ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.80 by jsr166, Sat Nov 24 03:46:28 2012 UTC vs.
Revision 1.114 by dl, Fri Aug 9 18:43:44 2013 UTC

# Line 6 | Line 6
6  
7   package jsr166e;
8  
9 < import java.util.Comparator;
10 < import java.util.Arrays;
11 < import java.util.Map;
12 < import java.util.Set;
13 < import java.util.Collection;
14 < import java.util.AbstractMap;
15 < import java.util.AbstractSet;
16 < import java.util.AbstractCollection;
17 < import java.util.Hashtable;
18 < import java.util.HashMap;
19 < import java.util.Iterator;
20 < import java.util.Enumeration;
21 < import java.util.ConcurrentModificationException;
22 < import java.util.NoSuchElementException;
23 < import java.util.concurrent.ConcurrentMap;
24 < import java.util.concurrent.ThreadLocalRandom;
25 < import java.util.concurrent.locks.LockSupport;
26 < import java.util.concurrent.locks.AbstractQueuedSynchronizer;
27 < import java.util.concurrent.atomic.AtomicReference;
9 > import jsr166e.ForkJoinPool;
10  
11 + import java.io.ObjectStreamField;
12   import java.io.Serializable;
13 <
14 < import java.util.Comparator;
13 > import java.lang.reflect.ParameterizedType;
14 > import java.lang.reflect.Type;
15 > import java.util.AbstractMap;
16   import java.util.Arrays;
33 import java.util.Map;
34 import java.util.Set;
17   import java.util.Collection;
18 < import java.util.AbstractMap;
19 < import java.util.AbstractSet;
20 < import java.util.AbstractCollection;
39 < import java.util.Hashtable;
18 > import java.util.Comparator;
19 > import java.util.ConcurrentModificationException;
20 > import java.util.Enumeration;
21   import java.util.HashMap;
22 + import java.util.Hashtable;
23   import java.util.Iterator;
24 < import java.util.Enumeration;
43 < import java.util.ConcurrentModificationException;
24 > import java.util.Map;
25   import java.util.NoSuchElementException;
26 + import java.util.Set;
27   import java.util.concurrent.ConcurrentMap;
46 import java.util.concurrent.ThreadLocalRandom;
47 import java.util.concurrent.locks.LockSupport;
48 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
28   import java.util.concurrent.atomic.AtomicReference;
29 <
30 < import java.io.Serializable;
29 > import java.util.concurrent.atomic.AtomicInteger;
30 > import java.util.concurrent.locks.LockSupport;
31 > import java.util.concurrent.locks.ReentrantLock;
32  
33   /**
34   * A hash table supporting full concurrency of retrievals and
# Line 102 | Line 82 | import java.io.Serializable;
82   * expected {@code concurrencyLevel} as an additional hint for
83   * internal sizing.  Note that using many keys with exactly the same
84   * {@code hashCode()} is a sure way to slow down performance of any
85 < * hash table.
85 > * hash table. To ameliorate impact, when keys are {@link Comparable},
86 > * this class may use comparison order among keys to help break ties.
87   *
88   * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
89   * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
# Line 110 | Line 91 | import java.io.Serializable;
91   * mapped values are (perhaps transiently) not used or all take the
92   * same mapping value.
93   *
113 * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
114 * form of histogram or multiset) by using {@link LongAdder} values
115 * and initializing via {@link #computeIfAbsent}. For example, to add
116 * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
117 * can use {@code freqs.computeIfAbsent(k -> new
118 * LongAdder()).increment();}
119 *
94   * <p>This class and its views and iterators implement all of the
95   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
96   * interfaces.
# Line 124 | Line 98 | import java.io.Serializable;
98   * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
99   * does <em>not</em> allow {@code null} to be used as a key or value.
100   *
101 < * <p>ConcurrentHashMapV8s support parallel operations using the {@link
102 < * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
103 < * are available in class {@link ForkJoinTasks}). These operations are
104 < * designed to be safely, and often sensibly, applied even with maps
105 < * that are being concurrently updated by other threads; for example,
106 < * when computing a snapshot summary of the values in a shared
107 < * registry.  There are three kinds of operation, each with four
108 < * forms, accepting functions with Keys, Values, Entries, and (Key,
109 < * Value) arguments and/or return values. (The first three forms are
110 < * also available via the {@link #keySet()}, {@link #values()} and
111 < * {@link #entrySet()} views). Because the elements of a
112 < * ConcurrentHashMapV8 are not ordered in any particular way, and may be
113 < * processed in different orders in different parallel executions, the
114 < * correctness of supplied functions should not depend on any
115 < * ordering, or on any other objects or values that may transiently
142 < * change while computation is in progress; and except for forEach
143 < * actions, should ideally be side-effect-free.
101 > * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
102 > * operations that are designed
103 > * to be safely, and often sensibly, applied even with maps that are
104 > * being concurrently updated by other threads; for example, when
105 > * computing a snapshot summary of the values in a shared registry.
106 > * There are three kinds of operation, each with four forms, accepting
107 > * functions with Keys, Values, Entries, and (Key, Value) arguments
108 > * and/or return values. Because the elements of a ConcurrentHashMapV8
109 > * are not ordered in any particular way, and may be processed in
110 > * different orders in different parallel executions, the correctness
111 > * of supplied functions should not depend on any ordering, or on any
112 > * other objects or values that may transiently change while
113 > * computation is in progress; and except for forEach actions, should
114 > * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
115 > * objects do not support method {@code setValue}.
116   *
117   * <ul>
118   * <li> forEach: Perform a given action on each element.
# Line 167 | Line 139 | import java.io.Serializable;
139   * <li> Reductions to scalar doubles, longs, and ints, using a
140   * given basis value.</li>
141   *
170 * </li>
142   * </ul>
143 + * </li>
144   * </ul>
145   *
146 + * <p>These bulk operations accept a {@code parallelismThreshold}
147 + * argument. Methods proceed sequentially if the current map size is
148 + * estimated to be less than the given threshold. Using a value of
149 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
150 + * of {@code 1} results in maximal parallelism by partitioning into
151 + * enough subtasks to fully utilize the {@link
152 + * ForkJoinPool#commonPool()} that is used for all parallel
153 + * computations. Normally, you would initially choose one of these
154 + * extreme values, and then measure performance of using in-between
155 + * values that trade off overhead versus throughput.
156 + *
157   * <p>The concurrency properties of bulk operations follow
158   * from those of ConcurrentHashMapV8: Any non-null result returned
159   * from {@code get(key)} and related access methods bears a
# Line 213 | Line 196 | import java.io.Serializable;
196   * exceptions, or would have done so if the first exception had
197   * not occurred.
198   *
199 < * <p>Parallel speedups for bulk operations compared to sequential
200 < * processing are common but not guaranteed.  Operations involving
201 < * brief functions on small maps may execute more slowly than
202 < * sequential loops if the underlying work to parallelize the
203 < * computation is more expensive than the computation itself.
204 < * Similarly, parallelization may not lead to much actual parallelism
205 < * if all processors are busy performing unrelated tasks.
199 > * <p>Speedups for parallel compared to sequential forms are common
200 > * but not guaranteed.  Parallel operations involving brief functions
201 > * on small maps may execute more slowly than sequential forms if the
202 > * underlying work to parallelize the computation is more expensive
203 > * than the computation itself.  Similarly, parallelization may not
204 > * lead to much actual parallelism if all processors are busy
205 > * performing unrelated tasks.
206   *
207   * <p>All arguments to all task methods must be non-null.
208   *
# Line 236 | Line 219 | import java.io.Serializable;
219   * @param <K> the type of keys maintained by this map
220   * @param <V> the type of mapped values
221   */
222 < public class ConcurrentHashMapV8<K, V>
223 <    implements ConcurrentMap<K, V>, Serializable {
222 > public class ConcurrentHashMapV8<K,V> extends AbstractMap<K,V>
223 >    implements ConcurrentMap<K,V>, Serializable {
224      private static final long serialVersionUID = 7249069246763182397L;
225  
226      /**
227 <     * A partitionable iterator. A Spliterator can be traversed
228 <     * directly, but can also be partitioned (before traversal) by
229 <     * creating another Spliterator that covers a non-overlapping
247 <     * portion of the elements, and so may be amenable to parallel
248 <     * execution.
249 <     *
250 <     * <p>This interface exports a subset of expected JDK8
251 <     * functionality.
252 <     *
253 <     * <p>Sample usage: Here is one (of the several) ways to compute
254 <     * the sum of the values held in a map using the ForkJoin
255 <     * framework. As illustrated here, Spliterators are well suited to
256 <     * designs in which a task repeatedly splits off half its work
257 <     * into forked subtasks until small enough to process directly,
258 <     * and then joins these subtasks. Variants of this style can also
259 <     * be used in completion-based designs.
260 <     *
261 <     * <pre>
262 <     * {@code ConcurrentHashMapV8<String, Long> m = ...
263 <     * // split as if have 8 * parallelism, for load balance
264 <     * int n = m.size();
265 <     * int p = aForkJoinPool.getParallelism() * 8;
266 <     * int split = (n < p)? n : p;
267 <     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
268 <     * // ...
269 <     * static class SumValues extends RecursiveTask<Long> {
270 <     *   final Spliterator<Long> s;
271 <     *   final int split;             // split while > 1
272 <     *   final SumValues nextJoin;    // records forked subtasks to join
273 <     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
274 <     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
275 <     *   }
276 <     *   public Long compute() {
277 <     *     long sum = 0;
278 <     *     SumValues subtasks = null; // fork subtasks
279 <     *     for (int s = split >>> 1; s > 0; s >>>= 1)
280 <     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
281 <     *     while (s.hasNext())        // directly process remaining elements
282 <     *       sum += s.next();
283 <     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
284 <     *       sum += t.join();         // collect subtask results
285 <     *     return sum;
286 <     *   }
287 <     * }
288 <     * }</pre>
227 >     * An object for traversing and partitioning elements of a source.
228 >     * This interface provides a subset of the functionality of JDK8
229 >     * java.util.Spliterator.
230       */
231 <    public static interface Spliterator<T> extends Iterator<T> {
231 >    public static interface ConcurrentHashMapSpliterator<T> {
232          /**
233 <         * Returns a Spliterator covering approximately half of the
234 <         * elements, guaranteed not to overlap with those subsequently
235 <         * returned by this Spliterator.  After invoking this method,
236 <         * the current Spliterator will <em>not</em> produce any of
237 <         * the elements of the returned Spliterator, but the two
238 <         * Spliterators together will produce all of the elements that
239 <         * would have been produced by this Spliterator had this
240 <         * method not been called. The exact number of elements
241 <         * produced by the returned Spliterator is not guaranteed, and
301 <         * may be zero (i.e., with {@code hasNext()} reporting {@code
302 <         * false}) if this Spliterator cannot be further split.
303 <         *
304 <         * @return a Spliterator covering approximately half of the
305 <         * elements
306 <         * @throws IllegalStateException if this Spliterator has
307 <         * already commenced traversing elements
233 >         * If possible, returns a new spliterator covering
234 >         * approximately one half of the elements, which will not be
235 >         * covered by this spliterator. Returns null if cannot be
236 >         * split.
237 >         */
238 >        ConcurrentHashMapSpliterator<T> trySplit();
239 >        /**
240 >         * Returns an estimate of the number of elements covered by
241 >         * this Spliterator.
242           */
243 <        Spliterator<T> split();
243 >        long estimateSize();
244 >
245 >        /** Applies the action to each untraversed element */
246 >        void forEachRemaining(Action<? super T> action);
247 >        /** If an element remains, applies the action and returns true. */
248 >        boolean tryAdvance(Action<? super T> action);
249      }
250  
251 +    // Sams
252 +    /** Interface describing a void action of one argument */
253 +    public interface Action<A> { void apply(A a); }
254 +    /** Interface describing a void action of two arguments */
255 +    public interface BiAction<A,B> { void apply(A a, B b); }
256 +    /** Interface describing a function of one argument */
257 +    public interface Fun<A,T> { T apply(A a); }
258 +    /** Interface describing a function of two arguments */
259 +    public interface BiFun<A,B,T> { T apply(A a, B b); }
260 +    /** Interface describing a function mapping its argument to a double */
261 +    public interface ObjectToDouble<A> { double apply(A a); }
262 +    /** Interface describing a function mapping its argument to a long */
263 +    public interface ObjectToLong<A> { long apply(A a); }
264 +    /** Interface describing a function mapping its argument to an int */
265 +    public interface ObjectToInt<A> {int apply(A a); }
266 +    /** Interface describing a function mapping two arguments to a double */
267 +    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
268 +    /** Interface describing a function mapping two arguments to a long */
269 +    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
270 +    /** Interface describing a function mapping two arguments to an int */
271 +    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
272 +    /** Interface describing a function mapping two doubles to a double */
273 +    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
274 +    /** Interface describing a function mapping two longs to a long */
275 +    public interface LongByLongToLong { long apply(long a, long b); }
276 +    /** Interface describing a function mapping two ints to an int */
277 +    public interface IntByIntToInt { int apply(int a, int b); }
278  
279      /*
280       * Overview:
# Line 320 | Line 286 | public class ConcurrentHashMapV8<K, V>
286       * the same or better than java.util.HashMap, and to support high
287       * initial insertion rates on an empty table by many threads.
288       *
289 <     * Each key-value mapping is held in a Node.  Because Node fields
290 <     * can contain special values, they are defined using plain Object
291 <     * types. Similarly in turn, all internal methods that use them
292 <     * work off Object types. And similarly, so do the internal
293 <     * methods of auxiliary iterator and view classes.  All public
294 <     * generic typed methods relay in/out of these internal methods,
295 <     * supplying null-checks and casts as needed. This also allows
296 <     * many of the public methods to be factored into a smaller number
297 <     * of internal methods (although sadly not so for the five
298 <     * variants of put-related operations). The validation-based
299 <     * approach explained below leads to a lot of code sprawl because
300 <     * retry-control precludes factoring into smaller methods.
289 >     * This map usually acts as a binned (bucketed) hash table.  Each
290 >     * key-value mapping is held in a Node.  Most nodes are instances
291 >     * of the basic Node class with hash, key, value, and next
292 >     * fields. However, various subclasses exist: TreeNodes are
293 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
294 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
295 >     * of bins during resizing. ReservationNodes are used as
296 >     * placeholders while establishing values in computeIfAbsent and
297 >     * related methods.  The types TreeBin, ForwardingNode, and
298 >     * ReservationNode do not hold normal user keys, values, or
299 >     * hashes, and are readily distinguishable during search etc
300 >     * because they have negative hash fields and null key and value
301 >     * fields. (These special nodes are either uncommon or transient,
302 >     * so the impact of carrying around some unused fields is
303 >     * insignificant.)
304       *
305       * The table is lazily initialized to a power-of-two size upon the
306       * first insertion.  Each bin in the table normally contains a
# Line 339 | Line 308 | public class ConcurrentHashMapV8<K, V>
308       * Table accesses require volatile/atomic reads, writes, and
309       * CASes.  Because there is no other way to arrange this without
310       * adding further indirections, we use intrinsics
311 <     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
312 <     * are always accurately traversable under volatile reads, so long
313 <     * as lookups check hash code and non-nullness of value before
314 <     * checking key equality.
315 <     *
316 <     * We use the top two bits of Node hash fields for control
348 <     * purposes -- they are available anyway because of addressing
349 <     * constraints.  As explained further below, these top bits are
350 <     * used as follows:
351 <     *  00 - Normal
352 <     *  01 - Locked
353 <     *  11 - Locked and may have a thread waiting for lock
354 <     *  10 - Node is a forwarding node
355 <     *
356 <     * The lower 30 bits of each Node's hash field contain a
357 <     * transformation of the key's hash code, except for forwarding
358 <     * nodes, for which the lower bits are zero (and so always have
359 <     * hash field == MOVED).
311 >     * (sun.misc.Unsafe) operations.
312 >     *
313 >     * We use the top (sign) bit of Node hash fields for control
314 >     * purposes -- it is available anyway because of addressing
315 >     * constraints.  Nodes with negative hash fields are specially
316 >     * handled or ignored in map methods.
317       *
318       * Insertion (via put or its variants) of the first node in an
319       * empty bin is performed by just CASing it to the bin.  This is
# Line 365 | Line 322 | public class ConcurrentHashMapV8<K, V>
322       * delete, and replace) require locks.  We do not want to waste
323       * the space required to associate a distinct lock object with
324       * each bin, so instead use the first node of a bin list itself as
325 <     * a lock. Blocking support for these locks relies on the builtin
326 <     * "synchronized" monitors.  However, we also need a tryLock
370 <     * construction, so we overlay these by using bits of the Node
371 <     * hash field for lock control (see above), and so normally use
372 <     * builtin monitors only for blocking and signalling using
373 <     * wait/notifyAll constructions. See Node.tryAwaitLock.
325 >     * a lock. Locking support for these locks relies on builtin
326 >     * "synchronized" monitors.
327       *
328       * Using the first node of a list as a lock does not by itself
329       * suffice though: When a node is locked, any update must first
330       * validate that it is still the first node after locking it, and
331       * retry if not. Because new nodes are always appended to lists,
332       * once a node is first in a bin, it remains first until deleted
333 <     * or the bin becomes invalidated (upon resizing).  However,
381 <     * operations that only conditionally update may inspect nodes
382 <     * until the point of update. This is a converse of sorts to the
383 <     * lazy locking technique described by Herlihy & Shavit.
333 >     * or the bin becomes invalidated (upon resizing).
334       *
335       * The main disadvantage of per-bin locks is that other update
336       * operations on other nodes in a bin list protected by the same
# Line 413 | Line 363 | public class ConcurrentHashMapV8<K, V>
363       * sometimes deviate significantly from uniform randomness.  This
364       * includes the case when N > (1<<30), so some keys MUST collide.
365       * Similarly for dumb or hostile usages in which multiple keys are
366 <     * designed to have identical hash codes. Also, although we guard
367 <     * against the worst effects of this (see method spread), sets of
368 <     * hashes may differ only in bits that do not impact their bin
369 <     * index for a given power-of-two mask.  So we use a secondary
370 <     * strategy that applies when the number of nodes in a bin exceeds
371 <     * a threshold, and at least one of the keys implements
422 <     * Comparable.  These TreeBins use a balanced tree to hold nodes
423 <     * (a specialized form of red-black trees), bounding search time
424 <     * to O(log N).  Each search step in a TreeBin is around twice as
366 >     * designed to have identical hash codes or ones that differs only
367 >     * in masked-out high bits. So we use a secondary strategy that
368 >     * applies when the number of nodes in a bin exceeds a
369 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
370 >     * specialized form of red-black trees), bounding search time to
371 >     * O(log N).  Each search step in a TreeBin is at least twice as
372       * slow as in a regular list, but given that N cannot exceed
373       * (1<<64) (before running out of addresses) this bounds search
374       * steps, lock hold times, etc, to reasonable constants (roughly
# Line 432 | Line 379 | public class ConcurrentHashMapV8<K, V>
379       * iterators in the same way.
380       *
381       * The table is resized when occupancy exceeds a percentage
382 <     * threshold (nominally, 0.75, but see below).  Only a single
383 <     * thread performs the resize (using field "sizeCtl", to arrange
384 <     * exclusion), but the table otherwise remains usable for reads
385 <     * and updates. Resizing proceeds by transferring bins, one by
386 <     * one, from the table to the next table.  Because we are using
387 <     * power-of-two expansion, the elements from each bin must either
388 <     * stay at same index, or move with a power of two offset. We
389 <     * eliminate unnecessary node creation by catching cases where old
390 <     * nodes can be reused because their next fields won't change.  On
391 <     * average, only about one-sixth of them need cloning when a table
392 <     * doubles. The nodes they replace will be garbage collectable as
393 <     * soon as they are no longer referenced by any reader thread that
394 <     * may be in the midst of concurrently traversing table.  Upon
395 <     * transfer, the old table bin contains only a special forwarding
396 <     * node (with hash field "MOVED") that contains the next table as
397 <     * its key. On encountering a forwarding node, access and update
398 <     * operations restart, using the new table.
399 <     *
400 <     * Each bin transfer requires its bin lock. However, unlike other
401 <     * cases, a transfer can skip a bin if it fails to acquire its
402 <     * lock, and revisit it later (unless it is a TreeBin). Method
403 <     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
404 <     * have been skipped because of failure to acquire a lock, and
405 <     * blocks only if none are available (i.e., only very rarely).
406 <     * The transfer operation must also ensure that all accessible
407 <     * bins in both the old and new table are usable by any traversal.
408 <     * When there are no lock acquisition failures, this is arranged
409 <     * simply by proceeding from the last bin (table.length - 1) up
410 <     * towards the first.  Upon seeing a forwarding node, traversals
411 <     * (see class Iter) arrange to move to the new table
412 <     * without revisiting nodes.  However, when any node is skipped
413 <     * during a transfer, all earlier table bins may have become
414 <     * visible, so are initialized with a reverse-forwarding node back
415 <     * to the old table until the new ones are established. (This
416 <     * sometimes requires transiently locking a forwarding node, which
417 <     * is possible under the above encoding.) These more expensive
418 <     * mechanics trigger only when necessary.
382 >     * threshold (nominally, 0.75, but see below).  Any thread
383 >     * noticing an overfull bin may assist in resizing after the
384 >     * initiating thread allocates and sets up the replacement
385 >     * array. However, rather than stalling, these other threads may
386 >     * proceed with insertions etc.  The use of TreeBins shields us
387 >     * from the worst case effects of overfilling while resizes are in
388 >     * progress.  Resizing proceeds by transferring bins, one by one,
389 >     * from the table to the next table. To enable concurrency, the
390 >     * next table must be (incrementally) prefilled with place-holders
391 >     * serving as reverse forwarders to the old table.  Because we are
392 >     * using power-of-two expansion, the elements from each bin must
393 >     * either stay at same index, or move with a power of two
394 >     * offset. We eliminate unnecessary node creation by catching
395 >     * cases where old nodes can be reused because their next fields
396 >     * won't change.  On average, only about one-sixth of them need
397 >     * cloning when a table doubles. The nodes they replace will be
398 >     * garbage collectable as soon as they are no longer referenced by
399 >     * any reader thread that may be in the midst of concurrently
400 >     * traversing table.  Upon transfer, the old table bin contains
401 >     * only a special forwarding node (with hash field "MOVED") that
402 >     * contains the next table as its key. On encountering a
403 >     * forwarding node, access and update operations restart, using
404 >     * the new table.
405 >     *
406 >     * Each bin transfer requires its bin lock, which can stall
407 >     * waiting for locks while resizing. However, because other
408 >     * threads can join in and help resize rather than contend for
409 >     * locks, average aggregate waits become shorter as resizing
410 >     * progresses.  The transfer operation must also ensure that all
411 >     * accessible bins in both the old and new table are usable by any
412 >     * traversal.  This is arranged by proceeding from the last bin
413 >     * (table.length - 1) up towards the first.  Upon seeing a
414 >     * forwarding node, traversals (see class Traverser) arrange to
415 >     * move to the new table without revisiting nodes.  However, to
416 >     * ensure that no intervening nodes are skipped, bin splitting can
417 >     * only begin after the associated reverse-forwarders are in
418 >     * place.
419       *
420       * The traversal scheme also applies to partial traversals of
421       * ranges of bins (via an alternate Traverser constructor)
# Line 483 | Line 430 | public class ConcurrentHashMapV8<K, V>
430       * These cases attempt to override the initial capacity settings,
431       * but harmlessly fail to take effect in cases of races.
432       *
433 <     * The element count is maintained using a LongAdder, which avoids
434 <     * contention on updates but can encounter cache thrashing if read
435 <     * too frequently during concurrent access. To avoid reading so
436 <     * often, resizing is attempted either when a bin lock is
437 <     * contended, or upon adding to a bin already holding two or more
438 <     * nodes (checked before adding in the xIfAbsent methods, after
439 <     * adding in others). Under uniform hash distributions, the
440 <     * probability of this occurring at threshold is around 13%,
441 <     * meaning that only about 1 in 8 puts check threshold (and after
442 <     * resizing, many fewer do so). But this approximation has high
443 <     * variance for small table sizes, so we check on any collision
444 <     * for sizes <= 64. The bulk putAll operation further reduces
445 <     * contention by only committing count updates upon these size
446 <     * checks.
433 >     * The element count is maintained using a specialization of
434 >     * LongAdder. We need to incorporate a specialization rather than
435 >     * just use a LongAdder in order to access implicit
436 >     * contention-sensing that leads to creation of multiple
437 >     * CounterCells.  The counter mechanics avoid contention on
438 >     * updates but can encounter cache thrashing if read too
439 >     * frequently during concurrent access. To avoid reading so often,
440 >     * resizing under contention is attempted only upon adding to a
441 >     * bin already holding two or more nodes. Under uniform hash
442 >     * distributions, the probability of this occurring at threshold
443 >     * is around 13%, meaning that only about 1 in 8 puts check
444 >     * threshold (and after resizing, many fewer do so).
445 >     *
446 >     * TreeBins use a special form of comparison for search and
447 >     * related operations (which is the main reason we cannot use
448 >     * existing collections such as TreeMaps). TreeBins contain
449 >     * Comparable elements, but may contain others, as well as
450 >     * elements that are Comparable but not necessarily Comparable for
451 >     * the same T, so we cannot invoke compareTo among them. To handle
452 >     * this, the tree is ordered primarily by hash value, then by
453 >     * Comparable.compareTo order if applicable.  On lookup at a node,
454 >     * if elements are not comparable or compare as 0 then both left
455 >     * and right children may need to be searched in the case of tied
456 >     * hash values. (This corresponds to the full list search that
457 >     * would be necessary if all elements were non-Comparable and had
458 >     * tied hashes.) On insertion, to keep a total ordering (or as
459 >     * close as is required here) across rebalancings, we compare
460 >     * classes and identityHashCodes as tie-breakers. The red-black
461 >     * balancing code is updated from pre-jdk-collections
462 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
463 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
464 >     * Algorithms" (CLR).
465 >     *
466 >     * TreeBins also require an additional locking mechanism.  While
467 >     * list traversal is always possible by readers even during
468 >     * updates, tree traversal is not, mainly because of tree-rotations
469 >     * that may change the root node and/or its linkages.  TreeBins
470 >     * include a simple read-write lock mechanism parasitic on the
471 >     * main bin-synchronization strategy: Structural adjustments
472 >     * associated with an insertion or removal are already bin-locked
473 >     * (and so cannot conflict with other writers) but must wait for
474 >     * ongoing readers to finish. Since there can be only one such
475 >     * waiter, we use a simple scheme using a single "waiter" field to
476 >     * block writers.  However, readers need never block.  If the root
477 >     * lock is held, they proceed along the slow traversal path (via
478 >     * next-pointers) until the lock becomes available or the list is
479 >     * exhausted, whichever comes first. These cases are not fast, but
480 >     * maximize aggregate expected throughput.
481       *
482       * Maintaining API and serialization compatibility with previous
483       * versions of this class introduces several oddities. Mainly: We
# Line 506 | Line 487 | public class ConcurrentHashMapV8<K, V>
487       * time that we can guarantee to honor it.) We also declare an
488       * unused "Segment" class that is instantiated in minimal form
489       * only when serializing.
490 +     *
491 +     * Also, solely for compatibility with previous versions of this
492 +     * class, it extends AbstractMap, even though all of its methods
493 +     * are overridden, so it is just useless baggage.
494 +     *
495 +     * This file is organized to make things a little easier to follow
496 +     * while reading than they might otherwise: First the main static
497 +     * declarations and utilities, then fields, then main public
498 +     * methods (with a few factorings of multiple public methods into
499 +     * internal ones), then sizing methods, trees, traversers, and
500 +     * bulk operations.
501       */
502  
503      /* ---------------- Constants -------------- */
# Line 547 | Line 539 | public class ConcurrentHashMapV8<K, V>
539      private static final float LOAD_FACTOR = 0.75f;
540  
541      /**
550     * The buffer size for skipped bins during transfers. The
551     * value is arbitrary but should be large enough to avoid
552     * most locking stalls during resizes.
553     */
554    private static final int TRANSFER_BUFFER_SIZE = 32;
555
556    /**
542       * The bin count threshold for using a tree rather than list for a
543 <     * bin.  The value reflects the approximate break-even point for
544 <     * using tree-based operations.
545 <     */
546 <    private static final int TREE_THRESHOLD = 8;
547 <
563 <    /*
564 <     * Encodings for special uses of Node hash fields. See above for
565 <     * explanation.
543 >     * bin.  Bins are converted to trees when adding an element to a
544 >     * bin with at least this many nodes. The value must be greater
545 >     * than 2, and should be at least 8 to mesh with assumptions in
546 >     * tree removal about conversion back to plain bins upon
547 >     * shrinkage.
548       */
549 <    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
568 <    static final int LOCKED    = 0x40000000; // set/tested only as a bit
569 <    static final int WAITING   = 0xc0000000; // both bits set/tested together
570 <    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
571 <
572 <    /* ---------------- Fields -------------- */
549 >    static final int TREEIFY_THRESHOLD = 8;
550  
551      /**
552 <     * The array of bins. Lazily initialized upon first insertion.
553 <     * Size is always a power of two. Accessed directly by iterators.
552 >     * The bin count threshold for untreeifying a (split) bin during a
553 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
554 >     * most 6 to mesh with shrinkage detection under removal.
555       */
556 <    transient volatile Node[] table;
556 >    static final int UNTREEIFY_THRESHOLD = 6;
557  
558      /**
559 <     * The counter maintaining number of elements.
559 >     * The smallest table capacity for which bins may be treeified.
560 >     * (Otherwise the table is resized if too many nodes in a bin.)
561 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
562 >     * conflicts between resizing and treeification thresholds.
563       */
564 <    private transient final LongAdder counter;
564 >    static final int MIN_TREEIFY_CAPACITY = 64;
565  
566      /**
567 <     * Table initialization and resizing control.  When negative, the
568 <     * table is being initialized or resized. Otherwise, when table is
569 <     * null, holds the initial table size to use upon creation, or 0
570 <     * for default. After initialization, holds the next element count
571 <     * value upon which to resize the table.
567 >     * Minimum number of rebinnings per transfer step. Ranges are
568 >     * subdivided to allow multiple resizer threads.  This value
569 >     * serves as a lower bound to avoid resizers encountering
570 >     * excessive memory contention.  The value should be at least
571 >     * DEFAULT_CAPACITY.
572       */
573 <    private transient volatile int sizeCtl;
593 <
594 <    // views
595 <    private transient KeySetView<K,V> keySet;
596 <    private transient ValuesView<K,V> values;
597 <    private transient EntrySetView<K,V> entrySet;
598 <
599 <    /** For serialization compatibility. Null unless serialized; see below */
600 <    private Segment<K,V>[] segments;
601 <
602 <    /* ---------------- Table element access -------------- */
573 >    private static final int MIN_TRANSFER_STRIDE = 16;
574  
575      /*
576 <     * Volatile access methods are used for table elements as well as
606 <     * elements of in-progress next table while resizing.  Uses are
607 <     * null checked by callers, and implicitly bounds-checked, relying
608 <     * on the invariants that tab arrays have non-zero size, and all
609 <     * indices are masked with (tab.length - 1) which is never
610 <     * negative and always less than length. Note that, to be correct
611 <     * wrt arbitrary concurrency errors by users, bounds checks must
612 <     * operate on local variables, which accounts for some odd-looking
613 <     * inline assignments below.
576 >     * Encodings for Node hash fields. See above for explanation.
577       */
578 <
579 <    static final Node tabAt(Node[] tab, int i) { // used by Iter
580 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
581 <    }
582 <
583 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
584 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
585 <    }
586 <
587 <    private static final void setTabAt(Node[] tab, int i, Node v) {
588 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
589 <    }
578 >    static final int MOVED     = -1; // hash for forwarding nodes
579 >    static final int TREEBIN   = -2; // hash for roots of trees
580 >    static final int RESERVED  = -3; // hash for transient reservations
581 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
582 >
583 >    /** Number of CPUS, to place bounds on some sizings */
584 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
585 >
586 >    /** For serialization compatibility. */
587 >    private static final ObjectStreamField[] serialPersistentFields = {
588 >        new ObjectStreamField("segments", Segment[].class),
589 >        new ObjectStreamField("segmentMask", Integer.TYPE),
590 >        new ObjectStreamField("segmentShift", Integer.TYPE)
591 >    };
592  
593      /* ---------------- Nodes -------------- */
594  
595      /**
596 <     * Key-value entry. Note that this is never exported out as a
597 <     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
598 <     * field of MOVED are special, and do not contain user keys or
599 <     * values.  Otherwise, keys are never null, and null val fields
600 <     * indicate that a node is in the process of being deleted or
601 <     * created. For purposes of read-only access, a key may be read
602 <     * before a val, but can only be used after checking val to be
603 <     * non-null.
604 <     */
605 <    static class Node {
606 <        volatile int hash;
607 <        final Object key;
643 <        volatile Object val;
644 <        volatile Node next;
596 >     * Key-value entry.  This class is never exported out as a
597 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
598 >     * MapEntry below), but can be used for read-only traversals used
599 >     * in bulk tasks.  Subclasses of Node with a negative hash field
600 >     * are special, and contain null keys and values (but are never
601 >     * exported).  Otherwise, keys and vals are never null.
602 >     */
603 >    static class Node<K,V> implements Map.Entry<K,V> {
604 >        final int hash;
605 >        final K key;
606 >        volatile V val;
607 >        volatile Node<K,V> next;
608  
609 <        Node(int hash, Object key, Object val, Node next) {
609 >        Node(int hash, K key, V val, Node<K,V> next) {
610              this.hash = hash;
611              this.key = key;
612              this.val = val;
613              this.next = next;
614          }
615  
616 <        /** CompareAndSet the hash field */
617 <        final boolean casHash(int cmp, int val) {
618 <            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
619 <        }
620 <
621 <        /** The number of spins before blocking for a lock */
659 <        static final int MAX_SPINS =
660 <            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
661 <
662 <        /**
663 <         * Spins a while if LOCKED bit set and this node is the first
664 <         * of its bin, and then sets WAITING bits on hash field and
665 <         * blocks (once) if they are still set.  It is OK for this
666 <         * method to return even if lock is not available upon exit,
667 <         * which enables these simple single-wait mechanics.
668 <         *
669 <         * The corresponding signalling operation is performed within
670 <         * callers: Upon detecting that WAITING has been set when
671 <         * unlocking lock (via a failed CAS from non-waiting LOCKED
672 <         * state), unlockers acquire the sync lock and perform a
673 <         * notifyAll.
674 <         *
675 <         * The initial sanity check on tab and bounds is not currently
676 <         * necessary in the only usages of this method, but enables
677 <         * use in other future contexts.
678 <         */
679 <        final void tryAwaitLock(Node[] tab, int i) {
680 <            if (tab != null && i >= 0 && i < tab.length) { // sanity check
681 <                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
682 <                int spins = MAX_SPINS, h;
683 <                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
684 <                    if (spins >= 0) {
685 <                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
686 <                        if (r >= 0 && --spins == 0)
687 <                            Thread.yield();  // yield before block
688 <                    }
689 <                    else if (casHash(h, h | WAITING)) {
690 <                        synchronized (this) {
691 <                            if (tabAt(tab, i) == this &&
692 <                                (hash & WAITING) == WAITING) {
693 <                                try {
694 <                                    wait();
695 <                                } catch (InterruptedException ie) {
696 <                                    try {
697 <                                        Thread.currentThread().interrupt();
698 <                                    } catch (SecurityException ignore) {
699 <                                    }
700 <                                }
701 <                            }
702 <                            else
703 <                                notifyAll(); // possibly won race vs signaller
704 <                        }
705 <                        break;
706 <                    }
707 <                }
708 <            }
709 <        }
710 <
711 <        // Unsafe mechanics for casHash
712 <        private static final sun.misc.Unsafe UNSAFE;
713 <        private static final long hashOffset;
714 <
715 <        static {
716 <            try {
717 <                UNSAFE = getUnsafe();
718 <                Class<?> k = Node.class;
719 <                hashOffset = UNSAFE.objectFieldOffset
720 <                    (k.getDeclaredField("hash"));
721 <            } catch (Exception e) {
722 <                throw new Error(e);
723 <            }
724 <        }
725 <    }
726 <
727 <    /* ---------------- TreeBins -------------- */
728 <
729 <    /**
730 <     * Nodes for use in TreeBins
731 <     */
732 <    static final class TreeNode extends Node {
733 <        TreeNode parent;  // red-black tree links
734 <        TreeNode left;
735 <        TreeNode right;
736 <        TreeNode prev;    // needed to unlink next upon deletion
737 <        boolean red;
738 <
739 <        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
740 <            super(hash, key, val, next);
741 <            this.parent = parent;
742 <        }
743 <    }
744 <
745 <    /**
746 <     * A specialized form of red-black tree for use in bins
747 <     * whose size exceeds a threshold.
748 <     *
749 <     * TreeBins use a special form of comparison for search and
750 <     * related operations (which is the main reason we cannot use
751 <     * existing collections such as TreeMaps). TreeBins contain
752 <     * Comparable elements, but may contain others, as well as
753 <     * elements that are Comparable but not necessarily Comparable<T>
754 <     * for the same T, so we cannot invoke compareTo among them. To
755 <     * handle this, the tree is ordered primarily by hash value, then
756 <     * by getClass().getName() order, and then by Comparator order
757 <     * among elements of the same class.  On lookup at a node, if
758 <     * elements are not comparable or compare as 0, both left and
759 <     * right children may need to be searched in the case of tied hash
760 <     * values. (This corresponds to the full list search that would be
761 <     * necessary if all elements were non-Comparable and had tied
762 <     * hashes.)  The red-black balancing code is updated from
763 <     * pre-jdk-collections
764 <     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
765 <     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
766 <     * Algorithms" (CLR).
767 <     *
768 <     * TreeBins also maintain a separate locking discipline than
769 <     * regular bins. Because they are forwarded via special MOVED
770 <     * nodes at bin heads (which can never change once established),
771 <     * we cannot use those nodes as locks. Instead, TreeBin
772 <     * extends AbstractQueuedSynchronizer to support a simple form of
773 <     * read-write lock. For update operations and table validation,
774 <     * the exclusive form of lock behaves in the same way as bin-head
775 <     * locks. However, lookups use shared read-lock mechanics to allow
776 <     * multiple readers in the absence of writers.  Additionally,
777 <     * these lookups do not ever block: While the lock is not
778 <     * available, they proceed along the slow traversal path (via
779 <     * next-pointers) until the lock becomes available or the list is
780 <     * exhausted, whichever comes first. (These cases are not fast,
781 <     * but maximize aggregate expected throughput.)  The AQS mechanics
782 <     * for doing this are straightforward.  The lock state is held as
783 <     * AQS getState().  Read counts are negative; the write count (1)
784 <     * is positive.  There are no signalling preferences among readers
785 <     * and writers. Since we don't need to export full Lock API, we
786 <     * just override the minimal AQS methods and use them directly.
787 <     */
788 <    static final class TreeBin extends AbstractQueuedSynchronizer {
789 <        private static final long serialVersionUID = 2249069246763182397L;
790 <        transient TreeNode root;  // root of tree
791 <        transient TreeNode first; // head of next-pointer list
792 <
793 <        /* AQS overrides */
794 <        public final boolean isHeldExclusively() { return getState() > 0; }
795 <        public final boolean tryAcquire(int ignore) {
796 <            if (compareAndSetState(0, 1)) {
797 <                setExclusiveOwnerThread(Thread.currentThread());
798 <                return true;
799 <            }
800 <            return false;
801 <        }
802 <        public final boolean tryRelease(int ignore) {
803 <            setExclusiveOwnerThread(null);
804 <            setState(0);
805 <            return true;
806 <        }
807 <        public final int tryAcquireShared(int ignore) {
808 <            for (int c;;) {
809 <                if ((c = getState()) > 0)
810 <                    return -1;
811 <                if (compareAndSetState(c, c -1))
812 <                    return 1;
813 <            }
814 <        }
815 <        public final boolean tryReleaseShared(int ignore) {
816 <            int c;
817 <            do {} while (!compareAndSetState(c = getState(), c + 1));
818 <            return c == -1;
819 <        }
820 <
821 <        /** From CLR */
822 <        private void rotateLeft(TreeNode p) {
823 <            if (p != null) {
824 <                TreeNode r = p.right, pp, rl;
825 <                if ((rl = p.right = r.left) != null)
826 <                    rl.parent = p;
827 <                if ((pp = r.parent = p.parent) == null)
828 <                    root = r;
829 <                else if (pp.left == p)
830 <                    pp.left = r;
831 <                else
832 <                    pp.right = r;
833 <                r.left = p;
834 <                p.parent = r;
835 <            }
836 <        }
837 <
838 <        /** From CLR */
839 <        private void rotateRight(TreeNode p) {
840 <            if (p != null) {
841 <                TreeNode l = p.left, pp, lr;
842 <                if ((lr = p.left = l.right) != null)
843 <                    lr.parent = p;
844 <                if ((pp = l.parent = p.parent) == null)
845 <                    root = l;
846 <                else if (pp.right == p)
847 <                    pp.right = l;
848 <                else
849 <                    pp.left = l;
850 <                l.right = p;
851 <                p.parent = l;
852 <            }
853 <        }
854 <
855 <        /**
856 <         * Returns the TreeNode (or null if not found) for the given key
857 <         * starting at given root.
858 <         */
859 <        @SuppressWarnings("unchecked") final TreeNode getTreeNode
860 <            (int h, Object k, TreeNode p) {
861 <            Class<?> c = k.getClass();
862 <            while (p != null) {
863 <                int dir, ph;  Object pk; Class<?> pc;
864 <                if ((ph = p.hash) == h) {
865 <                    if ((pk = p.key) == k || k.equals(pk))
866 <                        return p;
867 <                    if (c != (pc = pk.getClass()) ||
868 <                        !(k instanceof Comparable) ||
869 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
870 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
871 <                        TreeNode r = null, s = null, pl, pr;
872 <                        if (dir >= 0) {
873 <                            if ((pl = p.left) != null && h <= pl.hash)
874 <                                s = pl;
875 <                        }
876 <                        else if ((pr = p.right) != null && h >= pr.hash)
877 <                            s = pr;
878 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
879 <                            return r;
880 <                    }
881 <                }
882 <                else
883 <                    dir = (h < ph) ? -1 : 1;
884 <                p = (dir > 0) ? p.right : p.left;
885 <            }
886 <            return null;
616 >        public final K getKey()       { return key; }
617 >        public final V getValue()     { return val; }
618 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
619 >        public final String toString(){ return key + "=" + val; }
620 >        public final V setValue(V value) {
621 >            throw new UnsupportedOperationException();
622          }
623  
624 <        /**
625 <         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
626 <         * read-lock to call getTreeNode, but during failure to get
627 <         * lock, searches along next links.
628 <         */
629 <        final Object getValue(int h, Object k) {
630 <            Node r = null;
896 <            int c = getState(); // Must read lock state first
897 <            for (Node e = first; e != null; e = e.next) {
898 <                if (c <= 0 && compareAndSetState(c, c - 1)) {
899 <                    try {
900 <                        r = getTreeNode(h, k, root);
901 <                    } finally {
902 <                        releaseShared(0);
903 <                    }
904 <                    break;
905 <                }
906 <                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
907 <                    r = e;
908 <                    break;
909 <                }
910 <                else
911 <                    c = getState();
912 <            }
913 <            return r == null ? null : r.val;
624 >        public final boolean equals(Object o) {
625 >            Object k, v, u; Map.Entry<?,?> e;
626 >            return ((o instanceof Map.Entry) &&
627 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
628 >                    (v = e.getValue()) != null &&
629 >                    (k == key || k.equals(key)) &&
630 >                    (v == (u = val) || v.equals(u)));
631          }
632  
633          /**
634 <         * Finds or adds a node.
918 <         * @return null if added
634 >         * Virtualized support for map.get(); overridden in subclasses.
635           */
636 <        @SuppressWarnings("unchecked") final TreeNode putTreeNode
637 <            (int h, Object k, Object v) {
638 <            Class<?> c = k.getClass();
639 <            TreeNode pp = root, p = null;
640 <            int dir = 0;
641 <            while (pp != null) { // find existing node or leaf to insert at
642 <                int ph;  Object pk; Class<?> pc;
643 <                p = pp;
644 <                if ((ph = p.hash) == h) {
929 <                    if ((pk = p.key) == k || k.equals(pk))
930 <                        return p;
931 <                    if (c != (pc = pk.getClass()) ||
932 <                        !(k instanceof Comparable) ||
933 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
934 <                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
935 <                        TreeNode r = null, s = null, pl, pr;
936 <                        if (dir >= 0) {
937 <                            if ((pl = p.left) != null && h <= pl.hash)
938 <                                s = pl;
939 <                        }
940 <                        else if ((pr = p.right) != null && h >= pr.hash)
941 <                            s = pr;
942 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
943 <                            return r;
944 <                    }
945 <                }
946 <                else
947 <                    dir = (h < ph) ? -1 : 1;
948 <                pp = (dir > 0) ? p.right : p.left;
949 <            }
950 <
951 <            TreeNode f = first;
952 <            TreeNode x = first = new TreeNode(h, k, v, f, p);
953 <            if (p == null)
954 <                root = x;
955 <            else { // attach and rebalance; adapted from CLR
956 <                TreeNode xp, xpp;
957 <                if (f != null)
958 <                    f.prev = x;
959 <                if (dir <= 0)
960 <                    p.left = x;
961 <                else
962 <                    p.right = x;
963 <                x.red = true;
964 <                while (x != null && (xp = x.parent) != null && xp.red &&
965 <                       (xpp = xp.parent) != null) {
966 <                    TreeNode xppl = xpp.left;
967 <                    if (xp == xppl) {
968 <                        TreeNode y = xpp.right;
969 <                        if (y != null && y.red) {
970 <                            y.red = false;
971 <                            xp.red = false;
972 <                            xpp.red = true;
973 <                            x = xpp;
974 <                        }
975 <                        else {
976 <                            if (x == xp.right) {
977 <                                rotateLeft(x = xp);
978 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
979 <                            }
980 <                            if (xp != null) {
981 <                                xp.red = false;
982 <                                if (xpp != null) {
983 <                                    xpp.red = true;
984 <                                    rotateRight(xpp);
985 <                                }
986 <                            }
987 <                        }
988 <                    }
989 <                    else {
990 <                        TreeNode y = xppl;
991 <                        if (y != null && y.red) {
992 <                            y.red = false;
993 <                            xp.red = false;
994 <                            xpp.red = true;
995 <                            x = xpp;
996 <                        }
997 <                        else {
998 <                            if (x == xp.left) {
999 <                                rotateRight(x = xp);
1000 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
1001 <                            }
1002 <                            if (xp != null) {
1003 <                                xp.red = false;
1004 <                                if (xpp != null) {
1005 <                                    xpp.red = true;
1006 <                                    rotateLeft(xpp);
1007 <                                }
1008 <                            }
1009 <                        }
1010 <                    }
1011 <                }
1012 <                TreeNode r = root;
1013 <                if (r != null && r.red)
1014 <                    r.red = false;
636 >        Node<K,V> find(int h, Object k) {
637 >            Node<K,V> e = this;
638 >            if (k != null) {
639 >                do {
640 >                    K ek;
641 >                    if (e.hash == h &&
642 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
643 >                        return e;
644 >                } while ((e = e.next) != null);
645              }
646              return null;
647          }
1018
1019        /**
1020         * Removes the given node, that must be present before this
1021         * call.  This is messier than typical red-black deletion code
1022         * because we cannot swap the contents of an interior node
1023         * with a leaf successor that is pinned by "next" pointers
1024         * that are accessible independently of lock. So instead we
1025         * swap the tree linkages.
1026         */
1027        final void deleteTreeNode(TreeNode p) {
1028            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
1029            TreeNode pred = p.prev;
1030            if (pred == null)
1031                first = next;
1032            else
1033                pred.next = next;
1034            if (next != null)
1035                next.prev = pred;
1036            TreeNode replacement;
1037            TreeNode pl = p.left;
1038            TreeNode pr = p.right;
1039            if (pl != null && pr != null) {
1040                TreeNode s = pr, sl;
1041                while ((sl = s.left) != null) // find successor
1042                    s = sl;
1043                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1044                TreeNode sr = s.right;
1045                TreeNode pp = p.parent;
1046                if (s == pr) { // p was s's direct parent
1047                    p.parent = s;
1048                    s.right = p;
1049                }
1050                else {
1051                    TreeNode sp = s.parent;
1052                    if ((p.parent = sp) != null) {
1053                        if (s == sp.left)
1054                            sp.left = p;
1055                        else
1056                            sp.right = p;
1057                    }
1058                    if ((s.right = pr) != null)
1059                        pr.parent = s;
1060                }
1061                p.left = null;
1062                if ((p.right = sr) != null)
1063                    sr.parent = p;
1064                if ((s.left = pl) != null)
1065                    pl.parent = s;
1066                if ((s.parent = pp) == null)
1067                    root = s;
1068                else if (p == pp.left)
1069                    pp.left = s;
1070                else
1071                    pp.right = s;
1072                replacement = sr;
1073            }
1074            else
1075                replacement = (pl != null) ? pl : pr;
1076            TreeNode pp = p.parent;
1077            if (replacement == null) {
1078                if (pp == null) {
1079                    root = null;
1080                    return;
1081                }
1082                replacement = p;
1083            }
1084            else {
1085                replacement.parent = pp;
1086                if (pp == null)
1087                    root = replacement;
1088                else if (p == pp.left)
1089                    pp.left = replacement;
1090                else
1091                    pp.right = replacement;
1092                p.left = p.right = p.parent = null;
1093            }
1094            if (!p.red) { // rebalance, from CLR
1095                TreeNode x = replacement;
1096                while (x != null) {
1097                    TreeNode xp, xpl;
1098                    if (x.red || (xp = x.parent) == null) {
1099                        x.red = false;
1100                        break;
1101                    }
1102                    if (x == (xpl = xp.left)) {
1103                        TreeNode sib = xp.right;
1104                        if (sib != null && sib.red) {
1105                            sib.red = false;
1106                            xp.red = true;
1107                            rotateLeft(xp);
1108                            sib = (xp = x.parent) == null ? null : xp.right;
1109                        }
1110                        if (sib == null)
1111                            x = xp;
1112                        else {
1113                            TreeNode sl = sib.left, sr = sib.right;
1114                            if ((sr == null || !sr.red) &&
1115                                (sl == null || !sl.red)) {
1116                                sib.red = true;
1117                                x = xp;
1118                            }
1119                            else {
1120                                if (sr == null || !sr.red) {
1121                                    if (sl != null)
1122                                        sl.red = false;
1123                                    sib.red = true;
1124                                    rotateRight(sib);
1125                                    sib = (xp = x.parent) == null ? null : xp.right;
1126                                }
1127                                if (sib != null) {
1128                                    sib.red = (xp == null) ? false : xp.red;
1129                                    if ((sr = sib.right) != null)
1130                                        sr.red = false;
1131                                }
1132                                if (xp != null) {
1133                                    xp.red = false;
1134                                    rotateLeft(xp);
1135                                }
1136                                x = root;
1137                            }
1138                        }
1139                    }
1140                    else { // symmetric
1141                        TreeNode sib = xpl;
1142                        if (sib != null && sib.red) {
1143                            sib.red = false;
1144                            xp.red = true;
1145                            rotateRight(xp);
1146                            sib = (xp = x.parent) == null ? null : xp.left;
1147                        }
1148                        if (sib == null)
1149                            x = xp;
1150                        else {
1151                            TreeNode sl = sib.left, sr = sib.right;
1152                            if ((sl == null || !sl.red) &&
1153                                (sr == null || !sr.red)) {
1154                                sib.red = true;
1155                                x = xp;
1156                            }
1157                            else {
1158                                if (sl == null || !sl.red) {
1159                                    if (sr != null)
1160                                        sr.red = false;
1161                                    sib.red = true;
1162                                    rotateLeft(sib);
1163                                    sib = (xp = x.parent) == null ? null : xp.left;
1164                                }
1165                                if (sib != null) {
1166                                    sib.red = (xp == null) ? false : xp.red;
1167                                    if ((sl = sib.left) != null)
1168                                        sl.red = false;
1169                                }
1170                                if (xp != null) {
1171                                    xp.red = false;
1172                                    rotateRight(xp);
1173                                }
1174                                x = root;
1175                            }
1176                        }
1177                    }
1178                }
1179            }
1180            if (p == replacement && (pp = p.parent) != null) {
1181                if (p == pp.left) // detach pointers
1182                    pp.left = null;
1183                else if (p == pp.right)
1184                    pp.right = null;
1185                p.parent = null;
1186            }
1187        }
648      }
649  
650 <    /* ---------------- Collision reduction methods -------------- */
650 >    /* ---------------- Static utilities -------------- */
651  
652      /**
653 <     * Spreads higher bits to lower, and also forces top 2 bits to 0.
654 <     * Because the table uses power-of-two masking, sets of hashes
655 <     * that vary only in bits above the current mask will always
656 <     * collide. (Among known examples are sets of Float keys holding
657 <     * consecutive whole numbers in small tables.)  To counter this,
658 <     * we apply a transform that spreads the impact of higher bits
653 >     * Spreads (XORs) higher bits of hash to lower and also forces top
654 >     * bit to 0. Because the table uses power-of-two masking, sets of
655 >     * hashes that vary only in bits above the current mask will
656 >     * always collide. (Among known examples are sets of Float keys
657 >     * holding consecutive whole numbers in small tables.)  So we
658 >     * apply a transform that spreads the impact of higher bits
659       * downward. There is a tradeoff between speed, utility, and
660       * quality of bit-spreading. Because many common sets of hashes
661 <     * are already reasonably distributed across bits (so don't benefit
662 <     * from spreading), and because we use trees to handle large sets
663 <     * of collisions in bins, we don't need excessively high quality.
664 <     */
665 <    private static final int spread(int h) {
666 <        h ^= (h >>> 18) ^ (h >>> 12);
1207 <        return (h ^ (h >>> 10)) & HASH_BITS;
1208 <    }
1209 <
1210 <    /**
1211 <     * Replaces a list bin with a tree bin. Call only when locked.
1212 <     * Fails to replace if the given key is non-comparable or table
1213 <     * is, or needs, resizing.
661 >     * are already reasonably distributed (so don't benefit from
662 >     * spreading), and because we use trees to handle large sets of
663 >     * collisions in bins, we just XOR some shifted bits in the
664 >     * cheapest possible way to reduce systematic lossage, as well as
665 >     * to incorporate impact of the highest bits that would otherwise
666 >     * never be used in index calculations because of table bounds.
667       */
668 <    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
669 <        if ((key instanceof Comparable) &&
1217 <            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1218 <            TreeBin t = new TreeBin();
1219 <            for (Node e = tabAt(tab, index); e != null; e = e.next)
1220 <                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1221 <            setTabAt(tab, index, new Node(MOVED, t, null, null));
1222 <        }
1223 <    }
1224 <
1225 <    /* ---------------- Internal access and update methods -------------- */
1226 <
1227 <    /** Implementation for get and containsKey */
1228 <    private final Object internalGet(Object k) {
1229 <        int h = spread(k.hashCode());
1230 <        retry: for (Node[] tab = table; tab != null;) {
1231 <            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1232 <            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1233 <                if ((eh = e.hash) == MOVED) {
1234 <                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1235 <                        return ((TreeBin)ek).getValue(h, k);
1236 <                    else {                        // restart with new table
1237 <                        tab = (Node[])ek;
1238 <                        continue retry;
1239 <                    }
1240 <                }
1241 <                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1242 <                         ((ek = e.key) == k || k.equals(ek)))
1243 <                    return ev;
1244 <            }
1245 <            break;
1246 <        }
1247 <        return null;
668 >    static final int spread(int h) {
669 >        return (h ^ (h >>> 16)) & HASH_BITS;
670      }
671  
672      /**
1251     * Implementation for the four public remove/replace methods:
1252     * Replaces node value with v, conditional upon match of cv if
1253     * non-null.  If resulting value is null, delete.
1254     */
1255    private final Object internalReplace(Object k, Object v, Object cv) {
1256        int h = spread(k.hashCode());
1257        Object oldVal = null;
1258        for (Node[] tab = table;;) {
1259            Node f; int i, fh; Object fk;
1260            if (tab == null ||
1261                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1262                break;
1263            else if ((fh = f.hash) == MOVED) {
1264                if ((fk = f.key) instanceof TreeBin) {
1265                    TreeBin t = (TreeBin)fk;
1266                    boolean validated = false;
1267                    boolean deleted = false;
1268                    t.acquire(0);
1269                    try {
1270                        if (tabAt(tab, i) == f) {
1271                            validated = true;
1272                            TreeNode p = t.getTreeNode(h, k, t.root);
1273                            if (p != null) {
1274                                Object pv = p.val;
1275                                if (cv == null || cv == pv || cv.equals(pv)) {
1276                                    oldVal = pv;
1277                                    if ((p.val = v) == null) {
1278                                        deleted = true;
1279                                        t.deleteTreeNode(p);
1280                                    }
1281                                }
1282                            }
1283                        }
1284                    } finally {
1285                        t.release(0);
1286                    }
1287                    if (validated) {
1288                        if (deleted)
1289                            counter.add(-1L);
1290                        break;
1291                    }
1292                }
1293                else
1294                    tab = (Node[])fk;
1295            }
1296            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1297                break;                          // rules out possible existence
1298            else if ((fh & LOCKED) != 0) {
1299                checkForResize();               // try resizing if can't get lock
1300                f.tryAwaitLock(tab, i);
1301            }
1302            else if (f.casHash(fh, fh | LOCKED)) {
1303                boolean validated = false;
1304                boolean deleted = false;
1305                try {
1306                    if (tabAt(tab, i) == f) {
1307                        validated = true;
1308                        for (Node e = f, pred = null;;) {
1309                            Object ek, ev;
1310                            if ((e.hash & HASH_BITS) == h &&
1311                                ((ev = e.val) != null) &&
1312                                ((ek = e.key) == k || k.equals(ek))) {
1313                                if (cv == null || cv == ev || cv.equals(ev)) {
1314                                    oldVal = ev;
1315                                    if ((e.val = v) == null) {
1316                                        deleted = true;
1317                                        Node en = e.next;
1318                                        if (pred != null)
1319                                            pred.next = en;
1320                                        else
1321                                            setTabAt(tab, i, en);
1322                                    }
1323                                }
1324                                break;
1325                            }
1326                            pred = e;
1327                            if ((e = e.next) == null)
1328                                break;
1329                        }
1330                    }
1331                } finally {
1332                    if (!f.casHash(fh | LOCKED, fh)) {
1333                        f.hash = fh;
1334                        synchronized (f) { f.notifyAll(); };
1335                    }
1336                }
1337                if (validated) {
1338                    if (deleted)
1339                        counter.add(-1L);
1340                    break;
1341                }
1342            }
1343        }
1344        return oldVal;
1345    }
1346
1347    /*
1348     * Internal versions of the six insertion methods, each a
1349     * little more complicated than the last. All have
1350     * the same basic structure as the first (internalPut):
1351     *  1. If table uninitialized, create
1352     *  2. If bin empty, try to CAS new node
1353     *  3. If bin stale, use new table
1354     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1355     *  5. Lock and validate; if valid, scan and add or update
1356     *
1357     * The others interweave other checks and/or alternative actions:
1358     *  * Plain put checks for and performs resize after insertion.
1359     *  * putIfAbsent prescans for mapping without lock (and fails to add
1360     *    if present), which also makes pre-emptive resize checks worthwhile.
1361     *  * computeIfAbsent extends form used in putIfAbsent with additional
1362     *    mechanics to deal with, calls, potential exceptions and null
1363     *    returns from function call.
1364     *  * compute uses the same function-call mechanics, but without
1365     *    the prescans
1366     *  * merge acts as putIfAbsent in the absent case, but invokes the
1367     *    update function if present
1368     *  * putAll attempts to pre-allocate enough table space
1369     *    and more lazily performs count updates and checks.
1370     *
1371     * Someday when details settle down a bit more, it might be worth
1372     * some factoring to reduce sprawl.
1373     */
1374
1375    /** Implementation for put */
1376    private final Object internalPut(Object k, Object v) {
1377        int h = spread(k.hashCode());
1378        int count = 0;
1379        for (Node[] tab = table;;) {
1380            int i; Node f; int fh; Object fk;
1381            if (tab == null)
1382                tab = initTable();
1383            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1384                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1385                    break;                   // no lock when adding to empty bin
1386            }
1387            else if ((fh = f.hash) == MOVED) {
1388                if ((fk = f.key) instanceof TreeBin) {
1389                    TreeBin t = (TreeBin)fk;
1390                    Object oldVal = null;
1391                    t.acquire(0);
1392                    try {
1393                        if (tabAt(tab, i) == f) {
1394                            count = 2;
1395                            TreeNode p = t.putTreeNode(h, k, v);
1396                            if (p != null) {
1397                                oldVal = p.val;
1398                                p.val = v;
1399                            }
1400                        }
1401                    } finally {
1402                        t.release(0);
1403                    }
1404                    if (count != 0) {
1405                        if (oldVal != null)
1406                            return oldVal;
1407                        break;
1408                    }
1409                }
1410                else
1411                    tab = (Node[])fk;
1412            }
1413            else if ((fh & LOCKED) != 0) {
1414                checkForResize();
1415                f.tryAwaitLock(tab, i);
1416            }
1417            else if (f.casHash(fh, fh | LOCKED)) {
1418                Object oldVal = null;
1419                try {                        // needed in case equals() throws
1420                    if (tabAt(tab, i) == f) {
1421                        count = 1;
1422                        for (Node e = f;; ++count) {
1423                            Object ek, ev;
1424                            if ((e.hash & HASH_BITS) == h &&
1425                                (ev = e.val) != null &&
1426                                ((ek = e.key) == k || k.equals(ek))) {
1427                                oldVal = ev;
1428                                e.val = v;
1429                                break;
1430                            }
1431                            Node last = e;
1432                            if ((e = e.next) == null) {
1433                                last.next = new Node(h, k, v, null);
1434                                if (count >= TREE_THRESHOLD)
1435                                    replaceWithTreeBin(tab, i, k);
1436                                break;
1437                            }
1438                        }
1439                    }
1440                } finally {                  // unlock and signal if needed
1441                    if (!f.casHash(fh | LOCKED, fh)) {
1442                        f.hash = fh;
1443                        synchronized (f) { f.notifyAll(); };
1444                    }
1445                }
1446                if (count != 0) {
1447                    if (oldVal != null)
1448                        return oldVal;
1449                    if (tab.length <= 64)
1450                        count = 2;
1451                    break;
1452                }
1453            }
1454        }
1455        counter.add(1L);
1456        if (count > 1)
1457            checkForResize();
1458        return null;
1459    }
1460
1461    /** Implementation for putIfAbsent */
1462    private final Object internalPutIfAbsent(Object k, Object v) {
1463        int h = spread(k.hashCode());
1464        int count = 0;
1465        for (Node[] tab = table;;) {
1466            int i; Node f; int fh; Object fk, fv;
1467            if (tab == null)
1468                tab = initTable();
1469            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1470                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1471                    break;
1472            }
1473            else if ((fh = f.hash) == MOVED) {
1474                if ((fk = f.key) instanceof TreeBin) {
1475                    TreeBin t = (TreeBin)fk;
1476                    Object oldVal = null;
1477                    t.acquire(0);
1478                    try {
1479                        if (tabAt(tab, i) == f) {
1480                            count = 2;
1481                            TreeNode p = t.putTreeNode(h, k, v);
1482                            if (p != null)
1483                                oldVal = p.val;
1484                        }
1485                    } finally {
1486                        t.release(0);
1487                    }
1488                    if (count != 0) {
1489                        if (oldVal != null)
1490                            return oldVal;
1491                        break;
1492                    }
1493                }
1494                else
1495                    tab = (Node[])fk;
1496            }
1497            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1498                     ((fk = f.key) == k || k.equals(fk)))
1499                return fv;
1500            else {
1501                Node g = f.next;
1502                if (g != null) { // at least 2 nodes -- search and maybe resize
1503                    for (Node e = g;;) {
1504                        Object ek, ev;
1505                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1506                            ((ek = e.key) == k || k.equals(ek)))
1507                            return ev;
1508                        if ((e = e.next) == null) {
1509                            checkForResize();
1510                            break;
1511                        }
1512                    }
1513                }
1514                if (((fh = f.hash) & LOCKED) != 0) {
1515                    checkForResize();
1516                    f.tryAwaitLock(tab, i);
1517                }
1518                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1519                    Object oldVal = null;
1520                    try {
1521                        if (tabAt(tab, i) == f) {
1522                            count = 1;
1523                            for (Node e = f;; ++count) {
1524                                Object ek, ev;
1525                                if ((e.hash & HASH_BITS) == h &&
1526                                    (ev = e.val) != null &&
1527                                    ((ek = e.key) == k || k.equals(ek))) {
1528                                    oldVal = ev;
1529                                    break;
1530                                }
1531                                Node last = e;
1532                                if ((e = e.next) == null) {
1533                                    last.next = new Node(h, k, v, null);
1534                                    if (count >= TREE_THRESHOLD)
1535                                        replaceWithTreeBin(tab, i, k);
1536                                    break;
1537                                }
1538                            }
1539                        }
1540                    } finally {
1541                        if (!f.casHash(fh | LOCKED, fh)) {
1542                            f.hash = fh;
1543                            synchronized (f) { f.notifyAll(); };
1544                        }
1545                    }
1546                    if (count != 0) {
1547                        if (oldVal != null)
1548                            return oldVal;
1549                        if (tab.length <= 64)
1550                            count = 2;
1551                        break;
1552                    }
1553                }
1554            }
1555        }
1556        counter.add(1L);
1557        if (count > 1)
1558            checkForResize();
1559        return null;
1560    }
1561
1562    /** Implementation for computeIfAbsent */
1563    private final Object internalComputeIfAbsent(K k,
1564                                                 Fun<? super K, ?> mf) {
1565        int h = spread(k.hashCode());
1566        Object val = null;
1567        int count = 0;
1568        for (Node[] tab = table;;) {
1569            Node f; int i, fh; Object fk, fv;
1570            if (tab == null)
1571                tab = initTable();
1572            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1573                Node node = new Node(fh = h | LOCKED, k, null, null);
1574                if (casTabAt(tab, i, null, node)) {
1575                    count = 1;
1576                    try {
1577                        if ((val = mf.apply(k)) != null)
1578                            node.val = val;
1579                    } finally {
1580                        if (val == null)
1581                            setTabAt(tab, i, null);
1582                        if (!node.casHash(fh, h)) {
1583                            node.hash = h;
1584                            synchronized (node) { node.notifyAll(); };
1585                        }
1586                    }
1587                }
1588                if (count != 0)
1589                    break;
1590            }
1591            else if ((fh = f.hash) == MOVED) {
1592                if ((fk = f.key) instanceof TreeBin) {
1593                    TreeBin t = (TreeBin)fk;
1594                    boolean added = false;
1595                    t.acquire(0);
1596                    try {
1597                        if (tabAt(tab, i) == f) {
1598                            count = 1;
1599                            TreeNode p = t.getTreeNode(h, k, t.root);
1600                            if (p != null)
1601                                val = p.val;
1602                            else if ((val = mf.apply(k)) != null) {
1603                                added = true;
1604                                count = 2;
1605                                t.putTreeNode(h, k, val);
1606                            }
1607                        }
1608                    } finally {
1609                        t.release(0);
1610                    }
1611                    if (count != 0) {
1612                        if (!added)
1613                            return val;
1614                        break;
1615                    }
1616                }
1617                else
1618                    tab = (Node[])fk;
1619            }
1620            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1621                     ((fk = f.key) == k || k.equals(fk)))
1622                return fv;
1623            else {
1624                Node g = f.next;
1625                if (g != null) {
1626                    for (Node e = g;;) {
1627                        Object ek, ev;
1628                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1629                            ((ek = e.key) == k || k.equals(ek)))
1630                            return ev;
1631                        if ((e = e.next) == null) {
1632                            checkForResize();
1633                            break;
1634                        }
1635                    }
1636                }
1637                if (((fh = f.hash) & LOCKED) != 0) {
1638                    checkForResize();
1639                    f.tryAwaitLock(tab, i);
1640                }
1641                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1642                    boolean added = false;
1643                    try {
1644                        if (tabAt(tab, i) == f) {
1645                            count = 1;
1646                            for (Node e = f;; ++count) {
1647                                Object ek, ev;
1648                                if ((e.hash & HASH_BITS) == h &&
1649                                    (ev = e.val) != null &&
1650                                    ((ek = e.key) == k || k.equals(ek))) {
1651                                    val = ev;
1652                                    break;
1653                                }
1654                                Node last = e;
1655                                if ((e = e.next) == null) {
1656                                    if ((val = mf.apply(k)) != null) {
1657                                        added = true;
1658                                        last.next = new Node(h, k, val, null);
1659                                        if (count >= TREE_THRESHOLD)
1660                                            replaceWithTreeBin(tab, i, k);
1661                                    }
1662                                    break;
1663                                }
1664                            }
1665                        }
1666                    } finally {
1667                        if (!f.casHash(fh | LOCKED, fh)) {
1668                            f.hash = fh;
1669                            synchronized (f) { f.notifyAll(); };
1670                        }
1671                    }
1672                    if (count != 0) {
1673                        if (!added)
1674                            return val;
1675                        if (tab.length <= 64)
1676                            count = 2;
1677                        break;
1678                    }
1679                }
1680            }
1681        }
1682        if (val != null) {
1683            counter.add(1L);
1684            if (count > 1)
1685                checkForResize();
1686        }
1687        return val;
1688    }
1689
1690    /** Implementation for compute */
1691    @SuppressWarnings("unchecked") private final Object internalCompute
1692        (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1693        int h = spread(k.hashCode());
1694        Object val = null;
1695        int delta = 0;
1696        int count = 0;
1697        for (Node[] tab = table;;) {
1698            Node f; int i, fh; Object fk;
1699            if (tab == null)
1700                tab = initTable();
1701            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1702                if (onlyIfPresent)
1703                    break;
1704                Node node = new Node(fh = h | LOCKED, k, null, null);
1705                if (casTabAt(tab, i, null, node)) {
1706                    try {
1707                        count = 1;
1708                        if ((val = mf.apply(k, null)) != null) {
1709                            node.val = val;
1710                            delta = 1;
1711                        }
1712                    } finally {
1713                        if (delta == 0)
1714                            setTabAt(tab, i, null);
1715                        if (!node.casHash(fh, h)) {
1716                            node.hash = h;
1717                            synchronized (node) { node.notifyAll(); };
1718                        }
1719                    }
1720                }
1721                if (count != 0)
1722                    break;
1723            }
1724            else if ((fh = f.hash) == MOVED) {
1725                if ((fk = f.key) instanceof TreeBin) {
1726                    TreeBin t = (TreeBin)fk;
1727                    t.acquire(0);
1728                    try {
1729                        if (tabAt(tab, i) == f) {
1730                            count = 1;
1731                            TreeNode p = t.getTreeNode(h, k, t.root);
1732                            Object pv = (p == null) ? null : p.val;
1733                            if ((val = mf.apply(k, (V)pv)) != null) {
1734                                if (p != null)
1735                                    p.val = val;
1736                                else {
1737                                    count = 2;
1738                                    delta = 1;
1739                                    t.putTreeNode(h, k, val);
1740                                }
1741                            }
1742                            else if (p != null) {
1743                                delta = -1;
1744                                t.deleteTreeNode(p);
1745                            }
1746                        }
1747                    } finally {
1748                        t.release(0);
1749                    }
1750                    if (count != 0)
1751                        break;
1752                }
1753                else
1754                    tab = (Node[])fk;
1755            }
1756            else if ((fh & LOCKED) != 0) {
1757                checkForResize();
1758                f.tryAwaitLock(tab, i);
1759            }
1760            else if (f.casHash(fh, fh | LOCKED)) {
1761                try {
1762                    if (tabAt(tab, i) == f) {
1763                        count = 1;
1764                        for (Node e = f, pred = null;; ++count) {
1765                            Object ek, ev;
1766                            if ((e.hash & HASH_BITS) == h &&
1767                                (ev = e.val) != null &&
1768                                ((ek = e.key) == k || k.equals(ek))) {
1769                                val = mf.apply(k, (V)ev);
1770                                if (val != null)
1771                                    e.val = val;
1772                                else {
1773                                    delta = -1;
1774                                    Node en = e.next;
1775                                    if (pred != null)
1776                                        pred.next = en;
1777                                    else
1778                                        setTabAt(tab, i, en);
1779                                }
1780                                break;
1781                            }
1782                            pred = e;
1783                            if ((e = e.next) == null) {
1784                                if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1785                                    pred.next = new Node(h, k, val, null);
1786                                    delta = 1;
1787                                    if (count >= TREE_THRESHOLD)
1788                                        replaceWithTreeBin(tab, i, k);
1789                                }
1790                                break;
1791                            }
1792                        }
1793                    }
1794                } finally {
1795                    if (!f.casHash(fh | LOCKED, fh)) {
1796                        f.hash = fh;
1797                        synchronized (f) { f.notifyAll(); };
1798                    }
1799                }
1800                if (count != 0) {
1801                    if (tab.length <= 64)
1802                        count = 2;
1803                    break;
1804                }
1805            }
1806        }
1807        if (delta != 0) {
1808            counter.add((long)delta);
1809            if (count > 1)
1810                checkForResize();
1811        }
1812        return val;
1813    }
1814
1815    /** Implementation for merge */
1816    @SuppressWarnings("unchecked") private final Object internalMerge
1817        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1818        int h = spread(k.hashCode());
1819        Object val = null;
1820        int delta = 0;
1821        int count = 0;
1822        for (Node[] tab = table;;) {
1823            int i; Node f; int fh; Object fk, fv;
1824            if (tab == null)
1825                tab = initTable();
1826            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1827                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1828                    delta = 1;
1829                    val = v;
1830                    break;
1831                }
1832            }
1833            else if ((fh = f.hash) == MOVED) {
1834                if ((fk = f.key) instanceof TreeBin) {
1835                    TreeBin t = (TreeBin)fk;
1836                    t.acquire(0);
1837                    try {
1838                        if (tabAt(tab, i) == f) {
1839                            count = 1;
1840                            TreeNode p = t.getTreeNode(h, k, t.root);
1841                            val = (p == null) ? v : mf.apply((V)p.val, v);
1842                            if (val != null) {
1843                                if (p != null)
1844                                    p.val = val;
1845                                else {
1846                                    count = 2;
1847                                    delta = 1;
1848                                    t.putTreeNode(h, k, val);
1849                                }
1850                            }
1851                            else if (p != null) {
1852                                delta = -1;
1853                                t.deleteTreeNode(p);
1854                            }
1855                        }
1856                    } finally {
1857                        t.release(0);
1858                    }
1859                    if (count != 0)
1860                        break;
1861                }
1862                else
1863                    tab = (Node[])fk;
1864            }
1865            else if ((fh & LOCKED) != 0) {
1866                checkForResize();
1867                f.tryAwaitLock(tab, i);
1868            }
1869            else if (f.casHash(fh, fh | LOCKED)) {
1870                try {
1871                    if (tabAt(tab, i) == f) {
1872                        count = 1;
1873                        for (Node e = f, pred = null;; ++count) {
1874                            Object ek, ev;
1875                            if ((e.hash & HASH_BITS) == h &&
1876                                (ev = e.val) != null &&
1877                                ((ek = e.key) == k || k.equals(ek))) {
1878                                val = mf.apply(v, (V)ev);
1879                                if (val != null)
1880                                    e.val = val;
1881                                else {
1882                                    delta = -1;
1883                                    Node en = e.next;
1884                                    if (pred != null)
1885                                        pred.next = en;
1886                                    else
1887                                        setTabAt(tab, i, en);
1888                                }
1889                                break;
1890                            }
1891                            pred = e;
1892                            if ((e = e.next) == null) {
1893                                val = v;
1894                                pred.next = new Node(h, k, val, null);
1895                                delta = 1;
1896                                if (count >= TREE_THRESHOLD)
1897                                    replaceWithTreeBin(tab, i, k);
1898                                break;
1899                            }
1900                        }
1901                    }
1902                } finally {
1903                    if (!f.casHash(fh | LOCKED, fh)) {
1904                        f.hash = fh;
1905                        synchronized (f) { f.notifyAll(); };
1906                    }
1907                }
1908                if (count != 0) {
1909                    if (tab.length <= 64)
1910                        count = 2;
1911                    break;
1912                }
1913            }
1914        }
1915        if (delta != 0) {
1916            counter.add((long)delta);
1917            if (count > 1)
1918                checkForResize();
1919        }
1920        return val;
1921    }
1922
1923    /** Implementation for putAll */
1924    private final void internalPutAll(Map<?, ?> m) {
1925        tryPresize(m.size());
1926        long delta = 0L;     // number of uncommitted additions
1927        boolean npe = false; // to throw exception on exit for nulls
1928        try {                // to clean up counts on other exceptions
1929            for (Map.Entry<?, ?> entry : m.entrySet()) {
1930                Object k, v;
1931                if (entry == null || (k = entry.getKey()) == null ||
1932                    (v = entry.getValue()) == null) {
1933                    npe = true;
1934                    break;
1935                }
1936                int h = spread(k.hashCode());
1937                for (Node[] tab = table;;) {
1938                    int i; Node f; int fh; Object fk;
1939                    if (tab == null)
1940                        tab = initTable();
1941                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1942                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1943                            ++delta;
1944                            break;
1945                        }
1946                    }
1947                    else if ((fh = f.hash) == MOVED) {
1948                        if ((fk = f.key) instanceof TreeBin) {
1949                            TreeBin t = (TreeBin)fk;
1950                            boolean validated = false;
1951                            t.acquire(0);
1952                            try {
1953                                if (tabAt(tab, i) == f) {
1954                                    validated = true;
1955                                    TreeNode p = t.getTreeNode(h, k, t.root);
1956                                    if (p != null)
1957                                        p.val = v;
1958                                    else {
1959                                        t.putTreeNode(h, k, v);
1960                                        ++delta;
1961                                    }
1962                                }
1963                            } finally {
1964                                t.release(0);
1965                            }
1966                            if (validated)
1967                                break;
1968                        }
1969                        else
1970                            tab = (Node[])fk;
1971                    }
1972                    else if ((fh & LOCKED) != 0) {
1973                        counter.add(delta);
1974                        delta = 0L;
1975                        checkForResize();
1976                        f.tryAwaitLock(tab, i);
1977                    }
1978                    else if (f.casHash(fh, fh | LOCKED)) {
1979                        int count = 0;
1980                        try {
1981                            if (tabAt(tab, i) == f) {
1982                                count = 1;
1983                                for (Node e = f;; ++count) {
1984                                    Object ek, ev;
1985                                    if ((e.hash & HASH_BITS) == h &&
1986                                        (ev = e.val) != null &&
1987                                        ((ek = e.key) == k || k.equals(ek))) {
1988                                        e.val = v;
1989                                        break;
1990                                    }
1991                                    Node last = e;
1992                                    if ((e = e.next) == null) {
1993                                        ++delta;
1994                                        last.next = new Node(h, k, v, null);
1995                                        if (count >= TREE_THRESHOLD)
1996                                            replaceWithTreeBin(tab, i, k);
1997                                        break;
1998                                    }
1999                                }
2000                            }
2001                        } finally {
2002                            if (!f.casHash(fh | LOCKED, fh)) {
2003                                f.hash = fh;
2004                                synchronized (f) { f.notifyAll(); };
2005                            }
2006                        }
2007                        if (count != 0) {
2008                            if (count > 1) {
2009                                counter.add(delta);
2010                                delta = 0L;
2011                                checkForResize();
2012                            }
2013                            break;
2014                        }
2015                    }
2016                }
2017            }
2018        } finally {
2019            if (delta != 0)
2020                counter.add(delta);
2021        }
2022        if (npe)
2023            throw new NullPointerException();
2024    }
2025
2026    /* ---------------- Table Initialization and Resizing -------------- */
2027
2028    /**
673       * Returns a power of two table size for the given desired capacity.
674       * See Hackers Delight, sec 3.2
675       */
# Line 2040 | Line 684 | public class ConcurrentHashMapV8<K, V>
684      }
685  
686      /**
687 <     * Initializes table, using the size recorded in sizeCtl.
687 >     * Returns x's Class if it is of the form "class C implements
688 >     * Comparable<C>", else null.
689       */
690 <    private final Node[] initTable() {
691 <        Node[] tab; int sc;
692 <        while ((tab = table) == null) {
693 <            if ((sc = sizeCtl) < 0)
694 <                Thread.yield(); // lost initialization race; just spin
695 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
696 <                try {
697 <                    if ((tab = table) == null) {
698 <                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
699 <                        tab = table = new Node[n];
700 <                        sc = n - (n >>> 2);
701 <                    }
702 <                } finally {
2058 <                    sizeCtl = sc;
2059 <                }
2060 <                break;
2061 <            }
2062 <        }
2063 <        return tab;
2064 <    }
2065 <
2066 <    /**
2067 <     * If table is too small and not already resizing, creates next
2068 <     * table and transfers bins.  Rechecks occupancy after a transfer
2069 <     * to see if another resize is already needed because resizings
2070 <     * are lagging additions.
2071 <     */
2072 <    private final void checkForResize() {
2073 <        Node[] tab; int n, sc;
2074 <        while ((tab = table) != null &&
2075 <               (n = tab.length) < MAXIMUM_CAPACITY &&
2076 <               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
2077 <               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2078 <            try {
2079 <                if (tab == table) {
2080 <                    table = rebuild(tab);
2081 <                    sc = (n << 1) - (n >>> 1);
690 >    static Class<?> comparableClassFor(Object x) {
691 >        if (x instanceof Comparable) {
692 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
693 >            if ((c = x.getClass()) == String.class) // bypass checks
694 >                return c;
695 >            if ((ts = c.getGenericInterfaces()) != null) {
696 >                for (int i = 0; i < ts.length; ++i) {
697 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
698 >                        ((p = (ParameterizedType)t).getRawType() ==
699 >                         Comparable.class) &&
700 >                        (as = p.getActualTypeArguments()) != null &&
701 >                        as.length == 1 && as[0] == c) // type arg is c
702 >                        return c;
703                  }
2083            } finally {
2084                sizeCtl = sc;
704              }
705          }
706 +        return null;
707      }
708  
709      /**
710 <     * Tries to presize table to accommodate the given number of elements.
711 <     *
2092 <     * @param size number of elements (doesn't need to be perfectly accurate)
710 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
711 >     * class), else 0.
712       */
713 <    private final void tryPresize(int size) {
714 <        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
715 <            tableSizeFor(size + (size >>> 1) + 1);
716 <        int sc;
2098 <        while ((sc = sizeCtl) >= 0) {
2099 <            Node[] tab = table; int n;
2100 <            if (tab == null || (n = tab.length) == 0) {
2101 <                n = (sc > c) ? sc : c;
2102 <                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2103 <                    try {
2104 <                        if (table == tab) {
2105 <                            table = new Node[n];
2106 <                            sc = n - (n >>> 2);
2107 <                        }
2108 <                    } finally {
2109 <                        sizeCtl = sc;
2110 <                    }
2111 <                }
2112 <            }
2113 <            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2114 <                break;
2115 <            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2116 <                try {
2117 <                    if (table == tab) {
2118 <                        table = rebuild(tab);
2119 <                        sc = (n << 1) - (n >>> 1);
2120 <                    }
2121 <                } finally {
2122 <                    sizeCtl = sc;
2123 <                }
2124 <            }
2125 <        }
713 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
714 >    static int compareComparables(Class<?> kc, Object k, Object x) {
715 >        return (x == null || x.getClass() != kc ? 0 :
716 >                ((Comparable)k).compareTo(x));
717      }
718  
719 +    /* ---------------- Table element access -------------- */
720 +
721      /*
722 <     * Moves and/or copies the nodes in each bin to new table. See
723 <     * above for explanation.
724 <     *
725 <     * @return the new table
726 <     */
727 <    private static final Node[] rebuild(Node[] tab) {
728 <        int n = tab.length;
729 <        Node[] nextTab = new Node[n << 1];
730 <        Node fwd = new Node(MOVED, nextTab, null, null);
731 <        int[] buffer = null;       // holds bins to revisit; null until needed
732 <        Node rev = null;           // reverse forwarder; null until needed
733 <        int nbuffered = 0;         // the number of bins in buffer list
734 <        int bufferIndex = 0;       // buffer index of current buffered bin
735 <        int bin = n - 1;           // current non-buffered bin or -1 if none
736 <
737 <        for (int i = bin;;) {      // start upwards sweep
738 <            int fh; Node f;
739 <            if ((f = tabAt(tab, i)) == null) {
740 <                if (bin >= 0) {    // Unbuffered; no lock needed (or available)
741 <                    if (!casTabAt(tab, i, f, fwd))
742 <                        continue;
743 <                }
744 <                else {             // transiently use a locked forwarding node
2152 <                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2153 <                    if (!casTabAt(tab, i, f, g))
2154 <                        continue;
2155 <                    setTabAt(nextTab, i, null);
2156 <                    setTabAt(nextTab, i + n, null);
2157 <                    setTabAt(tab, i, fwd);
2158 <                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
2159 <                        g.hash = MOVED;
2160 <                        synchronized (g) { g.notifyAll(); }
2161 <                    }
2162 <                }
2163 <            }
2164 <            else if ((fh = f.hash) == MOVED) {
2165 <                Object fk = f.key;
2166 <                if (fk instanceof TreeBin) {
2167 <                    TreeBin t = (TreeBin)fk;
2168 <                    boolean validated = false;
2169 <                    t.acquire(0);
2170 <                    try {
2171 <                        if (tabAt(tab, i) == f) {
2172 <                            validated = true;
2173 <                            splitTreeBin(nextTab, i, t);
2174 <                            setTabAt(tab, i, fwd);
2175 <                        }
2176 <                    } finally {
2177 <                        t.release(0);
2178 <                    }
2179 <                    if (!validated)
2180 <                        continue;
2181 <                }
2182 <            }
2183 <            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2184 <                boolean validated = false;
2185 <                try {              // split to lo and hi lists; copying as needed
2186 <                    if (tabAt(tab, i) == f) {
2187 <                        validated = true;
2188 <                        splitBin(nextTab, i, f);
2189 <                        setTabAt(tab, i, fwd);
2190 <                    }
2191 <                } finally {
2192 <                    if (!f.casHash(fh | LOCKED, fh)) {
2193 <                        f.hash = fh;
2194 <                        synchronized (f) { f.notifyAll(); };
2195 <                    }
2196 <                }
2197 <                if (!validated)
2198 <                    continue;
2199 <            }
2200 <            else {
2201 <                if (buffer == null) // initialize buffer for revisits
2202 <                    buffer = new int[TRANSFER_BUFFER_SIZE];
2203 <                if (bin < 0 && bufferIndex > 0) {
2204 <                    int j = buffer[--bufferIndex];
2205 <                    buffer[bufferIndex] = i;
2206 <                    i = j;         // swap with another bin
2207 <                    continue;
2208 <                }
2209 <                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2210 <                    f.tryAwaitLock(tab, i);
2211 <                    continue;      // no other options -- block
2212 <                }
2213 <                if (rev == null)   // initialize reverse-forwarder
2214 <                    rev = new Node(MOVED, tab, null, null);
2215 <                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2216 <                    continue;      // recheck before adding to list
2217 <                buffer[nbuffered++] = i;
2218 <                setTabAt(nextTab, i, rev);     // install place-holders
2219 <                setTabAt(nextTab, i + n, rev);
2220 <            }
2221 <
2222 <            if (bin > 0)
2223 <                i = --bin;
2224 <            else if (buffer != null && nbuffered > 0) {
2225 <                bin = -1;
2226 <                i = buffer[bufferIndex = --nbuffered];
2227 <            }
2228 <            else
2229 <                return nextTab;
2230 <        }
722 >     * Volatile access methods are used for table elements as well as
723 >     * elements of in-progress next table while resizing.  All uses of
724 >     * the tab arguments must be null checked by callers.  All callers
725 >     * also paranoically precheck that tab's length is not zero (or an
726 >     * equivalent check), thus ensuring that any index argument taking
727 >     * the form of a hash value anded with (length - 1) is a valid
728 >     * index.  Note that, to be correct wrt arbitrary concurrency
729 >     * errors by users, these checks must operate on local variables,
730 >     * which accounts for some odd-looking inline assignments below.
731 >     * Note that calls to setTabAt always occur within locked regions,
732 >     * and so in principle require only release ordering, not need
733 >     * full volatile semantics, but are currently coded as volatile
734 >     * writes to be conservative.
735 >     */
736 >
737 >    @SuppressWarnings("unchecked")
738 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
739 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
740 >    }
741 >
742 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
743 >                                        Node<K,V> c, Node<K,V> v) {
744 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
745      }
746  
747 <    /**
748 <     * Splits a normal bin with list headed by e into lo and hi parts;
2235 <     * installs in given table.
2236 <     */
2237 <    private static void splitBin(Node[] nextTab, int i, Node e) {
2238 <        int bit = nextTab.length >>> 1; // bit to split on
2239 <        int runBit = e.hash & bit;
2240 <        Node lastRun = e, lo = null, hi = null;
2241 <        for (Node p = e.next; p != null; p = p.next) {
2242 <            int b = p.hash & bit;
2243 <            if (b != runBit) {
2244 <                runBit = b;
2245 <                lastRun = p;
2246 <            }
2247 <        }
2248 <        if (runBit == 0)
2249 <            lo = lastRun;
2250 <        else
2251 <            hi = lastRun;
2252 <        for (Node p = e; p != lastRun; p = p.next) {
2253 <            int ph = p.hash & HASH_BITS;
2254 <            Object pk = p.key, pv = p.val;
2255 <            if ((ph & bit) == 0)
2256 <                lo = new Node(ph, pk, pv, lo);
2257 <            else
2258 <                hi = new Node(ph, pk, pv, hi);
2259 <        }
2260 <        setTabAt(nextTab, i, lo);
2261 <        setTabAt(nextTab, i + bit, hi);
747 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
748 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
749      }
750  
751 +    /* ---------------- Fields -------------- */
752 +
753      /**
754 <     * Splits a tree bin into lo and hi parts; installs in given table.
754 >     * The array of bins. Lazily initialized upon first insertion.
755 >     * Size is always a power of two. Accessed directly by iterators.
756       */
757 <    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2268 <        int bit = nextTab.length >>> 1;
2269 <        TreeBin lt = new TreeBin();
2270 <        TreeBin ht = new TreeBin();
2271 <        int lc = 0, hc = 0;
2272 <        for (Node e = t.first; e != null; e = e.next) {
2273 <            int h = e.hash & HASH_BITS;
2274 <            Object k = e.key, v = e.val;
2275 <            if ((h & bit) == 0) {
2276 <                ++lc;
2277 <                lt.putTreeNode(h, k, v);
2278 <            }
2279 <            else {
2280 <                ++hc;
2281 <                ht.putTreeNode(h, k, v);
2282 <            }
2283 <        }
2284 <        Node ln, hn; // throw away trees if too small
2285 <        if (lc <= (TREE_THRESHOLD >>> 1)) {
2286 <            ln = null;
2287 <            for (Node p = lt.first; p != null; p = p.next)
2288 <                ln = new Node(p.hash, p.key, p.val, ln);
2289 <        }
2290 <        else
2291 <            ln = new Node(MOVED, lt, null, null);
2292 <        setTabAt(nextTab, i, ln);
2293 <        if (hc <= (TREE_THRESHOLD >>> 1)) {
2294 <            hn = null;
2295 <            for (Node p = ht.first; p != null; p = p.next)
2296 <                hn = new Node(p.hash, p.key, p.val, hn);
2297 <        }
2298 <        else
2299 <            hn = new Node(MOVED, ht, null, null);
2300 <        setTabAt(nextTab, i + bit, hn);
2301 <    }
757 >    transient volatile Node<K,V>[] table;
758  
759      /**
760 <     * Implementation for clear. Steps through each bin, removing all
2305 <     * nodes.
760 >     * The next table to use; non-null only while resizing.
761       */
762 <    private final void internalClear() {
2308 <        long delta = 0L; // negative number of deletions
2309 <        int i = 0;
2310 <        Node[] tab = table;
2311 <        while (tab != null && i < tab.length) {
2312 <            int fh; Object fk;
2313 <            Node f = tabAt(tab, i);
2314 <            if (f == null)
2315 <                ++i;
2316 <            else if ((fh = f.hash) == MOVED) {
2317 <                if ((fk = f.key) instanceof TreeBin) {
2318 <                    TreeBin t = (TreeBin)fk;
2319 <                    t.acquire(0);
2320 <                    try {
2321 <                        if (tabAt(tab, i) == f) {
2322 <                            for (Node p = t.first; p != null; p = p.next) {
2323 <                                if (p.val != null) { // (currently always true)
2324 <                                    p.val = null;
2325 <                                    --delta;
2326 <                                }
2327 <                            }
2328 <                            t.first = null;
2329 <                            t.root = null;
2330 <                            ++i;
2331 <                        }
2332 <                    } finally {
2333 <                        t.release(0);
2334 <                    }
2335 <                }
2336 <                else
2337 <                    tab = (Node[])fk;
2338 <            }
2339 <            else if ((fh & LOCKED) != 0) {
2340 <                counter.add(delta); // opportunistically update count
2341 <                delta = 0L;
2342 <                f.tryAwaitLock(tab, i);
2343 <            }
2344 <            else if (f.casHash(fh, fh | LOCKED)) {
2345 <                try {
2346 <                    if (tabAt(tab, i) == f) {
2347 <                        for (Node e = f; e != null; e = e.next) {
2348 <                            if (e.val != null) {  // (currently always true)
2349 <                                e.val = null;
2350 <                                --delta;
2351 <                            }
2352 <                        }
2353 <                        setTabAt(tab, i, null);
2354 <                        ++i;
2355 <                    }
2356 <                } finally {
2357 <                    if (!f.casHash(fh | LOCKED, fh)) {
2358 <                        f.hash = fh;
2359 <                        synchronized (f) { f.notifyAll(); };
2360 <                    }
2361 <                }
2362 <            }
2363 <        }
2364 <        if (delta != 0)
2365 <            counter.add(delta);
2366 <    }
2367 <
2368 <    /* ----------------Table Traversal -------------- */
762 >    private transient volatile Node<K,V>[] nextTable;
763  
764      /**
765 <     * Encapsulates traversal for methods such as containsValue; also
766 <     * serves as a base class for other iterators and bulk tasks.
767 <     *
768 <     * At each step, the iterator snapshots the key ("nextKey") and
769 <     * value ("nextVal") of a valid node (i.e., one that, at point of
2376 <     * snapshot, has a non-null user value). Because val fields can
2377 <     * change (including to null, indicating deletion), field nextVal
2378 <     * might not be accurate at point of use, but still maintains the
2379 <     * weak consistency property of holding a value that was once
2380 <     * valid. To support iterator.remove, the nextKey field is not
2381 <     * updated (nulled out) when the iterator cannot advance.
2382 <     *
2383 <     * Internal traversals directly access these fields, as in:
2384 <     * {@code while (it.advance() != null) { process(it.nextKey); }}
2385 <     *
2386 <     * Exported iterators must track whether the iterator has advanced
2387 <     * (in hasNext vs next) (by setting/checking/nulling field
2388 <     * nextVal), and then extract key, value, or key-value pairs as
2389 <     * return values of next().
2390 <     *
2391 <     * The iterator visits once each still-valid node that was
2392 <     * reachable upon iterator construction. It might miss some that
2393 <     * were added to a bin after the bin was visited, which is OK wrt
2394 <     * consistency guarantees. Maintaining this property in the face
2395 <     * of possible ongoing resizes requires a fair amount of
2396 <     * bookkeeping state that is difficult to optimize away amidst
2397 <     * volatile accesses.  Even so, traversal maintains reasonable
2398 <     * throughput.
2399 <     *
2400 <     * Normally, iteration proceeds bin-by-bin traversing lists.
2401 <     * However, if the table has been resized, then all future steps
2402 <     * must traverse both the bin at the current index as well as at
2403 <     * (index + baseSize); and so on for further resizings. To
2404 <     * paranoically cope with potential sharing by users of iterators
2405 <     * across threads, iteration terminates if a bounds checks fails
2406 <     * for a table read.
2407 <     *
2408 <     * This class extends CountedCompleter to streamline parallel
2409 <     * iteration in bulk operations. This adds only a few fields of
2410 <     * space overhead, which is small enough in cases where it is not
2411 <     * needed to not worry about it.  Because CountedCompleter is
2412 <     * Serializable, but iterators need not be, we need to add warning
2413 <     * suppressions.
2414 <     */
2415 <    @SuppressWarnings("serial") static class Traverser<K,V,R> extends CountedCompleter<R> {
2416 <        final ConcurrentHashMapV8<K, V> map;
2417 <        Node next;           // the next entry to use
2418 <        Object nextKey;      // cached key field of next
2419 <        Object nextVal;      // cached val field of next
2420 <        Node[] tab;          // current table; updated if resized
2421 <        int index;           // index of bin to use next
2422 <        int baseIndex;       // current index of initial table
2423 <        int baseLimit;       // index bound for initial table
2424 <        int baseSize;        // initial table size
2425 <        int batch;           // split control
2426 <
2427 <        /** Creates iterator for all entries in the table. */
2428 <        Traverser(ConcurrentHashMapV8<K, V> map) {
2429 <            this.map = map;
2430 <        }
2431 <
2432 <        /** Creates iterator for split() methods and task constructors */
2433 <        Traverser(ConcurrentHashMapV8<K,V> map, Traverser<K,V,?> it, int batch) {
2434 <            super(it);
2435 <            this.batch = batch;
2436 <            if ((this.map = map) != null && it != null) { // split parent
2437 <                Node[] t;
2438 <                if ((t = it.tab) == null &&
2439 <                    (t = it.tab = map.table) != null)
2440 <                    it.baseLimit = it.baseSize = t.length;
2441 <                this.tab = t;
2442 <                this.baseSize = it.baseSize;
2443 <                int hi = this.baseLimit = it.baseLimit;
2444 <                it.baseLimit = this.index = this.baseIndex =
2445 <                    (hi + it.baseIndex + 1) >>> 1;
2446 <            }
2447 <        }
765 >     * Base counter value, used mainly when there is no contention,
766 >     * but also as a fallback during table initialization
767 >     * races. Updated via CAS.
768 >     */
769 >    private transient volatile long baseCount;
770  
771 <        /**
772 <         * Advances next; returns nextVal or null if terminated.
773 <         * See above for explanation.
774 <         */
775 <        final Object advance() {
776 <            Node e = next;
777 <            Object ev = null;
778 <            outer: do {
779 <                if (e != null)                  // advance past used/skipped node
2458 <                    e = e.next;
2459 <                while (e == null) {             // get to next non-null bin
2460 <                    ConcurrentHashMapV8<K, V> m;
2461 <                    Node[] t; int b, i, n; Object ek; // checks must use locals
2462 <                    if ((t = tab) != null)
2463 <                        n = t.length;
2464 <                    else if ((m = map) != null && (t = tab = m.table) != null)
2465 <                        n = baseLimit = baseSize = t.length;
2466 <                    else
2467 <                        break outer;
2468 <                    if ((b = baseIndex) >= baseLimit ||
2469 <                        (i = index) < 0 || i >= n)
2470 <                        break outer;
2471 <                    if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2472 <                        if ((ek = e.key) instanceof TreeBin)
2473 <                            e = ((TreeBin)ek).first;
2474 <                        else {
2475 <                            tab = (Node[])ek;
2476 <                            continue;           // restarts due to null val
2477 <                        }
2478 <                    }                           // visit upper slots if present
2479 <                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2480 <                }
2481 <                nextKey = e.key;
2482 <            } while ((ev = e.val) == null);    // skip deleted or special nodes
2483 <            next = e;
2484 <            return nextVal = ev;
2485 <        }
771 >    /**
772 >     * Table initialization and resizing control.  When negative, the
773 >     * table is being initialized or resized: -1 for initialization,
774 >     * else -(1 + the number of active resizing threads).  Otherwise,
775 >     * when table is null, holds the initial table size to use upon
776 >     * creation, or 0 for default. After initialization, holds the
777 >     * next element count value upon which to resize the table.
778 >     */
779 >    private transient volatile int sizeCtl;
780  
781 <        public final void remove() {
782 <            Object k = nextKey;
783 <            if (k == null && (advance() == null || (k = nextKey) == null))
784 <                throw new IllegalStateException();
2491 <            map.internalReplace(k, null, null);
2492 <        }
781 >    /**
782 >     * The next table index (plus one) to split while resizing.
783 >     */
784 >    private transient volatile int transferIndex;
785  
786 <        public final boolean hasNext() {
787 <            return nextVal != null || advance() != null;
788 <        }
786 >    /**
787 >     * The least available table index to split while resizing.
788 >     */
789 >    private transient volatile int transferOrigin;
790  
791 <        public final boolean hasMoreElements() { return hasNext(); }
791 >    /**
792 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
793 >     */
794 >    private transient volatile int cellsBusy;
795  
796 <        public void compute() { } // default no-op CountedCompleter body
796 >    /**
797 >     * Table of counter cells. When non-null, size is a power of 2.
798 >     */
799 >    private transient volatile CounterCell[] counterCells;
800  
801 <        /**
802 <         * Returns a batch value > 0 if this task should (and must) be
803 <         * split, if so, adding to pending count, and in any case
804 <         * updating batch value. The initial batch value is approx
2506 <         * exp2 of the number of times (minus one) to split task by
2507 <         * two before executing leaf action. This value is faster to
2508 <         * compute and more convenient to use as a guide to splitting
2509 <         * than is the depth, since it is used while dividing by two
2510 <         * anyway.
2511 <         */
2512 <        final int preSplit() {
2513 <            ConcurrentHashMapV8<K, V> m; int b; Node[] t;  ForkJoinPool pool;
2514 <            if ((b = batch) < 0 && (m = map) != null) { // force initialization
2515 <                if ((t = tab) == null && (t = tab = m.table) != null)
2516 <                    baseLimit = baseSize = t.length;
2517 <                if (t != null) {
2518 <                    long n = m.counter.sum();
2519 <                    int par = ((pool = getPool()) == null) ?
2520 <                        ForkJoinPool.getCommonPoolParallelism() :
2521 <                        pool.getParallelism();
2522 <                    int sp = par << 3; // slack of 8
2523 <                    b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2524 <                }
2525 <            }
2526 <            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2527 <            if ((batch = b) > 0)
2528 <                addToPendingCount(1);
2529 <            return b;
2530 <        }
801 >    // views
802 >    private transient KeySetView<K,V> keySet;
803 >    private transient ValuesView<K,V> values;
804 >    private transient EntrySetView<K,V> entrySet;
805  
2532    }
806  
807      /* ---------------- Public operations -------------- */
808  
# Line 2537 | Line 810 | public class ConcurrentHashMapV8<K, V>
810       * Creates a new, empty map with the default initial table size (16).
811       */
812      public ConcurrentHashMapV8() {
2540        this.counter = new LongAdder();
813      }
814  
815      /**
# Line 2556 | Line 828 | public class ConcurrentHashMapV8<K, V>
828          int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
829                     MAXIMUM_CAPACITY :
830                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2559        this.counter = new LongAdder();
831          this.sizeCtl = cap;
832      }
833  
# Line 2566 | Line 837 | public class ConcurrentHashMapV8<K, V>
837       * @param m the map
838       */
839      public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2569        this.counter = new LongAdder();
840          this.sizeCtl = DEFAULT_CAPACITY;
841 <        internalPutAll(m);
841 >        putAll(m);
842      }
843  
844      /**
# Line 2609 | Line 879 | public class ConcurrentHashMapV8<K, V>
879       * nonpositive
880       */
881      public ConcurrentHashMapV8(int initialCapacity,
882 <                               float loadFactor, int concurrencyLevel) {
882 >                             float loadFactor, int concurrencyLevel) {
883          if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
884              throw new IllegalArgumentException();
885          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
# Line 2617 | Line 887 | public class ConcurrentHashMapV8<K, V>
887          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
888          int cap = (size >= (long)MAXIMUM_CAPACITY) ?
889              MAXIMUM_CAPACITY : tableSizeFor((int)size);
2620        this.counter = new LongAdder();
890          this.sizeCtl = cap;
891      }
892  
893 <    /**
2625 <     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2626 <     * from the given type to {@code Boolean.TRUE}.
2627 <     *
2628 <     * @return the new set
2629 <     */
2630 <    public static <K> KeySetView<K,Boolean> newKeySet() {
2631 <        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2632 <                                      Boolean.TRUE);
2633 <    }
2634 <
2635 <    /**
2636 <     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2637 <     * from the given type to {@code Boolean.TRUE}.
2638 <     *
2639 <     * @param initialCapacity The implementation performs internal
2640 <     * sizing to accommodate this many elements.
2641 <     * @throws IllegalArgumentException if the initial capacity of
2642 <     * elements is negative
2643 <     * @return the new set
2644 <     */
2645 <    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2646 <        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(initialCapacity),
2647 <                                      Boolean.TRUE);
2648 <    }
2649 <
2650 <    /**
2651 <     * {@inheritDoc}
2652 <     */
2653 <    public boolean isEmpty() {
2654 <        return counter.sum() <= 0L; // ignore transient negative values
2655 <    }
893 >    // Original (since JDK1.2) Map methods
894  
895      /**
896       * {@inheritDoc}
897       */
898      public int size() {
899 <        long n = counter.sum();
899 >        long n = sumCount();
900          return ((n < 0L) ? 0 :
901                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
902                  (int)n);
903      }
904  
905      /**
906 <     * Returns the number of mappings. This method should be used
2669 <     * instead of {@link #size} because a ConcurrentHashMapV8 may
2670 <     * contain more mappings than can be represented as an int. The
2671 <     * value returned is an estimate; the actual count may differ if
2672 <     * there are concurrent insertions or removals.
2673 <     *
2674 <     * @return the number of mappings
906 >     * {@inheritDoc}
907       */
908 <    public long mappingCount() {
909 <        long n = counter.sum();
2678 <        return (n < 0L) ? 0L : n; // ignore transient negative values
908 >    public boolean isEmpty() {
909 >        return sumCount() <= 0L; // ignore transient negative values
910      }
911  
912      /**
# Line 2689 | Line 920 | public class ConcurrentHashMapV8<K, V>
920       *
921       * @throws NullPointerException if the specified key is null
922       */
923 <    @SuppressWarnings("unchecked") public V get(Object key) {
924 <        if (key == null)
925 <            throw new NullPointerException();
926 <        return (V)internalGet(key);
927 <    }
928 <
929 <    /**
930 <     * Returns the value to which the specified key is mapped,
931 <     * or the given defaultValue if this map contains no mapping for the key.
932 <     *
933 <     * @param key the key
934 <     * @param defaultValue the value to return if this map contains
935 <     * no mapping for the given key
936 <     * @return the mapping for the key, if present; else the defaultValue
937 <     * @throws NullPointerException if the specified key is null
938 <     */
939 <    @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
940 <        if (key == null)
2710 <            throw new NullPointerException();
2711 <        V v = (V) internalGet(key);
2712 <        return v == null ? defaultValue : v;
923 >    public V get(Object key) {
924 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
925 >        int h = spread(key.hashCode());
926 >        if ((tab = table) != null && (n = tab.length) > 0 &&
927 >            (e = tabAt(tab, (n - 1) & h)) != null) {
928 >            if ((eh = e.hash) == h) {
929 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
930 >                    return e.val;
931 >            }
932 >            else if (eh < 0)
933 >                return (p = e.find(h, key)) != null ? p.val : null;
934 >            while ((e = e.next) != null) {
935 >                if (e.hash == h &&
936 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
937 >                    return e.val;
938 >            }
939 >        }
940 >        return null;
941      }
942  
943      /**
944       * Tests if the specified object is a key in this table.
945       *
946 <     * @param  key   possible key
946 >     * @param  key possible key
947       * @return {@code true} if and only if the specified object
948       *         is a key in this table, as determined by the
949       *         {@code equals} method; {@code false} otherwise
950       * @throws NullPointerException if the specified key is null
951       */
952      public boolean containsKey(Object key) {
953 <        if (key == null)
2726 <            throw new NullPointerException();
2727 <        return internalGet(key) != null;
953 >        return get(key) != null;
954      }
955  
956      /**
# Line 2740 | Line 966 | public class ConcurrentHashMapV8<K, V>
966      public boolean containsValue(Object value) {
967          if (value == null)
968              throw new NullPointerException();
969 <        Object v;
970 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
971 <        while ((v = it.advance()) != null) {
972 <            if (v == value || value.equals(v))
973 <                return true;
969 >        Node<K,V>[] t;
970 >        if ((t = table) != null) {
971 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
972 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
973 >                V v;
974 >                if ((v = p.val) == value || (v != null && value.equals(v)))
975 >                    return true;
976 >            }
977          }
978          return false;
979      }
980  
981      /**
2753     * Legacy method testing if some key maps into the specified value
2754     * in this table.  This method is identical in functionality to
2755     * {@link #containsValue}, and exists solely to ensure
2756     * full compatibility with class {@link java.util.Hashtable},
2757     * which supported this method prior to introduction of the
2758     * Java Collections framework.
2759     *
2760     * @param  value a value to search for
2761     * @return {@code true} if and only if some key maps to the
2762     *         {@code value} argument in this table as
2763     *         determined by the {@code equals} method;
2764     *         {@code false} otherwise
2765     * @throws NullPointerException if the specified value is null
2766     */
2767    public boolean contains(Object value) {
2768        return containsValue(value);
2769    }
2770
2771    /**
982       * Maps the specified key to the specified value in this table.
983       * Neither the key nor the value can be null.
984       *
# Line 2781 | Line 991 | public class ConcurrentHashMapV8<K, V>
991       *         {@code null} if there was no mapping for {@code key}
992       * @throws NullPointerException if the specified key or value is null
993       */
994 <    @SuppressWarnings("unchecked") public V put(K key, V value) {
995 <        if (key == null || value == null)
994 >    public V put(K key, V value) {
995 >        return putVal(key, value, false);
996 >    }
997 >
998 >    /** Implementation for put and putIfAbsent */
999 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
1000 >        if (key == null || value == null) throw new NullPointerException();
1001 >        int hash = spread(key.hashCode());
1002 >        int binCount = 0;
1003 >        for (Node<K,V>[] tab = table;;) {
1004 >            Node<K,V> f; int n, i, fh;
1005 >            if (tab == null || (n = tab.length) == 0)
1006 >                tab = initTable();
1007 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1008 >                if (casTabAt(tab, i, null,
1009 >                             new Node<K,V>(hash, key, value, null)))
1010 >                    break;                   // no lock when adding to empty bin
1011 >            }
1012 >            else if ((fh = f.hash) == MOVED)
1013 >                tab = helpTransfer(tab, f);
1014 >            else {
1015 >                V oldVal = null;
1016 >                synchronized (f) {
1017 >                    if (tabAt(tab, i) == f) {
1018 >                        if (fh >= 0) {
1019 >                            binCount = 1;
1020 >                            for (Node<K,V> e = f;; ++binCount) {
1021 >                                K ek;
1022 >                                if (e.hash == hash &&
1023 >                                    ((ek = e.key) == key ||
1024 >                                     (ek != null && key.equals(ek)))) {
1025 >                                    oldVal = e.val;
1026 >                                    if (!onlyIfAbsent)
1027 >                                        e.val = value;
1028 >                                    break;
1029 >                                }
1030 >                                Node<K,V> pred = e;
1031 >                                if ((e = e.next) == null) {
1032 >                                    pred.next = new Node<K,V>(hash, key,
1033 >                                                              value, null);
1034 >                                    break;
1035 >                                }
1036 >                            }
1037 >                        }
1038 >                        else if (f instanceof TreeBin) {
1039 >                            Node<K,V> p;
1040 >                            binCount = 2;
1041 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1042 >                                                           value)) != null) {
1043 >                                oldVal = p.val;
1044 >                                if (!onlyIfAbsent)
1045 >                                    p.val = value;
1046 >                            }
1047 >                        }
1048 >                    }
1049 >                }
1050 >                if (binCount != 0) {
1051 >                    if (binCount >= TREEIFY_THRESHOLD)
1052 >                        treeifyBin(tab, i);
1053 >                    if (oldVal != null)
1054 >                        return oldVal;
1055 >                    break;
1056 >                }
1057 >            }
1058 >        }
1059 >        addCount(1L, binCount);
1060 >        return null;
1061 >    }
1062 >
1063 >    /**
1064 >     * Copies all of the mappings from the specified map to this one.
1065 >     * These mappings replace any mappings that this map had for any of the
1066 >     * keys currently in the specified map.
1067 >     *
1068 >     * @param m mappings to be stored in this map
1069 >     */
1070 >    public void putAll(Map<? extends K, ? extends V> m) {
1071 >        tryPresize(m.size());
1072 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1073 >            putVal(e.getKey(), e.getValue(), false);
1074 >    }
1075 >
1076 >    /**
1077 >     * Removes the key (and its corresponding value) from this map.
1078 >     * This method does nothing if the key is not in the map.
1079 >     *
1080 >     * @param  key the key that needs to be removed
1081 >     * @return the previous value associated with {@code key}, or
1082 >     *         {@code null} if there was no mapping for {@code key}
1083 >     * @throws NullPointerException if the specified key is null
1084 >     */
1085 >    public V remove(Object key) {
1086 >        return replaceNode(key, null, null);
1087 >    }
1088 >
1089 >    /**
1090 >     * Implementation for the four public remove/replace methods:
1091 >     * Replaces node value with v, conditional upon match of cv if
1092 >     * non-null.  If resulting value is null, delete.
1093 >     */
1094 >    final V replaceNode(Object key, V value, Object cv) {
1095 >        int hash = spread(key.hashCode());
1096 >        for (Node<K,V>[] tab = table;;) {
1097 >            Node<K,V> f; int n, i, fh;
1098 >            if (tab == null || (n = tab.length) == 0 ||
1099 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1100 >                break;
1101 >            else if ((fh = f.hash) == MOVED)
1102 >                tab = helpTransfer(tab, f);
1103 >            else {
1104 >                V oldVal = null;
1105 >                boolean validated = false;
1106 >                synchronized (f) {
1107 >                    if (tabAt(tab, i) == f) {
1108 >                        if (fh >= 0) {
1109 >                            validated = true;
1110 >                            for (Node<K,V> e = f, pred = null;;) {
1111 >                                K ek;
1112 >                                if (e.hash == hash &&
1113 >                                    ((ek = e.key) == key ||
1114 >                                     (ek != null && key.equals(ek)))) {
1115 >                                    V ev = e.val;
1116 >                                    if (cv == null || cv == ev ||
1117 >                                        (ev != null && cv.equals(ev))) {
1118 >                                        oldVal = ev;
1119 >                                        if (value != null)
1120 >                                            e.val = value;
1121 >                                        else if (pred != null)
1122 >                                            pred.next = e.next;
1123 >                                        else
1124 >                                            setTabAt(tab, i, e.next);
1125 >                                    }
1126 >                                    break;
1127 >                                }
1128 >                                pred = e;
1129 >                                if ((e = e.next) == null)
1130 >                                    break;
1131 >                            }
1132 >                        }
1133 >                        else if (f instanceof TreeBin) {
1134 >                            validated = true;
1135 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1136 >                            TreeNode<K,V> r, p;
1137 >                            if ((r = t.root) != null &&
1138 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1139 >                                V pv = p.val;
1140 >                                if (cv == null || cv == pv ||
1141 >                                    (pv != null && cv.equals(pv))) {
1142 >                                    oldVal = pv;
1143 >                                    if (value != null)
1144 >                                        p.val = value;
1145 >                                    else if (t.removeTreeNode(p))
1146 >                                        setTabAt(tab, i, untreeify(t.first));
1147 >                                }
1148 >                            }
1149 >                        }
1150 >                    }
1151 >                }
1152 >                if (validated) {
1153 >                    if (oldVal != null) {
1154 >                        if (value == null)
1155 >                            addCount(-1L, -1);
1156 >                        return oldVal;
1157 >                    }
1158 >                    break;
1159 >                }
1160 >            }
1161 >        }
1162 >        return null;
1163 >    }
1164 >
1165 >    /**
1166 >     * Removes all of the mappings from this map.
1167 >     */
1168 >    public void clear() {
1169 >        long delta = 0L; // negative number of deletions
1170 >        int i = 0;
1171 >        Node<K,V>[] tab = table;
1172 >        while (tab != null && i < tab.length) {
1173 >            int fh;
1174 >            Node<K,V> f = tabAt(tab, i);
1175 >            if (f == null)
1176 >                ++i;
1177 >            else if ((fh = f.hash) == MOVED) {
1178 >                tab = helpTransfer(tab, f);
1179 >                i = 0; // restart
1180 >            }
1181 >            else {
1182 >                synchronized (f) {
1183 >                    if (tabAt(tab, i) == f) {
1184 >                        Node<K,V> p = (fh >= 0 ? f :
1185 >                                       (f instanceof TreeBin) ?
1186 >                                       ((TreeBin<K,V>)f).first : null);
1187 >                        while (p != null) {
1188 >                            --delta;
1189 >                            p = p.next;
1190 >                        }
1191 >                        setTabAt(tab, i++, null);
1192 >                    }
1193 >                }
1194 >            }
1195 >        }
1196 >        if (delta != 0L)
1197 >            addCount(delta, -1);
1198 >    }
1199 >
1200 >    /**
1201 >     * Returns a {@link Set} view of the keys contained in this map.
1202 >     * The set is backed by the map, so changes to the map are
1203 >     * reflected in the set, and vice-versa. The set supports element
1204 >     * removal, which removes the corresponding mapping from this map,
1205 >     * via the {@code Iterator.remove}, {@code Set.remove},
1206 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1207 >     * operations.  It does not support the {@code add} or
1208 >     * {@code addAll} operations.
1209 >     *
1210 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1211 >     * that will never throw {@link ConcurrentModificationException},
1212 >     * and guarantees to traverse elements as they existed upon
1213 >     * construction of the iterator, and may (but is not guaranteed to)
1214 >     * reflect any modifications subsequent to construction.
1215 >     *
1216 >     * @return the set view
1217 >     */
1218 >    public KeySetView<K,V> keySet() {
1219 >        KeySetView<K,V> ks;
1220 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1221 >    }
1222 >
1223 >    /**
1224 >     * Returns a {@link Collection} view of the values contained in this map.
1225 >     * The collection is backed by the map, so changes to the map are
1226 >     * reflected in the collection, and vice-versa.  The collection
1227 >     * supports element removal, which removes the corresponding
1228 >     * mapping from this map, via the {@code Iterator.remove},
1229 >     * {@code Collection.remove}, {@code removeAll},
1230 >     * {@code retainAll}, and {@code clear} operations.  It does not
1231 >     * support the {@code add} or {@code addAll} operations.
1232 >     *
1233 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1234 >     * that will never throw {@link ConcurrentModificationException},
1235 >     * and guarantees to traverse elements as they existed upon
1236 >     * construction of the iterator, and may (but is not guaranteed to)
1237 >     * reflect any modifications subsequent to construction.
1238 >     *
1239 >     * @return the collection view
1240 >     */
1241 >    public Collection<V> values() {
1242 >        ValuesView<K,V> vs;
1243 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1244 >    }
1245 >
1246 >    /**
1247 >     * Returns a {@link Set} view of the mappings contained in this map.
1248 >     * The set is backed by the map, so changes to the map are
1249 >     * reflected in the set, and vice-versa.  The set supports element
1250 >     * removal, which removes the corresponding mapping from the map,
1251 >     * via the {@code Iterator.remove}, {@code Set.remove},
1252 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1253 >     * operations.
1254 >     *
1255 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1256 >     * that will never throw {@link ConcurrentModificationException},
1257 >     * and guarantees to traverse elements as they existed upon
1258 >     * construction of the iterator, and may (but is not guaranteed to)
1259 >     * reflect any modifications subsequent to construction.
1260 >     *
1261 >     * @return the set view
1262 >     */
1263 >    public Set<Map.Entry<K,V>> entrySet() {
1264 >        EntrySetView<K,V> es;
1265 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1266 >    }
1267 >
1268 >    /**
1269 >     * Returns the hash code value for this {@link Map}, i.e.,
1270 >     * the sum of, for each key-value pair in the map,
1271 >     * {@code key.hashCode() ^ value.hashCode()}.
1272 >     *
1273 >     * @return the hash code value for this map
1274 >     */
1275 >    public int hashCode() {
1276 >        int h = 0;
1277 >        Node<K,V>[] t;
1278 >        if ((t = table) != null) {
1279 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1280 >            for (Node<K,V> p; (p = it.advance()) != null; )
1281 >                h += p.key.hashCode() ^ p.val.hashCode();
1282 >        }
1283 >        return h;
1284 >    }
1285 >
1286 >    /**
1287 >     * Returns a string representation of this map.  The string
1288 >     * representation consists of a list of key-value mappings (in no
1289 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1290 >     * mappings are separated by the characters {@code ", "} (comma
1291 >     * and space).  Each key-value mapping is rendered as the key
1292 >     * followed by an equals sign ("{@code =}") followed by the
1293 >     * associated value.
1294 >     *
1295 >     * @return a string representation of this map
1296 >     */
1297 >    public String toString() {
1298 >        Node<K,V>[] t;
1299 >        int f = (t = table) == null ? 0 : t.length;
1300 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1301 >        StringBuilder sb = new StringBuilder();
1302 >        sb.append('{');
1303 >        Node<K,V> p;
1304 >        if ((p = it.advance()) != null) {
1305 >            for (;;) {
1306 >                K k = p.key;
1307 >                V v = p.val;
1308 >                sb.append(k == this ? "(this Map)" : k);
1309 >                sb.append('=');
1310 >                sb.append(v == this ? "(this Map)" : v);
1311 >                if ((p = it.advance()) == null)
1312 >                    break;
1313 >                sb.append(',').append(' ');
1314 >            }
1315 >        }
1316 >        return sb.append('}').toString();
1317 >    }
1318 >
1319 >    /**
1320 >     * Compares the specified object with this map for equality.
1321 >     * Returns {@code true} if the given object is a map with the same
1322 >     * mappings as this map.  This operation may return misleading
1323 >     * results if either map is concurrently modified during execution
1324 >     * of this method.
1325 >     *
1326 >     * @param o object to be compared for equality with this map
1327 >     * @return {@code true} if the specified object is equal to this map
1328 >     */
1329 >    public boolean equals(Object o) {
1330 >        if (o != this) {
1331 >            if (!(o instanceof Map))
1332 >                return false;
1333 >            Map<?,?> m = (Map<?,?>) o;
1334 >            Node<K,V>[] t;
1335 >            int f = (t = table) == null ? 0 : t.length;
1336 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1337 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1338 >                V val = p.val;
1339 >                Object v = m.get(p.key);
1340 >                if (v == null || (v != val && !v.equals(val)))
1341 >                    return false;
1342 >            }
1343 >            for (Map.Entry<?,?> e : m.entrySet()) {
1344 >                Object mk, mv, v;
1345 >                if ((mk = e.getKey()) == null ||
1346 >                    (mv = e.getValue()) == null ||
1347 >                    (v = get(mk)) == null ||
1348 >                    (mv != v && !mv.equals(v)))
1349 >                    return false;
1350 >            }
1351 >        }
1352 >        return true;
1353 >    }
1354 >
1355 >    /**
1356 >     * Stripped-down version of helper class used in previous version,
1357 >     * declared for the sake of serialization compatibility
1358 >     */
1359 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1360 >        private static final long serialVersionUID = 2249069246763182397L;
1361 >        final float loadFactor;
1362 >        Segment(float lf) { this.loadFactor = lf; }
1363 >    }
1364 >
1365 >    /**
1366 >     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1367 >     * stream (i.e., serializes it).
1368 >     * @param s the stream
1369 >     * @throws java.io.IOException if an I/O error occurs
1370 >     * @serialData
1371 >     * the key (Object) and value (Object)
1372 >     * for each key-value mapping, followed by a null pair.
1373 >     * The key-value mappings are emitted in no particular order.
1374 >     */
1375 >    private void writeObject(java.io.ObjectOutputStream s)
1376 >        throws java.io.IOException {
1377 >        // For serialization compatibility
1378 >        // Emulate segment calculation from previous version of this class
1379 >        int sshift = 0;
1380 >        int ssize = 1;
1381 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1382 >            ++sshift;
1383 >            ssize <<= 1;
1384 >        }
1385 >        int segmentShift = 32 - sshift;
1386 >        int segmentMask = ssize - 1;
1387 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1388 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1389 >        for (int i = 0; i < segments.length; ++i)
1390 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1391 >        s.putFields().put("segments", segments);
1392 >        s.putFields().put("segmentShift", segmentShift);
1393 >        s.putFields().put("segmentMask", segmentMask);
1394 >        s.writeFields();
1395 >
1396 >        Node<K,V>[] t;
1397 >        if ((t = table) != null) {
1398 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1399 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1400 >                s.writeObject(p.key);
1401 >                s.writeObject(p.val);
1402 >            }
1403 >        }
1404 >        s.writeObject(null);
1405 >        s.writeObject(null);
1406 >        segments = null; // throw away
1407 >    }
1408 >
1409 >    /**
1410 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1411 >     * @param s the stream
1412 >     * @throws ClassNotFoundException if the class of a serialized object
1413 >     *         could not be found
1414 >     * @throws java.io.IOException if an I/O error occurs
1415 >     */
1416 >    private void readObject(java.io.ObjectInputStream s)
1417 >        throws java.io.IOException, ClassNotFoundException {
1418 >        /*
1419 >         * To improve performance in typical cases, we create nodes
1420 >         * while reading, then place in table once size is known.
1421 >         * However, we must also validate uniqueness and deal with
1422 >         * overpopulated bins while doing so, which requires
1423 >         * specialized versions of putVal mechanics.
1424 >         */
1425 >        sizeCtl = -1; // force exclusion for table construction
1426 >        s.defaultReadObject();
1427 >        long size = 0L;
1428 >        Node<K,V> p = null;
1429 >        for (;;) {
1430 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1431 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1432 >            if (k != null && v != null) {
1433 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1434 >                ++size;
1435 >            }
1436 >            else
1437 >                break;
1438 >        }
1439 >        if (size == 0L)
1440 >            sizeCtl = 0;
1441 >        else {
1442 >            int n;
1443 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1444 >                n = MAXIMUM_CAPACITY;
1445 >            else {
1446 >                int sz = (int)size;
1447 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1448 >            }
1449 >            @SuppressWarnings({"rawtypes","unchecked"})
1450 >                Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1451 >            int mask = n - 1;
1452 >            long added = 0L;
1453 >            while (p != null) {
1454 >                boolean insertAtFront;
1455 >                Node<K,V> next = p.next, first;
1456 >                int h = p.hash, j = h & mask;
1457 >                if ((first = tabAt(tab, j)) == null)
1458 >                    insertAtFront = true;
1459 >                else {
1460 >                    K k = p.key;
1461 >                    if (first.hash < 0) {
1462 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1463 >                        if (t.putTreeVal(h, k, p.val) == null)
1464 >                            ++added;
1465 >                        insertAtFront = false;
1466 >                    }
1467 >                    else {
1468 >                        int binCount = 0;
1469 >                        insertAtFront = true;
1470 >                        Node<K,V> q; K qk;
1471 >                        for (q = first; q != null; q = q.next) {
1472 >                            if (q.hash == h &&
1473 >                                ((qk = q.key) == k ||
1474 >                                 (qk != null && k.equals(qk)))) {
1475 >                                insertAtFront = false;
1476 >                                break;
1477 >                            }
1478 >                            ++binCount;
1479 >                        }
1480 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1481 >                            insertAtFront = false;
1482 >                            ++added;
1483 >                            p.next = first;
1484 >                            TreeNode<K,V> hd = null, tl = null;
1485 >                            for (q = p; q != null; q = q.next) {
1486 >                                TreeNode<K,V> t = new TreeNode<K,V>
1487 >                                    (q.hash, q.key, q.val, null, null);
1488 >                                if ((t.prev = tl) == null)
1489 >                                    hd = t;
1490 >                                else
1491 >                                    tl.next = t;
1492 >                                tl = t;
1493 >                            }
1494 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1495 >                        }
1496 >                    }
1497 >                }
1498 >                if (insertAtFront) {
1499 >                    ++added;
1500 >                    p.next = first;
1501 >                    setTabAt(tab, j, p);
1502 >                }
1503 >                p = next;
1504 >            }
1505 >            table = tab;
1506 >            sizeCtl = n - (n >>> 2);
1507 >            baseCount = added;
1508 >        }
1509 >    }
1510 >
1511 >    // ConcurrentMap methods
1512 >
1513 >    /**
1514 >     * {@inheritDoc}
1515 >     *
1516 >     * @return the previous value associated with the specified key,
1517 >     *         or {@code null} if there was no mapping for the key
1518 >     * @throws NullPointerException if the specified key or value is null
1519 >     */
1520 >    public V putIfAbsent(K key, V value) {
1521 >        return putVal(key, value, true);
1522 >    }
1523 >
1524 >    /**
1525 >     * {@inheritDoc}
1526 >     *
1527 >     * @throws NullPointerException if the specified key is null
1528 >     */
1529 >    public boolean remove(Object key, Object value) {
1530 >        if (key == null)
1531              throw new NullPointerException();
1532 <        return (V)internalPut(key, value);
1532 >        return value != null && replaceNode(key, null, value) != null;
1533 >    }
1534 >
1535 >    /**
1536 >     * {@inheritDoc}
1537 >     *
1538 >     * @throws NullPointerException if any of the arguments are null
1539 >     */
1540 >    public boolean replace(K key, V oldValue, V newValue) {
1541 >        if (key == null || oldValue == null || newValue == null)
1542 >            throw new NullPointerException();
1543 >        return replaceNode(key, newValue, oldValue) != null;
1544      }
1545  
1546      /**
# Line 2794 | Line 1550 | public class ConcurrentHashMapV8<K, V>
1550       *         or {@code null} if there was no mapping for the key
1551       * @throws NullPointerException if the specified key or value is null
1552       */
1553 <    @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
1553 >    public V replace(K key, V value) {
1554          if (key == null || value == null)
1555              throw new NullPointerException();
1556 <        return (V)internalPutIfAbsent(key, value);
1556 >        return replaceNode(key, value, null);
1557      }
1558  
1559 +    // Overrides of JDK8+ Map extension method defaults
1560 +
1561      /**
1562 <     * Copies all of the mappings from the specified map to this one.
1563 <     * These mappings replace any mappings that this map had for any of the
1564 <     * keys currently in the specified map.
1562 >     * Returns the value to which the specified key is mapped, or the
1563 >     * given default value if this map contains no mapping for the
1564 >     * key.
1565       *
1566 <     * @param m mappings to be stored in this map
1566 >     * @param key the key whose associated value is to be returned
1567 >     * @param defaultValue the value to return if this map contains
1568 >     * no mapping for the given key
1569 >     * @return the mapping for the key, if present; else the default value
1570 >     * @throws NullPointerException if the specified key is null
1571       */
1572 <    public void putAll(Map<? extends K, ? extends V> m) {
1573 <        internalPutAll(m);
1572 >    public V getOrDefault(Object key, V defaultValue) {
1573 >        V v;
1574 >        return (v = get(key)) == null ? defaultValue : v;
1575 >    }
1576 >
1577 >    public void forEach(BiAction<? super K, ? super V> action) {
1578 >        if (action == null) throw new NullPointerException();
1579 >        Node<K,V>[] t;
1580 >        if ((t = table) != null) {
1581 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1582 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1583 >                action.apply(p.key, p.val);
1584 >            }
1585 >        }
1586 >    }
1587 >
1588 >    public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1589 >        if (function == null) throw new NullPointerException();
1590 >        Node<K,V>[] t;
1591 >        if ((t = table) != null) {
1592 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1593 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1594 >                V oldValue = p.val;
1595 >                for (K key = p.key;;) {
1596 >                    V newValue = function.apply(key, oldValue);
1597 >                    if (newValue == null)
1598 >                        throw new NullPointerException();
1599 >                    if (replaceNode(key, newValue, oldValue) != null ||
1600 >                        (oldValue = get(key)) == null)
1601 >                        break;
1602 >                }
1603 >            }
1604 >        }
1605      }
1606  
1607      /**
1608       * If the specified key is not already associated with a value,
1609 <     * computes its value using the given mappingFunction and enters
1610 <     * it into the map unless null.  This is equivalent to
1611 <     * <pre> {@code
1612 <     * if (map.containsKey(key))
1613 <     *   return map.get(key);
1614 <     * value = mappingFunction.apply(key);
1615 <     * if (value != null)
2823 <     *   map.put(key, value);
2824 <     * return value;}</pre>
2825 <     *
2826 <     * except that the action is performed atomically.  If the
2827 <     * function returns {@code null} no mapping is recorded. If the
2828 <     * function itself throws an (unchecked) exception, the exception
2829 <     * is rethrown to its caller, and no mapping is recorded.  Some
2830 <     * attempted update operations on this map by other threads may be
2831 <     * blocked while computation is in progress, so the computation
2832 <     * should be short and simple, and must not attempt to update any
2833 <     * other mappings of this Map. The most appropriate usage is to
2834 <     * construct a new object serving as an initial mapped value, or
2835 <     * memoized result, as in:
2836 <     *
2837 <     *  <pre> {@code
2838 <     * map.computeIfAbsent(key, new Fun<K, V>() {
2839 <     *   public V map(K k) { return new Value(f(k)); }});}</pre>
1609 >     * attempts to compute its value using the given mapping function
1610 >     * and enters it into this map unless {@code null}.  The entire
1611 >     * method invocation is performed atomically, so the function is
1612 >     * applied at most once per key.  Some attempted update operations
1613 >     * on this map by other threads may be blocked while computation
1614 >     * is in progress, so the computation should be short and simple,
1615 >     * and must not attempt to update any other mappings of this map.
1616       *
1617       * @param key key with which the specified value is to be associated
1618       * @param mappingFunction the function to compute a value
# Line 2850 | Line 1626 | public class ConcurrentHashMapV8<K, V>
1626       * @throws RuntimeException or Error if the mappingFunction does so,
1627       *         in which case the mapping is left unestablished
1628       */
1629 <    @SuppressWarnings("unchecked") public V computeIfAbsent
2854 <        (K key, Fun<? super K, ? extends V> mappingFunction) {
1629 >    public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1630          if (key == null || mappingFunction == null)
1631              throw new NullPointerException();
1632 <        return (V)internalComputeIfAbsent(key, mappingFunction);
1632 >        int h = spread(key.hashCode());
1633 >        V val = null;
1634 >        int binCount = 0;
1635 >        for (Node<K,V>[] tab = table;;) {
1636 >            Node<K,V> f; int n, i, fh;
1637 >            if (tab == null || (n = tab.length) == 0)
1638 >                tab = initTable();
1639 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1640 >                Node<K,V> r = new ReservationNode<K,V>();
1641 >                synchronized (r) {
1642 >                    if (casTabAt(tab, i, null, r)) {
1643 >                        binCount = 1;
1644 >                        Node<K,V> node = null;
1645 >                        try {
1646 >                            if ((val = mappingFunction.apply(key)) != null)
1647 >                                node = new Node<K,V>(h, key, val, null);
1648 >                        } finally {
1649 >                            setTabAt(tab, i, node);
1650 >                        }
1651 >                    }
1652 >                }
1653 >                if (binCount != 0)
1654 >                    break;
1655 >            }
1656 >            else if ((fh = f.hash) == MOVED)
1657 >                tab = helpTransfer(tab, f);
1658 >            else {
1659 >                boolean added = false;
1660 >                synchronized (f) {
1661 >                    if (tabAt(tab, i) == f) {
1662 >                        if (fh >= 0) {
1663 >                            binCount = 1;
1664 >                            for (Node<K,V> e = f;; ++binCount) {
1665 >                                K ek; V ev;
1666 >                                if (e.hash == h &&
1667 >                                    ((ek = e.key) == key ||
1668 >                                     (ek != null && key.equals(ek)))) {
1669 >                                    val = e.val;
1670 >                                    break;
1671 >                                }
1672 >                                Node<K,V> pred = e;
1673 >                                if ((e = e.next) == null) {
1674 >                                    if ((val = mappingFunction.apply(key)) != null) {
1675 >                                        added = true;
1676 >                                        pred.next = new Node<K,V>(h, key, val, null);
1677 >                                    }
1678 >                                    break;
1679 >                                }
1680 >                            }
1681 >                        }
1682 >                        else if (f instanceof TreeBin) {
1683 >                            binCount = 2;
1684 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1685 >                            TreeNode<K,V> r, p;
1686 >                            if ((r = t.root) != null &&
1687 >                                (p = r.findTreeNode(h, key, null)) != null)
1688 >                                val = p.val;
1689 >                            else if ((val = mappingFunction.apply(key)) != null) {
1690 >                                added = true;
1691 >                                t.putTreeVal(h, key, val);
1692 >                            }
1693 >                        }
1694 >                    }
1695 >                }
1696 >                if (binCount != 0) {
1697 >                    if (binCount >= TREEIFY_THRESHOLD)
1698 >                        treeifyBin(tab, i);
1699 >                    if (!added)
1700 >                        return val;
1701 >                    break;
1702 >                }
1703 >            }
1704 >        }
1705 >        if (val != null)
1706 >            addCount(1L, binCount);
1707 >        return val;
1708      }
1709  
1710      /**
1711 <     * If the given key is present, computes a new mapping value given a key and
1712 <     * its current mapped value. This is equivalent to
1713 <     *  <pre> {@code
1714 <     *   if (map.containsKey(key)) {
1715 <     *     value = remappingFunction.apply(key, map.get(key));
1716 <     *     if (value != null)
1717 <     *       map.put(key, value);
2868 <     *     else
2869 <     *       map.remove(key);
2870 <     *   }
2871 <     * }</pre>
2872 <     *
2873 <     * except that the action is performed atomically.  If the
2874 <     * function returns {@code null}, the mapping is removed.  If the
2875 <     * function itself throws an (unchecked) exception, the exception
2876 <     * is rethrown to its caller, and the current mapping is left
2877 <     * unchanged.  Some attempted update operations on this map by
2878 <     * other threads may be blocked while computation is in progress,
2879 <     * so the computation should be short and simple, and must not
2880 <     * attempt to update any other mappings of this Map. For example,
2881 <     * to either create or append new messages to a value mapping:
1711 >     * If the value for the specified key is present, attempts to
1712 >     * compute a new mapping given the key and its current mapped
1713 >     * value.  The entire method invocation is performed atomically.
1714 >     * Some attempted update operations on this map by other threads
1715 >     * may be blocked while computation is in progress, so the
1716 >     * computation should be short and simple, and must not attempt to
1717 >     * update any other mappings of this map.
1718       *
1719 <     * @param key key with which the specified value is to be associated
1719 >     * @param key key with which a value may be associated
1720       * @param remappingFunction the function to compute a value
1721       * @return the new value associated with the specified key, or null if none
1722       * @throws NullPointerException if the specified key or remappingFunction
# Line 2891 | Line 1727 | public class ConcurrentHashMapV8<K, V>
1727       * @throws RuntimeException or Error if the remappingFunction does so,
1728       *         in which case the mapping is unchanged
1729       */
1730 <    @SuppressWarnings("unchecked") public V computeIfPresent
2895 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1730 >    public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1731          if (key == null || remappingFunction == null)
1732              throw new NullPointerException();
1733 <        return (V)internalCompute(key, true, remappingFunction);
1733 >        int h = spread(key.hashCode());
1734 >        V val = null;
1735 >        int delta = 0;
1736 >        int binCount = 0;
1737 >        for (Node<K,V>[] tab = table;;) {
1738 >            Node<K,V> f; int n, i, fh;
1739 >            if (tab == null || (n = tab.length) == 0)
1740 >                tab = initTable();
1741 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1742 >                break;
1743 >            else if ((fh = f.hash) == MOVED)
1744 >                tab = helpTransfer(tab, f);
1745 >            else {
1746 >                synchronized (f) {
1747 >                    if (tabAt(tab, i) == f) {
1748 >                        if (fh >= 0) {
1749 >                            binCount = 1;
1750 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1751 >                                K ek;
1752 >                                if (e.hash == h &&
1753 >                                    ((ek = e.key) == key ||
1754 >                                     (ek != null && key.equals(ek)))) {
1755 >                                    val = remappingFunction.apply(key, e.val);
1756 >                                    if (val != null)
1757 >                                        e.val = val;
1758 >                                    else {
1759 >                                        delta = -1;
1760 >                                        Node<K,V> en = e.next;
1761 >                                        if (pred != null)
1762 >                                            pred.next = en;
1763 >                                        else
1764 >                                            setTabAt(tab, i, en);
1765 >                                    }
1766 >                                    break;
1767 >                                }
1768 >                                pred = e;
1769 >                                if ((e = e.next) == null)
1770 >                                    break;
1771 >                            }
1772 >                        }
1773 >                        else if (f instanceof TreeBin) {
1774 >                            binCount = 2;
1775 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1776 >                            TreeNode<K,V> r, p;
1777 >                            if ((r = t.root) != null &&
1778 >                                (p = r.findTreeNode(h, key, null)) != null) {
1779 >                                val = remappingFunction.apply(key, p.val);
1780 >                                if (val != null)
1781 >                                    p.val = val;
1782 >                                else {
1783 >                                    delta = -1;
1784 >                                    if (t.removeTreeNode(p))
1785 >                                        setTabAt(tab, i, untreeify(t.first));
1786 >                                }
1787 >                            }
1788 >                        }
1789 >                    }
1790 >                }
1791 >                if (binCount != 0)
1792 >                    break;
1793 >            }
1794 >        }
1795 >        if (delta != 0)
1796 >            addCount((long)delta, binCount);
1797 >        return val;
1798      }
1799  
1800      /**
1801 <     * Computes a new mapping value given a key and
1802 <     * its current mapped value (or {@code null} if there is no current
1803 <     * mapping). This is equivalent to
1804 <     *  <pre> {@code
1805 <     *   value = remappingFunction.apply(key, map.get(key));
1806 <     *   if (value != null)
1807 <     *     map.put(key, value);
2909 <     *   else
2910 <     *     map.remove(key);
2911 <     * }</pre>
2912 <     *
2913 <     * except that the action is performed atomically.  If the
2914 <     * function returns {@code null}, the mapping is removed.  If the
2915 <     * function itself throws an (unchecked) exception, the exception
2916 <     * is rethrown to its caller, and the current mapping is left
2917 <     * unchanged.  Some attempted update operations on this map by
2918 <     * other threads may be blocked while computation is in progress,
2919 <     * so the computation should be short and simple, and must not
2920 <     * attempt to update any other mappings of this Map. For example,
2921 <     * to either create or append new messages to a value mapping:
2922 <     *
2923 <     * <pre> {@code
2924 <     * Map<Key, String> map = ...;
2925 <     * final String msg = ...;
2926 <     * map.compute(key, new BiFun<Key, String, String>() {
2927 <     *   public String apply(Key k, String v) {
2928 <     *    return (v == null) ? msg : v + msg;});}}</pre>
1801 >     * Attempts to compute a mapping for the specified key and its
1802 >     * current mapped value (or {@code null} if there is no current
1803 >     * mapping). The entire method invocation is performed atomically.
1804 >     * Some attempted update operations on this map by other threads
1805 >     * may be blocked while computation is in progress, so the
1806 >     * computation should be short and simple, and must not attempt to
1807 >     * update any other mappings of this Map.
1808       *
1809       * @param key key with which the specified value is to be associated
1810       * @param remappingFunction the function to compute a value
# Line 2938 | Line 1817 | public class ConcurrentHashMapV8<K, V>
1817       * @throws RuntimeException or Error if the remappingFunction does so,
1818       *         in which case the mapping is unchanged
1819       */
1820 <    @SuppressWarnings("unchecked") public V compute
1821 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1820 >    public V compute(K key,
1821 >                     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1822          if (key == null || remappingFunction == null)
1823              throw new NullPointerException();
1824 <        return (V)internalCompute(key, false, remappingFunction);
1824 >        int h = spread(key.hashCode());
1825 >        V val = null;
1826 >        int delta = 0;
1827 >        int binCount = 0;
1828 >        for (Node<K,V>[] tab = table;;) {
1829 >            Node<K,V> f; int n, i, fh;
1830 >            if (tab == null || (n = tab.length) == 0)
1831 >                tab = initTable();
1832 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1833 >                Node<K,V> r = new ReservationNode<K,V>();
1834 >                synchronized (r) {
1835 >                    if (casTabAt(tab, i, null, r)) {
1836 >                        binCount = 1;
1837 >                        Node<K,V> node = null;
1838 >                        try {
1839 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1840 >                                delta = 1;
1841 >                                node = new Node<K,V>(h, key, val, null);
1842 >                            }
1843 >                        } finally {
1844 >                            setTabAt(tab, i, node);
1845 >                        }
1846 >                    }
1847 >                }
1848 >                if (binCount != 0)
1849 >                    break;
1850 >            }
1851 >            else if ((fh = f.hash) == MOVED)
1852 >                tab = helpTransfer(tab, f);
1853 >            else {
1854 >                synchronized (f) {
1855 >                    if (tabAt(tab, i) == f) {
1856 >                        if (fh >= 0) {
1857 >                            binCount = 1;
1858 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1859 >                                K ek;
1860 >                                if (e.hash == h &&
1861 >                                    ((ek = e.key) == key ||
1862 >                                     (ek != null && key.equals(ek)))) {
1863 >                                    val = remappingFunction.apply(key, e.val);
1864 >                                    if (val != null)
1865 >                                        e.val = val;
1866 >                                    else {
1867 >                                        delta = -1;
1868 >                                        Node<K,V> en = e.next;
1869 >                                        if (pred != null)
1870 >                                            pred.next = en;
1871 >                                        else
1872 >                                            setTabAt(tab, i, en);
1873 >                                    }
1874 >                                    break;
1875 >                                }
1876 >                                pred = e;
1877 >                                if ((e = e.next) == null) {
1878 >                                    val = remappingFunction.apply(key, null);
1879 >                                    if (val != null) {
1880 >                                        delta = 1;
1881 >                                        pred.next =
1882 >                                            new Node<K,V>(h, key, val, null);
1883 >                                    }
1884 >                                    break;
1885 >                                }
1886 >                            }
1887 >                        }
1888 >                        else if (f instanceof TreeBin) {
1889 >                            binCount = 1;
1890 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1891 >                            TreeNode<K,V> r, p;
1892 >                            if ((r = t.root) != null)
1893 >                                p = r.findTreeNode(h, key, null);
1894 >                            else
1895 >                                p = null;
1896 >                            V pv = (p == null) ? null : p.val;
1897 >                            val = remappingFunction.apply(key, pv);
1898 >                            if (val != null) {
1899 >                                if (p != null)
1900 >                                    p.val = val;
1901 >                                else {
1902 >                                    delta = 1;
1903 >                                    t.putTreeVal(h, key, val);
1904 >                                }
1905 >                            }
1906 >                            else if (p != null) {
1907 >                                delta = -1;
1908 >                                if (t.removeTreeNode(p))
1909 >                                    setTabAt(tab, i, untreeify(t.first));
1910 >                            }
1911 >                        }
1912 >                    }
1913 >                }
1914 >                if (binCount != 0) {
1915 >                    if (binCount >= TREEIFY_THRESHOLD)
1916 >                        treeifyBin(tab, i);
1917 >                    break;
1918 >                }
1919 >            }
1920 >        }
1921 >        if (delta != 0)
1922 >            addCount((long)delta, binCount);
1923 >        return val;
1924      }
1925  
1926      /**
1927 <     * If the specified key is not already associated
1928 <     * with a value, associate it with the given value.
1929 <     * Otherwise, replace the value with the results of
1930 <     * the given remapping function. This is equivalent to:
1931 <     *  <pre> {@code
1932 <     *   if (!map.containsKey(key))
1933 <     *     map.put(value);
1934 <     *   else {
1935 <     *     newValue = remappingFunction.apply(map.get(key), value);
1936 <     *     if (value != null)
1937 <     *       map.put(key, value);
1938 <     *     else
1939 <     *       map.remove(key);
1940 <     *   }
1941 <     * }</pre>
1942 <     * except that the action is performed atomically.  If the
1943 <     * function returns {@code null}, the mapping is removed.  If the
1944 <     * function itself throws an (unchecked) exception, the exception
2967 <     * is rethrown to its caller, and the current mapping is left
2968 <     * unchanged.  Some attempted update operations on this map by
2969 <     * other threads may be blocked while computation is in progress,
2970 <     * so the computation should be short and simple, and must not
2971 <     * attempt to update any other mappings of this Map.
1927 >     * If the specified key is not already associated with a
1928 >     * (non-null) value, associates it with the given value.
1929 >     * Otherwise, replaces the value with the results of the given
1930 >     * remapping function, or removes if {@code null}. The entire
1931 >     * method invocation is performed atomically.  Some attempted
1932 >     * update operations on this map by other threads may be blocked
1933 >     * while computation is in progress, so the computation should be
1934 >     * short and simple, and must not attempt to update any other
1935 >     * mappings of this Map.
1936 >     *
1937 >     * @param key key with which the specified value is to be associated
1938 >     * @param value the value to use if absent
1939 >     * @param remappingFunction the function to recompute a value if present
1940 >     * @return the new value associated with the specified key, or null if none
1941 >     * @throws NullPointerException if the specified key or the
1942 >     *         remappingFunction is null
1943 >     * @throws RuntimeException or Error if the remappingFunction does so,
1944 >     *         in which case the mapping is unchanged
1945       */
1946 <    @SuppressWarnings("unchecked") public V merge
2974 <        (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1946 >    public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1947          if (key == null || value == null || remappingFunction == null)
1948              throw new NullPointerException();
1949 <        return (V)internalMerge(key, value, remappingFunction);
1949 >        int h = spread(key.hashCode());
1950 >        V val = null;
1951 >        int delta = 0;
1952 >        int binCount = 0;
1953 >        for (Node<K,V>[] tab = table;;) {
1954 >            Node<K,V> f; int n, i, fh;
1955 >            if (tab == null || (n = tab.length) == 0)
1956 >                tab = initTable();
1957 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1958 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1959 >                    delta = 1;
1960 >                    val = value;
1961 >                    break;
1962 >                }
1963 >            }
1964 >            else if ((fh = f.hash) == MOVED)
1965 >                tab = helpTransfer(tab, f);
1966 >            else {
1967 >                synchronized (f) {
1968 >                    if (tabAt(tab, i) == f) {
1969 >                        if (fh >= 0) {
1970 >                            binCount = 1;
1971 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1972 >                                K ek;
1973 >                                if (e.hash == h &&
1974 >                                    ((ek = e.key) == key ||
1975 >                                     (ek != null && key.equals(ek)))) {
1976 >                                    val = remappingFunction.apply(e.val, value);
1977 >                                    if (val != null)
1978 >                                        e.val = val;
1979 >                                    else {
1980 >                                        delta = -1;
1981 >                                        Node<K,V> en = e.next;
1982 >                                        if (pred != null)
1983 >                                            pred.next = en;
1984 >                                        else
1985 >                                            setTabAt(tab, i, en);
1986 >                                    }
1987 >                                    break;
1988 >                                }
1989 >                                pred = e;
1990 >                                if ((e = e.next) == null) {
1991 >                                    delta = 1;
1992 >                                    val = value;
1993 >                                    pred.next =
1994 >                                        new Node<K,V>(h, key, val, null);
1995 >                                    break;
1996 >                                }
1997 >                            }
1998 >                        }
1999 >                        else if (f instanceof TreeBin) {
2000 >                            binCount = 2;
2001 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2002 >                            TreeNode<K,V> r = t.root;
2003 >                            TreeNode<K,V> p = (r == null) ? null :
2004 >                                r.findTreeNode(h, key, null);
2005 >                            val = (p == null) ? value :
2006 >                                remappingFunction.apply(p.val, value);
2007 >                            if (val != null) {
2008 >                                if (p != null)
2009 >                                    p.val = val;
2010 >                                else {
2011 >                                    delta = 1;
2012 >                                    t.putTreeVal(h, key, val);
2013 >                                }
2014 >                            }
2015 >                            else if (p != null) {
2016 >                                delta = -1;
2017 >                                if (t.removeTreeNode(p))
2018 >                                    setTabAt(tab, i, untreeify(t.first));
2019 >                            }
2020 >                        }
2021 >                    }
2022 >                }
2023 >                if (binCount != 0) {
2024 >                    if (binCount >= TREEIFY_THRESHOLD)
2025 >                        treeifyBin(tab, i);
2026 >                    break;
2027 >                }
2028 >            }
2029 >        }
2030 >        if (delta != 0)
2031 >            addCount((long)delta, binCount);
2032 >        return val;
2033      }
2034  
2035 +    // Hashtable legacy methods
2036 +
2037      /**
2038 <     * Removes the key (and its corresponding value) from this map.
2039 <     * This method does nothing if the key is not in the map.
2038 >     * Legacy method testing if some key maps into the specified value
2039 >     * in this table.  This method is identical in functionality to
2040 >     * {@link #containsValue(Object)}, and exists solely to ensure
2041 >     * full compatibility with class {@link java.util.Hashtable},
2042 >     * which supported this method prior to introduction of the
2043 >     * Java Collections framework.
2044       *
2045 <     * @param  key the key that needs to be removed
2046 <     * @return the previous value associated with {@code key}, or
2047 <     *         {@code null} if there was no mapping for {@code key}
2048 <     * @throws NullPointerException if the specified key is null
2045 >     * @param  value a value to search for
2046 >     * @return {@code true} if and only if some key maps to the
2047 >     *         {@code value} argument in this table as
2048 >     *         determined by the {@code equals} method;
2049 >     *         {@code false} otherwise
2050 >     * @throws NullPointerException if the specified value is null
2051       */
2052 <    @SuppressWarnings("unchecked") public V remove(Object key) {
2053 <        if (key == null)
2991 <            throw new NullPointerException();
2992 <        return (V)internalReplace(key, null, null);
2052 >    @Deprecated public boolean contains(Object value) {
2053 >        return containsValue(value);
2054      }
2055  
2056      /**
2057 <     * {@inheritDoc}
2057 >     * Returns an enumeration of the keys in this table.
2058       *
2059 <     * @throws NullPointerException if the specified key is null
2059 >     * @return an enumeration of the keys in this table
2060 >     * @see #keySet()
2061       */
2062 <    public boolean remove(Object key, Object value) {
2063 <        if (key == null)
2064 <            throw new NullPointerException();
2065 <        if (value == null)
3004 <            return false;
3005 <        return internalReplace(key, null, value) != null;
2062 >    public Enumeration<K> keys() {
2063 >        Node<K,V>[] t;
2064 >        int f = (t = table) == null ? 0 : t.length;
2065 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2066      }
2067  
2068      /**
2069 <     * {@inheritDoc}
2069 >     * Returns an enumeration of the values in this table.
2070       *
2071 <     * @throws NullPointerException if any of the arguments are null
2071 >     * @return an enumeration of the values in this table
2072 >     * @see #values()
2073       */
2074 <    public boolean replace(K key, V oldValue, V newValue) {
2075 <        if (key == null || oldValue == null || newValue == null)
2076 <            throw new NullPointerException();
2077 <        return internalReplace(key, newValue, oldValue) != null;
2074 >    public Enumeration<V> elements() {
2075 >        Node<K,V>[] t;
2076 >        int f = (t = table) == null ? 0 : t.length;
2077 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2078      }
2079  
2080 +    // ConcurrentHashMapV8-only methods
2081 +
2082      /**
2083 <     * {@inheritDoc}
2083 >     * Returns the number of mappings. This method should be used
2084 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2085 >     * contain more mappings than can be represented as an int. The
2086 >     * value returned is an estimate; the actual count may differ if
2087 >     * there are concurrent insertions or removals.
2088       *
2089 <     * @return the previous value associated with the specified key,
2090 <     *         or {@code null} if there was no mapping for the key
3024 <     * @throws NullPointerException if the specified key or value is null
2089 >     * @return the number of mappings
2090 >     * @since 1.8
2091       */
2092 <    @SuppressWarnings("unchecked") public V replace(K key, V value) {
2093 <        if (key == null || value == null)
2094 <            throw new NullPointerException();
3029 <        return (V)internalReplace(key, value, null);
2092 >    public long mappingCount() {
2093 >        long n = sumCount();
2094 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2095      }
2096  
2097      /**
2098 <     * Removes all of the mappings from this map.
2098 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2099 >     * from the given type to {@code Boolean.TRUE}.
2100 >     *
2101 >     * @return the new set
2102 >     * @since 1.8
2103       */
2104 <    public void clear() {
2105 <        internalClear();
2104 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2105 >        return new KeySetView<K,Boolean>
2106 >            (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2107      }
2108  
2109      /**
2110 <     * Returns a {@link Set} view of the keys contained in this map.
2111 <     * The set is backed by the map, so changes to the map are
3042 <     * reflected in the set, and vice-versa.
2110 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2111 >     * from the given type to {@code Boolean.TRUE}.
2112       *
2113 <     * @return the set view
2113 >     * @param initialCapacity The implementation performs internal
2114 >     * sizing to accommodate this many elements.
2115 >     * @return the new set
2116 >     * @throws IllegalArgumentException if the initial capacity of
2117 >     * elements is negative
2118 >     * @since 1.8
2119       */
2120 <    public KeySetView<K,V> keySet() {
2121 <        KeySetView<K,V> ks = keySet;
2122 <        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2120 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2121 >        return new KeySetView<K,Boolean>
2122 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2123      }
2124  
2125      /**
2126       * Returns a {@link Set} view of the keys in this map, using the
2127       * given common mapped value for any additions (i.e., {@link
2128 <     * Collection#add} and {@link Collection#addAll}). This is of
2129 <     * course only appropriate if it is acceptable to use the same
2130 <     * value for all additions from this view.
2128 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2129 >     * This is of course only appropriate if it is acceptable to use
2130 >     * the same value for all additions from this view.
2131       *
2132 <     * @param mappedValue the mapped value to use for any
3059 <     * additions.
2132 >     * @param mappedValue the mapped value to use for any additions
2133       * @return the set view
2134       * @throws NullPointerException if the mappedValue is null
2135       */
# Line 3066 | Line 2139 | public class ConcurrentHashMapV8<K, V>
2139          return new KeySetView<K,V>(this, mappedValue);
2140      }
2141  
2142 +    /* ---------------- Special Nodes -------------- */
2143 +
2144      /**
2145 <     * Returns a {@link Collection} view of the values contained in this map.
3071 <     * The collection is backed by the map, so changes to the map are
3072 <     * reflected in the collection, and vice-versa.
2145 >     * A node inserted at head of bins during transfer operations.
2146       */
2147 <    public ValuesView<K,V> values() {
2148 <        ValuesView<K,V> vs = values;
2149 <        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2147 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2148 >        final Node<K,V>[] nextTable;
2149 >        ForwardingNode(Node<K,V>[] tab) {
2150 >            super(MOVED, null, null, null);
2151 >            this.nextTable = tab;
2152 >        }
2153 >
2154 >        Node<K,V> find(int h, Object k) {
2155 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2156 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2157 >                Node<K,V> e; int n;
2158 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2159 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2160 >                    return null;
2161 >                for (;;) {
2162 >                    int eh; K ek;
2163 >                    if ((eh = e.hash) == h &&
2164 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2165 >                        return e;
2166 >                    if (eh < 0) {
2167 >                        if (e instanceof ForwardingNode) {
2168 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2169 >                            continue outer;
2170 >                        }
2171 >                        else
2172 >                            return e.find(h, k);
2173 >                    }
2174 >                    if ((e = e.next) == null)
2175 >                        return null;
2176 >                }
2177 >            }
2178 >        }
2179      }
2180  
2181      /**
2182 <     * Returns a {@link Set} view of the mappings contained in this map.
3081 <     * The set is backed by the map, so changes to the map are
3082 <     * reflected in the set, and vice-versa.  The set supports element
3083 <     * removal, which removes the corresponding mapping from the map,
3084 <     * via the {@code Iterator.remove}, {@code Set.remove},
3085 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
3086 <     * operations.  It does not support the {@code add} or
3087 <     * {@code addAll} operations.
3088 <     *
3089 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
3090 <     * that will never throw {@link ConcurrentModificationException},
3091 <     * and guarantees to traverse elements as they existed upon
3092 <     * construction of the iterator, and may (but is not guaranteed to)
3093 <     * reflect any modifications subsequent to construction.
2182 >     * A place-holder node used in computeIfAbsent and compute
2183       */
2184 <    public Set<Map.Entry<K,V>> entrySet() {
2185 <        EntrySetView<K,V> es = entrySet;
2186 <        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2184 >    static final class ReservationNode<K,V> extends Node<K,V> {
2185 >        ReservationNode() {
2186 >            super(RESERVED, null, null, null);
2187 >        }
2188 >
2189 >        Node<K,V> find(int h, Object k) {
2190 >            return null;
2191 >        }
2192      }
2193  
2194 +    /* ---------------- Table Initialization and Resizing -------------- */
2195 +
2196      /**
2197 <     * Returns an enumeration of the keys in this table.
3102 <     *
3103 <     * @return an enumeration of the keys in this table
3104 <     * @see #keySet()
2197 >     * Initializes table, using the size recorded in sizeCtl.
2198       */
2199 <    public Enumeration<K> keys() {
2200 <        return new KeyIterator<K,V>(this);
2199 >    private final Node<K,V>[] initTable() {
2200 >        Node<K,V>[] tab; int sc;
2201 >        while ((tab = table) == null || tab.length == 0) {
2202 >            if ((sc = sizeCtl) < 0)
2203 >                Thread.yield(); // lost initialization race; just spin
2204 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2205 >                try {
2206 >                    if ((tab = table) == null || tab.length == 0) {
2207 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2208 >                        @SuppressWarnings({"rawtypes","unchecked"})
2209 >                            Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2210 >                        table = tab = nt;
2211 >                        sc = n - (n >>> 2);
2212 >                    }
2213 >                } finally {
2214 >                    sizeCtl = sc;
2215 >                }
2216 >                break;
2217 >            }
2218 >        }
2219 >        return tab;
2220      }
2221  
2222      /**
2223 <     * Returns an enumeration of the values in this table.
2224 <     *
2225 <     * @return an enumeration of the values in this table
2226 <     * @see #values()
2223 >     * Adds to count, and if table is too small and not already
2224 >     * resizing, initiates transfer. If already resizing, helps
2225 >     * perform transfer if work is available.  Rechecks occupancy
2226 >     * after a transfer to see if another resize is already needed
2227 >     * because resizings are lagging additions.
2228 >     *
2229 >     * @param x the count to add
2230 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2231 >     */
2232 >    private final void addCount(long x, int check) {
2233 >        CounterCell[] as; long b, s;
2234 >        if ((as = counterCells) != null ||
2235 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2236 >            CounterHashCode hc; CounterCell a; long v; int m;
2237 >            boolean uncontended = true;
2238 >            if ((hc = threadCounterHashCode.get()) == null ||
2239 >                as == null || (m = as.length - 1) < 0 ||
2240 >                (a = as[m & hc.code]) == null ||
2241 >                !(uncontended =
2242 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2243 >                fullAddCount(x, hc, uncontended);
2244 >                return;
2245 >            }
2246 >            if (check <= 1)
2247 >                return;
2248 >            s = sumCount();
2249 >        }
2250 >        if (check >= 0) {
2251 >            Node<K,V>[] tab, nt; int sc;
2252 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2253 >                   tab.length < MAXIMUM_CAPACITY) {
2254 >                if (sc < 0) {
2255 >                    if (sc == -1 || transferIndex <= transferOrigin ||
2256 >                        (nt = nextTable) == null)
2257 >                        break;
2258 >                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2259 >                        transfer(tab, nt);
2260 >                }
2261 >                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2262 >                    transfer(tab, null);
2263 >                s = sumCount();
2264 >            }
2265 >        }
2266 >    }
2267 >
2268 >    /**
2269 >     * Helps transfer if a resize is in progress.
2270       */
2271 <    public Enumeration<V> elements() {
2272 <        return new ValueIterator<K,V>(this);
2271 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2272 >        Node<K,V>[] nextTab; int sc;
2273 >        if ((f instanceof ForwardingNode) &&
2274 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2275 >            if (nextTab == nextTable && tab == table &&
2276 >                transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2277 >                U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2278 >                transfer(tab, nextTab);
2279 >            return nextTab;
2280 >        }
2281 >        return table;
2282      }
2283  
2284      /**
2285 <     * Returns a partitionable iterator of the keys in this map.
2285 >     * Tries to presize table to accommodate the given number of elements.
2286       *
2287 <     * @return a partitionable iterator of the keys in this map
2287 >     * @param size number of elements (doesn't need to be perfectly accurate)
2288       */
2289 <    public Spliterator<K> keySpliterator() {
2290 <        return new KeyIterator<K,V>(this);
2289 >    private final void tryPresize(int size) {
2290 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2291 >            tableSizeFor(size + (size >>> 1) + 1);
2292 >        int sc;
2293 >        while ((sc = sizeCtl) >= 0) {
2294 >            Node<K,V>[] tab = table; int n;
2295 >            if (tab == null || (n = tab.length) == 0) {
2296 >                n = (sc > c) ? sc : c;
2297 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2298 >                    try {
2299 >                        if (table == tab) {
2300 >                            @SuppressWarnings({"rawtypes","unchecked"})
2301 >                                Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2302 >                            table = nt;
2303 >                            sc = n - (n >>> 2);
2304 >                        }
2305 >                    } finally {
2306 >                        sizeCtl = sc;
2307 >                    }
2308 >                }
2309 >            }
2310 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2311 >                break;
2312 >            else if (tab == table &&
2313 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2314 >                transfer(tab, null);
2315 >        }
2316      }
2317  
2318      /**
2319 <     * Returns a partitionable iterator of the values in this map.
2320 <     *
3132 <     * @return a partitionable iterator of the values in this map
2319 >     * Moves and/or copies the nodes in each bin to new table. See
2320 >     * above for explanation.
2321       */
2322 <    public Spliterator<V> valueSpliterator() {
2323 <        return new ValueIterator<K,V>(this);
2322 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2323 >        int n = tab.length, stride;
2324 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2325 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2326 >        if (nextTab == null) {            // initiating
2327 >            try {
2328 >                @SuppressWarnings({"rawtypes","unchecked"})
2329 >                    Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2330 >                nextTab = nt;
2331 >            } catch (Throwable ex) {      // try to cope with OOME
2332 >                sizeCtl = Integer.MAX_VALUE;
2333 >                return;
2334 >            }
2335 >            nextTable = nextTab;
2336 >            transferOrigin = n;
2337 >            transferIndex = n;
2338 >            ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2339 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
2340 >                int nextk = (k > stride) ? k - stride : 0;
2341 >                for (int m = nextk; m < k; ++m)
2342 >                    nextTab[m] = rev;
2343 >                for (int m = n + nextk; m < n + k; ++m)
2344 >                    nextTab[m] = rev;
2345 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2346 >            }
2347 >        }
2348 >        int nextn = nextTab.length;
2349 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2350 >        boolean advance = true;
2351 >        boolean finishing = false; // to ensure sweep before committing nextTab
2352 >        for (int i = 0, bound = 0;;) {
2353 >            int nextIndex, nextBound, fh; Node<K,V> f;
2354 >            while (advance) {
2355 >                if (--i >= bound || finishing)
2356 >                    advance = false;
2357 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
2358 >                    i = -1;
2359 >                    advance = false;
2360 >                }
2361 >                else if (U.compareAndSwapInt
2362 >                         (this, TRANSFERINDEX, nextIndex,
2363 >                          nextBound = (nextIndex > stride ?
2364 >                                       nextIndex - stride : 0))) {
2365 >                    bound = nextBound;
2366 >                    i = nextIndex - 1;
2367 >                    advance = false;
2368 >                }
2369 >            }
2370 >            if (i < 0 || i >= n || i + n >= nextn) {
2371 >                if (finishing) {
2372 >                    nextTable = null;
2373 >                    table = nextTab;
2374 >                    sizeCtl = (n << 1) - (n >>> 1);
2375 >                    return;
2376 >                }
2377 >                for (int sc;;) {
2378 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2379 >                        if (sc != -1)
2380 >                            return;
2381 >                        finishing = advance = true;
2382 >                        i = n; // recheck before commit
2383 >                        break;
2384 >                    }
2385 >                }
2386 >            }
2387 >            else if ((f = tabAt(tab, i)) == null) {
2388 >                if (casTabAt(tab, i, null, fwd)) {
2389 >                    setTabAt(nextTab, i, null);
2390 >                    setTabAt(nextTab, i + n, null);
2391 >                    advance = true;
2392 >                }
2393 >            }
2394 >            else if ((fh = f.hash) == MOVED)
2395 >                advance = true; // already processed
2396 >            else {
2397 >                synchronized (f) {
2398 >                    if (tabAt(tab, i) == f) {
2399 >                        Node<K,V> ln, hn;
2400 >                        if (fh >= 0) {
2401 >                            int runBit = fh & n;
2402 >                            Node<K,V> lastRun = f;
2403 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2404 >                                int b = p.hash & n;
2405 >                                if (b != runBit) {
2406 >                                    runBit = b;
2407 >                                    lastRun = p;
2408 >                                }
2409 >                            }
2410 >                            if (runBit == 0) {
2411 >                                ln = lastRun;
2412 >                                hn = null;
2413 >                            }
2414 >                            else {
2415 >                                hn = lastRun;
2416 >                                ln = null;
2417 >                            }
2418 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2419 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2420 >                                if ((ph & n) == 0)
2421 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2422 >                                else
2423 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2424 >                            }
2425 >                            setTabAt(nextTab, i, ln);
2426 >                            setTabAt(nextTab, i + n, hn);
2427 >                            setTabAt(tab, i, fwd);
2428 >                            advance = true;
2429 >                        }
2430 >                        else if (f instanceof TreeBin) {
2431 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2432 >                            TreeNode<K,V> lo = null, loTail = null;
2433 >                            TreeNode<K,V> hi = null, hiTail = null;
2434 >                            int lc = 0, hc = 0;
2435 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2436 >                                int h = e.hash;
2437 >                                TreeNode<K,V> p = new TreeNode<K,V>
2438 >                                    (h, e.key, e.val, null, null);
2439 >                                if ((h & n) == 0) {
2440 >                                    if ((p.prev = loTail) == null)
2441 >                                        lo = p;
2442 >                                    else
2443 >                                        loTail.next = p;
2444 >                                    loTail = p;
2445 >                                    ++lc;
2446 >                                }
2447 >                                else {
2448 >                                    if ((p.prev = hiTail) == null)
2449 >                                        hi = p;
2450 >                                    else
2451 >                                        hiTail.next = p;
2452 >                                    hiTail = p;
2453 >                                    ++hc;
2454 >                                }
2455 >                            }
2456 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2457 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2458 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2459 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2460 >                            setTabAt(nextTab, i, ln);
2461 >                            setTabAt(nextTab, i + n, hn);
2462 >                            setTabAt(tab, i, fwd);
2463 >                            advance = true;
2464 >                        }
2465 >                    }
2466 >                }
2467 >            }
2468 >        }
2469      }
2470  
2471 +    /* ---------------- Conversion from/to TreeBins -------------- */
2472 +
2473      /**
2474 <     * Returns a partitionable iterator of the entries in this map.
2475 <     *
3141 <     * @return a partitionable iterator of the entries in this map
2474 >     * Replaces all linked nodes in bin at given index unless table is
2475 >     * too small, in which case resizes instead.
2476       */
2477 <    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2478 <        return new EntryIterator<K,V>(this);
2477 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2478 >        Node<K,V> b; int n, sc;
2479 >        if (tab != null) {
2480 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2481 >                if (tab == table && (sc = sizeCtl) >= 0 &&
2482 >                    U.compareAndSwapInt(this, SIZECTL, sc, -2))
2483 >                    transfer(tab, null);
2484 >            }
2485 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2486 >                synchronized (b) {
2487 >                    if (tabAt(tab, index) == b) {
2488 >                        TreeNode<K,V> hd = null, tl = null;
2489 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2490 >                            TreeNode<K,V> p =
2491 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2492 >                                                  null, null);
2493 >                            if ((p.prev = tl) == null)
2494 >                                hd = p;
2495 >                            else
2496 >                                tl.next = p;
2497 >                            tl = p;
2498 >                        }
2499 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2500 >                    }
2501 >                }
2502 >            }
2503 >        }
2504      }
2505  
2506      /**
2507 <     * Returns the hash code value for this {@link Map}, i.e.,
3149 <     * the sum of, for each key-value pair in the map,
3150 <     * {@code key.hashCode() ^ value.hashCode()}.
3151 <     *
3152 <     * @return the hash code value for this map
2507 >     * Returns a list on non-TreeNodes replacing those in given list.
2508       */
2509 <    public int hashCode() {
2510 <        int h = 0;
2511 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2512 <        Object v;
2513 <        while ((v = it.advance()) != null) {
2514 <            h += it.nextKey.hashCode() ^ v.hashCode();
2509 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2510 >        Node<K,V> hd = null, tl = null;
2511 >        for (Node<K,V> q = b; q != null; q = q.next) {
2512 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2513 >            if (tl == null)
2514 >                hd = p;
2515 >            else
2516 >                tl.next = p;
2517 >            tl = p;
2518          }
2519 <        return h;
2519 >        return hd;
2520      }
2521  
2522 +    /* ---------------- TreeNodes -------------- */
2523 +
2524      /**
2525 <     * Returns a string representation of this map.  The string
3166 <     * representation consists of a list of key-value mappings (in no
3167 <     * particular order) enclosed in braces ("{@code {}}").  Adjacent
3168 <     * mappings are separated by the characters {@code ", "} (comma
3169 <     * and space).  Each key-value mapping is rendered as the key
3170 <     * followed by an equals sign ("{@code =}") followed by the
3171 <     * associated value.
3172 <     *
3173 <     * @return a string representation of this map
2525 >     * Nodes for use in TreeBins
2526       */
2527 <    public String toString() {
2528 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2529 <        StringBuilder sb = new StringBuilder();
2530 <        sb.append('{');
2531 <        Object v;
2532 <        if ((v = it.advance()) != null) {
2533 <            for (;;) {
2534 <                Object k = it.nextKey;
2535 <                sb.append(k == this ? "(this Map)" : k);
2536 <                sb.append('=');
2537 <                sb.append(v == this ? "(this Map)" : v);
2538 <                if ((v = it.advance()) == null)
2527 >    static final class TreeNode<K,V> extends Node<K,V> {
2528 >        TreeNode<K,V> parent;  // red-black tree links
2529 >        TreeNode<K,V> left;
2530 >        TreeNode<K,V> right;
2531 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2532 >        boolean red;
2533 >
2534 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2535 >                 TreeNode<K,V> parent) {
2536 >            super(hash, key, val, next);
2537 >            this.parent = parent;
2538 >        }
2539 >
2540 >        Node<K,V> find(int h, Object k) {
2541 >            return findTreeNode(h, k, null);
2542 >        }
2543 >
2544 >        /**
2545 >         * Returns the TreeNode (or null if not found) for the given key
2546 >         * starting at given root.
2547 >         */
2548 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2549 >            if (k != null) {
2550 >                TreeNode<K,V> p = this;
2551 >                do  {
2552 >                    int ph, dir; K pk; TreeNode<K,V> q;
2553 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2554 >                    if ((ph = p.hash) > h)
2555 >                        p = pl;
2556 >                    else if (ph < h)
2557 >                        p = pr;
2558 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2559 >                        return p;
2560 >                    else if (pl == null)
2561 >                        p = pr;
2562 >                    else if (pr == null)
2563 >                        p = pl;
2564 >                    else if ((kc != null ||
2565 >                              (kc = comparableClassFor(k)) != null) &&
2566 >                             (dir = compareComparables(kc, k, pk)) != 0)
2567 >                        p = (dir < 0) ? pl : pr;
2568 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2569 >                        return q;
2570 >                    else
2571 >                        p = pl;
2572 >                } while (p != null);
2573 >            }
2574 >            return null;
2575 >        }
2576 >    }
2577 >
2578 >    /* ---------------- TreeBins -------------- */
2579 >
2580 >    /**
2581 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2582 >     * keys or values, but instead point to list of TreeNodes and
2583 >     * their root. They also maintain a parasitic read-write lock
2584 >     * forcing writers (who hold bin lock) to wait for readers (who do
2585 >     * not) to complete before tree restructuring operations.
2586 >     */
2587 >    static final class TreeBin<K,V> extends Node<K,V> {
2588 >        TreeNode<K,V> root;
2589 >        volatile TreeNode<K,V> first;
2590 >        volatile Thread waiter;
2591 >        volatile int lockState;
2592 >        // values for lockState
2593 >        static final int WRITER = 1; // set while holding write lock
2594 >        static final int WAITER = 2; // set when waiting for write lock
2595 >        static final int READER = 4; // increment value for setting read lock
2596 >
2597 >        /**
2598 >         * Tie-breaking utility for ordering insertions when equal
2599 >         * hashCodes and non-comparable. We don't require a total
2600 >         * order, just a consistent insertion rule to maintain
2601 >         * equivalence across rebalancings. Tie-breaking further than
2602 >         * necessary simplifies testing a bit.
2603 >         */
2604 >        static int tieBreakOrder(Object a, Object b) {
2605 >            int d;
2606 >            if (a == null || b == null ||
2607 >                (d = a.getClass().getName().
2608 >                 compareTo(b.getClass().getName())) == 0)
2609 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2610 >                     -1 : 1);
2611 >            return d;
2612 >        }
2613 >
2614 >        /**
2615 >         * Creates bin with initial set of nodes headed by b.
2616 >         */
2617 >        TreeBin(TreeNode<K,V> b) {
2618 >            super(TREEBIN, null, null, null);
2619 >            this.first = b;
2620 >            TreeNode<K,V> r = null;
2621 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2622 >                next = (TreeNode<K,V>)x.next;
2623 >                x.left = x.right = null;
2624 >                if (r == null) {
2625 >                    x.parent = null;
2626 >                    x.red = false;
2627 >                    r = x;
2628 >                }
2629 >                else {
2630 >                    K k = x.key;
2631 >                    int h = x.hash;
2632 >                    Class<?> kc = null;
2633 >                    for (TreeNode<K,V> p = r;;) {
2634 >                        int dir, ph;
2635 >                        K pk = p.key;
2636 >                        if ((ph = p.hash) > h)
2637 >                            dir = -1;
2638 >                        else if (ph < h)
2639 >                            dir = 1;
2640 >                        else if ((kc == null &&
2641 >                                  (kc = comparableClassFor(k)) == null) ||
2642 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2643 >                            dir = tieBreakOrder(k, pk);
2644 >                            TreeNode<K,V> xp = p;
2645 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2646 >                            x.parent = xp;
2647 >                            if (dir <= 0)
2648 >                                xp.left = x;
2649 >                            else
2650 >                                xp.right = x;
2651 >                            r = balanceInsertion(r, x);
2652 >                            break;
2653 >                        }
2654 >                    }
2655 >                }
2656 >            }
2657 >            this.root = r;
2658 >            assert checkInvariants(root);
2659 >        }
2660 >
2661 >        /**
2662 >         * Acquires write lock for tree restructuring.
2663 >         */
2664 >        private final void lockRoot() {
2665 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2666 >                contendedLock(); // offload to separate method
2667 >        }
2668 >
2669 >        /**
2670 >         * Releases write lock for tree restructuring.
2671 >         */
2672 >        private final void unlockRoot() {
2673 >            lockState = 0;
2674 >        }
2675 >
2676 >        /**
2677 >         * Possibly blocks awaiting root lock.
2678 >         */
2679 >        private final void contendedLock() {
2680 >            boolean waiting = false;
2681 >            for (int s;;) {
2682 >                if (((s = lockState) & WRITER) == 0) {
2683 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2684 >                        if (waiting)
2685 >                            waiter = null;
2686 >                        return;
2687 >                    }
2688 >                }
2689 >                else if ((s & WAITER) == 0) {
2690 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2691 >                        waiting = true;
2692 >                        waiter = Thread.currentThread();
2693 >                    }
2694 >                }
2695 >                else if (waiting)
2696 >                    LockSupport.park(this);
2697 >            }
2698 >        }
2699 >
2700 >        /**
2701 >         * Returns matching node or null if none. Tries to search
2702 >         * using tree comparisons from root, but continues linear
2703 >         * search when lock not available.
2704 >         */
2705 > final Node<K,V> find(int h, Object k) {
2706 >            if (k != null) {
2707 >                for (Node<K,V> e = first; e != null; e = e.next) {
2708 >                    int s; K ek;
2709 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2710 >                        if (e.hash == h &&
2711 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2712 >                            return e;
2713 >                    }
2714 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2715 >                                                 s + READER)) {
2716 >                        TreeNode<K,V> r, p;
2717 >                        try {
2718 >                            p = ((r = root) == null ? null :
2719 >                                 r.findTreeNode(h, k, null));
2720 >                        } finally {
2721 >                            Thread w;
2722 >                            int ls;
2723 >                            do {} while (!U.compareAndSwapInt
2724 >                                         (this, LOCKSTATE,
2725 >                                          ls = lockState, ls - READER));
2726 >                            if (ls == (READER|WAITER) && (w = waiter) != null)
2727 >                                LockSupport.unpark(w);
2728 >                        }
2729 >                        return p;
2730 >                    }
2731 >                }
2732 >            }
2733 >            return null;
2734 >        }
2735 >
2736 >        /**
2737 >         * Finds or adds a node.
2738 >         * @return null if added
2739 >         */
2740 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2741 >            Class<?> kc = null;
2742 >            boolean searched = false;
2743 >            for (TreeNode<K,V> p = root;;) {
2744 >                int dir, ph; K pk;
2745 >                if (p == null) {
2746 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2747                      break;
2748 <                sb.append(',').append(' ');
2748 >                }
2749 >                else if ((ph = p.hash) > h)
2750 >                    dir = -1;
2751 >                else if (ph < h)
2752 >                    dir = 1;
2753 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2754 >                    return p;
2755 >                else if ((kc == null &&
2756 >                          (kc = comparableClassFor(k)) == null) ||
2757 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2758 >                    if (!searched) {
2759 >                        TreeNode<K,V> q, ch;
2760 >                        searched = true;
2761 >                        if (((ch = p.left) != null &&
2762 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2763 >                            ((ch = p.right) != null &&
2764 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2765 >                            return q;
2766 >                    }
2767 >                    dir = tieBreakOrder(k, pk);
2768 >                }
2769 >
2770 >                TreeNode<K,V> xp = p;
2771 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2772 >                    TreeNode<K,V> x, f = first;
2773 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2774 >                    if (f != null)
2775 >                        f.prev = x;
2776 >                    if (dir <= 0)
2777 >                        xp.left = x;
2778 >                    else
2779 >                        xp.right = x;
2780 >                    if (!xp.red)
2781 >                        x.red = true;
2782 >                    else {
2783 >                        lockRoot();
2784 >                        try {
2785 >                            root = balanceInsertion(root, x);
2786 >                        } finally {
2787 >                            unlockRoot();
2788 >                        }
2789 >                    }
2790 >                    break;
2791 >                }
2792 >            }
2793 >            assert checkInvariants(root);
2794 >            return null;
2795 >        }
2796 >
2797 >        /**
2798 >         * Removes the given node, that must be present before this
2799 >         * call.  This is messier than typical red-black deletion code
2800 >         * because we cannot swap the contents of an interior node
2801 >         * with a leaf successor that is pinned by "next" pointers
2802 >         * that are accessible independently of lock. So instead we
2803 >         * swap the tree linkages.
2804 >         *
2805 >         * @return true if now too small, so should be untreeified
2806 >         */
2807 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2808 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2809 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2810 >            TreeNode<K,V> r, rl;
2811 >            if (pred == null)
2812 >                first = next;
2813 >            else
2814 >                pred.next = next;
2815 >            if (next != null)
2816 >                next.prev = pred;
2817 >            if (first == null) {
2818 >                root = null;
2819 >                return true;
2820 >            }
2821 >            if ((r = root) == null || r.right == null || // too small
2822 >                (rl = r.left) == null || rl.left == null)
2823 >                return true;
2824 >            lockRoot();
2825 >            try {
2826 >                TreeNode<K,V> replacement;
2827 >                TreeNode<K,V> pl = p.left;
2828 >                TreeNode<K,V> pr = p.right;
2829 >                if (pl != null && pr != null) {
2830 >                    TreeNode<K,V> s = pr, sl;
2831 >                    while ((sl = s.left) != null) // find successor
2832 >                        s = sl;
2833 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2834 >                    TreeNode<K,V> sr = s.right;
2835 >                    TreeNode<K,V> pp = p.parent;
2836 >                    if (s == pr) { // p was s's direct parent
2837 >                        p.parent = s;
2838 >                        s.right = p;
2839 >                    }
2840 >                    else {
2841 >                        TreeNode<K,V> sp = s.parent;
2842 >                        if ((p.parent = sp) != null) {
2843 >                            if (s == sp.left)
2844 >                                sp.left = p;
2845 >                            else
2846 >                                sp.right = p;
2847 >                        }
2848 >                        if ((s.right = pr) != null)
2849 >                            pr.parent = s;
2850 >                    }
2851 >                    p.left = null;
2852 >                    if ((p.right = sr) != null)
2853 >                        sr.parent = p;
2854 >                    if ((s.left = pl) != null)
2855 >                        pl.parent = s;
2856 >                    if ((s.parent = pp) == null)
2857 >                        r = s;
2858 >                    else if (p == pp.left)
2859 >                        pp.left = s;
2860 >                    else
2861 >                        pp.right = s;
2862 >                    if (sr != null)
2863 >                        replacement = sr;
2864 >                    else
2865 >                        replacement = p;
2866 >                }
2867 >                else if (pl != null)
2868 >                    replacement = pl;
2869 >                else if (pr != null)
2870 >                    replacement = pr;
2871 >                else
2872 >                    replacement = p;
2873 >                if (replacement != p) {
2874 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2875 >                    if (pp == null)
2876 >                        r = replacement;
2877 >                    else if (p == pp.left)
2878 >                        pp.left = replacement;
2879 >                    else
2880 >                        pp.right = replacement;
2881 >                    p.left = p.right = p.parent = null;
2882 >                }
2883 >
2884 >                root = (p.red) ? r : balanceDeletion(r, replacement);
2885 >
2886 >                if (p == replacement) {  // detach pointers
2887 >                    TreeNode<K,V> pp;
2888 >                    if ((pp = p.parent) != null) {
2889 >                        if (p == pp.left)
2890 >                            pp.left = null;
2891 >                        else if (p == pp.right)
2892 >                            pp.right = null;
2893 >                        p.parent = null;
2894 >                    }
2895 >                }
2896 >            } finally {
2897 >                unlockRoot();
2898 >            }
2899 >            assert checkInvariants(root);
2900 >            return false;
2901 >        }
2902 >
2903 >        /* ------------------------------------------------------------ */
2904 >        // Red-black tree methods, all adapted from CLR
2905 >
2906 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2907 >                                              TreeNode<K,V> p) {
2908 >            TreeNode<K,V> r, pp, rl;
2909 >            if (p != null && (r = p.right) != null) {
2910 >                if ((rl = p.right = r.left) != null)
2911 >                    rl.parent = p;
2912 >                if ((pp = r.parent = p.parent) == null)
2913 >                    (root = r).red = false;
2914 >                else if (pp.left == p)
2915 >                    pp.left = r;
2916 >                else
2917 >                    pp.right = r;
2918 >                r.left = p;
2919 >                p.parent = r;
2920 >            }
2921 >            return root;
2922 >        }
2923 >
2924 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2925 >                                               TreeNode<K,V> p) {
2926 >            TreeNode<K,V> l, pp, lr;
2927 >            if (p != null && (l = p.left) != null) {
2928 >                if ((lr = p.left = l.right) != null)
2929 >                    lr.parent = p;
2930 >                if ((pp = l.parent = p.parent) == null)
2931 >                    (root = l).red = false;
2932 >                else if (pp.right == p)
2933 >                    pp.right = l;
2934 >                else
2935 >                    pp.left = l;
2936 >                l.right = p;
2937 >                p.parent = l;
2938 >            }
2939 >            return root;
2940 >        }
2941 >
2942 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2943 >                                                    TreeNode<K,V> x) {
2944 >            x.red = true;
2945 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2946 >                if ((xp = x.parent) == null) {
2947 >                    x.red = false;
2948 >                    return x;
2949 >                }
2950 >                else if (!xp.red || (xpp = xp.parent) == null)
2951 >                    return root;
2952 >                if (xp == (xppl = xpp.left)) {
2953 >                    if ((xppr = xpp.right) != null && xppr.red) {
2954 >                        xppr.red = false;
2955 >                        xp.red = false;
2956 >                        xpp.red = true;
2957 >                        x = xpp;
2958 >                    }
2959 >                    else {
2960 >                        if (x == xp.right) {
2961 >                            root = rotateLeft(root, x = xp);
2962 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2963 >                        }
2964 >                        if (xp != null) {
2965 >                            xp.red = false;
2966 >                            if (xpp != null) {
2967 >                                xpp.red = true;
2968 >                                root = rotateRight(root, xpp);
2969 >                            }
2970 >                        }
2971 >                    }
2972 >                }
2973 >                else {
2974 >                    if (xppl != null && xppl.red) {
2975 >                        xppl.red = false;
2976 >                        xp.red = false;
2977 >                        xpp.red = true;
2978 >                        x = xpp;
2979 >                    }
2980 >                    else {
2981 >                        if (x == xp.left) {
2982 >                            root = rotateRight(root, x = xp);
2983 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2984 >                        }
2985 >                        if (xp != null) {
2986 >                            xp.red = false;
2987 >                            if (xpp != null) {
2988 >                                xpp.red = true;
2989 >                                root = rotateLeft(root, xpp);
2990 >                            }
2991 >                        }
2992 >                    }
2993 >                }
2994 >            }
2995 >        }
2996 >
2997 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2998 >                                                   TreeNode<K,V> x) {
2999 >            for (TreeNode<K,V> xp, xpl, xpr;;)  {
3000 >                if (x == null || x == root)
3001 >                    return root;
3002 >                else if ((xp = x.parent) == null) {
3003 >                    x.red = false;
3004 >                    return x;
3005 >                }
3006 >                else if (x.red) {
3007 >                    x.red = false;
3008 >                    return root;
3009 >                }
3010 >                else if ((xpl = xp.left) == x) {
3011 >                    if ((xpr = xp.right) != null && xpr.red) {
3012 >                        xpr.red = false;
3013 >                        xp.red = true;
3014 >                        root = rotateLeft(root, xp);
3015 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3016 >                    }
3017 >                    if (xpr == null)
3018 >                        x = xp;
3019 >                    else {
3020 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3021 >                        if ((sr == null || !sr.red) &&
3022 >                            (sl == null || !sl.red)) {
3023 >                            xpr.red = true;
3024 >                            x = xp;
3025 >                        }
3026 >                        else {
3027 >                            if (sr == null || !sr.red) {
3028 >                                if (sl != null)
3029 >                                    sl.red = false;
3030 >                                xpr.red = true;
3031 >                                root = rotateRight(root, xpr);
3032 >                                xpr = (xp = x.parent) == null ?
3033 >                                    null : xp.right;
3034 >                            }
3035 >                            if (xpr != null) {
3036 >                                xpr.red = (xp == null) ? false : xp.red;
3037 >                                if ((sr = xpr.right) != null)
3038 >                                    sr.red = false;
3039 >                            }
3040 >                            if (xp != null) {
3041 >                                xp.red = false;
3042 >                                root = rotateLeft(root, xp);
3043 >                            }
3044 >                            x = root;
3045 >                        }
3046 >                    }
3047 >                }
3048 >                else { // symmetric
3049 >                    if (xpl != null && xpl.red) {
3050 >                        xpl.red = false;
3051 >                        xp.red = true;
3052 >                        root = rotateRight(root, xp);
3053 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3054 >                    }
3055 >                    if (xpl == null)
3056 >                        x = xp;
3057 >                    else {
3058 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3059 >                        if ((sl == null || !sl.red) &&
3060 >                            (sr == null || !sr.red)) {
3061 >                            xpl.red = true;
3062 >                            x = xp;
3063 >                        }
3064 >                        else {
3065 >                            if (sl == null || !sl.red) {
3066 >                                if (sr != null)
3067 >                                    sr.red = false;
3068 >                                xpl.red = true;
3069 >                                root = rotateLeft(root, xpl);
3070 >                                xpl = (xp = x.parent) == null ?
3071 >                                    null : xp.left;
3072 >                            }
3073 >                            if (xpl != null) {
3074 >                                xpl.red = (xp == null) ? false : xp.red;
3075 >                                if ((sl = xpl.left) != null)
3076 >                                    sl.red = false;
3077 >                            }
3078 >                            if (xp != null) {
3079 >                                xp.red = false;
3080 >                                root = rotateRight(root, xp);
3081 >                            }
3082 >                            x = root;
3083 >                        }
3084 >                    }
3085 >                }
3086 >            }
3087 >        }
3088 >
3089 >        /**
3090 >         * Recursive invariant check
3091 >         */
3092 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3093 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3094 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3095 >            if (tb != null && tb.next != t)
3096 >                return false;
3097 >            if (tn != null && tn.prev != t)
3098 >                return false;
3099 >            if (tp != null && t != tp.left && t != tp.right)
3100 >                return false;
3101 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3102 >                return false;
3103 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3104 >                return false;
3105 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3106 >                return false;
3107 >            if (tl != null && !checkInvariants(tl))
3108 >                return false;
3109 >            if (tr != null && !checkInvariants(tr))
3110 >                return false;
3111 >            return true;
3112 >        }
3113 >
3114 >        private static final sun.misc.Unsafe U;
3115 >        private static final long LOCKSTATE;
3116 >        static {
3117 >            try {
3118 >                U = getUnsafe();
3119 >                Class<?> k = TreeBin.class;
3120 >                LOCKSTATE = U.objectFieldOffset
3121 >                    (k.getDeclaredField("lockState"));
3122 >            } catch (Exception e) {
3123 >                throw new Error(e);
3124              }
3125          }
3191        return sb.append('}').toString();
3126      }
3127  
3128 +    /* ----------------Table Traversal -------------- */
3129 +
3130      /**
3131 <     * Compares the specified object with this map for equality.
3132 <     * Returns {@code true} if the given object is a map with the same
3197 <     * mappings as this map.  This operation may return misleading
3198 <     * results if either map is concurrently modified during execution
3199 <     * of this method.
3131 >     * Encapsulates traversal for methods such as containsValue; also
3132 >     * serves as a base class for other iterators and spliterators.
3133       *
3134 <     * @param o object to be compared for equality with this map
3135 <     * @return {@code true} if the specified object is equal to this map
3134 >     * Method advance visits once each still-valid node that was
3135 >     * reachable upon iterator construction. It might miss some that
3136 >     * were added to a bin after the bin was visited, which is OK wrt
3137 >     * consistency guarantees. Maintaining this property in the face
3138 >     * of possible ongoing resizes requires a fair amount of
3139 >     * bookkeeping state that is difficult to optimize away amidst
3140 >     * volatile accesses.  Even so, traversal maintains reasonable
3141 >     * throughput.
3142 >     *
3143 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3144 >     * However, if the table has been resized, then all future steps
3145 >     * must traverse both the bin at the current index as well as at
3146 >     * (index + baseSize); and so on for further resizings. To
3147 >     * paranoically cope with potential sharing by users of iterators
3148 >     * across threads, iteration terminates if a bounds checks fails
3149 >     * for a table read.
3150       */
3151 <    public boolean equals(Object o) {
3152 <        if (o != this) {
3153 <            if (!(o instanceof Map))
3154 <                return false;
3155 <            Map<?,?> m = (Map<?,?>) o;
3156 <            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3157 <            Object val;
3158 <            while ((val = it.advance()) != null) {
3159 <                Object v = m.get(it.nextKey);
3160 <                if (v == null || (v != val && !v.equals(val)))
3161 <                    return false;
3162 <            }
3163 <            for (Map.Entry<?,?> e : m.entrySet()) {
3164 <                Object mk, mv, v;
3165 <                if ((mk = e.getKey()) == null ||
3166 <                    (mv = e.getValue()) == null ||
3167 <                    (v = internalGet(mk)) == null ||
3168 <                    (mv != v && !mv.equals(v)))
3169 <                    return false;
3151 >    static class Traverser<K,V> {
3152 >        Node<K,V>[] tab;        // current table; updated if resized
3153 >        Node<K,V> next;         // the next entry to use
3154 >        int index;              // index of bin to use next
3155 >        int baseIndex;          // current index of initial table
3156 >        int baseLimit;          // index bound for initial table
3157 >        final int baseSize;     // initial table size
3158 >
3159 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3160 >            this.tab = tab;
3161 >            this.baseSize = size;
3162 >            this.baseIndex = this.index = index;
3163 >            this.baseLimit = limit;
3164 >            this.next = null;
3165 >        }
3166 >
3167 >        /**
3168 >         * Advances if possible, returning next valid node, or null if none.
3169 >         */
3170 >        final Node<K,V> advance() {
3171 >            Node<K,V> e;
3172 >            if ((e = next) != null)
3173 >                e = e.next;
3174 >            for (;;) {
3175 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
3176 >                if (e != null)
3177 >                    return next = e;
3178 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3179 >                    (n = t.length) <= (i = index) || i < 0)
3180 >                    return next = null;
3181 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
3182 >                    if (e instanceof ForwardingNode) {
3183 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3184 >                        e = null;
3185 >                        continue;
3186 >                    }
3187 >                    else if (e instanceof TreeBin)
3188 >                        e = ((TreeBin<K,V>)e).first;
3189 >                    else
3190 >                        e = null;
3191 >                }
3192 >                if ((index += baseSize) >= n)
3193 >                    index = ++baseIndex;    // visit upper slots if present
3194              }
3195          }
3225        return true;
3196      }
3197  
3198 <    /* ----------------Iterators -------------- */
3199 <
3200 <    @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3201 <        implements Spliterator<K>, Enumeration<K> {
3202 <        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3203 <        KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3204 <            super(map, it, -1);
3198 >    /**
3199 >     * Base of key, value, and entry Iterators. Adds fields to
3200 >     * Traverser to support iterator.remove.
3201 >     */
3202 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3203 >        final ConcurrentHashMapV8<K,V> map;
3204 >        Node<K,V> lastReturned;
3205 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3206 >                    ConcurrentHashMapV8<K,V> map) {
3207 >            super(tab, size, index, limit);
3208 >            this.map = map;
3209 >            advance();
3210          }
3211 <        public KeyIterator<K,V> split() {
3212 <            if (nextKey != null)
3211 >
3212 >        public final boolean hasNext() { return next != null; }
3213 >        public final boolean hasMoreElements() { return next != null; }
3214 >
3215 >        public final void remove() {
3216 >            Node<K,V> p;
3217 >            if ((p = lastReturned) == null)
3218                  throw new IllegalStateException();
3219 <            return new KeyIterator<K,V>(map, this);
3219 >            lastReturned = null;
3220 >            map.replaceNode(p.key, null, null);
3221 >        }
3222 >    }
3223 >
3224 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3225 >        implements Iterator<K>, Enumeration<K> {
3226 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3227 >                    ConcurrentHashMapV8<K,V> map) {
3228 >            super(tab, index, size, limit, map);
3229          }
3230 <        @SuppressWarnings("unchecked") public final K next() {
3231 <            if (nextVal == null && advance() == null)
3230 >
3231 >        public final K next() {
3232 >            Node<K,V> p;
3233 >            if ((p = next) == null)
3234                  throw new NoSuchElementException();
3235 <            Object k = nextKey;
3236 <            nextVal = null;
3237 <            return (K) k;
3235 >            K k = p.key;
3236 >            lastReturned = p;
3237 >            advance();
3238 >            return k;
3239          }
3240  
3241          public final K nextElement() { return next(); }
3242      }
3243  
3244 <    @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3245 <        implements Spliterator<V>, Enumeration<V> {
3246 <        ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3247 <        ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3248 <            super(map, it, -1);
3257 <        }
3258 <        public ValueIterator<K,V> split() {
3259 <            if (nextKey != null)
3260 <                throw new IllegalStateException();
3261 <            return new ValueIterator<K,V>(map, this);
3244 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3245 >        implements Iterator<V>, Enumeration<V> {
3246 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3247 >                      ConcurrentHashMapV8<K,V> map) {
3248 >            super(tab, index, size, limit, map);
3249          }
3250  
3251 <        @SuppressWarnings("unchecked") public final V next() {
3252 <            Object v;
3253 <            if ((v = nextVal) == null && (v = advance()) == null)
3251 >        public final V next() {
3252 >            Node<K,V> p;
3253 >            if ((p = next) == null)
3254                  throw new NoSuchElementException();
3255 <            nextVal = null;
3256 <            return (V) v;
3255 >            V v = p.val;
3256 >            lastReturned = p;
3257 >            advance();
3258 >            return v;
3259          }
3260  
3261          public final V nextElement() { return next(); }
3262      }
3263  
3264 <    @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3265 <        implements Spliterator<Map.Entry<K,V>> {
3266 <        EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3267 <        EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3268 <            super(map, it, -1);
3280 <        }
3281 <        public EntryIterator<K,V> split() {
3282 <            if (nextKey != null)
3283 <                throw new IllegalStateException();
3284 <            return new EntryIterator<K,V>(map, this);
3264 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3265 >        implements Iterator<Map.Entry<K,V>> {
3266 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3267 >                      ConcurrentHashMapV8<K,V> map) {
3268 >            super(tab, index, size, limit, map);
3269          }
3270  
3271 <        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3272 <            Object v;
3273 <            if ((v = nextVal) == null && (v = advance()) == null)
3271 >        public final Map.Entry<K,V> next() {
3272 >            Node<K,V> p;
3273 >            if ((p = next) == null)
3274                  throw new NoSuchElementException();
3275 <            Object k = nextKey;
3276 <            nextVal = null;
3277 <            return new MapEntry<K,V>((K)k, (V)v, map);
3275 >            K k = p.key;
3276 >            V v = p.val;
3277 >            lastReturned = p;
3278 >            advance();
3279 >            return new MapEntry<K,V>(k, v, map);
3280          }
3281      }
3282  
3283      /**
3284 <     * Exported Entry for iterators
3284 >     * Exported Entry for EntryIterator
3285       */
3286 <    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3286 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3287          final K key; // non-null
3288          V val;       // non-null
3289 <        final ConcurrentHashMapV8<K, V> map;
3290 <        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3289 >        final ConcurrentHashMapV8<K,V> map;
3290 >        MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3291              this.key = key;
3292              this.val = val;
3293              this.map = map;
3294          }
3295 <        public final K getKey()       { return key; }
3296 <        public final V getValue()     { return val; }
3297 <        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3298 <        public final String toString(){ return key + "=" + val; }
3295 >        public K getKey()        { return key; }
3296 >        public V getValue()      { return val; }
3297 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3298 >        public String toString() { return key + "=" + val; }
3299  
3300 <        public final boolean equals(Object o) {
3300 >        public boolean equals(Object o) {
3301              Object k, v; Map.Entry<?,?> e;
3302              return ((o instanceof Map.Entry) &&
3303                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 3325 | Line 3311 | public class ConcurrentHashMapV8<K, V>
3311           * value to return is somewhat arbitrary here. Since we do not
3312           * necessarily track asynchronous changes, the most recent
3313           * "previous" value could be different from what we return (or
3314 <         * could even have been removed in which case the put will
3314 >         * could even have been removed, in which case the put will
3315           * re-establish). We do not and cannot guarantee more.
3316           */
3317 <        public final V setValue(V value) {
3317 >        public V setValue(V value) {
3318              if (value == null) throw new NullPointerException();
3319              V v = val;
3320              val = value;
# Line 3337 | Line 3323 | public class ConcurrentHashMapV8<K, V>
3323          }
3324      }
3325  
3326 <    /**
3327 <     * Returns exportable snapshot entry for the given key and value
3328 <     * when write-through can't or shouldn't be used.
3329 <     */
3330 <    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3331 <        return new AbstractMap.SimpleEntry<K,V>(k, v);
3332 <    }
3326 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3327 >        implements ConcurrentHashMapSpliterator<K> {
3328 >        long est;               // size estimate
3329 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3330 >                       long est) {
3331 >            super(tab, size, index, limit);
3332 >            this.est = est;
3333 >        }
3334 >
3335 >        public ConcurrentHashMapSpliterator<K> trySplit() {
3336 >            int i, f, h;
3337 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3338 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3339 >                                        f, est >>>= 1);
3340 >        }
3341  
3342 <    /* ---------------- Serialization Support -------------- */
3342 >        public void forEachRemaining(Action<? super K> action) {
3343 >            if (action == null) throw new NullPointerException();
3344 >            for (Node<K,V> p; (p = advance()) != null;)
3345 >                action.apply(p.key);
3346 >        }
3347 >
3348 >        public boolean tryAdvance(Action<? super K> action) {
3349 >            if (action == null) throw new NullPointerException();
3350 >            Node<K,V> p;
3351 >            if ((p = advance()) == null)
3352 >                return false;
3353 >            action.apply(p.key);
3354 >            return true;
3355 >        }
3356 >
3357 >        public long estimateSize() { return est; }
3358  
3350    /**
3351     * Stripped-down version of helper class used in previous version,
3352     * declared for the sake of serialization compatibility
3353     */
3354    static class Segment<K,V> implements Serializable {
3355        private static final long serialVersionUID = 2249069246763182397L;
3356        final float loadFactor;
3357        Segment(float lf) { this.loadFactor = lf; }
3359      }
3360  
3361 <    /**
3362 <     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3363 <     * stream (i.e., serializes it).
3364 <     * @param s the stream
3365 <     * @serialData
3366 <     * the key (Object) and value (Object)
3367 <     * for each key-value mapping, followed by a null pair.
3367 <     * The key-value mappings are emitted in no particular order.
3368 <     */
3369 <    @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3370 <        throws java.io.IOException {
3371 <        if (segments == null) { // for serialization compatibility
3372 <            segments = (Segment<K,V>[])
3373 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3374 <            for (int i = 0; i < segments.length; ++i)
3375 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3376 <        }
3377 <        s.defaultWriteObject();
3378 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3379 <        Object v;
3380 <        while ((v = it.advance()) != null) {
3381 <            s.writeObject(it.nextKey);
3382 <            s.writeObject(v);
3361 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3362 >        implements ConcurrentHashMapSpliterator<V> {
3363 >        long est;               // size estimate
3364 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3365 >                         long est) {
3366 >            super(tab, size, index, limit);
3367 >            this.est = est;
3368          }
3384        s.writeObject(null);
3385        s.writeObject(null);
3386        segments = null; // throw away
3387    }
3369  
3370 <    /**
3371 <     * Reconstitutes the instance from a stream (that is, deserializes it).
3372 <     * @param s the stream
3373 <     */
3374 <    @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3375 <        throws java.io.IOException, ClassNotFoundException {
3395 <        s.defaultReadObject();
3396 <        this.segments = null; // unneeded
3397 <        // initialize transient final field
3398 <        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3370 >        public ConcurrentHashMapSpliterator<V> trySplit() {
3371 >            int i, f, h;
3372 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3373 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3374 >                                          f, est >>>= 1);
3375 >        }
3376  
3377 <        // Create all nodes, then place in table once size is known
3378 <        long size = 0L;
3379 <        Node p = null;
3380 <        for (;;) {
3404 <            K k = (K) s.readObject();
3405 <            V v = (V) s.readObject();
3406 <            if (k != null && v != null) {
3407 <                int h = spread(k.hashCode());
3408 <                p = new Node(h, k, v, p);
3409 <                ++size;
3410 <            }
3411 <            else
3412 <                break;
3377 >        public void forEachRemaining(Action<? super V> action) {
3378 >            if (action == null) throw new NullPointerException();
3379 >            for (Node<K,V> p; (p = advance()) != null;)
3380 >                action.apply(p.val);
3381          }
3382 <        if (p != null) {
3383 <            boolean init = false;
3384 <            int n;
3385 <            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3386 <                n = MAXIMUM_CAPACITY;
3387 <            else {
3388 <                int sz = (int)size;
3389 <                n = tableSizeFor(sz + (sz >>> 1) + 1);
3422 <            }
3423 <            int sc = sizeCtl;
3424 <            boolean collide = false;
3425 <            if (n > sc &&
3426 <                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3427 <                try {
3428 <                    if (table == null) {
3429 <                        init = true;
3430 <                        Node[] tab = new Node[n];
3431 <                        int mask = n - 1;
3432 <                        while (p != null) {
3433 <                            int j = p.hash & mask;
3434 <                            Node next = p.next;
3435 <                            Node q = p.next = tabAt(tab, j);
3436 <                            setTabAt(tab, j, p);
3437 <                            if (!collide && q != null && q.hash == p.hash)
3438 <                                collide = true;
3439 <                            p = next;
3440 <                        }
3441 <                        table = tab;
3442 <                        counter.add(size);
3443 <                        sc = n - (n >>> 2);
3444 <                    }
3445 <                } finally {
3446 <                    sizeCtl = sc;
3447 <                }
3448 <                if (collide) { // rescan and convert to TreeBins
3449 <                    Node[] tab = table;
3450 <                    for (int i = 0; i < tab.length; ++i) {
3451 <                        int c = 0;
3452 <                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3453 <                            if (++c > TREE_THRESHOLD &&
3454 <                                (e.key instanceof Comparable)) {
3455 <                                replaceWithTreeBin(tab, i, e.key);
3456 <                                break;
3457 <                            }
3458 <                        }
3459 <                    }
3460 <                }
3461 <            }
3462 <            if (!init) { // Can only happen if unsafely published.
3463 <                while (p != null) {
3464 <                    internalPut(p.key, p.val);
3465 <                    p = p.next;
3466 <                }
3467 <            }
3382 >
3383 >        public boolean tryAdvance(Action<? super V> action) {
3384 >            if (action == null) throw new NullPointerException();
3385 >            Node<K,V> p;
3386 >            if ((p = advance()) == null)
3387 >                return false;
3388 >            action.apply(p.val);
3389 >            return true;
3390          }
3391 +
3392 +        public long estimateSize() { return est; }
3393 +
3394      }
3395  
3396 +    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3397 +        implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3398 +        final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3399 +        long est;               // size estimate
3400 +        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3401 +                         long est, ConcurrentHashMapV8<K,V> map) {
3402 +            super(tab, size, index, limit);
3403 +            this.map = map;
3404 +            this.est = est;
3405 +        }
3406  
3407 <    // -------------------------------------------------------
3407 >        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3408 >            int i, f, h;
3409 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3410 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3411 >                                          f, est >>>= 1, map);
3412 >        }
3413  
3414 <    // Sams
3415 <    /** Interface describing a void action of one argument */
3416 <    public interface Action<A> { void apply(A a); }
3417 <    /** Interface describing a void action of two arguments */
3418 <    public interface BiAction<A,B> { void apply(A a, B b); }
3419 <    /** Interface describing a function of one argument */
3420 <    public interface Fun<A,T> { T apply(A a); }
3421 <    /** Interface describing a function of two arguments */
3422 <    public interface BiFun<A,B,T> { T apply(A a, B b); }
3423 <    /** Interface describing a function of no arguments */
3424 <    public interface Generator<T> { T apply(); }
3425 <    /** Interface describing a function mapping its argument to a double */
3426 <    public interface ObjectToDouble<A> { double apply(A a); }
3427 <    /** Interface describing a function mapping its argument to a long */
3488 <    public interface ObjectToLong<A> { long apply(A a); }
3489 <    /** Interface describing a function mapping its argument to an int */
3490 <    public interface ObjectToInt<A> {int apply(A a); }
3491 <    /** Interface describing a function mapping two arguments to a double */
3492 <    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3493 <    /** Interface describing a function mapping two arguments to a long */
3494 <    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3495 <    /** Interface describing a function mapping two arguments to an int */
3496 <    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3497 <    /** Interface describing a function mapping a double to a double */
3498 <    public interface DoubleToDouble { double apply(double a); }
3499 <    /** Interface describing a function mapping a long to a long */
3500 <    public interface LongToLong { long apply(long a); }
3501 <    /** Interface describing a function mapping an int to an int */
3502 <    public interface IntToInt { int apply(int a); }
3503 <    /** Interface describing a function mapping two doubles to a double */
3504 <    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3505 <    /** Interface describing a function mapping two longs to a long */
3506 <    public interface LongByLongToLong { long apply(long a, long b); }
3507 <    /** Interface describing a function mapping two ints to an int */
3508 <    public interface IntByIntToInt { int apply(int a, int b); }
3414 >        public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3415 >            if (action == null) throw new NullPointerException();
3416 >            for (Node<K,V> p; (p = advance()) != null; )
3417 >                action.apply(new MapEntry<K,V>(p.key, p.val, map));
3418 >        }
3419 >
3420 >        public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3421 >            if (action == null) throw new NullPointerException();
3422 >            Node<K,V> p;
3423 >            if ((p = advance()) == null)
3424 >                return false;
3425 >            action.apply(new MapEntry<K,V>(p.key, p.val, map));
3426 >            return true;
3427 >        }
3428  
3429 +        public long estimateSize() { return est; }
3430  
3431 <    // -------------------------------------------------------
3431 >    }
3432 >
3433 >    // Parallel bulk operations
3434 >
3435 >    /**
3436 >     * Computes initial batch value for bulk tasks. The returned value
3437 >     * is approximately exp2 of the number of times (minus one) to
3438 >     * split task by two before executing leaf action. This value is
3439 >     * faster to compute and more convenient to use as a guide to
3440 >     * splitting than is the depth, since it is used while dividing by
3441 >     * two anyway.
3442 >     */
3443 >    final int batchFor(long b) {
3444 >        long n;
3445 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3446 >            return 0;
3447 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3448 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3449 >    }
3450  
3451      /**
3452       * Performs the given action for each (key, value).
3453       *
3454 +     * @param parallelismThreshold the (estimated) number of elements
3455 +     * needed for this operation to be executed in parallel
3456       * @param action the action
3457 +     * @since 1.8
3458       */
3459 <    public void forEach(BiAction<K,V> action) {
3460 <        ForkJoinTasks.forEach
3461 <            (this, action).invoke();
3459 >    public void forEach(long parallelismThreshold,
3460 >                        BiAction<? super K,? super V> action) {
3461 >        if (action == null) throw new NullPointerException();
3462 >        new ForEachMappingTask<K,V>
3463 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3464 >             action).invoke();
3465      }
3466  
3467      /**
3468       * Performs the given action for each non-null transformation
3469       * of each (key, value).
3470       *
3471 +     * @param parallelismThreshold the (estimated) number of elements
3472 +     * needed for this operation to be executed in parallel
3473       * @param transformer a function returning the transformation
3474 <     * for an element, or null of there is no transformation (in
3475 <     * which case the action is not applied).
3474 >     * for an element, or null if there is no transformation (in
3475 >     * which case the action is not applied)
3476       * @param action the action
3477 +     * @since 1.8
3478       */
3479 <    public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3480 <                            Action<U> action) {
3481 <        ForkJoinTasks.forEach
3482 <            (this, transformer, action).invoke();
3479 >    public <U> void forEach(long parallelismThreshold,
3480 >                            BiFun<? super K, ? super V, ? extends U> transformer,
3481 >                            Action<? super U> action) {
3482 >        if (transformer == null || action == null)
3483 >            throw new NullPointerException();
3484 >        new ForEachTransformedMappingTask<K,V,U>
3485 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3486 >             transformer, action).invoke();
3487      }
3488  
3489      /**
# Line 3542 | Line 3493 | public class ConcurrentHashMapV8<K, V>
3493       * results of any other parallel invocations of the search
3494       * function are ignored.
3495       *
3496 +     * @param parallelismThreshold the (estimated) number of elements
3497 +     * needed for this operation to be executed in parallel
3498       * @param searchFunction a function returning a non-null
3499       * result on success, else null
3500       * @return a non-null result from applying the given search
3501       * function on each (key, value), or null if none
3502 +     * @since 1.8
3503       */
3504 <    public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3505 <        return ForkJoinTasks.search
3506 <            (this, searchFunction).invoke();
3504 >    public <U> U search(long parallelismThreshold,
3505 >                        BiFun<? super K, ? super V, ? extends U> searchFunction) {
3506 >        if (searchFunction == null) throw new NullPointerException();
3507 >        return new SearchMappingsTask<K,V,U>
3508 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3509 >             searchFunction, new AtomicReference<U>()).invoke();
3510      }
3511  
3512      /**
# Line 3557 | Line 3514 | public class ConcurrentHashMapV8<K, V>
3514       * of all (key, value) pairs using the given reducer to
3515       * combine values, or null if none.
3516       *
3517 +     * @param parallelismThreshold the (estimated) number of elements
3518 +     * needed for this operation to be executed in parallel
3519       * @param transformer a function returning the transformation
3520 <     * for an element, or null of there is no transformation (in
3521 <     * which case it is not combined).
3520 >     * for an element, or null if there is no transformation (in
3521 >     * which case it is not combined)
3522       * @param reducer a commutative associative combining function
3523       * @return the result of accumulating the given transformation
3524       * of all (key, value) pairs
3525 +     * @since 1.8
3526       */
3527 <    public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3527 >    public <U> U reduce(long parallelismThreshold,
3528 >                        BiFun<? super K, ? super V, ? extends U> transformer,
3529                          BiFun<? super U, ? super U, ? extends U> reducer) {
3530 <        return ForkJoinTasks.reduce
3531 <            (this, transformer, reducer).invoke();
3530 >        if (transformer == null || reducer == null)
3531 >            throw new NullPointerException();
3532 >        return new MapReduceMappingsTask<K,V,U>
3533 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3534 >             null, transformer, reducer).invoke();
3535      }
3536  
3537      /**
# Line 3575 | Line 3539 | public class ConcurrentHashMapV8<K, V>
3539       * of all (key, value) pairs using the given reducer to
3540       * combine values, and the given basis as an identity value.
3541       *
3542 +     * @param parallelismThreshold the (estimated) number of elements
3543 +     * needed for this operation to be executed in parallel
3544       * @param transformer a function returning the transformation
3545       * for an element
3546       * @param basis the identity (initial default value) for the reduction
3547       * @param reducer a commutative associative combining function
3548       * @return the result of accumulating the given transformation
3549       * of all (key, value) pairs
3550 +     * @since 1.8
3551       */
3552 <    public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3552 >    public double reduceToDouble(long parallelismThreshold,
3553 >                                 ObjectByObjectToDouble<? super K, ? super V> transformer,
3554                                   double basis,
3555                                   DoubleByDoubleToDouble reducer) {
3556 <        return ForkJoinTasks.reduceToDouble
3557 <            (this, transformer, basis, reducer).invoke();
3556 >        if (transformer == null || reducer == null)
3557 >            throw new NullPointerException();
3558 >        return new MapReduceMappingsToDoubleTask<K,V>
3559 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3560 >             null, transformer, basis, reducer).invoke();
3561      }
3562  
3563      /**
# Line 3594 | Line 3565 | public class ConcurrentHashMapV8<K, V>
3565       * of all (key, value) pairs using the given reducer to
3566       * combine values, and the given basis as an identity value.
3567       *
3568 +     * @param parallelismThreshold the (estimated) number of elements
3569 +     * needed for this operation to be executed in parallel
3570       * @param transformer a function returning the transformation
3571       * for an element
3572       * @param basis the identity (initial default value) for the reduction
3573       * @param reducer a commutative associative combining function
3574       * @return the result of accumulating the given transformation
3575       * of all (key, value) pairs
3576 +     * @since 1.8
3577       */
3578 <    public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3578 >    public long reduceToLong(long parallelismThreshold,
3579 >                             ObjectByObjectToLong<? super K, ? super V> transformer,
3580                               long basis,
3581                               LongByLongToLong reducer) {
3582 <        return ForkJoinTasks.reduceToLong
3583 <            (this, transformer, basis, reducer).invoke();
3582 >        if (transformer == null || reducer == null)
3583 >            throw new NullPointerException();
3584 >        return new MapReduceMappingsToLongTask<K,V>
3585 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3586 >             null, transformer, basis, reducer).invoke();
3587      }
3588  
3589      /**
# Line 3613 | Line 3591 | public class ConcurrentHashMapV8<K, V>
3591       * of all (key, value) pairs using the given reducer to
3592       * combine values, and the given basis as an identity value.
3593       *
3594 +     * @param parallelismThreshold the (estimated) number of elements
3595 +     * needed for this operation to be executed in parallel
3596       * @param transformer a function returning the transformation
3597       * for an element
3598       * @param basis the identity (initial default value) for the reduction
3599       * @param reducer a commutative associative combining function
3600       * @return the result of accumulating the given transformation
3601       * of all (key, value) pairs
3602 +     * @since 1.8
3603       */
3604 <    public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3604 >    public int reduceToInt(long parallelismThreshold,
3605 >                           ObjectByObjectToInt<? super K, ? super V> transformer,
3606                             int basis,
3607                             IntByIntToInt reducer) {
3608 <        return ForkJoinTasks.reduceToInt
3609 <            (this, transformer, basis, reducer).invoke();
3608 >        if (transformer == null || reducer == null)
3609 >            throw new NullPointerException();
3610 >        return new MapReduceMappingsToIntTask<K,V>
3611 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3612 >             null, transformer, basis, reducer).invoke();
3613      }
3614  
3615      /**
3616       * Performs the given action for each key.
3617       *
3618 +     * @param parallelismThreshold the (estimated) number of elements
3619 +     * needed for this operation to be executed in parallel
3620       * @param action the action
3621 +     * @since 1.8
3622       */
3623 <    public void forEachKey(Action<K> action) {
3624 <        ForkJoinTasks.forEachKey
3625 <            (this, action).invoke();
3623 >    public void forEachKey(long parallelismThreshold,
3624 >                           Action<? super K> action) {
3625 >        if (action == null) throw new NullPointerException();
3626 >        new ForEachKeyTask<K,V>
3627 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3628 >             action).invoke();
3629      }
3630  
3631      /**
3632       * Performs the given action for each non-null transformation
3633       * of each key.
3634       *
3635 +     * @param parallelismThreshold the (estimated) number of elements
3636 +     * needed for this operation to be executed in parallel
3637       * @param transformer a function returning the transformation
3638 <     * for an element, or null of there is no transformation (in
3639 <     * which case the action is not applied).
3638 >     * for an element, or null if there is no transformation (in
3639 >     * which case the action is not applied)
3640       * @param action the action
3641 +     * @since 1.8
3642       */
3643 <    public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3644 <                               Action<U> action) {
3645 <        ForkJoinTasks.forEachKey
3646 <            (this, transformer, action).invoke();
3643 >    public <U> void forEachKey(long parallelismThreshold,
3644 >                               Fun<? super K, ? extends U> transformer,
3645 >                               Action<? super U> action) {
3646 >        if (transformer == null || action == null)
3647 >            throw new NullPointerException();
3648 >        new ForEachTransformedKeyTask<K,V,U>
3649 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3650 >             transformer, action).invoke();
3651      }
3652  
3653      /**
# Line 3659 | Line 3657 | public class ConcurrentHashMapV8<K, V>
3657       * any other parallel invocations of the search function are
3658       * ignored.
3659       *
3660 +     * @param parallelismThreshold the (estimated) number of elements
3661 +     * needed for this operation to be executed in parallel
3662       * @param searchFunction a function returning a non-null
3663       * result on success, else null
3664       * @return a non-null result from applying the given search
3665       * function on each key, or null if none
3666 +     * @since 1.8
3667       */
3668 <    public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3669 <        return ForkJoinTasks.searchKeys
3670 <            (this, searchFunction).invoke();
3668 >    public <U> U searchKeys(long parallelismThreshold,
3669 >                            Fun<? super K, ? extends U> searchFunction) {
3670 >        if (searchFunction == null) throw new NullPointerException();
3671 >        return new SearchKeysTask<K,V,U>
3672 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3673 >             searchFunction, new AtomicReference<U>()).invoke();
3674      }
3675  
3676      /**
3677       * Returns the result of accumulating all keys using the given
3678       * reducer to combine values, or null if none.
3679       *
3680 +     * @param parallelismThreshold the (estimated) number of elements
3681 +     * needed for this operation to be executed in parallel
3682       * @param reducer a commutative associative combining function
3683       * @return the result of accumulating all keys using the given
3684       * reducer to combine values, or null if none
3685 +     * @since 1.8
3686       */
3687 <    public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3688 <        return ForkJoinTasks.reduceKeys
3689 <            (this, reducer).invoke();
3687 >    public K reduceKeys(long parallelismThreshold,
3688 >                        BiFun<? super K, ? super K, ? extends K> reducer) {
3689 >        if (reducer == null) throw new NullPointerException();
3690 >        return new ReduceKeysTask<K,V>
3691 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3692 >             null, reducer).invoke();
3693      }
3694  
3695      /**
# Line 3687 | Line 3697 | public class ConcurrentHashMapV8<K, V>
3697       * of all keys using the given reducer to combine values, or
3698       * null if none.
3699       *
3700 +     * @param parallelismThreshold the (estimated) number of elements
3701 +     * needed for this operation to be executed in parallel
3702       * @param transformer a function returning the transformation
3703 <     * for an element, or null of there is no transformation (in
3704 <     * which case it is not combined).
3703 >     * for an element, or null if there is no transformation (in
3704 >     * which case it is not combined)
3705       * @param reducer a commutative associative combining function
3706       * @return the result of accumulating the given transformation
3707       * of all keys
3708 +     * @since 1.8
3709       */
3710 <    public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3711 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
3712 <        return ForkJoinTasks.reduceKeys
3713 <            (this, transformer, reducer).invoke();
3710 >    public <U> U reduceKeys(long parallelismThreshold,
3711 >                            Fun<? super K, ? extends U> transformer,
3712 >         BiFun<? super U, ? super U, ? extends U> reducer) {
3713 >        if (transformer == null || reducer == null)
3714 >            throw new NullPointerException();
3715 >        return new MapReduceKeysTask<K,V,U>
3716 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3717 >             null, transformer, reducer).invoke();
3718      }
3719  
3720      /**
# Line 3705 | Line 3722 | public class ConcurrentHashMapV8<K, V>
3722       * of all keys using the given reducer to combine values, and
3723       * the given basis as an identity value.
3724       *
3725 +     * @param parallelismThreshold the (estimated) number of elements
3726 +     * needed for this operation to be executed in parallel
3727       * @param transformer a function returning the transformation
3728       * for an element
3729       * @param basis the identity (initial default value) for the reduction
3730       * @param reducer a commutative associative combining function
3731 <     * @return  the result of accumulating the given transformation
3731 >     * @return the result of accumulating the given transformation
3732       * of all keys
3733 +     * @since 1.8
3734       */
3735 <    public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3735 >    public double reduceKeysToDouble(long parallelismThreshold,
3736 >                                     ObjectToDouble<? super K> transformer,
3737                                       double basis,
3738                                       DoubleByDoubleToDouble reducer) {
3739 <        return ForkJoinTasks.reduceKeysToDouble
3740 <            (this, transformer, basis, reducer).invoke();
3739 >        if (transformer == null || reducer == null)
3740 >            throw new NullPointerException();
3741 >        return new MapReduceKeysToDoubleTask<K,V>
3742 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3743 >             null, transformer, basis, reducer).invoke();
3744      }
3745  
3746      /**
# Line 3724 | Line 3748 | public class ConcurrentHashMapV8<K, V>
3748       * of all keys using the given reducer to combine values, and
3749       * the given basis as an identity value.
3750       *
3751 +     * @param parallelismThreshold the (estimated) number of elements
3752 +     * needed for this operation to be executed in parallel
3753       * @param transformer a function returning the transformation
3754       * for an element
3755       * @param basis the identity (initial default value) for the reduction
3756       * @param reducer a commutative associative combining function
3757       * @return the result of accumulating the given transformation
3758       * of all keys
3759 +     * @since 1.8
3760       */
3761 <    public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3761 >    public long reduceKeysToLong(long parallelismThreshold,
3762 >                                 ObjectToLong<? super K> transformer,
3763                                   long basis,
3764                                   LongByLongToLong reducer) {
3765 <        return ForkJoinTasks.reduceKeysToLong
3766 <            (this, transformer, basis, reducer).invoke();
3765 >        if (transformer == null || reducer == null)
3766 >            throw new NullPointerException();
3767 >        return new MapReduceKeysToLongTask<K,V>
3768 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3769 >             null, transformer, basis, reducer).invoke();
3770      }
3771  
3772      /**
# Line 3743 | Line 3774 | public class ConcurrentHashMapV8<K, V>
3774       * of all keys using the given reducer to combine values, and
3775       * the given basis as an identity value.
3776       *
3777 +     * @param parallelismThreshold the (estimated) number of elements
3778 +     * needed for this operation to be executed in parallel
3779       * @param transformer a function returning the transformation
3780       * for an element
3781       * @param basis the identity (initial default value) for the reduction
3782       * @param reducer a commutative associative combining function
3783       * @return the result of accumulating the given transformation
3784       * of all keys
3785 +     * @since 1.8
3786       */
3787 <    public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3787 >    public int reduceKeysToInt(long parallelismThreshold,
3788 >                               ObjectToInt<? super K> transformer,
3789                                 int basis,
3790                                 IntByIntToInt reducer) {
3791 <        return ForkJoinTasks.reduceKeysToInt
3792 <            (this, transformer, basis, reducer).invoke();
3791 >        if (transformer == null || reducer == null)
3792 >            throw new NullPointerException();
3793 >        return new MapReduceKeysToIntTask<K,V>
3794 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3795 >             null, transformer, basis, reducer).invoke();
3796      }
3797  
3798      /**
3799       * Performs the given action for each value.
3800       *
3801 +     * @param parallelismThreshold the (estimated) number of elements
3802 +     * needed for this operation to be executed in parallel
3803       * @param action the action
3804 +     * @since 1.8
3805       */
3806 <    public void forEachValue(Action<V> action) {
3807 <        ForkJoinTasks.forEachValue
3808 <            (this, action).invoke();
3806 >    public void forEachValue(long parallelismThreshold,
3807 >                             Action<? super V> action) {
3808 >        if (action == null)
3809 >            throw new NullPointerException();
3810 >        new ForEachValueTask<K,V>
3811 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3812 >             action).invoke();
3813      }
3814  
3815      /**
3816       * Performs the given action for each non-null transformation
3817       * of each value.
3818       *
3819 +     * @param parallelismThreshold the (estimated) number of elements
3820 +     * needed for this operation to be executed in parallel
3821       * @param transformer a function returning the transformation
3822 <     * for an element, or null of there is no transformation (in
3823 <     * which case the action is not applied).
3822 >     * for an element, or null if there is no transformation (in
3823 >     * which case the action is not applied)
3824 >     * @param action the action
3825 >     * @since 1.8
3826       */
3827 <    public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3828 <                                 Action<U> action) {
3829 <        ForkJoinTasks.forEachValue
3830 <            (this, transformer, action).invoke();
3827 >    public <U> void forEachValue(long parallelismThreshold,
3828 >                                 Fun<? super V, ? extends U> transformer,
3829 >                                 Action<? super U> action) {
3830 >        if (transformer == null || action == null)
3831 >            throw new NullPointerException();
3832 >        new ForEachTransformedValueTask<K,V,U>
3833 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3834 >             transformer, action).invoke();
3835      }
3836  
3837      /**
# Line 3788 | Line 3841 | public class ConcurrentHashMapV8<K, V>
3841       * any other parallel invocations of the search function are
3842       * ignored.
3843       *
3844 +     * @param parallelismThreshold the (estimated) number of elements
3845 +     * needed for this operation to be executed in parallel
3846       * @param searchFunction a function returning a non-null
3847       * result on success, else null
3848       * @return a non-null result from applying the given search
3849       * function on each value, or null if none
3850 <     *
3850 >     * @since 1.8
3851       */
3852 <    public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3853 <        return ForkJoinTasks.searchValues
3854 <            (this, searchFunction).invoke();
3852 >    public <U> U searchValues(long parallelismThreshold,
3853 >                              Fun<? super V, ? extends U> searchFunction) {
3854 >        if (searchFunction == null) throw new NullPointerException();
3855 >        return new SearchValuesTask<K,V,U>
3856 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3857 >             searchFunction, new AtomicReference<U>()).invoke();
3858      }
3859  
3860      /**
3861       * Returns the result of accumulating all values using the
3862       * given reducer to combine values, or null if none.
3863       *
3864 +     * @param parallelismThreshold the (estimated) number of elements
3865 +     * needed for this operation to be executed in parallel
3866       * @param reducer a commutative associative combining function
3867 <     * @return  the result of accumulating all values
3867 >     * @return the result of accumulating all values
3868 >     * @since 1.8
3869       */
3870 <    public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3871 <        return ForkJoinTasks.reduceValues
3872 <            (this, reducer).invoke();
3870 >    public V reduceValues(long parallelismThreshold,
3871 >                          BiFun<? super V, ? super V, ? extends V> reducer) {
3872 >        if (reducer == null) throw new NullPointerException();
3873 >        return new ReduceValuesTask<K,V>
3874 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3875 >             null, reducer).invoke();
3876      }
3877  
3878      /**
# Line 3816 | Line 3880 | public class ConcurrentHashMapV8<K, V>
3880       * of all values using the given reducer to combine values, or
3881       * null if none.
3882       *
3883 +     * @param parallelismThreshold the (estimated) number of elements
3884 +     * needed for this operation to be executed in parallel
3885       * @param transformer a function returning the transformation
3886 <     * for an element, or null of there is no transformation (in
3887 <     * which case it is not combined).
3886 >     * for an element, or null if there is no transformation (in
3887 >     * which case it is not combined)
3888       * @param reducer a commutative associative combining function
3889       * @return the result of accumulating the given transformation
3890       * of all values
3891 +     * @since 1.8
3892       */
3893 <    public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3893 >    public <U> U reduceValues(long parallelismThreshold,
3894 >                              Fun<? super V, ? extends U> transformer,
3895                                BiFun<? super U, ? super U, ? extends U> reducer) {
3896 <        return ForkJoinTasks.reduceValues
3897 <            (this, transformer, reducer).invoke();
3896 >        if (transformer == null || reducer == null)
3897 >            throw new NullPointerException();
3898 >        return new MapReduceValuesTask<K,V,U>
3899 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3900 >             null, transformer, reducer).invoke();
3901      }
3902  
3903      /**
# Line 3834 | Line 3905 | public class ConcurrentHashMapV8<K, V>
3905       * of all values using the given reducer to combine values,
3906       * and the given basis as an identity value.
3907       *
3908 +     * @param parallelismThreshold the (estimated) number of elements
3909 +     * needed for this operation to be executed in parallel
3910       * @param transformer a function returning the transformation
3911       * for an element
3912       * @param basis the identity (initial default value) for the reduction
3913       * @param reducer a commutative associative combining function
3914       * @return the result of accumulating the given transformation
3915       * of all values
3916 +     * @since 1.8
3917       */
3918 <    public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3918 >    public double reduceValuesToDouble(long parallelismThreshold,
3919 >                                       ObjectToDouble<? super V> transformer,
3920                                         double basis,
3921                                         DoubleByDoubleToDouble reducer) {
3922 <        return ForkJoinTasks.reduceValuesToDouble
3923 <            (this, transformer, basis, reducer).invoke();
3922 >        if (transformer == null || reducer == null)
3923 >            throw new NullPointerException();
3924 >        return new MapReduceValuesToDoubleTask<K,V>
3925 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3926 >             null, transformer, basis, reducer).invoke();
3927      }
3928  
3929      /**
# Line 3853 | Line 3931 | public class ConcurrentHashMapV8<K, V>
3931       * of all values using the given reducer to combine values,
3932       * and the given basis as an identity value.
3933       *
3934 +     * @param parallelismThreshold the (estimated) number of elements
3935 +     * needed for this operation to be executed in parallel
3936       * @param transformer a function returning the transformation
3937       * for an element
3938       * @param basis the identity (initial default value) for the reduction
3939       * @param reducer a commutative associative combining function
3940       * @return the result of accumulating the given transformation
3941       * of all values
3942 +     * @since 1.8
3943       */
3944 <    public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3944 >    public long reduceValuesToLong(long parallelismThreshold,
3945 >                                   ObjectToLong<? super V> transformer,
3946                                     long basis,
3947                                     LongByLongToLong reducer) {
3948 <        return ForkJoinTasks.reduceValuesToLong
3949 <            (this, transformer, basis, reducer).invoke();
3948 >        if (transformer == null || reducer == null)
3949 >            throw new NullPointerException();
3950 >        return new MapReduceValuesToLongTask<K,V>
3951 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3952 >             null, transformer, basis, reducer).invoke();
3953      }
3954  
3955      /**
# Line 3872 | Line 3957 | public class ConcurrentHashMapV8<K, V>
3957       * of all values using the given reducer to combine values,
3958       * and the given basis as an identity value.
3959       *
3960 +     * @param parallelismThreshold the (estimated) number of elements
3961 +     * needed for this operation to be executed in parallel
3962       * @param transformer a function returning the transformation
3963       * for an element
3964       * @param basis the identity (initial default value) for the reduction
3965       * @param reducer a commutative associative combining function
3966       * @return the result of accumulating the given transformation
3967       * of all values
3968 +     * @since 1.8
3969       */
3970 <    public int reduceValuesToInt(ObjectToInt<? super V> transformer,
3970 >    public int reduceValuesToInt(long parallelismThreshold,
3971 >                                 ObjectToInt<? super V> transformer,
3972                                   int basis,
3973                                   IntByIntToInt reducer) {
3974 <        return ForkJoinTasks.reduceValuesToInt
3975 <            (this, transformer, basis, reducer).invoke();
3974 >        if (transformer == null || reducer == null)
3975 >            throw new NullPointerException();
3976 >        return new MapReduceValuesToIntTask<K,V>
3977 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3978 >             null, transformer, basis, reducer).invoke();
3979      }
3980  
3981      /**
3982       * Performs the given action for each entry.
3983       *
3984 +     * @param parallelismThreshold the (estimated) number of elements
3985 +     * needed for this operation to be executed in parallel
3986       * @param action the action
3987 +     * @since 1.8
3988       */
3989 <    public void forEachEntry(Action<Map.Entry<K,V>> action) {
3990 <        ForkJoinTasks.forEachEntry
3991 <            (this, action).invoke();
3989 >    public void forEachEntry(long parallelismThreshold,
3990 >                             Action<? super Map.Entry<K,V>> action) {
3991 >        if (action == null) throw new NullPointerException();
3992 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
3993 >                                  action).invoke();
3994      }
3995  
3996      /**
3997       * Performs the given action for each non-null transformation
3998       * of each entry.
3999       *
4000 +     * @param parallelismThreshold the (estimated) number of elements
4001 +     * needed for this operation to be executed in parallel
4002       * @param transformer a function returning the transformation
4003 <     * for an element, or null of there is no transformation (in
4004 <     * which case the action is not applied).
4003 >     * for an element, or null if there is no transformation (in
4004 >     * which case the action is not applied)
4005       * @param action the action
4006 +     * @since 1.8
4007       */
4008 <    public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4009 <                                 Action<U> action) {
4010 <        ForkJoinTasks.forEachEntry
4011 <            (this, transformer, action).invoke();
4008 >    public <U> void forEachEntry(long parallelismThreshold,
4009 >                                 Fun<Map.Entry<K,V>, ? extends U> transformer,
4010 >                                 Action<? super U> action) {
4011 >        if (transformer == null || action == null)
4012 >            throw new NullPointerException();
4013 >        new ForEachTransformedEntryTask<K,V,U>
4014 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4015 >             transformer, action).invoke();
4016      }
4017  
4018      /**
# Line 3918 | Line 4022 | public class ConcurrentHashMapV8<K, V>
4022       * any other parallel invocations of the search function are
4023       * ignored.
4024       *
4025 +     * @param parallelismThreshold the (estimated) number of elements
4026 +     * needed for this operation to be executed in parallel
4027       * @param searchFunction a function returning a non-null
4028       * result on success, else null
4029       * @return a non-null result from applying the given search
4030       * function on each entry, or null if none
4031 +     * @since 1.8
4032       */
4033 <    public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4034 <        return ForkJoinTasks.searchEntries
4035 <            (this, searchFunction).invoke();
4033 >    public <U> U searchEntries(long parallelismThreshold,
4034 >                               Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4035 >        if (searchFunction == null) throw new NullPointerException();
4036 >        return new SearchEntriesTask<K,V,U>
4037 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4038 >             searchFunction, new AtomicReference<U>()).invoke();
4039      }
4040  
4041      /**
4042       * Returns the result of accumulating all entries using the
4043       * given reducer to combine values, or null if none.
4044       *
4045 +     * @param parallelismThreshold the (estimated) number of elements
4046 +     * needed for this operation to be executed in parallel
4047       * @param reducer a commutative associative combining function
4048       * @return the result of accumulating all entries
4049 +     * @since 1.8
4050       */
4051 <    public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4052 <        return ForkJoinTasks.reduceEntries
4053 <            (this, reducer).invoke();
4051 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4052 >                                        BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4053 >        if (reducer == null) throw new NullPointerException();
4054 >        return new ReduceEntriesTask<K,V>
4055 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4056 >             null, reducer).invoke();
4057      }
4058  
4059      /**
# Line 3945 | Line 4061 | public class ConcurrentHashMapV8<K, V>
4061       * of all entries using the given reducer to combine values,
4062       * or null if none.
4063       *
4064 +     * @param parallelismThreshold the (estimated) number of elements
4065 +     * needed for this operation to be executed in parallel
4066       * @param transformer a function returning the transformation
4067 <     * for an element, or null of there is no transformation (in
4068 <     * which case it is not combined).
4067 >     * for an element, or null if there is no transformation (in
4068 >     * which case it is not combined)
4069       * @param reducer a commutative associative combining function
4070       * @return the result of accumulating the given transformation
4071       * of all entries
4072 +     * @since 1.8
4073       */
4074 <    public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4074 >    public <U> U reduceEntries(long parallelismThreshold,
4075 >                               Fun<Map.Entry<K,V>, ? extends U> transformer,
4076                                 BiFun<? super U, ? super U, ? extends U> reducer) {
4077 <        return ForkJoinTasks.reduceEntries
4078 <            (this, transformer, reducer).invoke();
4077 >        if (transformer == null || reducer == null)
4078 >            throw new NullPointerException();
4079 >        return new MapReduceEntriesTask<K,V,U>
4080 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4081 >             null, transformer, reducer).invoke();
4082      }
4083  
4084      /**
# Line 3963 | Line 4086 | public class ConcurrentHashMapV8<K, V>
4086       * of all entries using the given reducer to combine values,
4087       * and the given basis as an identity value.
4088       *
4089 +     * @param parallelismThreshold the (estimated) number of elements
4090 +     * needed for this operation to be executed in parallel
4091       * @param transformer a function returning the transformation
4092       * for an element
4093       * @param basis the identity (initial default value) for the reduction
4094       * @param reducer a commutative associative combining function
4095       * @return the result of accumulating the given transformation
4096       * of all entries
4097 +     * @since 1.8
4098       */
4099 <    public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4099 >    public double reduceEntriesToDouble(long parallelismThreshold,
4100 >                                        ObjectToDouble<Map.Entry<K,V>> transformer,
4101                                          double basis,
4102                                          DoubleByDoubleToDouble reducer) {
4103 <        return ForkJoinTasks.reduceEntriesToDouble
4104 <            (this, transformer, basis, reducer).invoke();
4103 >        if (transformer == null || reducer == null)
4104 >            throw new NullPointerException();
4105 >        return new MapReduceEntriesToDoubleTask<K,V>
4106 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4107 >             null, transformer, basis, reducer).invoke();
4108      }
4109  
4110      /**
# Line 3982 | Line 4112 | public class ConcurrentHashMapV8<K, V>
4112       * of all entries using the given reducer to combine values,
4113       * and the given basis as an identity value.
4114       *
4115 +     * @param parallelismThreshold the (estimated) number of elements
4116 +     * needed for this operation to be executed in parallel
4117       * @param transformer a function returning the transformation
4118       * for an element
4119       * @param basis the identity (initial default value) for the reduction
4120       * @param reducer a commutative associative combining function
4121 <     * @return  the result of accumulating the given transformation
4121 >     * @return the result of accumulating the given transformation
4122       * of all entries
4123 +     * @since 1.8
4124       */
4125 <    public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4125 >    public long reduceEntriesToLong(long parallelismThreshold,
4126 >                                    ObjectToLong<Map.Entry<K,V>> transformer,
4127                                      long basis,
4128                                      LongByLongToLong reducer) {
4129 <        return ForkJoinTasks.reduceEntriesToLong
4130 <            (this, transformer, basis, reducer).invoke();
4129 >        if (transformer == null || reducer == null)
4130 >            throw new NullPointerException();
4131 >        return new MapReduceEntriesToLongTask<K,V>
4132 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4133 >             null, transformer, basis, reducer).invoke();
4134      }
4135  
4136      /**
# Line 4001 | Line 4138 | public class ConcurrentHashMapV8<K, V>
4138       * of all entries using the given reducer to combine values,
4139       * and the given basis as an identity value.
4140       *
4141 +     * @param parallelismThreshold the (estimated) number of elements
4142 +     * needed for this operation to be executed in parallel
4143       * @param transformer a function returning the transformation
4144       * for an element
4145       * @param basis the identity (initial default value) for the reduction
4146       * @param reducer a commutative associative combining function
4147       * @return the result of accumulating the given transformation
4148       * of all entries
4149 +     * @since 1.8
4150       */
4151 <    public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4151 >    public int reduceEntriesToInt(long parallelismThreshold,
4152 >                                  ObjectToInt<Map.Entry<K,V>> transformer,
4153                                    int basis,
4154                                    IntByIntToInt reducer) {
4155 <        return ForkJoinTasks.reduceEntriesToInt
4156 <            (this, transformer, basis, reducer).invoke();
4155 >        if (transformer == null || reducer == null)
4156 >            throw new NullPointerException();
4157 >        return new MapReduceEntriesToIntTask<K,V>
4158 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4159 >             null, transformer, basis, reducer).invoke();
4160      }
4161  
4162 +
4163      /* ----------------Views -------------- */
4164  
4165      /**
4166       * Base class for views.
4167       */
4168 <    static abstract class CHMView<K, V> {
4169 <        final ConcurrentHashMapV8<K, V> map;
4170 <        CHMView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
4168 >    abstract static class CollectionView<K,V,E>
4169 >        implements Collection<E>, java.io.Serializable {
4170 >        private static final long serialVersionUID = 7249069246763182397L;
4171 >        final ConcurrentHashMapV8<K,V> map;
4172 >        CollectionView(ConcurrentHashMapV8<K,V> map)  { this.map = map; }
4173  
4174          /**
4175           * Returns the map backing this view.
# Line 4031 | Line 4178 | public class ConcurrentHashMapV8<K, V>
4178           */
4179          public ConcurrentHashMapV8<K,V> getMap() { return map; }
4180  
4181 <        public final int size()                 { return map.size(); }
4182 <        public final boolean isEmpty()          { return map.isEmpty(); }
4183 <        public final void clear()               { map.clear(); }
4181 >        /**
4182 >         * Removes all of the elements from this view, by removing all
4183 >         * the mappings from the map backing this view.
4184 >         */
4185 >        public final void clear()      { map.clear(); }
4186 >        public final int size()        { return map.size(); }
4187 >        public final boolean isEmpty() { return map.isEmpty(); }
4188  
4189          // implementations below rely on concrete classes supplying these
4190 <        abstract public Iterator<?> iterator();
4191 <        abstract public boolean contains(Object o);
4192 <        abstract public boolean remove(Object o);
4190 >        // abstract methods
4191 >        /**
4192 >         * Returns a "weakly consistent" iterator that will never
4193 >         * throw {@link ConcurrentModificationException}, and
4194 >         * guarantees to traverse elements as they existed upon
4195 >         * construction of the iterator, and may (but is not
4196 >         * guaranteed to) reflect any modifications subsequent to
4197 >         * construction.
4198 >         */
4199 >        public abstract Iterator<E> iterator();
4200 >        public abstract boolean contains(Object o);
4201 >        public abstract boolean remove(Object o);
4202  
4203          private static final String oomeMsg = "Required array size too large";
4204  
4205          public final Object[] toArray() {
4206              long sz = map.mappingCount();
4207 <            if (sz > (long)(MAX_ARRAY_SIZE))
4207 >            if (sz > MAX_ARRAY_SIZE)
4208                  throw new OutOfMemoryError(oomeMsg);
4209              int n = (int)sz;
4210              Object[] r = new Object[n];
4211              int i = 0;
4212 <            Iterator<?> it = iterator();
4053 <            while (it.hasNext()) {
4212 >            for (E e : this) {
4213                  if (i == n) {
4214                      if (n >= MAX_ARRAY_SIZE)
4215                          throw new OutOfMemoryError(oomeMsg);
# Line 4060 | Line 4219 | public class ConcurrentHashMapV8<K, V>
4219                          n += (n >>> 1) + 1;
4220                      r = Arrays.copyOf(r, n);
4221                  }
4222 <                r[i++] = it.next();
4222 >                r[i++] = e;
4223              }
4224              return (i == n) ? r : Arrays.copyOf(r, i);
4225          }
4226  
4227 <        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4227 >        @SuppressWarnings("unchecked")
4228 >        public final <T> T[] toArray(T[] a) {
4229              long sz = map.mappingCount();
4230 <            if (sz > (long)(MAX_ARRAY_SIZE))
4230 >            if (sz > MAX_ARRAY_SIZE)
4231                  throw new OutOfMemoryError(oomeMsg);
4232              int m = (int)sz;
4233              T[] r = (a.length >= m) ? a :
# Line 4075 | Line 4235 | public class ConcurrentHashMapV8<K, V>
4235                  .newInstance(a.getClass().getComponentType(), m);
4236              int n = r.length;
4237              int i = 0;
4238 <            Iterator<?> it = iterator();
4079 <            while (it.hasNext()) {
4238 >            for (E e : this) {
4239                  if (i == n) {
4240                      if (n >= MAX_ARRAY_SIZE)
4241                          throw new OutOfMemoryError(oomeMsg);
# Line 4086 | Line 4245 | public class ConcurrentHashMapV8<K, V>
4245                          n += (n >>> 1) + 1;
4246                      r = Arrays.copyOf(r, n);
4247                  }
4248 <                r[i++] = (T)it.next();
4248 >                r[i++] = (T)e;
4249              }
4250              if (a == r && i < n) {
4251                  r[i] = null; // null-terminate
# Line 4095 | Line 4254 | public class ConcurrentHashMapV8<K, V>
4254              return (i == n) ? r : Arrays.copyOf(r, i);
4255          }
4256  
4257 <        public final int hashCode() {
4258 <            int h = 0;
4259 <            for (Iterator<?> it = iterator(); it.hasNext();)
4260 <                h += it.next().hashCode();
4261 <            return h;
4262 <        }
4263 <
4257 >        /**
4258 >         * Returns a string representation of this collection.
4259 >         * The string representation consists of the string representations
4260 >         * of the collection's elements in the order they are returned by
4261 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4262 >         * Adjacent elements are separated by the characters {@code ", "}
4263 >         * (comma and space).  Elements are converted to strings as by
4264 >         * {@link String#valueOf(Object)}.
4265 >         *
4266 >         * @return a string representation of this collection
4267 >         */
4268          public final String toString() {
4269              StringBuilder sb = new StringBuilder();
4270              sb.append('[');
4271 <            Iterator<?> it = iterator();
4271 >            Iterator<E> it = iterator();
4272              if (it.hasNext()) {
4273                  for (;;) {
4274                      Object e = it.next();
# Line 4120 | Line 4283 | public class ConcurrentHashMapV8<K, V>
4283  
4284          public final boolean containsAll(Collection<?> c) {
4285              if (c != this) {
4286 <                for (Iterator<?> it = c.iterator(); it.hasNext();) {
4124 <                    Object e = it.next();
4286 >                for (Object e : c) {
4287                      if (e == null || !contains(e))
4288                          return false;
4289                  }
# Line 4131 | Line 4293 | public class ConcurrentHashMapV8<K, V>
4293  
4294          public final boolean removeAll(Collection<?> c) {
4295              boolean modified = false;
4296 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4296 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4297                  if (c.contains(it.next())) {
4298                      it.remove();
4299                      modified = true;
# Line 4142 | Line 4304 | public class ConcurrentHashMapV8<K, V>
4304  
4305          public final boolean retainAll(Collection<?> c) {
4306              boolean modified = false;
4307 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4307 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4308                  if (!c.contains(it.next())) {
4309                      it.remove();
4310                      modified = true;
# Line 4156 | Line 4318 | public class ConcurrentHashMapV8<K, V>
4318      /**
4319       * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4320       * which additions may optionally be enabled by mapping to a
4321 <     * common value.  This class cannot be directly instantiated. See
4322 <     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4323 <     * {@link #newKeySet(int)}.
4321 >     * common value.  This class cannot be directly instantiated.
4322 >     * See {@link #keySet() keySet()},
4323 >     * {@link #keySet(Object) keySet(V)},
4324 >     * {@link #newKeySet() newKeySet()},
4325 >     * {@link #newKeySet(int) newKeySet(int)}.
4326 >     *
4327 >     * @since 1.8
4328       */
4329 <    public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
4329 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4330 >        implements Set<K>, java.io.Serializable {
4331          private static final long serialVersionUID = 7249069246763182397L;
4332          private final V value;
4333 <        KeySetView(ConcurrentHashMapV8<K, V> map, V value) {  // non-public
4333 >        KeySetView(ConcurrentHashMapV8<K,V> map, V value) {  // non-public
4334              super(map);
4335              this.value = value;
4336          }
# Line 4173 | Line 4340 | public class ConcurrentHashMapV8<K, V>
4340           * or {@code null} if additions are not supported.
4341           *
4342           * @return the default mapped value for additions, or {@code null}
4343 <         * if not supported.
4343 >         * if not supported
4344           */
4345          public V getMappedValue() { return value; }
4346  
4347 <        // implement Set API
4348 <
4347 >        /**
4348 >         * {@inheritDoc}
4349 >         * @throws NullPointerException if the specified key is null
4350 >         */
4351          public boolean contains(Object o) { return map.containsKey(o); }
4183        public boolean remove(Object o)   { return map.remove(o) != null; }
4352  
4353          /**
4354 <         * Returns a "weakly consistent" iterator that will never
4355 <         * throw {@link ConcurrentModificationException}, and
4356 <         * guarantees to traverse elements as they existed upon
4357 <         * construction of the iterator, and may (but is not
4358 <         * guaranteed to) reflect any modifications subsequent to
4359 <         * construction.
4354 >         * Removes the key from this map view, by removing the key (and its
4355 >         * corresponding value) from the backing map.  This method does
4356 >         * nothing if the key is not in the map.
4357 >         *
4358 >         * @param  o the key to be removed from the backing map
4359 >         * @return {@code true} if the backing map contained the specified key
4360 >         * @throws NullPointerException if the specified key is null
4361 >         */
4362 >        public boolean remove(Object o) { return map.remove(o) != null; }
4363 >
4364 >        /**
4365 >         * @return an iterator over the keys of the backing map
4366 >         */
4367 >        public Iterator<K> iterator() {
4368 >            Node<K,V>[] t;
4369 >            ConcurrentHashMapV8<K,V> m = map;
4370 >            int f = (t = m.table) == null ? 0 : t.length;
4371 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4372 >        }
4373 >
4374 >        /**
4375 >         * Adds the specified key to this set view by mapping the key to
4376 >         * the default mapped value in the backing map, if defined.
4377           *
4378 <         * @return an iterator over the keys of this map
4378 >         * @param e key to be added
4379 >         * @return {@code true} if this set changed as a result of the call
4380 >         * @throws NullPointerException if the specified key is null
4381 >         * @throws UnsupportedOperationException if no default mapped value
4382 >         * for additions was provided
4383           */
4195        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4384          public boolean add(K e) {
4385              V v;
4386              if ((v = value) == null)
4387                  throw new UnsupportedOperationException();
4388 <            if (e == null)
4201 <                throw new NullPointerException();
4202 <            return map.internalPutIfAbsent(e, v) == null;
4388 >            return map.putVal(e, v, true) == null;
4389          }
4390 +
4391 +        /**
4392 +         * Adds all of the elements in the specified collection to this set,
4393 +         * as if by calling {@link #add} on each one.
4394 +         *
4395 +         * @param c the elements to be inserted into this set
4396 +         * @return {@code true} if this set changed as a result of the call
4397 +         * @throws NullPointerException if the collection or any of its
4398 +         * elements are {@code null}
4399 +         * @throws UnsupportedOperationException if no default mapped value
4400 +         * for additions was provided
4401 +         */
4402          public boolean addAll(Collection<? extends K> c) {
4403              boolean added = false;
4404              V v;
4405              if ((v = value) == null)
4406                  throw new UnsupportedOperationException();
4407              for (K e : c) {
4408 <                if (e == null)
4211 <                    throw new NullPointerException();
4212 <                if (map.internalPutIfAbsent(e, v) == null)
4408 >                if (map.putVal(e, v, true) == null)
4409                      added = true;
4410              }
4411              return added;
4412          }
4413 +
4414 +        public int hashCode() {
4415 +            int h = 0;
4416 +            for (K e : this)
4417 +                h += e.hashCode();
4418 +            return h;
4419 +        }
4420 +
4421          public boolean equals(Object o) {
4422              Set<?> c;
4423              return ((o instanceof Set) &&
# Line 4221 | Line 4425 | public class ConcurrentHashMapV8<K, V>
4425                       (containsAll(c) && c.containsAll(this))));
4426          }
4427  
4428 <        /**
4429 <         * Performs the given action for each key.
4430 <         *
4431 <         * @param action the action
4432 <         */
4433 <        public void forEach(Action<K> action) {
4230 <            ForkJoinTasks.forEachKey
4231 <                (map, action).invoke();
4232 <        }
4233 <
4234 <        /**
4235 <         * Performs the given action for each non-null transformation
4236 <         * of each key.
4237 <         *
4238 <         * @param transformer a function returning the transformation
4239 <         * for an element, or null of there is no transformation (in
4240 <         * which case the action is not applied).
4241 <         * @param action the action
4242 <         */
4243 <        public <U> void forEach(Fun<? super K, ? extends U> transformer,
4244 <                                Action<U> action) {
4245 <            ForkJoinTasks.forEachKey
4246 <                (map, transformer, action).invoke();
4247 <        }
4248 <
4249 <        /**
4250 <         * Returns a non-null result from applying the given search
4251 <         * function on each key, or null if none. Upon success,
4252 <         * further element processing is suppressed and the results of
4253 <         * any other parallel invocations of the search function are
4254 <         * ignored.
4255 <         *
4256 <         * @param searchFunction a function returning a non-null
4257 <         * result on success, else null
4258 <         * @return a non-null result from applying the given search
4259 <         * function on each key, or null if none
4260 <         */
4261 <        public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4262 <            return ForkJoinTasks.searchKeys
4263 <                (map, searchFunction).invoke();
4264 <        }
4265 <
4266 <        /**
4267 <         * Returns the result of accumulating all keys using the given
4268 <         * reducer to combine values, or null if none.
4269 <         *
4270 <         * @param reducer a commutative associative combining function
4271 <         * @return the result of accumulating all keys using the given
4272 <         * reducer to combine values, or null if none
4273 <         */
4274 <        public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4275 <            return ForkJoinTasks.reduceKeys
4276 <                (map, reducer).invoke();
4277 <        }
4278 <
4279 <        /**
4280 <         * Returns the result of accumulating the given transformation
4281 <         * of all keys using the given reducer to combine values, and
4282 <         * the given basis as an identity value.
4283 <         *
4284 <         * @param transformer a function returning the transformation
4285 <         * for an element
4286 <         * @param basis the identity (initial default value) for the reduction
4287 <         * @param reducer a commutative associative combining function
4288 <         * @return  the result of accumulating the given transformation
4289 <         * of all keys
4290 <         */
4291 <        public double reduceToDouble(ObjectToDouble<? super K> transformer,
4292 <                                     double basis,
4293 <                                     DoubleByDoubleToDouble reducer) {
4294 <            return ForkJoinTasks.reduceKeysToDouble
4295 <                (map, transformer, basis, reducer).invoke();
4296 <        }
4297 <
4298 <
4299 <        /**
4300 <         * Returns the result of accumulating the given transformation
4301 <         * of all keys using the given reducer to combine values, and
4302 <         * the given basis as an identity value.
4303 <         *
4304 <         * @param transformer a function returning the transformation
4305 <         * for an element
4306 <         * @param basis the identity (initial default value) for the reduction
4307 <         * @param reducer a commutative associative combining function
4308 <         * @return the result of accumulating the given transformation
4309 <         * of all keys
4310 <         */
4311 <        public long reduceToLong(ObjectToLong<? super K> transformer,
4312 <                                 long basis,
4313 <                                 LongByLongToLong reducer) {
4314 <            return ForkJoinTasks.reduceKeysToLong
4315 <                (map, transformer, basis, reducer).invoke();
4428 >        public ConcurrentHashMapSpliterator<K> spliterator() {
4429 >            Node<K,V>[] t;
4430 >            ConcurrentHashMapV8<K,V> m = map;
4431 >            long n = m.sumCount();
4432 >            int f = (t = m.table) == null ? 0 : t.length;
4433 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4434          }
4435  
4436 <        /**
4437 <         * Returns the result of accumulating the given transformation
4438 <         * of all keys using the given reducer to combine values, and
4439 <         * the given basis as an identity value.
4440 <         *
4441 <         * @param transformer a function returning the transformation
4442 <         * for an element
4443 <         * @param basis the identity (initial default value) for the reduction
4326 <         * @param reducer a commutative associative combining function
4327 <         * @return the result of accumulating the given transformation
4328 <         * of all keys
4329 <         */
4330 <        public int reduceToInt(ObjectToInt<? super K> transformer,
4331 <                               int basis,
4332 <                               IntByIntToInt reducer) {
4333 <            return ForkJoinTasks.reduceKeysToInt
4334 <                (map, transformer, basis, reducer).invoke();
4436 >        public void forEach(Action<? super K> action) {
4437 >            if (action == null) throw new NullPointerException();
4438 >            Node<K,V>[] t;
4439 >            if ((t = map.table) != null) {
4440 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4441 >                for (Node<K,V> p; (p = it.advance()) != null; )
4442 >                    action.apply(p.key);
4443 >            }
4444          }
4336
4445      }
4446  
4447      /**
4448       * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4449       * values, in which additions are disabled. This class cannot be
4450 <     * directly instantiated. See {@link #values},
4343 <     *
4344 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4345 <     * that will never throw {@link ConcurrentModificationException},
4346 <     * and guarantees to traverse elements as they existed upon
4347 <     * construction of the iterator, and may (but is not guaranteed to)
4348 <     * reflect any modifications subsequent to construction.
4450 >     * directly instantiated. See {@link #values()}.
4451       */
4452 <    public static final class ValuesView<K,V> extends CHMView<K,V>
4453 <        implements Collection<V> {
4454 <        ValuesView(ConcurrentHashMapV8<K, V> map)   { super(map); }
4455 <        public final boolean contains(Object o) { return map.containsValue(o); }
4452 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4453 >        implements Collection<V>, java.io.Serializable {
4454 >        private static final long serialVersionUID = 2249069246763182397L;
4455 >        ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4456 >        public final boolean contains(Object o) {
4457 >            return map.containsValue(o);
4458 >        }
4459 >
4460          public final boolean remove(Object o) {
4461              if (o != null) {
4462 <                Iterator<V> it = new ValueIterator<K,V>(map);
4357 <                while (it.hasNext()) {
4462 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4463                      if (o.equals(it.next())) {
4464                          it.remove();
4465                          return true;
# Line 4364 | Line 4469 | public class ConcurrentHashMapV8<K, V>
4469              return false;
4470          }
4471  
4367        /**
4368         * Returns a "weakly consistent" iterator that will never
4369         * throw {@link ConcurrentModificationException}, and
4370         * guarantees to traverse elements as they existed upon
4371         * construction of the iterator, and may (but is not
4372         * guaranteed to) reflect any modifications subsequent to
4373         * construction.
4374         *
4375         * @return an iterator over the values of this map
4376         */
4472          public final Iterator<V> iterator() {
4473 <            return new ValueIterator<K,V>(map);
4473 >            ConcurrentHashMapV8<K,V> m = map;
4474 >            Node<K,V>[] t;
4475 >            int f = (t = m.table) == null ? 0 : t.length;
4476 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4477          }
4478 +
4479          public final boolean add(V e) {
4480              throw new UnsupportedOperationException();
4481          }
# Line 4384 | Line 4483 | public class ConcurrentHashMapV8<K, V>
4483              throw new UnsupportedOperationException();
4484          }
4485  
4486 <        /**
4487 <         * Performs the given action for each value.
4488 <         *
4489 <         * @param action the action
4490 <         */
4491 <        public void forEach(Action<V> action) {
4393 <            ForkJoinTasks.forEachValue
4394 <                (map, action).invoke();
4395 <        }
4396 <
4397 <        /**
4398 <         * Performs the given action for each non-null transformation
4399 <         * of each value.
4400 <         *
4401 <         * @param transformer a function returning the transformation
4402 <         * for an element, or null of there is no transformation (in
4403 <         * which case the action is not applied).
4404 <         */
4405 <        public <U> void forEach(Fun<? super V, ? extends U> transformer,
4406 <                                     Action<U> action) {
4407 <            ForkJoinTasks.forEachValue
4408 <                (map, transformer, action).invoke();
4486 >        public ConcurrentHashMapSpliterator<V> spliterator() {
4487 >            Node<K,V>[] t;
4488 >            ConcurrentHashMapV8<K,V> m = map;
4489 >            long n = m.sumCount();
4490 >            int f = (t = m.table) == null ? 0 : t.length;
4491 >            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4492          }
4493  
4494 <        /**
4495 <         * Returns a non-null result from applying the given search
4496 <         * function on each value, or null if none.  Upon success,
4497 <         * further element processing is suppressed and the results of
4498 <         * any other parallel invocations of the search function are
4499 <         * ignored.
4500 <         *
4501 <         * @param searchFunction a function returning a non-null
4419 <         * result on success, else null
4420 <         * @return a non-null result from applying the given search
4421 <         * function on each value, or null if none
4422 <         *
4423 <         */
4424 <        public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4425 <            return ForkJoinTasks.searchValues
4426 <                (map, searchFunction).invoke();
4427 <        }
4428 <
4429 <        /**
4430 <         * Returns the result of accumulating all values using the
4431 <         * given reducer to combine values, or null if none.
4432 <         *
4433 <         * @param reducer a commutative associative combining function
4434 <         * @return  the result of accumulating all values
4435 <         */
4436 <        public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4437 <            return ForkJoinTasks.reduceValues
4438 <                (map, reducer).invoke();
4439 <        }
4440 <
4441 <        /**
4442 <         * Returns the result of accumulating the given transformation
4443 <         * of all values using the given reducer to combine values, or
4444 <         * null if none.
4445 <         *
4446 <         * @param transformer a function returning the transformation
4447 <         * for an element, or null of there is no transformation (in
4448 <         * which case it is not combined).
4449 <         * @param reducer a commutative associative combining function
4450 <         * @return the result of accumulating the given transformation
4451 <         * of all values
4452 <         */
4453 <        public <U> U reduce(Fun<? super V, ? extends U> transformer,
4454 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
4455 <            return ForkJoinTasks.reduceValues
4456 <                (map, transformer, reducer).invoke();
4457 <        }
4458 <
4459 <        /**
4460 <         * Returns the result of accumulating the given transformation
4461 <         * of all values using the given reducer to combine values,
4462 <         * and the given basis as an identity value.
4463 <         *
4464 <         * @param transformer a function returning the transformation
4465 <         * for an element
4466 <         * @param basis the identity (initial default value) for the reduction
4467 <         * @param reducer a commutative associative combining function
4468 <         * @return the result of accumulating the given transformation
4469 <         * of all values
4470 <         */
4471 <        public double reduceToDouble(ObjectToDouble<? super V> transformer,
4472 <                                     double basis,
4473 <                                     DoubleByDoubleToDouble reducer) {
4474 <            return ForkJoinTasks.reduceValuesToDouble
4475 <                (map, transformer, basis, reducer).invoke();
4476 <        }
4477 <
4478 <        /**
4479 <         * Returns the result of accumulating the given transformation
4480 <         * of all values using the given reducer to combine values,
4481 <         * and the given basis as an identity value.
4482 <         *
4483 <         * @param transformer a function returning the transformation
4484 <         * for an element
4485 <         * @param basis the identity (initial default value) for the reduction
4486 <         * @param reducer a commutative associative combining function
4487 <         * @return the result of accumulating the given transformation
4488 <         * of all values
4489 <         */
4490 <        public long reduceToLong(ObjectToLong<? super V> transformer,
4491 <                                 long basis,
4492 <                                 LongByLongToLong reducer) {
4493 <            return ForkJoinTasks.reduceValuesToLong
4494 <                (map, transformer, basis, reducer).invoke();
4495 <        }
4496 <
4497 <        /**
4498 <         * Returns the result of accumulating the given transformation
4499 <         * of all values using the given reducer to combine values,
4500 <         * and the given basis as an identity value.
4501 <         *
4502 <         * @param transformer a function returning the transformation
4503 <         * for an element
4504 <         * @param basis the identity (initial default value) for the reduction
4505 <         * @param reducer a commutative associative combining function
4506 <         * @return the result of accumulating the given transformation
4507 <         * of all values
4508 <         */
4509 <        public int reduceToInt(ObjectToInt<? super V> transformer,
4510 <                               int basis,
4511 <                               IntByIntToInt reducer) {
4512 <            return ForkJoinTasks.reduceValuesToInt
4513 <                (map, transformer, basis, reducer).invoke();
4494 >        public void forEach(Action<? super V> action) {
4495 >            if (action == null) throw new NullPointerException();
4496 >            Node<K,V>[] t;
4497 >            if ((t = map.table) != null) {
4498 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4499 >                for (Node<K,V> p; (p = it.advance()) != null; )
4500 >                    action.apply(p.val);
4501 >            }
4502          }
4515
4503      }
4504  
4505      /**
4506       * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4507       * entries.  This class cannot be directly instantiated. See
4508 <     * {@link #entrySet}.
4508 >     * {@link #entrySet()}.
4509       */
4510 <    public static final class EntrySetView<K,V> extends CHMView<K,V>
4511 <        implements Set<Map.Entry<K,V>> {
4512 <        EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4513 <        public final boolean contains(Object o) {
4510 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4511 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4512 >        private static final long serialVersionUID = 2249069246763182397L;
4513 >        EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4514 >
4515 >        public boolean contains(Object o) {
4516              Object k, v, r; Map.Entry<?,?> e;
4517              return ((o instanceof Map.Entry) &&
4518                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4531 | Line 4520 | public class ConcurrentHashMapV8<K, V>
4520                      (v = e.getValue()) != null &&
4521                      (v == r || v.equals(r)));
4522          }
4523 <        public final boolean remove(Object o) {
4523 >
4524 >        public boolean remove(Object o) {
4525              Object k, v; Map.Entry<?,?> e;
4526              return ((o instanceof Map.Entry) &&
4527                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4540 | Line 4530 | public class ConcurrentHashMapV8<K, V>
4530          }
4531  
4532          /**
4533 <         * Returns a "weakly consistent" iterator that will never
4544 <         * throw {@link ConcurrentModificationException}, and
4545 <         * guarantees to traverse elements as they existed upon
4546 <         * construction of the iterator, and may (but is not
4547 <         * guaranteed to) reflect any modifications subsequent to
4548 <         * construction.
4549 <         *
4550 <         * @return an iterator over the entries of this map
4533 >         * @return an iterator over the entries of the backing map
4534           */
4535 <        public final Iterator<Map.Entry<K,V>> iterator() {
4536 <            return new EntryIterator<K,V>(map);
4535 >        public Iterator<Map.Entry<K,V>> iterator() {
4536 >            ConcurrentHashMapV8<K,V> m = map;
4537 >            Node<K,V>[] t;
4538 >            int f = (t = m.table) == null ? 0 : t.length;
4539 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4540          }
4541  
4542 <        public final boolean add(Entry<K,V> e) {
4543 <            K key = e.getKey();
4558 <            V value = e.getValue();
4559 <            if (key == null || value == null)
4560 <                throw new NullPointerException();
4561 <            return map.internalPut(key, value) == null;
4542 >        public boolean add(Entry<K,V> e) {
4543 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4544          }
4545 <        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4545 >
4546 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4547              boolean added = false;
4548              for (Entry<K,V> e : c) {
4549                  if (add(e))
# Line 4568 | Line 4551 | public class ConcurrentHashMapV8<K, V>
4551              }
4552              return added;
4553          }
4554 <        public boolean equals(Object o) {
4554 >
4555 >        public final int hashCode() {
4556 >            int h = 0;
4557 >            Node<K,V>[] t;
4558 >            if ((t = map.table) != null) {
4559 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4560 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4561 >                    h += p.hashCode();
4562 >                }
4563 >            }
4564 >            return h;
4565 >        }
4566 >
4567 >        public final boolean equals(Object o) {
4568              Set<?> c;
4569              return ((o instanceof Set) &&
4570                      ((c = (Set<?>)o) == this ||
4571                       (containsAll(c) && c.containsAll(this))));
4572          }
4573  
4574 <        /**
4575 <         * Performs the given action for each entry.
4576 <         *
4577 <         * @param action the action
4578 <         */
4579 <        public void forEach(Action<Map.Entry<K,V>> action) {
4584 <            ForkJoinTasks.forEachEntry
4585 <                (map, action).invoke();
4586 <        }
4587 <
4588 <        /**
4589 <         * Performs the given action for each non-null transformation
4590 <         * of each entry.
4591 <         *
4592 <         * @param transformer a function returning the transformation
4593 <         * for an element, or null of there is no transformation (in
4594 <         * which case the action is not applied).
4595 <         * @param action the action
4596 <         */
4597 <        public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4598 <                                Action<U> action) {
4599 <            ForkJoinTasks.forEachEntry
4600 <                (map, transformer, action).invoke();
4601 <        }
4602 <
4603 <        /**
4604 <         * Returns a non-null result from applying the given search
4605 <         * function on each entry, or null if none.  Upon success,
4606 <         * further element processing is suppressed and the results of
4607 <         * any other parallel invocations of the search function are
4608 <         * ignored.
4609 <         *
4610 <         * @param searchFunction a function returning a non-null
4611 <         * result on success, else null
4612 <         * @return a non-null result from applying the given search
4613 <         * function on each entry, or null if none
4614 <         */
4615 <        public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4616 <            return ForkJoinTasks.searchEntries
4617 <                (map, searchFunction).invoke();
4618 <        }
4619 <
4620 <        /**
4621 <         * Returns the result of accumulating all entries using the
4622 <         * given reducer to combine values, or null if none.
4623 <         *
4624 <         * @param reducer a commutative associative combining function
4625 <         * @return the result of accumulating all entries
4626 <         */
4627 <        public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4628 <            return ForkJoinTasks.reduceEntries
4629 <                (map, reducer).invoke();
4630 <        }
4631 <
4632 <        /**
4633 <         * Returns the result of accumulating the given transformation
4634 <         * of all entries using the given reducer to combine values,
4635 <         * or null if none.
4636 <         *
4637 <         * @param transformer a function returning the transformation
4638 <         * for an element, or null of there is no transformation (in
4639 <         * which case it is not combined).
4640 <         * @param reducer a commutative associative combining function
4641 <         * @return the result of accumulating the given transformation
4642 <         * of all entries
4643 <         */
4644 <        public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4645 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
4646 <            return ForkJoinTasks.reduceEntries
4647 <                (map, transformer, reducer).invoke();
4574 >        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4575 >            Node<K,V>[] t;
4576 >            ConcurrentHashMapV8<K,V> m = map;
4577 >            long n = m.sumCount();
4578 >            int f = (t = m.table) == null ? 0 : t.length;
4579 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4580          }
4581  
4582 <        /**
4583 <         * Returns the result of accumulating the given transformation
4584 <         * of all entries using the given reducer to combine values,
4585 <         * and the given basis as an identity value.
4586 <         *
4587 <         * @param transformer a function returning the transformation
4588 <         * for an element
4589 <         * @param basis the identity (initial default value) for the reduction
4658 <         * @param reducer a commutative associative combining function
4659 <         * @return the result of accumulating the given transformation
4660 <         * of all entries
4661 <         */
4662 <        public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4663 <                                     double basis,
4664 <                                     DoubleByDoubleToDouble reducer) {
4665 <            return ForkJoinTasks.reduceEntriesToDouble
4666 <                (map, transformer, basis, reducer).invoke();
4667 <        }
4668 <
4669 <        /**
4670 <         * Returns the result of accumulating the given transformation
4671 <         * of all entries using the given reducer to combine values,
4672 <         * and the given basis as an identity value.
4673 <         *
4674 <         * @param transformer a function returning the transformation
4675 <         * for an element
4676 <         * @param basis the identity (initial default value) for the reduction
4677 <         * @param reducer a commutative associative combining function
4678 <         * @return  the result of accumulating the given transformation
4679 <         * of all entries
4680 <         */
4681 <        public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4682 <                                 long basis,
4683 <                                 LongByLongToLong reducer) {
4684 <            return ForkJoinTasks.reduceEntriesToLong
4685 <                (map, transformer, basis, reducer).invoke();
4686 <        }
4687 <
4688 <        /**
4689 <         * Returns the result of accumulating the given transformation
4690 <         * of all entries using the given reducer to combine values,
4691 <         * and the given basis as an identity value.
4692 <         *
4693 <         * @param transformer a function returning the transformation
4694 <         * for an element
4695 <         * @param basis the identity (initial default value) for the reduction
4696 <         * @param reducer a commutative associative combining function
4697 <         * @return the result of accumulating the given transformation
4698 <         * of all entries
4699 <         */
4700 <        public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4701 <                               int basis,
4702 <                               IntByIntToInt reducer) {
4703 <            return ForkJoinTasks.reduceEntriesToInt
4704 <                (map, transformer, basis, reducer).invoke();
4582 >        public void forEach(Action<? super Map.Entry<K,V>> action) {
4583 >            if (action == null) throw new NullPointerException();
4584 >            Node<K,V>[] t;
4585 >            if ((t = map.table) != null) {
4586 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4587 >                for (Node<K,V> p; (p = it.advance()) != null; )
4588 >                    action.apply(new MapEntry<K,V>(p.key, p.val, map));
4589 >            }
4590          }
4591  
4592      }
4593  
4594 <    // ---------------------------------------------------------------------
4594 >    // -------------------------------------------------------
4595  
4596      /**
4597 <     * Predefined tasks for performing bulk parallel operations on
4598 <     * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4714 <     * for bulk operations. Each method has the same name, but returns
4715 <     * a task rather than invoking it. These methods may be useful in
4716 <     * custom applications such as submitting a task without waiting
4717 <     * for completion, using a custom pool, or combining with other
4718 <     * tasks.
4597 >     * Base class for bulk tasks. Repeats some fields and code from
4598 >     * class Traverser, because we need to subclass CountedCompleter.
4599       */
4600 <    public static class ForkJoinTasks {
4601 <        private ForkJoinTasks() {}
4602 <
4603 <        /**
4604 <         * Returns a task that when invoked, performs the given
4605 <         * action for each (key, value)
4606 <         *
4607 <         * @param map the map
4608 <         * @param action the action
4609 <         * @return the task
4610 <         */
4611 <        public static <K,V> ForkJoinTask<Void> forEach
4612 <            (ConcurrentHashMapV8<K,V> map,
4613 <             BiAction<K,V> action) {
4614 <            if (action == null) throw new NullPointerException();
4615 <            return new ForEachMappingTask<K,V>(map, null, -1, action);
4616 <        }
4617 <
4618 <        /**
4619 <         * Returns a task that when invoked, performs the given
4620 <         * action for each non-null transformation of each (key, value)
4741 <         *
4742 <         * @param map the map
4743 <         * @param transformer a function returning the transformation
4744 <         * for an element, or null if there is no transformation (in
4745 <         * which case the action is not applied)
4746 <         * @param action the action
4747 <         * @return the task
4748 <         */
4749 <        public static <K,V,U> ForkJoinTask<Void> forEach
4750 <            (ConcurrentHashMapV8<K,V> map,
4751 <             BiFun<? super K, ? super V, ? extends U> transformer,
4752 <             Action<U> action) {
4753 <            if (transformer == null || action == null)
4754 <                throw new NullPointerException();
4755 <            return new ForEachTransformedMappingTask<K,V,U>
4756 <                (map, null, -1, transformer, action);
4757 <        }
4758 <
4759 <        /**
4760 <         * Returns a task that when invoked, returns a non-null result
4761 <         * from applying the given search function on each (key,
4762 <         * value), or null if none. Upon success, further element
4763 <         * processing is suppressed and the results of any other
4764 <         * parallel invocations of the search function are ignored.
4765 <         *
4766 <         * @param map the map
4767 <         * @param searchFunction a function returning a non-null
4768 <         * result on success, else null
4769 <         * @return the task
4770 <         */
4771 <        public static <K,V,U> ForkJoinTask<U> search
4772 <            (ConcurrentHashMapV8<K,V> map,
4773 <             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4774 <            if (searchFunction == null) throw new NullPointerException();
4775 <            return new SearchMappingsTask<K,V,U>
4776 <                (map, null, -1, searchFunction,
4777 <                 new AtomicReference<U>());
4778 <        }
4779 <
4780 <        /**
4781 <         * Returns a task that when invoked, returns the result of
4782 <         * accumulating the given transformation of all (key, value) pairs
4783 <         * using the given reducer to combine values, or null if none.
4784 <         *
4785 <         * @param map the map
4786 <         * @param transformer a function returning the transformation
4787 <         * for an element, or null if there is no transformation (in
4788 <         * which case it is not combined).
4789 <         * @param reducer a commutative associative combining function
4790 <         * @return the task
4791 <         */
4792 <        public static <K,V,U> ForkJoinTask<U> reduce
4793 <            (ConcurrentHashMapV8<K,V> map,
4794 <             BiFun<? super K, ? super V, ? extends U> transformer,
4795 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4796 <            if (transformer == null || reducer == null)
4797 <                throw new NullPointerException();
4798 <            return new MapReduceMappingsTask<K,V,U>
4799 <                (map, null, -1, null, transformer, reducer);
4800 <        }
4801 <
4802 <        /**
4803 <         * Returns a task that when invoked, returns the result of
4804 <         * accumulating the given transformation of all (key, value) pairs
4805 <         * using the given reducer to combine values, and the given
4806 <         * basis as an identity value.
4807 <         *
4808 <         * @param map the map
4809 <         * @param transformer a function returning the transformation
4810 <         * for an element
4811 <         * @param basis the identity (initial default value) for the reduction
4812 <         * @param reducer a commutative associative combining function
4813 <         * @return the task
4814 <         */
4815 <        public static <K,V> ForkJoinTask<Double> reduceToDouble
4816 <            (ConcurrentHashMapV8<K,V> map,
4817 <             ObjectByObjectToDouble<? super K, ? super V> transformer,
4818 <             double basis,
4819 <             DoubleByDoubleToDouble reducer) {
4820 <            if (transformer == null || reducer == null)
4821 <                throw new NullPointerException();
4822 <            return new MapReduceMappingsToDoubleTask<K,V>
4823 <                (map, null, -1, null, transformer, basis, reducer);
4824 <        }
4825 <
4826 <        /**
4827 <         * Returns a task that when invoked, returns the result of
4828 <         * accumulating the given transformation of all (key, value) pairs
4829 <         * using the given reducer to combine values, and the given
4830 <         * basis as an identity value.
4831 <         *
4832 <         * @param map the map
4833 <         * @param transformer a function returning the transformation
4834 <         * for an element
4835 <         * @param basis the identity (initial default value) for the reduction
4836 <         * @param reducer a commutative associative combining function
4837 <         * @return the task
4838 <         */
4839 <        public static <K,V> ForkJoinTask<Long> reduceToLong
4840 <            (ConcurrentHashMapV8<K,V> map,
4841 <             ObjectByObjectToLong<? super K, ? super V> transformer,
4842 <             long basis,
4843 <             LongByLongToLong reducer) {
4844 <            if (transformer == null || reducer == null)
4845 <                throw new NullPointerException();
4846 <            return new MapReduceMappingsToLongTask<K,V>
4847 <                (map, null, -1, null, transformer, basis, reducer);
4848 <        }
4849 <
4850 <        /**
4851 <         * Returns a task that when invoked, returns the result of
4852 <         * accumulating the given transformation of all (key, value) pairs
4853 <         * using the given reducer to combine values, and the given
4854 <         * basis as an identity value.
4855 <         *
4856 <         * @param transformer a function returning the transformation
4857 <         * for an element
4858 <         * @param basis the identity (initial default value) for the reduction
4859 <         * @param reducer a commutative associative combining function
4860 <         * @return the task
4861 <         */
4862 <        public static <K,V> ForkJoinTask<Integer> reduceToInt
4863 <            (ConcurrentHashMapV8<K,V> map,
4864 <             ObjectByObjectToInt<? super K, ? super V> transformer,
4865 <             int basis,
4866 <             IntByIntToInt reducer) {
4867 <            if (transformer == null || reducer == null)
4868 <                throw new NullPointerException();
4869 <            return new MapReduceMappingsToIntTask<K,V>
4870 <                (map, null, -1, null, transformer, basis, reducer);
4871 <        }
4872 <
4873 <        /**
4874 <         * Returns a task that when invoked, performs the given action
4875 <         * for each key.
4876 <         *
4877 <         * @param map the map
4878 <         * @param action the action
4879 <         * @return the task
4880 <         */
4881 <        public static <K,V> ForkJoinTask<Void> forEachKey
4882 <            (ConcurrentHashMapV8<K,V> map,
4883 <             Action<K> action) {
4884 <            if (action == null) throw new NullPointerException();
4885 <            return new ForEachKeyTask<K,V>(map, null, -1, action);
4886 <        }
4887 <
4888 <        /**
4889 <         * Returns a task that when invoked, performs the given action
4890 <         * for each non-null transformation of each key.
4891 <         *
4892 <         * @param map the map
4893 <         * @param transformer a function returning the transformation
4894 <         * for an element, or null if there is no transformation (in
4895 <         * which case the action is not applied)
4896 <         * @param action the action
4897 <         * @return the task
4898 <         */
4899 <        public static <K,V,U> ForkJoinTask<Void> forEachKey
4900 <            (ConcurrentHashMapV8<K,V> map,
4901 <             Fun<? super K, ? extends U> transformer,
4902 <             Action<U> action) {
4903 <            if (transformer == null || action == null)
4904 <                throw new NullPointerException();
4905 <            return new ForEachTransformedKeyTask<K,V,U>
4906 <                (map, null, -1, transformer, action);
4907 <        }
4908 <
4909 <        /**
4910 <         * Returns a task that when invoked, returns a non-null result
4911 <         * from applying the given search function on each key, or
4912 <         * null if none.  Upon success, further element processing is
4913 <         * suppressed and the results of any other parallel
4914 <         * invocations of the search function are ignored.
4915 <         *
4916 <         * @param map the map
4917 <         * @param searchFunction a function returning a non-null
4918 <         * result on success, else null
4919 <         * @return the task
4920 <         */
4921 <        public static <K,V,U> ForkJoinTask<U> searchKeys
4922 <            (ConcurrentHashMapV8<K,V> map,
4923 <             Fun<? super K, ? extends U> searchFunction) {
4924 <            if (searchFunction == null) throw new NullPointerException();
4925 <            return new SearchKeysTask<K,V,U>
4926 <                (map, null, -1, searchFunction,
4927 <                 new AtomicReference<U>());
4928 <        }
4929 <
4930 <        /**
4931 <         * Returns a task that when invoked, returns the result of
4932 <         * accumulating all keys using the given reducer to combine
4933 <         * values, or null if none.
4934 <         *
4935 <         * @param map the map
4936 <         * @param reducer a commutative associative combining function
4937 <         * @return the task
4938 <         */
4939 <        public static <K,V> ForkJoinTask<K> reduceKeys
4940 <            (ConcurrentHashMapV8<K,V> map,
4941 <             BiFun<? super K, ? super K, ? extends K> reducer) {
4942 <            if (reducer == null) throw new NullPointerException();
4943 <            return new ReduceKeysTask<K,V>
4944 <                (map, null, -1, null, reducer);
4945 <        }
4946 <
4947 <        /**
4948 <         * Returns a task that when invoked, returns the result of
4949 <         * accumulating the given transformation of all keys using the given
4950 <         * reducer to combine values, or null if none.
4951 <         *
4952 <         * @param map the map
4953 <         * @param transformer a function returning the transformation
4954 <         * for an element, or null if there is no transformation (in
4955 <         * which case it is not combined).
4956 <         * @param reducer a commutative associative combining function
4957 <         * @return the task
4958 <         */
4959 <        public static <K,V,U> ForkJoinTask<U> reduceKeys
4960 <            (ConcurrentHashMapV8<K,V> map,
4961 <             Fun<? super K, ? extends U> transformer,
4962 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4963 <            if (transformer == null || reducer == null)
4964 <                throw new NullPointerException();
4965 <            return new MapReduceKeysTask<K,V,U>
4966 <                (map, null, -1, null, transformer, reducer);
4967 <        }
4968 <
4969 <        /**
4970 <         * Returns a task that when invoked, returns the result of
4971 <         * accumulating the given transformation of all keys using the given
4972 <         * reducer to combine values, and the given basis as an
4973 <         * identity value.
4974 <         *
4975 <         * @param map the map
4976 <         * @param transformer a function returning the transformation
4977 <         * for an element
4978 <         * @param basis the identity (initial default value) for the reduction
4979 <         * @param reducer a commutative associative combining function
4980 <         * @return the task
4981 <         */
4982 <        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4983 <            (ConcurrentHashMapV8<K,V> map,
4984 <             ObjectToDouble<? super K> transformer,
4985 <             double basis,
4986 <             DoubleByDoubleToDouble reducer) {
4987 <            if (transformer == null || reducer == null)
4988 <                throw new NullPointerException();
4989 <            return new MapReduceKeysToDoubleTask<K,V>
4990 <                (map, null, -1, null, transformer, basis, reducer);
4991 <        }
4992 <
4993 <        /**
4994 <         * Returns a task that when invoked, returns the result of
4995 <         * accumulating the given transformation of all keys using the given
4996 <         * reducer to combine values, and the given basis as an
4997 <         * identity value.
4998 <         *
4999 <         * @param map the map
5000 <         * @param transformer a function returning the transformation
5001 <         * for an element
5002 <         * @param basis the identity (initial default value) for the reduction
5003 <         * @param reducer a commutative associative combining function
5004 <         * @return the task
5005 <         */
5006 <        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5007 <            (ConcurrentHashMapV8<K,V> map,
5008 <             ObjectToLong<? super K> transformer,
5009 <             long basis,
5010 <             LongByLongToLong reducer) {
5011 <            if (transformer == null || reducer == null)
5012 <                throw new NullPointerException();
5013 <            return new MapReduceKeysToLongTask<K,V>
5014 <                (map, null, -1, null, transformer, basis, reducer);
5015 <        }
5016 <
5017 <        /**
5018 <         * Returns a task that when invoked, returns the result of
5019 <         * accumulating the given transformation of all keys using the given
5020 <         * reducer to combine values, and the given basis as an
5021 <         * identity value.
5022 <         *
5023 <         * @param map the map
5024 <         * @param transformer a function returning the transformation
5025 <         * for an element
5026 <         * @param basis the identity (initial default value) for the reduction
5027 <         * @param reducer a commutative associative combining function
5028 <         * @return the task
5029 <         */
5030 <        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5031 <            (ConcurrentHashMapV8<K,V> map,
5032 <             ObjectToInt<? super K> transformer,
5033 <             int basis,
5034 <             IntByIntToInt reducer) {
5035 <            if (transformer == null || reducer == null)
5036 <                throw new NullPointerException();
5037 <            return new MapReduceKeysToIntTask<K,V>
5038 <                (map, null, -1, null, transformer, basis, reducer);
5039 <        }
5040 <
5041 <        /**
5042 <         * Returns a task that when invoked, performs the given action
5043 <         * for each value.
5044 <         *
5045 <         * @param map the map
5046 <         * @param action the action
5047 <         */
5048 <        public static <K,V> ForkJoinTask<Void> forEachValue
5049 <            (ConcurrentHashMapV8<K,V> map,
5050 <             Action<V> action) {
5051 <            if (action == null) throw new NullPointerException();
5052 <            return new ForEachValueTask<K,V>(map, null, -1, action);
5053 <        }
5054 <
5055 <        /**
5056 <         * Returns a task that when invoked, performs the given action
5057 <         * for each non-null transformation of each value.
5058 <         *
5059 <         * @param map the map
5060 <         * @param transformer a function returning the transformation
5061 <         * for an element, or null if there is no transformation (in
5062 <         * which case the action is not applied)
5063 <         * @param action the action
5064 <         */
5065 <        public static <K,V,U> ForkJoinTask<Void> forEachValue
5066 <            (ConcurrentHashMapV8<K,V> map,
5067 <             Fun<? super V, ? extends U> transformer,
5068 <             Action<U> action) {
5069 <            if (transformer == null || action == null)
5070 <                throw new NullPointerException();
5071 <            return new ForEachTransformedValueTask<K,V,U>
5072 <                (map, null, -1, transformer, action);
5073 <        }
5074 <
5075 <        /**
5076 <         * Returns a task that when invoked, returns a non-null result
5077 <         * from applying the given search function on each value, or
5078 <         * null if none.  Upon success, further element processing is
5079 <         * suppressed and the results of any other parallel
5080 <         * invocations of the search function are ignored.
5081 <         *
5082 <         * @param map the map
5083 <         * @param searchFunction a function returning a non-null
5084 <         * result on success, else null
5085 <         * @return the task
5086 <         */
5087 <        public static <K,V,U> ForkJoinTask<U> searchValues
5088 <            (ConcurrentHashMapV8<K,V> map,
5089 <             Fun<? super V, ? extends U> searchFunction) {
5090 <            if (searchFunction == null) throw new NullPointerException();
5091 <            return new SearchValuesTask<K,V,U>
5092 <                (map, null, -1, searchFunction,
5093 <                 new AtomicReference<U>());
5094 <        }
5095 <
5096 <        /**
5097 <         * Returns a task that when invoked, returns the result of
5098 <         * accumulating all values using the given reducer to combine
5099 <         * values, or null if none.
5100 <         *
5101 <         * @param map the map
5102 <         * @param reducer a commutative associative combining function
5103 <         * @return the task
5104 <         */
5105 <        public static <K,V> ForkJoinTask<V> reduceValues
5106 <            (ConcurrentHashMapV8<K,V> map,
5107 <             BiFun<? super V, ? super V, ? extends V> reducer) {
5108 <            if (reducer == null) throw new NullPointerException();
5109 <            return new ReduceValuesTask<K,V>
5110 <                (map, null, -1, null, reducer);
5111 <        }
5112 <
5113 <        /**
5114 <         * Returns a task that when invoked, returns the result of
5115 <         * accumulating the given transformation of all values using the
5116 <         * given reducer to combine values, or null if none.
5117 <         *
5118 <         * @param map the map
5119 <         * @param transformer a function returning the transformation
5120 <         * for an element, or null if there is no transformation (in
5121 <         * which case it is not combined).
5122 <         * @param reducer a commutative associative combining function
5123 <         * @return the task
5124 <         */
5125 <        public static <K,V,U> ForkJoinTask<U> reduceValues
5126 <            (ConcurrentHashMapV8<K,V> map,
5127 <             Fun<? super V, ? extends U> transformer,
5128 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5129 <            if (transformer == null || reducer == null)
5130 <                throw new NullPointerException();
5131 <            return new MapReduceValuesTask<K,V,U>
5132 <                (map, null, -1, null, transformer, reducer);
5133 <        }
5134 <
5135 <        /**
5136 <         * Returns a task that when invoked, returns the result of
5137 <         * accumulating the given transformation of all values using the
5138 <         * given reducer to combine values, and the given basis as an
5139 <         * identity value.
5140 <         *
5141 <         * @param map the map
5142 <         * @param transformer a function returning the transformation
5143 <         * for an element
5144 <         * @param basis the identity (initial default value) for the reduction
5145 <         * @param reducer a commutative associative combining function
5146 <         * @return the task
5147 <         */
5148 <        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5149 <            (ConcurrentHashMapV8<K,V> map,
5150 <             ObjectToDouble<? super V> transformer,
5151 <             double basis,
5152 <             DoubleByDoubleToDouble reducer) {
5153 <            if (transformer == null || reducer == null)
5154 <                throw new NullPointerException();
5155 <            return new MapReduceValuesToDoubleTask<K,V>
5156 <                (map, null, -1, null, transformer, basis, reducer);
5157 <        }
5158 <
5159 <        /**
5160 <         * Returns a task that when invoked, returns the result of
5161 <         * accumulating the given transformation of all values using the
5162 <         * given reducer to combine values, and the given basis as an
5163 <         * identity value.
5164 <         *
5165 <         * @param map the map
5166 <         * @param transformer a function returning the transformation
5167 <         * for an element
5168 <         * @param basis the identity (initial default value) for the reduction
5169 <         * @param reducer a commutative associative combining function
5170 <         * @return the task
5171 <         */
5172 <        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5173 <            (ConcurrentHashMapV8<K,V> map,
5174 <             ObjectToLong<? super V> transformer,
5175 <             long basis,
5176 <             LongByLongToLong reducer) {
5177 <            if (transformer == null || reducer == null)
5178 <                throw new NullPointerException();
5179 <            return new MapReduceValuesToLongTask<K,V>
5180 <                (map, null, -1, null, transformer, basis, reducer);
5181 <        }
5182 <
5183 <        /**
5184 <         * Returns a task that when invoked, returns the result of
5185 <         * accumulating the given transformation of all values using the
5186 <         * given reducer to combine values, and the given basis as an
5187 <         * identity value.
5188 <         *
5189 <         * @param map the map
5190 <         * @param transformer a function returning the transformation
5191 <         * for an element
5192 <         * @param basis the identity (initial default value) for the reduction
5193 <         * @param reducer a commutative associative combining function
5194 <         * @return the task
5195 <         */
5196 <        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5197 <            (ConcurrentHashMapV8<K,V> map,
5198 <             ObjectToInt<? super V> transformer,
5199 <             int basis,
5200 <             IntByIntToInt reducer) {
5201 <            if (transformer == null || reducer == null)
5202 <                throw new NullPointerException();
5203 <            return new MapReduceValuesToIntTask<K,V>
5204 <                (map, null, -1, null, transformer, basis, reducer);
5205 <        }
5206 <
5207 <        /**
5208 <         * Returns a task that when invoked, perform the given action
5209 <         * for each entry.
5210 <         *
5211 <         * @param map the map
5212 <         * @param action the action
5213 <         */
5214 <        public static <K,V> ForkJoinTask<Void> forEachEntry
5215 <            (ConcurrentHashMapV8<K,V> map,
5216 <             Action<Map.Entry<K,V>> action) {
5217 <            if (action == null) throw new NullPointerException();
5218 <            return new ForEachEntryTask<K,V>(map, null, -1, action);
5219 <        }
5220 <
5221 <        /**
5222 <         * Returns a task that when invoked, perform the given action
5223 <         * for each non-null transformation of each entry.
5224 <         *
5225 <         * @param map the map
5226 <         * @param transformer a function returning the transformation
5227 <         * for an element, or null if there is no transformation (in
5228 <         * which case the action is not applied)
5229 <         * @param action the action
5230 <         */
5231 <        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5232 <            (ConcurrentHashMapV8<K,V> map,
5233 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5234 <             Action<U> action) {
5235 <            if (transformer == null || action == null)
5236 <                throw new NullPointerException();
5237 <            return new ForEachTransformedEntryTask<K,V,U>
5238 <                (map, null, -1, transformer, action);
5239 <        }
5240 <
5241 <        /**
5242 <         * Returns a task that when invoked, returns a non-null result
5243 <         * from applying the given search function on each entry, or
5244 <         * null if none.  Upon success, further element processing is
5245 <         * suppressed and the results of any other parallel
5246 <         * invocations of the search function are ignored.
5247 <         *
5248 <         * @param map the map
5249 <         * @param searchFunction a function returning a non-null
5250 <         * result on success, else null
5251 <         * @return the task
5252 <         */
5253 <        public static <K,V,U> ForkJoinTask<U> searchEntries
5254 <            (ConcurrentHashMapV8<K,V> map,
5255 <             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5256 <            if (searchFunction == null) throw new NullPointerException();
5257 <            return new SearchEntriesTask<K,V,U>
5258 <                (map, null, -1, searchFunction,
5259 <                 new AtomicReference<U>());
5260 <        }
5261 <
5262 <        /**
5263 <         * Returns a task that when invoked, returns the result of
5264 <         * accumulating all entries using the given reducer to combine
5265 <         * values, or null if none.
5266 <         *
5267 <         * @param map the map
5268 <         * @param reducer a commutative associative combining function
5269 <         * @return the task
5270 <         */
5271 <        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5272 <            (ConcurrentHashMapV8<K,V> map,
5273 <             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5274 <            if (reducer == null) throw new NullPointerException();
5275 <            return new ReduceEntriesTask<K,V>
5276 <                (map, null, -1, null, reducer);
5277 <        }
5278 <
5279 <        /**
5280 <         * Returns a task that when invoked, returns the result of
5281 <         * accumulating the given transformation of all entries using the
5282 <         * given reducer to combine values, or null if none.
5283 <         *
5284 <         * @param map the map
5285 <         * @param transformer a function returning the transformation
5286 <         * for an element, or null if there is no transformation (in
5287 <         * which case it is not combined).
5288 <         * @param reducer a commutative associative combining function
5289 <         * @return the task
5290 <         */
5291 <        public static <K,V,U> ForkJoinTask<U> reduceEntries
5292 <            (ConcurrentHashMapV8<K,V> map,
5293 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5294 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5295 <            if (transformer == null || reducer == null)
5296 <                throw new NullPointerException();
5297 <            return new MapReduceEntriesTask<K,V,U>
5298 <                (map, null, -1, null, transformer, reducer);
5299 <        }
5300 <
5301 <        /**
5302 <         * Returns a task that when invoked, returns the result of
5303 <         * accumulating the given transformation of all entries using the
5304 <         * given reducer to combine values, and the given basis as an
5305 <         * identity value.
5306 <         *
5307 <         * @param map the map
5308 <         * @param transformer a function returning the transformation
5309 <         * for an element
5310 <         * @param basis the identity (initial default value) for the reduction
5311 <         * @param reducer a commutative associative combining function
5312 <         * @return the task
5313 <         */
5314 <        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5315 <            (ConcurrentHashMapV8<K,V> map,
5316 <             ObjectToDouble<Map.Entry<K,V>> transformer,
5317 <             double basis,
5318 <             DoubleByDoubleToDouble reducer) {
5319 <            if (transformer == null || reducer == null)
5320 <                throw new NullPointerException();
5321 <            return new MapReduceEntriesToDoubleTask<K,V>
5322 <                (map, null, -1, null, transformer, basis, reducer);
5323 <        }
5324 <
5325 <        /**
5326 <         * Returns a task that when invoked, returns the result of
5327 <         * accumulating the given transformation of all entries using the
5328 <         * given reducer to combine values, and the given basis as an
5329 <         * identity value.
5330 <         *
5331 <         * @param map the map
5332 <         * @param transformer a function returning the transformation
5333 <         * for an element
5334 <         * @param basis the identity (initial default value) for the reduction
5335 <         * @param reducer a commutative associative combining function
5336 <         * @return the task
5337 <         */
5338 <        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5339 <            (ConcurrentHashMapV8<K,V> map,
5340 <             ObjectToLong<Map.Entry<K,V>> transformer,
5341 <             long basis,
5342 <             LongByLongToLong reducer) {
5343 <            if (transformer == null || reducer == null)
5344 <                throw new NullPointerException();
5345 <            return new MapReduceEntriesToLongTask<K,V>
5346 <                (map, null, -1, null, transformer, basis, reducer);
4600 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4601 >        Node<K,V>[] tab;        // same as Traverser
4602 >        Node<K,V> next;
4603 >        int index;
4604 >        int baseIndex;
4605 >        int baseLimit;
4606 >        final int baseSize;
4607 >        int batch;              // split control
4608 >
4609 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4610 >            super(par);
4611 >            this.batch = b;
4612 >            this.index = this.baseIndex = i;
4613 >            if ((this.tab = t) == null)
4614 >                this.baseSize = this.baseLimit = 0;
4615 >            else if (par == null)
4616 >                this.baseSize = this.baseLimit = t.length;
4617 >            else {
4618 >                this.baseLimit = f;
4619 >                this.baseSize = par.baseSize;
4620 >            }
4621          }
4622  
4623          /**
4624 <         * Returns a task that when invoked, returns the result of
5351 <         * accumulating the given transformation of all entries using the
5352 <         * given reducer to combine values, and the given basis as an
5353 <         * identity value.
5354 <         *
5355 <         * @param map the map
5356 <         * @param transformer a function returning the transformation
5357 <         * for an element
5358 <         * @param basis the identity (initial default value) for the reduction
5359 <         * @param reducer a commutative associative combining function
5360 <         * @return the task
4624 >         * Same as Traverser version
4625           */
4626 <        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4627 <            (ConcurrentHashMapV8<K,V> map,
4628 <             ObjectToInt<Map.Entry<K,V>> transformer,
4629 <             int basis,
4630 <             IntByIntToInt reducer) {
4631 <            if (transformer == null || reducer == null)
4632 <                throw new NullPointerException();
4633 <            return new MapReduceEntriesToIntTask<K,V>
4634 <                (map, null, -1, null, transformer, basis, reducer);
4626 >        final Node<K,V> advance() {
4627 >            Node<K,V> e;
4628 >            if ((e = next) != null)
4629 >                e = e.next;
4630 >            for (;;) {
4631 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4632 >                if (e != null)
4633 >                    return next = e;
4634 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4635 >                    (n = t.length) <= (i = index) || i < 0)
4636 >                    return next = null;
4637 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4638 >                    if (e instanceof ForwardingNode) {
4639 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4640 >                        e = null;
4641 >                        continue;
4642 >                    }
4643 >                    else if (e instanceof TreeBin)
4644 >                        e = ((TreeBin<K,V>)e).first;
4645 >                    else
4646 >                        e = null;
4647 >                }
4648 >                if ((index += baseSize) >= n)
4649 >                    index = ++baseIndex;    // visit upper slots if present
4650 >            }
4651          }
4652      }
4653  
5374    // -------------------------------------------------------
5375
4654      /*
4655       * Task classes. Coded in a regular but ugly format/style to
4656       * simplify checks that each variant differs in the right way from
4657 <     * others.
4658 <     */
4659 <
4660 <    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
4661 <        extends Traverser<K,V,Void> {
4662 <        final Action<K> action;
4657 >     * others. The null screenings exist because compilers cannot tell
4658 >     * that we've already null-checked task arguments, so we force
4659 >     * simplest hoisted bypass to help avoid convoluted traps.
4660 >     */
4661 >    @SuppressWarnings("serial")
4662 >    static final class ForEachKeyTask<K,V>
4663 >        extends BulkTask<K,V,Void> {
4664 >        final Action<? super K> action;
4665          ForEachKeyTask
4666 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4667 <             Action<K> action) {
4668 <            super(m, p, b);
4666 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4667 >             Action<? super K> action) {
4668 >            super(p, b, i, f, t);
4669              this.action = action;
4670          }
4671 <        @SuppressWarnings("unchecked") public final void compute() {
4672 <            final Action<K> action;
4673 <            if ((action = this.action) == null)
4674 <                throw new NullPointerException();
4675 <            for (int b; (b = preSplit()) > 0;)
4676 <                new ForEachKeyTask<K,V>(map, this, b, action).fork();
4677 <            while (advance() != null)
4678 <                action.apply((K)nextKey);
4679 <            propagateCompletion();
4671 >        public final void compute() {
4672 >            final Action<? super K> action;
4673 >            if ((action = this.action) != null) {
4674 >                for (int i = baseIndex, f, h; batch > 0 &&
4675 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4676 >                    addToPendingCount(1);
4677 >                    new ForEachKeyTask<K,V>
4678 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4679 >                         action).fork();
4680 >                }
4681 >                for (Node<K,V> p; (p = advance()) != null;)
4682 >                    action.apply(p.key);
4683 >                propagateCompletion();
4684 >            }
4685          }
4686      }
4687  
4688 <    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
4689 <        extends Traverser<K,V,Void> {
4690 <        final Action<V> action;
4688 >    @SuppressWarnings("serial")
4689 >    static final class ForEachValueTask<K,V>
4690 >        extends BulkTask<K,V,Void> {
4691 >        final Action<? super V> action;
4692          ForEachValueTask
4693 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4694 <             Action<V> action) {
4695 <            super(m, p, b);
4693 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4694 >             Action<? super V> action) {
4695 >            super(p, b, i, f, t);
4696              this.action = action;
4697          }
4698 <        @SuppressWarnings("unchecked") public final void compute() {
4699 <            final Action<V> action;
4700 <            if ((action = this.action) == null)
4701 <                throw new NullPointerException();
4702 <            for (int b; (b = preSplit()) > 0;)
4703 <                new ForEachValueTask<K,V>(map, this, b, action).fork();
4704 <            Object v;
4705 <            while ((v = advance()) != null)
4706 <                action.apply((V)v);
4707 <            propagateCompletion();
4698 >        public final void compute() {
4699 >            final Action<? super V> action;
4700 >            if ((action = this.action) != null) {
4701 >                for (int i = baseIndex, f, h; batch > 0 &&
4702 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4703 >                    addToPendingCount(1);
4704 >                    new ForEachValueTask<K,V>
4705 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4706 >                         action).fork();
4707 >                }
4708 >                for (Node<K,V> p; (p = advance()) != null;)
4709 >                    action.apply(p.val);
4710 >                propagateCompletion();
4711 >            }
4712          }
4713      }
4714  
4715 <    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
4716 <        extends Traverser<K,V,Void> {
4717 <        final Action<Entry<K,V>> action;
4715 >    @SuppressWarnings("serial")
4716 >    static final class ForEachEntryTask<K,V>
4717 >        extends BulkTask<K,V,Void> {
4718 >        final Action<? super Entry<K,V>> action;
4719          ForEachEntryTask
4720 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4721 <             Action<Entry<K,V>> action) {
4722 <            super(m, p, b);
4720 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4721 >             Action<? super Entry<K,V>> action) {
4722 >            super(p, b, i, f, t);
4723              this.action = action;
4724          }
4725 <        @SuppressWarnings("unchecked") public final void compute() {
4726 <            final Action<Entry<K,V>> action;
4727 <            if ((action = this.action) == null)
4728 <                throw new NullPointerException();
4729 <            for (int b; (b = preSplit()) > 0;)
4730 <                new ForEachEntryTask<K,V>(map, this, b, action).fork();
4731 <            Object v;
4732 <            while ((v = advance()) != null)
4733 <                action.apply(entryFor((K)nextKey, (V)v));
4734 <            propagateCompletion();
4725 >        public final void compute() {
4726 >            final Action<? super Entry<K,V>> action;
4727 >            if ((action = this.action) != null) {
4728 >                for (int i = baseIndex, f, h; batch > 0 &&
4729 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4730 >                    addToPendingCount(1);
4731 >                    new ForEachEntryTask<K,V>
4732 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4733 >                         action).fork();
4734 >                }
4735 >                for (Node<K,V> p; (p = advance()) != null; )
4736 >                    action.apply(p);
4737 >                propagateCompletion();
4738 >            }
4739          }
4740      }
4741  
4742 <    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
4743 <        extends Traverser<K,V,Void> {
4744 <        final BiAction<K,V> action;
4742 >    @SuppressWarnings("serial")
4743 >    static final class ForEachMappingTask<K,V>
4744 >        extends BulkTask<K,V,Void> {
4745 >        final BiAction<? super K, ? super V> action;
4746          ForEachMappingTask
4747 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4748 <             BiAction<K,V> action) {
4749 <            super(m, p, b);
4747 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4748 >             BiAction<? super K,? super V> action) {
4749 >            super(p, b, i, f, t);
4750              this.action = action;
4751          }
4752 <        @SuppressWarnings("unchecked") public final void compute() {
4753 <            final BiAction<K,V> action;
4754 <            if ((action = this.action) == null)
4755 <                throw new NullPointerException();
4756 <            for (int b; (b = preSplit()) > 0;)
4757 <                new ForEachMappingTask<K,V>(map, this, b, action).fork();
4758 <            Object v;
4759 <            while ((v = advance()) != null)
4760 <                action.apply((K)nextKey, (V)v);
4761 <            propagateCompletion();
4752 >        public final void compute() {
4753 >            final BiAction<? super K, ? super V> action;
4754 >            if ((action = this.action) != null) {
4755 >                for (int i = baseIndex, f, h; batch > 0 &&
4756 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4757 >                    addToPendingCount(1);
4758 >                    new ForEachMappingTask<K,V>
4759 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4760 >                         action).fork();
4761 >                }
4762 >                for (Node<K,V> p; (p = advance()) != null; )
4763 >                    action.apply(p.key, p.val);
4764 >                propagateCompletion();
4765 >            }
4766          }
4767      }
4768  
4769 <    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
4770 <        extends Traverser<K,V,Void> {
4769 >    @SuppressWarnings("serial")
4770 >    static final class ForEachTransformedKeyTask<K,V,U>
4771 >        extends BulkTask<K,V,Void> {
4772          final Fun<? super K, ? extends U> transformer;
4773 <        final Action<U> action;
4773 >        final Action<? super U> action;
4774          ForEachTransformedKeyTask
4775 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4776 <             Fun<? super K, ? extends U> transformer, Action<U> action) {
4777 <            super(m, p, b);
4775 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4776 >             Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4777 >            super(p, b, i, f, t);
4778              this.transformer = transformer; this.action = action;
4779          }
4780 <        @SuppressWarnings("unchecked") public final void compute() {
4780 >        public final void compute() {
4781              final Fun<? super K, ? extends U> transformer;
4782 <            final Action<U> action;
4783 <            if ((transformer = this.transformer) == null ||
4784 <                (action = this.action) == null)
4785 <                throw new NullPointerException();
4786 <            for (int b; (b = preSplit()) > 0;)
4787 <                new ForEachTransformedKeyTask<K,V,U>
4788 <                     (map, this, b, transformer, action).fork();
4789 <            U u;
4790 <            while (advance() != null) {
4791 <                if ((u = transformer.apply((K)nextKey)) != null)
4792 <                    action.apply(u);
4782 >            final Action<? super U> action;
4783 >            if ((transformer = this.transformer) != null &&
4784 >                (action = this.action) != null) {
4785 >                for (int i = baseIndex, f, h; batch > 0 &&
4786 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4787 >                    addToPendingCount(1);
4788 >                    new ForEachTransformedKeyTask<K,V,U>
4789 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4790 >                         transformer, action).fork();
4791 >                }
4792 >                for (Node<K,V> p; (p = advance()) != null; ) {
4793 >                    U u;
4794 >                    if ((u = transformer.apply(p.key)) != null)
4795 >                        action.apply(u);
4796 >                }
4797 >                propagateCompletion();
4798              }
5493            propagateCompletion();
4799          }
4800      }
4801  
4802 <    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
4803 <        extends Traverser<K,V,Void> {
4802 >    @SuppressWarnings("serial")
4803 >    static final class ForEachTransformedValueTask<K,V,U>
4804 >        extends BulkTask<K,V,Void> {
4805          final Fun<? super V, ? extends U> transformer;
4806 <        final Action<U> action;
4806 >        final Action<? super U> action;
4807          ForEachTransformedValueTask
4808 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4809 <             Fun<? super V, ? extends U> transformer, Action<U> action) {
4810 <            super(m, p, b);
4808 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4809 >             Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4810 >            super(p, b, i, f, t);
4811              this.transformer = transformer; this.action = action;
4812          }
4813 <        @SuppressWarnings("unchecked") public final void compute() {
4813 >        public final void compute() {
4814              final Fun<? super V, ? extends U> transformer;
4815 <            final Action<U> action;
4816 <            if ((transformer = this.transformer) == null ||
4817 <                (action = this.action) == null)
4818 <                throw new NullPointerException();
4819 <            for (int b; (b = preSplit()) > 0;)
4820 <                new ForEachTransformedValueTask<K,V,U>
4821 <                    (map, this, b, transformer, action).fork();
4822 <            Object v; U u;
4823 <            while ((v = advance()) != null) {
4824 <                if ((u = transformer.apply((V)v)) != null)
4825 <                    action.apply(u);
4815 >            final Action<? super U> action;
4816 >            if ((transformer = this.transformer) != null &&
4817 >                (action = this.action) != null) {
4818 >                for (int i = baseIndex, f, h; batch > 0 &&
4819 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4820 >                    addToPendingCount(1);
4821 >                    new ForEachTransformedValueTask<K,V,U>
4822 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4823 >                         transformer, action).fork();
4824 >                }
4825 >                for (Node<K,V> p; (p = advance()) != null; ) {
4826 >                    U u;
4827 >                    if ((u = transformer.apply(p.val)) != null)
4828 >                        action.apply(u);
4829 >                }
4830 >                propagateCompletion();
4831              }
5521            propagateCompletion();
4832          }
4833      }
4834  
4835 <    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
4836 <        extends Traverser<K,V,Void> {
4835 >    @SuppressWarnings("serial")
4836 >    static final class ForEachTransformedEntryTask<K,V,U>
4837 >        extends BulkTask<K,V,Void> {
4838          final Fun<Map.Entry<K,V>, ? extends U> transformer;
4839 <        final Action<U> action;
4839 >        final Action<? super U> action;
4840          ForEachTransformedEntryTask
4841 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4842 <             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
4843 <            super(m, p, b);
4841 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4842 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4843 >            super(p, b, i, f, t);
4844              this.transformer = transformer; this.action = action;
4845          }
4846 <        @SuppressWarnings("unchecked") public final void compute() {
4846 >        public final void compute() {
4847              final Fun<Map.Entry<K,V>, ? extends U> transformer;
4848 <            final Action<U> action;
4849 <            if ((transformer = this.transformer) == null ||
4850 <                (action = this.action) == null)
4851 <                throw new NullPointerException();
4852 <            for (int b; (b = preSplit()) > 0;)
4853 <                new ForEachTransformedEntryTask<K,V,U>
4854 <                    (map, this, b, transformer, action).fork();
4855 <            Object v; U u;
4856 <            while ((v = advance()) != null) {
4857 <                if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
4858 <                    action.apply(u);
4848 >            final Action<? super U> action;
4849 >            if ((transformer = this.transformer) != null &&
4850 >                (action = this.action) != null) {
4851 >                for (int i = baseIndex, f, h; batch > 0 &&
4852 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4853 >                    addToPendingCount(1);
4854 >                    new ForEachTransformedEntryTask<K,V,U>
4855 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4856 >                         transformer, action).fork();
4857 >                }
4858 >                for (Node<K,V> p; (p = advance()) != null; ) {
4859 >                    U u;
4860 >                    if ((u = transformer.apply(p)) != null)
4861 >                        action.apply(u);
4862 >                }
4863 >                propagateCompletion();
4864              }
5549            propagateCompletion();
4865          }
4866      }
4867  
4868 <    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
4869 <        extends Traverser<K,V,Void> {
4868 >    @SuppressWarnings("serial")
4869 >    static final class ForEachTransformedMappingTask<K,V,U>
4870 >        extends BulkTask<K,V,Void> {
4871          final BiFun<? super K, ? super V, ? extends U> transformer;
4872 <        final Action<U> action;
4872 >        final Action<? super U> action;
4873          ForEachTransformedMappingTask
4874 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4874 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4875               BiFun<? super K, ? super V, ? extends U> transformer,
4876 <             Action<U> action) {
4877 <            super(m, p, b);
4876 >             Action<? super U> action) {
4877 >            super(p, b, i, f, t);
4878              this.transformer = transformer; this.action = action;
4879          }
4880 <        @SuppressWarnings("unchecked") public final void compute() {
4880 >        public final void compute() {
4881              final BiFun<? super K, ? super V, ? extends U> transformer;
4882 <            final Action<U> action;
4883 <            if ((transformer = this.transformer) == null ||
4884 <                (action = this.action) == null)
4885 <                throw new NullPointerException();
4886 <            for (int b; (b = preSplit()) > 0;)
4887 <                new ForEachTransformedMappingTask<K,V,U>
4888 <                    (map, this, b, transformer, action).fork();
4889 <            Object v; U u;
4890 <            while ((v = advance()) != null) {
4891 <                if ((u = transformer.apply((K)nextKey, (V)v)) != null)
4892 <                    action.apply(u);
4882 >            final Action<? super U> action;
4883 >            if ((transformer = this.transformer) != null &&
4884 >                (action = this.action) != null) {
4885 >                for (int i = baseIndex, f, h; batch > 0 &&
4886 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4887 >                    addToPendingCount(1);
4888 >                    new ForEachTransformedMappingTask<K,V,U>
4889 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4890 >                         transformer, action).fork();
4891 >                }
4892 >                for (Node<K,V> p; (p = advance()) != null; ) {
4893 >                    U u;
4894 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4895 >                        action.apply(u);
4896 >                }
4897 >                propagateCompletion();
4898              }
5578            propagateCompletion();
4899          }
4900      }
4901  
4902 <    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
4903 <        extends Traverser<K,V,U> {
4902 >    @SuppressWarnings("serial")
4903 >    static final class SearchKeysTask<K,V,U>
4904 >        extends BulkTask<K,V,U> {
4905          final Fun<? super K, ? extends U> searchFunction;
4906          final AtomicReference<U> result;
4907          SearchKeysTask
4908 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4908 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4909               Fun<? super K, ? extends U> searchFunction,
4910               AtomicReference<U> result) {
4911 <            super(m, p, b);
4911 >            super(p, b, i, f, t);
4912              this.searchFunction = searchFunction; this.result = result;
4913          }
4914          public final U getRawResult() { return result.get(); }
4915 <        @SuppressWarnings("unchecked") public final void compute() {
4915 >        public final void compute() {
4916              final Fun<? super K, ? extends U> searchFunction;
4917              final AtomicReference<U> result;
4918 <            if ((searchFunction = this.searchFunction) == null ||
4919 <                (result = this.result) == null)
4920 <                throw new NullPointerException();
4921 <            for (int b;;) {
4922 <                if (result.get() != null)
4923 <                    return;
4924 <                if ((b = preSplit()) <= 0)
4925 <                    break;
4926 <                new SearchKeysTask<K,V,U>
4927 <                    (map, this, b, searchFunction, result).fork();
4928 <            }
4929 <            while (result.get() == null) {
4930 <                U u;
4931 <                if (advance() == null) {
4932 <                    propagateCompletion();
4933 <                    break;
4934 <                }
4935 <                if ((u = searchFunction.apply((K)nextKey)) != null) {
4936 <                    if (result.compareAndSet(null, u))
4937 <                        quietlyCompleteRoot();
4938 <                    break;
4918 >            if ((searchFunction = this.searchFunction) != null &&
4919 >                (result = this.result) != null) {
4920 >                for (int i = baseIndex, f, h; batch > 0 &&
4921 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4922 >                    if (result.get() != null)
4923 >                        return;
4924 >                    addToPendingCount(1);
4925 >                    new SearchKeysTask<K,V,U>
4926 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4927 >                         searchFunction, result).fork();
4928 >                }
4929 >                while (result.get() == null) {
4930 >                    U u;
4931 >                    Node<K,V> p;
4932 >                    if ((p = advance()) == null) {
4933 >                        propagateCompletion();
4934 >                        break;
4935 >                    }
4936 >                    if ((u = searchFunction.apply(p.key)) != null) {
4937 >                        if (result.compareAndSet(null, u))
4938 >                            quietlyCompleteRoot();
4939 >                        break;
4940 >                    }
4941                  }
4942              }
4943          }
4944      }
4945  
4946 <    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
4947 <        extends Traverser<K,V,U> {
4946 >    @SuppressWarnings("serial")
4947 >    static final class SearchValuesTask<K,V,U>
4948 >        extends BulkTask<K,V,U> {
4949          final Fun<? super V, ? extends U> searchFunction;
4950          final AtomicReference<U> result;
4951          SearchValuesTask
4952 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4952 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4953               Fun<? super V, ? extends U> searchFunction,
4954               AtomicReference<U> result) {
4955 <            super(m, p, b);
4955 >            super(p, b, i, f, t);
4956              this.searchFunction = searchFunction; this.result = result;
4957          }
4958          public final U getRawResult() { return result.get(); }
4959 <        @SuppressWarnings("unchecked") public final void compute() {
4959 >        public final void compute() {
4960              final Fun<? super V, ? extends U> searchFunction;
4961              final AtomicReference<U> result;
4962 <            if ((searchFunction = this.searchFunction) == null ||
4963 <                (result = this.result) == null)
4964 <                throw new NullPointerException();
4965 <            for (int b;;) {
4966 <                if (result.get() != null)
4967 <                    return;
4968 <                if ((b = preSplit()) <= 0)
4969 <                    break;
4970 <                new SearchValuesTask<K,V,U>
4971 <                    (map, this, b, searchFunction, result).fork();
4972 <            }
4973 <            while (result.get() == null) {
4974 <                Object v; U u;
4975 <                if ((v = advance()) == null) {
4976 <                    propagateCompletion();
4977 <                    break;
4978 <                }
4979 <                if ((u = searchFunction.apply((V)v)) != null) {
4980 <                    if (result.compareAndSet(null, u))
4981 <                        quietlyCompleteRoot();
4982 <                    break;
4962 >            if ((searchFunction = this.searchFunction) != null &&
4963 >                (result = this.result) != null) {
4964 >                for (int i = baseIndex, f, h; batch > 0 &&
4965 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4966 >                    if (result.get() != null)
4967 >                        return;
4968 >                    addToPendingCount(1);
4969 >                    new SearchValuesTask<K,V,U>
4970 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4971 >                         searchFunction, result).fork();
4972 >                }
4973 >                while (result.get() == null) {
4974 >                    U u;
4975 >                    Node<K,V> p;
4976 >                    if ((p = advance()) == null) {
4977 >                        propagateCompletion();
4978 >                        break;
4979 >                    }
4980 >                    if ((u = searchFunction.apply(p.val)) != null) {
4981 >                        if (result.compareAndSet(null, u))
4982 >                            quietlyCompleteRoot();
4983 >                        break;
4984 >                    }
4985                  }
4986              }
4987          }
4988      }
4989  
4990 <    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
4991 <        extends Traverser<K,V,U> {
4990 >    @SuppressWarnings("serial")
4991 >    static final class SearchEntriesTask<K,V,U>
4992 >        extends BulkTask<K,V,U> {
4993          final Fun<Entry<K,V>, ? extends U> searchFunction;
4994          final AtomicReference<U> result;
4995          SearchEntriesTask
4996 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4996 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4997               Fun<Entry<K,V>, ? extends U> searchFunction,
4998               AtomicReference<U> result) {
4999 <            super(m, p, b);
4999 >            super(p, b, i, f, t);
5000              this.searchFunction = searchFunction; this.result = result;
5001          }
5002          public final U getRawResult() { return result.get(); }
5003 <        @SuppressWarnings("unchecked") public final void compute() {
5003 >        public final void compute() {
5004              final Fun<Entry<K,V>, ? extends U> searchFunction;
5005              final AtomicReference<U> result;
5006 <            if ((searchFunction = this.searchFunction) == null ||
5007 <                (result = this.result) == null)
5008 <                throw new NullPointerException();
5009 <            for (int b;;) {
5010 <                if (result.get() != null)
5011 <                    return;
5012 <                if ((b = preSplit()) <= 0)
5013 <                    break;
5014 <                new SearchEntriesTask<K,V,U>
5015 <                    (map, this, b, searchFunction, result).fork();
5016 <            }
5017 <            while (result.get() == null) {
5018 <                Object v; U u;
5019 <                if ((v = advance()) == null) {
5020 <                    propagateCompletion();
5021 <                    break;
5022 <                }
5023 <                if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5024 <                    if (result.compareAndSet(null, u))
5025 <                        quietlyCompleteRoot();
5026 <                    return;
5006 >            if ((searchFunction = this.searchFunction) != null &&
5007 >                (result = this.result) != null) {
5008 >                for (int i = baseIndex, f, h; batch > 0 &&
5009 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5010 >                    if (result.get() != null)
5011 >                        return;
5012 >                    addToPendingCount(1);
5013 >                    new SearchEntriesTask<K,V,U>
5014 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5015 >                         searchFunction, result).fork();
5016 >                }
5017 >                while (result.get() == null) {
5018 >                    U u;
5019 >                    Node<K,V> p;
5020 >                    if ((p = advance()) == null) {
5021 >                        propagateCompletion();
5022 >                        break;
5023 >                    }
5024 >                    if ((u = searchFunction.apply(p)) != null) {
5025 >                        if (result.compareAndSet(null, u))
5026 >                            quietlyCompleteRoot();
5027 >                        return;
5028 >                    }
5029                  }
5030              }
5031          }
5032      }
5033  
5034 <    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5035 <        extends Traverser<K,V,U> {
5034 >    @SuppressWarnings("serial")
5035 >    static final class SearchMappingsTask<K,V,U>
5036 >        extends BulkTask<K,V,U> {
5037          final BiFun<? super K, ? super V, ? extends U> searchFunction;
5038          final AtomicReference<U> result;
5039          SearchMappingsTask
5040 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5040 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5041               BiFun<? super K, ? super V, ? extends U> searchFunction,
5042               AtomicReference<U> result) {
5043 <            super(m, p, b);
5043 >            super(p, b, i, f, t);
5044              this.searchFunction = searchFunction; this.result = result;
5045          }
5046          public final U getRawResult() { return result.get(); }
5047 <        @SuppressWarnings("unchecked") public final void compute() {
5047 >        public final void compute() {
5048              final BiFun<? super K, ? super V, ? extends U> searchFunction;
5049              final AtomicReference<U> result;
5050 <            if ((searchFunction = this.searchFunction) == null ||
5051 <                (result = this.result) == null)
5052 <                throw new NullPointerException();
5053 <            for (int b;;) {
5054 <                if (result.get() != null)
5055 <                    return;
5056 <                if ((b = preSplit()) <= 0)
5057 <                    break;
5058 <                new SearchMappingsTask<K,V,U>
5059 <                    (map, this, b, searchFunction, result).fork();
5060 <            }
5061 <            while (result.get() == null) {
5062 <                Object v; U u;
5063 <                if ((v = advance()) == null) {
5064 <                    propagateCompletion();
5065 <                    break;
5066 <                }
5067 <                if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5068 <                    if (result.compareAndSet(null, u))
5069 <                        quietlyCompleteRoot();
5070 <                    break;
5050 >            if ((searchFunction = this.searchFunction) != null &&
5051 >                (result = this.result) != null) {
5052 >                for (int i = baseIndex, f, h; batch > 0 &&
5053 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5054 >                    if (result.get() != null)
5055 >                        return;
5056 >                    addToPendingCount(1);
5057 >                    new SearchMappingsTask<K,V,U>
5058 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5059 >                         searchFunction, result).fork();
5060 >                }
5061 >                while (result.get() == null) {
5062 >                    U u;
5063 >                    Node<K,V> p;
5064 >                    if ((p = advance()) == null) {
5065 >                        propagateCompletion();
5066 >                        break;
5067 >                    }
5068 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5069 >                        if (result.compareAndSet(null, u))
5070 >                            quietlyCompleteRoot();
5071 >                        break;
5072 >                    }
5073                  }
5074              }
5075          }
5076      }
5077  
5078 <    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5079 <        extends Traverser<K,V,K> {
5078 >    @SuppressWarnings("serial")
5079 >    static final class ReduceKeysTask<K,V>
5080 >        extends BulkTask<K,V,K> {
5081          final BiFun<? super K, ? super K, ? extends K> reducer;
5082          K result;
5083          ReduceKeysTask<K,V> rights, nextRight;
5084          ReduceKeysTask
5085 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5085 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5086               ReduceKeysTask<K,V> nextRight,
5087               BiFun<? super K, ? super K, ? extends K> reducer) {
5088 <            super(m, p, b); this.nextRight = nextRight;
5088 >            super(p, b, i, f, t); this.nextRight = nextRight;
5089              this.reducer = reducer;
5090          }
5091          public final K getRawResult() { return result; }
5092 <        @SuppressWarnings("unchecked") public final void compute() {
5093 <            final BiFun<? super K, ? super K, ? extends K> reducer =
5094 <                this.reducer;
5095 <            if (reducer == null)
5096 <                throw new NullPointerException();
5097 <            for (int b; (b = preSplit()) > 0;)
5098 <                (rights = new ReduceKeysTask<K,V>
5099 <                 (map, this, b, rights, reducer)).fork();
5100 <            K r = null;
5101 <            while (advance() != null) {
5102 <                K u = (K)nextKey;
5103 <                r = (r == null) ? u : reducer.apply(r, u);
5104 <            }
5105 <            result = r;
5106 <            CountedCompleter<?> c;
5107 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5108 <                ReduceKeysTask<K,V>
5109 <                    t = (ReduceKeysTask<K,V>)c,
5110 <                    s = t.rights;
5111 <                while (s != null) {
5112 <                    K tr, sr;
5113 <                    if ((sr = s.result) != null)
5114 <                        t.result = (((tr = t.result) == null) ? sr :
5115 <                                    reducer.apply(tr, sr));
5116 <                    s = t.rights = s.nextRight;
5092 >        public final void compute() {
5093 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5094 >            if ((reducer = this.reducer) != null) {
5095 >                for (int i = baseIndex, f, h; batch > 0 &&
5096 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5097 >                    addToPendingCount(1);
5098 >                    (rights = new ReduceKeysTask<K,V>
5099 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5100 >                      rights, reducer)).fork();
5101 >                }
5102 >                K r = null;
5103 >                for (Node<K,V> p; (p = advance()) != null; ) {
5104 >                    K u = p.key;
5105 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5106 >                }
5107 >                result = r;
5108 >                CountedCompleter<?> c;
5109 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5110 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5111 >                        t = (ReduceKeysTask<K,V>)c,
5112 >                        s = t.rights;
5113 >                    while (s != null) {
5114 >                        K tr, sr;
5115 >                        if ((sr = s.result) != null)
5116 >                            t.result = (((tr = t.result) == null) ? sr :
5117 >                                        reducer.apply(tr, sr));
5118 >                        s = t.rights = s.nextRight;
5119 >                    }
5120                  }
5121              }
5122          }
5123      }
5124  
5125 <    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5126 <        extends Traverser<K,V,V> {
5125 >    @SuppressWarnings("serial")
5126 >    static final class ReduceValuesTask<K,V>
5127 >        extends BulkTask<K,V,V> {
5128          final BiFun<? super V, ? super V, ? extends V> reducer;
5129          V result;
5130          ReduceValuesTask<K,V> rights, nextRight;
5131          ReduceValuesTask
5132 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5132 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5133               ReduceValuesTask<K,V> nextRight,
5134               BiFun<? super V, ? super V, ? extends V> reducer) {
5135 <            super(m, p, b); this.nextRight = nextRight;
5135 >            super(p, b, i, f, t); this.nextRight = nextRight;
5136              this.reducer = reducer;
5137          }
5138          public final V getRawResult() { return result; }
5139 <        @SuppressWarnings("unchecked") public final void compute() {
5140 <            final BiFun<? super V, ? super V, ? extends V> reducer =
5141 <                this.reducer;
5142 <            if (reducer == null)
5143 <                throw new NullPointerException();
5144 <            for (int b; (b = preSplit()) > 0;)
5145 <                (rights = new ReduceValuesTask<K,V>
5146 <                 (map, this, b, rights, reducer)).fork();
5147 <            V r = null;
5148 <            Object v;
5149 <            while ((v = advance()) != null) {
5150 <                V u = (V)v;
5151 <                r = (r == null) ? u : reducer.apply(r, u);
5152 <            }
5153 <            result = r;
5154 <            CountedCompleter<?> c;
5155 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5156 <                ReduceValuesTask<K,V>
5157 <                    t = (ReduceValuesTask<K,V>)c,
5158 <                    s = t.rights;
5159 <                while (s != null) {
5160 <                    V tr, sr;
5161 <                    if ((sr = s.result) != null)
5162 <                        t.result = (((tr = t.result) == null) ? sr :
5163 <                                    reducer.apply(tr, sr));
5164 <                    s = t.rights = s.nextRight;
5139 >        public final void compute() {
5140 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5141 >            if ((reducer = this.reducer) != null) {
5142 >                for (int i = baseIndex, f, h; batch > 0 &&
5143 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5144 >                    addToPendingCount(1);
5145 >                    (rights = new ReduceValuesTask<K,V>
5146 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5147 >                      rights, reducer)).fork();
5148 >                }
5149 >                V r = null;
5150 >                for (Node<K,V> p; (p = advance()) != null; ) {
5151 >                    V v = p.val;
5152 >                    r = (r == null) ? v : reducer.apply(r, v);
5153 >                }
5154 >                result = r;
5155 >                CountedCompleter<?> c;
5156 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5157 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5158 >                        t = (ReduceValuesTask<K,V>)c,
5159 >                        s = t.rights;
5160 >                    while (s != null) {
5161 >                        V tr, sr;
5162 >                        if ((sr = s.result) != null)
5163 >                            t.result = (((tr = t.result) == null) ? sr :
5164 >                                        reducer.apply(tr, sr));
5165 >                        s = t.rights = s.nextRight;
5166 >                    }
5167                  }
5168              }
5169          }
5170      }
5171  
5172 <    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5173 <        extends Traverser<K,V,Map.Entry<K,V>> {
5172 >    @SuppressWarnings("serial")
5173 >    static final class ReduceEntriesTask<K,V>
5174 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5175          final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5176          Map.Entry<K,V> result;
5177          ReduceEntriesTask<K,V> rights, nextRight;
5178          ReduceEntriesTask
5179 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5179 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5180               ReduceEntriesTask<K,V> nextRight,
5181               BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5182 <            super(m, p, b); this.nextRight = nextRight;
5182 >            super(p, b, i, f, t); this.nextRight = nextRight;
5183              this.reducer = reducer;
5184          }
5185          public final Map.Entry<K,V> getRawResult() { return result; }
5186 <        @SuppressWarnings("unchecked") public final void compute() {
5187 <            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5188 <                this.reducer;
5189 <            if (reducer == null)
5190 <                throw new NullPointerException();
5191 <            for (int b; (b = preSplit()) > 0;)
5192 <                (rights = new ReduceEntriesTask<K,V>
5193 <                 (map, this, b, rights, reducer)).fork();
5194 <            Map.Entry<K,V> r = null;
5195 <            Object v;
5196 <            while ((v = advance()) != null) {
5197 <                Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5198 <                r = (r == null) ? u : reducer.apply(r, u);
5199 <            }
5200 <            result = r;
5201 <            CountedCompleter<?> c;
5202 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5203 <                ReduceEntriesTask<K,V>
5204 <                    t = (ReduceEntriesTask<K,V>)c,
5205 <                    s = t.rights;
5206 <                while (s != null) {
5207 <                    Map.Entry<K,V> tr, sr;
5208 <                    if ((sr = s.result) != null)
5209 <                        t.result = (((tr = t.result) == null) ? sr :
5210 <                                    reducer.apply(tr, sr));
5211 <                    s = t.rights = s.nextRight;
5186 >        public final void compute() {
5187 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5188 >            if ((reducer = this.reducer) != null) {
5189 >                for (int i = baseIndex, f, h; batch > 0 &&
5190 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5191 >                    addToPendingCount(1);
5192 >                    (rights = new ReduceEntriesTask<K,V>
5193 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5194 >                      rights, reducer)).fork();
5195 >                }
5196 >                Map.Entry<K,V> r = null;
5197 >                for (Node<K,V> p; (p = advance()) != null; )
5198 >                    r = (r == null) ? p : reducer.apply(r, p);
5199 >                result = r;
5200 >                CountedCompleter<?> c;
5201 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5202 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5203 >                        t = (ReduceEntriesTask<K,V>)c,
5204 >                        s = t.rights;
5205 >                    while (s != null) {
5206 >                        Map.Entry<K,V> tr, sr;
5207 >                        if ((sr = s.result) != null)
5208 >                            t.result = (((tr = t.result) == null) ? sr :
5209 >                                        reducer.apply(tr, sr));
5210 >                        s = t.rights = s.nextRight;
5211 >                    }
5212                  }
5213              }
5214          }
5215      }
5216  
5217 <    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5218 <        extends Traverser<K,V,U> {
5217 >    @SuppressWarnings("serial")
5218 >    static final class MapReduceKeysTask<K,V,U>
5219 >        extends BulkTask<K,V,U> {
5220          final Fun<? super K, ? extends U> transformer;
5221          final BiFun<? super U, ? super U, ? extends U> reducer;
5222          U result;
5223          MapReduceKeysTask<K,V,U> rights, nextRight;
5224          MapReduceKeysTask
5225 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5225 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5226               MapReduceKeysTask<K,V,U> nextRight,
5227               Fun<? super K, ? extends U> transformer,
5228               BiFun<? super U, ? super U, ? extends U> reducer) {
5229 <            super(m, p, b); this.nextRight = nextRight;
5229 >            super(p, b, i, f, t); this.nextRight = nextRight;
5230              this.transformer = transformer;
5231              this.reducer = reducer;
5232          }
5233          public final U getRawResult() { return result; }
5234 <        @SuppressWarnings("unchecked") public final void compute() {
5235 <            final Fun<? super K, ? extends U> transformer =
5236 <                this.transformer;
5237 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5238 <                this.reducer;
5239 <            if (transformer == null || reducer == null)
5240 <                throw new NullPointerException();
5241 <            for (int b; (b = preSplit()) > 0;)
5242 <                (rights = new MapReduceKeysTask<K,V,U>
5243 <                 (map, this, b, rights, transformer, reducer)).fork();
5244 <            U r = null, u;
5245 <            while (advance() != null) {
5246 <                if ((u = transformer.apply((K)nextKey)) != null)
5247 <                    r = (r == null) ? u : reducer.apply(r, u);
5248 <            }
5249 <            result = r;
5250 <            CountedCompleter<?> c;
5251 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5252 <                MapReduceKeysTask<K,V,U>
5253 <                    t = (MapReduceKeysTask<K,V,U>)c,
5254 <                    s = t.rights;
5255 <                while (s != null) {
5256 <                    U tr, sr;
5257 <                    if ((sr = s.result) != null)
5258 <                        t.result = (((tr = t.result) == null) ? sr :
5259 <                                    reducer.apply(tr, sr));
5260 <                    s = t.rights = s.nextRight;
5234 >        public final void compute() {
5235 >            final Fun<? super K, ? extends U> transformer;
5236 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5237 >            if ((transformer = this.transformer) != null &&
5238 >                (reducer = this.reducer) != null) {
5239 >                for (int i = baseIndex, f, h; batch > 0 &&
5240 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5241 >                    addToPendingCount(1);
5242 >                    (rights = new MapReduceKeysTask<K,V,U>
5243 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5244 >                      rights, transformer, reducer)).fork();
5245 >                }
5246 >                U r = null;
5247 >                for (Node<K,V> p; (p = advance()) != null; ) {
5248 >                    U u;
5249 >                    if ((u = transformer.apply(p.key)) != null)
5250 >                        r = (r == null) ? u : reducer.apply(r, u);
5251 >                }
5252 >                result = r;
5253 >                CountedCompleter<?> c;
5254 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5255 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5256 >                        t = (MapReduceKeysTask<K,V,U>)c,
5257 >                        s = t.rights;
5258 >                    while (s != null) {
5259 >                        U tr, sr;
5260 >                        if ((sr = s.result) != null)
5261 >                            t.result = (((tr = t.result) == null) ? sr :
5262 >                                        reducer.apply(tr, sr));
5263 >                        s = t.rights = s.nextRight;
5264 >                    }
5265                  }
5266              }
5267          }
5268      }
5269  
5270 <    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5271 <        extends Traverser<K,V,U> {
5270 >    @SuppressWarnings("serial")
5271 >    static final class MapReduceValuesTask<K,V,U>
5272 >        extends BulkTask<K,V,U> {
5273          final Fun<? super V, ? extends U> transformer;
5274          final BiFun<? super U, ? super U, ? extends U> reducer;
5275          U result;
5276          MapReduceValuesTask<K,V,U> rights, nextRight;
5277          MapReduceValuesTask
5278 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5278 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5279               MapReduceValuesTask<K,V,U> nextRight,
5280               Fun<? super V, ? extends U> transformer,
5281               BiFun<? super U, ? super U, ? extends U> reducer) {
5282 <            super(m, p, b); this.nextRight = nextRight;
5282 >            super(p, b, i, f, t); this.nextRight = nextRight;
5283              this.transformer = transformer;
5284              this.reducer = reducer;
5285          }
5286          public final U getRawResult() { return result; }
5287 <        @SuppressWarnings("unchecked") public final void compute() {
5288 <            final Fun<? super V, ? extends U> transformer =
5289 <                this.transformer;
5290 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5291 <                this.reducer;
5292 <            if (transformer == null || reducer == null)
5293 <                throw new NullPointerException();
5294 <            for (int b; (b = preSplit()) > 0;)
5295 <                (rights = new MapReduceValuesTask<K,V,U>
5296 <                 (map, this, b, rights, transformer, reducer)).fork();
5297 <            U r = null, u;
5298 <            Object v;
5299 <            while ((v = advance()) != null) {
5300 <                if ((u = transformer.apply((V)v)) != null)
5301 <                    r = (r == null) ? u : reducer.apply(r, u);
5302 <            }
5303 <            result = r;
5304 <            CountedCompleter<?> c;
5305 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5306 <                MapReduceValuesTask<K,V,U>
5307 <                    t = (MapReduceValuesTask<K,V,U>)c,
5308 <                    s = t.rights;
5309 <                while (s != null) {
5310 <                    U tr, sr;
5311 <                    if ((sr = s.result) != null)
5312 <                        t.result = (((tr = t.result) == null) ? sr :
5313 <                                    reducer.apply(tr, sr));
5314 <                    s = t.rights = s.nextRight;
5287 >        public final void compute() {
5288 >            final Fun<? super V, ? extends U> transformer;
5289 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5290 >            if ((transformer = this.transformer) != null &&
5291 >                (reducer = this.reducer) != null) {
5292 >                for (int i = baseIndex, f, h; batch > 0 &&
5293 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5294 >                    addToPendingCount(1);
5295 >                    (rights = new MapReduceValuesTask<K,V,U>
5296 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5297 >                      rights, transformer, reducer)).fork();
5298 >                }
5299 >                U r = null;
5300 >                for (Node<K,V> p; (p = advance()) != null; ) {
5301 >                    U u;
5302 >                    if ((u = transformer.apply(p.val)) != null)
5303 >                        r = (r == null) ? u : reducer.apply(r, u);
5304 >                }
5305 >                result = r;
5306 >                CountedCompleter<?> c;
5307 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5308 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5309 >                        t = (MapReduceValuesTask<K,V,U>)c,
5310 >                        s = t.rights;
5311 >                    while (s != null) {
5312 >                        U tr, sr;
5313 >                        if ((sr = s.result) != null)
5314 >                            t.result = (((tr = t.result) == null) ? sr :
5315 >                                        reducer.apply(tr, sr));
5316 >                        s = t.rights = s.nextRight;
5317 >                    }
5318                  }
5319              }
5320          }
5321      }
5322  
5323 <    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5324 <        extends Traverser<K,V,U> {
5323 >    @SuppressWarnings("serial")
5324 >    static final class MapReduceEntriesTask<K,V,U>
5325 >        extends BulkTask<K,V,U> {
5326          final Fun<Map.Entry<K,V>, ? extends U> transformer;
5327          final BiFun<? super U, ? super U, ? extends U> reducer;
5328          U result;
5329          MapReduceEntriesTask<K,V,U> rights, nextRight;
5330          MapReduceEntriesTask
5331 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5331 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5332               MapReduceEntriesTask<K,V,U> nextRight,
5333               Fun<Map.Entry<K,V>, ? extends U> transformer,
5334               BiFun<? super U, ? super U, ? extends U> reducer) {
5335 <            super(m, p, b); this.nextRight = nextRight;
5335 >            super(p, b, i, f, t); this.nextRight = nextRight;
5336              this.transformer = transformer;
5337              this.reducer = reducer;
5338          }
5339          public final U getRawResult() { return result; }
5340 <        @SuppressWarnings("unchecked") public final void compute() {
5341 <            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5342 <                this.transformer;
5343 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5344 <                this.reducer;
5345 <            if (transformer == null || reducer == null)
5346 <                throw new NullPointerException();
5347 <            for (int b; (b = preSplit()) > 0;)
5348 <                (rights = new MapReduceEntriesTask<K,V,U>
5349 <                 (map, this, b, rights, transformer, reducer)).fork();
5350 <            U r = null, u;
5351 <            Object v;
5352 <            while ((v = advance()) != null) {
5353 <                if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5354 <                    r = (r == null) ? u : reducer.apply(r, u);
5355 <            }
5356 <            result = r;
5357 <            CountedCompleter<?> c;
5358 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5359 <                MapReduceEntriesTask<K,V,U>
5360 <                    t = (MapReduceEntriesTask<K,V,U>)c,
5361 <                    s = t.rights;
5362 <                while (s != null) {
5363 <                    U tr, sr;
5364 <                    if ((sr = s.result) != null)
5365 <                        t.result = (((tr = t.result) == null) ? sr :
5366 <                                    reducer.apply(tr, sr));
5367 <                    s = t.rights = s.nextRight;
5340 >        public final void compute() {
5341 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5342 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5343 >            if ((transformer = this.transformer) != null &&
5344 >                (reducer = this.reducer) != null) {
5345 >                for (int i = baseIndex, f, h; batch > 0 &&
5346 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5347 >                    addToPendingCount(1);
5348 >                    (rights = new MapReduceEntriesTask<K,V,U>
5349 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5350 >                      rights, transformer, reducer)).fork();
5351 >                }
5352 >                U r = null;
5353 >                for (Node<K,V> p; (p = advance()) != null; ) {
5354 >                    U u;
5355 >                    if ((u = transformer.apply(p)) != null)
5356 >                        r = (r == null) ? u : reducer.apply(r, u);
5357 >                }
5358 >                result = r;
5359 >                CountedCompleter<?> c;
5360 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5361 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5362 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5363 >                        s = t.rights;
5364 >                    while (s != null) {
5365 >                        U tr, sr;
5366 >                        if ((sr = s.result) != null)
5367 >                            t.result = (((tr = t.result) == null) ? sr :
5368 >                                        reducer.apply(tr, sr));
5369 >                        s = t.rights = s.nextRight;
5370 >                    }
5371                  }
5372              }
5373          }
5374      }
5375  
5376 <    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5377 <        extends Traverser<K,V,U> {
5376 >    @SuppressWarnings("serial")
5377 >    static final class MapReduceMappingsTask<K,V,U>
5378 >        extends BulkTask<K,V,U> {
5379          final BiFun<? super K, ? super V, ? extends U> transformer;
5380          final BiFun<? super U, ? super U, ? extends U> reducer;
5381          U result;
5382          MapReduceMappingsTask<K,V,U> rights, nextRight;
5383          MapReduceMappingsTask
5384 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5384 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5385               MapReduceMappingsTask<K,V,U> nextRight,
5386               BiFun<? super K, ? super V, ? extends U> transformer,
5387               BiFun<? super U, ? super U, ? extends U> reducer) {
5388 <            super(m, p, b); this.nextRight = nextRight;
5388 >            super(p, b, i, f, t); this.nextRight = nextRight;
5389              this.transformer = transformer;
5390              this.reducer = reducer;
5391          }
5392          public final U getRawResult() { return result; }
5393 <        @SuppressWarnings("unchecked") public final void compute() {
5394 <            final BiFun<? super K, ? super V, ? extends U> transformer =
5395 <                this.transformer;
5396 <            final BiFun<? super U, ? super U, ? extends U> reducer =
5397 <                this.reducer;
5398 <            if (transformer == null || reducer == null)
5399 <                throw new NullPointerException();
5400 <            for (int b; (b = preSplit()) > 0;)
5401 <                (rights = new MapReduceMappingsTask<K,V,U>
5402 <                 (map, this, b, rights, transformer, reducer)).fork();
5403 <            U r = null, u;
5404 <            Object v;
5405 <            while ((v = advance()) != null) {
5406 <                if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5407 <                    r = (r == null) ? u : reducer.apply(r, u);
5408 <            }
5409 <            result = r;
5410 <            CountedCompleter<?> c;
5411 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5412 <                MapReduceMappingsTask<K,V,U>
5413 <                    t = (MapReduceMappingsTask<K,V,U>)c,
5414 <                    s = t.rights;
5415 <                while (s != null) {
5416 <                    U tr, sr;
5417 <                    if ((sr = s.result) != null)
5418 <                        t.result = (((tr = t.result) == null) ? sr :
5419 <                                    reducer.apply(tr, sr));
5420 <                    s = t.rights = s.nextRight;
5393 >        public final void compute() {
5394 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5395 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5396 >            if ((transformer = this.transformer) != null &&
5397 >                (reducer = this.reducer) != null) {
5398 >                for (int i = baseIndex, f, h; batch > 0 &&
5399 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5400 >                    addToPendingCount(1);
5401 >                    (rights = new MapReduceMappingsTask<K,V,U>
5402 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5403 >                      rights, transformer, reducer)).fork();
5404 >                }
5405 >                U r = null;
5406 >                for (Node<K,V> p; (p = advance()) != null; ) {
5407 >                    U u;
5408 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5409 >                        r = (r == null) ? u : reducer.apply(r, u);
5410 >                }
5411 >                result = r;
5412 >                CountedCompleter<?> c;
5413 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5414 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5415 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5416 >                        s = t.rights;
5417 >                    while (s != null) {
5418 >                        U tr, sr;
5419 >                        if ((sr = s.result) != null)
5420 >                            t.result = (((tr = t.result) == null) ? sr :
5421 >                                        reducer.apply(tr, sr));
5422 >                        s = t.rights = s.nextRight;
5423 >                    }
5424                  }
5425              }
5426          }
5427      }
5428  
5429 <    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5430 <        extends Traverser<K,V,Double> {
5429 >    @SuppressWarnings("serial")
5430 >    static final class MapReduceKeysToDoubleTask<K,V>
5431 >        extends BulkTask<K,V,Double> {
5432          final ObjectToDouble<? super K> transformer;
5433          final DoubleByDoubleToDouble reducer;
5434          final double basis;
5435          double result;
5436          MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5437          MapReduceKeysToDoubleTask
5438 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5438 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5439               MapReduceKeysToDoubleTask<K,V> nextRight,
5440               ObjectToDouble<? super K> transformer,
5441               double basis,
5442               DoubleByDoubleToDouble reducer) {
5443 <            super(m, p, b); this.nextRight = nextRight;
5443 >            super(p, b, i, f, t); this.nextRight = nextRight;
5444              this.transformer = transformer;
5445              this.basis = basis; this.reducer = reducer;
5446          }
5447          public final Double getRawResult() { return result; }
5448 <        @SuppressWarnings("unchecked") public final void compute() {
5449 <            final ObjectToDouble<? super K> transformer =
5450 <                this.transformer;
5451 <            final DoubleByDoubleToDouble reducer = this.reducer;
5452 <            if (transformer == null || reducer == null)
5453 <                throw new NullPointerException();
5454 <            double r = this.basis;
5455 <            for (int b; (b = preSplit()) > 0;)
5456 <                (rights = new MapReduceKeysToDoubleTask<K,V>
5457 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5458 <            while (advance() != null)
5459 <                r = reducer.apply(r, transformer.apply((K)nextKey));
5460 <            result = r;
5461 <            CountedCompleter<?> c;
5462 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5463 <                MapReduceKeysToDoubleTask<K,V>
5464 <                    t = (MapReduceKeysToDoubleTask<K,V>)c,
5465 <                    s = t.rights;
5466 <                while (s != null) {
5467 <                    t.result = reducer.apply(t.result, s.result);
5468 <                    s = t.rights = s.nextRight;
5448 >        public final void compute() {
5449 >            final ObjectToDouble<? super K> transformer;
5450 >            final DoubleByDoubleToDouble reducer;
5451 >            if ((transformer = this.transformer) != null &&
5452 >                (reducer = this.reducer) != null) {
5453 >                double r = this.basis;
5454 >                for (int i = baseIndex, f, h; batch > 0 &&
5455 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5456 >                    addToPendingCount(1);
5457 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5458 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5459 >                      rights, transformer, r, reducer)).fork();
5460 >                }
5461 >                for (Node<K,V> p; (p = advance()) != null; )
5462 >                    r = reducer.apply(r, transformer.apply(p.key));
5463 >                result = r;
5464 >                CountedCompleter<?> c;
5465 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5466 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5467 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5468 >                        s = t.rights;
5469 >                    while (s != null) {
5470 >                        t.result = reducer.apply(t.result, s.result);
5471 >                        s = t.rights = s.nextRight;
5472 >                    }
5473                  }
5474              }
5475          }
5476      }
5477  
5478 <    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5479 <        extends Traverser<K,V,Double> {
5478 >    @SuppressWarnings("serial")
5479 >    static final class MapReduceValuesToDoubleTask<K,V>
5480 >        extends BulkTask<K,V,Double> {
5481          final ObjectToDouble<? super V> transformer;
5482          final DoubleByDoubleToDouble reducer;
5483          final double basis;
5484          double result;
5485          MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5486          MapReduceValuesToDoubleTask
5487 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5487 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5488               MapReduceValuesToDoubleTask<K,V> nextRight,
5489               ObjectToDouble<? super V> transformer,
5490               double basis,
5491               DoubleByDoubleToDouble reducer) {
5492 <            super(m, p, b); this.nextRight = nextRight;
5492 >            super(p, b, i, f, t); this.nextRight = nextRight;
5493              this.transformer = transformer;
5494              this.basis = basis; this.reducer = reducer;
5495          }
5496          public final Double getRawResult() { return result; }
5497 <        @SuppressWarnings("unchecked") public final void compute() {
5498 <            final ObjectToDouble<? super V> transformer =
5499 <                this.transformer;
5500 <            final DoubleByDoubleToDouble reducer = this.reducer;
5501 <            if (transformer == null || reducer == null)
5502 <                throw new NullPointerException();
5503 <            double r = this.basis;
5504 <            for (int b; (b = preSplit()) > 0;)
5505 <                (rights = new MapReduceValuesToDoubleTask<K,V>
5506 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5507 <            Object v;
5508 <            while ((v = advance()) != null)
5509 <                r = reducer.apply(r, transformer.apply((V)v));
5510 <            result = r;
5511 <            CountedCompleter<?> c;
5512 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5513 <                MapReduceValuesToDoubleTask<K,V>
5514 <                    t = (MapReduceValuesToDoubleTask<K,V>)c,
5515 <                    s = t.rights;
5516 <                while (s != null) {
5517 <                    t.result = reducer.apply(t.result, s.result);
5518 <                    s = t.rights = s.nextRight;
5497 >        public final void compute() {
5498 >            final ObjectToDouble<? super V> transformer;
5499 >            final DoubleByDoubleToDouble reducer;
5500 >            if ((transformer = this.transformer) != null &&
5501 >                (reducer = this.reducer) != null) {
5502 >                double r = this.basis;
5503 >                for (int i = baseIndex, f, h; batch > 0 &&
5504 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5505 >                    addToPendingCount(1);
5506 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5507 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5508 >                      rights, transformer, r, reducer)).fork();
5509 >                }
5510 >                for (Node<K,V> p; (p = advance()) != null; )
5511 >                    r = reducer.apply(r, transformer.apply(p.val));
5512 >                result = r;
5513 >                CountedCompleter<?> c;
5514 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5515 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5516 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5517 >                        s = t.rights;
5518 >                    while (s != null) {
5519 >                        t.result = reducer.apply(t.result, s.result);
5520 >                        s = t.rights = s.nextRight;
5521 >                    }
5522                  }
5523              }
5524          }
5525      }
5526  
5527 <    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
5528 <        extends Traverser<K,V,Double> {
5527 >    @SuppressWarnings("serial")
5528 >    static final class MapReduceEntriesToDoubleTask<K,V>
5529 >        extends BulkTask<K,V,Double> {
5530          final ObjectToDouble<Map.Entry<K,V>> transformer;
5531          final DoubleByDoubleToDouble reducer;
5532          final double basis;
5533          double result;
5534          MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5535          MapReduceEntriesToDoubleTask
5536 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5536 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5537               MapReduceEntriesToDoubleTask<K,V> nextRight,
5538               ObjectToDouble<Map.Entry<K,V>> transformer,
5539               double basis,
5540               DoubleByDoubleToDouble reducer) {
5541 <            super(m, p, b); this.nextRight = nextRight;
5541 >            super(p, b, i, f, t); this.nextRight = nextRight;
5542              this.transformer = transformer;
5543              this.basis = basis; this.reducer = reducer;
5544          }
5545          public final Double getRawResult() { return result; }
5546 <        @SuppressWarnings("unchecked") public final void compute() {
5547 <            final ObjectToDouble<Map.Entry<K,V>> transformer =
5548 <                this.transformer;
5549 <            final DoubleByDoubleToDouble reducer = this.reducer;
5550 <            if (transformer == null || reducer == null)
5551 <                throw new NullPointerException();
5552 <            double r = this.basis;
5553 <            for (int b; (b = preSplit()) > 0;)
5554 <                (rights = new MapReduceEntriesToDoubleTask<K,V>
5555 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5556 <            Object v;
5557 <            while ((v = advance()) != null)
5558 <                r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5559 <            result = r;
5560 <            CountedCompleter<?> c;
5561 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5562 <                MapReduceEntriesToDoubleTask<K,V>
5563 <                    t = (MapReduceEntriesToDoubleTask<K,V>)c,
5564 <                    s = t.rights;
5565 <                while (s != null) {
5566 <                    t.result = reducer.apply(t.result, s.result);
5567 <                    s = t.rights = s.nextRight;
5546 >        public final void compute() {
5547 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
5548 >            final DoubleByDoubleToDouble reducer;
5549 >            if ((transformer = this.transformer) != null &&
5550 >                (reducer = this.reducer) != null) {
5551 >                double r = this.basis;
5552 >                for (int i = baseIndex, f, h; batch > 0 &&
5553 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5554 >                    addToPendingCount(1);
5555 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5556 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5557 >                      rights, transformer, r, reducer)).fork();
5558 >                }
5559 >                for (Node<K,V> p; (p = advance()) != null; )
5560 >                    r = reducer.apply(r, transformer.apply(p));
5561 >                result = r;
5562 >                CountedCompleter<?> c;
5563 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5564 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5565 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5566 >                        s = t.rights;
5567 >                    while (s != null) {
5568 >                        t.result = reducer.apply(t.result, s.result);
5569 >                        s = t.rights = s.nextRight;
5570 >                    }
5571                  }
5572              }
5573          }
5574      }
5575  
5576 <    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
5577 <        extends Traverser<K,V,Double> {
5576 >    @SuppressWarnings("serial")
5577 >    static final class MapReduceMappingsToDoubleTask<K,V>
5578 >        extends BulkTask<K,V,Double> {
5579          final ObjectByObjectToDouble<? super K, ? super V> transformer;
5580          final DoubleByDoubleToDouble reducer;
5581          final double basis;
5582          double result;
5583          MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5584          MapReduceMappingsToDoubleTask
5585 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5585 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5586               MapReduceMappingsToDoubleTask<K,V> nextRight,
5587               ObjectByObjectToDouble<? super K, ? super V> transformer,
5588               double basis,
5589               DoubleByDoubleToDouble reducer) {
5590 <            super(m, p, b); this.nextRight = nextRight;
5590 >            super(p, b, i, f, t); this.nextRight = nextRight;
5591              this.transformer = transformer;
5592              this.basis = basis; this.reducer = reducer;
5593          }
5594          public final Double getRawResult() { return result; }
5595 <        @SuppressWarnings("unchecked") public final void compute() {
5596 <            final ObjectByObjectToDouble<? super K, ? super V> transformer =
5597 <                this.transformer;
5598 <            final DoubleByDoubleToDouble reducer = this.reducer;
5599 <            if (transformer == null || reducer == null)
5600 <                throw new NullPointerException();
5601 <            double r = this.basis;
5602 <            for (int b; (b = preSplit()) > 0;)
5603 <                (rights = new MapReduceMappingsToDoubleTask<K,V>
5604 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5605 <            Object v;
5606 <            while ((v = advance()) != null)
5607 <                r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
5608 <            result = r;
5609 <            CountedCompleter<?> c;
5610 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5611 <                MapReduceMappingsToDoubleTask<K,V>
5612 <                    t = (MapReduceMappingsToDoubleTask<K,V>)c,
5613 <                    s = t.rights;
5614 <                while (s != null) {
5615 <                    t.result = reducer.apply(t.result, s.result);
5616 <                    s = t.rights = s.nextRight;
5595 >        public final void compute() {
5596 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
5597 >            final DoubleByDoubleToDouble reducer;
5598 >            if ((transformer = this.transformer) != null &&
5599 >                (reducer = this.reducer) != null) {
5600 >                double r = this.basis;
5601 >                for (int i = baseIndex, f, h; batch > 0 &&
5602 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5603 >                    addToPendingCount(1);
5604 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5605 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5606 >                      rights, transformer, r, reducer)).fork();
5607 >                }
5608 >                for (Node<K,V> p; (p = advance()) != null; )
5609 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5610 >                result = r;
5611 >                CountedCompleter<?> c;
5612 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5613 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5614 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5615 >                        s = t.rights;
5616 >                    while (s != null) {
5617 >                        t.result = reducer.apply(t.result, s.result);
5618 >                        s = t.rights = s.nextRight;
5619 >                    }
5620                  }
5621              }
5622          }
5623      }
5624  
5625 <    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
5626 <        extends Traverser<K,V,Long> {
5625 >    @SuppressWarnings("serial")
5626 >    static final class MapReduceKeysToLongTask<K,V>
5627 >        extends BulkTask<K,V,Long> {
5628          final ObjectToLong<? super K> transformer;
5629          final LongByLongToLong reducer;
5630          final long basis;
5631          long result;
5632          MapReduceKeysToLongTask<K,V> rights, nextRight;
5633          MapReduceKeysToLongTask
5634 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5634 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5635               MapReduceKeysToLongTask<K,V> nextRight,
5636               ObjectToLong<? super K> transformer,
5637               long basis,
5638               LongByLongToLong reducer) {
5639 <            super(m, p, b); this.nextRight = nextRight;
5639 >            super(p, b, i, f, t); this.nextRight = nextRight;
5640              this.transformer = transformer;
5641              this.basis = basis; this.reducer = reducer;
5642          }
5643          public final Long getRawResult() { return result; }
5644 <        @SuppressWarnings("unchecked") public final void compute() {
5645 <            final ObjectToLong<? super K> transformer =
5646 <                this.transformer;
5647 <            final LongByLongToLong reducer = this.reducer;
5648 <            if (transformer == null || reducer == null)
5649 <                throw new NullPointerException();
5650 <            long r = this.basis;
5651 <            for (int b; (b = preSplit()) > 0;)
5652 <                (rights = new MapReduceKeysToLongTask<K,V>
5653 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5654 <            while (advance() != null)
5655 <                r = reducer.apply(r, transformer.apply((K)nextKey));
5656 <            result = r;
5657 <            CountedCompleter<?> c;
5658 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5659 <                MapReduceKeysToLongTask<K,V>
5660 <                    t = (MapReduceKeysToLongTask<K,V>)c,
5661 <                    s = t.rights;
5662 <                while (s != null) {
5663 <                    t.result = reducer.apply(t.result, s.result);
5664 <                    s = t.rights = s.nextRight;
5644 >        public final void compute() {
5645 >            final ObjectToLong<? super K> transformer;
5646 >            final LongByLongToLong reducer;
5647 >            if ((transformer = this.transformer) != null &&
5648 >                (reducer = this.reducer) != null) {
5649 >                long r = this.basis;
5650 >                for (int i = baseIndex, f, h; batch > 0 &&
5651 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5652 >                    addToPendingCount(1);
5653 >                    (rights = new MapReduceKeysToLongTask<K,V>
5654 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5655 >                      rights, transformer, r, reducer)).fork();
5656 >                }
5657 >                for (Node<K,V> p; (p = advance()) != null; )
5658 >                    r = reducer.apply(r, transformer.apply(p.key));
5659 >                result = r;
5660 >                CountedCompleter<?> c;
5661 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5662 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5663 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5664 >                        s = t.rights;
5665 >                    while (s != null) {
5666 >                        t.result = reducer.apply(t.result, s.result);
5667 >                        s = t.rights = s.nextRight;
5668 >                    }
5669                  }
5670              }
5671          }
5672      }
5673  
5674 <    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
5675 <        extends Traverser<K,V,Long> {
5674 >    @SuppressWarnings("serial")
5675 >    static final class MapReduceValuesToLongTask<K,V>
5676 >        extends BulkTask<K,V,Long> {
5677          final ObjectToLong<? super V> transformer;
5678          final LongByLongToLong reducer;
5679          final long basis;
5680          long result;
5681          MapReduceValuesToLongTask<K,V> rights, nextRight;
5682          MapReduceValuesToLongTask
5683 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5683 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5684               MapReduceValuesToLongTask<K,V> nextRight,
5685               ObjectToLong<? super V> transformer,
5686               long basis,
5687               LongByLongToLong reducer) {
5688 <            super(m, p, b); this.nextRight = nextRight;
5688 >            super(p, b, i, f, t); this.nextRight = nextRight;
5689              this.transformer = transformer;
5690              this.basis = basis; this.reducer = reducer;
5691          }
5692          public final Long getRawResult() { return result; }
5693 <        @SuppressWarnings("unchecked") public final void compute() {
5694 <            final ObjectToLong<? super V> transformer =
5695 <                this.transformer;
5696 <            final LongByLongToLong reducer = this.reducer;
5697 <            if (transformer == null || reducer == null)
5698 <                throw new NullPointerException();
5699 <            long r = this.basis;
5700 <            for (int b; (b = preSplit()) > 0;)
5701 <                (rights = new MapReduceValuesToLongTask<K,V>
5702 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5703 <            Object v;
5704 <            while ((v = advance()) != null)
5705 <                r = reducer.apply(r, transformer.apply((V)v));
5706 <            result = r;
5707 <            CountedCompleter<?> c;
5708 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5709 <                MapReduceValuesToLongTask<K,V>
5710 <                    t = (MapReduceValuesToLongTask<K,V>)c,
5711 <                    s = t.rights;
5712 <                while (s != null) {
5713 <                    t.result = reducer.apply(t.result, s.result);
5714 <                    s = t.rights = s.nextRight;
5693 >        public final void compute() {
5694 >            final ObjectToLong<? super V> transformer;
5695 >            final LongByLongToLong reducer;
5696 >            if ((transformer = this.transformer) != null &&
5697 >                (reducer = this.reducer) != null) {
5698 >                long r = this.basis;
5699 >                for (int i = baseIndex, f, h; batch > 0 &&
5700 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5701 >                    addToPendingCount(1);
5702 >                    (rights = new MapReduceValuesToLongTask<K,V>
5703 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5704 >                      rights, transformer, r, reducer)).fork();
5705 >                }
5706 >                for (Node<K,V> p; (p = advance()) != null; )
5707 >                    r = reducer.apply(r, transformer.apply(p.val));
5708 >                result = r;
5709 >                CountedCompleter<?> c;
5710 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5711 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5712 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5713 >                        s = t.rights;
5714 >                    while (s != null) {
5715 >                        t.result = reducer.apply(t.result, s.result);
5716 >                        s = t.rights = s.nextRight;
5717 >                    }
5718                  }
5719              }
5720          }
5721      }
5722  
5723 <    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
5724 <        extends Traverser<K,V,Long> {
5723 >    @SuppressWarnings("serial")
5724 >    static final class MapReduceEntriesToLongTask<K,V>
5725 >        extends BulkTask<K,V,Long> {
5726          final ObjectToLong<Map.Entry<K,V>> transformer;
5727          final LongByLongToLong reducer;
5728          final long basis;
5729          long result;
5730          MapReduceEntriesToLongTask<K,V> rights, nextRight;
5731          MapReduceEntriesToLongTask
5732 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5732 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5733               MapReduceEntriesToLongTask<K,V> nextRight,
5734               ObjectToLong<Map.Entry<K,V>> transformer,
5735               long basis,
5736               LongByLongToLong reducer) {
5737 <            super(m, p, b); this.nextRight = nextRight;
5737 >            super(p, b, i, f, t); this.nextRight = nextRight;
5738              this.transformer = transformer;
5739              this.basis = basis; this.reducer = reducer;
5740          }
5741          public final Long getRawResult() { return result; }
5742 <        @SuppressWarnings("unchecked") public final void compute() {
5743 <            final ObjectToLong<Map.Entry<K,V>> transformer =
5744 <                this.transformer;
5745 <            final LongByLongToLong reducer = this.reducer;
5746 <            if (transformer == null || reducer == null)
5747 <                throw new NullPointerException();
5748 <            long r = this.basis;
5749 <            for (int b; (b = preSplit()) > 0;)
5750 <                (rights = new MapReduceEntriesToLongTask<K,V>
5751 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5752 <            Object v;
5753 <            while ((v = advance()) != null)
5754 <                r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5755 <            result = r;
5756 <            CountedCompleter<?> c;
5757 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5758 <                MapReduceEntriesToLongTask<K,V>
5759 <                    t = (MapReduceEntriesToLongTask<K,V>)c,
5760 <                    s = t.rights;
5761 <                while (s != null) {
5762 <                    t.result = reducer.apply(t.result, s.result);
5763 <                    s = t.rights = s.nextRight;
5742 >        public final void compute() {
5743 >            final ObjectToLong<Map.Entry<K,V>> transformer;
5744 >            final LongByLongToLong reducer;
5745 >            if ((transformer = this.transformer) != null &&
5746 >                (reducer = this.reducer) != null) {
5747 >                long r = this.basis;
5748 >                for (int i = baseIndex, f, h; batch > 0 &&
5749 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5750 >                    addToPendingCount(1);
5751 >                    (rights = new MapReduceEntriesToLongTask<K,V>
5752 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5753 >                      rights, transformer, r, reducer)).fork();
5754 >                }
5755 >                for (Node<K,V> p; (p = advance()) != null; )
5756 >                    r = reducer.apply(r, transformer.apply(p));
5757 >                result = r;
5758 >                CountedCompleter<?> c;
5759 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5760 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5761 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5762 >                        s = t.rights;
5763 >                    while (s != null) {
5764 >                        t.result = reducer.apply(t.result, s.result);
5765 >                        s = t.rights = s.nextRight;
5766 >                    }
5767                  }
5768              }
5769          }
5770      }
5771  
5772 <    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
5773 <        extends Traverser<K,V,Long> {
5772 >    @SuppressWarnings("serial")
5773 >    static final class MapReduceMappingsToLongTask<K,V>
5774 >        extends BulkTask<K,V,Long> {
5775          final ObjectByObjectToLong<? super K, ? super V> transformer;
5776          final LongByLongToLong reducer;
5777          final long basis;
5778          long result;
5779          MapReduceMappingsToLongTask<K,V> rights, nextRight;
5780          MapReduceMappingsToLongTask
5781 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5781 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5782               MapReduceMappingsToLongTask<K,V> nextRight,
5783               ObjectByObjectToLong<? super K, ? super V> transformer,
5784               long basis,
5785               LongByLongToLong reducer) {
5786 <            super(m, p, b); this.nextRight = nextRight;
5786 >            super(p, b, i, f, t); this.nextRight = nextRight;
5787              this.transformer = transformer;
5788              this.basis = basis; this.reducer = reducer;
5789          }
5790          public final Long getRawResult() { return result; }
5791 <        @SuppressWarnings("unchecked") public final void compute() {
5792 <            final ObjectByObjectToLong<? super K, ? super V> transformer =
5793 <                this.transformer;
5794 <            final LongByLongToLong reducer = this.reducer;
5795 <            if (transformer == null || reducer == null)
5796 <                throw new NullPointerException();
5797 <            long r = this.basis;
5798 <            for (int b; (b = preSplit()) > 0;)
5799 <                (rights = new MapReduceMappingsToLongTask<K,V>
5800 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5801 <            Object v;
5802 <            while ((v = advance()) != null)
5803 <                r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
5804 <            result = r;
5805 <            CountedCompleter<?> c;
5806 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5807 <                MapReduceMappingsToLongTask<K,V>
5808 <                    t = (MapReduceMappingsToLongTask<K,V>)c,
5809 <                    s = t.rights;
5810 <                while (s != null) {
5811 <                    t.result = reducer.apply(t.result, s.result);
5812 <                    s = t.rights = s.nextRight;
5791 >        public final void compute() {
5792 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
5793 >            final LongByLongToLong reducer;
5794 >            if ((transformer = this.transformer) != null &&
5795 >                (reducer = this.reducer) != null) {
5796 >                long r = this.basis;
5797 >                for (int i = baseIndex, f, h; batch > 0 &&
5798 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5799 >                    addToPendingCount(1);
5800 >                    (rights = new MapReduceMappingsToLongTask<K,V>
5801 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5802 >                      rights, transformer, r, reducer)).fork();
5803 >                }
5804 >                for (Node<K,V> p; (p = advance()) != null; )
5805 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5806 >                result = r;
5807 >                CountedCompleter<?> c;
5808 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5809 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5810 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
5811 >                        s = t.rights;
5812 >                    while (s != null) {
5813 >                        t.result = reducer.apply(t.result, s.result);
5814 >                        s = t.rights = s.nextRight;
5815 >                    }
5816                  }
5817              }
5818          }
5819      }
5820  
5821 <    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
5822 <        extends Traverser<K,V,Integer> {
5821 >    @SuppressWarnings("serial")
5822 >    static final class MapReduceKeysToIntTask<K,V>
5823 >        extends BulkTask<K,V,Integer> {
5824          final ObjectToInt<? super K> transformer;
5825          final IntByIntToInt reducer;
5826          final int basis;
5827          int result;
5828          MapReduceKeysToIntTask<K,V> rights, nextRight;
5829          MapReduceKeysToIntTask
5830 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5830 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5831               MapReduceKeysToIntTask<K,V> nextRight,
5832               ObjectToInt<? super K> transformer,
5833               int basis,
5834               IntByIntToInt reducer) {
5835 <            super(m, p, b); this.nextRight = nextRight;
5835 >            super(p, b, i, f, t); this.nextRight = nextRight;
5836              this.transformer = transformer;
5837              this.basis = basis; this.reducer = reducer;
5838          }
5839          public final Integer getRawResult() { return result; }
5840 <        @SuppressWarnings("unchecked") public final void compute() {
5841 <            final ObjectToInt<? super K> transformer =
5842 <                this.transformer;
5843 <            final IntByIntToInt reducer = this.reducer;
5844 <            if (transformer == null || reducer == null)
5845 <                throw new NullPointerException();
5846 <            int r = this.basis;
5847 <            for (int b; (b = preSplit()) > 0;)
5848 <                (rights = new MapReduceKeysToIntTask<K,V>
5849 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5850 <            while (advance() != null)
5851 <                r = reducer.apply(r, transformer.apply((K)nextKey));
5852 <            result = r;
5853 <            CountedCompleter<?> c;
5854 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5855 <                MapReduceKeysToIntTask<K,V>
5856 <                    t = (MapReduceKeysToIntTask<K,V>)c,
5857 <                    s = t.rights;
5858 <                while (s != null) {
5859 <                    t.result = reducer.apply(t.result, s.result);
5860 <                    s = t.rights = s.nextRight;
5840 >        public final void compute() {
5841 >            final ObjectToInt<? super K> transformer;
5842 >            final IntByIntToInt reducer;
5843 >            if ((transformer = this.transformer) != null &&
5844 >                (reducer = this.reducer) != null) {
5845 >                int r = this.basis;
5846 >                for (int i = baseIndex, f, h; batch > 0 &&
5847 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5848 >                    addToPendingCount(1);
5849 >                    (rights = new MapReduceKeysToIntTask<K,V>
5850 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5851 >                      rights, transformer, r, reducer)).fork();
5852 >                }
5853 >                for (Node<K,V> p; (p = advance()) != null; )
5854 >                    r = reducer.apply(r, transformer.apply(p.key));
5855 >                result = r;
5856 >                CountedCompleter<?> c;
5857 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5858 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5859 >                        t = (MapReduceKeysToIntTask<K,V>)c,
5860 >                        s = t.rights;
5861 >                    while (s != null) {
5862 >                        t.result = reducer.apply(t.result, s.result);
5863 >                        s = t.rights = s.nextRight;
5864 >                    }
5865                  }
5866              }
5867          }
5868      }
5869  
5870 <    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
5871 <        extends Traverser<K,V,Integer> {
5870 >    @SuppressWarnings("serial")
5871 >    static final class MapReduceValuesToIntTask<K,V>
5872 >        extends BulkTask<K,V,Integer> {
5873          final ObjectToInt<? super V> transformer;
5874          final IntByIntToInt reducer;
5875          final int basis;
5876          int result;
5877          MapReduceValuesToIntTask<K,V> rights, nextRight;
5878          MapReduceValuesToIntTask
5879 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5879 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5880               MapReduceValuesToIntTask<K,V> nextRight,
5881               ObjectToInt<? super V> transformer,
5882               int basis,
5883               IntByIntToInt reducer) {
5884 <            super(m, p, b); this.nextRight = nextRight;
5884 >            super(p, b, i, f, t); this.nextRight = nextRight;
5885              this.transformer = transformer;
5886              this.basis = basis; this.reducer = reducer;
5887          }
5888          public final Integer getRawResult() { return result; }
5889 <        @SuppressWarnings("unchecked") public final void compute() {
5890 <            final ObjectToInt<? super V> transformer =
5891 <                this.transformer;
5892 <            final IntByIntToInt reducer = this.reducer;
5893 <            if (transformer == null || reducer == null)
5894 <                throw new NullPointerException();
5895 <            int r = this.basis;
5896 <            for (int b; (b = preSplit()) > 0;)
5897 <                (rights = new MapReduceValuesToIntTask<K,V>
5898 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5899 <            Object v;
5900 <            while ((v = advance()) != null)
5901 <                r = reducer.apply(r, transformer.apply((V)v));
5902 <            result = r;
5903 <            CountedCompleter<?> c;
5904 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5905 <                MapReduceValuesToIntTask<K,V>
5906 <                    t = (MapReduceValuesToIntTask<K,V>)c,
5907 <                    s = t.rights;
5908 <                while (s != null) {
5909 <                    t.result = reducer.apply(t.result, s.result);
5910 <                    s = t.rights = s.nextRight;
5889 >        public final void compute() {
5890 >            final ObjectToInt<? super V> transformer;
5891 >            final IntByIntToInt reducer;
5892 >            if ((transformer = this.transformer) != null &&
5893 >                (reducer = this.reducer) != null) {
5894 >                int r = this.basis;
5895 >                for (int i = baseIndex, f, h; batch > 0 &&
5896 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5897 >                    addToPendingCount(1);
5898 >                    (rights = new MapReduceValuesToIntTask<K,V>
5899 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5900 >                      rights, transformer, r, reducer)).fork();
5901 >                }
5902 >                for (Node<K,V> p; (p = advance()) != null; )
5903 >                    r = reducer.apply(r, transformer.apply(p.val));
5904 >                result = r;
5905 >                CountedCompleter<?> c;
5906 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5907 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5908 >                        t = (MapReduceValuesToIntTask<K,V>)c,
5909 >                        s = t.rights;
5910 >                    while (s != null) {
5911 >                        t.result = reducer.apply(t.result, s.result);
5912 >                        s = t.rights = s.nextRight;
5913 >                    }
5914                  }
5915              }
5916          }
5917      }
5918  
5919 <    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
5920 <        extends Traverser<K,V,Integer> {
5919 >    @SuppressWarnings("serial")
5920 >    static final class MapReduceEntriesToIntTask<K,V>
5921 >        extends BulkTask<K,V,Integer> {
5922          final ObjectToInt<Map.Entry<K,V>> transformer;
5923          final IntByIntToInt reducer;
5924          final int basis;
5925          int result;
5926          MapReduceEntriesToIntTask<K,V> rights, nextRight;
5927          MapReduceEntriesToIntTask
5928 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5928 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5929               MapReduceEntriesToIntTask<K,V> nextRight,
5930               ObjectToInt<Map.Entry<K,V>> transformer,
5931               int basis,
5932               IntByIntToInt reducer) {
5933 <            super(m, p, b); this.nextRight = nextRight;
5933 >            super(p, b, i, f, t); this.nextRight = nextRight;
5934              this.transformer = transformer;
5935              this.basis = basis; this.reducer = reducer;
5936          }
5937          public final Integer getRawResult() { return result; }
5938 <        @SuppressWarnings("unchecked") public final void compute() {
5939 <            final ObjectToInt<Map.Entry<K,V>> transformer =
5940 <                this.transformer;
5941 <            final IntByIntToInt reducer = this.reducer;
5942 <            if (transformer == null || reducer == null)
5943 <                throw new NullPointerException();
5944 <            int r = this.basis;
5945 <            for (int b; (b = preSplit()) > 0;)
5946 <                (rights = new MapReduceEntriesToIntTask<K,V>
5947 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5948 <            Object v;
5949 <            while ((v = advance()) != null)
5950 <                r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
5951 <            result = r;
5952 <            CountedCompleter<?> c;
5953 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5954 <                MapReduceEntriesToIntTask<K,V>
5955 <                    t = (MapReduceEntriesToIntTask<K,V>)c,
5956 <                    s = t.rights;
5957 <                while (s != null) {
5958 <                    t.result = reducer.apply(t.result, s.result);
5959 <                    s = t.rights = s.nextRight;
5938 >        public final void compute() {
5939 >            final ObjectToInt<Map.Entry<K,V>> transformer;
5940 >            final IntByIntToInt reducer;
5941 >            if ((transformer = this.transformer) != null &&
5942 >                (reducer = this.reducer) != null) {
5943 >                int r = this.basis;
5944 >                for (int i = baseIndex, f, h; batch > 0 &&
5945 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5946 >                    addToPendingCount(1);
5947 >                    (rights = new MapReduceEntriesToIntTask<K,V>
5948 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5949 >                      rights, transformer, r, reducer)).fork();
5950 >                }
5951 >                for (Node<K,V> p; (p = advance()) != null; )
5952 >                    r = reducer.apply(r, transformer.apply(p));
5953 >                result = r;
5954 >                CountedCompleter<?> c;
5955 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5956 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5957 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
5958 >                        s = t.rights;
5959 >                    while (s != null) {
5960 >                        t.result = reducer.apply(t.result, s.result);
5961 >                        s = t.rights = s.nextRight;
5962 >                    }
5963                  }
5964              }
5965          }
5966      }
5967  
5968 <    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
5969 <        extends Traverser<K,V,Integer> {
5968 >    @SuppressWarnings("serial")
5969 >    static final class MapReduceMappingsToIntTask<K,V>
5970 >        extends BulkTask<K,V,Integer> {
5971          final ObjectByObjectToInt<? super K, ? super V> transformer;
5972          final IntByIntToInt reducer;
5973          final int basis;
5974          int result;
5975          MapReduceMappingsToIntTask<K,V> rights, nextRight;
5976          MapReduceMappingsToIntTask
5977 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5977 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5978               MapReduceMappingsToIntTask<K,V> nextRight,
5979               ObjectByObjectToInt<? super K, ? super V> transformer,
5980               int basis,
5981               IntByIntToInt reducer) {
5982 <            super(m, p, b); this.nextRight = nextRight;
5982 >            super(p, b, i, f, t); this.nextRight = nextRight;
5983              this.transformer = transformer;
5984              this.basis = basis; this.reducer = reducer;
5985          }
5986          public final Integer getRawResult() { return result; }
5987 <        @SuppressWarnings("unchecked") public final void compute() {
5988 <            final ObjectByObjectToInt<? super K, ? super V> transformer =
5989 <                this.transformer;
5990 <            final IntByIntToInt reducer = this.reducer;
5991 <            if (transformer == null || reducer == null)
5992 <                throw new NullPointerException();
5993 <            int r = this.basis;
5994 <            for (int b; (b = preSplit()) > 0;)
5995 <                (rights = new MapReduceMappingsToIntTask<K,V>
5996 <                 (map, this, b, rights, transformer, r, reducer)).fork();
5997 <            Object v;
5998 <            while ((v = advance()) != null)
5999 <                r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6000 <            result = r;
6001 <            CountedCompleter<?> c;
6002 <            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6003 <                MapReduceMappingsToIntTask<K,V>
6004 <                    t = (MapReduceMappingsToIntTask<K,V>)c,
6005 <                    s = t.rights;
6006 <                while (s != null) {
6007 <                    t.result = reducer.apply(t.result, s.result);
6008 <                    s = t.rights = s.nextRight;
5987 >        public final void compute() {
5988 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
5989 >            final IntByIntToInt reducer;
5990 >            if ((transformer = this.transformer) != null &&
5991 >                (reducer = this.reducer) != null) {
5992 >                int r = this.basis;
5993 >                for (int i = baseIndex, f, h; batch > 0 &&
5994 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5995 >                    addToPendingCount(1);
5996 >                    (rights = new MapReduceMappingsToIntTask<K,V>
5997 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5998 >                      rights, transformer, r, reducer)).fork();
5999 >                }
6000 >                for (Node<K,V> p; (p = advance()) != null; )
6001 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
6002 >                result = r;
6003 >                CountedCompleter<?> c;
6004 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6005 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6006 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6007 >                        s = t.rights;
6008 >                    while (s != null) {
6009 >                        t.result = reducer.apply(t.result, s.result);
6010 >                        s = t.rights = s.nextRight;
6011 >                    }
6012                  }
6013              }
6014          }
6015      }
6016  
6017 +    /* ---------------- Counters -------------- */
6018 +
6019 +    // Adapted from LongAdder and Striped64.
6020 +    // See their internal docs for explanation.
6021 +
6022 +    // A padded cell for distributing counts
6023 +    static final class CounterCell {
6024 +        volatile long p0, p1, p2, p3, p4, p5, p6;
6025 +        volatile long value;
6026 +        volatile long q0, q1, q2, q3, q4, q5, q6;
6027 +        CounterCell(long x) { value = x; }
6028 +    }
6029 +
6030 +    /**
6031 +     * Holder for the thread-local hash code determining which
6032 +     * CounterCell to use. The code is initialized via the
6033 +     * counterHashCodeGenerator, but may be moved upon collisions.
6034 +     */
6035 +    static final class CounterHashCode {
6036 +        int code;
6037 +    }
6038 +
6039 +    /**
6040 +     * Generates initial value for per-thread CounterHashCodes.
6041 +     */
6042 +    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6043 +
6044 +    /**
6045 +     * Increment for counterHashCodeGenerator. See class ThreadLocal
6046 +     * for explanation.
6047 +     */
6048 +    static final int SEED_INCREMENT = 0x61c88647;
6049 +
6050 +    /**
6051 +     * Per-thread counter hash codes. Shared across all instances.
6052 +     */
6053 +    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6054 +        new ThreadLocal<CounterHashCode>();
6055 +
6056 +
6057 +    final long sumCount() {
6058 +        CounterCell[] as = counterCells; CounterCell a;
6059 +        long sum = baseCount;
6060 +        if (as != null) {
6061 +            for (int i = 0; i < as.length; ++i) {
6062 +                if ((a = as[i]) != null)
6063 +                    sum += a.value;
6064 +            }
6065 +        }
6066 +        return sum;
6067 +    }
6068 +
6069 +    // See LongAdder version for explanation
6070 +    private final void fullAddCount(long x, CounterHashCode hc,
6071 +                                    boolean wasUncontended) {
6072 +        int h;
6073 +        if (hc == null) {
6074 +            hc = new CounterHashCode();
6075 +            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6076 +            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6077 +            threadCounterHashCode.set(hc);
6078 +        }
6079 +        else
6080 +            h = hc.code;
6081 +        boolean collide = false;                // True if last slot nonempty
6082 +        for (;;) {
6083 +            CounterCell[] as; CounterCell a; int n; long v;
6084 +            if ((as = counterCells) != null && (n = as.length) > 0) {
6085 +                if ((a = as[(n - 1) & h]) == null) {
6086 +                    if (cellsBusy == 0) {            // Try to attach new Cell
6087 +                        CounterCell r = new CounterCell(x); // Optimistic create
6088 +                        if (cellsBusy == 0 &&
6089 +                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6090 +                            boolean created = false;
6091 +                            try {               // Recheck under lock
6092 +                                CounterCell[] rs; int m, j;
6093 +                                if ((rs = counterCells) != null &&
6094 +                                    (m = rs.length) > 0 &&
6095 +                                    rs[j = (m - 1) & h] == null) {
6096 +                                    rs[j] = r;
6097 +                                    created = true;
6098 +                                }
6099 +                            } finally {
6100 +                                cellsBusy = 0;
6101 +                            }
6102 +                            if (created)
6103 +                                break;
6104 +                            continue;           // Slot is now non-empty
6105 +                        }
6106 +                    }
6107 +                    collide = false;
6108 +                }
6109 +                else if (!wasUncontended)       // CAS already known to fail
6110 +                    wasUncontended = true;      // Continue after rehash
6111 +                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6112 +                    break;
6113 +                else if (counterCells != as || n >= NCPU)
6114 +                    collide = false;            // At max size or stale
6115 +                else if (!collide)
6116 +                    collide = true;
6117 +                else if (cellsBusy == 0 &&
6118 +                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6119 +                    try {
6120 +                        if (counterCells == as) {// Expand table unless stale
6121 +                            CounterCell[] rs = new CounterCell[n << 1];
6122 +                            for (int i = 0; i < n; ++i)
6123 +                                rs[i] = as[i];
6124 +                            counterCells = rs;
6125 +                        }
6126 +                    } finally {
6127 +                        cellsBusy = 0;
6128 +                    }
6129 +                    collide = false;
6130 +                    continue;                   // Retry with expanded table
6131 +                }
6132 +                h ^= h << 13;                   // Rehash
6133 +                h ^= h >>> 17;
6134 +                h ^= h << 5;
6135 +            }
6136 +            else if (cellsBusy == 0 && counterCells == as &&
6137 +                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6138 +                boolean init = false;
6139 +                try {                           // Initialize table
6140 +                    if (counterCells == as) {
6141 +                        CounterCell[] rs = new CounterCell[2];
6142 +                        rs[h & 1] = new CounterCell(x);
6143 +                        counterCells = rs;
6144 +                        init = true;
6145 +                    }
6146 +                } finally {
6147 +                    cellsBusy = 0;
6148 +                }
6149 +                if (init)
6150 +                    break;
6151 +            }
6152 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6153 +                break;                          // Fall back on using base
6154 +        }
6155 +        hc.code = h;                            // Record index for next time
6156 +    }
6157 +
6158      // Unsafe mechanics
6159 <    private static final sun.misc.Unsafe UNSAFE;
6160 <    private static final long counterOffset;
6161 <    private static final long sizeCtlOffset;
6159 >    private static final sun.misc.Unsafe U;
6160 >    private static final long SIZECTL;
6161 >    private static final long TRANSFERINDEX;
6162 >    private static final long TRANSFERORIGIN;
6163 >    private static final long BASECOUNT;
6164 >    private static final long CELLSBUSY;
6165 >    private static final long CELLVALUE;
6166      private static final long ABASE;
6167      private static final int ASHIFT;
6168  
6169      static {
6617        int ss;
6170          try {
6171 <            UNSAFE = getUnsafe();
6171 >            U = getUnsafe();
6172              Class<?> k = ConcurrentHashMapV8.class;
6173 <            counterOffset = UNSAFE.objectFieldOffset
6622 <                (k.getDeclaredField("counter"));
6623 <            sizeCtlOffset = UNSAFE.objectFieldOffset
6173 >            SIZECTL = U.objectFieldOffset
6174                  (k.getDeclaredField("sizeCtl"));
6175 <            Class<?> sc = Node[].class;
6176 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6177 <            ss = UNSAFE.arrayIndexScale(sc);
6175 >            TRANSFERINDEX = U.objectFieldOffset
6176 >                (k.getDeclaredField("transferIndex"));
6177 >            TRANSFERORIGIN = U.objectFieldOffset
6178 >                (k.getDeclaredField("transferOrigin"));
6179 >            BASECOUNT = U.objectFieldOffset
6180 >                (k.getDeclaredField("baseCount"));
6181 >            CELLSBUSY = U.objectFieldOffset
6182 >                (k.getDeclaredField("cellsBusy"));
6183 >            Class<?> ck = CounterCell.class;
6184 >            CELLVALUE = U.objectFieldOffset
6185 >                (ck.getDeclaredField("value"));
6186 >            Class<?> ak = Node[].class;
6187 >            ABASE = U.arrayBaseOffset(ak);
6188 >            int scale = U.arrayIndexScale(ak);
6189 >            if ((scale & (scale - 1)) != 0)
6190 >                throw new Error("data type scale not a power of two");
6191 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6192          } catch (Exception e) {
6193              throw new Error(e);
6194          }
6631        if ((ss & (ss-1)) != 0)
6632            throw new Error("data type scale not a power of two");
6633        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6195      }
6196  
6197      /**
# Line 6643 | Line 6204 | public class ConcurrentHashMapV8<K, V>
6204      private static sun.misc.Unsafe getUnsafe() {
6205          try {
6206              return sun.misc.Unsafe.getUnsafe();
6207 <        } catch (SecurityException se) {
6208 <            try {
6209 <                return java.security.AccessController.doPrivileged
6210 <                    (new java.security
6211 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6212 <                        public sun.misc.Unsafe run() throws Exception {
6213 <                            java.lang.reflect.Field f = sun.misc
6214 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6215 <                            f.setAccessible(true);
6216 <                            return (sun.misc.Unsafe) f.get(null);
6217 <                        }});
6218 <            } catch (java.security.PrivilegedActionException e) {
6219 <                throw new RuntimeException("Could not initialize intrinsics",
6220 <                                           e.getCause());
6221 <            }
6207 >        } catch (SecurityException tryReflectionInstead) {}
6208 >        try {
6209 >            return java.security.AccessController.doPrivileged
6210 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6211 >                public sun.misc.Unsafe run() throws Exception {
6212 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6213 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6214 >                        f.setAccessible(true);
6215 >                        Object x = f.get(null);
6216 >                        if (k.isInstance(x))
6217 >                            return k.cast(x);
6218 >                    }
6219 >                    throw new NoSuchFieldError("the Unsafe");
6220 >                }});
6221 >        } catch (java.security.PrivilegedActionException e) {
6222 >            throw new RuntimeException("Could not initialize intrinsics",
6223 >                                       e.getCause());
6224          }
6225      }
6226   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines