ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.78 by jsr166, Sun Nov 18 18:03:10 2012 UTC vs.
Revision 1.102 by dl, Wed Jun 19 14:55:40 2013 UTC

# Line 6 | Line 6
6  
7   package jsr166e;
8  
9 < import java.util.Comparator;
9 > import jsr166e.ForkJoinPool;
10 >
11 > import java.io.ObjectStreamField;
12 > import java.io.Serializable;
13 > import java.lang.reflect.ParameterizedType;
14 > import java.lang.reflect.Type;
15   import java.util.Arrays;
11 import java.util.Map;
12 import java.util.Set;
16   import java.util.Collection;
17 < import java.util.AbstractMap;
18 < import java.util.AbstractSet;
19 < import java.util.AbstractCollection;
17 < import java.util.Hashtable;
17 > import java.util.Comparator;
18 > import java.util.ConcurrentModificationException;
19 > import java.util.Enumeration;
20   import java.util.HashMap;
21 + import java.util.Hashtable;
22   import java.util.Iterator;
23 < import java.util.Enumeration;
21 < import java.util.ConcurrentModificationException;
23 > import java.util.Map;
24   import java.util.NoSuchElementException;
25 + import java.util.Set;
26   import java.util.concurrent.ConcurrentMap;
24 import java.util.concurrent.ThreadLocalRandom;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
27   import java.util.concurrent.atomic.AtomicReference;
28 <
29 < import java.io.Serializable;
28 > import java.util.concurrent.atomic.AtomicInteger;
29 > import java.util.concurrent.locks.LockSupport;
30 > import java.util.concurrent.locks.ReentrantLock;
31  
32   /**
33   * A hash table supporting full concurrency of retrievals and
# Line 80 | Line 81 | import java.io.Serializable;
81   * expected {@code concurrencyLevel} as an additional hint for
82   * internal sizing.  Note that using many keys with exactly the same
83   * {@code hashCode()} is a sure way to slow down performance of any
84 < * hash table.
84 > * hash table. To ameliorate impact, when keys are {@link Comparable},
85 > * this class may use comparison order among keys to help break ties.
86   *
87   * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
88   * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
# Line 88 | Line 90 | import java.io.Serializable;
90   * mapped values are (perhaps transiently) not used or all take the
91   * same mapping value.
92   *
91 * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
92 * form of histogram or multiset) by using {@link LongAdder} values
93 * and initializing via {@link #computeIfAbsent}. For example, to add
94 * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
95 * can use {@code freqs.computeIfAbsent(k -> new
96 * LongAdder()).increment();}
97 *
93   * <p>This class and its views and iterators implement all of the
94   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
95   * interfaces.
# Line 102 | Line 97 | import java.io.Serializable;
97   * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
98   * does <em>not</em> allow {@code null} to be used as a key or value.
99   *
100 < * <p>ConcurrentHashMapV8s support parallel operations using the {@link
101 < * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
102 < * are available in class {@link ForkJoinTasks}). These operations are
103 < * designed to be safely, and often sensibly, applied even with maps
104 < * that are being concurrently updated by other threads; for example,
105 < * when computing a snapshot summary of the values in a shared
106 < * registry.  There are three kinds of operation, each with four
107 < * forms, accepting functions with Keys, Values, Entries, and (Key,
108 < * Value) arguments and/or return values. (The first three forms are
109 < * also available via the {@link #keySet()}, {@link #values()} and
110 < * {@link #entrySet()} views). Because the elements of a
111 < * ConcurrentHashMapV8 are not ordered in any particular way, and may be
112 < * processed in different orders in different parallel executions, the
113 < * correctness of supplied functions should not depend on any
114 < * ordering, or on any other objects or values that may transiently
120 < * change while computation is in progress; and except for forEach
121 < * actions, should ideally be side-effect-free.
100 > * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
101 > * operations that are designed
102 > * to be safely, and often sensibly, applied even with maps that are
103 > * being concurrently updated by other threads; for example, when
104 > * computing a snapshot summary of the values in a shared registry.
105 > * There are three kinds of operation, each with four forms, accepting
106 > * functions with Keys, Values, Entries, and (Key, Value) arguments
107 > * and/or return values. Because the elements of a ConcurrentHashMapV8
108 > * are not ordered in any particular way, and may be processed in
109 > * different orders in different parallel executions, the correctness
110 > * of supplied functions should not depend on any ordering, or on any
111 > * other objects or values that may transiently change while
112 > * computation is in progress; and except for forEach actions, should
113 > * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
114 > * objects do not support method {@code setValue}.
115   *
116   * <ul>
117   * <li> forEach: Perform a given action on each element.
# Line 145 | Line 138 | import java.io.Serializable;
138   * <li> Reductions to scalar doubles, longs, and ints, using a
139   * given basis value.</li>
140   *
148 * </li>
141   * </ul>
142 + * </li>
143   * </ul>
144   *
145 + * <p>These bulk operations accept a {@code parallelismThreshold}
146 + * argument. Methods proceed sequentially if the current map size is
147 + * estimated to be less than the given threshold. Using a value of
148 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
149 + * of {@code 1} results in maximal parallelism by partitioning into
150 + * enough subtasks to fully utilize the {@link
151 + * ForkJoinPool#commonPool()} that is used for all parallel
152 + * computations. Normally, you would initially choose one of these
153 + * extreme values, and then measure performance of using in-between
154 + * values that trade off overhead versus throughput.
155 + *
156   * <p>The concurrency properties of bulk operations follow
157   * from those of ConcurrentHashMapV8: Any non-null result returned
158   * from {@code get(key)} and related access methods bears a
# Line 191 | Line 195 | import java.io.Serializable;
195   * exceptions, or would have done so if the first exception had
196   * not occurred.
197   *
198 < * <p>Parallel speedups for bulk operations compared to sequential
199 < * processing are common but not guaranteed.  Operations involving
200 < * brief functions on small maps may execute more slowly than
201 < * sequential loops if the underlying work to parallelize the
202 < * computation is more expensive than the computation itself.
203 < * Similarly, parallelization may not lead to much actual parallelism
204 < * if all processors are busy performing unrelated tasks.
198 > * <p>Speedups for parallel compared to sequential forms are common
199 > * but not guaranteed.  Parallel operations involving brief functions
200 > * on small maps may execute more slowly than sequential forms if the
201 > * underlying work to parallelize the computation is more expensive
202 > * than the computation itself.  Similarly, parallelization may not
203 > * lead to much actual parallelism if all processors are busy
204 > * performing unrelated tasks.
205   *
206   * <p>All arguments to all task methods must be non-null.
207   *
# Line 214 | Line 218 | import java.io.Serializable;
218   * @param <K> the type of keys maintained by this map
219   * @param <V> the type of mapped values
220   */
221 < public class ConcurrentHashMapV8<K, V>
222 <    implements ConcurrentMap<K, V>, Serializable {
221 > public class ConcurrentHashMapV8<K,V>
222 >    implements ConcurrentMap<K,V>, Serializable {
223      private static final long serialVersionUID = 7249069246763182397L;
224  
225      /**
226 <     * A partitionable iterator. A Spliterator can be traversed
227 <     * directly, but can also be partitioned (before traversal) by
228 <     * creating another Spliterator that covers a non-overlapping
229 <     * portion of the elements, and so may be amenable to parallel
230 <     * execution.
231 <     *
232 <     * <p>This interface exports a subset of expected JDK8
233 <     * functionality.
234 <     *
235 <     * <p>Sample usage: Here is one (of the several) ways to compute
236 <     * the sum of the values held in a map using the ForkJoin
237 <     * framework. As illustrated here, Spliterators are well suited to
238 <     * designs in which a task repeatedly splits off half its work
239 <     * into forked subtasks until small enough to process directly,
240 <     * and then joins these subtasks. Variants of this style can also
241 <     * be used in completion-based designs.
242 <     *
243 <     * <pre>
244 <     * {@code ConcurrentHashMapV8<String, Long> m = ...
245 <     * // split as if have 8 * parallelism, for load balance
246 <     * int n = m.size();
247 <     * int p = aForkJoinPool.getParallelism() * 8;
244 <     * int split = (n < p)? n : p;
245 <     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
246 <     * // ...
247 <     * static class SumValues extends RecursiveTask<Long> {
248 <     *   final Spliterator<Long> s;
249 <     *   final int split;             // split while > 1
250 <     *   final SumValues nextJoin;    // records forked subtasks to join
251 <     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
252 <     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
253 <     *   }
254 <     *   public Long compute() {
255 <     *     long sum = 0;
256 <     *     SumValues subtasks = null; // fork subtasks
257 <     *     for (int s = split >>> 1; s > 0; s >>>= 1)
258 <     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
259 <     *     while (s.hasNext())        // directly process remaining elements
260 <     *       sum += s.next();
261 <     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
262 <     *       sum += t.join();         // collect subtask results
263 <     *     return sum;
264 <     *   }
265 <     * }
266 <     * }</pre>
267 <     */
268 <    public static interface Spliterator<T> extends Iterator<T> {
269 <        /**
270 <         * Returns a Spliterator covering approximately half of the
271 <         * elements, guaranteed not to overlap with those subsequently
272 <         * returned by this Spliterator.  After invoking this method,
273 <         * the current Spliterator will <em>not</em> produce any of
274 <         * the elements of the returned Spliterator, but the two
275 <         * Spliterators together will produce all of the elements that
276 <         * would have been produced by this Spliterator had this
277 <         * method not been called. The exact number of elements
278 <         * produced by the returned Spliterator is not guaranteed, and
279 <         * may be zero (i.e., with {@code hasNext()} reporting {@code
280 <         * false}) if this Spliterator cannot be further split.
281 <         *
282 <         * @return a Spliterator covering approximately half of the
283 <         * elements
284 <         * @throws IllegalStateException if this Spliterator has
285 <         * already commenced traversing elements
286 <         */
287 <        Spliterator<T> split();
226 >     * An object for traversing and partitioning elements of a source.
227 >     * This interface provides a subset of the functionality of JDK8
228 >     * java.util.Spliterator.
229 >     */
230 >    public static interface ConcurrentHashMapSpliterator<T> {
231 >        /**
232 >         * If possible, returns a new spliterator covering
233 >         * approximately one half of the elements, which will not be
234 >         * covered by this spliterator. Returns null if cannot be
235 >         * split.
236 >         */
237 >        ConcurrentHashMapSpliterator<T> trySplit();
238 >        /**
239 >         * Returns an estimate of the number of elements covered by
240 >         * this Spliterator.
241 >         */
242 >        long estimateSize();
243 >
244 >        /** Applies the action to each untraversed element */
245 >        void forEachRemaining(Action<? super T> action);
246 >        /** If an element remains, applies the action and returns true. */
247 >        boolean tryAdvance(Action<? super T> action);
248      }
249  
250 +    // Sams
251 +    /** Interface describing a void action of one argument */
252 +    public interface Action<A> { void apply(A a); }
253 +    /** Interface describing a void action of two arguments */
254 +    public interface BiAction<A,B> { void apply(A a, B b); }
255 +    /** Interface describing a function of one argument */
256 +    public interface Fun<A,T> { T apply(A a); }
257 +    /** Interface describing a function of two arguments */
258 +    public interface BiFun<A,B,T> { T apply(A a, B b); }
259 +    /** Interface describing a function mapping its argument to a double */
260 +    public interface ObjectToDouble<A> { double apply(A a); }
261 +    /** Interface describing a function mapping its argument to a long */
262 +    public interface ObjectToLong<A> { long apply(A a); }
263 +    /** Interface describing a function mapping its argument to an int */
264 +    public interface ObjectToInt<A> {int apply(A a); }
265 +    /** Interface describing a function mapping two arguments to a double */
266 +    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
267 +    /** Interface describing a function mapping two arguments to a long */
268 +    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
269 +    /** Interface describing a function mapping two arguments to an int */
270 +    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
271 +    /** Interface describing a function mapping two doubles to a double */
272 +    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
273 +    /** Interface describing a function mapping two longs to a long */
274 +    public interface LongByLongToLong { long apply(long a, long b); }
275 +    /** Interface describing a function mapping two ints to an int */
276 +    public interface IntByIntToInt { int apply(int a, int b); }
277  
278      /*
279       * Overview:
# Line 298 | Line 285 | public class ConcurrentHashMapV8<K, V>
285       * the same or better than java.util.HashMap, and to support high
286       * initial insertion rates on an empty table by many threads.
287       *
288 <     * Each key-value mapping is held in a Node.  Because Node fields
289 <     * can contain special values, they are defined using plain Object
290 <     * types. Similarly in turn, all internal methods that use them
291 <     * work off Object types. And similarly, so do the internal
292 <     * methods of auxiliary iterator and view classes.  All public
293 <     * generic typed methods relay in/out of these internal methods,
294 <     * supplying null-checks and casts as needed. This also allows
295 <     * many of the public methods to be factored into a smaller number
296 <     * of internal methods (although sadly not so for the five
297 <     * variants of put-related operations). The validation-based
298 <     * approach explained below leads to a lot of code sprawl because
299 <     * retry-control precludes factoring into smaller methods.
288 >     * This map usually acts as a binned (bucketed) hash table.  Each
289 >     * key-value mapping is held in a Node.  Most nodes are instances
290 >     * of the basic Node class with hash, key, value, and next
291 >     * fields. However, various subclasses exist: TreeNodes are
292 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
293 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
294 >     * of bins during resizing. ReservationNodes are used as
295 >     * placeholders while establishing values in computeIfAbsent and
296 >     * related methods.  The types TreeBin, ForwardingNode, and
297 >     * ReservationNode do not hold normal user keys, values, or
298 >     * hashes, and are readily distinguishable during search etc
299 >     * because they have negative hash fields and null key and value
300 >     * fields. (These special nodes are either uncommon or transient,
301 >     * so the impact of carrying around some unused fields is
302 >     * insignficant.)
303       *
304       * The table is lazily initialized to a power-of-two size upon the
305       * first insertion.  Each bin in the table normally contains a
# Line 317 | Line 307 | public class ConcurrentHashMapV8<K, V>
307       * Table accesses require volatile/atomic reads, writes, and
308       * CASes.  Because there is no other way to arrange this without
309       * adding further indirections, we use intrinsics
310 <     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
311 <     * are always accurately traversable under volatile reads, so long
312 <     * as lookups check hash code and non-nullness of value before
313 <     * checking key equality.
314 <     *
315 <     * We use the top two bits of Node hash fields for control
326 <     * purposes -- they are available anyway because of addressing
327 <     * constraints.  As explained further below, these top bits are
328 <     * used as follows:
329 <     *  00 - Normal
330 <     *  01 - Locked
331 <     *  11 - Locked and may have a thread waiting for lock
332 <     *  10 - Node is a forwarding node
333 <     *
334 <     * The lower 30 bits of each Node's hash field contain a
335 <     * transformation of the key's hash code, except for forwarding
336 <     * nodes, for which the lower bits are zero (and so always have
337 <     * hash field == MOVED).
310 >     * (sun.misc.Unsafe) operations.
311 >     *
312 >     * We use the top (sign) bit of Node hash fields for control
313 >     * purposes -- it is available anyway because of addressing
314 >     * constraints.  Nodes with negative hash fields are specially
315 >     * handled or ignored in map methods.
316       *
317       * Insertion (via put or its variants) of the first node in an
318       * empty bin is performed by just CASing it to the bin.  This is
# Line 343 | Line 321 | public class ConcurrentHashMapV8<K, V>
321       * delete, and replace) require locks.  We do not want to waste
322       * the space required to associate a distinct lock object with
323       * each bin, so instead use the first node of a bin list itself as
324 <     * a lock. Blocking support for these locks relies on the builtin
325 <     * "synchronized" monitors.  However, we also need a tryLock
348 <     * construction, so we overlay these by using bits of the Node
349 <     * hash field for lock control (see above), and so normally use
350 <     * builtin monitors only for blocking and signalling using
351 <     * wait/notifyAll constructions. See Node.tryAwaitLock.
324 >     * a lock. Locking support for these locks relies on builtin
325 >     * "synchronized" monitors.
326       *
327       * Using the first node of a list as a lock does not by itself
328       * suffice though: When a node is locked, any update must first
329       * validate that it is still the first node after locking it, and
330       * retry if not. Because new nodes are always appended to lists,
331       * once a node is first in a bin, it remains first until deleted
332 <     * or the bin becomes invalidated (upon resizing).  However,
359 <     * operations that only conditionally update may inspect nodes
360 <     * until the point of update. This is a converse of sorts to the
361 <     * lazy locking technique described by Herlihy & Shavit.
332 >     * or the bin becomes invalidated (upon resizing).
333       *
334       * The main disadvantage of per-bin locks is that other update
335       * operations on other nodes in a bin list protected by the same
# Line 391 | Line 362 | public class ConcurrentHashMapV8<K, V>
362       * sometimes deviate significantly from uniform randomness.  This
363       * includes the case when N > (1<<30), so some keys MUST collide.
364       * Similarly for dumb or hostile usages in which multiple keys are
365 <     * designed to have identical hash codes. Also, although we guard
366 <     * against the worst effects of this (see method spread), sets of
367 <     * hashes may differ only in bits that do not impact their bin
368 <     * index for a given power-of-two mask.  So we use a secondary
369 <     * strategy that applies when the number of nodes in a bin exceeds
370 <     * a threshold, and at least one of the keys implements
400 <     * Comparable.  These TreeBins use a balanced tree to hold nodes
401 <     * (a specialized form of red-black trees), bounding search time
402 <     * to O(log N).  Each search step in a TreeBin is around twice as
365 >     * designed to have identical hash codes or ones that differs only
366 >     * in masked-out high bits. So we use a secondary strategy that
367 >     * applies when the number of nodes in a bin exceeds a
368 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
369 >     * specialized form of red-black trees), bounding search time to
370 >     * O(log N).  Each search step in a TreeBin is at least twice as
371       * slow as in a regular list, but given that N cannot exceed
372       * (1<<64) (before running out of addresses) this bounds search
373       * steps, lock hold times, etc, to reasonable constants (roughly
# Line 410 | Line 378 | public class ConcurrentHashMapV8<K, V>
378       * iterators in the same way.
379       *
380       * The table is resized when occupancy exceeds a percentage
381 <     * threshold (nominally, 0.75, but see below).  Only a single
382 <     * thread performs the resize (using field "sizeCtl", to arrange
383 <     * exclusion), but the table otherwise remains usable for reads
384 <     * and updates. Resizing proceeds by transferring bins, one by
385 <     * one, from the table to the next table.  Because we are using
386 <     * power-of-two expansion, the elements from each bin must either
387 <     * stay at same index, or move with a power of two offset. We
388 <     * eliminate unnecessary node creation by catching cases where old
389 <     * nodes can be reused because their next fields won't change.  On
390 <     * average, only about one-sixth of them need cloning when a table
391 <     * doubles. The nodes they replace will be garbage collectable as
392 <     * soon as they are no longer referenced by any reader thread that
393 <     * may be in the midst of concurrently traversing table.  Upon
394 <     * transfer, the old table bin contains only a special forwarding
395 <     * node (with hash field "MOVED") that contains the next table as
396 <     * its key. On encountering a forwarding node, access and update
397 <     * operations restart, using the new table.
398 <     *
399 <     * Each bin transfer requires its bin lock. However, unlike other
400 <     * cases, a transfer can skip a bin if it fails to acquire its
401 <     * lock, and revisit it later (unless it is a TreeBin). Method
402 <     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
403 <     * have been skipped because of failure to acquire a lock, and
404 <     * blocks only if none are available (i.e., only very rarely).
405 <     * The transfer operation must also ensure that all accessible
406 <     * bins in both the old and new table are usable by any traversal.
407 <     * When there are no lock acquisition failures, this is arranged
408 <     * simply by proceeding from the last bin (table.length - 1) up
409 <     * towards the first.  Upon seeing a forwarding node, traversals
410 <     * (see class Iter) arrange to move to the new table
411 <     * without revisiting nodes.  However, when any node is skipped
412 <     * during a transfer, all earlier table bins may have become
413 <     * visible, so are initialized with a reverse-forwarding node back
414 <     * to the old table until the new ones are established. (This
415 <     * sometimes requires transiently locking a forwarding node, which
416 <     * is possible under the above encoding.) These more expensive
417 <     * mechanics trigger only when necessary.
381 >     * threshold (nominally, 0.75, but see below).  Any thread
382 >     * noticing an overfull bin may assist in resizing after the
383 >     * initiating thread allocates and sets up the replacement
384 >     * array. However, rather than stalling, these other threads may
385 >     * proceed with insertions etc.  The use of TreeBins shields us
386 >     * from the worst case effects of overfilling while resizes are in
387 >     * progress.  Resizing proceeds by transferring bins, one by one,
388 >     * from the table to the next table. To enable concurrency, the
389 >     * next table must be (incrementally) prefilled with place-holders
390 >     * serving as reverse forwarders to the old table.  Because we are
391 >     * using power-of-two expansion, the elements from each bin must
392 >     * either stay at same index, or move with a power of two
393 >     * offset. We eliminate unnecessary node creation by catching
394 >     * cases where old nodes can be reused because their next fields
395 >     * won't change.  On average, only about one-sixth of them need
396 >     * cloning when a table doubles. The nodes they replace will be
397 >     * garbage collectable as soon as they are no longer referenced by
398 >     * any reader thread that may be in the midst of concurrently
399 >     * traversing table.  Upon transfer, the old table bin contains
400 >     * only a special forwarding node (with hash field "MOVED") that
401 >     * contains the next table as its key. On encountering a
402 >     * forwarding node, access and update operations restart, using
403 >     * the new table.
404 >     *
405 >     * Each bin transfer requires its bin lock, which can stall
406 >     * waiting for locks while resizing. However, because other
407 >     * threads can join in and help resize rather than contend for
408 >     * locks, average aggregate waits become shorter as resizing
409 >     * progresses.  The transfer operation must also ensure that all
410 >     * accessible bins in both the old and new table are usable by any
411 >     * traversal.  This is arranged by proceeding from the last bin
412 >     * (table.length - 1) up towards the first.  Upon seeing a
413 >     * forwarding node, traversals (see class Traverser) arrange to
414 >     * move to the new table without revisiting nodes.  However, to
415 >     * ensure that no intervening nodes are skipped, bin splitting can
416 >     * only begin after the associated reverse-forwarders are in
417 >     * place.
418       *
419       * The traversal scheme also applies to partial traversals of
420       * ranges of bins (via an alternate Traverser constructor)
# Line 461 | Line 429 | public class ConcurrentHashMapV8<K, V>
429       * These cases attempt to override the initial capacity settings,
430       * but harmlessly fail to take effect in cases of races.
431       *
432 <     * The element count is maintained using a LongAdder, which avoids
433 <     * contention on updates but can encounter cache thrashing if read
434 <     * too frequently during concurrent access. To avoid reading so
435 <     * often, resizing is attempted either when a bin lock is
436 <     * contended, or upon adding to a bin already holding two or more
437 <     * nodes (checked before adding in the xIfAbsent methods, after
438 <     * adding in others). Under uniform hash distributions, the
439 <     * probability of this occurring at threshold is around 13%,
440 <     * meaning that only about 1 in 8 puts check threshold (and after
441 <     * resizing, many fewer do so). But this approximation has high
442 <     * variance for small table sizes, so we check on any collision
443 <     * for sizes <= 64. The bulk putAll operation further reduces
444 <     * contention by only committing count updates upon these size
445 <     * checks.
432 >     * The element count is maintained using a specialization of
433 >     * LongAdder. We need to incorporate a specialization rather than
434 >     * just use a LongAdder in order to access implicit
435 >     * contention-sensing that leads to creation of multiple
436 >     * CounterCells.  The counter mechanics avoid contention on
437 >     * updates but can encounter cache thrashing if read too
438 >     * frequently during concurrent access. To avoid reading so often,
439 >     * resizing under contention is attempted only upon adding to a
440 >     * bin already holding two or more nodes. Under uniform hash
441 >     * distributions, the probability of this occurring at threshold
442 >     * is around 13%, meaning that only about 1 in 8 puts check
443 >     * threshold (and after resizing, many fewer do so).
444 >     *
445 >     * TreeBins use a special form of comparison for search and
446 >     * related operations (which is the main reason we cannot use
447 >     * existing collections such as TreeMaps). TreeBins contain
448 >     * Comparable elements, but may contain others, as well as
449 >     * elements that are Comparable but not necessarily Comparable
450 >     * for the same T, so we cannot invoke compareTo among them. To
451 >     * handle this, the tree is ordered primarily by hash value, then
452 >     * by Comparable.compareTo order if applicable.  On lookup at a
453 >     * node, if elements are not comparable or compare as 0 then both
454 >     * left and right children may need to be searched in the case of
455 >     * tied hash values. (This corresponds to the full list search
456 >     * that would be necessary if all elements were non-Comparable and
457 >     * had tied hashes.)  The red-black balancing code is updated from
458 >     * pre-jdk-collections
459 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
460 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
461 >     * Algorithms" (CLR).
462 >     *
463 >     * TreeBins also require an additional locking mechanism.  While
464 >     * list traversal is always possible by readers even during
465 >     * updates, tree traversal is not, mainly beause of tree-rotations
466 >     * that may change the root node and/or its linkages.  TreeBins
467 >     * include a simple read-write lock mechanism parasitic on the
468 >     * main bin-synchronization strategy: Structural adjustments
469 >     * associated with an insertion or removal are already bin-locked
470 >     * (and so cannot conflict with other writers) but must wait for
471 >     * ongoing readers to finish. Since there can be only one such
472 >     * waiter, we use a simple scheme using a single "waiter" field to
473 >     * block writers.  However, readers need never block.  If the root
474 >     * lock is held, they proceed along the slow traversal path (via
475 >     * next-pointers) until the lock becomes available or the list is
476 >     * exhausted, whichever comes first. These cases are not fast, but
477 >     * maximize aggregate expected throughput.
478       *
479       * Maintaining API and serialization compatibility with previous
480       * versions of this class introduces several oddities. Mainly: We
# Line 484 | Line 484 | public class ConcurrentHashMapV8<K, V>
484       * time that we can guarantee to honor it.) We also declare an
485       * unused "Segment" class that is instantiated in minimal form
486       * only when serializing.
487 +     *
488 +     * This file is organized to make things a little easier to follow
489 +     * while reading than they might otherwise: First the main static
490 +     * declarations and utilities, then fields, then main public
491 +     * methods (with a few factorings of multiple public methods into
492 +     * internal ones), then sizing methods, trees, traversers, and
493 +     * bulk operations.
494       */
495  
496      /* ---------------- Constants -------------- */
# Line 525 | Line 532 | public class ConcurrentHashMapV8<K, V>
532      private static final float LOAD_FACTOR = 0.75f;
533  
534      /**
528     * The buffer size for skipped bins during transfers. The
529     * value is arbitrary but should be large enough to avoid
530     * most locking stalls during resizes.
531     */
532    private static final int TRANSFER_BUFFER_SIZE = 32;
533
534    /**
535       * The bin count threshold for using a tree rather than list for a
536 <     * bin.  The value reflects the approximate break-even point for
537 <     * using tree-based operations.
536 >     * bin.  Bins are converted to trees when adding an element to a
537 >     * bin with at least this many nodes. The value must be greater
538 >     * than 2, and should be at least 8 to mesh with assumptions in
539 >     * tree removal about conversion back to plain bins upon
540 >     * shrinkage.
541       */
542 <    private static final int TREE_THRESHOLD = 8;
540 <
541 <    /*
542 <     * Encodings for special uses of Node hash fields. See above for
543 <     * explanation.
544 <     */
545 <    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
546 <    static final int LOCKED    = 0x40000000; // set/tested only as a bit
547 <    static final int WAITING   = 0xc0000000; // both bits set/tested together
548 <    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
549 <
550 <    /* ---------------- Fields -------------- */
542 >    static final int TREEIFY_THRESHOLD = 8;
543  
544      /**
545 <     * The array of bins. Lazily initialized upon first insertion.
546 <     * Size is always a power of two. Accessed directly by iterators.
545 >     * The bin count threshold for untreeifying a (split) bin during a
546 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
547 >     * most 6 to mesh with shrinkage detection under removal.
548       */
549 <    transient volatile Node[] table;
549 >    static final int UNTREEIFY_THRESHOLD = 6;
550  
551      /**
552 <     * The counter maintaining number of elements.
552 >     * The smallest table capacity for which bins may be treeified.
553 >     * (Otherwise the table is resized if too many nodes in a bin.)
554 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
555 >     * conflicts between resizing and treeification thresholds.
556       */
557 <    private transient final LongAdder counter;
557 >    static final int MIN_TREEIFY_CAPACITY = 64;
558  
559      /**
560 <     * Table initialization and resizing control.  When negative, the
561 <     * table is being initialized or resized. Otherwise, when table is
562 <     * null, holds the initial table size to use upon creation, or 0
563 <     * for default. After initialization, holds the next element count
564 <     * value upon which to resize the table.
560 >     * Minimum number of rebinnings per transfer step. Ranges are
561 >     * subdivided to allow multiple resizer threads.  This value
562 >     * serves as a lower bound to avoid resizers encountering
563 >     * excessive memory contention.  The value should be at least
564 >     * DEFAULT_CAPACITY.
565       */
566 <    private transient volatile int sizeCtl;
571 <
572 <    // views
573 <    private transient KeySetView<K,V> keySet;
574 <    private transient ValuesView<K,V> values;
575 <    private transient EntrySetView<K,V> entrySet;
576 <
577 <    /** For serialization compatibility. Null unless serialized; see below */
578 <    private Segment<K,V>[] segments;
579 <
580 <    /* ---------------- Table element access -------------- */
566 >    private static final int MIN_TRANSFER_STRIDE = 16;
567  
568      /*
569 <     * Volatile access methods are used for table elements as well as
584 <     * elements of in-progress next table while resizing.  Uses are
585 <     * null checked by callers, and implicitly bounds-checked, relying
586 <     * on the invariants that tab arrays have non-zero size, and all
587 <     * indices are masked with (tab.length - 1) which is never
588 <     * negative and always less than length. Note that, to be correct
589 <     * wrt arbitrary concurrency errors by users, bounds checks must
590 <     * operate on local variables, which accounts for some odd-looking
591 <     * inline assignments below.
569 >     * Encodings for Node hash fields. See above for explanation.
570       */
571 <
572 <    static final Node tabAt(Node[] tab, int i) { // used by Iter
573 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
574 <    }
575 <
576 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
577 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
578 <    }
579 <
580 <    private static final void setTabAt(Node[] tab, int i, Node v) {
581 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
582 <    }
571 >    static final int MOVED     = 0x8fffffff; // (-1) hash for forwarding nodes
572 >    static final int TREEBIN   = 0x80000000; // hash for heads of treea
573 >    static final int RESERVED  = 0x80000001; // hash for transient reservations
574 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
575 >
576 >    /** Number of CPUS, to place bounds on some sizings */
577 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
578 >
579 >    /** For serialization compatibility. */
580 >    private static final ObjectStreamField[] serialPersistentFields = {
581 >        new ObjectStreamField("segments", Segment[].class),
582 >        new ObjectStreamField("segmentMask", Integer.TYPE),
583 >        new ObjectStreamField("segmentShift", Integer.TYPE)
584 >    };
585  
586      /* ---------------- Nodes -------------- */
587  
588      /**
589 <     * Key-value entry. Note that this is never exported out as a
590 <     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
591 <     * field of MOVED are special, and do not contain user keys or
592 <     * values.  Otherwise, keys are never null, and null val fields
593 <     * indicate that a node is in the process of being deleted or
594 <     * created. For purposes of read-only access, a key may be read
595 <     * before a val, but can only be used after checking val to be
596 <     * non-null.
597 <     */
598 <    static class Node {
599 <        volatile int hash;
600 <        final Object key;
621 <        volatile Object val;
622 <        volatile Node next;
589 >     * Key-value entry.  This class is never exported out as a
590 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
591 >     * MapEntry below), but can be used for read-only traversals used
592 >     * in bulk tasks.  Subclasses of Node with a negativehash field
593 >     * are special, and contain null keys and values (but are never
594 >     * exported).  Otherwise, keys and vals are never null.
595 >     */
596 >    static class Node<K,V> implements Map.Entry<K,V> {
597 >        final int hash;
598 >        final K key;
599 >        volatile V val;
600 >        Node<K,V> next;
601  
602 <        Node(int hash, Object key, Object val, Node next) {
602 >        Node(int hash, K key, V val, Node<K,V> next) {
603              this.hash = hash;
604              this.key = key;
605              this.val = val;
606              this.next = next;
607          }
608  
609 <        /** CompareAndSet the hash field */
610 <        final boolean casHash(int cmp, int val) {
611 <            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
612 <        }
613 <
614 <        /** The number of spins before blocking for a lock */
637 <        static final int MAX_SPINS =
638 <            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
639 <
640 <        /**
641 <         * Spins a while if LOCKED bit set and this node is the first
642 <         * of its bin, and then sets WAITING bits on hash field and
643 <         * blocks (once) if they are still set.  It is OK for this
644 <         * method to return even if lock is not available upon exit,
645 <         * which enables these simple single-wait mechanics.
646 <         *
647 <         * The corresponding signalling operation is performed within
648 <         * callers: Upon detecting that WAITING has been set when
649 <         * unlocking lock (via a failed CAS from non-waiting LOCKED
650 <         * state), unlockers acquire the sync lock and perform a
651 <         * notifyAll.
652 <         *
653 <         * The initial sanity check on tab and bounds is not currently
654 <         * necessary in the only usages of this method, but enables
655 <         * use in other future contexts.
656 <         */
657 <        final void tryAwaitLock(Node[] tab, int i) {
658 <            if (tab != null && i >= 0 && i < tab.length) { // sanity check
659 <                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
660 <                int spins = MAX_SPINS, h;
661 <                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
662 <                    if (spins >= 0) {
663 <                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
664 <                        if (r >= 0 && --spins == 0)
665 <                            Thread.yield();  // yield before block
666 <                    }
667 <                    else if (casHash(h, h | WAITING)) {
668 <                        synchronized (this) {
669 <                            if (tabAt(tab, i) == this &&
670 <                                (hash & WAITING) == WAITING) {
671 <                                try {
672 <                                    wait();
673 <                                } catch (InterruptedException ie) {
674 <                                    Thread.currentThread().interrupt();
675 <                                }
676 <                            }
677 <                            else
678 <                                notifyAll(); // possibly won race vs signaller
679 <                        }
680 <                        break;
681 <                    }
682 <                }
683 <            }
684 <        }
685 <
686 <        // Unsafe mechanics for casHash
687 <        private static final sun.misc.Unsafe UNSAFE;
688 <        private static final long hashOffset;
689 <
690 <        static {
691 <            try {
692 <                UNSAFE = getUnsafe();
693 <                Class<?> k = Node.class;
694 <                hashOffset = UNSAFE.objectFieldOffset
695 <                    (k.getDeclaredField("hash"));
696 <            } catch (Exception e) {
697 <                throw new Error(e);
698 <            }
699 <        }
700 <    }
701 <
702 <    /* ---------------- TreeBins -------------- */
703 <
704 <    /**
705 <     * Nodes for use in TreeBins
706 <     */
707 <    static final class TreeNode extends Node {
708 <        TreeNode parent;  // red-black tree links
709 <        TreeNode left;
710 <        TreeNode right;
711 <        TreeNode prev;    // needed to unlink next upon deletion
712 <        boolean red;
713 <
714 <        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
715 <            super(hash, key, val, next);
716 <            this.parent = parent;
717 <        }
718 <    }
719 <
720 <    /**
721 <     * A specialized form of red-black tree for use in bins
722 <     * whose size exceeds a threshold.
723 <     *
724 <     * TreeBins use a special form of comparison for search and
725 <     * related operations (which is the main reason we cannot use
726 <     * existing collections such as TreeMaps). TreeBins contain
727 <     * Comparable elements, but may contain others, as well as
728 <     * elements that are Comparable but not necessarily Comparable<T>
729 <     * for the same T, so we cannot invoke compareTo among them. To
730 <     * handle this, the tree is ordered primarily by hash value, then
731 <     * by getClass().getName() order, and then by Comparator order
732 <     * among elements of the same class.  On lookup at a node, if
733 <     * elements are not comparable or compare as 0, both left and
734 <     * right children may need to be searched in the case of tied hash
735 <     * values. (This corresponds to the full list search that would be
736 <     * necessary if all elements were non-Comparable and had tied
737 <     * hashes.)  The red-black balancing code is updated from
738 <     * pre-jdk-collections
739 <     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
740 <     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
741 <     * Algorithms" (CLR).
742 <     *
743 <     * TreeBins also maintain a separate locking discipline than
744 <     * regular bins. Because they are forwarded via special MOVED
745 <     * nodes at bin heads (which can never change once established),
746 <     * we cannot use those nodes as locks. Instead, TreeBin
747 <     * extends AbstractQueuedSynchronizer to support a simple form of
748 <     * read-write lock. For update operations and table validation,
749 <     * the exclusive form of lock behaves in the same way as bin-head
750 <     * locks. However, lookups use shared read-lock mechanics to allow
751 <     * multiple readers in the absence of writers.  Additionally,
752 <     * these lookups do not ever block: While the lock is not
753 <     * available, they proceed along the slow traversal path (via
754 <     * next-pointers) until the lock becomes available or the list is
755 <     * exhausted, whichever comes first. (These cases are not fast,
756 <     * but maximize aggregate expected throughput.)  The AQS mechanics
757 <     * for doing this are straightforward.  The lock state is held as
758 <     * AQS getState().  Read counts are negative; the write count (1)
759 <     * is positive.  There are no signalling preferences among readers
760 <     * and writers. Since we don't need to export full Lock API, we
761 <     * just override the minimal AQS methods and use them directly.
762 <     */
763 <    static final class TreeBin extends AbstractQueuedSynchronizer {
764 <        private static final long serialVersionUID = 2249069246763182397L;
765 <        transient TreeNode root;  // root of tree
766 <        transient TreeNode first; // head of next-pointer list
767 <
768 <        /* AQS overrides */
769 <        public final boolean isHeldExclusively() { return getState() > 0; }
770 <        public final boolean tryAcquire(int ignore) {
771 <            if (compareAndSetState(0, 1)) {
772 <                setExclusiveOwnerThread(Thread.currentThread());
773 <                return true;
774 <            }
775 <            return false;
776 <        }
777 <        public final boolean tryRelease(int ignore) {
778 <            setExclusiveOwnerThread(null);
779 <            setState(0);
780 <            return true;
781 <        }
782 <        public final int tryAcquireShared(int ignore) {
783 <            for (int c;;) {
784 <                if ((c = getState()) > 0)
785 <                    return -1;
786 <                if (compareAndSetState(c, c -1))
787 <                    return 1;
788 <            }
789 <        }
790 <        public final boolean tryReleaseShared(int ignore) {
791 <            int c;
792 <            do {} while (!compareAndSetState(c = getState(), c + 1));
793 <            return c == -1;
794 <        }
795 <
796 <        /** From CLR */
797 <        private void rotateLeft(TreeNode p) {
798 <            if (p != null) {
799 <                TreeNode r = p.right, pp, rl;
800 <                if ((rl = p.right = r.left) != null)
801 <                    rl.parent = p;
802 <                if ((pp = r.parent = p.parent) == null)
803 <                    root = r;
804 <                else if (pp.left == p)
805 <                    pp.left = r;
806 <                else
807 <                    pp.right = r;
808 <                r.left = p;
809 <                p.parent = r;
810 <            }
811 <        }
812 <
813 <        /** From CLR */
814 <        private void rotateRight(TreeNode p) {
815 <            if (p != null) {
816 <                TreeNode l = p.left, pp, lr;
817 <                if ((lr = p.left = l.right) != null)
818 <                    lr.parent = p;
819 <                if ((pp = l.parent = p.parent) == null)
820 <                    root = l;
821 <                else if (pp.right == p)
822 <                    pp.right = l;
823 <                else
824 <                    pp.left = l;
825 <                l.right = p;
826 <                p.parent = l;
827 <            }
828 <        }
829 <
830 <        /**
831 <         * Returns the TreeNode (or null if not found) for the given key
832 <         * starting at given root.
833 <         */
834 <        @SuppressWarnings("unchecked") final TreeNode getTreeNode
835 <            (int h, Object k, TreeNode p) {
836 <            Class<?> c = k.getClass();
837 <            while (p != null) {
838 <                int dir, ph;  Object pk; Class<?> pc;
839 <                if ((ph = p.hash) == h) {
840 <                    if ((pk = p.key) == k || k.equals(pk))
841 <                        return p;
842 <                    if (c != (pc = pk.getClass()) ||
843 <                        !(k instanceof Comparable) ||
844 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
845 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
846 <                        TreeNode r = null, s = null, pl, pr;
847 <                        if (dir >= 0) {
848 <                            if ((pl = p.left) != null && h <= pl.hash)
849 <                                s = pl;
850 <                        }
851 <                        else if ((pr = p.right) != null && h >= pr.hash)
852 <                            s = pr;
853 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
854 <                            return r;
855 <                    }
856 <                }
857 <                else
858 <                    dir = (h < ph) ? -1 : 1;
859 <                p = (dir > 0) ? p.right : p.left;
860 <            }
861 <            return null;
609 >        public final K getKey()       { return key; }
610 >        public final V getValue()     { return val; }
611 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
612 >        public final String toString(){ return key + "=" + val; }
613 >        public final V setValue(V value) {
614 >            throw new UnsupportedOperationException();
615          }
616  
617 <        /**
618 <         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
619 <         * read-lock to call getTreeNode, but during failure to get
620 <         * lock, searches along next links.
621 <         */
622 <        final Object getValue(int h, Object k) {
623 <            Node r = null;
871 <            int c = getState(); // Must read lock state first
872 <            for (Node e = first; e != null; e = e.next) {
873 <                if (c <= 0 && compareAndSetState(c, c - 1)) {
874 <                    try {
875 <                        r = getTreeNode(h, k, root);
876 <                    } finally {
877 <                        releaseShared(0);
878 <                    }
879 <                    break;
880 <                }
881 <                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
882 <                    r = e;
883 <                    break;
884 <                }
885 <                else
886 <                    c = getState();
887 <            }
888 <            return r == null ? null : r.val;
617 >        public final boolean equals(Object o) {
618 >            Object k, v, u; Map.Entry<?,?> e;
619 >            return ((o instanceof Map.Entry) &&
620 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
621 >                    (v = e.getValue()) != null &&
622 >                    (k == key || k.equals(key)) &&
623 >                    (v == (u = val) || v.equals(u)));
624          }
625  
626          /**
627 <         * Finds or adds a node.
893 <         * @return null if added
627 >         * Virtualized support for map.get(); overridden in subclasses.
628           */
629 <        @SuppressWarnings("unchecked") final TreeNode putTreeNode
630 <            (int h, Object k, Object v) {
631 <            Class<?> c = k.getClass();
632 <            TreeNode pp = root, p = null;
633 <            int dir = 0;
634 <            while (pp != null) { // find existing node or leaf to insert at
635 <                int ph;  Object pk; Class<?> pc;
636 <                p = pp;
637 <                if ((ph = p.hash) == h) {
904 <                    if ((pk = p.key) == k || k.equals(pk))
905 <                        return p;
906 <                    if (c != (pc = pk.getClass()) ||
907 <                        !(k instanceof Comparable) ||
908 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
909 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
910 <                        TreeNode r = null, s = null, pl, pr;
911 <                        if (dir >= 0) {
912 <                            if ((pl = p.left) != null && h <= pl.hash)
913 <                                s = pl;
914 <                        }
915 <                        else if ((pr = p.right) != null && h >= pr.hash)
916 <                            s = pr;
917 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
918 <                            return r;
919 <                    }
920 <                }
921 <                else
922 <                    dir = (h < ph) ? -1 : 1;
923 <                pp = (dir > 0) ? p.right : p.left;
924 <            }
925 <
926 <            TreeNode f = first;
927 <            TreeNode x = first = new TreeNode(h, k, v, f, p);
928 <            if (p == null)
929 <                root = x;
930 <            else { // attach and rebalance; adapted from CLR
931 <                TreeNode xp, xpp;
932 <                if (f != null)
933 <                    f.prev = x;
934 <                if (dir <= 0)
935 <                    p.left = x;
936 <                else
937 <                    p.right = x;
938 <                x.red = true;
939 <                while (x != null && (xp = x.parent) != null && xp.red &&
940 <                       (xpp = xp.parent) != null) {
941 <                    TreeNode xppl = xpp.left;
942 <                    if (xp == xppl) {
943 <                        TreeNode y = xpp.right;
944 <                        if (y != null && y.red) {
945 <                            y.red = false;
946 <                            xp.red = false;
947 <                            xpp.red = true;
948 <                            x = xpp;
949 <                        }
950 <                        else {
951 <                            if (x == xp.right) {
952 <                                rotateLeft(x = xp);
953 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
954 <                            }
955 <                            if (xp != null) {
956 <                                xp.red = false;
957 <                                if (xpp != null) {
958 <                                    xpp.red = true;
959 <                                    rotateRight(xpp);
960 <                                }
961 <                            }
962 <                        }
963 <                    }
964 <                    else {
965 <                        TreeNode y = xppl;
966 <                        if (y != null && y.red) {
967 <                            y.red = false;
968 <                            xp.red = false;
969 <                            xpp.red = true;
970 <                            x = xpp;
971 <                        }
972 <                        else {
973 <                            if (x == xp.left) {
974 <                                rotateRight(x = xp);
975 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
976 <                            }
977 <                            if (xp != null) {
978 <                                xp.red = false;
979 <                                if (xpp != null) {
980 <                                    xpp.red = true;
981 <                                    rotateLeft(xpp);
982 <                                }
983 <                            }
984 <                        }
985 <                    }
986 <                }
987 <                TreeNode r = root;
988 <                if (r != null && r.red)
989 <                    r.red = false;
629 >        Node<K,V> find(int h, Object k) {
630 >            Node<K,V> e = this;
631 >            if (k != null) {
632 >                do {
633 >                    K ek;
634 >                    if (e.hash == h &&
635 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
636 >                        return e;
637 >                } while ((e = e.next) != null);
638              }
639              return null;
640          }
993
994        /**
995         * Removes the given node, that must be present before this
996         * call.  This is messier than typical red-black deletion code
997         * because we cannot swap the contents of an interior node
998         * with a leaf successor that is pinned by "next" pointers
999         * that are accessible independently of lock. So instead we
1000         * swap the tree linkages.
1001         */
1002        final void deleteTreeNode(TreeNode p) {
1003            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
1004            TreeNode pred = p.prev;
1005            if (pred == null)
1006                first = next;
1007            else
1008                pred.next = next;
1009            if (next != null)
1010                next.prev = pred;
1011            TreeNode replacement;
1012            TreeNode pl = p.left;
1013            TreeNode pr = p.right;
1014            if (pl != null && pr != null) {
1015                TreeNode s = pr, sl;
1016                while ((sl = s.left) != null) // find successor
1017                    s = sl;
1018                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1019                TreeNode sr = s.right;
1020                TreeNode pp = p.parent;
1021                if (s == pr) { // p was s's direct parent
1022                    p.parent = s;
1023                    s.right = p;
1024                }
1025                else {
1026                    TreeNode sp = s.parent;
1027                    if ((p.parent = sp) != null) {
1028                        if (s == sp.left)
1029                            sp.left = p;
1030                        else
1031                            sp.right = p;
1032                    }
1033                    if ((s.right = pr) != null)
1034                        pr.parent = s;
1035                }
1036                p.left = null;
1037                if ((p.right = sr) != null)
1038                    sr.parent = p;
1039                if ((s.left = pl) != null)
1040                    pl.parent = s;
1041                if ((s.parent = pp) == null)
1042                    root = s;
1043                else if (p == pp.left)
1044                    pp.left = s;
1045                else
1046                    pp.right = s;
1047                replacement = sr;
1048            }
1049            else
1050                replacement = (pl != null) ? pl : pr;
1051            TreeNode pp = p.parent;
1052            if (replacement == null) {
1053                if (pp == null) {
1054                    root = null;
1055                    return;
1056                }
1057                replacement = p;
1058            }
1059            else {
1060                replacement.parent = pp;
1061                if (pp == null)
1062                    root = replacement;
1063                else if (p == pp.left)
1064                    pp.left = replacement;
1065                else
1066                    pp.right = replacement;
1067                p.left = p.right = p.parent = null;
1068            }
1069            if (!p.red) { // rebalance, from CLR
1070                TreeNode x = replacement;
1071                while (x != null) {
1072                    TreeNode xp, xpl;
1073                    if (x.red || (xp = x.parent) == null) {
1074                        x.red = false;
1075                        break;
1076                    }
1077                    if (x == (xpl = xp.left)) {
1078                        TreeNode sib = xp.right;
1079                        if (sib != null && sib.red) {
1080                            sib.red = false;
1081                            xp.red = true;
1082                            rotateLeft(xp);
1083                            sib = (xp = x.parent) == null ? null : xp.right;
1084                        }
1085                        if (sib == null)
1086                            x = xp;
1087                        else {
1088                            TreeNode sl = sib.left, sr = sib.right;
1089                            if ((sr == null || !sr.red) &&
1090                                (sl == null || !sl.red)) {
1091                                sib.red = true;
1092                                x = xp;
1093                            }
1094                            else {
1095                                if (sr == null || !sr.red) {
1096                                    if (sl != null)
1097                                        sl.red = false;
1098                                    sib.red = true;
1099                                    rotateRight(sib);
1100                                    sib = (xp = x.parent) == null ? null : xp.right;
1101                                }
1102                                if (sib != null) {
1103                                    sib.red = (xp == null) ? false : xp.red;
1104                                    if ((sr = sib.right) != null)
1105                                        sr.red = false;
1106                                }
1107                                if (xp != null) {
1108                                    xp.red = false;
1109                                    rotateLeft(xp);
1110                                }
1111                                x = root;
1112                            }
1113                        }
1114                    }
1115                    else { // symmetric
1116                        TreeNode sib = xpl;
1117                        if (sib != null && sib.red) {
1118                            sib.red = false;
1119                            xp.red = true;
1120                            rotateRight(xp);
1121                            sib = (xp = x.parent) == null ? null : xp.left;
1122                        }
1123                        if (sib == null)
1124                            x = xp;
1125                        else {
1126                            TreeNode sl = sib.left, sr = sib.right;
1127                            if ((sl == null || !sl.red) &&
1128                                (sr == null || !sr.red)) {
1129                                sib.red = true;
1130                                x = xp;
1131                            }
1132                            else {
1133                                if (sl == null || !sl.red) {
1134                                    if (sr != null)
1135                                        sr.red = false;
1136                                    sib.red = true;
1137                                    rotateLeft(sib);
1138                                    sib = (xp = x.parent) == null ? null : xp.left;
1139                                }
1140                                if (sib != null) {
1141                                    sib.red = (xp == null) ? false : xp.red;
1142                                    if ((sl = sib.left) != null)
1143                                        sl.red = false;
1144                                }
1145                                if (xp != null) {
1146                                    xp.red = false;
1147                                    rotateRight(xp);
1148                                }
1149                                x = root;
1150                            }
1151                        }
1152                    }
1153                }
1154            }
1155            if (p == replacement && (pp = p.parent) != null) {
1156                if (p == pp.left) // detach pointers
1157                    pp.left = null;
1158                else if (p == pp.right)
1159                    pp.right = null;
1160                p.parent = null;
1161            }
1162        }
641      }
642  
643 <    /* ---------------- Collision reduction methods -------------- */
643 >    /* ---------------- Static utilities -------------- */
644  
645      /**
646 <     * Spreads higher bits to lower, and also forces top 2 bits to 0.
647 <     * Because the table uses power-of-two masking, sets of hashes
648 <     * that vary only in bits above the current mask will always
649 <     * collide. (Among known examples are sets of Float keys holding
650 <     * consecutive whole numbers in small tables.)  To counter this,
651 <     * we apply a transform that spreads the impact of higher bits
646 >     * Spreads (XORs) higher bits of hash to lower and also forces top
647 >     * bit to 0. Because the table uses power-of-two masking, sets of
648 >     * hashes that vary only in bits above the current mask will
649 >     * always collide. (Among known examples are sets of Float keys
650 >     * holding consecutive whole numbers in small tables.)  So we
651 >     * apply a transform that spreads the impact of higher bits
652       * downward. There is a tradeoff between speed, utility, and
653       * quality of bit-spreading. Because many common sets of hashes
654 <     * are already reasonably distributed across bits (so don't benefit
655 <     * from spreading), and because we use trees to handle large sets
656 <     * of collisions in bins, we don't need excessively high quality.
657 <     */
658 <    private static final int spread(int h) {
659 <        h ^= (h >>> 18) ^ (h >>> 12);
1182 <        return (h ^ (h >>> 10)) & HASH_BITS;
1183 <    }
1184 <
1185 <    /**
1186 <     * Replaces a list bin with a tree bin. Call only when locked.
1187 <     * Fails to replace if the given key is non-comparable or table
1188 <     * is, or needs, resizing.
1189 <     */
1190 <    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1191 <        if ((key instanceof Comparable) &&
1192 <            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1193 <            TreeBin t = new TreeBin();
1194 <            for (Node e = tabAt(tab, index); e != null; e = e.next)
1195 <                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1196 <            setTabAt(tab, index, new Node(MOVED, t, null, null));
1197 <        }
1198 <    }
1199 <
1200 <    /* ---------------- Internal access and update methods -------------- */
1201 <
1202 <    /** Implementation for get and containsKey */
1203 <    private final Object internalGet(Object k) {
1204 <        int h = spread(k.hashCode());
1205 <        retry: for (Node[] tab = table; tab != null;) {
1206 <            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1207 <            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1208 <                if ((eh = e.hash) == MOVED) {
1209 <                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1210 <                        return ((TreeBin)ek).getValue(h, k);
1211 <                    else {                        // restart with new table
1212 <                        tab = (Node[])ek;
1213 <                        continue retry;
1214 <                    }
1215 <                }
1216 <                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1217 <                         ((ek = e.key) == k || k.equals(ek)))
1218 <                    return ev;
1219 <            }
1220 <            break;
1221 <        }
1222 <        return null;
1223 <    }
1224 <
1225 <    /**
1226 <     * Implementation for the four public remove/replace methods:
1227 <     * Replaces node value with v, conditional upon match of cv if
1228 <     * non-null.  If resulting value is null, delete.
654 >     * are already reasonably distributed (so don't benefit from
655 >     * spreading), and because we use trees to handle large sets of
656 >     * collisions in bins, we just XOR some shifted bits in the
657 >     * cheapest possible way to reduce systematic lossage, as well as
658 >     * to incorporate impact of the highest bits that would otherwise
659 >     * never be used in index calculations because of table bounds.
660       */
661 <    private final Object internalReplace(Object k, Object v, Object cv) {
662 <        int h = spread(k.hashCode());
1232 <        Object oldVal = null;
1233 <        for (Node[] tab = table;;) {
1234 <            Node f; int i, fh; Object fk;
1235 <            if (tab == null ||
1236 <                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1237 <                break;
1238 <            else if ((fh = f.hash) == MOVED) {
1239 <                if ((fk = f.key) instanceof TreeBin) {
1240 <                    TreeBin t = (TreeBin)fk;
1241 <                    boolean validated = false;
1242 <                    boolean deleted = false;
1243 <                    t.acquire(0);
1244 <                    try {
1245 <                        if (tabAt(tab, i) == f) {
1246 <                            validated = true;
1247 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1248 <                            if (p != null) {
1249 <                                Object pv = p.val;
1250 <                                if (cv == null || cv == pv || cv.equals(pv)) {
1251 <                                    oldVal = pv;
1252 <                                    if ((p.val = v) == null) {
1253 <                                        deleted = true;
1254 <                                        t.deleteTreeNode(p);
1255 <                                    }
1256 <                                }
1257 <                            }
1258 <                        }
1259 <                    } finally {
1260 <                        t.release(0);
1261 <                    }
1262 <                    if (validated) {
1263 <                        if (deleted)
1264 <                            counter.add(-1L);
1265 <                        break;
1266 <                    }
1267 <                }
1268 <                else
1269 <                    tab = (Node[])fk;
1270 <            }
1271 <            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1272 <                break;                          // rules out possible existence
1273 <            else if ((fh & LOCKED) != 0) {
1274 <                checkForResize();               // try resizing if can't get lock
1275 <                f.tryAwaitLock(tab, i);
1276 <            }
1277 <            else if (f.casHash(fh, fh | LOCKED)) {
1278 <                boolean validated = false;
1279 <                boolean deleted = false;
1280 <                try {
1281 <                    if (tabAt(tab, i) == f) {
1282 <                        validated = true;
1283 <                        for (Node e = f, pred = null;;) {
1284 <                            Object ek, ev;
1285 <                            if ((e.hash & HASH_BITS) == h &&
1286 <                                ((ev = e.val) != null) &&
1287 <                                ((ek = e.key) == k || k.equals(ek))) {
1288 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1289 <                                    oldVal = ev;
1290 <                                    if ((e.val = v) == null) {
1291 <                                        deleted = true;
1292 <                                        Node en = e.next;
1293 <                                        if (pred != null)
1294 <                                            pred.next = en;
1295 <                                        else
1296 <                                            setTabAt(tab, i, en);
1297 <                                    }
1298 <                                }
1299 <                                break;
1300 <                            }
1301 <                            pred = e;
1302 <                            if ((e = e.next) == null)
1303 <                                break;
1304 <                        }
1305 <                    }
1306 <                } finally {
1307 <                    if (!f.casHash(fh | LOCKED, fh)) {
1308 <                        f.hash = fh;
1309 <                        synchronized (f) { f.notifyAll(); };
1310 <                    }
1311 <                }
1312 <                if (validated) {
1313 <                    if (deleted)
1314 <                        counter.add(-1L);
1315 <                    break;
1316 <                }
1317 <            }
1318 <        }
1319 <        return oldVal;
1320 <    }
1321 <
1322 <    /*
1323 <     * Internal versions of the six insertion methods, each a
1324 <     * little more complicated than the last. All have
1325 <     * the same basic structure as the first (internalPut):
1326 <     *  1. If table uninitialized, create
1327 <     *  2. If bin empty, try to CAS new node
1328 <     *  3. If bin stale, use new table
1329 <     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1330 <     *  5. Lock and validate; if valid, scan and add or update
1331 <     *
1332 <     * The others interweave other checks and/or alternative actions:
1333 <     *  * Plain put checks for and performs resize after insertion.
1334 <     *  * putIfAbsent prescans for mapping without lock (and fails to add
1335 <     *    if present), which also makes pre-emptive resize checks worthwhile.
1336 <     *  * computeIfAbsent extends form used in putIfAbsent with additional
1337 <     *    mechanics to deal with, calls, potential exceptions and null
1338 <     *    returns from function call.
1339 <     *  * compute uses the same function-call mechanics, but without
1340 <     *    the prescans
1341 <     *  * merge acts as putIfAbsent in the absent case, but invokes the
1342 <     *    update function if present
1343 <     *  * putAll attempts to pre-allocate enough table space
1344 <     *    and more lazily performs count updates and checks.
1345 <     *
1346 <     * Someday when details settle down a bit more, it might be worth
1347 <     * some factoring to reduce sprawl.
1348 <     */
1349 <
1350 <    /** Implementation for put */
1351 <    private final Object internalPut(Object k, Object v) {
1352 <        int h = spread(k.hashCode());
1353 <        int count = 0;
1354 <        for (Node[] tab = table;;) {
1355 <            int i; Node f; int fh; Object fk;
1356 <            if (tab == null)
1357 <                tab = initTable();
1358 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1359 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1360 <                    break;                   // no lock when adding to empty bin
1361 <            }
1362 <            else if ((fh = f.hash) == MOVED) {
1363 <                if ((fk = f.key) instanceof TreeBin) {
1364 <                    TreeBin t = (TreeBin)fk;
1365 <                    Object oldVal = null;
1366 <                    t.acquire(0);
1367 <                    try {
1368 <                        if (tabAt(tab, i) == f) {
1369 <                            count = 2;
1370 <                            TreeNode p = t.putTreeNode(h, k, v);
1371 <                            if (p != null) {
1372 <                                oldVal = p.val;
1373 <                                p.val = v;
1374 <                            }
1375 <                        }
1376 <                    } finally {
1377 <                        t.release(0);
1378 <                    }
1379 <                    if (count != 0) {
1380 <                        if (oldVal != null)
1381 <                            return oldVal;
1382 <                        break;
1383 <                    }
1384 <                }
1385 <                else
1386 <                    tab = (Node[])fk;
1387 <            }
1388 <            else if ((fh & LOCKED) != 0) {
1389 <                checkForResize();
1390 <                f.tryAwaitLock(tab, i);
1391 <            }
1392 <            else if (f.casHash(fh, fh | LOCKED)) {
1393 <                Object oldVal = null;
1394 <                try {                        // needed in case equals() throws
1395 <                    if (tabAt(tab, i) == f) {
1396 <                        count = 1;
1397 <                        for (Node e = f;; ++count) {
1398 <                            Object ek, ev;
1399 <                            if ((e.hash & HASH_BITS) == h &&
1400 <                                (ev = e.val) != null &&
1401 <                                ((ek = e.key) == k || k.equals(ek))) {
1402 <                                oldVal = ev;
1403 <                                e.val = v;
1404 <                                break;
1405 <                            }
1406 <                            Node last = e;
1407 <                            if ((e = e.next) == null) {
1408 <                                last.next = new Node(h, k, v, null);
1409 <                                if (count >= TREE_THRESHOLD)
1410 <                                    replaceWithTreeBin(tab, i, k);
1411 <                                break;
1412 <                            }
1413 <                        }
1414 <                    }
1415 <                } finally {                  // unlock and signal if needed
1416 <                    if (!f.casHash(fh | LOCKED, fh)) {
1417 <                        f.hash = fh;
1418 <                        synchronized (f) { f.notifyAll(); };
1419 <                    }
1420 <                }
1421 <                if (count != 0) {
1422 <                    if (oldVal != null)
1423 <                        return oldVal;
1424 <                    if (tab.length <= 64)
1425 <                        count = 2;
1426 <                    break;
1427 <                }
1428 <            }
1429 <        }
1430 <        counter.add(1L);
1431 <        if (count > 1)
1432 <            checkForResize();
1433 <        return null;
1434 <    }
1435 <
1436 <    /** Implementation for putIfAbsent */
1437 <    private final Object internalPutIfAbsent(Object k, Object v) {
1438 <        int h = spread(k.hashCode());
1439 <        int count = 0;
1440 <        for (Node[] tab = table;;) {
1441 <            int i; Node f; int fh; Object fk, fv;
1442 <            if (tab == null)
1443 <                tab = initTable();
1444 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1445 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1446 <                    break;
1447 <            }
1448 <            else if ((fh = f.hash) == MOVED) {
1449 <                if ((fk = f.key) instanceof TreeBin) {
1450 <                    TreeBin t = (TreeBin)fk;
1451 <                    Object oldVal = null;
1452 <                    t.acquire(0);
1453 <                    try {
1454 <                        if (tabAt(tab, i) == f) {
1455 <                            count = 2;
1456 <                            TreeNode p = t.putTreeNode(h, k, v);
1457 <                            if (p != null)
1458 <                                oldVal = p.val;
1459 <                        }
1460 <                    } finally {
1461 <                        t.release(0);
1462 <                    }
1463 <                    if (count != 0) {
1464 <                        if (oldVal != null)
1465 <                            return oldVal;
1466 <                        break;
1467 <                    }
1468 <                }
1469 <                else
1470 <                    tab = (Node[])fk;
1471 <            }
1472 <            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1473 <                     ((fk = f.key) == k || k.equals(fk)))
1474 <                return fv;
1475 <            else {
1476 <                Node g = f.next;
1477 <                if (g != null) { // at least 2 nodes -- search and maybe resize
1478 <                    for (Node e = g;;) {
1479 <                        Object ek, ev;
1480 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1481 <                            ((ek = e.key) == k || k.equals(ek)))
1482 <                            return ev;
1483 <                        if ((e = e.next) == null) {
1484 <                            checkForResize();
1485 <                            break;
1486 <                        }
1487 <                    }
1488 <                }
1489 <                if (((fh = f.hash) & LOCKED) != 0) {
1490 <                    checkForResize();
1491 <                    f.tryAwaitLock(tab, i);
1492 <                }
1493 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1494 <                    Object oldVal = null;
1495 <                    try {
1496 <                        if (tabAt(tab, i) == f) {
1497 <                            count = 1;
1498 <                            for (Node e = f;; ++count) {
1499 <                                Object ek, ev;
1500 <                                if ((e.hash & HASH_BITS) == h &&
1501 <                                    (ev = e.val) != null &&
1502 <                                    ((ek = e.key) == k || k.equals(ek))) {
1503 <                                    oldVal = ev;
1504 <                                    break;
1505 <                                }
1506 <                                Node last = e;
1507 <                                if ((e = e.next) == null) {
1508 <                                    last.next = new Node(h, k, v, null);
1509 <                                    if (count >= TREE_THRESHOLD)
1510 <                                        replaceWithTreeBin(tab, i, k);
1511 <                                    break;
1512 <                                }
1513 <                            }
1514 <                        }
1515 <                    } finally {
1516 <                        if (!f.casHash(fh | LOCKED, fh)) {
1517 <                            f.hash = fh;
1518 <                            synchronized (f) { f.notifyAll(); };
1519 <                        }
1520 <                    }
1521 <                    if (count != 0) {
1522 <                        if (oldVal != null)
1523 <                            return oldVal;
1524 <                        if (tab.length <= 64)
1525 <                            count = 2;
1526 <                        break;
1527 <                    }
1528 <                }
1529 <            }
1530 <        }
1531 <        counter.add(1L);
1532 <        if (count > 1)
1533 <            checkForResize();
1534 <        return null;
1535 <    }
1536 <
1537 <    /** Implementation for computeIfAbsent */
1538 <    private final Object internalComputeIfAbsent(K k,
1539 <                                                 Fun<? super K, ?> mf) {
1540 <        int h = spread(k.hashCode());
1541 <        Object val = null;
1542 <        int count = 0;
1543 <        for (Node[] tab = table;;) {
1544 <            Node f; int i, fh; Object fk, fv;
1545 <            if (tab == null)
1546 <                tab = initTable();
1547 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1548 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1549 <                if (casTabAt(tab, i, null, node)) {
1550 <                    count = 1;
1551 <                    try {
1552 <                        if ((val = mf.apply(k)) != null)
1553 <                            node.val = val;
1554 <                    } finally {
1555 <                        if (val == null)
1556 <                            setTabAt(tab, i, null);
1557 <                        if (!node.casHash(fh, h)) {
1558 <                            node.hash = h;
1559 <                            synchronized (node) { node.notifyAll(); };
1560 <                        }
1561 <                    }
1562 <                }
1563 <                if (count != 0)
1564 <                    break;
1565 <            }
1566 <            else if ((fh = f.hash) == MOVED) {
1567 <                if ((fk = f.key) instanceof TreeBin) {
1568 <                    TreeBin t = (TreeBin)fk;
1569 <                    boolean added = false;
1570 <                    t.acquire(0);
1571 <                    try {
1572 <                        if (tabAt(tab, i) == f) {
1573 <                            count = 1;
1574 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1575 <                            if (p != null)
1576 <                                val = p.val;
1577 <                            else if ((val = mf.apply(k)) != null) {
1578 <                                added = true;
1579 <                                count = 2;
1580 <                                t.putTreeNode(h, k, val);
1581 <                            }
1582 <                        }
1583 <                    } finally {
1584 <                        t.release(0);
1585 <                    }
1586 <                    if (count != 0) {
1587 <                        if (!added)
1588 <                            return val;
1589 <                        break;
1590 <                    }
1591 <                }
1592 <                else
1593 <                    tab = (Node[])fk;
1594 <            }
1595 <            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1596 <                     ((fk = f.key) == k || k.equals(fk)))
1597 <                return fv;
1598 <            else {
1599 <                Node g = f.next;
1600 <                if (g != null) {
1601 <                    for (Node e = g;;) {
1602 <                        Object ek, ev;
1603 <                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1604 <                            ((ek = e.key) == k || k.equals(ek)))
1605 <                            return ev;
1606 <                        if ((e = e.next) == null) {
1607 <                            checkForResize();
1608 <                            break;
1609 <                        }
1610 <                    }
1611 <                }
1612 <                if (((fh = f.hash) & LOCKED) != 0) {
1613 <                    checkForResize();
1614 <                    f.tryAwaitLock(tab, i);
1615 <                }
1616 <                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1617 <                    boolean added = false;
1618 <                    try {
1619 <                        if (tabAt(tab, i) == f) {
1620 <                            count = 1;
1621 <                            for (Node e = f;; ++count) {
1622 <                                Object ek, ev;
1623 <                                if ((e.hash & HASH_BITS) == h &&
1624 <                                    (ev = e.val) != null &&
1625 <                                    ((ek = e.key) == k || k.equals(ek))) {
1626 <                                    val = ev;
1627 <                                    break;
1628 <                                }
1629 <                                Node last = e;
1630 <                                if ((e = e.next) == null) {
1631 <                                    if ((val = mf.apply(k)) != null) {
1632 <                                        added = true;
1633 <                                        last.next = new Node(h, k, val, null);
1634 <                                        if (count >= TREE_THRESHOLD)
1635 <                                            replaceWithTreeBin(tab, i, k);
1636 <                                    }
1637 <                                    break;
1638 <                                }
1639 <                            }
1640 <                        }
1641 <                    } finally {
1642 <                        if (!f.casHash(fh | LOCKED, fh)) {
1643 <                            f.hash = fh;
1644 <                            synchronized (f) { f.notifyAll(); };
1645 <                        }
1646 <                    }
1647 <                    if (count != 0) {
1648 <                        if (!added)
1649 <                            return val;
1650 <                        if (tab.length <= 64)
1651 <                            count = 2;
1652 <                        break;
1653 <                    }
1654 <                }
1655 <            }
1656 <        }
1657 <        if (val != null) {
1658 <            counter.add(1L);
1659 <            if (count > 1)
1660 <                checkForResize();
1661 <        }
1662 <        return val;
1663 <    }
1664 <
1665 <    /** Implementation for compute */
1666 <    @SuppressWarnings("unchecked") private final Object internalCompute
1667 <        (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1668 <        int h = spread(k.hashCode());
1669 <        Object val = null;
1670 <        int delta = 0;
1671 <        int count = 0;
1672 <        for (Node[] tab = table;;) {
1673 <            Node f; int i, fh; Object fk;
1674 <            if (tab == null)
1675 <                tab = initTable();
1676 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1677 <                if (onlyIfPresent)
1678 <                    break;
1679 <                Node node = new Node(fh = h | LOCKED, k, null, null);
1680 <                if (casTabAt(tab, i, null, node)) {
1681 <                    try {
1682 <                        count = 1;
1683 <                        if ((val = mf.apply(k, null)) != null) {
1684 <                            node.val = val;
1685 <                            delta = 1;
1686 <                        }
1687 <                    } finally {
1688 <                        if (delta == 0)
1689 <                            setTabAt(tab, i, null);
1690 <                        if (!node.casHash(fh, h)) {
1691 <                            node.hash = h;
1692 <                            synchronized (node) { node.notifyAll(); };
1693 <                        }
1694 <                    }
1695 <                }
1696 <                if (count != 0)
1697 <                    break;
1698 <            }
1699 <            else if ((fh = f.hash) == MOVED) {
1700 <                if ((fk = f.key) instanceof TreeBin) {
1701 <                    TreeBin t = (TreeBin)fk;
1702 <                    t.acquire(0);
1703 <                    try {
1704 <                        if (tabAt(tab, i) == f) {
1705 <                            count = 1;
1706 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1707 <                            Object pv = (p == null) ? null : p.val;
1708 <                            if ((val = mf.apply(k, (V)pv)) != null) {
1709 <                                if (p != null)
1710 <                                    p.val = val;
1711 <                                else {
1712 <                                    count = 2;
1713 <                                    delta = 1;
1714 <                                    t.putTreeNode(h, k, val);
1715 <                                }
1716 <                            }
1717 <                            else if (p != null) {
1718 <                                delta = -1;
1719 <                                t.deleteTreeNode(p);
1720 <                            }
1721 <                        }
1722 <                    } finally {
1723 <                        t.release(0);
1724 <                    }
1725 <                    if (count != 0)
1726 <                        break;
1727 <                }
1728 <                else
1729 <                    tab = (Node[])fk;
1730 <            }
1731 <            else if ((fh & LOCKED) != 0) {
1732 <                checkForResize();
1733 <                f.tryAwaitLock(tab, i);
1734 <            }
1735 <            else if (f.casHash(fh, fh | LOCKED)) {
1736 <                try {
1737 <                    if (tabAt(tab, i) == f) {
1738 <                        count = 1;
1739 <                        for (Node e = f, pred = null;; ++count) {
1740 <                            Object ek, ev;
1741 <                            if ((e.hash & HASH_BITS) == h &&
1742 <                                (ev = e.val) != null &&
1743 <                                ((ek = e.key) == k || k.equals(ek))) {
1744 <                                val = mf.apply(k, (V)ev);
1745 <                                if (val != null)
1746 <                                    e.val = val;
1747 <                                else {
1748 <                                    delta = -1;
1749 <                                    Node en = e.next;
1750 <                                    if (pred != null)
1751 <                                        pred.next = en;
1752 <                                    else
1753 <                                        setTabAt(tab, i, en);
1754 <                                }
1755 <                                break;
1756 <                            }
1757 <                            pred = e;
1758 <                            if ((e = e.next) == null) {
1759 <                                if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1760 <                                    pred.next = new Node(h, k, val, null);
1761 <                                    delta = 1;
1762 <                                    if (count >= TREE_THRESHOLD)
1763 <                                        replaceWithTreeBin(tab, i, k);
1764 <                                }
1765 <                                break;
1766 <                            }
1767 <                        }
1768 <                    }
1769 <                } finally {
1770 <                    if (!f.casHash(fh | LOCKED, fh)) {
1771 <                        f.hash = fh;
1772 <                        synchronized (f) { f.notifyAll(); };
1773 <                    }
1774 <                }
1775 <                if (count != 0) {
1776 <                    if (tab.length <= 64)
1777 <                        count = 2;
1778 <                    break;
1779 <                }
1780 <            }
1781 <        }
1782 <        if (delta != 0) {
1783 <            counter.add((long)delta);
1784 <            if (count > 1)
1785 <                checkForResize();
1786 <        }
1787 <        return val;
1788 <    }
1789 <
1790 <    /** Implementation for merge */
1791 <    @SuppressWarnings("unchecked") private final Object internalMerge
1792 <        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1793 <        int h = spread(k.hashCode());
1794 <        Object val = null;
1795 <        int delta = 0;
1796 <        int count = 0;
1797 <        for (Node[] tab = table;;) {
1798 <            int i; Node f; int fh; Object fk, fv;
1799 <            if (tab == null)
1800 <                tab = initTable();
1801 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1802 <                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1803 <                    delta = 1;
1804 <                    val = v;
1805 <                    break;
1806 <                }
1807 <            }
1808 <            else if ((fh = f.hash) == MOVED) {
1809 <                if ((fk = f.key) instanceof TreeBin) {
1810 <                    TreeBin t = (TreeBin)fk;
1811 <                    t.acquire(0);
1812 <                    try {
1813 <                        if (tabAt(tab, i) == f) {
1814 <                            count = 1;
1815 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1816 <                            val = (p == null) ? v : mf.apply((V)p.val, v);
1817 <                            if (val != null) {
1818 <                                if (p != null)
1819 <                                    p.val = val;
1820 <                                else {
1821 <                                    count = 2;
1822 <                                    delta = 1;
1823 <                                    t.putTreeNode(h, k, val);
1824 <                                }
1825 <                            }
1826 <                            else if (p != null) {
1827 <                                delta = -1;
1828 <                                t.deleteTreeNode(p);
1829 <                            }
1830 <                        }
1831 <                    } finally {
1832 <                        t.release(0);
1833 <                    }
1834 <                    if (count != 0)
1835 <                        break;
1836 <                }
1837 <                else
1838 <                    tab = (Node[])fk;
1839 <            }
1840 <            else if ((fh & LOCKED) != 0) {
1841 <                checkForResize();
1842 <                f.tryAwaitLock(tab, i);
1843 <            }
1844 <            else if (f.casHash(fh, fh | LOCKED)) {
1845 <                try {
1846 <                    if (tabAt(tab, i) == f) {
1847 <                        count = 1;
1848 <                        for (Node e = f, pred = null;; ++count) {
1849 <                            Object ek, ev;
1850 <                            if ((e.hash & HASH_BITS) == h &&
1851 <                                (ev = e.val) != null &&
1852 <                                ((ek = e.key) == k || k.equals(ek))) {
1853 <                                val = mf.apply(v, (V)ev);
1854 <                                if (val != null)
1855 <                                    e.val = val;
1856 <                                else {
1857 <                                    delta = -1;
1858 <                                    Node en = e.next;
1859 <                                    if (pred != null)
1860 <                                        pred.next = en;
1861 <                                    else
1862 <                                        setTabAt(tab, i, en);
1863 <                                }
1864 <                                break;
1865 <                            }
1866 <                            pred = e;
1867 <                            if ((e = e.next) == null) {
1868 <                                val = v;
1869 <                                pred.next = new Node(h, k, val, null);
1870 <                                delta = 1;
1871 <                                if (count >= TREE_THRESHOLD)
1872 <                                    replaceWithTreeBin(tab, i, k);
1873 <                                break;
1874 <                            }
1875 <                        }
1876 <                    }
1877 <                } finally {
1878 <                    if (!f.casHash(fh | LOCKED, fh)) {
1879 <                        f.hash = fh;
1880 <                        synchronized (f) { f.notifyAll(); };
1881 <                    }
1882 <                }
1883 <                if (count != 0) {
1884 <                    if (tab.length <= 64)
1885 <                        count = 2;
1886 <                    break;
1887 <                }
1888 <            }
1889 <        }
1890 <        if (delta != 0) {
1891 <            counter.add((long)delta);
1892 <            if (count > 1)
1893 <                checkForResize();
1894 <        }
1895 <        return val;
1896 <    }
1897 <
1898 <    /** Implementation for putAll */
1899 <    private final void internalPutAll(Map<?, ?> m) {
1900 <        tryPresize(m.size());
1901 <        long delta = 0L;     // number of uncommitted additions
1902 <        boolean npe = false; // to throw exception on exit for nulls
1903 <        try {                // to clean up counts on other exceptions
1904 <            for (Map.Entry<?, ?> entry : m.entrySet()) {
1905 <                Object k, v;
1906 <                if (entry == null || (k = entry.getKey()) == null ||
1907 <                    (v = entry.getValue()) == null) {
1908 <                    npe = true;
1909 <                    break;
1910 <                }
1911 <                int h = spread(k.hashCode());
1912 <                for (Node[] tab = table;;) {
1913 <                    int i; Node f; int fh; Object fk;
1914 <                    if (tab == null)
1915 <                        tab = initTable();
1916 <                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1917 <                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1918 <                            ++delta;
1919 <                            break;
1920 <                        }
1921 <                    }
1922 <                    else if ((fh = f.hash) == MOVED) {
1923 <                        if ((fk = f.key) instanceof TreeBin) {
1924 <                            TreeBin t = (TreeBin)fk;
1925 <                            boolean validated = false;
1926 <                            t.acquire(0);
1927 <                            try {
1928 <                                if (tabAt(tab, i) == f) {
1929 <                                    validated = true;
1930 <                                    TreeNode p = t.getTreeNode(h, k, t.root);
1931 <                                    if (p != null)
1932 <                                        p.val = v;
1933 <                                    else {
1934 <                                        t.putTreeNode(h, k, v);
1935 <                                        ++delta;
1936 <                                    }
1937 <                                }
1938 <                            } finally {
1939 <                                t.release(0);
1940 <                            }
1941 <                            if (validated)
1942 <                                break;
1943 <                        }
1944 <                        else
1945 <                            tab = (Node[])fk;
1946 <                    }
1947 <                    else if ((fh & LOCKED) != 0) {
1948 <                        counter.add(delta);
1949 <                        delta = 0L;
1950 <                        checkForResize();
1951 <                        f.tryAwaitLock(tab, i);
1952 <                    }
1953 <                    else if (f.casHash(fh, fh | LOCKED)) {
1954 <                        int count = 0;
1955 <                        try {
1956 <                            if (tabAt(tab, i) == f) {
1957 <                                count = 1;
1958 <                                for (Node e = f;; ++count) {
1959 <                                    Object ek, ev;
1960 <                                    if ((e.hash & HASH_BITS) == h &&
1961 <                                        (ev = e.val) != null &&
1962 <                                        ((ek = e.key) == k || k.equals(ek))) {
1963 <                                        e.val = v;
1964 <                                        break;
1965 <                                    }
1966 <                                    Node last = e;
1967 <                                    if ((e = e.next) == null) {
1968 <                                        ++delta;
1969 <                                        last.next = new Node(h, k, v, null);
1970 <                                        if (count >= TREE_THRESHOLD)
1971 <                                            replaceWithTreeBin(tab, i, k);
1972 <                                        break;
1973 <                                    }
1974 <                                }
1975 <                            }
1976 <                        } finally {
1977 <                            if (!f.casHash(fh | LOCKED, fh)) {
1978 <                                f.hash = fh;
1979 <                                synchronized (f) { f.notifyAll(); };
1980 <                            }
1981 <                        }
1982 <                        if (count != 0) {
1983 <                            if (count > 1) {
1984 <                                counter.add(delta);
1985 <                                delta = 0L;
1986 <                                checkForResize();
1987 <                            }
1988 <                            break;
1989 <                        }
1990 <                    }
1991 <                }
1992 <            }
1993 <        } finally {
1994 <            if (delta != 0)
1995 <                counter.add(delta);
1996 <        }
1997 <        if (npe)
1998 <            throw new NullPointerException();
661 >    static final int spread(int h) {
662 >        return (h ^ (h >>> 16)) & HASH_BITS;
663      }
664  
2001    /* ---------------- Table Initialization and Resizing -------------- */
2002
665      /**
666       * Returns a power of two table size for the given desired capacity.
667       * See Hackers Delight, sec 3.2
# Line 2015 | Line 677 | public class ConcurrentHashMapV8<K, V>
677      }
678  
679      /**
680 <     * Initializes table, using the size recorded in sizeCtl.
680 >     * Returns x's Class if it is of the form "class C implements
681 >     * Comparable<C>", else null.
682       */
683 <    private final Node[] initTable() {
684 <        Node[] tab; int sc;
685 <        while ((tab = table) == null) {
686 <            if ((sc = sizeCtl) < 0)
687 <                Thread.yield(); // lost initialization race; just spin
688 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
689 <                try {
690 <                    if ((tab = table) == null) {
691 <                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
692 <                        tab = table = new Node[n];
693 <                        sc = n - (n >>> 2);
694 <                    }
695 <                } finally {
2033 <                    sizeCtl = sc;
2034 <                }
2035 <                break;
2036 <            }
2037 <        }
2038 <        return tab;
2039 <    }
2040 <
2041 <    /**
2042 <     * If table is too small and not already resizing, creates next
2043 <     * table and transfers bins.  Rechecks occupancy after a transfer
2044 <     * to see if another resize is already needed because resizings
2045 <     * are lagging additions.
2046 <     */
2047 <    private final void checkForResize() {
2048 <        Node[] tab; int n, sc;
2049 <        while ((tab = table) != null &&
2050 <               (n = tab.length) < MAXIMUM_CAPACITY &&
2051 <               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
2052 <               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2053 <            try {
2054 <                if (tab == table) {
2055 <                    table = rebuild(tab);
2056 <                    sc = (n << 1) - (n >>> 1);
683 >    static Class<?> comparableClassFor(Object x) {
684 >        if (x instanceof Comparable) {
685 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
686 >            if ((c = x.getClass()) == String.class) // bypass checks
687 >                return c;
688 >            if ((ts = c.getGenericInterfaces()) != null) {
689 >                for (int i = 0; i < ts.length; ++i) {
690 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
691 >                        ((p = (ParameterizedType)t).getRawType() ==
692 >                         Comparable.class) &&
693 >                        (as = p.getActualTypeArguments()) != null &&
694 >                        as.length == 1 && as[0] == c) // type arg is c
695 >                        return c;
696                  }
2058            } finally {
2059                sizeCtl = sc;
697              }
698          }
699 +        return null;
700      }
701  
702      /**
703 <     * Tries to presize table to accommodate the given number of elements.
704 <     *
2067 <     * @param size number of elements (doesn't need to be perfectly accurate)
703 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
704 >     * class), else 0.
705       */
706 <    private final void tryPresize(int size) {
707 <        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
708 <            tableSizeFor(size + (size >>> 1) + 1);
709 <        int sc;
2073 <        while ((sc = sizeCtl) >= 0) {
2074 <            Node[] tab = table; int n;
2075 <            if (tab == null || (n = tab.length) == 0) {
2076 <                n = (sc > c) ? sc : c;
2077 <                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2078 <                    try {
2079 <                        if (table == tab) {
2080 <                            table = new Node[n];
2081 <                            sc = n - (n >>> 2);
2082 <                        }
2083 <                    } finally {
2084 <                        sizeCtl = sc;
2085 <                    }
2086 <                }
2087 <            }
2088 <            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2089 <                break;
2090 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2091 <                try {
2092 <                    if (table == tab) {
2093 <                        table = rebuild(tab);
2094 <                        sc = (n << 1) - (n >>> 1);
2095 <                    }
2096 <                } finally {
2097 <                    sizeCtl = sc;
2098 <                }
2099 <            }
2100 <        }
706 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
707 >    static int compareComparables(Class<?> kc, Object k, Object x) {
708 >        return (x == null || x.getClass() != kc ? 0 :
709 >                ((Comparable)k).compareTo(x));
710      }
711  
712 +    /* ---------------- Table element access -------------- */
713 +
714      /*
715 <     * Moves and/or copies the nodes in each bin to new table. See
716 <     * above for explanation.
717 <     *
718 <     * @return the new table
719 <     */
720 <    private static final Node[] rebuild(Node[] tab) {
721 <        int n = tab.length;
722 <        Node[] nextTab = new Node[n << 1];
723 <        Node fwd = new Node(MOVED, nextTab, null, null);
724 <        int[] buffer = null;       // holds bins to revisit; null until needed
725 <        Node rev = null;           // reverse forwarder; null until needed
726 <        int nbuffered = 0;         // the number of bins in buffer list
727 <        int bufferIndex = 0;       // buffer index of current buffered bin
728 <        int bin = n - 1;           // current non-buffered bin or -1 if none
729 <
730 <        for (int i = bin;;) {      // start upwards sweep
731 <            int fh; Node f;
732 <            if ((f = tabAt(tab, i)) == null) {
733 <                if (bin >= 0) {    // Unbuffered; no lock needed (or available)
734 <                    if (!casTabAt(tab, i, f, fwd))
735 <                        continue;
736 <                }
737 <                else {             // transiently use a locked forwarding node
738 <                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
739 <                    if (!casTabAt(tab, i, f, g))
740 <                        continue;
2130 <                    setTabAt(nextTab, i, null);
2131 <                    setTabAt(nextTab, i + n, null);
2132 <                    setTabAt(tab, i, fwd);
2133 <                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
2134 <                        g.hash = MOVED;
2135 <                        synchronized (g) { g.notifyAll(); }
2136 <                    }
2137 <                }
2138 <            }
2139 <            else if ((fh = f.hash) == MOVED) {
2140 <                Object fk = f.key;
2141 <                if (fk instanceof TreeBin) {
2142 <                    TreeBin t = (TreeBin)fk;
2143 <                    boolean validated = false;
2144 <                    t.acquire(0);
2145 <                    try {
2146 <                        if (tabAt(tab, i) == f) {
2147 <                            validated = true;
2148 <                            splitTreeBin(nextTab, i, t);
2149 <                            setTabAt(tab, i, fwd);
2150 <                        }
2151 <                    } finally {
2152 <                        t.release(0);
2153 <                    }
2154 <                    if (!validated)
2155 <                        continue;
2156 <                }
2157 <            }
2158 <            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2159 <                boolean validated = false;
2160 <                try {              // split to lo and hi lists; copying as needed
2161 <                    if (tabAt(tab, i) == f) {
2162 <                        validated = true;
2163 <                        splitBin(nextTab, i, f);
2164 <                        setTabAt(tab, i, fwd);
2165 <                    }
2166 <                } finally {
2167 <                    if (!f.casHash(fh | LOCKED, fh)) {
2168 <                        f.hash = fh;
2169 <                        synchronized (f) { f.notifyAll(); };
2170 <                    }
2171 <                }
2172 <                if (!validated)
2173 <                    continue;
2174 <            }
2175 <            else {
2176 <                if (buffer == null) // initialize buffer for revisits
2177 <                    buffer = new int[TRANSFER_BUFFER_SIZE];
2178 <                if (bin < 0 && bufferIndex > 0) {
2179 <                    int j = buffer[--bufferIndex];
2180 <                    buffer[bufferIndex] = i;
2181 <                    i = j;         // swap with another bin
2182 <                    continue;
2183 <                }
2184 <                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2185 <                    f.tryAwaitLock(tab, i);
2186 <                    continue;      // no other options -- block
2187 <                }
2188 <                if (rev == null)   // initialize reverse-forwarder
2189 <                    rev = new Node(MOVED, tab, null, null);
2190 <                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2191 <                    continue;      // recheck before adding to list
2192 <                buffer[nbuffered++] = i;
2193 <                setTabAt(nextTab, i, rev);     // install place-holders
2194 <                setTabAt(nextTab, i + n, rev);
2195 <            }
2196 <
2197 <            if (bin > 0)
2198 <                i = --bin;
2199 <            else if (buffer != null && nbuffered > 0) {
2200 <                bin = -1;
2201 <                i = buffer[bufferIndex = --nbuffered];
2202 <            }
2203 <            else
2204 <                return nextTab;
2205 <        }
715 >     * Volatile access methods are used for table elements as well as
716 >     * elements of in-progress next table while resizing.  All uses of
717 >     * the tab arguments must be null checked by callers.  All callers
718 >     * also paranoically precheck that tab's length is not zero (or an
719 >     * equivalent check), thus ensuring that any index argument taking
720 >     * the form of a hash value anded with (length - 1) is a valid
721 >     * index.  Note that, to be correct wrt arbitrary concurrency
722 >     * errors by users, these checks must operate on local variables,
723 >     * which accounts for some odd-looking inline assignments below.
724 >     * Note that calls to setTabAt always occur within locked regions,
725 >     * and so do not need full volatile semantics, but still require
726 >     * ordering to maintain concurrent readability.
727 >     */
728 >
729 >    @SuppressWarnings("unchecked")
730 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
731 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
732 >    }
733 >
734 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
735 >                                        Node<K,V> c, Node<K,V> v) {
736 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
737 >    }
738 >    
739 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
740 >        U.putOrderedObject(tab, ((long)i << ASHIFT) + ABASE, v);
741      }
742 +    
743 +    /* ---------------- Fields -------------- */
744  
745      /**
746 <     * Splits a normal bin with list headed by e into lo and hi parts;
747 <     * installs in given table.
746 >     * The array of bins. Lazily initialized upon first insertion.
747 >     * Size is always a power of two. Accessed directly by iterators.
748       */
749 <    private static void splitBin(Node[] nextTab, int i, Node e) {
2213 <        int bit = nextTab.length >>> 1; // bit to split on
2214 <        int runBit = e.hash & bit;
2215 <        Node lastRun = e, lo = null, hi = null;
2216 <        for (Node p = e.next; p != null; p = p.next) {
2217 <            int b = p.hash & bit;
2218 <            if (b != runBit) {
2219 <                runBit = b;
2220 <                lastRun = p;
2221 <            }
2222 <        }
2223 <        if (runBit == 0)
2224 <            lo = lastRun;
2225 <        else
2226 <            hi = lastRun;
2227 <        for (Node p = e; p != lastRun; p = p.next) {
2228 <            int ph = p.hash & HASH_BITS;
2229 <            Object pk = p.key, pv = p.val;
2230 <            if ((ph & bit) == 0)
2231 <                lo = new Node(ph, pk, pv, lo);
2232 <            else
2233 <                hi = new Node(ph, pk, pv, hi);
2234 <        }
2235 <        setTabAt(nextTab, i, lo);
2236 <        setTabAt(nextTab, i + bit, hi);
2237 <    }
749 >    transient volatile Node<K,V>[] table;
750  
751      /**
752 <     * Splits a tree bin into lo and hi parts; installs in given table.
752 >     * The next table to use; non-null only while resizing.
753       */
754 <    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2243 <        int bit = nextTab.length >>> 1;
2244 <        TreeBin lt = new TreeBin();
2245 <        TreeBin ht = new TreeBin();
2246 <        int lc = 0, hc = 0;
2247 <        for (Node e = t.first; e != null; e = e.next) {
2248 <            int h = e.hash & HASH_BITS;
2249 <            Object k = e.key, v = e.val;
2250 <            if ((h & bit) == 0) {
2251 <                ++lc;
2252 <                lt.putTreeNode(h, k, v);
2253 <            }
2254 <            else {
2255 <                ++hc;
2256 <                ht.putTreeNode(h, k, v);
2257 <            }
2258 <        }
2259 <        Node ln, hn; // throw away trees if too small
2260 <        if (lc <= (TREE_THRESHOLD >>> 1)) {
2261 <            ln = null;
2262 <            for (Node p = lt.first; p != null; p = p.next)
2263 <                ln = new Node(p.hash, p.key, p.val, ln);
2264 <        }
2265 <        else
2266 <            ln = new Node(MOVED, lt, null, null);
2267 <        setTabAt(nextTab, i, ln);
2268 <        if (hc <= (TREE_THRESHOLD >>> 1)) {
2269 <            hn = null;
2270 <            for (Node p = ht.first; p != null; p = p.next)
2271 <                hn = new Node(p.hash, p.key, p.val, hn);
2272 <        }
2273 <        else
2274 <            hn = new Node(MOVED, ht, null, null);
2275 <        setTabAt(nextTab, i + bit, hn);
2276 <    }
754 >    private transient volatile Node<K,V>[] nextTable;
755  
756      /**
757 <     * Implementation for clear. Steps through each bin, removing all
758 <     * nodes.
757 >     * Base counter value, used mainly when there is no contention,
758 >     * but also as a fallback during table initialization
759 >     * races. Updated via CAS.
760       */
761 <    private final void internalClear() {
2283 <        long delta = 0L; // negative number of deletions
2284 <        int i = 0;
2285 <        Node[] tab = table;
2286 <        while (tab != null && i < tab.length) {
2287 <            int fh; Object fk;
2288 <            Node f = tabAt(tab, i);
2289 <            if (f == null)
2290 <                ++i;
2291 <            else if ((fh = f.hash) == MOVED) {
2292 <                if ((fk = f.key) instanceof TreeBin) {
2293 <                    TreeBin t = (TreeBin)fk;
2294 <                    t.acquire(0);
2295 <                    try {
2296 <                        if (tabAt(tab, i) == f) {
2297 <                            for (Node p = t.first; p != null; p = p.next) {
2298 <                                if (p.val != null) { // (currently always true)
2299 <                                    p.val = null;
2300 <                                    --delta;
2301 <                                }
2302 <                            }
2303 <                            t.first = null;
2304 <                            t.root = null;
2305 <                            ++i;
2306 <                        }
2307 <                    } finally {
2308 <                        t.release(0);
2309 <                    }
2310 <                }
2311 <                else
2312 <                    tab = (Node[])fk;
2313 <            }
2314 <            else if ((fh & LOCKED) != 0) {
2315 <                counter.add(delta); // opportunistically update count
2316 <                delta = 0L;
2317 <                f.tryAwaitLock(tab, i);
2318 <            }
2319 <            else if (f.casHash(fh, fh | LOCKED)) {
2320 <                try {
2321 <                    if (tabAt(tab, i) == f) {
2322 <                        for (Node e = f; e != null; e = e.next) {
2323 <                            if (e.val != null) {  // (currently always true)
2324 <                                e.val = null;
2325 <                                --delta;
2326 <                            }
2327 <                        }
2328 <                        setTabAt(tab, i, null);
2329 <                        ++i;
2330 <                    }
2331 <                } finally {
2332 <                    if (!f.casHash(fh | LOCKED, fh)) {
2333 <                        f.hash = fh;
2334 <                        synchronized (f) { f.notifyAll(); };
2335 <                    }
2336 <                }
2337 <            }
2338 <        }
2339 <        if (delta != 0)
2340 <            counter.add(delta);
2341 <    }
2342 <
2343 <    /* ----------------Table Traversal -------------- */
761 >    private transient volatile long baseCount;
762  
763      /**
764 <     * Encapsulates traversal for methods such as containsValue; also
765 <     * serves as a base class for other iterators and bulk tasks.
766 <     *
767 <     * At each step, the iterator snapshots the key ("nextKey") and
768 <     * value ("nextVal") of a valid node (i.e., one that, at point of
769 <     * snapshot, has a non-null user value). Because val fields can
770 <     * change (including to null, indicating deletion), field nextVal
771 <     * might not be accurate at point of use, but still maintains the
2354 <     * weak consistency property of holding a value that was once
2355 <     * valid. To support iterator.remove, the nextKey field is not
2356 <     * updated (nulled out) when the iterator cannot advance.
2357 <     *
2358 <     * Internal traversals directly access these fields, as in:
2359 <     * {@code while (it.advance() != null) { process(it.nextKey); }}
2360 <     *
2361 <     * Exported iterators must track whether the iterator has advanced
2362 <     * (in hasNext vs next) (by setting/checking/nulling field
2363 <     * nextVal), and then extract key, value, or key-value pairs as
2364 <     * return values of next().
2365 <     *
2366 <     * The iterator visits once each still-valid node that was
2367 <     * reachable upon iterator construction. It might miss some that
2368 <     * were added to a bin after the bin was visited, which is OK wrt
2369 <     * consistency guarantees. Maintaining this property in the face
2370 <     * of possible ongoing resizes requires a fair amount of
2371 <     * bookkeeping state that is difficult to optimize away amidst
2372 <     * volatile accesses.  Even so, traversal maintains reasonable
2373 <     * throughput.
2374 <     *
2375 <     * Normally, iteration proceeds bin-by-bin traversing lists.
2376 <     * However, if the table has been resized, then all future steps
2377 <     * must traverse both the bin at the current index as well as at
2378 <     * (index + baseSize); and so on for further resizings. To
2379 <     * paranoically cope with potential sharing by users of iterators
2380 <     * across threads, iteration terminates if a bounds checks fails
2381 <     * for a table read.
2382 <     *
2383 <     * This class extends ForkJoinTask to streamline parallel
2384 <     * iteration in bulk operations (see BulkTask). This adds only an
2385 <     * int of space overhead, which is close enough to negligible in
2386 <     * cases where it is not needed to not worry about it.  Because
2387 <     * ForkJoinTask is Serializable, but iterators need not be, we
2388 <     * need to add warning suppressions.
2389 <     */
2390 <    @SuppressWarnings("serial") static class Traverser<K,V,R> extends ForkJoinTask<R> {
2391 <        final ConcurrentHashMapV8<K, V> map;
2392 <        Node next;           // the next entry to use
2393 <        Object nextKey;      // cached key field of next
2394 <        Object nextVal;      // cached val field of next
2395 <        Node[] tab;          // current table; updated if resized
2396 <        int index;           // index of bin to use next
2397 <        int baseIndex;       // current index of initial table
2398 <        int baseLimit;       // index bound for initial table
2399 <        int baseSize;        // initial table size
764 >     * Table initialization and resizing control.  When negative, the
765 >     * table is being initialized or resized: -1 for initialization,
766 >     * else -(1 + the number of active resizing threads).  Otherwise,
767 >     * when table is null, holds the initial table size to use upon
768 >     * creation, or 0 for default. After initialization, holds the
769 >     * next element count value upon which to resize the table.
770 >     */
771 >    private transient volatile int sizeCtl;
772  
773 <        /** Creates iterator for all entries in the table. */
774 <        Traverser(ConcurrentHashMapV8<K, V> map) {
775 <            this.map = map;
776 <        }
773 >    /**
774 >     * The next table index (plus one) to split while resizing.
775 >     */
776 >    private transient volatile int transferIndex;
777  
778 <        /** Creates iterator for split() methods */
779 <        Traverser(Traverser<K,V,?> it) {
780 <            ConcurrentHashMapV8<K, V> m; Node[] t;
781 <            if ((m = this.map = it.map) == null)
2410 <                t = null;
2411 <            else if ((t = it.tab) == null && // force parent tab initialization
2412 <                     (t = it.tab = m.table) != null)
2413 <                it.baseLimit = it.baseSize = t.length;
2414 <            this.tab = t;
2415 <            this.baseSize = it.baseSize;
2416 <            it.baseLimit = this.index = this.baseIndex =
2417 <                ((this.baseLimit = it.baseLimit) + it.baseIndex + 1) >>> 1;
2418 <        }
778 >    /**
779 >     * The least available table index to split while resizing.
780 >     */
781 >    private transient volatile int transferOrigin;
782  
783 <        /**
784 <         * Advances next; returns nextVal or null if terminated.
785 <         * See above for explanation.
786 <         */
2424 <        final Object advance() {
2425 <            Node e = next;
2426 <            Object ev = null;
2427 <            outer: do {
2428 <                if (e != null)                  // advance past used/skipped node
2429 <                    e = e.next;
2430 <                while (e == null) {             // get to next non-null bin
2431 <                    ConcurrentHashMapV8<K, V> m;
2432 <                    Node[] t; int b, i, n; Object ek; // checks must use locals
2433 <                    if ((t = tab) != null)
2434 <                        n = t.length;
2435 <                    else if ((m = map) != null && (t = tab = m.table) != null)
2436 <                        n = baseLimit = baseSize = t.length;
2437 <                    else
2438 <                        break outer;
2439 <                    if ((b = baseIndex) >= baseLimit ||
2440 <                        (i = index) < 0 || i >= n)
2441 <                        break outer;
2442 <                    if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2443 <                        if ((ek = e.key) instanceof TreeBin)
2444 <                            e = ((TreeBin)ek).first;
2445 <                        else {
2446 <                            tab = (Node[])ek;
2447 <                            continue;           // restarts due to null val
2448 <                        }
2449 <                    }                           // visit upper slots if present
2450 <                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2451 <                }
2452 <                nextKey = e.key;
2453 <            } while ((ev = e.val) == null);    // skip deleted or special nodes
2454 <            next = e;
2455 <            return nextVal = ev;
2456 <        }
783 >    /**
784 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
785 >     */
786 >    private transient volatile int cellsBusy;
787  
788 <        public final void remove() {
789 <            Object k = nextKey;
790 <            if (k == null && (advance() == null || (k = nextKey) == null))
791 <                throw new IllegalStateException();
2462 <            map.internalReplace(k, null, null);
2463 <        }
788 >    /**
789 >     * Table of counter cells. When non-null, size is a power of 2.
790 >     */
791 >    private transient volatile CounterCell[] counterCells;
792  
793 <        public final boolean hasNext() {
794 <            return nextVal != null || advance() != null;
795 <        }
793 >    // views
794 >    private transient KeySetView<K,V> keySet;
795 >    private transient ValuesView<K,V> values;
796 >    private transient EntrySetView<K,V> entrySet;
797  
2469        public final boolean hasMoreElements() { return hasNext(); }
2470        public final void setRawResult(Object x) { }
2471        public R getRawResult() { return null; }
2472        public boolean exec() { return true; }
2473    }
798  
799      /* ---------------- Public operations -------------- */
800  
# Line 2478 | Line 802 | public class ConcurrentHashMapV8<K, V>
802       * Creates a new, empty map with the default initial table size (16).
803       */
804      public ConcurrentHashMapV8() {
2481        this.counter = new LongAdder();
805      }
806  
807      /**
# Line 2497 | Line 820 | public class ConcurrentHashMapV8<K, V>
820          int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
821                     MAXIMUM_CAPACITY :
822                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2500        this.counter = new LongAdder();
823          this.sizeCtl = cap;
824      }
825  
# Line 2507 | Line 829 | public class ConcurrentHashMapV8<K, V>
829       * @param m the map
830       */
831      public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2510        this.counter = new LongAdder();
832          this.sizeCtl = DEFAULT_CAPACITY;
833 <        internalPutAll(m);
833 >        putAll(m);
834      }
835  
836      /**
# Line 2550 | Line 871 | public class ConcurrentHashMapV8<K, V>
871       * nonpositive
872       */
873      public ConcurrentHashMapV8(int initialCapacity,
874 <                               float loadFactor, int concurrencyLevel) {
874 >                             float loadFactor, int concurrencyLevel) {
875          if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
876              throw new IllegalArgumentException();
877          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
# Line 2558 | Line 879 | public class ConcurrentHashMapV8<K, V>
879          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
880          int cap = (size >= (long)MAXIMUM_CAPACITY) ?
881              MAXIMUM_CAPACITY : tableSizeFor((int)size);
2561        this.counter = new LongAdder();
882          this.sizeCtl = cap;
883      }
884  
885 <    /**
2566 <     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2567 <     * from the given type to {@code Boolean.TRUE}.
2568 <     *
2569 <     * @return the new set
2570 <     */
2571 <    public static <K> KeySetView<K,Boolean> newKeySet() {
2572 <        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2573 <                                      Boolean.TRUE);
2574 <    }
2575 <
2576 <    /**
2577 <     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2578 <     * from the given type to {@code Boolean.TRUE}.
2579 <     *
2580 <     * @param initialCapacity The implementation performs internal
2581 <     * sizing to accommodate this many elements.
2582 <     * @throws IllegalArgumentException if the initial capacity of
2583 <     * elements is negative
2584 <     * @return the new set
2585 <     */
2586 <    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2587 <        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(initialCapacity),
2588 <                                      Boolean.TRUE);
2589 <    }
2590 <
2591 <    /**
2592 <     * {@inheritDoc}
2593 <     */
2594 <    public boolean isEmpty() {
2595 <        return counter.sum() <= 0L; // ignore transient negative values
2596 <    }
885 >    // Original (since JDK1.2) Map methods
886  
887      /**
888       * {@inheritDoc}
889       */
890      public int size() {
891 <        long n = counter.sum();
891 >        long n = sumCount();
892          return ((n < 0L) ? 0 :
893                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
894                  (int)n);
895      }
896  
897      /**
898 <     * Returns the number of mappings. This method should be used
2610 <     * instead of {@link #size} because a ConcurrentHashMapV8 may
2611 <     * contain more mappings than can be represented as an int. The
2612 <     * value returned is a snapshot; the actual count may differ if
2613 <     * there are ongoing concurrent insertions or removals.
2614 <     *
2615 <     * @return the number of mappings
898 >     * {@inheritDoc}
899       */
900 <    public long mappingCount() {
901 <        long n = counter.sum();
2619 <        return (n < 0L) ? 0L : n; // ignore transient negative values
900 >    public boolean isEmpty() {
901 >        return sumCount() <= 0L; // ignore transient negative values
902      }
903  
904      /**
# Line 2630 | Line 912 | public class ConcurrentHashMapV8<K, V>
912       *
913       * @throws NullPointerException if the specified key is null
914       */
915 <    @SuppressWarnings("unchecked") public V get(Object key) {
916 <        if (key == null)
917 <            throw new NullPointerException();
918 <        return (V)internalGet(key);
919 <    }
920 <
921 <    /**
922 <     * Returns the value to which the specified key is mapped,
923 <     * or the given defaultValue if this map contains no mapping for the key.
924 <     *
925 <     * @param key the key
926 <     * @param defaultValue the value to return if this map contains
927 <     * no mapping for the given key
928 <     * @return the mapping for the key, if present; else the defaultValue
929 <     * @throws NullPointerException if the specified key is null
930 <     */
931 <    @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
932 <        if (key == null)
2651 <            throw new NullPointerException();
2652 <        V v = (V) internalGet(key);
2653 <        return v == null ? defaultValue : v;
915 >    public V get(Object key) {
916 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
917 >        int h = spread(key.hashCode());
918 >        if ((tab = table) != null && (n = tab.length) > 0 &&
919 >            (e = tabAt(tab, (n - 1) & h)) != null) {
920 >            if ((eh = e.hash) == h) {
921 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
922 >                    return e.val;
923 >            }
924 >            else if (eh < 0)
925 >                return (p = e.find(h, key)) != null ? p.val : null;
926 >            while ((e = e.next) != null) {
927 >                if (e.hash == h &&
928 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
929 >                    return e.val;
930 >            }
931 >        }
932 >        return null;
933      }
934  
935      /**
936       * Tests if the specified object is a key in this table.
937       *
938 <     * @param  key   possible key
938 >     * @param  key possible key
939       * @return {@code true} if and only if the specified object
940       *         is a key in this table, as determined by the
941       *         {@code equals} method; {@code false} otherwise
942       * @throws NullPointerException if the specified key is null
943       */
944      public boolean containsKey(Object key) {
945 <        if (key == null)
2667 <            throw new NullPointerException();
2668 <        return internalGet(key) != null;
945 >        return get(key) != null;
946      }
947  
948      /**
# Line 2681 | Line 958 | public class ConcurrentHashMapV8<K, V>
958      public boolean containsValue(Object value) {
959          if (value == null)
960              throw new NullPointerException();
961 <        Object v;
962 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
963 <        while ((v = it.advance()) != null) {
964 <            if (v == value || value.equals(v))
965 <                return true;
961 >        Node<K,V>[] t;
962 >        if ((t = table) != null) {
963 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
964 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
965 >                V v;
966 >                if ((v = p.val) == value || (v != null && value.equals(v)))
967 >                    return true;
968 >            }
969          }
970          return false;
971      }
972  
973      /**
2694     * Legacy method testing if some key maps into the specified value
2695     * in this table.  This method is identical in functionality to
2696     * {@link #containsValue}, and exists solely to ensure
2697     * full compatibility with class {@link java.util.Hashtable},
2698     * which supported this method prior to introduction of the
2699     * Java Collections framework.
2700     *
2701     * @param  value a value to search for
2702     * @return {@code true} if and only if some key maps to the
2703     *         {@code value} argument in this table as
2704     *         determined by the {@code equals} method;
2705     *         {@code false} otherwise
2706     * @throws NullPointerException if the specified value is null
2707     */
2708    public boolean contains(Object value) {
2709        return containsValue(value);
2710    }
2711
2712    /**
974       * Maps the specified key to the specified value in this table.
975       * Neither the key nor the value can be null.
976       *
# Line 2722 | Line 983 | public class ConcurrentHashMapV8<K, V>
983       *         {@code null} if there was no mapping for {@code key}
984       * @throws NullPointerException if the specified key or value is null
985       */
986 <    @SuppressWarnings("unchecked") public V put(K key, V value) {
987 <        if (key == null || value == null)
986 >    public V put(K key, V value) {
987 >        return putVal(key, value, false);
988 >    }
989 >
990 >    /** Implementation for put and putIfAbsent */
991 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
992 >        if (key == null || value == null) throw new NullPointerException();
993 >        int hash = spread(key.hashCode());
994 >        int binCount = 0;
995 >        for (Node<K,V>[] tab = table;;) {
996 >            Node<K,V> f; int n, i, fh;
997 >            if (tab == null || (n = tab.length) == 0)
998 >                tab = initTable();
999 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1000 >                if (casTabAt(tab, i, null,
1001 >                             new Node<K,V>(hash, key, value, null)))
1002 >                    break;                   // no lock when adding to empty bin
1003 >            }
1004 >            else if ((fh = f.hash) == MOVED)
1005 >                tab = helpTransfer(tab, f);
1006 >            else {
1007 >                V oldVal = null;
1008 >                synchronized (f) {
1009 >                    if (tabAt(tab, i) == f) {
1010 >                        if (fh >= 0) {
1011 >                            binCount = 1;
1012 >                            for (Node<K,V> e = f;; ++binCount) {
1013 >                                K ek;
1014 >                                if (e.hash == hash &&
1015 >                                    ((ek = e.key) == key ||
1016 >                                     (ek != null && key.equals(ek)))) {
1017 >                                    oldVal = e.val;
1018 >                                    if (!onlyIfAbsent)
1019 >                                        e.val = value;
1020 >                                    break;
1021 >                                }
1022 >                                Node<K,V> pred = e;
1023 >                                if ((e = e.next) == null) {
1024 >                                    pred.next = new Node<K,V>(hash, key,
1025 >                                                              value, null);
1026 >                                    break;
1027 >                                }
1028 >                            }
1029 >                        }
1030 >                        else if (f instanceof TreeBin) {
1031 >                            Node<K,V> p;
1032 >                            binCount = 2;
1033 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1034 >                                                           value)) != null) {
1035 >                                oldVal = p.val;
1036 >                                if (!onlyIfAbsent)
1037 >                                    p.val = value;
1038 >                            }
1039 >                        }
1040 >                    }
1041 >                }
1042 >                if (binCount != 0) {
1043 >                    if (binCount >= TREEIFY_THRESHOLD)
1044 >                        treeifyBin(tab, i);
1045 >                    if (oldVal != null)
1046 >                        return oldVal;
1047 >                    break;
1048 >                }
1049 >            }
1050 >        }
1051 >        addCount(1L, binCount);
1052 >        return null;
1053 >    }
1054 >
1055 >    /**
1056 >     * Copies all of the mappings from the specified map to this one.
1057 >     * These mappings replace any mappings that this map had for any of the
1058 >     * keys currently in the specified map.
1059 >     *
1060 >     * @param m mappings to be stored in this map
1061 >     */
1062 >    public void putAll(Map<? extends K, ? extends V> m) {
1063 >        tryPresize(m.size());
1064 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1065 >            putVal(e.getKey(), e.getValue(), false);
1066 >    }
1067 >
1068 >    /**
1069 >     * Removes the key (and its corresponding value) from this map.
1070 >     * This method does nothing if the key is not in the map.
1071 >     *
1072 >     * @param  key the key that needs to be removed
1073 >     * @return the previous value associated with {@code key}, or
1074 >     *         {@code null} if there was no mapping for {@code key}
1075 >     * @throws NullPointerException if the specified key is null
1076 >     */
1077 >    public V remove(Object key) {
1078 >        return replaceNode(key, null, null);
1079 >    }
1080 >
1081 >    /**
1082 >     * Implementation for the four public remove/replace methods:
1083 >     * Replaces node value with v, conditional upon match of cv if
1084 >     * non-null.  If resulting value is null, delete.
1085 >     */
1086 >    final V replaceNode(Object key, V value, Object cv) {
1087 >        int hash = spread(key.hashCode());
1088 >        for (Node<K,V>[] tab = table;;) {
1089 >            Node<K,V> f; int n, i, fh;
1090 >            if (tab == null || (n = tab.length) == 0 ||
1091 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1092 >                break;
1093 >            else if ((fh = f.hash) == MOVED)
1094 >                tab = helpTransfer(tab, f);
1095 >            else {
1096 >                V oldVal = null;
1097 >                boolean validated = false;
1098 >                synchronized (f) {
1099 >                    if (tabAt(tab, i) == f) {
1100 >                        if (fh >= 0) {
1101 >                            validated = true;
1102 >                            for (Node<K,V> e = f, pred = null;;) {
1103 >                                K ek;
1104 >                                if (e.hash == hash &&
1105 >                                    ((ek = e.key) == key ||
1106 >                                     (ek != null && key.equals(ek)))) {
1107 >                                    V ev = e.val;
1108 >                                    if (cv == null || cv == ev ||
1109 >                                        (ev != null && cv.equals(ev))) {
1110 >                                        oldVal = ev;
1111 >                                        if (value != null)
1112 >                                            e.val = value;
1113 >                                        else if (pred != null)
1114 >                                            pred.next = e.next;
1115 >                                        else
1116 >                                            setTabAt(tab, i, e.next);
1117 >                                    }
1118 >                                    break;
1119 >                                }
1120 >                                pred = e;
1121 >                                if ((e = e.next) == null)
1122 >                                    break;
1123 >                            }
1124 >                        }
1125 >                        else if (f instanceof TreeBin) {
1126 >                            validated = true;
1127 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1128 >                            TreeNode<K,V> r, p;
1129 >                            if ((r = t.root) != null &&
1130 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1131 >                                V pv = p.val;
1132 >                                if (cv == null || cv == pv ||
1133 >                                    (pv != null && cv.equals(pv))) {
1134 >                                    oldVal = pv;
1135 >                                    if (value != null)
1136 >                                        p.val = value;
1137 >                                    else if (t.removeTreeNode(p))
1138 >                                        setTabAt(tab, i, untreeify(t.first));
1139 >                                }
1140 >                            }
1141 >                        }
1142 >                    }
1143 >                }
1144 >                if (validated) {
1145 >                    if (oldVal != null) {
1146 >                        if (value == null)
1147 >                            addCount(-1L, -1);
1148 >                        return oldVal;
1149 >                    }
1150 >                    break;
1151 >                }
1152 >            }
1153 >        }
1154 >        return null;
1155 >    }
1156 >
1157 >    /**
1158 >     * Removes all of the mappings from this map.
1159 >     */
1160 >    public void clear() {
1161 >        long delta = 0L; // negative number of deletions
1162 >        int i = 0;
1163 >        Node<K,V>[] tab = table;
1164 >        while (tab != null && i < tab.length) {
1165 >            int fh;
1166 >            Node<K,V> f = tabAt(tab, i);
1167 >            if (f == null)
1168 >                ++i;
1169 >            else if ((fh = f.hash) == MOVED) {
1170 >                tab = helpTransfer(tab, f);
1171 >                i = 0; // restart
1172 >            }
1173 >            else {
1174 >                synchronized (f) {
1175 >                    if (tabAt(tab, i) == f) {
1176 >                        Node<K,V> p = (fh >= 0 ? f :
1177 >                                       (f instanceof TreeBin) ?
1178 >                                       ((TreeBin<K,V>)f).first : null);
1179 >                        while (p != null) {
1180 >                            --delta;
1181 >                            p = p.next;
1182 >                        }
1183 >                        setTabAt(tab, i++, null);
1184 >                    }
1185 >                }
1186 >            }
1187 >        }
1188 >        if (delta != 0L)
1189 >            addCount(delta, -1);
1190 >    }
1191 >
1192 >    /**
1193 >     * Returns a {@link Set} view of the keys contained in this map.
1194 >     * The set is backed by the map, so changes to the map are
1195 >     * reflected in the set, and vice-versa. The set supports element
1196 >     * removal, which removes the corresponding mapping from this map,
1197 >     * via the {@code Iterator.remove}, {@code Set.remove},
1198 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1199 >     * operations.  It does not support the {@code add} or
1200 >     * {@code addAll} operations.
1201 >     *
1202 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1203 >     * that will never throw {@link ConcurrentModificationException},
1204 >     * and guarantees to traverse elements as they existed upon
1205 >     * construction of the iterator, and may (but is not guaranteed to)
1206 >     * reflect any modifications subsequent to construction.
1207 >     *
1208 >     * @return the set view
1209 >     */
1210 >    public KeySetView<K,V> keySet() {
1211 >        KeySetView<K,V> ks;
1212 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1213 >    }
1214 >
1215 >    /**
1216 >     * Returns a {@link Collection} view of the values contained in this map.
1217 >     * The collection is backed by the map, so changes to the map are
1218 >     * reflected in the collection, and vice-versa.  The collection
1219 >     * supports element removal, which removes the corresponding
1220 >     * mapping from this map, via the {@code Iterator.remove},
1221 >     * {@code Collection.remove}, {@code removeAll},
1222 >     * {@code retainAll}, and {@code clear} operations.  It does not
1223 >     * support the {@code add} or {@code addAll} operations.
1224 >     *
1225 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1226 >     * that will never throw {@link ConcurrentModificationException},
1227 >     * and guarantees to traverse elements as they existed upon
1228 >     * construction of the iterator, and may (but is not guaranteed to)
1229 >     * reflect any modifications subsequent to construction.
1230 >     *
1231 >     * @return the collection view
1232 >     */
1233 >    public Collection<V> values() {
1234 >        ValuesView<K,V> vs;
1235 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1236 >    }
1237 >
1238 >    /**
1239 >     * Returns a {@link Set} view of the mappings contained in this map.
1240 >     * The set is backed by the map, so changes to the map are
1241 >     * reflected in the set, and vice-versa.  The set supports element
1242 >     * removal, which removes the corresponding mapping from the map,
1243 >     * via the {@code Iterator.remove}, {@code Set.remove},
1244 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1245 >     * operations.
1246 >     *
1247 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1248 >     * that will never throw {@link ConcurrentModificationException},
1249 >     * and guarantees to traverse elements as they existed upon
1250 >     * construction of the iterator, and may (but is not guaranteed to)
1251 >     * reflect any modifications subsequent to construction.
1252 >     *
1253 >     * @return the set view
1254 >     */
1255 >    public Set<Map.Entry<K,V>> entrySet() {
1256 >        EntrySetView<K,V> es;
1257 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1258 >    }
1259 >
1260 >    /**
1261 >     * Returns the hash code value for this {@link Map}, i.e.,
1262 >     * the sum of, for each key-value pair in the map,
1263 >     * {@code key.hashCode() ^ value.hashCode()}.
1264 >     *
1265 >     * @return the hash code value for this map
1266 >     */
1267 >    public int hashCode() {
1268 >        int h = 0;
1269 >        Node<K,V>[] t;
1270 >        if ((t = table) != null) {
1271 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1272 >            for (Node<K,V> p; (p = it.advance()) != null; )
1273 >                h += p.key.hashCode() ^ p.val.hashCode();
1274 >        }
1275 >        return h;
1276 >    }
1277 >
1278 >    /**
1279 >     * Returns a string representation of this map.  The string
1280 >     * representation consists of a list of key-value mappings (in no
1281 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1282 >     * mappings are separated by the characters {@code ", "} (comma
1283 >     * and space).  Each key-value mapping is rendered as the key
1284 >     * followed by an equals sign ("{@code =}") followed by the
1285 >     * associated value.
1286 >     *
1287 >     * @return a string representation of this map
1288 >     */
1289 >    public String toString() {
1290 >        Node<K,V>[] t;
1291 >        int f = (t = table) == null ? 0 : t.length;
1292 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1293 >        StringBuilder sb = new StringBuilder();
1294 >        sb.append('{');
1295 >        Node<K,V> p;
1296 >        if ((p = it.advance()) != null) {
1297 >            for (;;) {
1298 >                K k = p.key;
1299 >                V v = p.val;
1300 >                sb.append(k == this ? "(this Map)" : k);
1301 >                sb.append('=');
1302 >                sb.append(v == this ? "(this Map)" : v);
1303 >                if ((p = it.advance()) == null)
1304 >                    break;
1305 >                sb.append(',').append(' ');
1306 >            }
1307 >        }
1308 >        return sb.append('}').toString();
1309 >    }
1310 >
1311 >    /**
1312 >     * Compares the specified object with this map for equality.
1313 >     * Returns {@code true} if the given object is a map with the same
1314 >     * mappings as this map.  This operation may return misleading
1315 >     * results if either map is concurrently modified during execution
1316 >     * of this method.
1317 >     *
1318 >     * @param o object to be compared for equality with this map
1319 >     * @return {@code true} if the specified object is equal to this map
1320 >     */
1321 >    public boolean equals(Object o) {
1322 >        if (o != this) {
1323 >            if (!(o instanceof Map))
1324 >                return false;
1325 >            Map<?,?> m = (Map<?,?>) o;
1326 >            Node<K,V>[] t;
1327 >            int f = (t = table) == null ? 0 : t.length;
1328 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1329 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1330 >                V val = p.val;
1331 >                Object v = m.get(p.key);
1332 >                if (v == null || (v != val && !v.equals(val)))
1333 >                    return false;
1334 >            }
1335 >            for (Map.Entry<?,?> e : m.entrySet()) {
1336 >                Object mk, mv, v;
1337 >                if ((mk = e.getKey()) == null ||
1338 >                    (mv = e.getValue()) == null ||
1339 >                    (v = get(mk)) == null ||
1340 >                    (mv != v && !mv.equals(v)))
1341 >                    return false;
1342 >            }
1343 >        }
1344 >        return true;
1345 >    }
1346 >
1347 >    /**
1348 >     * Stripped-down version of helper class used in previous version,
1349 >     * declared for the sake of serialization compatibility
1350 >     */
1351 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1352 >        private static final long serialVersionUID = 2249069246763182397L;
1353 >        final float loadFactor;
1354 >        Segment(float lf) { this.loadFactor = lf; }
1355 >    }
1356 >
1357 >    /**
1358 >     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1359 >     * stream (i.e., serializes it).
1360 >     * @param s the stream
1361 >     * @serialData
1362 >     * the key (Object) and value (Object)
1363 >     * for each key-value mapping, followed by a null pair.
1364 >     * The key-value mappings are emitted in no particular order.
1365 >     */
1366 >    private void writeObject(java.io.ObjectOutputStream s)
1367 >        throws java.io.IOException {
1368 >        // For serialization compatibility
1369 >        // Emulate segment calculation from previous version of this class
1370 >        int sshift = 0;
1371 >        int ssize = 1;
1372 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1373 >            ++sshift;
1374 >            ssize <<= 1;
1375 >        }
1376 >        int segmentShift = 32 - sshift;
1377 >        int segmentMask = ssize - 1;
1378 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1379 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1380 >        for (int i = 0; i < segments.length; ++i)
1381 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1382 >        s.putFields().put("segments", segments);
1383 >        s.putFields().put("segmentShift", segmentShift);
1384 >        s.putFields().put("segmentMask", segmentMask);
1385 >        s.writeFields();
1386 >
1387 >        Node<K,V>[] t;
1388 >        if ((t = table) != null) {
1389 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1390 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1391 >                s.writeObject(p.key);
1392 >                s.writeObject(p.val);
1393 >            }
1394 >        }
1395 >        s.writeObject(null);
1396 >        s.writeObject(null);
1397 >        segments = null; // throw away
1398 >    }
1399 >
1400 >    /**
1401 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1402 >     * @param s the stream
1403 >     */
1404 >    private void readObject(java.io.ObjectInputStream s)
1405 >        throws java.io.IOException, ClassNotFoundException {
1406 >        /*
1407 >         * To improve performance in typical cases, we create nodes
1408 >         * while reading, then place in table once size is known.
1409 >         * However, we must also validate uniqueness and deal with
1410 >         * overpopulated bins while doing so, which requires
1411 >         * specialized versions of putVal mechanics.
1412 >         */
1413 >        sizeCtl = -1; // force exclusion for table construction
1414 >        s.defaultReadObject();
1415 >        long size = 0L;
1416 >        Node<K,V> p = null;
1417 >        for (;;) {
1418 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1419 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1420 >            if (k != null && v != null) {
1421 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1422 >                ++size;
1423 >            }
1424 >            else
1425 >                break;
1426 >        }
1427 >        if (size == 0L)
1428 >            sizeCtl = 0;
1429 >        else {
1430 >            int n;
1431 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1432 >                n = MAXIMUM_CAPACITY;
1433 >            else {
1434 >                int sz = (int)size;
1435 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1436 >            }
1437 >            @SuppressWarnings({"rawtypes","unchecked"})
1438 >                Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1439 >            int mask = n - 1;
1440 >            long added = 0L;
1441 >            while (p != null) {
1442 >                boolean insertAtFront;
1443 >                Node<K,V> next = p.next, first;
1444 >                int h = p.hash, j = h & mask;
1445 >                if ((first = tabAt(tab, j)) == null)
1446 >                    insertAtFront = true;
1447 >                else {
1448 >                    K k = p.key;
1449 >                    if (first.hash < 0) {
1450 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1451 >                        if (t.putTreeVal(h, k, p.val) == null)
1452 >                            ++added;
1453 >                        insertAtFront = false;
1454 >                    }
1455 >                    else {
1456 >                        int binCount = 0;
1457 >                        insertAtFront = true;
1458 >                        Node<K,V> q; K qk;
1459 >                        for (q = first; q != null; q = q.next) {
1460 >                            if (q.hash == h &&
1461 >                                ((qk = q.key) == k ||
1462 >                                 (qk != null && k.equals(qk)))) {
1463 >                                insertAtFront = false;
1464 >                                break;
1465 >                            }
1466 >                            ++binCount;
1467 >                        }
1468 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1469 >                            insertAtFront = false;
1470 >                            ++added;
1471 >                            p.next = first;
1472 >                            TreeNode<K,V> hd = null, tl = null;
1473 >                            for (q = p; q != null; q = q.next) {
1474 >                                TreeNode<K,V> t = new TreeNode<K,V>
1475 >                                    (q.hash, q.key, q.val, null, null);
1476 >                                if ((t.prev = tl) == null)
1477 >                                    hd = t;
1478 >                                else
1479 >                                    tl.next = t;
1480 >                                tl = t;
1481 >                            }
1482 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1483 >                        }
1484 >                    }
1485 >                }
1486 >                if (insertAtFront) {
1487 >                    ++added;
1488 >                    p.next = first;
1489 >                    setTabAt(tab, j, p);
1490 >                }
1491 >                p = next;
1492 >            }
1493 >            table = tab;
1494 >            sizeCtl = n - (n >>> 2);
1495 >            baseCount = added;
1496 >        }
1497 >    }
1498 >
1499 >    // ConcurrentMap methods
1500 >
1501 >    /**
1502 >     * {@inheritDoc}
1503 >     *
1504 >     * @return the previous value associated with the specified key,
1505 >     *         or {@code null} if there was no mapping for the key
1506 >     * @throws NullPointerException if the specified key or value is null
1507 >     */
1508 >    public V putIfAbsent(K key, V value) {
1509 >        return putVal(key, value, true);
1510 >    }
1511 >
1512 >    /**
1513 >     * {@inheritDoc}
1514 >     *
1515 >     * @throws NullPointerException if the specified key is null
1516 >     */
1517 >    public boolean remove(Object key, Object value) {
1518 >        if (key == null)
1519 >            throw new NullPointerException();
1520 >        return value != null && replaceNode(key, null, value) != null;
1521 >    }
1522 >
1523 >    /**
1524 >     * {@inheritDoc}
1525 >     *
1526 >     * @throws NullPointerException if any of the arguments are null
1527 >     */
1528 >    public boolean replace(K key, V oldValue, V newValue) {
1529 >        if (key == null || oldValue == null || newValue == null)
1530              throw new NullPointerException();
1531 <        return (V)internalPut(key, value);
1531 >        return replaceNode(key, newValue, oldValue) != null;
1532      }
1533  
1534      /**
# Line 2735 | Line 1538 | public class ConcurrentHashMapV8<K, V>
1538       *         or {@code null} if there was no mapping for the key
1539       * @throws NullPointerException if the specified key or value is null
1540       */
1541 <    @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
1541 >    public V replace(K key, V value) {
1542          if (key == null || value == null)
1543              throw new NullPointerException();
1544 <        return (V)internalPutIfAbsent(key, value);
1544 >        return replaceNode(key, value, null);
1545      }
1546  
1547 +    // Overrides of JDK8+ Map extension method defaults
1548 +
1549      /**
1550 <     * Copies all of the mappings from the specified map to this one.
1551 <     * These mappings replace any mappings that this map had for any of the
1552 <     * keys currently in the specified map.
1550 >     * Returns the value to which the specified key is mapped, or the
1551 >     * given default value if this map contains no mapping for the
1552 >     * key.
1553       *
1554 <     * @param m mappings to be stored in this map
1554 >     * @param key the key whose associated value is to be returned
1555 >     * @param defaultValue the value to return if this map contains
1556 >     * no mapping for the given key
1557 >     * @return the mapping for the key, if present; else the default value
1558 >     * @throws NullPointerException if the specified key is null
1559       */
1560 <    public void putAll(Map<? extends K, ? extends V> m) {
1561 <        internalPutAll(m);
1560 >    public V getOrDefault(Object key, V defaultValue) {
1561 >        V v;
1562 >        return (v = get(key)) == null ? defaultValue : v;
1563 >    }
1564 >
1565 >    public void forEach(BiAction<? super K, ? super V> action) {
1566 >        if (action == null) throw new NullPointerException();
1567 >        Node<K,V>[] t;
1568 >        if ((t = table) != null) {
1569 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1570 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1571 >                action.apply(p.key, p.val);
1572 >            }
1573 >        }
1574 >    }
1575 >
1576 >    public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1577 >        if (function == null) throw new NullPointerException();
1578 >        Node<K,V>[] t;
1579 >        if ((t = table) != null) {
1580 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1581 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1582 >                V oldValue = p.val;
1583 >                for (K key = p.key;;) {
1584 >                    V newValue = function.apply(key, oldValue);
1585 >                    if (newValue == null)
1586 >                        throw new NullPointerException();
1587 >                    if (replaceNode(key, newValue, oldValue) != null ||
1588 >                        (oldValue = get(key)) == null)
1589 >                        break;
1590 >                }
1591 >            }
1592 >        }
1593      }
1594  
1595      /**
1596       * If the specified key is not already associated with a value,
1597 <     * computes its value using the given mappingFunction and enters
1598 <     * it into the map unless null.  This is equivalent to
1599 <     * <pre> {@code
1600 <     * if (map.containsKey(key))
1601 <     *   return map.get(key);
1602 <     * value = mappingFunction.apply(key);
1603 <     * if (value != null)
2764 <     *   map.put(key, value);
2765 <     * return value;}</pre>
2766 <     *
2767 <     * except that the action is performed atomically.  If the
2768 <     * function returns {@code null} no mapping is recorded. If the
2769 <     * function itself throws an (unchecked) exception, the exception
2770 <     * is rethrown to its caller, and no mapping is recorded.  Some
2771 <     * attempted update operations on this map by other threads may be
2772 <     * blocked while computation is in progress, so the computation
2773 <     * should be short and simple, and must not attempt to update any
2774 <     * other mappings of this Map. The most appropriate usage is to
2775 <     * construct a new object serving as an initial mapped value, or
2776 <     * memoized result, as in:
2777 <     *
2778 <     *  <pre> {@code
2779 <     * map.computeIfAbsent(key, new Fun<K, V>() {
2780 <     *   public V map(K k) { return new Value(f(k)); }});}</pre>
1597 >     * attempts to compute its value using the given mapping function
1598 >     * and enters it into this map unless {@code null}.  The entire
1599 >     * method invocation is performed atomically, so the function is
1600 >     * applied at most once per key.  Some attempted update operations
1601 >     * on this map by other threads may be blocked while computation
1602 >     * is in progress, so the computation should be short and simple,
1603 >     * and must not attempt to update any other mappings of this map.
1604       *
1605       * @param key key with which the specified value is to be associated
1606       * @param mappingFunction the function to compute a value
# Line 2791 | Line 1614 | public class ConcurrentHashMapV8<K, V>
1614       * @throws RuntimeException or Error if the mappingFunction does so,
1615       *         in which case the mapping is left unestablished
1616       */
1617 <    @SuppressWarnings("unchecked") public V computeIfAbsent
2795 <        (K key, Fun<? super K, ? extends V> mappingFunction) {
1617 >    public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1618          if (key == null || mappingFunction == null)
1619              throw new NullPointerException();
1620 <        return (V)internalComputeIfAbsent(key, mappingFunction);
1620 >        int h = spread(key.hashCode());
1621 >        V val = null;
1622 >        int binCount = 0;
1623 >        for (Node<K,V>[] tab = table;;) {
1624 >            Node<K,V> f; int n, i, fh;
1625 >            if (tab == null || (n = tab.length) == 0)
1626 >                tab = initTable();
1627 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1628 >                Node<K,V> r = new ReservationNode<K,V>();
1629 >                synchronized (r) {
1630 >                    if (casTabAt(tab, i, null, r)) {
1631 >                        binCount = 1;
1632 >                        Node<K,V> node = null;
1633 >                        try {
1634 >                            if ((val = mappingFunction.apply(key)) != null)
1635 >                                node = new Node<K,V>(h, key, val, null);
1636 >                        } finally {
1637 >                            setTabAt(tab, i, node);
1638 >                        }
1639 >                    }
1640 >                }
1641 >                if (binCount != 0)
1642 >                    break;
1643 >            }
1644 >            else if ((fh = f.hash) == MOVED)
1645 >                tab = helpTransfer(tab, f);
1646 >            else {
1647 >                boolean added = false;
1648 >                synchronized (f) {
1649 >                    if (tabAt(tab, i) == f) {
1650 >                        if (fh >= 0) {
1651 >                            binCount = 1;
1652 >                            for (Node<K,V> e = f;; ++binCount) {
1653 >                                K ek; V ev;
1654 >                                if (e.hash == h &&
1655 >                                    ((ek = e.key) == key ||
1656 >                                     (ek != null && key.equals(ek)))) {
1657 >                                    val = e.val;
1658 >                                    break;
1659 >                                }
1660 >                                Node<K,V> pred = e;
1661 >                                if ((e = e.next) == null) {
1662 >                                    if ((val = mappingFunction.apply(key)) != null) {
1663 >                                        added = true;
1664 >                                        pred.next = new Node<K,V>(h, key, val, null);
1665 >                                    }
1666 >                                    break;
1667 >                                }
1668 >                            }
1669 >                        }
1670 >                        else if (f instanceof TreeBin) {
1671 >                            binCount = 2;
1672 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1673 >                            TreeNode<K,V> r, p;
1674 >                            if ((r = t.root) != null &&
1675 >                                (p = r.findTreeNode(h, key, null)) != null)
1676 >                                val = p.val;
1677 >                            else if ((val = mappingFunction.apply(key)) != null) {
1678 >                                added = true;
1679 >                                t.putTreeVal(h, key, val);
1680 >                            }
1681 >                        }
1682 >                    }
1683 >                }
1684 >                if (binCount != 0) {
1685 >                    if (binCount >= TREEIFY_THRESHOLD)
1686 >                        treeifyBin(tab, i);
1687 >                    if (!added)
1688 >                        return val;
1689 >                    break;
1690 >                }
1691 >            }
1692 >        }
1693 >        if (val != null)
1694 >            addCount(1L, binCount);
1695 >        return val;
1696      }
1697  
1698      /**
1699 <     * If the given key is present, computes a new mapping value given a key and
1700 <     * its current mapped value. This is equivalent to
1701 <     *  <pre> {@code
1702 <     *   if (map.containsKey(key)) {
1703 <     *     value = remappingFunction.apply(key, map.get(key));
1704 <     *     if (value != null)
1705 <     *       map.put(key, value);
2809 <     *     else
2810 <     *       map.remove(key);
2811 <     *   }
2812 <     * }</pre>
2813 <     *
2814 <     * except that the action is performed atomically.  If the
2815 <     * function returns {@code null}, the mapping is removed.  If the
2816 <     * function itself throws an (unchecked) exception, the exception
2817 <     * is rethrown to its caller, and the current mapping is left
2818 <     * unchanged.  Some attempted update operations on this map by
2819 <     * other threads may be blocked while computation is in progress,
2820 <     * so the computation should be short and simple, and must not
2821 <     * attempt to update any other mappings of this Map. For example,
2822 <     * to either create or append new messages to a value mapping:
1699 >     * If the value for the specified key is present, attempts to
1700 >     * compute a new mapping given the key and its current mapped
1701 >     * value.  The entire method invocation is performed atomically.
1702 >     * Some attempted update operations on this map by other threads
1703 >     * may be blocked while computation is in progress, so the
1704 >     * computation should be short and simple, and must not attempt to
1705 >     * update any other mappings of this map.
1706       *
1707 <     * @param key key with which the specified value is to be associated
1707 >     * @param key key with which a value may be associated
1708       * @param remappingFunction the function to compute a value
1709       * @return the new value associated with the specified key, or null if none
1710       * @throws NullPointerException if the specified key or remappingFunction
# Line 2832 | Line 1715 | public class ConcurrentHashMapV8<K, V>
1715       * @throws RuntimeException or Error if the remappingFunction does so,
1716       *         in which case the mapping is unchanged
1717       */
1718 <    @SuppressWarnings("unchecked") public V computeIfPresent
2836 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1718 >    public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1719          if (key == null || remappingFunction == null)
1720              throw new NullPointerException();
1721 <        return (V)internalCompute(key, true, remappingFunction);
1721 >        int h = spread(key.hashCode());
1722 >        V val = null;
1723 >        int delta = 0;
1724 >        int binCount = 0;
1725 >        for (Node<K,V>[] tab = table;;) {
1726 >            Node<K,V> f; int n, i, fh;
1727 >            if (tab == null || (n = tab.length) == 0)
1728 >                tab = initTable();
1729 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1730 >                break;
1731 >            else if ((fh = f.hash) == MOVED)
1732 >                tab = helpTransfer(tab, f);
1733 >            else {
1734 >                synchronized (f) {
1735 >                    if (tabAt(tab, i) == f) {
1736 >                        if (fh >= 0) {
1737 >                            binCount = 1;
1738 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1739 >                                K ek;
1740 >                                if (e.hash == h &&
1741 >                                    ((ek = e.key) == key ||
1742 >                                     (ek != null && key.equals(ek)))) {
1743 >                                    val = remappingFunction.apply(key, e.val);
1744 >                                    if (val != null)
1745 >                                        e.val = val;
1746 >                                    else {
1747 >                                        delta = -1;
1748 >                                        Node<K,V> en = e.next;
1749 >                                        if (pred != null)
1750 >                                            pred.next = en;
1751 >                                        else
1752 >                                            setTabAt(tab, i, en);
1753 >                                    }
1754 >                                    break;
1755 >                                }
1756 >                                pred = e;
1757 >                                if ((e = e.next) == null)
1758 >                                    break;
1759 >                            }
1760 >                        }
1761 >                        else if (f instanceof TreeBin) {
1762 >                            binCount = 2;
1763 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1764 >                            TreeNode<K,V> r, p;
1765 >                            if ((r = t.root) != null &&
1766 >                                (p = r.findTreeNode(h, key, null)) != null) {
1767 >                                val = remappingFunction.apply(key, p.val);
1768 >                                if (val != null)
1769 >                                    p.val = val;
1770 >                                else {
1771 >                                    delta = -1;
1772 >                                    if (t.removeTreeNode(p))
1773 >                                        setTabAt(tab, i, untreeify(t.first));
1774 >                                }
1775 >                            }
1776 >                        }
1777 >                    }
1778 >                }
1779 >                if (binCount != 0)
1780 >                    break;
1781 >            }
1782 >        }
1783 >        if (delta != 0)
1784 >            addCount((long)delta, binCount);
1785 >        return val;
1786      }
1787  
1788      /**
1789 <     * Computes a new mapping value given a key and
1790 <     * its current mapped value (or {@code null} if there is no current
1791 <     * mapping). This is equivalent to
1792 <     *  <pre> {@code
1793 <     *   value = remappingFunction.apply(key, map.get(key));
1794 <     *   if (value != null)
1795 <     *     map.put(key, value);
2850 <     *   else
2851 <     *     map.remove(key);
2852 <     * }</pre>
2853 <     *
2854 <     * except that the action is performed atomically.  If the
2855 <     * function returns {@code null}, the mapping is removed.  If the
2856 <     * function itself throws an (unchecked) exception, the exception
2857 <     * is rethrown to its caller, and the current mapping is left
2858 <     * unchanged.  Some attempted update operations on this map by
2859 <     * other threads may be blocked while computation is in progress,
2860 <     * so the computation should be short and simple, and must not
2861 <     * attempt to update any other mappings of this Map. For example,
2862 <     * to either create or append new messages to a value mapping:
2863 <     *
2864 <     * <pre> {@code
2865 <     * Map<Key, String> map = ...;
2866 <     * final String msg = ...;
2867 <     * map.compute(key, new BiFun<Key, String, String>() {
2868 <     *   public String apply(Key k, String v) {
2869 <     *    return (v == null) ? msg : v + msg;});}}</pre>
1789 >     * Attempts to compute a mapping for the specified key and its
1790 >     * current mapped value (or {@code null} if there is no current
1791 >     * mapping). The entire method invocation is performed atomically.
1792 >     * Some attempted update operations on this map by other threads
1793 >     * may be blocked while computation is in progress, so the
1794 >     * computation should be short and simple, and must not attempt to
1795 >     * update any other mappings of this Map.
1796       *
1797       * @param key key with which the specified value is to be associated
1798       * @param remappingFunction the function to compute a value
# Line 2879 | Line 1805 | public class ConcurrentHashMapV8<K, V>
1805       * @throws RuntimeException or Error if the remappingFunction does so,
1806       *         in which case the mapping is unchanged
1807       */
1808 <    @SuppressWarnings("unchecked") public V compute
1809 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1808 >    public V compute(K key,
1809 >                     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1810          if (key == null || remappingFunction == null)
1811              throw new NullPointerException();
1812 <        return (V)internalCompute(key, false, remappingFunction);
1812 >        int h = spread(key.hashCode());
1813 >        V val = null;
1814 >        int delta = 0;
1815 >        int binCount = 0;
1816 >        for (Node<K,V>[] tab = table;;) {
1817 >            Node<K,V> f; int n, i, fh;
1818 >            if (tab == null || (n = tab.length) == 0)
1819 >                tab = initTable();
1820 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1821 >                Node<K,V> r = new ReservationNode<K,V>();
1822 >                synchronized (r) {
1823 >                    if (casTabAt(tab, i, null, r)) {
1824 >                        binCount = 1;
1825 >                        Node<K,V> node = null;
1826 >                        try {
1827 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1828 >                                delta = 1;
1829 >                                node = new Node<K,V>(h, key, val, null);
1830 >                            }
1831 >                        } finally {
1832 >                            setTabAt(tab, i, node);
1833 >                        }
1834 >                    }
1835 >                }
1836 >                if (binCount != 0)
1837 >                    break;
1838 >            }
1839 >            else if ((fh = f.hash) == MOVED)
1840 >                tab = helpTransfer(tab, f);
1841 >            else {
1842 >                synchronized (f) {
1843 >                    if (tabAt(tab, i) == f) {
1844 >                        if (fh >= 0) {
1845 >                            binCount = 1;
1846 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1847 >                                K ek;
1848 >                                if (e.hash == h &&
1849 >                                    ((ek = e.key) == key ||
1850 >                                     (ek != null && key.equals(ek)))) {
1851 >                                    val = remappingFunction.apply(key, e.val);
1852 >                                    if (val != null)
1853 >                                        e.val = val;
1854 >                                    else {
1855 >                                        delta = -1;
1856 >                                        Node<K,V> en = e.next;
1857 >                                        if (pred != null)
1858 >                                            pred.next = en;
1859 >                                        else
1860 >                                            setTabAt(tab, i, en);
1861 >                                    }
1862 >                                    break;
1863 >                                }
1864 >                                pred = e;
1865 >                                if ((e = e.next) == null) {
1866 >                                    val = remappingFunction.apply(key, null);
1867 >                                    if (val != null) {
1868 >                                        delta = 1;
1869 >                                        pred.next =
1870 >                                            new Node<K,V>(h, key, val, null);
1871 >                                    }
1872 >                                    break;
1873 >                                }
1874 >                            }
1875 >                        }
1876 >                        else if (f instanceof TreeBin) {
1877 >                            binCount = 1;
1878 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1879 >                            TreeNode<K,V> r, p;
1880 >                            if ((r = t.root) != null)
1881 >                                p = r.findTreeNode(h, key, null);
1882 >                            else
1883 >                                p = null;
1884 >                            V pv = (p == null) ? null : p.val;
1885 >                            val = remappingFunction.apply(key, pv);
1886 >                            if (val != null) {
1887 >                                if (p != null)
1888 >                                    p.val = val;
1889 >                                else {
1890 >                                    delta = 1;
1891 >                                    t.putTreeVal(h, key, val);
1892 >                                }
1893 >                            }
1894 >                            else if (p != null) {
1895 >                                delta = -1;
1896 >                                if (t.removeTreeNode(p))
1897 >                                    setTabAt(tab, i, untreeify(t.first));
1898 >                            }
1899 >                        }
1900 >                    }
1901 >                }
1902 >                if (binCount != 0) {
1903 >                    if (binCount >= TREEIFY_THRESHOLD)
1904 >                        treeifyBin(tab, i);
1905 >                    break;
1906 >                }
1907 >            }
1908 >        }
1909 >        if (delta != 0)
1910 >            addCount((long)delta, binCount);
1911 >        return val;
1912      }
1913  
1914      /**
1915 <     * If the specified key is not already associated
1916 <     * with a value, associate it with the given value.
1917 <     * Otherwise, replace the value with the results of
1918 <     * the given remapping function. This is equivalent to:
1919 <     *  <pre> {@code
1920 <     *   if (!map.containsKey(key))
1921 <     *     map.put(value);
1922 <     *   else {
1923 <     *     newValue = remappingFunction.apply(map.get(key), value);
1924 <     *     if (value != null)
1925 <     *       map.put(key, value);
1926 <     *     else
1927 <     *       map.remove(key);
1928 <     *   }
1929 <     * }</pre>
1930 <     * except that the action is performed atomically.  If the
1931 <     * function returns {@code null}, the mapping is removed.  If the
1932 <     * function itself throws an (unchecked) exception, the exception
2908 <     * is rethrown to its caller, and the current mapping is left
2909 <     * unchanged.  Some attempted update operations on this map by
2910 <     * other threads may be blocked while computation is in progress,
2911 <     * so the computation should be short and simple, and must not
2912 <     * attempt to update any other mappings of this Map.
1915 >     * If the specified key is not already associated with a
1916 >     * (non-null) value, associates it with the given value.
1917 >     * Otherwise, replaces the value with the results of the given
1918 >     * remapping function, or removes if {@code null}. The entire
1919 >     * method invocation is performed atomically.  Some attempted
1920 >     * update operations on this map by other threads may be blocked
1921 >     * while computation is in progress, so the computation should be
1922 >     * short and simple, and must not attempt to update any other
1923 >     * mappings of this Map.
1924 >     *
1925 >     * @param key key with which the specified value is to be associated
1926 >     * @param value the value to use if absent
1927 >     * @param remappingFunction the function to recompute a value if present
1928 >     * @return the new value associated with the specified key, or null if none
1929 >     * @throws NullPointerException if the specified key or the
1930 >     *         remappingFunction is null
1931 >     * @throws RuntimeException or Error if the remappingFunction does so,
1932 >     *         in which case the mapping is unchanged
1933       */
1934 <    @SuppressWarnings("unchecked") public V merge
2915 <        (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1934 >    public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1935          if (key == null || value == null || remappingFunction == null)
1936              throw new NullPointerException();
1937 <        return (V)internalMerge(key, value, remappingFunction);
1937 >        int h = spread(key.hashCode());
1938 >        V val = null;
1939 >        int delta = 0;
1940 >        int binCount = 0;
1941 >        for (Node<K,V>[] tab = table;;) {
1942 >            Node<K,V> f; int n, i, fh;
1943 >            if (tab == null || (n = tab.length) == 0)
1944 >                tab = initTable();
1945 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1946 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1947 >                    delta = 1;
1948 >                    val = value;
1949 >                    break;
1950 >                }
1951 >            }
1952 >            else if ((fh = f.hash) == MOVED)
1953 >                tab = helpTransfer(tab, f);
1954 >            else {
1955 >                synchronized (f) {
1956 >                    if (tabAt(tab, i) == f) {
1957 >                        if (fh >= 0) {
1958 >                            binCount = 1;
1959 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1960 >                                K ek;
1961 >                                if (e.hash == h &&
1962 >                                    ((ek = e.key) == key ||
1963 >                                     (ek != null && key.equals(ek)))) {
1964 >                                    val = remappingFunction.apply(e.val, value);
1965 >                                    if (val != null)
1966 >                                        e.val = val;
1967 >                                    else {
1968 >                                        delta = -1;
1969 >                                        Node<K,V> en = e.next;
1970 >                                        if (pred != null)
1971 >                                            pred.next = en;
1972 >                                        else
1973 >                                            setTabAt(tab, i, en);
1974 >                                    }
1975 >                                    break;
1976 >                                }
1977 >                                pred = e;
1978 >                                if ((e = e.next) == null) {
1979 >                                    delta = 1;
1980 >                                    val = value;
1981 >                                    pred.next =
1982 >                                        new Node<K,V>(h, key, val, null);
1983 >                                    break;
1984 >                                }
1985 >                            }
1986 >                        }
1987 >                        else if (f instanceof TreeBin) {
1988 >                            binCount = 2;
1989 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1990 >                            TreeNode<K,V> r = t.root;
1991 >                            TreeNode<K,V> p = (r == null) ? null :
1992 >                                r.findTreeNode(h, key, null);
1993 >                            val = (p == null) ? value :
1994 >                                remappingFunction.apply(p.val, value);
1995 >                            if (val != null) {
1996 >                                if (p != null)
1997 >                                    p.val = val;
1998 >                                else {
1999 >                                    delta = 1;
2000 >                                    t.putTreeVal(h, key, val);
2001 >                                }
2002 >                            }
2003 >                            else if (p != null) {
2004 >                                delta = -1;
2005 >                                if (t.removeTreeNode(p))
2006 >                                    setTabAt(tab, i, untreeify(t.first));
2007 >                            }
2008 >                        }
2009 >                    }
2010 >                }
2011 >                if (binCount != 0) {
2012 >                    if (binCount >= TREEIFY_THRESHOLD)
2013 >                        treeifyBin(tab, i);
2014 >                    break;
2015 >                }
2016 >            }
2017 >        }
2018 >        if (delta != 0)
2019 >            addCount((long)delta, binCount);
2020 >        return val;
2021      }
2022  
2023 +    // Hashtable legacy methods
2024 +
2025      /**
2026 <     * Removes the key (and its corresponding value) from this map.
2027 <     * This method does nothing if the key is not in the map.
2026 >     * Legacy method testing if some key maps into the specified value
2027 >     * in this table.  This method is identical in functionality to
2028 >     * {@link #containsValue(Object)}, and exists solely to ensure
2029 >     * full compatibility with class {@link java.util.Hashtable},
2030 >     * which supported this method prior to introduction of the
2031 >     * Java Collections framework.
2032       *
2033 <     * @param  key the key that needs to be removed
2034 <     * @return the previous value associated with {@code key}, or
2035 <     *         {@code null} if there was no mapping for {@code key}
2036 <     * @throws NullPointerException if the specified key is null
2033 >     * @param  value a value to search for
2034 >     * @return {@code true} if and only if some key maps to the
2035 >     *         {@code value} argument in this table as
2036 >     *         determined by the {@code equals} method;
2037 >     *         {@code false} otherwise
2038 >     * @throws NullPointerException if the specified value is null
2039       */
2040 <    @SuppressWarnings("unchecked") public V remove(Object key) {
2041 <        if (key == null)
2932 <            throw new NullPointerException();
2933 <        return (V)internalReplace(key, null, null);
2040 >    @Deprecated public boolean contains(Object value) {
2041 >        return containsValue(value);
2042      }
2043  
2044      /**
2045 <     * {@inheritDoc}
2045 >     * Returns an enumeration of the keys in this table.
2046       *
2047 <     * @throws NullPointerException if the specified key is null
2047 >     * @return an enumeration of the keys in this table
2048 >     * @see #keySet()
2049       */
2050 <    public boolean remove(Object key, Object value) {
2051 <        if (key == null)
2052 <            throw new NullPointerException();
2053 <        if (value == null)
2945 <            return false;
2946 <        return internalReplace(key, null, value) != null;
2050 >    public Enumeration<K> keys() {
2051 >        Node<K,V>[] t;
2052 >        int f = (t = table) == null ? 0 : t.length;
2053 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2054      }
2055  
2056      /**
2057 <     * {@inheritDoc}
2057 >     * Returns an enumeration of the values in this table.
2058       *
2059 <     * @throws NullPointerException if any of the arguments are null
2059 >     * @return an enumeration of the values in this table
2060 >     * @see #values()
2061       */
2062 <    public boolean replace(K key, V oldValue, V newValue) {
2063 <        if (key == null || oldValue == null || newValue == null)
2064 <            throw new NullPointerException();
2065 <        return internalReplace(key, newValue, oldValue) != null;
2062 >    public Enumeration<V> elements() {
2063 >        Node<K,V>[] t;
2064 >        int f = (t = table) == null ? 0 : t.length;
2065 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2066      }
2067  
2068 +    // ConcurrentHashMapV8-only methods
2069 +
2070      /**
2071 <     * {@inheritDoc}
2071 >     * Returns the number of mappings. This method should be used
2072 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2073 >     * contain more mappings than can be represented as an int. The
2074 >     * value returned is an estimate; the actual count may differ if
2075 >     * there are concurrent insertions or removals.
2076       *
2077 <     * @return the previous value associated with the specified key,
2078 <     *         or {@code null} if there was no mapping for the key
2965 <     * @throws NullPointerException if the specified key or value is null
2077 >     * @return the number of mappings
2078 >     * @since 1.8
2079       */
2080 <    @SuppressWarnings("unchecked") public V replace(K key, V value) {
2081 <        if (key == null || value == null)
2082 <            throw new NullPointerException();
2970 <        return (V)internalReplace(key, value, null);
2080 >    public long mappingCount() {
2081 >        long n = sumCount();
2082 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2083      }
2084  
2085      /**
2086 <     * Removes all of the mappings from this map.
2086 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2087 >     * from the given type to {@code Boolean.TRUE}.
2088 >     *
2089 >     * @return the new set
2090 >     * @since 1.8
2091       */
2092 <    public void clear() {
2093 <        internalClear();
2092 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2093 >        return new KeySetView<K,Boolean>
2094 >            (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2095      }
2096  
2097      /**
2098 <     * Returns a {@link Set} view of the keys contained in this map.
2099 <     * The set is backed by the map, so changes to the map are
2983 <     * reflected in the set, and vice-versa.
2098 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2099 >     * from the given type to {@code Boolean.TRUE}.
2100       *
2101 <     * @return the set view
2101 >     * @param initialCapacity The implementation performs internal
2102 >     * sizing to accommodate this many elements.
2103 >     * @throws IllegalArgumentException if the initial capacity of
2104 >     * elements is negative
2105 >     * @return the new set
2106 >     * @since 1.8
2107       */
2108 <    public KeySetView<K,V> keySet() {
2109 <        KeySetView<K,V> ks = keySet;
2110 <        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2108 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2109 >        return new KeySetView<K,Boolean>
2110 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2111      }
2112  
2113      /**
2114       * Returns a {@link Set} view of the keys in this map, using the
2115       * given common mapped value for any additions (i.e., {@link
2116 <     * Collection#add} and {@link Collection#addAll}). This is of
2117 <     * course only appropriate if it is acceptable to use the same
2118 <     * value for all additions from this view.
2116 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2117 >     * This is of course only appropriate if it is acceptable to use
2118 >     * the same value for all additions from this view.
2119       *
2120 <     * @param mappedValue the mapped value to use for any
3000 <     * additions.
2120 >     * @param mappedValue the mapped value to use for any additions
2121       * @return the set view
2122       * @throws NullPointerException if the mappedValue is null
2123       */
# Line 3007 | Line 2127 | public class ConcurrentHashMapV8<K, V>
2127          return new KeySetView<K,V>(this, mappedValue);
2128      }
2129  
2130 +    /* ---------------- Special Nodes -------------- */
2131 +
2132      /**
2133 <     * Returns a {@link Collection} view of the values contained in this map.
3012 <     * The collection is backed by the map, so changes to the map are
3013 <     * reflected in the collection, and vice-versa.
2133 >     * A node inserted at head of bins during transfer operations.
2134       */
2135 <    public ValuesView<K,V> values() {
2136 <        ValuesView<K,V> vs = values;
2137 <        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2135 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2136 >        final Node<K,V>[] nextTable;
2137 >        ForwardingNode(Node<K,V>[] tab) {
2138 >            super(MOVED, null, null, null);
2139 >            this.nextTable = tab;
2140 >        }
2141 >
2142 >        Node<K,V> find(int h, Object k) {
2143 >            Node<K,V> e; int n;
2144 >            Node<K,V>[] tab = nextTable;
2145 >            if (k != null && tab != null && (n = tab.length) > 0 &&
2146 >                (e = tabAt(tab, (n - 1) & h)) != null) {
2147 >                do {
2148 >                    int eh; K ek;
2149 >                    if ((eh = e.hash) == h &&
2150 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2151 >                        return e;
2152 >                    if (eh < 0)
2153 >                        return e.find(h, k);
2154 >                } while ((e = e.next) != null);
2155 >            }
2156 >            return null;
2157 >        }
2158      }
2159  
2160      /**
2161 <     * Returns a {@link Set} view of the mappings contained in this map.
3022 <     * The set is backed by the map, so changes to the map are
3023 <     * reflected in the set, and vice-versa.  The set supports element
3024 <     * removal, which removes the corresponding mapping from the map,
3025 <     * via the {@code Iterator.remove}, {@code Set.remove},
3026 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
3027 <     * operations.  It does not support the {@code add} or
3028 <     * {@code addAll} operations.
3029 <     *
3030 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
3031 <     * that will never throw {@link ConcurrentModificationException},
3032 <     * and guarantees to traverse elements as they existed upon
3033 <     * construction of the iterator, and may (but is not guaranteed to)
3034 <     * reflect any modifications subsequent to construction.
2161 >     * A place-holder node used in computeIfAbsent and compute
2162       */
2163 <    public Set<Map.Entry<K,V>> entrySet() {
2164 <        EntrySetView<K,V> es = entrySet;
2165 <        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2163 >    static final class ReservationNode<K,V> extends Node<K,V> {
2164 >        ReservationNode() {
2165 >            super(RESERVED, null, null, null);
2166 >        }
2167 >
2168 >        Node<K,V> find(int h, Object k) {
2169 >            return null;
2170 >        }
2171      }
2172  
2173 +    /* ---------------- Table Initialization and Resizing -------------- */
2174 +
2175      /**
2176 <     * Returns an enumeration of the keys in this table.
3043 <     *
3044 <     * @return an enumeration of the keys in this table
3045 <     * @see #keySet()
2176 >     * Initializes table, using the size recorded in sizeCtl.
2177       */
2178 <    public Enumeration<K> keys() {
2179 <        return new KeyIterator<K,V>(this);
2178 >    private final Node<K,V>[] initTable() {
2179 >        Node<K,V>[] tab; int sc;
2180 >        while ((tab = table) == null || tab.length == 0) {
2181 >            if ((sc = sizeCtl) < 0)
2182 >                Thread.yield(); // lost initialization race; just spin
2183 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2184 >                try {
2185 >                    if ((tab = table) == null || tab.length == 0) {
2186 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2187 >                        @SuppressWarnings({"rawtypes","unchecked"})
2188 >                            Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2189 >                        table = tab = nt;
2190 >                        sc = n - (n >>> 2);
2191 >                    }
2192 >                } finally {
2193 >                    sizeCtl = sc;
2194 >                }
2195 >                break;
2196 >            }
2197 >        }
2198 >        return tab;
2199      }
2200  
2201      /**
2202 <     * Returns an enumeration of the values in this table.
2203 <     *
2204 <     * @return an enumeration of the values in this table
2205 <     * @see #values()
2202 >     * Adds to count, and if table is too small and not already
2203 >     * resizing, initiates transfer. If already resizing, helps
2204 >     * perform transfer if work is available.  Rechecks occupancy
2205 >     * after a transfer to see if another resize is already needed
2206 >     * because resizings are lagging additions.
2207 >     *
2208 >     * @param x the count to add
2209 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2210 >     */
2211 >    private final void addCount(long x, int check) {
2212 >        CounterCell[] as; long b, s;
2213 >        if ((as = counterCells) != null ||
2214 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2215 >            CounterHashCode hc; CounterCell a; long v; int m;
2216 >            boolean uncontended = true;
2217 >            if ((hc = threadCounterHashCode.get()) == null ||
2218 >                as == null || (m = as.length - 1) < 0 ||
2219 >                (a = as[m & hc.code]) == null ||
2220 >                !(uncontended =
2221 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2222 >                fullAddCount(x, hc, uncontended);
2223 >                return;
2224 >            }
2225 >            if (check <= 1)
2226 >                return;
2227 >            s = sumCount();
2228 >        }
2229 >        if (check >= 0) {
2230 >            Node<K,V>[] tab, nt; int sc;
2231 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2232 >                   tab.length < MAXIMUM_CAPACITY) {
2233 >                if (sc < 0) {
2234 >                    if (sc == -1 || transferIndex <= transferOrigin ||
2235 >                        (nt = nextTable) == null)
2236 >                        break;
2237 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2238 >                        transfer(tab, nt);
2239 >                }
2240 >                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2241 >                    transfer(tab, null);
2242 >                s = sumCount();
2243 >            }
2244 >        }
2245 >    }
2246 >
2247 >    /**
2248 >     * Helps transfer if a resize is in progress.
2249       */
2250 <    public Enumeration<V> elements() {
2251 <        return new ValueIterator<K,V>(this);
2250 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2251 >        Node<K,V>[] nextTab; int sc;
2252 >        if ((f instanceof ForwardingNode) &&
2253 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2254 >            if (nextTab == nextTable && tab == table &&
2255 >                transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2256 >                U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2257 >                transfer(tab, nextTab);
2258 >            return nextTab;
2259 >        }
2260 >        return table;
2261      }
2262  
2263      /**
2264 <     * Returns a partitionable iterator of the keys in this map.
2264 >     * Tries to presize table to accommodate the given number of elements.
2265       *
2266 <     * @return a partitionable iterator of the keys in this map
2266 >     * @param size number of elements (doesn't need to be perfectly accurate)
2267       */
2268 <    public Spliterator<K> keySpliterator() {
2269 <        return new KeyIterator<K,V>(this);
2268 >    private final void tryPresize(int size) {
2269 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2270 >            tableSizeFor(size + (size >>> 1) + 1);
2271 >        int sc;
2272 >        while ((sc = sizeCtl) >= 0) {
2273 >            Node<K,V>[] tab = table; int n;
2274 >            if (tab == null || (n = tab.length) == 0) {
2275 >                n = (sc > c) ? sc : c;
2276 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2277 >                    try {
2278 >                        if (table == tab) {
2279 >                            @SuppressWarnings({"rawtypes","unchecked"})
2280 >                                Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2281 >                            table = nt;
2282 >                            sc = n - (n >>> 2);
2283 >                        }
2284 >                    } finally {
2285 >                        sizeCtl = sc;
2286 >                    }
2287 >                }
2288 >            }
2289 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2290 >                break;
2291 >            else if (tab == table &&
2292 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2293 >                transfer(tab, null);
2294 >        }
2295      }
2296  
2297      /**
2298 <     * Returns a partitionable iterator of the values in this map.
2299 <     *
3073 <     * @return a partitionable iterator of the values in this map
2298 >     * Moves and/or copies the nodes in each bin to new table. See
2299 >     * above for explanation.
2300       */
2301 <    public Spliterator<V> valueSpliterator() {
2302 <        return new ValueIterator<K,V>(this);
2301 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2302 >        int n = tab.length, stride;
2303 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2304 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2305 >        if (nextTab == null) {            // initiating
2306 >            try {
2307 >                @SuppressWarnings({"rawtypes","unchecked"})
2308 >                    Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2309 >                nextTab = nt;
2310 >            } catch (Throwable ex) {      // try to cope with OOME
2311 >                sizeCtl = Integer.MAX_VALUE;
2312 >                return;
2313 >            }
2314 >            nextTable = nextTab;
2315 >            transferOrigin = n;
2316 >            transferIndex = n;
2317 >            ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2318 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
2319 >                int nextk = (k > stride) ? k - stride : 0;
2320 >                for (int m = nextk; m < k; ++m)
2321 >                    nextTab[m] = rev;
2322 >                for (int m = n + nextk; m < n + k; ++m)
2323 >                    nextTab[m] = rev;
2324 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2325 >            }
2326 >        }
2327 >        int nextn = nextTab.length;
2328 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2329 >        boolean advance = true;
2330 >        for (int i = 0, bound = 0;;) {
2331 >            int nextIndex, nextBound, fh; Node<K,V> f;
2332 >            while (advance) {
2333 >                if (--i >= bound)
2334 >                    advance = false;
2335 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
2336 >                    i = -1;
2337 >                    advance = false;
2338 >                }
2339 >                else if (U.compareAndSwapInt
2340 >                         (this, TRANSFERINDEX, nextIndex,
2341 >                          nextBound = (nextIndex > stride ?
2342 >                                       nextIndex - stride : 0))) {
2343 >                    bound = nextBound;
2344 >                    i = nextIndex - 1;
2345 >                    advance = false;
2346 >                }
2347 >            }
2348 >            if (i < 0 || i >= n || i + n >= nextn) {
2349 >                for (int sc;;) {
2350 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2351 >                        if (sc == -1) {
2352 >                            nextTable = null;
2353 >                            table = nextTab;
2354 >                            sizeCtl = (n << 1) - (n >>> 1);
2355 >                        }
2356 >                        return;
2357 >                    }
2358 >                }
2359 >            }
2360 >            else if ((f = tabAt(tab, i)) == null) {
2361 >                if (casTabAt(tab, i, null, fwd)) {
2362 >                    setTabAt(nextTab, i, null);
2363 >                    setTabAt(nextTab, i + n, null);
2364 >                    advance = true;
2365 >                }
2366 >            }
2367 >            else if ((fh = f.hash) == MOVED)
2368 >                advance = true; // already processed
2369 >            else {
2370 >                synchronized (f) {
2371 >                    if (tabAt(tab, i) == f) {
2372 >                        Node<K,V> ln, hn;
2373 >                        if (fh >= 0) {
2374 >                            int runBit = fh & n;
2375 >                            Node<K,V> lastRun = f;
2376 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2377 >                                int b = p.hash & n;
2378 >                                if (b != runBit) {
2379 >                                    runBit = b;
2380 >                                    lastRun = p;
2381 >                                }
2382 >                            }
2383 >                            if (runBit == 0) {
2384 >                                ln = lastRun;
2385 >                                hn = null;
2386 >                            }
2387 >                            else {
2388 >                                hn = lastRun;
2389 >                                ln = null;
2390 >                            }
2391 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2392 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2393 >                                if ((ph & n) == 0)
2394 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2395 >                                else
2396 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2397 >                            }
2398 >                        }
2399 >                        else if (f instanceof TreeBin) {
2400 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2401 >                            TreeNode<K,V> lo = null, loTail = null;
2402 >                            TreeNode<K,V> hi = null, hiTail = null;
2403 >                            int lc = 0, hc = 0;
2404 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2405 >                                int h = e.hash;
2406 >                                TreeNode<K,V> p = new TreeNode<K,V>
2407 >                                    (h, e.key, e.val, null, null);
2408 >                                if ((h & n) == 0) {
2409 >                                    if ((p.prev = loTail) == null)
2410 >                                        lo = p;
2411 >                                    else
2412 >                                        loTail.next = p;
2413 >                                    loTail = p;
2414 >                                    ++lc;
2415 >                                }
2416 >                                else {
2417 >                                    if ((p.prev = hiTail) == null)
2418 >                                        hi = p;
2419 >                                    else
2420 >                                        hiTail.next = p;
2421 >                                    hiTail = p;
2422 >                                    ++hc;
2423 >                                }
2424 >                            }
2425 >                            ln = (lc <= UNTREEIFY_THRESHOLD ?  untreeify(lo) :
2426 >                                  (hc != 0) ? new TreeBin<K,V>(lo) : t);
2427 >                            hn = (hc <= UNTREEIFY_THRESHOLD ? untreeify(hi) :
2428 >                                  (lc != 0) ? new TreeBin<K,V>(hi) : t);
2429 >                        }
2430 >                        else
2431 >                            ln = hn = null;
2432 >                        setTabAt(nextTab, i, ln);
2433 >                        setTabAt(nextTab, i + n, hn);
2434 >                        setTabAt(tab, i, fwd);
2435 >                        advance = true;
2436 >                    }
2437 >                }
2438 >            }
2439 >        }
2440      }
2441  
2442 +    /* ---------------- Conversion from/to TreeBins -------------- */
2443 +
2444      /**
2445 <     * Returns a partitionable iterator of the entries in this map.
2446 <     *
3082 <     * @return a partitionable iterator of the entries in this map
2445 >     * Replaces all linked nodes in bin at given index unless table is
2446 >     * too small, in which case resizes instead.
2447       */
2448 <    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2449 <        return new EntryIterator<K,V>(this);
2448 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2449 >        Node<K,V> b; int n, sc;
2450 >        if (tab != null) {
2451 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2452 >                if (tab == table && (sc = sizeCtl) >= 0 &&
2453 >                    U.compareAndSwapInt(this, SIZECTL, sc, -2))
2454 >                    transfer(tab, null);
2455 >            }
2456 >            else if ((b = tabAt(tab, index)) != null) {
2457 >                synchronized (b) {
2458 >                    if (tabAt(tab, index) == b) {
2459 >                        TreeNode<K,V> hd = null, tl = null;
2460 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2461 >                            TreeNode<K,V> p =
2462 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2463 >                                                  null, null);
2464 >                            if ((p.prev = tl) == null)
2465 >                                hd = p;
2466 >                            else
2467 >                                tl.next = p;
2468 >                            tl = p;
2469 >                        }
2470 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2471 >                    }
2472 >                }
2473 >            }
2474 >        }
2475      }
2476  
2477      /**
2478 <     * Returns the hash code value for this {@link Map}, i.e.,
3090 <     * the sum of, for each key-value pair in the map,
3091 <     * {@code key.hashCode() ^ value.hashCode()}.
3092 <     *
3093 <     * @return the hash code value for this map
2478 >     * Returns a list on non-TreeNodes replacing those in given list
2479       */
2480 <    public int hashCode() {
2481 <        int h = 0;
2482 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2483 <        Object v;
2484 <        while ((v = it.advance()) != null) {
2485 <            h += it.nextKey.hashCode() ^ v.hashCode();
2480 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2481 >        Node<K,V> hd = null, tl = null;
2482 >        for (Node<K,V> q = b; q != null; q = q.next) {
2483 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2484 >            if (tl == null)
2485 >                hd = p;
2486 >            else
2487 >                tl.next = p;
2488 >            tl = p;
2489          }
2490 <        return h;
2490 >        return hd;
2491      }
2492  
2493 +    /* ---------------- TreeNodes -------------- */
2494 +
2495      /**
2496 <     * Returns a string representation of this map.  The string
3107 <     * representation consists of a list of key-value mappings (in no
3108 <     * particular order) enclosed in braces ("{@code {}}").  Adjacent
3109 <     * mappings are separated by the characters {@code ", "} (comma
3110 <     * and space).  Each key-value mapping is rendered as the key
3111 <     * followed by an equals sign ("{@code =}") followed by the
3112 <     * associated value.
3113 <     *
3114 <     * @return a string representation of this map
2496 >     * Nodes for use in TreeBins
2497       */
2498 <    public String toString() {
2499 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2500 <        StringBuilder sb = new StringBuilder();
2501 <        sb.append('{');
2502 <        Object v;
2503 <        if ((v = it.advance()) != null) {
2504 <            for (;;) {
2505 <                Object k = it.nextKey;
2506 <                sb.append(k == this ? "(this Map)" : k);
2507 <                sb.append('=');
2508 <                sb.append(v == this ? "(this Map)" : v);
2509 <                if ((v = it.advance()) == null)
2498 >    static final class TreeNode<K,V> extends Node<K,V> {
2499 >        TreeNode<K,V> parent;  // red-black tree links
2500 >        TreeNode<K,V> left;
2501 >        TreeNode<K,V> right;
2502 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2503 >        boolean red;
2504 >
2505 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2506 >                 TreeNode<K,V> parent) {
2507 >            super(hash, key, val, next);
2508 >            this.parent = parent;
2509 >        }
2510 >
2511 >        Node<K,V> find(int h, Object k) {
2512 >            return findTreeNode(h, k, null);
2513 >        }
2514 >
2515 >        /**
2516 >         * Returns the TreeNode (or null if not found) for the given key
2517 >         * starting at given root.
2518 >         */
2519 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2520 >            if (k != null) {
2521 >                TreeNode<K,V> p = this;
2522 >                do  {
2523 >                    int ph, dir; K pk; TreeNode<K,V> q;
2524 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2525 >                    if ((ph = p.hash) > h)
2526 >                        p = pl;
2527 >                    else if (ph < h)
2528 >                        p = pr;
2529 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2530 >                        return p;
2531 >                    else if (pl == null && pr == null)
2532 >                        break;
2533 >                    else if ((kc != null ||
2534 >                              (kc = comparableClassFor(k)) != null) &&
2535 >                             (dir = compareComparables(kc, k, pk)) != 0)
2536 >                        p = (dir < 0) ? pl : pr;
2537 >                    else if (pl == null)
2538 >                        p = pr;
2539 >                    else if (pr == null ||
2540 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2541 >                        p = pl;
2542 >                    else
2543 >                        return q;
2544 >                } while (p != null);
2545 >            }
2546 >            return null;
2547 >        }
2548 >    }
2549 >
2550 >    /* ---------------- TreeBins -------------- */
2551 >
2552 >    /**
2553 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2554 >     * keys or values, but instead point to list of TreeNodes and
2555 >     * their root. They also maintain a parasitic read-write lock
2556 >     * forcing writers (who hold bin lock) to wait for readers (who do
2557 >     * not) to complete before tree restructuring operations.
2558 >     */
2559 >    static final class TreeBin<K,V> extends Node<K,V> {
2560 >        TreeNode<K,V> root;
2561 >        volatile TreeNode<K,V> first;
2562 >        volatile Thread waiter;
2563 >        volatile int lockState;
2564 >        // values for lockState
2565 >        static final int WRITER = 1; // set while holding write lock
2566 >        static final int WAITER = 2; // set when waiting for write lock
2567 >        static final int READER = 4; // increment value for setting read lock
2568 >
2569 >        /**
2570 >         * Creates bin with initial set of nodes headed by b.
2571 >         */
2572 >        TreeBin(TreeNode<K,V> b) {
2573 >            super(TREEBIN, null, null, null);
2574 >            this.first = b;
2575 >            TreeNode<K,V> r = null;
2576 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2577 >                next = (TreeNode<K,V>)x.next;
2578 >                x.left = x.right = null;
2579 >                if (r == null) {
2580 >                    x.parent = null;
2581 >                    x.red = false;
2582 >                    r = x;
2583 >                }
2584 >                else {
2585 >                    Object key = x.key;
2586 >                    int hash = x.hash;
2587 >                    Class<?> kc = null;
2588 >                    for (TreeNode<K,V> p = r;;) {
2589 >                        int dir, ph;
2590 >                        if ((ph = p.hash) > hash)
2591 >                            dir = -1;
2592 >                        else if (ph < hash)
2593 >                            dir = 1;
2594 >                        else if ((kc != null ||
2595 >                                  (kc = comparableClassFor(key)) != null))
2596 >                            dir = compareComparables(kc, key, p.key);
2597 >                        else
2598 >                            dir = 0;
2599 >                        TreeNode<K,V> xp = p;
2600 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2601 >                            x.parent = xp;
2602 >                            if (dir <= 0)
2603 >                                xp.left = x;
2604 >                            else
2605 >                                xp.right = x;
2606 >                            r = balanceInsertion(r, x);
2607 >                            break;
2608 >                        }
2609 >                    }
2610 >                }
2611 >            }
2612 >            this.root = r;
2613 >        }
2614 >
2615 >        /**
2616 >         * Acquires write lock for tree restructuring
2617 >         */
2618 >        private final void lockRoot() {
2619 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2620 >                contendedLock(); // offload to separate method
2621 >        }
2622 >
2623 >        /**
2624 >         * Releases write lock for tree restructuring
2625 >         */
2626 >        private final void unlockRoot() {
2627 >            lockState = 0;
2628 >        }
2629 >
2630 >        /**
2631 >         * Possibly blocks awaiting root lock
2632 >         */
2633 >        private final void contendedLock() {
2634 >            boolean waiting = false;
2635 >            for (int s;;) {
2636 >                if (((s = lockState) & WRITER) == 0) {
2637 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2638 >                        if (waiting)
2639 >                            waiter = null;
2640 >                        return;
2641 >                    }
2642 >                }
2643 >                else if ((s | WAITER) == 0) {
2644 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2645 >                        waiting = true;
2646 >                        waiter = Thread.currentThread();
2647 >                    }
2648 >                }
2649 >                else if (waiting)
2650 >                    LockSupport.park(this);
2651 >            }
2652 >        }
2653 >
2654 >        /**
2655 >         * Returns matching node or null if none. Tries to search
2656 >         * using tree compareisons from root, but continues linear
2657 >         * search when lock not available.
2658 >         */
2659 >        final Node<K,V> find(int h, Object k) {
2660 >            if (k != null) {
2661 >                for (Node<K,V> e = first; e != null; e = e.next) {
2662 >                    int s; K ek;
2663 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2664 >                        if (e.hash == h &&
2665 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2666 >                            return e;
2667 >                    }
2668 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2669 >                                                 s + READER)) {
2670 >                        TreeNode<K,V> r, p;
2671 >                        try {
2672 >                            p = ((r = root) == null ? null :
2673 >                                 r.findTreeNode(h, k, null));
2674 >                        } finally {
2675 >                            Thread w;
2676 >                            int ls;
2677 >                            do {} while (!U.compareAndSwapInt
2678 >                                         (this, LOCKSTATE,
2679 >                                          ls = lockState, ls - READER));
2680 >                            if (ls == (READER|WAITER) && (w = waiter) != null)
2681 >                                LockSupport.unpark(w);
2682 >                        }
2683 >                        return p;
2684 >                    }
2685 >                }
2686 >            }
2687 >            return null;
2688 >        }
2689 >
2690 >        /**
2691 >         * Finds or adds a node.
2692 >         * @return null if added
2693 >         */
2694 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2695 >            Class<?> kc = null;
2696 >            for (TreeNode<K,V> p = root;;) {
2697 >                int dir, ph; K pk; TreeNode<K,V> q, pr;
2698 >                if (p == null) {
2699 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2700                      break;
2701 <                sb.append(',').append(' ');
2701 >                }
2702 >                else if ((ph = p.hash) > h)
2703 >                    dir = -1;
2704 >                else if (ph < h)
2705 >                    dir = 1;
2706 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2707 >                    return p;
2708 >                else if ((kc == null &&
2709 >                          (kc = comparableClassFor(k)) == null) ||
2710 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2711 >                    if (p.left == null)
2712 >                        dir = 1;
2713 >                    else if ((pr = p.right) == null ||
2714 >                             (q = pr.findTreeNode(h, k, kc)) == null)
2715 >                        dir = -1;
2716 >                    else
2717 >                        return q;
2718 >                }
2719 >                TreeNode<K,V> xp = p;
2720 >                if ((p = (dir < 0) ? p.left : p.right) == null) {
2721 >                    TreeNode<K,V> x, f = first;
2722 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2723 >                    if (f != null)
2724 >                        f.prev = x;
2725 >                    if (dir < 0)
2726 >                        xp.left = x;
2727 >                    else
2728 >                        xp.right = x;
2729 >                    if (!xp.red)
2730 >                        x.red = true;
2731 >                    else {
2732 >                        lockRoot();
2733 >                        try {
2734 >                            root = balanceInsertion(root, x);
2735 >                        } finally {
2736 >                            unlockRoot();
2737 >                        }
2738 >                    }
2739 >                    break;
2740 >                }
2741 >            }
2742 >            assert checkInvariants(root);
2743 >            return null;
2744 >        }
2745 >
2746 >        /**
2747 >         * Removes the given node, that must be present before this
2748 >         * call.  This is messier than typical red-black deletion code
2749 >         * because we cannot swap the contents of an interior node
2750 >         * with a leaf successor that is pinned by "next" pointers
2751 >         * that are accessible independently of lock. So instead we
2752 >         * swap the tree linkages.
2753 >         *
2754 >         * @return true if now too small so should be untreeified.
2755 >         */
2756 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2757 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2758 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2759 >            TreeNode<K,V> r, rl;
2760 >            if (pred == null)
2761 >                first = next;
2762 >            else
2763 >                pred.next = next;
2764 >            if (next != null)
2765 >                next.prev = pred;
2766 >            if (first == null) {
2767 >                root = null;
2768 >                return true;
2769 >            }
2770 >            if ((r = root) == null || r.right == null || // too small
2771 >                (rl = r.left) == null || rl.left == null)
2772 >                return true;
2773 >            lockRoot();
2774 >            try {
2775 >                TreeNode<K,V> replacement;
2776 >                TreeNode<K,V> pl = p.left;
2777 >                TreeNode<K,V> pr = p.right;
2778 >                if (pl != null && pr != null) {
2779 >                    TreeNode<K,V> s = pr, sl;
2780 >                    while ((sl = s.left) != null) // find successor
2781 >                        s = sl;
2782 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2783 >                    TreeNode<K,V> sr = s.right;
2784 >                    TreeNode<K,V> pp = p.parent;
2785 >                    if (s == pr) { // p was s's direct parent
2786 >                        p.parent = s;
2787 >                        s.right = p;
2788 >                    }
2789 >                    else {
2790 >                        TreeNode<K,V> sp = s.parent;
2791 >                        if ((p.parent = sp) != null) {
2792 >                            if (s == sp.left)
2793 >                                sp.left = p;
2794 >                            else
2795 >                                sp.right = p;
2796 >                        }
2797 >                        if ((s.right = pr) != null)
2798 >                            pr.parent = s;
2799 >                    }
2800 >                    p.left = null;
2801 >                    if ((p.right = sr) != null)
2802 >                        sr.parent = p;
2803 >                    if ((s.left = pl) != null)
2804 >                        pl.parent = s;
2805 >                    if ((s.parent = pp) == null)
2806 >                        r = s;
2807 >                    else if (p == pp.left)
2808 >                        pp.left = s;
2809 >                    else
2810 >                        pp.right = s;
2811 >                    if (sr != null)
2812 >                        replacement = sr;
2813 >                    else
2814 >                        replacement = p;
2815 >                }
2816 >                else if (pl != null)
2817 >                    replacement = pl;
2818 >                else if (pr != null)
2819 >                    replacement = pr;
2820 >                else
2821 >                    replacement = p;
2822 >                if (replacement != p) {
2823 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2824 >                    if (pp == null)
2825 >                        r = replacement;
2826 >                    else if (p == pp.left)
2827 >                        pp.left = replacement;
2828 >                    else
2829 >                        pp.right = replacement;
2830 >                    p.left = p.right = p.parent = null;
2831 >                }
2832 >
2833 >                root = (p.red) ? r : balanceDeletion(r, replacement);
2834 >
2835 >                if (p == replacement) {  // detach pointers
2836 >                    TreeNode<K,V> pp;
2837 >                    if ((pp = p.parent) != null) {
2838 >                        if (p == pp.left)
2839 >                            pp.left = null;
2840 >                        else if (p == pp.right)
2841 >                            pp.right = null;
2842 >                        p.parent = null;
2843 >                    }
2844 >                }
2845 >            } finally {
2846 >                unlockRoot();
2847 >            }
2848 >            assert checkInvariants(root);
2849 >            return false;
2850 >        }
2851 >
2852 >        /* ------------------------------------------------------------ */
2853 >        // Red-black tree methods, all adapted from CLR
2854 >
2855 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2856 >                                              TreeNode<K,V> p) {
2857 >            TreeNode<K,V> r, pp, rl;
2858 >            if (p != null && (r = p.right) != null) {
2859 >                if ((rl = p.right = r.left) != null)
2860 >                    rl.parent = p;
2861 >                if ((pp = r.parent = p.parent) == null)
2862 >                    (root = r).red = false;
2863 >                else if (pp.left == p)
2864 >                    pp.left = r;
2865 >                else
2866 >                    pp.right = r;
2867 >                r.left = p;
2868 >                p.parent = r;
2869 >            }
2870 >            return root;
2871 >        }
2872 >
2873 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2874 >                                               TreeNode<K,V> p) {
2875 >            TreeNode<K,V> l, pp, lr;
2876 >            if (p != null && (l = p.left) != null) {
2877 >                if ((lr = p.left = l.right) != null)
2878 >                    lr.parent = p;
2879 >                if ((pp = l.parent = p.parent) == null)
2880 >                    (root = l).red = false;
2881 >                else if (pp.right == p)
2882 >                    pp.right = l;
2883 >                else
2884 >                    pp.left = l;
2885 >                l.right = p;
2886 >                p.parent = l;
2887 >            }
2888 >            return root;
2889 >        }
2890 >
2891 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2892 >                                                    TreeNode<K,V> x) {
2893 >            x.red = true;
2894 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2895 >                if ((xp = x.parent) == null) {
2896 >                    x.red = false;
2897 >                    return x;
2898 >                }
2899 >                else if (!xp.red || (xpp = xp.parent) == null)
2900 >                    return root;
2901 >                if (xp == (xppl = xpp.left)) {
2902 >                    if ((xppr = xpp.right) != null && xppr.red) {
2903 >                        xppr.red = false;
2904 >                        xp.red = false;
2905 >                        xpp.red = true;
2906 >                        x = xpp;
2907 >                    }
2908 >                    else {
2909 >                        if (x == xp.right) {
2910 >                            root = rotateLeft(root, x = xp);
2911 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2912 >                        }
2913 >                        if (xp != null) {
2914 >                            xp.red = false;
2915 >                            if (xpp != null) {
2916 >                                xpp.red = true;
2917 >                                root = rotateRight(root, xpp);
2918 >                            }
2919 >                        }
2920 >                    }
2921 >                }
2922 >                else {
2923 >                    if (xppl != null && xppl.red) {
2924 >                        xppl.red = false;
2925 >                        xp.red = false;
2926 >                        xpp.red = true;
2927 >                        x = xpp;
2928 >                    }
2929 >                    else {
2930 >                        if (x == xp.left) {
2931 >                            root = rotateRight(root, x = xp);
2932 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2933 >                        }
2934 >                        if (xp != null) {
2935 >                            xp.red = false;
2936 >                            if (xpp != null) {
2937 >                                xpp.red = true;
2938 >                                root = rotateLeft(root, xpp);
2939 >                            }
2940 >                        }
2941 >                    }
2942 >                }
2943 >            }
2944 >        }
2945 >
2946 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2947 >                                                   TreeNode<K,V> x) {
2948 >            for (TreeNode<K,V> xp, xpl, xpr;;)  {
2949 >                if (x == null || x == root)
2950 >                    return root;
2951 >                else if ((xp = x.parent) == null) {
2952 >                    x.red = false;
2953 >                    return x;
2954 >                }
2955 >                else if (x.red) {
2956 >                    x.red = false;
2957 >                    return root;
2958 >                }
2959 >                else if ((xpl = xp.left) == x) {
2960 >                    if ((xpr = xp.right) != null && xpr.red) {
2961 >                        xpr.red = false;
2962 >                        xp.red = true;
2963 >                        root = rotateLeft(root, xp);
2964 >                        xpr = (xp = x.parent) == null ? null : xp.right;
2965 >                    }
2966 >                    if (xpr == null)
2967 >                        x = xp;
2968 >                    else {
2969 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
2970 >                        if ((sr == null || !sr.red) &&
2971 >                            (sl == null || !sl.red)) {
2972 >                            xpr.red = true;
2973 >                            x = xp;
2974 >                        }
2975 >                        else {
2976 >                            if (sr == null || !sr.red) {
2977 >                                if (sl != null)
2978 >                                    sl.red = false;
2979 >                                xpr.red = true;
2980 >                                root = rotateRight(root, xpr);
2981 >                                xpr = (xp = x.parent) == null ?
2982 >                                    null : xp.right;
2983 >                            }
2984 >                            if (xpr != null) {
2985 >                                xpr.red = (xp == null) ? false : xp.red;
2986 >                                if ((sr = xpr.right) != null)
2987 >                                    sr.red = false;
2988 >                            }
2989 >                            if (xp != null) {
2990 >                                xp.red = false;
2991 >                                root = rotateLeft(root, xp);
2992 >                            }
2993 >                            x = root;
2994 >                        }
2995 >                    }
2996 >                }
2997 >                else { // symmetric
2998 >                    if (xpl != null && xpl.red) {
2999 >                        xpl.red = false;
3000 >                        xp.red = true;
3001 >                        root = rotateRight(root, xp);
3002 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3003 >                    }
3004 >                    if (xpl == null)
3005 >                        x = xp;
3006 >                    else {
3007 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3008 >                        if ((sl == null || !sl.red) &&
3009 >                            (sr == null || !sr.red)) {
3010 >                            xpl.red = true;
3011 >                            x = xp;
3012 >                        }
3013 >                        else {
3014 >                            if (sl == null || !sl.red) {
3015 >                                if (sr != null)
3016 >                                    sr.red = false;
3017 >                                xpl.red = true;
3018 >                                root = rotateLeft(root, xpl);
3019 >                                xpl = (xp = x.parent) == null ?
3020 >                                    null : xp.left;
3021 >                            }
3022 >                            if (xpl != null) {
3023 >                                xpl.red = (xp == null) ? false : xp.red;
3024 >                                if ((sl = xpl.left) != null)
3025 >                                    sl.red = false;
3026 >                            }
3027 >                            if (xp != null) {
3028 >                                xp.red = false;
3029 >                                root = rotateRight(root, xp);
3030 >                            }
3031 >                            x = root;
3032 >                        }
3033 >                    }
3034 >                }
3035 >            }
3036 >        }
3037 >        /**
3038 >         * Recursive invariant check
3039 >         */
3040 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3041 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3042 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3043 >            if (tb != null && tb.next != t)
3044 >                return false;
3045 >            if (tn != null && tn.prev != t)
3046 >                return false;
3047 >            if (tp != null && t != tp.left && t != tp.right)
3048 >                return false;
3049 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3050 >                return false;
3051 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3052 >                return false;
3053 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3054 >                return false;
3055 >            if (tl != null && !checkInvariants(tl))
3056 >                return false;
3057 >            if (tr != null && !checkInvariants(tr))
3058 >                return false;
3059 >            return true;
3060 >        }
3061 >
3062 >        private static final sun.misc.Unsafe U;
3063 >        private static final long LOCKSTATE;
3064 >        static {
3065 >            try {
3066 >                U = getUnsafe();
3067 >                Class<?> k = TreeBin.class;
3068 >                LOCKSTATE = U.objectFieldOffset
3069 >                    (k.getDeclaredField("lockState"));
3070 >            } catch (Exception e) {
3071 >                throw new Error(e);
3072              }
3073          }
3132        return sb.append('}').toString();
3074      }
3075  
3076 +    /* ----------------Table Traversal -------------- */
3077 +
3078      /**
3079 <     * Compares the specified object with this map for equality.
3080 <     * Returns {@code true} if the given object is a map with the same
3138 <     * mappings as this map.  This operation may return misleading
3139 <     * results if either map is concurrently modified during execution
3140 <     * of this method.
3079 >     * Encapsulates traversal for methods such as containsValue; also
3080 >     * serves as a base class for other iterators and spliterators.
3081       *
3082 <     * @param o object to be compared for equality with this map
3083 <     * @return {@code true} if the specified object is equal to this map
3082 >     * Method advance visits once each still-valid node that was
3083 >     * reachable upon iterator construction. It might miss some that
3084 >     * were added to a bin after the bin was visited, which is OK wrt
3085 >     * consistency guarantees. Maintaining this property in the face
3086 >     * of possible ongoing resizes requires a fair amount of
3087 >     * bookkeeping state that is difficult to optimize away amidst
3088 >     * volatile accesses.  Even so, traversal maintains reasonable
3089 >     * throughput.
3090 >     *
3091 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3092 >     * However, if the table has been resized, then all future steps
3093 >     * must traverse both the bin at the current index as well as at
3094 >     * (index + baseSize); and so on for further resizings. To
3095 >     * paranoically cope with potential sharing by users of iterators
3096 >     * across threads, iteration terminates if a bounds checks fails
3097 >     * for a table read.
3098       */
3099 <    public boolean equals(Object o) {
3100 <        if (o != this) {
3101 <            if (!(o instanceof Map))
3102 <                return false;
3103 <            Map<?,?> m = (Map<?,?>) o;
3104 <            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3105 <            Object val;
3106 <            while ((val = it.advance()) != null) {
3107 <                Object v = m.get(it.nextKey);
3108 <                if (v == null || (v != val && !v.equals(val)))
3109 <                    return false;
3110 <            }
3111 <            for (Map.Entry<?,?> e : m.entrySet()) {
3112 <                Object mk, mv, v;
3113 <                if ((mk = e.getKey()) == null ||
3114 <                    (mv = e.getValue()) == null ||
3115 <                    (v = internalGet(mk)) == null ||
3116 <                    (mv != v && !mv.equals(v)))
3117 <                    return false;
3099 >    static class Traverser<K,V> {
3100 >        Node<K,V>[] tab;        // current table; updated if resized
3101 >        Node<K,V> next;         // the next entry to use
3102 >        int index;              // index of bin to use next
3103 >        int baseIndex;          // current index of initial table
3104 >        int baseLimit;          // index bound for initial table
3105 >        final int baseSize;     // initial table size
3106 >
3107 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3108 >            this.tab = tab;
3109 >            this.baseSize = size;
3110 >            this.baseIndex = this.index = index;
3111 >            this.baseLimit = limit;
3112 >            this.next = null;
3113 >        }
3114 >
3115 >        /**
3116 >         * Advances if possible, returning next valid node, or null if none.
3117 >         */
3118 >        final Node<K,V> advance() {
3119 >            Node<K,V> e;
3120 >            if ((e = next) != null)
3121 >                e = e.next;
3122 >            for (;;) {
3123 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
3124 >                if (e != null)
3125 >                    return next = e;
3126 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3127 >                    (n = t.length) <= (i = index) || i < 0)
3128 >                    return next = null;
3129 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
3130 >                    if (e instanceof ForwardingNode) {
3131 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3132 >                        e = null;
3133 >                        continue;
3134 >                    }
3135 >                    else if (e instanceof TreeBin)
3136 >                        e = ((TreeBin<K,V>)e).first;
3137 >                    else
3138 >                        e = null;
3139 >                }
3140 >                if ((index += baseSize) >= n)
3141 >                    index = ++baseIndex;    // visit upper slots if present
3142              }
3143          }
3166        return true;
3144      }
3145  
3146 <    /* ----------------Iterators -------------- */
3147 <
3148 <    @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3149 <        implements Spliterator<K>, Enumeration<K> {
3150 <        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3151 <        KeyIterator(Traverser<K,V,Object> it) {
3152 <            super(it);
3146 >    /**
3147 >     * Base of key, value, and entry Iterators. Adds fields to
3148 >     * Traverser to support iterator.remove
3149 >     */
3150 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3151 >        final ConcurrentHashMapV8<K,V> map;
3152 >        Node<K,V> lastReturned;
3153 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3154 >                    ConcurrentHashMapV8<K,V> map) {
3155 >            super(tab, size, index, limit);
3156 >            this.map = map;
3157 >            advance();
3158          }
3159 <        public KeyIterator<K,V> split() {
3160 <            if (nextKey != null)
3159 >
3160 >        public final boolean hasNext() { return next != null; }
3161 >        public final boolean hasMoreElements() { return next != null; }
3162 >
3163 >        public final void remove() {
3164 >            Node<K,V> p;
3165 >            if ((p = lastReturned) == null)
3166                  throw new IllegalStateException();
3167 <            return new KeyIterator<K,V>(this);
3167 >            lastReturned = null;
3168 >            map.replaceNode(p.key, null, null);
3169 >        }
3170 >    }
3171 >
3172 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3173 >        implements Iterator<K>, Enumeration<K> {
3174 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3175 >                    ConcurrentHashMapV8<K,V> map) {
3176 >            super(tab, index, size, limit, map);
3177          }
3178 <        @SuppressWarnings("unchecked") public final K next() {
3179 <            if (nextVal == null && advance() == null)
3178 >
3179 >        public final K next() {
3180 >            Node<K,V> p;
3181 >            if ((p = next) == null)
3182                  throw new NoSuchElementException();
3183 <            Object k = nextKey;
3184 <            nextVal = null;
3185 <            return (K) k;
3183 >            K k = p.key;
3184 >            lastReturned = p;
3185 >            advance();
3186 >            return k;
3187          }
3188  
3189          public final K nextElement() { return next(); }
3190      }
3191  
3192 <    @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3193 <        implements Spliterator<V>, Enumeration<V> {
3194 <        ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3195 <        ValueIterator(Traverser<K,V,Object> it) {
3196 <            super(it);
3198 <        }
3199 <        public ValueIterator<K,V> split() {
3200 <            if (nextKey != null)
3201 <                throw new IllegalStateException();
3202 <            return new ValueIterator<K,V>(this);
3192 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3193 >        implements Iterator<V>, Enumeration<V> {
3194 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3195 >                      ConcurrentHashMapV8<K,V> map) {
3196 >            super(tab, index, size, limit, map);
3197          }
3198  
3199 <        @SuppressWarnings("unchecked") public final V next() {
3200 <            Object v;
3201 <            if ((v = nextVal) == null && (v = advance()) == null)
3199 >        public final V next() {
3200 >            Node<K,V> p;
3201 >            if ((p = next) == null)
3202                  throw new NoSuchElementException();
3203 <            nextVal = null;
3204 <            return (V) v;
3203 >            V v = p.val;
3204 >            lastReturned = p;
3205 >            advance();
3206 >            return v;
3207          }
3208  
3209          public final V nextElement() { return next(); }
3210      }
3211  
3212 <    @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3213 <        implements Spliterator<Map.Entry<K,V>> {
3214 <        EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3215 <        EntryIterator(Traverser<K,V,Object> it) {
3216 <            super(it);
3221 <        }
3222 <        public EntryIterator<K,V> split() {
3223 <            if (nextKey != null)
3224 <                throw new IllegalStateException();
3225 <            return new EntryIterator<K,V>(this);
3212 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3213 >        implements Iterator<Map.Entry<K,V>> {
3214 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3215 >                      ConcurrentHashMapV8<K,V> map) {
3216 >            super(tab, index, size, limit, map);
3217          }
3218  
3219 <        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3220 <            Object v;
3221 <            if ((v = nextVal) == null && (v = advance()) == null)
3219 >        public final Map.Entry<K,V> next() {
3220 >            Node<K,V> p;
3221 >            if ((p = next) == null)
3222                  throw new NoSuchElementException();
3223 <            Object k = nextKey;
3224 <            nextVal = null;
3225 <            return new MapEntry<K,V>((K)k, (V)v, map);
3223 >            K k = p.key;
3224 >            V v = p.val;
3225 >            lastReturned = p;
3226 >            advance();
3227 >            return new MapEntry<K,V>(k, v, map);
3228          }
3229      }
3230  
3231      /**
3232 <     * Exported Entry for iterators
3232 >     * Exported Entry for EntryIterator
3233       */
3234 <    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3234 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3235          final K key; // non-null
3236          V val;       // non-null
3237 <        final ConcurrentHashMapV8<K, V> map;
3238 <        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3237 >        final ConcurrentHashMapV8<K,V> map;
3238 >        MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3239              this.key = key;
3240              this.val = val;
3241              this.map = map;
3242          }
3243 <        public final K getKey()       { return key; }
3244 <        public final V getValue()     { return val; }
3245 <        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3246 <        public final String toString(){ return key + "=" + val; }
3243 >        public K getKey()        { return key; }
3244 >        public V getValue()      { return val; }
3245 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3246 >        public String toString() { return key + "=" + val; }
3247  
3248 <        public final boolean equals(Object o) {
3248 >        public boolean equals(Object o) {
3249              Object k, v; Map.Entry<?,?> e;
3250              return ((o instanceof Map.Entry) &&
3251                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 3266 | Line 3259 | public class ConcurrentHashMapV8<K, V>
3259           * value to return is somewhat arbitrary here. Since we do not
3260           * necessarily track asynchronous changes, the most recent
3261           * "previous" value could be different from what we return (or
3262 <         * could even have been removed in which case the put will
3262 >         * could even have been removed, in which case the put will
3263           * re-establish). We do not and cannot guarantee more.
3264           */
3265 <        public final V setValue(V value) {
3265 >        public V setValue(V value) {
3266              if (value == null) throw new NullPointerException();
3267              V v = val;
3268              val = value;
# Line 3278 | Line 3271 | public class ConcurrentHashMapV8<K, V>
3271          }
3272      }
3273  
3274 <    /* ---------------- Serialization Support -------------- */
3274 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3275 >        implements ConcurrentHashMapSpliterator<K> {
3276 >        long est;               // size estimate
3277 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3278 >                       long est) {
3279 >            super(tab, size, index, limit);
3280 >            this.est = est;
3281 >        }
3282 >
3283 >        public ConcurrentHashMapSpliterator<K> trySplit() {
3284 >            int i, f, h;
3285 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3286 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3287 >                                        f, est >>>= 1);
3288 >        }
3289  
3290 <    /**
3291 <     * Stripped-down version of helper class used in previous version,
3292 <     * declared for the sake of serialization compatibility
3293 <     */
3294 <    static class Segment<K,V> implements Serializable {
3288 <        private static final long serialVersionUID = 2249069246763182397L;
3289 <        final float loadFactor;
3290 <        Segment(float lf) { this.loadFactor = lf; }
3291 <    }
3290 >        public void forEachRemaining(Action<? super K> action) {
3291 >            if (action == null) throw new NullPointerException();
3292 >            for (Node<K,V> p; (p = advance()) != null;)
3293 >                action.apply(p.key);
3294 >        }
3295  
3296 <    /**
3297 <     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3298 <     * stream (i.e., serializes it).
3299 <     * @param s the stream
3300 <     * @serialData
3301 <     * the key (Object) and value (Object)
3302 <     * for each key-value mapping, followed by a null pair.
3300 <     * The key-value mappings are emitted in no particular order.
3301 <     */
3302 <    @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3303 <        throws java.io.IOException {
3304 <        if (segments == null) { // for serialization compatibility
3305 <            segments = (Segment<K,V>[])
3306 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3307 <            for (int i = 0; i < segments.length; ++i)
3308 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3309 <        }
3310 <        s.defaultWriteObject();
3311 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3312 <        Object v;
3313 <        while ((v = it.advance()) != null) {
3314 <            s.writeObject(it.nextKey);
3315 <            s.writeObject(v);
3296 >        public boolean tryAdvance(Action<? super K> action) {
3297 >            if (action == null) throw new NullPointerException();
3298 >            Node<K,V> p;
3299 >            if ((p = advance()) == null)
3300 >                return false;
3301 >            action.apply(p.key);
3302 >            return true;
3303          }
3304 <        s.writeObject(null);
3305 <        s.writeObject(null);
3306 <        segments = null; // throw away
3304 >
3305 >        public long estimateSize() { return est; }
3306 >
3307      }
3308  
3309 <    /**
3310 <     * Reconstitutes the instance from a stream (that is, deserializes it).
3311 <     * @param s the stream
3312 <     */
3313 <    @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3314 <        throws java.io.IOException, ClassNotFoundException {
3315 <        s.defaultReadObject();
3316 <        this.segments = null; // unneeded
3330 <        // initialize transient final field
3331 <        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3309 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3310 >        implements ConcurrentHashMapSpliterator<V> {
3311 >        long est;               // size estimate
3312 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3313 >                         long est) {
3314 >            super(tab, size, index, limit);
3315 >            this.est = est;
3316 >        }
3317  
3318 <        // Create all nodes, then place in table once size is known
3319 <        long size = 0L;
3320 <        Node p = null;
3321 <        for (;;) {
3322 <            K k = (K) s.readObject();
3338 <            V v = (V) s.readObject();
3339 <            if (k != null && v != null) {
3340 <                int h = spread(k.hashCode());
3341 <                p = new Node(h, k, v, p);
3342 <                ++size;
3343 <            }
3344 <            else
3345 <                break;
3318 >        public ConcurrentHashMapSpliterator<V> trySplit() {
3319 >            int i, f, h;
3320 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3321 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3322 >                                          f, est >>>= 1);
3323          }
3324 <        if (p != null) {
3325 <            boolean init = false;
3326 <            int n;
3327 <            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3328 <                n = MAXIMUM_CAPACITY;
3352 <            else {
3353 <                int sz = (int)size;
3354 <                n = tableSizeFor(sz + (sz >>> 1) + 1);
3355 <            }
3356 <            int sc = sizeCtl;
3357 <            boolean collide = false;
3358 <            if (n > sc &&
3359 <                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3360 <                try {
3361 <                    if (table == null) {
3362 <                        init = true;
3363 <                        Node[] tab = new Node[n];
3364 <                        int mask = n - 1;
3365 <                        while (p != null) {
3366 <                            int j = p.hash & mask;
3367 <                            Node next = p.next;
3368 <                            Node q = p.next = tabAt(tab, j);
3369 <                            setTabAt(tab, j, p);
3370 <                            if (!collide && q != null && q.hash == p.hash)
3371 <                                collide = true;
3372 <                            p = next;
3373 <                        }
3374 <                        table = tab;
3375 <                        counter.add(size);
3376 <                        sc = n - (n >>> 2);
3377 <                    }
3378 <                } finally {
3379 <                    sizeCtl = sc;
3380 <                }
3381 <                if (collide) { // rescan and convert to TreeBins
3382 <                    Node[] tab = table;
3383 <                    for (int i = 0; i < tab.length; ++i) {
3384 <                        int c = 0;
3385 <                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3386 <                            if (++c > TREE_THRESHOLD &&
3387 <                                (e.key instanceof Comparable)) {
3388 <                                replaceWithTreeBin(tab, i, e.key);
3389 <                                break;
3390 <                            }
3391 <                        }
3392 <                    }
3393 <                }
3394 <            }
3395 <            if (!init) { // Can only happen if unsafely published.
3396 <                while (p != null) {
3397 <                    internalPut(p.key, p.val);
3398 <                    p = p.next;
3399 <                }
3400 <            }
3324 >
3325 >        public void forEachRemaining(Action<? super V> action) {
3326 >            if (action == null) throw new NullPointerException();
3327 >            for (Node<K,V> p; (p = advance()) != null;)
3328 >                action.apply(p.val);
3329          }
3330 +
3331 +        public boolean tryAdvance(Action<? super V> action) {
3332 +            if (action == null) throw new NullPointerException();
3333 +            Node<K,V> p;
3334 +            if ((p = advance()) == null)
3335 +                return false;
3336 +            action.apply(p.val);
3337 +            return true;
3338 +        }
3339 +
3340 +        public long estimateSize() { return est; }
3341 +
3342      }
3343  
3344 +    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3345 +        implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3346 +        final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3347 +        long est;               // size estimate
3348 +        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3349 +                         long est, ConcurrentHashMapV8<K,V> map) {
3350 +            super(tab, size, index, limit);
3351 +            this.map = map;
3352 +            this.est = est;
3353 +        }
3354  
3355 <    // -------------------------------------------------------
3355 >        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3356 >            int i, f, h;
3357 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3358 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3359 >                                          f, est >>>= 1, map);
3360 >        }
3361  
3362 <    // Sams
3363 <    /** Interface describing a void action of one argument */
3364 <    public interface Action<A> { void apply(A a); }
3365 <    /** Interface describing a void action of two arguments */
3366 <    public interface BiAction<A,B> { void apply(A a, B b); }
3367 <    /** Interface describing a function of one argument */
3368 <    public interface Fun<A,T> { T apply(A a); }
3369 <    /** Interface describing a function of two arguments */
3370 <    public interface BiFun<A,B,T> { T apply(A a, B b); }
3371 <    /** Interface describing a function of no arguments */
3372 <    public interface Generator<T> { T apply(); }
3373 <    /** Interface describing a function mapping its argument to a double */
3374 <    public interface ObjectToDouble<A> { double apply(A a); }
3375 <    /** Interface describing a function mapping its argument to a long */
3421 <    public interface ObjectToLong<A> { long apply(A a); }
3422 <    /** Interface describing a function mapping its argument to an int */
3423 <    public interface ObjectToInt<A> {int apply(A a); }
3424 <    /** Interface describing a function mapping two arguments to a double */
3425 <    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3426 <    /** Interface describing a function mapping two arguments to a long */
3427 <    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3428 <    /** Interface describing a function mapping two arguments to an int */
3429 <    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3430 <    /** Interface describing a function mapping a double to a double */
3431 <    public interface DoubleToDouble { double apply(double a); }
3432 <    /** Interface describing a function mapping a long to a long */
3433 <    public interface LongToLong { long apply(long a); }
3434 <    /** Interface describing a function mapping an int to an int */
3435 <    public interface IntToInt { int apply(int a); }
3436 <    /** Interface describing a function mapping two doubles to a double */
3437 <    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3438 <    /** Interface describing a function mapping two longs to a long */
3439 <    public interface LongByLongToLong { long apply(long a, long b); }
3440 <    /** Interface describing a function mapping two ints to an int */
3441 <    public interface IntByIntToInt { int apply(int a, int b); }
3362 >        public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3363 >            if (action == null) throw new NullPointerException();
3364 >            for (Node<K,V> p; (p = advance()) != null; )
3365 >                action.apply(new MapEntry<K,V>(p.key, p.val, map));
3366 >        }
3367 >
3368 >        public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3369 >            if (action == null) throw new NullPointerException();
3370 >            Node<K,V> p;
3371 >            if ((p = advance()) == null)
3372 >                return false;
3373 >            action.apply(new MapEntry<K,V>(p.key, p.val, map));
3374 >            return true;
3375 >        }
3376  
3377 +        public long estimateSize() { return est; }
3378  
3379 <    // -------------------------------------------------------
3379 >    }
3380 >
3381 >    // Parallel bulk operations
3382 >
3383 >    /**
3384 >     * Computes initial batch value for bulk tasks. The returned value
3385 >     * is approximately exp2 of the number of times (minus one) to
3386 >     * split task by two before executing leaf action. This value is
3387 >     * faster to compute and more convenient to use as a guide to
3388 >     * splitting than is the depth, since it is used while dividing by
3389 >     * two anyway.
3390 >     */
3391 >    final int batchFor(long b) {
3392 >        long n;
3393 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3394 >            return 0;
3395 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3396 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3397 >    }
3398  
3399      /**
3400       * Performs the given action for each (key, value).
3401       *
3402 +     * @param parallelismThreshold the (estimated) number of elements
3403 +     * needed for this operation to be executed in parallel
3404       * @param action the action
3405 +     * @since 1.8
3406       */
3407 <    public void forEach(BiAction<K,V> action) {
3408 <        ForkJoinTasks.forEach
3409 <            (this, action).invoke();
3407 >    public void forEach(long parallelismThreshold,
3408 >                        BiAction<? super K,? super V> action) {
3409 >        if (action == null) throw new NullPointerException();
3410 >        new ForEachMappingTask<K,V>
3411 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3412 >             action).invoke();
3413      }
3414  
3415      /**
3416       * Performs the given action for each non-null transformation
3417       * of each (key, value).
3418       *
3419 +     * @param parallelismThreshold the (estimated) number of elements
3420 +     * needed for this operation to be executed in parallel
3421       * @param transformer a function returning the transformation
3422 <     * for an element, or null of there is no transformation (in
3423 <     * which case the action is not applied).
3422 >     * for an element, or null if there is no transformation (in
3423 >     * which case the action is not applied)
3424       * @param action the action
3425 +     * @since 1.8
3426       */
3427 <    public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3428 <                            Action<U> action) {
3429 <        ForkJoinTasks.forEach
3430 <            (this, transformer, action).invoke();
3427 >    public <U> void forEach(long parallelismThreshold,
3428 >                            BiFun<? super K, ? super V, ? extends U> transformer,
3429 >                            Action<? super U> action) {
3430 >        if (transformer == null || action == null)
3431 >            throw new NullPointerException();
3432 >        new ForEachTransformedMappingTask<K,V,U>
3433 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3434 >             transformer, action).invoke();
3435      }
3436  
3437      /**
# Line 3475 | Line 3441 | public class ConcurrentHashMapV8<K, V>
3441       * results of any other parallel invocations of the search
3442       * function are ignored.
3443       *
3444 +     * @param parallelismThreshold the (estimated) number of elements
3445 +     * needed for this operation to be executed in parallel
3446       * @param searchFunction a function returning a non-null
3447       * result on success, else null
3448       * @return a non-null result from applying the given search
3449       * function on each (key, value), or null if none
3450 +     * @since 1.8
3451       */
3452 <    public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3453 <        return ForkJoinTasks.search
3454 <            (this, searchFunction).invoke();
3452 >    public <U> U search(long parallelismThreshold,
3453 >                        BiFun<? super K, ? super V, ? extends U> searchFunction) {
3454 >        if (searchFunction == null) throw new NullPointerException();
3455 >        return new SearchMappingsTask<K,V,U>
3456 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3457 >             searchFunction, new AtomicReference<U>()).invoke();
3458      }
3459  
3460      /**
# Line 3490 | Line 3462 | public class ConcurrentHashMapV8<K, V>
3462       * of all (key, value) pairs using the given reducer to
3463       * combine values, or null if none.
3464       *
3465 +     * @param parallelismThreshold the (estimated) number of elements
3466 +     * needed for this operation to be executed in parallel
3467       * @param transformer a function returning the transformation
3468 <     * for an element, or null of there is no transformation (in
3469 <     * which case it is not combined).
3468 >     * for an element, or null if there is no transformation (in
3469 >     * which case it is not combined)
3470       * @param reducer a commutative associative combining function
3471       * @return the result of accumulating the given transformation
3472       * of all (key, value) pairs
3473 +     * @since 1.8
3474       */
3475 <    public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3475 >    public <U> U reduce(long parallelismThreshold,
3476 >                        BiFun<? super K, ? super V, ? extends U> transformer,
3477                          BiFun<? super U, ? super U, ? extends U> reducer) {
3478 <        return ForkJoinTasks.reduce
3479 <            (this, transformer, reducer).invoke();
3478 >        if (transformer == null || reducer == null)
3479 >            throw new NullPointerException();
3480 >        return new MapReduceMappingsTask<K,V,U>
3481 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3482 >             null, transformer, reducer).invoke();
3483      }
3484  
3485      /**
# Line 3508 | Line 3487 | public class ConcurrentHashMapV8<K, V>
3487       * of all (key, value) pairs using the given reducer to
3488       * combine values, and the given basis as an identity value.
3489       *
3490 +     * @param parallelismThreshold the (estimated) number of elements
3491 +     * needed for this operation to be executed in parallel
3492       * @param transformer a function returning the transformation
3493       * for an element
3494       * @param basis the identity (initial default value) for the reduction
3495       * @param reducer a commutative associative combining function
3496       * @return the result of accumulating the given transformation
3497       * of all (key, value) pairs
3498 +     * @since 1.8
3499       */
3500 <    public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3501 <                                 double basis,
3502 <                                 DoubleByDoubleToDouble reducer) {
3503 <        return ForkJoinTasks.reduceToDouble
3504 <            (this, transformer, basis, reducer).invoke();
3500 >    public double reduceToDoubleIn(long parallelismThreshold,
3501 >                                   ObjectByObjectToDouble<? super K, ? super V> transformer,
3502 >                                   double basis,
3503 >                                   DoubleByDoubleToDouble reducer) {
3504 >        if (transformer == null || reducer == null)
3505 >            throw new NullPointerException();
3506 >        return new MapReduceMappingsToDoubleTask<K,V>
3507 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3508 >             null, transformer, basis, reducer).invoke();
3509      }
3510  
3511      /**
# Line 3527 | Line 3513 | public class ConcurrentHashMapV8<K, V>
3513       * of all (key, value) pairs using the given reducer to
3514       * combine values, and the given basis as an identity value.
3515       *
3516 +     * @param parallelismThreshold the (estimated) number of elements
3517 +     * needed for this operation to be executed in parallel
3518       * @param transformer a function returning the transformation
3519       * for an element
3520       * @param basis the identity (initial default value) for the reduction
3521       * @param reducer a commutative associative combining function
3522       * @return the result of accumulating the given transformation
3523       * of all (key, value) pairs
3524 +     * @since 1.8
3525       */
3526 <    public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3526 >    public long reduceToLong(long parallelismThreshold,
3527 >                             ObjectByObjectToLong<? super K, ? super V> transformer,
3528                               long basis,
3529                               LongByLongToLong reducer) {
3530 <        return ForkJoinTasks.reduceToLong
3531 <            (this, transformer, basis, reducer).invoke();
3530 >        if (transformer == null || reducer == null)
3531 >            throw new NullPointerException();
3532 >        return new MapReduceMappingsToLongTask<K,V>
3533 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3534 >             null, transformer, basis, reducer).invoke();
3535      }
3536  
3537      /**
# Line 3546 | Line 3539 | public class ConcurrentHashMapV8<K, V>
3539       * of all (key, value) pairs using the given reducer to
3540       * combine values, and the given basis as an identity value.
3541       *
3542 +     * @param parallelismThreshold the (estimated) number of elements
3543 +     * needed for this operation to be executed in parallel
3544       * @param transformer a function returning the transformation
3545       * for an element
3546       * @param basis the identity (initial default value) for the reduction
3547       * @param reducer a commutative associative combining function
3548       * @return the result of accumulating the given transformation
3549       * of all (key, value) pairs
3550 +     * @since 1.8
3551       */
3552 <    public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3552 >    public int reduceToInt(long parallelismThreshold,
3553 >                           ObjectByObjectToInt<? super K, ? super V> transformer,
3554                             int basis,
3555                             IntByIntToInt reducer) {
3556 <        return ForkJoinTasks.reduceToInt
3557 <            (this, transformer, basis, reducer).invoke();
3556 >        if (transformer == null || reducer == null)
3557 >            throw new NullPointerException();
3558 >        return new MapReduceMappingsToIntTask<K,V>
3559 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3560 >             null, transformer, basis, reducer).invoke();
3561      }
3562  
3563      /**
3564       * Performs the given action for each key.
3565       *
3566 +     * @param parallelismThreshold the (estimated) number of elements
3567 +     * needed for this operation to be executed in parallel
3568       * @param action the action
3569 +     * @since 1.8
3570       */
3571 <    public void forEachKey(Action<K> action) {
3572 <        ForkJoinTasks.forEachKey
3573 <            (this, action).invoke();
3571 >    public void forEachKey(long parallelismThreshold,
3572 >                           Action<? super K> action) {
3573 >        if (action == null) throw new NullPointerException();
3574 >        new ForEachKeyTask<K,V>
3575 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3576 >             action).invoke();
3577      }
3578  
3579      /**
3580       * Performs the given action for each non-null transformation
3581       * of each key.
3582       *
3583 +     * @param parallelismThreshold the (estimated) number of elements
3584 +     * needed for this operation to be executed in parallel
3585       * @param transformer a function returning the transformation
3586 <     * for an element, or null of there is no transformation (in
3587 <     * which case the action is not applied).
3586 >     * for an element, or null if there is no transformation (in
3587 >     * which case the action is not applied)
3588       * @param action the action
3589 +     * @since 1.8
3590       */
3591 <    public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3592 <                               Action<U> action) {
3593 <        ForkJoinTasks.forEachKey
3594 <            (this, transformer, action).invoke();
3591 >    public <U> void forEachKey(long parallelismThreshold,
3592 >                               Fun<? super K, ? extends U> transformer,
3593 >                               Action<? super U> action) {
3594 >        if (transformer == null || action == null)
3595 >            throw new NullPointerException();
3596 >        new ForEachTransformedKeyTask<K,V,U>
3597 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3598 >             transformer, action).invoke();
3599      }
3600  
3601      /**
# Line 3592 | Line 3605 | public class ConcurrentHashMapV8<K, V>
3605       * any other parallel invocations of the search function are
3606       * ignored.
3607       *
3608 +     * @param parallelismThreshold the (estimated) number of elements
3609 +     * needed for this operation to be executed in parallel
3610       * @param searchFunction a function returning a non-null
3611       * result on success, else null
3612       * @return a non-null result from applying the given search
3613       * function on each key, or null if none
3614 +     * @since 1.8
3615       */
3616 <    public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3617 <        return ForkJoinTasks.searchKeys
3618 <            (this, searchFunction).invoke();
3616 >    public <U> U searchKeys(long parallelismThreshold,
3617 >                            Fun<? super K, ? extends U> searchFunction) {
3618 >        if (searchFunction == null) throw new NullPointerException();
3619 >        return new SearchKeysTask<K,V,U>
3620 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3621 >             searchFunction, new AtomicReference<U>()).invoke();
3622      }
3623  
3624      /**
3625       * Returns the result of accumulating all keys using the given
3626       * reducer to combine values, or null if none.
3627       *
3628 +     * @param parallelismThreshold the (estimated) number of elements
3629 +     * needed for this operation to be executed in parallel
3630       * @param reducer a commutative associative combining function
3631       * @return the result of accumulating all keys using the given
3632       * reducer to combine values, or null if none
3633 +     * @since 1.8
3634       */
3635 <    public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3636 <        return ForkJoinTasks.reduceKeys
3637 <            (this, reducer).invoke();
3635 >    public K reduceKeys(long parallelismThreshold,
3636 >                        BiFun<? super K, ? super K, ? extends K> reducer) {
3637 >        if (reducer == null) throw new NullPointerException();
3638 >        return new ReduceKeysTask<K,V>
3639 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3640 >             null, reducer).invoke();
3641      }
3642  
3643      /**
# Line 3620 | Line 3645 | public class ConcurrentHashMapV8<K, V>
3645       * of all keys using the given reducer to combine values, or
3646       * null if none.
3647       *
3648 +     * @param parallelismThreshold the (estimated) number of elements
3649 +     * needed for this operation to be executed in parallel
3650       * @param transformer a function returning the transformation
3651 <     * for an element, or null of there is no transformation (in
3652 <     * which case it is not combined).
3651 >     * for an element, or null if there is no transformation (in
3652 >     * which case it is not combined)
3653       * @param reducer a commutative associative combining function
3654       * @return the result of accumulating the given transformation
3655       * of all keys
3656 +     * @since 1.8
3657       */
3658 <    public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3659 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
3660 <        return ForkJoinTasks.reduceKeys
3661 <            (this, transformer, reducer).invoke();
3658 >    public <U> U reduceKeys(long parallelismThreshold,
3659 >                            Fun<? super K, ? extends U> transformer,
3660 >         BiFun<? super U, ? super U, ? extends U> reducer) {
3661 >        if (transformer == null || reducer == null)
3662 >            throw new NullPointerException();
3663 >        return new MapReduceKeysTask<K,V,U>
3664 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3665 >             null, transformer, reducer).invoke();
3666      }
3667  
3668      /**
# Line 3638 | Line 3670 | public class ConcurrentHashMapV8<K, V>
3670       * of all keys using the given reducer to combine values, and
3671       * the given basis as an identity value.
3672       *
3673 +     * @param parallelismThreshold the (estimated) number of elements
3674 +     * needed for this operation to be executed in parallel
3675       * @param transformer a function returning the transformation
3676       * for an element
3677       * @param basis the identity (initial default value) for the reduction
3678       * @param reducer a commutative associative combining function
3679 <     * @return  the result of accumulating the given transformation
3679 >     * @return the result of accumulating the given transformation
3680       * of all keys
3681 +     * @since 1.8
3682       */
3683 <    public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3683 >    public double reduceKeysToDouble(long parallelismThreshold,
3684 >                                     ObjectToDouble<? super K> transformer,
3685                                       double basis,
3686                                       DoubleByDoubleToDouble reducer) {
3687 <        return ForkJoinTasks.reduceKeysToDouble
3688 <            (this, transformer, basis, reducer).invoke();
3687 >        if (transformer == null || reducer == null)
3688 >            throw new NullPointerException();
3689 >        return new MapReduceKeysToDoubleTask<K,V>
3690 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3691 >             null, transformer, basis, reducer).invoke();
3692      }
3693  
3694      /**
# Line 3657 | Line 3696 | public class ConcurrentHashMapV8<K, V>
3696       * of all keys using the given reducer to combine values, and
3697       * the given basis as an identity value.
3698       *
3699 +     * @param parallelismThreshold the (estimated) number of elements
3700 +     * needed for this operation to be executed in parallel
3701       * @param transformer a function returning the transformation
3702       * for an element
3703       * @param basis the identity (initial default value) for the reduction
3704       * @param reducer a commutative associative combining function
3705       * @return the result of accumulating the given transformation
3706       * of all keys
3707 +     * @since 1.8
3708       */
3709 <    public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3709 >    public long reduceKeysToLong(long parallelismThreshold,
3710 >                                 ObjectToLong<? super K> transformer,
3711                                   long basis,
3712                                   LongByLongToLong reducer) {
3713 <        return ForkJoinTasks.reduceKeysToLong
3714 <            (this, transformer, basis, reducer).invoke();
3713 >        if (transformer == null || reducer == null)
3714 >            throw new NullPointerException();
3715 >        return new MapReduceKeysToLongTask<K,V>
3716 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3717 >             null, transformer, basis, reducer).invoke();
3718      }
3719  
3720      /**
# Line 3676 | Line 3722 | public class ConcurrentHashMapV8<K, V>
3722       * of all keys using the given reducer to combine values, and
3723       * the given basis as an identity value.
3724       *
3725 +     * @param parallelismThreshold the (estimated) number of elements
3726 +     * needed for this operation to be executed in parallel
3727       * @param transformer a function returning the transformation
3728       * for an element
3729       * @param basis the identity (initial default value) for the reduction
3730       * @param reducer a commutative associative combining function
3731       * @return the result of accumulating the given transformation
3732       * of all keys
3733 +     * @since 1.8
3734       */
3735 <    public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3735 >    public int reduceKeysToInt(long parallelismThreshold,
3736 >                               ObjectToInt<? super K> transformer,
3737                                 int basis,
3738                                 IntByIntToInt reducer) {
3739 <        return ForkJoinTasks.reduceKeysToInt
3740 <            (this, transformer, basis, reducer).invoke();
3739 >        if (transformer == null || reducer == null)
3740 >            throw new NullPointerException();
3741 >        return new MapReduceKeysToIntTask<K,V>
3742 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3743 >             null, transformer, basis, reducer).invoke();
3744      }
3745  
3746      /**
3747       * Performs the given action for each value.
3748       *
3749 +     * @param parallelismThreshold the (estimated) number of elements
3750 +     * needed for this operation to be executed in parallel
3751       * @param action the action
3752 +     * @since 1.8
3753       */
3754 <    public void forEachValue(Action<V> action) {
3755 <        ForkJoinTasks.forEachValue
3756 <            (this, action).invoke();
3754 >    public void forEachValue(long parallelismThreshold,
3755 >                             Action<? super V> action) {
3756 >        if (action == null)
3757 >            throw new NullPointerException();
3758 >        new ForEachValueTask<K,V>
3759 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3760 >             action).invoke();
3761      }
3762  
3763      /**
3764       * Performs the given action for each non-null transformation
3765       * of each value.
3766       *
3767 +     * @param parallelismThreshold the (estimated) number of elements
3768 +     * needed for this operation to be executed in parallel
3769       * @param transformer a function returning the transformation
3770 <     * for an element, or null of there is no transformation (in
3771 <     * which case the action is not applied).
3770 >     * for an element, or null if there is no transformation (in
3771 >     * which case the action is not applied)
3772 >     * @param action the action
3773 >     * @since 1.8
3774       */
3775 <    public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3776 <                                 Action<U> action) {
3777 <        ForkJoinTasks.forEachValue
3778 <            (this, transformer, action).invoke();
3775 >    public <U> void forEachValue(long parallelismThreshold,
3776 >                                 Fun<? super V, ? extends U> transformer,
3777 >                                 Action<? super U> action) {
3778 >        if (transformer == null || action == null)
3779 >            throw new NullPointerException();
3780 >        new ForEachTransformedValueTask<K,V,U>
3781 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3782 >             transformer, action).invoke();
3783      }
3784  
3785      /**
# Line 3721 | Line 3789 | public class ConcurrentHashMapV8<K, V>
3789       * any other parallel invocations of the search function are
3790       * ignored.
3791       *
3792 +     * @param parallelismThreshold the (estimated) number of elements
3793 +     * needed for this operation to be executed in parallel
3794       * @param searchFunction a function returning a non-null
3795       * result on success, else null
3796       * @return a non-null result from applying the given search
3797       * function on each value, or null if none
3798 <     *
3798 >     * @since 1.8
3799       */
3800 <    public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3801 <        return ForkJoinTasks.searchValues
3802 <            (this, searchFunction).invoke();
3800 >    public <U> U searchValues(long parallelismThreshold,
3801 >                              Fun<? super V, ? extends U> searchFunction) {
3802 >        if (searchFunction == null) throw new NullPointerException();
3803 >        return new SearchValuesTask<K,V,U>
3804 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3805 >             searchFunction, new AtomicReference<U>()).invoke();
3806      }
3807  
3808      /**
3809       * Returns the result of accumulating all values using the
3810       * given reducer to combine values, or null if none.
3811       *
3812 +     * @param parallelismThreshold the (estimated) number of elements
3813 +     * needed for this operation to be executed in parallel
3814       * @param reducer a commutative associative combining function
3815 <     * @return  the result of accumulating all values
3815 >     * @return the result of accumulating all values
3816 >     * @since 1.8
3817       */
3818 <    public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3819 <        return ForkJoinTasks.reduceValues
3820 <            (this, reducer).invoke();
3818 >    public V reduceValues(long parallelismThreshold,
3819 >                          BiFun<? super V, ? super V, ? extends V> reducer) {
3820 >        if (reducer == null) throw new NullPointerException();
3821 >        return new ReduceValuesTask<K,V>
3822 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3823 >             null, reducer).invoke();
3824      }
3825  
3826      /**
# Line 3749 | Line 3828 | public class ConcurrentHashMapV8<K, V>
3828       * of all values using the given reducer to combine values, or
3829       * null if none.
3830       *
3831 +     * @param parallelismThreshold the (estimated) number of elements
3832 +     * needed for this operation to be executed in parallel
3833       * @param transformer a function returning the transformation
3834 <     * for an element, or null of there is no transformation (in
3835 <     * which case it is not combined).
3834 >     * for an element, or null if there is no transformation (in
3835 >     * which case it is not combined)
3836       * @param reducer a commutative associative combining function
3837       * @return the result of accumulating the given transformation
3838       * of all values
3839 +     * @since 1.8
3840       */
3841 <    public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3841 >    public <U> U reduceValues(long parallelismThreshold,
3842 >                              Fun<? super V, ? extends U> transformer,
3843                                BiFun<? super U, ? super U, ? extends U> reducer) {
3844 <        return ForkJoinTasks.reduceValues
3845 <            (this, transformer, reducer).invoke();
3844 >        if (transformer == null || reducer == null)
3845 >            throw new NullPointerException();
3846 >        return new MapReduceValuesTask<K,V,U>
3847 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3848 >             null, transformer, reducer).invoke();
3849      }
3850  
3851      /**
# Line 3767 | Line 3853 | public class ConcurrentHashMapV8<K, V>
3853       * of all values using the given reducer to combine values,
3854       * and the given basis as an identity value.
3855       *
3856 +     * @param parallelismThreshold the (estimated) number of elements
3857 +     * needed for this operation to be executed in parallel
3858       * @param transformer a function returning the transformation
3859       * for an element
3860       * @param basis the identity (initial default value) for the reduction
3861       * @param reducer a commutative associative combining function
3862       * @return the result of accumulating the given transformation
3863       * of all values
3864 +     * @since 1.8
3865       */
3866 <    public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3866 >    public double reduceValuesToDouble(long parallelismThreshold,
3867 >                                       ObjectToDouble<? super V> transformer,
3868                                         double basis,
3869                                         DoubleByDoubleToDouble reducer) {
3870 <        return ForkJoinTasks.reduceValuesToDouble
3871 <            (this, transformer, basis, reducer).invoke();
3870 >        if (transformer == null || reducer == null)
3871 >            throw new NullPointerException();
3872 >        return new MapReduceValuesToDoubleTask<K,V>
3873 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3874 >             null, transformer, basis, reducer).invoke();
3875      }
3876  
3877      /**
# Line 3786 | Line 3879 | public class ConcurrentHashMapV8<K, V>
3879       * of all values using the given reducer to combine values,
3880       * and the given basis as an identity value.
3881       *
3882 +     * @param parallelismThreshold the (estimated) number of elements
3883 +     * needed for this operation to be executed in parallel
3884       * @param transformer a function returning the transformation
3885       * for an element
3886       * @param basis the identity (initial default value) for the reduction
3887       * @param reducer a commutative associative combining function
3888       * @return the result of accumulating the given transformation
3889       * of all values
3890 +     * @since 1.8
3891       */
3892 <    public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3892 >    public long reduceValuesToLong(long parallelismThreshold,
3893 >                                   ObjectToLong<? super V> transformer,
3894                                     long basis,
3895                                     LongByLongToLong reducer) {
3896 <        return ForkJoinTasks.reduceValuesToLong
3897 <            (this, transformer, basis, reducer).invoke();
3896 >        if (transformer == null || reducer == null)
3897 >            throw new NullPointerException();
3898 >        return new MapReduceValuesToLongTask<K,V>
3899 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3900 >             null, transformer, basis, reducer).invoke();
3901      }
3902  
3903      /**
# Line 3805 | Line 3905 | public class ConcurrentHashMapV8<K, V>
3905       * of all values using the given reducer to combine values,
3906       * and the given basis as an identity value.
3907       *
3908 +     * @param parallelismThreshold the (estimated) number of elements
3909 +     * needed for this operation to be executed in parallel
3910       * @param transformer a function returning the transformation
3911       * for an element
3912       * @param basis the identity (initial default value) for the reduction
3913       * @param reducer a commutative associative combining function
3914       * @return the result of accumulating the given transformation
3915       * of all values
3916 +     * @since 1.8
3917       */
3918 <    public int reduceValuesToInt(ObjectToInt<? super V> transformer,
3918 >    public int reduceValuesToInt(long parallelismThreshold,
3919 >                                 ObjectToInt<? super V> transformer,
3920                                   int basis,
3921                                   IntByIntToInt reducer) {
3922 <        return ForkJoinTasks.reduceValuesToInt
3923 <            (this, transformer, basis, reducer).invoke();
3922 >        if (transformer == null || reducer == null)
3923 >            throw new NullPointerException();
3924 >        return new MapReduceValuesToIntTask<K,V>
3925 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3926 >             null, transformer, basis, reducer).invoke();
3927      }
3928  
3929      /**
3930       * Performs the given action for each entry.
3931       *
3932 +     * @param parallelismThreshold the (estimated) number of elements
3933 +     * needed for this operation to be executed in parallel
3934       * @param action the action
3935 +     * @since 1.8
3936       */
3937 <    public void forEachEntry(Action<Map.Entry<K,V>> action) {
3938 <        ForkJoinTasks.forEachEntry
3939 <            (this, action).invoke();
3937 >    public void forEachEntry(long parallelismThreshold,
3938 >                             Action<? super Map.Entry<K,V>> action) {
3939 >        if (action == null) throw new NullPointerException();
3940 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
3941 >                                  action).invoke();
3942      }
3943  
3944      /**
3945       * Performs the given action for each non-null transformation
3946       * of each entry.
3947       *
3948 +     * @param parallelismThreshold the (estimated) number of elements
3949 +     * needed for this operation to be executed in parallel
3950       * @param transformer a function returning the transformation
3951 <     * for an element, or null of there is no transformation (in
3952 <     * which case the action is not applied).
3951 >     * for an element, or null if there is no transformation (in
3952 >     * which case the action is not applied)
3953       * @param action the action
3954 +     * @since 1.8
3955       */
3956 <    public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
3957 <                                 Action<U> action) {
3958 <        ForkJoinTasks.forEachEntry
3959 <            (this, transformer, action).invoke();
3956 >    public <U> void forEachEntry(long parallelismThreshold,
3957 >                                 Fun<Map.Entry<K,V>, ? extends U> transformer,
3958 >                                 Action<? super U> action) {
3959 >        if (transformer == null || action == null)
3960 >            throw new NullPointerException();
3961 >        new ForEachTransformedEntryTask<K,V,U>
3962 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3963 >             transformer, action).invoke();
3964      }
3965  
3966      /**
# Line 3851 | Line 3970 | public class ConcurrentHashMapV8<K, V>
3970       * any other parallel invocations of the search function are
3971       * ignored.
3972       *
3973 +     * @param parallelismThreshold the (estimated) number of elements
3974 +     * needed for this operation to be executed in parallel
3975       * @param searchFunction a function returning a non-null
3976       * result on success, else null
3977       * @return a non-null result from applying the given search
3978       * function on each entry, or null if none
3979 +     * @since 1.8
3980       */
3981 <    public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3982 <        return ForkJoinTasks.searchEntries
3983 <            (this, searchFunction).invoke();
3981 >    public <U> U searchEntries(long parallelismThreshold,
3982 >                               Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3983 >        if (searchFunction == null) throw new NullPointerException();
3984 >        return new SearchEntriesTask<K,V,U>
3985 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3986 >             searchFunction, new AtomicReference<U>()).invoke();
3987      }
3988  
3989      /**
3990       * Returns the result of accumulating all entries using the
3991       * given reducer to combine values, or null if none.
3992       *
3993 +     * @param parallelismThreshold the (estimated) number of elements
3994 +     * needed for this operation to be executed in parallel
3995       * @param reducer a commutative associative combining function
3996       * @return the result of accumulating all entries
3997 +     * @since 1.8
3998       */
3999 <    public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4000 <        return ForkJoinTasks.reduceEntries
4001 <            (this, reducer).invoke();
3999 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4000 >                                        BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4001 >        if (reducer == null) throw new NullPointerException();
4002 >        return new ReduceEntriesTask<K,V>
4003 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4004 >             null, reducer).invoke();
4005      }
4006  
4007      /**
# Line 3878 | Line 4009 | public class ConcurrentHashMapV8<K, V>
4009       * of all entries using the given reducer to combine values,
4010       * or null if none.
4011       *
4012 +     * @param parallelismThreshold the (estimated) number of elements
4013 +     * needed for this operation to be executed in parallel
4014       * @param transformer a function returning the transformation
4015 <     * for an element, or null of there is no transformation (in
4016 <     * which case it is not combined).
4015 >     * for an element, or null if there is no transformation (in
4016 >     * which case it is not combined)
4017       * @param reducer a commutative associative combining function
4018       * @return the result of accumulating the given transformation
4019       * of all entries
4020 +     * @since 1.8
4021       */
4022 <    public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4022 >    public <U> U reduceEntries(long parallelismThreshold,
4023 >                               Fun<Map.Entry<K,V>, ? extends U> transformer,
4024                                 BiFun<? super U, ? super U, ? extends U> reducer) {
4025 <        return ForkJoinTasks.reduceEntries
4026 <            (this, transformer, reducer).invoke();
4025 >        if (transformer == null || reducer == null)
4026 >            throw new NullPointerException();
4027 >        return new MapReduceEntriesTask<K,V,U>
4028 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4029 >             null, transformer, reducer).invoke();
4030      }
4031  
4032      /**
# Line 3896 | Line 4034 | public class ConcurrentHashMapV8<K, V>
4034       * of all entries using the given reducer to combine values,
4035       * and the given basis as an identity value.
4036       *
4037 +     * @param parallelismThreshold the (estimated) number of elements
4038 +     * needed for this operation to be executed in parallel
4039       * @param transformer a function returning the transformation
4040       * for an element
4041       * @param basis the identity (initial default value) for the reduction
4042       * @param reducer a commutative associative combining function
4043       * @return the result of accumulating the given transformation
4044       * of all entries
4045 +     * @since 1.8
4046       */
4047 <    public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4047 >    public double reduceEntriesToDouble(long parallelismThreshold,
4048 >                                        ObjectToDouble<Map.Entry<K,V>> transformer,
4049                                          double basis,
4050                                          DoubleByDoubleToDouble reducer) {
4051 <        return ForkJoinTasks.reduceEntriesToDouble
4052 <            (this, transformer, basis, reducer).invoke();
4051 >        if (transformer == null || reducer == null)
4052 >            throw new NullPointerException();
4053 >        return new MapReduceEntriesToDoubleTask<K,V>
4054 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4055 >             null, transformer, basis, reducer).invoke();
4056      }
4057  
4058      /**
# Line 3915 | Line 4060 | public class ConcurrentHashMapV8<K, V>
4060       * of all entries using the given reducer to combine values,
4061       * and the given basis as an identity value.
4062       *
4063 +     * @param parallelismThreshold the (estimated) number of elements
4064 +     * needed for this operation to be executed in parallel
4065       * @param transformer a function returning the transformation
4066       * for an element
4067       * @param basis the identity (initial default value) for the reduction
4068       * @param reducer a commutative associative combining function
4069 <     * @return  the result of accumulating the given transformation
4069 >     * @return the result of accumulating the given transformation
4070       * of all entries
4071 +     * @since 1.8
4072       */
4073 <    public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4073 >    public long reduceEntriesToLong(long parallelismThreshold,
4074 >                                    ObjectToLong<Map.Entry<K,V>> transformer,
4075                                      long basis,
4076                                      LongByLongToLong reducer) {
4077 <        return ForkJoinTasks.reduceEntriesToLong
4078 <            (this, transformer, basis, reducer).invoke();
4077 >        if (transformer == null || reducer == null)
4078 >            throw new NullPointerException();
4079 >        return new MapReduceEntriesToLongTask<K,V>
4080 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4081 >             null, transformer, basis, reducer).invoke();
4082      }
4083  
4084      /**
# Line 3934 | Line 4086 | public class ConcurrentHashMapV8<K, V>
4086       * of all entries using the given reducer to combine values,
4087       * and the given basis as an identity value.
4088       *
4089 +     * @param parallelismThreshold the (estimated) number of elements
4090 +     * needed for this operation to be executed in parallel
4091       * @param transformer a function returning the transformation
4092       * for an element
4093       * @param basis the identity (initial default value) for the reduction
4094       * @param reducer a commutative associative combining function
4095       * @return the result of accumulating the given transformation
4096       * of all entries
4097 +     * @since 1.8
4098       */
4099 <    public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4099 >    public int reduceEntriesToInt(long parallelismThreshold,
4100 >                                  ObjectToInt<Map.Entry<K,V>> transformer,
4101                                    int basis,
4102                                    IntByIntToInt reducer) {
4103 <        return ForkJoinTasks.reduceEntriesToInt
4104 <            (this, transformer, basis, reducer).invoke();
4103 >        if (transformer == null || reducer == null)
4104 >            throw new NullPointerException();
4105 >        return new MapReduceEntriesToIntTask<K,V>
4106 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4107 >             null, transformer, basis, reducer).invoke();
4108      }
4109  
4110 +
4111      /* ----------------Views -------------- */
4112  
4113      /**
4114       * Base class for views.
4115       */
4116 <    static abstract class CHMView<K, V> {
4117 <        final ConcurrentHashMapV8<K, V> map;
4118 <        CHMView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
4116 >    abstract static class CollectionView<K,V,E>
4117 >        implements Collection<E>, java.io.Serializable {
4118 >        private static final long serialVersionUID = 7249069246763182397L;
4119 >        final ConcurrentHashMapV8<K,V> map;
4120 >        CollectionView(ConcurrentHashMapV8<K,V> map)  { this.map = map; }
4121  
4122          /**
4123           * Returns the map backing this view.
# Line 3964 | Line 4126 | public class ConcurrentHashMapV8<K, V>
4126           */
4127          public ConcurrentHashMapV8<K,V> getMap() { return map; }
4128  
4129 <        public final int size()                 { return map.size(); }
4130 <        public final boolean isEmpty()          { return map.isEmpty(); }
4131 <        public final void clear()               { map.clear(); }
4129 >        /**
4130 >         * Removes all of the elements from this view, by removing all
4131 >         * the mappings from the map backing this view.
4132 >         */
4133 >        public final void clear()      { map.clear(); }
4134 >        public final int size()        { return map.size(); }
4135 >        public final boolean isEmpty() { return map.isEmpty(); }
4136  
4137          // implementations below rely on concrete classes supplying these
4138 <        abstract public Iterator<?> iterator();
4139 <        abstract public boolean contains(Object o);
4140 <        abstract public boolean remove(Object o);
4138 >        // abstract methods
4139 >        /**
4140 >         * Returns a "weakly consistent" iterator that will never
4141 >         * throw {@link ConcurrentModificationException}, and
4142 >         * guarantees to traverse elements as they existed upon
4143 >         * construction of the iterator, and may (but is not
4144 >         * guaranteed to) reflect any modifications subsequent to
4145 >         * construction.
4146 >         */
4147 >        public abstract Iterator<E> iterator();
4148 >        public abstract boolean contains(Object o);
4149 >        public abstract boolean remove(Object o);
4150  
4151          private static final String oomeMsg = "Required array size too large";
4152  
4153          public final Object[] toArray() {
4154              long sz = map.mappingCount();
4155 <            if (sz > (long)(MAX_ARRAY_SIZE))
4155 >            if (sz > MAX_ARRAY_SIZE)
4156                  throw new OutOfMemoryError(oomeMsg);
4157              int n = (int)sz;
4158              Object[] r = new Object[n];
4159              int i = 0;
4160 <            Iterator<?> it = iterator();
3986 <            while (it.hasNext()) {
4160 >            for (E e : this) {
4161                  if (i == n) {
4162                      if (n >= MAX_ARRAY_SIZE)
4163                          throw new OutOfMemoryError(oomeMsg);
# Line 3993 | Line 4167 | public class ConcurrentHashMapV8<K, V>
4167                          n += (n >>> 1) + 1;
4168                      r = Arrays.copyOf(r, n);
4169                  }
4170 <                r[i++] = it.next();
4170 >                r[i++] = e;
4171              }
4172              return (i == n) ? r : Arrays.copyOf(r, i);
4173          }
4174  
4175 <        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4175 >        @SuppressWarnings("unchecked")
4176 >        public final <T> T[] toArray(T[] a) {
4177              long sz = map.mappingCount();
4178 <            if (sz > (long)(MAX_ARRAY_SIZE))
4178 >            if (sz > MAX_ARRAY_SIZE)
4179                  throw new OutOfMemoryError(oomeMsg);
4180              int m = (int)sz;
4181              T[] r = (a.length >= m) ? a :
# Line 4008 | Line 4183 | public class ConcurrentHashMapV8<K, V>
4183                  .newInstance(a.getClass().getComponentType(), m);
4184              int n = r.length;
4185              int i = 0;
4186 <            Iterator<?> it = iterator();
4012 <            while (it.hasNext()) {
4186 >            for (E e : this) {
4187                  if (i == n) {
4188                      if (n >= MAX_ARRAY_SIZE)
4189                          throw new OutOfMemoryError(oomeMsg);
# Line 4019 | Line 4193 | public class ConcurrentHashMapV8<K, V>
4193                          n += (n >>> 1) + 1;
4194                      r = Arrays.copyOf(r, n);
4195                  }
4196 <                r[i++] = (T)it.next();
4196 >                r[i++] = (T)e;
4197              }
4198              if (a == r && i < n) {
4199                  r[i] = null; // null-terminate
# Line 4028 | Line 4202 | public class ConcurrentHashMapV8<K, V>
4202              return (i == n) ? r : Arrays.copyOf(r, i);
4203          }
4204  
4205 <        public final int hashCode() {
4206 <            int h = 0;
4207 <            for (Iterator<?> it = iterator(); it.hasNext();)
4208 <                h += it.next().hashCode();
4209 <            return h;
4210 <        }
4211 <
4205 >        /**
4206 >         * Returns a string representation of this collection.
4207 >         * The string representation consists of the string representations
4208 >         * of the collection's elements in the order they are returned by
4209 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4210 >         * Adjacent elements are separated by the characters {@code ", "}
4211 >         * (comma and space).  Elements are converted to strings as by
4212 >         * {@link String#valueOf(Object)}.
4213 >         *
4214 >         * @return a string representation of this collection
4215 >         */
4216          public final String toString() {
4217              StringBuilder sb = new StringBuilder();
4218              sb.append('[');
4219 <            Iterator<?> it = iterator();
4219 >            Iterator<E> it = iterator();
4220              if (it.hasNext()) {
4221                  for (;;) {
4222                      Object e = it.next();
# Line 4053 | Line 4231 | public class ConcurrentHashMapV8<K, V>
4231  
4232          public final boolean containsAll(Collection<?> c) {
4233              if (c != this) {
4234 <                for (Iterator<?> it = c.iterator(); it.hasNext();) {
4057 <                    Object e = it.next();
4234 >                for (Object e : c) {
4235                      if (e == null || !contains(e))
4236                          return false;
4237                  }
# Line 4064 | Line 4241 | public class ConcurrentHashMapV8<K, V>
4241  
4242          public final boolean removeAll(Collection<?> c) {
4243              boolean modified = false;
4244 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4244 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4245                  if (c.contains(it.next())) {
4246                      it.remove();
4247                      modified = true;
# Line 4075 | Line 4252 | public class ConcurrentHashMapV8<K, V>
4252  
4253          public final boolean retainAll(Collection<?> c) {
4254              boolean modified = false;
4255 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4255 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4256                  if (!c.contains(it.next())) {
4257                      it.remove();
4258                      modified = true;
# Line 4089 | Line 4266 | public class ConcurrentHashMapV8<K, V>
4266      /**
4267       * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4268       * which additions may optionally be enabled by mapping to a
4269 <     * common value.  This class cannot be directly instantiated. See
4270 <     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4271 <     * {@link #newKeySet(int)}.
4269 >     * common value.  This class cannot be directly instantiated.
4270 >     * See {@link #keySet() keySet()},
4271 >     * {@link #keySet(Object) keySet(V)},
4272 >     * {@link #newKeySet() newKeySet()},
4273 >     * {@link #newKeySet(int) newKeySet(int)}.
4274 >     *
4275 >     * @since 1.8
4276       */
4277 <    public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
4277 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4278 >        implements Set<K>, java.io.Serializable {
4279          private static final long serialVersionUID = 7249069246763182397L;
4280          private final V value;
4281 <        KeySetView(ConcurrentHashMapV8<K, V> map, V value) {  // non-public
4281 >        KeySetView(ConcurrentHashMapV8<K,V> map, V value) {  // non-public
4282              super(map);
4283              this.value = value;
4284          }
# Line 4106 | Line 4288 | public class ConcurrentHashMapV8<K, V>
4288           * or {@code null} if additions are not supported.
4289           *
4290           * @return the default mapped value for additions, or {@code null}
4291 <         * if not supported.
4291 >         * if not supported
4292           */
4293          public V getMappedValue() { return value; }
4294  
4295 <        // implement Set API
4296 <
4295 >        /**
4296 >         * {@inheritDoc}
4297 >         * @throws NullPointerException if the specified key is null
4298 >         */
4299          public boolean contains(Object o) { return map.containsKey(o); }
4116        public boolean remove(Object o)   { return map.remove(o) != null; }
4300  
4301          /**
4302 <         * Returns a "weakly consistent" iterator that will never
4303 <         * throw {@link ConcurrentModificationException}, and
4304 <         * guarantees to traverse elements as they existed upon
4305 <         * construction of the iterator, and may (but is not
4306 <         * guaranteed to) reflect any modifications subsequent to
4307 <         * construction.
4302 >         * Removes the key from this map view, by removing the key (and its
4303 >         * corresponding value) from the backing map.  This method does
4304 >         * nothing if the key is not in the map.
4305 >         *
4306 >         * @param  o the key to be removed from the backing map
4307 >         * @return {@code true} if the backing map contained the specified key
4308 >         * @throws NullPointerException if the specified key is null
4309 >         */
4310 >        public boolean remove(Object o) { return map.remove(o) != null; }
4311 >
4312 >        /**
4313 >         * @return an iterator over the keys of the backing map
4314 >         */
4315 >        public Iterator<K> iterator() {
4316 >            Node<K,V>[] t;
4317 >            ConcurrentHashMapV8<K,V> m = map;
4318 >            int f = (t = m.table) == null ? 0 : t.length;
4319 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4320 >        }
4321 >
4322 >        /**
4323 >         * Adds the specified key to this set view by mapping the key to
4324 >         * the default mapped value in the backing map, if defined.
4325           *
4326 <         * @return an iterator over the keys of this map
4326 >         * @param e key to be added
4327 >         * @return {@code true} if this set changed as a result of the call
4328 >         * @throws NullPointerException if the specified key is null
4329 >         * @throws UnsupportedOperationException if no default mapped value
4330 >         * for additions was provided
4331           */
4128        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4332          public boolean add(K e) {
4333              V v;
4334              if ((v = value) == null)
4335                  throw new UnsupportedOperationException();
4336 <            if (e == null)
4134 <                throw new NullPointerException();
4135 <            return map.internalPutIfAbsent(e, v) == null;
4336 >            return map.putVal(e, v, true) == null;
4337          }
4338 +
4339 +        /**
4340 +         * Adds all of the elements in the specified collection to this set,
4341 +         * as if by calling {@link #add} on each one.
4342 +         *
4343 +         * @param c the elements to be inserted into this set
4344 +         * @return {@code true} if this set changed as a result of the call
4345 +         * @throws NullPointerException if the collection or any of its
4346 +         * elements are {@code null}
4347 +         * @throws UnsupportedOperationException if no default mapped value
4348 +         * for additions was provided
4349 +         */
4350          public boolean addAll(Collection<? extends K> c) {
4351              boolean added = false;
4352              V v;
4353              if ((v = value) == null)
4354                  throw new UnsupportedOperationException();
4355              for (K e : c) {
4356 <                if (e == null)
4144 <                    throw new NullPointerException();
4145 <                if (map.internalPutIfAbsent(e, v) == null)
4356 >                if (map.putVal(e, v, true) == null)
4357                      added = true;
4358              }
4359              return added;
4360          }
4361 +
4362 +        public int hashCode() {
4363 +            int h = 0;
4364 +            for (K e : this)
4365 +                h += e.hashCode();
4366 +            return h;
4367 +        }
4368 +
4369          public boolean equals(Object o) {
4370              Set<?> c;
4371              return ((o instanceof Set) &&
# Line 4154 | Line 4373 | public class ConcurrentHashMapV8<K, V>
4373                       (containsAll(c) && c.containsAll(this))));
4374          }
4375  
4376 <        /**
4377 <         * Performs the given action for each key.
4378 <         *
4379 <         * @param action the action
4380 <         */
4381 <        public void forEach(Action<K> action) {
4163 <            ForkJoinTasks.forEachKey
4164 <                (map, action).invoke();
4165 <        }
4166 <
4167 <        /**
4168 <         * Performs the given action for each non-null transformation
4169 <         * of each key.
4170 <         *
4171 <         * @param transformer a function returning the transformation
4172 <         * for an element, or null of there is no transformation (in
4173 <         * which case the action is not applied).
4174 <         * @param action the action
4175 <         */
4176 <        public <U> void forEach(Fun<? super K, ? extends U> transformer,
4177 <                                Action<U> action) {
4178 <            ForkJoinTasks.forEachKey
4179 <                (map, transformer, action).invoke();
4180 <        }
4181 <
4182 <        /**
4183 <         * Returns a non-null result from applying the given search
4184 <         * function on each key, or null if none. Upon success,
4185 <         * further element processing is suppressed and the results of
4186 <         * any other parallel invocations of the search function are
4187 <         * ignored.
4188 <         *
4189 <         * @param searchFunction a function returning a non-null
4190 <         * result on success, else null
4191 <         * @return a non-null result from applying the given search
4192 <         * function on each key, or null if none
4193 <         */
4194 <        public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4195 <            return ForkJoinTasks.searchKeys
4196 <                (map, searchFunction).invoke();
4197 <        }
4198 <
4199 <        /**
4200 <         * Returns the result of accumulating all keys using the given
4201 <         * reducer to combine values, or null if none.
4202 <         *
4203 <         * @param reducer a commutative associative combining function
4204 <         * @return the result of accumulating all keys using the given
4205 <         * reducer to combine values, or null if none
4206 <         */
4207 <        public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4208 <            return ForkJoinTasks.reduceKeys
4209 <                (map, reducer).invoke();
4210 <        }
4211 <
4212 <        /**
4213 <         * Returns the result of accumulating the given transformation
4214 <         * of all keys using the given reducer to combine values, and
4215 <         * the given basis as an identity value.
4216 <         *
4217 <         * @param transformer a function returning the transformation
4218 <         * for an element
4219 <         * @param basis the identity (initial default value) for the reduction
4220 <         * @param reducer a commutative associative combining function
4221 <         * @return  the result of accumulating the given transformation
4222 <         * of all keys
4223 <         */
4224 <        public double reduceToDouble(ObjectToDouble<? super K> transformer,
4225 <                                     double basis,
4226 <                                     DoubleByDoubleToDouble reducer) {
4227 <            return ForkJoinTasks.reduceKeysToDouble
4228 <                (map, transformer, basis, reducer).invoke();
4229 <        }
4230 <
4231 <
4232 <        /**
4233 <         * Returns the result of accumulating the given transformation
4234 <         * of all keys using the given reducer to combine values, and
4235 <         * the given basis as an identity value.
4236 <         *
4237 <         * @param transformer a function returning the transformation
4238 <         * for an element
4239 <         * @param basis the identity (initial default value) for the reduction
4240 <         * @param reducer a commutative associative combining function
4241 <         * @return the result of accumulating the given transformation
4242 <         * of all keys
4243 <         */
4244 <        public long reduceToLong(ObjectToLong<? super K> transformer,
4245 <                                 long basis,
4246 <                                 LongByLongToLong reducer) {
4247 <            return ForkJoinTasks.reduceKeysToLong
4248 <                (map, transformer, basis, reducer).invoke();
4376 >        public ConcurrentHashMapSpliterator<K> spliterator() {
4377 >            Node<K,V>[] t;
4378 >            ConcurrentHashMapV8<K,V> m = map;
4379 >            long n = m.sumCount();
4380 >            int f = (t = m.table) == null ? 0 : t.length;
4381 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4382          }
4383  
4384 <        /**
4385 <         * Returns the result of accumulating the given transformation
4386 <         * of all keys using the given reducer to combine values, and
4387 <         * the given basis as an identity value.
4388 <         *
4389 <         * @param transformer a function returning the transformation
4390 <         * for an element
4391 <         * @param basis the identity (initial default value) for the reduction
4259 <         * @param reducer a commutative associative combining function
4260 <         * @return the result of accumulating the given transformation
4261 <         * of all keys
4262 <         */
4263 <        public int reduceToInt(ObjectToInt<? super K> transformer,
4264 <                               int basis,
4265 <                               IntByIntToInt reducer) {
4266 <            return ForkJoinTasks.reduceKeysToInt
4267 <                (map, transformer, basis, reducer).invoke();
4384 >        public void forEach(Action<? super K> action) {
4385 >            if (action == null) throw new NullPointerException();
4386 >            Node<K,V>[] t;
4387 >            if ((t = map.table) != null) {
4388 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4389 >                for (Node<K,V> p; (p = it.advance()) != null; )
4390 >                    action.apply(p.key);
4391 >            }
4392          }
4269
4393      }
4394  
4395      /**
4396       * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4397       * values, in which additions are disabled. This class cannot be
4398 <     * directly instantiated. See {@link #values},
4276 <     *
4277 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4278 <     * that will never throw {@link ConcurrentModificationException},
4279 <     * and guarantees to traverse elements as they existed upon
4280 <     * construction of the iterator, and may (but is not guaranteed to)
4281 <     * reflect any modifications subsequent to construction.
4398 >     * directly instantiated. See {@link #values()}.
4399       */
4400 <    public static final class ValuesView<K,V> extends CHMView<K,V>
4401 <        implements Collection<V> {
4402 <        ValuesView(ConcurrentHashMapV8<K, V> map)   { super(map); }
4403 <        public final boolean contains(Object o) { return map.containsValue(o); }
4400 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4401 >        implements Collection<V>, java.io.Serializable {
4402 >        private static final long serialVersionUID = 2249069246763182397L;
4403 >        ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4404 >        public final boolean contains(Object o) {
4405 >            return map.containsValue(o);
4406 >        }
4407 >
4408          public final boolean remove(Object o) {
4409              if (o != null) {
4410 <                Iterator<V> it = new ValueIterator<K,V>(map);
4290 <                while (it.hasNext()) {
4410 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4411                      if (o.equals(it.next())) {
4412                          it.remove();
4413                          return true;
# Line 4297 | Line 4417 | public class ConcurrentHashMapV8<K, V>
4417              return false;
4418          }
4419  
4300        /**
4301         * Returns a "weakly consistent" iterator that will never
4302         * throw {@link ConcurrentModificationException}, and
4303         * guarantees to traverse elements as they existed upon
4304         * construction of the iterator, and may (but is not
4305         * guaranteed to) reflect any modifications subsequent to
4306         * construction.
4307         *
4308         * @return an iterator over the values of this map
4309         */
4420          public final Iterator<V> iterator() {
4421 <            return new ValueIterator<K,V>(map);
4421 >            ConcurrentHashMapV8<K,V> m = map;
4422 >            Node<K,V>[] t;
4423 >            int f = (t = m.table) == null ? 0 : t.length;
4424 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4425          }
4426 +
4427          public final boolean add(V e) {
4428              throw new UnsupportedOperationException();
4429          }
# Line 4317 | Line 4431 | public class ConcurrentHashMapV8<K, V>
4431              throw new UnsupportedOperationException();
4432          }
4433  
4434 <        /**
4435 <         * Performs the given action for each value.
4436 <         *
4437 <         * @param action the action
4438 <         */
4439 <        public void forEach(Action<V> action) {
4326 <            ForkJoinTasks.forEachValue
4327 <                (map, action).invoke();
4328 <        }
4329 <
4330 <        /**
4331 <         * Performs the given action for each non-null transformation
4332 <         * of each value.
4333 <         *
4334 <         * @param transformer a function returning the transformation
4335 <         * for an element, or null of there is no transformation (in
4336 <         * which case the action is not applied).
4337 <         */
4338 <        public <U> void forEach(Fun<? super V, ? extends U> transformer,
4339 <                                     Action<U> action) {
4340 <            ForkJoinTasks.forEachValue
4341 <                (map, transformer, action).invoke();
4342 <        }
4343 <
4344 <        /**
4345 <         * Returns a non-null result from applying the given search
4346 <         * function on each value, or null if none.  Upon success,
4347 <         * further element processing is suppressed and the results of
4348 <         * any other parallel invocations of the search function are
4349 <         * ignored.
4350 <         *
4351 <         * @param searchFunction a function returning a non-null
4352 <         * result on success, else null
4353 <         * @return a non-null result from applying the given search
4354 <         * function on each value, or null if none
4355 <         *
4356 <         */
4357 <        public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4358 <            return ForkJoinTasks.searchValues
4359 <                (map, searchFunction).invoke();
4360 <        }
4361 <
4362 <        /**
4363 <         * Returns the result of accumulating all values using the
4364 <         * given reducer to combine values, or null if none.
4365 <         *
4366 <         * @param reducer a commutative associative combining function
4367 <         * @return  the result of accumulating all values
4368 <         */
4369 <        public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4370 <            return ForkJoinTasks.reduceValues
4371 <                (map, reducer).invoke();
4372 <        }
4373 <
4374 <        /**
4375 <         * Returns the result of accumulating the given transformation
4376 <         * of all values using the given reducer to combine values, or
4377 <         * null if none.
4378 <         *
4379 <         * @param transformer a function returning the transformation
4380 <         * for an element, or null of there is no transformation (in
4381 <         * which case it is not combined).
4382 <         * @param reducer a commutative associative combining function
4383 <         * @return the result of accumulating the given transformation
4384 <         * of all values
4385 <         */
4386 <        public <U> U reduce(Fun<? super V, ? extends U> transformer,
4387 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
4388 <            return ForkJoinTasks.reduceValues
4389 <                (map, transformer, reducer).invoke();
4390 <        }
4391 <
4392 <        /**
4393 <         * Returns the result of accumulating the given transformation
4394 <         * of all values using the given reducer to combine values,
4395 <         * and the given basis as an identity value.
4396 <         *
4397 <         * @param transformer a function returning the transformation
4398 <         * for an element
4399 <         * @param basis the identity (initial default value) for the reduction
4400 <         * @param reducer a commutative associative combining function
4401 <         * @return the result of accumulating the given transformation
4402 <         * of all values
4403 <         */
4404 <        public double reduceToDouble(ObjectToDouble<? super V> transformer,
4405 <                                     double basis,
4406 <                                     DoubleByDoubleToDouble reducer) {
4407 <            return ForkJoinTasks.reduceValuesToDouble
4408 <                (map, transformer, basis, reducer).invoke();
4409 <        }
4410 <
4411 <        /**
4412 <         * Returns the result of accumulating the given transformation
4413 <         * of all values using the given reducer to combine values,
4414 <         * and the given basis as an identity value.
4415 <         *
4416 <         * @param transformer a function returning the transformation
4417 <         * for an element
4418 <         * @param basis the identity (initial default value) for the reduction
4419 <         * @param reducer a commutative associative combining function
4420 <         * @return the result of accumulating the given transformation
4421 <         * of all values
4422 <         */
4423 <        public long reduceToLong(ObjectToLong<? super V> transformer,
4424 <                                 long basis,
4425 <                                 LongByLongToLong reducer) {
4426 <            return ForkJoinTasks.reduceValuesToLong
4427 <                (map, transformer, basis, reducer).invoke();
4434 >        public ConcurrentHashMapSpliterator<V> spliterator() {
4435 >            Node<K,V>[] t;
4436 >            ConcurrentHashMapV8<K,V> m = map;
4437 >            long n = m.sumCount();
4438 >            int f = (t = m.table) == null ? 0 : t.length;
4439 >            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4440          }
4441  
4442 <        /**
4443 <         * Returns the result of accumulating the given transformation
4444 <         * of all values using the given reducer to combine values,
4445 <         * and the given basis as an identity value.
4446 <         *
4447 <         * @param transformer a function returning the transformation
4448 <         * for an element
4449 <         * @param basis the identity (initial default value) for the reduction
4438 <         * @param reducer a commutative associative combining function
4439 <         * @return the result of accumulating the given transformation
4440 <         * of all values
4441 <         */
4442 <        public int reduceToInt(ObjectToInt<? super V> transformer,
4443 <                               int basis,
4444 <                               IntByIntToInt reducer) {
4445 <            return ForkJoinTasks.reduceValuesToInt
4446 <                (map, transformer, basis, reducer).invoke();
4442 >        public void forEach(Action<? super V> action) {
4443 >            if (action == null) throw new NullPointerException();
4444 >            Node<K,V>[] t;
4445 >            if ((t = map.table) != null) {
4446 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4447 >                for (Node<K,V> p; (p = it.advance()) != null; )
4448 >                    action.apply(p.val);
4449 >            }
4450          }
4448
4451      }
4452  
4453      /**
4454       * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4455       * entries.  This class cannot be directly instantiated. See
4456 <     * {@link #entrySet}.
4456 >     * {@link #entrySet()}.
4457       */
4458 <    public static final class EntrySetView<K,V> extends CHMView<K,V>
4459 <        implements Set<Map.Entry<K,V>> {
4460 <        EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4461 <        public final boolean contains(Object o) {
4458 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4459 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4460 >        private static final long serialVersionUID = 2249069246763182397L;
4461 >        EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4462 >
4463 >        public boolean contains(Object o) {
4464              Object k, v, r; Map.Entry<?,?> e;
4465              return ((o instanceof Map.Entry) &&
4466                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4464 | Line 4468 | public class ConcurrentHashMapV8<K, V>
4468                      (v = e.getValue()) != null &&
4469                      (v == r || v.equals(r)));
4470          }
4471 <        public final boolean remove(Object o) {
4471 >
4472 >        public boolean remove(Object o) {
4473              Object k, v; Map.Entry<?,?> e;
4474              return ((o instanceof Map.Entry) &&
4475                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4473 | Line 4478 | public class ConcurrentHashMapV8<K, V>
4478          }
4479  
4480          /**
4481 <         * Returns a "weakly consistent" iterator that will never
4477 <         * throw {@link ConcurrentModificationException}, and
4478 <         * guarantees to traverse elements as they existed upon
4479 <         * construction of the iterator, and may (but is not
4480 <         * guaranteed to) reflect any modifications subsequent to
4481 <         * construction.
4482 <         *
4483 <         * @return an iterator over the entries of this map
4481 >         * @return an iterator over the entries of the backing map
4482           */
4483 <        public final Iterator<Map.Entry<K,V>> iterator() {
4484 <            return new EntryIterator<K,V>(map);
4483 >        public Iterator<Map.Entry<K,V>> iterator() {
4484 >            ConcurrentHashMapV8<K,V> m = map;
4485 >            Node<K,V>[] t;
4486 >            int f = (t = m.table) == null ? 0 : t.length;
4487 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4488          }
4489  
4490 <        public final boolean add(Entry<K,V> e) {
4491 <            K key = e.getKey();
4491 <            V value = e.getValue();
4492 <            if (key == null || value == null)
4493 <                throw new NullPointerException();
4494 <            return map.internalPut(key, value) == null;
4490 >        public boolean add(Entry<K,V> e) {
4491 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4492          }
4493 <        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4493 >
4494 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4495              boolean added = false;
4496              for (Entry<K,V> e : c) {
4497                  if (add(e))
# Line 4501 | Line 4499 | public class ConcurrentHashMapV8<K, V>
4499              }
4500              return added;
4501          }
4502 <        public boolean equals(Object o) {
4502 >
4503 >        public final int hashCode() {
4504 >            int h = 0;
4505 >            Node<K,V>[] t;
4506 >            if ((t = map.table) != null) {
4507 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4508 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4509 >                    h += p.hashCode();
4510 >                }
4511 >            }
4512 >            return h;
4513 >        }
4514 >
4515 >        public final boolean equals(Object o) {
4516              Set<?> c;
4517              return ((o instanceof Set) &&
4518                      ((c = (Set<?>)o) == this ||
4519                       (containsAll(c) && c.containsAll(this))));
4520          }
4521  
4522 <        /**
4523 <         * Performs the given action for each entry.
4524 <         *
4525 <         * @param action the action
4526 <         */
4527 <        public void forEach(Action<Map.Entry<K,V>> action) {
4517 <            ForkJoinTasks.forEachEntry
4518 <                (map, action).invoke();
4519 <        }
4520 <
4521 <        /**
4522 <         * Performs the given action for each non-null transformation
4523 <         * of each entry.
4524 <         *
4525 <         * @param transformer a function returning the transformation
4526 <         * for an element, or null of there is no transformation (in
4527 <         * which case the action is not applied).
4528 <         * @param action the action
4529 <         */
4530 <        public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4531 <                                Action<U> action) {
4532 <            ForkJoinTasks.forEachEntry
4533 <                (map, transformer, action).invoke();
4534 <        }
4535 <
4536 <        /**
4537 <         * Returns a non-null result from applying the given search
4538 <         * function on each entry, or null if none.  Upon success,
4539 <         * further element processing is suppressed and the results of
4540 <         * any other parallel invocations of the search function are
4541 <         * ignored.
4542 <         *
4543 <         * @param searchFunction a function returning a non-null
4544 <         * result on success, else null
4545 <         * @return a non-null result from applying the given search
4546 <         * function on each entry, or null if none
4547 <         */
4548 <        public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4549 <            return ForkJoinTasks.searchEntries
4550 <                (map, searchFunction).invoke();
4551 <        }
4552 <
4553 <        /**
4554 <         * Returns the result of accumulating all entries using the
4555 <         * given reducer to combine values, or null if none.
4556 <         *
4557 <         * @param reducer a commutative associative combining function
4558 <         * @return the result of accumulating all entries
4559 <         */
4560 <        public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4561 <            return ForkJoinTasks.reduceEntries
4562 <                (map, reducer).invoke();
4563 <        }
4564 <
4565 <        /**
4566 <         * Returns the result of accumulating the given transformation
4567 <         * of all entries using the given reducer to combine values,
4568 <         * or null if none.
4569 <         *
4570 <         * @param transformer a function returning the transformation
4571 <         * for an element, or null of there is no transformation (in
4572 <         * which case it is not combined).
4573 <         * @param reducer a commutative associative combining function
4574 <         * @return the result of accumulating the given transformation
4575 <         * of all entries
4576 <         */
4577 <        public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4578 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
4579 <            return ForkJoinTasks.reduceEntries
4580 <                (map, transformer, reducer).invoke();
4581 <        }
4582 <
4583 <        /**
4584 <         * Returns the result of accumulating the given transformation
4585 <         * of all entries using the given reducer to combine values,
4586 <         * and the given basis as an identity value.
4587 <         *
4588 <         * @param transformer a function returning the transformation
4589 <         * for an element
4590 <         * @param basis the identity (initial default value) for the reduction
4591 <         * @param reducer a commutative associative combining function
4592 <         * @return the result of accumulating the given transformation
4593 <         * of all entries
4594 <         */
4595 <        public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4596 <                                     double basis,
4597 <                                     DoubleByDoubleToDouble reducer) {
4598 <            return ForkJoinTasks.reduceEntriesToDouble
4599 <                (map, transformer, basis, reducer).invoke();
4600 <        }
4601 <
4602 <        /**
4603 <         * Returns the result of accumulating the given transformation
4604 <         * of all entries using the given reducer to combine values,
4605 <         * and the given basis as an identity value.
4606 <         *
4607 <         * @param transformer a function returning the transformation
4608 <         * for an element
4609 <         * @param basis the identity (initial default value) for the reduction
4610 <         * @param reducer a commutative associative combining function
4611 <         * @return  the result of accumulating the given transformation
4612 <         * of all entries
4613 <         */
4614 <        public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4615 <                                 long basis,
4616 <                                 LongByLongToLong reducer) {
4617 <            return ForkJoinTasks.reduceEntriesToLong
4618 <                (map, transformer, basis, reducer).invoke();
4619 <        }
4620 <
4621 <        /**
4622 <         * Returns the result of accumulating the given transformation
4623 <         * of all entries using the given reducer to combine values,
4624 <         * and the given basis as an identity value.
4625 <         *
4626 <         * @param transformer a function returning the transformation
4627 <         * for an element
4628 <         * @param basis the identity (initial default value) for the reduction
4629 <         * @param reducer a commutative associative combining function
4630 <         * @return the result of accumulating the given transformation
4631 <         * of all entries
4632 <         */
4633 <        public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4634 <                               int basis,
4635 <                               IntByIntToInt reducer) {
4636 <            return ForkJoinTasks.reduceEntriesToInt
4637 <                (map, transformer, basis, reducer).invoke();
4638 <        }
4639 <
4640 <    }
4641 <
4642 <    // ---------------------------------------------------------------------
4643 <
4644 <    /**
4645 <     * Predefined tasks for performing bulk parallel operations on
4646 <     * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4647 <     * for bulk operations. Each method has the same name, but returns
4648 <     * a task rather than invoking it. These methods may be useful in
4649 <     * custom applications such as submitting a task without waiting
4650 <     * for completion, using a custom pool, or combining with other
4651 <     * tasks.
4652 <     */
4653 <    public static class ForkJoinTasks {
4654 <        private ForkJoinTasks() {}
4655 <
4656 <        /**
4657 <         * Returns a task that when invoked, performs the given
4658 <         * action for each (key, value)
4659 <         *
4660 <         * @param map the map
4661 <         * @param action the action
4662 <         * @return the task
4663 <         */
4664 <        public static <K,V> ForkJoinTask<Void> forEach
4665 <            (ConcurrentHashMapV8<K,V> map,
4666 <             BiAction<K,V> action) {
4667 <            if (action == null) throw new NullPointerException();
4668 <            return new ForEachMappingTask<K,V>(map, null, -1, null, action);
4669 <        }
4670 <
4671 <        /**
4672 <         * Returns a task that when invoked, performs the given
4673 <         * action for each non-null transformation of each (key, value)
4674 <         *
4675 <         * @param map the map
4676 <         * @param transformer a function returning the transformation
4677 <         * for an element, or null if there is no transformation (in
4678 <         * which case the action is not applied)
4679 <         * @param action the action
4680 <         * @return the task
4681 <         */
4682 <        public static <K,V,U> ForkJoinTask<Void> forEach
4683 <            (ConcurrentHashMapV8<K,V> map,
4684 <             BiFun<? super K, ? super V, ? extends U> transformer,
4685 <             Action<U> action) {
4686 <            if (transformer == null || action == null)
4687 <                throw new NullPointerException();
4688 <            return new ForEachTransformedMappingTask<K,V,U>
4689 <                (map, null, -1, null, transformer, action);
4690 <        }
4691 <
4692 <        /**
4693 <         * Returns a task that when invoked, returns a non-null result
4694 <         * from applying the given search function on each (key,
4695 <         * value), or null if none. Upon success, further element
4696 <         * processing is suppressed and the results of any other
4697 <         * parallel invocations of the search function are ignored.
4698 <         *
4699 <         * @param map the map
4700 <         * @param searchFunction a function returning a non-null
4701 <         * result on success, else null
4702 <         * @return the task
4703 <         */
4704 <        public static <K,V,U> ForkJoinTask<U> search
4705 <            (ConcurrentHashMapV8<K,V> map,
4706 <             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4707 <            if (searchFunction == null) throw new NullPointerException();
4708 <            return new SearchMappingsTask<K,V,U>
4709 <                (map, null, -1, null, searchFunction,
4710 <                 new AtomicReference<U>());
4711 <        }
4712 <
4713 <        /**
4714 <         * Returns a task that when invoked, returns the result of
4715 <         * accumulating the given transformation of all (key, value) pairs
4716 <         * using the given reducer to combine values, or null if none.
4717 <         *
4718 <         * @param map the map
4719 <         * @param transformer a function returning the transformation
4720 <         * for an element, or null if there is no transformation (in
4721 <         * which case it is not combined).
4722 <         * @param reducer a commutative associative combining function
4723 <         * @return the task
4724 <         */
4725 <        public static <K,V,U> ForkJoinTask<U> reduce
4726 <            (ConcurrentHashMapV8<K,V> map,
4727 <             BiFun<? super K, ? super V, ? extends U> transformer,
4728 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4729 <            if (transformer == null || reducer == null)
4730 <                throw new NullPointerException();
4731 <            return new MapReduceMappingsTask<K,V,U>
4732 <                (map, null, -1, null, transformer, reducer);
4733 <        }
4734 <
4735 <        /**
4736 <         * Returns a task that when invoked, returns the result of
4737 <         * accumulating the given transformation of all (key, value) pairs
4738 <         * using the given reducer to combine values, and the given
4739 <         * basis as an identity value.
4740 <         *
4741 <         * @param map the map
4742 <         * @param transformer a function returning the transformation
4743 <         * for an element
4744 <         * @param basis the identity (initial default value) for the reduction
4745 <         * @param reducer a commutative associative combining function
4746 <         * @return the task
4747 <         */
4748 <        public static <K,V> ForkJoinTask<Double> reduceToDouble
4749 <            (ConcurrentHashMapV8<K,V> map,
4750 <             ObjectByObjectToDouble<? super K, ? super V> transformer,
4751 <             double basis,
4752 <             DoubleByDoubleToDouble reducer) {
4753 <            if (transformer == null || reducer == null)
4754 <                throw new NullPointerException();
4755 <            return new MapReduceMappingsToDoubleTask<K,V>
4756 <                (map, null, -1, null, transformer, basis, reducer);
4757 <        }
4758 <
4759 <        /**
4760 <         * Returns a task that when invoked, returns the result of
4761 <         * accumulating the given transformation of all (key, value) pairs
4762 <         * using the given reducer to combine values, and the given
4763 <         * basis as an identity value.
4764 <         *
4765 <         * @param map the map
4766 <         * @param transformer a function returning the transformation
4767 <         * for an element
4768 <         * @param basis the identity (initial default value) for the reduction
4769 <         * @param reducer a commutative associative combining function
4770 <         * @return the task
4771 <         */
4772 <        public static <K,V> ForkJoinTask<Long> reduceToLong
4773 <            (ConcurrentHashMapV8<K,V> map,
4774 <             ObjectByObjectToLong<? super K, ? super V> transformer,
4775 <             long basis,
4776 <             LongByLongToLong reducer) {
4777 <            if (transformer == null || reducer == null)
4778 <                throw new NullPointerException();
4779 <            return new MapReduceMappingsToLongTask<K,V>
4780 <                (map, null, -1, null, transformer, basis, reducer);
4781 <        }
4782 <
4783 <        /**
4784 <         * Returns a task that when invoked, returns the result of
4785 <         * accumulating the given transformation of all (key, value) pairs
4786 <         * using the given reducer to combine values, and the given
4787 <         * basis as an identity value.
4788 <         *
4789 <         * @param transformer a function returning the transformation
4790 <         * for an element
4791 <         * @param basis the identity (initial default value) for the reduction
4792 <         * @param reducer a commutative associative combining function
4793 <         * @return the task
4794 <         */
4795 <        public static <K,V> ForkJoinTask<Integer> reduceToInt
4796 <            (ConcurrentHashMapV8<K,V> map,
4797 <             ObjectByObjectToInt<? super K, ? super V> transformer,
4798 <             int basis,
4799 <             IntByIntToInt reducer) {
4800 <            if (transformer == null || reducer == null)
4801 <                throw new NullPointerException();
4802 <            return new MapReduceMappingsToIntTask<K,V>
4803 <                (map, null, -1, null, transformer, basis, reducer);
4804 <        }
4805 <
4806 <        /**
4807 <         * Returns a task that when invoked, performs the given action
4808 <         * for each key.
4809 <         *
4810 <         * @param map the map
4811 <         * @param action the action
4812 <         * @return the task
4813 <         */
4814 <        public static <K,V> ForkJoinTask<Void> forEachKey
4815 <            (ConcurrentHashMapV8<K,V> map,
4816 <             Action<K> action) {
4817 <            if (action == null) throw new NullPointerException();
4818 <            return new ForEachKeyTask<K,V>(map, null, -1, null, action);
4819 <        }
4820 <
4821 <        /**
4822 <         * Returns a task that when invoked, performs the given action
4823 <         * for each non-null transformation of each key.
4824 <         *
4825 <         * @param map the map
4826 <         * @param transformer a function returning the transformation
4827 <         * for an element, or null if there is no transformation (in
4828 <         * which case the action is not applied)
4829 <         * @param action the action
4830 <         * @return the task
4831 <         */
4832 <        public static <K,V,U> ForkJoinTask<Void> forEachKey
4833 <            (ConcurrentHashMapV8<K,V> map,
4834 <             Fun<? super K, ? extends U> transformer,
4835 <             Action<U> action) {
4836 <            if (transformer == null || action == null)
4837 <                throw new NullPointerException();
4838 <            return new ForEachTransformedKeyTask<K,V,U>
4839 <                (map, null, -1, null, transformer, action);
4840 <        }
4841 <
4842 <        /**
4843 <         * Returns a task that when invoked, returns a non-null result
4844 <         * from applying the given search function on each key, or
4845 <         * null if none.  Upon success, further element processing is
4846 <         * suppressed and the results of any other parallel
4847 <         * invocations of the search function are ignored.
4848 <         *
4849 <         * @param map the map
4850 <         * @param searchFunction a function returning a non-null
4851 <         * result on success, else null
4852 <         * @return the task
4853 <         */
4854 <        public static <K,V,U> ForkJoinTask<U> searchKeys
4855 <            (ConcurrentHashMapV8<K,V> map,
4856 <             Fun<? super K, ? extends U> searchFunction) {
4857 <            if (searchFunction == null) throw new NullPointerException();
4858 <            return new SearchKeysTask<K,V,U>
4859 <                (map, null, -1, null, searchFunction,
4860 <                 new AtomicReference<U>());
4861 <        }
4862 <
4863 <        /**
4864 <         * Returns a task that when invoked, returns the result of
4865 <         * accumulating all keys using the given reducer to combine
4866 <         * values, or null if none.
4867 <         *
4868 <         * @param map the map
4869 <         * @param reducer a commutative associative combining function
4870 <         * @return the task
4871 <         */
4872 <        public static <K,V> ForkJoinTask<K> reduceKeys
4873 <            (ConcurrentHashMapV8<K,V> map,
4874 <             BiFun<? super K, ? super K, ? extends K> reducer) {
4875 <            if (reducer == null) throw new NullPointerException();
4876 <            return new ReduceKeysTask<K,V>
4877 <                (map, null, -1, null, reducer);
4878 <        }
4879 <
4880 <        /**
4881 <         * Returns a task that when invoked, returns the result of
4882 <         * accumulating the given transformation of all keys using the given
4883 <         * reducer to combine values, or null if none.
4884 <         *
4885 <         * @param map the map
4886 <         * @param transformer a function returning the transformation
4887 <         * for an element, or null if there is no transformation (in
4888 <         * which case it is not combined).
4889 <         * @param reducer a commutative associative combining function
4890 <         * @return the task
4891 <         */
4892 <        public static <K,V,U> ForkJoinTask<U> reduceKeys
4893 <            (ConcurrentHashMapV8<K,V> map,
4894 <             Fun<? super K, ? extends U> transformer,
4895 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4896 <            if (transformer == null || reducer == null)
4897 <                throw new NullPointerException();
4898 <            return new MapReduceKeysTask<K,V,U>
4899 <                (map, null, -1, null, transformer, reducer);
4900 <        }
4901 <
4902 <        /**
4903 <         * Returns a task that when invoked, returns the result of
4904 <         * accumulating the given transformation of all keys using the given
4905 <         * reducer to combine values, and the given basis as an
4906 <         * identity value.
4907 <         *
4908 <         * @param map the map
4909 <         * @param transformer a function returning the transformation
4910 <         * for an element
4911 <         * @param basis the identity (initial default value) for the reduction
4912 <         * @param reducer a commutative associative combining function
4913 <         * @return the task
4914 <         */
4915 <        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4916 <            (ConcurrentHashMapV8<K,V> map,
4917 <             ObjectToDouble<? super K> transformer,
4918 <             double basis,
4919 <             DoubleByDoubleToDouble reducer) {
4920 <            if (transformer == null || reducer == null)
4921 <                throw new NullPointerException();
4922 <            return new MapReduceKeysToDoubleTask<K,V>
4923 <                (map, null, -1, null, transformer, basis, reducer);
4924 <        }
4925 <
4926 <        /**
4927 <         * Returns a task that when invoked, returns the result of
4928 <         * accumulating the given transformation of all keys using the given
4929 <         * reducer to combine values, and the given basis as an
4930 <         * identity value.
4931 <         *
4932 <         * @param map the map
4933 <         * @param transformer a function returning the transformation
4934 <         * for an element
4935 <         * @param basis the identity (initial default value) for the reduction
4936 <         * @param reducer a commutative associative combining function
4937 <         * @return the task
4938 <         */
4939 <        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4940 <            (ConcurrentHashMapV8<K,V> map,
4941 <             ObjectToLong<? super K> transformer,
4942 <             long basis,
4943 <             LongByLongToLong reducer) {
4944 <            if (transformer == null || reducer == null)
4945 <                throw new NullPointerException();
4946 <            return new MapReduceKeysToLongTask<K,V>
4947 <                (map, null, -1, null, transformer, basis, reducer);
4948 <        }
4949 <
4950 <        /**
4951 <         * Returns a task that when invoked, returns the result of
4952 <         * accumulating the given transformation of all keys using the given
4953 <         * reducer to combine values, and the given basis as an
4954 <         * identity value.
4955 <         *
4956 <         * @param map the map
4957 <         * @param transformer a function returning the transformation
4958 <         * for an element
4959 <         * @param basis the identity (initial default value) for the reduction
4960 <         * @param reducer a commutative associative combining function
4961 <         * @return the task
4962 <         */
4963 <        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4964 <            (ConcurrentHashMapV8<K,V> map,
4965 <             ObjectToInt<? super K> transformer,
4966 <             int basis,
4967 <             IntByIntToInt reducer) {
4968 <            if (transformer == null || reducer == null)
4969 <                throw new NullPointerException();
4970 <            return new MapReduceKeysToIntTask<K,V>
4971 <                (map, null, -1, null, transformer, basis, reducer);
4972 <        }
4973 <
4974 <        /**
4975 <         * Returns a task that when invoked, performs the given action
4976 <         * for each value.
4977 <         *
4978 <         * @param map the map
4979 <         * @param action the action
4980 <         */
4981 <        public static <K,V> ForkJoinTask<Void> forEachValue
4982 <            (ConcurrentHashMapV8<K,V> map,
4983 <             Action<V> action) {
4984 <            if (action == null) throw new NullPointerException();
4985 <            return new ForEachValueTask<K,V>(map, null, -1, null, action);
4986 <        }
4987 <
4988 <        /**
4989 <         * Returns a task that when invoked, performs the given action
4990 <         * for each non-null transformation of each value.
4991 <         *
4992 <         * @param map the map
4993 <         * @param transformer a function returning the transformation
4994 <         * for an element, or null if there is no transformation (in
4995 <         * which case the action is not applied)
4996 <         * @param action the action
4997 <         */
4998 <        public static <K,V,U> ForkJoinTask<Void> forEachValue
4999 <            (ConcurrentHashMapV8<K,V> map,
5000 <             Fun<? super V, ? extends U> transformer,
5001 <             Action<U> action) {
5002 <            if (transformer == null || action == null)
5003 <                throw new NullPointerException();
5004 <            return new ForEachTransformedValueTask<K,V,U>
5005 <                (map, null, -1, null, transformer, action);
5006 <        }
5007 <
5008 <        /**
5009 <         * Returns a task that when invoked, returns a non-null result
5010 <         * from applying the given search function on each value, or
5011 <         * null if none.  Upon success, further element processing is
5012 <         * suppressed and the results of any other parallel
5013 <         * invocations of the search function are ignored.
5014 <         *
5015 <         * @param map the map
5016 <         * @param searchFunction a function returning a non-null
5017 <         * result on success, else null
5018 <         * @return the task
5019 <         */
5020 <        public static <K,V,U> ForkJoinTask<U> searchValues
5021 <            (ConcurrentHashMapV8<K,V> map,
5022 <             Fun<? super V, ? extends U> searchFunction) {
5023 <            if (searchFunction == null) throw new NullPointerException();
5024 <            return new SearchValuesTask<K,V,U>
5025 <                (map, null, -1, null, searchFunction,
5026 <                 new AtomicReference<U>());
5027 <        }
5028 <
5029 <        /**
5030 <         * Returns a task that when invoked, returns the result of
5031 <         * accumulating all values using the given reducer to combine
5032 <         * values, or null if none.
5033 <         *
5034 <         * @param map the map
5035 <         * @param reducer a commutative associative combining function
5036 <         * @return the task
5037 <         */
5038 <        public static <K,V> ForkJoinTask<V> reduceValues
5039 <            (ConcurrentHashMapV8<K,V> map,
5040 <             BiFun<? super V, ? super V, ? extends V> reducer) {
5041 <            if (reducer == null) throw new NullPointerException();
5042 <            return new ReduceValuesTask<K,V>
5043 <                (map, null, -1, null, reducer);
5044 <        }
5045 <
5046 <        /**
5047 <         * Returns a task that when invoked, returns the result of
5048 <         * accumulating the given transformation of all values using the
5049 <         * given reducer to combine values, or null if none.
5050 <         *
5051 <         * @param map the map
5052 <         * @param transformer a function returning the transformation
5053 <         * for an element, or null if there is no transformation (in
5054 <         * which case it is not combined).
5055 <         * @param reducer a commutative associative combining function
5056 <         * @return the task
5057 <         */
5058 <        public static <K,V,U> ForkJoinTask<U> reduceValues
5059 <            (ConcurrentHashMapV8<K,V> map,
5060 <             Fun<? super V, ? extends U> transformer,
5061 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5062 <            if (transformer == null || reducer == null)
5063 <                throw new NullPointerException();
5064 <            return new MapReduceValuesTask<K,V,U>
5065 <                (map, null, -1, null, transformer, reducer);
5066 <        }
5067 <
5068 <        /**
5069 <         * Returns a task that when invoked, returns the result of
5070 <         * accumulating the given transformation of all values using the
5071 <         * given reducer to combine values, and the given basis as an
5072 <         * identity value.
5073 <         *
5074 <         * @param map the map
5075 <         * @param transformer a function returning the transformation
5076 <         * for an element
5077 <         * @param basis the identity (initial default value) for the reduction
5078 <         * @param reducer a commutative associative combining function
5079 <         * @return the task
5080 <         */
5081 <        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5082 <            (ConcurrentHashMapV8<K,V> map,
5083 <             ObjectToDouble<? super V> transformer,
5084 <             double basis,
5085 <             DoubleByDoubleToDouble reducer) {
5086 <            if (transformer == null || reducer == null)
5087 <                throw new NullPointerException();
5088 <            return new MapReduceValuesToDoubleTask<K,V>
5089 <                (map, null, -1, null, transformer, basis, reducer);
5090 <        }
5091 <
5092 <        /**
5093 <         * Returns a task that when invoked, returns the result of
5094 <         * accumulating the given transformation of all values using the
5095 <         * given reducer to combine values, and the given basis as an
5096 <         * identity value.
5097 <         *
5098 <         * @param map the map
5099 <         * @param transformer a function returning the transformation
5100 <         * for an element
5101 <         * @param basis the identity (initial default value) for the reduction
5102 <         * @param reducer a commutative associative combining function
5103 <         * @return the task
5104 <         */
5105 <        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5106 <            (ConcurrentHashMapV8<K,V> map,
5107 <             ObjectToLong<? super V> transformer,
5108 <             long basis,
5109 <             LongByLongToLong reducer) {
5110 <            if (transformer == null || reducer == null)
5111 <                throw new NullPointerException();
5112 <            return new MapReduceValuesToLongTask<K,V>
5113 <                (map, null, -1, null, transformer, basis, reducer);
5114 <        }
5115 <
5116 <        /**
5117 <         * Returns a task that when invoked, returns the result of
5118 <         * accumulating the given transformation of all values using the
5119 <         * given reducer to combine values, and the given basis as an
5120 <         * identity value.
5121 <         *
5122 <         * @param map the map
5123 <         * @param transformer a function returning the transformation
5124 <         * for an element
5125 <         * @param basis the identity (initial default value) for the reduction
5126 <         * @param reducer a commutative associative combining function
5127 <         * @return the task
5128 <         */
5129 <        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5130 <            (ConcurrentHashMapV8<K,V> map,
5131 <             ObjectToInt<? super V> transformer,
5132 <             int basis,
5133 <             IntByIntToInt reducer) {
5134 <            if (transformer == null || reducer == null)
5135 <                throw new NullPointerException();
5136 <            return new MapReduceValuesToIntTask<K,V>
5137 <                (map, null, -1, null, transformer, basis, reducer);
4522 >        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4523 >            Node<K,V>[] t;
4524 >            ConcurrentHashMapV8<K,V> m = map;
4525 >            long n = m.sumCount();
4526 >            int f = (t = m.table) == null ? 0 : t.length;
4527 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4528          }
4529  
4530 <        /**
5141 <         * Returns a task that when invoked, perform the given action
5142 <         * for each entry.
5143 <         *
5144 <         * @param map the map
5145 <         * @param action the action
5146 <         */
5147 <        public static <K,V> ForkJoinTask<Void> forEachEntry
5148 <            (ConcurrentHashMapV8<K,V> map,
5149 <             Action<Map.Entry<K,V>> action) {
4530 >        public void forEach(Action<? super Map.Entry<K,V>> action) {
4531              if (action == null) throw new NullPointerException();
4532 <            return new ForEachEntryTask<K,V>(map, null, -1, null, action);
4533 <        }
4534 <
4535 <        /**
4536 <         * Returns a task that when invoked, perform the given action
4537 <         * for each non-null transformation of each entry.
5157 <         *
5158 <         * @param map the map
5159 <         * @param transformer a function returning the transformation
5160 <         * for an element, or null if there is no transformation (in
5161 <         * which case the action is not applied)
5162 <         * @param action the action
5163 <         */
5164 <        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5165 <            (ConcurrentHashMapV8<K,V> map,
5166 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5167 <             Action<U> action) {
5168 <            if (transformer == null || action == null)
5169 <                throw new NullPointerException();
5170 <            return new ForEachTransformedEntryTask<K,V,U>
5171 <                (map, null, -1, null, transformer, action);
5172 <        }
5173 <
5174 <        /**
5175 <         * Returns a task that when invoked, returns a non-null result
5176 <         * from applying the given search function on each entry, or
5177 <         * null if none.  Upon success, further element processing is
5178 <         * suppressed and the results of any other parallel
5179 <         * invocations of the search function are ignored.
5180 <         *
5181 <         * @param map the map
5182 <         * @param searchFunction a function returning a non-null
5183 <         * result on success, else null
5184 <         * @return the task
5185 <         */
5186 <        public static <K,V,U> ForkJoinTask<U> searchEntries
5187 <            (ConcurrentHashMapV8<K,V> map,
5188 <             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5189 <            if (searchFunction == null) throw new NullPointerException();
5190 <            return new SearchEntriesTask<K,V,U>
5191 <                (map, null, -1, null, searchFunction,
5192 <                 new AtomicReference<U>());
5193 <        }
5194 <
5195 <        /**
5196 <         * Returns a task that when invoked, returns the result of
5197 <         * accumulating all entries using the given reducer to combine
5198 <         * values, or null if none.
5199 <         *
5200 <         * @param map the map
5201 <         * @param reducer a commutative associative combining function
5202 <         * @return the task
5203 <         */
5204 <        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5205 <            (ConcurrentHashMapV8<K,V> map,
5206 <             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5207 <            if (reducer == null) throw new NullPointerException();
5208 <            return new ReduceEntriesTask<K,V>
5209 <                (map, null, -1, null, reducer);
5210 <        }
5211 <
5212 <        /**
5213 <         * Returns a task that when invoked, returns the result of
5214 <         * accumulating the given transformation of all entries using the
5215 <         * given reducer to combine values, or null if none.
5216 <         *
5217 <         * @param map the map
5218 <         * @param transformer a function returning the transformation
5219 <         * for an element, or null if there is no transformation (in
5220 <         * which case it is not combined).
5221 <         * @param reducer a commutative associative combining function
5222 <         * @return the task
5223 <         */
5224 <        public static <K,V,U> ForkJoinTask<U> reduceEntries
5225 <            (ConcurrentHashMapV8<K,V> map,
5226 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5227 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5228 <            if (transformer == null || reducer == null)
5229 <                throw new NullPointerException();
5230 <            return new MapReduceEntriesTask<K,V,U>
5231 <                (map, null, -1, null, transformer, reducer);
5232 <        }
5233 <
5234 <        /**
5235 <         * Returns a task that when invoked, returns the result of
5236 <         * accumulating the given transformation of all entries using the
5237 <         * given reducer to combine values, and the given basis as an
5238 <         * identity value.
5239 <         *
5240 <         * @param map the map
5241 <         * @param transformer a function returning the transformation
5242 <         * for an element
5243 <         * @param basis the identity (initial default value) for the reduction
5244 <         * @param reducer a commutative associative combining function
5245 <         * @return the task
5246 <         */
5247 <        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5248 <            (ConcurrentHashMapV8<K,V> map,
5249 <             ObjectToDouble<Map.Entry<K,V>> transformer,
5250 <             double basis,
5251 <             DoubleByDoubleToDouble reducer) {
5252 <            if (transformer == null || reducer == null)
5253 <                throw new NullPointerException();
5254 <            return new MapReduceEntriesToDoubleTask<K,V>
5255 <                (map, null, -1, null, transformer, basis, reducer);
5256 <        }
5257 <
5258 <        /**
5259 <         * Returns a task that when invoked, returns the result of
5260 <         * accumulating the given transformation of all entries using the
5261 <         * given reducer to combine values, and the given basis as an
5262 <         * identity value.
5263 <         *
5264 <         * @param map the map
5265 <         * @param transformer a function returning the transformation
5266 <         * for an element
5267 <         * @param basis the identity (initial default value) for the reduction
5268 <         * @param reducer a commutative associative combining function
5269 <         * @return the task
5270 <         */
5271 <        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5272 <            (ConcurrentHashMapV8<K,V> map,
5273 <             ObjectToLong<Map.Entry<K,V>> transformer,
5274 <             long basis,
5275 <             LongByLongToLong reducer) {
5276 <            if (transformer == null || reducer == null)
5277 <                throw new NullPointerException();
5278 <            return new MapReduceEntriesToLongTask<K,V>
5279 <                (map, null, -1, null, transformer, basis, reducer);
4532 >            Node<K,V>[] t;
4533 >            if ((t = map.table) != null) {
4534 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4535 >                for (Node<K,V> p; (p = it.advance()) != null; )
4536 >                    action.apply(new MapEntry<K,V>(p.key, p.val, map));
4537 >            }
4538          }
4539  
5282        /**
5283         * Returns a task that when invoked, returns the result of
5284         * accumulating the given transformation of all entries using the
5285         * given reducer to combine values, and the given basis as an
5286         * identity value.
5287         *
5288         * @param map the map
5289         * @param transformer a function returning the transformation
5290         * for an element
5291         * @param basis the identity (initial default value) for the reduction
5292         * @param reducer a commutative associative combining function
5293         * @return the task
5294         */
5295        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5296            (ConcurrentHashMapV8<K,V> map,
5297             ObjectToInt<Map.Entry<K,V>> transformer,
5298             int basis,
5299             IntByIntToInt reducer) {
5300            if (transformer == null || reducer == null)
5301                throw new NullPointerException();
5302            return new MapReduceEntriesToIntTask<K,V>
5303                (map, null, -1, null, transformer, basis, reducer);
5304        }
4540      }
4541  
4542      // -------------------------------------------------------
4543  
4544      /**
4545 <     * Base for FJ tasks for bulk operations. This adds a variant of
4546 <     * CountedCompleters and some split and merge bookkeeping to
5312 <     * iterator functionality. The forEach and reduce methods are
5313 <     * similar to those illustrated in CountedCompleter documentation,
5314 <     * except that bottom-up reduction completions perform them within
5315 <     * their compute methods. The search methods are like forEach
5316 <     * except they continually poll for success and exit early.  Also,
5317 <     * exceptions are handled in a simpler manner, by just trying to
5318 <     * complete root task exceptionally.
5319 <     */
5320 <    @SuppressWarnings("serial") static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
5321 <        final BulkTask<K,V,?> parent;  // completion target
5322 <        int batch;                     // split control; -1 for unknown
5323 <        int pending;                   // completion control
5324 <
5325 <        BulkTask(ConcurrentHashMapV8<K,V> map, BulkTask<K,V,?> parent,
5326 <                 int batch) {
5327 <            super(map);
5328 <            this.parent = parent;
5329 <            this.batch = batch;
5330 <            if (parent != null && map != null) { // split parent
5331 <                Node[] t;
5332 <                if ((t = parent.tab) == null &&
5333 <                    (t = parent.tab = map.table) != null)
5334 <                    parent.baseLimit = parent.baseSize = t.length;
5335 <                this.tab = t;
5336 <                this.baseSize = parent.baseSize;
5337 <                int hi = this.baseLimit = parent.baseLimit;
5338 <                parent.baseLimit = this.index = this.baseIndex =
5339 <                    (hi + parent.baseIndex + 1) >>> 1;
5340 <            }
5341 <        }
5342 <
5343 <        /**
5344 <         * Forces root task to complete.
5345 <         * @param ex if null, complete normally, else exceptionally
5346 <         * @return false to simplify use
5347 <         */
5348 <        final boolean tryCompleteComputation(Throwable ex) {
5349 <            for (BulkTask<K,V,?> a = this;;) {
5350 <                BulkTask<K,V,?> p = a.parent;
5351 <                if (p == null) {
5352 <                    if (ex != null)
5353 <                        a.completeExceptionally(ex);
5354 <                    else
5355 <                        a.quietlyComplete();
5356 <                    return false;
5357 <                }
5358 <                a = p;
5359 <            }
5360 <        }
5361 <
5362 <        /**
5363 <         * Version of tryCompleteComputation for function screening checks
5364 <         */
5365 <        final boolean abortOnNullFunction() {
5366 <            return tryCompleteComputation(new Error("Unexpected null function"));
5367 <        }
5368 <
5369 <        // utilities
5370 <
5371 <        /** CompareAndSet pending count */
5372 <        final boolean casPending(int cmp, int val) {
5373 <            return U.compareAndSwapInt(this, PENDING, cmp, val);
5374 <        }
5375 <
5376 <        /**
5377 <         * Returns approx exp2 of the number of times (minus one) to
5378 <         * split task by two before executing leaf action. This value
5379 <         * is faster to compute and more convenient to use as a guide
5380 <         * to splitting than is the depth, since it is used while
5381 <         * dividing by two anyway.
5382 <         */
5383 <        final int batch() {
5384 <            ConcurrentHashMapV8<K, V> m; int b; Node[] t;  ForkJoinPool pool;
5385 <            if ((b = batch) < 0 && (m = map) != null) { // force initialization
5386 <                if ((t = tab) == null && (t = tab = m.table) != null)
5387 <                    baseLimit = baseSize = t.length;
5388 <                if (t != null) {
5389 <                    long n = m.counter.sum();
5390 <                    int par = ((pool = getPool()) == null) ?
5391 <                        ForkJoinPool.getCommonPoolParallelism() :
5392 <                        pool.getParallelism();
5393 <                    int sp = par << 3; // slack of 8
5394 <                    b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
5395 <                }
5396 <            }
5397 <            return b;
5398 <        }
5399 <
5400 <        /**
5401 <         * Returns exportable snapshot entry.
5402 <         */
5403 <        static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
5404 <            return new AbstractMap.SimpleEntry<K,V>(k, v);
5405 <        }
5406 <
5407 <        // Unsafe mechanics
5408 <        private static final sun.misc.Unsafe U;
5409 <        private static final long PENDING;
5410 <        static {
5411 <            try {
5412 <                U = getUnsafe();
5413 <                PENDING = U.objectFieldOffset
5414 <                    (BulkTask.class.getDeclaredField("pending"));
5415 <            } catch (Exception e) {
5416 <                throw new Error(e);
5417 <            }
5418 <        }
5419 <    }
5420 <
5421 <    /**
5422 <     * Base class for non-reductive actions
4545 >     * Base class for bulk tasks. Repeats some fields and code from
4546 >     * class Traverser, because we need to subclass CountedCompleter.
4547       */
4548 <    @SuppressWarnings("serial") static abstract class BulkAction<K,V,R> extends BulkTask<K,V,R> {
4549 <        BulkAction<K,V,?> nextTask;
4550 <        BulkAction(ConcurrentHashMapV8<K,V> map, BulkTask<K,V,?> parent,
4551 <                   int batch, BulkAction<K,V,?> nextTask) {
4552 <            super(map, parent, batch);
4553 <            this.nextTask = nextTask;
4548 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4549 >        Node<K,V>[] tab;        // same as Traverser
4550 >        Node<K,V> next;
4551 >        int index;
4552 >        int baseIndex;
4553 >        int baseLimit;
4554 >        final int baseSize;
4555 >        int batch;              // split control
4556 >
4557 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4558 >            super(par);
4559 >            this.batch = b;
4560 >            this.index = this.baseIndex = i;
4561 >            if ((this.tab = t) == null)
4562 >                this.baseSize = this.baseLimit = 0;
4563 >            else if (par == null)
4564 >                this.baseSize = this.baseLimit = t.length;
4565 >            else {
4566 >                this.baseLimit = f;
4567 >                this.baseSize = par.baseSize;
4568 >            }
4569          }
4570  
4571          /**
4572 <         * Try to complete task and upward parents. Upon hitting
5434 <         * non-completed parent, if a non-FJ task, try to help out the
5435 <         * computation.
4572 >         * Same as Traverser version
4573           */
4574 <        final void tryComplete(BulkAction<K,V,?> subtasks) {
4575 <            BulkTask<K,V,?> a = this, s = a;
4576 <            for (int c;;) {
4577 <                if ((c = a.pending) == 0) {
4578 <                    if ((a = (s = a).parent) == null) {
4579 <                        s.quietlyComplete();
4580 <                        break;
4581 <                    }
4582 <                }
4583 <                else if (a.casPending(c, c - 1)) {
4584 <                    if (subtasks != null && !inForkJoinPool()) {
4585 <                        while ((s = a.parent) != null)
4586 <                            a = s;
4587 <                        while (!a.isDone()) {
4588 <                            BulkAction<K,V,?> next = subtasks.nextTask;
4589 <                            if (subtasks.tryUnfork())
5453 <                                subtasks.exec();
5454 <                            if ((subtasks = next) == null)
5455 <                                break;
5456 <                        }
4574 >        final Node<K,V> advance() {
4575 >            Node<K,V> e;
4576 >            if ((e = next) != null)
4577 >                e = e.next;
4578 >            for (;;) {
4579 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4580 >                if (e != null)
4581 >                    return next = e;
4582 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4583 >                    (n = t.length) <= (i = index) || i < 0)
4584 >                    return next = null;
4585 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4586 >                    if (e instanceof ForwardingNode) {
4587 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4588 >                        e = null;
4589 >                        continue;
4590                      }
4591 <                    break;
4591 >                    else if (e instanceof TreeBin)
4592 >                        e = ((TreeBin<K,V>)e).first;
4593 >                    else
4594 >                        e = null;
4595                  }
4596 +                if ((index += baseSize) >= n)
4597 +                    index = ++baseIndex;    // visit upper slots if present
4598              }
4599          }
5462
4600      }
4601  
4602      /*
4603       * Task classes. Coded in a regular but ugly format/style to
4604       * simplify checks that each variant differs in the right way from
4605 <     * others.
4606 <     */
4607 <
4608 <    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
4609 <        extends BulkAction<K,V,Void> {
4610 <        final Action<K> action;
4605 >     * others. The null screenings exist because compilers cannot tell
4606 >     * that we've already null-checked task arguments, so we force
4607 >     * simplest hoisted bypass to help avoid convoluted traps.
4608 >     */
4609 >    @SuppressWarnings("serial")
4610 >    static final class ForEachKeyTask<K,V>
4611 >        extends BulkTask<K,V,Void> {
4612 >        final Action<? super K> action;
4613          ForEachKeyTask
4614 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4615 <             ForEachKeyTask<K,V> nextTask,
4616 <             Action<K> action) {
5478 <            super(m, p, b, nextTask);
4614 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4615 >             Action<? super K> action) {
4616 >            super(p, b, i, f, t);
4617              this.action = action;
4618          }
4619 <        @SuppressWarnings("unchecked") public final boolean exec() {
4620 <            final Action<K> action = this.action;
4621 <            if (action == null)
4622 <                return abortOnNullFunction();
4623 <            ForEachKeyTask<K,V> subtasks = null;
4624 <            try {
4625 <                int b = batch(), c;
4626 <                while (b > 1 && baseIndex != baseLimit) {
4627 <                    do {} while (!casPending(c = pending, c+1));
4628 <                    (subtasks = new ForEachKeyTask<K,V>
4629 <                     (map, this, b >>>= 1, subtasks, action)).fork();
4630 <                }
4631 <                while (advance() != null)
5494 <                    action.apply((K)nextKey);
5495 <            } catch (Throwable ex) {
5496 <                return tryCompleteComputation(ex);
4619 >        public final void compute() {
4620 >            final Action<? super K> action;
4621 >            if ((action = this.action) != null) {
4622 >                for (int i = baseIndex, f, h; batch > 0 &&
4623 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4624 >                    addToPendingCount(1);
4625 >                    new ForEachKeyTask<K,V>
4626 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4627 >                         action).fork();
4628 >                }
4629 >                for (Node<K,V> p; (p = advance()) != null;)
4630 >                    action.apply(p.key);
4631 >                propagateCompletion();
4632              }
5498            tryComplete(subtasks);
5499            return false;
4633          }
4634      }
4635  
4636 <    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
4637 <        extends BulkAction<K,V,Void> {
4638 <        final Action<V> action;
4636 >    @SuppressWarnings("serial")
4637 >    static final class ForEachValueTask<K,V>
4638 >        extends BulkTask<K,V,Void> {
4639 >        final Action<? super V> action;
4640          ForEachValueTask
4641 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4642 <             ForEachValueTask<K,V> nextTask,
4643 <             Action<V> action) {
5510 <            super(m, p, b, nextTask);
4641 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4642 >             Action<? super V> action) {
4643 >            super(p, b, i, f, t);
4644              this.action = action;
4645          }
4646 <        @SuppressWarnings("unchecked") public final boolean exec() {
4647 <            final Action<V> action = this.action;
4648 <            if (action == null)
4649 <                return abortOnNullFunction();
4650 <            ForEachValueTask<K,V> subtasks = null;
4651 <            try {
4652 <                int b = batch(), c;
4653 <                while (b > 1 && baseIndex != baseLimit) {
4654 <                    do {} while (!casPending(c = pending, c+1));
4655 <                    (subtasks = new ForEachValueTask<K,V>
4656 <                     (map, this, b >>>= 1, subtasks, action)).fork();
4657 <                }
4658 <                Object v;
5526 <                while ((v = advance()) != null)
5527 <                    action.apply((V)v);
5528 <            } catch (Throwable ex) {
5529 <                return tryCompleteComputation(ex);
4646 >        public final void compute() {
4647 >            final Action<? super V> action;
4648 >            if ((action = this.action) != null) {
4649 >                for (int i = baseIndex, f, h; batch > 0 &&
4650 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4651 >                    addToPendingCount(1);
4652 >                    new ForEachValueTask<K,V>
4653 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4654 >                         action).fork();
4655 >                }
4656 >                for (Node<K,V> p; (p = advance()) != null;)
4657 >                    action.apply(p.val);
4658 >                propagateCompletion();
4659              }
5531            tryComplete(subtasks);
5532            return false;
4660          }
4661      }
4662  
4663 <    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
4664 <        extends BulkAction<K,V,Void> {
4665 <        final Action<Entry<K,V>> action;
4663 >    @SuppressWarnings("serial")
4664 >    static final class ForEachEntryTask<K,V>
4665 >        extends BulkTask<K,V,Void> {
4666 >        final Action<? super Entry<K,V>> action;
4667          ForEachEntryTask
4668 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4669 <             ForEachEntryTask<K,V> nextTask,
4670 <             Action<Entry<K,V>> action) {
5543 <            super(m, p, b, nextTask);
4668 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4669 >             Action<? super Entry<K,V>> action) {
4670 >            super(p, b, i, f, t);
4671              this.action = action;
4672          }
4673 <        @SuppressWarnings("unchecked") public final boolean exec() {
4674 <            final Action<Entry<K,V>> action = this.action;
4675 <            if (action == null)
4676 <                return abortOnNullFunction();
4677 <            ForEachEntryTask<K,V> subtasks = null;
4678 <            try {
4679 <                int b = batch(), c;
4680 <                while (b > 1 && baseIndex != baseLimit) {
4681 <                    do {} while (!casPending(c = pending, c+1));
4682 <                    (subtasks = new ForEachEntryTask<K,V>
4683 <                     (map, this, b >>>= 1, subtasks, action)).fork();
4684 <                }
4685 <                Object v;
5559 <                while ((v = advance()) != null)
5560 <                    action.apply(entryFor((K)nextKey, (V)v));
5561 <            } catch (Throwable ex) {
5562 <                return tryCompleteComputation(ex);
4673 >        public final void compute() {
4674 >            final Action<? super Entry<K,V>> action;
4675 >            if ((action = this.action) != null) {
4676 >                for (int i = baseIndex, f, h; batch > 0 &&
4677 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4678 >                    addToPendingCount(1);
4679 >                    new ForEachEntryTask<K,V>
4680 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4681 >                         action).fork();
4682 >                }
4683 >                for (Node<K,V> p; (p = advance()) != null; )
4684 >                    action.apply(p);
4685 >                propagateCompletion();
4686              }
5564            tryComplete(subtasks);
5565            return false;
4687          }
4688      }
4689  
4690 <    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
4691 <        extends BulkAction<K,V,Void> {
4692 <        final BiAction<K,V> action;
4690 >    @SuppressWarnings("serial")
4691 >    static final class ForEachMappingTask<K,V>
4692 >        extends BulkTask<K,V,Void> {
4693 >        final BiAction<? super K, ? super V> action;
4694          ForEachMappingTask
4695 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4696 <             ForEachMappingTask<K,V> nextTask,
4697 <             BiAction<K,V> action) {
5576 <            super(m, p, b, nextTask);
4695 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4696 >             BiAction<? super K,? super V> action) {
4697 >            super(p, b, i, f, t);
4698              this.action = action;
4699          }
4700 <        @SuppressWarnings("unchecked") public final boolean exec() {
4701 <            final BiAction<K,V> action = this.action;
4702 <            if (action == null)
4703 <                return abortOnNullFunction();
4704 <            ForEachMappingTask<K,V> subtasks = null;
4705 <            try {
4706 <                int b = batch(), c;
4707 <                while (b > 1 && baseIndex != baseLimit) {
4708 <                    do {} while (!casPending(c = pending, c+1));
4709 <                    (subtasks = new ForEachMappingTask<K,V>
4710 <                     (map, this, b >>>= 1, subtasks, action)).fork();
4711 <                }
4712 <                Object v;
5592 <                while ((v = advance()) != null)
5593 <                    action.apply((K)nextKey, (V)v);
5594 <            } catch (Throwable ex) {
5595 <                return tryCompleteComputation(ex);
4700 >        public final void compute() {
4701 >            final BiAction<? super K, ? super V> action;
4702 >            if ((action = this.action) != null) {
4703 >                for (int i = baseIndex, f, h; batch > 0 &&
4704 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4705 >                    addToPendingCount(1);
4706 >                    new ForEachMappingTask<K,V>
4707 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4708 >                         action).fork();
4709 >                }
4710 >                for (Node<K,V> p; (p = advance()) != null; )
4711 >                    action.apply(p.key, p.val);
4712 >                propagateCompletion();
4713              }
5597            tryComplete(subtasks);
5598            return false;
4714          }
4715      }
4716  
4717 <    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
4718 <        extends BulkAction<K,V,Void> {
4717 >    @SuppressWarnings("serial")
4718 >    static final class ForEachTransformedKeyTask<K,V,U>
4719 >        extends BulkTask<K,V,Void> {
4720          final Fun<? super K, ? extends U> transformer;
4721 <        final Action<U> action;
4721 >        final Action<? super U> action;
4722          ForEachTransformedKeyTask
4723 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4724 <             ForEachTransformedKeyTask<K,V,U> nextTask,
4725 <             Fun<? super K, ? extends U> transformer,
4726 <             Action<U> action) {
4727 <            super(m, p, b, nextTask);
4728 <            this.transformer = transformer;
4729 <            this.action = action;
4730 <
4731 <        }
4732 <        @SuppressWarnings("unchecked") public final boolean exec() {
4733 <            final Fun<? super K, ? extends U> transformer =
4734 <                this.transformer;
4735 <            final Action<U> action = this.action;
4736 <            if (transformer == null || action == null)
4737 <                return abortOnNullFunction();
4738 <            ForEachTransformedKeyTask<K,V,U> subtasks = null;
4739 <            try {
4740 <                int b = batch(), c;
4741 <                while (b > 1 && baseIndex != baseLimit) {
4742 <                    do {} while (!casPending(c = pending, c+1));
5627 <                    (subtasks = new ForEachTransformedKeyTask<K,V,U>
5628 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5629 <                }
5630 <                U u;
5631 <                while (advance() != null) {
5632 <                    if ((u = transformer.apply((K)nextKey)) != null)
4723 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4724 >             Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4725 >            super(p, b, i, f, t);
4726 >            this.transformer = transformer; this.action = action;
4727 >        }
4728 >        public final void compute() {
4729 >            final Fun<? super K, ? extends U> transformer;
4730 >            final Action<? super U> action;
4731 >            if ((transformer = this.transformer) != null &&
4732 >                (action = this.action) != null) {
4733 >                for (int i = baseIndex, f, h; batch > 0 &&
4734 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4735 >                    addToPendingCount(1);
4736 >                    new ForEachTransformedKeyTask<K,V,U>
4737 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4738 >                         transformer, action).fork();
4739 >                }
4740 >                for (Node<K,V> p; (p = advance()) != null; ) {
4741 >                    U u;
4742 >                    if ((u = transformer.apply(p.key)) != null)
4743                          action.apply(u);
4744                  }
4745 <            } catch (Throwable ex) {
5636 <                return tryCompleteComputation(ex);
4745 >                propagateCompletion();
4746              }
5638            tryComplete(subtasks);
5639            return false;
4747          }
4748      }
4749  
4750 <    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
4751 <        extends BulkAction<K,V,Void> {
4750 >    @SuppressWarnings("serial")
4751 >    static final class ForEachTransformedValueTask<K,V,U>
4752 >        extends BulkTask<K,V,Void> {
4753          final Fun<? super V, ? extends U> transformer;
4754 <        final Action<U> action;
4754 >        final Action<? super U> action;
4755          ForEachTransformedValueTask
4756 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4757 <             ForEachTransformedValueTask<K,V,U> nextTask,
4758 <             Fun<? super V, ? extends U> transformer,
4759 <             Action<U> action) {
4760 <            super(m, p, b, nextTask);
4761 <            this.transformer = transformer;
4762 <            this.action = action;
4763 <
4764 <        }
4765 <        @SuppressWarnings("unchecked") public final boolean exec() {
4766 <            final Fun<? super V, ? extends U> transformer =
4767 <                this.transformer;
4768 <            final Action<U> action = this.action;
4769 <            if (transformer == null || action == null)
4770 <                return abortOnNullFunction();
4771 <            ForEachTransformedValueTask<K,V,U> subtasks = null;
4772 <            try {
4773 <                int b = batch(), c;
4774 <                while (b > 1 && baseIndex != baseLimit) {
4775 <                    do {} while (!casPending(c = pending, c+1));
5668 <                    (subtasks = new ForEachTransformedValueTask<K,V,U>
5669 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5670 <                }
5671 <                Object v; U u;
5672 <                while ((v = advance()) != null) {
5673 <                    if ((u = transformer.apply((V)v)) != null)
4756 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4757 >             Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4758 >            super(p, b, i, f, t);
4759 >            this.transformer = transformer; this.action = action;
4760 >        }
4761 >        public final void compute() {
4762 >            final Fun<? super V, ? extends U> transformer;
4763 >            final Action<? super U> action;
4764 >            if ((transformer = this.transformer) != null &&
4765 >                (action = this.action) != null) {
4766 >                for (int i = baseIndex, f, h; batch > 0 &&
4767 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4768 >                    addToPendingCount(1);
4769 >                    new ForEachTransformedValueTask<K,V,U>
4770 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4771 >                         transformer, action).fork();
4772 >                }
4773 >                for (Node<K,V> p; (p = advance()) != null; ) {
4774 >                    U u;
4775 >                    if ((u = transformer.apply(p.val)) != null)
4776                          action.apply(u);
4777                  }
4778 <            } catch (Throwable ex) {
5677 <                return tryCompleteComputation(ex);
4778 >                propagateCompletion();
4779              }
5679            tryComplete(subtasks);
5680            return false;
4780          }
4781      }
4782  
4783 <    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
4784 <        extends BulkAction<K,V,Void> {
4783 >    @SuppressWarnings("serial")
4784 >    static final class ForEachTransformedEntryTask<K,V,U>
4785 >        extends BulkTask<K,V,Void> {
4786          final Fun<Map.Entry<K,V>, ? extends U> transformer;
4787 <        final Action<U> action;
4787 >        final Action<? super U> action;
4788          ForEachTransformedEntryTask
4789 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
4790 <             ForEachTransformedEntryTask<K,V,U> nextTask,
4791 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
4792 <             Action<U> action) {
4793 <            super(m, p, b, nextTask);
4794 <            this.transformer = transformer;
4795 <            this.action = action;
4796 <
4797 <        }
4798 <        @SuppressWarnings("unchecked") public final boolean exec() {
4799 <            final Fun<Map.Entry<K,V>, ? extends U> transformer =
4800 <                this.transformer;
4801 <            final Action<U> action = this.action;
4802 <            if (transformer == null || action == null)
4803 <                return abortOnNullFunction();
4804 <            ForEachTransformedEntryTask<K,V,U> subtasks = null;
4805 <            try {
4806 <                int b = batch(), c;
4807 <                while (b > 1 && baseIndex != baseLimit) {
4808 <                    do {} while (!casPending(c = pending, c+1));
5709 <                    (subtasks = new ForEachTransformedEntryTask<K,V,U>
5710 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5711 <                }
5712 <                Object v; U u;
5713 <                while ((v = advance()) != null) {
5714 <                    if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
4789 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4790 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4791 >            super(p, b, i, f, t);
4792 >            this.transformer = transformer; this.action = action;
4793 >        }
4794 >        public final void compute() {
4795 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
4796 >            final Action<? super U> action;
4797 >            if ((transformer = this.transformer) != null &&
4798 >                (action = this.action) != null) {
4799 >                for (int i = baseIndex, f, h; batch > 0 &&
4800 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4801 >                    addToPendingCount(1);
4802 >                    new ForEachTransformedEntryTask<K,V,U>
4803 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4804 >                         transformer, action).fork();
4805 >                }
4806 >                for (Node<K,V> p; (p = advance()) != null; ) {
4807 >                    U u;
4808 >                    if ((u = transformer.apply(p)) != null)
4809                          action.apply(u);
4810                  }
4811 <            } catch (Throwable ex) {
5718 <                return tryCompleteComputation(ex);
4811 >                propagateCompletion();
4812              }
5720            tryComplete(subtasks);
5721            return false;
4813          }
4814      }
4815  
4816 <    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
4817 <        extends BulkAction<K,V,Void> {
4816 >    @SuppressWarnings("serial")
4817 >    static final class ForEachTransformedMappingTask<K,V,U>
4818 >        extends BulkTask<K,V,Void> {
4819          final BiFun<? super K, ? super V, ? extends U> transformer;
4820 <        final Action<U> action;
4820 >        final Action<? super U> action;
4821          ForEachTransformedMappingTask
4822 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5731 <             ForEachTransformedMappingTask<K,V,U> nextTask,
4822 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4823               BiFun<? super K, ? super V, ? extends U> transformer,
4824 <             Action<U> action) {
4825 <            super(m, p, b, nextTask);
4826 <            this.transformer = transformer;
4827 <            this.action = action;
4828 <
4829 <        }
4830 <        @SuppressWarnings("unchecked") public final boolean exec() {
4831 <            final BiFun<? super K, ? super V, ? extends U> transformer =
4832 <                this.transformer;
4833 <            final Action<U> action = this.action;
4834 <            if (transformer == null || action == null)
4835 <                return abortOnNullFunction();
4836 <            ForEachTransformedMappingTask<K,V,U> subtasks = null;
4837 <            try {
4838 <                int b = batch(), c;
4839 <                while (b > 1 && baseIndex != baseLimit) {
4840 <                    do {} while (!casPending(c = pending, c+1));
4841 <                    (subtasks = new ForEachTransformedMappingTask<K,V,U>
4842 <                     (map, this, b >>>= 1, subtasks, transformer, action)).fork();
5752 <                }
5753 <                Object v; U u;
5754 <                while ((v = advance()) != null) {
5755 <                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
4824 >             Action<? super U> action) {
4825 >            super(p, b, i, f, t);
4826 >            this.transformer = transformer; this.action = action;
4827 >        }
4828 >        public final void compute() {
4829 >            final BiFun<? super K, ? super V, ? extends U> transformer;
4830 >            final Action<? super U> action;
4831 >            if ((transformer = this.transformer) != null &&
4832 >                (action = this.action) != null) {
4833 >                for (int i = baseIndex, f, h; batch > 0 &&
4834 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4835 >                    addToPendingCount(1);
4836 >                    new ForEachTransformedMappingTask<K,V,U>
4837 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4838 >                         transformer, action).fork();
4839 >                }
4840 >                for (Node<K,V> p; (p = advance()) != null; ) {
4841 >                    U u;
4842 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4843                          action.apply(u);
4844                  }
4845 <            } catch (Throwable ex) {
5759 <                return tryCompleteComputation(ex);
4845 >                propagateCompletion();
4846              }
5761            tryComplete(subtasks);
5762            return false;
4847          }
4848      }
4849  
4850 <    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
4851 <        extends BulkAction<K,V,U> {
4850 >    @SuppressWarnings("serial")
4851 >    static final class SearchKeysTask<K,V,U>
4852 >        extends BulkTask<K,V,U> {
4853          final Fun<? super K, ? extends U> searchFunction;
4854          final AtomicReference<U> result;
4855          SearchKeysTask
4856 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5772 <             SearchKeysTask<K,V,U> nextTask,
4856 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4857               Fun<? super K, ? extends U> searchFunction,
4858               AtomicReference<U> result) {
4859 <            super(m, p, b, nextTask);
4859 >            super(p, b, i, f, t);
4860              this.searchFunction = searchFunction; this.result = result;
4861          }
4862 <        @SuppressWarnings("unchecked") public final boolean exec() {
4863 <            AtomicReference<U> result = this.result;
4864 <            final Fun<? super K, ? extends U> searchFunction =
4865 <                this.searchFunction;
4866 <            if (searchFunction == null || result == null)
4867 <                return abortOnNullFunction();
4868 <            SearchKeysTask<K,V,U> subtasks = null;
4869 <            try {
4870 <                int b = batch(), c;
4871 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
4872 <                    do {} while (!casPending(c = pending, c+1));
4873 <                    (subtasks = new SearchKeysTask<K,V,U>
4874 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
4875 <                }
4876 <                U u;
4877 <                while (result.get() == null && advance() != null) {
4878 <                    if ((u = searchFunction.apply((K)nextKey)) != null) {
4862 >        public final U getRawResult() { return result.get(); }
4863 >        public final void compute() {
4864 >            final Fun<? super K, ? extends U> searchFunction;
4865 >            final AtomicReference<U> result;
4866 >            if ((searchFunction = this.searchFunction) != null &&
4867 >                (result = this.result) != null) {
4868 >                for (int i = baseIndex, f, h; batch > 0 &&
4869 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4870 >                    if (result.get() != null)
4871 >                        return;
4872 >                    addToPendingCount(1);
4873 >                    new SearchKeysTask<K,V,U>
4874 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4875 >                         searchFunction, result).fork();
4876 >                }
4877 >                while (result.get() == null) {
4878 >                    U u;
4879 >                    Node<K,V> p;
4880 >                    if ((p = advance()) == null) {
4881 >                        propagateCompletion();
4882 >                        break;
4883 >                    }
4884 >                    if ((u = searchFunction.apply(p.key)) != null) {
4885                          if (result.compareAndSet(null, u))
4886 <                            tryCompleteComputation(null);
4886 >                            quietlyCompleteRoot();
4887                          break;
4888                      }
4889                  }
5800            } catch (Throwable ex) {
5801                return tryCompleteComputation(ex);
4890              }
5803            tryComplete(subtasks);
5804            return false;
4891          }
5806        public final U getRawResult() { return result.get(); }
4892      }
4893  
4894 <    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
4895 <        extends BulkAction<K,V,U> {
4894 >    @SuppressWarnings("serial")
4895 >    static final class SearchValuesTask<K,V,U>
4896 >        extends BulkTask<K,V,U> {
4897          final Fun<? super V, ? extends U> searchFunction;
4898          final AtomicReference<U> result;
4899          SearchValuesTask
4900 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5815 <             SearchValuesTask<K,V,U> nextTask,
4900 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4901               Fun<? super V, ? extends U> searchFunction,
4902               AtomicReference<U> result) {
4903 <            super(m, p, b, nextTask);
4903 >            super(p, b, i, f, t);
4904              this.searchFunction = searchFunction; this.result = result;
4905          }
4906 <        @SuppressWarnings("unchecked") public final boolean exec() {
4907 <            AtomicReference<U> result = this.result;
4908 <            final Fun<? super V, ? extends U> searchFunction =
4909 <                this.searchFunction;
4910 <            if (searchFunction == null || result == null)
4911 <                return abortOnNullFunction();
4912 <            SearchValuesTask<K,V,U> subtasks = null;
4913 <            try {
4914 <                int b = batch(), c;
4915 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
4916 <                    do {} while (!casPending(c = pending, c+1));
4917 <                    (subtasks = new SearchValuesTask<K,V,U>
4918 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
4919 <                }
4920 <                Object v; U u;
4921 <                while (result.get() == null && (v = advance()) != null) {
4922 <                    if ((u = searchFunction.apply((V)v)) != null) {
4906 >        public final U getRawResult() { return result.get(); }
4907 >        public final void compute() {
4908 >            final Fun<? super V, ? extends U> searchFunction;
4909 >            final AtomicReference<U> result;
4910 >            if ((searchFunction = this.searchFunction) != null &&
4911 >                (result = this.result) != null) {
4912 >                for (int i = baseIndex, f, h; batch > 0 &&
4913 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4914 >                    if (result.get() != null)
4915 >                        return;
4916 >                    addToPendingCount(1);
4917 >                    new SearchValuesTask<K,V,U>
4918 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4919 >                         searchFunction, result).fork();
4920 >                }
4921 >                while (result.get() == null) {
4922 >                    U u;
4923 >                    Node<K,V> p;
4924 >                    if ((p = advance()) == null) {
4925 >                        propagateCompletion();
4926 >                        break;
4927 >                    }
4928 >                    if ((u = searchFunction.apply(p.val)) != null) {
4929                          if (result.compareAndSet(null, u))
4930 <                            tryCompleteComputation(null);
4930 >                            quietlyCompleteRoot();
4931                          break;
4932                      }
4933                  }
5843            } catch (Throwable ex) {
5844                return tryCompleteComputation(ex);
4934              }
5846            tryComplete(subtasks);
5847            return false;
4935          }
5849        public final U getRawResult() { return result.get(); }
4936      }
4937  
4938 <    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
4939 <        extends BulkAction<K,V,U> {
4938 >    @SuppressWarnings("serial")
4939 >    static final class SearchEntriesTask<K,V,U>
4940 >        extends BulkTask<K,V,U> {
4941          final Fun<Entry<K,V>, ? extends U> searchFunction;
4942          final AtomicReference<U> result;
4943          SearchEntriesTask
4944 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5858 <             SearchEntriesTask<K,V,U> nextTask,
4944 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4945               Fun<Entry<K,V>, ? extends U> searchFunction,
4946               AtomicReference<U> result) {
4947 <            super(m, p, b, nextTask);
4947 >            super(p, b, i, f, t);
4948              this.searchFunction = searchFunction; this.result = result;
4949          }
4950 <        @SuppressWarnings("unchecked") public final boolean exec() {
4951 <            AtomicReference<U> result = this.result;
4952 <            final Fun<Entry<K,V>, ? extends U> searchFunction =
4953 <                this.searchFunction;
4954 <            if (searchFunction == null || result == null)
4955 <                return abortOnNullFunction();
4956 <            SearchEntriesTask<K,V,U> subtasks = null;
4957 <            try {
4958 <                int b = batch(), c;
4959 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
4960 <                    do {} while (!casPending(c = pending, c+1));
4961 <                    (subtasks = new SearchEntriesTask<K,V,U>
4962 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
4963 <                }
4964 <                Object v; U u;
4965 <                while (result.get() == null && (v = advance()) != null) {
4966 <                    if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
4967 <                        if (result.compareAndSet(null, u))
4968 <                            tryCompleteComputation(null);
4950 >        public final U getRawResult() { return result.get(); }
4951 >        public final void compute() {
4952 >            final Fun<Entry<K,V>, ? extends U> searchFunction;
4953 >            final AtomicReference<U> result;
4954 >            if ((searchFunction = this.searchFunction) != null &&
4955 >                (result = this.result) != null) {
4956 >                for (int i = baseIndex, f, h; batch > 0 &&
4957 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4958 >                    if (result.get() != null)
4959 >                        return;
4960 >                    addToPendingCount(1);
4961 >                    new SearchEntriesTask<K,V,U>
4962 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4963 >                         searchFunction, result).fork();
4964 >                }
4965 >                while (result.get() == null) {
4966 >                    U u;
4967 >                    Node<K,V> p;
4968 >                    if ((p = advance()) == null) {
4969 >                        propagateCompletion();
4970                          break;
4971                      }
4972 +                    if ((u = searchFunction.apply(p)) != null) {
4973 +                        if (result.compareAndSet(null, u))
4974 +                            quietlyCompleteRoot();
4975 +                        return;
4976 +                    }
4977                  }
5886            } catch (Throwable ex) {
5887                return tryCompleteComputation(ex);
4978              }
5889            tryComplete(subtasks);
5890            return false;
4979          }
5892        public final U getRawResult() { return result.get(); }
4980      }
4981  
4982 <    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
4983 <        extends BulkAction<K,V,U> {
4982 >    @SuppressWarnings("serial")
4983 >    static final class SearchMappingsTask<K,V,U>
4984 >        extends BulkTask<K,V,U> {
4985          final BiFun<? super K, ? super V, ? extends U> searchFunction;
4986          final AtomicReference<U> result;
4987          SearchMappingsTask
4988 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5901 <             SearchMappingsTask<K,V,U> nextTask,
4988 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4989               BiFun<? super K, ? super V, ? extends U> searchFunction,
4990               AtomicReference<U> result) {
4991 <            super(m, p, b, nextTask);
4991 >            super(p, b, i, f, t);
4992              this.searchFunction = searchFunction; this.result = result;
4993          }
4994 <        @SuppressWarnings("unchecked") public final boolean exec() {
4995 <            AtomicReference<U> result = this.result;
4996 <            final BiFun<? super K, ? super V, ? extends U> searchFunction =
4997 <                this.searchFunction;
4998 <            if (searchFunction == null || result == null)
4999 <                return abortOnNullFunction();
5000 <            SearchMappingsTask<K,V,U> subtasks = null;
5001 <            try {
5002 <                int b = batch(), c;
5003 <                while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5004 <                    do {} while (!casPending(c = pending, c+1));
5005 <                    (subtasks = new SearchMappingsTask<K,V,U>
5006 <                     (map, this, b >>>= 1, subtasks, searchFunction, result)).fork();
5007 <                }
5008 <                Object v; U u;
5009 <                while (result.get() == null && (v = advance()) != null) {
5010 <                    if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
4994 >        public final U getRawResult() { return result.get(); }
4995 >        public final void compute() {
4996 >            final BiFun<? super K, ? super V, ? extends U> searchFunction;
4997 >            final AtomicReference<U> result;
4998 >            if ((searchFunction = this.searchFunction) != null &&
4999 >                (result = this.result) != null) {
5000 >                for (int i = baseIndex, f, h; batch > 0 &&
5001 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5002 >                    if (result.get() != null)
5003 >                        return;
5004 >                    addToPendingCount(1);
5005 >                    new SearchMappingsTask<K,V,U>
5006 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5007 >                         searchFunction, result).fork();
5008 >                }
5009 >                while (result.get() == null) {
5010 >                    U u;
5011 >                    Node<K,V> p;
5012 >                    if ((p = advance()) == null) {
5013 >                        propagateCompletion();
5014 >                        break;
5015 >                    }
5016 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5017                          if (result.compareAndSet(null, u))
5018 <                            tryCompleteComputation(null);
5018 >                            quietlyCompleteRoot();
5019                          break;
5020                      }
5021                  }
5929            } catch (Throwable ex) {
5930                return tryCompleteComputation(ex);
5022              }
5932            tryComplete(subtasks);
5933            return false;
5023          }
5935        public final U getRawResult() { return result.get(); }
5024      }
5025  
5026 <    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5026 >    @SuppressWarnings("serial")
5027 >    static final class ReduceKeysTask<K,V>
5028          extends BulkTask<K,V,K> {
5029          final BiFun<? super K, ? super K, ? extends K> reducer;
5030          K result;
5031          ReduceKeysTask<K,V> rights, nextRight;
5032          ReduceKeysTask
5033 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5033 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5034               ReduceKeysTask<K,V> nextRight,
5035               BiFun<? super K, ? super K, ? extends K> reducer) {
5036 <            super(m, p, b); this.nextRight = nextRight;
5036 >            super(p, b, i, f, t); this.nextRight = nextRight;
5037              this.reducer = reducer;
5038          }
5039 <        @SuppressWarnings("unchecked") public final boolean exec() {
5040 <            final BiFun<? super K, ? super K, ? extends K> reducer =
5041 <                this.reducer;
5042 <            if (reducer == null)
5043 <                return abortOnNullFunction();
5044 <            try {
5045 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5957 <                    do {} while (!casPending(c = pending, c+1));
5039 >        public final K getRawResult() { return result; }
5040 >        public final void compute() {
5041 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5042 >            if ((reducer = this.reducer) != null) {
5043 >                for (int i = baseIndex, f, h; batch > 0 &&
5044 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5045 >                    addToPendingCount(1);
5046                      (rights = new ReduceKeysTask<K,V>
5047 <                     (map, this, b >>>= 1, rights, reducer)).fork();
5047 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5048 >                      rights, reducer)).fork();
5049                  }
5050                  K r = null;
5051 <                while (advance() != null) {
5052 <                    K u = (K)nextKey;
5053 <                    r = (r == null) ? u : reducer.apply(r, u);
5051 >                for (Node<K,V> p; (p = advance()) != null; ) {
5052 >                    K u = p.key;
5053 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5054                  }
5055                  result = r;
5056 <                for (ReduceKeysTask<K,V> t = this, s;;) {
5057 <                    int c; BulkTask<K,V,?> par; K tr, sr;
5058 <                    if ((c = t.pending) == 0) {
5059 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5060 <                            if ((sr = s.result) != null)
5061 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5062 <                        }
5063 <                        if ((par = t.parent) == null ||
5064 <                            !(par instanceof ReduceKeysTask)) {
5065 <                            t.quietlyComplete();
5066 <                            break;
5978 <                        }
5979 <                        t = (ReduceKeysTask<K,V>)par;
5056 >                CountedCompleter<?> c;
5057 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5058 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5059 >                        t = (ReduceKeysTask<K,V>)c,
5060 >                        s = t.rights;
5061 >                    while (s != null) {
5062 >                        K tr, sr;
5063 >                        if ((sr = s.result) != null)
5064 >                            t.result = (((tr = t.result) == null) ? sr :
5065 >                                        reducer.apply(tr, sr));
5066 >                        s = t.rights = s.nextRight;
5067                      }
5981                    else if (t.casPending(c, c - 1))
5982                        break;
5068                  }
5984            } catch (Throwable ex) {
5985                return tryCompleteComputation(ex);
5069              }
5987            ReduceKeysTask<K,V> s = rights;
5988            if (s != null && !inForkJoinPool()) {
5989                do  {
5990                    if (s.tryUnfork())
5991                        s.exec();
5992                } while ((s = s.nextRight) != null);
5993            }
5994            return false;
5070          }
5996        public final K getRawResult() { return result; }
5071      }
5072  
5073 <    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5073 >    @SuppressWarnings("serial")
5074 >    static final class ReduceValuesTask<K,V>
5075          extends BulkTask<K,V,V> {
5076          final BiFun<? super V, ? super V, ? extends V> reducer;
5077          V result;
5078          ReduceValuesTask<K,V> rights, nextRight;
5079          ReduceValuesTask
5080 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5080 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5081               ReduceValuesTask<K,V> nextRight,
5082               BiFun<? super V, ? super V, ? extends V> reducer) {
5083 <            super(m, p, b); this.nextRight = nextRight;
5083 >            super(p, b, i, f, t); this.nextRight = nextRight;
5084              this.reducer = reducer;
5085          }
5086 <        @SuppressWarnings("unchecked") public final boolean exec() {
5087 <            final BiFun<? super V, ? super V, ? extends V> reducer =
5088 <                this.reducer;
5089 <            if (reducer == null)
5090 <                return abortOnNullFunction();
5091 <            try {
5092 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6018 <                    do {} while (!casPending(c = pending, c+1));
5086 >        public final V getRawResult() { return result; }
5087 >        public final void compute() {
5088 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5089 >            if ((reducer = this.reducer) != null) {
5090 >                for (int i = baseIndex, f, h; batch > 0 &&
5091 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5092 >                    addToPendingCount(1);
5093                      (rights = new ReduceValuesTask<K,V>
5094 <                     (map, this, b >>>= 1, rights, reducer)).fork();
5094 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5095 >                      rights, reducer)).fork();
5096                  }
5097                  V r = null;
5098 <                Object v;
5099 <                while ((v = advance()) != null) {
5100 <                    V u = (V)v;
6026 <                    r = (r == null) ? u : reducer.apply(r, u);
5098 >                for (Node<K,V> p; (p = advance()) != null; ) {
5099 >                    V v = p.val;
5100 >                    r = (r == null) ? v : reducer.apply(r, v);
5101                  }
5102                  result = r;
5103 <                for (ReduceValuesTask<K,V> t = this, s;;) {
5104 <                    int c; BulkTask<K,V,?> par; V tr, sr;
5105 <                    if ((c = t.pending) == 0) {
5106 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5107 <                            if ((sr = s.result) != null)
5108 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5109 <                        }
5110 <                        if ((par = t.parent) == null ||
5111 <                            !(par instanceof ReduceValuesTask)) {
5112 <                            t.quietlyComplete();
5113 <                            break;
6040 <                        }
6041 <                        t = (ReduceValuesTask<K,V>)par;
5103 >                CountedCompleter<?> c;
5104 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5105 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5106 >                        t = (ReduceValuesTask<K,V>)c,
5107 >                        s = t.rights;
5108 >                    while (s != null) {
5109 >                        V tr, sr;
5110 >                        if ((sr = s.result) != null)
5111 >                            t.result = (((tr = t.result) == null) ? sr :
5112 >                                        reducer.apply(tr, sr));
5113 >                        s = t.rights = s.nextRight;
5114                      }
6043                    else if (t.casPending(c, c - 1))
6044                        break;
5115                  }
6046            } catch (Throwable ex) {
6047                return tryCompleteComputation(ex);
6048            }
6049            ReduceValuesTask<K,V> s = rights;
6050            if (s != null && !inForkJoinPool()) {
6051                do  {
6052                    if (s.tryUnfork())
6053                        s.exec();
6054                } while ((s = s.nextRight) != null);
5116              }
6056            return false;
5117          }
6058        public final V getRawResult() { return result; }
5118      }
5119  
5120 <    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5120 >    @SuppressWarnings("serial")
5121 >    static final class ReduceEntriesTask<K,V>
5122          extends BulkTask<K,V,Map.Entry<K,V>> {
5123          final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5124          Map.Entry<K,V> result;
5125          ReduceEntriesTask<K,V> rights, nextRight;
5126          ReduceEntriesTask
5127 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5127 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5128               ReduceEntriesTask<K,V> nextRight,
5129               BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5130 <            super(m, p, b); this.nextRight = nextRight;
5130 >            super(p, b, i, f, t); this.nextRight = nextRight;
5131              this.reducer = reducer;
5132          }
5133 <        @SuppressWarnings("unchecked") public final boolean exec() {
5134 <            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5135 <                this.reducer;
5136 <            if (reducer == null)
5137 <                return abortOnNullFunction();
5138 <            try {
5139 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6080 <                    do {} while (!casPending(c = pending, c+1));
5133 >        public final Map.Entry<K,V> getRawResult() { return result; }
5134 >        public final void compute() {
5135 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5136 >            if ((reducer = this.reducer) != null) {
5137 >                for (int i = baseIndex, f, h; batch > 0 &&
5138 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5139 >                    addToPendingCount(1);
5140                      (rights = new ReduceEntriesTask<K,V>
5141 <                     (map, this, b >>>= 1, rights, reducer)).fork();
5141 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5142 >                      rights, reducer)).fork();
5143                  }
5144                  Map.Entry<K,V> r = null;
5145 <                Object v;
5146 <                while ((v = advance()) != null) {
6087 <                    Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
6088 <                    r = (r == null) ? u : reducer.apply(r, u);
6089 <                }
5145 >                for (Node<K,V> p; (p = advance()) != null; )
5146 >                    r = (r == null) ? p : reducer.apply(r, p);
5147                  result = r;
5148 <                for (ReduceEntriesTask<K,V> t = this, s;;) {
5149 <                    int c; BulkTask<K,V,?> par; Map.Entry<K,V> tr, sr;
5150 <                    if ((c = t.pending) == 0) {
5151 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5152 <                            if ((sr = s.result) != null)
5153 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5154 <                        }
5155 <                        if ((par = t.parent) == null ||
5156 <                            !(par instanceof ReduceEntriesTask)) {
5157 <                            t.quietlyComplete();
5158 <                            break;
6102 <                        }
6103 <                        t = (ReduceEntriesTask<K,V>)par;
5148 >                CountedCompleter<?> c;
5149 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5150 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5151 >                        t = (ReduceEntriesTask<K,V>)c,
5152 >                        s = t.rights;
5153 >                    while (s != null) {
5154 >                        Map.Entry<K,V> tr, sr;
5155 >                        if ((sr = s.result) != null)
5156 >                            t.result = (((tr = t.result) == null) ? sr :
5157 >                                        reducer.apply(tr, sr));
5158 >                        s = t.rights = s.nextRight;
5159                      }
6105                    else if (t.casPending(c, c - 1))
6106                        break;
5160                  }
6108            } catch (Throwable ex) {
6109                return tryCompleteComputation(ex);
6110            }
6111            ReduceEntriesTask<K,V> s = rights;
6112            if (s != null && !inForkJoinPool()) {
6113                do  {
6114                    if (s.tryUnfork())
6115                        s.exec();
6116                } while ((s = s.nextRight) != null);
5161              }
6118            return false;
5162          }
6120        public final Map.Entry<K,V> getRawResult() { return result; }
5163      }
5164  
5165 <    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5165 >    @SuppressWarnings("serial")
5166 >    static final class MapReduceKeysTask<K,V,U>
5167          extends BulkTask<K,V,U> {
5168          final Fun<? super K, ? extends U> transformer;
5169          final BiFun<? super U, ? super U, ? extends U> reducer;
5170          U result;
5171          MapReduceKeysTask<K,V,U> rights, nextRight;
5172          MapReduceKeysTask
5173 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5173 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5174               MapReduceKeysTask<K,V,U> nextRight,
5175               Fun<? super K, ? extends U> transformer,
5176               BiFun<? super U, ? super U, ? extends U> reducer) {
5177 <            super(m, p, b); this.nextRight = nextRight;
5177 >            super(p, b, i, f, t); this.nextRight = nextRight;
5178              this.transformer = transformer;
5179              this.reducer = reducer;
5180          }
5181 <        @SuppressWarnings("unchecked") public final boolean exec() {
5182 <            final Fun<? super K, ? extends U> transformer =
5183 <                this.transformer;
5184 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5185 <                this.reducer;
5186 <            if (transformer == null || reducer == null)
5187 <                return abortOnNullFunction();
5188 <            try {
5189 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6147 <                    do {} while (!casPending(c = pending, c+1));
5181 >        public final U getRawResult() { return result; }
5182 >        public final void compute() {
5183 >            final Fun<? super K, ? extends U> transformer;
5184 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5185 >            if ((transformer = this.transformer) != null &&
5186 >                (reducer = this.reducer) != null) {
5187 >                for (int i = baseIndex, f, h; batch > 0 &&
5188 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5189 >                    addToPendingCount(1);
5190                      (rights = new MapReduceKeysTask<K,V,U>
5191 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5191 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5192 >                      rights, transformer, reducer)).fork();
5193                  }
5194 <                U r = null, u;
5195 <                while (advance() != null) {
5196 <                    if ((u = transformer.apply((K)nextKey)) != null)
5194 >                U r = null;
5195 >                for (Node<K,V> p; (p = advance()) != null; ) {
5196 >                    U u;
5197 >                    if ((u = transformer.apply(p.key)) != null)
5198                          r = (r == null) ? u : reducer.apply(r, u);
5199                  }
5200                  result = r;
5201 <                for (MapReduceKeysTask<K,V,U> t = this, s;;) {
5202 <                    int c; BulkTask<K,V,?> par; U tr, sr;
5203 <                    if ((c = t.pending) == 0) {
5204 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5205 <                            if ((sr = s.result) != null)
5206 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5207 <                        }
5208 <                        if ((par = t.parent) == null ||
5209 <                            !(par instanceof MapReduceKeysTask)) {
5210 <                            t.quietlyComplete();
5211 <                            break;
6168 <                        }
6169 <                        t = (MapReduceKeysTask<K,V,U>)par;
5201 >                CountedCompleter<?> c;
5202 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5203 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5204 >                        t = (MapReduceKeysTask<K,V,U>)c,
5205 >                        s = t.rights;
5206 >                    while (s != null) {
5207 >                        U tr, sr;
5208 >                        if ((sr = s.result) != null)
5209 >                            t.result = (((tr = t.result) == null) ? sr :
5210 >                                        reducer.apply(tr, sr));
5211 >                        s = t.rights = s.nextRight;
5212                      }
6171                    else if (t.casPending(c, c - 1))
6172                        break;
5213                  }
6174            } catch (Throwable ex) {
6175                return tryCompleteComputation(ex);
6176            }
6177            MapReduceKeysTask<K,V,U> s = rights;
6178            if (s != null && !inForkJoinPool()) {
6179                do  {
6180                    if (s.tryUnfork())
6181                        s.exec();
6182                } while ((s = s.nextRight) != null);
5214              }
6184            return false;
5215          }
6186        public final U getRawResult() { return result; }
5216      }
5217  
5218 <    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5218 >    @SuppressWarnings("serial")
5219 >    static final class MapReduceValuesTask<K,V,U>
5220          extends BulkTask<K,V,U> {
5221          final Fun<? super V, ? extends U> transformer;
5222          final BiFun<? super U, ? super U, ? extends U> reducer;
5223          U result;
5224          MapReduceValuesTask<K,V,U> rights, nextRight;
5225          MapReduceValuesTask
5226 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5226 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5227               MapReduceValuesTask<K,V,U> nextRight,
5228               Fun<? super V, ? extends U> transformer,
5229               BiFun<? super U, ? super U, ? extends U> reducer) {
5230 <            super(m, p, b); this.nextRight = nextRight;
5230 >            super(p, b, i, f, t); this.nextRight = nextRight;
5231              this.transformer = transformer;
5232              this.reducer = reducer;
5233          }
5234 <        @SuppressWarnings("unchecked") public final boolean exec() {
5235 <            final Fun<? super V, ? extends U> transformer =
5236 <                this.transformer;
5237 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5238 <                this.reducer;
5239 <            if (transformer == null || reducer == null)
5240 <                return abortOnNullFunction();
5241 <            try {
5242 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6213 <                    do {} while (!casPending(c = pending, c+1));
5234 >        public final U getRawResult() { return result; }
5235 >        public final void compute() {
5236 >            final Fun<? super V, ? extends U> transformer;
5237 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5238 >            if ((transformer = this.transformer) != null &&
5239 >                (reducer = this.reducer) != null) {
5240 >                for (int i = baseIndex, f, h; batch > 0 &&
5241 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5242 >                    addToPendingCount(1);
5243                      (rights = new MapReduceValuesTask<K,V,U>
5244 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5244 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5245 >                      rights, transformer, reducer)).fork();
5246                  }
5247 <                U r = null, u;
5248 <                Object v;
5249 <                while ((v = advance()) != null) {
5250 <                    if ((u = transformer.apply((V)v)) != null)
5247 >                U r = null;
5248 >                for (Node<K,V> p; (p = advance()) != null; ) {
5249 >                    U u;
5250 >                    if ((u = transformer.apply(p.val)) != null)
5251                          r = (r == null) ? u : reducer.apply(r, u);
5252                  }
5253                  result = r;
5254 <                for (MapReduceValuesTask<K,V,U> t = this, s;;) {
5255 <                    int c; BulkTask<K,V,?> par; U tr, sr;
5256 <                    if ((c = t.pending) == 0) {
5257 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5258 <                            if ((sr = s.result) != null)
5259 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5260 <                        }
5261 <                        if ((par = t.parent) == null ||
5262 <                            !(par instanceof MapReduceValuesTask)) {
5263 <                            t.quietlyComplete();
5264 <                            break;
6235 <                        }
6236 <                        t = (MapReduceValuesTask<K,V,U>)par;
5254 >                CountedCompleter<?> c;
5255 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5256 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5257 >                        t = (MapReduceValuesTask<K,V,U>)c,
5258 >                        s = t.rights;
5259 >                    while (s != null) {
5260 >                        U tr, sr;
5261 >                        if ((sr = s.result) != null)
5262 >                            t.result = (((tr = t.result) == null) ? sr :
5263 >                                        reducer.apply(tr, sr));
5264 >                        s = t.rights = s.nextRight;
5265                      }
6238                    else if (t.casPending(c, c - 1))
6239                        break;
5266                  }
6241            } catch (Throwable ex) {
6242                return tryCompleteComputation(ex);
5267              }
6244            MapReduceValuesTask<K,V,U> s = rights;
6245            if (s != null && !inForkJoinPool()) {
6246                do  {
6247                    if (s.tryUnfork())
6248                        s.exec();
6249                } while ((s = s.nextRight) != null);
6250            }
6251            return false;
5268          }
6253        public final U getRawResult() { return result; }
5269      }
5270  
5271 <    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5271 >    @SuppressWarnings("serial")
5272 >    static final class MapReduceEntriesTask<K,V,U>
5273          extends BulkTask<K,V,U> {
5274          final Fun<Map.Entry<K,V>, ? extends U> transformer;
5275          final BiFun<? super U, ? super U, ? extends U> reducer;
5276          U result;
5277          MapReduceEntriesTask<K,V,U> rights, nextRight;
5278          MapReduceEntriesTask
5279 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5279 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5280               MapReduceEntriesTask<K,V,U> nextRight,
5281               Fun<Map.Entry<K,V>, ? extends U> transformer,
5282               BiFun<? super U, ? super U, ? extends U> reducer) {
5283 <            super(m, p, b); this.nextRight = nextRight;
5283 >            super(p, b, i, f, t); this.nextRight = nextRight;
5284              this.transformer = transformer;
5285              this.reducer = reducer;
5286          }
5287 <        @SuppressWarnings("unchecked") public final boolean exec() {
5288 <            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5289 <                this.transformer;
5290 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5291 <                this.reducer;
5292 <            if (transformer == null || reducer == null)
5293 <                return abortOnNullFunction();
5294 <            try {
5295 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6280 <                    do {} while (!casPending(c = pending, c+1));
5287 >        public final U getRawResult() { return result; }
5288 >        public final void compute() {
5289 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5290 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5291 >            if ((transformer = this.transformer) != null &&
5292 >                (reducer = this.reducer) != null) {
5293 >                for (int i = baseIndex, f, h; batch > 0 &&
5294 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5295 >                    addToPendingCount(1);
5296                      (rights = new MapReduceEntriesTask<K,V,U>
5297 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5297 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5298 >                      rights, transformer, reducer)).fork();
5299                  }
5300 <                U r = null, u;
5301 <                Object v;
5302 <                while ((v = advance()) != null) {
5303 <                    if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5300 >                U r = null;
5301 >                for (Node<K,V> p; (p = advance()) != null; ) {
5302 >                    U u;
5303 >                    if ((u = transformer.apply(p)) != null)
5304                          r = (r == null) ? u : reducer.apply(r, u);
5305                  }
5306                  result = r;
5307 <                for (MapReduceEntriesTask<K,V,U> t = this, s;;) {
5308 <                    int c; BulkTask<K,V,?> par; U tr, sr;
5309 <                    if ((c = t.pending) == 0) {
5310 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5311 <                            if ((sr = s.result) != null)
5312 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5313 <                        }
5314 <                        if ((par = t.parent) == null ||
5315 <                            !(par instanceof MapReduceEntriesTask)) {
5316 <                            t.quietlyComplete();
5317 <                            break;
6302 <                        }
6303 <                        t = (MapReduceEntriesTask<K,V,U>)par;
5307 >                CountedCompleter<?> c;
5308 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5309 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5310 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5311 >                        s = t.rights;
5312 >                    while (s != null) {
5313 >                        U tr, sr;
5314 >                        if ((sr = s.result) != null)
5315 >                            t.result = (((tr = t.result) == null) ? sr :
5316 >                                        reducer.apply(tr, sr));
5317 >                        s = t.rights = s.nextRight;
5318                      }
6305                    else if (t.casPending(c, c - 1))
6306                        break;
5319                  }
6308            } catch (Throwable ex) {
6309                return tryCompleteComputation(ex);
6310            }
6311            MapReduceEntriesTask<K,V,U> s = rights;
6312            if (s != null && !inForkJoinPool()) {
6313                do  {
6314                    if (s.tryUnfork())
6315                        s.exec();
6316                } while ((s = s.nextRight) != null);
5320              }
6318            return false;
5321          }
6320        public final U getRawResult() { return result; }
5322      }
5323  
5324 <    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5324 >    @SuppressWarnings("serial")
5325 >    static final class MapReduceMappingsTask<K,V,U>
5326          extends BulkTask<K,V,U> {
5327          final BiFun<? super K, ? super V, ? extends U> transformer;
5328          final BiFun<? super U, ? super U, ? extends U> reducer;
5329          U result;
5330          MapReduceMappingsTask<K,V,U> rights, nextRight;
5331          MapReduceMappingsTask
5332 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5332 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5333               MapReduceMappingsTask<K,V,U> nextRight,
5334               BiFun<? super K, ? super V, ? extends U> transformer,
5335               BiFun<? super U, ? super U, ? extends U> reducer) {
5336 <            super(m, p, b); this.nextRight = nextRight;
5336 >            super(p, b, i, f, t); this.nextRight = nextRight;
5337              this.transformer = transformer;
5338              this.reducer = reducer;
5339          }
5340 <        @SuppressWarnings("unchecked") public final boolean exec() {
5341 <            final BiFun<? super K, ? super V, ? extends U> transformer =
5342 <                this.transformer;
5343 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5344 <                this.reducer;
5345 <            if (transformer == null || reducer == null)
5346 <                return abortOnNullFunction();
5347 <            try {
5348 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
6347 <                    do {} while (!casPending(c = pending, c+1));
5340 >        public final U getRawResult() { return result; }
5341 >        public final void compute() {
5342 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5343 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5344 >            if ((transformer = this.transformer) != null &&
5345 >                (reducer = this.reducer) != null) {
5346 >                for (int i = baseIndex, f, h; batch > 0 &&
5347 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5348 >                    addToPendingCount(1);
5349                      (rights = new MapReduceMappingsTask<K,V,U>
5350 <                     (map, this, b >>>= 1, rights, transformer, reducer)).fork();
5350 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5351 >                      rights, transformer, reducer)).fork();
5352                  }
5353 <                U r = null, u;
5354 <                Object v;
5355 <                while ((v = advance()) != null) {
5356 <                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5353 >                U r = null;
5354 >                for (Node<K,V> p; (p = advance()) != null; ) {
5355 >                    U u;
5356 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5357                          r = (r == null) ? u : reducer.apply(r, u);
5358                  }
5359                  result = r;
5360 <                for (MapReduceMappingsTask<K,V,U> t = this, s;;) {
5361 <                    int c; BulkTask<K,V,?> par; U tr, sr;
5362 <                    if ((c = t.pending) == 0) {
5363 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5364 <                            if ((sr = s.result) != null)
5365 <                                t.result = ((tr = t.result) == null) ? sr : reducer.apply(tr, sr);
5366 <                        }
5367 <                        if ((par = t.parent) == null ||
5368 <                            !(par instanceof MapReduceMappingsTask)) {
5369 <                            t.quietlyComplete();
5370 <                            break;
6369 <                        }
6370 <                        t = (MapReduceMappingsTask<K,V,U>)par;
5360 >                CountedCompleter<?> c;
5361 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5362 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5363 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5364 >                        s = t.rights;
5365 >                    while (s != null) {
5366 >                        U tr, sr;
5367 >                        if ((sr = s.result) != null)
5368 >                            t.result = (((tr = t.result) == null) ? sr :
5369 >                                        reducer.apply(tr, sr));
5370 >                        s = t.rights = s.nextRight;
5371                      }
6372                    else if (t.casPending(c, c - 1))
6373                        break;
5372                  }
6375            } catch (Throwable ex) {
6376                return tryCompleteComputation(ex);
5373              }
6378            MapReduceMappingsTask<K,V,U> s = rights;
6379            if (s != null && !inForkJoinPool()) {
6380                do  {
6381                    if (s.tryUnfork())
6382                        s.exec();
6383                } while ((s = s.nextRight) != null);
6384            }
6385            return false;
5374          }
6387        public final U getRawResult() { return result; }
5375      }
5376  
5377 <    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5377 >    @SuppressWarnings("serial")
5378 >    static final class MapReduceKeysToDoubleTask<K,V>
5379          extends BulkTask<K,V,Double> {
5380          final ObjectToDouble<? super K> transformer;
5381          final DoubleByDoubleToDouble reducer;
# Line 6395 | Line 5383 | public class ConcurrentHashMapV8<K, V>
5383          double result;
5384          MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5385          MapReduceKeysToDoubleTask
5386 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5386 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5387               MapReduceKeysToDoubleTask<K,V> nextRight,
5388               ObjectToDouble<? super K> transformer,
5389               double basis,
5390               DoubleByDoubleToDouble reducer) {
5391 <            super(m, p, b); this.nextRight = nextRight;
5391 >            super(p, b, i, f, t); this.nextRight = nextRight;
5392              this.transformer = transformer;
5393              this.basis = basis; this.reducer = reducer;
5394          }
5395 <        @SuppressWarnings("unchecked") public final boolean exec() {
5396 <            final ObjectToDouble<? super K> transformer =
5397 <                this.transformer;
5398 <            final DoubleByDoubleToDouble reducer = this.reducer;
5399 <            if (transformer == null || reducer == null)
5400 <                return abortOnNullFunction();
5401 <            try {
5402 <                final double id = this.basis;
5403 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5404 <                    do {} while (!casPending(c = pending, c+1));
5395 >        public final Double getRawResult() { return result; }
5396 >        public final void compute() {
5397 >            final ObjectToDouble<? super K> transformer;
5398 >            final DoubleByDoubleToDouble reducer;
5399 >            if ((transformer = this.transformer) != null &&
5400 >                (reducer = this.reducer) != null) {
5401 >                double r = this.basis;
5402 >                for (int i = baseIndex, f, h; batch > 0 &&
5403 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5404 >                    addToPendingCount(1);
5405                      (rights = new MapReduceKeysToDoubleTask<K,V>
5406 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5406 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5407 >                      rights, transformer, r, reducer)).fork();
5408                  }
5409 <                double r = id;
5410 <                while (advance() != null)
6422 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
5409 >                for (Node<K,V> p; (p = advance()) != null; )
5410 >                    r = reducer.apply(r, transformer.apply(p.key));
5411                  result = r;
5412 <                for (MapReduceKeysToDoubleTask<K,V> t = this, s;;) {
5413 <                    int c; BulkTask<K,V,?> par;
5414 <                    if ((c = t.pending) == 0) {
5415 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5416 <                            t.result = reducer.apply(t.result, s.result);
5417 <                        }
5418 <                        if ((par = t.parent) == null ||
5419 <                            !(par instanceof MapReduceKeysToDoubleTask)) {
6432 <                            t.quietlyComplete();
6433 <                            break;
6434 <                        }
6435 <                        t = (MapReduceKeysToDoubleTask<K,V>)par;
5412 >                CountedCompleter<?> c;
5413 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5414 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5415 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5416 >                        s = t.rights;
5417 >                    while (s != null) {
5418 >                        t.result = reducer.apply(t.result, s.result);
5419 >                        s = t.rights = s.nextRight;
5420                      }
6437                    else if (t.casPending(c, c - 1))
6438                        break;
5421                  }
6440            } catch (Throwable ex) {
6441                return tryCompleteComputation(ex);
5422              }
6443            MapReduceKeysToDoubleTask<K,V> s = rights;
6444            if (s != null && !inForkJoinPool()) {
6445                do  {
6446                    if (s.tryUnfork())
6447                        s.exec();
6448                } while ((s = s.nextRight) != null);
6449            }
6450            return false;
5423          }
6452        public final Double getRawResult() { return result; }
5424      }
5425  
5426 <    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5426 >    @SuppressWarnings("serial")
5427 >    static final class MapReduceValuesToDoubleTask<K,V>
5428          extends BulkTask<K,V,Double> {
5429          final ObjectToDouble<? super V> transformer;
5430          final DoubleByDoubleToDouble reducer;
# Line 6460 | Line 5432 | public class ConcurrentHashMapV8<K, V>
5432          double result;
5433          MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5434          MapReduceValuesToDoubleTask
5435 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5435 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5436               MapReduceValuesToDoubleTask<K,V> nextRight,
5437               ObjectToDouble<? super V> transformer,
5438               double basis,
5439               DoubleByDoubleToDouble reducer) {
5440 <            super(m, p, b); this.nextRight = nextRight;
5440 >            super(p, b, i, f, t); this.nextRight = nextRight;
5441              this.transformer = transformer;
5442              this.basis = basis; this.reducer = reducer;
5443          }
5444 <        @SuppressWarnings("unchecked") public final boolean exec() {
5445 <            final ObjectToDouble<? super V> transformer =
5446 <                this.transformer;
5447 <            final DoubleByDoubleToDouble reducer = this.reducer;
5448 <            if (transformer == null || reducer == null)
5449 <                return abortOnNullFunction();
5450 <            try {
5451 <                final double id = this.basis;
5452 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5453 <                    do {} while (!casPending(c = pending, c+1));
5444 >        public final Double getRawResult() { return result; }
5445 >        public final void compute() {
5446 >            final ObjectToDouble<? super V> transformer;
5447 >            final DoubleByDoubleToDouble reducer;
5448 >            if ((transformer = this.transformer) != null &&
5449 >                (reducer = this.reducer) != null) {
5450 >                double r = this.basis;
5451 >                for (int i = baseIndex, f, h; batch > 0 &&
5452 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5453 >                    addToPendingCount(1);
5454                      (rights = new MapReduceValuesToDoubleTask<K,V>
5455 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5455 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5456 >                      rights, transformer, r, reducer)).fork();
5457                  }
5458 <                double r = id;
5459 <                Object v;
6487 <                while ((v = advance()) != null)
6488 <                    r = reducer.apply(r, transformer.apply((V)v));
5458 >                for (Node<K,V> p; (p = advance()) != null; )
5459 >                    r = reducer.apply(r, transformer.apply(p.val));
5460                  result = r;
5461 <                for (MapReduceValuesToDoubleTask<K,V> t = this, s;;) {
5462 <                    int c; BulkTask<K,V,?> par;
5463 <                    if ((c = t.pending) == 0) {
5464 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5465 <                            t.result = reducer.apply(t.result, s.result);
5466 <                        }
5467 <                        if ((par = t.parent) == null ||
5468 <                            !(par instanceof MapReduceValuesToDoubleTask)) {
6498 <                            t.quietlyComplete();
6499 <                            break;
6500 <                        }
6501 <                        t = (MapReduceValuesToDoubleTask<K,V>)par;
5461 >                CountedCompleter<?> c;
5462 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5463 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5464 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5465 >                        s = t.rights;
5466 >                    while (s != null) {
5467 >                        t.result = reducer.apply(t.result, s.result);
5468 >                        s = t.rights = s.nextRight;
5469                      }
6503                    else if (t.casPending(c, c - 1))
6504                        break;
5470                  }
6506            } catch (Throwable ex) {
6507                return tryCompleteComputation(ex);
6508            }
6509            MapReduceValuesToDoubleTask<K,V> s = rights;
6510            if (s != null && !inForkJoinPool()) {
6511                do  {
6512                    if (s.tryUnfork())
6513                        s.exec();
6514                } while ((s = s.nextRight) != null);
5471              }
6516            return false;
5472          }
6518        public final Double getRawResult() { return result; }
5473      }
5474  
5475 <    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
5475 >    @SuppressWarnings("serial")
5476 >    static final class MapReduceEntriesToDoubleTask<K,V>
5477          extends BulkTask<K,V,Double> {
5478          final ObjectToDouble<Map.Entry<K,V>> transformer;
5479          final DoubleByDoubleToDouble reducer;
# Line 6526 | Line 5481 | public class ConcurrentHashMapV8<K, V>
5481          double result;
5482          MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5483          MapReduceEntriesToDoubleTask
5484 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5484 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5485               MapReduceEntriesToDoubleTask<K,V> nextRight,
5486               ObjectToDouble<Map.Entry<K,V>> transformer,
5487               double basis,
5488               DoubleByDoubleToDouble reducer) {
5489 <            super(m, p, b); this.nextRight = nextRight;
5489 >            super(p, b, i, f, t); this.nextRight = nextRight;
5490              this.transformer = transformer;
5491              this.basis = basis; this.reducer = reducer;
5492          }
5493 <        @SuppressWarnings("unchecked") public final boolean exec() {
5494 <            final ObjectToDouble<Map.Entry<K,V>> transformer =
5495 <                this.transformer;
5496 <            final DoubleByDoubleToDouble reducer = this.reducer;
5497 <            if (transformer == null || reducer == null)
5498 <                return abortOnNullFunction();
5499 <            try {
5500 <                final double id = this.basis;
5501 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5502 <                    do {} while (!casPending(c = pending, c+1));
5493 >        public final Double getRawResult() { return result; }
5494 >        public final void compute() {
5495 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
5496 >            final DoubleByDoubleToDouble reducer;
5497 >            if ((transformer = this.transformer) != null &&
5498 >                (reducer = this.reducer) != null) {
5499 >                double r = this.basis;
5500 >                for (int i = baseIndex, f, h; batch > 0 &&
5501 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5502 >                    addToPendingCount(1);
5503                      (rights = new MapReduceEntriesToDoubleTask<K,V>
5504 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5504 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5505 >                      rights, transformer, r, reducer)).fork();
5506                  }
5507 <                double r = id;
5508 <                Object v;
6553 <                while ((v = advance()) != null)
6554 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5507 >                for (Node<K,V> p; (p = advance()) != null; )
5508 >                    r = reducer.apply(r, transformer.apply(p));
5509                  result = r;
5510 <                for (MapReduceEntriesToDoubleTask<K,V> t = this, s;;) {
5511 <                    int c; BulkTask<K,V,?> par;
5512 <                    if ((c = t.pending) == 0) {
5513 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5514 <                            t.result = reducer.apply(t.result, s.result);
5515 <                        }
5516 <                        if ((par = t.parent) == null ||
5517 <                            !(par instanceof MapReduceEntriesToDoubleTask)) {
6564 <                            t.quietlyComplete();
6565 <                            break;
6566 <                        }
6567 <                        t = (MapReduceEntriesToDoubleTask<K,V>)par;
5510 >                CountedCompleter<?> c;
5511 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5512 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5513 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5514 >                        s = t.rights;
5515 >                    while (s != null) {
5516 >                        t.result = reducer.apply(t.result, s.result);
5517 >                        s = t.rights = s.nextRight;
5518                      }
6569                    else if (t.casPending(c, c - 1))
6570                        break;
5519                  }
6572            } catch (Throwable ex) {
6573                return tryCompleteComputation(ex);
5520              }
6575            MapReduceEntriesToDoubleTask<K,V> s = rights;
6576            if (s != null && !inForkJoinPool()) {
6577                do  {
6578                    if (s.tryUnfork())
6579                        s.exec();
6580                } while ((s = s.nextRight) != null);
6581            }
6582            return false;
5521          }
6584        public final Double getRawResult() { return result; }
5522      }
5523  
5524 <    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
5524 >    @SuppressWarnings("serial")
5525 >    static final class MapReduceMappingsToDoubleTask<K,V>
5526          extends BulkTask<K,V,Double> {
5527          final ObjectByObjectToDouble<? super K, ? super V> transformer;
5528          final DoubleByDoubleToDouble reducer;
# Line 6592 | Line 5530 | public class ConcurrentHashMapV8<K, V>
5530          double result;
5531          MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5532          MapReduceMappingsToDoubleTask
5533 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5533 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5534               MapReduceMappingsToDoubleTask<K,V> nextRight,
5535               ObjectByObjectToDouble<? super K, ? super V> transformer,
5536               double basis,
5537               DoubleByDoubleToDouble reducer) {
5538 <            super(m, p, b); this.nextRight = nextRight;
5538 >            super(p, b, i, f, t); this.nextRight = nextRight;
5539              this.transformer = transformer;
5540              this.basis = basis; this.reducer = reducer;
5541          }
5542 <        @SuppressWarnings("unchecked") public final boolean exec() {
5543 <            final ObjectByObjectToDouble<? super K, ? super V> transformer =
5544 <                this.transformer;
5545 <            final DoubleByDoubleToDouble reducer = this.reducer;
5546 <            if (transformer == null || reducer == null)
5547 <                return abortOnNullFunction();
5548 <            try {
5549 <                final double id = this.basis;
5550 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5551 <                    do {} while (!casPending(c = pending, c+1));
5542 >        public final Double getRawResult() { return result; }
5543 >        public final void compute() {
5544 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
5545 >            final DoubleByDoubleToDouble reducer;
5546 >            if ((transformer = this.transformer) != null &&
5547 >                (reducer = this.reducer) != null) {
5548 >                double r = this.basis;
5549 >                for (int i = baseIndex, f, h; batch > 0 &&
5550 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5551 >                    addToPendingCount(1);
5552                      (rights = new MapReduceMappingsToDoubleTask<K,V>
5553 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5553 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5554 >                      rights, transformer, r, reducer)).fork();
5555                  }
5556 <                double r = id;
5557 <                Object v;
6619 <                while ((v = advance()) != null)
6620 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
5556 >                for (Node<K,V> p; (p = advance()) != null; )
5557 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5558                  result = r;
5559 <                for (MapReduceMappingsToDoubleTask<K,V> t = this, s;;) {
5560 <                    int c; BulkTask<K,V,?> par;
5561 <                    if ((c = t.pending) == 0) {
5562 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5563 <                            t.result = reducer.apply(t.result, s.result);
5564 <                        }
5565 <                        if ((par = t.parent) == null ||
5566 <                            !(par instanceof MapReduceMappingsToDoubleTask)) {
6630 <                            t.quietlyComplete();
6631 <                            break;
6632 <                        }
6633 <                        t = (MapReduceMappingsToDoubleTask<K,V>)par;
5559 >                CountedCompleter<?> c;
5560 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5561 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5562 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5563 >                        s = t.rights;
5564 >                    while (s != null) {
5565 >                        t.result = reducer.apply(t.result, s.result);
5566 >                        s = t.rights = s.nextRight;
5567                      }
6635                    else if (t.casPending(c, c - 1))
6636                        break;
5568                  }
6638            } catch (Throwable ex) {
6639                return tryCompleteComputation(ex);
6640            }
6641            MapReduceMappingsToDoubleTask<K,V> s = rights;
6642            if (s != null && !inForkJoinPool()) {
6643                do  {
6644                    if (s.tryUnfork())
6645                        s.exec();
6646                } while ((s = s.nextRight) != null);
5569              }
6648            return false;
5570          }
6650        public final Double getRawResult() { return result; }
5571      }
5572  
5573 <    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
5573 >    @SuppressWarnings("serial")
5574 >    static final class MapReduceKeysToLongTask<K,V>
5575          extends BulkTask<K,V,Long> {
5576          final ObjectToLong<? super K> transformer;
5577          final LongByLongToLong reducer;
# Line 6658 | Line 5579 | public class ConcurrentHashMapV8<K, V>
5579          long result;
5580          MapReduceKeysToLongTask<K,V> rights, nextRight;
5581          MapReduceKeysToLongTask
5582 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5582 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5583               MapReduceKeysToLongTask<K,V> nextRight,
5584               ObjectToLong<? super K> transformer,
5585               long basis,
5586               LongByLongToLong reducer) {
5587 <            super(m, p, b); this.nextRight = nextRight;
5587 >            super(p, b, i, f, t); this.nextRight = nextRight;
5588              this.transformer = transformer;
5589              this.basis = basis; this.reducer = reducer;
5590          }
5591 <        @SuppressWarnings("unchecked") public final boolean exec() {
5592 <            final ObjectToLong<? super K> transformer =
5593 <                this.transformer;
5594 <            final LongByLongToLong reducer = this.reducer;
5595 <            if (transformer == null || reducer == null)
5596 <                return abortOnNullFunction();
5597 <            try {
5598 <                final long id = this.basis;
5599 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5600 <                    do {} while (!casPending(c = pending, c+1));
5591 >        public final Long getRawResult() { return result; }
5592 >        public final void compute() {
5593 >            final ObjectToLong<? super K> transformer;
5594 >            final LongByLongToLong reducer;
5595 >            if ((transformer = this.transformer) != null &&
5596 >                (reducer = this.reducer) != null) {
5597 >                long r = this.basis;
5598 >                for (int i = baseIndex, f, h; batch > 0 &&
5599 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5600 >                    addToPendingCount(1);
5601                      (rights = new MapReduceKeysToLongTask<K,V>
5602 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5602 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5603 >                      rights, transformer, r, reducer)).fork();
5604                  }
5605 <                long r = id;
5606 <                while (advance() != null)
6685 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
5605 >                for (Node<K,V> p; (p = advance()) != null; )
5606 >                    r = reducer.apply(r, transformer.apply(p.key));
5607                  result = r;
5608 <                for (MapReduceKeysToLongTask<K,V> t = this, s;;) {
5609 <                    int c; BulkTask<K,V,?> par;
5610 <                    if ((c = t.pending) == 0) {
5611 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5612 <                            t.result = reducer.apply(t.result, s.result);
5613 <                        }
5614 <                        if ((par = t.parent) == null ||
5615 <                            !(par instanceof MapReduceKeysToLongTask)) {
6695 <                            t.quietlyComplete();
6696 <                            break;
6697 <                        }
6698 <                        t = (MapReduceKeysToLongTask<K,V>)par;
5608 >                CountedCompleter<?> c;
5609 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5610 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5611 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5612 >                        s = t.rights;
5613 >                    while (s != null) {
5614 >                        t.result = reducer.apply(t.result, s.result);
5615 >                        s = t.rights = s.nextRight;
5616                      }
6700                    else if (t.casPending(c, c - 1))
6701                        break;
5617                  }
6703            } catch (Throwable ex) {
6704                return tryCompleteComputation(ex);
6705            }
6706            MapReduceKeysToLongTask<K,V> s = rights;
6707            if (s != null && !inForkJoinPool()) {
6708                do  {
6709                    if (s.tryUnfork())
6710                        s.exec();
6711                } while ((s = s.nextRight) != null);
5618              }
6713            return false;
5619          }
6715        public final Long getRawResult() { return result; }
5620      }
5621  
5622 <    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
5622 >    @SuppressWarnings("serial")
5623 >    static final class MapReduceValuesToLongTask<K,V>
5624          extends BulkTask<K,V,Long> {
5625          final ObjectToLong<? super V> transformer;
5626          final LongByLongToLong reducer;
# Line 6723 | Line 5628 | public class ConcurrentHashMapV8<K, V>
5628          long result;
5629          MapReduceValuesToLongTask<K,V> rights, nextRight;
5630          MapReduceValuesToLongTask
5631 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5631 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5632               MapReduceValuesToLongTask<K,V> nextRight,
5633               ObjectToLong<? super V> transformer,
5634               long basis,
5635               LongByLongToLong reducer) {
5636 <            super(m, p, b); this.nextRight = nextRight;
5636 >            super(p, b, i, f, t); this.nextRight = nextRight;
5637              this.transformer = transformer;
5638              this.basis = basis; this.reducer = reducer;
5639          }
5640 <        @SuppressWarnings("unchecked") public final boolean exec() {
5641 <            final ObjectToLong<? super V> transformer =
5642 <                this.transformer;
5643 <            final LongByLongToLong reducer = this.reducer;
5644 <            if (transformer == null || reducer == null)
5645 <                return abortOnNullFunction();
5646 <            try {
5647 <                final long id = this.basis;
5648 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5649 <                    do {} while (!casPending(c = pending, c+1));
5640 >        public final Long getRawResult() { return result; }
5641 >        public final void compute() {
5642 >            final ObjectToLong<? super V> transformer;
5643 >            final LongByLongToLong reducer;
5644 >            if ((transformer = this.transformer) != null &&
5645 >                (reducer = this.reducer) != null) {
5646 >                long r = this.basis;
5647 >                for (int i = baseIndex, f, h; batch > 0 &&
5648 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5649 >                    addToPendingCount(1);
5650                      (rights = new MapReduceValuesToLongTask<K,V>
5651 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5651 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5652 >                      rights, transformer, r, reducer)).fork();
5653                  }
5654 <                long r = id;
5655 <                Object v;
6750 <                while ((v = advance()) != null)
6751 <                    r = reducer.apply(r, transformer.apply((V)v));
5654 >                for (Node<K,V> p; (p = advance()) != null; )
5655 >                    r = reducer.apply(r, transformer.apply(p.val));
5656                  result = r;
5657 <                for (MapReduceValuesToLongTask<K,V> t = this, s;;) {
5658 <                    int c; BulkTask<K,V,?> par;
5659 <                    if ((c = t.pending) == 0) {
5660 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5661 <                            t.result = reducer.apply(t.result, s.result);
5662 <                        }
5663 <                        if ((par = t.parent) == null ||
5664 <                            !(par instanceof MapReduceValuesToLongTask)) {
6761 <                            t.quietlyComplete();
6762 <                            break;
6763 <                        }
6764 <                        t = (MapReduceValuesToLongTask<K,V>)par;
5657 >                CountedCompleter<?> c;
5658 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5659 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5660 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5661 >                        s = t.rights;
5662 >                    while (s != null) {
5663 >                        t.result = reducer.apply(t.result, s.result);
5664 >                        s = t.rights = s.nextRight;
5665                      }
6766                    else if (t.casPending(c, c - 1))
6767                        break;
5666                  }
6769            } catch (Throwable ex) {
6770                return tryCompleteComputation(ex);
5667              }
6772            MapReduceValuesToLongTask<K,V> s = rights;
6773            if (s != null && !inForkJoinPool()) {
6774                do  {
6775                    if (s.tryUnfork())
6776                        s.exec();
6777                } while ((s = s.nextRight) != null);
6778            }
6779            return false;
5668          }
6781        public final Long getRawResult() { return result; }
5669      }
5670  
5671 <    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
5671 >    @SuppressWarnings("serial")
5672 >    static final class MapReduceEntriesToLongTask<K,V>
5673          extends BulkTask<K,V,Long> {
5674          final ObjectToLong<Map.Entry<K,V>> transformer;
5675          final LongByLongToLong reducer;
# Line 6789 | Line 5677 | public class ConcurrentHashMapV8<K, V>
5677          long result;
5678          MapReduceEntriesToLongTask<K,V> rights, nextRight;
5679          MapReduceEntriesToLongTask
5680 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5680 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5681               MapReduceEntriesToLongTask<K,V> nextRight,
5682               ObjectToLong<Map.Entry<K,V>> transformer,
5683               long basis,
5684               LongByLongToLong reducer) {
5685 <            super(m, p, b); this.nextRight = nextRight;
5685 >            super(p, b, i, f, t); this.nextRight = nextRight;
5686              this.transformer = transformer;
5687              this.basis = basis; this.reducer = reducer;
5688          }
5689 <        @SuppressWarnings("unchecked") public final boolean exec() {
5690 <            final ObjectToLong<Map.Entry<K,V>> transformer =
5691 <                this.transformer;
5692 <            final LongByLongToLong reducer = this.reducer;
5693 <            if (transformer == null || reducer == null)
5694 <                return abortOnNullFunction();
5695 <            try {
5696 <                final long id = this.basis;
5697 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5698 <                    do {} while (!casPending(c = pending, c+1));
5689 >        public final Long getRawResult() { return result; }
5690 >        public final void compute() {
5691 >            final ObjectToLong<Map.Entry<K,V>> transformer;
5692 >            final LongByLongToLong reducer;
5693 >            if ((transformer = this.transformer) != null &&
5694 >                (reducer = this.reducer) != null) {
5695 >                long r = this.basis;
5696 >                for (int i = baseIndex, f, h; batch > 0 &&
5697 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5698 >                    addToPendingCount(1);
5699                      (rights = new MapReduceEntriesToLongTask<K,V>
5700 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5700 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5701 >                      rights, transformer, r, reducer)).fork();
5702                  }
5703 <                long r = id;
5704 <                Object v;
6816 <                while ((v = advance()) != null)
6817 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5703 >                for (Node<K,V> p; (p = advance()) != null; )
5704 >                    r = reducer.apply(r, transformer.apply(p));
5705                  result = r;
5706 <                for (MapReduceEntriesToLongTask<K,V> t = this, s;;) {
5707 <                    int c; BulkTask<K,V,?> par;
5708 <                    if ((c = t.pending) == 0) {
5709 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5710 <                            t.result = reducer.apply(t.result, s.result);
5711 <                        }
5712 <                        if ((par = t.parent) == null ||
5713 <                            !(par instanceof MapReduceEntriesToLongTask)) {
6827 <                            t.quietlyComplete();
6828 <                            break;
6829 <                        }
6830 <                        t = (MapReduceEntriesToLongTask<K,V>)par;
5706 >                CountedCompleter<?> c;
5707 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5708 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5709 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5710 >                        s = t.rights;
5711 >                    while (s != null) {
5712 >                        t.result = reducer.apply(t.result, s.result);
5713 >                        s = t.rights = s.nextRight;
5714                      }
6832                    else if (t.casPending(c, c - 1))
6833                        break;
5715                  }
6835            } catch (Throwable ex) {
6836                return tryCompleteComputation(ex);
6837            }
6838            MapReduceEntriesToLongTask<K,V> s = rights;
6839            if (s != null && !inForkJoinPool()) {
6840                do  {
6841                    if (s.tryUnfork())
6842                        s.exec();
6843                } while ((s = s.nextRight) != null);
5716              }
6845            return false;
5717          }
6847        public final Long getRawResult() { return result; }
5718      }
5719  
5720 <    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
5720 >    @SuppressWarnings("serial")
5721 >    static final class MapReduceMappingsToLongTask<K,V>
5722          extends BulkTask<K,V,Long> {
5723          final ObjectByObjectToLong<? super K, ? super V> transformer;
5724          final LongByLongToLong reducer;
# Line 6855 | Line 5726 | public class ConcurrentHashMapV8<K, V>
5726          long result;
5727          MapReduceMappingsToLongTask<K,V> rights, nextRight;
5728          MapReduceMappingsToLongTask
5729 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5729 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5730               MapReduceMappingsToLongTask<K,V> nextRight,
5731               ObjectByObjectToLong<? super K, ? super V> transformer,
5732               long basis,
5733               LongByLongToLong reducer) {
5734 <            super(m, p, b); this.nextRight = nextRight;
5734 >            super(p, b, i, f, t); this.nextRight = nextRight;
5735              this.transformer = transformer;
5736              this.basis = basis; this.reducer = reducer;
5737          }
5738 <        @SuppressWarnings("unchecked") public final boolean exec() {
5739 <            final ObjectByObjectToLong<? super K, ? super V> transformer =
5740 <                this.transformer;
5741 <            final LongByLongToLong reducer = this.reducer;
5742 <            if (transformer == null || reducer == null)
5743 <                return abortOnNullFunction();
5744 <            try {
5745 <                final long id = this.basis;
5746 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5747 <                    do {} while (!casPending(c = pending, c+1));
5738 >        public final Long getRawResult() { return result; }
5739 >        public final void compute() {
5740 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
5741 >            final LongByLongToLong reducer;
5742 >            if ((transformer = this.transformer) != null &&
5743 >                (reducer = this.reducer) != null) {
5744 >                long r = this.basis;
5745 >                for (int i = baseIndex, f, h; batch > 0 &&
5746 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5747 >                    addToPendingCount(1);
5748                      (rights = new MapReduceMappingsToLongTask<K,V>
5749 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5749 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5750 >                      rights, transformer, r, reducer)).fork();
5751                  }
5752 <                long r = id;
5753 <                Object v;
6882 <                while ((v = advance()) != null)
6883 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
5752 >                for (Node<K,V> p; (p = advance()) != null; )
5753 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5754                  result = r;
5755 <                for (MapReduceMappingsToLongTask<K,V> t = this, s;;) {
5756 <                    int c; BulkTask<K,V,?> par;
5757 <                    if ((c = t.pending) == 0) {
5758 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5759 <                            t.result = reducer.apply(t.result, s.result);
5760 <                        }
5761 <                        if ((par = t.parent) == null ||
5762 <                            !(par instanceof MapReduceMappingsToLongTask)) {
6893 <                            t.quietlyComplete();
6894 <                            break;
6895 <                        }
6896 <                        t = (MapReduceMappingsToLongTask<K,V>)par;
5755 >                CountedCompleter<?> c;
5756 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5757 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5758 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
5759 >                        s = t.rights;
5760 >                    while (s != null) {
5761 >                        t.result = reducer.apply(t.result, s.result);
5762 >                        s = t.rights = s.nextRight;
5763                      }
6898                    else if (t.casPending(c, c - 1))
6899                        break;
5764                  }
6901            } catch (Throwable ex) {
6902                return tryCompleteComputation(ex);
6903            }
6904            MapReduceMappingsToLongTask<K,V> s = rights;
6905            if (s != null && !inForkJoinPool()) {
6906                do  {
6907                    if (s.tryUnfork())
6908                        s.exec();
6909                } while ((s = s.nextRight) != null);
5765              }
6911            return false;
5766          }
6913        public final Long getRawResult() { return result; }
5767      }
5768  
5769 <    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
5769 >    @SuppressWarnings("serial")
5770 >    static final class MapReduceKeysToIntTask<K,V>
5771          extends BulkTask<K,V,Integer> {
5772          final ObjectToInt<? super K> transformer;
5773          final IntByIntToInt reducer;
# Line 6921 | Line 5775 | public class ConcurrentHashMapV8<K, V>
5775          int result;
5776          MapReduceKeysToIntTask<K,V> rights, nextRight;
5777          MapReduceKeysToIntTask
5778 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5778 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5779               MapReduceKeysToIntTask<K,V> nextRight,
5780               ObjectToInt<? super K> transformer,
5781               int basis,
5782               IntByIntToInt reducer) {
5783 <            super(m, p, b); this.nextRight = nextRight;
5783 >            super(p, b, i, f, t); this.nextRight = nextRight;
5784              this.transformer = transformer;
5785              this.basis = basis; this.reducer = reducer;
5786          }
5787 <        @SuppressWarnings("unchecked") public final boolean exec() {
5788 <            final ObjectToInt<? super K> transformer =
5789 <                this.transformer;
5790 <            final IntByIntToInt reducer = this.reducer;
5791 <            if (transformer == null || reducer == null)
5792 <                return abortOnNullFunction();
5793 <            try {
5794 <                final int id = this.basis;
5795 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5796 <                    do {} while (!casPending(c = pending, c+1));
5787 >        public final Integer getRawResult() { return result; }
5788 >        public final void compute() {
5789 >            final ObjectToInt<? super K> transformer;
5790 >            final IntByIntToInt reducer;
5791 >            if ((transformer = this.transformer) != null &&
5792 >                (reducer = this.reducer) != null) {
5793 >                int r = this.basis;
5794 >                for (int i = baseIndex, f, h; batch > 0 &&
5795 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5796 >                    addToPendingCount(1);
5797                      (rights = new MapReduceKeysToIntTask<K,V>
5798 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5798 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5799 >                      rights, transformer, r, reducer)).fork();
5800                  }
5801 <                int r = id;
5802 <                while (advance() != null)
6948 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
5801 >                for (Node<K,V> p; (p = advance()) != null; )
5802 >                    r = reducer.apply(r, transformer.apply(p.key));
5803                  result = r;
5804 <                for (MapReduceKeysToIntTask<K,V> t = this, s;;) {
5805 <                    int c; BulkTask<K,V,?> par;
5806 <                    if ((c = t.pending) == 0) {
5807 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5808 <                            t.result = reducer.apply(t.result, s.result);
5809 <                        }
5810 <                        if ((par = t.parent) == null ||
5811 <                            !(par instanceof MapReduceKeysToIntTask)) {
6958 <                            t.quietlyComplete();
6959 <                            break;
6960 <                        }
6961 <                        t = (MapReduceKeysToIntTask<K,V>)par;
5804 >                CountedCompleter<?> c;
5805 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5806 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5807 >                        t = (MapReduceKeysToIntTask<K,V>)c,
5808 >                        s = t.rights;
5809 >                    while (s != null) {
5810 >                        t.result = reducer.apply(t.result, s.result);
5811 >                        s = t.rights = s.nextRight;
5812                      }
6963                    else if (t.casPending(c, c - 1))
6964                        break;
5813                  }
6966            } catch (Throwable ex) {
6967                return tryCompleteComputation(ex);
5814              }
6969            MapReduceKeysToIntTask<K,V> s = rights;
6970            if (s != null && !inForkJoinPool()) {
6971                do  {
6972                    if (s.tryUnfork())
6973                        s.exec();
6974                } while ((s = s.nextRight) != null);
6975            }
6976            return false;
5815          }
6978        public final Integer getRawResult() { return result; }
5816      }
5817  
5818 <    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
5818 >    @SuppressWarnings("serial")
5819 >    static final class MapReduceValuesToIntTask<K,V>
5820          extends BulkTask<K,V,Integer> {
5821          final ObjectToInt<? super V> transformer;
5822          final IntByIntToInt reducer;
# Line 6986 | Line 5824 | public class ConcurrentHashMapV8<K, V>
5824          int result;
5825          MapReduceValuesToIntTask<K,V> rights, nextRight;
5826          MapReduceValuesToIntTask
5827 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5827 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5828               MapReduceValuesToIntTask<K,V> nextRight,
5829               ObjectToInt<? super V> transformer,
5830               int basis,
5831               IntByIntToInt reducer) {
5832 <            super(m, p, b); this.nextRight = nextRight;
5832 >            super(p, b, i, f, t); this.nextRight = nextRight;
5833              this.transformer = transformer;
5834              this.basis = basis; this.reducer = reducer;
5835          }
5836 <        @SuppressWarnings("unchecked") public final boolean exec() {
5837 <            final ObjectToInt<? super V> transformer =
5838 <                this.transformer;
5839 <            final IntByIntToInt reducer = this.reducer;
5840 <            if (transformer == null || reducer == null)
5841 <                return abortOnNullFunction();
5842 <            try {
5843 <                final int id = this.basis;
5844 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5845 <                    do {} while (!casPending(c = pending, c+1));
5836 >        public final Integer getRawResult() { return result; }
5837 >        public final void compute() {
5838 >            final ObjectToInt<? super V> transformer;
5839 >            final IntByIntToInt reducer;
5840 >            if ((transformer = this.transformer) != null &&
5841 >                (reducer = this.reducer) != null) {
5842 >                int r = this.basis;
5843 >                for (int i = baseIndex, f, h; batch > 0 &&
5844 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5845 >                    addToPendingCount(1);
5846                      (rights = new MapReduceValuesToIntTask<K,V>
5847 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5847 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5848 >                      rights, transformer, r, reducer)).fork();
5849                  }
5850 <                int r = id;
5851 <                Object v;
7013 <                while ((v = advance()) != null)
7014 <                    r = reducer.apply(r, transformer.apply((V)v));
5850 >                for (Node<K,V> p; (p = advance()) != null; )
5851 >                    r = reducer.apply(r, transformer.apply(p.val));
5852                  result = r;
5853 <                for (MapReduceValuesToIntTask<K,V> t = this, s;;) {
5854 <                    int c; BulkTask<K,V,?> par;
5855 <                    if ((c = t.pending) == 0) {
5856 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5857 <                            t.result = reducer.apply(t.result, s.result);
5858 <                        }
5859 <                        if ((par = t.parent) == null ||
5860 <                            !(par instanceof MapReduceValuesToIntTask)) {
7024 <                            t.quietlyComplete();
7025 <                            break;
7026 <                        }
7027 <                        t = (MapReduceValuesToIntTask<K,V>)par;
5853 >                CountedCompleter<?> c;
5854 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5855 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5856 >                        t = (MapReduceValuesToIntTask<K,V>)c,
5857 >                        s = t.rights;
5858 >                    while (s != null) {
5859 >                        t.result = reducer.apply(t.result, s.result);
5860 >                        s = t.rights = s.nextRight;
5861                      }
7029                    else if (t.casPending(c, c - 1))
7030                        break;
5862                  }
7032            } catch (Throwable ex) {
7033                return tryCompleteComputation(ex);
7034            }
7035            MapReduceValuesToIntTask<K,V> s = rights;
7036            if (s != null && !inForkJoinPool()) {
7037                do  {
7038                    if (s.tryUnfork())
7039                        s.exec();
7040                } while ((s = s.nextRight) != null);
5863              }
7042            return false;
5864          }
7044        public final Integer getRawResult() { return result; }
5865      }
5866  
5867 <    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
5867 >    @SuppressWarnings("serial")
5868 >    static final class MapReduceEntriesToIntTask<K,V>
5869          extends BulkTask<K,V,Integer> {
5870          final ObjectToInt<Map.Entry<K,V>> transformer;
5871          final IntByIntToInt reducer;
# Line 7052 | Line 5873 | public class ConcurrentHashMapV8<K, V>
5873          int result;
5874          MapReduceEntriesToIntTask<K,V> rights, nextRight;
5875          MapReduceEntriesToIntTask
5876 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5876 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5877               MapReduceEntriesToIntTask<K,V> nextRight,
5878               ObjectToInt<Map.Entry<K,V>> transformer,
5879               int basis,
5880               IntByIntToInt reducer) {
5881 <            super(m, p, b); this.nextRight = nextRight;
5881 >            super(p, b, i, f, t); this.nextRight = nextRight;
5882              this.transformer = transformer;
5883              this.basis = basis; this.reducer = reducer;
5884          }
5885 <        @SuppressWarnings("unchecked") public final boolean exec() {
5886 <            final ObjectToInt<Map.Entry<K,V>> transformer =
5887 <                this.transformer;
5888 <            final IntByIntToInt reducer = this.reducer;
5889 <            if (transformer == null || reducer == null)
5890 <                return abortOnNullFunction();
5891 <            try {
5892 <                final int id = this.basis;
5893 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5894 <                    do {} while (!casPending(c = pending, c+1));
5885 >        public final Integer getRawResult() { return result; }
5886 >        public final void compute() {
5887 >            final ObjectToInt<Map.Entry<K,V>> transformer;
5888 >            final IntByIntToInt reducer;
5889 >            if ((transformer = this.transformer) != null &&
5890 >                (reducer = this.reducer) != null) {
5891 >                int r = this.basis;
5892 >                for (int i = baseIndex, f, h; batch > 0 &&
5893 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5894 >                    addToPendingCount(1);
5895                      (rights = new MapReduceEntriesToIntTask<K,V>
5896 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5896 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5897 >                      rights, transformer, r, reducer)).fork();
5898                  }
5899 <                int r = id;
5900 <                Object v;
7079 <                while ((v = advance()) != null)
7080 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5899 >                for (Node<K,V> p; (p = advance()) != null; )
5900 >                    r = reducer.apply(r, transformer.apply(p));
5901                  result = r;
5902 <                for (MapReduceEntriesToIntTask<K,V> t = this, s;;) {
5903 <                    int c; BulkTask<K,V,?> par;
5904 <                    if ((c = t.pending) == 0) {
5905 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5906 <                            t.result = reducer.apply(t.result, s.result);
5907 <                        }
5908 <                        if ((par = t.parent) == null ||
5909 <                            !(par instanceof MapReduceEntriesToIntTask)) {
7090 <                            t.quietlyComplete();
7091 <                            break;
7092 <                        }
7093 <                        t = (MapReduceEntriesToIntTask<K,V>)par;
5902 >                CountedCompleter<?> c;
5903 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5904 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5905 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
5906 >                        s = t.rights;
5907 >                    while (s != null) {
5908 >                        t.result = reducer.apply(t.result, s.result);
5909 >                        s = t.rights = s.nextRight;
5910                      }
7095                    else if (t.casPending(c, c - 1))
7096                        break;
5911                  }
7098            } catch (Throwable ex) {
7099                return tryCompleteComputation(ex);
5912              }
7101            MapReduceEntriesToIntTask<K,V> s = rights;
7102            if (s != null && !inForkJoinPool()) {
7103                do  {
7104                    if (s.tryUnfork())
7105                        s.exec();
7106                } while ((s = s.nextRight) != null);
7107            }
7108            return false;
5913          }
7110        public final Integer getRawResult() { return result; }
5914      }
5915  
5916 <    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
5916 >    @SuppressWarnings("serial")
5917 >    static final class MapReduceMappingsToIntTask<K,V>
5918          extends BulkTask<K,V,Integer> {
5919          final ObjectByObjectToInt<? super K, ? super V> transformer;
5920          final IntByIntToInt reducer;
# Line 7118 | Line 5922 | public class ConcurrentHashMapV8<K, V>
5922          int result;
5923          MapReduceMappingsToIntTask<K,V> rights, nextRight;
5924          MapReduceMappingsToIntTask
5925 <            (ConcurrentHashMapV8<K,V> m, BulkTask<K,V,?> p, int b,
5926 <             MapReduceMappingsToIntTask<K,V> rights,
5925 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5926 >             MapReduceMappingsToIntTask<K,V> nextRight,
5927               ObjectByObjectToInt<? super K, ? super V> transformer,
5928               int basis,
5929               IntByIntToInt reducer) {
5930 <            super(m, p, b); this.nextRight = nextRight;
5930 >            super(p, b, i, f, t); this.nextRight = nextRight;
5931              this.transformer = transformer;
5932              this.basis = basis; this.reducer = reducer;
5933          }
5934 <        @SuppressWarnings("unchecked") public final boolean exec() {
5935 <            final ObjectByObjectToInt<? super K, ? super V> transformer =
5936 <                this.transformer;
5937 <            final IntByIntToInt reducer = this.reducer;
5938 <            if (transformer == null || reducer == null)
5939 <                return abortOnNullFunction();
5940 <            try {
5941 <                final int id = this.basis;
5942 <                for (int c, b = batch(); b > 1 && baseIndex != baseLimit;) {
5943 <                    do {} while (!casPending(c = pending, c+1));
5934 >        public final Integer getRawResult() { return result; }
5935 >        public final void compute() {
5936 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
5937 >            final IntByIntToInt reducer;
5938 >            if ((transformer = this.transformer) != null &&
5939 >                (reducer = this.reducer) != null) {
5940 >                int r = this.basis;
5941 >                for (int i = baseIndex, f, h; batch > 0 &&
5942 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5943 >                    addToPendingCount(1);
5944                      (rights = new MapReduceMappingsToIntTask<K,V>
5945 <                     (map, this, b >>>= 1, rights, transformer, id, reducer)).fork();
5945 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5946 >                      rights, transformer, r, reducer)).fork();
5947                  }
5948 <                int r = id;
5949 <                Object v;
7145 <                while ((v = advance()) != null)
7146 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
5948 >                for (Node<K,V> p; (p = advance()) != null; )
5949 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5950                  result = r;
5951 <                for (MapReduceMappingsToIntTask<K,V> t = this, s;;) {
5952 <                    int c; BulkTask<K,V,?> par;
5953 <                    if ((c = t.pending) == 0) {
5954 <                        for (s = t.rights; s != null; s = t.rights = s.nextRight) {
5955 <                            t.result = reducer.apply(t.result, s.result);
5951 >                CountedCompleter<?> c;
5952 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5953 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
5954 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
5955 >                        s = t.rights;
5956 >                    while (s != null) {
5957 >                        t.result = reducer.apply(t.result, s.result);
5958 >                        s = t.rights = s.nextRight;
5959 >                    }
5960 >                }
5961 >            }
5962 >        }
5963 >    }
5964 >
5965 >    /* ---------------- Counters -------------- */
5966 >
5967 >    // Adapted from LongAdder and Striped64.
5968 >    // See their internal docs for explanation.
5969 >
5970 >    // A padded cell for distributing counts
5971 >    static final class CounterCell {
5972 >        volatile long p0, p1, p2, p3, p4, p5, p6;
5973 >        volatile long value;
5974 >        volatile long q0, q1, q2, q3, q4, q5, q6;
5975 >        CounterCell(long x) { value = x; }
5976 >    }
5977 >
5978 >    /**
5979 >     * Holder for the thread-local hash code determining which
5980 >     * CounterCell to use. The code is initialized via the
5981 >     * counterHashCodeGenerator, but may be moved upon collisions.
5982 >     */
5983 >    static final class CounterHashCode {
5984 >        int code;
5985 >    }
5986 >
5987 >    /**
5988 >     * Generates initial value for per-thread CounterHashCodes
5989 >     */
5990 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
5991 >
5992 >    /**
5993 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
5994 >     * for explanation.
5995 >     */
5996 >    static final int SEED_INCREMENT = 0x61c88647;
5997 >
5998 >    /**
5999 >     * Per-thread counter hash codes. Shared across all instances.
6000 >     */
6001 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6002 >        new ThreadLocal<CounterHashCode>();
6003 >
6004 >
6005 >    final long sumCount() {
6006 >        CounterCell[] as = counterCells; CounterCell a;
6007 >        long sum = baseCount;
6008 >        if (as != null) {
6009 >            for (int i = 0; i < as.length; ++i) {
6010 >                if ((a = as[i]) != null)
6011 >                    sum += a.value;
6012 >            }
6013 >        }
6014 >        return sum;
6015 >    }
6016 >
6017 >    // See LongAdder version for explanation
6018 >    private final void fullAddCount(long x, CounterHashCode hc,
6019 >                                    boolean wasUncontended) {
6020 >        int h;
6021 >        if (hc == null) {
6022 >            hc = new CounterHashCode();
6023 >            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6024 >            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6025 >            threadCounterHashCode.set(hc);
6026 >        }
6027 >        else
6028 >            h = hc.code;
6029 >        boolean collide = false;                // True if last slot nonempty
6030 >        for (;;) {
6031 >            CounterCell[] as; CounterCell a; int n; long v;
6032 >            if ((as = counterCells) != null && (n = as.length) > 0) {
6033 >                if ((a = as[(n - 1) & h]) == null) {
6034 >                    if (cellsBusy == 0) {            // Try to attach new Cell
6035 >                        CounterCell r = new CounterCell(x); // Optimistic create
6036 >                        if (cellsBusy == 0 &&
6037 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6038 >                            boolean created = false;
6039 >                            try {               // Recheck under lock
6040 >                                CounterCell[] rs; int m, j;
6041 >                                if ((rs = counterCells) != null &&
6042 >                                    (m = rs.length) > 0 &&
6043 >                                    rs[j = (m - 1) & h] == null) {
6044 >                                    rs[j] = r;
6045 >                                    created = true;
6046 >                                }
6047 >                            } finally {
6048 >                                cellsBusy = 0;
6049 >                            }
6050 >                            if (created)
6051 >                                break;
6052 >                            continue;           // Slot is now non-empty
6053                          }
6054 <                        if ((par = t.parent) == null ||
6055 <                            !(par instanceof MapReduceMappingsToIntTask)) {
6056 <                            t.quietlyComplete();
6057 <                            break;
6054 >                    }
6055 >                    collide = false;
6056 >                }
6057 >                else if (!wasUncontended)       // CAS already known to fail
6058 >                    wasUncontended = true;      // Continue after rehash
6059 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6060 >                    break;
6061 >                else if (counterCells != as || n >= NCPU)
6062 >                    collide = false;            // At max size or stale
6063 >                else if (!collide)
6064 >                    collide = true;
6065 >                else if (cellsBusy == 0 &&
6066 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6067 >                    try {
6068 >                        if (counterCells == as) {// Expand table unless stale
6069 >                            CounterCell[] rs = new CounterCell[n << 1];
6070 >                            for (int i = 0; i < n; ++i)
6071 >                                rs[i] = as[i];
6072 >                            counterCells = rs;
6073                          }
6074 <                        t = (MapReduceMappingsToIntTask<K,V>)par;
6074 >                    } finally {
6075 >                        cellsBusy = 0;
6076                      }
6077 <                    else if (t.casPending(c, c - 1))
6078 <                        break;
6077 >                    collide = false;
6078 >                    continue;                   // Retry with expanded table
6079                  }
6080 <            } catch (Throwable ex) {
6081 <                return tryCompleteComputation(ex);
6082 <            }
6083 <            MapReduceMappingsToIntTask<K,V> s = rights;
6084 <            if (s != null && !inForkJoinPool()) {
6085 <                do  {
6086 <                    if (s.tryUnfork())
6087 <                        s.exec();
6088 <                } while ((s = s.nextRight) != null);
6080 >                h ^= h << 13;                   // Rehash
6081 >                h ^= h >>> 17;
6082 >                h ^= h << 5;
6083 >            }
6084 >            else if (cellsBusy == 0 && counterCells == as &&
6085 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6086 >                boolean init = false;
6087 >                try {                           // Initialize table
6088 >                    if (counterCells == as) {
6089 >                        CounterCell[] rs = new CounterCell[2];
6090 >                        rs[h & 1] = new CounterCell(x);
6091 >                        counterCells = rs;
6092 >                        init = true;
6093 >                    }
6094 >                } finally {
6095 >                    cellsBusy = 0;
6096 >                }
6097 >                if (init)
6098 >                    break;
6099              }
6100 <            return false;
6100 >            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6101 >                break;                          // Fall back on using base
6102          }
6103 <        public final Integer getRawResult() { return result; }
6103 >        hc.code = h;                            // Record index for next time
6104      }
6105  
6106      // Unsafe mechanics
6107 <    private static final sun.misc.Unsafe UNSAFE;
6108 <    private static final long counterOffset;
6109 <    private static final long sizeCtlOffset;
6107 >    private static final sun.misc.Unsafe U;
6108 >    private static final long SIZECTL;
6109 >    private static final long TRANSFERINDEX;
6110 >    private static final long TRANSFERORIGIN;
6111 >    private static final long BASECOUNT;
6112 >    private static final long CELLSBUSY;
6113 >    private static final long CELLVALUE;
6114      private static final long ABASE;
6115      private static final int ASHIFT;
6116  
6117      static {
7187        int ss;
6118          try {
6119 <            UNSAFE = getUnsafe();
6119 >            U = getUnsafe();
6120              Class<?> k = ConcurrentHashMapV8.class;
6121 <            counterOffset = UNSAFE.objectFieldOffset
7192 <                (k.getDeclaredField("counter"));
7193 <            sizeCtlOffset = UNSAFE.objectFieldOffset
6121 >            SIZECTL = U.objectFieldOffset
6122                  (k.getDeclaredField("sizeCtl"));
6123 <            Class<?> sc = Node[].class;
6124 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6125 <            ss = UNSAFE.arrayIndexScale(sc);
6123 >            TRANSFERINDEX = U.objectFieldOffset
6124 >                (k.getDeclaredField("transferIndex"));
6125 >            TRANSFERORIGIN = U.objectFieldOffset
6126 >                (k.getDeclaredField("transferOrigin"));
6127 >            BASECOUNT = U.objectFieldOffset
6128 >                (k.getDeclaredField("baseCount"));
6129 >            CELLSBUSY = U.objectFieldOffset
6130 >                (k.getDeclaredField("cellsBusy"));
6131 >            Class<?> ck = CounterCell.class;
6132 >            CELLVALUE = U.objectFieldOffset
6133 >                (ck.getDeclaredField("value"));
6134 >            Class<?> ak = Node[].class;
6135 >            ABASE = U.arrayBaseOffset(ak);
6136 >            int scale = U.arrayIndexScale(ak);
6137 >            if ((scale & (scale - 1)) != 0)
6138 >                throw new Error("data type scale not a power of two");
6139 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6140          } catch (Exception e) {
6141              throw new Error(e);
6142          }
7201        if ((ss & (ss-1)) != 0)
7202            throw new Error("data type scale not a power of two");
7203        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6143      }
6144  
6145      /**
# Line 7213 | Line 6152 | public class ConcurrentHashMapV8<K, V>
6152      private static sun.misc.Unsafe getUnsafe() {
6153          try {
6154              return sun.misc.Unsafe.getUnsafe();
6155 <        } catch (SecurityException se) {
6156 <            try {
6157 <                return java.security.AccessController.doPrivileged
6158 <                    (new java.security
6159 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6160 <                        public sun.misc.Unsafe run() throws Exception {
6161 <                            java.lang.reflect.Field f = sun.misc
6162 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6163 <                            f.setAccessible(true);
6164 <                            return (sun.misc.Unsafe) f.get(null);
6165 <                        }});
6166 <            } catch (java.security.PrivilegedActionException e) {
6167 <                throw new RuntimeException("Could not initialize intrinsics",
6168 <                                           e.getCause());
6169 <            }
6155 >        } catch (SecurityException tryReflectionInstead) {}
6156 >        try {
6157 >            return java.security.AccessController.doPrivileged
6158 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6159 >                public sun.misc.Unsafe run() throws Exception {
6160 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6161 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6162 >                        f.setAccessible(true);
6163 >                        Object x = f.get(null);
6164 >                        if (k.isInstance(x))
6165 >                            return k.cast(x);
6166 >                    }
6167 >                    throw new NoSuchFieldError("the Unsafe");
6168 >                }});
6169 >        } catch (java.security.PrivilegedActionException e) {
6170 >            throw new RuntimeException("Could not initialize intrinsics",
6171 >                                       e.getCause());
6172          }
6173      }
6174   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines