925 +                            boolean validated = false;
1926 +                            t.acquire(0);
1927 +                            try {
1928 +                                if (tabAt(tab, i) == f) {
1929 +                                    validated = true;
1930 +                                    TreeNode p = t.getTreeNode(h, k, t.root);
1931 +                                    if (p != null)
1932 +                                        p.val = v;
1933 +                                    else {
1934 +                                        t.putTreeNode(h, k, v);
1935 +                                        ++delta;
1936 +                                    }
1937 +                                }
1938 +                            } finally {
1939 +                                t.release(0);
1940 +                            }
1941 +                            if (validated)
1942 +                                break;
1943 +                        }
1944 +                        else
1945 +                            tab = (Node[])fk;
1946 +                    }
1947 +                    else if ((fh & LOCKED) != 0) {
1948 +                        counter.add(delta);
1949 +                        delta = 0L;
1950 +                        checkForResize();
1951 +                        f.tryAwaitLock(tab, i);
1952 +                    }
1953 +                    else if (f.casHash(fh, fh | LOCKED)) {
1954 +                        int count = 0;
1955 +                        try {
1956 +                            if (tabAt(tab, i) == f) {
1957 +                                count = 1;
1958 +                                for (Node e = f;; ++count) {
1959 +                                    Object ek, ev;
1960 +                                    if ((e.hash & HASH_BITS) == h &&
1961 +                                        (ev = e.val) != null &&
1962 +                                        ((ek = e.key) == k || k.equals(ek))) {
1963 +                                        e.val = v;
1964 +                                        break;
1965 +                                    }
1966 +                                    Node last = e;
1967 +                                    if ((e = e.next) == null) {
1968 +                                        ++delta;
1969 +                                        last.next = new Node(h, k, v, null);
1970 +                                        if (count >= TREE_THRESHOLD)
1971 +                                            replaceWithTreeBin(tab, i, k);
1972 +                                        break;
1973 +                                    }
1974 +                                }
1975 +                            }
1976 +                        } finally {
1977 +                            if (!f.casHash(fh | LOCKED, fh)) {
1978 +                                f.hash = fh;
1979 +                                synchronized (f) { f.notifyAll(); };
1980 +                            }
1981 +                        }
1982 +                        if (count != 0) {
1983 +                            if (count > 1) {
1984 +                                counter.add(delta);
1985 +                                delta = 0L;
1986 +                                checkForResize();
1987 +                            }
1988 +                            break;
1989 +                        }
1990 +                    }
1991 +                }
1992 +            }
1993 +        } finally {
1994 +            if (delta != 0)
1995 +                counter.add(delta);
1996 +        }
1997 +        if (npe)
1998 +            throw new NullPointerException();
1999 +    }
2000 +
2001 +    /* ---------------- Table Initialization and Resizing -------------- */
2002 +
2003      /**
2004 <     * If not already resizing, initializes or creates next table and
2005 <     * transfers bins. Rechecks occupancy after a transfer to see if
621 <     * another resize is already needed because resizings are lagging
622 <     * additions.
623 <     *
624 <     * @param sizeHint overridden capacity target (nonzero only from putAll)
625 <     * @return current table
2004 >     * Returns a power of two table size for the given desired capacity.
2005 >     * See Hackers Delight, sec 3.2
2006       */
2007 <    private final Node[] grow(int sizeHint) {
2008 <        if (resizing == 0 &&
2009 <            UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) {
2010 <            try {
2011 <                for (;;) {
2012 <                    int cap, n;
2013 <                    Node[] tab = table;
2014 <                    if (tab == null) {
2015 <                        int c = initCap;
2016 <                        if (c < sizeHint)
2017 <                            c = sizeHint;
2018 <                        if (c == DEFAULT_CAPACITY)
2019 <                            cap = c;
2020 <                        else if (c >= MAXIMUM_CAPACITY)
2021 <                            cap = MAXIMUM_CAPACITY;
2022 <                        else {
2023 <                            cap = MINIMUM_CAPACITY;
2024 <                            while (cap < c)
2025 <                                cap <<= 1;
2026 <                        }
2007 >    private static final int tableSizeFor(int c) {
2008 >        int n = c - 1;
2009 >        n |= n >>> 1;
2010 >        n |= n >>> 2;
2011 >        n |= n >>> 4;
2012 >        n |= n >>> 8;
2013 >        n |= n >>> 16;
2014 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
2015 >    }
2016 >
2017 >    /**
2018 >     * Initializes table, using the size recorded in sizeCtl.
2019 >     */
2020 >    private final Node[] initTable() {
2021 >        Node[] tab; int sc;
2022 >        while ((tab = table) == null) {
2023 >            if ((sc = sizeCtl) < 0)
2024 >                Thread.yield(); // lost initialization race; just spin
2025 >            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2026 >                try {
2027 >                    if ((tab = table) == null) {
2028 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2029 >                        tab = table = new Node[n];
2030 >                        sc = n - (n >>> 2);
2031                      }
2032 <                    else if ((n = tab.length) < MAXIMUM_CAPACITY &&
2033 <                             (sizeHint <= 0 || n < sizeHint))
650 <                        cap = n << 1;
651 <                    else
652 <                        break;
653 <                    threshold = (int)(cap * loadFactor) - THRESHOLD_OFFSET;
654 <                    Node[] nextTab = new Node[cap];
655 <                    if (tab != null)
656 <                        transfer(tab, nextTab);
657 <                    table = nextTab;
658 <                    if (tab == null || cap >= MAXIMUM_CAPACITY ||
659 <                        ((sizeHint > 0) ? cap >= sizeHint :
660 <                         counter.sum() < threshold))
661 <                        break;
2032 >                } finally {
2033 >                    sizeCtl = sc;
2034                  }
2035 <            } finally {
664 <                resizing = 0;
2035 >                break;
2036              }
2037          }
2038 <        else if (table == null)
668 <            Thread.yield(); // lost initialization race; just spin
669 <        return table;
2038 >        return tab;
2039      }
2040  
2041      /**
2042 <     * Implementation for putAll and constructor with Map
2043 <     * argument. Tries to first override initial capacity or grow
2044 <     * based on map size to pre-allocate table space.
2042 >     * If table is too small and not already resizing, creates next
2043 >     * table and transfers bins.  Rechecks occupancy after a transfer
2044 >     * to see if another resize is already needed because resizings
2045 >     * are lagging additions.
2046       */
2047 <    private final void internalPutAll(Map<? extends K, ? extends V> m) {
2048 <        int s = m.size();
2049 <        grow((s >= (MAXIMUM_CAPACITY >>> 1)) ? s : s + (s >>> 1));
2050 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
2051 <            Object k = e.getKey();
2052 <            Object v = e.getValue();
2053 <            if (k == null || v == null)
2054 <                throw new NullPointerException();
2055 <            internalPut(k, v, true);
2047 >    private final void checkForResize() {
2048 >        Node[] tab; int n, sc;
2049 >        while ((tab = table) != null &&
2050 >               (n = tab.length) < MAXIMUM_CAPACITY &&
2051 >               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
2052 >               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2053 >            try {
2054 >                if (tab == table) {
2055 >                    table = rebuild(tab);
2056 >                    sc = (n << 1) - (n >>> 1);
2057 >                }
2058 >            } finally {
2059 >                sizeCtl = sc;
2060 >            }
2061          }
2062      }
2063  
2064      /**
2065 <     * Implementation for clear. Steps through each bin, removing all nodes.
2065 >     * Tries to presize table to accommodate the given number of elements.
2066 >     *
2067 >     * @param size number of elements (doesn't need to be perfectly accurate)
2068       */
2069 <    private final void internalClear() {
2070 <        long deletions = 0L;
2071 <        int i = 0;
2072 <        Node[] tab = table;
2073 <        while (tab != null && i < tab.length) {
2074 <            Node e = tabAt(tab, i);
2075 <            if (e == null)
2076 <                ++i;
2077 <            else if (e.hash < 0)
2078 <                tab = (Node[])e.key;
2079 <            else {
2069 >    private final void tryPresize(int size) {
2070 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2071 >            tableSizeFor(size + (size >>> 1) + 1);
2072 >        int sc;
2073 >        while ((sc = sizeCtl) >= 0) {
2074 >            Node[] tab = table; int n;
2075 >            if (tab == null || (n = tab.length) == 0) {
2076 >                n = (sc > c) ? sc : c;
2077 >                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2078 >                    try {
2079 >                        if (table == tab) {
2080 >                            table = new Node[n];
2081 >                            sc = n - (n >>> 2);
2082 >                        }
2083 >                    } finally {
2084 >                        sizeCtl = sc;
2085 >                    }
2086 >                }
2087 >            }
2088 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2089 >                break;
2090 >            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2091 >                try {
2092 >                    if (table == tab) {
2093 >                        table = rebuild(tab);
2094 >                        sc = (n << 1) - (n >>> 1);
2095 >                    }
2096 >                } finally {
2097 >                    sizeCtl = sc;
2098 >                }
2099 >            }
2100 >        }
2101 >    }
2102 >
2103 >    /*
2104 >     * Moves and/or copies the nodes in each bin to new table. See
2105 >     * above for explanation.
2106 >     *
2107 >     * @return the new table
2108 >     */
2109 >    private static final Node[] rebuild(Node[] tab) {
2110 >        int n = tab.length;
2111 >        Node[] nextTab = new Node[n << 1];
2112 >        Node fwd = new Node(MOVED, nextTab, null, null);
2113 >        int[] buffer = null;       // holds bins to revisit; null until needed
2114 >        Node rev = null;           // reverse forwarder; null until needed
2115 >        int nbuffered = 0;         // the number of bins in buffer list
2116 >        int bufferIndex = 0;       // buffer index of current buffered bin
2117 >        int bin = n - 1;           // current non-buffered bin or -1 if none
2118 >
2119 >        for (int i = bin;;) {      // start upwards sweep
2120 >            int fh; Node f;
2121 >            if ((f = tabAt(tab, i)) == null) {
2122 >                if (bin >= 0) {    // Unbuffered; no lock needed (or available)
2123 >                    if (!casTabAt(tab, i, f, fwd))
2124 >                        continue;
2125 >                }
2126 >                else {             // transiently use a locked forwarding node
2127 >                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2128 >                    if (!casTabAt(tab, i, f, g))
2129 >                        continue;
2130 >                    setTabAt(nextTab, i, null);
2131 >                    setTabAt(nextTab, i + n, null);
2132 >                    setTabAt(tab, i, fwd);
2133 >                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
2134 >                        g.hash = MOVED;
2135 >                        synchronized (g) { g.notifyAll(); }
2136 >                    }
2137 >                }
2138 >            }
2139 >            else if ((fh = f.hash) == MOVED) {
2140 >                Object fk = f.key;
2141 >                if (fk instanceof TreeBin) {
2142 >                    TreeBin t = (TreeBin)fk;
2143 >                    boolean validated = false;
2144 >                    t.acquire(0);
2145 >                    try {
2146 >                        if (tabAt(tab, i) == f) {
2147 >                            validated = true;
2148 >                            splitTreeBin(nextTab, i, t);
2149 >                            setTabAt(tab, i, fwd);
2150 >                        }
2151 >                    } finally {
2152 >                        t.release(0);
2153 >                    }
2154 >                    if (!validated)
2155 >                        continue;
2156 >                }
2157 >            }
2158 >            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2159                  boolean validated = false;
2160 <                synchronized (e) {
2161 <                    if (tabAt(tab, i) == e) {
2160 >                try {              // split to lo and hi lists; copying as needed
2161 >                    if (tabAt(tab, i) == f) {
2162                          validated = true;
2163 <                        do {
2164 <                            if (e.val != null) {
709 <                                e.val = null;
710 <                                ++deletions;
711 <                            }
712 <                        } while ((e = e.next) != null);
713 <                        setTabAt(tab, i, null);
2163 >                        splitBin(nextTab, i, f);
2164 >                        setTabAt(tab, i, fwd);
2165                      }
2166 <                }
2167 <                if (validated) {
2168 <                    ++i;
2169 <                    if (deletions > THRESHOLD_OFFSET) { // bound lag in counts
719 <                        counter.add(-deletions);
720 <                        deletions = 0L;
2166 >                } finally {
2167 >                    if (!f.casHash(fh | LOCKED, fh)) {
2168 >                        f.hash = fh;
2169 >                        synchronized (f) { f.notifyAll(); };
2170                      }
2171                  }
2172 +                if (!validated)
2173 +                    continue;
2174              }
2175 +            else {
2176 +                if (buffer == null) // initialize buffer for revisits
2177 +                    buffer = new int[TRANSFER_BUFFER_SIZE];
2178 +                if (bin < 0 && bufferIndex > 0) {
2179 +                    int j = buffer[--bufferIndex];
2180 +                    buffer[bufferIndex] = i;
2181 +                    i = j;         // swap with another bin
2182 +                    continue;
2183 +                }
2184 +                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2185 +                    f.tryAwaitLock(tab, i);
2186 +                    continue;      // no other options -- block
2187 +                }
2188 +                if (rev == null)   // initialize reverse-forwarder
2189 +                    rev = new Node(MOVED, tab, null, null);
2190 +                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2191 +                    continue;      // recheck before adding to list
2192 +                buffer[nbuffered++] = i;
2193 +                setTabAt(nextTab, i, rev);     // install place-holders
2194 +                setTabAt(nextTab, i + n, rev);
2195 +            }
2196 +
2197 +            if (bin > 0)
2198 +                i = --bin;
2199 +            else if (buffer != null && nbuffered > 0) {
2200 +                bin = -1;
2201 +                i = buffer[bufferIndex = --nbuffered];
2202 +            }
2203 +            else
2204 +                return nextTab;
2205          }
725        if (deletions != 0L)
726            counter.add(-deletions);
2206      }
2207  
2208      /**
2209 <     * Base class for key, value, and entry iterators, plus internal
2210 <     * implementations of public traversal-based methods, to avoid
732 <     * duplicating traversal code.
2209 >     * Splits a normal bin with list headed by e into lo and hi parts;
2210 >     * installs in given table.
2211       */
2212 <    class HashIterator {
2213 <        private Node next;          // the next entry to return
2214 <        private Node[] tab;         // current table; updated if resized
2215 <        private Node lastReturned;  // the last entry returned, for remove
2216 <        private Object nextVal;     // cached value of next
2217 <        private int index;          // index of bin to use next
2218 <        private int baseIndex;      // current index of initial table
2219 <        private final int baseSize; // initial table size
2212 >    private static void splitBin(Node[] nextTab, int i, Node e) {
2213 >        int bit = nextTab.length >>> 1; // bit to split on
2214 >        int runBit = e.hash & bit;
2215 >        Node lastRun = e, lo = null, hi = null;
2216 >        for (Node p = e.next; p != null; p = p.next) {
2217 >            int b = p.hash & bit;
2218 >            if (b != runBit) {
2219 >                runBit = b;
2220 >                lastRun = p;
2221 >            }
2222 >        }
2223 >        if (runBit == 0)
2224 >            lo = lastRun;
2225 >        else
2226 >            hi = lastRun;
2227 >        for (Node p = e; p != lastRun; p = p.next) {
2228 >            int ph = p.hash & HASH_BITS;
2229 >            Object pk = p.key, pv = p.val;
2230 >            if ((ph & bit) == 0)
2231 >                lo = new Node(ph, pk, pv, lo);
2232 >            else
2233 >                hi = new Node(ph, pk, pv, hi);
2234 >        }
2235 >        setTabAt(nextTab, i, lo);
2236 >        setTabAt(nextTab, i + bit, hi);
2237 >    }
2238  
2239 <        HashIterator() {
2240 <            Node[] t = tab = table;
2241 <            if (t == null)
2242 <                baseSize = 0;
2239 >    /**
2240 >     * Splits a tree bin into lo and hi parts; installs in given table.
2241 >     */
2242 >    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2243 >        int bit = nextTab.length >>> 1;
2244 >        TreeBin lt = new TreeBin();
2245 >        TreeBin ht = new TreeBin();
2246 >        int lc = 0, hc = 0;
2247 >        for (Node e = t.first; e != null; e = e.next) {
2248 >            int h = e.hash & HASH_BITS;
2249 >            Object k = e.key, v = e.val;
2250 >            if ((h & bit) == 0) {
2251 >                ++lc;
2252 >                lt.putTreeNode(h, k, v);
2253 >            }
2254              else {
2255 <                baseSize = t.length;
2256 <                advance(null);
2255 >                ++hc;
2256 >                ht.putTreeNode(h, k, v);
2257              }
2258          }
2259 +        Node ln, hn; // throw away trees if too small
2260 +        if (lc <= (TREE_THRESHOLD >>> 1)) {
2261 +            ln = null;
2262 +            for (Node p = lt.first; p != null; p = p.next)
2263 +                ln = new Node(p.hash, p.key, p.val, ln);
2264 +        }
2265 +        else
2266 +            ln = new Node(MOVED, lt, null, null);
2267 +        setTabAt(nextTab, i, ln);
2268 +        if (hc <= (TREE_THRESHOLD >>> 1)) {
2269 +            hn = null;
2270 +            for (Node p = ht.first; p != null; p = p.next)
2271 +                hn = new Node(p.hash, p.key, p.val, hn);
2272 +        }
2273 +        else
2274 +            hn = new Node(MOVED, ht, null, null);
2275 +        setTabAt(nextTab, i + bit, hn);
2276 +    }
2277  
2278 <        public final boolean hasNext()         { return next != null; }
2279 <        public final boolean hasMoreElements() { return next != null; }
2280 <
2281 <        /**
2282 <         * Advances next.  Normally, iteration proceeds bin-by-bin
2283 <         * traversing lists.  However, if the table has been resized,
2284 <         * then all future steps must traverse both the bin at the
2285 <         * current index as well as at (index + baseSize); and so on
2286 <         * for further resizings. To paranoically cope with potential
2287 <         * (improper) sharing of iterators across threads, table reads
2288 <         * are bounds-checked.
2289 <         */
2290 <        final void advance(Node e) {
2291 <            for (;;) {
2292 <                Node[] t; int i; // for bounds checks
2293 <                if (e != null) {
2294 <                    Object ek = e.key, ev = e.val;
2295 <                    if (ev != null && ek != null) {
2296 <                        nextVal = ev;
2297 <                        next = e;
2298 <                        break;
2278 >    /**
2279 >     * Implementation for clear. Steps through each bin, removing all
2280 >     * nodes.
2281 >     */
2282 >    private final void internalClear() {
2283 >        long delta = 0L; // negative number of deletions
2284 >        int i = 0;
2285 >        Node[] tab = table;
2286 >        while (tab != null && i < tab.length) {
2287 >            int fh; Object fk;
2288 >            Node f = tabAt(tab, i);
2289 >            if (f == null)
2290 >                ++i;
2291 >            else if ((fh = f.hash) == MOVED) {
2292 >                if ((fk = f.key) instanceof TreeBin) {
2293 >                    TreeBin t = (TreeBin)fk;
2294 >                    t.acquire(0);
2295 >                    try {
2296 >                        if (tabAt(tab, i) == f) {
2297 >                            for (Node p = t.first; p != null; p = p.next) {
2298 >                                if (p.val != null) { // (currently always true)
2299 >                                    p.val = null;
2300 >                                    --delta;
2301 >                                }
2302 >                            }
2303 >                            t.first = null;
2304 >                            t.root = null;
2305 >                            ++i;
2306 >                        }
2307 >                    } finally {
2308 >                        t.release(0);
2309                      }
775                    e = e.next;
2310                  }
2311 <                else if (baseIndex < baseSize && (t = tab) != null &&
2312 <                         t.length > (i = index) && i >= 0) {
2313 <                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2314 <                        tab = (Node[])e.key;
2315 <                        e = null;
2311 >                else
2312 >                    tab = (Node[])fk;
2313 >            }
2314 >            else if ((fh & LOCKED) != 0) {
2315 >                counter.add(delta); // opportunistically update count
2316 >                delta = 0L;
2317 >                f.tryAwaitLock(tab, i);
2318 >            }
2319 >            else if (f.casHash(fh, fh | LOCKED)) {
2320 >                try {
2321 >                    if (tabAt(tab, i) == f) {
2322 >                        for (Node e = f; e != null; e = e.next) {
2323 >                            if (e.val != null) {  // (currently always true)
2324 >                                e.val = null;
2325 >                                --delta;
2326 >                            }
2327 >                        }
2328 >                        setTabAt(tab, i, null);
2329 >                        ++i;
2330 >                    }
2331 >                } finally {
2332 >                    if (!f.casHash(fh | LOCKED, fh)) {
2333 >                        f.hash = fh;
2334 >                        synchronized (f) { f.notifyAll(); };
2335                      }
783                    else if (i + baseSize < t.length)
784                        index += baseSize;    // visit forwarded upper slots
785                    else
786                        index = ++baseIndex;
787                }
788                else {
789                    next = null;
790                    break;
2336                  }
2337              }
2338          }
2339 +        if (delta != 0)
2340 +            counter.add(delta);
2341 +    }
2342  
2343 <        final Object nextKey() {
796 <            Node e = next;
797 <            if (e == null)
798 <                throw new NoSuchElementException();
799 <            Object k = e.key;
800 <            advance((lastReturned = e).next);
801 <            return k;
802 <        }
2343 >    /* ----------------Table Traversal -------------- */
2344  
2345 <        final Object nextValue() {
2346 <            Node e = next;
2347 <            if (e == null)
2348 <                throw new NoSuchElementException();
2349 <            Object v = nextVal;
2350 <            advance((lastReturned = e).next);
2351 <            return v;
2345 >    /**
2346 >     * Encapsulates traversal for methods such as containsValue; also
2347 >     * serves as a base class for other iterators and bulk tasks.
2348 >     *
2349 >     * At each step, the iterator snapshots the key ("nextKey") and
2350 >     * value ("nextVal") of a valid node (i.e., one that, at point of
2351 >     * snapshot, has a non-null user value). Because val fields can
2352 >     * change (including to null, indicating deletion), field nextVal
2353 >     * might not be accurate at point of use, but still maintains the
2354 >     * weak consistency property of holding a value that was once
2355 >     * valid. To support iterator.remove, the nextKey field is not
2356 >     * updated (nulled out) when the iterator cannot advance.
2357 >     *
2358 >     * Internal traversals directly access these fields, as in:
2359 >     * {@code while (it.advance() != null) { process(it.nextKey); }}
2360 >     *
2361 >     * Exported iterators must track whether the iterator has advanced
2362 >     * (in hasNext vs next) (by setting/checking/nulling field
2363 >     * nextVal), and then extract key, value, or key-value pairs as
2364 >     * return values of next().
2365 >     *
2366 >     * The iterator visits once each still-valid node that was
2367 >     * reachable upon iterator construction. It might miss some that
2368 >     * were added to a bin after the bin was visited, which is OK wrt
2369 >     * consistency guarantees. Maintaining this property in the face
2370 >     * of possible ongoing resizes requires a fair amount of
2371 >     * bookkeeping state that is difficult to optimize away amidst
2372 >     * volatile accesses.  Even so, traversal maintains reasonable
2373 >     * throughput.
2374 >     *
2375 >     * Normally, iteration proceeds bin-by-bin traversing lists.
2376 >     * However, if the table has been resized, then all future steps
2377 >     * must traverse both the bin at the current index as well as at
2378 >     * (index + baseSize); and so on for further resizings. To
2379 >     * paranoically cope with potential sharing by users of iterators
2380 >     * across threads, iteration terminates if a bounds checks fails
2381 >     * for a table read.
2382 >     *
2383 >     * This class extends ForkJoinTask to streamline parallel
2384 >     * iteration in bulk operations (see BulkTask). This adds only an
2385 >     * int of space overhead, which is close enough to negligible in
2386 >     * cases where it is not needed to not worry about it.  Because
2387 >     * ForkJoinTask is Serializable, but iterators need not be, we
2388 >     * need to add warning suppressions.
2389 >     */
2390 >    @SuppressWarnings("serial") static class Traverser<K,V,R> extends ForkJoinTask<R> {
2391 >        final ConcurrentHashMapV8<K, V> map;
2392 >        Node next;           // the next entry to use
2393 >        Object nextKey;      // cached key field of next
2394 >        Object nextVal;      // cached val field of next
2395 >        Node[] tab;          // current table; updated if resized
2396 >        int index;           // index of bin to use next
2397 >        int baseIndex;       // current index of initial table
2398 >        int baseLimit;       // index bound for initial table
2399 >        int baseSize;        // initial table size
2400 >
2401 >        /** Creates iterator for all entries in the table. */
2402 >        Traverser(ConcurrentHashMapV8<K, V> map) {
2403 >            this.map = map;
2404 >        }
2405 >
2406 >        /** Creates iterator for split() methods */
2407 >        Traverser(Traverser<K,V,?> it) {
2408 >            ConcurrentHashMapV8<K, V> m; Node[] t;
2409 >            if ((m = this.map = it.map) == null)
2410 >                t = null;
2411 >            else if ((t = it.tab) == null && // force parent tab initialization
2412 >                     (t = it.tab = m.table) != null)
2413 >                it.baseLimit = it.baseSize = t.length;
2414 >            this.tab = t;
2415 >            this.baseSize = it.baseSize;
2416 >            it.baseLimit = this.index = this.baseIndex =
2417 >                ((this.baseLimit = it.baseLimit) + it.baseIndex + 1) >>> 1;
2418          }
2419  
2420 <        final WriteThroughEntry nextEntry() {
2420 >        /**
2421 >         * Advances next; returns nextVal or null if terminated.
2422 >         * See above for explanation.
2423 >         */
2424 >        final Object advance() {
2425              Node e = next;
2426 <            if (e == null)
2427 <                throw new NoSuchElementException();
2428 <            WriteThroughEntry entry =
2429 <                new WriteThroughEntry(e.key, nextVal);
2430 <            advance((lastReturned = e).next);
2431 <            return entry;
2426 >            Object ev = null;
2427 >            outer: do {
2428 >                if (e != null)                  // advance past used/skipped node
2429 >                    e = e.next;
2430 >                while (e == null) {             // get to next non-null bin
2431 >                    ConcurrentHashMapV8<K, V> m;
2432 >                    Node[] t; int b, i, n; Object ek; // checks must use locals
2433 >                    if ((t = tab) != null)
2434 >                        n = t.length;
2435 >                    else if ((m = map) != null && (t = tab = m.table) != null)
2436 >                        n = baseLimit = baseSize = t.length;
2437 >                    else
2438 >                        break outer;
2439 >                    if ((b = baseIndex) >= baseLimit ||
2440 >                        (i = index) < 0 || i >= n)
2441 >                        break outer;
2442 >                    if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2443 >                        if ((ek = e.key) instanceof TreeBin)
2444 >                            e = ((TreeBin)ek).first;
2445 >                        else {
2446 >                            tab = (Node[])ek;
2447 >                            continue;           // restarts due to null val
2448 >                        }
2449 >                    }                           // visit upper slots if present
2450 >                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2451 >                }
2452 >                nextKey = e.key;
2453 >            } while ((ev = e.val) == null);    // skip deleted or special nodes
2454 >            next = e;
2455 >            return nextVal = ev;
2456          }
2457  
2458          public final void remove() {
2459 <            if (lastReturned == null)
2459 >            Object k = nextKey;
2460 >            if (k == null && (advance() == null || (k = nextKey) == null))
2461                  throw new IllegalStateException();
2462 <            ConcurrentHashMapV8.this.remove(lastReturned.key);
827 <            lastReturned = null;
828 <        }
829 <
830 <        /** Helper for serialization */
831 <        final void writeEntries(java.io.ObjectOutputStream s)
832 <            throws java.io.IOException {
833 <            Node e;
834 <            while ((e = next) != null) {
835 <                s.writeObject(e.key);
836 <                s.writeObject(nextVal);
837 <                advance(e.next);
838 <            }
839 <        }
840 <
841 <        /** Helper for containsValue */
842 <        final boolean containsVal(Object value) {
843 <            if (value != null) {
844 <                Node e;
845 <                while ((e = next) != null) {
846 <                    Object v = nextVal;
847 <                    if (value == v || value.equals(v))
848 <                        return true;
849 <                    advance(e.next);
850 <                }
851 <            }
852 <            return false;
2462 >            map.internalReplace(k, null, null);
2463          }
2464  
2465 <        /** Helper for Map.hashCode */
2466 <        final int mapHashCode() {
857 <            int h = 0;
858 <            Node e;
859 <            while ((e = next) != null) {
860 <                h += e.key.hashCode() ^ nextVal.hashCode();
861 <                advance(e.next);
862 <            }
863 <            return h;
2465 >        public final boolean hasNext() {
2466 >            return nextVal != null || advance() != null;
2467          }
2468  
2469 <        /** Helper for Map.toString */
2470 <        final String mapToString() {
2471 <            Node e = next;
2472 <            if (e == null)
870 <                return "{}";
871 <            StringBuilder sb = new StringBuilder();
872 <            sb.append('{');
873 <            for (;;) {
874 <                sb.append(e.key   == this ? "(this Map)" : e.key);
875 <                sb.append('=');
876 <                sb.append(nextVal == this ? "(this Map)" : nextVal);
877 <                advance(e.next);
878 <                if ((e = next) != null)
879 <                    sb.append(',').append(' ');
880 <                else
881 <                    return sb.append('}').toString();
882 <            }
883 <        }
2469 >        public final boolean hasMoreElements() { return hasNext(); }
2470 >        public final void setRawResult(Object x) { }
2471 >        public R getRawResult() { return null; }
2472 >        public boolean exec() { return true; }
2473      }
2474  
2475      /* ---------------- Public operations -------------- */
2476  
2477      /**
2478 <     * Creates a new, empty map with the specified initial
890 <     * capacity, load factor and concurrency level.
891 <     *
892 <     * @param initialCapacity the initial capacity. The implementation
893 <     * performs internal sizing to accommodate this many elements.
894 <     * @param loadFactor  the load factor threshold, used to control resizing.
895 <     * Resizing may be performed when the average number of elements per
896 <     * bin exceeds this threshold.
897 <     * @param concurrencyLevel the estimated number of concurrently
898 <     * updating threads. The implementation may use this value as
899 <     * a sizing hint.
900 <     * @throws IllegalArgumentException if the initial capacity is
901 <     * negative or the load factor or concurrencyLevel are
902 <     * nonpositive.
2478 >     * Creates a new, empty map with the default initial table size (16).
2479       */
2480 <    public ConcurrentHashMapV8(int initialCapacity,
905 <                               float loadFactor, int concurrencyLevel) {
906 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
907 <            throw new IllegalArgumentException();
908 <        this.initCap = initialCapacity;
909 <        this.loadFactor = loadFactor;
2480 >    public ConcurrentHashMapV8() {
2481          this.counter = new LongAdder();
2482      }
2483  
2484      /**
2485 <     * Creates a new, empty map with the specified initial capacity
2486 <     * and load factor and with the default concurrencyLevel (16).
2485 >     * Creates a new, empty map with an initial table size
2486 >     * accommodating the specified number of elements without the need
2487 >     * to dynamically resize.
2488       *
2489       * @param initialCapacity The implementation performs internal
2490       * sizing to accommodate this many elements.
2491 <     * @param loadFactor  the load factor threshold, used to control resizing.
2492 <     * Resizing may be performed when the average number of elements per
2493 <     * bin exceeds this threshold.
2491 >     * @throws IllegalArgumentException if the initial capacity of
2492 >     * elements is negative
2493 >     */
2494 >    public ConcurrentHashMapV8(int initialCapacity) {
2495 >        if (initialCapacity < 0)
2496 >            throw new IllegalArgumentException();
2497 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2498 >                   MAXIMUM_CAPACITY :
2499 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2500 >        this.counter = new LongAdder();
2501 >        this.sizeCtl = cap;
2502 >    }
2503 >
2504 >    /**
2505 >     * Creates a new map with the same mappings as the given map.
2506 >     *
2507 >     * @param m the map
2508 >     */
2509 >    public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2510 >        this.counter = new LongAdder();
2511 >        this.sizeCtl = DEFAULT_CAPACITY;
2512 >        internalPutAll(m);
2513 >    }
2514 >
2515 >    /**
2516 >     * Creates a new, empty map with an initial table size based on
2517 >     * the given number of elements ({@code initialCapacity}) and
2518 >     * initial table density ({@code loadFactor}).
2519 >     *
2520 >     * @param initialCapacity the initial capacity. The implementation
2521 >     * performs internal sizing to accommodate this many elements,
2522 >     * given the specified load factor.
2523 >     * @param loadFactor the load factor (table density) for
2524 >     * establishing the initial table size
2525       * @throws IllegalArgumentException if the initial capacity of
2526       * elements is negative or the load factor is nonpositive
2527       *
2528       * @since 1.6
2529       */
2530      public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2531 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
2531 >        this(initialCapacity, loadFactor, 1);
2532      }
2533  
2534      /**
2535 <     * Creates a new, empty map with the specified initial capacity,
2536 <     * and with default load factor (0.75) and concurrencyLevel (16).
2535 >     * Creates a new, empty map with an initial table size based on
2536 >     * the given number of elements ({@code initialCapacity}), table
2537 >     * density ({@code loadFactor}), and number of concurrently
2538 >     * updating threads ({@code concurrencyLevel}).
2539       *
2540       * @param initialCapacity the initial capacity. The implementation
2541 <     * performs internal sizing to accommodate this many elements.
2542 <     * @throws IllegalArgumentException if the initial capacity of
2543 <     * elements is negative.
2541 >     * performs internal sizing to accommodate this many elements,
2542 >     * given the specified load factor.
2543 >     * @param loadFactor the load factor (table density) for
2544 >     * establishing the initial table size
2545 >     * @param concurrencyLevel the estimated number of concurrently
2546 >     * updating threads. The implementation may use this value as
2547 >     * a sizing hint.
2548 >     * @throws IllegalArgumentException if the initial capacity is
2549 >     * negative or the load factor or concurrencyLevel are
2550 >     * nonpositive
2551       */
2552 <    public ConcurrentHashMapV8(int initialCapacity) {
2553 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2552 >    public ConcurrentHashMapV8(int initialCapacity,
2553 >                               float loadFactor, int concurrencyLevel) {
2554 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2555 >            throw new IllegalArgumentException();
2556 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2557 >            initialCapacity = concurrencyLevel;   // as estimated threads
2558 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2559 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2560 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2561 >        this.counter = new LongAdder();
2562 >        this.sizeCtl = cap;
2563      }
2564  
2565      /**
2566 <     * Creates a new, empty map with a default initial capacity (16),
2567 <     * load factor (0.75) and concurrencyLevel (16).
2566 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2567 >     * from the given type to {@code Boolean.TRUE}.
2568 >     *
2569 >     * @return the new set
2570       */
2571 <    public ConcurrentHashMapV8() {
2572 <        this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2571 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2572 >        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2573 >                                      Boolean.TRUE);
2574      }
2575  
2576      /**
2577 <     * Creates a new map with the same mappings as the given map.
2578 <     * The map is created with a capacity of 1.5 times the number
955 <     * of mappings in the given map or 16 (whichever is greater),
956 <     * and a default load factor (0.75) and concurrencyLevel (16).
2577 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2578 >     * from the given type to {@code Boolean.TRUE}.
2579       *
2580 <     * @param m the map
2580 >     * @param initialCapacity The implementation performs internal
2581 >     * sizing to accommodate this many elements.
2582 >     * @throws IllegalArgumentException if the initial capacity of
2583 >     * elements is negative
2584 >     * @return the new set
2585       */
2586 <    public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2587 <        this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
2588 <        if (m == null)
963 <            throw new NullPointerException();
964 <        internalPutAll(m);
2586 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2587 >        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(initialCapacity),
2588 >                                      Boolean.TRUE);
2589      }
2590  
2591      /**
2592 <     * Returns {@code true} if this map contains no key-value mappings.
969 <     *
970 <     * @return {@code true} if this map contains no key-value mappings
2592 >     * {@inheritDoc}
2593       */
2594      public boolean isEmpty() {
2595          return counter.sum() <= 0L; // ignore transient negative values
2596      }
2597  
2598      /**
2599 <     * Returns the number of key-value mappings in this map.  If the
978 <     * map contains more than {@code Integer.MAX_VALUE} elements, returns
979 <     * {@code Integer.MAX_VALUE}.
980 <     *
981 <     * @return the number of key-value mappings in this map
2599 >     * {@inheritDoc}
2600       */
2601      public int size() {
2602          long n = counter.sum();
2603 <        return ((n >>> 31) == 0) ? (int)n : (n < 0L) ? 0 : Integer.MAX_VALUE;
2603 >        return ((n < 0L) ? 0 :
2604 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2605 >                (int)n);
2606 >    }
2607 >
2608 >    /**
2609 >     * Returns the number of mappings. This method should be used
2610 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2611 >     * contain more mappings than can be represented as an int. The
2612 >     * value returned is a snapshot; the actual count may differ if
2613 >     * there are ongoing concurrent insertions or removals.
2614 >     *
2615 >     * @return the number of mappings
2616 >     */
2617 >    public long mappingCount() {
2618 >        long n = counter.sum();
2619 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2620      }
2621  
2622      /**
# Line 996 | Line 2630 | public class ConcurrentHashMapV8<K, V>
2630       *
2631       * @throws NullPointerException if the specified key is null
2632       */
2633 <    @SuppressWarnings("unchecked")
1000 <    public V get(Object key) {
2633 >    @SuppressWarnings("unchecked") public V get(Object key) {
2634          if (key == null)
2635              throw new NullPointerException();
2636          return (V)internalGet(key);
2637      }
2638  
2639      /**
2640 +     * Returns the value to which the specified key is mapped,
2641 +     * or the given defaultValue if this map contains no mapping for the key.
2642 +     *
2643 +     * @param key the key
2644 +     * @param defaultValue the value to return if this map contains
2645 +     * no mapping for the given key
2646 +     * @return the mapping for the key, if present; else the defaultValue
2647 +     * @throws NullPointerException if the specified key is null
2648 +     */
2649 +    @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
2650 +        if (key == null)
2651 +            throw new NullPointerException();
2652 +        V v = (V) internalGet(key);
2653 +        return v == null ? defaultValue : v;
2654 +    }
2655 +
2656 +    /**
2657       * Tests if the specified object is a key in this table.
2658       *
2659       * @param  key   possible key
2660       * @return {@code true} if and only if the specified object
2661       *         is a key in this table, as determined by the
2662 <     *         {@code equals} method; {@code false} otherwise.
2662 >     *         {@code equals} method; {@code false} otherwise
2663       * @throws NullPointerException if the specified key is null
2664       */
2665      public boolean containsKey(Object key) {
# Line 1020 | Line 2670 | public class ConcurrentHashMapV8<K, V>
2670  
2671      /**
2672       * Returns {@code true} if this map maps one or more keys to the
2673 <     * specified value. Note: This method requires a full internal
2674 <     * traversal of the hash table, and so is much slower than
1025 <     * method {@code containsKey}.
2673 >     * specified value. Note: This method may require a full traversal
2674 >     * of the map, and is much slower than method {@code containsKey}.
2675       *
2676       * @param value value whose presence in this map is to be tested
2677       * @return {@code true} if this map maps one or more keys to the
# Line 1032 | Line 2681 | public class ConcurrentHashMapV8<K, V>
2681      public boolean containsValue(Object value) {
2682          if (value == null)
2683              throw new NullPointerException();
2684 <        return new HashIterator().containsVal(value);
2684 >        Object v;
2685 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2686 >        while ((v = it.advance()) != null) {
2687 >            if (v == value || value.equals(v))
2688 >                return true;
2689 >        }
2690 >        return false;
2691      }
2692  
2693      /**
# Line 1067 | Line 2722 | public class ConcurrentHashMapV8<K, V>
2722       *         {@code null} if there was no mapping for {@code key}
2723       * @throws NullPointerException if the specified key or value is null
2724       */
2725 <    @SuppressWarnings("unchecked")
1071 <    public V put(K key, V value) {
2725 >    @SuppressWarnings("unchecked") public V put(K key, V value) {
2726          if (key == null || value == null)
2727              throw new NullPointerException();
2728 <        return (V)internalPut(key, value, true);
2728 >        return (V)internalPut(key, value);
2729      }
2730  
2731      /**
# Line 1081 | Line 2735 | public class ConcurrentHashMapV8<K, V>
2735       *         or {@code null} if there was no mapping for the key
2736       * @throws NullPointerException if the specified key or value is null
2737       */
2738 <    @SuppressWarnings("unchecked")
1085 <    public V putIfAbsent(K key, V value) {
2738 >    @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
2739          if (key == null || value == null)
2740              throw new NullPointerException();
2741 <        return (V)internalPut(key, value, false);
2741 >        return (V)internalPutIfAbsent(key, value);
2742      }
2743  
2744      /**
# Line 1096 | Line 2749 | public class ConcurrentHashMapV8<K, V>
2749       * @param m mappings to be stored in this map
2750       */
2751      public void putAll(Map<? extends K, ? extends V> m) {
1099        if (m == null)
1100            throw new NullPointerException();
2752          internalPutAll(m);
2753      }
2754  
2755      /**
2756       * If the specified key is not already associated with a value,
2757 <     * computes its value using the given mappingFunction, and if
2758 <     * non-null, enters it into the map.  This is equivalent to
2759 <     *
2760 <     * <pre>
2761 <     *   if (map.containsKey(key))
2762 <     *       return map.get(key);
2763 <     *   value = mappingFunction.map(key);
2764 <     *   if (value != null)
2765 <     *      map.put(key, value);
2766 <     *   return value;
2767 <     * </pre>
2768 <     *
2769 <     * except that the action is performed atomically.  Some attempted
2770 <     * update operations on this map by other threads may be blocked
2771 <     * while computation is in progress, so the computation should be
2772 <     * short and simple, and must not attempt to update any other
2773 <     * mappings of this Map. The most appropriate usage is to
2757 >     * computes its value using the given mappingFunction and enters
2758 >     * it into the map unless null.  This is equivalent to
2759 >     * <pre> {@code
2760 >     * if (map.containsKey(key))
2761 >     *   return map.get(key);
2762 >     * value = mappingFunction.apply(key);
2763 >     * if (value != null)
2764 >     *   map.put(key, value);
2765 >     * return value;}</pre>
2766 >     *
2767 >     * except that the action is performed atomically.  If the
2768 >     * function returns {@code null} no mapping is recorded. If the
2769 >     * function itself throws an (unchecked) exception, the exception
2770 >     * is rethrown to its caller, and no mapping is recorded.  Some
2771 >     * attempted update operations on this map by other threads may be
2772 >     * blocked while computation is in progress, so the computation
2773 >     * should be short and simple, and must not attempt to update any
2774 >     * other mappings of this Map. The most appropriate usage is to
2775       * construct a new object serving as an initial mapped value, or
2776       * memoized result, as in:
2777 <     * <pre>{@code
2778 <     * map.computeIfAbsent(key, new MappingFunction<K, V>() {
2779 <     *   public V map(K k) { return new Value(f(k)); }};
2780 <     * }</pre>
2777 >     *
2778 >     *  <pre> {@code
2779 >     * map.computeIfAbsent(key, new Fun<K, V>() {
2780 >     *   public V map(K k) { return new Value(f(k)); }});}</pre>
2781       *
2782       * @param key key with which the specified value is to be associated
2783       * @param mappingFunction the function to compute a value
2784       * @return the current (existing or computed) value associated with
2785 <     *         the specified key, or {@code null} if the computation
1134 <     *         returned {@code null}.
2785 >     *         the specified key, or null if the computed value is null
2786       * @throws NullPointerException if the specified key or mappingFunction
2787 <     *         is null,
2787 >     *         is null
2788       * @throws IllegalStateException if the computation detectably
2789       *         attempts a recursive update to this map that would
2790 <     *         otherwise never complete.
2790 >     *         otherwise never complete
2791       * @throws RuntimeException or Error if the mappingFunction does so,
2792 <     *         in which case the mapping is left unestablished.
2792 >     *         in which case the mapping is left unestablished
2793       */
2794 <    public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2794 >    @SuppressWarnings("unchecked") public V computeIfAbsent
2795 >        (K key, Fun<? super K, ? extends V> mappingFunction) {
2796          if (key == null || mappingFunction == null)
2797              throw new NullPointerException();
2798 <        return internalCompute(key, mappingFunction, false);
2798 >        return (V)internalComputeIfAbsent(key, mappingFunction);
2799      }
2800  
2801      /**
2802 <     * Computes the value associated with the given key using the given
2803 <     * mappingFunction, and if non-null, enters it into the map.  This
2804 <     * is equivalent to
2802 >     * If the given key is present, computes a new mapping value given a key and
2803 >     * its current mapped value. This is equivalent to
2804 >     *  <pre> {@code
2805 >     *   if (map.containsKey(key)) {
2806 >     *     value = remappingFunction.apply(key, map.get(key));
2807 >     *     if (value != null)
2808 >     *       map.put(key, value);
2809 >     *     else
2810 >     *       map.remove(key);
2811 >     *   }
2812 >     * }</pre>
2813       *
2814 <     * <pre>
2815 <     *   value = mappingFunction.map(key);
2814 >     * except that the action is performed atomically.  If the
2815 >     * function returns {@code null}, the mapping is removed.  If the
2816 >     * function itself throws an (unchecked) exception, the exception
2817 >     * is rethrown to its caller, and the current mapping is left
2818 >     * unchanged.  Some attempted update operations on this map by
2819 >     * other threads may be blocked while computation is in progress,
2820 >     * so the computation should be short and simple, and must not
2821 >     * attempt to update any other mappings of this Map. For example,
2822 >     * to either create or append new messages to a value mapping:
2823 >     *
2824 >     * @param key key with which the specified value is to be associated
2825 >     * @param remappingFunction the function to compute a value
2826 >     * @return the new value associated with the specified key, or null if none
2827 >     * @throws NullPointerException if the specified key or remappingFunction
2828 >     *         is null
2829 >     * @throws IllegalStateException if the computation detectably
2830 >     *         attempts a recursive update to this map that would
2831 >     *         otherwise never complete
2832 >     * @throws RuntimeException or Error if the remappingFunction does so,
2833 >     *         in which case the mapping is unchanged
2834 >     */
2835 >    @SuppressWarnings("unchecked") public V computeIfPresent
2836 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2837 >        if (key == null || remappingFunction == null)
2838 >            throw new NullPointerException();
2839 >        return (V)internalCompute(key, true, remappingFunction);
2840 >    }
2841 >
2842 >    /**
2843 >     * Computes a new mapping value given a key and
2844 >     * its current mapped value (or {@code null} if there is no current
2845 >     * mapping). This is equivalent to
2846 >     *  <pre> {@code
2847 >     *   value = remappingFunction.apply(key, map.get(key));
2848       *   if (value != null)
2849 <     *      map.put(key, value);
2849 >     *     map.put(key, value);
2850       *   else
2851 <     *      value = map.get(key);
2852 <     *   return value;
2853 <     * </pre>
2854 <     *
2855 <     * except that the action is performed atomically.  Some attempted
2856 <     * update operations on this map by other threads may be blocked
2857 <     * while computation is in progress, so the computation should be
2858 <     * short and simple, and must not attempt to update any other
2859 <     * mappings of this Map.
2851 >     *     map.remove(key);
2852 >     * }</pre>
2853 >     *
2854 >     * except that the action is performed atomically.  If the
2855 >     * function returns {@code null}, the mapping is removed.  If the
2856 >     * function itself throws an (unchecked) exception, the exception
2857 >     * is rethrown to its caller, and the current mapping is left
2858 >     * unchanged.  Some attempted update operations on this map by
2859 >     * other threads may be blocked while computation is in progress,
2860 >     * so the computation should be short and simple, and must not
2861 >     * attempt to update any other mappings of this Map. For example,
2862 >     * to either create or append new messages to a value mapping:
2863 >     *
2864 >     * <pre> {@code
2865 >     * Map<Key, String> map = ...;
2866 >     * final String msg = ...;
2867 >     * map.compute(key, new BiFun<Key, String, String>() {
2868 >     *   public String apply(Key k, String v) {
2869 >     *    return (v == null) ? msg : v + msg;});}}</pre>
2870       *
2871       * @param key key with which the specified value is to be associated
2872 <     * @param mappingFunction the function to compute a value
2873 <     * @return the current value associated with
2874 <     *         the specified key, or {@code null} if the computation
2875 <     *         returned {@code null} and the value was not otherwise present.
1174 <     * @throws NullPointerException if the specified key or mappingFunction
1175 <     *         is null,
2872 >     * @param remappingFunction the function to compute a value
2873 >     * @return the new value associated with the specified key, or null if none
2874 >     * @throws NullPointerException if the specified key or remappingFunction
2875 >     *         is null
2876       * @throws IllegalStateException if the computation detectably
2877       *         attempts a recursive update to this map that would
2878 <     *         otherwise never complete.
2879 <     * @throws RuntimeException or Error if the mappingFunction does so,
2880 <     *         in which case the mapping is unchanged.
2881 <     */
2882 <    public V compute(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2883 <        if (key == null || mappingFunction == null)
2878 >     *         otherwise never complete
2879 >     * @throws RuntimeException or Error if the remappingFunction does so,
2880 >     *         in which case the mapping is unchanged
2881 >     */
2882 >    @SuppressWarnings("unchecked") public V compute
2883 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2884 >        if (key == null || remappingFunction == null)
2885              throw new NullPointerException();
2886 <        return internalCompute(key, mappingFunction, true);
2886 >        return (V)internalCompute(key, false, remappingFunction);
2887 >    }
2888 >
2889 >    /**
2890 >     * If the specified key is not already associated
2891 >     * with a value, associate it with the given value.
2892 >     * Otherwise, replace the value with the results of
2893 >     * the given remapping function. This is equivalent to:
2894 >     *  <pre> {@code
2895 >     *   if (!map.containsKey(key))
2896 >     *     map.put(value);
2897 >     *   else {
2898 >     *     newValue = remappingFunction.apply(map.get(key), value);
2899 >     *     if (value != null)
2900 >     *       map.put(key, value);
2901 >     *     else
2902 >     *       map.remove(key);
2903 >     *   }
2904 >     * }</pre>
2905 >     * except that the action is performed atomically.  If the
2906 >     * function returns {@code null}, the mapping is removed.  If the
2907 >     * function itself throws an (unchecked) exception, the exception
2908 >     * is rethrown to its caller, and the current mapping is left
2909 >     * unchanged.  Some attempted update operations on this map by
2910 >     * other threads may be blocked while computation is in progress,
2911 >     * so the computation should be short and simple, and must not
2912 >     * attempt to update any other mappings of this Map.
2913 >     */
2914 >    @SuppressWarnings("unchecked") public V merge
2915 >        (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2916 >        if (key == null || value == null || remappingFunction == null)
2917 >            throw new NullPointerException();
2918 >        return (V)internalMerge(key, value, remappingFunction);
2919      }
2920  
2921      /**
# Line 1194 | Line 2927 | public class ConcurrentHashMapV8<K, V>
2927       *         {@code null} if there was no mapping for {@code key}
2928       * @throws NullPointerException if the specified key is null
2929       */
2930 <    @SuppressWarnings("unchecked")
1198 <    public V remove(Object key) {
2930 >    @SuppressWarnings("unchecked") public V remove(Object key) {
2931          if (key == null)
2932              throw new NullPointerException();
2933          return (V)internalReplace(key, null, null);
# Line 1232 | Line 2964 | public class ConcurrentHashMapV8<K, V>
2964       *         or {@code null} if there was no mapping for the key
2965       * @throws NullPointerException if the specified key or value is null
2966       */
2967 <    @SuppressWarnings("unchecked")
1236 <    public V replace(K key, V value) {
2967 >    @SuppressWarnings("unchecked") public V replace(K key, V value) {
2968          if (key == null || value == null)
2969              throw new NullPointerException();
2970          return (V)internalReplace(key, value, null);
# Line 1249 | Line 2980 | public class ConcurrentHashMapV8<K, V>
2980      /**
2981       * Returns a {@link Set} view of the keys contained in this map.
2982       * The set is backed by the map, so changes to the map are
2983 <     * reflected in the set, and vice-versa.  The set supports element
1253 <     * removal, which removes the corresponding mapping from this map,
1254 <     * via the {@code Iterator.remove}, {@code Set.remove},
1255 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
1256 <     * operations.  It does not support the {@code add} or
1257 <     * {@code addAll} operations.
2983 >     * reflected in the set, and vice-versa.
2984       *
2985 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2986 <     * that will never throw {@link ConcurrentModificationException},
2987 <     * and guarantees to traverse elements as they existed upon
2988 <     * construction of the iterator, and may (but is not guaranteed to)
2989 <     * reflect any modifications subsequent to construction.
2985 >     * @return the set view
2986 >     */
2987 >    public KeySetView<K,V> keySet() {
2988 >        KeySetView<K,V> ks = keySet;
2989 >        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2990 >    }
2991 >
2992 >    /**
2993 >     * Returns a {@link Set} view of the keys in this map, using the
2994 >     * given common mapped value for any additions (i.e., {@link
2995 >     * Collection#add} and {@link Collection#addAll}). This is of
2996 >     * course only appropriate if it is acceptable to use the same
2997 >     * value for all additions from this view.
2998 >     *
2999 >     * @param mappedValue the mapped value to use for any
3000 >     * additions.
3001 >     * @return the set view
3002 >     * @throws NullPointerException if the mappedValue is null
3003       */
3004 <    public Set<K> keySet() {
3005 <        Set<K> ks = keySet;
3006 <        return (ks != null) ? ks : (keySet = new KeySet());
3004 >    public KeySetView<K,V> keySet(V mappedValue) {
3005 >        if (mappedValue == null)
3006 >            throw new NullPointerException();
3007 >        return new KeySetView<K,V>(this, mappedValue);
3008      }
3009  
3010      /**
3011       * Returns a {@link Collection} view of the values contained in this map.
3012       * The collection is backed by the map, so changes to the map are
3013 <     * reflected in the collection, and vice-versa.  The collection
1274 <     * supports element removal, which removes the corresponding
1275 <     * mapping from this map, via the {@code Iterator.remove},
1276 <     * {@code Collection.remove}, {@code removeAll},
1277 <     * {@code retainAll}, and {@code clear} operations.  It does not
1278 <     * support the {@code add} or {@code addAll} operations.
1279 <     *
1280 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1281 <     * that will never throw {@link ConcurrentModificationException},
1282 <     * and guarantees to traverse elements as they existed upon
1283 <     * construction of the iterator, and may (but is not guaranteed to)
1284 <     * reflect any modifications subsequent to construction.
3013 >     * reflected in the collection, and vice-versa.
3014       */
3015 <    public Collection<V> values() {
3016 <        Collection<V> vs = values;
3017 <        return (vs != null) ? vs : (values = new Values());
3015 >    public ValuesView<K,V> values() {
3016 >        ValuesView<K,V> vs = values;
3017 >        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
3018      }
3019  
3020      /**
# Line 1305 | Line 3034 | public class ConcurrentHashMapV8<K, V>
3034       * reflect any modifications subsequent to construction.
3035       */
3036      public Set<Map.Entry<K,V>> entrySet() {
3037 <        Set<Map.Entry<K,V>> es = entrySet;
3038 <        return (es != null) ? es : (entrySet = new EntrySet());
3037 >        EntrySetView<K,V> es = entrySet;
3038 >        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
3039      }
3040  
3041      /**
# Line 1316 | Line 3045 | public class ConcurrentHashMapV8<K, V>
3045       * @see #keySet()
3046       */
3047      public Enumeration<K> keys() {
3048 <        return new KeyIterator();
3048 >        return new KeyIterator<K,V>(this);
3049      }
3050  
3051      /**
# Line 1326 | Line 3055 | public class ConcurrentHashMapV8<K, V>
3055       * @see #values()
3056       */
3057      public Enumeration<V> elements() {
3058 <        return new ValueIterator();
3058 >        return new ValueIterator<K,V>(this);
3059 >    }
3060 >
3061 >    /**
3062 >     * Returns a partitionable iterator of the keys in this map.
3063 >     *
3064 >     * @return a partitionable iterator of the keys in this map
3065 >     */
3066 >    public Spliterator<K> keySpliterator() {
3067 >        return new KeyIterator<K,V>(this);
3068 >    }
3069 >
3070 >    /**
3071 >     * Returns a partitionable iterator of the values in this map.
3072 >     *
3073 >     * @return a partitionable iterator of the values in this map
3074 >     */
3075 >    public Spliterator<V> valueSpliterator() {
3076 >        return new ValueIterator<K,V>(this);
3077 >    }
3078 >
3079 >    /**
3080 >     * Returns a partitionable iterator of the entries in this map.
3081 >     *
3082 >     * @return a partitionable iterator of the entries in this map
3083 >     */
3084 >    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
3085 >        return new EntryIterator<K,V>(this);
3086      }
3087  
3088      /**
# Line 1337 | Line 3093 | public class ConcurrentHashMapV8<K, V>
3093       * @return the hash code value for this map
3094       */
3095      public int hashCode() {
3096 <        return new HashIterator().mapHashCode();
3096 >        int h = 0;
3097 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3098 >        Object v;
3099 >        while ((v = it.advance()) != null) {
3100 >            h += it.nextKey.hashCode() ^ v.hashCode();
3101 >        }
3102 >        return h;
3103      }
3104  
3105      /**
# Line 1352 | Line 3114 | public class ConcurrentHashMapV8<K, V>
3114       * @return a string representation of this map
3115       */
3116      public String toString() {
3117 <        return new HashIterator().mapToString();
3117 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3118 >        StringBuilder sb = new StringBuilder();
3119 >        sb.append('{');
3120 >        Object v;
3121 >        if ((v = it.advance()) != null) {
3122 >            for (;;) {
3123 >                Object k = it.nextKey;
3124 >                sb.append(k == this ? "(this Map)" : k);
3125 >                sb.append('=');
3126 >                sb.append(v == this ? "(this Map)" : v);
3127 >                if ((v = it.advance()) == null)
3128 >                    break;
3129 >                sb.append(',').append(' ');
3130 >            }
3131 >        }
3132 >        return sb.append('}').toString();
3133      }
3134  
3135      /**
# Line 1366 | Line 3143 | public class ConcurrentHashMapV8<K, V>
3143       * @return {@code true} if the specified object is equal to this map
3144       */
3145      public boolean equals(Object o) {
3146 <        if (o == this)
3147 <            return true;
3148 <        if (!(o instanceof Map))
3149 <            return false;
3150 <        Map<?,?> m = (Map<?,?>) o;
3151 <        try {
3152 <            for (Map.Entry<K,V> e : this.entrySet())
3153 <                if (! e.getValue().equals(m.get(e.getKey())))
3146 >        if (o != this) {
3147 >            if (!(o instanceof Map))
3148 >                return false;
3149 >            Map<?,?> m = (Map<?,?>) o;
3150 >            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3151 >            Object val;
3152 >            while ((val = it.advance()) != null) {
3153 >                Object v = m.get(it.nextKey);
3154 >                if (v == null || (v != val && !v.equals(val)))
3155                      return false;
3156 +            }
3157              for (Map.Entry<?,?> e : m.entrySet()) {
3158 <                Object k = e.getKey();
3159 <                Object v = e.getValue();
3160 <                if (k == null || v == null || !v.equals(get(k)))
3158 >                Object mk, mv, v;
3159 >                if ((mk = e.getKey()) == null ||
3160 >                    (mv = e.getValue()) == null ||
3161 >                    (v = internalGet(mk)) == null ||
3162 >                    (mv != v && !mv.equals(v)))
3163                      return false;
3164              }
1384            return true;
1385        } catch (ClassCastException unused) {
1386            return false;
1387        } catch (NullPointerException unused) {
1388            return false;
3165          }
3166 +        return true;
3167      }
3168  
3169 <    /**
1393 <     * Custom Entry class used by EntryIterator.next(), that relays
1394 <     * setValue changes to the underlying map.
1395 <     */
1396 <    final class WriteThroughEntry extends AbstractMap.SimpleEntry<K,V> {
1397 <        @SuppressWarnings("unchecked")
1398 <        WriteThroughEntry(Object k, Object v) {
1399 <            super((K)k, (V)v);
1400 <        }
3169 >    /* ----------------Iterators -------------- */
3170  
3171 <        /**
3172 <         * Sets our entry's value and writes through to the map. The
3173 <         * value to return is somewhat arbitrary here. Since a
3174 <         * WriteThroughEntry does not necessarily track asynchronous
3175 <         * changes, the most recent "previous" value could be
3176 <         * different from what we return (or could even have been
3177 <         * removed in which case the put will re-establish). We do not
3178 <         * and cannot guarantee more.
3179 <         */
3180 <        public V setValue(V value) {
3181 <            if (value == null) throw new NullPointerException();
3182 <            V v = super.setValue(value);
3183 <            ConcurrentHashMapV8.this.put(getKey(), value);
3184 <            return v;
3171 >    @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3172 >        implements Spliterator<K>, Enumeration<K> {
3173 >        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3174 >        KeyIterator(Traverser<K,V,Object> it) {
3175 >            super(it);
3176 >        }
3177 >        public KeyIterator<K,V> split() {
3178 >            if (nextKey != null)
3179 >                throw new IllegalStateException();
3180 >            return new KeyIterator<K,V>(this);
3181 >        }
3182 >        @SuppressWarnings("unchecked") public final K next() {
3183 >            if (nextVal == null && advance() == null)
3184 >                throw new NoSuchElementException();
3185 >            Object k = nextKey;
3186 >            nextVal = null;
3187 >            return (K) k;
3188          }
1417    }
1418
1419    final class KeyIterator extends HashIterator
1420        implements Iterator<K>, Enumeration<K> {
1421        @SuppressWarnings("unchecked")
1422        public final K next()        { return (K)super.nextKey(); }
1423        @SuppressWarnings("unchecked")
1424        public final K nextElement() { return (K)super.nextKey(); }
1425    }
1426
1427    final class ValueIterator extends HashIterator
1428        implements Iterator<V>, Enumeration<V> {
1429        @SuppressWarnings("unchecked")
1430        public final V next()        { return (V)super.nextValue(); }
1431        @SuppressWarnings("unchecked")
1432        public final V nextElement() { return (V)super.nextValue(); }
1433    }
3189  
3190 <    final class EntryIterator extends HashIterator
1436 <        implements Iterator<Entry<K,V>> {
1437 <        public final Map.Entry<K,V> next() { return super.nextEntry(); }
3190 >        public final K nextElement() { return next(); }
3191      }
3192  
3193 <    final class KeySet extends AbstractSet<K> {
3194 <        public int size() {
3195 <            return ConcurrentHashMapV8.this.size();
3196 <        }
3197 <        public boolean isEmpty() {
1445 <            return ConcurrentHashMapV8.this.isEmpty();
1446 <        }
1447 <        public void clear() {
1448 <            ConcurrentHashMapV8.this.clear();
1449 <        }
1450 <        public Iterator<K> iterator() {
1451 <            return new KeyIterator();
3193 >    @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3194 >        implements Spliterator<V>, Enumeration<V> {
3195 >        ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3196 >        ValueIterator(Traverser<K,V,Object> it) {
3197 >            super(it);
3198          }
3199 <        public boolean contains(Object o) {
3200 <            return ConcurrentHashMapV8.this.containsKey(o);
3199 >        public ValueIterator<K,V> split() {
3200 >            if (nextKey != null)
3201 >                throw new IllegalStateException();
3202 >            return new ValueIterator<K,V>(this);
3203          }
3204 <        public boolean remove(Object o) {
3205 <            return ConcurrentHashMapV8.this.remove(o) != null;
3204 >
3205 >        @SuppressWarnings("unchecked") public final V next() {
3206 >            Object v;
3207 >            if ((v = nextVal) == null && (v = advance()) == null)
3208 >                throw new NoSuchElementException();
3209 >            nextVal = null;
3210 >            return (V) v;
3211          }
3212 +
3213 +        public final V nextElement() { return next(); }
3214      }
3215  
3216 <    final class Values extends AbstractCollection<V> {
3217 <        public int size() {
3218 <            return ConcurrentHashMapV8.this.size();
3216 >    @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3217 >        implements Spliterator<Map.Entry<K,V>> {
3218 >        EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3219 >        EntryIterator(Traverser<K,V,Object> it) {
3220 >            super(it);
3221          }
3222 <        public boolean isEmpty() {
3223 <            return ConcurrentHashMapV8.this.isEmpty();
3224 <        }
3225 <        public void clear() {
1469 <            ConcurrentHashMapV8.this.clear();
1470 <        }
1471 <        public Iterator<V> iterator() {
1472 <            return new ValueIterator();
3222 >        public EntryIterator<K,V> split() {
3223 >            if (nextKey != null)
3224 >                throw new IllegalStateException();
3225 >            return new EntryIterator<K,V>(this);
3226          }
3227 <        public boolean contains(Object o) {
3228 <            return ConcurrentHashMapV8.this.containsValue(o);
3227 >
3228 >        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3229 >            Object v;
3230 >            if ((v = nextVal) == null && (v = advance()) == null)
3231 >                throw new NoSuchElementException();
3232 >            Object k = nextKey;
3233 >            nextVal = null;
3234 >            return new MapEntry<K,V>((K)k, (V)v, map);
3235          }
3236      }
3237  
3238 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
3239 <        public int size() {
3240 <            return ConcurrentHashMapV8.this.size();
3241 <        }
3242 <        public boolean isEmpty() {
3243 <            return ConcurrentHashMapV8.this.isEmpty();
3244 <        }
3245 <        public void clear() {
3246 <            ConcurrentHashMapV8.this.clear();
3247 <        }
3248 <        public Iterator<Map.Entry<K,V>> iterator() {
1490 <            return new EntryIterator();
3238 >    /**
3239 >     * Exported Entry for iterators
3240 >     */
3241 >    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3242 >        final K key; // non-null
3243 >        V val;       // non-null
3244 >        final ConcurrentHashMapV8<K, V> map;
3245 >        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3246 >            this.key = key;
3247 >            this.val = val;
3248 >            this.map = map;
3249          }
3250 <        public boolean contains(Object o) {
3251 <            if (!(o instanceof Map.Entry))
3252 <                return false;
3253 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
3254 <            V v = ConcurrentHashMapV8.this.get(e.getKey());
3255 <            return v != null && v.equals(e.getValue());
3250 >        public final K getKey()       { return key; }
3251 >        public final V getValue()     { return val; }
3252 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3253 >        public final String toString(){ return key + "=" + val; }
3254 >
3255 >        public final boolean equals(Object o) {
3256 >            Object k, v; Map.Entry<?,?> e;
3257 >            return ((o instanceof Map.Entry) &&
3258 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3259 >                    (v = e.getValue()) != null &&
3260 >                    (k == key || k.equals(key)) &&
3261 >                    (v == val || v.equals(val)));
3262          }
3263 <        public boolean remove(Object o) {
3264 <            if (!(o instanceof Map.Entry))
3265 <                return false;
3266 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
3267 <            return ConcurrentHashMapV8.this.remove(e.getKey(), e.getValue());
3263 >
3264 >        /**
3265 >         * Sets our entry's value and writes through to the map. The
3266 >         * value to return is somewhat arbitrary here. Since we do not
3267 >         * necessarily track asynchronous changes, the most recent
3268 >         * "previous" value could be different from what we return (or
3269 >         * could even have been removed in which case the put will
3270 >         * re-establish). We do not and cannot guarantee more.
3271 >         */
3272 >        public final V setValue(V value) {
3273 >            if (value == null) throw new NullPointerException();
3274 >            V v = val;
3275 >            val = value;
3276 >            map.put(key, value);
3277 >            return v;
3278          }
3279      }
3280  
3281      /* ---------------- Serialization Support -------------- */
3282  
3283      /**
3284 <     * Helper class used in previous version, declared for the sake of
3285 <     * serialization compatibility
3284 >     * Stripped-down version of helper class used in previous version,
3285 >     * declared for the sake of serialization compatibility
3286       */
3287 <    static class Segment<K,V> extends java.util.concurrent.locks.ReentrantLock
1514 <        implements Serializable {
3287 >    static class Segment<K,V> implements Serializable {
3288          private static final long serialVersionUID = 2249069246763182397L;
3289          final float loadFactor;
3290          Segment(float lf) { this.loadFactor = lf; }
# Line 1526 | Line 3299 | public class ConcurrentHashMapV8<K, V>
3299       * for each key-value mapping, followed by a null pair.
3300       * The key-value mappings are emitted in no particular order.
3301       */
3302 <    @SuppressWarnings("unchecked")
3303 <    private void writeObject(java.io.ObjectOutputStream s)
1531 <            throws java.io.IOException {
3302 >    @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3303 >        throws java.io.IOException {
3304          if (segments == null) { // for serialization compatibility
3305              segments = (Segment<K,V>[])
3306                  new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3307              for (int i = 0; i < segments.length; ++i)
3308 <                segments[i] = new Segment<K,V>(loadFactor);
3308 >                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3309          }
3310          s.defaultWriteObject();
3311 <        new HashIterator().writeEntries(s);
3311 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3312 >        Object v;
3313 >        while ((v = it.advance()) != null) {
3314 >            s.writeObject(it.nextKey);
3315 >            s.writeObject(v);
3316 >        }
3317          s.writeObject(null);
3318          s.writeObject(null);
3319          segments = null; // throw away
# Line 1546 | Line 3323 | public class ConcurrentHashMapV8<K, V>
3323       * Reconstitutes the instance from a stream (that is, deserializes it).
3324       * @param s the stream
3325       */
3326 <    @SuppressWarnings("unchecked")
3327 <    private void readObject(java.io.ObjectInputStream s)
1551 <            throws java.io.IOException, ClassNotFoundException {
3326 >    @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3327 >        throws java.io.IOException, ClassNotFoundException {
3328          s.defaultReadObject();
1553        // find load factor in a segment, if one exists
1554        if (segments != null && segments.length != 0)
1555            this.loadFactor = segments[0].loadFactor;
1556        else
1557            this.loadFactor = DEFAULT_LOAD_FACTOR;
1558        this.initCap = DEFAULT_CAPACITY;
1559        LongAdder ct = new LongAdder(); // force final field write
1560        UNSAFE.putObjectVolatile(this, counterOffset, ct);
3329          this.segments = null; // unneeded
3330 +        // initialize transient final field
3331 +        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3332  
3333 <        // Read the keys and values, and put the mappings in the table
3333 >        // Create all nodes, then place in table once size is known
3334 >        long size = 0L;
3335 >        Node p = null;
3336          for (;;) {
3337 <            K key = (K) s.readObject();
3338 <            V value = (V) s.readObject();
3339 <            if (key == null)
3337 >            K k = (K) s.readObject();
3338 >            V v = (V) s.readObject();
3339 >            if (k != null && v != null) {
3340 >                int h = spread(k.hashCode());
3341 >                p = new Node(h, k, v, p);
3342 >                ++size;
3343 >            }
3344 >            else
3345                  break;
1569            put(key, value);
3346          }
3347 +        if (p != null) {
3348 +            boolean init = false;
3349 +            int n;
3350 +            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3351 +                n = MAXIMUM_CAPACITY;
3352 +            else {
3353 +                int sz = (int)size;
3354 +                n = tableSizeFor(sz + (sz >>> 1) + 1);
3355 +            }
3356 +            int sc = sizeCtl;
3357 +            boolean collide = false;
3358 +            if (n > sc &&
3359 +                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3360 +                try {
3361 +                    if (table == null) {
3362 +                        init = true;
3363 +                        Node[] tab = new Node[n];
3364 +                        int mask = n - 1;
3365 +                        while (p != null) {
3366 +                            int j = p.hash & mask;
3367 +                            Node next = p.next;
3368 +                            Node q = p.next = tabAt(tab, j);
3369 +                            setTabAt(tab, j, p);
3370 +                            if (!collide && q != null && q.hash == p.hash)
3371 +                                collide = true;
3372 +                            p = next;
3373 +                        }
3374 +                        table = tab;
3375 +                        counter.add(size);
3376 +                        sc = n - (n >>> 2);
3377 +                    }
3378 +                } finally {
3379 +                    sizeCtl = sc;
3380 +                }
3381 +                if (collide) { // rescan and convert to TreeBins
3382 +                    Node[] tab = table;
3383 +                    for (int i = 0; i < tab.length; ++i) {
3384 +                        int c = 0;
3385 +                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3386 +                            if (++c > TREE_THRESHOLD &&
3387 +                                (e.key instanceof Comparable)) {
3388 +                                replaceWithTreeBin(tab, i, e.key);
3389 +                                break;
3390 +                            }
3391 +                        }
3392 +                    }
3393 +                }
3394 +            }
3395 +            if (!init) { // Can only happen if unsafely published.
3396 +                while (p != null) {
3397 +                    internalPut(p.key, p.val);
3398 +                    p = p.next;
3399 +                }
3400 +            }
3401 +        }
3402 +    }
3403 +
3404 +
3405 +    // -------------------------------------------------------
3406 +
3407 +    // Sams
3408 +    /** Interface describing a void action of one argument */
3409 +    public interface Action<A> { void apply(A a); }
3410 +    /** Interface describing a void action of two arguments */
3411 +    public interface BiAction<A,B> { void apply(A a, B b); }
3412 +    /** Interface describing a function of one argument */
3413 +    public interface Fun<A,T> { T apply(A a); }
3414 +    /** Interface describing a function of two arguments */
3415 +    public interface BiFun<A,B,T> { T apply(A a, B b); }
3416 +    /** Interface describing a function of no arguments */
3417 +    public interface Generator<T> { T apply(); }
3418 +    /** Interface describing a function mapping its argument to a double */
3419 +    public interface ObjectToDouble<A> { double apply(A a); }
3420 +    /** Interface describing a function mapping its argument to a long */
3421 +    public interface ObjectToLong<A> { long apply(A a); }
3422 +    /** Interface describing a function mapping its argument to an int */
3423 +    public interface ObjectToInt<A> {int apply(A a); }
3424 +    /** Interface describing a function mapping two arguments to a double */
3425 +    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3426 +    /** Interface describing a function mapping two arguments to a long */
3427 +    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3428 +    /** Interface describing a function mapping two arguments to an int */
3429 +    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3430 +    /** Interface describing a function mapping a double to a double */
3431 +    public interface DoubleToDouble { double apply(double a); }
3432 +    /** Interface describing a function mapping a long to a long */
3433 +    public interface LongToLong { long apply(long a); }
3434 +    /** Interface describing a function mapping an int to an int */
3435 +    public interface IntToInt { int apply(int a); }
3436 +    /** Interface describing a function mapping two doubles to a double */
3437 +    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3438 +    /** Interface describing a function mapping two longs to a long */
3439 +    public interface LongByLongToLong { long apply(long a, long b); }
3440 +    /** Interface describing a function mapping two ints to an int */
3441 +    public interface IntByIntToInt { int apply(int a, int b); }
3442 +
3443 +
3444 +    // -------------------------------------------------------
3445 +
3446 +    /**
3447 +     * Performs the given action for each (key, value).
3448 +     *
3449 +     * @param action the action
3450 +     */
3451 +    public void forEach(BiAction<K,V> action) {
3452 +        ForkJoinTasks.forEach
3453 +            (this, action).invoke();
3454 +    }
3455 +
3456 +    /**
3457 +     * Performs the given action for each non-null transformation
3458 +     * of each (key, value).
3459 +     *
3460 +     * @param transformer a function returning the transformation
3461 +     * for an element, or null of there is no transformation (in
3462 +     * which case the action is not applied).
3463 +     * @param action the action
3464 +     */
3465 +    public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3466 +                            Action<U> action) {
3467 +        ForkJoinTasks.forEach
3468 +            (this, transformer, action).invoke();
3469 +    }
3470 +
3471 +    /**
3472 +     * Returns a non-null result from applying the given search
3473 +     * function on each (key, value), or null if none.  Upon
3474 +     * success, further element processing is suppressed and the
3475 +     * results of any other parallel invocations of the search
3476 +     * function are ignored.
3477 +     *
3478 +     * @param searchFunction a function returning a non-null
3479 +     * result on success, else null
3480 +     * @return a non-null result from applying the given search
3481 +     * function on each (key, value), or null if none
3482 +     */
3483 +    public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3484 +        return ForkJoinTasks.search
3485 +            (this, searchFunction).invoke();
3486 +    }
3487 +
3488 +    /**
3489 +     * Returns the result of accumulating the given transformation
3490 +     * of all (key, value) pairs using the given reducer to
3491 +     * combine values, or null if none.
3492 +     *
3493 +     * @param transformer a function returning the transformation
3494 +     * for an element, or null of there is no transformation (in
3495 +     * which case it is not combined).
3496 +     * @param reducer a commutative associative combining function
3497 +     * @return the result of accumulating the given transformation
3498 +     * of all (key, value) pairs
3499 +     */
3500 +    public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3501 +                        BiFun<? super U, ? super U, ? extends U> reducer) {
3502 +        return ForkJoinTasks.reduce
3503 +            (this, transformer, reducer).invoke();
3504 +    }
3505 +
3506 +    /**
3507 +     * Returns the result of accumulating the given transformation
3508 +     * of all (key, value) pairs using the given reducer to
3509 +     * combine values, and the given basis as an identity value.
3510 +     *
3511 +     * @param transformer a function returning the transformation
3512 +     * for an element
3513 +     * @param basis the identity (initial default value) for the reduction
3514 +     * @param reducer a commutative associative combining function
3515 +     * @return the result of accumulating the given transformation
3516 +     * of all (key, value) pairs
3517 +     */
3518 +    public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3519 +                                 double basis,
3520 +                                 DoubleByDoubleToDouble reducer) {
3521 +        return ForkJoinTasks.reduceToDouble
3522 +            (this, transformer, basis, reducer).invoke();
3523 +    }
3524 +
3525 +    /**
3526 +     * Returns the result of accumulating the given transformation
3527 +     * of all (key, value) pairs using the given reducer to
3528 +     * combine values, and the given basis as an identity value.
3529 +     *
3530 +     * @param transformer a function returning the transformation
3531 +     * for an element
3532 +     * @param basis the identity (initial default value) for the reduction
3533 +     * @param reducer a commutative associative combining function
3534 +     * @return the result of accumulating the given transformation
3535 +     * of all (key, value) pairs
3536 +     */
3537 +    public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3538 +                             long basis,
3539 +                             LongByLongToLong reducer) {
3540 +        return ForkJoinTasks.reduceToLong
3541 +            (this, transformer, basis, reducer).invoke();
3542 +    }
3543 +
3544 +    /**
3545 +     * Returns the result of accumulating the given transformation
3546 +     * of all (key, value) pairs using the given reducer to
3547 +     * combine values, and the given basis as an identity value.
3548 +     *
3549 +     * @param transformer a function returning the transformation
3550 +     * for an element
3551 +     * @param basis the identity (initial default value) for the reduction
3552 +     * @param reducer a commutative associative combining function
3553 +     * @return the result of accumulating the given transformation
3554 +     * of all (key, value) pairs
3555 +     */
3556 +    public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3557 +                           int basis,
3558 +                           IntByIntToInt reducer) {
3559 +        return ForkJoinTasks.reduceToInt
3560 +            (this, transformer, basis, reducer).invoke();
3561 +    }
3562 +
3563 +    /**
3564 +     * Performs the given action for each key.
3565 +     *
3566 +     * @param action the action
3567 +     */
3568 +    public void forEachKey(Action<K> action) {
3569 +        ForkJoinTasks.forEachKey
3570 +            (this, action).invoke();
3571 +    }
3572 +
3573 +    /**
3574 +     * Performs the given action for each non-null transformation
3575 +     * of each key.
3576 +     *
3577 +     * @param transformer a function returning the transformation
3578 +     * for an element, or null of there is no transformation (in
3579 +     * which case the action is not applied).
3580 +     * @param action the action
3581 +     */
3582 +    public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3583 +                               Action<U> action) {
3584 +        ForkJoinTasks.forEachKey
3585 +            (this, transformer, action).invoke();
3586 +    }
3587 +
3588 +    /**
3589 +     * Returns a non-null result from applying the given search
3590 +     * function on each key, or null if none. Upon success,
3591 +     * further element processing is suppressed and the results of
3592 +     * any other parallel invocations of the search function are
3593 +     * ignored.
3594 +     *
3595 +     * @param searchFunction a function returning a non-null
3596 +     * result on success, else null
3597 +     * @return a non-null result from applying the given search
3598 +     * function on each key, or null if none
3599 +     */
3600 +    public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3601 +        return ForkJoinTasks.searchKeys
3602 +            (this, searchFunction).invoke();
3603 +    }
3604 +
3605 +    /**
3606 +     * Returns the result of accumulating all keys using the given
3607 +     * reducer to combine values, or null if none.
3608 +     *
3609 +     * @param reducer a commutative associative combining function
3610 +     * @return the result of accumulating all keys using the given
3611 +     * reducer to combine values, or null if none
3612 +     */
3613 +    public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3614 +        return ForkJoinTasks.reduceKeys
3615 +            (this, reducer).invoke();
3616 +    }
3617 +
3618 +    /**
3619 +     * Returns the result of accumulating the given transformation
3620 +     * of all keys using the given reducer to combine values, or
3621 +     * null if none.
3622 +     *
3623 +     * @param transformer a function returning the transformation
3624 +     * for an element, or null of there is no transformation (in
3625 +     * which case it is not combined).
3626 +     * @param reducer a commutative associative combining function
3627 +     * @return the result of accumulating the given transformation
3628 +     * of all keys
3629 +     */
3630 +    public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3631 +                            BiFun<? super U, ? super U, ? extends U> reducer) {
3632 +        return ForkJoinTasks.reduceKeys
3633 +            (this, transformer, reducer).invoke();
3634 +    }
3635 +
3636 +    /**
3637 +     * Returns the result of accumulating the given transformation
3638 +     * of all keys using the given reducer to combine values, and
3639 +     * the given basis as an identity value.
3640 +     *
3641 +     * @param transformer a function returning the transformation
3642 +     * for an element
3643 +     * @param basis the identity (initial default value) for the reduction
3644 +     * @param reducer a commutative associative combining function
3645 +     * @return  the result of accumulating the given transformation
3646 +     * of all keys
3647 +     */
3648 +    public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3649 +                                     double basis,
3650 +                                     DoubleByDoubleToDouble reducer) {
3651 +        return ForkJoinTasks.reduceKeysToDouble
3652 +            (this, transformer, basis, reducer).invoke();
3653 +    }
3654 +
3655 +    /**
3656 +     * Returns the result of accumulating the given transformation
3657 +     * of all keys using the given reducer to combine values, and
3658 +     * the given basis as an identity value.
3659 +     *
3660 +     * @param transformer a function returning the transformation
3661 +     * for an element
3662 +     * @param basis the identity (initial default value) for the reduction
3663 +     * @param reducer a commutative associative combining function
3664 +     * @return the result of accumulating the given transformation
3665 +     * of all keys
3666 +     */
3667 +    public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3668 +                                 long basis,
3669 +                                 LongByLongToLong reducer) {
3670 +        return ForkJoinTasks.reduceKeysToLong
3671 +            (this, transformer, basis, reducer).invoke();
3672 +    }
3673 +
3674 +    /**
3675 +     * Returns the result of accumulating the given transformation
3676 +     * of all keys using the given reducer to combine values, and
3677 +     * the given basis as an identity value.
3678 +     *
3679 +     * @param transformer a function returning the transformation
3680 +     * for an element
3681 +     * @param basis the identity (initial default value) for the reduction
3682 +     * @param reducer a commutative associative combining function
3683 +     * @return the result of accumulating the given transformation
3684 +     * of all keys
3685 +     */
3686 +    public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3687 +                               int basis,
3688 +                               IntByIntToInt reducer) {
3689 +        return ForkJoinTasks.reduceKeysToInt
3690 +            (this, transformer, basis, reducer).invoke();
3691 +    }
3692 +
3693 +    /**
3694 +     * Performs the given action for each value.
3695 +     *
3696 +     * @param action the action
3697 +     */
3698 +    public void forEachValue(Action<V> action) {
3699 +        ForkJoinTasks.forEachValue
3700 +            (this, action).invoke();
3701 +    }
3702 +
3703 +    /**
3704 +     * Performs the given action for each non-null transformation
3705 +     * of each value.
3706 +     *
3707 +     * @param transformer a function returning the transformation
3708 +     * for an element, or null of there is no transformation (in
3709 +     * which case the action is not applied).
3710 +     */
3711 +    public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3712 +                                 Action<U> action) {
3713 +        ForkJoinTasks.forEachValue
3714 +            (this, transformer, action).invoke();
3715 +    }
3716 +
3717 +    /**
3718 +     * Returns a non-null result from applying the given search
3719 +     * function on each value, or null if none.  Upon success,
3720 +     * further element processing is suppressed and the results of
3721 +     * any other parallel invocations of the search function are
3722 +     * ignored.
3723 +     *
3724 +     * @param searchFunction a function returning a non-null
3725 +     * result on success, else null
3726 +     * @return a non-null result from applying the given search
3727 +     * function on each value, or null if none
3728 +     *
3729 +     */
3730 +    public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3731 +        return ForkJoinTasks.searchValues
3732 +            (this, searchFunction).invoke();
3733 +    }
3734 +
3735 +    /**
3736 +     * Returns the result of accumulating all values using the
3737 +     * given reducer to combine values, or null if none.
3738 +     *
3739 +     * @param reducer a commutative associative combining function
3740 +     * @return  the result of accumulating all values
3741 +     */
3742 +    public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3743 +        return ForkJoinTasks.reduceValues
3744 +            (this, reducer).invoke();
3745 +    }
3746 +
3747 +    /**
3748 +     * Returns the result of accumulating the given transformation
3749 +     * of all values using the given reducer to combine values, or
3750 +     * null if none.
3751 +     *
3752 +     * @param transformer a function returning the transformation
3753 +     * for an element, or null of there is no transformation (in
3754 +     * which case it is not combined).
3755 +     * @param reducer a commutative associative combining function
3756 +     * @return the result of accumulating the given transformation
3757 +     * of all values
3758 +     */
3759 +    public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3760 +                              BiFun<? super U, ? super U, ? extends U> reducer) {
3761 +        return ForkJoinTasks.reduceValues
3762 +            (this, transformer, reducer).invoke();
3763 +    }
3764 +
3765 +    /**
3766 +     * Returns the result of accumulating the given transformation
3767 +     * of all values using the given reducer to combine values,
3768 +     * and the given basis as an identity value.
3769 +     *
3770 +     * @param transformer a function returning the transformation
3771 +     * for an element
3772 +     * @param basis the identity (initial default value) for the reduction
3773 +     * @param reducer a commutative associative combining function
3774 +     * @return the result of accumulating the given transformation
3775 +     * of all values
3776 +     */
3777 +    public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3778 +                                       double basis,
3779 +                                       DoubleByDoubleToDouble reducer) {
3780 +        return ForkJoinTasks.reduceValuesToDouble
3781 +            (this, transformer, basis, reducer).invoke();
3782 +    }
3783 +
3784 +    /**
3785 +     * Returns the result of accumulating the given transformation
3786 +     * of all values using the given reducer to combine values,
3787 +     * and the given basis as an identity value.
3788 +     *
3789 +     * @param transformer a function returning the transformation
3790 +     * for an element
3791 +     * @param basis the identity (initial default value) for the reduction
3792 +     * @param reducer a commutative associative combining function
3793 +     * @return the result of accumulating the given transformation
3794 +     * of all values
3795 +     */
3796 +    public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3797 +                                   long basis,
3798 +                                   LongByLongToLong reducer) {
3799 +        return ForkJoinTasks.reduceValuesToLong
3800 +            (this, transformer, basis, reducer).invoke();
3801 +    }
3802 +
3803 +    /**
3804 +     * Returns the result of accumulating the given transformation
3805 +     * of all values using the given reducer to combine values,
3806 +     * and the given basis as an identity value.
3807 +     *
3808 +     * @param transformer a function returning the transformation
3809 +     * for an element
3810 +     * @param basis the identity (initial default value) for the reduction
3811 +     * @param reducer a commutative associative combining function
3812 +     * @return the result of accumulating the given transformation
3813 +     * of all values
3814 +     */
3815 +    public int reduceValuesToInt(ObjectToInt<? super V> transformer,
3816 +                                 int basis,
3817 +                                 IntByIntToInt reducer) {
3818 +        return ForkJoinTasks.reduceValuesToInt
3819 +            (this, transformer, basis, reducer).invoke();
3820 +    }
3821 +
3822 +    /**
3823 +     * Performs the given action for each entry.
3824 +     *
3825 +     * @param action the action
3826 +     */
3827 +    public void forEachEntry(Action<Map.Entry<K,V>> action) {
3828 +        ForkJoinTasks.forEachEntry
3829 +            (this, action).invoke();
3830 +    }
3831 +
3832 +    /**
3833 +     * Performs the given action for each non-null transformation
3834 +     * of each entry.
3835 +     *
3836 +     * @param transformer a function returning the transformation
3837 +     * for an element, or null of there is no transformation (in
3838 +     * which case the action is not applied).
3839 +     * @param action the action
3840 +     */
3841 +    public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
3842 +                                 Action<U> action) {
3843 +        ForkJoinTasks.forEachEntry
3844 +            (this, transformer, action).invoke();
3845 +    }
3846 +
3847 +    /**
3848 +     * Returns a non-null result from applying the given search
3849 +     * function on each entry, or null if none.  Upon success,
3850 +     * further element processing is suppressed and the results of
3851 +     * any other parallel invocations of the search function are
3852 +     * ignored.
3853 +     *
3854 +     * @param searchFunction a function returning a non-null
3855 +     * result on success, else null
3856 +     * @return a non-null result from applying the given search
3857 +     * function on each entry, or null if none
3858 +     */
3859 +    public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3860 +        return ForkJoinTasks.searchEntries
3861 +            (this, searchFunction).invoke();
3862 +    }
3863 +
3864 +    /**
3865 +     * Returns the result of accumulating all entries using the
3866 +     * given reducer to combine values, or null if none.
3867 +     *
3868 +     * @param reducer a commutative associative combining function
3869 +     * @return the result of accumulating all entries
3870 +     */
3871 +    public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3872 +        return ForkJoinTasks.reduceEntries
3873 +            (this, reducer).invoke();
3874 +    }
3875 +
3876 +    /**
3877 +     * Returns the result of accumulating the given transformation
3878 +     * of all entries using the given reducer to combine values,
3879 +     * or null if none.
3880 +     *
3881 +     * @param transformer a function returning the transformation
3882 +     * for an element, or null of there is no transformation (in
3883 +     * which case it is not combined).
3884 +     * @param reducer a commutative associative combining function
3885 +     * @return the result of accumulating the given transformation
3886 +     * of all entries
3887 +     */
3888 +    public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
3889 +                               BiFun<? super U, ? super U, ? extends U> reducer) {
3890 +        return ForkJoinTasks.reduceEntries
3891 +            (this, transformer, reducer).invoke();
3892 +    }
3893 +
3894 +    /**
3895 +     * Returns the result of accumulating the given transformation
3896 +     * of all entries using the given reducer to combine values,
3897 +     * and the given basis as an identity value.
3898 +     *
3899 +     * @param transformer a function returning the transformation
3900 +     * for an element
3901 +     * @param basis the identity (initial default value) for the reduction
3902 +     * @param reducer a commutative associative combining function
3903 +     * @return the result of accumulating the given transformation
3904 +     * of all entries
3905 +     */
3906 +    public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
3907 +                                        double basis,
3908 +                                        DoubleByDoubleToDouble reducer) {
3909 +        return ForkJoinTasks.reduceEntriesToDouble
3910 +            (this, transformer, basis, reducer).invoke();
3911 +    }
3912 +
3913 +    /**
3914 +     * Returns the result of accumulating the given transformation
3915 +     * of all entries using the given reducer to combine values,
3916 +     * and the given basis as an identity value.
3917 +     *
3918 +     * @param transformer a function returning the transformation
3919 +     * for an element
3920 +     * @param basis the identity (initial default value) for the reduction
3921 +     * @param reducer a commutative associative combining function
3922 +     * @return  the result of accumulating the given transformation
3923 +     * of all entries
3924 +     */
3925 +    public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
3926 +                                    long basis,
3927 +                                    LongByLongToLong reducer) {
3928 +        return ForkJoinTasks.reduceEntriesToLong
3929 +            (this, transformer, basis, reducer).invoke();
3930 +    }
3931 +
3932 +    /**
3933 +     * Returns the result of accumulating the given transformation
3934 +     * of all entries using the given reducer to combine values,
3935 +     * and the given basis as an identity value.
3936 +     *
3937 +     * @param transformer a function returning the transformation
3938 +     * for an element
3939 +     * @param basis the identity (initial default value) for the reduction
3940 +     * @param reducer a commutative associative combining function
3941 +     * @return the result of accumulating the given transformation
3942 +     * of all entries
3943 +     */
3944 +    public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
3945 +                                  int basis,
3946 +                                  IntByIntToInt reducer) {
3947 +        return ForkJoinTasks.reduceEntriesToInt
3948 +            (this, transformer, basis, reducer).invoke();
3949 +    }
3950 +
3951 +    /* ----------------Views -------------- */
3952 +
3953 +    /**
3954 +     * Base class for views.
3955 +     */
3956 +    static abstract class CHMView<K, V> {
3957 +        final ConcurrentHashMapV8<K, V> map;
3958 +        CHMView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
3959 +
3960 +        /**
3961 +         * Returns the map backing this view.
3962 +         *
3963 +         * @return the map backing this view
3964 +         */
3965 +        public ConcurrentHashMapV8<K,V> getMap() { return map; }
3966 +
3967 +        public final int size()                 { return map.size(); }
3968 +        public final boolean isEmpty()          { return map.isEmpty(); }
3969 +        public final void clear()               { map.clear(); }
3970 +
3971 +        // implementations below rely on concrete classes supplying these
3972 +        abstract public Iterator<?> iterator();
3973 +        abstract public boolean contains(Object o);
3974 +        abstract public boolean remove(Object o);
3975 +
3976 +        private static final String oomeMsg = "Required array size too large";
3977 +
3978 +        public final Object[] toArray() {
3979 +            long sz = map.mappingCount();
3980 +            if (sz > (long)(MAX_ARRAY_SIZE))
3981 +                throw new OutOfMemoryError(oomeMsg);
3982 +            int n = (int)sz;
3983 +            Object[] r = new Object[n];
3984 +            int i = 0;
3985 +            Iterator<?> it = iterator();
3986 +            while (it.hasNext()) {
3987 +                if (i == n) {
3988 +                    if (n >= MAX_ARRAY_SIZE)
3989 +                        throw new OutOfMemoryError(oomeMsg);
3990 +                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3991 +                        n = MAX_ARRAY_SIZE;
3992 +                    else
3993 +                        n += (n >>> 1) + 1;
3994 +                    r = Arrays.copyOf(r, n);
3995 +                }
3996 +                r[i++] = it.next();
3997 +            }
3998 +            return (i == n) ? r : Arrays.copyOf(r, i);
3999 +        }
4000 +
4001 +        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4002 +            long sz = map.mappingCount();
4003 +            if (sz > (long)(MAX_ARRAY_SIZE))
4004 +                throw new OutOfMemoryError(oomeMsg);
4005 +            int m = (int)sz;
4006 +            T[] r = (a.length >= m) ? a :
4007 +                (T[])java.lang.reflect.Array
4008 +                .newInstance(a.getClass().getComponentType(), m);
4009 +            int n = r.length;
4010 +            int i = 0;
4011 +            Iterator<?> it = iterator();
4012 +            while (it.hasNext()) {
4013 +                if (i == n) {
4014 +                    if (n >= MAX_ARRAY_SIZE)
4015 +                        throw new OutOfMemoryError(oomeMsg);
4016 +                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4017 +                        n = MAX_ARRAY_SIZE;
4018 +                    else
4019 +                        n += (n >>> 1) + 1;
4020 +                    r = Arrays.copyOf(r, n);
4021 +                }
4022 +                r[i++] = (T)it.next();
4023 +            }
4024 +            if (a == r && i < n) {
4025 +                r[i] = null; // null-terminate
4026 +                return r;
4027 +            }
4028 +            return (i == n) ? r : Arrays.copyOf(r, i);
4029 +        }
4030 +
4031 +        public final int hashCode() {
4032 +            int h = 0;
4033 +            for (Iterator<?> it = iterator(); it.hasNext();)
4034 +                h += it.next().hashCode();
4035 +            return h;
4036 +        }
4037 +
4038 +        public final String toString() {
4039 +            StringBuilder sb = new StringBuilder();
4040 +            sb.append('[');
4041 +            Iterator<?> it = iterator();
4042 +            if (it.hasNext()) {
4043 +                for (;;) {
4044 +                    Object e = it.next();
4045 +                    sb.append(e == this ? "(this Collection)" : e);
4046 +                    if (!it.hasNext())
4047 +                        break;
4048 +                    sb.append(',').append(' ');
4049 +                }
4050 +            }
4051 +            return sb.append(']').toString();
4052 +        }
4053 +
4054 +        public final boolean containsAll(Collection<?> c) {
4055 +            if (c != this) {
4056 +                for (Iterator<?> it = c.iterator(); it.hasNext();) {
4057 +                    Object e = it.next();
4058 +                    if (e == null || !contains(e))
4059 +                        return false;
4060 +                }
4061 +            }
4062 +            return true;
4063 +        }
4064 +
4065 +        public final boolean removeAll(Collection<?> c) {
4066 +            boolean modified = false;
4067 +            for (Iterator<?> it = iterator(); it.hasNext();) {
4068 +                if (c.contains(it.next())) {
4069 +                    it.remove();
4070 +                    modified = true;
4071 +                }
4072 +            }
4073 +            return modified;
4074 +        }
4075 +
4076 +        public final boolean retainAll(Collection<?> c) {
4077 +            boolean modified = false;
4078 +            for (Iterator<?> it = iterator(); it.hasNext();) {
4079 +                if (!c.contains(it.next())) {
4080 +                    it.remove();
4081 +                    modified = true;
4082 +                }
4083 +            }
4084 +            return modified;
4085 +        }
4086 +
4087 +    }
4088 +
4089 +    /**
4090 +     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4091 +     * which additions may optionally be enabled by mapping to a
4092 +     * common value.  This class cannot be directly instantiated. See
4093 +     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4094 +     * {@link #newKeySet(int)}.
4095 +     */
4096 +    public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
4097 +        private static final long serialVersionUID = 7249069246763182397L;
4098 +        private final V value;
4099 +        KeySetView(ConcurrentHashMapV8<K, V> map, V value) {  // non-public
4100 +            super(map);
4101 +            this.value = value;
4102 +        }
4103 +
4104 +        /**
4105 +         * Returns the default mapped value for additions,
4106 +         * or {@code null} if additions are not supported.
4107 +         *
4108 +         * @return the default mapped value for additions, or {@code null}
4109 +         * if not supported.
4110 +         */
4111 +        public V getMappedValue() { return value; }
4112 +
4113 +        // implement Set API
4114 +
4115 +        public boolean contains(Object o) { return map.containsKey(o); }
4116 +        public boolean remove(Object o)   { return map.remove(o) != null; }
4117 +
4118 +        /**
4119 +         * Returns a "weakly consistent" iterator that will never
4120 +         * throw {@link ConcurrentModificationException}, and
4121 +         * guarantees to traverse elements as they existed upon
4122 +         * construction of the iterator, and may (but is not
4123 +         * guaranteed to) reflect any modifications subsequent to
4124 +         * construction.
4125 +         *
4126 +         * @return an iterator over the keys of this map
4127 +         */
4128 +        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4129 +        public boolean add(K e) {
4130 +            V v;
4131 +            if ((v = value) == null)
4132 +                throw new UnsupportedOperationException();
4133 +            if (e == null)
4134 +                throw new NullPointerException();
4135 +            return map.internalPutIfAbsent(e, v) == null;
4136 +        }
4137 +        public boolean addAll(Collection<? extends K> c) {
4138 +            boolean added = false;
4139 +            V v;
4140 +            if ((v = value) == null)
4141 +                throw new UnsupportedOperationException();
4142 +            for (K e : c) {
4143 +                if (e == null)
4144 +                    throw new NullPointerException();
4145 +                if (map.internalPutIfAbsent(e, v) == null)
4146 +                    added = true;
4147 +            }
4148 +            return added;
4149 +        }
4150 +        public boolean equals(Object o) {
4151 +            Set<?> c;
4152 +            return ((o instanceof Set) &&
4153 +                    ((c = (Set<?>)o) == this ||
4154 +                     (containsAll(c) && c.containsAll(this))));
4155 +        }
4156 +
4157 +        /**
4158 +         * Performs the given action for each key.
4159 +         *
4160 +         * @param action the action
4161 +         */
4162 +        public void forEach(Action<K> action) {
4163 +            ForkJoinTasks.forEachKey
4164 +                (map, action).invoke();
4165 +        }
4166 +
4167 +        /**
4168 +         * Performs the given action for each non-null transformation
4169 +         * of each key.
4170 +         *
4171 +         * @param transformer a function returning the transformation
4172 +         * for an element, or null of there is no transformation (in
4173 +         * which case the action is not applied).
4174 +         * @param action the action
4175 +         */
4176 +        public <U> void forEach(Fun<? super K, ? extends U> transformer,
4177 +                                Action<U> action) {
4178 +            ForkJoinTasks.forEachKey
4179 +                (map, transformer, action).invoke();
4180 +        }
4181 +
4182 +        /**
4183 +         * Returns a non-null result from applying the given search
4184 +         * function on each key, or null if none. Upon success,
4185 +         * further element processing is suppressed and the results of
4186 +         * any other parallel invocations of the search function are
4187 +         * ignored.
4188 +         *
4189 +         * @param searchFunction a function returning a non-null
4190 +         * result on success, else null
4191 +         * @return a non-null result from applying the given search
4192 +         * function on each key, or null if none
4193 +         */
4194 +        public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4195 +            return ForkJoinTasks.searchKeys
4196 +                (map, searchFunction).invoke();
4197 +        }
4198 +
4199 +        /**
4200 +         * Returns the result of accumulating all keys using the given
4201 +         * reducer to combine values, or null if none.
4202 +         *
4203 +         * @param reducer a commutative associative combining function
4204 +         * @return the result of accumulating all keys using the given
4205 +         * reducer to combine values, or null if none
4206 +         */
4207 +        public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4208 +            return ForkJoinTasks.reduceKeys
4209 +                (map, reducer).invoke();
4210 +        }
4211 +
4212 +        /**
4213 +         * Returns the result of accumulating the given transformation
4214 +         * of all keys using the given reducer to combine values, and
4215 +         * the given basis as an identity value.
4216 +         *
4217 +         * @param transformer a function returning the transformation
4218 +         * for an element
4219 +         * @param basis the identity (initial default value) for the reduction
4220 +         * @param reducer a commutative associative combining function
4221 +         * @return  the result of accumulating the given transformation
4222 +         * of all keys
4223 +         */
4224 +        public double reduceToDouble(ObjectToDouble<? super K> transformer,
4225 +                                     double basis,
4226 +                                     DoubleByDoubleToDouble reducer) {
4227 +            return ForkJoinTasks.reduceKeysToDouble
4228 +                (map, transformer, basis, reducer).invoke();
4229 +        }
4230 +
4231 +
4232 +        /**
4233 +         * Returns the result of accumulating the given transformation
4234 +         * of all keys using the given reducer to combine values, and
4235 +         * the given basis as an identity value.
4236 +         *
4237 +         * @param transformer a function returning the transformation
4238 +         * for an element
4239 +         * @param basis the identity (initial default value) for the reduction
4240 +         * @param reducer a commutative associative combining function
4241 +         * @return the result of accumulating the given transformation
4242 +         * of all keys
4243 +         */
4244 +        public long reduceToLong(ObjectToLong<? super K> transformer,
4245 +                                 long basis,
4246 +                                 LongByLongToLong reducer) {
4247 +            return ForkJoinTasks.reduceKeysToLong
4248 +                (map, transformer, basis, reducer).invoke();
4249 +        }
4250 +
4251 +        /**
4252 +         * Returns the result of accumulating the given transformation
4253 +         * of all keys using the given reducer to combine values, and
4254 +         * the given basis as an identity value.
4255 +         *
4256 +         * @param transformer a function returning the transformation
4257 +         * for an element
4258 +         * @param basis the identity (initial default value) for the reduction
4259 +         * @param reducer a commutative associative combining function
4260 +         * @return the result of accumulating the given transformation
4261 +         * of all keys
4262 +         */
4263 +        public int reduceToInt(ObjectToInt<? super K> transformer,
4264 +                               int basis,
4265 +                               IntByIntToInt reducer) {
4266 +            return ForkJoinTasks.reduceKeysToInt
4267 +                (map, transformer, basis, reducer).invoke();
4268 +        }
4269 +
4270 +    }
4271 +
4272 +    /**
4273 +     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4274 +     * values, in which additions are disabled. This class cannot be
4275 +     * directly instantiated. See {@link #values},
4276 +     *
4277 +     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4278 +     * that will never throw {@link ConcurrentModificationException},
4279 +     * and guarantees to traverse elements as they existed upon
4280 +     * construction of the iterator, and may (but is not guaranteed to)
4281 +     * reflect any modifications subsequent to construction.
4282 +     */
4283 +    public static final class ValuesView<K,V> extends CHMView<K,V>
4284 +        implements Collection<V> {
4285 +        ValuesView(ConcurrentHashMapV8<K, V> map)   { super(map); }
4286 +        public final boolean contains(Object o) { return map.containsValue(o); }
4287 +        public final boolean remove(Object o) {
4288 +            if (o != null) {
4289 +                Iterator<V> it = new ValueIterator<K,V>(map);
4290 +                while (it.hasNext()) {
4291 +                    if (o.equals(it.next())) {
4292 +                        it.remove();
4293 +                        return true;
4294 +                    }
4295 +                }
4296 +            }
4297 +            return false;
4298 +        }
4299 +
4300 +        /**
4301 +         * Returns a "weakly consistent" iterator that will never
4302 +         * throw {@link ConcurrentModificationException}, and
4303 +         * guarantees to traverse elements as they existed upon
4304 +         * construction of the iterator, and may (but is not
4305 +         * guaranteed to) reflect any modifications subsequent to
4306 +         * construction.
4307 +         *
4308 +         * @return an iterator over the values of this map
4309 +         */
4310 +        public final Iterator<V> iterator() {
4311 +            return new ValueIterator<K,V>(map);
4312 +        }
4313 +        public final boolean add(V e) {
4314 +            throw new UnsupportedOperationException();
4315 +        }
4316 +        public final boolean addAll(Collection<? extends V> c) {
4317 +            throw new UnsupportedOperationException();
4318 +        }
4319 +
4320 +        /**
4321 +         * Performs the given action for each value.
4322 +         *
4323 +         * @param action the action
4324 +         */
4325 +        public void forEach(Action<V> action) {
4326 +            ForkJoinTasks.forEachValue
4327 +                (map, action).invoke();
4328 +        }
4329 +
4330 +        /**
4331 +         * Performs the given action for each non-null transformation
4332 +         * of each value.
4333 +         *
4334 +         * @param transformer a function returning the transformation
4335 +         * for an element, or null of there is no transformation (in
4336 +         * which case the action is not applied).
4337 +         */
4338 +        public <U> void forEach(Fun<? super V, ? extends U> transformer,
4339 +                                     Action<U> action) {
4340 +            ForkJoinTasks.forEachValue
4341 +                (map, transformer, action).invoke();
4342 +        }
4343 +
4344 +        /**
4345 +         * Returns a non-null result from applying the given search
4346 +         * function on each value, or null if none.  Upon success,
4347 +         * further element processing is suppressed and the results of
4348 +         * any other parallel invocations of the search function are
4349 +         * ignored.
4350 +         *
4351 +         * @param searchFunction a function returning a non-null
4352 +         * result on success, else null
4353 +         * @return a non-null result from applying the given search
4354 +         * function on each value, or null if none
4355 +         *
4356 +         */
4357 +        public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4358 +            return ForkJoinTasks.searchValues
4359 +                (map, searchFunction).invoke();
4360 +        }
4361 +
4362 +        /**
4363 +         * Returns the result of accumulating all values using the
4364 +         * given reducer to combine values, or null if none.
4365 +         *
4366 +         * @param reducer a commutative associative combining function
4367 +         * @return  the result of accumulating all values
4368 +         */
4369 +        public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4370 +            return ForkJoinTasks.reduceValues
4371 +                (map, reducer).invoke();
4372 +        }
4373 +
4374 +        /**
4375 +         * Returns the result of accumulating the given transformation
4376 +         * of all values using the given reducer to combine values, or
4377 +         * null if none.
4378 +         *
4379 +         * @param transformer a function returning the transformation
4380 +         * for an element, or null of there is no transformation (in
4381 +         * which case it is not combined).
4382 +         * @param reducer a commutative associative combining function
4383 +         * @return the result of accumulating the given transformation
4384 +         * of all values
4385 +         */
4386 +        public <U> U reduce(Fun<? super V, ? extends U> transformer,
4387 +                            BiFun<? super U, ? super U, ? extends U> reducer) {
4388 +            return ForkJoinTasks.reduceValues
4389 +                (map, transformer, reducer).invoke();
4390 +        }
4391 +
4392 +        /**
4393 +         * Returns the result of accumulating the given transformation
4394 +         * of all values using the given reducer to combine values,
4395 +         * and the given basis as an identity value.
4396 +         *
4397 +         * @param transformer a function returning the transformation
4398 +         * for an element
4399 +         * @param basis the identity (initial default value) for the reduction
4400 +         * @param reducer a commutative associative combining function
4401 +         * @return the result of accumulating the given transformation
4402 +         * of all values
4403 +         */
4404 +        public double reduceToDouble(ObjectToDouble<? super V> transformer,
4405 +                                     double basis,
4406 +                                     DoubleByDoubleToDouble reducer) {
4407 +            return ForkJoinTasks.reduceValuesToDouble
4408 +                (map, transformer, basis, reducer).invoke();
4409 +        }
4410 +
4411 +        /**
4412 +         * Returns the result of accumulating the given transformation
4413 +         * of all values using the given reducer to combine values,
4414 +         * and the given basis as an identity value.
4415 +         *
4416 +         * @param transformer a function returning the transformation
4417 +         * for an element
4418 +         * @param basis the identity (initial default value) for the reduction
4419 +         * @param reducer a commutative associative combining function
4420 +         * @return the result of accumulating the given transformation
4421 +         * of all values
4422 +         */
4423 +        public long reduceToLong(ObjectToLong<? super V> transformer,
4424 +                                 long basis,
4425 +                                 LongByLongToLong reducer) {
4426 +            return ForkJoinTasks.reduceValuesToLong
4427 +                (map, transformer, basis, reducer).invoke();
4428 +        }
4429 +
4430 +        /**
4431 +         * Returns the result of accumulating the given transformation
4432 +         * of all values using the given reducer to combine values,
4433 +         * and the given basis as an identity value.
4434 +         *
4435 +         * @param transformer a function returning the transformation
4436 +         * for an element
4437 +         * @param basis the identity (initial default value) for the reduction
4438 +         * @param reducer a commutative associative combining function
4439 +         * @return the result of accumulating the given transformation
4440 +         * of all values
4441 +         */
4442 +        public int reduceToInt(ObjectToInt<? super V> transformer,
4443 +                               int basis,
4444 +                               IntByIntToInt reducer) {
4445 +            return ForkJoinTasks.reduceValuesToInt
4446 +                (map, transformer, basis, reducer).invoke();
4447 +        }
4448 +
4449 +    }
4450 +
4451 +    /**
4452 +     * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4453 +     * entries.  This class cannot be directly instantiated. See
4454 +     * {@link #entrySet}.
4455 +     */
4456 +    public static final class EntrySetView<K,V> extends CHMView<K,V>
4457 +        implements Set<Map.Entry<K,V>> {
4458 +        EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4459 +        public final boolean contains(Object o) {
4460 +            Object k, v, r; Map.Entry<?,?> e;
4461 +            return ((o instanceof Map.Entry) &&
4462 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4463 +                    (r = map.get(k)) != null &&
4464 +                    (v = e.getValue()) != null &&
4465 +                    (v == r || v.equals(r)));
4466 +        }
4467 +        public final boolean remove(Object o) {
4468 +            Object k, v; Map.Entry<?,?> e;
4469 +            return ((o instanceof Map.Entry) &&
4470 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4471 +                    (v = e.getValue()) != null &&
4472 +                    map.remove(k, v));
4473 +        }
4474 +
4475 +        /**
4476 +         * Returns a "weakly consistent" iterator that will never
4477 +         * throw {@link ConcurrentModificationException}, and
4478 +         * guarantees to traverse elements as they existed upon
4479 +         * construction of the iterator, and may (but is not
4480 +         * guaranteed to) reflect any modifications subsequent to
4481 +         * construction.
4482 +         *
4483 +         * @return an iterator over the entries of this map
4484 +         */
4485 +        public final Iterator<Map.Entry<K,V>> iterator() {
4486 +            return new EntryIterator<K,V>(map);
4487 +        }
4488 +
4489 +        public final boolean add(Entry<K,V> e) {
4490 +            K key = e.getKey();
4491 +            V value = e.getValue();
4492 +            if (key == null || value == null)
4493 +                throw new NullPointerException();
4494 +            return map.internalPut(key, value) == null;
4495 +        }
4496 +        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4497 +            boolean added = false;
4498 +            for (Entry<K,V> e : c) {
4499 +                if (add(e))
4500 +                    added = true;
4501 +            }
4502 +            return added;
4503 +        }
4504 +        public boolean equals(Object o) {
4505 +            Set<?> c;
4506 +            return ((o instanceof Set) &&
4507 +                    ((c = (Set<?>)o) == this ||
4508 +                     (containsAll(c) && c.containsAll(this))));
4509 +        }
4510 +
4511 +        /**
4512 +         * Performs the given action for each entry.
4513 +         *
4514 +         * @param action the action
4515 +         */
4516 +        public void forEach(Action<Map.Entry<K,V>> action) {
4517 +            ForkJoinTasks.forEachEntry
4518 +                (map, action).invoke();
4519 +        }
4520 +
4521 +        /**
4522 +         * Performs the given action for each non-null transformation
4523 +         * of each entry.
4524 +         *
4525 +         * @param transformer a function returning the transformation
4526 +         * for an element, or null of there is no transformation (in
4527 +         * which case the action is not applied).
4528 +         * @param action the action
4529 +         */
4530 +        public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4531 +                                Action<U> action) {
4532 +            ForkJoinTasks.forEachEntry
4533 +                (map, transformer, action).invoke();
4534 +        }
4535 +
4536 +        /**
4537 +         * Returns a non-null result from applying the given search
4538 +         * function on each entry, or null if none.  Upon success,
4539 +         * further element processing is suppressed and the results of
4540 +         * any other parallel invocations of the search function are
4541 +         * ignored.
4542 +         *
4543 +         * @param searchFunction a function returning a non-null
4544 +         * result on success, else null
4545 +         * @return a non-null result from applying the given search
4546 +         * function on each entry, or null if none
4547 +         */
4548 +        public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4549 +            return ForkJoinTasks.searchEntries
4550 +                (map, searchFunction).invoke();
4551 +        }
4552 +
4553 +        /**
4554 +         * Returns the result of accumulating all entries using the
4555 +         * given reducer to combine values, or null if none.
4556 +         *
4557 +         * @param reducer a commutative associative combining function
4558 +         * @return the result of accumulating all entries
4559 +         */
4560 +        public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4561 +            return ForkJoinTasks.reduceEntries
4562 +                (map, reducer).invoke();
4563 +        }
4564 +
4565 +        /**
4566 +         * Returns the result of accumulating the given transformation
4567 +         * of all entries using the given reducer to combine values,
4568 +         * or null if none.
4569 +         *
4570 +         * @param transformer a function returning the transformation
4571 +         * for an element, or null of there is no transformation (in
4572 +         * which case it is not combined).
4573 +         * @param reducer a commutative associative combining function
4574 +         * @return the result of accumulating the given transformation
4575 +         * of all entries
4576 +         */
4577 +        public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4578 +                            BiFun<? super U, ? super U, ? extends U> reducer) {
4579 +            return ForkJoinTasks.reduceEntries
4580 +                (map, transformer, reducer).invoke();
4581 +        }
4582 +
4583 +        /**
4584 +         * Returns the result of accumulating the given transformation
4585 +         * of all entries using the given reducer to combine values,
4586 +         * and the given basis as an identity value.
4587 +         *
4588 +         * @param transformer a function returning the transformation
4589 +         * for an element
4590 +         * @param basis the identity (initial default value) for the reduction
4591 +         * @param reducer a commutative associative combining function
4592 +         * @return the result of accumulating the given transformation
4593 +         * of all entries
4594 +         */
4595 +        public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4596 +                                     double basis,
4597 +                                     DoubleByDoubleToDouble reducer) {
4598 +            return ForkJoinTasks.reduceEntriesToDouble
4599 +                (map, transformer, basis, reducer).invoke();
4600 +        }
4601 +
4602 +        /**
4603 +         * Returns the result of accumulating the given transformation
4604 +         * of all entries using the given reducer to combine values,
4605 +         * and the given basis as an identity value.
4606 +         *
4607 +         * @param transformer a function returning the transformation
4608 +         * for an element
4609 +         * @param basis the identity (initial default value) for the reduction
4610 +         * @param reducer a commutative associative combining function
4611 +         * @return  the result of accumulating the given transformation
4612 +         * of all entries
4613 +         */
4614 +        public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4615 +                                 long basis,
4616 +                                 LongByLongToLong reducer) {
4617 +            return ForkJoinTasks.reduceEntriesToLong
4618 +                (map, transformer, basis, reducer).invoke();
4619 +        }
4620 +
4621 +        /**
4622 +         * Returns the result of accumulating the given transformation
4623 +         * of all entries using the given reducer to combine values,
4624 +         * and the given basis as an identity value.
4625 +         *
4626 +         * @param transformer a function returning the transformation
4627 +         * for an element
4628 +         * @param basis the identity (initial default value) for the reduction
4629 +         * @param reducer a commutative associative combining function
4630 +         * @return the result of accumulating the given transformation
4631 +         * of all entries
4632 +         */
4633 +        public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4634 +                               int basis,
4635 +                               IntByIntToInt reducer) {
4636 +            return ForkJoinTasks.reduceEntriesToInt
4637 +                (map, transformer, basis, reducer).invoke();
4638 +        }
4639 +
4640 +    }
4641 +
4642 +    // ---------------------------------------------------------------------
4643 +
4644 +    /**
4645 +     * Predefined tasks for performing bulk parallel operations on
4646 +     * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4647 +     * for bulk operations. Each method has the same name, but returns
4648 +     * a task rather than invoking it. These methods may be useful in
4649 +     * custom applications such as submitting a task without waiting
4650 +     * for completion, using a custom pool, or combining with other
4651 +     * tasks.
4652 +     */
4653 +    public static class ForkJoinTasks {
4654 +        private ForkJoinTasks() {}
4655 +
4656 +        /**
4657 +         * Returns a task that when invoked, performs the given
4658 +         * action for each (key, value)
4659 +         *
4660 +         * @param map the map
4661 +         * @param action the action
4662 +         * @return the task
4663 +         */
4664 +        public static <K,V> ForkJoinTask<Void> forEach
4665 +            (ConcurrentHashMapV8<K,V> map,
4666 +             BiAction<K,V> action) {
4667 +            if (action == null) throw new NullPointerException();
4668 +            return new ForEachMappingTask<K,V>(map, null, -1, null, action);
4669 +        }
4670 +
4671 +        /**
4672 +         * Returns a task that when invoked, performs the given
4673 +         * action for each non-null transformation of each (key, value)
4674 +         *
4675 +         * @param map the map
4676 +         * @param transformer a function returning the transformation
4677 +         * for an element, or null if there is no transformation (in
4678 +         * which case the action is not applied)
4679 +         * @param action the action
4680 +         * @return the task
4681 +         */
4682 +        public static <K,V,U> ForkJoinTask<Void> forEach
4683 +            (ConcurrentHashMapV8<K,V> map,
4684 +             BiFun<? super K, ? super V, ? extends U> transformer,
4685 +             Action<U> action) {
4686 +            if (transformer == null || action == null)
4687 +                throw new NullPointerException();
4688 +            return new ForEachTransformedMappingTask<K,V,U>
4689 +                (map, null, -1, null, transformer, action);
4690 +        }
4691 +
4692 +        /**
4693 +         * Returns a task that when invoked, returns a non-null result
4694 +         * from applying the given search function on each (key,
4695 +         * value), or null if none. Upon success, further element
4696 +         * processing is suppressed and the results of any other
4697 +         * parallel invocations of the search function are ignored.
4698 +         *
4699 +         * @param map the map
4700 +         * @param searchFunction a function returning a non-null
4701 +         * result on success, else null
4702 +         * @return the task
4703 +         */
4704 +        public static <K,V,U> ForkJoinTask<U> search
4705 +            (ConcurrentHashMapV8<K,V> map,
4706 +             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4707 +            if (searchFunction == null) throw new NullPointerException();
4708 +            return new SearchMappingsTask<K,V,U>
4709 +                (map, null, -1, null, searchFunction,
4710 +                 new AtomicReference<U>());
4711 +        }
4712 +
4713 +        /**
4714 +         * Returns a task that when invoked, returns the result of
4715 +         * accumulating the given transformation of all (key, value) pairs
4716 +         * using the given reducer to combine values, or null if none.
4717 +         *
4718 +         * @param map the map
4719 +         * @param transformer a function returning the transformation
4720 +         * for an element, or null if there is no transformation (in
4721 +         * which case it is not combined).
4722 +         * @param reducer a commutative associative combining function
4723 +         * @return the task
4724 +         */
4725 +        public static <K,V,U> ForkJoinTask<U> reduce
4726 +            (ConcurrentHashMapV8<K,V> map,
4727 +             BiFun<? super K, ? super V, ? extends U> transformer,
4728 +             BiFun<? super U, ? super U, ? extends U> reducer) {
4729 +            if (transformer == null || reducer == null)
4730 +                throw new NullPointerException();
4731 +            return new MapReduceMappingsTask<K,V,U>
4732 +                (map, null, -1, null, transformer, reducer);
4733 +        }
4734 +
4735 +        /**
4736 +         * Returns a task that when invoked, returns the result of
4737 +         * accumulating the given transformation of all (key, value) pairs
4738 +         * using the given reducer to combine values, and the given
4739 +         * basis as an identity value.
4740 +         *
4741 +         * @param map the map
4742 +         * @param transformer a function returning the transformation
4743 +         * for an element
4744 +         * @param basis the identity (initial default value) for the reduction
4745 +         * @param reducer a commutative associative combining function
4746 +         * @return the task
4747 +         */
4748 +        public static <K,V> ForkJoinTask<Double> reduceToDouble
4749 +            (ConcurrentHashMapV8<K,V> map,
4750 +             ObjectByObjectToDouble<? super K, ? super V> transformer,
4751 +             double basis,
4752 +             DoubleByDoubleToDouble reducer) {
4753 +            if (transformer == null || reducer == null)
4754 +                throw new NullPointerException();
4755 +            return new MapReduceMappingsToDoubleTask<K,V>
4756 +                (map, null, -1, null, transformer, basis, reducer);
4757 +        }
4758 +
4759 +        /**
4760 +         * Returns a task that when invoked, returns the result of
4761 +         * accumulating the given transformation of all (key, value) pairs
4762 +         * using the given reducer to combine values, and the given
4763 +         * basis as an identity value.
4764 +         *
4765 +         * @param map the map
4766 +         * @param transformer a function returning the transformation
4767 +         * for an element
4768 +         * @param basis the identity (initial default value) for the reduction
4769 +         * @param reducer a commutative associative combining function
4770 +         * @return the task
4771 +         */
4772 +        public static <K,V> ForkJoinTask<Long> reduceToLong
4773 +            (ConcurrentHashMapV8<K,V> map,
4774 +             ObjectByObjectToLong<? super K, ? super V> transformer,
4775 +             long basis,
4776 +             LongByLongToLong reducer) {
4777 +            if (transformer == null || reducer == null)
4778 +                throw new NullPointerException();
4779 +            return new MapReduceMappingsToLongTask<K,V>
4780 +                (map, null, -1, null, transformer, basis, reducer);
4781 +        }
4782 +
4783 +        /**
4784 +         * Returns a task that when invoked, returns the result of
4785 +         * accumulating the given transformation of all (key, value) pairs
4786 +         * using the given reducer to combine values, and the given
4787 +         * basis as an identity value.
4788 +         *
4789 +         * @param transformer a function returning the transformation
4790 +         * for an element
4791 +         * @param basis the identity (initial default value) for the reduction
4792 +         * @param reducer a commutative associative combining function
4793 +         * @return the task
4794 +         */
4795 +        public static <K,V> ForkJoinTask<Integer> reduceToInt
4796 +            (ConcurrentHashMapV8<K,V> map,
4797 +             ObjectByObjectToInt<? super K, ? super V> transformer,
4798 +             int basis,
4799 +             IntByIntToInt reducer) {
4800 +            if (transformer == null || reducer == null)
4801 +                throw new NullPointerException();
4802 +            return new MapReduceMappingsToIntTask<K,V>
4803 +                (map, null, -1, null, transformer, basis, reducer);
4804 +        }
4805 +
4806 +        /**
4807 +         * Returns a task that when invoked, performs the given action
4808 +         * for each key.
4809 +         *
4810 +         * @param map the map
4811 +         * @param action the action
4812 +         * @return the task
4813 +         */
4814 +        public static <K,V> ForkJoinTask<Void> forEachKey
4815 +            (ConcurrentHashMapV8<K,V> map,
4816 +             Action<K> action) {
4817 +            if (action == null) throw new NullPointerException();
4818 +            return new ForEachKeyTask<K,V>(map, null, -1, null, action);
4819 +        }
4820 +
4821 +        /**
4822 +         * Returns a task that when invoked, performs the given action
4823 +         * for each non-null transformation of each key.
4824 +         *
4825 +         * @param map the map
4826 +         * @param transformer a function returning the transformation
4827 +         * for an element, or null if there is no transformation (in
4828 +         * which case the action is not applied)
4829 +         * @param action the action
4830 +         * @return the task
4831 +         */
4832 +        public static <K,V,U> ForkJoinTask<Void> forEachKey
4833 +            (ConcurrentHashMapV8<K,V> map,
4834 +             Fun<? super K, ? extends U> transformer,
4835 +             Action<U> action) {
4836 +            if (transformer == null || action == null)
4837 +                throw new NullPointerException();
4838 +            return new ForEachTransformedKeyTask<K,V,U>
4839 +                (map, null, -1, null, transformer, action);
4840 +        }
4841 +
4842 +        /**
4843 +         * Returns a task that when invoked, returns a non-null result
4844 +         * from applying the given search function on each key, or
4845 +         * null if none.  Upon success, further element processing is
4846 +         * suppressed and the results of any other parallel
4847 +         * invocations of the search function are ignored.
4848 +         *
4849 +         * @param map the map
4850 +         * @param searchFunction a function returning a non-null
4851 +         * result on success, else null
4852 +         * @return the task
4853 +         */
4854 +        public static <K,V,U> ForkJoinTask<U> searchKeys
4855 +            (ConcurrentHashMapV8<K,V> map,
4856 +             Fun<? super K, ? extends U> searchFunction) {
4857 +            if (searchFunction == null) throw new NullPointerException();
4858 +            return new SearchKeysTask<K,V,U>
4859 +                (map, null, -1, null, searchFunction,
4860 +                 new AtomicReference<U>());
4861 +        }
4862 +
4863 +        /**
4864 +         * Returns a task that when invoked, returns the result of
4865 +         * accumulating all keys using the given reducer to combine
4866 +         * values, or null if none.
4867 +         *
4868 +         * @param map the map
4869 +         * @param reducer a commutative associative combining function
4870 +         * @return the task
4871 +         */
4872 +        public static <K,V> ForkJoinTask<K> reduceKeys
4873 +            (ConcurrentHashMapV8<K,V> map,
4874 +             BiFun<? super K, ? super K, ? extends K> reducer) {
4875 +            if (reducer == null) throw new NullPointerException();
4876 +            return new ReduceKeysTask<K,V>
4877 +                (map, null, -1, null, reducer);
4878 +        }
4879 +
4880 +        /**
4881 +         * Returns a task that when invoked, returns the result of
4882 +         * accumulating the given transformation of all keys using the given
4883 +         * reducer to combine values, or null if none.
4884 +         *
4885 +         * @param map the map
4886 +         * @param transformer a function returning the transformation
4887 +         * for an element, or null if there is no transformation (in
4888 +         * which case it is not combined).
4889 +         * @param reducer a commutative associative combining function
4890 +         * @return the task
4891 +         */
4892 +        public static <K,V,U> ForkJoinTask<U> reduceKeys
4893 +            (ConcurrentHashMapV8<K,V> map,
4894 +             Fun<? super K, ? extends U> transformer,
4895 +             BiFun<? super U, ? super U, ? extends U> reducer) {
4896 +            if (transformer == null || reducer == null)
4897 +                throw new NullPointerException();
4898 +            return new MapReduceKeysTask<K,V,U>
4899 +                (map, null, -1, null, transformer, reducer);
4900 +        }
4901 +
4902 +        /**
4903 +         * Returns a task that when invoked, returns the result of
4904 +         * accumulating the given transformation of all keys using the given
4905 +         * reducer to combine values, and the given basis as an
4906 +         * identity value.
4907 +         *
4908 +         * @param map the map
4909 +         * @param transformer a function returning the transformation
4910 +         * for an element
4911 +         * @param basis the identity (initial default value) for the reduction
4912 +         * @param reducer a commutative associative combining function
4913 +         * @return the task
4914 +         */
4915 +        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4916 +            (ConcurrentHashMapV8<K,V> map,
4917 +             ObjectToDouble<? super K> transformer,
4918 +             double basis,
4919 +             DoubleByDoubleToDouble reducer) {
4920 +            if (transformer == null || reducer == null)
4921 +                throw new NullPointerException();
4922 +            return new MapReduceKeysToDoubleTask<K,V>
4923 +                (map, null, -1, null, transformer, basis, reducer);
4924 +        }
4925 +
4926 +        /**
4927 +         * Returns a task that when invoked, returns the result of
4928 +         * accumulating the given transformation of all keys using the given
4929 +         * reducer to combine values, and the given basis as an
4930 +         * identity value.
4931 +         *
4932 +         * @param map the map
4933 +         * @param transformer a function returning the transformation
4934 +         * for an element
4935 +         * @param basis the identity (initial default value) for the reduction
4936 +         * @param reducer a commutative associative combining function
4937 +         * @return the task
4938 +         */
4939 +        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4940 +            (ConcurrentHashMapV8<K,V> map,
4941 +             ObjectToLong<? super K> transformer,
4942 +             long basis,
4943 +             LongByLongToLong reducer) {
4944 +            if (transformer == null || reducer == null)
4945 +                throw new NullPointerException();
4946 +            return new MapReduceKeysToLongTask<K,V>
4947 +                (map, null, -1, null, transformer, basis, reducer);
4948 +        }
4949 +
4950 +        /**
4951 +         * Returns a task that when invoked, returns the result of
4952 +         * accumulating the given transformation of all keys using the given
4953 +         * reducer to combine values, and the given basis as an
4954 +         * identity value.
4955 +         *
4956 +         * @param map the map
4957 +         * @param transformer a function returning the transformation
4958 +         * for an element
4959 +         * @param basis the identity (initial default value) for the reduction
4960 +         * @param reducer a commutative associative combining function
4961 +         * @return the task
4962 +         */
4963 +        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4964 +            (ConcurrentHashMapV8<K,V> map,
4965 +             ObjectToInt<? super K> transformer,
4966 +             int basis,
4967 +             IntByIntToInt reducer) {
4968 +            if (transformer == null || reducer == null)
4969 +                throw new NullPointerException();
4970 +            return new MapReduceKeysToIntTask<K,V>
4971 +                (map, null, -1, null, transformer, basis, reducer);
4972 +        }
4973 +
4974 +        /**
4975 +         * Returns a task that when invoked, performs the given action
4976 +         * for each value.
4977 +         *
4978 +         * @param map the map
4979 +         * @param action the action
4980 +         */
4981 +        public static <K,V> ForkJoinTask<Void> forEachValue
4982 +            (ConcurrentHashMapV8<K,V> map,
4983 +             Action<V> action) {
4984 +            if (action == null) throw new NullPointerException();
4985 +            return new ForEachValueTask<K,V>(map, null, -1, null, action);
4986 +        }
4987 +
4988 +        /**
4989 +         * Returns a task that when invoked, performs the given action
4990 +         * for each non-null transformation of each value.
4991 +         *
4992 +         * @param map the map
4993 +         * @param transformer a function returning the transformation
4994 +         * for an element, or null if there is no transformation (in
4995 +         * which case the action is not applied)
4996 +         * @param action the action
4997 +         */
4998 +        public static <K,V,U> ForkJoinTask<Void> forEachValue
4999 +            (ConcurrentHashMapV8<K,V> map,
5000 +             Fun<? super V, ? extends U> transformer,
5001 +             Action<U> action) {
5002 +            if (transformer == null || action == null)
5003 +                throw new NullPointerException();
5004 +            return new ForEachTransformedValueTask<K,V,U>
5005 +                (map, null, -1, null, transformer, action);
5006 +        }
5007 +
5008 +        /**
5009 +         * Returns a task that when invoked, returns a non-null result
5010 +         * from applying the given search function on each value, or
5011 +         * null if none.  Upon success, further element processing is
5012 +         * suppressed and the results of any other parallel
5013 +         * invocations of the search function are ignored.
5014 +         *
5015 +         * @param map the map
5016 +         * @param searchFunction a function returning a non-null
5017 +         * result on success, else null
5018 +         * @return the task
5019 +         */
5020 +        public static <K,V,U> ForkJoinTask<U> searchValues
5021 +            (ConcurrentHashMapV8<K,V> map,
5022 +             Fun<? super V, ? extends U> searchFunction) {
5023 +            if (searchFunction == null) throw new NullPointerException();
5024 +            return new SearchValuesTask<K,V,U>
5025 +                (map, null, -1, null, searchFunction,
5026 +                 new AtomicReference<U>());
5027 +        }
5028 +
5029 +        /**
5030 +         * Returns a task that when invoked, returns the result of
5031 +         * accumulating all values using the given reducer to combine
5032 +         * values, or null if none.
5033 +         *
5034 +         * @param map the map
5035 +         * @param reducer a commutative associative combining function
5036 +         * @return the task
5037 +         */
5038 +        public static <K,V> ForkJoinTask<V> reduceValues
5039 +            (ConcurrentHashMapV8<K,V> map,
5040 +             BiFun<? super V, ? super V, ? extends V> reducer) {
5041 +            if (reducer == null) throw new NullPointerException();
5042 +            return new ReduceValuesTask<K,V>
5043 +                (map, null, -1, null, reducer);
5044 +        }
5045 +
5046 +        /**
5047 +         * Returns a task that when invoked, returns the result of
5048 +         * accumulating the given transformation of all values using the
5049 +         * given reducer to combine values, or null if none.
5050 +         *
5051 +         * @param map the map
5052 +         * @param transformer a function returning the transformation
5053 +         * for an element, or null if there is no transformation (in
5054 +         * which case it is not combined).
5055 +         * @param reducer a commutative associative combining function
5056 +         * @return the task
5057 +         */
5058 +        public static <K,V,U> ForkJoinTask<U> reduceValues
5059 +            (ConcurrentHashMapV8<K,V> map,
5060 +             Fun<? super V, ? extends U> transformer,
5061 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5062 +            if (transformer == null || reducer == null)
5063 +                throw new NullPointerException();
5064 +            return new MapReduceValuesTask<K,V,U>
5065 +                (map, null, -1, null, transformer, reducer);
5066 +        }
5067 +
5068 +        /**
5069 +         * Returns a task that when invoked, returns the result of
5070 +         * accumulating the given transformation of all values using the
5071 +         * given reducer to combine values, and the given basis as an
5072 +         * identity value.
5073 +         *
5074 +         * @param map the map
5075 +         * @param transformer a function returning the transformation
5076 +         * for an element
5077 +         * @param basis the identity (initial default value) for the reduction
5078 +         * @param reducer a commutative associative combining function
5079 +         * @return the task
5080 +         */
5081 +        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5082 +            (ConcurrentHashMapV8<K,V> map,
5083 +             ObjectToDouble<? super V> transformer,
5084 +             double basis,
5085 +             DoubleByDoubleToDouble reducer) {
5086 +            if (transformer == null || reducer == null)
5087 +                throw new NullPointerException();
5088 +            return new MapReduceValuesToDoubleTask<K,V>
5089 +                (map, null, -1, null, transformer, basis, reducer);
5090 +        }
5091 +
5092 +        /**
5093 +         * Returns a task that when invoked, returns the result of
5094 +         * accumulating the given transformation of all values using the
5095 +         * given reducer to combine values, and the given basis as an
5096 +         * identity value.
5097 +         *
5098 +         * @param map the map
5099 +         * @param transformer a function returning the transformation
5100 +         * for an element
5101 +         * @param basis the identity (initial default value) for the reduction
5102 +         * @param reducer a commutative associative combining function
5103 +         * @return the task
5104 +         */
5105 +        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5106 +            (ConcurrentHashMapV8<K,V> map,
5107 +             ObjectToLong<? super V> transformer,
5108 +             long basis,
5109 +             LongByLongToLong reducer) {
5110 +            if (transformer == null || reducer == null)
5111 +                throw new NullPointerException();
5112 +            return new MapReduceValuesToLongTask<K,V>
5113 +                (map, null, -1, null, transformer, basis, reducer);
5114 +        }
5115 +
5116 +        /**
5117 +         * Returns a task that when invoked, returns the result of
5118 +         * accumulating the given transformation of all values using the
5119 +         * given reducer to combine values, and the given basis as an
5120 +         * identity value.
5121 +         *
5122 +         * @param map the map
5123 +         * @param transformer a function returning the transformation
5124 +         * for an element
5125 +         * @param basis the identity (initial default value) for the reduction
5126 +         * @param reducer a commutative associative combining function
5127 +         * @return the task
5128 +         */
5129 +        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5130 +            (ConcurrentHashMapV8<K,V> map,
5131 +             ObjectToInt<? super V> transformer,
5132 +             int basis,
5133 +             IntByIntToInt reducer) {
5134 +            if (transformer == null || reducer == null)
5135 +                throw new NullPointerException();
5136 +            return new MapReduceValuesToIntTask<K,V>
5137 +                (map, null, -1, null, transformer, basis, reducer);
5138 +        }
5139 +
5140 +        /**
5141 +         * Returns a task that when invoked, perform the given action
5142 +         * for each entry.
5143 +         *
5144 +         * @param map the map
5145 +         * @param action the action
5146 +         */
5147 +        public static <K,V> ForkJoinTask<Void> forEachEntry
5148 +            (ConcurrentHashMapV8<K,V> map,
5149 +             Action<Map.Entry<K,V>> action) {
5150 +            if (action == null) throw new NullPointerException();
5151 +            return new ForEachEntryTask<K,V>(map, null, -1, null, action);
5152 +        }
5153 +
5154 +        /**
5155 +         * Returns a task that when invoked, perform the given action
5156 +         * for each non-null transformation of each entry.
5157 +         *
5158 +         * @param map the map
5159 +         * @param transformer a function returning the transformation
5160 +         * for an element, or null if there is no transformation (in
5161 +         * which case the action is not applied)
5162 +         * @param action the action
5163 +         */
5164 +        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5165 +            (ConcurrentHashMapV8<K,V> map,
5166 +             Fun<Map.Entry<K,V>, ? extends U> transformer,
5167 +             Action<U> action) {
5168 +            if (transformer == null || action == null)
5169 +                throw new NullPointerException();
5170 +            return new ForEachTransformedEntryTask<K,V,U>
5171 +                (map, null, -1, null, transformer, action);
5172 +        }
5173 +
5174 +        /**
5175 +         * Returns a task that when invoked, returns a non-null result
5176 +         * from applying the given search function on each entry, or
5177 +         * null if none.  Upon success, further element processing is
5178 +         * suppressed and the results of any other parallel
5179 +         * invocations of the search function are ignored.
5180 +         *
5181 +         * @param map the map
5182 +         * @param searchFunction a function returning a non-null
5183 +         * result on success, else null
5184 +         * @return the task
5185 +         */
5186 +        public static <K,V,U> ForkJoinTask<U> searchEntries
5187 +            (ConcurrentHashMapV8<K,V> map,
5188 +             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5189 +            if (searchFunction == null) throw new NullPointerException();
5190 +            return new SearchEntriesTask<K,V,U>
5191 +                (map, null, -1, null, searchFunction,
5192 +                 new AtomicReference<U>());
5193 +        }
5194 +
5195 +        /**
5196 +         * Returns a task that when invoked, returns the result of
5197 +         * accumulating all entries using the given reducer to combine
5198 +         * values, or null if none.
5199 +         *
5200 +         * @param map the map
5201 +         * @param reducer a commutative associative combining function
5202 +         * @return the task
5203 +         */
5204 +        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5205 +            (ConcurrentHashMapV8<K,V> map,
5206 +             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5207 +            if (reducer == null) throw new NullPointerException();
5208 +            return new ReduceEntriesTask<K,V>
5209 +                (map, null, -1, null, reducer);
5210 +        }
5211 +
5212 +        /**
5213 +         * Returns a task that when invoked, returns the result of
5214 +         * accumulating the given transformation of all entries using the
5215 +         * given reducer to combine values, or null if none.
5216 +         *
5217 +         * @param map the map
5218 +         * @param transformer a function returning the transformation
5219 +         * for an element, or null if there is no transformation (in
5220 +         * which case it is not combined).
5221 +         * @param reducer a commutative associative combining function
5222 +         * @return the task
5223 +         */
5224 +        public static <K,V,U> ForkJoinTask<U> reduceEntries
5225 +            (ConcurrentHashMapV8<K,V> map,
5226 +             Fun<Map.Entry<K,V>, ? extends U> transformer,
5227 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5228 +            if (transformer == null || reducer == null)
5229 +                throw new NullPointerException();
5230 +            return new MapReduceEntriesTask<K,V,U>
5231 +                (map, null, -1, null, transformer, reducer);
5232 +        }
5233 +
5234 +        /**
5235 +         * Returns a task that when invoked, returns the result of
5236 +         * accumulating the given transformation of all entries using the
5237 +         * given reducer to combine values, and the given basis as an
5238 +         * identity value.
5239 +         *
5240 +         * @param map the map
5241 +         * @param transformer a function returning the transformation
5242 +         * for an element
5243 +         * @param basis the identity (initial default value) for the reduction
5244 +         * @param reducer a commutative associative combining function
5245 +         * @return the task
5246 +         */
5247 +        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5248 +            (ConcurrentHashMapV8<K,V> map,
5249 +             ObjectToDouble<Map.Entry<K,V>> transformer,
5250 +             double basis,
5251 +             DoubleByDoubleToDouble reducer) {
5252 +            if (transformer == null || reducer == null)
5253 +                throw new NullPointerException();
5254 +            return new MapReduceEntriesToDoubleTask<K,V>
5255 +                (map, null, -1, null, transformer, basis, reducer);
5256 +        }
5257 +
5258 +        /**
5259 +         * Returns a task that when invoked, returns the result of
5260 +         * accumulating the given transformation of all entries using the
5261 +         * given reducer to combine values, and the given basis as an
5262 +         * identity value.
5263 +         *
5264 +         * @param map the map
5265 +         * @param transformer a function returning the transformation
5266 +         * for an element
5267 +         * @param basis the identity (initial default value) for the reduction
5268 +         * @param reducer a commutative associative combining function
5269 +         * @return the task
5270 +         */
5271 +        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5272 +            (ConcurrentHashMapV8<K,V> map,
5273 +             ObjectToLong<Map.Entry<K,V>> transformer,
5274 +             long basis,
5275 +             LongByLongToLong reducer) {
5276 +            if (transformer == null || reducer == null)
5277 +                throw new NullPointerException();
5278 +            return new MapReduceEntriesToLongTask<K,V>
5279 +                (map, null, -1, null, transformer, basis, reducer);
5280 +        }
5281 +
5282 +        /**
5283 +         * Returns a task that when invoked, returns the result of
5284 +         * accumulating the given transformation of all entries using the
5285 +         * given reducer to combine values, and the given basis as an
5286 +         * identity value.
5287 +         *
5288 +         * @param map the map
5289 +         * @param transformer a function returning the transformation
5290 +         * for an element
5291 +         * @param basis the identity (initial default value) for the reduction
5292 +         * @param reducer a commutative associative combining function
5293 +         * @return the task
5294 +         */
5295 +        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5296 +            (ConcurrentHashMapV8<K,V> map,
5297 +             ObjectToInt<Map.Entry<K,V>> transformer,
5298 +             int basis,
5299 +             IntByIntToInt reducer) {
5300 +            if (transformer == null || reducer == null)
5301 +                throw new NullPointerException();
5302 +            return new MapReduceEntriesToIntTask<K,V>
5303 +                (map, null, -1, null, transformer, basis, reducer);
5304 +        }
5305 +    }
5306 +
5307 +    // -------------------------------------------------------
5308 +
5309 +    /**
5310 +     * Base for FJ tasks for bulk operations. This adds a variant of
5311 +     * CountedCompleters and some split and merge bookkeeping to
5312 +     * iterator functionality. The forEach and reduce methods are
5313 +     * similar to those illustrated in CountedCompleter documentation,
5314 +     * except that bottom-up reduction completions perform them within
5315 +     * their compute methods. The search methods are like forEach
5316 +     * except they continually poll for success and exit early.  Also,
5317 +     * exceptions are handled in a simpler manner, by just trying to
5318 +     * complete root task exceptionally.
5319 +     */
5320 +    @SuppressWarnings("serial") static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
5321 +        final BulkTask<K,V,?> parent;  // completion target
5322 +        int batch;                     // split control; -1 for unknown
5323 +        int pending;                   // completion control
5324 +
5325 +        BulkTask(ConcurrentHashMapV8<K,V> map, BulkTask<K,V,?> parent,
5326 +                 int batch) {
5327 +            super(map);
5328 +            this.parent = parent;
5329 +            this.batch = batch;
5330 +            if (parent != null && map != null) { // split parent
5331 +                Node[] t;
5332 +                if ((t = parent.tab) == null &&
5333 +                    (t = parent.tab = map.table) != null)
5334 +                    parent.baseLimit = parent.baseSize = t.length;
5335 +                this.tab = t;
5336 +                this.baseSize = parent.baseSize;
5337 +                int hi = this.baseLimit = parent.baseLimit;
5338 +                parent.baseLimit = this.index = this.baseIndex =
5339 +                    (hi + parent.baseIndex + 1) >>> 1;
5340 +            }
5341 +        }
5342 +
5343 +        /**
5344 +         * Forces root task to complete.
5345 +         * @param ex if null, complete normally, else exceptionally
5346 +         * @return false to simplify use
5347 +         */
5348 +        final boolean tryCompleteComputation(Throwable ex) {
5349 +            for (BulkTask<K,V,?> a = this;;) {
5350 +                BulkTask<K,V,?> p = a.parent;
5351 +                if (p == null) {
5352 +                    if (ex != null)
5353 +                        a.completeExceptionally(ex);
5354 +                    else
5355 +                        a.quietlyComplete();
5356 +                    return false;
5357 +                }
5358 +                a = p;
5359 +            }
5360 +        }
5361 +
5362 +        /**
5363 +         * Version of tryCompleteComputation for function screening checks
5364 +         */
5365 +        final boolean abortOnNullFunction() {
5366 +            return tryCompleteComputation(new Error("Unexpected null function"));
5367 +        }
5368 +
5369 +        // utilities
5370 +
5371 +        /** CompareAndSet pending count */
5372 +        final boolean casPending(int cmp, int val) {
5373 +            return U.compareAndSwapInt(this, PENDING, cmp, val);
5374 +        }
5375 +
5376 +        /**
5377 +         * Returns approx exp2 of the number of times (minus one) to
5378 +         * split task by two before executing leaf action. This value
5379 +         * is faster to compute and more convenient to use as a guide
5380 +         * to splitting than is the depth, since it is used while
5381 +         * dividing by two anyway.
5382 +         */
5383 +        final int batch() {
5384 +            ConcurrentHashMapV8<K, V> m; int b; Node[] t;  ForkJoinPool pool;
5385 +            if ((b = batch) < 0 && (m = map) != null) { // force initialization
5386 +                if ((t = tab) == null && (t = tab = m.table) != null)
5387 +                    baseLimit = baseSize = t.length;
5388 +                if (t != null) {
5389 +                    long n = m.counter.sum();
5390 +                    int par = ((pool = getPool()) == null) ?
5391 +                        ForkJoinPool.getCommonPoolParallelism() :
5392 +                        pool.getParallelism();
5393 +                    int sp = par << 3; // slack of 8
5394 +                    b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
5395 +                }
5396 +            }
5397 +            return b;
5398 +        }
5399 +
5400 +        /**
5401 +         * Returns exportable snapshot entry.
5402 +         */
5403 +        static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
5404 +            return new AbstractMap.SimpleEntry<K,V>(k, v);
5405 +        }
5406 +
5407 +        // Unsafe mechanics
5408 +        private static final sun.misc.Unsafe U;
5409 +        private static final long PENDING;
5410 +        static {
5411 +            try {
5412 +                U = getUnsafe();
5413 +                PENDING = U.objectFieldOffset
5414 +                    (BulkTask.class.getDeclaredField("pending"));
5415 +            } catch (Exception e) {
5416 +                throw new Error(e);
5417 +            }
5418 +        }
5419 +    }
5420 +
5421 +    /**
5422 +     * Base class for non-reductive actions
5423 +     */
5424 +    @SuppressWarnings("serial") static abstract class BulkAction<K,V,R> extends BulkTask<K,V,R> {
5425 +        BulkAction<K,V,?> nextTask;
5426 +        BulkAction(ConcurrentHashMapV8<K,V> map, BulkTask<K,V,?> parent,
5427 +                   int batch, BulkAction<K,V,?> nextTask) {
5428 +            super(map, parent, batch);
5429 +            this.nextTask = nextTask;
5430 +        }
5431 +
5432 +        /**
5433 +         * Try to complete task and upward parents. Upon hitting
5434 +         * non-completed parent, if a non-FJ task, try to help out the
5435 +         * computation.
5436 +         */
5437 +        final void tryComplete(BulkAction<K,V,?> subtasks) {
5438 +            BulkTask<K,V,?> a = this, s = a;
5439 +            for (int c;;) {
5440 +                if ((c = a.pending) == 0) {
5441 +                    if ((a = (s = a).parent) == null) {
5442 +                        s.quietlyComplete();
5443 +                        break;
5444 +                    }
5445 +                }
5446 +                else if (a.casPending(c, c - 1)) {
5447 +                    if (subtasks != null && !inForkJoinPool()) {
5448 +                        while ((s = a.parent) != null)
5449 +                            a = s;
5450 +                        while (!a.isDone()) {
5451 +                            BulkAction<K,V,?> next = subtasks.nextTask;
5452 +                            if (subtasks.tryUnfork())
5453 +                                subtasks.exec();
5454 +                            if ((subtasks = next) == null)
5455 +                                break;
5456 +                        }
5457 +                    }
5458 +                    break;
5459 +                }
5460 +            }
5461 +        }
5462 +
5463 +    }
5464 +
5465 +    /*
5466 +     * Task classes. Coded in a regular but ugly format/style to
5467 +     * simplify checks that each variant differs in the right way from
5468 +     * others.
5469 +     */
5470 +
5471 +    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5472 +        extends BulkAction<K,V,Void> {
5473 +        final Action<K> action;
5474 +        ForEachKeyTask
5475 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5476 +             ForEachKeyTask<K,V> nextTask,
5477 +             Action<K> action) {
5478 +            super(m, p, b, nextTask);
5479 +            this.action = action;
5480 +        }
5481 +        @SuppressWarnings("unchecked") public final boolean exec() {
5482 +            final Action<K> action = this.action;
5483 +            if (action == null)
5484 +                return abortOnNullFunction();
5485 +            ForEachKeyTask<K,V> subtasks = null;
5486 +            try {
5487 +                int b = batch(), c;
5488 +                while (b > 1 && baseIndex != baseLimit) {
5489 +                    do {} while (!casPending(c = pending, c+1));
5490 +                    (subtasks = new ForEachKeyTask<K,V>
5491 +                     (map, this, b >>>= 1, subtasks, action)).fork();
5492 +                }
5493 +                while (advance() != null)
5494 +                    action.apply((K)nextKey);
5495 +            } catch (Throwable ex) {
5496 +                return tryCompleteComputation(ex);
5497 +            }
5498 +            tryComplete(subtasks);
5499 +            return false;
5500 +        }
5501 +    }
5502 +
5503 +    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5504 +        extends BulkAction<K,V,Void> {
5505 +        final Action<V> action;
5506 +        ForEachValueTask
5507 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5508 +             ForEachValueTask<K,V> nextTask,
5509 +             Action<V> action) {
5510 +            super(m, p, b, nextTask);
5511 +            this.action = action;
5512 +        }
5513 +        @SuppressWarnings("unchecked") public final boolean exec() {
5514 +            final Action<V> action = this.action;
5515 +            if (action == null)
5516 +                return abortOnNullFunction();
5517 +            ForEachValueTask<K,V> subtasks = null;
5518 +            try {
5519 +                int b = batch(), c;
5520 +                while (b > 1 && baseIndex != baseLimit) {
5521 +                    do {} while (!casPending(c = pending, c+1));
5522 +                    (subtasks = new ForEachValueTask<K,V>
5523 +                     (map, this, b >>>= 1, subtasks, action)).fork();
5524 +                }
5525 +                Object v;
5526 +                while ((v = advance()) != null)
5527 +                    action.apply((V)v);
5528 +            } catch (Throwable ex) {
5529 +                return tryCompleteComputation(ex);
5530 +            }
5531 +            tryComplete(subtasks);
5532 +            return false;
5533 +        }
5534 +    }
5535 +
5536 +    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5537 +        extends BulkAction<K,V,Void> {
5538 +        final Action<Entry<K,V>> action;
5539 +        ForEachEntryTask
5540 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5541 +             ForEachEntryTask<K,V> nextTask,
5542 +             Action<Entry<K,V>> action) {
5543 +            super(m, p, b, nextTask);
5544 +            this.action = action;
5545 +        }
5546 +        @SuppressWarnings("unchecked") public final boolean exec() {
5547 +            final Action<Entry<K,V>> action = this.action;
5548 +            if (action == null)
5549 +                return abortOnNullFunction();
5550 +            ForEachEntryTask<K,V> subtasks = null;
5551 +            try {
5552 +                int b = batch(), c;
5553 +                while (b > 1 && baseIndex != baseLimit) {
5554 +                    do {} while (!casPending(c = pending, c+1));
5555 +                    (subtasks = new ForEachEntryTask<K,V>
5556 +                     (map, this, b >>>= 1, subtasks, action)).fork();
5557 +                }
5558 +                Object v;
5559 +                while ((v = advance()) != null)
5560 +                    action.apply(entryFor((K)nextKey, (V)v));
5561 +            } catch (Throwable ex) {
5562 +                return tryCompleteComputation(ex);
5563 +            }
5564 +            tryComplete(subtasks);
5565 +            return false;
5566 +        }
5567 +    }
5568 +
5569 +    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5570 +        extends BulkAction<K,V,Void> {
5571 +        final BiAction<K,V> action;
5572 +        ForEachMappingTask
5573 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5574 +             ForEachMappingTask<K,V> nextTask,
5575 +             BiAction<K,V> action) {
5576 +            super(m, p, b, nextTask);
5577 +            this.action = action;
5578 +        }
5579 +        @SuppressWarnings("unchecked") public final boolean exec() {
5580 +            final BiAction<K,V> action = this.action;
5581 +            if (action == null)
5582 +                return abortOnNullFunction();
5583 +            ForEachMappingTask<K,V> subtasks = null;
5584 +            try {
5585 +                int b = batch(), c;
5586 +                while (b > 1 && baseIndex != baseLimit) {
5587 +                    do {} while (!casPending(c = pending, c+1));
5588 +                    (subtasks = new ForEachMappingTask<K,V>
5589 +                     (map, this, b >>>= 1, subtasks, action)).fork();
5590 +                }
5591 +                Object v;
5592 +                while ((v = advance()) != null)
5593 +                    action.apply((K)nextKey, (V)v);
5594 +            } catch (Throwable ex) {
5595 +                return tryCompleteComputation(ex);
5596 +            }
5597 +            tryComplete(subtasks);
5598 +            return false;
5599 +        }
5600 +    }
5601 +
5602 +    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5603 +        extends BulkAction<K,V,Void> {
5604 +        final Fun<? super K, ? extends U> transformer;
5605 +        final Action<U> action;
5606 +        ForEachTransformedKeyTask
5607 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5608 +             ForEachTransformedKeyTask<K,V,U> nextTask,
5609 +             Fun<? super K, ? extends U> transformer,
5610 +             Action<U> action) {
5611 +            super(m, p, b, nextTask);
5612 +            this.transformer = transformer;
5613 +            this.action = action;
5614 +
5615 +        }
5616 +        @SuppressWarnings("unchecked") public final boolean exec() {
5617 +            final Fun<? super K, ? extends U> transformer =
5618 +                this.transformer;
5619 +            final Action<U> action = this.action;
5620 +            if (transformer == null || action == null)
5621 +                return abortOnNullFunction();
5622 +            ForEachTransformedKeyTask<K,V,U> subtasks = null;
5623 +            try {
5624 +                int b = batch(), c;
5625 +                while (b > 1 && baseIndex != baseLimit) {
5626 +                    do {} while (!casPending(c = pending, c+1));
5627 +                    (subtasks = new ForEachTransformedKeyTask<K,V,U>
5628 +                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5629 +                }
5630 +                U u;
5631 +                while (advance() != null) {
5632 +                    if ((u = transformer.apply((K)nextKey)) != null)
5633 +                        action.apply(u);
5634 +                }
5635 +            } catch (Throwable ex) {
5636 +                return tryCompleteComputation(ex);
5637 +            }
5638 +            tryComplete(subtasks);
5639 +            return false;
5640 +        }
5641 +    }
5642 +
5643 +    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5644 +        extends BulkAction<K,V,Void> {
5645 +        final Fun<? super V, ? extends U> transformer;
5646 +        final Action<U> action;
5647 +        ForEachTransformedValueTask
5648 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5649 +             ForEachTransformedValueTask<K,V,U> nextTask,
5650 +             Fun<? super V, ? extends U> transformer,
5651 +             Action<U> action) {
5652 +            super(m, p, b, nextTask);
5653 +            this.transformer = transformer;
5654 +            this.action = action;
5655 +
5656 +        }
5657 +        @SuppressWarnings("unchecked") public final boolean exec() {
5658 +            final Fun<? super V, ? extends U> transformer =
5659 +                this.transformer;
5660 +            final Action<U> action = this.action;
5661 +            if (transformer == null || action == null)
5662 +                return abortOnNullFunction();
5663 +            ForEachTransformedValueTask<K,V,U> subtasks = null;
5664 +            try {
5665 +                int b = batch(), c;
5666 +                while (b > 1 && baseIndex != baseLimit) {
5667 +                    do {} while (!casPending(c = pending, c+1));
5668 +                    (subtasks = new ForEachTransformedValueTask<K,V,U>
5669 +                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5670 +                }
5671 +                Object v; U u;
5672 +                while ((v = advance()) != null) {
5673 +                    if ((u = transformer.apply((V)v)) != null)
5674 +                        action.apply(u);
5675 +                }
5676 +            } catch (Throwable ex) {
5677 +                return tryCompleteComputation(ex);
5678 +            }
5679 +            tryComplete(subtasks);
5680 +            return false;
5681 +        }
5682 +    }
5683 +
5684 +    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5685 +        extends BulkAction<K,V,Void> {
5686 +        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5687 +        final Action<U> action;
5688 +        ForEachTransformedEntryTask
5689 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5690 +             ForEachTransformedEntryTask<K,V,U> nextTask,
5691 +             Fun<Map.Entry<K,V>, ? extends U> transformer,
5692 +             Action<U> action) {
5693 +            super(m, p, b, nextTask);
5694 +            this.transformer = transformer;
5695 +            this.action = action;
5696 +
5697 +        }
5698 +        @SuppressWarnings("unchecked") public final boolean exec() {
5699 +            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5700 +                this.transformer;
5701 +            final Action<U> action = this.action;
5702 +            if (transformer == null || action == null)
5703 +                return abortOnNullFunction();
5704 +            ForEachTransformedEntryTask<K,V,U> subtasks = null;
5705 +            try {
5706 +                int b = batch(), c;
5707 +                while (b > 1 && baseIndex != baseLimit) {
5708 +                    do {} while (!casPending(c = pending, c+1));
5709 +                    (subtasks = new ForEachTransformedEntryTask<K,V,U>
5710 +                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5711 +                }
5712 +                Object v; U u;
5713 +                while ((v = advance()) != null) {
5714 +                    if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5715 +                        action.apply(u);
5716 +                }
5717 +            } catch (Throwable ex) {
5718 +                return tryCompleteComputation(ex);
5719 +            }
5720 +            tryComplete(subtasks);
5721 +            return false;
5722 +        }
5723 +    }
5724 +
5725 +    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5726 +        extends BulkAction<K,V,Void> {
5727 +        final BiFun<? super K, ? super V, ? extends U> transformer;
5728 +        final Action<U> action;
5729 +        ForEachTransformedMappingTask
5730 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5731 +             ForEachTransformedMappingTask<K,V,U> nextTask,
5732 +             BiFun<? super K, ? super V, ? extends U> transformer,
5733 +             Action<U> action) {
5734 +            super(m, p, b, nextTask);
5735 +            this.transformer = transformer;
5736 +            this.action = action;
5737 +
5738 +        }
5739 +        @SuppressWarnings("unchecked") public final boolean exec() {
5740 +            final BiFun<? super K, ? super V, ? extends U> transformer =
5741 +                this.transformer;
5742 +            final Action<U> action = this.action;
5743 +            if (transformer == null || action == null)
5744 +                return abortOnNullFunction();
5745 +            ForEachTransformedMappingTask<K,V,U> subtasks = null;
5746 +            try {
5747 +                int b = batch(), c;
5748 +                while (b > 1 && baseIndex != baseLimit) {
5749 +                    do {} while (!casPending(c = pending, c+1));
5750 +                    (subtasks = new ForEachTransformedMappingTask<K,V,U>
5751 +                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5752 +                }
5753 +                Object v; U u;
5754 +                while ((v = advance()) != null) {
5755 +                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5756 +                        action.apply(u);
5757 +                }
5758 +            } catch (Throwable ex) {
5759 +                return tryCompleteComputation(ex);
5760 +            }
5761 +            tryComplete(subtasks);
5762 +            return false;
5763 +        }
5764 +    }
5765 +
5766 +    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5767 +        extends BulkAction<K,V,U> {
5768 +        final Fun<? super K, ? extends U> searchFunction;
5769 +        final AtomicReference<U> result;
5770 +        SearchKeysTask
5771 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5772 +             SearchKeysTask<K,V,U> nextTask,
5773 +             Fun<? super K, ? extends U> searchFunction,
5774 +             AtomicReference<U> result) {
5775 +            super(m, p, b, nextTask);
5776 +            this.searchFunction = searchFunction; this.result = result;
5777 +        }
5778 +        @SuppressWarnings("unchecked") public final boolean exec() {
5779 +            AtomicReference<U> result = this.result;
5780 +            final Fun<? super K, ? extends U> searchFunction =
5781 +                this.searchFunction;
5782 +            if (searchFunction == null || result == null)
5783 +                return abortOnNullFunction();
5784 +            SearchKeysTask<K,V,U> subtasks = null;
5785 +            try {
5786 +                int b = batch(), c;
5787 +                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5788 +                    do {} while (!casPending(c = pending, c+1));
5789 +                    (subtasks = new SearchKeysTask<K,V,U>
5790 +                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5791 +                }
5792 +                U u;
5793 +                while (result.get() == null && advance() != null) {
5794 +                    if ((u = searchFunction.apply((K)nextKey)) != null) {
5795 +                        if (result.compareAndSet(null, u))
5796 +                            tryCompleteComputation(null);
5797 +                        break;
5798 +                    }
5799 +                }
5800 +            } catch (Throwable ex) {
5801 +                return tryCompleteComputation(ex);
5802 +            }
5803 +            tryComplete(subtasks);
5804 +            return false;
5805 +        }
5806 +        public final U getRawResult() { return result.get(); }
5807 +    }
5808 +
5809 +    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5810 +        extends BulkAction<K,V,U> {
5811 +        final Fun<? super V, ? extends U> searchFunction;
5812 +        final AtomicReference<U> result;
5813 +        SearchValuesTask
5814 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5815 +             SearchValuesTask<K,V,U> nextTask,
5816 +             Fun<? super V, ? extends U> searchFunction,
5817 +             AtomicReference<U> result) {
5818 +            super(m, p, b, nextTask);
5819 +            this.searchFunction = searchFunction; this.result = result;
5820 +        }
5821 +        @SuppressWarnings("unchecked") public final boolean exec() {
5822 +            AtomicReference<U> result = this.result;
5823 +            final Fun<? super V, ? extends U> searchFunction =
5824 +                this.searchFunction;
5825 +            if (searchFunction == null || result == null)
5826 +                return abortOnNullFunction();
5827 +            SearchValuesTask<K,V,U> subtasks = null;
5828 +            try {
5829 +                int b = batch(), c;
5830 +                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5831 +                    do {} while (!casPending(c = pending, c+1));
5832 +                    (subtasks = new SearchValuesTask<K,V,U>
5833 +                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5834 +                }
5835 +                Object v; U u;
5836 +                while (result.get() == null && (v = advance()) != null) {
5837 +                    if ((u = searchFunction.apply((V)v)) != null) {
5838 +                        if (result.compareAndSet(null, u))
5839 +                            tryCompleteComputation(null);
5840 +                        break;
5841 +                    }
5842 +                }
5843 +            } catch (Throwable ex) {
5844 +                return tryCompleteComputation(ex);
5845 +            }
5846 +            tryComplete(subtasks);
5847 +            return false;
5848 +        }
5849 +        public final U getRawResult() { return result.get(); }
5850 +    }
5851 +
5852 +    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5853 +        extends BulkAction<K,V,U> {
5854 +        final Fun<Entry<K,V>, ? extends U> searchFunction;
5855 +        final AtomicReference<U> result;
5856 +        SearchEntriesTask
5857 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5858 +             SearchEntriesTask<K,V,U> nextTask,
5859 +             Fun<Entry<K,V>, ? extends U> searchFunction,
5860 +             AtomicReference<U> result) {
5861 +            super(m, p, b, nextTask);
5862 +            this.searchFunction = searchFunction; this.result = result;
5863 +        }
5864 +        @SuppressWarnings("unchecked") public final boolean exec() {
5865 +            AtomicReference<U> result = this.result;
5866 +            final Fun<Entry<K,V>, ? extends U> searchFunction =
5867 +                this.searchFunction;
5868 +            if (searchFunction == null || result == null)
5869 +                return abortOnNullFunction();
5870 +            SearchEntriesTask<K,V,U> subtasks = null;
5871 +            try {
5872 +                int b = batch(), c;
5873 +                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5874 +                    do {} while (!casPending(c = pending, c+1));
5875 +                    (subtasks = new SearchEntriesTask<K,V,U>
5876 +                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5877 +                }
5878 +                Object v; U u;
5879 +                while (result.get() == null && (v = advance()) != null) {
5880 +                    if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5881 +                        if (result.compareAndSet(null, u))
5882 +                            tryCompleteComputation(null);
5883 +                        break;
5884 +                    }
5885 +                }
5886 +            } catch (Throwable ex) {
5887 +                return tryCompleteComputation(ex);
5888 +            }
5889 +            tryComplete(subtasks);
5890 +            return false;
5891 +        }
5892 +        public final U getRawResult() { return result.get(); }
5893 +    }
5894 +
5895 +    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5896 +        extends BulkAction<K,V,U> {
5897 +        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5898 +        final AtomicReference<U> result;
5899 +        SearchMappingsTask
5900 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5901 +             SearchMappingsTask<K,V,U> nextTask,
5902 +             BiFun<? super K, ? super V, ? extends U> searchFunction,
5903 +             AtomicReference<U> result) {
5904 +            super(m, p, b, nextTask);
5905 +            this.searchFunction = searchFunction; this.result = result;
5906 +        }
5907 +        @SuppressWarnings("unchecked") public final boolean exec() {
5908 +            AtomicReference<U> result = this.result;
5909 +            final BiFun<? super K, ? super V, ? extends U> searchFunction =
5910 +                this.searchFunction;
5911 +            if (searchFunction == null || result == null)
5912 +                return abortOnNullFunction();
5913 +            SearchMappingsTask<K,V,U> subtasks = null;
5914 +            try {
5915 +                int b = batch(), c;
5916 +                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5917 +                    do {} while (!casPending(c = pending, c+1));
5918 +                    (subtasks = new SearchMappingsTask<K,V,U>
5919 +                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5920 +                }
5921 +                Object v; U u;
5922 +                while (result.get() == null && (v = advance()) != null) {
5923 +                    if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5924 +                        if (result.compareAndSet(null, u))
5925 +                            tryCompleteComputation(null);
5926 +                        break;
5927 +                    }
5928 +                }
5929 +            } catch (Throwable ex) {
5930 +                return tryCompleteComputation(ex);
5931 +            }
5932 +            tryComplete(subtasks);
5933 +            return false;
5934 +        }
5935 +        public final U getRawResult() { return result.get(); }
5936 +    }
5937 +
5938 +    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5939 +        extends BulkTask<K,V,K> {
5940 +        final BiFun<? super K, ? super K, ? extends K> reducer;
5941 +        K result;
5942 +        ReduceKeysTask<K,V> rights, nextRight;
5943 +        ReduceKeysTask
5944 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5945 +             ReduceKeysTask<K,V> nextRight,
5946 +             BiFun<? super K, ? super K, ? extends K> reducer) {
5947 +            super(m, p, b); this.nextRight = nextRight;
5948 +            this.reducer = reducer;
5949 +        }
5950 +        @SuppressWarnings("unchecked") public final boolean exec() {
5951 +            final BiFun<? super K, ? super K, ? extends K> reducer =
5952 +                this.reducer;
5953 +            if (reducer == null)
5954 +                return abortOnNullFunction();
5955 +            try {
5956 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5957 +                    do {} while (!casPending(c = pending, c+1));
5958 +                    (rights = new ReduceKeysTask<K,V>
5959 +                     (map, this, b >>>= 1, rights, reducer)).fork();
5960 +                }
5961 +                K r = null;
5962 +                while (advance() != null) {
5963 +                    K u = (K)nextKey;
5964 +                    r = (r == null) ? u : reducer.apply(r, u);
5965 +                }
5966 +                result = r;
5967 +                for (ReduceKeysTask<K,V> t = this, s;;) {
5968 +                    int c; BulkTask<K,V,?> par; K tr, sr;
5969 +                    if ((c = t.pending) == 0) {
5970 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5971 +                            if ((sr = s.result) != null)
5972 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5973 +                        }
5974 +                        if ((par = t.parent) == null ||
5975 +                            !(par instanceof ReduceKeysTask)) {
5976 +                            t.quietlyComplete();
5977 +                            break;
5978 +                        }
5979 +                        t = (ReduceKeysTask<K,V>)par;
5980 +                    }
5981 +                    else if (t.casPending(c, c - 1))
5982 +                        break;
5983 +                }
5984 +            } catch (Throwable ex) {
5985 +                return tryCompleteComputation(ex);
5986 +            }
5987 +            ReduceKeysTask<K,V> s = rights;
5988 +            if (s != null && !inForkJoinPool()) {
5989 +                do  {
5990 +                    if (s.tryUnfork())
5991 +                        s.exec();
5992 +                } while ((s = s.nextRight) != null);
5993 +            }
5994 +            return false;
5995 +        }
5996 +        public final K getRawResult() { return result; }
5997 +    }
5998 +
5999 +    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
6000 +        extends BulkTask<K,V,V> {
6001 +        final BiFun<? super V, ? super V, ? extends V> reducer;
6002 +        V result;
6003 +        ReduceValuesTask<K,V> rights, nextRight;
6004 +        ReduceValuesTask
6005 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6006 +             ReduceValuesTask<K,V> nextRight,
6007 +             BiFun<? super V, ? super V, ? extends V> reducer) {
6008 +            super(m, p, b); this.nextRight = nextRight;
6009 +            this.reducer = reducer;
6010 +        }
6011 +        @SuppressWarnings("unchecked") public final boolean exec() {
6012 +            final BiFun<? super V, ? super V, ? extends V> reducer =
6013 +                this.reducer;
6014 +            if (reducer == null)
6015 +                return abortOnNullFunction();
6016 +            try {
6017 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6018 +                    do {} while (!casPending(c = pending, c+1));
6019 +                    (rights = new ReduceValuesTask<K,V>
6020 +                     (map, this, b >>>= 1, rights, reducer)).fork();
6021 +                }
6022 +                V r = null;
6023 +                Object v;
6024 +                while ((v = advance()) != null) {
6025 +                    V u = (V)v;
6026 +                    r = (r == null) ? u : reducer.apply(r, u);
6027 +                }
6028 +                result = r;
6029 +                for (ReduceValuesTask<K,V> t = this, s;;) {
6030 +                    int c; BulkTask<K,V,?> par; V tr, sr;
6031 +                    if ((c = t.pending) == 0) {
6032 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6033 +                            if ((sr = s.result) != null)
6034 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6035 +                        }
6036 +                        if ((par = t.parent) == null ||
6037 +                            !(par instanceof ReduceValuesTask)) {
6038 +                            t.quietlyComplete();
6039 +                            break;
6040 +                        }
6041 +                        t = (ReduceValuesTask<K,V>)par;
6042 +                    }
6043 +                    else if (t.casPending(c, c - 1))
6044 +                        break;
6045 +                }
6046 +            } catch (Throwable ex) {
6047 +                return tryCompleteComputation(ex);
6048 +            }
6049 +            ReduceValuesTask<K,V> s = rights;
6050 +            if (s != null && !inForkJoinPool()) {
6051 +                do  {
6052 +                    if (s.tryUnfork())
6053 +                        s.exec();
6054 +                } while ((s = s.nextRight) != null);
6055 +            }
6056 +            return false;
6057 +        }
6058 +        public final V getRawResult() { return result; }
6059 +    }
6060 +
6061 +    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6062 +        extends BulkTask<K,V,Map.Entry<K,V>> {
6063 +        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6064 +        Map.Entry<K,V> result;
6065 +        ReduceEntriesTask<K,V> rights, nextRight;
6066 +        ReduceEntriesTask
6067 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6068 +             ReduceEntriesTask<K,V> nextRight,
6069 +             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6070 +            super(m, p, b); this.nextRight = nextRight;
6071 +            this.reducer = reducer;
6072 +        }
6073 +        @SuppressWarnings("unchecked") public final boolean exec() {
6074 +            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
6075 +                this.reducer;
6076 +            if (reducer == null)
6077 +                return abortOnNullFunction();
6078 +            try {
6079 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6080 +                    do {} while (!casPending(c = pending, c+1));
6081 +                    (rights = new ReduceEntriesTask<K,V>
6082 +                     (map, this, b >>>= 1, rights, reducer)).fork();
6083 +                }
6084 +                Map.Entry<K,V> r = null;
6085 +                Object v;
6086 +                while ((v = advance()) != null) {
6087 +                    Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
6088 +                    r = (r == null) ? u : reducer.apply(r, u);
6089 +                }
6090 +                result = r;
6091 +                for (ReduceEntriesTask<K,V> t = this, s;;) {
6092 +                    int c; BulkTask<K,V,?> par; Map.Entry<K,V> tr, sr;
6093 +                    if ((c = t.pending) == 0) {
6094 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6095 +                            if ((sr = s.result) != null)
6096 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6097 +                        }
6098 +                        if ((par = t.parent) == null ||
6099 +                            !(par instanceof ReduceEntriesTask)) {
6100 +                            t.quietlyComplete();
6101 +                            break;
6102 +                        }
6103 +                        t = (ReduceEntriesTask<K,V>)par;
6104 +                    }
6105 +                    else if (t.casPending(c, c - 1))
6106 +                        break;
6107 +                }
6108 +            } catch (Throwable ex) {
6109 +                return tryCompleteComputation(ex);
6110 +            }
6111 +            ReduceEntriesTask<K,V> s = rights;
6112 +            if (s != null && !inForkJoinPool()) {
6113 +                do  {
6114 +                    if (s.tryUnfork())
6115 +                        s.exec();
6116 +                } while ((s = s.nextRight) != null);
6117 +            }
6118 +            return false;
6119 +        }
6120 +        public final Map.Entry<K,V> getRawResult() { return result; }
6121 +    }
6122 +
6123 +    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6124 +        extends BulkTask<K,V,U> {
6125 +        final Fun<? super K, ? extends U> transformer;
6126 +        final BiFun<? super U, ? super U, ? extends U> reducer;
6127 +        U result;
6128 +        MapReduceKeysTask<K,V,U> rights, nextRight;
6129 +        MapReduceKeysTask
6130 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6131 +             MapReduceKeysTask<K,V,U> nextRight,
6132 +             Fun<? super K, ? extends U> transformer,
6133 +             BiFun<? super U, ? super U, ? extends U> reducer) {
6134 +            super(m, p, b); this.nextRight = nextRight;
6135 +            this.transformer = transformer;
6136 +            this.reducer = reducer;
6137 +        }
6138 +        @SuppressWarnings("unchecked") public final boolean exec() {
6139 +            final Fun<? super K, ? extends U> transformer =
6140 +                this.transformer;
6141 +            final BiFun<? super U, ? super U, ? extends U> reducer =
6142 +                this.reducer;
6143 +            if (transformer == null || reducer == null)
6144 +                return abortOnNullFunction();
6145 +            try {
6146 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6147 +                    do {} while (!casPending(c = pending, c+1));
6148 +                    (rights = new MapReduceKeysTask<K,V,U>
6149 +                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6150 +                }
6151 +                U r = null, u;
6152 +                while (advance() != null) {
6153 +                    if ((u = transformer.apply((K)nextKey)) != null)
6154 +                        r = (r == null) ? u : reducer.apply(r, u);
6155 +                }
6156 +                result = r;
6157 +                for (MapReduceKeysTask<K,V,U> t = this, s;;) {
6158 +                    int c; BulkTask<K,V,?> par; U tr, sr;
6159 +                    if ((c = t.pending) == 0) {
6160 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6161 +                            if ((sr = s.result) != null)
6162 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6163 +                        }
6164 +                        if ((par = t.parent) == null ||
6165 +                            !(par instanceof MapReduceKeysTask)) {
6166 +                            t.quietlyComplete();
6167 +                            break;
6168 +                        }
6169 +                        t = (MapReduceKeysTask<K,V,U>)par;
6170 +                    }
6171 +                    else if (t.casPending(c, c - 1))
6172 +                        break;
6173 +                }
6174 +            } catch (Throwable ex) {
6175 +                return tryCompleteComputation(ex);
6176 +            }
6177 +            MapReduceKeysTask<K,V,U> s = rights;
6178 +            if (s != null && !inForkJoinPool()) {
6179 +                do  {
6180 +                    if (s.tryUnfork())
6181 +                        s.exec();
6182 +                } while ((s = s.nextRight) != null);
6183 +            }
6184 +            return false;
6185 +        }
6186 +        public final U getRawResult() { return result; }
6187 +    }
6188 +
6189 +    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6190 +        extends BulkTask<K,V,U> {
6191 +        final Fun<? super V, ? extends U> transformer;
6192 +        final BiFun<? super U, ? super U, ? extends U> reducer;
6193 +        U result;
6194 +        MapReduceValuesTask<K,V,U> rights, nextRight;
6195 +        MapReduceValuesTask
6196 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6197 +             MapReduceValuesTask<K,V,U> nextRight,
6198 +             Fun<? super V, ? extends U> transformer,
6199 +             BiFun<? super U, ? super U, ? extends U> reducer) {
6200 +            super(m, p, b); this.nextRight = nextRight;
6201 +            this.transformer = transformer;
6202 +            this.reducer = reducer;
6203 +        }
6204 +        @SuppressWarnings("unchecked") public final boolean exec() {
6205 +            final Fun<? super V, ? extends U> transformer =
6206 +                this.transformer;
6207 +            final BiFun<? super U, ? super U, ? extends U> reducer =
6208 +                this.reducer;
6209 +            if (transformer == null || reducer == null)
6210 +                return abortOnNullFunction();
6211 +            try {
6212 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6213 +                    do {} while (!casPending(c = pending, c+1));
6214 +                    (rights = new MapReduceValuesTask<K,V,U>
6215 +                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6216 +                }
6217 +                U r = null, u;
6218 +                Object v;
6219 +                while ((v = advance()) != null) {
6220 +                    if ((u = transformer.apply((V)v)) != null)
6221 +                        r = (r == null) ? u : reducer.apply(r, u);
6222 +                }
6223 +                result = r;
6224 +                for (MapReduceValuesTask<K,V,U> t = this, s;;) {
6225 +                    int c; BulkTask<K,V,?> par; U tr, sr;
6226 +                    if ((c = t.pending) == 0) {
6227 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6228 +                            if ((sr = s.result) != null)
6229 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6230 +                        }
6231 +                        if ((par = t.parent) == null ||
6232 +                            !(par instanceof MapReduceValuesTask)) {
6233 +                            t.quietlyComplete();
6234 +                            break;
6235 +                        }
6236 +                        t = (MapReduceValuesTask<K,V,U>)par;
6237 +                    }
6238 +                    else if (t.casPending(c, c - 1))
6239 +                        break;
6240 +                }
6241 +            } catch (Throwable ex) {
6242 +                return tryCompleteComputation(ex);
6243 +            }
6244 +            MapReduceValuesTask<K,V,U> s = rights;
6245 +            if (s != null && !inForkJoinPool()) {
6246 +                do  {
6247 +                    if (s.tryUnfork())
6248 +                        s.exec();
6249 +                } while ((s = s.nextRight) != null);
6250 +            }
6251 +            return false;
6252 +        }
6253 +        public final U getRawResult() { return result; }
6254 +    }
6255 +
6256 +    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6257 +        extends BulkTask<K,V,U> {
6258 +        final Fun<Map.Entry<K,V>, ? extends U> transformer;
6259 +        final BiFun<? super U, ? super U, ? extends U> reducer;
6260 +        U result;
6261 +        MapReduceEntriesTask<K,V,U> rights, nextRight;
6262 +        MapReduceEntriesTask
6263 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6264 +             MapReduceEntriesTask<K,V,U> nextRight,
6265 +             Fun<Map.Entry<K,V>, ? extends U> transformer,
6266 +             BiFun<? super U, ? super U, ? extends U> reducer) {
6267 +            super(m, p, b); this.nextRight = nextRight;
6268 +            this.transformer = transformer;
6269 +            this.reducer = reducer;
6270 +        }
6271 +        @SuppressWarnings("unchecked") public final boolean exec() {
6272 +            final Fun<Map.Entry<K,V>, ? extends U> transformer =
6273 +                this.transformer;
6274 +            final BiFun<? super U, ? super U, ? extends U> reducer =
6275 +                this.reducer;
6276 +            if (transformer == null || reducer == null)
6277 +                return abortOnNullFunction();
6278 +            try {
6279 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6280 +                    do {} while (!casPending(c = pending, c+1));
6281 +                    (rights = new MapReduceEntriesTask<K,V,U>
6282 +                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6283 +                }
6284 +                U r = null, u;
6285 +                Object v;
6286 +                while ((v = advance()) != null) {
6287 +                    if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
6288 +                        r = (r == null) ? u : reducer.apply(r, u);
6289 +                }
6290 +                result = r;
6291 +                for (MapReduceEntriesTask<K,V,U> t = this, s;;) {
6292 +                    int c; BulkTask<K,V,?> par; U tr, sr;
6293 +                    if ((c = t.pending) == 0) {
6294 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6295 +                            if ((sr = s.result) != null)
6296 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6297 +                        }
6298 +                        if ((par = t.parent) == null ||
6299 +                            !(par instanceof MapReduceEntriesTask)) {
6300 +                            t.quietlyComplete();
6301 +                            break;
6302 +                        }
6303 +                        t = (MapReduceEntriesTask<K,V,U>)par;
6304 +                    }
6305 +                    else if (t.casPending(c, c - 1))
6306 +                        break;
6307 +                }
6308 +            } catch (Throwable ex) {
6309 +                return tryCompleteComputation(ex);
6310 +            }
6311 +            MapReduceEntriesTask<K,V,U> s = rights;
6312 +            if (s != null && !inForkJoinPool()) {
6313 +                do  {
6314 +                    if (s.tryUnfork())
6315 +                        s.exec();
6316 +                } while ((s = s.nextRight) != null);
6317 +            }
6318 +            return false;
6319 +        }
6320 +        public final U getRawResult() { return result; }
6321 +    }
6322 +
6323 +    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6324 +        extends BulkTask<K,V,U> {
6325 +        final BiFun<? super K, ? super V, ? extends U> transformer;
6326 +        final BiFun<? super U, ? super U, ? extends U> reducer;
6327 +        U result;
6328 +        MapReduceMappingsTask<K,V,U> rights, nextRight;
6329 +        MapReduceMappingsTask
6330 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6331 +             MapReduceMappingsTask<K,V,U> nextRight,
6332 +             BiFun<? super K, ? super V, ? extends U> transformer,
6333 +             BiFun<? super U, ? super U, ? extends U> reducer) {
6334 +            super(m, p, b); this.nextRight = nextRight;
6335 +            this.transformer = transformer;
6336 +            this.reducer = reducer;
6337 +        }
6338 +        @SuppressWarnings("unchecked") public final boolean exec() {
6339 +            final BiFun<? super K, ? super V, ? extends U> transformer =
6340 +                this.transformer;
6341 +            final BiFun<? super U, ? super U, ? extends U> reducer =
6342 +                this.reducer;
6343 +            if (transformer == null || reducer == null)
6344 +                return abortOnNullFunction();
6345 +            try {
6346 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6347 +                    do {} while (!casPending(c = pending, c+1));
6348 +                    (rights = new MapReduceMappingsTask<K,V,U>
6349 +                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
6350 +                }
6351 +                U r = null, u;
6352 +                Object v;
6353 +                while ((v = advance()) != null) {
6354 +                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
6355 +                        r = (r == null) ? u : reducer.apply(r, u);
6356 +                }
6357 +                result = r;
6358 +                for (MapReduceMappingsTask<K,V,U> t = this, s;;) {
6359 +                    int c; BulkTask<K,V,?> par; U tr, sr;
6360 +                    if ((c = t.pending) == 0) {
6361 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6362 +                            if ((sr = s.result) != null)
6363 +                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
6364 +                        }
6365 +                        if ((par = t.parent) == null ||
6366 +                            !(par instanceof MapReduceMappingsTask)) {
6367 +                            t.quietlyComplete();
6368 +                            break;
6369 +                        }
6370 +                        t = (MapReduceMappingsTask<K,V,U>)par;
6371 +                    }
6372 +                    else if (t.casPending(c, c - 1))
6373 +                        break;
6374 +                }
6375 +            } catch (Throwable ex) {
6376 +                return tryCompleteComputation(ex);
6377 +            }
6378 +            MapReduceMappingsTask<K,V,U> s = rights;
6379 +            if (s != null && !inForkJoinPool()) {
6380 +                do  {
6381 +                    if (s.tryUnfork())
6382 +                        s.exec();
6383 +                } while ((s = s.nextRight) != null);
6384 +            }
6385 +            return false;
6386 +        }
6387 +        public final U getRawResult() { return result; }
6388 +    }
6389 +
6390 +    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6391 +        extends BulkTask<K,V,Double> {
6392 +        final ObjectToDouble<? super K> transformer;
6393 +        final DoubleByDoubleToDouble reducer;
6394 +        final double basis;
6395 +        double result;
6396 +        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6397 +        MapReduceKeysToDoubleTask
6398 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6399 +             MapReduceKeysToDoubleTask<K,V> nextRight,
6400 +             ObjectToDouble<? super K> transformer,
6401 +             double basis,
6402 +             DoubleByDoubleToDouble reducer) {
6403 +            super(m, p, b); this.nextRight = nextRight;
6404 +            this.transformer = transformer;
6405 +            this.basis = basis; this.reducer = reducer;
6406 +        }
6407 +        @SuppressWarnings("unchecked") public final boolean exec() {
6408 +            final ObjectToDouble<? super K> transformer =
6409 +                this.transformer;
6410 +            final DoubleByDoubleToDouble reducer = this.reducer;
6411 +            if (transformer == null || reducer == null)
6412 +                return abortOnNullFunction();
6413 +            try {
6414 +                final double id = this.basis;
6415 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6416 +                    do {} while (!casPending(c = pending, c+1));
6417 +                    (rights = new MapReduceKeysToDoubleTask<K,V>
6418 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6419 +                }
6420 +                double r = id;
6421 +                while (advance() != null)
6422 +                    r = reducer.apply(r, transformer.apply((K)nextKey));
6423 +                result = r;
6424 +                for (MapReduceKeysToDoubleTask<K,V> t = this, s;;) {
6425 +                    int c; BulkTask<K,V,?> par;
6426 +                    if ((c = t.pending) == 0) {
6427 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6428 +                            t.result = reducer.apply(t.result, s.result);
6429 +                        }
6430 +                        if ((par = t.parent) == null ||
6431 +                            !(par instanceof MapReduceKeysToDoubleTask)) {
6432 +                            t.quietlyComplete();
6433 +                            break;
6434 +                        }
6435 +                        t = (MapReduceKeysToDoubleTask<K,V>)par;
6436 +                    }
6437 +                    else if (t.casPending(c, c - 1))
6438 +                        break;
6439 +                }
6440 +            } catch (Throwable ex) {
6441 +                return tryCompleteComputation(ex);
6442 +            }
6443 +            MapReduceKeysToDoubleTask<K,V> s = rights;
6444 +            if (s != null && !inForkJoinPool()) {
6445 +                do  {
6446 +                    if (s.tryUnfork())
6447 +                        s.exec();
6448 +                } while ((s = s.nextRight) != null);
6449 +            }
6450 +            return false;
6451 +        }
6452 +        public final Double getRawResult() { return result; }
6453 +    }
6454 +
6455 +    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6456 +        extends BulkTask<K,V,Double> {
6457 +        final ObjectToDouble<? super V> transformer;
6458 +        final DoubleByDoubleToDouble reducer;
6459 +        final double basis;
6460 +        double result;
6461 +        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6462 +        MapReduceValuesToDoubleTask
6463 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6464 +             MapReduceValuesToDoubleTask<K,V> nextRight,
6465 +             ObjectToDouble<? super V> transformer,
6466 +             double basis,
6467 +             DoubleByDoubleToDouble reducer) {
6468 +            super(m, p, b); this.nextRight = nextRight;
6469 +            this.transformer = transformer;
6470 +            this.basis = basis; this.reducer = reducer;
6471 +        }
6472 +        @SuppressWarnings("unchecked") public final boolean exec() {
6473 +            final ObjectToDouble<? super V> transformer =
6474 +                this.transformer;
6475 +            final DoubleByDoubleToDouble reducer = this.reducer;
6476 +            if (transformer == null || reducer == null)
6477 +                return abortOnNullFunction();
6478 +            try {
6479 +                final double id = this.basis;
6480 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6481 +                    do {} while (!casPending(c = pending, c+1));
6482 +                    (rights = new MapReduceValuesToDoubleTask<K,V>
6483 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6484 +                }
6485 +                double r = id;
6486 +                Object v;
6487 +                while ((v = advance()) != null)
6488 +                    r = reducer.apply(r, transformer.apply((V)v));
6489 +                result = r;
6490 +                for (MapReduceValuesToDoubleTask<K,V> t = this, s;;) {
6491 +                    int c; BulkTask<K,V,?> par;
6492 +                    if ((c = t.pending) == 0) {
6493 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6494 +                            t.result = reducer.apply(t.result, s.result);
6495 +                        }
6496 +                        if ((par = t.parent) == null ||
6497 +                            !(par instanceof MapReduceValuesToDoubleTask)) {
6498 +                            t.quietlyComplete();
6499 +                            break;
6500 +                        }
6501 +                        t = (MapReduceValuesToDoubleTask<K,V>)par;
6502 +                    }
6503 +                    else if (t.casPending(c, c - 1))
6504 +                        break;
6505 +                }
6506 +            } catch (Throwable ex) {
6507 +                return tryCompleteComputation(ex);
6508 +            }
6509 +            MapReduceValuesToDoubleTask<K,V> s = rights;
6510 +            if (s != null && !inForkJoinPool()) {
6511 +                do  {
6512 +                    if (s.tryUnfork())
6513 +                        s.exec();
6514 +                } while ((s = s.nextRight) != null);
6515 +            }
6516 +            return false;
6517 +        }
6518 +        public final Double getRawResult() { return result; }
6519 +    }
6520 +
6521 +    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6522 +        extends BulkTask<K,V,Double> {
6523 +        final ObjectToDouble<Map.Entry<K,V>> transformer;
6524 +        final DoubleByDoubleToDouble reducer;
6525 +        final double basis;
6526 +        double result;
6527 +        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6528 +        MapReduceEntriesToDoubleTask
6529 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6530 +             MapReduceEntriesToDoubleTask<K,V> nextRight,
6531 +             ObjectToDouble<Map.Entry<K,V>> transformer,
6532 +             double basis,
6533 +             DoubleByDoubleToDouble reducer) {
6534 +            super(m, p, b); this.nextRight = nextRight;
6535 +            this.transformer = transformer;
6536 +            this.basis = basis; this.reducer = reducer;
6537 +        }
6538 +        @SuppressWarnings("unchecked") public final boolean exec() {
6539 +            final ObjectToDouble<Map.Entry<K,V>> transformer =
6540 +                this.transformer;
6541 +            final DoubleByDoubleToDouble reducer = this.reducer;
6542 +            if (transformer == null || reducer == null)
6543 +                return abortOnNullFunction();
6544 +            try {
6545 +                final double id = this.basis;
6546 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6547 +                    do {} while (!casPending(c = pending, c+1));
6548 +                    (rights = new MapReduceEntriesToDoubleTask<K,V>
6549 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6550 +                }
6551 +                double r = id;
6552 +                Object v;
6553 +                while ((v = advance()) != null)
6554 +                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6555 +                result = r;
6556 +                for (MapReduceEntriesToDoubleTask<K,V> t = this, s;;) {
6557 +                    int c; BulkTask<K,V,?> par;
6558 +                    if ((c = t.pending) == 0) {
6559 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6560 +                            t.result = reducer.apply(t.result, s.result);
6561 +                        }
6562 +                        if ((par = t.parent) == null ||
6563 +                            !(par instanceof MapReduceEntriesToDoubleTask)) {
6564 +                            t.quietlyComplete();
6565 +                            break;
6566 +                        }
6567 +                        t = (MapReduceEntriesToDoubleTask<K,V>)par;
6568 +                    }
6569 +                    else if (t.casPending(c, c - 1))
6570 +                        break;
6571 +                }
6572 +            } catch (Throwable ex) {
6573 +                return tryCompleteComputation(ex);
6574 +            }
6575 +            MapReduceEntriesToDoubleTask<K,V> s = rights;
6576 +            if (s != null && !inForkJoinPool()) {
6577 +                do  {
6578 +                    if (s.tryUnfork())
6579 +                        s.exec();
6580 +                } while ((s = s.nextRight) != null);
6581 +            }
6582 +            return false;
6583 +        }
6584 +        public final Double getRawResult() { return result; }
6585 +    }
6586 +
6587 +    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6588 +        extends BulkTask<K,V,Double> {
6589 +        final ObjectByObjectToDouble<? super K, ? super V> transformer;
6590 +        final DoubleByDoubleToDouble reducer;
6591 +        final double basis;
6592 +        double result;
6593 +        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6594 +        MapReduceMappingsToDoubleTask
6595 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6596 +             MapReduceMappingsToDoubleTask<K,V> nextRight,
6597 +             ObjectByObjectToDouble<? super K, ? super V> transformer,
6598 +             double basis,
6599 +             DoubleByDoubleToDouble reducer) {
6600 +            super(m, p, b); this.nextRight = nextRight;
6601 +            this.transformer = transformer;
6602 +            this.basis = basis; this.reducer = reducer;
6603 +        }
6604 +        @SuppressWarnings("unchecked") public final boolean exec() {
6605 +            final ObjectByObjectToDouble<? super K, ? super V> transformer =
6606 +                this.transformer;
6607 +            final DoubleByDoubleToDouble reducer = this.reducer;
6608 +            if (transformer == null || reducer == null)
6609 +                return abortOnNullFunction();
6610 +            try {
6611 +                final double id = this.basis;
6612 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6613 +                    do {} while (!casPending(c = pending, c+1));
6614 +                    (rights = new MapReduceMappingsToDoubleTask<K,V>
6615 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6616 +                }
6617 +                double r = id;
6618 +                Object v;
6619 +                while ((v = advance()) != null)
6620 +                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6621 +                result = r;
6622 +                for (MapReduceMappingsToDoubleTask<K,V> t = this, s;;) {
6623 +                    int c; BulkTask<K,V,?> par;
6624 +                    if ((c = t.pending) == 0) {
6625 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6626 +                            t.result = reducer.apply(t.result, s.result);
6627 +                        }
6628 +                        if ((par = t.parent) == null ||
6629 +                            !(par instanceof MapReduceMappingsToDoubleTask)) {
6630 +                            t.quietlyComplete();
6631 +                            break;
6632 +                        }
6633 +                        t = (MapReduceMappingsToDoubleTask<K,V>)par;
6634 +                    }
6635 +                    else if (t.casPending(c, c - 1))
6636 +                        break;
6637 +                }
6638 +            } catch (Throwable ex) {
6639 +                return tryCompleteComputation(ex);
6640 +            }
6641 +            MapReduceMappingsToDoubleTask<K,V> s = rights;
6642 +            if (s != null && !inForkJoinPool()) {
6643 +                do  {
6644 +                    if (s.tryUnfork())
6645 +                        s.exec();
6646 +                } while ((s = s.nextRight) != null);
6647 +            }
6648 +            return false;
6649 +        }
6650 +        public final Double getRawResult() { return result; }
6651 +    }
6652 +
6653 +    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6654 +        extends BulkTask<K,V,Long> {
6655 +        final ObjectToLong<? super K> transformer;
6656 +        final LongByLongToLong reducer;
6657 +        final long basis;
6658 +        long result;
6659 +        MapReduceKeysToLongTask<K,V> rights, nextRight;
6660 +        MapReduceKeysToLongTask
6661 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6662 +             MapReduceKeysToLongTask<K,V> nextRight,
6663 +             ObjectToLong<? super K> transformer,
6664 +             long basis,
6665 +             LongByLongToLong reducer) {
6666 +            super(m, p, b); this.nextRight = nextRight;
6667 +            this.transformer = transformer;
6668 +            this.basis = basis; this.reducer = reducer;
6669 +        }
6670 +        @SuppressWarnings("unchecked") public final boolean exec() {
6671 +            final ObjectToLong<? super K> transformer =
6672 +                this.transformer;
6673 +            final LongByLongToLong reducer = this.reducer;
6674 +            if (transformer == null || reducer == null)
6675 +                return abortOnNullFunction();
6676 +            try {
6677 +                final long id = this.basis;
6678 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6679 +                    do {} while (!casPending(c = pending, c+1));
6680 +                    (rights = new MapReduceKeysToLongTask<K,V>
6681 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6682 +                }
6683 +                long r = id;
6684 +                while (advance() != null)
6685 +                    r = reducer.apply(r, transformer.apply((K)nextKey));
6686 +                result = r;
6687 +                for (MapReduceKeysToLongTask<K,V> t = this, s;;) {
6688 +                    int c; BulkTask<K,V,?> par;
6689 +                    if ((c = t.pending) == 0) {
6690 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6691 +                            t.result = reducer.apply(t.result, s.result);
6692 +                        }
6693 +                        if ((par = t.parent) == null ||
6694 +                            !(par instanceof MapReduceKeysToLongTask)) {
6695 +                            t.quietlyComplete();
6696 +                            break;
6697 +                        }
6698 +                        t = (MapReduceKeysToLongTask<K,V>)par;
6699 +                    }
6700 +                    else if (t.casPending(c, c - 1))
6701 +                        break;
6702 +                }
6703 +            } catch (Throwable ex) {
6704 +                return tryCompleteComputation(ex);
6705 +            }
6706 +            MapReduceKeysToLongTask<K,V> s = rights;
6707 +            if (s != null && !inForkJoinPool()) {
6708 +                do  {
6709 +                    if (s.tryUnfork())
6710 +                        s.exec();
6711 +                } while ((s = s.nextRight) != null);
6712 +            }
6713 +            return false;
6714 +        }
6715 +        public final Long getRawResult() { return result; }
6716 +    }
6717 +
6718 +    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6719 +        extends BulkTask<K,V,Long> {
6720 +        final ObjectToLong<? super V> transformer;
6721 +        final LongByLongToLong reducer;
6722 +        final long basis;
6723 +        long result;
6724 +        MapReduceValuesToLongTask<K,V> rights, nextRight;
6725 +        MapReduceValuesToLongTask
6726 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6727 +             MapReduceValuesToLongTask<K,V> nextRight,
6728 +             ObjectToLong<? super V> transformer,
6729 +             long basis,
6730 +             LongByLongToLong reducer) {
6731 +            super(m, p, b); this.nextRight = nextRight;
6732 +            this.transformer = transformer;
6733 +            this.basis = basis; this.reducer = reducer;
6734 +        }
6735 +        @SuppressWarnings("unchecked") public final boolean exec() {
6736 +            final ObjectToLong<? super V> transformer =
6737 +                this.transformer;
6738 +            final LongByLongToLong reducer = this.reducer;
6739 +            if (transformer == null || reducer == null)
6740 +                return abortOnNullFunction();
6741 +            try {
6742 +                final long id = this.basis;
6743 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6744 +                    do {} while (!casPending(c = pending, c+1));
6745 +                    (rights = new MapReduceValuesToLongTask<K,V>
6746 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6747 +                }
6748 +                long r = id;
6749 +                Object v;
6750 +                while ((v = advance()) != null)
6751 +                    r = reducer.apply(r, transformer.apply((V)v));
6752 +                result = r;
6753 +                for (MapReduceValuesToLongTask<K,V> t = this, s;;) {
6754 +                    int c; BulkTask<K,V,?> par;
6755 +                    if ((c = t.pending) == 0) {
6756 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6757 +                            t.result = reducer.apply(t.result, s.result);
6758 +                        }
6759 +                        if ((par = t.parent) == null ||
6760 +                            !(par instanceof MapReduceValuesToLongTask)) {
6761 +                            t.quietlyComplete();
6762 +                            break;
6763 +                        }
6764 +                        t = (MapReduceValuesToLongTask<K,V>)par;
6765 +                    }
6766 +                    else if (t.casPending(c, c - 1))
6767 +                        break;
6768 +                }
6769 +            } catch (Throwable ex) {
6770 +                return tryCompleteComputation(ex);
6771 +            }
6772 +            MapReduceValuesToLongTask<K,V> s = rights;
6773 +            if (s != null && !inForkJoinPool()) {
6774 +                do  {
6775 +                    if (s.tryUnfork())
6776 +                        s.exec();
6777 +                } while ((s = s.nextRight) != null);
6778 +            }
6779 +            return false;
6780 +        }
6781 +        public final Long getRawResult() { return result; }
6782 +    }
6783 +
6784 +    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6785 +        extends BulkTask<K,V,Long> {
6786 +        final ObjectToLong<Map.Entry<K,V>> transformer;
6787 +        final LongByLongToLong reducer;
6788 +        final long basis;
6789 +        long result;
6790 +        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6791 +        MapReduceEntriesToLongTask
6792 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6793 +             MapReduceEntriesToLongTask<K,V> nextRight,
6794 +             ObjectToLong<Map.Entry<K,V>> transformer,
6795 +             long basis,
6796 +             LongByLongToLong reducer) {
6797 +            super(m, p, b); this.nextRight = nextRight;
6798 +            this.transformer = transformer;
6799 +            this.basis = basis; this.reducer = reducer;
6800 +        }
6801 +        @SuppressWarnings("unchecked") public final boolean exec() {
6802 +            final ObjectToLong<Map.Entry<K,V>> transformer =
6803 +                this.transformer;
6804 +            final LongByLongToLong reducer = this.reducer;
6805 +            if (transformer == null || reducer == null)
6806 +                return abortOnNullFunction();
6807 +            try {
6808 +                final long id = this.basis;
6809 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6810 +                    do {} while (!casPending(c = pending, c+1));
6811 +                    (rights = new MapReduceEntriesToLongTask<K,V>
6812 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6813 +                }
6814 +                long r = id;
6815 +                Object v;
6816 +                while ((v = advance()) != null)
6817 +                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6818 +                result = r;
6819 +                for (MapReduceEntriesToLongTask<K,V> t = this, s;;) {
6820 +                    int c; BulkTask<K,V,?> par;
6821 +                    if ((c = t.pending) == 0) {
6822 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6823 +                            t.result = reducer.apply(t.result, s.result);
6824 +                        }
6825 +                        if ((par = t.parent) == null ||
6826 +                            !(par instanceof MapReduceEntriesToLongTask)) {
6827 +                            t.quietlyComplete();
6828 +                            break;
6829 +                        }
6830 +                        t = (MapReduceEntriesToLongTask<K,V>)par;
6831 +                    }
6832 +                    else if (t.casPending(c, c - 1))
6833 +                        break;
6834 +                }
6835 +            } catch (Throwable ex) {
6836 +                return tryCompleteComputation(ex);
6837 +            }
6838 +            MapReduceEntriesToLongTask<K,V> s = rights;
6839 +            if (s != null && !inForkJoinPool()) {
6840 +                do  {
6841 +                    if (s.tryUnfork())
6842 +                        s.exec();
6843 +                } while ((s = s.nextRight) != null);
6844 +            }
6845 +            return false;
6846 +        }
6847 +        public final Long getRawResult() { return result; }
6848 +    }
6849 +
6850 +    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6851 +        extends BulkTask<K,V,Long> {
6852 +        final ObjectByObjectToLong<? super K, ? super V> transformer;
6853 +        final LongByLongToLong reducer;
6854 +        final long basis;
6855 +        long result;
6856 +        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6857 +        MapReduceMappingsToLongTask
6858 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6859 +             MapReduceMappingsToLongTask<K,V> nextRight,
6860 +             ObjectByObjectToLong<? super K, ? super V> transformer,
6861 +             long basis,
6862 +             LongByLongToLong reducer) {
6863 +            super(m, p, b); this.nextRight = nextRight;
6864 +            this.transformer = transformer;
6865 +            this.basis = basis; this.reducer = reducer;
6866 +        }
6867 +        @SuppressWarnings("unchecked") public final boolean exec() {
6868 +            final ObjectByObjectToLong<? super K, ? super V> transformer =
6869 +                this.transformer;
6870 +            final LongByLongToLong reducer = this.reducer;
6871 +            if (transformer == null || reducer == null)
6872 +                return abortOnNullFunction();
6873 +            try {
6874 +                final long id = this.basis;
6875 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6876 +                    do {} while (!casPending(c = pending, c+1));
6877 +                    (rights = new MapReduceMappingsToLongTask<K,V>
6878 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6879 +                }
6880 +                long r = id;
6881 +                Object v;
6882 +                while ((v = advance()) != null)
6883 +                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6884 +                result = r;
6885 +                for (MapReduceMappingsToLongTask<K,V> t = this, s;;) {
6886 +                    int c; BulkTask<K,V,?> par;
6887 +                    if ((c = t.pending) == 0) {
6888 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6889 +                            t.result = reducer.apply(t.result, s.result);
6890 +                        }
6891 +                        if ((par = t.parent) == null ||
6892 +                            !(par instanceof MapReduceMappingsToLongTask)) {
6893 +                            t.quietlyComplete();
6894 +                            break;
6895 +                        }
6896 +                        t = (MapReduceMappingsToLongTask<K,V>)par;
6897 +                    }
6898 +                    else if (t.casPending(c, c - 1))
6899 +                        break;
6900 +                }
6901 +            } catch (Throwable ex) {
6902 +                return tryCompleteComputation(ex);
6903 +            }
6904 +            MapReduceMappingsToLongTask<K,V> s = rights;
6905 +            if (s != null && !inForkJoinPool()) {
6906 +                do  {
6907 +                    if (s.tryUnfork())
6908 +                        s.exec();
6909 +                } while ((s = s.nextRight) != null);
6910 +            }
6911 +            return false;
6912 +        }
6913 +        public final Long getRawResult() { return result; }
6914 +    }
6915 +
6916 +    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6917 +        extends BulkTask<K,V,Integer> {
6918 +        final ObjectToInt<? super K> transformer;
6919 +        final IntByIntToInt reducer;
6920 +        final int basis;
6921 +        int result;
6922 +        MapReduceKeysToIntTask<K,V> rights, nextRight;
6923 +        MapReduceKeysToIntTask
6924 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6925 +             MapReduceKeysToIntTask<K,V> nextRight,
6926 +             ObjectToInt<? super K> transformer,
6927 +             int basis,
6928 +             IntByIntToInt reducer) {
6929 +            super(m, p, b); this.nextRight = nextRight;
6930 +            this.transformer = transformer;
6931 +            this.basis = basis; this.reducer = reducer;
6932 +        }
6933 +        @SuppressWarnings("unchecked") public final boolean exec() {
6934 +            final ObjectToInt<? super K> transformer =
6935 +                this.transformer;
6936 +            final IntByIntToInt reducer = this.reducer;
6937 +            if (transformer == null || reducer == null)
6938 +                return abortOnNullFunction();
6939 +            try {
6940 +                final int id = this.basis;
6941 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6942 +                    do {} while (!casPending(c = pending, c+1));
6943 +                    (rights = new MapReduceKeysToIntTask<K,V>
6944 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
6945 +                }
6946 +                int r = id;
6947 +                while (advance() != null)
6948 +                    r = reducer.apply(r, transformer.apply((K)nextKey));
6949 +                result = r;
6950 +                for (MapReduceKeysToIntTask<K,V> t = this, s;;) {
6951 +                    int c; BulkTask<K,V,?> par;
6952 +                    if ((c = t.pending) == 0) {
6953 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
6954 +                            t.result = reducer.apply(t.result, s.result);
6955 +                        }
6956 +                        if ((par = t.parent) == null ||
6957 +                            !(par instanceof MapReduceKeysToIntTask)) {
6958 +                            t.quietlyComplete();
6959 +                            break;
6960 +                        }
6961 +                        t = (MapReduceKeysToIntTask<K,V>)par;
6962 +                    }
6963 +                    else if (t.casPending(c, c - 1))
6964 +                        break;
6965 +                }
6966 +            } catch (Throwable ex) {
6967 +                return tryCompleteComputation(ex);
6968 +            }
6969 +            MapReduceKeysToIntTask<K,V> s = rights;
6970 +            if (s != null && !inForkJoinPool()) {
6971 +                do  {
6972 +                    if (s.tryUnfork())
6973 +                        s.exec();
6974 +                } while ((s = s.nextRight) != null);
6975 +            }
6976 +            return false;
6977 +        }
6978 +        public final Integer getRawResult() { return result; }
6979 +    }
6980 +
6981 +    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6982 +        extends BulkTask<K,V,Integer> {
6983 +        final ObjectToInt<? super V> transformer;
6984 +        final IntByIntToInt reducer;
6985 +        final int basis;
6986 +        int result;
6987 +        MapReduceValuesToIntTask<K,V> rights, nextRight;
6988 +        MapReduceValuesToIntTask
6989 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
6990 +             MapReduceValuesToIntTask<K,V> nextRight,
6991 +             ObjectToInt<? super V> transformer,
6992 +             int basis,
6993 +             IntByIntToInt reducer) {
6994 +            super(m, p, b); this.nextRight = nextRight;
6995 +            this.transformer = transformer;
6996 +            this.basis = basis; this.reducer = reducer;
6997 +        }
6998 +        @SuppressWarnings("unchecked") public final boolean exec() {
6999 +            final ObjectToInt<? super V> transformer =
7000 +                this.transformer;
7001 +            final IntByIntToInt reducer = this.reducer;
7002 +            if (transformer == null || reducer == null)
7003 +                return abortOnNullFunction();
7004 +            try {
7005 +                final int id = this.basis;
7006 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
7007 +                    do {} while (!casPending(c = pending, c+1));
7008 +                    (rights = new MapReduceValuesToIntTask<K,V>
7009 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
7010 +                }
7011 +                int r = id;
7012 +                Object v;
7013 +                while ((v = advance()) != null)
7014 +                    r = reducer.apply(r, transformer.apply((V)v));
7015 +                result = r;
7016 +                for (MapReduceValuesToIntTask<K,V> t = this, s;;) {
7017 +                    int c; BulkTask<K,V,?> par;
7018 +                    if ((c = t.pending) == 0) {
7019 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
7020 +                            t.result = reducer.apply(t.result, s.result);
7021 +                        }
7022 +                        if ((par = t.parent) == null ||
7023 +                            !(par instanceof MapReduceValuesToIntTask)) {
7024 +                            t.quietlyComplete();
7025 +                            break;
7026 +                        }
7027 +                        t = (MapReduceValuesToIntTask<K,V>)par;
7028 +                    }
7029 +                    else if (t.casPending(c, c - 1))
7030 +                        break;
7031 +                }
7032 +            } catch (Throwable ex) {
7033 +                return tryCompleteComputation(ex);
7034 +            }
7035 +            MapReduceValuesToIntTask<K,V> s = rights;
7036 +            if (s != null && !inForkJoinPool()) {
7037 +                do  {
7038 +                    if (s.tryUnfork())
7039 +                        s.exec();
7040 +                } while ((s = s.nextRight) != null);
7041 +            }
7042 +            return false;
7043 +        }
7044 +        public final Integer getRawResult() { return result; }
7045 +    }
7046 +
7047 +    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
7048 +        extends BulkTask<K,V,Integer> {
7049 +        final ObjectToInt<Map.Entry<K,V>> transformer;
7050 +        final IntByIntToInt reducer;
7051 +        final int basis;
7052 +        int result;
7053 +        MapReduceEntriesToIntTask<K,V> rights, nextRight;
7054 +        MapReduceEntriesToIntTask
7055 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
7056 +             MapReduceEntriesToIntTask<K,V> nextRight,
7057 +             ObjectToInt<Map.Entry<K,V>> transformer,
7058 +             int basis,
7059 +             IntByIntToInt reducer) {
7060 +            super(m, p, b); this.nextRight = nextRight;
7061 +            this.transformer = transformer;
7062 +            this.basis = basis; this.reducer = reducer;
7063 +        }
7064 +        @SuppressWarnings("unchecked") public final boolean exec() {
7065 +            final ObjectToInt<Map.Entry<K,V>> transformer =
7066 +                this.transformer;
7067 +            final IntByIntToInt reducer = this.reducer;
7068 +            if (transformer == null || reducer == null)
7069 +                return abortOnNullFunction();
7070 +            try {
7071 +                final int id = this.basis;
7072 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
7073 +                    do {} while (!casPending(c = pending, c+1));
7074 +                    (rights = new MapReduceEntriesToIntTask<K,V>
7075 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
7076 +                }
7077 +                int r = id;
7078 +                Object v;
7079 +                while ((v = advance()) != null)
7080 +                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
7081 +                result = r;
7082 +                for (MapReduceEntriesToIntTask<K,V> t = this, s;;) {
7083 +                    int c; BulkTask<K,V,?> par;
7084 +                    if ((c = t.pending) == 0) {
7085 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
7086 +                            t.result = reducer.apply(t.result, s.result);
7087 +                        }
7088 +                        if ((par = t.parent) == null ||
7089 +                            !(par instanceof MapReduceEntriesToIntTask)) {
7090 +                            t.quietlyComplete();
7091 +                            break;
7092 +                        }
7093 +                        t = (MapReduceEntriesToIntTask<K,V>)par;
7094 +                    }
7095 +                    else if (t.casPending(c, c - 1))
7096 +                        break;
7097 +                }
7098 +            } catch (Throwable ex) {
7099 +                return tryCompleteComputation(ex);
7100 +            }
7101 +            MapReduceEntriesToIntTask<K,V> s = rights;
7102 +            if (s != null && !inForkJoinPool()) {
7103 +                do  {
7104 +                    if (s.tryUnfork())
7105 +                        s.exec();
7106 +                } while ((s = s.nextRight) != null);
7107 +            }
7108 +            return false;
7109 +        }
7110 +        public final Integer getRawResult() { return result; }
7111 +    }
7112 +
7113 +    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
7114 +        extends BulkTask<K,V,Integer> {
7115 +        final ObjectByObjectToInt<? super K, ? super V> transformer;
7116 +        final IntByIntToInt reducer;
7117 +        final int basis;
7118 +        int result;
7119 +        MapReduceMappingsToIntTask<K,V> rights, nextRight;
7120 +        MapReduceMappingsToIntTask
7121 +            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
7122 +             MapReduceMappingsToIntTask<K,V> rights,
7123 +             ObjectByObjectToInt<? super K, ? super V> transformer,
7124 +             int basis,
7125 +             IntByIntToInt reducer) {
7126 +            super(m, p, b); this.nextRight = nextRight;
7127 +            this.transformer = transformer;
7128 +            this.basis = basis; this.reducer = reducer;
7129 +        }
7130 +        @SuppressWarnings("unchecked") public final boolean exec() {
7131 +            final ObjectByObjectToInt<? super K, ? super V> transformer =
7132 +                this.transformer;
7133 +            final IntByIntToInt reducer = this.reducer;
7134 +            if (transformer == null || reducer == null)
7135 +                return abortOnNullFunction();
7136 +            try {
7137 +                final int id = this.basis;
7138 +                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
7139 +                    do {} while (!casPending(c = pending, c+1));
7140 +                    (rights = new MapReduceMappingsToIntTask<K,V>
7141 +                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
7142 +                }
7143 +                int r = id;
7144 +                Object v;
7145 +                while ((v = advance()) != null)
7146 +                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
7147 +                result = r;
7148 +                for (MapReduceMappingsToIntTask<K,V> t = this, s;;) {
7149 +                    int c; BulkTask<K,V,?> par;
7150 +                    if ((c = t.pending) == 0) {
7151 +                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
7152 +                            t.result = reducer.apply(t.result, s.result);
7153 +                        }
7154 +                        if ((par = t.parent) == null ||
7155 +                            !(par instanceof MapReduceMappingsToIntTask)) {
7156 +                            t.quietlyComplete();
7157 +                            break;
7158 +                        }
7159 +                        t = (MapReduceMappingsToIntTask<K,V>)par;
7160 +                    }
7161 +                    else if (t.casPending(c, c - 1))
7162 +                        break;
7163 +                }
7164 +            } catch (Throwable ex) {
7165 +                return tryCompleteComputation(ex);
7166 +            }
7167 +            MapReduceMappingsToIntTask<K,V> s = rights;
7168 +            if (s != null && !inForkJoinPool()) {
7169 +                do  {
7170 +                    if (s.tryUnfork())
7171 +                        s.exec();
7172 +                } while ((s = s.nextRight) != null);
7173 +            }
7174 +            return false;
7175 +        }
7176 +        public final Integer getRawResult() { return result; }
7177      }
7178  
7179      // Unsafe mechanics
7180      private static final sun.misc.Unsafe UNSAFE;
7181      private static final long counterOffset;
7182 <    private static final long resizingOffset;
7182 >    private static final long sizeCtlOffset;
7183      private static final long ABASE;
7184      private static final int ASHIFT;
7185  
# Line 1584 | Line 7190 | public class ConcurrentHashMapV8<K, V>
7190              Class<?> k = ConcurrentHashMapV8.class;
7191              counterOffset = UNSAFE.objectFieldOffset
7192                  (k.getDeclaredField("counter"));
7193 <            resizingOffset = UNSAFE.objectFieldOffset
7194 <                (k.getDeclaredField("resizing"));
7193 >            sizeCtlOffset = UNSAFE.objectFieldOffset
7194 >                (k.getDeclaredField("sizeCtl"));
7195              Class<?> sc = Node[].class;
7196              ABASE = UNSAFE.arrayBaseOffset(sc);
7197              ss = UNSAFE.arrayIndexScale(sc);
# Line 1624 | Line 7230 | public class ConcurrentHashMapV8<K, V>
7230              }
7231          }
7232      }
1627
7233   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines